Uptake of uranium from seawater by amidoxime-based polymeric adsorbent marine testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsouris, C.; Kim, J.; Oyola, Y.
2013-07-01
Amidoxime-based polymer adsorbents in the form of functionalized fibers were prepared at the Oak Ridge National Laboratory (ORNL) and screened in laboratory experiments, in terms of uranium uptake capacity, using spiked uranium solution and seawater samples. Batch laboratory experiments conducted with 5-gallon seawater tanks provided equilibrium information. Based on results from 5-gallon experiments, the best adsorbent was selected for field-testing of uranium adsorption from seawater. Flow-through column tests have been performed at different marine sites to investigate the uranium uptake rate and equilibrium capacity under diverse biogeochemistry. The maximum amount of uranium uptake from seawater tests at Sequim, WA, wasmore » 3.3 mg U/g adsorbent after eight weeks of contact of the adsorbent with seawater. This amount was three times higher than the maximum adsorption capacity achieved in this study by a leading adsorbent developed by the Japan Atomic Energy Agency (JAEA), which was 1.1 mg U/g adsorbent at equilibrium. The initial uranium uptake rate of the ORNL adsorbent was 2.6 times higher than that of the JAEA adsorbent under similar conditions. A mathematical model derived from the mass balance of uranium was employed to describe the data. (authors)« less
Morphological and physiological studies on Indian national kabaddi players.
Dey, S K; Khanna, G L; Batra, M
1993-01-01
Twenty-five national kabaddi players (Asiad gold medalists 1990), mean age 27.91 years, who attended a national camp at the Sports Authority of India, Bangalore before the Beijing Asian Games in 1990, were investigated for their physical characteristics, body fat, lean body mass (LBM) and somatotype. The physiological characteristics assessed included back strength, maximum oxygen uptake capacity and anaerobic capacity (oxygen debt) and related cardiorespiratory parameters (oxygen pulse, breathing equivalent, maximum pulmonary ventilation, maximum heart rate). Body fat was calculated from skinfold thicknesses taken at four different sites, using Harpenden skinfold calipers. An exercise test (graded protocol) was performed on a bicycle ergometer (ER-900) using a computerized EOS Sprint (Jaeger, West Germany). The mean(s.d.) percentage body fat (17.56(3.48)) of kabaddi players was found to be higher than normal sedentary people. Their physique was found to be endomorphic mesomorph (3.8-5.2-1.7). Mean(s.d.) back strength, maximum oxygen uptake capacity (VO2max) and oxygen debt were found to be 162.6(18.08) kg, 42.6(4.91) ml kg-1 min-1 and 5.02(1.29) litre respectively. Physical characteristics, percentage body fat, somatotype, maximum oxygen uptake capacity and anaerobic capacity (oxygen debt) and other cardiorespiratory parameters were compared with other national counterparts. Present data are comparable with data for judo, wrestling and weightlifting. Since no such study has been conducted on international counterparts, these data could not be compared. These data may act as a guideline in the selection of future kabaddi players and to attain the physiological status comparable to the present gold medalists. Images Figure 4 Figure 5 p242-a PMID:8130960
Validity of Selected Lab and Field Tests of Physical Working Capacity.
ERIC Educational Resources Information Center
Burke, Edmund J.
The validity of selected lab and field tests of physical working capacity was investigated. Forty-four male college students were administered a series of lab and field tests of physical working capacity. Lab tests include a test of maximum oxygen uptake, the PWC 170 test, the Harvard Step Test, the Progressive Pulse Ratio Test, Margaria Test of…
NASA Astrophysics Data System (ADS)
Meng, Huijuan; Xia, Yunfeng; Chen, Hong
Potential remediation of surface water contaminated with linear alkylbenzene sulfonates (LAS) and zinc (Zn (II)) by sorption on Spirulina platensis was studied using batch techniques. Results show that LAS can be biodegraded by Spirulina platensis, and its biodegradation rate after 5 days was 87%, 80%, and 70.5% when its initial concentration was 0.5, 1, and 2 mg/L, respectively. The maximum Zn (II) uptake capacity of Spirulina platensis was found to be 30.96 mg/g. LAS may enhance the maximum Zn (II) uptake capacity of Spirulina platensis, which can be attributed to an increase in bioavailability due to the presence of LAS. The biodegradation rates of LAS by Spirulina platensis increased with Zn (II) and reached the maximum when Zn (II) was 4 mg/L. The joint toxicity test showed that the combined effect of LAS and Zn (II) was Synergistic. LAS can enhance the biosorption of Zn (II), and reciprocally, Zn (II) can enhance LAS biodegradation.
Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited.
Vazquez, Alexei; Liu, Jiangxia; Zhou, Yi; Oltvai, Zoltán N
2010-05-06
Cancer cells simultaneously exhibit glycolysis with lactate secretion and mitochondrial respiration even in the presence of oxygen, a phenomenon known as the Warburg effect. The maintenance of this mixed metabolic phenotype is seemingly counterintuitive given that aerobic glycolysis is far less efficient in terms of ATP yield per moles of glucose than mitochondrial respiration. Here, we resolve this apparent contradiction by expanding the notion of metabolic efficiency. We study a reduced flux balance model of ATP production that is constrained by the glucose uptake capacity and by the solvent capacity of the cell's cytoplasm, the latter quantifying the maximum amount of macromolecules that can occupy the intracellular space. At low glucose uptake rates we find that mitochondrial respiration is indeed the most efficient pathway for ATP generation. Above a threshold glucose uptake rate, however, a gradual activation of aerobic glycolysis and slight decrease of mitochondrial respiration results in the highest rate of ATP production. Our analyses indicate that the Warburg effect is a favorable catabolic state for all rapidly proliferating mammalian cells with high glucose uptake capacity. It arises because while aerobic glycolysis is less efficient than mitochondrial respiration in terms of ATP yield per glucose uptake, it is more efficient in terms of the required solvent capacity. These results may have direct relevance to chemotherapeutic strategies attempting to target cancer metabolism.
Muñoz-Martínez, Francisco Antonio; Rubio-Arias, Jacobo Á; Ramos-Campo, Domingo Jesús; Alcaraz, Pedro E
2017-12-01
It is well known that concurrent increases in both maximal strength and aerobic capacity are associated with improvements in sports performance as well as overall health. One of the most popular training methods used for achieving these objectives is resistance circuit-based training. The objective of the present systematic review with a meta-analysis was to evaluate published studies that have investigated the effects of resistance circuit-based training on maximum oxygen uptake and one-repetition maximum of the upper-body strength (bench press exercise) in healthy adults. The following electronic databases were searched from January to June 2016: PubMed, Web of Science and Cochrane. Studies were included if they met the following criteria: (1) examined healthy adults aged between 18 and 65 years; (2) met the characteristics of resistance circuit-based training; and (3) analysed the outcome variables of maximum oxygen uptake using a gas analyser and/or one-repetition maximum bench press. Of the 100 articles found from the database search and after all duplicates were removed, eight articles were analysed for maximum oxygen uptake. Of 118 healthy adults who performed resistance circuit-based training, maximum oxygen uptake was evaluated before and after the training programme. Additionally, from the 308 articles found for one-repetition maximum, eight articles were analysed. The bench press one-repetition maximum load, of 237 healthy adults who performed resistance circuit-based training, was evaluated before and after the training programme. Significant increases in maximum oxygen uptake and one-repetition maximum bench press were observed following resistance circuit-based training. Additionally, significant differences in maximum oxygen uptake and one-repetition maximum bench press were found between the resistance circuit-based training and control groups. The meta-analysis showed that resistance circuit-based training, independent of the protocol used in the studies, is effective in increasing maximum oxygen uptake and one-repetition maximum bench press in healthy adults. However, its effect appears to be larger depending on the population and training characteristics. For large effects in maximum oxygen uptake, the programme should include ~14-30 sessions for ~6-12 weeks, with each session lasting at least ~20-30 min, at intensities between ~60 and 90% one-repetition maximum. For large effects in one-repetition maximum bench press, the data indicate that intensity should be ~30-60% one-repetition maximum, with sessions lasting at least ~22.5-60 min. However, the lower participant's baseline fitness level may explain the lighter optimal loads used in the circuit training studies where greater strength gains were reported.
The effects of in-flight treadmill exercise on postflight orthostatic tolerance
NASA Technical Reports Server (NTRS)
Siconolfi, Steven F.; Charles, John B.
1992-01-01
In-flight aerobic exercise is thought to decrease the deconditioning effects of microgravity. Two deconditioning characteristics are the decreases in aerobic capacity (maximum O2 uptake) and an increased cardiovascular response to orthostatic stress (supine to standing). Changes in both parameters were examined after Shuttle flights of 8 to 11 days in astronauts who performed no in-flight exercise, a lower than normal volume of exercise, and a near-normal volume of exercise. The exercise regimen was a traditional continuous protocol. Maximum O2 uptake was maintained in astronauts who completed a near-normal exercise volume of in-flight exercise. Cardiovascular responses to stand test were equivocal among the groups. The use of the traditional exercise regimen as a means to maintain adequate orthostatic responses produced equivocal responses. A different exercise prescription may be more effective in maintaining both exercise capacity and orthostatic tolerance.
A study in the adsorption of Fe(2+) and NO(3)(-) on pine needles based hydrogels.
Chauhan, Ghanshyam S; Chauhan, Sandeep; Kumar, Sunil; Kumari, Anita
2008-09-01
Novel supports for use as cation and anion adsorbents were prepared from lignocellulosics using pine needles and their carboxymethylated forms by network/hydrogel formation with acrylamide and N,N-methylene bisacrylamide. The hydrogels thus prepared were further functionalized by partial alkaline hydrolysis with 0.5 N NaOH and were characterized by FTIR, SEM and nitrogen analysis. Adsorption of Fe(2+) on these hydrogels was carried as a function of time, temperature, pH and ionic strength. The hydrogel having the maximum adsorption capacity was loaded with Fe(2+) at the conditions those afforded maximum uptake and was used as novel anionic adsorbent for NO(3)(-). The water uptake capacities and biodegradability of the hydrogels before and after the ion loading was studied to evaluate the possible end-uses of these hydrogels as alternate materials in the removal of ionic species from water.
Biosorption of mercury by the inactivated cells of Pseudomonas aeruginosa PU21 (Rip64)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, J.S.; Hong, J.
1994-10-01
Biomass of a mercury-resistance strain Pseudomonas aeruginosa PU21 (Rip64) and hydrogen-form cation exchange resin (AG 50W-X8) were investigated for their ability to adsorb mercury. The maximum adsorption capacity was approximately 180 mg Hg/g dry cell in deionized water and 400 mg Hg/g dry cell in sodium phosphate solution of pH 7.4, higher than the maximum mercury uptake capacity in the cation exchange resin. The mercury selectivity of the biomass over sodium ions was evaluated when 50 mM and 150 mM of Na[sup +] were present. Biosorption of mercury was also examined in sodium phosphate solution and phosphate-buffered saline solution containingmore » 50 mM and 150 mM of Na[sup +], respectively. It was found that the presence of Na[sup +] did not severely affect the biosorption of Hg[sup 2+], indicating a high mercury selectivity of the biomass over sodium ions. In contrast, the mercury uptake by the ion exchange resin was strongly inhibited by high sodium concentrations. The mercury biosorption was most favorable in sodium phosphate solution (pH 7.4), with a more than twofold increase in the maximum mercury uptake capacity. The pH was found to affect the adsorption of Hg[sup 2+] by the biomass and the optimal pH value was approximately 7.4. The adsorption of mercury on the biomass and the ion exchange resin appeared to follow the Langmuir or Freundlich adsorption isotherms.« less
NASA Technical Reports Server (NTRS)
2008-01-01
Evaluation of Maximal Oxygen Uptake and Submaximal Estimates of VO2max Before, During, and After Long Duration International Space Station Missions (VO2max) will document changes in maximum oxygen uptake for crewmembers onboard the International Space Station (ISS) on long-duration missions, greater than 90 days. This investigation will establish the characteristics of VO2max during flight and assess the validity of the current methods of tracking aerobic capacity change during and following the ISS missions.
Biosorption of cesium-137 and strontium-90 by mucilaginous seeds of Ocimum basilicum.
Chakraborty, Dipjyoti; Maji, Samir; Bandyopadhyay, Abhijit; Basu, Sukalyan
2007-11-01
Mucilaginous seeds of Ocimum basilicum were used in uptake studies with cesium-137 and strontium-90. Results showed that uptake was dependent on the structural integrity of the mucilage fibrils. Water imbibed seeds showed higher adsorption of both 137Cs and 90Sr in comparison to seeds pretreated with NaOH, HCl and Na-periodate solution. The uptake was pH dependent and while some divalent metal ions had no or little detrimental effect, the alkali metal ions Li+, Na+ and K+ decreased the uptake. The maximum adsorption capacity was 160 mg cesium g(-1) and 247 mg strontium g(-1) seed dry weight.
James, W.F.; Richardson, W.B.; Soballe, D.M.
2008-01-01
Routing nitrate through backwaters of regulated floodplain rivers to increase retention could decrease loading to nitrogen (N)-sensitive coastal regions. Sediment core determinations of N flux were combined with inflow-outflow fluxes to develop mass balance approximations of N uptake and transformations in a flow-controlled backwater of the Upper Mississippi River (USA). Inflow was the dominant nitrate source (>95%) versus nitrification and varied as a function of source water concentration since flow was constant. Nitrate uptake length increased linearly, while uptake velocity decreased linearly, with increasing inflow concentration to 2 mg l-1, indicating limitation of N uptake by loading. N saturation at higher inflow concentration coincided with maximum uptake capacity, 40% uptake efficiency, and an uptake length 2 times greater than the length of the backwater. Nitrate diffusion and denitrification in sediment accounted for 27% of the backwater nitrate retention, indicating that assimilation by other biota or denitrification on other substrates were the dominant uptake mechanisms. Ammonium export from the backwater was driven by diffusive efflux from the sediment. Ammonium increased from near zero at the inflow to a maximum mid-lake, then declined slightly toward the outflow due to uptake during transport. Ammonium export was small compared to nitrate retention. ?? 2007 Springer Science+Business Media B.V.
Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Colombo, Andréia; Geraldi, Claudinéia L; Trigueros, Daniela E G
2015-05-01
The uptake of Cd(2+) and Pb(2+) ions by a soybean hull (SH) biosorbent in single and binary systems has been investigated. Sorption tests regarding SH in natura and chemically treated were carried out testing a suitable value range of solution pH, sorption temperature and shaking velocity. Sorption capacity is improved at pH 4, 30 °C temperature and 100 rpm. When a strong base is applied, a related-to-untreated SH increasing of 20% in the sorption capacity of Pb(2+) ions was observed, but with poor results for Cd(2+) uptake. Additionally, a relatively strong decreasing in both sorption capacities of Pb(2+) and Cd(2+) ions was evidenced for all acidic treatments. Regarding untreated SH, kinetic sorption data of both metals were well-interpreted by a pseudo second-order model and a rate-limiting step on the basis of an intra-particle diffusion model was suggested to occur. An inhibitory effect of Pb(2+) diffusion over Cd(2+) one was observed, limiting to reach the obtained maximum sorption capacity in single system. Maximum adsorption capacities of 0.49 and 0.67mequivg(-1) for Cd(2+) and Pb(2+), respectively, were predicted by the Langmuir isotherm model that reproduced well the equilibrium sorption data for single systems. The inhibitory effect of one metal over the other one was verified in equilibrium sorption data for binary systems interpreted on the basis of a modified extended Langmuir isotherm model, predicting changes in metal affinity onto the SH surface. Finally, SH is an alternative biosorbent with a great potential for the wastewater treatment containing cadmium and lead ions. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Afnizan, W. M. W.; Hamdan, R.; Othman, N.
2016-07-01
The high content of uncontrolled phosphorus concentration in wastewater has emerged as a major problem recently. The excessive amount of phosphorus that is originated from domestic waste, unproper treated waste from septic tanks, as well as agricultural activities have led to the eutrophication problem. Therefore, a laboratory experiment was initiated to evaluate the potential of the Electric Arc Furnace Slag (EAFS), a by-product waste from steel making industry in removing phosphorus concentrations in aqueous solutions. In this work several particle sizes ranging from (9.5-12.4 mm, 12.5-15.9 mm, 16.0-19.9 mm, 20.0-24.9 mm, 25-37.4 mm) with a known weight (20±0.28 g, 40±0.27 g, 60±0.30 g, 80±0.29 g and 100±0.38 g) were used to study the effect of different particle sizes towards phosphorus removal. Each particle size of EAFS was shaken in synthetic phosphorus solutions (10 mg/l, 20 mg/l, 30 mg/l, 40 mg/l and 50 mg/l) at a contact time of 2 hours. Final concentrations of phosphorus were sampled and the measurement was made using WESTCO Discrete Analyzer equipment. Results showed that the highest of the maximum uptake capacity of each EAFS particle size distribution achieved at 0.287, 0.313, 0.266, 0.241 and 0.25 mg/g as particle size range was varied from 9.5-12.4 mm to 25-37.4 mm. In conclusion, the maximum uptake capacity of each EAFS mostly was determined to occur at adsorbent weight of 20 to 40 g in most conditions.
Screening of Tropical Wood-Rotting Mushrooms for Copper Biosorption
Muraleedharan, T. R.; Iyengar, L.; Venkobachar, C.
1995-01-01
Fruiting bodies (mushrooms) of nine nonedible macrofungi were screened for copper(II) uptake potential. The maximum uptake potentials (Q(infmax)s) derived from equilibrium studies indicated that all nine species exhibited higher Q(infmax)s at pH 4.0 than that of Filtrasorb-400, a generally used adsorbent for metal removal. Wide variation in Q(infmax) was observed among the species and ranged from 0.048 to 0.383 mmol per g of sorbent. The uptake capacity of Ganoderma lucidum, which exhibited the highest Q(infmax), was higher than those of other microbial biosorbents reported in the literature. PMID:16535136
In Vitro Antidiabetic Effects and Antioxidant Potential of Cassia nemophila Pods
Rehman, Gauhar; Hamayun, Muhammad; Ul Islam, Saif; Arshad, Saba; Zaman, Khair; Ahmad, Ayaz; Shehzad, Adeeb; Hussain, Anwar
2018-01-01
The antidiabetic and antioxidant potential of ethanolic extract of Cassia nemophila pod (EECNP) was evaluated by three in vitro assays, including yeast glucose uptake assay, glucose adsorption assay, and DPPH radical scavenging activity. The result revealed that the extracts have enhanced the uptake of glucose through the plasma membrane of yeast cells. A linear increase in glucose uptake by yeast cells was noticed with gradual increase in the concentration of the test samples. Moreover, the adsorption capacity of the EECNP was directly proportional to the molar concentration of glucose. Also, the DPPH radical scavenging capacity of the extract was increased to a maximum value of 43.3% at 80 μg/ml, which was then decreased to 41.9% at 100 μg/ml. From the results, it was concluded that EECNP possess good antidiabetic and antioxidant properties as shown by in vitro assays. PMID:29607313
Impact of phosphate limitation on PHA production in a feast-famine process.
Korkakaki, Emmanouela; van Loosdrecht, Mark C M; Kleerebezem, Robbert
2017-12-01
Double-limitation systems have shown to induce polyhydroxyalkanoates (PHA) production in chemostat studies limited in e.g. carbon and phosphate. In this work the impact of double substrate limitation on the enrichment of a PHA producing community was studied in a sequencing batch process. Enrichments at different C/P concentration ratios in the influent were established and the effect on the PHA production capacity and the enrichment community structure was investigated. Experimental results demonstrated that when a double substrate limitation is imposed at a C/P ratio in the influent in a range of 150 (C-mol/mol), the P-content of the biomass and the specific substrate uptake rates decreased. Nonetheless, the PHA storage capacity remained high (with a maximum of 84 wt%). At a C/P ratio of 300, competition in the microbial community is based on phosphate uptake, and the PHA production capacity is lost. Biomass specific substrate uptake rates are a linear function of the cellular P-content, offering advantages for scaling-up the PHA production process due to lower oxygen requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shi, Chaohong; Zhu, Nengwu; Kang, Naixin; Wu, Pingxiao; Zhang, Xiaoping; Zhang, Yanhong
2017-09-01
Biorecovery is emerging as a promising process to retrieve gold from secondary resources. The present study aimed to explore the uptake pattern of Pycnoporus sanguineus biomass for gold, identify the effective functional groups in gold recovery process, and thus further intensify the process via microbial surface modification. Results showed that P. sanguineus biomass could effectively recover gold with the formation of highly crystal AuNPs without any exogeneous electron donor. Under the conditions of various initial gold concentrations (1.0, 2.0, and 3.0 mM), biomass dosage of 2.0 g/L, solution pH value of 4.0, and incubation temperature of 30°C, the uptake equilibrium established after 4, 8, and 12 h, respectively. The uptake process could be well described by pseudo-second order kinetics model (R 2 = 0.9988) and Langmuir isotherm model (R 2 = 0.9958). The maximum uptake capacity of P. sanguineus reached as high as 358.69 mg/g. Further analysis indicated that amino, carboxyl and hydroxyl groups positively contributed to the uptake process. Among them, amino group significantly favored the uptake of gold during recovery process. When P. sanguineus biomass was modified by introduction of amino group, the gold uptake process was successfully intensified by shortening the uptake period and enhancing the uptake capacity. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1314-1322, 2017. © 2017 American Institute of Chemical Engineers.
Effects of trimetazidine in nonischemic heart failure: a randomized study.
Winter, José Luis; Castro, Pablo F; Quintana, Juan Carlos; Altamirano, Rodrigo; Enriquez, Andres; Verdejo, Hugo E; Jalil, Jorge E; Mellado, Rosemarie; Concepción, Roberto; Sepúlveda, Pablo; Rossel, Victor; Sepúlveda, Luis; Chiong, Mario; García, Lorena; Lavandero, Sergio
2014-03-01
Heart failure (HF) is associated with changes in myocardial metabolism that lead to impairment of contractile function. Trimetazidine (TMZ) modulates cardiac energetic efficiency and improves outcomes in ischemic heart disease. We evaluated the effects of TMZ on left ventricular ejection fraction (LVEF), cardiac metabolism, exercise capacity, O2 uptake, and quality of life in patients with nonischemic HF. Sixty patients with stable nonischemic HF under optimal medical therapy were included in this randomized double-blind study. Patients were randomized to TMZ (35 mg orally twice a day) or placebo for 6 months. LVEF, 6-minute walk test (6MWT), maximum O2 uptake in cardiopulmonary exercise test, different markers of metabolism, oxidative stress, and endothelial function, and quality of life were assessed at baseline and after TMZ treatment. Left ventricular peak glucose uptake was evaluated with the use of the maximum standardized uptake value (SUV) by 18-fluorodeoxyglucose positron emission tomography ((18)FDG-PET). Etiology was idiopathic in 85% and hypertensive in 15%. Both groups were similar in age, functional class, LVEF, and levels of N-terminal pro-B-type natriuretic peptide at baseline. After 6 months of TMZ treatment, no changes were observed in LVEF (31 ± 10% vs 34 ± 8%; P = .8), 6MWT (443 ± 25 m vs 506 ± 79 m; P = .03), maximum O2 uptake (19.1 ± 5.0 mL kg(-1) min(-1) vs 23.0 ± 7.2 mL kg(-1) min(-1); P = .11), functional class (percentages of patients in functional classes I/II/III/IV 10/3753/0 vs 7/40/50/3; P = .14), or quality of life (32 ± 26 points vs 24 ± 18 points; P = .25) in TMZ versus placebo, respectively. In the subgroup of patients evaluated with (18)FDG-PET, no significant differences were observed in SUV between both groups (7.0 ± 3.6 vs 8.2 ± 3.4 respectively; P = .47). In patients with nonischemic HF, the addition of TMZ to optimal medical treatment does not result in significant changes of LVEF, exercise capacity, O2 uptake, or quality of life. Copyright © 2014 Elsevier Inc. All rights reserved.
Development of a model to select plants with optimum metal phytoextraction potential.
Guala, Sebastián D; Vega, Flora A; Covelo, Emma F
2011-07-01
The aim of the present study is to propose a nonlinear model which provides an indicator for the maximum phytoextraction of metals to help in the decision-making process. Research into different species and strategies plays an important role in the application of phytoextraction techniques to the remediation of contaminated soil. Also, the convenience of species according to their biomass and pollutant accumulation capacities has gained important space in discussions regarding remediation strategies, whether to choose species with low accumulation capacities and high biomass or high accumulation capacities with low biomass. The effects of heavy metals in soil on plant growth are studied by means of a nonlinear interaction model which relates the dynamics of the uptake of heavy metals by plants to heavy metal deposed in soil. The model, presented theoretically, provides an indicator for the maximum phytoextraction of metals which depends on adjustable parameters of both the plant and the environmental conditions. Finally, in order to clarify its applicability, a series of experimental results found in the literature are presented to show how the model performs consistently with real data. The inhibition of plant growth due to heavy metal concentration can be predicted by a simple kinetic model. The model proposed in this study makes it possible to characterize the nonlinear behaviour of the soil-plant interaction with heavy metal pollution in order to establish maximum uptake values for heavy metals in the harvestable part of plants.
Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column.
Vilar, Vítor J P; Botelho, Cidália M S; Loureiro, José M; Boaventura, Rui A R
2008-09-01
Marine algae Gelidium and algal composite material were investigated for the continuous removal of Cu(II) from aqueous solution in a packed bed column. The biosorption behaviour was studied during one sorption-desorption cycle of Cu(II) in the flow through column fed with 50 and 25 mg l(-1) of Cu(II) in aqueous solution, at pH 5.3, leading to a maximum uptake capacity of approximately 13 and 3 mg g(-1), respectively, for algae Gelidium and composite material. The breakthrough time decreases as the inlet copper concentration increases, for the same flow rate. The pH of the effluent decreases over the breakthrough time of copper ions, which indicates that ion exchange is one of the mechanisms involved in the biosorption process. Temperature has little influence on the metal uptake capacity and the increase of the ionic strength reduces the sorption capacity, decreasing the breakthrough time. Desorption using 0.1M HNO(3) solution was 100% effective. After two consecutive sorption-desorption cycles no changes in the uptake capacity of the composite material were observed. A mass transfer model including film and intraparticle resistances, and the equilibrium relationship, for adsorption and desorption, was successfully applied for the simulation of the biosorption column performance.
Saleh, Muhammad; Tiwari, Jitendra N; Kemp, K Christain; Yousuf, Muhammad; Kim, Kwang S
2013-05-21
Adsorption with solid sorbents is considered to be one of the most promising methods for the capture of carbon dioxide (CO₂) from power plant flue gases. In this study, microporous carbon materials used for CO₂ capture were synthesized by the chemical activation of polyindole nanofibers (PIF) at temperatures from 500 to 800 °C using KOH, which resulted in nitrogen (N)-doped carbon materials. The N-doped carbon materials were found to be microporous with an optimal adsorption pore size for CO₂ of 0.6 nm and a maximum (Brunauer-Emmett-Teller) BET surface area of 1185 m(2) g(-1). The PIF activated at 600 °C (PIF6) has a surface area of 527 m(2) g(-1) and a maximum CO₂ storage capacity of 3.2 mmol g(-1) at 25 °C and 1 bar. This high CO₂ uptake is attributed to its highly microporous character and optimum N content. Additionally, PIF6 material displays a high CO₂ uptake at low pressure (1.81 mmol g(-1) at 0.2 bar and 25 °C), which is the best low pressure CO₂ uptake reported for carbon-based materials. The adsorption capacity of this material remained remarkably stable even after 10 cycles. The isosteric heat of adsorption was calculated to be in the range of 42.7-24.1 kJ mol(-1). Besides the excellent CO₂ uptake and stability, PIF6 also exhibits high selectivity values for CO₂ over N₂, CH₄, and H₂ of 58.9, 12.3, and 101.1 at 25 °C, respectively, and these values are significantly higher than reported values.
Effects of a Short Physical Exercise Intervention on Patients with Multiple Sclerosis (MS).
Kerling, Arno; Keweloh, Karin; Tegtbur, Uwe; Kück, Momme; Grams, Lena; Horstmann, Hauke; Windhagen, Anja
2015-07-10
The aim of this prospective randomized controlled trial was to investigate if a short-term endurance or combined endurance/resistance exercise program was sufficient to improve aerobic capacity and maximum force in adult patients (18-65 years) with multiple sclerosis (MS). All patients performed a three-month exercise program consisting of two training sessions per week, lasting 40 min each, with moderate intensity. All patients had a maximum value of 6 (low to moderate disability) on the Expanded Disability Status Scale (EDSS). One group (combined workout group (CWG); 15 females, 4 males) completed a combined endurance/resistance workout (20 min on a bicycle ergometer, followed by 20 min of resistance training), while the other group (endurance workout group (EWG); 13 females, 5 males) completed a 40 min endurance training program. Aerobic capacity was assessed as peak oxygen uptake, ventilatory anaerobic threshold, and workload expressed as Watts. Maximum force of knee and shoulder extensors and flexors was measured using isokinetic testing. Quality of life was assessed with the SF-36 questionnaire, and fatigue was measured using the Modified Fatigue Impact Scale. Both training groups increased in aerobic capacity and maximum force. EWG, as well as CWG, showed improvement in several subscales of the SF-36 questionnaire and decrease of their fatigue. A short exercise intervention increased both aerobic capacity and maximum force independent of whether endurance or combined endurance/resistance workouts were performed.
[Bidens maximowicziana's adsorption ability and remediation potential to lead in soils].
Wang, Hong-qi; Li, Hua; Lu, Si-jin
2005-11-01
Bidens maximowicziana's adsorption ability and remediation potential to lead were studied. The results show: (1) The Bidens maximowicziana has a strong adsorption to lead, the concentration of lead in plants increased linearly with the increase of lead concentration in soil. Then maximum concentration was 1509.3 mg x kg(-1) in roots and 2164.7 mg x kg(-1) in shoots when lead concentration in soil was 2000 mg x L(-1); (2) The lead concentration distribution order in the Bidens maximorwicziana is: leaf>stem>root>seed, which indicate that Bidens maximowicziana has a strong ability to transfer lead; (3) Uptaking ability differes in different vegetal periods. Maximum lead uptaking rate occured in the period of blooming for 40-60 days, in which daily uptake capacity was 15.81 mg x (kg x d)(-1) in roots and 19.83 mg x (kg x d)(-1) in shoots respectively. It can be concluded that Bidens maximowicziana appeares to be a moderate Pb accumulator making it suitable for phytoremediation of Pb contaminated soil.
Adsorption behaviour of methylene blue onto Jordanian diatomite: a kinetic study.
Al-Ghouti, Mohammad A; Khraisheh, Majeda A M; Ahmad, Mohammad N M; Allen, Stephen
2009-06-15
The effect of initial concentration, particle size, mass of the adsorbent, pH and agitation speed on adsorption behaviour of methylene blue (MB) onto Jordanian diatomite has been investigated. The maximum adsorption capacity, q, increased from 75 to 105 mg/g when pH of the dye solution increased from 4 to 11. It is clear that the ionisable charge sites on the diatomite surface increased when pH increased from 4 to 11. When the solution pH was above the pH(ZPC), the diatomite surface had a negative charge, while at low pH (pH<5.4) it has a positive charge. The adsorption capacity increased from 88.6 to 143.3mg/g as the initial MB concentrations increased from 89.6 to 225.2mg/dm(3). The experimental results were also applied to the pseudo-first and -second order kinetic models. It is noticed that the whole experimental data of MB adsorption onto diatomite did not follow the pseudo-first order model and had low correlation coefficients (R(2)<0.3). The calculated adsorption capacity, q(e,cal), values obtained from pseudo-first order kinetic model did not give acceptable values, q(e,exp.) The maximum uptake capacity seems to be independent of the particle size of the diatomite when the particle size distribution is less than 250-500 microm. While at larger particle size 250-500 microm, the maximum uptake capacity was dependent on the particle size. It would imply that the MB adsorption is limited by the external surface and that intraparticle diffusion is reduced. The effect of the agitation speeds on the removal of MB from aqueous solution using the diatomite is quite low. The MB removal increased from 43 to 100% when mass of the diatomite increased from 0.3 to 1.7 g.
Kennison, Rachel L; Kamer, Krista; Fong, Peggy
2011-06-01
We quantified the effects of initial macroalgal tissue nitrogen (N) status (depleted and enriched) and varying pulses of nitrate (NO 3 - ) concentration on uptake and storage of nitrogen in Ulva intestinalis L. and Ulva expansa (Setch.) Setch. et N. L. Gardner using mesocosms modeling shallow coastal estuaries in Mediterranean climates. Uptake of NO 3 - (μmol · g dry weight [dwt] -1 · h -1 ) was measured as loss from the water after 1, 2, 4, 8, 12, and 24 h and storage as total tissue nitrogen (% dwt) and nitrate (ppm). Both species of algae exhibited a high affinity for NO 3 - across all N pulses and initial tissue contents. There was greater NO 3 - removal from the water for depleted than enriched algae across all time intervals. In the low-N-pulse treatment, U. intestinalis and U. expansa removed all measurable NO 3 - within 8 and 12 h, respectively, and in the medium and high treatments, removal was high and then decreased over time. Maximum mean uptake rates of nitrate were greater for U. expansa (∼300 μmol · g dwt -1 · h -1 ) than U. intestinalis (∼100 μmol · g dwt -1 · h -1 ); however, uptake rates were highly variable over time. Overall, U. expansa uptake rates were double those of U. intestinalis. Maximum tissue NO 3 - for U. expansa was >1,000 ppm, five times that of U. intestinalis, suggesting that U. expansa has a greater storage capacity in this cellular pool. These results showed that opportunistic green algae with differing tissue nutrient histories were able to efficiently remove nitrate from the water across a wide range of N pulses; thus, both are highly adapted to proliferate in estuarine environments with pulsed nutrient supplies. © 2011 Phycological Society of America.
Gaseous oxygen uptake in porous media at different moisture contents and airflow velocities.
Sharma, Prabhakar; Poulsen, Tjalfe G; Kalluri, Prasad N V
2009-06-01
The presence and distribution of water in the pore space is a critical factor for flow and transport of gases through unsaturated porous media. The water content also affects the biological activity necessary for treatment of polluted gas streams in biofilters. In this research, microbial activity and quantity of inactive volume in a porous medium as a function of moisture content and gas flow rate were investigated. Yard waste compost was used as a test medium, and oxygen uptake rate measurements were used to quantify microbial activity and effective active compost volume using batch and column flow-through systems. Compost water contents were varied from air-dry to field capacity and gas flows ranged from 0.2 to 2 L x min(-1). The results showed that overall microbial activity and the relative fraction of active compost medium volume increased with airflow velocity for all levels of water content up to a certain flow rate above which the oxygen uptake rate assumed a constant value independent of gas flow. The actual value of the maximum oxygen uptake rate was controlled by the water content. The oxygen uptake rate also increased with increasing water content and reached a maximum between 42 and 48% volumetric water content, above which it decreased, again likely because of formation of inactive zones in the compost medium. Overall, maximum possible oxygen uptake rate as a function of gas flow rate across all water contents and gas flows could be approximated by a linear expression. The relative fraction of active volume also increased with gas flow rate and reached approximately 80% for the highest gas flows used.
Pulmonary circulation and gas exchange at exercise in Sherpas at high altitude.
Faoro, Vitalie; Huez, Sandrine; Vanderpool, Rebecca; Groepenhoff, Herman; de Bisschop, Claire; Martinot, Jean-Benot; Lamotte, Michel; Pavelescu, Adriana; Guénard, Hervé; Naeije, Robert
2014-04-01
Tibetans have been reported to present with a unique phenotypic adaptation to high altitude characterized by higher resting ventilation and arterial oxygen saturation, no excessive polycythemia, and lower pulmonary arterial pressures (Ppa) compared with other high-altitude populations. How this affects exercise capacity is not exactly known. We measured aerobic exercise capacity during an incremental cardiopulmonary exercise test, lung diffusing capacity for carbon monoxide (DL(CO)) and nitric oxide (DL(NO)) at rest, and mean Ppa (mPpa) and cardiac output by echocardiography at rest and at exercise in 13 Sherpas and in 13 acclimatized lowlander controls at the altitude of 5,050 m in Nepal. In Sherpas vs. lowlanders, arterial oxygen saturation was 86 ± 1 vs. 83 ± 2% (mean ± SE; P = nonsignificant), mPpa at rest 19 ± 1 vs. 23 ± 1 mmHg (P < 0.05), DL(CO) corrected for hemoglobin 61 ± 4 vs. 37 ± 2 ml · min(-1) · mmHg(-1) (P < 0.001), DL(NO) 226 ± 18 vs. 153 ± 9 ml · min(-1) · mmHg(-1) (P < 0.001), maximum oxygen uptake 32 ± 3 vs. 28 ± 1 ml · kg(-1) · min(-1) (P = nonsignificant), and ventilatory equivalent for carbon dioxide at anaerobic threshold 40 ± 2 vs. 48 ± 2 (P < 0.001). Maximum oxygen uptake was correlated directly to DL(CO) and inversely to the slope of mPpa-cardiac index relationships in both Sherpas and acclimatized lowlanders. We conclude that Sherpas compared with acclimatized lowlanders have an unremarkable aerobic exercise capacity, but with less pronounced pulmonary hypertension, lower ventilatory responses, and higher lung diffusing capacity.
Alidoust, Leila; Soltani, Neda; Modiri, Sima; Haghighi, Omid; Azarivand, Aisan; Khajeh, Khosro; Shahbani Zahiri, Hossein; Vali, Hojatollah; Akbari Noghabi, Kambiz
2016-02-01
Among nine cyanobacterial strains isolated from oil-contaminated regions in southern Iran, an isolate with maximum cadmium uptake capacity was selected and identified on the basis of analysis of morphological criteria and 16S rRNA gene sequence similarity as Nostoc entophytum (with 99% similarity). The isolate was tentatively designated N. entophytum ISC32. The phylogenetic affiliation of the isolates was determined on the basis of their 16S rRNA gene sequence. The maximum amount of Cd(II) adsorbed by strain ISC32 was 302.91 mg g(-1) from an initial exposure to a solution with a Cd(II) concentration of 150 mg l(-1). The cadmium uptake by metabolically active cells of cyanobacterial strain N. entophytum ISC32, retained in a clinostat for 6 days to simulate microgravity conditions, was examined and compared with that of ground control samples. N. entophytum ISC32 under the influence of microgravity was able to take up cadmium at amounts up to 29% higher than those of controls. The activity of antioxidant enzymes including catalase and peroxidase was increased in strain ISC32 exposed to microgravity conditions in a clinostat for 6 days, as catalase activity of the cells was more than three times higher than that of controls. The activity of the peroxidase enzyme increased by 36% compared with that of the controls. Membrane lipid peroxidation was also increased in the cells retained under microgravity conditions, up to 2.89-fold higher than in non-treated cells. Images obtained using scanning electron microscopy showed that cyanobacterial cells form continuous filaments which are drawn at certain levels, while the cells placed in a clinostat appeared as round-shaped, accumulated together and distorted to some extent.
Bio sorption of strontium from aqueous solution by New Strain Bacillus sp. GTG-83
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajer Mohammad Ghazvini, P.; Ghorbanzadeh Mashkani, S.; Ghafourian, H.
Attempt was made to isolate bacterial strains capable of removing Sr biologically. In this study we collected ten different water samples from naturally radioactive spring Neydasht in Iran and bacterial strains samples isolated. Initial screening of a total of 50 bacterial isolates resulted in selection of one strain. The strain showed maximum adsorption capacity with 55 mg Sr/g dry wt. It was tentatively identified as Bacillus sp. according to morphological and biochemical properties and called strain GTG-83. Studies indicated that Bacillus sp. GTG-83 was able to grow aerobically in the presence of 50 mM SrCl{sub 2} but showed severe growthmore » inhibition at levels above that concentration. The bio-sorption capacity of Bacillus sp. GTG-83 strongly depends on solution pH, and the maximum Sr sorption capacity of Bacillus sp. GTG-83 were obtained at pH 10 independent of the absence or the presence of increasing concentrations of salt (MgCl{sub 2}). Sr-salt bio-sorption studies were also performed at this pH values. Equilibrium uptakes of Sr increased with increasing Sr concentrations up to 250 mg/l for Bacillus sp. GTG-83. Maximum bio-sorption of Sr was obtained at temperatures in the range of 30-35 deg. C. Bacillus sp. GTG-83 bio-sorbed 97 mg Sr/g dry wt at 100 mg/l initial Sr concentration without salt medium (MgCl{sub 2}). When salt concentration (MgCl{sub 2}) increased to 15% (w/v), these values dropped to 23.6 mg Sr/g dry wt at the same conditions. Uptake of Sr within 5 min of incubation was relatively rapid and the absorption continued slowly thereafter. (authors)« less
In situ Fe-sulfide coating for arsenic removal under reducing conditions
NASA Astrophysics Data System (ADS)
Xie, Xianjun; Liu, Yaqing; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Duan, Mengyu; Wang, Yanxin
2016-03-01
An in situ Fe-sulfide coating approach has been developed for As-contaminated groundwater remediation. Alternate injection of Fe(II), O2-free water and S2- can realize Fe-sulfide coating onto quartz sands with minor changes in porosity. As(III) uptake experiment indicated that the retardation factor for As(III) was 37 and dynamic retention capacity was 44.94 mg As(III)/g Fe, which was much higher than the maximum adsorption capacity for As(III) by FeS and FeS2. This result indicated that adsorption cannot be the only mechanism for As(III) uptake by Fe-sulfide coating layer. The SEM image and FTIR spectra results suggested that interaction between As(III) and Fe-sulfides and formation of As-sulfide precipitates could significantly contribute to As(III) uptake by Fe-sulfide coating layer. Alternate injection of Fe(II) + As(III) and S2- was conducted to simulate in situ As immobilization from real groundwater. The SEM image showed that the quartz sands were mainly covered by crystalline framboidal pyrite after such amendment. The breakthrough of As(III) was not observed during this experiment and the removal capacity for As(III) was 109.7 mg As/g Fe. The As(III) immobilization mechanism during alternate injection of Fe(II) + As(III) and S2- was significantly different from that of As(III) uptake by Fe-sulfide coating. The direct interaction between As(III) and S2- produced As-sulfides contributed to the high As(III) removal capacity during alternate injection of Fe(II) + As(III) and S2-. This result indicated that alternate injection of Fe(II) and S2- approach has an attractive application for As-contaminated groundwater remediation under strongly reducing environment.
In situ Fe-sulfide coating for arsenic removal under reducing conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xianjun; Liu, Yaqing; Pi, Kunfu
2016-03-01
An in situ Fe-sulfide coating approach has been developed for As-contaminated groundwater remediation. Alternate injection of Fe(II), O 2-free water and S 2$-$ can realize Fe-sulfide coating onto quartz sands with minor changes in porosity. As(III) uptake experiment indicated that the retardation factor for As(III) was 37 and dynamic retention capacity was 44.94 mg As(III)/g Fe, which was much higher than the maximum adsorption capacity for As(III) by FeS and FeS 2. This result indicated that adsorption cannot be the only mechanism for As(III) uptake by Fe-sulfide coating layer. The SEM image and FTIR spectra results suggested that interaction betweenmore » As(III) and Fe-sulfides and formation of As-sulfide precipitates could significantly contribute to As(III) uptake by Fe-sulfide coating layer. Alternate injection of Fe(II) + As(III) and S 2$-$ was conducted to simulate in situ As immobilization from real groundwater. The SEM image showed that the quartz sands were mainly covered by crystalline framboidal pyrite after such amendment. The breakthrough of As(III) was not observed during this experiment and the removal capacity for As(III) was 109.7 mg As/g Fe. The As(III) immobilization mechanism during alternate injection of Fe(II) + As(III) and S 2$-$ was significantly different from that of As(III) uptake by Fe-sulfide coating. The direct interaction between As(III) and S 2$-$ produced As-sulfides contributed to the high As(III) removal capacity during alternate injection of Fe(II) + As(III) and S 2$-$. This result indicated that alternate injection of Fe(II) and S 2$-$ approach has an attractive application for As-contaminated groundwater remediation under strongly reducing environment.« less
NASA Astrophysics Data System (ADS)
Inyinbor, A. A.; Adekola, F. A.; Olatunji, G. A.
2017-09-01
Irvingia gabonensis endocarp waste was charred (DNc) and subsequently coated with chitosan (CCDNc). Physicochemical characteristics of the two adsorbents were established, while Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area methods were further employed for characterization. Efficiencies of the prepared adsorbents in the uptake of Rhodamine B (RhB) from aqueous effluent were investigated and adsorption data were tested using four isotherms and four kinetics models. The BET surface areas of the prepared adsorbent were 0.0092 and 4.99 m2/g for DNc and CCDNc, respectively, and maximum adsorption was recorded at pH between 3 and 4, respectively. While monolayer adsorption dominates the uptake of RhB onto DNc, uptake of RhB onto CCDNc was onto heterogeneous surface. The maximum monolayer adsorption capacities ( q max) obtained from the Langmuir equation are 52.90 and 217.39 mg/g for DNc and CCDNc, respectively. Pseudo second order and Elovich kinetic models well described the kinetics of the two adsorption processes. The mean sorption energy ( E) calculated from the D-R model and desorption efficiencies suggests that while the uptake of RhB onto DNc was physical in nature, for RhB-CCDNc system chemisorption dominates.
Limitations of oxygen uptake and leg muscle activity during ascending evacuation in stairways.
Halder, Amitava; Kuklane, Kalev; Gao, Chuansi; Miller, Michael; Delin, Mattias; Norén, Johan; Fridolf, Karl
2018-01-01
Stair ascending performance is critical during evacuation from buildings and underground infrastructures. Healthy subjects performed self-paced ascent in three settings: 13 floor building, 31 floor building, 33 m stationary subway escalator. To investigate leg muscle and cardiorespiratory capacities and how they constrain performance, oxygen uptake (VO 2 ), heart rate (HR) and ascending speed were measured in all three; electromyography (EMG) in the first two. The VO 2 and HR ranged from 89 to 96% of the maximum capacity reported in the literature. The average highest VO 2 and HR ranged from 39 to 41 mL·kg -1 ·min -1 and 162 to 174 b·min -1 , respectively. The subjects were able to sustain their initial preferred maximum pace for a short duration, while the average step rate was 92-95 steps·min -1 . In average, VO 2 reached relatively stable values at ≈37 mL·kg -1 ·min -1 . EMG amplitudes decreased significantly and frequencies were unchanged. Speed reductions indicate that climbing capacity declined in the process of fatigue development. In the two buildings, the reduction of muscle power allowed the subjects to extend their tolerance and complete ascents in the 48 m and 109 m high stairways in 2.9 and 7.8 min, respectively. Muscle activity interpretation squares were developed and proved advantageous to observe fatigue and recovery over time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Case Study: Physical Capacity and Nutritional Status Before and After a Single-Handed Yacht Race.
Ghiani, Giovanna; Magnani, Sara; Doneddu, Azzurra; Sainas, Gianmarco; Pinna, Virginia; Caboi, Marco; Palazzolo, Girolamo; Tocco, Filippo; Crisafulli, Antonio
2018-06-12
During solitary sailing, the sailor is exposed to sleep deprivation and difficulties in consuming regular meals. Sailor weight loss is often reported. In the present case study, we describe changes in the physical capacity and nutritional status of an athlete attempting a single-handed yacht race around the globe. An Italian male ocean racer (Gaetano Mura) asked for our help to reach an optimum level of physical and nutritional preparation. We planned his diet after assessing his anthropometric parameters and body composition, as well as his usual energy intake and nutritional expenditure. The diet consisted of 120 meals stored in sealed plastic bags. Before his departure, GM performed two incremental exercise tests (cycle ergometry and arm crank ergometry) to assess his physical capacity. Cardiac functions were also estimated by Doppler echocardiography. All measures and exercise tests were repeated 10 days after GM finished the race, which lasted 64 days. Anthropometric measures did not change significantly, with the exception of arm fat area and thigh muscle area, which decreased. There were evident increments in maximum oxygen intake and maximum workload during arm cranking after the race. On the contrary, maximum oxygen uptake and maximum workload decreased during cycling. Finally, end-diastolic and stroke volume decreased after the race. It was concluded that nutritional counseling was useful to avoid excessive changes in nutritional status and body composition due to 64 days of solitary navigation. However, a reduction in physical leg capacity and cardiovascular functions secondary to leg disuse were present.
Anaerobic Threshold: Its Concept and Role in Endurance Sport
Ghosh, Asok Kumar
2004-01-01
aerobic to anaerobic transition intensity is one of the most significant physiological variable in endurance sports. Scientists have explained the term in various ways, like, Lactate Threshold, Ventilatory Anaerobic Threshold, Onset of Blood Lactate Accumulation, Onset of Plasma Lactate Accumulation, Heart Rate Deflection Point and Maximum Lactate Steady State. But all of these have great role both in monitoring training schedule and in determining sports performance. Individuals endowed with the possibility to obtain a high oxygen uptake need to complement with rigorous training program in order to achieve maximal performance. If they engage in endurance events, they must also develop the ability to sustain a high fractional utilization of their maximal oxygen uptake (%VO2 max) and become physiologically efficient in performing their activity. Anaerobic threshold is highly correlated to the distance running performance as compared to maximum aerobic capacity or VO2 max, because sustaining a high fractional utilization of the VO2 max for a long time delays the metabolic acidosis. Training at or little above the anaerobic threshold intensity improves both the aerobic capacity and anaerobic threshold level. Anaerobic Threshold can also be determined from the speed-heart rate relationship in the field situation, without undergoing sophisticated laboratory techniques. However, controversies also exist among scientists regarding its role in high performance sports. PMID:22977357
Anaerobic threshold: its concept and role in endurance sport.
Ghosh, Asok Kumar
2004-01-01
aerobic to anaerobic transition intensity is one of the most significant physiological variable in endurance sports. Scientists have explained the term in various ways, like, Lactate Threshold, Ventilatory Anaerobic Threshold, Onset of Blood Lactate Accumulation, Onset of Plasma Lactate Accumulation, Heart Rate Deflection Point and Maximum Lactate Steady State. But all of these have great role both in monitoring training schedule and in determining sports performance. Individuals endowed with the possibility to obtain a high oxygen uptake need to complement with rigorous training program in order to achieve maximal performance. If they engage in endurance events, they must also develop the ability to sustain a high fractional utilization of their maximal oxygen uptake (%VO(2) max) and become physiologically efficient in performing their activity. Anaerobic threshold is highly correlated to the distance running performance as compared to maximum aerobic capacity or VO(2) max, because sustaining a high fractional utilization of the VO(2) max for a long time delays the metabolic acidosis. Training at or little above the anaerobic threshold intensity improves both the aerobic capacity and anaerobic threshold level. Anaerobic Threshold can also be determined from the speed-heart rate relationship in the field situation, without undergoing sophisticated laboratory techniques. However, controversies also exist among scientists regarding its role in high performance sports.
Young, Erica B; Berges, John A; Dring, Matthew J
2009-04-01
Intertidal macroalgae Fucus and Laminaria experience seasonally fluctuating inorganic N supply. This study examined the effects of long-term N deprivation, recovery following N resupply, and effects of elevated ammonium and nitrate exposure on N acquisition in intertidal algae using manipulations of N supply in tank culture. Over 15 weeks of N deprivation, internal N and nitrate reductase activity (NRA) declined, but maximum quantum yield of PSII was unaffected in Fucus serratus and Fucus vesiculosus. Low NRA was maintained despite no external nitrate availability and depletion of internal pools, suggesting a constitutive NRA, insensitive to N supply. Nitrate resupplied to N-starved thalli was rapidly taken up and internal nitrate pools and NRA increased. Exposure to elevated (50 microM) nitrate over 4 days stimulated nitrate uptake and NRA in Laminaria digitata and F. serratus. Exposure to elevated ammonium suppressed NRA in L. digitata but not in F. serratus. This novel insensitivity of NRA to ammonium in Fucus contrasts with regulation of NRA in other algae and higher plants. Ammonium suppression of NRA in L. digitata was not via inhibition of nitrate uptake and was independent of nitrate availability. L. digitata showed a higher capacity for internal nitrate storage when exposed to elevated ambient nitrate, but NRA was lower than in Fucus. All species maintained nitrate assimilation capacity in excess of nitrate uptake capacity. N uptake and storage strategies of these intertidal macroalgae are adaptive to life in fluctuating N supply, and distinct regulation of N metabolism in Fucus vs Laminaria may relate to position in the intertidal zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piechowicz, Marek; Abney, Carter W.; Thacker, Nathan C.
The amidoxime group (-RNH2NOH) has long been used to extract uranium from seawater on account of its high affinity toward uranium. The development of tunable sorbent materials for uranium sequestration remains a research priority as well as a significant challenge. Herein, we report the design, synthesis, and uranium sorption properties of bis-amidoxime-functionalized polymeric materials (BAP 1–3). Bifunctional amidoxime monomers were copolymerized with an acrylamide cross-linker to obtain bis-amidoxime incorporation as high as 2 mmol g–1 after five synthetic steps. The resulting sorbents were able to uptake nearly 600 mg of uranium per gram of polymer after 37 days of contactmore » with a seawater simulant containing 8 ppm uranium. Moreover, the polymeric materials exhibited low vanadium uptake with a maximum capacity of 128 mg of vanadium per gram of polymer. This computationally predicted and experimentally realized selectivity of uranium over vanadium, nearly 5 to 1 w/w, is one of the highest reported to date and represents an advancement in the rational design of sorbent materials with high uptake capacity and selectivity.« less
Walking efficiency before and after total hip replacement.
Brown, M; Hislop, H J; Waters, R L; Porell, D
1980-10-01
The energy cost of walking and gait characteristics of patients with hip disease were studied to determine changes in walking efficiency following total hip replacement. Twenty-nine patients, 24 with unilateral hip disease and 5 with bilateral hip disease, were tested preoperatively and at various times postoperatively. Oxygen uptake was measured by a modified Douglas bag procedure. The temporal and distance characteristics of gait were measured with contact closing heel switches. Results showed postoperative increases in velocity, cadence, and stride length in patients with unilateral disease and with bilateral disease with bilateral replacement. After surgery, energy cost tended toward more normal levels, but the subjects were not within normal limits for oxygen uptake per minute, oxygen uptake per distance walked, or percent of predicted maximum aerobic capacity. Comparison of energy expenditure data with temporal and distance factors of gait indicated that all subjects became more physiologically efficient after hip replacement.
Arsenic uptake by Lemna minor in hydroponic system.
Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik
2014-01-01
Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration.
Kinetic evaluation of chromium(VI) sorption by water lettuce (Pistia).
Chakraborty, Rupa; Karmakar, Sukalpa; Mukherjee, Somnath; Kumar, Sunil
2014-01-01
An investigation was performed to evaluate the uptake capacity of Pistia in living condition for adsorptive removal of chromium(VI) from spiked solution for examining a remedial measure for disposal of chrome-laden wastewater in an urban wetland system. Kinetics results show about 78% removal was achieved for 3 mg/L initial concentration of Cr(VI). Experimental data showed that the root portion absorbed more Cr(VI) (28.54 μg/g) compared to accumulation in leaf (5.73 μg/g). It was also noted that the plant could effectively remove Cr(VI) from the solution with minor damage up to an initial Cr(VI) concentration of 3 mg/L, for which the adsorption isotherm studies were conducted. The maximum uptake capacity of the plant was recorded as 0.05 mg/g of Cr(VI) at the equilibrium level after a contact period of 7 days for an initial concentration of 8 mg /L, although severe physiological damage occurred. The experimental results were plotted in Langmuir and Freundlich isotherm models and both were found to be well fitted (r(2) = 0.979 and r(2) = 0.974 respectively). The high value of n (2.16) reveals a strong bond between the plant root and dissolved Cr(VI), which favours the adsorption process. The order of the reaction was also examined on the basis of uptake capacity and it was found that the second order model fitted best.
Jansen, Mickel L. A.; Daran-Lapujade, Pascale; de Winde, Johannes H.; Piper, Matthew D. W.; Pronk, Jack T.
2004-01-01
Prolonged cultivation (>25 generations) of Saccharomyces cerevisiae in aerobic, maltose-limited chemostat cultures led to profound physiological changes. Maltose hypersensitivity was observed when cells from prolonged cultivations were suddenly exposed to excess maltose. This substrate hypersensitivity was evident from massive cell lysis and loss of viability. During prolonged cultivation at a fixed specific growth rate, the affinity for the growth-limiting nutrient (i.e., maltose) increased, as evident from a decreasing residual maltose concentration. Furthermore, the capacity of maltose-dependent proton uptake increased up to 2.5-fold during prolonged cultivation. Genome-wide transcriptome analysis showed that the increased maltose transport capacity was not primarily due to increased transcript levels of maltose-permease genes upon prolonged cultivation. We propose that selection for improved substrate affinity (ratio of maximum substrate consumption rate and substrate saturation constant) in maltose-limited cultures leads to selection for cells with an increased capacity for maltose uptake. At the same time, the accumulative nature of maltose-proton symport in S. cerevisiae leads to unrestricted uptake when maltose-adapted cells are exposed to a substrate excess. These changes were retained after isolation of individual cell lines from the chemostat cultures and nonselective cultivation, indicating that mutations were involved. The observed trade-off between substrate affinity and substrate tolerance may be relevant for metabolic engineering and strain selection for utilization of substrates that are taken up by proton symport. PMID:15066785
Khosravi, Morteza; Rakhshaee, Roohan; Ganji, Masuod Taghi
2005-12-09
Intact and treated biomass can remove heavy metals from water and wastewater. This study examined the ability of the activated, semi-intact and inactivated Azolla filiculoides (a small water fern) to remove Pb(2+), Cd(2+), Ni(2+) and Zn(2+) from the aqueous solution. The maximum uptake capacities of these metal ions using the activated Azolla filiculoides by NaOH at pH 10.5 +/- 0.2 and then CaCl(2)/MgCl(2)/NaCl with total concentration of 2 M (2:1:1 mole ratio) in the separate batch reactors were obtained about 271, 111, 71 and 60 mg/g (dry Azolla), respectively. The obtained capacities of maximum adsorption for these kinds of the pre-treated Azolla in the fixed-bed reactors (N(o)) were also very close to the values obtained for the batch reactors (Q(max)). On the other hand, it was shown that HCl, CH(3)OH, C(2)H(5)OH, FeCl(2), SrCl(2), BaCl(2) and AlCl(3) in the pre-treatment processes decreased the ability of Azolla to remove the heavy metals in comparison to the semi-intact Azolla, considerably. The kinetic studies showed that the heavy metals uptake by the activated Azolla was done more rapid than those for the semi-intact Azolla.
Modeling and analysis of the effect of training on V O2 kinetics and anaerobic capacity.
Stirling, J R; Zakynthinaki, M S; Billat, V
2008-07-01
In this paper, we present an application of a number of tools and concepts for modeling and analyzing raw, unaveraged, and unedited breath-by-breath oxygen uptake data. A method for calculating anaerobic capacity is used together with a model, in the form of a set of coupled nonlinear ordinary differential equations to make predictions of the VO(2) kinetics, the time to achieve a percentage of a certain constant oxygen demand, and the time limit to exhaustion at intensities other than those in which we have data. Speeded oxygen kinetics and increased time limit to exhaustion are also investigated using the eigenvalues of the fixed points of our model. We also use a way of analyzing the oxygen uptake kinetics using a plot of V O(2)(t) vs V O(2)(t) which allows one to observe both the fixed point solutions and also the presence of speeded oxygen kinetics following training. A method of plotting the eigenvalue versus oxygen demand is also used which allows one to observe where the maximum amplitude of the so-called slow component will be and also how training has changed the oxygen uptake kinetics by changing the strength of the attracting fixed point for a particular demand.
Zebrowska, A; Gawlik, K; Zwierzchowska, A
2007-11-01
The objective of the study was to investigate whether a sensory impairment has an effect on functional capabilities of the respiratory system and whether possible deviations from reference ranges of selected parameters might indicate a decrease of physical efficiency. Vital capacity (VC), forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), peak expiratory flow (PEF), forced expiratory flow of 25-75% (FEF25-75), maximum voluntary volume (MVV), and maximum oxygen uptake VO2 max were measured in 86 deaf and 102 blind children and adolescents, and in a matched group of hearing controls. We found a significant influence of deafness on PEF (P<0.01), FEF25-75 (P<0.05), and MVV (P<0.05). As compared with the control subjects, mean VC was significantly lower in blind adolescents (P<0.05). Our results seem to suggest that both sensory defects during childhood and adolescence affect functional capabilities of the respiratory system.
Nickel adsorption by magnetic alginate microcapsules containing an extractant.
Ngomsik, Audrey-Flore; Bee, Agnès; Siaugue, Jean-Michel; Cabuil, Valérie; Cote, Gérard
2006-05-01
The adsorption of heavy metals on biomaterials was investigated by studying the potential of alginate microcapsules containing an extractant (Cyanex 272) and magnetic nanoparticles (gamma-Fe2O3) for the adsorption of nickel (II) from aqueous solutions. A two-stage kinetics behaviour was observed with 70% of the maximum sorption capacity achieved within 8 h. An increase in nickel removal with increase in pH occurred, the maximum uptake capacity being around 0.42 mmol g-1 at pH 8. The adsorption isotherm (pH about 5.3) was obtained in a wide range of initial nickel concentrations; the experimental data were fitted by a Langmuir model and the qmax value was estimated to be 0.52 mmol g-1. Moreover, including magnetic particles in the microcapsules allowed easy isolation of the beads from the aqueous solutions after the sorption process. Magnetic microcapsules are then suitable for the development of efficient biosorbents for removal and recovery of heavy metals from wastewater using magnetic separation.
Sorption of lead from aqueous solution by chemically modified carbon adsorbents.
Nadeem, Muhammad; Mahmood, A; Shahid, S A; Shah, S S; Khalid, A M; McKay, G
2006-12-01
An indigenously prepared, steam activated and chemically modified carbon from husk and pods of Moringa oleifera (M. oleifera), an agricultural waste, was comparatively examined as an adsorbent for the removal of lead from aqueous solutions. Studies were conducted as a function of contact time, initial metal concentration, dose of adsorbent, agitation speed, particle size and pH. Maximum uptake capacities were found to be, 98.89, 96.58, 91.8, 88.63, 79.43% for cetyltrimethyl ammonium bromide (CTAB), phosphoric, sulfuric, hydrochloric acid treated and untreated carbon adsorbents, respectively. Bangham, pseudo-first- and second-order, intra-particle diffusion equations were implemented to express the sorption mechanism by utilized adsorbents. Adsorption rate of lead ions was found to be considerably faster for chemically modified adsorbents than unmodified. The results of adsorption were fitted to both the Langmuir and Freundlich models. Satisfactory agreement between the metal uptake capacities by the adsorbents at different time intervals was expressed by the correlation coefficient (R(2)). The Langmuir model represented the sorption process better than the Freundlich one, with R(2) values ranging from 0.994 to 0.998.
Liu, Haibo; Li, Mengxue; Chen, Tianhu; Chen, Changlun; Alharbi, Njud S; Hayat, Tasawar; Chen, Dong; Zhang, Qiang; Sun, Yubing
2017-08-15
New nanoscale zerovalent iron/carbon (nZVI/C) composites were successfully prepared via heating natural hematite and pine sawdust at 800 °C under nitrogen conditions. Characterization by SEM, XRD, FTIR, and XPS analyses indicated that the as-prepared nZVI/C composites contained a large number of reactive sites. The lack of influence of the ionic strength revealed inner-sphere complexation dominated U(VI) uptake by the nZVI/C composites. Simultaneous adsorption and reduction were involved in the uptake process of U(VI) according to the results of XPS and XANES analyses. The presence of U-C/U-U shells demonstrated that innersphere complexation and surface coprecipitation dominated the U(VI) uptake at low and high pH conditions, respectively. The uptake behaviors of U(VI) by the nZVI/C composites were fitted well by surface complexation modeling with two weak and two strong sites. The maximum uptake capacity of U(VI) by the nZVI/C composites was 186.92 mg/g at pH 4.0 and 328 K. Additionally, the nZVI/C composites presented good recyclability and recoverability for U(VI) uptake in regeneration experiments. These observations indicated that the nZVI/C composites can be considered as potential adsorbents to remove radionuclides for environmental remediation.
Selamat, S Norleela; Abdullah, S Rozaimah Sheikh; Idris, M
2014-01-01
This study was conducted to investigate the uptake of lead (Pb) and arsenic (As) from contaminated soil using Melastoma malabathricum L. species. The cultivated plants were exposed to As and Pb in separate soils for an observation period of 70 days. From the results of the analysis, M. malabathricum accumulated relatively high range of As concentration in its roots, up to a maximum of 2800 mg/kg. The highest accumulation of As in stems and leaves was 570 mg/kg of plant. For Pb treatment, the highest concentration (13,800 mg/kg) was accumulated in the roots of plants. The maximum accumulation in stems was 880 mg/kg while maximum accumulation in leaves was 2,200 mg/kg. Only small amounts of Pb were translocated from roots to above ground plant parts (TF < 1). However, a wider range of TF values (0.01-23) for As treated plants proved that the translocation of As from root to above ground parts was greater. However, the high capacity of roots to take up Pb and As (BF > 1) is indicative this plants is a good bioaccumulator for these metals. Therefore, phytostabilisation is the mechanism at work in M. malabathricum's uptake of Pb, while phytoextraction is the dominant mechanism with As.
López-Castejón, María Luisa; Bengoechea, Carlos; García-Morales, Moisés; Martínez, Inmaculada
2016-11-05
This study aims to extend the range of applications of tragacanth gum by studying its incorporation into bioplastics formulation, exploring the influence that different gum contents (0-20wt.%) exert over the thermomechanical and water uptake properties of bioplastics based on egg white albumen protein (EW). The effect of plasticizer nature was also evaluated through the modification of the water/glycerol ratio within the plasticizer fraction (fixed at 40wt.%). The addition of tragacanth gum generally yielded an enhancement of the water uptake capacity, being doubled at the highest content. Conversely, presence of tragacanth gum resulted in a considerable decrease in the bioplastic mechanical properties: both tensile strength and maximum elongation were reduced up to 75% approximately when compared to the gum-free system. Ageing of selected samples was also studied, revealing an important effect of storage time when tragacanth gum is present, possibly due to its hydrophilic character. Copyright © 2016 Elsevier Ltd. All rights reserved.
Negative impacts of elevated nitrate on physiological performance are not exacerbated by low pH.
Gomez Isaza, Daniel F; Cramp, Rebecca L; Franklin, Craig E
2018-05-15
Multiple environmental stressors, including nutrient effluents (i.e. nitrates [NO 3 - ]) and altered pH regimes, influence the persistence of freshwater species in anthropogenically disturbed habitats. Independently, nitrate and low pH affect energy allocation by increasing maintenance costs and disrupting oxygen uptake, which ultimately results in impacts upon whole animal performance. However, the interaction between these two stressors has not been characterised. To address this, the effects of nitrate and pH and their interaction on aerobic scope and physiological performance were investigated in the blueclaw crayfish, Cherax destructor. Crayfish were exposed to a 2 × 3 factorial combination, with two pH levels (pH 5.0 and 7.0) and three nitrate concentrations (0, 50 and 100 mg L -1 NO 3 - ). Crayfish were exposed to experimental conditions for 65 days and growth and survival were monitored. Aerobic scope (i.e. maximal - standard oxygen uptake) was measured at six time points (1, 3, 5, 7, 14, and 21 days) during exposure to experimental treatments. Crayfish performance was assessed after 28 days, by measuring chelae strength and whole animal activity capacity via the righting response. Survival was reduced in crayfish exposed to pH 5.0, but there was no exacerbation of this effect by exposure to high nitrate levels. Aerobic scope was compromised by the interaction between low pH and nitrate and resulted in prolonged elevations of standard oxygen uptake rates. Exposure to nitrate alone affected aerobic scope, causing a 59% reduction in maximum oxygen uptake. Reduced aerobic capacity translated to reduced chelae strength and righting capacity. Together, these data show that low pH and elevated nitrate levels reduce aerobic scope and translate to poorer performance in C. destructor, which may have the potential to affect organismal fitness in disturbed habitats. Copyright © 2018 Elsevier B.V. All rights reserved.
Silkin, V A; Chubchikova, I N
2007-01-01
We studied nonstationary kinetics of the uptake of phosphates and nitrates by the red marine algae Gelidium latifolium (Grev.) Born et Thur. and calculated constants of the Michaelis-Menten equation for these elements. In the area of 0-3 microM, the kinetics of phosphate consumption had the following coefficients: maximum rate of uptake 0.8 micromol/(g x h), constant of half-saturation 1.745 microM. For nitrate nitrogen at 0-30 microM, an adaptive strategy of uptake kinetics was noted with change of the equation parameters with time: after 1 h, the maximum rate of uptake was 5.1 micromol/(g x h) and constant of half-saturation 19 gM, while within 2 h, the maximum rate of uptake significantly increased. This could be related to the synthesis of nitrate reductase. Coupled with the uptake of nitrates, nonstationary kinetics of the release of nitrates in the surrounding medium had a one-peak pattern: the maximum concentration of nitrites in the medium and the time of its achievement increased with the initial concentration of nitrates. The maximum concentration of nitrites was 6 to 14% of the initial concentration in the medium.
Relating saturation capacity to charge density in strong cation exchangers.
Steinebach, Fabian; Coquebert de Neuville, Bertrand; Morbidelli, Massimo
2017-07-21
In this work the relation between physical and chemical resin characteristics and the total amount of adsorbed protein (saturation capacity) for ion-exchange resins is discussed. Eleven different packing materials with a sulfo-functionalization and one multimodal resin were analyzed in terms of their porosity, pore size distribution, ligand density and binding capacity. By specifying the ligand density and binding capacity by the total and accessible surface area, two different groups of resins were identified: Below a ligand density of approx. 2.5μmol/m 2 area the ligand density controls the saturation capacity, while above this limit the accessible surface area becomes the limiting factor. This results in a maximum protein uptake of around 2.5mg/m 2 of accessible surface area. The obtained results allow estimating the saturation capacity from independent resin characteristics like the saturation capacity mainly depends on "library data" such as the accessible and total surface area and the charge density. Hence these results give an insight into the fundamentals of protein adsorption and help to find suitable resins, thus limiting the experimental effort in early process development stages. Copyright © 2017 Elsevier B.V. All rights reserved.
Brackin, Richard; Näsholm, Torgny; Robinson, Nicole; Guillou, Stéphane; Vinall, Kerry; Lakshmanan, Prakash; Schmidt, Susanne; Inselsbacher, Erich
2015-01-01
Globally only ≈50% of applied nitrogen (N) fertilizer is captured by crops, and the remainder can cause pollution via runoff and gaseous emissions. Synchronizing soil N supply and crop demand will address this problem, however current soil analysis methods provide little insight into delivery and acquisition of N forms by roots. We used microdialysis, a novel technique for in situ quantification of soil nutrient fluxes, to measure N fluxes in sugarcane cropping soils receiving different fertilizer regimes, and compare these with N uptake capacities of sugarcane roots. We show that in fertilized sugarcane soils, fluxes of inorganic N exceed the uptake capacities of sugarcane roots by several orders of magnitude. Contrary, fluxes of organic N closely matched roots’ uptake capacity. These results indicate root uptake capacity constrains plant acquisition of inorganic N. This mismatch between soil N supply and root N uptake capacity is a likely key driver for low N efficiency in the studied crop system. Our results also suggest that (i) the relative contribution of inorganic N for plant nutrition may be overestimated when relying on soil extracts as indicators for root-available N, and (ii) organic N may contribute more to crop N supply than is currently assumed. PMID:26496834
Sarkar, Kangkana; Ansari, Zarina; Sen, Kamalika
2016-10-01
Calcium alginate (CA) hydrogels were tailored using phenolic compounds (PC) like, thymol, morin, catechin, hesperidin, during their preparation. The PC incorporated gels show modified surface features as indicated by scanning electron microscopic images (SEM). The rheological studies show that excepting the hesperidin incorporated gels all the other kinds including calcium alginate pristine have similar mechanical strength. The hesperidine incorporated CA gels had the maximum capacity to adsorb Hg. The Freundlich adsorption isotherms show higher values of adsorption capacity for all PC incorporated CA beads than the pristine CA (PCA). The hesperidin incorporated CA gels were found to show the best adsorption condition at neutral pH and an optimum contact time of 2.5h at 25°C. Considering the possibility of ingested Hg detoxification from human alimentary tract, the hesperidin and morin incorporated CA beads were further modified through incorporation of cod liver oil as the digestion time of fat in stomach is higher. In vitro uptake capacities of Hg in pepsin and pancreatin containing enzyme media were studied with hesperidin and morin incorporated beads and their corresponding fat incorporated beads also. In the pepsin medium, there was no uptake by hesperidin and fat-hesperidin incorporated beads, which is possibly due to the higher acidity of the medium. But in pancreatin medium Hg was taken up by both kinds of beads. Morin and morin-fat incorporated beads were efficient to uptake Hg from both the pepsin and pancreatin medium. The tailored CA beads may therefore serve as efficient scaffolds to rescue Hg ingested individuals. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mene, Ravindra U.; School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, M.S.; Mahabole, Megha P.
Highlights: • We report improved gas sensing and dielectric characteristics of Fe ion exchanged HAp films. • Fe doped HAp film shows maximum gas response at relatively lower temperature. • Response and gas uptake capacity of sensors is improved for appropriate amount of Fe ions in HAp matrix. • Fe-HAp films exhibit remarkable improvement in dielectric properties compared to pure HAp. • Fe doped HAp films show significant improvement in gas sensing as well as in dielectric properties. - Abstract: In the present work Fe doped hydroxyapatite (Fe-HAp) thick films has been successfully utilized to improve the gas sensing asmore » well as its dielectric properties. Initially, HAp nano powder is synthesized by chemical precipitation process and later on Fe ions are doped in HAp by ion exchange process. Structural and morphological modifications are observed by means of X-ray diffraction and scanning electron microscopy analysis. The sensing parameters such as operating temperature, response/recovery time and gas uptake capacity are experimentally determined. The Fe-HAp (0.05 M) film shows improved CO and CO{sub 2} gas sensing capacity at lower operating temperature compared to pure HAp. Moreover, variation of dielectric constant and dielectric loss for pure and Fe-HAp thick films are studied as a function of frequency in the range of 10 Hz–1 MHz. The study reveals that Fe doped HAp thick films improve the sensing and dielectric characteristics as compared to pure HAp.« less
Quaternized wood as sorbent for hexavalent chromium.
Low, K S; Lee, C K; Lee, C Y
2001-01-01
The potential of quaternized wood (QW) chips in removing hexavalent chromium from synthetic solution and chrome waste under both batch and continuous-flow conditions was investigated. Sorption was found to be dependent on pH, metal concentration, and temperature. QW chips provide higher sorption capacity and wider pH range compared with untreated wood chips. The equilibrium data could be fitted into the Langmuir isotherm model, and maximum sorption capacities were calculated to be 27.03 and 25.77 mg/g in synthetic chromate solution and chrome waste, respectively. The presence of sulfate in high concentration appeared to suppress the uptake of chromium by QW chips. Column studies showed that bed depth influenced the breakthrough time greatly whereas flow rate of influent had little effect on its sorption on the column.
Super water-absorbing new material from chitosan, EDTA and urea.
Narayanan, Abathodharanan; Dhamodharan, Raghavachari
2015-12-10
A new, super water-absorbing, material is synthesized by the reaction between chitosan, EDTA and urea and named as CHEDUR. CHEDUR is probably formed through the crosslinking of chitosan molecules (CH) with the EDTA-urea (EDUR) adduct that is formed during the reaction. CHEDUR as well as the other products formed in control reactions are characterized extensively. CHEDUR exhibits a very high water uptake capacity when compared with chitosan, chitosan-EDTA adduct, as well as a commercial diaper material. A systematic study was done to find the optimum composition as well as reaction conditions for maximum water absorbing capacity. CHEDUR can play a vital role in applications that demand the rapid absorption and slow release of water such as agriculture, as a three in one new material for the slow release of urea, water and other metal ions that can be attached through the EDTA component. The other potential advantage of CHEDUR is that it can be expected to degrade in soil based on its chitosan backbone. The new material with rapid and high water uptake could also find potential applications as biodegradable active ingredient of the diaper material. Copyright © 2015 Elsevier Ltd. All rights reserved.
Olgun, Asim; Atar, Necip
2009-01-15
In this study, the adsorption characteristics of Basic Yellow 28 (BY 28) and Basic Red 46 (BR 46) onto boron waste (BW), a waste produced from boron processing plant were investigated. The equilibrium adsorption isotherms and kinetics were investigated. The adsorption equilibrium data were analyzed by using various adsorption isotherm models and the results have shown that adsorption behavior of two dyes could be described reasonably well by a generalized isotherm. Kinetic studies indicated that the kinetics of the adsorption of BY 28 and BR 46 onto BW follows a pseudo-second-order model. The result showed that the BW exhibited high-adsorption capacity for basic dyes and the capacity slightly decreased with increasing temperature. The maximum adsorption capacities of BY 28 and BR 46 are reported at 75.00 and 74.73mgg(-1), respectively. The dye adsorption depended on the initial pH of the solution with maximum uptake occurring at about pH 9 and electrokinetic behavior of BW. Activation energy of 15.23kJ/mol for BY 28 and 18.15kJ/mol for BR 46 were determined confirming the nature of the physisorption onto BW. These results indicate that BW could be employed as low-cost material for the removal of the textile dyes from effluents.
Koshy Cherian, Ajeesh; Parikh, Vinay; Wu, Qi; Mao-Draayer, Yang; Wang, Qin; Blakely, Randy D; Sarter, Martin
2017-09-01
The synaptic uptake of choline via the high-affinity, hemicholinium-3-dependent choline transporter (CHT) strongly influences the capacity of cholinergic neurons to sustain acetylcholine (ACh) synthesis and release. To advance research on the impact of CHT capacity in humans, we established the presence of the neuronal CHT protein in human T lymphocytes. Next, we demonstrated CHT-mediated choline transport in human T cells. To address the validity of T cell-based choline uptake as a proxy for brain CHT capacity, we isolated T cells from the spleen, and synaptosomes from cortex and striatum, of wild type and CHT-overexpressing mice (CHT-OXP). Choline uptake capacity in T cells from CHT-OXP mice was two-fold higher than in wild type mice, mirroring the impact of CHT over-expression on synaptosomal CHT-mediated choline uptake. Monitoring T lymphocyte CHT protein and activity may be useful for estimating human CNS cholinergic capacity and for testing hypotheses concerning the contribution of CHT and, more generally, ACh signaling in cognition, neuroinflammation and disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cole, B.E.; Harmon, D.D.
1981-01-01
Rates of phytoplankton productivity, respiration, and nutrient uptake and regeneration are presented. These observations were made on the Potomac River estuary (POTE) during four cruises between August 1977 and August 1978. Four experimental methods were used: carbon uptake using carbon-14, carbon uptake and respiration by a pH method, productivity and respiration by the dissolved oxygen method, and nutrient (NH4+, NO3-, NO2-, PO4=, and SiO2=) uptake and regeneration by colorimetry. The experiments were made at sites representative of conditions in four principal reaches of the tidal Potomac River estuary: near the mouth, seaward of the summer nutrient and phytoplankton maximum, near the region of maximum phytoplankton standing stock , and near the maximum anthropogenic nutrient source. (USGS)
Hauck, J; Völker, C
2015-01-01
The Southern Ocean is a key region for global carbon uptake and is characterized by a strong seasonality with the annual CO2 uptake being mediated by biological carbon drawdown in summer. Here we show that the contribution of biology to CO2 uptake will become even more important until 2100. This is the case even if biological production remains unaltered and can be explained by the decreasing buffer capacity of the ocean as its carbon content increases. The same amount of biological carbon drawdown leads to a more than twice as large reduction in CO2(aq) concentration and hence to a larger CO2 gradient between ocean and atmosphere that drives the gas exchange. While the winter uptake south of 44°S changes little, the summer uptake increases largely and is responsible for the annual mean response. The combination of decreasing buffer capacity and strong seasonality of biological carbon drawdown introduces a strong and increasing seasonality in the anthropogenic carbon uptake. Key Points Decrease of buffer capacity leads to stronger summer CO2 uptake in the future Biology will contribute more to future CO2 uptake in Southern Ocean Seasonality affects anthropogenic carbon uptake strongly PMID:26074650
Sodium uptake in different life stages of crustaceans: the water flea Daphnia magna Strauss.
Bianchini, Adalto; Wood, Chris M
2008-02-01
The concentration-dependent kinetics and main mechanisms of whole-body Na+ uptake were assessed in neonate and adult water flea Daphnia magna Strauss acclimated to moderately hard water (0.6 mmol l(-1) NaCl, 1.0 mmol l(-1) CaCO3 and 0.15 mmol l(-1) MgSO4.7H2O; pH 8.2). Whole-body Na+ uptake is independent of the presence of Cl(-) in the external medium and kinetic parameters are dependent on the life stage. Adults have a lower maximum capacity of Na+ transport on a mass-specific basis but a higher affinity for Na+ when compared to neonates. Based on pharmacological analyses, mechanisms involved in whole-body Na+ uptake differ according to the life stage considered. In neonates, a proton pump-coupled Na+ channel appears to play an important role in the whole-body Na+ uptake at the apical membrane. However, they do not appear to contribute to whole-body Na+ uptake in adults, where only the Na+ channel seems to be present, associated with the Na+/H+ exchanger. In both cases, carbonic anhydrase contributes by providing H+ for the transporters. At the basolateral membrane of the salt-transporting epithelia of neonates, Na+ is pumped from the cells to the extracellular fluid by a Na+, K+-ATPase and a Na+/Cl(-) exchanger whereas K+ and Cl(-) move through specific channels. In adults, a Na+/K+/2Cl(-) cotransporter replaces the Na+/Cl(-) exchanger. Differential sensitivity of neonates and adults to iono- and osmoregulatory toxicants, such as metals, are discussed with respect to differences in whole-body Na+ uptake kinetics, as well as in the mechanisms of Na+ transport involved in the whole-body Na+ uptake in the two life stages.
NASA Astrophysics Data System (ADS)
Dass, P.; Houlton, B. Z.; Wang, Y.; Pak, B. C.; Morford, S.
2016-12-01
Empirical evidence of widespread scarcity of nitrogen (N) and phosphorus (P) availability in natural land ecosystems constrains the carbon dioxide (CO2) uptake capacity of the global biosphere. Recent studies have pointed to the importance of rock weathering in supplying both N and P to terrestrial soils and vegetation; however, the potential for N and P to rapidly weather from different rocks and thereby alter the global carbon (C) cycle remains an open question, particularly at the global scale. Here, we combine empirical measurements and a new global simulation model to quantify the flux of N and P released from rocks to the terrestrial biosphere. Our model considers the role of tectonic uplift and physical and chemical weathering on rock nutrient cycling by using a probabilistic approach that is anchored in watershed-scale 10Be and Na data from the world's rivers. We use USGS DEM data for relief, monthly averaged MODIS evapotranspiration data and global precipitation datasets. Based on simulations using mean climate data for the past 10 years, we estimate annual values of 11 Tg of N and 6 Tg of P to weather from rocks to the terrestrial biosphere. The rate of N weathering rivals that of atmospheric N deposition in natural ecosystems, and the P weathering flux is approximately 6 times higher than prior estimates based on a modeling approach where the chemical weathering is dependant on lithology and runoff with further factors correcting for soil shielding and temperature. The increase in nutrient inputs we simulate reveals an important role for rock weathering to support new production in terrestrial ecosystems, and thereby allow for additional CO2 uptake in sectors of the biosphere where weathering rates are substantial. Given that current generation of models are yet to consider how short-term weathering of rocks can affect nutrient limited C storage, these results will help to advance the geochemical aspects of carbon-climate feedback this century. Moreover, we will present results for CO2 uptake capacity based on the future climate scenario involving the least mitigation storyline, i.e. RCP 8.5 as well as historic uptake from the beginning of the retreat if the glaciers, i.e. the Last Glacial Maximum.
Computational investigation of hydrogen storage on B5V3
NASA Astrophysics Data System (ADS)
Guo, Chen; Wang, Chong
2018-05-01
Based on density functional theory method with 6-311+G(d,p) basis set, the structures, stability and hydrogen storage capacity of B5V3 have been theoretically investigated. It is found that a maximum of seven hydrogen molecules can be adsorbed on B5V3 with gravimetric uptake capacity of 6.39 wt%. The uptake capacity exceeds the target set by the US Department of Energy for vehicular application. Moreover, the average adsorption energy of B5V3 01 (7H2) is 0.60 eV/H2 in the desirable range of reversible hydrogen storage. The kinetic stability of H2 adsorbed on B5V3 01 is confirmed by using gap between highest occupied molecular orbital (HOMO)and the lowest unoccupied molecular orbital (LUMO). The gap value of B5V3 01 (7H2) is 2.81 eV, which indicates the compound with high stability. In addition, the thermochemistry calculation (Gibbs free energy corrected adsorption energy) is used to analyse if the adsorption is favourable or not at different temperatures. It can be found that the Gibbs corrected adsorption energy of B5V3 01 (7H2) is still positive at 400 K at 1 atm. It means that the adsorption of seven hydrogen molecules on B5V3 01 is energetically favourable in a fairly wide temperature range. All the results show that B5V3 01 can be considered as a promising material for hydrogen storage.
NASA Astrophysics Data System (ADS)
Inselsbacher, Erich; Schmidt, Susanne; Näsholm, Torgny; Robinson, Nicole; Guillou, Stéphane; Vinall, Kerry; Lakshmanan, Prakash; Brackin, Richard
2016-04-01
Nitrogen (N) uptake by agricultural crops is a key constituent of the global N cycle, as N captured by roots has a markedly different fate than N remaining in the soil. Global evidence indicates that only approximately 50% of applied N fertilizer is captured by crops, and the remainder can cause pollution via runoff and gaseous emissions. This inefficiency is of global concern, and requires innovation based on improved understanding of which N forms are available for and ultimately taken up by crops. However, current soil analysis methods based on destructive soil sampling provide little insight into delivery and acquisition of N forms by roots. Here, we present the results of a study in sugarcane fields receiving different fertilizer regimes comparing soil N supply rates with potential root N uptake rates. We applied microdialysis, a novel technique for in situ quantification of soil nutrient fluxes, to measure flux rates of inorganic N and amino acid N, and analyzed N uptake capacities of sugarcane roots using 15N labelled tracers. We found that in fertilized sugarcane soils, fluxes of inorganic N exceed the uptake capacities of sugarcane roots by several orders of magnitude. Contrary, fluxes of organic N closely matched roots' uptake capacity. These results indicate root uptake capacity constrains plant acquisition of inorganic N. This mismatch between soil N supply and root N uptake capacity is a likely key driver for low N efficiency in the studied crop system. Our results also suggest that the relative contribution of inorganic N for plant nutrition may be overestimated when relying on soil extracts as indicators for root-available N, and organic N may contribute more to crop N supply than is currently assumed. Overall, we show a new approach for examining in situ N relations in soil in context of crop N physiology, which provides a new avenue towards tailoring N fertilizer supply to match the specific uptake abilities and N demand of crops over the growth cycle.
Oxygen delivery does not limit thermal tolerance in a tropical eurythermal crustacean.
Ern, Rasmus; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Wang, Tobias; Bayley, Mark
2014-03-01
In aquatic environments, rising water temperatures reduce water oxygen content while increasing oxygen demand, leading several authors to propose cardiorespiratory oxygen transport capacity as the main determinant of aquatic animal fitness. It has also been argued that tropical species, compared with temperate species, live very close to their upper thermal limit and hence are vulnerable to even small elevations in temperature. Little, however, is known about physiological responses to high temperatures in tropical species. Here we report that the tropical giant freshwater shrimp (Macrobrachium rosenbergii) maintains normal growth when challenged by a temperature rise of 6°C above the present day average (from 27°C to 33°C). Further, by measuring heart rate, gill ventilation rate, resting and maximum oxygen uptake, and hemolymph lactate, we show that oxygen transport capacity is maintained up to the critical maximum temperature around 41°C. In M. rosenbergii heart rate and gill ventilation rate increases exponentially until immediately below critical temperatures and at 38°C animals still retained more than 76% of aerobic scope measured at 30°C, and there was no indication of anaerobic metabolism at the high temperatures. Our study shows that the oxygen transport capacity is maintained at high temperatures, and that other mechanisms, such as protein dysfunction, are responsible for the loss of ecological performance at elevated temperatures.
Synthesis of boron nitride nanofibers and measurement of their hydrogen uptake capacity
NASA Astrophysics Data System (ADS)
Ma, Renzhi; Bando, Yoshio; Sato, Tadao; Golberg, Dmitri; Zhu, Hongwei; Xu, Cailu; Wu, Dehai
2002-12-01
High-purity boron nitride (BN) nanofibers with diameters ranging from 30 to 100 nm were synthesized. Electron energy loss spectroscopy revealed that they have stoichiometric BN composition. The hydrogen uptake capacity measurements showed that the fibers could adsorb 2.9 wt % hydrogen under ˜10 MPa at room temperature. This hydrogen uptake capacity was compared with those of BN multiwalled or bamboo-like nanotubes under the same experimental conditions. It was suggested that the unique morphology of nanofibers, namely open-ended BN edge layers on the exterior surface, might facilitate hydrogen adsorption.
Westhoff-Bleck, Mechthild; Schieffer, Bernhard; Tegtbur, Uwe; Meyer, Gerd Peter; Hoy, Ludwig; Schaefer, Arnd; Tallone, Ezequiel Marcello; Tutarel, Oktay; Mertins, Ramona; Wilmink, Lena Mara; Anker, Stefan D; Bauersachs, Johann; Roentgen, Philipp
2013-12-05
Exercise training safely and efficiently improves symptoms in patients with heart failure due to left ventricular dysfunction. However, studies in congenital heart disease with systemic right ventricle are scarce and results are controversial. In a randomised controlled study we investigated the effect of aerobic exercise training on exercise capacity and systemic right ventricular function in adults with d-transposition of the great arteries after atrial redirection surgery (28.2 ± 3.0 years after Mustard procedure). 48 patients (31 male, age 29.3 ± 3.4 years) were randomly allocated to 24 weeks of structured exercise training or usual care. Primary endpoint was the change in maximum oxygen uptake (peak VO2). Secondary endpoints were systemic right ventricular diameters determined by cardiac magnetic resonance imaging (CMR). Data were analysed per intention to treat analysis. At baseline peak VO2 was 25.5 ± 4.7 ml/kg/min in control and 24.0 ± 5 ml/kg/min in the training group (p=0.3). Training significantly improved exercise capacity (treatment effect for peak VO2 3.8 ml/kg/min, 95% CI: 1.8 to 5.7; p=0.001), work load (p=0.002), maximum exercise time (p=0.002), and NYHA class (p=0.046). Systemic ventricular function and volumes determined by CMR remained unchanged. None of the patients developed signs of cardiac decompensation or arrhythmias while on exercise training. Aerobic exercise training did not detrimentally affect systemic right ventricular function, but significantly improved exercise capacity and heart failure symptoms. Aerobic exercise training can be recommended for patients following atrial redirection surgery to improve exercise capacity and to lessen or prevent heart failure symptoms. ( ClinicalTrials.gov #NCT00837603). © 2013.
Fate and effects of nitrogen and phosphorus in shallow vegetated aquatic ecosystems
Fairchild, James F.; Vradenburg, Leigh Ann
2006-01-01
Nitrate concentrations have greatly increased in streams and rivers draining agricultural regions of the Midwestern United States, increasing nitrate transport to the Gulf of Mexico has been implicated in the hypoxic conditions that threaten the productivity of marine fisheries. Increases in nitrate concentrations have been attributed to a combination of factors including agricultural expansion, increased nitrogen application rates, increased tile drainage, and loss of riparian Wetlands, These landscape-level changes have resulted in a decreased natural capacity for nitrogen uptake, removal, and cycling back to the atmosphere. Land managers are increasingly interested in using wetland construction and rehabilitation as a management practice to reduce loss of nitrate from the terrestrial systems. Yet, relatively little is known about the limnological factors involved in nitrate removal by Wetland systems.We conducted a series of studies from 1999-2000 to investigate the functional capacity of shallow, macrophyte-dominated pond wetland systems for uptake, assimilation, and retention of nitrogen (N) and phosphorus (P). We evaluated four factors that were hypothesized to influence nutrient uptake and assimilation: 1) nitrate loading rates; 2) nitrogen to phosphorus (N.P) ratios; 3) frequency of dosing/application; and 4) timing of dose initiation.Nutrient assimilation was rapid; store than 90% of added nutrients were removed from the water column in all treatments. Neither variation in N:P ratios (evaluated range, <13:1 to -114.1), frequency of application (weekly or bi-weekly), nor liming of dose initiation relative to macrophyte development (0%, 15-25%, or 75-90% maximum biomass) had significant effects on nutrient assimilation of wetland community dynamics. Maximum loading of nitrate (60 g N/m2 2.4 g P/m2) applied as six weekly doses stimulated algal communities, but inhibited macrophyte communities.Predicted shifts from a stable state of macrophyte- to phytoplankton-dominance did not occur due to nutrient additions. Macrophytes, phytoplankton, and the sediment surface were all significant factors in the removal of nitrate from the Water column. Overall, these shallow macrophyte-dominated systems provided an efficient means of removing nutrients from the water column. Construction or rehabilitation of shallow, vegetated wetlands may offer promise as land management practices for nutrient removal in agricultural watersheds.
Ramonatxo, M; Préfaut, C; Guerrero, H; Moutou, H; Bansard, X; Chardon, G
1982-01-01
The aim of this study was to establish data which would best demonstrate the variations of different tests using Carbon Monoxide as a tracer gas (total and partial functional uptake coefficient and transfer capacity) to establish mean values and lower limits of normal of these tests. Multivariate statistical analysis was used; in the first stage a connection was sought between the fractional uptake coefficient (partial and total) to other parameters, comparing subjects and data. In the second stage the comparison was refined by eliminating the least useful data, trying, despite a small loss of material, to reveal the most important connections, linear or otherwise. The fractional uptake coefficients varied according to sex, also the variation of the partial alveolar-expired fractional uptake equivalent (DuACO) was largely a function of respiratory rate and tidal volume. The alveolar-arterial partial fractional uptake equivalent (DuaCO) depended more on respiratory frequency and age. Finally the total fractional uptake coefficient (DuCO) and the transfer capacity corrected per liter of ventilation (TLCO/V) were functions of these parameters. The last stage of this work, after taking account of the statistical observations consistent with the facts of these physiological hypotheses led to a search for a better way of approaching the laws linking the collected data to the fractional uptake coefficient. The lower limits of normal were arbitrarily defined, separating those 5% of subjects deviating most strongly from the mean. As a result, the relationship between the lower limit of normal and the theoretical mean value was 90% for the partial and total fractional uptake coefficient and 70% for the transfer capacity corrected per liter of ventilation.
NASA Astrophysics Data System (ADS)
Chakraborty, Sagnik; Chowdhury, Shamik; Saha, Papita Das
2012-06-01
Biosorption performance of pineapple leaf powder (PLP) for removal of crystal violet (CV) from its aqueous solutions was investigated. To this end, the influence of operational parameters such as pH, biosorbent dose, initial dye concentration and temperature were studied employing a batch experimental setup. The biosorption process followed the Langmuir isotherm model with high correlation coefficients ( R 2 > 0.99) at different temperatures. The maximum monolayer biosorption capacity was found to be 78.22 mg g-1 at 293 K. The kinetic data conformed to the pseudo-second-order kinetic model. The activation energy of the system was calculated as 58.96 kJ mol- 1 , indicating chemisorption nature of the ongoing biosorption process. A thermodynamic study showed spontaneous and exothermic nature of the biosorption process. Owing to its low cost and high dye uptake capacity, PLP has potential for application as biosorbent for removal of CV from aqueous solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez-Gonzalez, Sergio Efrain; Carbajal-Arizaga, Gregorio Guadalupe; Manriquez-Gonzalez, Ricardo
Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH{sub 3}COO){sub 2}Cr{sup +} ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed tomore » assess the removal of this metal from aqueous solutions. {sup 13}C, {sup 29}Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level.« less
Ge, Huacai; Hua, Tingting
2016-11-20
Chitosan-poly(maleic acid) nanomaterial (PMACS) with the size of 400-900nm was synthesized by grafting poly(maleic acid) onto chitosan and then crosslinking with glutaraldehyde. The synthesis conditions were optimized. The structure and morphology of PMACS were characterized by FT-IR, XRD, SEM and TGA. PMACS was used to adsorb some heavy metal ions such as Hg(II), Pb(II), Cu(II), Cd(II), Co(II), and Zn(II). The results indicated that PMACS had selectivity for Hg(II) sorption. The effects of various variables for sorption of Hg(II) were further explored. The maximum capacity for Hg(II) sorption was found to be 1044mgg(-1) at pH 6.0, which could compare with the maximal value of the recently reported other sorbents. The sorption followed the pseudo-second-order kinetics and Langmuir isotherm models. The rising of temperature benefited the uptake and the sorption was a spontaneous chemical process. The sorbent could be reused with EDTA. Hence, the nanomaterial would be used as a selective and high uptake sorbent in the removal of Hg(II) from effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon
2016-01-01
Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS’s optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust’s coarse particle size and bulking effect. PMID:26954138
Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon
2016-05-01
Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.
NASA Technical Reports Server (NTRS)
Moore, Alan; Evetts, Simon; Feiveson, Alan; Lee, Stuart; McCleary, Frank; Platts, Steven
2009-01-01
NASA's Human Research Program Integrated Research Plan (HRP-47065) serves as a road-map identifying critically needed information for future space flight operations (Lunar, Martian). VO2max (often termed aerobic capacity) reflects the maximum rate at which oxygen can be taken up and utilized by the body during exercise. Lack of in-flight and immediate postflight VO2max measurements was one area identified as a concern. The risk associated with not knowing this information is: Unnecessary Operational Limitations due to Inaccurate Assessment of Cardiovascular Performance (HRP-47065).
Inverse relationship between exercise economy and oxidative capacity in muscle.
Hunter, Gary R; Bamman, Marcas M; Larson-Meyer, D Enette; Joanisse, Denis R; McCarthy, John P; Blaudeau, Tamilane E; Newcomer, Bradley R
2005-08-01
An inverse relationship has been shown between running and cycling exercise economy and maximum oxygen uptake (VO2max). The purposes were: 1) determine the relationship between walking economy and VO2max; and 2) determine the relationship between muscle metabolic economy and muscle oxidative capacity and fiber type. Subjects were 77 premenopausal normal weight women. Walking economy (1/VO2max) was measured at 3 mph and VO2max during graded treadmill test. Muscle oxidative phosphorylation rate (OxPhos), and muscle metabolic economy (force/ATP) were measured in calf muscle using 31P MRS during isometric plantar flexion at 70 and 100% of maximum force, (HI) and (MI) respectively. Muscle fiber type and citrate synthase activity were determined in the lateral gastrocnemius. Significant inverse relationships (r from -0.28 to -0.74) were observed between oxidative metabolism measures and exercise economy (walking and muscle). Type IIa fiber distribution was inversely related to all measures of exercise economy (r from -0.51 to -0.64) and citrate synthase activity was inversely related to muscle metabolic economy at MI (r = -0.56). In addition, Type IIa fiber distribution and citrate synthase activity were positively related to VO2max and muscle OxPhos at HI and MI (r from 0.49 to 0.70). Type I fiber distribution was not related to any measure of exercise economy or oxidative capacity. Our results support the concept that exercise economy and oxidative capacity are inversely related. We have demonstrated this inverse relationship in women both by indirect calorimetry during walking and in muscle tissue by 31P MRS.
Zarghami, Zabihullah; Akbari, Ahmad; Latifi, Ali Mohammad; Amani, Mohammad Ali
2016-04-01
In this research, different generations of PAMAM-grafted chitosan as integrated biosorbents were successfully synthesized via step by step divergent growth approach of dendrimer. The synthesized products were utilized as adsorbents for heavy metals (Pb(2+) in this study) removing from aqueous solution and their reactive Pb(2+) removal potential was evaluated. The results showed that as-synthesized products with higher generations of dendrimer, have more adsorption capacity compared to products with lower generations of dendrimer and sole chitosan. Adsorption capacity of as-prepared product with generation 3 of dendrimer is 18times more than sole chitosan. Thermodynamic and kinetic studies were performed for understanding equilibrium data of the uptake capacity and kinetic rate uptake, respectively. Thermodynamic and kinetic studies showed that Langmuir isotherm model and pseudo second order kinetic model are more compatible for describing equilibrium data of the uptake capacity and kinetic rate of the Pb(2+) uptake, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Babaeivelni, Kamel; Khodadoust, Amid P; Bogdan, Dorin
2014-01-01
Manganese (II,III) oxide (Mn3O4) crystalline powder was evaluated as a potential sorbent for removal of arsenic (V) from water. Adsorption isotherm experiments were carried out to determine the adsorption capacity using de-ionized (DI) water, a synthetic solution containing bicarbonate alkalinity, and two natual groundwater samples. Adsorption isotherm data followed the Langmuir and Freundlich equations, indicating favorable adsorption of arsenic (V) onto Mn3O4, while results from the Dubinin-Radushkevich equation were suggestive of chemisorption of arsenic (V). When normalized to the sorbent surface area, the maximum adsorption capacity of Mn3O4 for arsenic (V) was 101 μg m(-2), comparable to that of activated alumina. Arsenic (V) adsorption onto Mn3O4 followed pseudo-second-order kinetics. Adsorption of arsenic (V) was greatest at pH 2, while adsorption at pH 7-9 was within 91% of maximum adsorption, whereas adsorption decreased to 32% of maximum adsorption at pH 10. Surface charge analysis confirmed the adsorption of arsenic (V) onto the acidic surface of the Mn3O4 sorbent with a pHPZC of 7.32. The presence of coexisting ions bicarbonate and phosphate resulted in a decrease in arsenic (V) uptake. Comparable adsorption capacities were obtained for the synthetic solution and both groundwater samples. Overall, crystalline Mn3O4 was an effective and viable sorbent for removal of arsenic (V) from natural water, removing greater than 95% of arsenic (V) from a 1 mg L(-1) solution within 60 min of contact time.
NASA Astrophysics Data System (ADS)
Oberbauer, S. F.; Cruz, H. O.; Ryan, M. G.; Clark, D. B.; Clark, D. A.; Olivas, P.
2004-12-01
Because of the difficulties of accessing leaves within tree crowns, little is known about the photosynthetic capacity of different functional groups within tropical rain forest canopies. To address this deficiency, we measured photosynthetic capacity (Amax) in situ along vertical transects through old-growth forest canopy using a mobile walkup tower at the La Selva Biological Station in Costa Rica. We asked: What groups are responsible for most C-fixation and at what height in the canopy does most C-fixation occur? Photosynthesis (using a LI-COR Li-6400) and total leaf area were measured for all vascular plant species encountered within the tower footprint (4.6 m2). Plants were grouped into trees, palms, ferns, lianas, epiphytes, herbs, Pentaclethra macroloba (the dominant canopy tree), and vines. Amax values differed among functional groups. The ranking of Amax among the groups was trees > P. macroloba > palms > lianas > vines > epiphytes > herbs > ferns. Trees and P. macroloba had the highest photosynthetic rates, but the maximum rates occur at different heights. Amax of P. macroloba increases with canopy height to a maximum 10.3 \\mumol m-2 s-1 at 17.5 m. Amax of trees increases with canopy height (r2 = 0.77) and attains the highest Amax at 32.5 m (10.6 \\mumol m-2 s-1). Palms and lianas presented similar patterns of Amax. However, lianas reach the canopy top whereas palms are shorter and were not observed above 27.5 m. The maximum photosynthetic rates for both groups were: lianas 9.2 \\mumol m-2 s-1 at 27.5 m and palms 9.6 \\mumol m-2 s-1 at 17.5 m. By scaling the functional group Amax values with their leaf area, we estimated that most of the photosynthetic capacity occurs between 17.5 m and 37.5 m and is attributed mainly to trees, followed by P. macroloba and then lianas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janssen, Marco H.M., E-mail: marco.janssen@maastro.nl; Aerts, Hugo J.W.L.; Buijsen, Jeroen
2012-02-01
Purpose: The purpose of this study was to analyze both the intratumoral fluorodeoxyglucose (FDG) uptake and perfusion within rectal tumors before and after hypofractionated radiotherapy. Methods and Materials: Rectal cancer patients, referred for preoperative hypofractionated radiotherapy (RT), underwent FDG-positron emission tomography (PET)-computed tomography (CT) and perfusion-CT (pCT) imaging before the start of hypofractionated RT and at the day of the last RT fraction. The pCT-images were analyzed using the extended Kety model, quantifying tumor perfusion with the pharmacokinetic parameters K{sup trans}, v{sub e}, and v{sub p}. The mean and maximum FDG uptake based on the standardized uptake value (SUV) andmore » transfer constant (K{sup trans}) within the tumor were correlated. Also, the tumor was subdivided into eight subregions and for each subregion the mean and maximum SUVs and K{sup trans} values were assessed and correlated. Furthermore, the mean FDG uptake in voxels presenting with the lowest 25% of perfusion was compared with the FDG uptake in the voxels with the 25% highest perfusion. Results: The mean and maximum K{sup trans} values were positively correlated with the corresponding SUVs ({rho} = 0.596, p = 0.001 and {rho} = 0.779, p < 0.001). Also, positive correlations were found for K{sup trans} values and SUVs within the subregions (mean, {rho} = 0.413, p < 0.001; and max, {rho} = 0.540, p < 0.001). The mean FDG uptake in the 25% highest-perfused tumor regions was significantly higher compared with the 25% lowest-perfused regions (10.6% {+-} 5.1%, p = 0.017). During hypofractionated radiotherapy, stable mean (p = 0.379) and maximum (p = 0.280) FDG uptake levels were found, whereas the mean (p = 0.040) and maximum (p = 0.003) K{sup trans} values were found to significantly increase. Conclusion: Highly perfused rectal tumors presented with higher FDG-uptake levels compared with relatively low perfused tumors. Also, intratumor regions with a high FDG uptake demonstrated with higher levels of perfusion than regions with a relatively low FDG-uptake. Early after hypofractionated RT, stable FDG uptake levels were found, whereas tumor perfusion was found to significantly increase.« less
Biosorption of hexavalent chromium from aqueous medium with Opuntia biomass.
Fernández-López, José A; Angosto, José M; Avilés, María D
2014-01-01
The biosorption of hexavalent chromium from aqueous solutions by Opuntia cladodes and ectodermis from cactus fruits was investigated. Both types of biomass are considered low-cost, natural, and ecofriendly biosorbents. Batch experiments were carried out to determine Cr(VI) biosorption capacity and the efficiency of the biosorption process under different pH, initial Cr(VI) concentration, and sorbent dosage. The biosorption of Cr(VI) by Opuntia biomass was highly pH dependent, favoring higher metal uptake at low pH. The higher biosorption capacity was exhibited at pH 2. The optimal conditions were obtained at a sorbent dosage of 1 g L(-1) and initial metal concentration of 10 mg L(-1). Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The rate constant, the initial biosorption rate, and the equilibrium biosorption capacity were determined. The experimental equilibrium data obtained were analyzed using two-parameter isotherm models (Langmuir, Freundlich, and Temkin). The Langmuir maximum monolayer biosorption capacity (q max) was 18.5 mg g(-1) for cladodes and 16.4 mg g(-1) for ectodermis. The results suggest that Opuntia biomass could be considered a promising low-cost biosorbent for the ecofriendly removal of Cr(VI) from aqueous systems.
Kinetics of 11C-labeled opiates in the brain of rhesus monkeys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartvig, P.; Bergstroem, K.; Lindberg, B.
1984-07-01
The regional uptake in the brain of Rhesus monkeys of i.v. administered 11C-labeled morphine, codeine, heroin and pethidine was studied by means of positron emission tomography. The technique measures the sum of parent drug and radiolabeled metabolites. (For the sake of simplicity the drug derived radioactivity is denoted by the drug name.) Morphine had a limited uptake to discrete areas of the brain. The maximum normalized uptake, with respect to dose per kilogram body weight, was about 0.2, i.e., 20% of the calculated activity if the drug had been evenly distributed throughout the body of the monkey. Maximum radioactivity appearedmore » 30 to 45 min after injection. Morphine left the brain slowly with an estimated half-life of more than 2 hr. An area with a normalized uptake of about 1.0 was detected centrally in the lowest horizontal transsection of the skull. The origin of this area was identified as the pituitary. Codeine, heroin and pethidine were taken up to the brain to a larger extent than morphine, with maximum normalized uptakes of 2.6, 4.6 and 6.3, respectively. Maximum radioactivities of these drugs were achieved earlier and the elimination rates were faster than for morphine. Differences in the uptake of these drugs to the brain, as well as differences in time to maximal normalized uptake and rate of disappearance are considered to reflect differences in the lipophilic character between the drugs. Pethidine had the most rapid and extensive uptake followed by heroin, codeine and morphine in order of decreasing lipophilicity.« less
Ben-Harari, R. R.; Youdim, M. B.
1981-01-01
1. Uptake of 5-hydroxytryptamine (5-HT) and beta-phenylethylamine (PEA) was studied in perfused lung from male rats between 10 and 70 days old. 2. Monoamine oxidase (MAO) activity towards 5-HT, PEA and dopamine was studied in homogenate preparations of lung from rats aged between 5 and 80 days. 3. Uptake of 5-HT (10 microM) decreased throughout the age range studied but uptake of PEA (50 microM) increased for the first 30 days and beyond this age it decreased. Metabolites formed for both amines reflected the changes in uptake. 4. MAO activity deaminating 5-HT is well developed by day 10 and reaches its maximum by day 40. For dopamine and PEA, MAO activity remained low until day 20, and the developed rapidly, reaching a maximum by day 40 for dopamine; activity towards PEA did not reach a maximum by day 80. 5. These results show that uptake and MAO activity changes with age and thus the lung responds like other tissues. 6. These results also demonstrate the independent development of uptake and MAO activity towards 5-HT, PEA and dopamine. PMID:7284689
Diffusional limits to the consumption of atmospheric methane by soils
Striegl, Robert G.
1993-01-01
Net transport of atmospheric gases into and out of soil systems is primarily controlled by diffusion along gas partial pressure gradients. Gas fluxes between soil and the atmosphere can therefore be estimated by a generalization of the equation for ordinary gaseous diffusion in porous unsaturated media. Consumption of CH4 by methylotrophic bacteria in the top several centimeters of soil causes the uptake of atmospheric CH4 by aerated soils. The capacity of the methylotrophs to consume CH4 commonly exceeds the potential of CH4 to diffuse from the atmosphere to the consumers. The maximum rate of uptake of atmospheric CH4 by soil is, therefore, limited by diffusion and can be calculated from soil physical properties and the CH4 concentration gradient. The CH4 concentration versus depth profile is theoretically described by the equation for gaseous diffusion with homogeneous chemical reaction in porous unsaturated media. This allows for calculation of the in situ rate of CH4 consumption within specified depth intervals.
Statistical analysis and isotherm study of uranium biosorption by Padina sp. algae biomass.
Khani, Mohammad Hassan
2011-06-01
The application of response surface methodology is presented for optimizing the removal of U ions from aqueous solutions using Padina sp., a brown marine algal biomass. Box-Wilson central composite design was employed to assess individual and interactive effects of the four main parameters (pH and initial uranium concentration in solutions, contact time and temperature) on uranium uptake. Response surface analysis showed that the data were adequately fitted to second-order polynomial model. Analysis of variance showed a high coefficient of determination value (R (2)=0.9746) and satisfactory second-order regression model was derived. The optimum pH and initial uranium concentration in solutions, contact time and temperature were found to be 4.07, 778.48 mg/l, 74.31 min, and 37.47°C, respectively. Maximized uranium uptake was predicted and experimentally validated. The equilibrium data for biosorption of U onto the Padina sp. were well represented by the Langmuir isotherm, giving maximum monolayer adsorption capacity as high as 376.73 mg/g.
Equilibrium and Kinetic Studies of Cd2+ Biosorption by the Brown Algae Sargassum fusiforme
Zou, Hui-Xi; Li, Nan; Wang, Li-Hua; Yu, Ping; Yan, Xiu-Feng
2014-01-01
A fundamental investigation of the biosorption of Cd2+ from aqueous solution by the edible seaweed Sargassum fusiforme was performed under batch conditions. The influences of experimental parameters, such as the initial pH, sorption time, temperature, and initial Cd2+ concentration, on Cd2+ uptake by S. fusiforme were evaluated. The results indicated that the biosorption of Cd2+ depended on the initial Cd2+ concentration, as well as the pH. The uptake of Cd2+ could be described by the Langmuir isotherm model, and both the Langmuir biosorption equilibrium constant and the maximum biosorption capacity of the monolayer decreased with increasing temperature, thereby confirming the exothermic character of the sorption process. The biosorption kinetics follows the pseudo-second-order kinetic model, and intraparticle diffusion is the sole rate-limiting step for the entire biosorption period. These fundamental equilibrium and kinetic results can support further studies to the removal of cadmium from S. fusiforme harvested from cadmium-polluted waters. PMID:24736449
McWilliams, Scott R.; Karasov, William H.
2014-01-01
Flexible phenotypes enable animals to live in environments that change over space and time, and knowing the limits to and the required time scale for this flexibility provides insights into constraints on energy and nutrient intake, diet diversity and niche width. We quantified the level of immediate and ultimate spare capacity, and thus the extent of phenotypic flexibility, in the digestive system of a migratory bird in response to increased energy demand, and identified the digestive constraints responsible for the limits on sustained energy intake. Immediate spare capacity decreased from approximately 50% for birds acclimated to relatively benign temperatures to less than 20% as birds approached their maximum sustainable energy intake. Ultimate spare capacity enabled an increase in feeding rate of approximately 126% as measured in birds acclimated for weeks at −29°C compared with +21°C. Increased gut size and not tissue-specific differences in nutrient uptake or changes in digestive efficiency or retention time were primarily responsible for this increase in capacity with energy demand, and this change required more than 1–2 days. Thus, the pace of change in digestive organ size may often constrain energy intake and, for birds, retard the pace of their migration. PMID:24718764
McWilliams, Scott R; Karasov, William H
2014-05-22
Flexible phenotypes enable animals to live in environments that change over space and time, and knowing the limits to and the required time scale for this flexibility provides insights into constraints on energy and nutrient intake, diet diversity and niche width. We quantified the level of immediate and ultimate spare capacity, and thus the extent of phenotypic flexibility, in the digestive system of a migratory bird in response to increased energy demand, and identified the digestive constraints responsible for the limits on sustained energy intake. Immediate spare capacity decreased from approximately 50% for birds acclimated to relatively benign temperatures to less than 20% as birds approached their maximum sustainable energy intake. Ultimate spare capacity enabled an increase in feeding rate of approximately 126% as measured in birds acclimated for weeks at -29°C compared with +21°C. Increased gut size and not tissue-specific differences in nutrient uptake or changes in digestive efficiency or retention time were primarily responsible for this increase in capacity with energy demand, and this change required more than 1-2 days. Thus, the pace of change in digestive organ size may often constrain energy intake and, for birds, retard the pace of their migration.
Impact of error self-perception of aerobic capacity in the safety and efficacy of the lifeguards.
Prieto, Jose A; Nistal, Paloma; Méndez, David; Abelairas-Gomez, Cristian; Barcala-Furelos, Roberto
2016-01-01
The strong physical demands that are required of lifeguards during rescues also require an accurate self-perception of one's fitness level to be able to regulate the intensity of effort. The aim of this study was to determine the real aerobic capacity (RAC) and to compare it with two self-reported measurements: subjective appraisal of aerobic capacity (SAAC) and appraisal of physical exercise (APE). Fifty-two professional lifeguards were included in the study. For an objective assessment of RAC, the lifeguards' maximum oxygen uptake (VO2max) values were measured during treadmill stress tests. A fitness assessment questionnaire was used to obtain the SAAC and APE values. We found a statistically significant association between the APE and RAC variables in the contingency analysis (p < 0.001). In total, 93.7% of the lifeguards who obtained a VO2max value below 43 ml kg(-1) min(-1) considered their aerobic capacity to be high or very high. This self-perception error of true aerobic capacity could lead to premature fatigue during a rescue, endangering both the lifeguard's life and the life of the victim. These data may help lifeguards and beach managers to become aware of the need to know lifeguards' true physical conditions through testing and structured training programs.
Fish protein hydrolysates: application in deep-fried food and food safety analysis.
He, Shan; Franco, Christopher; Zhang, Wei
2015-01-01
Four different processes (enzymatic, microwave-intensified enzymatic, chemical, and microwave-intensified chemical) were used to produce fish protein hydrolysates (FPH) from Yellowtail Kingfish for food applications. In this study, the production yield and oil-binding capacity of FPH produced from different processes were evaluated. Microwave intensification significantly increased the production yields of enzymatic process from 42% to 63%. It also increased the production yields of chemical process from 87% to 98%. The chemical process and microwave-intensified chemical process produced the FPH with low oil-binding capacity (8.66 g oil/g FPH and 6.25 g oil/g FPH), whereas the microwave-intensified enzymatic process produced FPH with the highest oil-binding capacity (16.4 g oil/g FPH). The FPH from the 4 processes were applied in the formulation of deep-fried battered fish and deep-fried fish cakes. The fat uptake of deep-fried battered fish can be reduced significantly from about 7% to about 4.5% by replacing 1% (w/w) batter powder with FPH, and the fat uptake of deep-fried fish cakes can be significantly reduced from about 11% to about 1% by replacing 1% (w/w) fish mince with FPH. Food safety tests of the FPH produced by these processes demonstrated that the maximum proportion of FPH that can be safely used in food formulation is 10%, due to its high content of histamine. This study demonstrates the value of FPH to the food industry and bridges the theoretical studies with the commercial applications of FPH. © 2015 Institute of Food Technologists®
Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance.
Poole, David C; Hirai, Daniel M; Copp, Steven W; Musch, Timothy I
2012-03-01
The defining characteristic of chronic heart failure (CHF) is an exercise intolerance that is inextricably linked to structural and functional aberrations in the O(2) transport pathway. CHF reduces muscle O(2) supply while simultaneously increasing O(2) demands. CHF severity varies from moderate to severe and is assessed commonly in terms of the maximum O(2) uptake, which relates closely to patient morbidity and mortality in CHF and forms the basis for Weber and colleagues' (167) classifications of heart failure, speed of the O(2) uptake kinetics following exercise onset and during recovery, and the capacity to perform submaximal exercise. As the heart fails, cardiovascular regulation shifts from controlling cardiac output as a means for supplying the oxidative energetic needs of exercising skeletal muscle and other organs to preventing catastrophic swings in blood pressure. This shift is mediated by a complex array of events that include altered reflex and humoral control of the circulation, required to prevent the skeletal muscle "sleeping giant" from outstripping the pathologically limited cardiac output and secondarily impacts lung (and respiratory muscle), vascular, and locomotory muscle function. Recently, interest has also focused on the dysregulation of inflammatory mediators including tumor necrosis factor-α and interleukin-1β as well as reactive oxygen species as mediators of systemic and muscle dysfunction. This brief review focuses on skeletal muscle to address the mechanistic bases for the reduced maximum O(2) uptake, slowed O(2) uptake kinetics, and exercise intolerance in CHF. Experimental evidence in humans and animal models of CHF unveils the microvascular cause(s) and consequences of the O(2) supply (decreased)/O(2) demand (increased) imbalance emblematic of CHF. Therapeutic strategies to improve muscle microvascular and oxidative function (e.g., exercise training and anti-inflammatory, antioxidant strategies, in particular) and hence patient exercise tolerance and quality of life are presented within their appropriate context of the O(2) transport pathway.
Zhang, Gaosheng; Liu, Huijuan; Qu, Jiuhui; Jefferson, William
2012-01-15
Arsenate retention, arsenite sorption and oxidation on the surfaces of Fe-Mn binary oxides may play an important role in the mobilization and transformation of arsenic, due to the common occurrence of these oxides in the environment. However, no sufficient information on the sorption behaviors of arsenic on Fe-Mn binary oxides is available. This study investigated the influences of Mn/Fe molar ratio, solution pH, coexisting calcium ions, and humic acids have on arsenic sorption by Fe-Mn binary oxides. To create Fe-Mn binary oxides, simultaneous oxidation and co-precipitation methods were employed. The Fe-Mn binary oxides exhibited a porous crystalline structure similar to 2-line ferrihydrite at Mn/Fe ratios 1:3 and below, whereas exhibited similar structures to δ-MnO(2) at higher ratios. The As(V) sorption maximum was observed at a Mn/Fe ratio of 1:6, but As(III) uptake maximum was at Mn/Fe ratio 1:3. However, As(III) adsorption capacity was much higher than that of As(V) at each Mn/Fe ratio. As(V) sorption was found to decrease with increasing pH, while As(III) sorption edge was different, depending on the content of MnO(2) in the binary oxides. The presence of Ca(2+) enhanced the As(V) uptake under alkaline pH, but did not significantly influence the As(III) sorption by 1:9 Fe-Mn binary oxide; whereas the presence of humic acid slightly reduced both As(V) and As(III) uptake. These results indicate that As(III) is more easily immobilized than As(V) in the environment, where Fe-Mn binary oxides are available as sorbents and they represent attractive adsorbents for both As(V) and As(III) removal from water and groundwater. Copyright © 2011 Elsevier Inc. All rights reserved.
Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation.
Kim, Hyun-Seok; Oren, Ram; Hinckley, Thomas M
2008-04-01
We examined the tradeoffs between stand-level water use and carbon uptake that result when biomass production of trees in plantations is maximized by removing nutrient and water limitations. A Populus trichocarpa Torr. x P. deltoides Bartr. & Marsh. plantation was irrigated and received frequent additions of nutrients to optimize biomass production. Sap flux density was measured continuously over four of the six growing-season months, supplemented with periodic measurements of leaf gas exchange and water potential. Measurements of tree diameter and height were used to estimate leaf area and biomass production based on allometric relationships. Sap flux was converted to canopy conductance and analyzed with an empirical model to isolate the effects of water limitation. Actual and soil-water-unlimited potential CO(2) uptakes were estimated with a canopy conductance constrained carbon assimilation (4C-A) scheme, which couples actual or potential canopy conductance with vertical gradients of light distribution, leaf-level conductance, maximum Rubisco capacity and maximum electron transport. Net primary production (NPP) was about 43% of gross primary production (GPP); when estimated for individual trees, this ratio was independent of tree size. Based on the NPP/GPP ratio, we found that current irrigation reduced growth by about 18% compared with growth with no water limitation. To achieve maximum growth, however, would require 70% more water for transpiration, and would reduce water-use efficiency by 27%, from 1.57 to 1.15 g stem wood C kg(-1) water. Given the economic and social values of water, plantation managers appear to have optimized water use.
Benefits of pulmonary rehabilitation in patients with COPD and normal exercise capacity.
Lan, Chou-Chin; Chu, Wen-Hua; Yang, Mei-Chen; Lee, Chih-Hsin; Wu, Yao-Kuang; Wu, Chin-Pyng
2013-09-01
Pulmonary rehabilitation (PR) is beneficial for patients with COPD, with improvement in exercise capacity and health-related quality of life. Despite these overall benefits, the responses to PR vary significantly among different individuals. It is not clear if PR is beneficial for patients with COPD and normal exercise capacity. We aimed to investigate the effects of PR in patients with normal exercise capacity on health-related quality of life and exercise capacity. Twenty-six subjects with COPD and normal exercise capacity were studied. All subjects participated in 12-week, 2 sessions per week, hospital-based, out-patient PR. Baseline and post-PR status were evaluated by spirometry, the St George's Respiratory Questionnaire, cardiopulmonary exercise test, respiratory muscle strength, and dyspnea scores. The mean FEV1 in the subjects was 1.29 ± 0.47 L/min, 64.8 ± 23.0% of predicted. After PR there was significant improvement in maximal oxygen uptake and work rate. Improvements in St George's Respiratory Questionnaire scores of total, symptoms, activity, and impact were accompanied by improvements of exercise capacity, respiratory muscle strength, maximum oxygen pulse, and exertional dyspnea scores (all P < .05). There were no significant changes in pulmonary function test results (FEV1, FVC, and FEV1/FVC), minute ventilation, breathing frequency, or tidal volume at rest or exercise after PR. Exercise training can result in significant improvement in health-related quality of life, exercise capacity, respiratory muscle strength, and exertional dyspnea in subjects with COPD and normal exercise capacity. Exercise training is still indicated for patients with normal exercise capacity.
Maximum Oxygen Uptake Determination in Insulin-Dependent Diabetes Mellitus.
ERIC Educational Resources Information Center
Fremion, Amy S.; And Others
1987-01-01
A study of 10 children with insulin-dependent diabetes mellitus performing a maximum-effort cycling test indicated blood glucose levels did not change appreciably during test, while maximal oxygen uptake was substandard for their age groups. Findings suggest patients in fair to poor metabolic control can tolerate stress testing without…
Ordway, Gregory A; Jia, Weihong; Li, Jing; Zhu, Meng-Yang; Mandela, Prashant; Pan, Jun
2005-04-30
Previous research has shown that exposure of norepinephrine transporter (NET)-expressing cells to desipramine (DMI) downregulates the norepinephrine transporter, although changes in the several transporter parameters do not demonstrate the same time course. Exposures to desipramine for <1 day reduces only radioligand binding and uptake capacity while transporter-immunoreactivity is unaffected. Recent demonstration of persistent drug retention in cells following desipramine exposures raises the possibility that previous reported changes in the norepinephrine transporter may be partly accountable by residual drug. In this study, potential effects of residual desipramine on norepinephrine transporter binding and uptake were re-evaluated following exposures of PC12 cells to desipramine using different methods to remove residual drug. Using a method that minimizes residual drug, exposure of intact PC12 cells to desipramine for 4h had no effect on uptake capacity or [(3)H]nisoxetine binding to the norepinephrine transporter, while exposures for > or =16 h reduced uptake capacity. Desipramine-induced reductions in binding to the transporter required >24 h or greater periods of desipramine exposure. This study confirms that uptake capacity of the norepinephrine transporter is reduced earlier than changes in radioligand binding, but with a different time course than originally shown. Special pre-incubation procedures are required to abolish effects of residual transporter inhibitor when studying inhibitor-induced transporter regulation.
NASA Astrophysics Data System (ADS)
Niu, S.; Luo, Y.; Hui, D.; Chen, J.
2013-12-01
The interannual variability (IAV) of atmospheric CO2 concentration varies substantial and is largely ascribed to IAV of terrestrial ecosystem carbon fluxes. However, we have limited understanding on the mechanisms that control the IAV on the carbon flux of terrestrial ecosystems. Here, we hypothesized that physiological and phonological processes regulate IAV significantly in terrestrial carbon uptake (i.e., net ecosystem production, NEP). To test this hypothesis, we analyzed eddy-covariance data from 24 sites with more than 8 years data in deciduous broadleaf forests (DBF), evergreen forests (EF), and grasslands (GRA) in the northern hemisphere. Ecosystem physiology is represented by the maximum carbon uptake capacity (NEPmax) in one year whereas phonology is represented by carbon uptake period (CUP). We found that yearly anomalies of CUP and NEPmax accounted for 40% and 60% separately, and 73% in combination, of the anomalies in annual NEP across all the 253 site-years, with their relative contributions varying among the sites. The IAV of CUP was determined by the anomalies of spring and autumn carbon uptake phenology, both of which were sensitive to climate changes but controlled by different environmental factors in different biomes. IAV of NEPmax was determined by summer precipitation anomalies in DBF and GRA. The results suggest that IAV of NEP is consistently co-determined by CUP and NEPmax anomalies among sites in the northern hemisphere. Overall, the mechanisms revealed by our study on NEP anomalies through changing in phenology and physiology contribute to predictive understanding of temporal dynamics of terrestrial carbon uptake.
Vazquez, Alexei
2013-01-01
The formation of intracellular aggregates is a common etiology of several neurodegenerative diseases. Mitochondrial defects and oxidative stress has been pointed as the major mechanistic links between the accumulation of intracellular aggregates and cell death. In this work we propose a "metabolic cell death by overcrowding" as an alternative hypothesis. Using a model of neuron metabolism, we predict that as the concentration of protein aggregates increases the neurons transit through three different metabolic phases. The first phase (0-6 mM) corresponds with the normal neuron state, where the neuronal activity is sustained by the oxidative phosphorylation of lactate. The second phase (6-8.6 mM) is characterized by a mixed utilization of lactate and glucose as energy substrates and a switch from ammonia uptake to ammonia release by neurons. In the third phase (8.6-9.3 mM) neurons are predicted to support their energy demands from glycolysis and an alternative pathway for energy generation, involving reactions from serine synthesis, one carbon metabolism and the glycine cleavage system. The model also predicts a decrease in the maximum neuronal capacity for energy generation with increasing the concentration of protein aggregates. Ultimately this maximum capacity becomes zero when the protein aggregates reach a concentration of about 9.3 mM, predicting the cessation of neuronal activity.
Saleh, Muhammad; Chandra, Vimlesh; Kemp, K Christian; Kim, Kwang S
2013-06-28
A polyindole-reduced graphene oxide (PIG) hybrid was synthesized by reducing graphene oxide sheets in the presence of polyindole. We have shown PIG as a material for capturing carbon dioxide (CO2). The PIG hybrid was chemically activated at temperatures of 400-800 °C, which resulted in nitrogen (N)-doped graphene sheets. The N-doped graphene sheets are microporous with an adsorption pore size of 0.6 nm for CO2 and show a maximum (Brunauer, Emmet and Teller) surface area of 936 m(2) g(-1). The hybrid activated at 600 °C (PIG6) possesses a surface area of 534 m(2) g(-1) and a micropore volume of 0.29 cm(3) g(-1). PIG6 shows a maximum CO2 adsorption capacity of 3.0 mmol g(-1) at 25 °C and 1 atm. This high CO2 uptake is due to the highly microporous character of the material and its N content. The material retains its original adsorption capacity on recycling even after 10 cycles (within experimental error). PIG6 also shows high adsorption selectivity ratios for CO2 over N2, CH4 and H2 of 23, 4 and 85 at 25 °C, respectively.
Exercise training promotes cardioprotection through oxygen-sparing action in high fat-fed mice.
Lund, J; Hafstad, A D; Boardman, N T; Rossvoll, L; Rolim, N P; Ahmed, M S; Florholmen, G; Attramadal, H; Wisløff, U; Larsen, T S; Aasum, E
2015-04-15
Although exercise training has been demonstrated to have beneficial cardiovascular effects in diabetes, the effect of exercise training on hearts from obese/diabetic models is unclear. In the present study, mice were fed a high-fat diet, which led to obesity, reduced aerobic capacity, development of mild diastolic dysfunction, and impaired glucose tolerance. Following 8 wk on high-fat diet, mice were assigned to 5 weekly high-intensity interval training (HIT) sessions (10 × 4 min at 85-90% of maximum oxygen uptake) or remained sedentary for the next 10 constitutive weeks. HIT increased maximum oxygen uptake by 13%, reduced body weight by 16%, and improved systemic glucose homeostasis. Exercise training was found to normalize diastolic function, attenuate diet-induced changes in myocardial substrate utilization, and dampen cardiac reactive oxygen species content and fibrosis. These changes were accompanied by normalization of obesity-related impairment of mechanical efficiency due to a decrease in work-independent myocardial oxygen consumption. Finally, we found HIT to reduce infarct size by 47% in ex vivo hearts subjected to ischemia-reperfusion. This study therefore demonstrated for the first time that exercise training mediates cardioprotection following ischemia in diet-induced obese mice and that this was associated with oxygen-sparing effects. These findings highlight the importance of optimal myocardial energetics during ischemic stress. Copyright © 2015 the American Physiological Society.
Physiological profiles and sport specific fitness of Asian elite squash players.
Chin, M K; Steininger, K; So, R C; Clark, C R; Wong, A S
1995-01-01
There is a scarcity of descriptive data on the physiological characteristics of elite Asian squash players. The purpose of this study was to evaluate the physiological profile and sports specific fitness of Hong Kong elite squash players. It was conducted before the selection of the Hong Kong national squash team for the 1992 Asian Squash Championship. Ten elite squash players were selected as subjects for the study. Maximum oxygen uptake was measured using a continuous treadmill running test. A sports specific field test was performed in a squash court. The following means (s.d.) were observed: height 172.6(4.3) cm; weight 67.7(6.9) kg; body fat 7.4(3.4)%; forced vital capacity (FVC) 5.13(0.26) litres; maximum oxygen uptake (VO2max) 61.7(3.4) ml.kg-1.min-1; anaerobic threshold (AT) 80.2(3.3)% of VO2max; alactic power index 15.5(1.8) W.kg-1; lactic work index 323.5(29.4) J.kg-1, peak isokinetic dominant knee extensor and flexor strengths 3.11(0.29) Nm.kg-1 and 1.87(0.18) Nm.kg-1. The results show that the Hong Kong squash players have relatively high cardiorespiratory sports specific fitness and muscle strength which may be one of the key factors that contributed to the success of the Hong Kong team in the Asian Championship. PMID:8800847
Cardiopulmonary fitness in a sample of Malaysian population.
Singh, R; Singh, H J; Sirisinghe, R G
1989-01-01
Lung capacity and maximum oxygen uptake (VO2max) were measured directly in 167 healthy males, from all the main races in Malaysia. Their ages ranged from 13 to 59 years. They were divided into five age groups (A to E), ranging from the second to the sixth decade. Lung capacities were determined using a dry spirometer and VO2max was taken as the maximum rate of oxygen consumption during exhaustive exercise on a cycle ergometer. Mean forced vital capacity (FVC) was 3.3 +/- 0.5 l and it correlated negatively with age. Mean VO2max was 3.2 +/- 0.2 l.min-1 (56.8 +/- 3.5 ml.kg-1.min-1) in Group A (13-19 years) compared to 1.7 +/- 0.2 l.min-1 (28.9 +/- 2.9 ml.kg-1.min-1) in Group E (50-59 years). Regression analysis revealed an age-related decline in VO2max of 0.77 ml.kg-1.min-1.year-1. Multiple regression of the data gave the following equations for the prediction of an individual's VO2max: VO2max (l.min-1) = 1.99 + 0.035 (weight)-0.04 (age), VO2max (ml.kg-1.min-1) = 67.7-0.77 (age), where age is in years, weight in kg. In terms of VO2max as an index of cardiopulmonary performance. Malaysians have a relatively lower capacity when related to the Swedish norms or even to those of some Chilean workers. Malaysians were, however, within the average norms of the American Heart Association's recommendations. Age-related decline in VO2max was also somewhat higher in the Malaysians.
Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.
Shayeganfar, Farzaneh; Shahsavari, Rouzbeh
2016-12-20
Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.
Malmberg, Catarina; Ripa, Rasmus S; Johnbeck, Camilla B; Knigge, Ulrich; Langer, Seppo W; Mortensen, Jann; Oturai, Peter; Loft, Annika; Hag, Anne Mette; Kjær, Andreas
2015-12-01
The somatostatin receptor subtype 2 is expressed on macrophages, an abundant cell type in the atherosclerotic plaque. Visualization of somatostatin receptor subtype 2, for oncologic purposes, is frequently made using the DOTA-derived somatostatin analogs DOTATOC or DOTATATE for PET. We aimed to compare the uptake of the PET tracers (68)Ga-DOTATOC and (64)Cu-DOTATATE in large arteries, in the assessment of atherosclerosis by noninvasive imaging technique, combining PET and CT. Further, the correlation of uptake and cardiovascular risk factors was investigated. Sixty consecutive patients with neuroendocrine tumors underwent both (68)Ga-DOTATOC and (64)Cu-DOTATATE PET/CT scans, in random order. For each scan, the maximum and mean standardized uptake values (SUVs) were calculated in 5 arterial segments. In addition, the blood-pool-corrected target-to-background ratio was calculated. Uptake of the tracers was correlated with cardiovascular risk factors collected from medical records. We found detectable uptake of both tracers in all arterial segments studied. Uptake of (64)Cu-DOTATATE was significantly higher than (68)Ga-DOTATOC in the vascular regions both when calculated as maximum and mean uptake. There was a significant association between Framingham risk score and the overall maximum uptake of (64)Cu-DOTATATE using SUV (r = 0.4; P = 0.004) as well as target-to-background ratio (r = 0.3; P = 0.04), whereas no association was found with (68)Ga-DOTATOC. The association of risk factors and maximum SUV of (64)Cu-DOTATATE was found driven by body mass index, smoking, diabetes, and coronary calcium score (P < 0.001, P = 0.01, P = 0.005, and P = 0.03, respectively). In a series of oncologic patients, vascular uptake of (68)Ga-DOTATOC and (64)Cu-DOTATATE was found, with highest uptake of the latter. Uptake of (64)Cu-DOTATATE, but not of (68)Ga-DOTATOC, was correlated with cardiovascular risk factors, suggesting a potential role for (64)Cu-DOTATATE in the assessment of atherosclerosis. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Reactivity of alkaline lignite fly ashes towards CO{sub 2} in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin Back; Michael Kuehn; Helge Stanjek
2008-06-15
The reaction kinetics between alkaline lignite fly ashes and CO{sub 2} (pCO{sub 2} = 0.01-0.03 MPa) were studied in a laboratory CO{sub 2} flow-through reactor at 25-75{sup o}C. The reaction is characterized by three phases that can be separated according to the predominating buffering systems and the rates of CO{sub 2} uptake. Phase I (pH > 12, < 30 min) is characterized by the dissolution of lime, the onset of calcite precipitation and a maximum uptake, the rate of which seems to be limited by dissolution of CO{sub 2}. Phase II (pH < 10.5, 10-60 min) is dominated by themore » carbonation reaction. CO{sub 2} uptake in phase III (pH < 8.3) is controlled by the dissolution of periclase (MgO) leading to the formation of dissolved magnesium-bicarbonate. Phase I could be significantly extended by increasing the solid-liquid ratios and temperature, respectively. At 75{sup o}C the rate of calcite precipitation was doubled leading to the neutralization of approximately 0.23 kg CO{sub 2} per kg fly ash within 4.5 h, which corresponds to nearly 90% of the total acid neutralizing capacity. 21 refs., 5 figs., 1 tab.« less
2012-01-01
Background The expression and activity of the different Saccharomyces cerevisiae hexose uptake systems (Hxt) and the kinetics of glucose uptake are considered essential to industrial alcoholic fermentation performance. However, the dynamics of glucose uptake kinetics during the different stages of fermentation, depending on glucose and nitrogen availability, is very poorly characterized. The objective of the present work was to examine thoroughly the alterations occurring in glucose uptake kinetics during alcoholic fermentation, by the wine strain S. cerevisiae PYCC 4072, of a synthetic grape juice basal medium with either a limiting or non-limiting initial nitrogen concentration and following nitrogen supplementation of the nitrogen-depleted sluggish fermentation. Results Independently of the initial concentration of the nitrogen source, glucose transport capacity is maximal during the early stages of fermentation and presumably sustained by the low-affinity and high-capacity glucose transporter Hxt1p. During nitrogen-limited sluggish fermentation, glucose uptake capacity was reduced to approximately 20% of its initial values (Vmax = 4.9 ± 0.8 compared to 21.9 ± 1.2 μmol h-1 10-8 cells), being presumably sustained by the low-affinity glucose transporter Hxt3p (considering the calculated Km = 39.2 ± 8.6 mM). The supplementation of the sluggish fermentation broth with ammonium led to the increase of glucose transport capacity associated to the expression of different glucose uptake systems with low and high affinities for glucose (Km = 58.2 ± 9.1 and 2.7 ± 0.4 mM). A biclustering analysis carried out using microarray data, previously obtained for this yeast strain transcriptional response to equivalent fermentation conditions, indicates that the activation of the expression of genes encoding the glucose transporters Hxt2p (during the transition period to active fermentation) and Hxt3p, Hxt4p, Hxt6p and Hxt7p (during the period of active fermentation) may have a major role in the recovery of glucose uptake rate following ammonium supplementation. These results suggest a general derepression of the glucose-repressible HXT genes and are consistent with the downregulation of Mig1p and Rgt1p. Conclusions Although reduced, glucose uptake rate during nitrogen-limited fermentation is not abrogated. Following ammonium supplementation, sluggish fermentation recovery is associated to the increase of glucose uptake capacity, related to the de novo synthesis of glucose transporters with different affinity for glucose and capacity, presumably of Hxt2p, Hxt3p, Hxt4p, Hxt6p and Hxt7p. This study is a contribution to the understanding of yeast response to different stages of alcoholic fermentation at the level of glucose uptake kinetics, in particular under nitrogen limitation or replenish, which is useful knowledge to guide fermentation practices. PMID:22846176
Yang, Yongjie; Chen, Jiangmin; Huang, Qina; Tang, Shaoqing; Wang, Jianlong; Hu, Peisong; Shao, Guosheng
2018-02-01
Cadmium (Cd) accumulation in rice is strongly controlled by liming, but information on the use of liming to control Cd accumulation in rice grown in slightly acidic soils is inconsistent. Here, pot experiments were carried out to investigate the mechanisms of liming on Cd accumulation in two rice varieties focusing on two aspects: available/exchangeable Cd content in soils that were highly responsive to liming, and Cd uptake and transport capacity in the roots of rice in terms of Cd accumulation-relative gene expression. The results showed that soil availability and exchangeable iron, manganese, zinc and Cd contents decreased with increased liming, and that genes related to Cd uptake (OsNramp5 and OsIRT1) were sharply up-regulated in the roots of the two rice varieties. Thus, iron, manganese, zinc and Cd contents in rice plants increased under low liming applications but decreased in response to high liming applications. However, yield and rice quantities were only slightly affected. These results indicated that Cd accumulation in rice grown in slightly acidic soils presents a contradictory dynamic equilibrium between Cd uptake capacity by roots and soil Cd immobilisation in response to liming. The enhanced Cd uptake capacity under low liming dosages increases risks to human health. Copyright © 2017 Elsevier Ltd. All rights reserved.
Taylor, J David
2008-09-01
Previous research indicates that the Internet, electronic mail (e-mail), and printed materials can be used to deliver interventions to improve physical activity in people with type 2 diabetes. However, no studies have been conducted investigating the effect of e-mail or print delivery of an exercise program on muscular strength and aerobic capacity in people with type 2 diabetes. The purpose of this clinical trial was to investigate the impact of e-mail vs. print delivery of an exercise program on muscular strength and aerobic capacity in people with type 2 diabetes. Nineteen participants with type 2 diabetes were allocated to either a group that was delivered a prescribed exercise program using e-mail (e-mail group, n = 10) or a group that was delivered the same prescribed exercise program in print form (print group, n = 9). Chest press and leg press estimated one-repetition maximum (1-RM) scores as well as estimated peak oxygen uptake ([latin capital V with dot above]O2peak) were measured at baseline and follow-up. Intention-to-treat analysis indicated significant improvements in chest press (mean = 7.00 kg, p = 0.001, effect size = 2.22) and leg press (mean = 19.32 kg, p = 0.002, effect size = 1.98) 1-RM scores and [latin capital V with dot above]O2peak (mean = 9.38 mL of oxygen uptake per kilogram of body mass per minute, p = 0.01, effect size = 1.45) within the e-mail group. Within the print group, significant improvements in chest press (mean = 9.13 kg, p = 0.01, effect size = 1.49) and leg press (mean = 16.68 kg, p = 0.01, effect size = 1.31) 1-RM scores and [latin capital V with dot above]O2peak (mean = 5.14 ml of oxygen uptake per kilogram of body mass per minute, p = 0.03, effect size = 1.14) were found. No significant between-group differences in improvements were found. Clinicians can deliver a prescribed exercise program, either by e-mail or in print form, to significantly improve muscular strength and aerobic capacity in people with type 2 diabetes, and expect similar outcomes.
Stinziano, Joseph R; Hüner, Norman P A; Way, Danielle A
2015-12-01
Climate change, via warmer springs and autumns, may lengthen the carbon uptake period of boreal tree species, increasing the potential for carbon sequestration in boreal forests, which could help slow climate change. However, if other seasonal cues such as photoperiod dictate when photosynthetic capacity declines, warmer autumn temperatures may have little effect on when carbon uptake capacity decreases in these species. We investigated whether autumn warming would delay photosynthetic decline in Norway spruce (Picea abies (L.) H. Karst.) by growing seedlings under declining weekly photoperiods and weekly temperatures either at ambient temperature or a warming treatment 4 °C above ambient. Photosynthetic capacity was relatively constant in both treatments when weekly temperatures were >8 °C, but declined rapidly at lower temperatures, leading to a delay in the autumn decline in photosynthetic capacity in the warming treatment. The decline in photosynthetic capacity was not related to changes in leaf nitrogen or chlorophyll concentrations, but was correlated with a decrease in the apparent fraction of leaf nitrogen invested in Rubisco, implicating a shift in nitrogen allocation away from the Calvin cycle at low autumn growing temperatures. Our data suggest that as the climate warms, the period of net carbon uptake will be extended in the autumn for boreal forests dominated by Norway spruce, which could increase total carbon uptake in these forests. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Shanlin; University of Chinese Academy of Sciences, Beijing 100049; Du, Zhengkun
2014-04-01
Two novel thiophene-based conjugated networks CMPs-TTT and CMPs-DTBT were designed and prepared with different steric configuration building blocks by FeCl{sub 3} oxidative coupling polymerization. UV–vis spectra, FE-SEM and TEM images showed CMPs-TTT and CMPs-DTBT having the different aggregated morphologies. After porous analysis and gas adsorption test, the result showed CO{sub 2} uptake capacity of CMPs-DTBT with amorphous aggregation model is 2.88 times and 2.66 times greater than that of CMPs-TTT with large lamellar structure model at 273 K and 298 K (1.0 bar), respectively. As a result, this communication proved that change the topological structure of the polymer can influencemore » the CO{sub 2} adsorption capacity significantly. - Graphical abstract: Two thiophene-based conjugated networks were prepared with different steric configuration building blocks, and they show various CO{sub 2} uptake capacity and sorption isosteric enthalpies, although they have identical chemical constitution. - Highlights: • Topological-directed design and synthesis two conjugated porous polymers. • Two thiophene-based CMPs show different aggregated morphologies. • They exhibit similar porosity structure and different CO{sub 2} uptake capacity.« less
Kafirin adsorption on ion-exchange resins: isotherm and kinetic studies.
Kumar, Prashant; Lau, Pei Wen; Kale, Sandeep; Johnson, Stuart; Pareek, Vishnu; Utikar, Ranjeet; Lali, Arvind
2014-08-22
Kafirin is a natural, hydrophobic and celiac safe prolamin protein obtained from sorghum seeds. Today kafirin is found to be useful in designing delayed delivery systems and coatings of pharmaceuticals and nutraceuticals where its purity is important and this can be obtained by adsorptive chromatography. This study is the first scientific insight into the isotherm and kinetic studies of kafirin adsorption on anion- and cation-exchange resins for practical applications in preparative scale chromatography. Adsorption isotherms of kafirin were determined for five anion- and two cation-exchange resins in batch systems. Isotherm parameters such as maximum binding capacity and dissociation constant were determined from Langmuir isotherm, and adsorptive capacity and affinity constant from Freundlich isotherm. Langmuir isotherm was found to fit the adsorption equilibrium data well. Batch uptake kinetics for kafirin adsorption on these resins was also carried out and critical parameters including the diffusion coefficient, film mass transfer coefficient, and Biot number for film-pore diffusion model were calculated. Both the isotherm and the kinetic parameters were considered for selection of appropriate resin for kafirin purification. UNOsphere Q (78.26 mg/ml) and Toyopearl SP-650M (57.4 mg/ml) were found to offer better kafirin binding capacities and interaction strength with excellent uptake kinetics under moderate operating conditions. With these adsorbents, film diffusion resistance was found to be major governing factor for adsorption (Bi<10 and δ<1). Based on designer objective function, UNOsphere Q was found be best adsorbent for binding of kafirin. The data presented is valuable for designing large scale preparative adsorptive chromatographic kafirin purification systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Biosorption of Hexavalent Chromium from Aqueous Medium with Opuntia Biomass
2014-01-01
The biosorption of hexavalent chromium from aqueous solutions by Opuntia cladodes and ectodermis from cactus fruits was investigated. Both types of biomass are considered low-cost, natural, and ecofriendly biosorbents. Batch experiments were carried out to determine Cr(VI) biosorption capacity and the efficiency of the biosorption process under different pH, initial Cr(VI) concentration, and sorbent dosage. The biosorption of Cr(VI) by Opuntia biomass was highly pH dependent, favoring higher metal uptake at low pH. The higher biosorption capacity was exhibited at pH 2. The optimal conditions were obtained at a sorbent dosage of 1 g L−1 and initial metal concentration of 10 mg L−1. Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The rate constant, the initial biosorption rate, and the equilibrium biosorption capacity were determined. The experimental equilibrium data obtained were analyzed using two-parameter isotherm models (Langmuir, Freundlich, and Temkin). The Langmuir maximum monolayer biosorption capacity (q max) was 18.5 mg g−1 for cladodes and 16.4 mg g−1 for ectodermis. The results suggest that Opuntia biomass could be considered a promising low-cost biosorbent for the ecofriendly removal of Cr(VI) from aqueous systems. PMID:24982975
NASA Astrophysics Data System (ADS)
Wang, Shijie; Wang, Rutao; Zhang, Yabin; Jin, Dongdong; Zhang, Li
2018-03-01
Sodium-based energy storage receives a great deal of interest due to the virtually inexhaustible sodium reserve, while the scalable and sustainable strategies to synthesize carbon-based materials with suitable interlayer spaces and large sodium storage capacities are yet to be fully investigated. Carbon microspheres, with regular geometry, non-graphitic characteristic, and stable nature are promising candidates, yet the synthetic methods are usually complex and energy consuming. In this regard, we report a scalable purification-free strategy to synthesize carbon microspheres directly from 5 species of fresh juice. As-synthesized carbon microspheres exhibit dilated interlayer distance of 0.375 nm and facilitate Na+ uptake and release. For example, such carbon microsphere anodes have a specific capacity of 183.9 mAh g-1 at 50 mA g-1 and exhibit ultra-stability (99.0% capacity retention) after 10000 cycles. Moreover, via facile activation, highly porous carbon microsphere cathodes are fabricated and show much higher energy density at high rate than commercial activated carbon. Coupling the compelling anodes and cathodes above, novel sodium-ion capacitors show the high working potential up to 4.0 V, deliver a maximum energy density of 52.2 Wh kg-1, and exhibit an acceptable capacity retention of 85.7% after 2000 cycles.
Kitahara, Yoshihiro; Hattori, Noboru; Yokoyama, Akihito; Yamane, Kiminori; Sekikawa, Kiyokazu; Inamizu, Tsutomu; Kohno, Nobuoki
2012-06-01
To investigate the influence of cigarette smoking on exercise capacity, respiratory responses and dynamic changes in lung volume during exercise in patients with type 2 diabetes. Forty-one men with type, 2 diabetes without cardiopulmonary disease were recruited and divided into 28 non-current smokers and 13 current smokers. All subjects received lung function tests and cardiopulmonary exercise testing using tracings of the flow-volume loop. Exercise capacity was compared using the percentage of predicted oxygen uptake at maximal workload (%VO2max). Respiratory variables and inspiratory capacity (IC) were compared between the two groups at rest and at 20%, 40%, 60%, 80% and 100% of maximum workload. Although there was no significant difference in lung function tests between the two groups, venous carboxyhemoglobin (CO-Hb) levels were significantly higher in current smokers. %VO2max was inversely correlated with CO-Hb levels. Changing patterns in respiratory rate, respiratory equivalent and IC were significantly different between the two groups. Current smokers had rapid breathing, a greater respiratory equivalent and a limited increase in IC during exercise. Cigarette smoking diminishes the increase in dynamic IC in patients with type 2 diabetes. As this effect of smoking on dynamic changes in lung volume will exacerbate dynamic hyperinflation in cases complicated by chronic obstructive pulmonary disease, physicians should consider smoking habits and lung function when evaluating exercise capacity in patients with type 2 diabetes.
Zhou, Quan; Zhao, Zongbin; Wang, Zhiyu; Dong, Yanfeng; Wang, Xuzhen; Gogotsi, Yury; Qiu, Jieshan
2014-02-21
Transition metal oxide coupling with carbon is an effective method for improving electrical conductivity of battery electrodes and avoiding the degradation of their lithium storage capability due to large volume expansion/contraction and severe particle aggregation during the lithium insertion and desertion process. In our present work, we develop an effective approach to fabricate the nanocomposites of porous rod-shaped Fe3O4 anchored on reduced graphene oxide (Fe3O4/rGO) by controlling the in situ nucleation and growth of β-FeOOH onto the graphene oxide (β-FeOOH/GO) and followed by dielectric barrier discharge (DBD) hydrogen plasma treatment. Such well-designed hierarchical nanostructures are beneficial for maximum utilization of electrochemically active matter in lithium ion batteries and display superior Li uptake with high reversible capacity, good rate capability, and excellent stability, maintaining 890 mA h g(-1) capacity over 100 cycles at a current density of 500 mA g(-1).
Physiological effects of hydrogen sulfide inhalation during exercise in healthy men.
Bhambhani, Y; Singh, M
1991-11-01
Occupational exposure to hydrogen sulfide (H2S) is prevalent in a variety of industries. H2S when inhaled 1) is oxidized into a sulfate or a thiosulfate by oxygen bound to hemoglobin and 2) suppresses aerobic metabolism by inhibiting cytochrome oxidase (c and aa3) activity in the electron transport chain. The purpose of this study was to examine the acute effects of oral inhalation of H2S on the physiological responses during graded cycle exercise performed to exhaustion in healthy male subjects. Sixteen volunteers were randomly exposed to 0 (control), 0.5, 2.0, and 5.0 ppm H2S on four separate occasions. Compared with the control values, the results indicated that the heart rate and expired ventilation were unaffected as a result of the H2S exposures during submaximal and maximal exercise. The oxygen uptake had a tendency to increase, whereas carbon dioxide output had a tendency to decrease as a result of the H2S exposures, but only the 5.0 ppm exposure resulted in a significantly higher maximum oxygen uptake. Blood lactate concentrations increased significantly during submaximal and maximal exercise as a result of the 5.0 ppm exposure. Despite these large increases in lactate concentration, the maximal power output of the subjects was not significantly altered as a result of the 5.0 ppm H2S exposure. It was concluded that healthy young male subjects could safely exercise at their maximum metabolic rates while breathing 5.0 ppm H2S without experiencing a significant reduction in their maximum physical work capacity during short-term incremental exercise.
Rosalie Driehuis, Emma; van den Akker, Lizanne Eva; de Groot, Vincent; Beckerman, Heleen
2018-02-13
To investigate whether aerobic capacity explains the level of self-reported physical activity, physical functioning, and participation and autonomy in daily living in persons with multiple sclerosis-related fatigue. A cross-sectional study. Sixty-two participants with multiple sclerosis-related fatigue. Aerobic capacity was measured with a leg ergometer and was expressed as maximal oxygen uptake (VO2max, in ml/kg/min). Physical activity was measured with the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD), physical functioning with the Short Form 36 - physical functioning (SF36-pf), and participation and autonomy in daily living with the Impact on Participation and Autonomy questionnaire (IPA). Multiple regression analyses were performed, adjusted for potential confounders (gender, age, body mass index, educational level, and employment status). Mean maximal oxygen uptake (VO2max) was 23.9 ml/kg/min (standard deviation (SD) 6.3 ml/kg/min). There was no significant relationship between VO2max and physical activity (PASIPD): β = 0.320, 95% confidence interval (95% CI) = -0.109 to 0.749, R2 = 10.8%. Higher VO2max correlated with better physical functioning (SF36-pf): β = 1.527, 95% CI = 0.820-2.234, R2 = 25.9%, and was significantly related to IPA domains "autonomy indoors" (β = -0.043, 95% CI = -0.067 to -0.020, R2 = 20.6%), "autonomy outdoors" (β = -0.037, 95% CI = -0.062 to -0.012, R2 = 18.2%) and "social life and relationships" (β=-0.033, 95% CI = -0.060 to -0.007, R2 = 21.3%). Maximum aerobic capacity was severely reduced in persons with multiple sclerosis-related fatigue. This partly explains the limited physical functioning and restrictions in participation and autonomy indoors, outdoors and in social life and relationships in these persons.
de Campos, Mariana C R; Pearse, Stuart J; Oliveira, Rafael S; Lambers, Hans
2013-03-01
Previous research has suggested a trade-off between the capacity of plants to downregulate their phosphorus (P) uptake capacity and their efficiency of P resorption from senescent leaves in species from P-impoverished environments. To investigate this further, four Australian native species (Banksia attenuata, B. menziesii, Acacia truncata and A. xanthina) were grown in a greenhouse in nutrient solutions at a range of P concentrations [P]. Acacia plants received between 0 and 500 µm P; Banksia plants received between 0 and 10 µm P, to avoid major P-toxicity symptoms in these highly P-sensitive species. For both Acacia species, the net P-uptake rates measured at 10 µm P decreased steadily with increasing P supply during growth. In contrast, in B. attenuata, the net rate of P uptake from a solution with 10 µm P increased linearly with increasing P supply during growth. The P-uptake rate of B. menziesii showed no significant response to P supply in the growing medium. Leaf [P] of the four species supported this finding, with A. truncata and A. xanthina showing an increase up to a saturation value of 19 and 21 mg P g(-1) leaf dry mass, respectively (at 500 µm P), whereas B. attenuata and B. menziesii both exhibited a linear increase in leaf [P], reaching 10 and 13 mg P g(-1) leaf dry mass, respectively, without approaching a saturation point. The Banksia plants grown at 10 µm P showed mild symptoms of P toxicity, i.e. yellow spots on some leaves and drying and curling of the tips of the leaves. Leaf P-resorption efficiency was 69 % (B. attenuata), 73 % (B. menziesii), 34 % (A. truncata) and 36 % (A. xanthina). The P-resorption proficiency values were 0·08 mg P g(-1) leaf dry mass (B. attenuata and B. menziesii), 0·32 mg P g(-1) leaf dry mass (A. truncata) and 0·36 mg P g(-1) leaf dry mass (A. xanthina). Combining the present results with additional information on P-remobilization efficiency and the capacity to downregulate P-uptake capacity for two other Australian woody species, we found a strong negative correlation between these traits. It is concluded that species that are adapted to extremely P-impoverished soils, such as many south-western Australian Proteaceae species, have developed extremely high P-resorption efficiencies, but lost their capacity to downregulate their P-uptake mechanisms. The results support the hypothesis that the ability to resorb P from senescing leaves is inversely related to the capacity to downregulate net P uptake, possibly because constitutive synthesis of P transporters is a prerequisite for proficient P remobilization from senescing tissues.
NASA Astrophysics Data System (ADS)
Azeez, Luqmon; Lateef, Agbaje; Adebisi, Segun A.; Oyedeji, Abdulrasaq O.
2018-03-01
This study has investigated the adsorption of Rhodamine B (Rh-B) dye on novel biosynthesized silver nanoparticles (AgNPs) from cobweb. The effects of contact time, initial pH, initial dye concentration, adsorbent dosage and temperature were studied on the removal of Rh-B and they significantly affected its uptake. Adsorption isotherms were evaluated using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The adsorption process was best described by Langmuir isotherm with R 2 of 0.9901, indicating monolayer adsorption. The maximum adsorption capacity ( q max) of 59.85 mg/g showed that it has relatively high performance, while adsorption intensity showed a favourable adsorption process. Pseudo-second-order kinetics fitted best the rate of adsorption and intra-particle diffusion revealed both surface adsorption and intra-particle diffusion-controlled adsorption process. Negative values of thermodynamic parameters (Δ H°, Δ S° and Δ G°) indicated an exothermic and spontaneous adsorption process. The mean sorption energy ( E) and activation energy ( E a) suggested the uptake of Rh-B onto AgNPs was chemical in nature (chemosorption).
Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal.
Song, Jooyoung; Oh, Hyuntaek; Kong, Hyeyoung; Jang, Jyongsik
2011-03-15
Polyrhodanine was immobilized onto the inner surface of anodic aluminum oxide (AAO) membrane via vapor deposition polymerization method. The polyrhodanine modified membrane was applied to remove heavy metal ions from aqueous solution because polyrhodanine could be coordinated with specific metal ions. Several parameters such as initial metal concentration, contact time and metal species were evaluated systematically for uptake efficiencies of the fabricated membrane under continuous flow condition. Adsorption isotherms of Hg(II) ion on the AAO-polyrhodanine membrane were analyzed with Langmuir and Freundlich isotherm models. The adsorption rate of Hg(II) ion on the membrane was obeyed by a pseudo-second order equation, indicating the chemical adsorption. The maximum removal capacity of Hg(II) ion onto the fabricated membrane was measured to be 4.2 mmol/g polymer. The AAO-polyrhodanine membrane had also remarkable uptake performance toward Ag(I) and Pb(II) ions. Furthermore, the polyrhodanine modified membrane could be recycled after recovery process. These results demonstrated that the polyrhodanine modified AAO membrane provided potential applications for removing the hazardous heavy metal ions from wastewater. Copyright © 2011 Elsevier B.V. All rights reserved.
Yue, Yanfeng; Zhang, Chenxi; Tang, Qing; ...
2015-10-30
In order to ensure a sustainable reserve of fuel for nuclear power generation, tremendous research efforts have been devoted to developing advanced sorbent materials for extracting uranium from seawater. In this work, a porous aromatic framework (PAF) was surface-functionalized with poly(acrylonitrile) through atom-transfer radical polymerization (ATRP). Batches of this adsorbent were conditioned with potassium hydroxide (KOH) at room temperature or 80 °C prior to contact with a uranium-spiked seawater simulant, with minimal differences in uptake observed as a function of conditioning temperature. A maximum capacity of 4.81 g-U/kg-ads was obtained following 42 days contact with uranium-spiked filtered environmental seawater, whichmore » demonstrates a comparable adsorption rate. A kinetic investigation revealed extremely rapid uranyl uptake, with more than 80% saturation reached within 14 days. Furthermore, relying on the semiordered structure of the PAF adsorbent, density functional theory (DFT) calculations reveal cooperative interactions between multiple adsorbent groups yield a strong driving force for uranium binding.« less
Luo, Shuangjiang; Zhang, Qinnan; Zhang, Yizhou; Weaver, Kevin P; Phillip, William A; Guo, Ruilan
2018-05-02
Rigid H-shaped pentiptycene units, with an intrinsic hierarchical structure, were employed to fabricate a highly microporous organic polymer sorbent via Friedel-Crafts reaction/polymerization. The obtained microporous polymer exhibits good thermal stability, a high Brunauer-Emmett-Teller surface area of 1604 m 2 g -1 , outstanding CO 2 , H 2 , and CH 4 storage capacities, as well as good adsorption selectivities for the separation of CO 2 /N 2 and CO 2 /CH 4 gas pairs. The CO 2 uptake values reached as high as 5.00 mmol g -1 (1.0 bar and 273 K), which, along with high adsorption selectivity values (e.g., 47.1 for CO 2 /N 2 ), make the pentiptycene-based microporous organic polymer (PMOP) a promising sorbent material for carbon capture from flue gas and natural gas purification. Moreover, the PMOP material displayed superior absorption capacities for organic solvents and dyes. For example, the maximum adsorption capacities for methylene blue and Congo red were 394 and 932 mg g -1 , respectively, promoting the potential of the PMOP as an excellent sorbent for environmental remediation and water treatment.
Tang, Lin; Zhang, Sheng; Zeng, Guang-Ming; Zhang, Yi; Yang, Gui-De; Chen, Jun; Wang, Jing-Jing; Wang, Jia-Jia; Zhou, Yao-Yu; Deng, Yao-Cheng
2015-05-01
The ordered mesoporous carbon composite functionalized with carboxylate groups and iron oxide nanoparticles (Fe/OMC) was successfully prepared and used to adsorb 2,4-dichlorophenoxyacetic acid (2,4-D) from wastewater. The resultant adsorbent possessed high degree of order, large specific surface area and pore volume, and good magnetic properties. The increase in initial pollutant concentration and contact time would make the adsorption capacity increase, but the pH and temperature are inversely proportional to 2,4-D uptake. The equilibrium of adsorption was reached within 120 min, and the equilibrated adsorption capacity increased from 99.38 to 310.78 mg/g with the increase of initial concentration of 2,4-D from 100 to 500 mg/L. Notablely, the adsorption capacity reached 97% of the maximum within the first 5 min. The kinetics and isotherm study showed that the pseudo-second-order kinetic and Langmuir isotherm models could well fit the adsorption data. These results indicate that Fe/OMC has a good potential for the rapid adsorption of 2,4-D and prevention of its further diffusion. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghimire, B.; Riley, W. J.; Koven, C.
2013-12-01
Nitrogen is the most important nutrient limiting plant carbon assimilation and growth, and is required for production of photosynthetic enzymes, growth and maintenance respiration, and maintaining cell structure. The forecasted rise in plant available nitrogen through atmospheric nitrogen deposition and the release of locked soil nitrogen by permafrost thaw in high latitude ecosystems is likely to result in an increase in plant productivity. However a mechanistic representation of plant nitrogen dynamics is lacking in earth system models. Most earth system models ignore the dynamic nature of plant nutrient uptake and allocation, and further lack tight coupling of below- and above-ground processes. In these models, the increase in nitrogen uptake does not translate to a corresponding increase in photosynthesis parameters, such as maximum Rubisco capacity and electron transfer rate. We present an improved modeling framework implemented in the Community Land Model version 4.5 (CLM4.5) for dynamic plant nutrient uptake, and allocation to different plant parts, including leaf enzymes. This modeling framework relies on imposing a more realistic flexible carbon to nitrogen stoichiometric ratio for different plant parts. The model mechanistically responds to plant nitrogen uptake and leaf allocation though changes in photosynthesis parameters. We produce global simulations, and examine the impacts of the improved nitrogen cycling. The improved model is evaluated against multiple observations including TRY database of global plant traits, nitrogen fertilization observations and 15N tracer studies. Global simulations with this new version of CLM4.5 showed better agreement with the observations than the default CLM4.5-CN model, and captured the underlying mechanisms associated with plant nitrogen cycle.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... policy for information reported on fuel ethanol production capacity, (both nameplate and maximum... fuel ethanol production capacity, (both nameplate and maximum sustainable capacity) on Form EIA-819 as... treat all information reported on fuel ethanol production capacity, (both nameplate and maximum...
Delshab, Sedigheh; Kouhgardi, Esmaeil; Ramavandi, Bahman
2016-09-01
This data article presents a simple method for providing a biosorbent from Sargassum oligocystum harvested from the northern coast of Persian Gulf, Bushehr, Iran. The characterization data of Sargassum oligocystum biochar (SOB) were analyzed using various instrumental techniques (FTIR and XPS). The kinetics, isotherms, and thermodynamics data of Hg(2+), Cd(2+), and Cu(2+) ions onto SOB were presented. The maximum biosorption capacity of SOB to uptake Hg(2+), Cd(2+), and Cu(2+) ions from aqueous solution was obtained 60.25, 153.85, and 45.25 mg/g, respectively. The experimental data showed that biochar prepared from Sargassum oligocystum is an efficient and promising biosorbent for the treatment of heavy metals-bearing wastewaters.
Oxyntomodulin stimulates intestinal glucose uptake in rats.
Collie, N L; Zhu, Z; Jordan, S; Reeve, J R
1997-06-01
Enteroglucagon peptides have long been proposed as mediators of intestinal adaptation, including mucosal growth and nutrient absorptive capacity. The hypothesis that infusions of oxyntomodulin, a bioactive form of enteroglucagon, would stimulate glucose and amino acid uptake was tested and its effects were compared with those of glucagon. Rats were infused intravenously via minipumps with either saline, rat oxyntomodulin (0.47 nmol x kg(-1) x h[-1]), or glucagon (0.88 nmol x kg(-1) x h[-1]) for 7 days, and plasma hormone levels were measured. At death, intestinal dimensions and brush border uptake of D-glucose and L-proline were measured using an in vitro everted sleeve technique. Plasma enteroglucagon and glucagon levels were increased 4- and 12-fold, respectively, but there were no effects on food intake, body weight, or intestinal dimensions. In contrast, oxyntomodulin and glucagon significantly stimulated total intestinal glucose uptake capacity by 44% and 53%, respectively, over controls. Oxyntomodulin most potently enhanced glucose uptake in the ileum (215%), whereas glucagon's greatest effect was in the jejunum (63%-85%). However, neither peptide affected proline uptake. These results support a new, specific action for oxyntomodulin in intestinal adaptation as a glucose uptake stimulator and confirm glucagon's role as a regulator of glucose uptake.
Malik, Reena; Dahiya, Shefali; Lata, Suman
2017-05-01
The present study explores the uptake capacity of low cost agricultural waste i.e.Unmodified Coconut (Cocos nucifera L.) Husk for the removal of heavy metal (Pb 2+ , Cu 2+ , Ni 2+ and Zn 2+ ) ions from industrial wastewater. The effect of various operational parameters such as adsorbent dose, high initial metal concentration (100mg/L-500mg/L), pH, temperature and agitation time on the removal of these ions has been investigated using batch experiments. The results showed that maximum uptake through adsorption occurred at 443.0mg/g (88.6%) for Cu, for Ni with 404.5mg/g (80.9%), 362.2mg/g (72.4%) for Pb 2+ and 338.0mg/g (67.6%) for Zn 2+ ion simultaneously. The adsorption capacity was found to be sensitive to the amount of adsorbent, heavy metal ion concentration, pH, temperature and contact time. The experimental statistics have been correlated and interpreted by a new proposed mechanism based upon quantum chemical study of the adsorbent. The theoretical study using quantum has provided the rich electron donation sites of Coconut Husk and hence proposed mechanism of removal. The various adsorption isotherms (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich and Flory-Huggins), SEM study and physico-chemical properties of the ions suit well to the observed data. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Awalina; Harimawan, A.; Haryani, G. S.; Setiadi, T.
2017-05-01
The Biosorption of cadmium (II) ions on dried biomass of Aphanothece sp.which previously grown in a photobioreactor system with atmospheric carbon dioxide fed input, was studied in a batch system with respect to initial pH, biomass concentration, contact time, and temperature. The biomass exhibited the highest cadmium (II) uptake capacity at 30ºC, initial pH of 8.0±0.2 in 60 minute and initial cadmium (II) ion concentration of 7.76 mg/L. Maximum biosorption capacities were 16.47 mg/g, 54.95 mg/g and 119.05 mg/g at range of initial cadmium (II) 0.96-3.63 mg/L, 1.99-8.10 mg/L and 6.48-54.38 mg/L, respectively. Uptake kinetics follows the pseudo-second order model while equilibrium is best described by Langmuir isotherm model. Isotherms have been used to determine thermodynamic parameter process (free energy change, enthalpy change and entropy change). FTIR analysis of microalgae biomass revealed the presence of amino acids, carboxyl, hydroxyl, sulfhydryl and carbonyl groups, which are responsible for biosorption of metal ions. During repeated sorption/desorption cycles, the ratio of Cd (II) desorption to biosorption decreased from 81% (at first cycle) to only 27% (at the third cycle). Nevertheless, due to its higher biosorption capability than other adsorbent, Aphanothece sp appears to be a good biosorbent for removing metal Cd (II) ions from aqueous phase.
2015-01-01
The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum-based metal–organic frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized: namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm3 (STP)/cm3 (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure–property relationship, we performed a molecular simulation study and evaluated the methane storage performance of the Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes under a wide range of pressure and temperature conditions. PMID:26364990
Alezi, Dalal; Belmabkhout, Youssef; Suyetin, Mikhail; Bhatt, Prashant M; Weseliński, Łukasz J; Solovyeva, Vera; Adil, Karim; Spanopoulos, Ioannis; Trikalitis, Pantelis N; Emwas, Abdul-Hamid; Eddaoudi, Mohamed
2015-10-21
The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum-based metal-organic frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized: namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm(3) (STP)/cm(3) (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure-property relationship, we performed a molecular simulation study and evaluated the methane storage performance of the Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes under a wide range of pressure and temperature conditions.
Ge, Huacai; Wang, Jincui
2017-02-01
Poly (acrylic acid) modified activated carbon nanocomposite (PAA-AC) was synthesized. The structure and morphology of this nanocomposite were characterized by FTIR, SEM, TEM, XRD and Zeta potential. The adsorption of some heavy metal ions on PAA-AC was studied. The characterization results indicated that PAA-AC was a novel and ear-like nanosheet material with the thickness of about 40 nm and the diameter of about 300 nm. The adsorption results exhibited that the introduction of carboxyl groups into activated carbon evidently increased the uptake for heavy metal ions and the nanocomposite had maximum uptake for Cd(II). Various variables affecting adsorption of PAA-AC for Cd(II) were systematically explored. The maximum capacity and equilibrium time for adsorption of Cd(II) by PAA-AC were 473.2 mg g -1 and 15 min. Moreover, the removal of Cd(II) for real electroplating wastewater by PAA-AC could reach 98.5%. These meant that the removal of Cd(II) by PAA-AC was highly efficient and fast. The sorption kinetics and isotherm fitted well with the pseudo-second-order model and Langmuir model, respectively. The adsorption mainly was a chemical process by chelation. Thermodynamic studies revealed that the adsorption was a spontaneous and endothermic process. The results revealed that PAA-AC could be considered as a potential candidate for Cd(II) removal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modification of meta-iodobenzylguanidine uptake in neuroblastoma cells by elevated temperature.
Armour, A.; Mairs, R. J.; Gaze, M. N.; Wheldon, T. E.
1994-01-01
Successful imaging or treatment of neuroblastoma with 131I-meta-iodobenzylguanidine (131I-mIBG) depends on the selectivity of active (type 1) uptake of mIBG in neuroblastoma cells relative to passive (type 2) uptake present in most normal tissues. This study investigates the effects of moderately elevated temperature (39-41 degrees C) on the cellular uptake of 131I-mIBG in two neuroblastoma cell lines [SK-N-BE(2c) and IMR-32] and in a non-neuronal (ovarian carcinoma) cell line (A2780). In SK-N-BE(2c), a cell line with high active uptake capacity, the specific (type 1) uptake was reduced by 75% (P < 0.001) at 39 degrees C. Both IMR-32 and A2780 have a low capacity for accumulation of mIBG by active uptake. These cell lines demonstrated a statistically significant increase in accumulation at 39 degrees C, mainly as a result of increased non-specific transport. At 41 degrees C uptake of 131I-mIBG was reduced in all cell lines. Thus, the active component of mIBG uptake is more vulnerable to increased temperature than the passive component. It seems probable that moderately increased temperature will have an unfavourable effect on the therapeutic differential for targeted radiotherapy of neuroblastoma using radiolabelled mIBG. PMID:8080728
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xi-Sen; Ma, Shengqian; Yuan, Daqiang
2009-01-01
A new porous metal-organic framework, PCN-20 with a twisted boracite net topology, was constructed based on a highly conjugated planar tricarboxylate ligand; PCN-20 possesses a large Langmuir surface area of over 4200 m(2)/g as well as demonstrates a high hydrogen uptake capacity of 6.2 wt % at 77 K and 50 bar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Q.; Kaewsarn, P.
1999-06-01
Much work on the biosorption of heavy metals by low-cost, natural biomass has been on the uptake of single metals. In practice, wastewaters often contain multiple heavy metal ions. In this paper the binary adsorption of copper(II) and cadmium(II) by a pretreated biomass of the marine alga Durvillaea potatorum from aqueous solutions was studied. The results showed that the uptake capacities for each heavy metal of the binary system were lower when compared with the single metal biosorption for copper and cadmium, respectively, but the total capacities for the binary system were similar to those obtained for single metal biosorption.more » The uptake capacities for copper and cadmium increased as the equilibrium pH increased and reached a plateau at a pH around 5.0. The uptake process was relatively fast, with 90% of the adsorption completed within 10 minutes for copper and 30 minutes for cadmium, and equilibrium reached after about 60 minutes of stirring. The biosorption isotherms of binary systems were not significantly affected by equilibrium temperature. The presence of light metal ions in solution also did not affect adsorption significantly. The binary adsorption was successfully predicted by the extended Langmuir model, using parameters and capacities obtained from single component systems.« less
Takada, Kazuki; Morodomi, Yosuke; Okamoto, Tatsuro; Suzuki, Yuzo; Fujishita, Takatoshi; Kitahara, Hirokazu; Shimamatsu, Shinichiro; Kohno, Mikihiro; Kawano, Daigo; Hidaka, Noriko; Nakanishi, Yoichi; Maehara, Yoshihiko
2014-05-01
A 32-year-old man presented with a mediastinal non-seminomatous germ cell tumor showing fluorodeoxyglucose (FDG) accumulation (maximum standardized uptake value = 22.21) and extremely elevated blood alpha-fetoprotein (AFP) level (9203.0 ng/ml). The patient underwent 4 cycles of neoadjuvant chemotherapy (cisplatin, bleomycin, and etoposide), which normalized the AFP level and reduced the tumor size, allowing complete resection without a support of extracorporeal circulation. Despite preoperative positron emission tomography revealing increased FDG uptake in the residual tumor (maximum standardized uptake value = 3.59), the pathologic evaluation revealed that no viable germ cell tumor cells remained. We believe FDG uptake should not be used as a criterion for surgical resection after neoadjuvant chemotherapy. It is appropriate to resect the residual tumor regardless of FDG uptake after induction chemotherapy if a tumor is resectable and the AFP level normalizes.
Running energetics in the pronghorn antelope.
Lindstedt, S L; Hokanson, J F; Wells, D J; Swain, S D; Hoppeler, H; Navarro, V
1991-10-24
The pronghorn antelope (Antilocapra americana) has an alleged top speed of 100 km h-1, second only to the cheetah (Acionyx jubatus) among land vertebrates, a possible response to predation in the exposed habitat of the North American prairie. Unlike cheetahs, however, pronghorn antelope are distance runners rather than sprinters, and can run 11 km in 10 min, an average speed of 65 km h-1. We measured maximum oxygen uptake in pronghorn antelope to distinguish between two potential explanations for this ability: either they have evolved a uniquely high muscular efficiency (low cost of transport) or they can supply oxygen to the muscles at unusually high levels. Because the cost of transport (energy per unit distance covered per unit body mass) varies as a predictable function of body mass among terrestrial vertebrates, we can calculate the predicted cost to maintain speeds of 65 and 100 km h-1 in an average 32-kg animal. The resulting range of predicted values, 3.2-5.1 ml O2 kg-1 s-1, far surpasses the predicted maximum aerobic capacity of a 32-kg mammal (1.5 ml O2 kg-1 s-1). We conclude that their performance is achieved by an extraordinary capacity to consume and process enough oxygen to support a predicted running speed greater than 20 ms-1 (70 km h-1), attained without unique respiratory-system structures.
de Campos, Mariana C. R.; Pearse, Stuart J.; Oliveira, Rafael S.; Lambers, Hans
2013-01-01
Background and Aims Previous research has suggested a trade-off between the capacity of plants to downregulate their phosphorus (P) uptake capacity and their efficiency of P resorption from senescent leaves in species from P-impoverished environments. Methods To investigate this further, four Australian native species (Banksia attenuata, B. menziesii, Acacia truncata and A. xanthina) were grown in a greenhouse in nutrient solutions at a range of P concentrations [P]. Acacia plants received between 0 and 500 µm P; Banksia plants received between 0 and 10 µm P, to avoid major P-toxicity symptoms in these highly P-sensitive species. Key Results For both Acacia species, the net P-uptake rates measured at 10 µm P decreased steadily with increasing P supply during growth. In contrast, in B. attenuata, the net rate of P uptake from a solution with 10 µm P increased linearly with increasing P supply during growth. The P-uptake rate of B. menziesii showed no significant response to P supply in the growing medium. Leaf [P] of the four species supported this finding, with A. truncata and A. xanthina showing an increase up to a saturation value of 19 and 21 mg P g−1 leaf dry mass, respectively (at 500 µm P), whereas B. attenuata and B. menziesii both exhibited a linear increase in leaf [P], reaching 10 and 13 mg P g−1 leaf dry mass, respectively, without approaching a saturation point. The Banksia plants grown at 10 µm P showed mild symptoms of P toxicity, i.e. yellow spots on some leaves and drying and curling of the tips of the leaves. Leaf P-resorption efficiency was 69 % (B. attenuata), 73 % (B. menziesii), 34 % (A. truncata) and 36 % (A. xanthina). The P-resorption proficiency values were 0·08 mg P g−1 leaf dry mass (B. attenuata and B. menziesii), 0·32 mg P g−1 leaf dry mass (A. truncata) and 0·36 mg P g−1 leaf dry mass (A. xanthina). Combining the present results with additional information on P-remobilization efficiency and the capacity to downregulate P-uptake capacity for two other Australian woody species, we found a strong negative correlation between these traits. Conclusions It is concluded that species that are adapted to extremely P-impoverished soils, such as many south-western Australian Proteaceae species, have developed extremely high P-resorption efficiencies, but lost their capacity to downregulate their P-uptake mechanisms. The results support the hypothesis that the ability to resorb P from senescing leaves is inversely related to the capacity to downregulate net P uptake, possibly because constitutive synthesis of P transporters is a prerequisite for proficient P remobilization from senescing tissues. PMID:23293017
Thin-film versus slurry-phase carbonation of steel slag: CO₂ uptake and effects on mineralogy.
Baciocchi, R; Costa, G; Di Gianfilippo, M; Polettini, A; Pomi, R; Stramazzo, A
2015-01-01
The results of direct aqueous accelerated carbonation of three types of steel manufacturing residues, including an electric arc furnace (EAF) slag and two basic oxygen furnace (BOF) slags, are reported. Batch accelerated carbonation tests were conducted at different temperatures and CO2 pressures applying the thin-film route (liquid to solid, L/S, ratio=0.3L/kg) or the slurry-phase route (L/S ratio=5L/kg). The CO2 uptake strongly depended on both the slag characteristics and the process route; maximum yields of 280 (EAF), 325 (BOF1) and 403 (BOF2) gCO2/kg slag were achieved in slurry phase at T=100°C and pCO2=10 bar. Differently from previous studies, additional carbonates (other than Ca-based phases) were retrieved in the carbonated BOF slags, indicating that also Mg-, Fe- and Mn-containing phases partially reacted with CO2 under the tested conditions. The results hence show that the effects of accelerated carbonation in terms of CO2 uptake capacity, yield of mineral conversion into carbonates and mineralogy of the treated product, strongly rely on several factors. These include, above all, the mineralogy of the original material and the operating conditions adopted, which thus need specific case-by-case optimization to maximize the CO2 sequestration yield. Copyright © 2014 Elsevier B.V. All rights reserved.
Xu, Haomiao; Yuan, Yong; Liao, Yong; Xie, Jiangkun; Qu, Zan; Shangguan, Wenfeng; Yan, Naiqiang
2017-09-05
[MoS 4 ] 2- clusters were bridged between CoFe layered double hydroxide (LDH) layers using the ion-exchange method. [MoS 4 ] 2- /CoFe-LDH showed excellent Hg 0 removal performance under low and high concentrations of SO 2 , highlighting the potential for such material in S-Hg mixed flue gas purification. The maximum mercury capacity was as high as 16.39 mg/g. The structure and physical-chemical properties of [MoS 4 ] 2- /CoFe-LDH composites were characterized with FT-IR, XRD, TEM&SEM, XPS, and H 2 -TPR. [MoS 4 ] 2- clusters intercalated into the CoFe-LDH layered sheets; then, we enlarged the layer-to-layer spacing (from 0.622 to 0.880 nm) and enlarged the surface area (from 41.4 m 2 /g to 112.1 m 2 /g) of the composite. During the adsorption process, the interlayer [MoS 4 ] 2- cluster was the primary active site for mercury uptake. The adsorbed mercury existed as HgS on the material surface. The absence of active oxygen results in a composite with high sulfur resistance. Due to its high efficiency and SO 2 resistance, [MoS 4 ] 2- /CoFe-LDH is a promising adsorbent for mercury uptake from S-Hg mixed flue gas.
Stegemann, J
1992-07-01
Oxygen uptake kinetics, following defined variations of work load changes allow to estimate the contribution of aerob and anaerob energy supply which is the base for determining work capacity. Under the aspect of long duration missions with application of adequate dosed countermeasures, a reliable estimate of the astronaut's work capacity is important to adjust the necessary inflight training. Since the kinetics of oxygen uptake originate in the working muscle group itself, while measurements are performed at the mouth, various influences within the oxygen transport system might disturb the determinations. There are not only detraining effects but also well-known other influences, such as blood- and fluid shifts induced by weightlessness. They might have an impact on the circulatory system. Some of these factors have been simulated by immersion, blood donation, and changing of the body position.
NASA Astrophysics Data System (ADS)
Stegemann, J.
Oxygen uptake kinetics, following defined variations of work load changes allow to estimate the contribution of aerob and anaerob energy supply which is the base for determining work capacity. Under the aspect of long duration missions with application of adequate dosed countermeasures, a reliable estimate of the astronaut's work capacity is important to adjust the necessary inflight training. Since the kinetics of oxygen uptake originate in the working muscle group itself, while measurements are performed at the mouth, various influences within the oxygen transport system might disturb the determinations. There are not only detraining effects but also well-known other influences, such as blood- and fluid shifts induced by weightlessness. They might have an impact on the circulatory system. Some of these factors have been simulated by immersion, blood donation, and changing of the body position.
Uptake of organic nitrogen by plants
Torgny Nasholm; Knut Kielland; Ulrika Ganeteg
2009-01-01
Languishing for many years in the shadow of plant inorganic nitrogen (N) nutrition research, studies of organic N uptake have attracted increased attention during the last decade. The capacity of plants to acquire organic N, demonstrated in laboratory and field settings, has thereby been well established. Even so, the ecological significance of organic N uptake for...
Effects of body position on exercise capacity and pulmonary vascular pressure-flow relationships.
Forton, Kevin; Motoji, Yoshiki; Deboeck, Gael; Faoro, Vitalie; Naeije, Robert
2016-11-01
There has been revival of interest in exercise testing of the pulmonary circulation for the diagnosis of pulmonary vascular disease, but there still is uncertainty about body position and the most relevant measurements. Doppler echocardiography pulmonary hemodynamic measurements were performed at progressively increased workloads in 26 healthy adult volunteers in supine, semirecumbent, and upright positions that were randomly assigned at 24-h intervals. Mean pulmonary artery pressure (mPAP) was estimated from the maximum tricuspid regurgitation jet velocity. Cardiac output was calculated from the left ventricular outflow velocity-time integral. Pulmonary vascular distensibility α-index, the percent change of vessel diameter per millimeter mercury of mPAP, was calculated from multipoint mPAP-cardiac output plots. Body position did not affect maximum oxygen uptake (Vo 2max ), maximum respiratory exchange ratio, ventilatory equivalent for carbon dioxide, or slope of mPAP-cardiac output relationships, which was on average of 1.5 ± 0.4 mmHg·l -1 ·min -1 Maximum mPAP, cardiac output, and total pulmonary vascular resistance were, respectively, 34 ± 4 mmHg, 18 ± 3 l/min, and 1.9 ± 0.3 Wood units. However, the semirecumbent position was associated with a 10% decrease in maximum workload. Furthermore, cardiac output-workload or cardiac output-Vo 2 relationships were nonlinear and variable. These results suggest that body position does not affect maximum exercise testing of the pulmonary circulation when results are expressed as mPAP-cardiac output or maximum total pulmonary vascular resistance. Maximum workload is decreased in semirecumbent compared with upright exercise. Workload or Vo 2 cannot reliably be used as surrogates for cardiac output. Copyright © 2016 the American Physiological Society.
Farrell, A P
2007-11-29
A prolonged swimming trial is the most common approach in studying steady-state changes in oxygen uptake, cardiac output and tissue oxygen extraction as a function of swimming speed in salmonids. The data generated by these sorts of studies are used here to support the idea that a maximum oxygen uptake is reached during a critical swimming speed test. Maximum oxygen uptake has a temperature optimum. Potential explanations are advanced to explain why maximum aerobic performance falls off at high temperature. The valuable information provided by critical swimming tests can be confounded by non-steady-state swimming behaviours, which typically occur with increasing frequency as salmonids approach fatigue. Two major concerns are noted. Foremost, measurements of oxygen uptake during swimming can considerably underestimate the true cost of transport near critical swimming speed, apparently in a temperature-dependent manner. Second, based on a comparison with voluntary swimming ascents in a raceway, forced swimming trials in a swim tunnel respirometer may underestimate critical swimming speed, possibly because fish in a swim tunnel respirometer are unable to sustain a ground speed.
All puffed out: do pufferfish hold their breath while inflated?
McGee, Georgia Evelyn; Clark, Timothy Darren
2014-01-01
The inflation response of pufferfishes is one of the most iconic predator defence strategies in nature. Current dogma suggests that pufferfish inflation represents a breath-holding response, whereby gill oxygen uptake ceases for the duration of inflation and cutaneous respiration increases to compensate. Here, we show that the black-saddled pufferfish (Canthigaster valentini) has an excellent capacity for oxygen uptake while inflated, with uptake rates increasing to five-times that of resting levels. Moreover, we show that this species has negligible capacity for cutaneous respiration, concluding that the gills are the primary site of oxygen uptake while inflated. Despite this, post-deflation recovery of aerobic metabolism took an average of 5.6 h, suggesting a contribution of anaerobic metabolism during pre-inflation activity and during the act of ingesting water to achieve inflation. PMID:25472941
García-Hermoso, A; Cerrillo-Urbina, A J; Herrera-Valenzuela, T; Cristi-Montero, C; Saavedra, J M; Martínez-Vizcaíno, V
2016-06-01
The scientific interest in high-intensity interval training (HIIT) has greatly increased during recent years. The objective of this meta-analysis was to determine the effectiveness of HIIT interventions on cardio-metabolic risk factors and aerobic capacity in overweight and obese youth, in comparison with other forms of exercise. A computerized search was made using seven databases. The analysis was restricted to studies that examined the effect of HIIT interventions on cardio-metabolic and/or aerobic capacity in pediatric obesity (6-17 years old). Nine studies using HIIT interventions were selected (n = 274). Standarized mean difference (SMD) and 95% confidence intervals were calculated. The DerSimonian-Laird approach was used. HIIT interventions (4-12 week duration) produced larger decreases in systolic blood pressure (SMD = 0.39; -3.63 mmHg) and greater increases in maximum oxygen uptake (SMD = 0.59; 1.92 ml/kg/min) than other forms of exercise. Also, type of comparison exercise group and duration of study were moderators. HIIT could be considered a more effective and time-efficient intervention for improving blood pressure and aerobic capacity levels in obese youth in comparison to other types of exercise. © 2016 World Obesity. © 2016 World Obesity.
Panek, Jeanne A
2004-03-01
This paper describes 3 years of physiological measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing along an ozone concentration gradient in the Sierra Nevada, California, including variables necessary to parameterize, validate and modify photosynthesis and stomatal conductance algorithms used to estimate ozone uptake. At all sites, gas exchange was under tight stomatal control during the growing season. Stomatal conductance was strongly correlated with leaf water potential (R2=0.82), which decreased over the growing season with decreasing soil water content (R2=0.60). Ozone uptake, carbon uptake, and transpirational water loss closely followed the dynamics of stomatal conductance. Peak ozone and CO2 uptake occurred in early summer and declined progressively thereafter. As a result, periods of maximum ozone uptake did not correspond to periods of peak ozone concentration, underscoring the inappropriateness of using current metrics based on concentration (e.g., SUM0, W126 and AOT40) for assessing ozone exposure risk to plants in this climate region. Both Jmax (maximum CO2-saturated photosynthetic rate, limited by electron transport) and Vcmax (maximum rate of Rubisco-limited carboxylation) increased toward the middle of the growing season, then decreased in September. Intrinsic water-use efficiency rose with increasing drought stress, as expected. The ratio of Jmax to Vcmax was similar to literature values of 2.0. Nighttime respiration followed a Q10 of 2.0, but was significantly higher at the high-ozone site. Respiration rates decreased by the end of the summer as a result of decreased metabolic activity and carbon stores.
Jin, Yu; Teng, Chunying; Yu, Sumei; Song, Tao; Dong, Liying; Liang, Jinsong; Bai, Xin; Liu, Xuesheng; Hu, Xiaojing; Qu, Juanjuan
2018-01-01
To prevent the blockage in a continuous fix-bed system, Pleurotus Ostreatus spent substrate (POSS), a composite agricultural waste, was immobilized into granular adsorbents (IPOSS) with polymeric matrix, and used to remove Cd(II) from synthetic wastewater in batch experiment as well as in continuous fixed-bed column system. In batch experiment, higher pH, temperature and Cd(II) initial concentration were conducive to a higher biosorption capacity, and the maximum biosorption capacity reached up to 87.2 mg/g at Cd(II) initial concentration of 200 mg/L, pH 6 and 25 °C. The biosorption of Cd(II) onto IPOSS followed the Langmuir isotherm model with the maximum adsorption capacity(q max ) of 100 mg/g. The biosorption was an endothermic reaction and a spontaneous process based on positive value of ΔH 0 and negative value of ΔG 0 . In fixed-bed column system, higher bed depth, lower flow rate and influent Cd(II) concentration led to a longer breakthrough and exhaustion time, and the best performance (equilibrium uptake (q e ) of 14.4 mg, breakthrough time at 31 h and exhaustion time at 78 h) was achieved at a bed depth of 110 cm, a flow rate of 1.2 L/h and an influent concentration of 100 mg/L. Furthermore, regeneration experiment revealed a good reusability of IPOSS with 0.1 M HNO 3 as eluting agent during three cycles of adsorption and desorption. Cd(II) biosorption onto IPOSS mainly relied on a chemical process including ion exchange and complexation or coordination revealed by SEM-EDX, FTIR and XRD analysis. Copyright © 2017. Published by Elsevier Ltd.
Layered inorganic/organic mercaptopropyl pendant chain hybrid for chelating heavy cations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macedo, Thais R.; Petrucelli, Giovanni C.; Pinto, Alane A.
2011-12-15
Graphical abstract: Crystalline lamellar silicate RUB-18 was immobilized with mercaptopropyl groups at the surface and then used as support for cadmium and lead removal from aqueous solutions. Highlights: Black-Right-Pointing-Pointer Synthetic methodology requires intercalation. Black-Right-Pointing-Pointer Organofunctionalized ilerite compound as sorbent. Black-Right-Pointing-Pointer Active mercaptopropyl groups remove cations. Black-Right-Pointing-Pointer High maximum sorption capacity for cadmium. -- Abstract: Heavy metal sorbents with uptake capacities for divalent cadmium and lead cation removal from aqueous solutions have been synthesized by grafting mercaptopropyltrimethoxysilane onto the surface of two different precursors obtained from lamellar ilerite, its acidic and the cetyltrimethylammonium exchanged forms. The organofunctionalization was carried out bymore » two different procedures: reflux and solvent evaporation methodologies. Elemental analysis data based on carbon content gave 1.37 and 3.53 mmol of organic pendant groups per gram of hybrid by the reflux method, when starting from acidic ilerite and the surfactant form. X-ray diffraction corroborated the maintenance of the original crystallinity. Infrared spectroscopy and nuclear magnetic resonance for {sup 29}Si and {sup 13}C nuclei are in agreement with the success of the proposed method. The sulfur basic centers attached to the lamellar structure are used to coordinate both cations at the solid/liquid interface. The isotherms were obtained through the batchwise process and the experimental data were adjusted to the Freundlich model. The maximum sorption capacities of 5.55 and 5.12 mmol g{sup -1} for lead and 6.10 and 7.10 mmol g{sup -1} for cadmium were obtained for organofunctionalized ilerite and its surfactant form, synthesized by reflux methodology. This behavior suggested that these hybrids could be employed as promising sorbents with a polluted system.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
... maximum hydraulic capacity of 331 cubic feet per second (cfs), to two generating units with a total installed capacity of 321 kW and a maximum hydraulic capacity of 333 cfs. The two units are: One existing unit rated at 225 kW with a maximum hydraulic capacity of 233 cfs and one proposed unit to be installed...
Fernandez, Pamela A.; Leal, Pablo P.; Noisette, Fanny; McGraw, Christina M.; Revill, Andrew T.; Hurd, Catriona L.; Kübler, Janet E.
2017-01-01
The responses of macroalgae to ocean acidification could be altered by availability of macronutrients, such as ammonium (NH4+). This study determined how the opportunistic macroalga, Ulva australis responded to simultaneous changes in decreasing pH and NH4+ enrichment. This was investigated in a week-long growth experiment across a range of predicted future pHs with ambient and enriched NH4+ treatments followed by measurements of relative growth rates (RGR), NH4+ uptake rates and pools, total chlorophyll, and tissue carbon and nitrogen content. Rapid light curves (RLCs) were used to measure the maximum relative electron transport rate (rETRmax) and maximum quantum yield of photosystem II (PSII) photochemistry (Fv/Fm). Photosynthetic capacity was derived from the RLCs and included the efficiency of light harvesting (α), slope of photoinhibition (β), and the light saturation point (Ek). The results showed that NH4+ enrichment did not modify the effects of pH on RGRs, NH4+ uptake rates and pools, total chlorophyll, rETRmax, α, β, Fv/Fm, tissue C and N, and the C:N ratio. However, Ek was differentially affected by pH under different NH4+ treatments. Ek increased with decreasing pH in the ambient NH4+ treatment, but not in the enriched NH4+ treatment. NH4+ enrichment increased RGRs, NH4+ pools, total chlorophyll, rETRmax, α, β, Fv/Fm, and tissue N, and decreased NH4+ uptake rates and the C:N ratio. Decreased pH increased total chlorophyll content, rETRmax, Fv/Fm, and tissue N content, and decreased the C:N ratio. Therefore, the results indicate that U. australis growth is increased with NH4+ enrichment and not with decreasing pH. While decreasing pH influenced the carbon and nitrogen metabolisms of U. australis, it did not result in changes in growth. PMID:29176815
Liu, Bing; Yao, Shuo; Shi, Chao; Li, Guanghua; Huo, Qisheng; Liu, Yunling
2016-02-21
Two new isomorphous polyhedron-based MOFs ( and ), with dual functionalities of OMSs and LBSs, have been synthesized by using the SBB strategy. By judiciously avoiding the DABCO axial ligand, possesses more OMSs than , and exhibits a significant enhancement of CO2 uptake capacity 210 versus 162 cm(3) g(-1) for at 273 K under 1 bar.
Pulmonary vascular function and exercise capacity in black sub-Saharan Africans.
Simaga, Bamodi; Vicenzi, Marco; Faoro, Vitalie; Caravita, Sergio; Di Marco, Giovanni; Forton, Kevin; Deboeck, Gael; Lalande, Sophie; Naeije, Robert
2015-09-01
Sex and age affect the pulmonary circulation. Whether there may be racial differences in pulmonary vascular function is unknown. Thirty white European Caucasian subjects (15 women) and age and body-size matched 30 black sub-Saharan African subjects (15 women) underwent a cardiopulmonary exercise test and exercise stress echocardiography with measurements of pulmonary artery pressure (PAP) and cardiac output (CO). A pulmonary vascular distensibility coefficient α was mathematically determined from the natural curvilinearity of multipoint mean PAP (mPAP)-CO plots. Maximum oxygen uptake (V̇o2max) and workload were higher in the whites, while maximum respiratory exchange ratio and ventilatory equivalents for CO2 were the same. Pulmonary hemodynamics were not different at rest. Exercise was associated with a higher maximum total pulmonary vascular resistance, steeper mPAP-CO relationships, and lower α-coefficients in the blacks. These differences were entirely driven by higher slopes of mPAP-CO relationships (2.5 ± 0.7 vs. 1.4 ± 0.7 mmHg·l(-1)·min; P < 0.001) and lower α-coefficients (0.85 ± 0.33 vs. 1.35 ± 0.51%/mmHg; P < 0.01) in black men compared with white men. There were no differences in any of the hemodynamic variables between black and white women. In men only, the slopes of mPAP-CO relationships were inversely correlated to V̇o2max (P < 0.01). Thus the pulmonary circulation is intrinsically less distensible in black sub-Saharan African men compared with white Caucasian Europeans men, and this is associated with a lower exercise capacity. This study did not identify racial differences in pulmonary vascular function in women. Copyright © 2015 the American Physiological Society.
Calcium uptake in the skin of a freshwater teleost.
McCormick, S D; Hasegawa, S; Hirano, T
1992-01-01
The skin, particularly the opercular membrane of some teleosts, contains mitochondrion-rich "chloride" cells and has been widely used as a model to study branchial salt-extrusion mechanisms in seawater fish. Skin isolated from the operculum of the freshwater Nile tilapia (Oreochromis niloticus) can transport Ca2+ against an ionic and electrical gradient. Adaptation of Nile tilapia to a low-Ca2+ environment increased the capacity of the opercular membrane to transport Ca2+. The density of mitochondrion-rich cells increased in parallel with Ca2+ transport capacity. The results demonstrate net Ca2+ uptake by vertebrate skin and strongly implicate mitochondrion-rich cells as the site of Ca2+ uptake in fresh water. Images PMID:1565659
Watabe, Tadashi; Hatazawa, Jun
2015-01-01
(18)F-FDG-PET is used worldwide for oncology patients. However, we sometimes encounter false positive cases of (18)F-FDG PET, such as moderate uptake in the inflammatory lesion, because (18)F-FDG accumulates not only in the cancer cells but also in the inflammatory cells (macrophage, granulation tissue, etc). To overcome this limitation of (18)F-FDG, we started to use (4-borono-2- [(18)F]fluoro-L-phenylalanine) (18)F-FBPA, an artificial amino acid tracer which is focusing attention as a tumor specific PET tracer. Physiological accumulation of (18)F-FBPA is limited in the kidney and urinary tract in humans, which enable preferable evaluation of uptake in the abdominal organs compared to (11)C-methionine ((11)C-MET). The purpose of this study was to evaluate (18)F-FBPA as a tumor specific tracer by in vitro cellular uptake analysis focusing on the selectivity of L-type amino acid transporter 1 (LAT1), which is specifically expressed in tumor cells, and in vivo PET analysis in rat xenograft and inflammation models compared to (18)F-FDG and (11)C-methionine. Uptake inhibition and efflux experiments were performed in HEK293-LAT1 and LAT2 cells using cold BPA, cold (18)F-FBPA, and hot (18)F-FBPA to evaluate LAT affinity and transport capacity. Position emission tomography studies were performed in rat xenograft model of C6 glioma 2 weeks after the implantation (n=9, body weight=197±10.5g) and subcutaneous inflammation model 4 days after the injection of turpentine oil (n=9, body weight=197±14.4g). Uptake on static PET images were compared among (18)F-FBPA at 60-70min post injection, (18)F-FDG at 60-70min, and (11)C-MET at 20-30min in the tumors and the inflammatory lesions by maximum standardized uptake value (SUVmax). Cellular uptake analysis showed no significant difference in inhibitory effect and efflux of LAT1 between cold (18)F-FBPA and cold BPA, suggesting the same affinity and transport capacity via LAT1. Uptake of (18)F-FBPA via LAT1 was superior to LAT2 by the concentration dependent uptake analysis. Position emission tomography analysis using SUVmax showed significantly higher accumulation of (18)F-FDG in the tumor and the inflammatory lesions (7.19±2.11 and 4.66±0.63, respectively) compared to (18)F-FBPA (3.23±0.40 and 1.86±0.19, respectively) and (11)C-MET (3.39±0.43 and 1.63±0.11, respectively) (P<0.01 by Tukey test). No significant difference was observed between (18)F-FBPA and (11)C-MET. (18)F-FBPA showed high selectivity of LAT1 by in vitro cellular uptake analysis, suggesting the potential as a tumor-specific substrate. In vivo PET analysis showed significantly lower uptake of (18)F-FBPA and (11)C-MET in the inflammatory lesions compared to (18)F-FDG, suggesting comparable utility of (18)F-FBPA PET to (11)C-MET PET in differentiating between the tumor and the inflammation.
33 CFR 183.33 - Maximum weight capacity: Inboard and inboard-outdrive boats.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and inboard-outdrive boats. 183.33 Section 183.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.33 Maximum weight capacity: Inboard and inboard-outdrive boats. (a) The maximum weight capacity (W...
33 CFR 183.35 - Maximum weight capacity: Outboard boats.
Code of Federal Regulations, 2012 CFR
2012-07-01
... boats. 183.35 Section 183.35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.35 Maximum weight capacity: Outboard boats. (a) The maximum weight capacity marked on a boat that is designed or intended to...
33 CFR 183.33 - Maximum weight capacity: Inboard and inboard-outdrive boats.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and inboard-outdrive boats. 183.33 Section 183.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.33 Maximum weight capacity: Inboard and inboard-outdrive boats. (a) The maximum weight capacity (W...
33 CFR 183.33 - Maximum weight capacity: Inboard and inboard-outdrive boats.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and inboard-outdrive boats. 183.33 Section 183.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.33 Maximum weight capacity: Inboard and inboard-outdrive boats. (a) The maximum weight capacity (W...
33 CFR 183.35 - Maximum weight capacity: Outboard boats.
Code of Federal Regulations, 2014 CFR
2014-07-01
... boats. 183.35 Section 183.35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.35 Maximum weight capacity: Outboard boats. (a) The maximum weight capacity marked on a boat that is designed or intended to...
33 CFR 183.35 - Maximum weight capacity: Outboard boats.
Code of Federal Regulations, 2011 CFR
2011-07-01
... boats. 183.35 Section 183.35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.35 Maximum weight capacity: Outboard boats. (a) The maximum weight capacity marked on a boat that is designed or intended to...
33 CFR 183.35 - Maximum weight capacity: Outboard boats.
Code of Federal Regulations, 2010 CFR
2010-07-01
... boats. 183.35 Section 183.35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.35 Maximum weight capacity: Outboard boats. (a) The maximum weight capacity marked on a boat that is designed or intended to...
33 CFR 183.33 - Maximum weight capacity: Inboard and inboard-outdrive boats.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and inboard-outdrive boats. 183.33 Section 183.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.33 Maximum weight capacity: Inboard and inboard-outdrive boats. (a) The maximum weight capacity (W...
33 CFR 183.35 - Maximum weight capacity: Outboard boats.
Code of Federal Regulations, 2013 CFR
2013-07-01
... boats. 183.35 Section 183.35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Safe Loading § 183.35 Maximum weight capacity: Outboard boats. (a) The maximum weight capacity marked on a boat that is designed or intended to...
Development of metal oxide impregnated stilbite thick film ethanol sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahabole, M. P., E-mail: kashinath.bogle@gmail.com; Lakhane, M. A.; Choudhari, A. L.
This paper presents the study of the sensing efficiency of Titanium oxide/ Stilbite and Copper oxide /Stilbite composites towards detection of hazardous pollutants like ethanol. Stilbite based composites are prepared by physically mixing zeolite with metal oxides namely TiO{sub 2} and CuO with weight ratios of 25:75, 50:50 and 75:25. The resulting sensor materials are characterized by X-ray diffraction and Fourier Transform Infrared Spectroscopy techniques. Composite sensors are fabricated in the form of thick film by using screen printing technique. The effect of metal oxide concentration on various ethanol sensing parameters such as operating temperature, maximum uptake capacity and response/recoverymore » time are investigated. The results indicate that metal oxide impregnated stilbite composites have great potential as low temperature ethanol sensor.« less
Development of metal oxide impregnated stilbite thick film ethanol sensor
NASA Astrophysics Data System (ADS)
Mahabole, M. P.; Lakhane, M. A.; Choudhari, A. L.; Khairnar, R. S.
2016-05-01
This paper presents the study of the sensing efficiency of Titanium oxide/ Stilbite and Copper oxide /Stilbite composites towards detection of hazardous pollutants like ethanol. Stilbite based composites are prepared by physically mixing zeolite with metal oxides namely TiO2 and CuO with weight ratios of 25:75, 50:50 and 75:25. The resulting sensor materials are characterized by X-ray diffraction and Fourier Transform Infrared Spectroscopy techniques. Composite sensors are fabricated in the form of thick film by using screen printing technique. The effect of metal oxide concentration on various ethanol sensing parameters such as operating temperature, maximum uptake capacity and response/recovery time are investigated. The results indicate that metal oxide impregnated stilbite composites have great potential as low temperature ethanol sensor.
Effects of ovariectomy and intrinsic aerobic capacity on tissue-specific insulin sensitivity
Park, Young-Min; Rector, R. Scott; Thyfault, John P.; Zidon, Terese M.; Padilla, Jaume; Welly, Rebecca J.; Meers, Grace M.; Morris, Matthew E.; Britton, Steven L.; Koch, Lauren G.; Booth, Frank W.; Kanaley, Jill A.
2015-01-01
High-capacity running (HCR) rats are protected against the early (i.e., ∼11 wk postsurgery) development of ovariectomy (OVX)-induced insulin resistance (IR) compared with low-capacity running (LCR) rats. The purpose of this study was to utilize the hyperinsulinemic euglycemic clamp to determine whether 1) HCR rats remain protected from OVX-induced IR when the time following OVX is extended to 27 wk and 2) tissue-specific glucose uptake differences are responsible for the protection in HCR rats under sedentary conditions. Female HCR and LCR rats (n = 40; aged ∼22 wk) randomly received either OVX or sham (SHM) surgeries and then underwent the clamp 27 wk following surgeries. [3-3H]glucose was used to determine glucose clearance, whereas 2-[14C]deoxyglucose (2-DG) was used to assess glucose uptake in skeletal muscle, brown adipose tissue (BAT), subcutaneous white adipose tissue (WAT), and visceral WAT. OVX decreased the glucose infusion rate and glucose clearance in both lines, but HCR had better insulin sensitivity than LCR (P < 0.05). In both lines, OVX significantly reduced glucose uptake in soleus and gastrocnemius muscles; however, HCR showed ∼40% greater gastrocnemius glucose uptake compared with LCR (P < 0.05). HCR also exhibited greater glucose uptake in BAT and visceral WAT compared with LCR (P < 0.05), yet these tissues were not affected by OVX in either line. In conclusion, OVX impairs insulin sensitivity in both HCR and LCR rats, likely driven by impairments in insulin-mediated skeletal muscle glucose uptake. HCR rats have greater skeletal muscle, BAT, and WAT insulin-mediated glucose uptake, which may aid in protection against OVX-associated insulin resistance. PMID:26646101
Uddin, Jamal; Zwisler, Ann-Dorthe; Lewinter, Christian; Moniruzzaman, Mohammad; Lund, Ken; Tang, Lars H; Taylor, Rod S
2016-05-01
The aim of this study was to undertake a comprehensive assessment of the patient, intervention and trial-level factors that may predict exercise capacity following exercise-based rehabilitation in patients with coronary heart disease and heart failure. Meta-analysis and meta-regression analysis. Randomized controlled trials of exercise-based rehabilitation were identified from three published systematic reviews. Exercise capacity was pooled across trials using random effects meta-analysis, and meta-regression used to examine the association between exercise capacity and a range of patient (e.g. age), intervention (e.g. exercise frequency) and trial (e.g. risk of bias) factors. 55 trials (61 exercise-control comparisons, 7553 patients) were included. Following exercise-based rehabilitation compared to control, overall exercise capacity was on average 0.95 (95% CI: 0.76-1.41) standard deviation units higher, and in trials reporting maximum oxygen uptake (VO2max) was 3.3 ml/kg.min(-1) (95% CI: 2.6-4.0) higher. There was evidence of a high level of statistical heterogeneity across trials (I(2) statistic > 50%). In multivariable meta-regression analysis, only exercise intervention intensity was found to be significantly associated with VO2max (P = 0.04); those trials with the highest average exercise intensity had the largest mean post-rehabilitation VO2max compared to control. We found considerable heterogeneity across randomized controlled trials in the magnitude of improvement in exercise capacity following exercise-based rehabilitation compared to control among patients with coronary heart disease or heart failure. Whilst higher exercise intensities were associated with a greater level of post-rehabilitation exercise capacity, there was no strong evidence to support other intervention, patient or trial factors to be predictive. © The European Society of Cardiology 2015.
Shrestha, Sohan; Son, Guntae; Lee, Seung Hwan; Lee, Tae Gwan
2013-08-01
The Zn (II) adsorption capacity of lignite and coconut shell-based activated carbon fiber (ACF) was evaluated as a function of initial Zn (II) concentration, temperature and contact time in batch adsorption process in this study. Adsorption uptake increased with initial Zn (II) concentration and temperature. Optimal contact time for the adsorption of Zn (II) ions onto lignite and coconut shell-based ACF was found to be 50 min. Removal percentage decreased from 88.0% to 78.54% with the increment in initial Zn (II) concentration from 5 to 50 mg L(-1). Equilibrium data fit well with Langmuir-I isotherm indicating homogeneous monolayer coverage of Zn (II) ions on the adsorbent surface. Maximum monolayer adsorption capacity of Zn (II) ions on ACF was found to be 9.43 mg g(-1). Surface morphology and functionality of ACF prior to and after adsorption were characterized by electron microscopy and infrared spectroscopy. Various thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.
Abbas, Azhar; Hussain, Muhammad Ajaz; Sher, Muhammad; Irfan, Muhammad Imran; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Hussain, Syed Zajif; Hussain, Irshad
2017-09-01
Hydroxyethylcellulose succinate-Na (HEC-Suc-Na) was designed and evaluated for removal of some heavy metal ions from aqueous solution. Pristine sorbent HEC-Suc-Na was thoroughly characterized by FTIR and solid-state CP/MAS 13 C NMR spectroscopy, SEM-EDS and zero point charge analyses. Langmuir isotherm, pseudo second order kinetic and ion exchange models provided best fit to the experimental data of sorption of metal ions. Maximum sorption capacities of supersorbent HEC-Suc-Na for sorption of heavy metal ions from aqueous solution as calculated by Langmuir isotherm model were found to be 1000, 909.09, 666.6, 588 and 500mgg -1 for Pb(II), Cr(VI), Co(II), Cu(II) and Ni(II), respectively. Competitive sorption of these heavy metal ions was carried out from galvanic and nuclear waste water simulated environment. The negative values of ΔG° and ΔH° indicated spontaneity and exothermic nature of sorption. The sorbent was efficiently regenerated with no significant decrease in sorption capacity after five cycles. Copyright © 2017 Elsevier B.V. All rights reserved.
Eger, Melanie; Hussen, Jamal; Drong, Caroline; Meyer, Ulrich; von Soosten, Dirk; Frahm, Jana; Daenicke, Sven; Breves, Gerhard; Schuberth, Hans-Joachim
2015-07-15
The peripartal period of dairy cows is associated with a higher incidence of infectious diseases like mastitis or metritis, particularly in high-yielding animals. The onset of lactation induces a negative energy balance and a shift of glucose distribution toward the udder. Glucose is used as primary fuel by monocytes which give rise to macrophages, key cells in the defense against pathogens. The aim of this study was to analyze whether animals with high or low body condition score (BCS) differ in composition and glucose uptake capacities of bovine monocyte subsets. Blood samples were taken from 27 dairy cows starting 42 days before parturition until day 56 after parturition. The cows were allocated to two groups according to their BCS. A feeding regime was applied, in which the BCS high group received higher amounts of concentrate before parturition and concentrate feeding was more restricted in the BCS high group after parturition compared with the BCS low group, to promote postpartal lipolysis and enhance negative energy balance in the BCS high group. Blood cell counts of classical (cM), intermediate (intM) and nonclassical monocytes (ncM) were increased at day 7 after calving. In the BCS low group intM numbers were significantly higher compared to the BCS high group at day 7 after parturition. Within the BCS low group cows suffering from mastitis or metritis showed significantly higher numbers of cM, intM and ncM at day 7 after parturition. Classical monocytes and intM showed similar glucose uptake capacities while values for ncM were significantly lower. Compared with antepartal capacities and irrespective of BCS and postpartal mastitis or metritis, glucose uptake of all monocyte subsets decreased after parturition. In conclusion, whereas glucose uptake capacity of bovine monocyte subsets is altered by parturition, it is not linked to the energy supply of the animals or to postpartal infectious diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
Gomes, Marcelo Pedrosa; Gonçalves, Cíntia Almeida; de Brito, Júlio César Moreira; Souza, Amanda Miranda; da Silva Cruz, Fernanda Vieira; Bicalho, Elisa Monteze; Figueredo, Cleber Cunha; Garcia, Queila Souza
2017-04-15
We investigate the physiological responses and antibiotic-uptake capacity of Lemna minor exposed to ciprofloxacin. Ciprofloxacin (Cipro) induced toxic effects and hormesis in plants by significantly modifying photosynthesis and respiration pathways. A toxic effect was induced by a concentration ≥1.05mg ciprofloxacin l -1 while hormesis occurs at the lowest concentration studied (0.75mg ciprofloxacin l -1 ). By impairing normal electron flow in the respiratory electron transport chain, ciprofloxacin induces hydrogen peroxide (H 2 O 2 ) production. The ability of plants to cope with H 2 O 2 accumulation using antioxidant systems resulted in stimulation/deleterious effects to photosynthesis by Cipro. Cipro-induced oxidative stress was also associated with the ability of L. minor plants to uptake the antibiotic and, therefore, with plant-uptake capacity. Our results indicate that instead of being a photosystem II binding molecule, Cipro induces oxidative stress by targeting the mitochondrial ETC, which would explain the observed effects of the antibiotic on non-target eukaryotic organisms. The selection of plants species with a high capacity to tolerate oxidative stress may constitute a strategy to be used in Cipro-remediation programs. Copyright © 2017 Elsevier B.V. All rights reserved.
Response surface methodology for cadmium biosorption on Pseudomonas aeruginosa.
Ahmady-Asbchin, Salman
2016-01-01
In this research the effects of various physicochemical factors on Cd(2+) biosorption such as initial metal concentration, pH and contact exposure time were studied. This study has shown a Cd(2+) biosorption, equilibrium time of about 5 min for Pseudomonas aeruginosa and the adsorption equilibrium data were well described by Langmuir equation. The maximum capacity for biosorption has been extrapolated to 0.56 mmol.g(-1) for P. aeruginosa. The thermodynamic properties ΔG(0), ΔH(0), and ΔS(0) of Cd(2+) for biosorption were analyzed by the equilibrium constant value obtained from experimented data at different temperatures. The results show that biosorption of Cd(2+) by P. aeruginosa are endothermic and spontaneous with ΔH value of 36.35 J.mol(-1). By response surface methodology, the quadratic model has adequately described the experimental data based on the adjusted determination coefficient (R(2) = 0.98). The optimum conditions for maximum uptake onto the biosorbent were established at 0.5 g.l(-1) biosorbent concentration, pH 6 for the aqueous solution, and a temperature of 30 °C.
Pal, Rama; Tewari, Saumyata; Rai, Jai P N
2009-10-01
The dead Kluyveromyces marxianus biomass, a fermentation industry waste, was used to explore its sorption potential for lead, mercury, arsenic, cobalt, and cadmium as a function of pH, biosorbent dosage, contact time, agitation speed, and initial metal concentration. The equilibrium data fitted the Langmuir model better for cobalt and cadmium, but Freundlich isotherm for all metals tested. At equilibrium, the maximum uptake capacity (Qmax) was highest for lead followed by mercury, arsenic, cobalt, and cadmium. The RL values ranged between 0-1, indicating favorable sorption of all test metals by the biosorbent. The maximum Kf value of Pb showed its efficient removal from the solution. However, multi-metal analysis depicted that sorption of all metals decreased except Pb. The potentiometric titration of biosorbent revealed the presence of functional groups viz. amines, carboxylic acids, phosphates, and sulfhydryl group involved in heavy metal sorption. The extent of contribution of functional groups and lipids to biosorption was in the order: carboxylic>lipids>amines>phosphates. Blocking of sulfhydryl group did not have any significant effect on metal sorption.
Removal of zinc (II) ion from aqueous solution by adsorption onto activated palm midrib bio-sorbent
NASA Astrophysics Data System (ADS)
Mulana, F.; Mariana; Muslim, A.; Mohibah, M.; Halim, K. H. Ku
2018-03-01
In this paper, palm midrib that was activated with mixed citric acid and tartaric acid as biosorbent was used to remove Zn (II) ion from aqueous solution. The aim of this research is to activate palm midrib by using a mixed citric acid and tartaric acid and to determine adsorption capacity of activated palm midrib biosorbent on Zn (II) ion uptake from aqueous solution. The effect of several parameters such as contact time, initial Zn (II) ion concentration and activator concentration on the degree of Zn (II) ion removal was examined. Atomic Absorption Spectroscopy method was performed to determine adsorbed amount of Zn (II) ion into activated biosorbent. The result showed that the adsorption process was relatively not so fast and equilibrium was reached after contact time of 120 min. The adsorption capacity of biosorbent reached a maximum when the concentration of mixed citric acid and tartaric acid was 1.6 M. The optimum adsorption capacity was 5.72 mg/g. The result was obtained on initial Zn (II) ion concentration of 80 ppm for 120-min contact time. Langmuir isotherm was found as the best fit for the equilibrium data indicating homogeneous adsorption of metal ions onto the biosorbent surface.
Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies.
Parab, Harshala; Joshi, Shreeram; Shenoy, Niyoti; Verma, Rakesh; Lali, Arvind; Sudersanan, M
2005-07-01
Basic aspects of uranium adsorption by coir pith have been investigated by batch equilibration. The influence of different experimental parameters such as final solution pH, adsorbent dosage, sorption time, temperature and various concentrations of uranium on uptake were evaluated. Maximum uranium adsorption was observed in the pH range 4.0-6.0. The Freundlich and Langmuir adsorption models were used for the mathematical description of the adsorption equilibrium. The equilibrium data fitted well to both the equilibrium models in the studied concentration range of uranium (200-800 mg/l) and temperatures (305-336 K). The coir pith exhibited the highest uptake capacity for uranium at 317 K, at the final solution pH value of 4.3 and at the initial uranium concentration of 800 mg/l. The kinetics of the adsorption process followed a second-order adsorption. The adsorbent used proved to be suitable for removal of uranium from aqueous solutions. 0.2 N HCl was effective in uranium desorption. The results indicated that the naturally abundant coir pith of otherwise nuisance value exhibited considerable potential for application in removal of uranium from aqueous solution.
Zhang, Jiayi; Shao, Xiongjun; Townsend, Oliver V; Lynd, Lee R
2009-12-01
A kinetic model was developed to predict batch simultaneous saccharification and co-fermentation (SSCF) of paper sludge by the xylose-utilizing yeast Saccharomyces cerevisiae RWB222 and the commercial cellulase preparation Spezyme CP. The model accounts for cellulose and xylan enzymatic hydrolysis and competitive uptake of glucose and xylose. Experimental results show that glucan and xylan enzymatic hydrolysis are highly correlated, and that the low concentrations of xylose encountered during SSCF do not have a significant inhibitory effect on enzymatic hydrolysis. Ethanol is found to not only inhibit the specific growth rate, but also to accelerate cell death. Glucose and xylose uptake rates were found to be competitively inhibitory, but this did not have a large impact during SSCF because the sugar concentrations are low. The model was used to evaluate which constants had the greatest impact on ethanol titer for a fixed substrate loading, enzyme loading, and fermentation time. The cellulose adsorption capacity and cellulose hydrolysis rate constants were found to have the greatest impact among enzymatic hydrolysis related constants, and ethanol yield and maximum ethanol tolerance had the greatest impact among fermentation related constants.
Sola, Kirsten; Brekke, Nina; Brekke, Mette
2010-12-01
To investigate the feasibility and impact on BMI and physical fitness of an intervention for obese and inactive children, based on physical activity and carried out in primary health care. A prospective, longitudinal one-year follow-up study. The community of Kristiansand, Norway (80 000 inhabitants). A 40-week structured intervention based on physical training with some lifestyle advice for the obese child and one parent. Subjects. A total of 62 physically inactive children aged 6-14 years with iso-BMI ≥ 30 kg/m². Body mass index (BMI), maximum oxygen uptake, and physical fitness in tests of running, jumping, throwing, and climbing assessed at baseline and after six and 12 months as well as number of dropouts and predicting factors. A total of 49 out of 62 children completed the first six months and 37 children completed 12 months. Dropout rate was higher when parents reported being physically inactive at baseline or avoided physical participation in the intervention. The children's maximum oxygen uptake increased significantly after 12 months from 27.0 to 32.0 ml/kg/min (means), as did physical fitness (endurance, speed, agility, coordination, balance, strength) and BMI was significantly reduced. This one-year activity-based intervention for obese and inactive children performed in primary health care succeeded by increasing cardiovascular capacity and physical fitness combined with reduced BMI in those who completed. Dropout was substantial and depended on the attendance and compliance with physical activity by the parents.
Physical Activation of Oil Palm Empty Fruit Bunch via CO2 Activation Gas for CO2 Adsorption
NASA Astrophysics Data System (ADS)
Joseph, C. G.; Quek, K. S.; Daud, W. M. A. W.; Moh, P. Y.
2017-06-01
In this study, different parameters for the preparation of activated carbon were investigated for their yield and CO2 capture capabilities. The activated carbon was prepared from Oil Palm Empty Fruit Bunch (OPEFB) via a 2-step physical activation process. The OPEFB was pyrolyzed under inert conditions at 500 °C and activated via CO2. A 2-factorial design was employed and the effects of activation temperature, activation dwell time and gas flow rate on yield and CO2 capture capabilities were compared and studied. The yield obtained ranged from between 20 - 26, whereby the temperature was determined to be the most significant factor in influencing CO2 uptake. The CO2 capture capacity was determined using Temperature Programmed Desorption (TPD) technique. The CO2 uptake of EFB activated carbon achieved was between 1.85 - 2.09 mmol/g. TPD analysis has shown that the surface of AC were of basic nature. AC was found to be able to withhold the CO2 up to 663°C before maximum desorption occurs. The surface area and pore size of OPEFB obtained from BET analysis is 2.17 m2 g-1 and 0.01 cm3 g-1. After activation, both surface area and pore size increased with a maximum observed surface area and pore size of 548.07 m2 g-1 and 0.26 cm3 g-1. Surface morphology, functional groups, pore size and surface area were analyzed using SEM, FT-IR, TPD and BET.
Zhao, Dandan; Yu, Yang; Chen, J Paul
2016-09-15
Lead contamination is one of the most serious problems in drinking water facing humans. In this study, a novel zirconium phosphate modified polyvinyl alcohol (PVA)-PVDF membrane was developed for lead removal. The zirconium ions and PVA were firstly coated onto a PVDF membrane through crosslinking reactions with glutaraldehyde, which was then modified by phosphate. The adsorption kinetics study showed that most of ultimate uptake occurred in 5 h. The adsorption increased with an increase in pH; the optimal adsorption was achieved at pH 5.5. The experimental data were better described by Langmuir equation than Freundlich equation; the maximum adsorption capacity was 121.2 mg-Pb/g at pH 5.5, much higher than other reported adsorptive membranes. The membrane exhibited a higher selectivity for lead over zinc with a relative selectivity coefficient (Pb(2+)/Zn(2+)) of 9.92. The filtration study showed that the membrane with an area of 12.56 cm(2) could treat 13.9 L (equivalent to 73,000 bed volumes) of lead containing wastewater with an influent concentration of 224.5 μ g/L to meet the maximum contaminant level of 15 μ g/L. It was demonstrated that the membrane did well in the removal of lead in both simulated wastewater and lead-spiked reservoir water and had a good reusability in its applications. The XPS studies revealed that the lead uptake was mainly due to cation exchange between hydrogen ions and lead ions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Głowacka, Katarzyna; Jørgensen, Uffe; Kjeldsen, Jens B; Kørup, Kirsten; Spitz, Idan; Sacks, Erik J; Long, Stephen P
2015-05-01
A clone of the hybrid perennial C4 grass Miscanthus × giganteus (Mxg) is known for achieving exceptionally high rates of leaf CO2 uptake during chilling. This is a requisite of success in the early spring, as is the ability of the leaves to survive occasional frosts. The aim of this study was to search for genotypes with greater potential than Mxg for photosynthesis and frost survival under these conditions. A total of 864 accessions representing 164 local populations of M. sacchariflorus (Msa), M. sinensis (Msi) and M. tinctorius (Mti) collected across Japan were studied. Accessions whose leaves survived a natural late frost in the field were screened for high maximum photosystem II efficiency (Fv/Fm) following chilling weather, as an indicator of their capacity for light-limited photosynthesis. Those showing the highest Fv/Fm were transferred to a high-light-controlled environment and maintained at chilling temperatures, where they were further screened for their capacities for high-light-limited and light-saturated leaf uptake of CO2 (ΦCO2,max and Asat, respectively). For the first time, relatives of Mxg with significantly superior capacities for photosynthesis at chilling temperatures were identified. Msa accession '73/2' developed leaves in the spring that survived night-time frost, and during growth under chilling maintained a statistically significant 79 % higher ΦCO2,max, as a measure of light-limited photosynthesis, and a 70 % higher Asat, as a measure of light-saturated photosynthesis. A second Msa accession, '73/3' also showed significantly higher rates of leaf uptake of CO2. As remarkable as Mxg has proved in its chilling tolerance of C4 photosynthesis, this study shows that there is still value and potential in searching for yet more superior tolerance. Msa accession '73/2' shows rates of light-limited and light-saturated photosynthesis at chilling temperatures that are comparable with those of the most cold-tolerant C3 species. This adds further proof to the thesis that C4 photosynthesis is not inherently limited to warm climates. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ai, Shiwei; Guo, Rui; Liu, Bailin; Ren, Liang; Naeem, Sajid; Zhang, Wenya; Zhang, Yingmei
2016-10-01
Vegetables and crops can take up heavy metals when grown on polluted lands. The concentrations and dynamic uptake of heavy metals vary at different growth points for different vegetables. In order to assess the safe consumption of vegetables in weak alkaline farmlands, Chinese cabbage and radish were planted on the farmlands of Baiyin (polluted site) and Liujiaxia (relatively unpolluted site). Firstly, the growth processes of two vegetables were recorded. The growth curves of the two vegetables observed a slow growth at the beginning, an exponential growth period, and a plateau towards the end. Maximum concentrations of copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) were presented at the slow growth period and showed a downtrend except the radish shoot. The concentrations of heavy metals (Cu, Zn, and Cd) in vegetables of Baiyin were higher than those of Liujiaxia. In the meanwhile, the uptake contents continued to increase during the growth or halted at maximum at a certain stage. The maximum uptake rates were found on the maturity except for the shoot of radish which took place at the exponential growth stages of root. The sigmoid model could simulate the dynamic processes of growth and heavy metals uptake of Chinese cabbage and radish. Conclusively, heavy metals have higher bioaccumulation tendency for roots in Chinese cabbage and for shoots in radish.
Preparation of pure chitosan film using ternary solvents and its super absorbency.
Wang, Xuejun; Lou, Tao; Zhao, Wenhua; Song, Guojun
2016-11-20
Chemical modification and graft copolymerization were commonly adopted to prepare super absorbent materials. However, physical microstructure of pure chitosan film was optimized to improve the water uptake capacity in this study. Chitosan films with micro-nanostructure were prepared by a ternary solvent system. The optimal process parameters are 1% acetic acid water solution: dioxane: dimethyl sulfoxide=90: 2.5: 7.5 (v/v/v) with chitosan concentration at 1.25% (w/v). The water uptake capacity of the chitosan film prepared under the optimal process parameters was 896g/g. The prepared chitosan films also exhibited high water uptake capacity in response to external stimuli such as temperature, pH and salt. This finding may provide another way for improving the water absorbency. The pure chitosan film may find potential applications especially in the fields of hygienic products and biomedicine due to its super water absorbency and nontoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Singh, Varinder; Bedi, Gurleen Kaur; Shri, Richa
2017-01-01
Management of type 2 diabetes by delaying or preventing glucose absorption using natural products is gaining significant attention. Edible mushrooms are well documented for their nutritional and medicinal properties. This investigation was designed to evaluate the antidiabetic activity of aqueous extracts of selected culinary-medicinal mushrooms, namely, Pleurotus ostreatus, Calocybe indica, and Volvariella volvacea, using in vitro models (α-amylase inhibition assay, glucose uptake by yeast cells, and glucose adsorption capacity). The most active extract was subsequently examined in vivo using the oral starch tolerance test in mice. All prepared extracts showed dose-dependent inhibition of α-amylase and an increase in glucose transport across yeast cells. C. indica extract was the most active α-amylase inhibitor (half-maximal inhibitory concentration, 18.07 ± 0.75 mg/mL) and exhibited maximum glucose uptake by yeast cells (77.53 ± 0.97% at 35 mg/mL). All extracts demonstrated weak glucose adsorption ability. The positive in vitro tests for C. indica paved the way for in vivo studies. C. indica extract (200 and 400 mg/kg) significantly (P < 0.05) reduced postprandial blood glucose peaks in mice challenged with starch. The extract (400 mg/kg) and acarbose normalized blood glucose levels at 180 minutes, when they were statistically similar to values in normal mice. Thus, it may be concluded that the antidiabetic effect of C. indica is mediated by inhibition of starch metabolism (α-amylase inhibition), increased glucose uptake by peripheral cells (promotion of glucose uptake by yeast cells), and mild entrapment (adsorption) of glucose. Hence, C. indica can be developed as antidiabetic drug after detailed pharmacological studies.
Stubbe, Beate; Schipf, Sabine; Schäper, Christoph; Felix, Stephan B; Steveling, Antje; Nauck, Matthias; Völzke, Henry; Wallaschofski, Henri; Friedrich, Nele; Ewert, Ralf; Ittermann, Till; Gläser, Sven
2017-01-01
Background: Diabetes mellitus Type 1 (T1DM) is associated with metabolic and microvascular diseases as part of a multi-organ and multi-systemic disorder. The dense network of capillary vessels in the lungs may change during the course of the development of microangiopathy. The connective tissue as well as alveoli may be subjected to non-enzymatic glycosylation of proteins which may in turn affect pulmonary function. Previous studies investigating lung function in patients with type 1 diabetes have only been performed on small numbers of patients. Our study is based on population data of the Study of Health in Pomerania (SHIP). Objective: To investigate the influence of metabolic control on pulmonary system function and to establish a decreased pulmonary system function as a late complication of T1DM in a population based setting. Methods: The study is a case matched study with multiple controls based on participants with T1DM (SHIP-DM-1, n=73) and non-diabetics (SHIP-1, n=292) from the population based study of Pomerania. Data on lung function and exercise performance stratified by age, sex, body mass index and smoking habits in participants with T1DM and without diabetes were matched. Results: Participants with T1DM showed a significantly lower total lung capacity, residual volume and forced vital capacity. The transfer factor for carbon monoxide, the maximum power output and oxygen uptake during exercise were significantly decreased in comparison to the general population without diabetes. Conclusion: The pattern of abnormal pulmonary function as observed in the present study with a reduction in lung volume parameters and reduced oxygen uptake in participants with T1DM suggests a restrictive type of lung disease caused by an intrinsic lung tissue derangement as well as pulmonary microangiopathy. © Georg Thieme Verlag KG Stuttgart · New York.
Li, Xiuyuan; Rennenberg, Heinz; Simon, Judy
2016-01-01
In forest ecosystems, species use different strategies to increase their competitive ability for nitrogen (N) acquisition. The acquisition of N by trees is regulated by tree internal and environmental factors including mycorrhizae. In this study, we investigated the N uptake strategies of three co-occurring tree species [European beech (Fagus sylvatica L.), sycamore maple (Acer pseudoplatanus L.) and Norway maple (Acer platanoides L.)] in the understorey of a beech-dominated, N-limited forest on calcareous soil over two consecutive seasons. For this purpose, we studied 15N uptake capacity as well as the allocation to N pools in the fine roots. Our results show that European beech had a higher capacity for both inorganic and organic N acquisition throughout the whole growing season compared with sycamore maple and Norway maple. The higher capacity of N acquisition in beech indicates a better adaption of beech to the understorey conditions of beech forests compared with the seedlings of other tree competitors under N-limited conditions. Despite these differences, all three species preferred organic over inorganic N sources throughout the growing season and showed similar seasonal patterns of N acquisition with an increased N uptake capacity in summer. However, this pattern varied with N source and year indicating that other environmental factors not assessed in this study further influenced N acquisition by the seedlings of the three tree species. PMID:26786538
Toriihara, Akira; Ohtake, Makoto; Tateishi, Kensuke; Hino-Shishikura, Ayako; Yoneyama, Tomohiro; Kitazume, Yoshio; Inoue, Tomio; Kawahara, Nobutaka; Tateishi, Ukihide
2018-05-01
The potential of positron emission tomography/computed tomography using 62 Cu-diacetyl-bis (N 4 -methylthiosemicarbazone) ( 62 Cu-ATSM PET/CT), which was originally developed as a hypoxic tracer, to predict therapeutic resistance and prognosis has been reported in various cancers. Our purpose was to investigate prognostic value of 62 Cu-ATSM PET/CT in patients with glioma, compared to PET/CT using 2-deoxy-2-[ 18 F]fluoro-D-glucose ( 18 F-FDG). 56 patients with glioma of World Health Organization grade 2-4 were enrolled. All participants had undergone both 62 Cu-ATSM PET/CT and 18 F-FDG PET/CT within mean 33.5 days prior to treatment. Maximum standardized uptake value and tumor/background ratio were calculated within areas of increased radiotracer uptake. The prognostic significance for progression-free survival and overall survival were assessed by log-rank test and Cox's proportional hazards model. Disease progression and death were confirmed in 37 and 27 patients in follow-up periods, respectively. In univariate analysis, there was significant difference of both progression-free survival and overall survival in age, tumor grade, history of chemoradiotherapy, maximum standardized uptake value and tumor/background ratio calculated using 62 Cu-ATSM PET/CT. Multivariate analysis revealed that maximum standardized uptake value calculated using 62 Cu-ATSM PET/CT was an independent predictor of both progression-free survival and overall survival (p < 0.05). In a subgroup analysis including patients of grade 4 glioma, only the maximum standardized uptake values calculated using 62 Cu-ATSM PET/CT showed significant difference of progression-free survival (p < 0.05). 62 Cu-ATSM PET/CT is a more promising imaging method to predict prognosis of patients with glioma compared to 18 F-FDG PET/CT.
York, Larry M; Silberbush, Moshe; Lynch, Jonathan P
2016-06-01
Increasing maize nitrogen acquisition efficiency is a major goal for the 21st century. Nitrate uptake kinetics (NUK) are defined by I max and K m, which denote the maximum uptake rate and the affinity of transporters, respectively. Because NUK have been studied predominantly at the molecular and whole-root system levels, little is known about the functional importance of NUK variation within root systems. A novel method was created to measure NUK of root segments that demonstrated variation in NUK among root classes (seminal, lateral, crown, and brace). I max varied among root class, plant age, and nitrate deprivation combinations, but was most affected by plant age, which increased I max, and nitrate deprivation time, which decreased I max K m was greatest for crown roots. The functional-structural simulation SimRoot was used for sensitivity analysis of plant growth to root segment I max and K m, as well as to test interactions of I max with root system architectural phenes. Simulated plant growth was more sensitive to I max than K m, and reached an asymptote near the maximum I max observed in the empirical studies. Increasing the I max of lateral roots had the largest effect on shoot growth. Additive effects of I max and architectural phenes on nitrate uptake were observed. Empirically, only lateral root tips aged 20 d operated at the maximum I max, and simulations demonstrated that increasing all seminal and lateral classes to this maximum rate could increase plant growth by as much as 26%. Therefore, optimizing I max for all maize root classes merits attention as a promising breeding goal. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance
NASA Astrophysics Data System (ADS)
Kuzyakov, Yakov; Xu, Xingliang
2014-05-01
Demand of all living organisms on the same nutrients forms the basis for interspecific competition between plants and microorganisms in soils. This competition is especially strong in the rhizosphere. To evaluate competitive and mutualistic interactions between plants and microorganisms and to analyse ecological consequences of these interactions, we analysed 424 data pairs from 41 15N-labelling studies that investigated 15N redistribution between roots and microorganisms. Calculated Michaelis-Menten kinetics based on Km (Michaelis constant) and Vmax (maximum uptake capacity) values from 77 studies on the uptake of nitrate, ammonia, and amino acids by roots and microorganisms clearly showed that, shortly after nitrogen (N) mobilization from soil organic matter and litter, microorganisms take up most N. Lower Km values of microorganisms suggest that they are especially efficient at low N concentrations, but can also acquire more N at higher N concentrations (Vmax) compared with roots. Because of the unidirectional flow of nutrients from soil to roots, plants are the winners for N acquisition in the long run. Therefore, despite strong competition between roots and microorganisms for N, a temporal niche differentiation reflecting their generation times leads to mutualistic relationships in the rhizosphere. This temporal niche differentiation is highly relevant ecologically because it: protects ecosystems from N losses by leaching during periods of slow or no root uptake; continuously provides roots with available N according to plant demand; and contributes to the evolutionary development of mutualistic interactions between roots and microorganisms.
NASA Technical Reports Server (NTRS)
Armstrong, G. P.; Carlier, S. G.; Fukamachi, K.; Thomas, J. D.; Marwick, T. H.
1999-01-01
OBJECTIVES: To validate a simplified estimate of peak power (SPP) against true (invasively measured) peak instantaneous power (TPP), to assess the feasibility of measuring SPP during exercise and to correlate this with functional capacity. DESIGN: Development of a simplified method of measurement and observational study. SETTING: Tertiary referral centre for cardiothoracic disease. SUBJECTS: For validation of SPP with TPP, seven normal dogs and four dogs with dilated cardiomyopathy were studied. To assess feasibility and clinical significance in humans, 40 subjects were studied (26 patients; 14 normal controls). METHODS: In the animal validation study, TPP was derived from ascending aortic pressure and flow probe, and from Doppler measurements of flow. SPP, calculated using the different flow measures, was compared with peak instantaneous power under different loading conditions. For the assessment in humans, SPP was measured at rest and during maximum exercise. Peak aortic flow was measured with transthoracic continuous wave Doppler, and systolic and diastolic blood pressures were derived from brachial sphygmomanometry. The difference between exercise and rest simplified peak power (Delta SPP) was compared with maximum oxygen uptake (VO(2)max), measured from expired gas analysis. RESULTS: SPP estimates using peak flow measures correlated well with true peak instantaneous power (r = 0.89 to 0.97), despite marked changes in systemic pressure and flow induced by manipulation of loading conditions. In the human study, VO(2)max correlated with Delta SPP (r = 0.78) better than Delta ejection fraction (r = 0.18) and Delta rate-pressure product (r = 0.59). CONCLUSIONS: The simple product of mean arterial pressure and peak aortic flow (simplified peak power, SPP) correlates with peak instantaneous power over a range of loading conditions in dogs. In humans, it can be estimated during exercise echocardiography, and correlates with maximum oxygen uptake better than ejection fraction or rate-pressure product.
Hatt, Mathieu; Cheze-le Rest, Catherine; van Baardwijk, Angela; Lambin, Philippe; Pradier, Olivier; Visvikis, Dimitris
2011-11-01
The objectives of this study were to investigate the relationship between CT- and (18)F-FDG PET-based tumor volumes in non-small cell lung cancer (NSCLC) and the impact of tumor size and uptake heterogeneity on various approaches to delineating uptake on PET images. Twenty-five NSCLC cancer patients with (18)F-FDG PET/CT were considered. Seventeen underwent surgical resection of their tumor, and the maximum diameter was measured. Two observers manually delineated the tumors on the CT images and the tumor uptake on the corresponding PET images, using a fixed threshold at 50% of the maximum (T(50)), an adaptive threshold methodology, and the fuzzy locally adaptive Bayesian (FLAB) algorithm. Maximum diameters of the delineated volumes were compared with the histopathology reference when available. The volumes of the tumors were compared, and correlations between the anatomic volume and PET uptake heterogeneity and the differences between delineations were investigated. All maximum diameters measured on PET and CT images significantly correlated with the histopathology reference (r > 0.89, P < 0.0001). Significant differences were observed among the approaches: CT delineation resulted in large overestimation (+32% ± 37%), whereas all delineations on PET images resulted in underestimation (from -15% ± 17% for T(50) to -4% ± 8% for FLAB) except manual delineation (+8% ± 17%). Overall, CT volumes were significantly larger than PET volumes (55 ± 74 cm(3) for CT vs. from 18 ± 25 to 47 ± 76 cm(3) for PET). A significant correlation was found between anatomic tumor size and heterogeneity (larger lesions were more heterogeneous). Finally, the more heterogeneous the tumor uptake, the larger was the underestimation of PET volumes by threshold-based techniques. Volumes based on CT images were larger than those based on PET images. Tumor size and tracer uptake heterogeneity have an impact on threshold-based methods, which should not be used for the delineation of cases of large heterogeneous NSCLC, as these methods tend to largely underestimate the spatial extent of the functional tumor in such cases. For an accurate delineation of PET volumes in NSCLC, advanced image segmentation algorithms able to deal with tracer uptake heterogeneity should be preferred.
Andrade, Carolina P; Zamunér, Antonio R; Forti, Meire; França, Thalita F; Tamburús, Nayara Y; Silva, Ester
2017-10-01
Aquatic physical training (APT) has been strongly recommended to improve symptoms in fibromyalgia syndrome (FMS). However, its effects on body composition and whether lean body mass (LBM) directly influences the aerobic functional capacity of this population are still not clear. To investigate whether APT can help improve body composition and increase the aerobic functional capacity in women with FMS, and whether oxygen uptake (VO2) related to LBM can better quantify the functional capacity of this population. Randomized controlled trial. The Federal University of São Carlos, São Paulo, Brazil. Fifty-four women with FMS were randomly assigned to trained group (TG, N.=27) or control group (CG, N.=27). All women underwent cardiopulmonary exercise test (CPET) to assess oxygen consumption at ventilatory anaerobic threshold (VAT) and at peak exercise, and also to assess body composition. The TG was submitted to APT program, held twice a week for 16 weeks. The exercise intensity was adapted throughout the sessions in order to keep heart rate and ratings of perceived exertion achieved at VAT. After APT, body composition was not significantly different between groups (TG and CG). In VAT only TG showed increased VO2 related to LBM, since in peak CPET, VO2 in absolute units, VO2 related to total body mass (TBM), VO2 related to LBM and power showed significant differences. Significant difference between VO2 related to TBM and VO2 related to baseline LBM and after 16 weeks of follow-up, both in VAT as in peak CPET in both groups. Significant difference between VO2 related to TBM and VO2 related to LBM at VAT and at peak CPET in both groups at baseline and after 16 weeks of follow-up was observed. APT with standardized intensities did not cause significant changes in body composition, but was effective in promoting increased VO2 at peak CPET in women with FMS. However, VO2 related to LBM more accurately reflected changes in aerobic functional capacity at VAT level after to APT. APT with standardized intensities at VAT level is of great interest, since VAT reflects better aerobic functional capacity of patients with FMS than maximum VO2.
Roos, Marjoleine M H; Wu, Gi-Mick; Miller, Patrick J O
2016-07-01
Respiration rate has been used as an indicator of metabolic rate and associated cost of transport (COT) of free-ranging cetaceans, discounting potential respiration-by-respiration variation in O2 uptake. To investigate the influence of respiration timing on O2 uptake, we developed a dynamic model of O2 exchange and storage. Individual respiration events were revealed from kinematic data from 10 adult Norwegian herring-feeding killer whales (Orcinus orca) recorded with high-resolution tags (DTAGs). We compared fixed O2 uptake per respiration models with O2 uptake per respiration estimated through a simple 'broken-stick' O2-uptake function, in which O2 uptake was assumed to be the maximum possible O2 uptake when stores are depleted or maximum total body O2 store minus existing O2 store when stores are close to saturated. In contrast to findings assuming fixed O2 uptake per respiration, uptake from the broken-stick model yielded a high correlation (r(2)>0.9) between O2 uptake and activity level. Moreover, we found that respiration intervals increased and became less variable at higher swimming speeds, possibly to increase O2 uptake efficiency per respiration. As found in previous studies, COT decreased monotonically versus speed using the fixed O2 uptake per respiration models. However, the broken-stick uptake model yielded a curvilinear COT curve with a clear minimum at typical swimming speeds of 1.7-2.4 m s(-1) Our results showed that respiration-by-respiration variation in O2 uptake is expected to be significant. And though O2 consumption measurements of COT for free-ranging cetaceans remain impractical, accounting for the influence of respiration timing on O2 uptake will lead to more consistent predictions of field metabolic rates than using respiration rate alone. © 2016. Published by The Company of Biologists Ltd.
Functional significance of cardiac reinnervation in heart transplant recipients.
Schwaiblmair, M; von Scheidt, W; Uberfuhr, P; Ziegler, S; Schwaiger, M; Reichart, B; Vogelmeier, C
1999-09-01
There is accumulating evidence of structural sympathetic reinnervation after human cardiac transplantation. However, the functional significance of reinnervation in terms of exercise capacity has not been established as yet; we therefore investigated the influence of reinnervation on cardiopulmonary exercise testing. After orthotopic heart transplantation 35 patients (mean age, 49.1 +/- 8.4 years) underwent positron emission tomography with scintigraphically measured uptake of C11-hydroxyephedrine (HED), lung function testing, and cardiopulmonary exercise testing. Two groups were defined based on scintigraphic findings, indicating a denervated group (n = 15) with a HED uptake of 5.45%/min and a reinnervated group (n = 20) with a HED uptake of 10.59%/min. The two study groups did not show significant differences with regard to anthropometric data, number of rejection episodes, preoperative hemodynamics, and postoperative lung function data. The reinnervated group had a significant longer time interval from transplantation (1625 +/- 1069 versus 800 +/- 1316 days, p < .05). In transplant recipients with reinnervation, heart rate at maximum exercise (137 +/- 15 versus 120 +/- 20 beats/min, p = .012), peak oxygen uptake (21.0 +/- 4 versus 16.1 +/- 5 mL/min/kg, p = .006), peak oxygen pulse (12.4 +/- 2.9 versus 10.2 +/- 2.7 mL/min/beat, p = .031), and anaerobic threshold (11.2 +/- 1.8 versus 9.5 +/- 2.1 mL/min, p = .046) were significantly increased in comparison to denervated transplant recipients. Additionally, a decreased functional dead space ventilation (0.24 +/- 0.05 versus 0.30 +/- 0.05, p = .004) was observed in the reinnervated group. Our study results support the hypothesis that partial sympathetic reinnervation after cardiac transplantation is of functional significance. Sympathetic reinnervation enables an increased peak oxygen uptake. This is most probably due to partial restoration of the chronotropic and inotropic competence of the heart as well as an improved oxygen delivery to the exercising muscles and a reduced ventilation-perfusion mismatching.
Characterizing roots and water uptake in a ground cover rice production system.
Li, Sen; Zuo, Qiang; Wang, Xiaoyu; Ma, Wenwen; Jin, Xinxin; Shi, Jianchu; Ben-Gal, Alon
2017-01-01
Water-saving ground cover rice production systems (GCRPS) are gaining popularity in many parts of the world. We aimed to describe the characteristics of root growth, morphology, distribution, and water uptake for a GCRPS. A traditional paddy rice production system (TPRPS) was compared with GCRPS in greenhouse and field experiments. In the greenhouse, GCRPS where root zone average soil water content was kept near saturation (GCRPSsat), field capacity (GCRPSfwc) and 80% field capacity (GCRPS80%), were evaluated. In a two-year field experiment, GCRPSsat and GCRPS80% were applied. Similar results were found in greenhouse and field experiments. Before mid-tillering the upper soil temperature was higher for GCRPS, leading to enhanced root dry weight, length, surface area, specific root length, and smaller diameter of roots but lower water uptake rate per root length compared to TPRPS. In subsequent growth stages, the reduced soil water content under GCRPS caused that the preponderance of root growth under GCRPSsat disappeared in comparison to TPRPS. Under other GCRPS treatments (GCRPSfwc and GCRPS80%), significant limitation on root growth, bigger root diameter and higher water uptake rate per root length were found. Discrepancies in soil water and temperature between TPRPS and GCRPS caused adjustments to root growth, morphology, distribution and function. Even though drought stress was inevitable after mid-tillering under GCRPS, especially GCRPS80%, similar or even enhanced root water uptake capacity in comparison to TPRPS might promote allocation of photosynthetic products to shoots and increase water productivity.
Brix, Kevin V; Wood, Chris M; Grosell, Martin
2013-01-01
In this study, Na(+) uptake and acid-base balance in the euryhaline pupfish Cyprinodon variegatus variegatus were characterized when fish were exposed to pH 4.5 freshwater (7mM Na(+)). Similar to the related cyprinodont, Fundulus heteroclitus, Na(+) uptake was significantly inhibited when exposed to low pH water. However, it initially appeared that C. v. variegatus increased apparent net acid excretion at low pH relative to circumneutral pH. This result is opposite to previous observations for F. heteroclitus under similar conditions where fish were observed to switch from apparent net H(+) excretion at circumneutral pH to apparent net H(+) uptake at low pH. Further investigation revealed disparate observations between these studies were the result of using double endpoint titrations to measure titratable alkalinity fluxes in the current study, while the earlier study utilized single endpoint titrations to measure these fluxes (i.e.,. Cyprinodon acid-base transport is qualitatively similar to Fundulus when characterized using single endpoint titrations). This led to a comparative investigation of these two methods. We hypothesized that either the single endpoint methodology was being influenced by a change in the buffer capacity of the water (e.g., mucus being released by the fish) at low pH, or the double endpoint methodology was not properly accounting for ammonia flux by the fish. A series of follow-up experiments indicated that buffer capacity of the water did not change significantly, that excretion of protein (a surrogate for mucus) was actually reduced at low pH, and that the double endpoint methodology does not properly account for NH(3) excretion by fish under low pH conditions. As a result, it overestimates net H(+) excretion during low pH exposure. After applying the maximum possible correction for this error (i.e., assuming that all ammonia is excreted as NH(3)), the double endpoint methodology indicates that net H(+) transport was reduced to effectively zero in both species at pH 4.5. However, significant differences between the double endpoint (no net H(+) transport at low pH) and single endpoint titrations (net H(+) uptake at low pH) remain to be explained. Copyright © 2012 Elsevier Inc. All rights reserved.
Influence of aquatic training on the motor performance of patients with haemophilic arthropathy.
Vallejo, L; Pardo, A; Gomis, M; Gallach, J E; Pérez, S; Querol, F
2010-01-01
Thirteen patients with haemophilia A took part in this study voluntarily. They underwent an aquatic training programme over a 9-week period (27 sessions; three sessions per week; 1 h per session). Their motor performance was assessed by the following cardio-respiratory and mechanical variables before and after the training programme: oxygen uptake (VO(2), mL min(-1)), relative oxygen uptake (rel VO(2), mL min(-1).kg(-1)), carbon dioxide (CO(2), mL min(-1)), respiratory quotient (R), heart rate (bpm) and the distance covered in 12 min (the Cooper test, m). Nine patients successfully completed the intervention and measurement protocols without bleeding or other adverse events. After the proposed training programme, significant differences between the pre-test and post-test were observed. Patients' aerobic capacity increased considerably, and their oxygen uptake improved by 51.51% (P < 0.05), while their relative oxygen uptake went up by 37.73% (P < 0.05). Their mechanical capacity also increased considerably (14.68%, P < 0.01). Our results suggest that 27 specially designed aquatic training sessions for our patients with haemophilia A had a positive effect on their motor performance and considerably improved their aerobic and mechanical capacity without causing adverse effects.
Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik
2017-02-01
Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N ω -nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes. Copyright © 2017 the American Physiological Society.
Determinants of maximal oxygen uptake (VO2 max) in fire fighter testing.
Vandersmissen, G J M; Verhoogen, R A J R; Van Cauwenbergh, A F M; Godderis, L
2014-07-01
The aim of this study was to evaluate current daily practice of aerobic capacity testing in Belgian fire fighters. The impact of personal and test-related parameters on the outcome has been evaluated. Maximal oxygen uptake (VO2 max) results of 605 male fire fighters gathered between 1999 and 2010 were analysed. The maximal cardio respiratory exercise tests were performed at 22 different centres using different types of tests (tread mill or bicycle), different exercise protocols and measuring equipment. Mean VO2 max was 43.3 (SD = 9.8) ml/kg.min. Besides waist circumference and age, the type of test, the degree of performance of the test and the test centre were statistically significant determinants of maximal oxygen uptake. Test-related parameters have to be taken into account when interpreting and comparing maximal oxygen uptake tests of fire fighters. It highlights the need for standardization of aerobic capacity testing in the medical evaluation of fire fighters. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf
2015-12-07
Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High-NLS-L-NPs). Results indicate that a higher NLS density does not result in maximum protein nuclear localization and that a universal optimal density for NPs of different sizes does not exist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanai, R; McFarlane, K; Lucash, M
2009-10-09
Nutrient uptake capacity is an important parameter in modeling nutrient uptake by plants. Researchers commonly assume that uptake capacity measured for a species can be used across sites. We tested this assumption by measuring the nutrient uptake capacity of intact roots of Engelmann spruce (Picea engelmanni Parry) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.) at Loch Vale Watershed and Fraser Experimental Forest in the Rocky Mountains of central Colorado. Roots still attached to the tree were exposed to one of three concentrations of nutrient solutions for time periods ranging from 1 to 96 hours, and solutions were analyzed for ammonium,more » nitrate, calcium, magnesium, and potassium. Surprisingly, the two species were indistinguishable in nutrient uptake within site for all nutrients (P > 0.25), but uptake rates differed by site. In general, nutrient uptake was higher at Fraser (P = 0.01, 0.15, 0.03, 0.18 for NH{sub 4}{sup +}, NO{sub 3}{sup -}, Ca{sup 2+}, and K{sup +}, respectively), which is west of the Continental Divide and has lower atmospheric deposition of N than Loch Vale. Mean uptake rates by site for ambient solution concentrations were 0.12 {micro}mol NH{sub 4}{sup +} g{sub fwt}{sup -1} h{sup -1}, 0.02 {micro}mol NO{sub 3}{sup -} g{sub fwt}{sup -1}, 0.21 {micro}mol Ca{sup 2+} g{sub fwt}{sup -1} h{sup -1}, and 0.01 {micro}mol Mg{sup 2+} g{sub fwt}{sup -1} h{sup -1} at Loch Vale, and 0.21 {micro}mol NH{sub 4}{sup +} f{sub fwt}{sup -1}h{sup -1}, 0.04 {micro}mol NO{sub 3}{sup -} g{sub fwt}{sup -1} h{sup -1}, 0.51 {micro}mol Ca{sup 2+}g{sub fwt}{sup -1}h{sup -1}, and 0.07 {micro}mol Mg{sup 2+} f{sub fwt}{sup -1}h{sup -1} at Fraser. The importance of site conditions in determining uptake capacity should not be overlooked when parameterizing nutrient uptake models. We also characterized the root morphology of these two species and compared them to other tree species we have measured at various sites in the northeastern USA. Engelman spruce and subalpine fir were indistinguishable in specific root length and diameter distribution, while most of the other ten species had statistically distinct diameter distributions across five diameter classes < 2 mm. Based on specific root length, subalpine fir and Engelmann spruce had significantly coarser roots than red pine (Pinus resinosa Soland), yellow birch (Betula allegheniensis Britt.), sugar maple (Acer saccharum Marsh.), chestnut oak (Quercus prinus L.), black cherry (Prunus serotina Ehrh.), and red spruce (Picea rubens Sarg.). White oak (Quercus alba L.), balsam fir (Abies balsamea (L.) Mill.), American beech (Fagus grandifolia Ehrh.) and loblolly pine (Pinus taeda L.) were intermediate in SRL (indistinguishable from Engelmann spruce and subalpine fir by ANOVA). Species that differ more in physiology and morphology than the two species we compared would likely show dissimilar uptake characteristics even at the same site.« less
Yoder, C.K.; Vivin, P.; DeFalco, L.A.; Seemann, J.R.; Nowak, R.S.
2000-01-01
Root growth and physiological responses to elevated CO2 were investigated for three important Mojave Desert grasses: the C3 perennial Achnatherum hymenoides, the C4 perennial Pleuraphis rigida and the C3 annual Bromus madritensis ssp. rubens. Seeds of each species were grown at ambient (360 μl l−1) or elevated (1000 μl l−1) CO2 in a glasshouse and harvested at three phenological stages: vegetative, anthesis and seed fill. Because P. rigida did not flower during the course of this study, harvests for this species represent three vegetative stages. Primary productivity was increased in both C3 grasses in response to elevated CO2 (40 and 19% for A. hymenoides and B. rubens, respectively), but root biomass increased only in the C3 perennial grass. Neither above-ground nor below-ground biomass of the C4 perennial grass was significantly affected by the CO2 treatment. Elevated CO2 did not significantly affect root surface area for any species. Total plant nitrogen was also not statistically different between CO2treatments for any species, indicating no enhanced uptake of N under elevated CO2. Physiological uptake capacities for NO3 and NH4 were not affected by the CO2 treatment during the second harvest; measurements were not made for the first harvest. However, at the third harvest uptake capacity was significantly decreased in response to elevated CO2 for at least one N form in each species. NO3 uptake rates were lower in A. hymenoides and P. rigida, and NH4 uptake rates were lower in B. rubens at elevated CO2. Nitrogen uptake on a whole root-system basis (NO3+NH4uptake capacity × root biomass) was influenced positively by elevated CO2 only for A. hymenoidesafter anthesis. These results suggest that elevated CO2 may result in a competitive advantage forA. hymenoides relative to species that do not increase root-system N uptake capacity. Root respiration measurements normalized to 20 °C were not significantly affected by the CO2treatment. However, specific root respiration was significantly correlated with either root C∶N ratio or root water content when all data per species were included within a simple regression model. The results of this study provide little evidence for up-regulation of root physiology in response to elevated CO2 and indicate that root biomass responses to CO2 are species-specific.
Longitudinal observation of [11C]4DST uptake in turpentine-induced inflammatory tissue.
Toyohara, Jun; Sakata, Muneyuki; Oda, Keiichi; Ishii, Kenji; Ishiwata, Kiichi
2013-02-01
Longitudinal changes of 4'-[methyl-(11)C]thiothymidine ([(11)C]4DST) uptake were evaluated in turpentine-induced inflammation. Turpentine (0.1 ml) was injected intramuscularly into the right hind leg of male Wistar rats. Longitudinal [(11)C]4DST uptake was evaluated by the tissue dissection method at 1, 2, 4, 7, and 14 days after turpentine injection (n=5). The tumor selectivity index was calculated using the previously published biodistribution data in C6 glioma-bearing rats. Dynamic PET scan was performed on day 4 when maximum [(11)C]4DST uptake was observed during the longitudinal study. Histopathological analysis and Ki-67 immunostaining were also performed. The uptake of [(11)C]4DST in inflammatory tissue was significantly increased on days 2-4 after turpentine injection, and then decreased. On day 14, tracer uptake returned to the day 1 level. The maximum SUV of inflamed muscle was 0.6 and was 3 times higher than that of the contralateral healthy muscle on days 2-4 after turpentine injection. However, tumor selectivity index remains very high (>10) because of the low inflammation uptake. A dynamic PET scan showed that the radioactivity in inflammatory tissues peaked at 5 min after [(11)C]4DST injection, and then washed out until 20 min. At intervals >20 min, radioactivity levels were constant and double that of healthy muscle. The changes in Ki-67 index were paralleled with those of [(11)C]4DST uptake, indicating cell proliferation-dependent uptake of [(11)C]4DST in inflammatory tissues. In our animal model, low but significant levels of [(11)C]4DST uptake were observed in subacute inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.
Koschate, Jessica; Drescher, Uwe; Baum, Klaus; Brinkmann, Christian; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe
2017-05-01
The aim of this pilot study was to investigate whether there are differences in heart rate and oxygen uptake kinetics in type 2 diabetes patients, considering their cardiovascular medication. It was hypothesized that cardiovascular medication would affect heart rate and oxygen uptake kinetics and that this could be detected using a standardized exercise test. 18 subjects were tested for maximal oxygen uptake. Kinetics were measured in a single test session with standardized, randomized moderate-intensity work rate changes. Time series analysis was used to estimate kinetics. Greater maxima in cross-correlation functions indicate faster kinetics. 6 patients did not take any cardiovascular medication, 6 subjects took peripherally acting medication and 6 patients were treated with centrally acting medication. Maximum oxygen uptake was not significantly different between groups. Significant main effects were identified regarding differences in muscular oxygen uptake kinetics and heart rate kinetics. Muscular oxygen uptake kinetics were significantly faster than heart rate kinetics in the group with no cardiovascular medication (maximum in cross-correlation function of muscular oxygen uptake vs. heart rate; 0.32±0.08 vs. 0.25±0.06; p=0.001) and in the group taking peripherally acting medication (0.34±0.05 vs. 0.28±0.05; p=0.009) but not in the patients taking centrally acting medication (0.28±0.05 vs. 0.30±0.07; n.s.). It can be concluded that regulatory processes for the achievement of a similar maximal oxygen uptake are different between the groups. The used standardized test provided plausible results for heart rate and oxygen uptake kinetics in a single measurement session in this patient group. © Georg Thieme Verlag KG Stuttgart · New York.
Risk assessment of vegetables irrigated with arsenic-contaminated water.
Bhatti, S M; Anderson, C W N; Stewart, R B; Robinson, B H
2013-10-01
Arsenic (As) contaminated water is used in South Asian countries to irrigate food crops, but the subsequent uptake of As by vegetables and associated human health risk is poorly understood. We used a pot trial to determine the As uptake of four vegetable species (carrot, radish, spinach and tomato) with As irrigation levels ranging from 50 to 1000 μg L(-1) and two irrigation techniques, non-flooded (70% field capacity for all studied vegetables), and flooded (110% field capacity initially followed by aerobic till next irrigation) for carrot and spinach only. Only the 1000 μg As L(-1) treatment showed a significant increase of As concentration in the vegetables over all other treatments (P < 0.05). The distribution of As in vegetable tissues was species dependent; As was mainly found in the roots of tomato and spinach, but accumulated in the leaves and skin of root crops. There was a higher concentration of As in the vegetables grown under flood irrigation relative to non-flood irrigation. The trend of As bioaccumulation was spinach > tomato > radish > carrot. The As concentration in spinach leaves exceeded the Chinese maximum permissible concentration for inorganic As (0.05 μg g(-1) fresh weight) by a factor of 1.6 to 6.4 times. No other vegetables recorded an As concentration that exceeded this threshold. The USEPA parameters hazard quotient and cancer risk were calculated for adults and adolescents. A hazard quotient value greater than 1 and a cancer risk value above the highest target value of 10(-4) confirms potential risk to humans from ingestion of spinach leaves. In our study, spinach presents a direct risk to human health where flood irrigated with water containing an arsenic concentration greater than 50 μg As L(-1).
NASA Astrophysics Data System (ADS)
Zhang, Shengli; Wang, Zhikai; Chen, Haoyu; Kai, Chengcheng; Jiang, Man; Wang, Qun; Zhou, Zuowan
2018-05-01
Polyethyleneimine functionalized Fe3O4/steam-exploded rice straw composite (Fe3O4-PEI-SERS), which combines magnetic separation with adsorption of PEI functionalized biosorbent, was successfully prepared via a simple glutaraldehyde crosslinking method. Its adsorption potential for the removal of Cr(VI) was systematically studied in batch mode. Results showed that Cr(VI) adsorption on Fe3O4-PEI-SESERS was highly pH-dependent, and the optimum pH was 2.0. The time to reach equilibrium was related to initial Cr(VI) concentration and was 1 and 6 h for 200 and 300 mg/L of Cr(VI), respectively. The adsorption system followed pseudo-second-order kinetic model and Langmuir isotherm. Its maximum adsorption capacity was 280.11, 317.46 and 338.98 mg/g at 25, 35 and 45 °C, respectively. The competitive uptake from coexisting ions (K+, Na+, Cu2+, Cl- and NO3-) was insignificant except SO42-. After six adsorption/desorption cycles, the adsorbent retained good adsorption capacity. The Cr(VI) removal involved its partial reduction into Cr(III). Due to the properties of high adsorption capacity, strong magnetic responsiveness, good reusability and Cr(VI) detoxification, the Fe3O4-PEI-SESERS has a potential application in Cr(VI) removal from wastewater.
Biosorption of lead ions from aqueous effluents by rapeseed biomass.
Morosanu, Irina; Teodosiu, Carmen; Paduraru, Carmen; Ibanescu, Dumitrita; Tofan, Lavinia
2017-10-25
Lead, as well as other heavy metals, is regarded as priority pollutant due to its non-biodegradability, toxicity and persistence in the environment. In this study, rapeseed biomass was used in the biosorption of Pb(II) ions in batch and dynamic conditions, as well as with tests for industrial wastewater. The influence of initial concentration (5-250mg/L), pH and contact time (0.5-6h) was investigated. The kinetic data modeling resulted in good correlations with the pseudo-second order and intraparticle diffusion models. The maximum sorption capacities of Pb(II) were 18.35, 21.29 and 22.7mg/L at 4, 20 and 50°C, respectively. Thermodynamic parameters indicated the spontaneity and endothermic nature of lead biosorption on rapeseed biomass. The biosorption mechanism involves both physical and chemical interactions. The breakthrough curves at 50 and 100mg/L were determined and evaluated under dynamic conditions. The breakthrough time lowered with increasing the influent Pb(II) concentration. The experimental data obtained from fixed-bed column tests were well fitted by Thomas and Yoon-Nelson models. The calculated sorption capacities were in good agreement with the uptake capacity of Langmuir model. The applicability of rapeseed to be used as a sorbent for Pb(II) ions from real wastewater was tested, and Pb(II) removal efficiency of 94.47% was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.
Characterizing roots and water uptake in a ground cover rice production system
Li, Sen; Zuo, Qiang; Wang, Xiaoyu; Ma, Wenwen; Jin, Xinxin; Shi, Jianchu; Ben-Gal, Alon
2017-01-01
Background and aims Water-saving ground cover rice production systems (GCRPS) are gaining popularity in many parts of the world. We aimed to describe the characteristics of root growth, morphology, distribution, and water uptake for a GCRPS. Methods A traditional paddy rice production system (TPRPS) was compared with GCRPS in greenhouse and field experiments. In the greenhouse, GCRPS where root zone average soil water content was kept near saturation (GCRPSsat), field capacity (GCRPSfwc) and 80% field capacity (GCRPS80%), were evaluated. In a two-year field experiment, GCRPSsat and GCRPS80% were applied. Results Similar results were found in greenhouse and field experiments. Before mid-tillering the upper soil temperature was higher for GCRPS, leading to enhanced root dry weight, length, surface area, specific root length, and smaller diameter of roots but lower water uptake rate per root length compared to TPRPS. In subsequent growth stages, the reduced soil water content under GCRPS caused that the preponderance of root growth under GCRPSsat disappeared in comparison to TPRPS. Under other GCRPS treatments (GCRPSfwc and GCRPS80%), significant limitation on root growth, bigger root diameter and higher water uptake rate per root length were found. Conclusions Discrepancies in soil water and temperature between TPRPS and GCRPS caused adjustments to root growth, morphology, distribution and function. Even though drought stress was inevitable after mid-tillering under GCRPS, especially GCRPS80%, similar or even enhanced root water uptake capacity in comparison to TPRPS might promote allocation of photosynthetic products to shoots and increase water productivity. PMID:28686687
A New Supercapacitor and Li-ion Battery Hybrid System for Electric Vehicle in ADVISOR
NASA Astrophysics Data System (ADS)
Peng, Xiao; Shuhai, Quan; Changjun, Xie
2017-02-01
The supercapacitor (SC) and Li-ion battery(BT) hybrid energy storage system(HESS) electric vehicle(EV) is gaining universal attention. The topology is of importance for the SC/BT HESS. A new SC/BT topology HESS with a rule-based energy management strategy for EV was proposed. The BT pack is connected directly to the DC link via a controlled switch. The SC pack is connected to the DC link via a controlled switch. A uni-directional DC/DC converter is connected between the SC pack and the BT pack. The braking regeneration energy is all harvested by the SC pack. The output power of BT pack is limited. The different SC/BT configurations with varied BT maximum Ah capacity factor and SC maximum capacity factor are simulated in ADVISOR. Simulation results show that BT maximum Ah capacity factor has little impact on vehicle acceleration performance and maximum speed. SC maximum capacity factor has significant impact on vehicle acceleration performance and maximum speed. The fuel economy isn’t affected.
IRON UPTAKE AND NRAMP-2/DMTI/DCT IN HUMAN BRONCHIAL EPITHELIAL CELLS
The capacity of natural resistance-associated macrophage protein-2 [Nramp2; also called divalent metal transporter-1 (DMT1) and divalent cation transporter-1 (DCT1)] to transport iron and its ubiquitous expression make it a likely candidate for transferrin-independent uptake of i...
Millecamps, Stéphanie; Nicolle, Delphine; Ceballos-Picot, Irène; Mallet, Jacques; Barkats, Martine
2001-01-01
Using adenoviruses encoding reporter genes as retrograde tracers, we assessed the capacity of motoneurons to take up and retrogradely transport adenoviral particles injected into the muscles of transgenic mice expressing the G93A human superoxide dismutase mutation, a model of amyotrophic lateral sclerosis. Surprisingly, transgene expression in the motoneurons was significantly higher in symptomatic mice than in control or presymptomatic mice. Using botulinum toxin to induce nerve sprouting at neuromuscular junctions, we showed that the unexpectedly high level of motoneurons retrograde transduction results, at least in part, from newly acquired uptake properties of the sprouts. These findings demonstrate the remarkable uptake properties of amyotrophic lateral sclerosis motoneurons in response to denervation and the rationale of using intramuscular injections of adenoviruses to overexpress therapeutic proteins in motor neuron diseases. PMID:11404466
Meseguer, Víctor F; Ortuño, Juan F; Aguilar, M Isabel; Pinzón-Bedoya, Martha L; Lloréns, Mercedes; Sáez, José; Pérez-Marín, Ana B
2016-12-01
Natural, HCl-treated, and formaldehyde-treated non-living leaves of Posidonia oceanica, a marine plant, were investigated as potential biosorbents to remove Cd 2+ from aqueous solutions. The studied biosorbents were characterized by elemental analysis and Fourier transform infrared spectroscopy (FTIR) and it was observed that the adsorption capacity of the biosorbents strongly depended on the pH, increasing as the pH rises. The adsorption process was fast. The adsorption kinetic was analyzed using five kinetic models: pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion, and Bangham models. The adsorption isotherms were analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich, Sips, Redlich-Peterson, and Toth models. The maximum biosorption capacity was attained by the biosorbent treated with HCl (1.11 mmol g -1 ). The distribution equilibrium constant and the Gibbs free energy change were calculated. The effects of the presence of Na + , K + , Mg 2+ , and Ca 2+ ions in the solution on Cd 2+ uptake were studied. Results indicate that non-living leaves of P. oceanica, natural or treated, can be considered as effective and low-cost biosorbents for the removal of cadmium from aqueous solutions.
NASA Astrophysics Data System (ADS)
Wen, Soh Jing; Rabat, Nurul Ekmi; Osman, Noridah
2017-12-01
Oil palm empty fruit bunch (OPEFB) fiber is a natural polymer which is potentially used as efficient adsorbents for heavy metal cations. The main objective of this research is to synthesize OPEFB grafted polyvinyl alcohol (PVA) hydrogel by using ammonium persulfate (APS) as initiator and gelatin as crosslinking agent. The grafting temperature, amounts of cross linking agent, initiator and concentration of OPEFB were manipulated in order to optimize the swelling capability of the hydrogel. Comparison of heavy metal adsorption performance between pure PVA hydrogel and optimized OPEFB-g-PVA hydrogel was evaluated by using copper ions solution. The characteristics and structure of the optimized OPEFB-g-PVA hydrogel was studied by using Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) while Thermogravimetric Analysis (TGA) was used to study its thermal stability. The presence of band at 1088 and 1047cm-1 corresponds to C-O was observed as strong evidence of grafting. Water uptake capacity was evaluated and the maximum water absorption capacity was obtained at 180.67 g/g. PVA hydrogel with OPEFB proved to have better copper ion absorbency and thermal properties compared to pure PVA hydrogel.
Perry, Steve F.
2016-01-01
The effects of acute exposure to acidic water on Na+ and Cl− homeostasis, and the mechanisms underlying their compensatory regulation, were investigated in the larval zebrafish Danio rerio. Exposure to acidic water (pH 4.0; control pH 7.6) for 2 h significantly reduced Na+ uptake and whole body Na+ content. Nevertheless, the capacity for Na+ uptake was substantially increased in fish preexposed to acidic water but measured in control water. Based on the accumulation of the Na+-selective dye, Sodium Green, two ionocyte subtypes exhibited intracellular Na+ enrichment after preexposure to acidic water: H+-ATPase rich (HR) cells, which coexpress the Na+/H+ exchanger isoform 3b (NHE3b), and a non-HR cell population. In fish experiencing Na+-Cl− cotransporter (NCC) knockdown, we observed no Sodium Green accumulation in the latter cell type, suggesting the non-HR cells were NCC cells. Elimination of NHE3b-expressing HR cells did not prevent the increased Na+ uptake following acid exposure. On the other hand, the increased Na+ uptake was abolished when the acidic water was enriched with Na+ and Cl−, but not with Na+ only, indicating that the elevated Na+ uptake after acid exposure was associated with the compensatory regulation of Cl−. Further examinations demonstrated that acute acid exposure also reduced whole body Cl− levels and increased the capacity for Cl− uptake. Moreover, knockdown of NCC prevented the increased uptake of both Na+ and Cl− after exposure to acidic water. Together, the results of the present study revealed a novel role of NCC in the compensatory regulation of Na+ and Cl− uptake following acute acidosis. PMID:27784676
Capacities of Candidate Herbaceous Plants for Phytoremediation of Soil-based TNT and RDX on Ranges
2008-09-01
ER D C TR -0 8- 8 Strategic Environmental Research and Development Program Capacities of Candidate Herbaceous Plants for Phytoremediation ...Research and Development Program ERDC TR-08-8 September 2008 Capacities of Candidate Herbaceous Plants for Phytoremediation of Soil-based TNT and RDX...phytoextraction/plant-assisted phytoremediation capacity, both species of the uptaker/degrader type. Three other species were recommended for further
Hydrogen Storage Performance in Pd/Graphene Nanocomposites.
Zhou, Chunyu; Szpunar, Jerzy A
2016-10-05
We have developed a Pd-graphene nanocomposite for hydrogen storage. The spherically shaped Pd nanoparticles of 5-45 nm in size are homogeneously distributed over the graphene matrix. This new hydrogen storage system has favorable features like desirable hydrogen storage capacity, ambient conditions of hydrogen uptake, and low temperature of hydrogen release. At a hydrogen charging pressure of 50 bar, the material could yield a gravimetric density of 6.7 wt % in the 1% Pd/graphene nanocomposite. As we increased the applied pressure to 60 bar, the hydrogen uptake capacity reached 8.67 wt % in the 1% Pd/graphene nanocomposite and 7.16 wt % in the 5% Pd/graphene nanocomposite. This system allows storage of hydrogen in amounts that exceed the capacity of the gravimetric target announced by the U.S. Department of Energy (DOE).
Lu, Jun [Salt Lake City, UT; Fang, Zhigang Zak [Salt Lake City, UT; Sohn, Hong Yong [Salt Lake City, UT
2012-04-03
As a promising clean fuel for vehicles, hydrogen can be used for propulsion, either directly or in fuel cells. Hydrogen storage compositions having high storage capacity, good dehydrogenation kinetics, and hydrogen release and uptake reactions which are reversible are disclosed and described. Generally a hydrogen storage composition of a metal aluminum hexahydride and a metal amide can be used. A combined system (Li.sub.3AIH.sub.6/3LiNH.sub.2) with a very high inherent hydrogen capacity (7.3 wt %) can be carried out at moderate temperatures, and with approximately 95% of that inherent hydrogen storage capacity (7.0%) is reversible over repeated cycling of release and uptake.
The physiology of mountain biking.
Impellizzeri, Franco M; Marcora, Samuele M
2007-01-01
Mountain biking is a popular outdoor recreational activity and an Olympic sport. Cross-country circuit races have a winning time of approximately equal 120 minutes and are performed at an average heart rate close to 90% of the maximum, corresponding to 84% of maximum oxygen uptake (VO2max). More than 80% of race time is spent above the lactate threshold. This very high exercise intensity is related to the fast starting phase of the race; the several climbs, forcing off-road cyclists to expend most of their effort going against gravity; greater rolling resistance; and the isometric contractions of arm and leg muscles necessary for bike handling and stabilisation. Because of the high power output (up to 500W) required during steep climbing and at the start of the race, anaerobic energy metabolism is also likely to be a factor of off-road cycling and deserves further investigation. Mountain bikers' physiological characteristics indicate that aerobic power (VO2max >70 mL/kg/min) and the ability to sustain high work rates for prolonged periods of time are prerequisites for competing at a high level in off-road cycling events. The anthropometric characteristics of mountain bikers are similar to climbers and all-terrain road cyclists. Various parameters of aerobic fitness are correlated to cross-country performance, suggesting that these tests are valid for the physiological assessment of competitive mountain bikers, especially when normalised to body mass. Factors other than aerobic power and capacity might influence off-road cycling performance and require further investigation. These include off-road cycling economy, anaerobic power and capacity, technical ability and pre-exercise nutritional strategies.
Maximum step length: relationships to age and knee and hip extensor capacities.
Schulz, Brian W; Ashton-Miller, James A; Alexander, Neil B
2007-07-01
Maximum Step Length may be used to identify older adults at increased risk for falls. Since leg muscle weakness is a risk factor for falls, we tested the hypotheses that maximum knee and hip extension speed, strength, and power capacities would significantly correlate with Maximum Step Length and also that the "step out and back" Maximum Step Length [Medell, J.L., Alexander, N.B., 2000. A clinical measure of maximal and rapid stepping in older women. J. Gerontol. A Biol. Sci. Med. Sci. 55, M429-M433.] would also correlate with the Maximum Step Length of its two sub-tasks: stepping "out only" and stepping "back only". These sub-tasks will be referred to as versions of Maximum Step Length. Unimpaired younger (N=11, age=24[3]years) and older (N=10, age=73[5]years) women performed the above three versions of Maximum Step Length. Knee and hip extension speed, strength, and power capacities were determined on a separate day and regressed on Maximum Step Length and age group. Version and practice effects were quantified and subjective impressions of test difficulty recorded. Hypotheses were tested using linear regressions, analysis of variance, and Fisher's exact test. Maximum Step Length explained 6-22% additional variance in knee and hip extension speed, strength, and power capacities after controlling for age group. Within- and between-block and test-retest correlation values were high (>0.9) for all test versions. Shorter Maximum Step Lengths are associated with reduced knee and hip extension speed, strength, and power capacities after controlling for age. A single out-and-back step of maximal length is a feasible, rapid screening measure that may provide insight into underlying functional impairment, regardless of age.
NASA Astrophysics Data System (ADS)
Kudela, Raphael M.; Howard, Meredith D. A.; Hayashi, Kendra; Beck, Carly
2017-02-01
The global eutrophication of coastal ecosystems from anthropogenic nutrients is one of the most significant issues affecting changes to coastal oceans today. A three-week diversion of wastewater effluent from the normal offshore discharge pipe (7 km offshore, 56 m depth) to a shorter outfall located in 16 m water (2.2 km offshore) as part of the 2012 Orange County Sanitation District Diversion provided an opportunity to evaluate the impacts of anthropogenic nitrogen on phytoplankton community response. Nitrogen uptake kinetic parameters were used to evaluate the short-term physiological response of the phytoplankton community to the diverted wastewater and to determine if potential ammonium suppression of nitrate uptake was observed. Despite expectations, there was a muted response to the diversion in terms of biomass accumulation and ambient nutrients remained low. At ambient nitrogen concentrations, calculated uptake rates strongly favored ammonium. During the diversion based on the kinetic parameters determined during short-term experiments, the phytoplankton community was using all three N substrates at low concentrations, and had the capacity to use urea, then ammonium, and then nitrate at high concentrations. Ammonium suppression of nitrate uptake was evident throughout the experiment, with increasing suppression through time. Despite this interaction, there was evidence for simultaneous utilization of nitrate, ammonium, and urea during the experiment. The general lack of phytoplankton response as evidenced by low biomass during the diversion was therefore not obviously linked to changes in uptake rates, physiological capacity, or ammonium suppression of nitrate uptake.
Iskandar, Nur Liyana; Zainudin, Nur Ain Izzati Mohd; Tan, Soon Guan
2011-01-01
Filamentous fungi are able to accumulate significant amount of metals from their environment. The potential of fungal biomass as agents for biosorption of heavy metals from contaminated sediments is currently receiving attention. In the present study, a total of 41 isolates of filamentous fungi obtained from the sediment of the Langat River, Selangor, Malaysia were screened for their tolerance and uptake capability of copper (Cu) and lead (Pb). The isolates were identified as Aspergillus niger, A. fumigatus, Trichoderma asperellum, Penicillium simplicissimum and P. janthinellum. A. niger and P. simplicissimum, were able to survive at 1000 mg/L of Cu(II) concentration on Potato Dextrose Agar (PDA) while for Pb, only A. niger survived at 5000 mg/L concentration. The results showed that A. niger, P. simplicissimum and T. asperellum have a better uptake capacity for Pb compared to Cu and the findings indicated promising biosorption of Cu and Pb by these filamentous fungi from aqueous solution. The present study was also determined the maximum removal of Cu(II) and Pb(II) that was performed by A. niger. The metal removal which occurred at Cu(II) 200 mg/L was (20.910 +/- 0.581) mg/g and at 250 mg/L of Pb(II) was (54.046 +/- 0.328) mg/g.
Carbon sequestration via reaction with basaltic rocks: geochemical modeling and experimental results
Rosenbauer, Robert J.; Thomas, Burt; Bischoff, James L.; Palandri, James
2012-01-01
Basaltic rocks are potential repositories for sequestering carbon dioxide (CO2) because of their capacity for trapping CO2 in carbonate minerals. We carried out a series of thermodynamic equilibrium models and high pressure experiments, reacting basalt with CO2-charged fluids over a range of conditions from 50 to 200 °C at 300 bar. Results indicate basalt has a high reactivity to CO2 acidified brine. Carbon dioxide is taken up from solution at all temperatures from 50 to 200 °C, 300 bar, but the maximum extent and rate of reaction occurs at 100 °C, 300 bar. Reaction path simulations utilizing the geochemical modeling program CHILLER predicted an equilibrium carbonate alteration assemblage of calcite, magnesite, and siderite, but the only secondary carbonate identified in the experiments was a ferroan magnesite. The amount of uptake at 100 °C, 300 bar ranged from 8% by weight for a typical tholeite to 26% for a picrite. The actual amount of CO2 uptake and extent of rock alteration coincides directly with the magnesium content of the rock suggesting that overall reaction extent is controlled by bulk basalt Mg content. In terms of sequestering CO2, an average basaltic MgO content of 8% is equivalent to 2.6 × 108 metric ton CO2/km3 basalt.
Li, Xiuyuan; Rennenberg, Heinz; Simon, Judy
2015-01-01
Competition for nitrogen (N), particularly in resource-limited habitats, might be avoided by different N acquisition strategies of plants. In our study, we investigated whether slow-growing European beech and fast-growing sycamore maple seedlings avoid competition for growth-limiting N by different N uptake patterns and the potential alteration by soil N availability in a microcosm experiment. We quantified growth and biomass indices, (15)N uptake capacity and N pools in the fine roots. Overall, growth indices, N acquisition and N pools in the fine roots were influenced by species-specific competition depending on soil N availability. With inter-specific competition, growth of sycamore maple reduced regardless of soil N supply, whereas beech only showed reduced growth when N was limited. Both species responded to inter-specific competition by alteration of N pools in the fine roots; however, sycamore maple showed a stronger response compared to beech for almost all N pools in roots, except for structural N at low soil N availability. Beech generally preferred organic N acquisition while sycamore maple took up more inorganic N. Furthermore, with inter-specific competition, beech had an enhanced organic N uptake capacity, while in sycamore maple inorganic N uptake capacity was impaired by the presence of beech. Although sycamore maple could tolerate the suboptimal conditions at the cost of reduced growth, our study indicates its reduced competitive ability for N compared to beech.
Heterotrophic Potential for Amino Acid Uptake in a Naturally Eutrophic Lake1
Burnison, B. Kent; Morita, Richard Y.
1974-01-01
The uptake of sixteen 14C-labeled amino acids by the indigenous heterotrophic microflora of Upper Klamath Lake, Oregon, was measured using the kinetic approach. The year-long study showed a seasonal variation in the maximum uptake velocity, Vmax, of all the amino acids which was proportional to temperature. The maximum total flux of amino acids by the heterotrophic microflora ranged from 1.2 to 11.9 μmol of C per liter per day (spring to summer). Glutamate, asparagine, aspartate, and serine had the highest Vmax values and were respired to the greatest extent. The percentages of the gross (net + respired) uptake of the amino acids which were respired to CO2 ranged from 2% for leucine to 63% for glutamate. Serine, lysine, and glycine were the most abundant amino acids found in Upper Klamath Lake surface water; at intermediate concentrations were alanine, aspartate, and threonine; and the remaining amino acids were always below 7.5 × 10-8 M (10 μg/liter). The amino acid concentrations determined chemically appear to be the sum of free and adsorbed amino acids, since the values obtained were usually greater than the (Kt + Sn) values obtained by the heterotrophic uptake experiments. PMID:4207581
Deng, Shubo; Ting, Yen Peng
2005-11-01
Heavy metal pollution in the aqueous environment is a problem of global concern. Biosorption has been considered as a promising technology for the removal of low levels of toxic metals from industrial effluents and natural waters. A modified fungal biomass of Penicillium chrysogenum with positive surface charges was prepared by grafting polyethylenimine (PEI) onto the biomass surface in a two-step reaction. The presence of PEI on the biomass surface was verified by FTIR and X-ray photoelectron spectroscopy (XPS) analyses. Due to the high density of amine groups in the long chains of PEI molecules on the surface, the modified biomass was found to possess positive zeta potential at pH below 10.4 as well as high sorption capacity for anionic Cr(VI). Using the Langmuir adsorption isotherm, the maximum sorption capacity for Cr(VI) at a pH range of 4.3-5.5 was 5.37 mmol/g of biomass dry weight, the highest sorption capacity for Cr(VI) compared to other sorbents reported in the literature. Scanning electronic microscopy (SEM) provided evidence of chromium aggregates formed on the biomass surface. XPS results verified the presence of Cr(III) on the biomass surface in the pH range 2.5-10.5, suggesting that some Cr(VI) anions were reduced to Cr(III) during the sorption. The sorption kinetics indicated that redox reaction occurred on the biomass surface, and whether the converted Cr(III) ions were released to solution or adsorbed on the biomass depended on the solution pH. Sorption mechanisms including electrostatic interaction, chelation, and precipitation were found to be involved in the complex sorption of chromium on the PEI-modified biomass.
Adsorption characteristics of nano-TiO2 onto zebrafish embryos and its impacts on egg hatching.
Shih, Yu-Jen; Su, Chia-Chi; Chen, Chiu-Wen; Dong, Cheng-Di; Liu, Wen-Sheng; Huang, C P
2016-07-01
The characteristics of nanoparticles (NPs) uptake may fundamentally alter physicochemical effects of engineered NPs on aquatic organisms, thereby yielding different ecotoxicology assessment results. The adsorption behavior of nano-TiO2 (P-25) on zebrafish embryos in Holtfreter's medium (pH 7.2, I ∼ 7.2 × 10(-2) M) and the presence of sodium alginate (100 mg/L) as dispersant was investigated. Zebrafish embryos (total 100) were exposed to nano-TiO2 at different concentrations (e.g., 0, 10, 20, 60, 120 mg/L) in batch-mode assay. The adsorption capacity of nano-TiO2 on fish eggs was determined by measuring the Ti concentration on the egg surface using ICP-OES analysis. Results showed that the adsorption capacity increased rapidly in the first hour, and then declined to reach equilibrium in 8 h. The adsorption characteristics was visualized as a three-step process of rapid initial layer formation, followed by break-up of aggregates and finally rearrangement of floc structures; the maximum adsorption capacity was the sum of an inner rigid layers of aggregates of 0.81-0.84 μg-TiO2/#-egg and an outer softly flocculated layers of 1.01 μg-TiO2/#-egg. The Gibbs free energy was 543.29-551.26 and 100.75 kJ/mol, respectively, for the inner-layer and the outer-layer aggregates. Adsorption capacity at 0.5-1.0 μg-TiO2/#-egg promoted egg hatching; but hatching was inhibited at higher adsorption capacity. Results clearly showed that the configuration of TiO2 aggregates could impact the hatching efficiency of zebrafish embryos. Copyright © 2016 Elsevier Ltd. All rights reserved.
Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance.
Kuzyakov, Yakov; Xu, Xingliang
2013-05-01
Demand of all living organisms on the same nutrients forms the basis for interspecific competition between plants and microorganisms in soils. This competition is especially strong in the rhizosphere. To evaluate competitive and mutualistic interactions between plants and microorganisms and to analyse ecological consequences of these interactions, we analysed 424 data pairs from 41 (15)N-labelling studies that investigated (15)N redistribution between roots and microorganisms. Calculated Michaelis-Menten kinetics based on K(m) (Michaelis constant) and V(max) (maximum uptake capacity) values from 77 studies on the uptake of nitrate, ammonia, and amino acids by roots and microorganisms clearly showed that, shortly after nitrogen (N) mobilization from soil organic matter and litter, microorganisms take up most N. Lower K(m) values of microorganisms suggest that they are especially efficient at low N concentrations, but can also acquire more N at higher N concentrations (V(max)) compared with roots. Because of the unidirectional flow of nutrients from soil to roots, plants are the winners for N acquisition in the long run. Therefore, despite strong competition between roots and microorganisms for N, a temporal niche differentiation reflecting their generation times leads to mutualistic relationships in the rhizosphere. This temporal niche differentiation is highly relevant ecologically because it: protects ecosystems from N losses by leaching during periods of slow or no root uptake; continuously provides roots with available N according to plant demand; and contributes to the evolutionary development of mutualistic interactions between roots and microorganisms. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Removal of cadmium ions from wastewater using innovative electronic waste-derived material.
Xu, Meng; Hadi, Pejman; Chen, Guohua; McKay, Gordon
2014-05-30
Cadmium is a highly toxic heavy metal even at a trace level. In this study, a novel material derived from waste PCBs has been applied as an adsorbent to remove cadmium ions from aqueous solutions. The effects of various factors including contact time, initial cadmium ion concentration, pH and adsorbent dosage have been evaluated. The maximum uptake capacity of the newly derived material for cadmium ions has reached 2.1mmol/g at an initial pH 4. This value shows that this material can effectively remove cadmium ions from effluent. The equilibrium isotherm has been analyzed using several isotherm equations and is best described by the Redlich-Peterson model. Furthermore, different commercial adsorbent resins have been studied for comparison purposes. The results further confirm that this activated material is highly competitive with its commercial counterparts. Copyright © 2014 Elsevier B.V. All rights reserved.
Synergistic effect of fly ash in in-vessel composting of biomass and kitchen waste.
Manyapu, Vivek; Mandpe, Ashootosh; Kumar, Sunil
2018-03-01
The present study aims to utilize coal fly ash for its property to adsorb heavy metals and thus reducing the bioavailability of the metals for plant uptake. Fly ash was incorporated into the in-vessel composting system along with organic waste. The in-vessel composting experiments were conducted in ten plastic vessels of 15 L capacity comprising varying proportions of biomass waste, kitchen waste and fly ash. In this study, maximum degradation of organic matter was observed in Vessel 3 having k value of 0.550 d -1 . In vessel 10, 20% fly ash with a combination of 50% biomass waste and 30% kitchen waste along with the addition of 5% jaggery as an additive produced the best outcome with least organic matter (%C) loss and lowest value of rate constant (k). Copyright © 2017 Elsevier Ltd. All rights reserved.
Jayakumar, R; Rajkumar, M; Freitas, H; Sudheesh Kumar, P T; Nair, S V; Furuike, T; Tamura, H
2009-08-01
Carboxymethyl chitosan-graft-D-glucuronic acid (CMCS-g-D-GA) was prepared by grafting D-GA onto CMCS in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and then the membranes were made from it. In this work, the bioactivity studies of CMCS-g-D-GA membranes were carried out and then characterized by SEM, CLSM, XRD and FT-IR. The CMCS-g-D-GA membranes were found to be bioactive. The adsorption of Ni2+, Zn2+ and Cu2+ ions onto CMCS-g-D-GA membranes has also been investigated. The maximum adsorption capacity of CMCS-g-D-GA for Ni2+, Zn2+ and Cu2+ was found to be 57, 56.4 and 70.2 mg/g, respectively. Hence, these membranes were useful for tissue engineering, environmental and water purification applications.
Synthesis and application of acrylamide-maleic anhydride copolymer for solid phase extraction
NASA Astrophysics Data System (ADS)
Teng, Xiaoxiao; Niu, Yabo; Xie, Zhihai; Cai, Qing
2018-03-01
A new absorbent of acrylamide-maleic anhydride copolymer (PAMMA) for preconcentration of metal ions was synthesized. This PAMMA was applied for enrichment and determination of Al3+, Cu2+, Cd2+ and Pb2+ in table salt by ICP-OES. The maximum uptake capacities of PAMMA were 6.49, 5.84, 5.34 and 7.49 mg g‑1 for Al3+, Cu2+, Cd2+ and Pb2+, respectively. The limit of detection was 0.31, 0.26, 0.43, and 0.12 μg L‑1, and the RSD (relative standard deviations, n=6) was 1.5%, 3.7%, 3.0% and 2.6% for Al3+, Cu2+, Cd2+ and Pb2+, respectively. The presented method was used for simultaneous detecting of Al3+, Cu2+, Cd2+ and Pb2+ in table salt with the recoveries from 95.0% to 103%.
Differential uptake of salicylate in serum, cerebrospinal fluid, and perilymph.
Jastreboff, P J; Hansen, R; Sasaki, P G; Sasaki, C T
1986-10-01
After intraperitoneal administration of salicylate in anesthetized rats and guinea pigs, we found that salicylate levels in perilymph (PL) are closely related to both drug levels in cerebrospinal fluid (CSF) and in serum, with higher levels systematically observed in PL than in CSF. Further analysis suggests that salicylate is not passively transported into PL across CSF but, rather, is transported from blood directly to PL. The time course of salicylate uptake in rats reveals maximum levels at 1 1/2 hours (serum) and two to four hours (CSF and PL). On the other hand, salicylate uptake into serum and CSF of guinea pigs exhibits a longer time course, with maximum levels reached at four hours (serum) and five hours (CSF). These data, not previously available, are basic to our understanding of salicylate-related auditory effects.
Zhang, Le; Wang, Lin Lin; Gong, Le Le; Feng, Xue Feng; Luo, Ming Biao; Luo, Feng
2016-07-05
Driven by an energy crisis but consequently puzzled by various environmental problems, uranium, as the basic material of nuclear energy, is now receiving extensive attentions. In contrast to numerous sorbents applied in this field, metal-organic framework (MOFs), as a renovated material platform, has only recently been developed. How to improve the adsorption capacity of MOF materials towards U(VI) ions, as well as taking advantage of the nature of these MOFs to design photo-switched behaviour for photo-triggered storage/release of U(VI) ions are at present urgent problems and great challenges to be solved. Herein, we show a simple and facile method to target the goal. Through coordination-based post-synthetic strategy, microporous- mesoporous Zn-MOF-74 was easily functionalized by grafting coumarin on coordinatively unsaturated Zn(II) centers, yielding a series of coumarin-modified Zn-MOF-74 materials. The obtained samples displayed ultra-high adsorption capacity for U(VI) ions from water at pH value of 4 with maximum adsorption capacities as high as 360 mg/g (the record value in MOFs) and a remarkable photo-switched capability of 50 mg/g at pH value of 4. To the best of knowledge, and in contrast to the well-known photo-switched behaviour towards CO2, dye (propidium iodide), as well as fluorescence observed in MOFs, this is the first study that shows a photo-switched behaviour towards radioactive U(VI) ions in aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of Smoking on Respiratory Capacity and Control
ERIC Educational Resources Information Center
Awan, Shaheen N.; Alphonso, Vania A.
2007-01-01
The purpose of this study was to provide information concerning the possible early effects of smoking on measures of respiratory capacity and control in young adult female smokers vs. nonsmokers. In particular, maximum performance test results (vital capacity and maximum phonation time) and measures of air pressures and airflows during voiceless,…
Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Kim, Hyunho; McKay, Ian S; Griffin, Robert G; Wang, Evelyn N
2015-01-01
Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg 2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N 2 sorption, 27 Al/ 29 Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2 nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H 2 O and N 2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications.
Jensen, Anna M.; Warren, Jeffrey; Hanson, Paul J.; ...
2015-01-01
Using seasonal- and cohort-specific photosynthetic temperature response functions, we quantified the physiological significance of maintaining multiple foliar cohorts in mature (~40-45 year old) Picea mariana trees in an ombrotrophic Sphagnum-bog, northern Minnesota, USA. We measured photosynthetic capacity, foliar respiration (Rd), biochemistry and morphology to estimate annual carbon (C) uptake by cohort, season and canopy position. Temperature response of key photosynthetic parameters at 25 C (i.e., light-saturated rate of CO 2 assimilation (Asat), light-saturated rate of Rubisco carboxylation (Vcmax), light-saturated electron transport rate (Jmax)) were clearly dependent on season and were generally less responsive in younger needles. Temperature optimums range betweenmore » 18.7-23.7, 31.3-38.3 and 28.7-36.7 C for Asat, Vcmax and Jmax respectively. Current-year (Y0) foliage had lower photosynthetic capacities compared to one-year-old (Y1) and two-year-old (Y2) foliage. As Y0 needles matured, values of Asat, Vcmax, Jmax, foliar LMA and nitrogen increased. Values of Vcmax, Jmax and Rd were related to foliar nitrogen but only in the youngest (Y0) cohort. Foliar ontogeny affected photosynthetic capacity more than growth temperature. Morphological and physiological cohort differences were reflected by their annual contribution to modeled C uptake, with a ~36% lower estimated annual C uptake by Y0 needles (LAI 0.52 m 2m -2) compared to Y1&2 cohorts (LAI 0.67 m 2m -2). Collectively, these results illustrate the physiological and ecological significance of characterizing multiple foliar cohorts during bud break and throughout the growth season, and for cumulative C uptake model estimates.« less
Lee-Young, R S; Ayala, J E; Fueger, P T; Mayes, W H; Kang, L; Wasserman, D H
2011-07-01
Skeletal muscle AMP-activated protein kinase (AMPK)α2 activity is impaired in obese, insulin-resistant individuals during exercise. We determined whether this defect contributes to the metabolic dysregulation and reduced exercise capacity observed in the obese state. C57BL/6J wild-type (WT) mice and/or mice expressing a kinase dead AMPKα2 subunit in skeletal muscle (α2-KD) were fed chow or high-fat (HF) diets from 3 to 16 weeks of age. At 15 weeks, mice performed an exercise stress test to determine exercise capacity. In WT mice, muscle glucose uptake and skeletal muscle AMPKα2 activity was assessed in chronically catheterized mice (carotid artery/jugular vein) at 16 weeks. In a separate study, HF-fed WT and α2-KD mice performed 5 weeks of exercise training (from 15 to 20 weeks of age) to test whether AMPKα2 is necessary to restore work tolerance. HF-fed WT mice had reduced exercise tolerance during an exercise stress test, and an attenuation in muscle glucose uptake and AMPKα2 activity during a single bout of exercise (P<0.05 versus chow). In chow-fed α2-KD mice, running speed and time were impaired ∼45 and ∼55%, respectively (P<0.05 versus WT chow); HF feeding further reduced running time ∼25% (P<0.05 versus α2-KD chow). In response to 5 weeks of exercise training, HF-fed WT and α2-KD mice increased maximum running speed ∼35% (P<0.05 versus pre-training) and maintained body weight at pre-training levels, whereas body weight increased in untrained HF WT and α2-KD mice. Exercise training restored running speed to levels seen in healthy, chow-fed mice. HF feeding impairs AMPKα2 activity in skeletal muscle during exercise in vivo. Although this defect directly contributes to reduced exercise capacity, findings in HF-fed α2-KD mice show that AMPKα2-independent mechanisms are also involved. Importantly, α2-KD mice on a HF-fed diet adapt to regular exercise by increasing exercise tolerance, demonstrating that this adaptation is independent of skeletal muscle AMPKα2 activity.
Coeckelberghs, Ellen; Buys, Roselien; Goetschalckx, Kaatje; Cornelissen, Véronique A; Vanhees, Luc
2016-02-01
Peak exercise capacity is an independent predictor for mortality in patients with coronary artery disease. However, sometimes cardiopulmonary exercise tests are stopped prematurely. Therefore, submaximal exercise measures such as the oxygen uptake efficiency slope have been introduced. The aim of this study was to assess the prognostic value of the oxygen uptake efficiency slope and other exercise parameters, in patients with coronary artery disease. Between 2000 and 2011, 1409 patients with coronary artery disease (age 60.7 ± 9.9 years; 1205 males) underwent cardiopulmonary exercise tests. A maximal effort was not reached in 161 (11.5%) patients. The oxygen uptake efficiency slope was calculated and information on mortality was obtained. Cox proportional hazards regression analyses were used to assess the relation of oxygen uptake efficiency slope and other gas exchange variables with all-cause and cardiovascular mortality. Receiver operating characteristic curve analyses was performed to define optimal cut-off values. During an average follow-up of 7.45 ± 3.20 years (range 0.16-13.95 years), 158 patients died, among which 68 patients for cardiovascular reasons. The oxygen uptake efficiency slope was related to all-cause (hazard ratio: 0.568, p < 0.001) and cardiovascular (hazard ratio: 0.461, p < 0.001) mortality. When significant covariates were entered in the analysis, oxygen uptake efficiency slope remained related to mortality (p < 0.05). When other submaximal exercise parameters were added to the model, oxygen uptake efficiency slope and minute ventilation/carbon dioxide production slope also remained significantly related to mortality. The oxygen uptake efficiency slope is an independent predictor for all-cause and cardiovascular mortality in patients with coronary artery disease, irrespective of a truly maximal effort during cardiopulmonary exercise tests. Furthermore, the oxygen uptake efficiency slope provides prognostic information, complementary to the minute ventilation/carbon dioxide production slope and peak exercise capacity. © The European Society of Cardiology 2015.
Gerber, Stefan; Brookshire, E N Jack
2014-03-01
Nutrient limitation in terrestrial ecosystems is often accompanied with maintaining a nearly closed vegetation-soil nutrient cycle. The ability to retain nutrients in an ecosystem requires the capacity of the plant-soil system to draw down nutrient levels in soils effectually such that export concentrations in soil solutions remain low. Here we address the physical constraints of plant nutrient uptake that may be limited by the diffusive movement of nutrients in soils, by the uptake at the root/mycorrhizal surface, and from interactions with soil water flow. We derive an analytical framework of soil nutrient transport and uptake and predict levels of plant available nutrient concentration and residence time. Our results, which we evaluate for nitrogen, show that the physical environment permits plants to lower soil solute concentration substantially. Our analysis confirms that plant uptake capacities in soils are considerable, such that water movement in soils is generally too small to significantly erode dissolved plant-available nitrogen. Inorganic nitrogen concentrations in headwater streams are congruent with the prediction of our theoretical framework. Our framework offers a physical-based parameterization of nutrient uptake in ecosystem models and has the potential to serve as an important tool toward scaling biogeochemical cycles from individual roots to landscapes.
O3 uptake and drought stress effects on carbon acquisition of ponderosa pine in natural stands
N.E. Grulke; H.K. Preisler; C. Rose; J. Kirsch; L. Balduman
2002-01-01
⢠The effect of O3 exposure or uptake on carbon acquisition (net assimilation (A) or gross photosynthesis (Pg)), with and without drought stress, is reported here in 40-yr-old-ponderosa pine (Pinus ponderosa) trees. ⢠Maximum daily gas exchange was...
Uptake of Nickel by Synthetic Mackinawite
The uptake of aqueous Ni(II) by synthetic mackinawite (FeS) was examined in anaerobic batch experiments at near-neutral pH (5.2 to 8.4). Initial molar ratios of Ni(II) to FeS ranged from 0.008 to 0.83 and maximum Ni concentrations in mackinawite, expressed as the cation mol fract...
Meierhofer, Christian; Tavakkoli, Timon; Kühn, Andreas; Ulm, Kurt; Hager, Alfred; Müller, Jan; Martinoff, Stefan; Ewert, Peter; Stern, Heiko
2017-12-01
Good quality of life correlates with a good exercise capacity in daily life in patients with tetralogy of Fallot (ToF). Patients after correction of ToF usually develop residual defects such as pulmonary regurgitation or stenosis of variable severity. However, the importance of different hemodynamic parameters and their impact on exercise capacity is unclear. We investigated several hemodynamic parameters measured by cardiovascular magnetic resonance (CMR) and echocardiography and evaluated which parameter has the most pronounced effect on maximal exercise capacity determined by cardiopulmonary exercise testing (CPET). 132 patients with ToF-like hemodynamics were tested during routine follow-up with CMR, echocardiography and CPET. Right and left ventricular volume data, ventricular ejection fraction and pulmonary regurgitation were evaluated by CMR. Echocardiographic pressure gradients in the right ventricular outflow tract and through the tricuspid valve were measured. All data were classified and correlated with the results of CPET evaluations of these patients. The analysis was performed using the Random Forest model. In this way, we calculated the importance of the different hemodynamic variables related to the maximal oxygen uptake in CPET (VO 2 %predicted). Right ventricular pressure showed the most important influence on maximal oxygen uptake, whereas pulmonary regurgitation and right ventricular enddiastolic volume were not important hemodynamic variables to predict maximal oxygen uptake in CPET. Maximal exercise capacity was only very weakly influenced by right ventricular enddiastolic volume and not at all by pulmonary regurgitation in patients with ToF. The variable with the most pronounced influence was the right ventricular pressure.
Jha, Vinay Kumar; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi; MacKenzie, Kenneth J D
2005-08-31
A series of nCaO.Al2O3.2SiO2 samples (n=1-4) were prepared by solid-state reaction of mechanochemically treated mixtures of kaolinite and calcite fired at 600-1000 degrees C for 24 h. All the samples were X-ray amorphous after firing at 600-800 degrees C but had crystallized by 900 degrees C. The main crystalline phases were anorthite (n=1), gehlenite (n=2 and 3) and larnite (n=4). The uptake of Ni2+ by nCaO.Al2O3.2SiO2 samples fired at 800 and 900 degrees C was investigated at room temperature using solutions with initial Ni2+ concentrations of 0.1-50 mmol/l. Amorphous samples (fired at 800 degrees C) showed a higher Ni2+ uptake capacity than crystalline samples (fired at 900 degrees C). Ni2+ uptake was found to increase with increasing of CaO content. Amorphous 4CaO.Al2O3.2SiO2 showed the highest Ni2+ uptake capacity (about 9 mmol/g). The Ni2+ uptake abilities of the present samples are higher than those of other materials reported in the literature. Since the sorbed Ni2+/released Ca2+ ratios of these samples are close to unity, ion replacement of Ni2+ for Ca2+ is thought to be the principal mechanism of Ni2+ uptake by the present samples.
A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network
2016-04-10
to interference from a given transmission . We then use our algorithm to perform a network capacity analysis comparing different wireless technologies...A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network Greg Kuperman, Jun Sun, and Aradhana Narula-Tam MIT...the maximum achievable capacity of a multi-hop wireless mesh network subject to interference constraints. Being able to quickly determine the maximum
Li, Xiuyuan; Rennenberg, Heinz; Simon, Judy
2015-01-01
Competition for nitrogen (N), particularly in resource-limited habitats, might be avoided by different N acquisition strategies of plants. In our study, we investigated whether slow-growing European beech and fast-growing sycamore maple seedlings avoid competition for growth-limiting N by different N uptake patterns and the potential alteration by soil N availability in a microcosm experiment. We quantified growth and biomass indices, 15N uptake capacity and N pools in the fine roots. Overall, growth indices, N acquisition and N pools in the fine roots were influenced by species-specific competition depending on soil N availability. With inter-specific competition, growth of sycamore maple reduced regardless of soil N supply, whereas beech only showed reduced growth when N was limited. Both species responded to inter-specific competition by alteration of N pools in the fine roots; however, sycamore maple showed a stronger response compared to beech for almost all N pools in roots, except for structural N at low soil N availability. Beech generally preferred organic N acquisition while sycamore maple took up more inorganic N. Furthermore, with inter-specific competition, beech had an enhanced organic N uptake capacity, while in sycamore maple inorganic N uptake capacity was impaired by the presence of beech. Although sycamore maple could tolerate the suboptimal conditions at the cost of reduced growth, our study indicates its reduced competitive ability for N compared to beech. PMID:25983738
Chest wall mobility is related to respiratory muscle strength and lung volumes in healthy subjects.
Lanza, Fernanda de Cordoba; de Camargo, Anderson Alves; Archija, Lilian Rocha Ferraz; Selman, Jessyca Pachi Rodrigues; Malaguti, Carla; Dal Corso, Simone
2013-12-01
Chest wall mobility is often measured in clinical practice, but the correlations between chest wall mobility and respiratory muscle strength and lung volumes are unknown. We investigate the associations between chest wall mobility, axillary and thoracic cirtometry values, respiratory muscle strength (maximum inspiratory pressure and maximum expiratory pressure), and lung volumes (expiratory reserve volume, FEV(1), inspiratory capacity, FEV(1)/FVC), and the determinants of chest mobility in healthy subjects. In 64 healthy subjects we measured inspiratory capacity, FVC, FEV(1), expiratory reserve volume, maximum inspiratory pressure, and maximum expiratory pressure, and chest wall mobility via axillary and thoracic cirtometry. We used linear regression to evaluate the influence of the measured variables on chest wall mobility. The subjects' mean ± SD values were: age 24 ± 3 years, axillary cirtometry 6.3 ± 2.0 cm, thoracic cirtometry 7.5 ± 2.3 cm; maximum inspiratory pressure 90.4 ± 10.6% of predicted, maximum expiratory pressure 92.8 ± 13.5% of predicted, inspiratory capacity 99.7 ± 8.6% of predicted, FVC 101.9 ± 10.6% of predicted, FEV(1) 98.2 ± 10.3% of predicted, expiratory reserve volume 90.9 ± 19.9% of predicted. There were significant correlations between axillary cirtometry and FVC (r = 0.32), FEV(1) (r = 0.30), maximum inspiratory pressure (r = 0.48), maximum expiratory pressure (r = 0.25), and inspiratory capacity (r = 0.24), and between thoracic cirtometry and FVC (r = 0.50), FEV(1) (r = 0.48), maximum inspiratory pressure (r = 0.46), maximum expiratory pressure (r = 0.37), inspiratory capacity (r = 0.39), and expiratory reserve volume (r = 0.47). In multiple regression analysis the variable that best explained the axillary cirtometry variation was maximum inspiratory pressure (R(2) 0.23), and for thoracic cirtometry it was FVC and maximum inspiratory pressure (R(2) 0.32). Chest mobility in healthy subjects is related to respiratory muscle strength and lung function; the higher the axillary cirtometry and thoracic cirtometry values, the greater the maximum inspiratory pressure, maximum expiratory pressure, and lung volumes in healthy subjects.
Development of accelerated net nitrate uptake. [Zea mays L
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacKown, C.T.; McClure, P.R.
1988-05-01
Upon initial nitrate exposure, net nitrate uptake rates in roots of a wide variety of plants accelerate within 6 to 8 hours to substantially greater rates. Effects of solution nitrate concentrations and short pulses of nitrate ({le}1 hour) upon nitrate-induced acceleration of nitrate uptake in maize (Zea mays L.) were determined. Root cultures of dark-grown seedlings, grown without nitrate, were exposed to 250 micromolar nitrate for 0.25 to 1 hour or to various solution nitrate concentration (10-250 micromolar) for 1 hour before returning them to a nitrate-free solution. Net nitrate uptake rates were assayed at various periods following nitrate exposuremore » and compared to rates of roots grown either in the absence of nitrate (CaSO{sub 4}-grown) or with continuous nitrate for at least 20 hours. Three hours after initial nitrate exposure, nitrate pulse treatments increased nitrate uptake rates three- to four-fold compared to the rates of CaSO{sub 4}-grown roots. When cycloheximide (5 micrograms per milliliter) was included during a 1-hour pulse with 250 micromolar nitrate, development of the accelerated nitrate uptake state was delayed. Otherwise, nitrate uptake rates reached maximum values within 6 hours before declining. Maximum rates, however, were significantly less than those of roots exposed continuously for 20, 32, or 44 hours. Pulsing for only 0.25 hour with 250 micromolar nitrate and for 1 hour with 10 micromolar caused acceleration of nitrate uptake, but the rates attained were either less than or not sustained for a duration comparable to those of roots pulsed for 1 hour with 250 micromolar nitrate. These results indicate that substantial development of nitrate-induced accelerated nitrate uptake state can be achieved by small endogenous accumulations of nitrate, which appear to moderate the activity or level of root nitrate uptake.« less
Sucrose uptake by pinocytosis in Amoeba proteus and the influence of external calcium
1979-01-01
The relationship between Ca++ and pinocytosis was investigated in Amoeba proteus. Pinocytosis was induced with 0.01% alcian blue, a large molecular weight dye which binds irreversibly to the cell surface. The time-course and intensity of pinocytosis was monitored by following the uptake of [3H]SUCROSE. When the cells are exposed to 0.01% alcian blue, there is an immediate uptake of sucrose. The cells take up integral of 10% of their initial volume during the time-course of pinocytosis. The duration of pinocytosis in the amoeba is integral of 50 min, with maximum sucrose uptake occurring 15 min after the induction of pinocytosis. The pinocytotic uptake of sucrose is reversibly blocked at 3 degrees C and a decrease in pH increases the uptake of sucrose by pinocytosis. The process of pinocytosis is also dependent upon the concentration of the inducer in the external medium. The association between Ca++ and pinocytosis in A. proteus was investigated initially by determining the effect of the external Ca++ concentration on sucrose uptake induced by alcian blue. In Ca++-free medium, no sucrose uptake is observed in the presence of 0.01% alcian blue. As the Ca++ concentration is increased, up to a maximum of 0.1 mM, pinocytotic sucrose uptake is also increased. Increases in the external Ca++ concentration above 0.1 mM brings about a decrease in sucrose uptake. Further investigations into the association between Ca++ and pinocytosis demonstrated that the inducer of pinocytosis displaces surface calcium in the amoeba. It is suggested that Ca++ is involved in two separate stages in the process of pinocytosis; an initial displacement of surface calcium by the inducer which may increase the permeability of the membrane to solutes and a subsequent Ca++ influx bringing about localized increases in cytoplasmic Ca++ ion activity. PMID:512629
Takahashi, Tsuyoshi; Ohtsuka, Tatsuyuki; Uno, Yasuhiro; Utoh, Masahiro; Yamazaki, Hiroshi; Kume, Toshiyuki
2016-11-01
Cyclosporine A, an inhibitor of hepatic organic anion transporting polypeptides (OATPs), reportedly increased plasma concentrations of probe substrates, although its maximum unbound blood concentrations were lower than the experimental half-maximal inhibitory (IC 50 ) concentrations. Pre-incubation with cyclosporine A in vitro before simultaneous incubation with probes has been reported to potentiate its inhibitory effects on recombinant human OATP-mediated probe uptake. In the present study, the effects of cyclosporine A and rifampicin on recombinant cynomolgus monkey OATP-mediated pitavastatin uptake were investigated in pre- and simultaneous incubation systems. Pre-incubation with cyclosporine A, but not with rifampicin, decreased the apparent IC 50 values on recombinant cynomolgus monkey OATP1B1- and OATP1B3-mediated pitavastatin uptake. Application of the co-incubated IC 50 values toward R values (1 + [unbound inhibitor] inlet to the liver, theoretically maximum /inhibition constant) in static models, 1.1 in monkeys and 1.3 in humans, for recombinant cynomolgus monkey and human OATP1B1-mediated pitavastatin uptake might result in the poor prediction of drug interaction magnitudes. In contrast, the lowered IC 50 values after pre-incubation with cyclosporine A provided better prediction with R values of 3.9 for monkeys and 2.7 for humans when the estimated maximum cyclosporine A concentrations at the inlet to the liver were used. These results suggest that the enhanced inhibitory potential of perpetrator medicines by pre-incubation on cynomolgus monkey OATP-mediated pitavastatin uptake in vitro could be of value for the precise estimation of drug interaction magnitudes in silico, in accordance with the findings from pre-administration of inhibitors on pitavastatin pharmacokinetics validated in monkeys. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
McMurtrie, R. E.; Norby, R. J.; Näsholm, T.; Iversen, C.; Dewar, R. C.; Medlyn, B. E.
2011-12-01
Forest free-air CO2 enrichment (FACE) experiments have shown that annual nitrogen (N) uptake increases when trees are grown at elevated CO2 (eCO2) and that increased N uptake is critical for a sustained growth response to eCO2. Processes contributing to increased N uptake at eCO2 may include: accelerated decomposition of soil organic matter due to enhanced root carbon (C) exudation (so-called rhizosphere priming); increased C allocation to fine roots and increased root production at depth, both of which enhance N acquisition; differences in soil N availability with depth; changes in the abundance of N in chemical forms with differing mobility in soil; and reduced N concentrations, reduced maintenance respiration rates, and increased longevities of deeper roots. These processes have been synthesised in a model of annual N uptake in relation to the spatial distribution of roots. We hypothesise that fine roots are distributed spatially in order to maximise annual N uptake. The optimisation hypothesis leads to equations for the optimal vertical distribution of root biomass in relation to the distribution of available soil N and for maximum annual N uptake. We show how maximum N uptake and rooting depth are related to total root mass, and compare the optimal solution with an empirical function that has been fitted to root-distribution data from all terrestrial biomes. Finally, the model is used to explore the consequences of rhizosphere priming at eCO2 as observed at the Duke forest FACE experiment (Drake et al. 2011, Ecology Letters 14: 349-357) and of increasing N limitation over time as observed at the Oak Ridge FACE experiment (Norby et al. 2010, Proc. Nat. Acad. Sci. USA 107: 19368-19373).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, J.R.; Bailey, E.H.; Purvis, O.W.
1998-11-01
Uranium sorption experiments were carried out at {approximately}25 C using natural samples of the lichen Peltigera membranacea. Thalli were incubated in solutions containing 100 ppm U for up to 24 h at pH values from 2 to 10. Equilibrium sorption was not observed at less than {approximately}6 h under any pH condition. U sorption was strongest in the pH range 4--5, with maximum sorption occurring at a pH of 4.5 and an incubation time of 24 h. Maximum U uptake by P. membranacea averaged {approximately}42,000 ppm, or {approximately}4.2 wt% U. This appears to represent the highest concentration of biosorbed U,more » relative to solution U activity, of any lichen reported to date. Investigation of post-experimental lichen tissues using electron probe microanalysis (EPM) reveals that U uptake is spatially heterogeneous within the lichen body, and that U attains very high local concentrations on scattered areas of the upper cortex. Energy dispersive spectroscopic (EDS) analysis reveals that strong U uptake correlates with P signal intensity, suggesting involvement of biomass-derived phosphate ligands or surface functional groups in the uptake process.« less
Dioxin uptake by Indian plant species.
Pandey, J S; Kumar, R; Wate, S R
2008-08-01
Dioxins like various gaseous pollutants and aerosols can be scavenged by appropriate vegetative greenbelts. Based on their stomatal properties and the models for contaminant uptake, uptake of dioxin (2,3,7,8-TCDD) by three important Indian plant species, viz. Eugenia jambolana (Jamun), Azadirachta indica (Neem) and Ficus religiosa (Peepal), has been estimated. 2,3,7,8-TCDD is a contaminant with severe harmful ecological ramifications. Computations show that Ficus religiosa has highest uptake capacity. The present exercise has its utility in designing appropriate green-belts for mitigating adverse environmental and human health impacts due to dioxins. This can be an effective management option for mitigating the damages caused by dioxins.
van den Boer, Cindy; Vas Nunes, Jonathan H; Muller, Sara H; van der Noort, Vincent; van den Brekel, Michiel W M; Hilgers, Frans J M
2014-06-01
After total laryngectomy, patients suffer from pulmonary complaints due to the shortcut of the upper airways that results in decreased warming and humidification of inspired air. Laryngectomized patients are advised to use a heat and moisture exchanger (HME) to optimize the inspired air. According to manufacturers' guidelines, these medical devices should be replaced every 24 hours. The aim of this study is to determine whether HMEs still function after 24-hour tracheostoma application. Assessment of residual water uptake capacity of used HMEs by measuring the difference between wet and dry core weight. Tertiary comprehensive cancer center. Three hygroscopic HME types were tested after use by laryngectomized patients in long-term follow-up. Water uptake of 41 used devices (including 10 prematurely replaced devices) was compared with that of control (unused) devices of the same type and with a control device with a relatively low performance. After 24 hours, the mean water uptake of the 3 device types had decreased compared with that of the control devices. For only one type was this difference significant. None of the used HMEs had a water uptake lower than that of the low-performing control device. The water uptake capacity of hygroscopic HEMs is clinically acceptable although no longer optimal after 24-hour tracheostoma application. From a functional point of view, the guideline for daily device replacement is therefore justified. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomes, Ruth; Bhaumik, Asim, E-mail: msab@iacs.res.in
2015-02-15
We report a very simple and unique strategy for synthesis of a tertiary amine functionalized high surface area porous organic polymer (POP) PDVTA-1 through the co-polymerization of monomers divinylbenzene (DVB) and triallylamine (TAA) under solvothermal reaction conditions. Two different PDVTA-1 samples have been synthesized by varying the molar ratio of the monomers. The porous polymeric materials have been thoroughly characterized by solid state {sup 13}C CP MAS-NMR, FT-IR and UV–vis spectroscopy, N{sub 2} sorption, HR TEM and FE SEM to understand its chemical environment, nanostructure, bonding, morphology and related surface properties. PDVTA-1 with higher amine content (DVB/TAA=4.0) showed exceptionally highmore » CO{sub 2} uptake capacity of 85.8 wt% (19.5 mmol g{sup −1}) at 273 K and 43.69 wt% (9.93 mmol g{sup −1}) at 298 K under 3 bar pressure, whereas relatively low amine loaded material (DVB/TAA=7.0) shows uptake capacity of 59.2 wt% (13.45 mmol g{sup −1}) at 273 K and 34.36 wt% (7.81 mmol g{sup −1}) at 298 K. Highly porous nanostructure together with very high surface area and basicity at the surface due to the presence of abundant basic tertiary amine N-sites in the framework of PDVTA-1 could be responsible for very high CO{sub 2} adsorption. - Graphical abstract: Exceptionally high CO2 uptake (85.8 wt % at 273 K) has been observed over a high surface area porous organic polymer PDVTA-1 synthesized through copolymerization of divinylbenzene and triallyl amine. - Highlights: • Designing the synthesis of a new N-rich cross-linked porous organic polymer PDVTA-1. • PDVTA-1 showed mesoporosity with very high surface area of 903 m{sup 2} g{sup −1}. • High surface area and presence of basic sites facilitates the CO{sub 2} uptake. • PDVTA-1 showed exceptionally high CO{sub 2} adsorption capacity of 85.8 wt% at 273 K, 3 bar pressure.« less
USDA-ARS?s Scientific Manuscript database
Although tannin-rich forages are known to increase protein uptake and to reduce gastrointestinal nematode infections in grazing ruminants, most published research involves forages with condensed tannins (CT), while published literature lacks information on the anthelmintic capacity, nutritional bene...
Morphological respiratory diffusion capacity of the lungs of ball pythons (Python regius).
Starck, J Matthias; Aupperle, Heike; Kiefer, Ingmar; Weimer, Isabel; Krautwald-Junghanns, Maria-Elisabeth; Pees, Michael
2012-08-01
This study aims at a functional and morphological characterization of the lung of a boid snake. In particular, we were interested to see if the python's lungs are designed with excess capacity as compared to resting and working oxygen demands. Therefore, the morphological respiratory diffusion capacity of ball pythons (Python regius) was examined following a stereological, hierarchically nested approach. The volume of the respiratory exchange tissue was determined using computed tomography. Tissue compartments were quantified using stereological methods on light microscopic images. The tissue diffusion barrier for oxygen transport was characterized and measured using transmission electron micrographs. We found a significant negative correlation between body mass and the volume of respiratory tissue; the lungs of larger snakes had relatively less respiratory tissue. Therefore, mass-specific respiratory tissue was calculated to exclude effects of body mass. The volume of the lung that contains parenchyma was 11.9±5.0mm(3)g(-1). The volume fraction, i.e., the actual pulmonary exchange tissue per lung parenchyma, was 63.22±7.3%; the total respiratory surface was, on average, 0.214±0.129m(2); it was significantly negatively correlated to body mass, with larger snakes having proportionally smaller respiratory surfaces. For the air-blood barrier, a harmonic mean of 0.78±0.05μm was found, with the epithelial layer representing the thickest part of the barrier. Based on these findings, a median diffusion capacity of the tissue barrier ( [Formula: see text] ) of 0.69±0.38ml O(2)min(-1)mmHg(-1) was calculated. Based on published values for blood oxygen concentration, a total oxygen uptake capacity of 61.16mlO(2)min(-1)kg(-1) can be assumed. This value exceeds the maximum demand for oxygen in ball pythons by a factor of 12. We conclude that healthy individuals of P. regius possess a considerable spare capacity for tissue oxygen exchange. Copyright © 2012 Elsevier GmbH. All rights reserved.
Orthotopic bladder substitution in men revisited: identification of continence predictors.
Koraitim, M M; Atta, M A; Foda, M K
2006-11-01
We determined the impact of the functional characteristics of the neobladder and urethral sphincter on continence results, and determined the most significant predictors of continence. A total of 88 male patients 29 to 70 years old underwent orthotopic bladder substitution with tubularized ileocecal segment (40) and detubularized sigmoid (25) or ileum (23). Uroflowmetry, cystometry and urethral pressure profilometry were performed at 13 to 36 months (mean 19) postoperatively. The correlation between urinary continence and 28 urodynamic variables was assessed. Parameters that correlated significantly with continence were entered into a multivariate analysis using a logistic regression model to determine the most significant predictors of continence. Maximum urethral closure pressure was the only parameter that showed a statistically significant correlation with diurnal continence. Nocturnal continence had not only a statistically significant positive correlation with maximum urethral closure pressure, but also statistically significant negative correlations with maximum contraction amplitude, and baseline pressure at mid and maximum capacity. Three of these 4 parameters, including maximum urethral closure pressure, maximum contraction amplitude and baseline pressure at mid capacity, proved to be significant predictors of continence on multivariate analysis. While daytime continence is determined by maximum urethral closure pressure, during the night it is the net result of 2 forces that have about equal influence but in opposite directions, that is maximum urethral closure pressure vs maximum contraction amplitude plus baseline pressure at mid capacity. Two equations were derived from the logistic regression model to predict the probability of continence after orthotopic bladder substitution, including Z1 (diurnal) = 0.605 + 0.0085 maximum urethral closure pressure and Z2 (nocturnal) = 0.841 + 0.01 [maximum urethral closure pressure - (maximum contraction amplitude + baseline pressure at mid capacity)].
Esterified sago waste for engine oil removal in aqueous environment.
Ngaini, Zainab; Noh, Farid; Wahi, Rafeah
2014-01-01
Agro-waste from the bark of Metroxylon sagu (sago) was studied as a low cost and effective oil sorbent in dry and aqueous environments. Sorption study was conducted using untreated sago bark (SB) and esterified sago bark (ESB) in used engine oil. Characterization study showed that esterification has successfully improved the hydrophobicity, buoyancy, surface roughness and oil sorption capacity of ESB. Sorption study revealed that water uptake of SB is higher (30 min static: 2.46 g/g, dynamic: 2.67 g/g) compared with ESB (30 min static: 0.18 g/g, dynamic: 0.14 g/g). ESB, however, showed higher oil sorption capacity in aqueous environment (30 min static: 2.30 g/g, dynamic: 2.14) compared with SB (30 min static: 0 g/g, dynamic: 0 g/g). ESB has shown great poTENTial as effective oil sorbent in aqueous environment due to its high oil sorption capacity, low water uptake and high buoyancy.
In Vivo potassium-39 NMR spectra by the burg maximum-entropy method
NASA Astrophysics Data System (ADS)
Uchiyama, Takanori; Minamitani, Haruyuki
The Burg maximum-entropy method was applied to estimate 39K NMR spectra of mung bean root tips. The maximum-entropy spectra have as good a linearity between peak areas and potassium concentrations as those obtained by fast Fourier transform and give a better estimation of intracellular potassium concentrations. Therefore potassium uptake and loss processes of mung bean root tips are shown to be more clearly traced by the maximum-entropy method.
Rubio, Gerardo; Oesterheld, Martín; Alvarez, Carina R; Lavado, Raúl S
1997-10-01
Waterlogging frequently reduces plant biomass allocation to roots. This response may result in a variety of alterations in mineral nutrition, which range from a proportional lowering of whole-plant nutrient concentration as a result of unchanged uptake per unit of root biomass, to a maintenance of nutrient concentration by means of an increase in uptake per unit of root biomass. The first objective of this paper was to test these two alternative hypothetical responses. In a pot experiment, we evaluated how plant P concentration of Paspalum dilatatum, (a waterlogging-tolerant grass from the Flooding Pampa, Argentina) was affected by waterlogging and P supply and how this related to changes in root-shoot ratio. Under both soil P levels waterlogging reduced root-shoot ratios, but did not reduce P concentration. Thus, uptake of P per unit of root biomass increased under waterlogging. Our second objective was to test three non-exclusive hypotheses about potential mechanisms for this increase in P uptake. We hypothesized that the greater P uptake per unit of root biomass was a consequence of: (1) an increase in soil P availability induced by waterlogging; (2) a change in root morphology, and/or (3) an increase in the intrinsic uptake capacity of each unit of root biomass. To test these hypotheses we evaluated (1) changes in P availability induced by waterlogging; (2) specific root length of waterlogged and control plants, and (3) P uptake kinetics in excised roots from waterlogged and control plants. The results supported the three hypotheses. Soil P avail-ability was higher during waterlogging periods, roots of waterlogged plants showed a morphology more favorable to nutrient uptake (finer roots) and these roots showed a higher physiological capacity to absorb P. The results suggest that both soil and plant mechanisms contributed to compensate, in terms of P nutrition, for the reduction in allocation to root growth. The rapid transformation of the P uptake system is likely an advantage for plants inhabiting frequently flooded environments with low P fertility, like the Flooding Pampa. This advantage would be one of the reasons for the increased relative abundance of P. dilatatum in the community after waterlogging periods.
Faria-Urbina, Mariana; Oliveira, Rudolf K F; Segrera, Sergio A; Lawler, Laurie; Waxman, Aaron B; Systrom, David M
2018-01-01
Ambrisentan in 22 patients with pulmonary hypertension diagnosed during exercise (ePH) improved pulmonary hemodynamics; however, there was only a trend toward increased maximum oxygen uptake (VO 2 max) secondary to decreased maximum exercise systemic oxygen extraction (Ca-vO 2 ). We speculate that improved pulmonary hemodynamics at maximum exercise "unmasked" a pre-existing skeletal muscle abnormality.
E. Medina; W. Fernandez; F. Barboza
2015-01-01
Element uptake from substrate and resorption capacity of nutrients before leaf shedding are frequently species-specific and difficult to determine in natural settings. We sampled populations of Rhizophora mangle (salt-excluding species) and Laguncularia racemosa (salt-secreting species) in a coastal lagoon in the upper section of the Maracaibo strait in western...
Miyazawa, Taiki; Kamiyoshihara, Reina; Shimizu, Naoki; Harigae, Takahiro; Otoki, Yurika; Ito, Junya; Kato, Shunji; Miyazawa, Teruo
2018-01-01
Liposomes consisting of 100% phosphatidylcholine exhibit poor membrane fusion, cellular uptake and selective targeting capacities. To overcome these limitations, we used Amadori-glycated phosphatidylethanolamine, which is universally present in animals and commonly consumed in foods. We found that liposomes containing Amadori-glycated phosphatidylethanolamine exhibited significantly reduced negative membrane potential and demonstrated high cellular uptake. PMID:29515844
Ahmad, Munir; Usman, Adel R A; Al-Faraj, Abdullah S; Ahmad, Mahtab; Sallam, Abdelazeem; Al-Wabel, Mohammad I
2018-03-01
Biochar (BC) was produced by pyrolyzing the date palm leaf waste at 600 °C and then loaded with phosphorus (P) via sorption process. Greenhouse pot experiment was conducted to investigate the application effects of BC and P-loaded biochar (BCP) on growth and availability of P and heavy metals to maize (Zea mays L.) plants grown in contaminated mining soil. The treatments consisted of BC and BCP (at application rates of 5, 10, 20, and 30 g kg -1 of soil), recommended NK and NPK, and a control (no amendment). Sorption experiment showed that Langmuir predicted maximum P sorption capacity of BC was 13.71 mg g -1 . Applying BCP increased the soil available P, while BC and BCP significantly decreased the soil labile heavy metals compared to control. Likewise, heavy metals in exchangeable and reducible fractions were transformed to more stable fraction with BC and BCP applications. The highest application rate of BCP (3%) was most effective treatment in enhancing plant growth parameters (shoot and root lengths and dry matter) and uptake of P and heavy metals by 2-3 folds. However, based on metal uptake and phytoextraction indices, total heavy metals extraction by maize plants was very small for practical application. It could be concluded that using P-loaded biochar as a soil additive may be considered a promising tool to immobilize heavy metals in contaminated mining areas, while positive effects on the biomass growth of plants may assist the stabilization of contaminated areas affected by wind and water erosion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Maximal Oxygen Uptake, Sweating and Tolerance to Exercise in the Heat
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Castle, B. L.; Ruff, W. K.
1972-01-01
The physiological mechanisms that facilitate acute acclimation to heat have not been fully elucidated, but the result is the establishment of a more efficient cardiovascular system to increase heat dissipation via increased sweating that allows the acclimated man to function with a cooler internal environment and to extend his performance. Men in good physical condition with high maximal oxygen uptakes generally acclimate to heat more rapidly and retain it longer than men in poorer condition. Also, upon first exposure trained men tolerate exercise in the heat better than untrained men. Both resting in heat and physical training in a cool environment confer only partial acclimation when first exposed to work in the heat. These observations suggest separate additive stimuli of metabolic heat from exercise and environmental heat to increase sweating during the acclimation process. However, the necessity of utilizing physical exercise during acclimation has been questioned. Bradbury et al. (1964) have concluded exercise has no effect on the course of heat acclimation since increased sweating can be induced by merely heating resting subjects. Preliminary evidence suggests there is a direct relationship between the maximal oxygen uptake and the capacity to maintain thermal regulation, particularly through the control of sweating. Since increased sweating is an important mechanism for the development of heat acclimation, and fit men have high sweat rates, it follows that upon initial exposure to exercise in the heat, men with high maximal oxygen uptakes should exhibit less strain than men with lower maximal oxygen uptakes. The purpose of this study was: (1) to determine if men with higher maximal oxygen uptakes exhibit greater tolerance than men with lower oxygen uptakes during early exposure to exercise in the heat, and (2) to investigate further the mechanism of the relationship between sweating and maximal work capacity.
View northnortheast of drydock no. 2 and its portal cranes. ...
View north-northeast of drydock no. 2 and its portal cranes. Main crane, 50 long tons capacity/maximum height 118 "2", is at left; whip crane, 53 long tons capacity maximum height 173 "8" is at center; auxiliary crane, 15 long tons capacity/maximum height 161 "0" is at right. Building at left is the turret shed. The vessel at the lower right of the photograph is a receiving ship formerly used for processing and temporary housing of naval personnel. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Drydock No. 2, League Island, Philadelphia, Philadelphia County, PA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... storage capacity of 25,000 acre-feet and a surface area of 241 acres at maximum normal water surface... penstocks; (4) a powerhouse with four 250 MW pump/turbines having an installed capacity of approximately... capacity of 25,000 acre-feet and a surface area of 240 acres at maximum normal water surface elevation of 1...
Temperature and pH effects on plant uptake of benzotriazoles by sunflowers in hydroponic culture.
Castro, Sigifredo; Davis, Lawrence C; Erickson, Larry E
2004-01-01
This article describes a systematic approach to understanding the effect of environmental variables on plant uptake (phyto-uptake) of organic contaminants. Uptake (and possibly phytotransformation) of xenobiotics is a complex process that may differ from nutrient uptake. A specific group of xenobiotics (benzotriazoles) were studied using sunflowers grown hydroponically with changes of environmental conditions including solution volume, temperature, pH, and mixing. The response of plants to these stimuli was evaluated and compared using physiological changes (biomass production and water uptake) and estimated uptake rates (influx into plants), which define the uptake characteristics for the xenobiotic. Stirring of the hydroponic solution had a significant impact on plant growth and water uptake. Plants were healthier, probably because of a combination of factors such as improved aeration and increase in temperature. Uptake and possibly phytotransformation of benzotriazoles was increased accordingly. Experiments at different temperatures allowed us to estimate an activation energy for the reaction leading to triazole disappearance from the solution. The estimated activation energy was 43 kJ/mol, which indicates that the uptake process is kinetically limited. Culturing plants in triazole-amended hydroponic solutions at different pH values did not strongly affect the biomass production, water uptake, and benzotriazole uptake characteristics. The sunflowers showed an unexpected capacity to buffer the solution pH.
Waste biomass adsorbents for copper removal from industrial wastewater--a review.
Bilal, Muhammad; Shah, Jehanzeb Ali; Ashfaq, Tayyab; Gardazi, Syed Mubashar Hussain; Tahir, Adnan Ahmad; Pervez, Arshid; Haroon, Hajira; Mahmood, Qaisar
2013-12-15
Copper (Cu(2+)) containing wastewaters are extensively released from different industries and its excessive entry into food chains results in serious health impairments, carcinogenicity and mutagenesis in various living systems. An array of technologies is in use to remediate Cu(2+) from wastewaters. Adsorption is the most attractive option due to the availability of cost effective, sustainable and eco-friendly bioadsorbents. The current review is dedicated to presenting state of the art knowledge on various bioadsorbents and physico-chemical conditions used to remediate Cu(2+) from waste streams. The advantages and constraints of various adsorbents were also discussed. The literature revealed the maximum Cu adsorption capacities of various bioadsorbents in the order of algae>agricultural and forest>fungal>bacterial>activated carbon>yeast. However, based on the average Cu adsorption capacity, the arrangement can be: activated carbon>algal>bacterial>agriculture and forest-derived>fungal>yeast biomass. The data of Cu removal using these bioadsorbents were found best fit both Freundlich and Langmuir models. Agriculture and forest derived bioadsorbents have greater potential for Cu removal because of higher uptake, cheaper nature, bulk availability and mono to multilayer adsorption behavior. Higher costs at the biomass transformation stage and decreasing efficiency with desorption cycles are the major constraints to implement this technology. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jorgetto, Alexandre de O.; da Silva, Adrielli C. P.; Wondracek, Marcos H. P.; Silva, Rafael I. V.; Velini, Edivaldo D.; Saeki, Margarida J.; Pedrosa, Valber A.; Castro, Gustavo R.
2015-08-01
Through very simple and inexpensive processes, pata-de-vaca leaves were turned into a powder and applied as an adsorbent for the uptake of Cu(II) and Cd(II) from water. The material was characterized through SEM, EDX, FTIR and surface area measurement. The material had its point of zero charge determined (5.24), and its adsorption capacity was evaluated as a function of time, pH and metal concentration. The material presented fast adsorption kinetics, reaching adsorption equilibrium in less than 5 min and it had a good correlation with the pseudo-second order kinetic model. Optimum pH for the adsorption of Cu(II) and Cd(II) were found to be in the range from 4 to 5, approximately. In the experiment as a function of the analyte concentration, analogously to gas adsorption, the material presented a type II isotherm, indicating the formation of multilayers for both species. Such behavior was explained with basis in the alternation between cations and anions over the material's surface, and the maximum adsorption capacity, considering the formation of the multilayers were found to be 0.238 mmol L-1 for Cu(II) and 0.113 mmol L-1 for Cd(II).
Da-KGM based GO-reinforced FMBO-loaded aerogels for efficient arsenic removal in aqueous solution.
Ye, Shuxin; Jin, Weiping; Huang, Qing; Hu, Ying; Li, Yan; Li, Jing; Li, Bin
2017-01-01
Composites based on deacetylated konjac glucomannan (Da-KGM) and graphene oxide (GO) aerogels with iron and manganese oxides (FMBO) for effective removal of arsenic from contaminated water. Da-KGM, which was used as supporting composite matrix here, were firstly treated with GO and loaded FMBO. The obtained Da-KGM/GO/FMBO composite aerogels were characterized by compression test, thermo gravimetric analysis (TGA), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The characteristic results showed that addition of GO exhibited enhanced mechanical properties towards Da-KGM aerogels. What's more, results of FTIR indicated the strong intermolecular hydrogen bond interaction between KGM and GO. Batch adsorption tests were used to evaluate arsenic removal capacity. Da-KGM/GO loaded FMBO composite aerogels exhibited high adsorption ability for arsenite [As(III)] and arsenate [As(V)]. The adsorption results showed that the arsenic for both arsenite [As(III)] and arsenate [As(V)] removal process followed a pseudo-second-order rate equation and Langmuir monolayer adsorption. The maximum As(III) and As(V) uptake capacity of Da-KGM/GO(10%)/FMBO composite aerogels reached 30.21mgg -1 and 12.08mgg -1 respectively according to Langmuir isotherm at pH 7 and 323K. Copyright © 2016 Elsevier B.V. All rights reserved.
Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II) and Pb(II)
Wang, Shengye; Vincent, Thierry; Faur, Catherine; Guibal, Eric
2016-01-01
Alginate and algal-biomass (Laminaria digitata) beads were prepared by homogeneous Ca ionotropic gelation. In addition, glutaraldehyde-crosslinked poly (ethyleneimine) (PEI) was incorporated into algal beads. The three sorbents were characterized by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX): the sorption occurs in the whole mass of the sorbents. Sorption experiments were conducted to evaluate the impact of pH, sorption isotherms, and uptake kinetics. A special attention was paid to the effect of drying (air-drying vs. freeze-drying) on the mass transfer properties. For alginate, freeze drying is required for maintaining the porosity of the hydrogel, while for algal-based sorbents the swelling of the material minimizes the impact of the drying procedure. The maximum sorption capacities observed from experiments were 415, 296 and 218 mg Pb g−1 and 112, 77 and 67 mg Cu g−1 for alginate, algal and algal/PEI beads respectively. Though the sorption capacities of algal-beads decreased slightly (compared to alginate beads), the greener and cheaper one-pot synthesis of algal beads makes this sorbent more competitive for environmental applications. PEI in algal beads decreases the sorption properties in the case of the sorption of metal cations under selected experimental conditions. PMID:27598128
Loss of water transport capacity due to xylem cavitation in roots of two CAM succulents.
Linton, M J; Nobel, P S
1999-11-01
Loss of axial hydraulic conductance as a result of xylem cavitation was examined for roots of the Crassulacean acid metabolism (CAM) succulents Agave deserti and Opuntia ficus-indica. Vulnerability to cavitation was not correlated with either root size or vessel diameter. Agave deserti had a mean cavitation pressure of -0.93 ± 0.08 MPa by both an air-injection and a centrifugal method compared to -0.70 ± 0.02 MPa by the centrifugal method for O. ficus-indica, reflecting the greater tolerance of the former species to low water potentials in its native habitat. Substantial xylem cavitation would occur at a soil water potential of -0.25 MPa, resulting in a predicted 22% loss of conductance for A. deserti and 32% for O. ficus-indica. For an extended drought of 3 mo, further cavitation could cause a 69% loss of conductance for A. deserti and 62% for O. ficus-indica. A model of axial hydraulic flow based upon the cavitation response of these species predicted that water uptake rates are far below the maximum possible, owing to the high root water potentials of these desert succulents. Despite various shoot adaptations to aridity, roots of A. deserti and O. ficus-indica are highly vulnerable to cavitation, which partially limits water uptake in a wet soil but helps reduce water loss to a drying soil.
Mechanisms of Pb(II) sorption on a biogenic manganese oxide.
Villalobos, Mario; Bargar, John; Sposito, Garrison
2005-01-15
Macroscopic Pb(II) uptake experiments and Pb L3-edge extended X-ray absorption fine structure (EXAFS) spectroscopy were combined to examine the mechanisms of Pb(II) sequestration by a biogenic manganese oxide and its synthetic analogues, all of which are layer-type manganese oxides (phyllomanganates). Relatively fast Pb(II) sorption was observed, as well as extremely high sorption capacities, suggesting Pb incorporation into the structure of the oxides. EXAFS analysis revealed similar uptake mechanisms regardless of the specific nature of the phyllomanganate, electrolyte background, total Pb(II) loading, or equilibration time. One Pb-O and two Pb-Mn shells at distances of 2.30, 3.53, and 3.74 A, respectively, were found, as well as a linear relationship between Brunauer-Emmett-Teller (BET; i.e., external) specific surface area and maximum Pb(II) sorption that also encompassed data from previous work. Both observations support the existence of two bonding mechanisms in Pb(II) sorption: a triple-corner-sharing complex in the interlayers above/ below cationic sheet vacancies (N theoretical = 6), and a double-corner-sharing complex on particle edges at exposed singly coordinated -O(H) bonds (N theoretical = 2). General prevalence of external over internal sorption is predicted, but the two simultaneous sorption mechanisms can account for the widely noted high affinity of manganese oxides for Pb(ll) in natural environments.
Künstler, E C S; Finke, K; Günther, A; Klingner, C; Witte, O; Bublak, P
2018-01-01
Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.
Effects of load proportioning on the capacity of multiple-hole composite joints
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Chastain, P. A.
1985-01-01
This study addresses the issue of adjusting the proportion of load transmitted by each hole in a multiple-hole joint so that the joint capacity is a maximum. Specifically two-hole-in-series joints are examined. The results indicate that when each hole reacts 50% of the total load, the joint capacity is not a maximum. One hole generally is understressed at joint failure. The algorithm developed to determine the load proportion at each hole which results in maximum capacity is discussed. The algorithm includes two-dimensional finite-element stress analysis and failure criteria. The algorithm is used to study the effects of joint width, hole spacing, and hole to joint-end distance on load proportioning and capacity. To study hole size effects, two hole diameters are considered. Three laminates are considered: a quasi-isotropic laminate; a cross-ply laminate; and a 45 degree angle-ply laminate. By proportioning the load, capacity can be increased generally from 5 to 10%. In some cases a greater increase is possible.
Khani, Rouhollah; Sobhani, Sara; Beyki, Mostafa Hossein; Miri, Simin
2018-04-15
This research focuses on removing Direct Blue 71 (DB 71) from aqueous solution in an efficient and very fast route by ionic liquid mediated γ-Fe 2 O 3 magnetic ionomer. 2-hydroxyethylammonium sulphonate immobilized on γ-Fe 2 O 3 nanoparticles (γ-Fe 2 O 3 -2-HEAS) was used for this purpose. The influence of shaking time, medium pH, the concentration of sorbent and NaNO 3 on removal was evaluated to greatly influence removal extent. The optimal removal conditions were determined by response surface methodology based on the four-variable central composite design to obtain maximum removal efficiency and determine the significance and interaction effect of the variables on the removal of target triazo dye. The results have shown that an amount of 98.2% as % removal under the optimum conditions. The adsorption kinetics and isotherms were well fitted to a pseudo-second order model and Freundlich model, respectively. Based on these models, the maximum dye adsorption capacity (Q m ) of 47.60mgg -1 was obtained. Finally, the proposed nano-adsorbent was applied satisfactorily for removal of target triazo dye from different water samples. Copyright © 2017 Elsevier Inc. All rights reserved.
Ruiz, J; Arbib, Z; Alvarez-Díaz, P D; Garrido-Pérez, C; Barragán, J; Perales, J A
2014-05-20
This work was aimed at studying the effect of light-darkness and high-low biomass concentrations in the feasibility of removing nitrogen and phosphorus from urban treated wastewater by the microalga Scenedesmus obliquus. Laboratory experiments were conducted in batch, where microalgae were cultured under different initial biomass concentrations (150 and 1500mgSSl(-1)) and light conditions (dark or illuminated). Nutrient uptake was more dependent on internal nutrient content of the biomass than on light presence or biomass concentration. When a maximum nitrogen or phosphorus content in the biomass was reached (around 8% and 2%, respectively), the removal of that nutrient was almost stopped. Biomass concentration affected more than light presence on the nutrient removal rate, increasing significantly with its increase. Light was only required to remove nutrients when the maximum nutrient storage capacity of the cells was reached and further growth was therefore needed. Residence times to maintain a stable biomass concentration, avoiding the washout of the reactor, were much higher than those needed to remove the nutrients from the wastewater. This ability to remove nutrients in the absence of light could lead to new configurations of reactors aimed to wastewater treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Vinodh, Rajangam; Sangeetha, Dharmalingam
2013-08-01
The present study is aimed at synthesizing a novel anion exchange composite membrane from quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene [QPSEBS] and functionalized multi walled carbon nanotubes (f-MWCNT) by solution casting method. The characteristic properties of the QPSEBS/f-MWCNT composite membranes were investigated using Fourier transform infrared (FTIR), UV-Visible spectroscopy, thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD) studies and Raman spectroscopy. The water uptake, ion exchange capacity, ionic conductivity, methanol permeability and selectivity ratio of the membranes were also studied. The prepared composite membranes were tested in an in-house fabricated alkaline membrane fuel cell (AMFC) set up using Pt/C as the common anode catalyst and three different cathode catalysts namely Pt/C, Pd-Ni/C and Ag/C. Among all the three cathode catalysts, Pt/C for QPSEBS/5% f-MWCNT is found to show the maximum power density and open circuit voltage (OCV) of 187 mW cm(-2) and 0.73 V respectively. For direct methanol alkaline membrane fuel cells (DMAMFC), the OCV of QPSEBS/5% f-MWCNT is found to be 0.76 V and the maximum power density of 59.5 mW cm(-2) is achieved at a current density of 175 mA cm(-2).
Acetate transport and utilization in the rat brain.
Deelchand, Dinesh K; Shestov, Alexander A; Koski, Dee M; Uğurbil, Kâmil; Henry, Pierre-Gilles
2009-05-01
Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-13C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMR(ace)) increased progressively and reached close to saturation for plasma acetate concentration > 2-3 mM, whereas brain acetate concentration continued to increase. The Michaelis-Menten constant for brain acetate utilization (K(M)(util) = 0.01 +/- 0.14 mM) was much smaller than for acetate transport through the blood-brain barrier (BBB) (K(M)(t) = 4.18 +/- 0.83 mM). The maximum transport capacity of acetate through the BBB (V(max)(t) = 0.96 +/- 0.18 micromol/g/min) was nearly twofold higher than the maximum rate of brain acetate utilization (V(max)(util) = 0.50 +/- 0.08 micromol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2-3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the BBB, but occurs after entry of acetate into the brain.
ERIC Educational Resources Information Center
Brown, Brendan; Nuberg, Ian; Llewellyn, Rick
2018-01-01
Purpose: The limited uptake of improved agricultural practices in Africa raise questions on the functionality of current agricultural research systems. Our purpose is to explore the capacity for local innovation within the research systems of Ethiopia, Malawi and Mozambique. Design/Methodology/Approach: Using Conservation Agriculture (CA) as a…
Jian, Ming; He, Hua; Ma, Changsong; Wu, Yan; Yang, Hao
2017-05-17
This article studies the price competition and cooperation in a duopoly that is subjected to carbon emissions cap. The study assumes that in a departure from the classical Bertrand game, there is still a market for both firms' goods regardless of the product price, even though production capacity is limited by carbon emissions regulation. Through the decentralized decision making of both firms under perfect information, the results are unstable. The firm with the lower maximum production capacity under carbon emissions regulation and the firm with the higher maximum production capacity both seek market price cooperation. By designing an internal carbon credits trading mechanism, we can ensure that the production capacity of the firm with the higher maximum production capacity under carbon emissions regulation reaches price equilibrium. Also, the negotiation power of the duopoly would affect the price equilibrium.
Kumar, Manish; Prasad, Satyendra K.; Hemalatha, Siva
2016-01-01
Objective. The whole plant of Houttuynia cordata has been reported to have potent antihyperglycemic activity. Therefore, the present study was undertaken to investigate the glucose utilization capacity of bioactive fractions of ethanol extract of Houttuynia cordata (HC) in isolated rat hemidiaphragm. Methods. All the fractions, that is, aqueous (AQ), hexane (HEX), chloroform (CHL), and ethyl acetate (EA), obtained from ethanol extract of H. cordata were subjected to phytochemical standardization use in quercetin as a marker with the help of HPTLC. Further, glucose utilization capacity by rat hemidiaphragm was evaluated in 12 different sets of in vitro experiments. In the study, different fractions from H. cordata as mentioned above were evaluated, where insulin was used as standard and quercetin as a biological standard. Results. Among all the tested fractions, AQ and EA significantly increased glucose uptake by isolated rat hemidiaphragm compared to negative control. Moreover, AQ fractions enhanced the uptake of glucose significantly (p < 0.05) and was found to be more effective than insulin. Conclusions. The augmentation in glucose uptake by hemidiaphragm in presence of AQ and EA fractions may be attributed to the presence of quercetin, which was found to be 7.1 and 3.2% w/w, respectively, in both the fractions. PMID:26925100
Kumar, Manish; Prasad, Satyendra K; Hemalatha, Siva
2016-01-01
Objective. The whole plant of Houttuynia cordata has been reported to have potent antihyperglycemic activity. Therefore, the present study was undertaken to investigate the glucose utilization capacity of bioactive fractions of ethanol extract of Houttuynia cordata (HC) in isolated rat hemidiaphragm. Methods. All the fractions, that is, aqueous (AQ), hexane (HEX), chloroform (CHL), and ethyl acetate (EA), obtained from ethanol extract of H. cordata were subjected to phytochemical standardization use in quercetin as a marker with the help of HPTLC. Further, glucose utilization capacity by rat hemidiaphragm was evaluated in 12 different sets of in vitro experiments. In the study, different fractions from H. cordata as mentioned above were evaluated, where insulin was used as standard and quercetin as a biological standard. Results. Among all the tested fractions, AQ and EA significantly increased glucose uptake by isolated rat hemidiaphragm compared to negative control. Moreover, AQ fractions enhanced the uptake of glucose significantly (p < 0.05) and was found to be more effective than insulin. Conclusions. The augmentation in glucose uptake by hemidiaphragm in presence of AQ and EA fractions may be attributed to the presence of quercetin, which was found to be 7.1 and 3.2% w/w, respectively, in both the fractions.
Stoller, O; de Bruin, E D; Schindelholz, M; Schuster, C; de Bie, R A; Hunt, K J
2013-01-01
Robotics-assisted treadmill exercise (RATE) with focus on motor recovery has become popular in early post-stroke rehabilitation but low endurance for exercise is highly prevalent in these individuals. This study aimed to develop an exercise testing method using robotics-assisted treadmill exercise to evaluate aerobic capacity after severe stroke. Constant load testing (CLT) based on body weight support (BWS) control, and incremental exercise testing (IET) based on guidance force (GF) control were implemented during RATE. Analyses focussed on step change, step response kinetics, and peak performance parameters of oxygen uptake. Three subjects with severe motor impairment 16-23 days post-stroke were included. CLT yielded reasonable step change values in oxygen uptake, whereas response kinetics of oxygen uptake showed low goodness of fit. Peak performance parameters were not obtained during IET. Exercise testing in post-stroke individuals with severe motor impairments using a BWS control strategy for CLT is deemed feasible and safe. Our approach yielded reasonable results regarding cardiovascular performance parameters. IET based on GF control does not provoke peak cardiovascular performance due to uncoordinated walking patterns. GF control needs further development to optimally demand active participation during RATE. The findings warrant further research regarding the evaluation of exercise capacity after severe stroke.
Hossain, G S M; McLaughlan, R G
2012-09-01
Wood and coal, as low-cost sorbents, have been evaluated as an alternative to commercial granular activated carbon (GAC) for chlorophenol removal. Kinetic experiments indicated that filter coal had a significantly lower rate of uptake (approximately 10% of final uptake was achieved after three hours) than the other sorbents, owing to intra-particle diffusion limitations. The data fitted a pseudo-second-order model. Sorption capacity data showed that GAC had a high sorption capacity (294-467 mg g(-1)) compared with other sorbents (3.2-7.5 mg(g-1)). However, wood and coal had a greater sorption capacity per unit surface area than GAC. Sorption equilibrium data was best predicted using a Freundlich adsorption model. The sorption capacity for all sorbents was 2-chlorophenol < 4-chlorophenol < 2, 4-dichlorophenol, which correlates well with solute hydrophobicity, although the relative differences were much less for coal than the other sorbents. The results showed that pine, hardwood and filter coal can be used as sorbent materials for the removal of chlorophenol from water; however, kinetic considerations may limit the application of filter coal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Anna M.; Warren, Jeffrey; Hanson, Paul J.
Using seasonal- and cohort-specific photosynthetic temperature response functions, we quantified the physiological significance of maintaining multiple foliar cohorts in mature (~40-45 year old) Picea mariana trees in an ombrotrophic Sphagnum-bog, northern Minnesota, USA. We measured photosynthetic capacity, foliar respiration (Rd), biochemistry and morphology to estimate annual carbon (C) uptake by cohort, season and canopy position. Temperature response of key photosynthetic parameters at 25 C (i.e., light-saturated rate of CO 2 assimilation (Asat), light-saturated rate of Rubisco carboxylation (Vcmax), light-saturated electron transport rate (Jmax)) were clearly dependent on season and were generally less responsive in younger needles. Temperature optimums range betweenmore » 18.7-23.7, 31.3-38.3 and 28.7-36.7 C for Asat, Vcmax and Jmax respectively. Current-year (Y0) foliage had lower photosynthetic capacities compared to one-year-old (Y1) and two-year-old (Y2) foliage. As Y0 needles matured, values of Asat, Vcmax, Jmax, foliar LMA and nitrogen increased. Values of Vcmax, Jmax and Rd were related to foliar nitrogen but only in the youngest (Y0) cohort. Foliar ontogeny affected photosynthetic capacity more than growth temperature. Morphological and physiological cohort differences were reflected by their annual contribution to modeled C uptake, with a ~36% lower estimated annual C uptake by Y0 needles (LAI 0.52 m 2m -2) compared to Y1&2 cohorts (LAI 0.67 m 2m -2). Collectively, these results illustrate the physiological and ecological significance of characterizing multiple foliar cohorts during bud break and throughout the growth season, and for cumulative C uptake model estimates.« less
Prediction of Maximum Oxygen Uptake Using Both Exercise and Non-Exercise Data
ERIC Educational Resources Information Center
George, James D.; Paul, Samantha L.; Hyde, Annette; Bradshaw, Danielle I.; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.
2009-01-01
This study sought to develop a regression model to predict maximal oxygen uptake (VO[subscript 2max]) based on submaximal treadmill exercise (EX) and non-exercise (N-EX) data involving 116 participants, ages 18-65 years. The EX data included the participants' self-selected treadmill speed (at a level grade) when exercise heart rate first reached…
Oliveira, Marcio Aparecido; Vidotto, Milena Carlos; Nascimento, Oliver Augusto; Almeida, Renato; Santoro, Ilka Lopes; Sperandio, Evandro Fornias; Jardim, José Roberto; Gazzotti, Mariana Rodrigues
2015-01-01
Studies have shown that physiopathological changes to the respiratory system can occur following thoracic and abdominal surgery. Laminectomy is considered to be a peripheral surgical procedure, but it is possible that thoracic spinal surgery exerts a greater influence on lung function. The aim of this study was to evaluate the pulmonary volumes and maximum respiratory pressures of patients undergoing cervical, thoracic or lumbar spinal surgery. Prospective study in a tertiary-level university hospital. Sixty-three patients undergoing laminectomy due to diagnoses of tumors or herniated discs were evaluated. Vital capacity, tidal volume, minute ventilation and maximum respiratory pressures were evaluated preoperatively and on the first and second postoperative days. Possible associations between the respiratory variables and the duration of the operation, surgical diagnosis and smoking status were investigated. Vital capacity and maximum inspiratory pressure presented reductions on the first postoperative day (20.9% and 91.6%, respectively) for thoracic surgery (P = 0.01), and maximum expiratory pressure showed reductions on the first postoperative day in cervical surgery patients (15.3%; P = 0.004). The incidence of pulmonary complications was 3.6%. There were reductions in vital capacity and maximum respiratory pressures during the postoperative period in patients undergoing laminectomy. Surgery in the thoracic region was associated with greater reductions in vital capacity and maximum inspiratory pressure, compared with cervical and lumbar surgery. Thus, surgical manipulation of the thoracic region appears to have more influence on pulmonary function and respiratory muscle action.
Dong, Xinzhe; Xing, Ligang; Wu, Peipei; Fu, Zheng; Wan, Honglin; Li, Dengwang; Yin, Yong; Sun, Xiaorong; Yu, Jinming
2013-01-01
To explore the relationship of a new PET image parameter, (18)F-fluorodeoxyglucose ((18)F-FDG) uptake heterogeneity assessed by texture analysis, with maximum standardized uptake value (SUV(max)) and tumor TNM staging. Forty consecutive patients with esophageal squamous cell carcinoma were enrolled. All patients underwent whole-body preoperative (18)F-FDG PET/CT. Heterogeneity of intratumoral (18)F-FDG uptake was assessed on the basis of the textural features (entropy and energy) of the three-dimensional images using MATLAB software. The correlations between the textural parameters and SUV(max), histological grade, tumor location, and TNM stage were analyzed. Tumors with higher SUV(max) were seen to be more heterogenous on (18)F-FDG uptake. Significant correlations were observed between T stage and SUV(max) (r(s)=0.390, P=0.013), entropy (rs=0.693, P<0.001), and energy (r(s)=-0.469, P=0.002). Correlations were also found between SUV(max), entropy, energy, and N stage (r(s)=0.326, P=0.04; r(s)=0.501, P=0.001; r(s)=-0.413, P=0.008). The American Joint Committee on Cancer stage correlated significantly with all metabolic parameters. The receiver-operating characteristic curve demonstrated an entropy of 4.699 as the optimal cutoff point for detecting tumors above stage II(b) with an areas under the ROC curve of 0.789 (P<0.001). This study provides initial evidence for the relationship between the new parameter of tumor uptake heterogeneity and the commonly used simplistic parameter of SUV and tumor stage. Our findings suggest a complementary role of these parameters in the staging and prognosis of esophageal squamous cell carcinoma.
NASA Astrophysics Data System (ADS)
Ayub, J. Juri; Valverde, L. Rubio; Garcia-Sanchez, M. J.; Fernandez, J. A.; Velasco, R. H.
2008-08-01
Caesium uptake by plant roots has been normally associated with the uptake of potassium as the potassium transport systems present in plants have also the capacity to transport caesium. Three grass species (Eragrostis curvula, Cynodon sp and Distichlis spicata) growing in seminatural grassland of central Argentina were selected to study their capability to incorporate Cs+ (and K+) using electrophysiological techniques. Although the 137Cs soil inventory ranged between 328-730 Bq m-2 in this region, no 137Cs activity was detected in these plants. However, all the species, submitted previously to K+ starvation, showed the uptake of both Cs+ and K+ when micromolar concentrations of these cations were present in the medium. The uptake showed saturation kinetics for both cations that could be fitted to the Michelis-Menten model. KM values were smaller for K+ than for Cs+, indicating a higher affinity for the first cation. The presence of increasing K+ concentrations in the assay medium inhibited Cs+ uptake in Cynodon sp., as expected if both cations are transported by the same transport systems. This effect is due to the competition of both ions for the union sites of the high affinity potassium transporters. In field situation, where soil concentration of Cs+ is smaller than K+ concentration, is then expectable that caesium activity in plants is not detectable. Nevertheless, the studied plants would have the capacity to incorporate caesium if its availability in soil solution increases. In addition, studies of Cs/K interaction can help us to understand the variability in transfer factors.
El-Sayed, Mayyada M H; Mostafa, Amany A; Gaafar, Alaa M; El Hotaby, Walid; Hamzawy, Esmat Ma; El-Okaily, Mohamed S; Gamal-Eldeen, Amira M
2017-02-24
This work investigates and compares the influence of the synthesis process on the in vitro bioactivity of two quaternary bioactive glasses prepared via melting and sol-gel (SG) techniques. The two glasses are named MG and SG, respectively. Powder samples were soaked in simulated body fluid for different time intervals to study the kinetics of Ca and P uptake onto their surface as well as Si release. The uptake kinetics followed the pseudo-second order model, and the kinetic parameters in addition to the initial rates were estimated. MG manifested higher Ca uptake capacity than SG which could be attributed to the presence of a residual organic layer capping the surface of SG, as was confirmed by Fourier transform infrared and nuclear magnetic resonance analyses. However, higher rate of Ca uptake was exhibited by SG probably due to its higher reactivity that resulted from its smaller nano-size and higher negative charge as was evident from transmission electron microscopy and dynamic light scattering measurements, respectively. Furthermore, MG showed slightly higher P uptake capacity and lower amount of Si release. Initial rates of Ca and P uptakes onto SG as well as Si release from SG exceeded those of MG. Human bone osteosarcoma cells (Saos-2) were co-cultured with both MG and SG glasses and the latter showed higher alkaline phosphatase activity and higher cell growth induction. The results showed the promising potential of using both bioactive glasses in bone regeneration. However, the choice of the appropriate bioactive glass depends on the targeted applications.
King, Gary M; Weber, Carolyn F; Nanba, Kenji; Sato, Yoshinori; Ohta, Hiroyuki
2008-01-01
We have assayed rates of atmospheric CO and hydrogen uptake, maximum potential CO uptake and the major phylogenetic composition of CO-oxidizing bacterial communities for a variety of volcanic deposits on Miyake-jima, Japan. These deposits represented different ages and stages of plant succession, ranging from unvegetated scoria deposited in 1983 to forest soils on deposits >800 yr old. Atmospheric CO and hydrogen uptake rates varied from -2.0±1.8-6.3±0.1 mg CO m(-2) d(-1) and 0.0±0.4-2.0±0.2 mg H(2) m(-2) d(-1), respectively, and were similar to or greater than values reported for sites on Kilauea volcano, Hawaii, USA. At one of the forested sites, CO was emitted to the atmosphere, while two vegetated sites did not consume atmospheric hydrogen, an unusual observation. Although maximum potential CO uptake rates were also comparable to values for Kilauea, the relationship between these rates and organic carbon contents of scoria or soil indicated that CO oxidizers were relatively more abundant in Miyake-jima deposits. Phylogenetic analyses based on the large sub-unit gene for carbon monoxide dehydrogenase (coxL) indicated that many novel lineages were present on Miyake-jima, that CO-oxidizing Proteobacteria were prevalent in vegetated sites and that community structure appeared to vary more than composition among sites.
Stoller, Oliver; Schindelholz, Matthias; Bichsel, Lukas; Schuster, Corina; de Bie, Rob A; de Bruin, Eling D; Hunt, Kenneth J
2014-07-01
The majority of post-stroke individuals suffer from low exercise capacity as a secondary reaction to immobility. The aim of this study was to prove the concept of feedback-controlled robotics-assisted treadmill exercise (RATE) to assess aerobic capacity and guide cardiovascular exercise in severely impaired individuals early after stroke. Subjects underwent constant load and incremental exercise testing using a human-in-the-loop feedback system within a robotics-assisted exoskeleton (Lokomat, Hocoma AG, CH). Inclusion criteria were: stroke onset ≤8 weeks, stable medical condition, non-ambulatory status, moderate motor control of the lower limbs and appropriate cognitive function. Outcome measures included oxygen uptake kinetics, peak oxygen uptake (VO2peak), gas exchange threshold (GET), peak heart rate (HRpeak), peak work rate (Ppeak) and accuracy of reaching target work rate (P-RMSE). Three subjects (18-42 d post-stroke) were included. Oxygen uptake kinetics during constant load ranged from 42.0 to 60.2 s. Incremental exercise testing showed: VO2peak range 19.7-28.8 ml/min/kg, GET range 11.6-12.7 ml/min/kg, and HRpeak range 115-161 bpm. Ppeak range was 55.2-110.9 W and P-RMSE range was 3.8-7.5 W. The concept of feedback-controlled RATE for assessment of aerobic capacity and guidance of cardiovascular exercise is feasible. Further research is warranted to validate the method on a larger scale. Aerobic capacity is seriously reduced in post-stroke individuals as a secondary reaction to immobility. Robotics-assisted walking devices may have substantial clinical relevance regarding assessment and improvement of aerobic capacity early after stroke. Feedback-controlled robotics-assisted treadmill exercise represents a new concept for cardiovascular assessment and intervention protocols for severely impaired individuals.
Zugck, C; Krüger, C; Dürr, S; Gerber, S H; Haunstetter, A; Hornig, K; Kübler, W; Haass, M
2000-04-01
The 6-min walk test may serve as a more simple clinical tool to assess functional capacity in congestive heart failure than determination of peak oxygen uptake by cardiopulmonary exercise testing. The purpose of the study was to prospectively examine whether the distance ambulated during a 6-min walk test (i) correlates with peak oxygen uptake, (ii) allows peak oxygen uptake to be predicted, and (iii) provides prognostic information similar to peak oxygen uptake in patients with dilated cardiomyopathy and left ventricular ejection fraction < or = 35%. In 113 patients (age: 54+/-12 years, NYHA: 2.2+/-0.8) with dilated cardiomyopathy (left ventricular ejection fraction 19+/-7%) a 6-min walk test and cardiopulmonary exercise testing were performed. The 6-min walk test and peak oxygen uptake were closely correlated at the initial visit (r=0.68, n=113), as well as after 263+/-114 (r=0.71, n=28) and 381+/-170 days (r=0.74, n=14). During serial exercise testing the 6-min walk test allowed peak oxygen uptake to be reliably predicted (r=0.76 between calculated and real peak oxygen uptake). After 528+/-234 days, 42 patients were hospitalized due to worsening heart failure and/or died from cardiovascular causes. Compared to clinically stable patients, these 42 patients walked a shorter distance (423+/-104 vs 501+/-95 m, P<0.001) and had a lower peak oxygen uptake (12.7+/-4.0 vs 17.4 + 5.6 ml x min(-1) x kg(-1), P<0.001). By univariate analysis the 6-min walk test outperformed other prognostic parameters such as left ventricular ejection fraction, cardiac index and plasma norepinephrine concentration and conferred a prognostic power similar to peak oxygen uptake. This predictive value could be further improved in a multivariate model, by combining the 6-min walk test with independent variables, such as left ventricular ejection fraction or cardiac index. The 6-min walk test correlated with peak oxygen uptake when tested serially over the course of the disease. Although both tests define two distinct domains of functional capacity, the 6-min walk test provides prognostic information very similar to peak oxygen uptake in congestive heart failure patients with dilated cardiomyopathy.
Hu, Z R; Wentzel, M C; Ekama, G A
2002-01-01
In this paper the advantages and disadvantages of denitrifying PAOs (polyphosphate accumulating organisms) in conventional BNRAS (biological nutrient removal activated sludge) and external nitrification BNRAS (ENBNRAS) systems are evaluated, with experimental data exhibiting a range of anoxic P uptake from low (<10%) to very high (>60%). The results indicate that the specific denitrification rate of the PAOs on internally stored PHB COD is about 1/5th of that of the "ordinary" heterotrophic organisms on SBCOD, and the PAOs contribute little (maximum 20%) to the denitrification in BNRAS systems even when the anoxic P uptake is high (60% of the total P uptake). Considering the unpredictable nature of anoxic P uptake and the reduction in BEPR it causes compared with aerobic P uptake BEPR, it is concluded that anoxic P uptake does not add a significant advantage to the BNR system.
Feher, J J; Waybright, T D; Fine, M L
1998-08-01
The sonic muscle of the oyster toadfish, Opsanus tau, can produce unfused contractions at 300 Hz. Electron microscopy shows a great abundance of the Sarcoplasmic reticulum (SR) in this muscle, but no functional characterization of the capabilities of the SR has been reported. We measured the oxalate-supported Ca2+ uptake rate and capacities of homogenates of toadfish sonic muscle and rat extensor digitorum longus (EDL) muscle, and estimated the number of pump units by titration with thapsigargin, a high-affinity, specific inhibitor of the SR Ca-ATPase. The Ca2+ uptake rate averaged 70.9 +/- 9.5 mumol min -1 per g tissue for the toad fish sonic muscle, and 73.5 +/- 3.7 mumol min -1 g-1 for rat EDL. The capacity for Ca2+ -oxalate uptake was 161 +/- 20 mumol g -1 and 33 +/- 2 mumol g -1 for toadfish sonic muscle and rat EDL, respectively. Thus, the rates of Ca2+ uptake were similar in the two muscles, but the toadfish sonic muscle had about five times the capacity of the rat EDL. The number of pumps as estimated by thapsigargin titration was 68 +/- 4 nmol of Ca-ATPase per g tissue in the toadfish, and 42 +/- 5 nmol Ca-ATPase per g tissue in the rat EDL. The turnover number, defined as the Ca2+ uptake divided by the number of pumps, was 1065 +/- 150 min -1 for toadfish and 1786 +/- 230 min -1 for rat EDL (p < 0.05) at 37 degrees C. The Ca2+ uptake rate of toadfish sonic muscle at 22 degree C, a typical temperature for calling toadfish, averaged 42 +/- 1% of its rate at 37 degree C. At these operating temperatures, the toadfish SR is likely to be slower than the rat fast-twitch SR, yet the toadfish sonic muscle supports more rapid contractions. One explanation for this is that the voluminous SR provides activator Ca2+ for contraction, but the abundant parvalbumin plays a major role in relaxation.
Jensen, Anna M.; Warren, Jeffrey M.; Hanson, Paul J.; Childs, Joanne; Wullschleger, Stan D.
2015-01-01
Background and Aims The carbon (C) balance of boreal terrestrial ecosystems is sensitive to increasing temperature, but the direction and thresholds of responses are uncertain. Annual C uptake in Picea and other evergreen boreal conifers is dependent on seasonal- and cohort-specific photosynthetic and respiratory temperature response functions, so this study examined the physiological significance of maintaining multiple foliar cohorts for Picea mariana trees within an ombrotrophic bog ecosystem in Minnesota, USA. Methods Measurements were taken on multiple cohorts of needles for photosynthetic capacity, foliar respiration (Rd) and leaf biochemistry and morphology of mature trees from April to October over 4 years. The results were applied to a simple model of canopy photosynthesis in order to simulate annual C uptake by cohort age under ambient and elevated temperature scenarios. Key Results Temperature responses of key photosynthetic parameters [i.e. light-saturated rate of CO2 assimilation (Asat), rate of Rubisco carboxylation (Vcmax) and electron transport rate (Jmax)] were dependent on season and generally less responsive in the developing current-year (Y0) needles compared with 1-year-old (Y1) or 2-year-old (Y2) foliage. Temperature optimums ranged from 18·7 to 23·7, 31·3 to 38·3 and 28·7 to 36·7 °C for Asat, Vcmax and Jmax, respectively. Foliar cohorts differed in their morphology and photosynthetic capacity, which resulted in 64 % of modelled annual stand C uptake from Y1&2 cohorts (LAI 0·67 m2 m−2) and just 36 % from Y0 cohorts (LAI 0·52 m2 m−2). Under warmer climate change scenarios, the contribution of Y0 cohorts was even less; e.g. 31 % of annual C uptake for a modelled 9 °C rise in mean summer temperatures. Results suggest that net annual C uptake by P. mariana could increase under elevated temperature, and become more dependent on older foliar cohorts. Conclusions Collectively, this study illustrates the physiological and ecological significance of different foliar cohorts, and indicates the need for seasonal- and cohort-specific model parameterization when estimating C uptake capacity of boreal forest ecosystems under ambient or future temperature scenarios. PMID:26220656
Effects of pH on the growth and NH4-N uptake of Skeletonema costatum and Nitzschia closterium.
Gu, Xingyan; Li, Keqiang; Pang, Kai; Ma, Yunpeng; Wang, Xiulin
2017-11-30
Ocean acidification (OA) and eutrophication intensifies in coastal sea under anthropogenic impact. OA coupled with the NH 4 -N source effect in coastal water is likely to affect the planktonic ecosystem. In this work, Skeletonema costatum and Nitzschia closterium were chosen as typical species of diatom in Chinese coastal ecosystems to test the potential effect of OA and NH 4 -N. Results showed that the growth and NH 4 -N uptake of S. costatum and N. closterium were significantly inhibited by pH decline. The maximum uptake rate is higher than the maximum growth rate, implying that NH 4 -N was assimilated faster for S. costatum and N. closterium with decreasing pH. Therefore, the inhibition rate of the growth of the two diatoms by the coupling effect of OA and eutrophication (pH7.45) is higher that than in the coastal sea by the end of the 21st century (pH7.71). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Slawyk, Gerd; Coste, Bernard; Collos, Yves; Rodier, Martine
1997-01-01
Using measurements of 15N uptake and activities of nitrate reductase and glutamine synthetase, the utilization of nitrogenous nutrients by microplankton in the Portuguese upwelling area was investigated. During this cruise the euphotic zone of coastal waters was in most cases bisected by a nitracline forming two layers. Total inorganic nitrogen uptake rates (NH 4+ + NO 3-) in the upper mixed and nitrate-impoverished layer ranged from 0.1 to 0.8 nM h -1 and were primarily supported by regenerated (ammonium) nitrogen (62-97%), whereas they varied between 0.9 and 10.4 nM h -1 in the deep nitrate-rich layer and were mainly driven by new (nitrate) nitrogen (52-82%). Depth profiles of Chl a-specific uptake rates for ammonium and nitrate paralleled those of absolute uptake rates, i.e. values of VNH 4+Chl were highest (up to 16.1 nmol μg -1 h -1) in nitrate-poor surface waters while values of VNO 3-Chl were maximum (up to 8.4 nmol μg -1 h -1)within the nitracline. This latter vertical ordering of planktonic nitrogen nutrition was consistent with an aged upwelling situation. However, applying several indices of cell metabolism and nutritional status, such as 15N uptake/enzyme activity, surge uptake internally controlled uptake, and V maxChl/K t ratios, we were able to demonstrate that the phytoplankton assemblages inhabiting the nutrient-impoverished upper layer still bore the signature of physically mediated nitrogen (nitrate) supply generated by active upwelling that had occurred during the week before our visit to the area. This signature was the most evident in samples from the station furthest inshore and faded with distance from shore as a result of the deepening of the nitrate isopleths (weakening of upwelling activity), which showed the same offshore trend. The appearance of nitrate-rich waters at the surface, after a strong pulse of upwelling favourable winds just before the end of the cruise, led to a five-fold increase in average (over the euphotic zone) absolute and Chl a-specific nitrate uptake rates (10.4 nM h -1, 7.5 nmol μ -1 h -1) compared to the mean rates during weak upwelling (1.7 nM h -1, 1.5 nmol μ -1 h -1). From a comparison with the neighbouring Moroccan upwelling, it is assumed that new production in the Portuguese upwelling averages 50 nM h -1. Thus, this upwelling would rank with the northwest African upwelling system off Cape Blanc or with the Californian upwelling at Point Conception for the capacity of new production, but seems to be much less efficient (seven-fold) than the highly permanent Peru upwelling.
Brurok, Berit; Tjønna, Arnt Erik; Tørhaug, Tom; Askim, Torunn
2017-01-01
Background People with stroke have a low peak aerobic capacity and experience increased effort during performance of daily activities. The purpose of this study was to examine test-retest reliability of a portable ergospirometry system in people with stroke during performance of functional activities in a field-test. Secondary aims were to examine the proportion of oxygen consumed during the field-test in relation to the peak-test and to analyse the correlation between the oxygen uptake during the field-test and peak-test in order to support the validity of the field-test. Methods With simultaneous measurement of oxygen consumption, participants performed a standardized field-test consisting of five activities; walking over ground, stair walking, stepping over obstacles, walking slalom between cones and from a standing position lifting objects from one height to another. All activities were performed in self-selected speed. Prior to the field-test, a peak aerobic capacity test was performed. The field-test was repeated minimum 2 and maximum 14 days between the tests. ICC2,1 and Bland Altman tests (Limits of Agreement, LoA) were used to analyse test-retest reliability. Results In total 31 participants (39% women, mean (SD) age 54.5 (12.7) years and 21.1 (14.3) months’ post-stroke) were included. The ICC2,1 was ≥ 0.80 for absolute V̇O2, relative V̇O2, minute ventilation, CO2, respiratory exchange ratio, heart rate and Borgs rating of perceived exertion. ICC2,1 for total time to complete the field-test was 0.99. Mean difference in steady state V̇O2 during Test 1 and Test 2 was -0.40 (2.12) The LoAs were -3.75 and 4.51. Participants spent 60.7% of their V̇O2peak performing functional activities. Correlation between field-test and peak-test was 0.689, p = 0.001 for absolute and 0.733, p = 0.001 for relative V̇O2. Conclusions This study presents first evidence on reliability of oxygen uptake during performance of functional activities after stroke, showing very good test-retest reliability. The secondary analysis showed that the amount of energy spent during the field-test relative to the peak-test was high and the correlation between the two test was good, supporting the validity of this method. PMID:29065164
Prediction of Maximum Oxygen Consumption from Walking, Jogging, or Running.
ERIC Educational Resources Information Center
Larsen, Gary E.; George, James D.; Alexander, Jeffrey L.; Fellingham, Gilbert W.; Aldana, Steve G.; Parcell, Allen C.
2002-01-01
Developed a cardiorespiratory endurance test that retained the inherent advantages of submaximal testing while eliminating reliance on heart rate measurement in predicting maximum oxygen uptake (VO2max). College students completed three exercise tests. The 1.5-mile endurance test predicted VO2max from submaximal exercise without requiring heart…
VO2 kinetics of constant-load exercise following bed-rest-induced deconditioning
NASA Technical Reports Server (NTRS)
Convertino, V. A.; Goldwater, D. J.; Sandler, H.
1984-01-01
Previous studies have shown that the oxygen uptake kinetics during exercise and recovery may be changed by alterations in work intensity, prior exercise, muscle group involvement, ambient conditions, posture, disease state, and level of physical conditioning. However, the effects of detraining on oxygen uptake kinetics have not been determined. The present investigation has the objective to determine the effects of deconditioning following seven days of continuous head-down bed rest on changes in steady-state oxygen uptake, O2 deficit, and recovery oxygen uptake during the performance of constant-load exercise. The obtained results may provide support for previous proposals that submaximal oxygen uptake was significantly reduced following bed rest. The major finding was that bed-rest deconditioning resulted in a reduction of total O2 transport/utilization capacity during the transient phase of upright but not supine exercise.
Nezami, Sareh; Malakouti, Mohammad Jafar; Bahrami Samani, Ali; Ghannadi Maragheh, Mohammad
2016-11-01
To study the benefit of including citric and oxalic acid treatments for phytoremediation of 226 Ra contaminated soils a greenhouse experiment with corn was conducted. A soil was sampled from a region of high natural 226 Ra radioactivity in Ramsar, Iran. After cultivation of corn seed and using organic acid treatments at 1, 10 and 100 mM concentrations, plants (shoots and roots) were harvested, digested and prepared to measure 226 Ra activity. Simultaneously, sequential selective extraction were performed to estimate the partitioning of 226 Ra among geochemical extraction. Results showed that the maximum uptake of 226 Ra in plants was observed in citric acid (6.3%) and then oxalic acid (6%) at 100 mM concentration. These treatments increased radium uptake by a factor of 1.5 than the control. Enhancement of radium uptake by plants was related to soil pH reduction of organic acids in comparison to control. Also, the maximum uptake of this radionuclide in all treatments was obtained in roots compared to shoots. 226 Ra fractionations results revealed that 91.8% of radium was in the residual phase of the soil and the available fractions were less than 2%. As the main percent of 226 Ra was in the residual phase of the soil in this region, it seems that organic acids had not significant effect on the uptake of 226 Ra for phytoremediation by corn in this condition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hierarchical Zeolites with Amine-Functionalized Mesoporous Domains for Carbon Dioxide Capture.
Nguyen, Tien Hoa; Kim, Sungjune; Yoon, Minyoung; Bae, Tae-Hyun
2016-03-08
To prepare materials with high CO2 adsorption, a series of hierarchical LTA zeolites possessing various mesopore spaces that are decorated with alkylamines was designed and synthesized. The highest CO2 uptake capacity was achieved when (3-aminopropyl)trimethoxysilane (APTMS) was grafted onto the hierarchical LTA zeolite having the largest mesopores. Owing to the contributions of both alkylamine groups grafted onto the mesopore surfaces and active sites in the LTA zeolites, the amount of CO2 that can be taken up on these materials is much higher than for conventional aminosilicas such SBA-15 and MCM-41. Furthermore, the adsorbent shows good CO2 uptake capacity and recyclability in dynamic flow conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hansen, Tina V A; Nejsum, Peter; Friis, Christian; Olsen, Annette; Thamsborg, Stig Milan
2014-04-01
The single-dose benzimidazoles used against Trichuris trichiura infections in humans are not satisfactory. Likewise, the benzimidazole, fenbendazole, has varied efficacy against Trichuris suis whereas Oesophagostomum dentatum is highly sensitive to the drug. The reasons for low treatment efficacy of Trichuris spp. infections are not known. We studied the effect of fenbendazole, albendazole and levamisole on the motility of T. suis and O. dentatum and measured concentrations of the parent drug compounds and metabolites of the benzimidazoles within worms in vitro. The motility and concentrations of drug compounds within worms were compared between species and the maximum specific binding capacity (Bmax) of T. suis and O. dentatum towards the benzimidazoles was estimated. Comparisons of drug uptake in living and killed worms were made for both species. The motility of T. suis was generally less decreased than the motility of O. dentatum when incubated in benzimidazoles, but was more decreased when incubated in levamisole. The Bmax were significantly lower for T. suis (106.6, and 612.7 pmol/mg dry worm tissue) than O. dentatum (395.2, 958.1 pmol/mg dry worm tissue) when incubated for 72 hours in fenbendazole and albendazole respectively. The total drug concentrations (pmol/mg dry worm tissue) were significantly lower within T. suis than O. dentatum whether killed or alive when incubated in all tested drugs (except in living worms exposed to fenbendazole). Relatively high proportions of the anthelmintic inactive metabolite fenbendazole sulphone was measured within T. suis (6-17.2%) as compared to O. dentatum (0.8-0.9%). The general lower sensitivity of T. suis towards BZs in vitro seems to be related to a lower drug uptake. Furthermore, the relatively high occurrence of fenbendazole sulphone suggests a higher detoxifying capacity of T. suis as compared to O. dentatum.
Hansen, Tina V. A.; Nejsum, Peter; Friis, Christian; Olsen, Annette; Thamsborg, Stig Milan
2014-01-01
Background The single-dose benzimidazoles used against Trichuris trichiura infections in humans are not satisfactory. Likewise, the benzimidazole, fenbendazole, has varied efficacy against Trichuris suis whereas Oesophagostomum dentatum is highly sensitive to the drug. The reasons for low treatment efficacy of Trichuris spp. infections are not known. Methodology We studied the effect of fenbendazole, albendazole and levamisole on the motility of T. suis and O. dentatum and measured concentrations of the parent drug compounds and metabolites of the benzimidazoles within worms in vitro. The motility and concentrations of drug compounds within worms were compared between species and the maximum specific binding capacity (Bmax) of T. suis and O. dentatum towards the benzimidazoles was estimated. Comparisons of drug uptake in living and killed worms were made for both species. Principal findings The motility of T. suis was generally less decreased than the motility of O. dentatum when incubated in benzimidazoles, but was more decreased when incubated in levamisole. The Bmax were significantly lower for T. suis (106.6, and 612.7 pmol/mg dry worm tissue) than O. dentatum (395.2, 958.1 pmol/mg dry worm tissue) when incubated for 72 hours in fenbendazole and albendazole respectively. The total drug concentrations (pmol/mg dry worm tissue) were significantly lower within T. suis than O. dentatum whether killed or alive when incubated in all tested drugs (except in living worms exposed to fenbendazole). Relatively high proportions of the anthelmintic inactive metabolite fenbendazole sulphone was measured within T. suis (6–17.2%) as compared to O. dentatum (0.8–0.9%). Conclusion/Significance The general lower sensitivity of T. suis towards BZs in vitro seems to be related to a lower drug uptake. Furthermore, the relatively high occurrence of fenbendazole sulphone suggests a higher detoxifying capacity of T. suis as compared to O. dentatum. PMID:24699263
USDA-ARS?s Scientific Manuscript database
Fitness in hymenopterous parasitoids is influenced by host quality. For generalist parasitoids in many cases host quality is proportional to host size, because larger hosts provide greater quantities of nutritional resources to the developing parasitoid. We measured the effects of these two variab...
Wang, Wei-Te; Huang, Ling-Tzu; Chou, Ya-Hui; Wei, Ta-Sen; Lin, Chung-Che
2014-01-01
Objective. To investigate the relationship among walking speed, exercise capacity, and leg strength in community dwelling stroke subjects and to evaluate which one was the leading determinant factor of them. Design. This is a descriptive, cross-sectional study. Thirty-five chronic stroke patients who were able to walk independently in their community were enrolled. Walking speed was evaluated by using the 12-meter walking test. A maximal exercise test was used to determine the stroke subjects' exercise capacity. Knee extensor strength, measured as isokinetic torque, was assessed by isokinetic dynamometer. Results. The main walking speed of our subjects was 0.52 m/s. Peak oxygen uptake (VO2 peak) was 1.21 ± 0.43 L/min. Knee extensor strength, no matter whether paretic or nonparetic side, was significantly correlated to 12-meter walking speed and exercise capacity. Linear regression also showed the strength of the affected knee extensor was the determinant of walking speed and that of the nonparetic knee extensor was the determinant of exercise capacity in community dwelling stroke subjects. Conclusions. Walking speed and peak oxygen uptake were markedly decreased after stroke. Knee extensor strength of nonparetic leg was the most important determinant of exercise capacity of the community-dwelling stroke subjects. Knee extensor strengthening should be emphasized to help stroke patient to achieve optimal community living. PMID:25197712
Wang, Wei-Te; Huang, Ling-Tzu; Chou, Ya-Hui; Wei, Ta-Sen; Lin, Chung-Che
2014-01-01
To investigate the relationship among walking speed, exercise capacity, and leg strength in community dwelling stroke subjects and to evaluate which one was the leading determinant factor of them. This is a descriptive, cross-sectional study. Thirty-five chronic stroke patients who were able to walk independently in their community were enrolled. Walking speed was evaluated by using the 12-meter walking test. A maximal exercise test was used to determine the stroke subjects' exercise capacity. Knee extensor strength, measured as isokinetic torque, was assessed by isokinetic dynamometer. The main walking speed of our subjects was 0.52 m/s. Peak oxygen uptake (VO₂ peak) was 1.21 ± 0.43 L/min. Knee extensor strength, no matter whether paretic or nonparetic side, was significantly correlated to 12-meter walking speed and exercise capacity. Linear regression also showed the strength of the affected knee extensor was the determinant of walking speed and that of the nonparetic knee extensor was the determinant of exercise capacity in community dwelling stroke subjects. Walking speed and peak oxygen uptake were markedly decreased after stroke. Knee extensor strength of nonparetic leg was the most important determinant of exercise capacity of the community-dwelling stroke subjects. Knee extensor strengthening should be emphasized to help stroke patient to achieve optimal community living.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guha, A.; Prasad, G.C.; Udupa, K.N.
Scintillography and autoradiography were used to study the healing of humeral fractures in rats injected with Sr/sup 85/. Among various agents studied for an influence on the rate of fracture healing, the total extract of the herb Cissus quadrangularis was tested. In both controls and animals receiving C. quadrangularis extract there was demineralization of the fractured bone at the site of fracture. In the treated group, there was a somewhat earlier rise in Sr/ sup 85/ uptake just after the first injection. Thereafter, uptake again became high, similar to the control samples from the 6th day onward. The maximum uptakemore » of control bone was found to be around the 19th day after fracturing, while in the treated group, maximum uptake was on 15th day. Though there was a minor difference in the period of maximum uptake between treated and control bone, the rate of uptake in the treated sample was markedly higher than that of the control sample. The fall of Sr/sup 85/ uptake in the treated bone was very rapid, whereas in the untreated animals it was more gradual. All these findings on the uptake of Sr/sup 85/ as measured by a G-M counter, corroborated x-ray pictures and gross autoradiography at different stages of fracture healing. The radiological and autoradiographic findings also clearly showed that the healing in the treated group was quicker than in the controls. Furthermore, the callus in the treated animals underwent remodeling processes much earlier than in the nontreated ones. It is concluded that if the uptake of Sr in the treated andimals is greater thand in the control samples at the site of fracture, healing activity is more pronounced. However, studies on patients have shown that the uptake of Sr/sup 85/ alone in the fractured region may not give an accurate picture of the healing processes. Thus, at the end of first week after fractures, accretion rate of Ca reached a peak and thereafter remained higher than normal throughout the period of healing. But when these results were compared with x-ray pictures, it was observed that the accretion rate in poorly uniting fractures did not diifer from that of normally healing fractures, so that in interpreting the rate of healing by the uptake of Sr/sup 85/, radiography is also required to make the correct assessment of the status of fracture healing. The Sr/sup 85/ uptake curves show that the uptake pattern can be divided into three definite phases. ln the first phase, which lasts for six days, there is and enormous amount of decalcification from the broken fragments of bone possibly due to increased vascularity of the region, and also to the increased accumulation of mucopolysaccharides locally. In the second phase, which lasts for another 8 to 12 days, rapid increase in the accretion of Ca as evidenced by increase in the uptake of Sr/sup 85/ noted. During the 2nd phase, histologic studies indicated that large amounts of collagen fibers appear, which possibly combine with all the available Ca salts there. The third phase shows a rapid fall of Sr/sup 85/ uptake, indicating that the callus formed in the second phase is rapidly being remodeled. (BBB)« less
Guo, Chang-Zi; Fu, Wei; Chen, Xue-Mei; Peng, Dang-Cong; Jin, Peng-Kang
2013-07-01
Oxidation-ditch operation modes were simulated using sequencing batch reactors (SBRs) with alternate stirring and aerating. The nitrogen-removal efficiencies and nitrifying characteristics of two aeration modes, point aeration and step aeration, were investigated. Under the same air-supply capacity, oxygen dissolved more efficiently in the system with point aeration, forming a larger aerobic zone. The nitrifying effects were similar in point aeration and step aeration, where the average removal efficiencies of NH4(+) N were 98% and 96%, respectively. When the proportion of anoxic and oxic zones was 1, the average removal efficiencies of total nitrogen (TN) were 45% and 66% under point aeration and step aeration, respectively. Step aeration was more beneficial to both anoxic denitrification and simultaneous nitrification and denitrification (SND). The maximum specific ammonia-uptake rates (AUR) of point aeration and step aeration were 4.7 and 4.9 mg NH4(+)/(gMLVSS h), respectively, while the maximum specific nitrite-uptake rates (NUR) of the two systems were 7.4 and 5.3 mg NO2(-)-N/(gMLVSS h), respectively. The proportions of ammonia-oxidizing bacteria (AOB) to all bacteria were 5.1% under point aeration and 7.0% under step aeration, and the proportions of nitrite-oxidizing bacteria (NOB) reached 6.5% and 9.0% under point and step aeration, respectively. The dominant genera of AOB and NOB were Nitrosococcus and Nitrospira, which accounted for 90% and 91%, respectively, under point aeration, and the diversity of nitrifying bacteria was lower than under step aeration. Point aeration was selective of nitrifying bacteria. The abundance of NOB was greater than that of AOB in both of the operation modes, and complete transformation of NH4(+) N to NO3(-)-N was observed without NO2(-)-N accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lefevre, Sjannie; Jensen, Frank B; Huong, Do T T; Wang, Tobias; Phuong, Nguyen T; Bayley, Mark
2011-07-01
In this study we investigated nitrite (NO₂⁻) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO(2max)) and critical swimming speed (U(crit)) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC₅₀ of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO(2max) and U(crit). The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO(2max) and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish. Copyright © 2011 Elsevier B.V. All rights reserved.
Beiler, H A; Steinorth, J; Witt, A; Mier, W; Mohammed, A; Waag, K L; Zachariou, Z
2004-10-01
After establishing a method for ileal mucosa transplantation in an animal model, the authors investigated the absorptive capacity for oligopeptides of the transplanted mucosa. In 14 beagle dogs the authors transplanted ileal mucosa in a vascularized demucosed segment of the transverse colon. The colonic wall-ileal mucosa complex then was integrated in the ileal continuity. Six animals were lost owing to operative complications. Absorptive capacity for oligopeptides was measured in the remaining 8 animals with the iodine 131 (131I)-marked tripeptide glycine-tyrosine-glycine before and 4 weeks after transplantation. The results were compared and analyzed with the Student's t test for matched pairs. Blood concentrations of the marked tripeptide with P value less than .05 were considered as a significant reduction in the absorptive capacity of the transplanted ileal mucosa. After fixation with glutaraldehyd graft, uptake of the colonic wall-ileal mucosa complex was evaluated histologically in 8 animals. In all 8 animals, a 100% graft uptake was verified in all sections. Fifteen minutes after application of 15 MBc Glycine-131I-Tyrosine-Glycine there was no significant difference in the absorption between normal and transplanted ileal mucosa. After 30 minutes, the absorption of the transplanted ileal mucosa showed a tendency (P < .1) for an impaired uptake of the marked tripeptide. However, 60 minutes after application the difference in the absorptive capacity of the transplanted ileal mucosa was significant (P < .05). Autologous allotopic ileal mucosa transplantation is feasible; however, an impaired absorption of oligopeptides of the transplanted mucosa 4 weeks after transplantation could be observed.
NASA Astrophysics Data System (ADS)
Kondratenko, Mikhail S.; Karpushkin, Evgeny A.; Gvozdik, Nataliya A.; Gallyamov, Marat O.; Stevenson, Keith J.; Sergeyev, Vladimir G.
2017-02-01
A series of composite proton-exchange membranes have been prepared via sol-gel modification of commercial Nafion membranes with [N-(2-aminoethyl)-3-aminopropyl]trimethoxysilane. The structure and physico-chemical properties (water uptake, ion-exchange capacity, vanadyl ion permeability, and proton conductivity) of the prepared composite membranes have been studied as a function of the precursor loading (degree of the membrane modification). If the amount of the precursor is below 0.4/1 M ratio of the amino groups of the precursor to the sulfonic groups of Nafion, the composite membranes exhibit decreased vanadium ion permeability while having relatively high proton conductivity. With respect to the use of a non-modified Nafion membrane, the performance of the composite membrane with an optimum precursor loading in a single-cell vanadium redox flow battery demonstrates enhanced energy efficiency in 20-80 mA cm-2 current density range. The maximum efficiency increase of 8% is observed at low current densities.
Adsorption of Zn(II) and Cd(II) ions in batch system by using the Eichhornia crassipes.
Módenes, A N; Espinoza-Quiñones, F R; Borba, C E; Trigueros, D E G; Lavarda, F L; Abugderah, M M; Kroumov, A D
2011-01-01
In this work, the displacement effects on the sorption capacities of zinc and cadmium ions of the Eichornia crassipes-type biosorbent in batch binary system has been studied. Preliminary single metal sorption experiments were carried out. An improvement on the Zn(II) and Cd(II) ions removal was achieved by working at 30 °C temperature and with non-uniform biosorbent grain sizes. A 60 min equilibrium time was achieved for both Zn(II) and Cd(II) ions. Furthermore, it was found that the overall kinetic data were best described by the pseudo second-order kinetic model. Classical multi-component adsorption isotherms have been tested as well as a modified extended Langmuir isotherm model, showing good agreement with the equilibrium binary data. Around 0.65 mequiv./g maximum metal uptake associated with the E. crassipes biosorbent was attained and the E. crassipes biosorbent has shown higher adsorption affinity for the zinc ions than for the cadmium ones in the binary system.
Carbon Nanotubes Blended Hydroxyapatite Ethanol Sensor
NASA Astrophysics Data System (ADS)
Anjum, S. R.; Khairnar, R. S.
2016-12-01
Nano crystals of Hydroxyapatite (HAp) were synthesized by a wet chemical precipitation method. The nano composite materials were developed by doping various weight concentrations of carbon nanotubes in HAp, followed by characterization using scanning electron microscopy, and X-ray diffraction. Thick films of these materials were prepared by using screen printing technique. The ethanol sensing properties of these nano crystals and nano composite films were investigated by two probe electrical method. The gas sensing features such as operating temperature, response and recovery time, maximum gas detection limit, etc. were studied, since these parameters are of prime importance for sensor. The results revealed that at room temperature, the composite materials exhibited improved sensing performance towards 100 ppm ethanol with fast response times. It also showed shorter recovery time with higher vapor uptake capacity. The ethanol adsorption processes on doped and undoped substrates can be explained by surface chemical reactions as well as providing the possible adsorption models. The novelty of this work lies in developing reusable sensor substrates for room temperature sensing.
NASA Astrophysics Data System (ADS)
Jho, Jae Y.; Han, Man J.; Park, Jong H.; Lee, Jang Y.; Wang, Hyuck S.
2005-05-01
On purpose to overcome the limit of conventional ionic polymer-metal composites (IPMC) using the commercial ionic membranes, novel IPMCs with radiation-grafted ion-exchange membranes were prepared. Poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-co-HFP) and poly(ethylene-co-tetrafluoroethylene) (ETFE) were radiation-grafted with styrene, and then sulfonated. The properties of the membranes were modulated by controlling the amount of polystyrene sulfonic acid (PSSA) groups in the membranes. The amount of PSSA groups were tuned by controlling the total absorbed dose of γ-ray. The membranes were characterized by measuring the water-uptake, the ion-exchange capacity, and the ion conductivity. The performance of the IPMCs using these membranes were analyzed with laser displacement meter. They exhibited much larger bending displacement in comparison with Nafion-based IPMC. With increasing the amount of PSSA groups, the maximum displacement and the bending speed were remarkably increased. The results made sure that the property of ion-exchange membrane was the key element affecting the actuation performance of IPMC.
NASA Astrophysics Data System (ADS)
Guan, Yingjie; Fang, Jun; Fu, Tao; Zhou, Huili; Wang, Xin; Deng, Zixiang; Zhao, Jinbao
2016-09-01
A new method for the preparation of the mono-sheet bipolar membrane applied to fuel cells was developed based on the pre-irradiation grafting technology. A series of bipolar membranes were successfully prepared by simultaneously grafting of styrene onto one side of the poly(ethylene-co-tetrafluoroethylene) base film and 1-vinylimidazole onto the opposite side, followed by the sulfonation and alkylation, respectively. The chemical structures and microstructures of the prepared membranes were investigated by ATR-FTIR and SEM-EDS. The TGA measurements demonstrated the prepared bipolar membranes have reasonable thermal stability. The ion exchange capacity, water uptake and ionic conductivity of the membranes were also characterized. The H2/O2 single fuel cells using these membranes were evaluated and revealed a maximum power density of 107 mW cm-2 at 35 °C with unhumidified hydrogen and oxygen. The preliminary performances suggested the great prospect of these membranes in application of bipolar membrane fuel cells.
Zhou, Yanmei; Min, Yinghao; Qiao, Han; Huang, Qi; Wang, Enze; Ma, Tongsen
2015-03-01
Cellulose modified with maleic (M) and phthalic (P) anhydride, to be named CMA and CPA, were tested as feasible adsorbents for the removal of malachite green from aqueous solution. At the same time, the uptake ability of natural cellulose was also studied for comparison. The structure of material was characterized by FT-IR and XRD. The effects of solution pH, initial dye concentration, contact time and temperature were investigated in detail by batch adsorption experiments. The kinetic and isotherm studies suggested that the adsorption followed the pseudo-second-order model and Langmuir isotherm. The maximum adsorption capacity on CMA and CPA were 370 mg g(-1) and 111 mg g(-1), respectively. Furthermore, the thermodynamics studies indicated the spontaneous nature of adsorption of malachite green on adsorbents. All the studied results showed that the modified cellulose could be used as effective adsorption material for the removal of malachite green from aqueous solutions. Copyright © 2014 Elsevier B.V. All rights reserved.
Marrakchi, F; Ahmed, M J; Khanday, W A; Asif, M; Hameed, B H
2017-05-01
In this work, mesoporous-activated carbon (CSAC) was prepared from chitosan flakes (CS) via single-step sodium hydroxide activation for the adsorption of methylene blue (MB). CSAC was prepared using different impregnation ratios of NaOH:CS (1:1, 2:1, 3:1, and 4:1) at 800°C for 90min. The adsorption performance of CSAC was evaluated for MB at different adsorption variables, such MB initial concentrations (25-400mg/L), solution pH (3-11), and temperature (30-50°C). The adsorption isotherm data of CSAC-MB were well fitted to Langmuir model with a maximum adsorption capacity 143.53mg/g at 50°C. Best representation of kinetic data was obtained by the pseudo-second order model. CSAC exhibited excellent adsorption uptake for MB and can potentially be used for other cationic dyes. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aksu, Z.; Kutsal, T.; Caglar, A.
1998-03-01
In this study the biosorption of cadmium(II) ions to dried flocs of Cladophora crispata, a kind of green algae, was investigated in a packed bed column. The cadmium(II) removal performance of the column was investigated as a function of the cadmium(II)-bearing solution flow rate and the inlet cadmium(II) concentration. Removal and total removal percentages of cadmium(II) related to flow volume were determined by evaluating the breakthrough curves obtained at three different flow rates for two different constant inlet concentrations. At the lowest flow rate the effect of inlet cadmium(II) concentration on the column capacity was also investigated. Data confirmed thatmore » early saturation and lower cadmium(II) removals were observed at higher flow rates and at higher cadmium(II) concentrations. Column experiments also showed that maximum specific cadmium(II) uptake values of C. crispata flocs were as high as those of other biomass sorbents.« less
Outermans, Jacqueline C; van de Port, Ingrid; Kwakkel, Gert; Visser-Meily, Johanna M; Wittink, Harriet
2018-03-12
Reports on the association between aerobic capacity and walking capacity in people after stroke show disparate results. To determine (1) if the predictive validity of peak oxygen uptake (VO2peak) for walking capacity post stroke is different from that of maximal oxygen uptake (VO2max) and (2) if postural control, hemiplegic lower extremity muscle strength, age and gender distort the association between aerobic capacity and walking capacity. Cross-sectional study. General community in Utrecht, the Netherlands. Community-dwelling people more than three months after stroke. Measurement of aerobic capacity were performed with cardiopulmonary exercise testing (CPET) and differentiated between the achievement of VO2peak or VO2max. Measurement of walking capacity with the Six Minute Walk Test (6MWT), postural control with the Performance Oriented Mobility Assessment (POMA) and hemiplegic lower extremity muscle strength with the Motricity Index (MI-LE). Fifty-one out of 62 eligible participants, aged 64.7 (±12.5) years were included. Analysis of covariance (ANCOVA) showed a nonsignificant difference between the predictive validities of VO2max (N = 22, β = 0.56; 95%CI 0.12 - 0.97) and VO2peak (N = 29, β = 0.72; 95%CI 0.38 - 0.92). Multiple regression analysis of the pooled sample showed a significant decrease in the β value of VO2peak (21.6%) for the 6MWT when adding the POMA as a covariate in the association model. VO2peak remained significantly related to 6MWT after correcting for the POMA (β = 0.56 (95%CI 0.39 - 0.75)) CONCLUSIONS: The results suggest similar predictive validity of aerobic capacity for walking capacity in participants achieving VO2max compared to those only achieving VO2peak. Postural control confounds the association between aerobic capacity and walking capacity. Aerobic capacity remains a valid predictor of walking capacity. Aerobic capacity is an important factor associated with walking capacity after stroke. However, to understand this relationship, postural control needs to be measured. Both aerobic capacity and postural control may need to be addressed during interventions aiming to improve walking capacity after stroke.
Renewing solar science: The solar maximum repair mission
NASA Technical Reports Server (NTRS)
Neal, V.
1985-01-01
The purpose of the Solar Maximum Repair Mission is to restore the operational capacity of the satellite by replacing the attitude control system module and servicing two of the scientific instruments on board. The mission will demonstrate the satellite servicing capacity of the Space Shuttle for the first time.
40 CFR 57.203 - Contents of the application.
Code of Federal Regulations, 2010 CFR
2010-07-01
... emission of sulfur dioxide; the characteristics of all gas streams emitted from the smelter's process...'s maximum daily production capacity (as defined in § 57.103(r)), the operational rate (in pounds of... smelter is operating at that capacity; and the smelter's average and maximum daily production rate for...
The logistic growth of duckweed (Lemna minor) and kinetics of ammonium uptake.
Zhang, Kun; Chen, You-Peng; Zhang, Ting-Ting; Zhao, Yun; Shen, Yu; Huang, Lei; Gao, Xu; Guo, Jin-Song
2014-01-01
Mathematical models have been developed to describe nitrogen uptake and duckweed growth experimentally to study the kinetics of ammonium uptake under various concentrations. The kinetics of duckweed ammonium uptake was investigated using the modified depletion method after plants were grown for two weeks at different ammonium concentrations (0.5-14 mg/L) in the culture medium. The maximum uptake rate and Michaelis-Menten constant for ammonium were estimated as 0.082 mg/(g fresh weight x h) and 1.877 mg/L, respectively. Duckweed growth was assessed when supplied at different total nitrogen (TN) concentrations (1-5 mg/L) in the culture medium. The results showed that the intrinsic growth rate was from 0.22 to 0.26 d(-1), and TN concentrations had no significant influence on the duckweed growth rate.
Methane uptake in urban forests and lawns.
Groffman, Peter M; Pouyat, Richard V
2009-07-15
The largest natural biological sink for the radiatively active trace gas methane (CH4) is bacteria in soils that consume CH4 as an energy and carbon source. This sink has been shown to be sensitive to nitrogen (N) inputs and alterations of soil physical conditions. Given this sensitivity, conversion of native ecosystems to urban, suburban, and exurban managed lawns thus has potential to affect regional CH4 budgets. We measured CH4 fluxes monthly from four urban forest, four rural forest and four urban lawn plots in the Baltimore, MD, metropolitan area from 2001 to 2005. Our objectives were to evaluate the effects of urban atmospheric and land use change on CH4 uptake and the importance of these changes relative to other greenhouse forcings in the urban landscape. Rural forests had a high capacity for CH4 uptake (1.68 mg m(-2) day(-1)). This capacity was reduced in urban forests (0.23 mg m(-2) day(-1)) and almost completely eliminated in lawns. Possible mechanisms for these reductions include increases in atmospheric N deposition and CO2 levels, fertilization of lawns, and alteration of soil physical conditions that influence diffusion. Although conversion of native forests to lawns had dramatic effects on CH4 uptake, these effects do not appear to be significant to statewide greenhouse gas forcing.
Foliar water uptake: a common water acquisition strategy for plants of the redwood forest.
Limm, Emily Burns; Simonin, Kevin A; Bothman, Aron G; Dawson, Todd E
2009-09-01
Evaluations of plant water use in ecosystems around the world reveal a shared capacity by many different species to absorb rain, dew, or fog water directly into their leaves or plant crowns. This mode of water uptake provides an important water subsidy that relieves foliar water stress. Our study provides the first comparative evaluation of foliar uptake capacity among the dominant plant taxa from the coast redwood ecosystem of California where crown-wetting events by summertime fog frequently occur during an otherwise drought-prone season. Previous research demonstrated that the dominant overstory tree species, Sequoia sempervirens, takes up fog water by both its roots (via drip from the crown to the soil) and directly through its leaf surfaces. The present study adds to these early findings and shows that 80% of the dominant species from the redwood forest exhibit this foliar uptake water acquisition strategy. The plants studied include canopy trees, understory ferns, and shrubs. Our results also show that foliar uptake provides direct hydration to leaves, increasing leaf water content by 2-11%. In addition, 60% of redwood forest species investigated demonstrate nocturnal stomatal conductance to water vapor. Such findings indicate that even species unable to absorb water directly into their foliage may still receive indirect benefits from nocturnal leaf wetting through suppressed transpiration. For these species, leaf-wetting events enhance the efficacy of nighttime re-equilibration with available soil water and therefore also increase pre-dawn leaf water potentials.
Trapp, Márcia; Valle, Sandra Costa; Pöppl, Alan Gomes; Chittó, Ana Lúcia Fernandes; Kucharski, Luiz Carlos; Da Silva, Roselis Silveira Martins
2018-06-01
The present study determined the effect of osmotic stress on the insulin-like receptor binding characteristics and on glucose metabolism in the anterior (AG) and posterior (PG) gills of the crab Neohelice granulata. Bovine insulin increased the capacity of the PG cell membrane to phosphorylate exogenous substrate poly (Glu:Tyr 4:1) and the glucose uptake in the control crab group. The crabs were submitted to three periods of hyperosmotic (HR) and hyposmotic (HO) stress, for 24, 72 and 144 h, to investigate the insulin-like receptor phosphorylation capacity of gills. Acclimation to HO for 24 h or HR for 144 h of stress inhibited the effects of insulin in the PG, decreasing the capacity of insulin to phosphorylate exogenous substrate poly (Glu:Tyr 4:1) and decreasing the glucose uptake. Hyperosmotic stress for the same period of 144 h significantly affected 125 I-insulin binding in the AG and PG. However, HO stress for 24 h significantly reduced 125 I-insulin-specific uptake only in the PG. Therefore, osmotic stress induces alterations in the gill insulin-like receptors that decrease insulin binding in the PG. These findings indicate that osmotic stress induced a pattern of insulin resistance in the PG. The free-glucose concentration in the PG decreased during acclimation to 144 h of HR stress and 24 h of HO stress. This decrease in the cell free-glucose concentration was not accompanied by a significant change in hemolymph glucose levels. In AG from the control group, neither the capacity of bovine insulin to phosphorylate exogenous substrate poly (Glu:Tyr 4:1) nor the glucose uptake changed; however, genistein decreased tyrosine-kinase activity, confirming that this receptor belongs to the tyrosine-kinase family. Acclimation to HO (24 h) or HR (144 h) stress decreased tyrosine-kinase activity in the AG. This study provided new information on the mechanisms involved in the osmoregulation process in crustaceans, demonstrating for the first time in an estuarine crab that osmotic challenge inhibited insulin-like signaling and the effect of insulin on glucose uptake in the PG. Copyright © 2018 Elsevier Inc. All rights reserved.
Effects of solar radiation on endurance exercise capacity in a hot environment.
Otani, Hidenori; Kaya, Mitsuharu; Tamaki, Akira; Watson, Phillip; Maughan, Ronald J
2016-04-01
The present study investigated the effects of variations in solar radiation on endurance exercise capacity and thermoregulatory responses in a hot environment. Eight male volunteers performed four cycle exercise trials at 70 % maximum oxygen uptake until exhaustion in an environmental chamber maintained at 30 °C and 50 % relative humidity. Volunteers were tested under four solar radiation conditions: 800, 500, 250 and 0 W/m(2). Exercise time to exhaustion was less on the 800 W/m(2) trial (23 ± 4 min) than on all the other trials (500 W/m(2) 30 ± 7 min; P < 0.05, 250 W/m(2) 43 ± 10 min; P < 0.001, 0 W/m(2) 46 ± 10 min; P < 0.001), and on the 500 W/m(2) trial than the 250 W/m(2) (P < 0.05) and 0 W/m(2) (P < 0.01) trials. There were no differences in core (rectal) temperature, total sweat loss, heart rate, skin blood flow, cutaneous vascular conductance and percentage changes in plasma volume between trials (P > 0.05). Mean skin temperature was higher on the 800 W/m(2) trial than the 250 and 0 W/m(2) trials (P < 0.05), and on the 500 W/m(2) trial than the 0 W/m(2) trial (P < 0.05). The core-to-skin temperature gradient was narrower on the 800 W/m(2) trial than the 250 and 0 W/m(2) trials (P < 0.05). The present study demonstrates that endurance exercise capacity in a hot environment falls progressively as solar radiation increases.
Slot, Martijn; Winter, Klaus
2017-05-01
Tropical forests contribute significantly to the global carbon cycle, but little is known about the temperature response of photosynthetic carbon uptake in tropical species, and how this varies within and across forests. We determined in situ photosynthetic temperature-response curves for upper canopy leaves of 42 tree and liana species from two tropical forests in Panama with contrasting rainfall regimes. On the basis of seedling studies, we hypothesized that species with high photosynthetic capacity - light-demanding, fast-growing species - would have a higher temperature optimum of photosynthesis (T Opt ) than species with low photosynthetic capacity - shade-tolerant, slow-growing species - and that, therefore, T Opt would scale with the position of a species on the slow-fast continuum of plant functional traits. T Opt was remarkably similar across species, regardless of their photosynthetic capacity and other plant functional traits. Community-average T Opt was almost identical to mean maximum daytime temperature, which was higher in the dry forest. Photosynthesis above T Opt appeared to be more strongly limited by stomatal conductance in the dry forest than in the wet forest. The observation that all species in a community shared similar T Opt values suggests that photosynthetic performance is optimized under current temperature regimes. These results should facilitate the scaling up of photosynthesis in relation to temperature from leaf to stand level in species-rich tropical forests. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Martin, C E; Adams, W W
1987-01-01
After 23 days without water in a greenhouse, rates of nocturnal CO2 uptake in Tillandsia schiedeana decreased substantially and maximum rates occurred later in the dark period eventually coinciding with the onset of illumination. Nocturnal CO2 uptake accounted for less than half the total nighttime increase in acidity measured in well-watered plants. With increased tissue desiccation, only 11-12% of measured acid accumulation was attributable to atmospheric CO2 uptake. Plants desiccated for 30 days regained initial levels of nocturnal acid accumulation and CO2 uptake after rehydration for 10h. These results stress the importance of CO2 recycling via CAM in this epiphytic bromeliad, especially during droughts.
Mandela, Prashant; Chandley, Michelle; Xu, Yao-Yu; Zhu, Meng-Yang; Ordway, Gregory A.
2010-01-01
Treatment of rats with reserpine, an inhibitor of the vesicular monoamine transporter (VMAT), depletes norepinephrine (NE) and regulates NE transporter (NET) expression. The present study examined the molecular mechanisms involved in regulation of the NET by reserpine using cultured cells. Exposure of rat PC12 cells to reserpine for a period as short as 5 min decreased [3H]NE uptake capacity, an effect characterized by a robust decrease in the Vmax of the transport of [3H]NE. As expected, reserpine did not displace the binding of [3H]nisoxetine from the NET in membrane homogenates. The potency of reserpine for reducing [3H]NE uptake was dramatically lower in SK-N-SH cells that have reduced storage capacity for catecholamines. Reserpine had no effect on [3H]NE uptake in HEK-293 cells transfected with the rat NET (293-hNET), cells that lack catecholamine storage vesicles. NET regulation by reserpine was independent of trafficking of the NET from the cell surface. Pre-exposure of cells to inhibitors of several intracellular signaling cascades known to regulate the NET, including Ca2+/Ca2+-calmodulin dependent kinase and protein kinases A, C and G, did not affect the ability of reserpine to reduce [3H]NE uptake. Treatment of PC12 cells with the catecholamine depleting agent, α-methyl-p-tyrosine, increased [3H]NE uptake and eliminated the inhibitory effects of reserpine on [3H]NE uptake. Reserpine non-competitively inhibits NET activity through a Ca2+-independent process that requires catecholamine storage vesicles, revealing a novel pharmacological method to modify NET function. Further characterization of the molecular nature of reserpine's action could lead to the development of alternative therapeutic strategies for treating disorders known to be benefitted by treatment with traditional competitive NET inhibitors. PMID:20176067
CaO-Based CO2 Sorbents Effectively Stabilized by Metal Oxides.
Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Müller, Christoph R
2017-11-17
Calcium looping (i.e., CO 2 capture by CaO) is a promising second-generation CO 2 capture technology. CaO, derived from naturally occurring limestone, offers an inexpensive solution, but due to the harsh operating conditions of the process, limestone-derived sorbents undergo a rapid capacity decay induced by the sintering of CaCO 3 . Here, we report a Pechini method to synthesize cyclically stable, CaO-based CO 2 sorbents with a high CO 2 uptake capacity. The sorbents synthesized feature compositional homogeneity in combination with a nanostructured and highly porous morphology. The presence of a single (Al 2 O 3 or Y 2 O 3 ) or bimetal oxide (Al 2 O 3 -Y 2 O 3 ) provides cyclic stability, except for MgO which undergoes a significant increase in its particle size with the cycle number. We also demonstrate a direct relationship between the CO 2 uptake and the morphology of the synthesized sorbents. After 30 cycles of calcination and carbonation, the best performing sorbent, containing an equimolar mixture of Al 2 O 3 and Y 2 O 3 , exhibits a CO 2 uptake capacity of 8.7 mmol CO 2 g -1 sorbent, which is approximately 360 % higher than that of the reference limestone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Objective Measure of Interconnection Usage for High Levels of Wind Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasuda, Yoh; Gomez-Lazaro, Emilio; Holttinen, Hannele
2014-11-13
This paper analyzes selected interconnectors in Europe using several evaluation factors; capacity factor, congested time, and congestion ratio. In a quantitative and objective evaluation, the authors propose to use publically available data on maximum net transmission capacity (NTC) levels during a single year to study congestion rates, realizing that the capacity factor depends upon the chosen capacity of the selected interconnector. This value will be referred to as 'the annual maximum transmission capacity (AMTC)', which gives a transparent and objective evaluation of interconnector usage based on the published grid data. While the method is general, its initial application is motivatedmore » by transfer of renewable energy.« less
The role of exercise testing in heart failure.
Swedberg, K; Gundersen, T
1993-01-01
The objectives of exercise testing in congestive heart failure (CHF) may be summarized as follows: (a) detect impaired cardiac performance, (b) grade severity of cardiac failure and classify functional capability, and (c) assess effects of interventions. Several different methods are available to make these assessments, and we have to ask ourselves how well exercise testing achieves these objectives. It has to be kept in mind that the power generated by the exercising muscles is dependent on the oxygen delivery to the skeletal muscles. Oxygen uptake is the result of an integrated performance of the lungs, heart, and peripheral circulation. In patients, as well as in normal subjects, oxygen uptake is related to hemodynamic indices such as cardiac output, stroke volume, or exercise duration when a stepwise regulated maximal exercise protocol is used. However, there are major differences in the concept of a true maximum in normal subjects versus heart failure patients. Fit-normal subjects will achieve a real maximal oxygen uptake, whereas patients may stop testing before a maximum is reached because of symptoms such as dyspnea or leg fatigue. Therefore, it is better if the actual oxygen uptake can be measured. "Peak" rather than true maximal oxygen uptake has been suggested for the classification of the severity of heart failure. Peripheral factors modify the cardiac output through such factors as vascular resistance, organ function, and hormonal release. Maximal exercise will stress the cardiovascular system to a point where the weakest chain will impose a limiting effect.(ABSTRACT TRUNCATED AT 250 WORDS)
Sonne-Hansen; Westermann; Ahring
1999-03-01
Half-saturation constants (Km), maximum uptake rates (Vmax), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. Km values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations.
Sonne-Hansen, Jacob; Westermann, Peter; Ahring, Birgitte K.
1999-01-01
Half-saturation constants (Km), maximum uptake rates (Vmax), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. Km values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations. PMID:10049897
Physical activity and the elderly.
Hollmann, Wildor; Strüder, Heiko K; Tagarakis, Christos V M; King, Gerard
2007-12-01
Functional ageing processes are characterized by a loss of performance capabilities regarding coordination, flexibility, strength, speed, and endurance. The effects of ageing processes on the cardiovascular system and skeletal muscle are the foci of attention. After age 30, the maximum aerobic dynamic performance capacity decreases by an average of 8% per decade. The causes are mainly a reduction in the maximum cardiac output and decreases in capillarization and in the skeletal muscle mass. An improvement in the maximum oxygen uptake by 18% and in the aerobic-anaerobic threshold by 22% was achieved in untrained men aged 55-70 years, in a 12-week-long bicycle ergometer-training programme. The strength of the skeletal muscle decreases particularly after 50-60 years of age. The main cause is the reduction in the number of motor units and muscle fibres. Further, modifications of the endothelial function and the development of sarcopenia are of particular importance in ageing processes. General aerobic dynamic training can improve the endothelial function in old age and thus help prevent cardiovascular diseases. Strength training is most appropriate for the prevention of sarcopenia. Imaging techniques over the last 20 years have provided new findings on the influence and the significance of physical activity on the brain. We call this new interdisciplinary area 'Exercise Neuroscience'. Demands on coordination and aerobic dynamic endurance are suitable in counteracting age-related neuronal cellular loss, synapsis hypotrophy, and in improving neurogenesis and capillarization. Adjusted physical activity is thus capable of counteracting age-related changes and performance loss not only in the cardiovascular system but also in the brain.
Ponnusami, V; Vikram, S; Srivastava, S N
2008-03-21
Batch sorption experiments were carried out using a novel adsorbent, guava leaf powder (GLP), for the removal of methylene blue (MB) from aqueous solutions. Potential of GLP for adsorption of MB from aqueous solution was found to be excellent. Effects of process parameters pH, adsorbent dosage, concentration, particle size and temperature were studied. Temperature-concentration interaction effect on dye uptake was studied and a quadratic model was proposed to predict dye uptake in terms of concentration, time and temperature. The model conforms closely to the experimental data. The model was used to find optimum temperature and concentration that result in maximum dye uptake. Langmuir model represent the experimental data well. Maximum dye uptake was found to be 295mg/g, indicating that GLP can be used as an excellent low-cost adsorbent. Pseudo-first-order, pseudo-second order and intraparticle diffusion models were tested. From experimental data it was found that adsorption of MB onto GLP follow pseudo second order kinetics. External diffusion and intraparticle diffusion play roles in adsorption process. Free energy of adsorption (DeltaG degrees ), enthalpy change (DeltaH degrees ) and entropy change (DeltaS degrees ) were calculated to predict the nature of adsorption. Adsorption in packed bed was also evaluated.
38 CFR 4.96 - Special provisions regarding evaluation of respiratory conditions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-6845. (1) Pulmonary function tests (PFT's) are required to evaluate these conditions except: (i) When the results of a maximum exercise capacity test are of record and are 20 ml/kg/min or less. If a maximum exercise capacity test is not of record, evaluate based on alternative criteria. (ii) When...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment. The height difference between the maximum safe surge capacity level and the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment. The height difference between the maximum safe surge capacity level and the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment. The height difference between the maximum safe surge capacity level and the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment. The height difference between the maximum safe surge capacity level and the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... process generated waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment. The height difference between the maximum safe surge capacity...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment. The height difference between the maximum safe surge capacity level and the...
Vijayakumar, Subbukalai; Nagamuthu, Sadayappan; Ryu, Kwang-Sun
2018-05-15
A binder-free, MgCo2O4 nanosheet-like architecture was prepared on Ni-foam using a hydrothermal method. MgCo2O4/Ni-foam was characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), and transmission electron microscopy techniques. The FESEM image revealed a nanosheet array-like architecture. The MgCo2O4 nanosheets grown on Ni-foam exhibited the maximum specific capacity of 947 C g-1 at a specific current of 2 A g-1. Approximately 96% of the specific capacity was retained from the maximum specific capacity after 5000 continuous charge-discharge cycles. This hybrid device exhibited a maximum specific capacity of 52 C g-1 at a specific current of 0.5 A g-1, and also exhibited a maximum specific energy of 12.99 W h kg-1 at a specific power of 448.7 W kg-1. These results confirmed that the binder-free MgCo2O4 nanosheets grown on Ni-foam are a suitable positive electrode material for hybrid supercapacitors.
Maldonado, Karin; Sabat, Pablo; Piriz, Gabriela; Bogdanovich, José M; Nespolo, Roberto F; Bozinovic, Francisco
2016-01-01
Food availability varies substantially throughout animals' lifespans, thus the ability to profit from high food levels may directly influence animal fitness. Studies exploring the link between basal metabolic rate (BMR), growth, reproduction, and other fitness traits have shown varying relationships in terms of both magnitude and direction. The diversity of results has led to the hypothesis that these relationships are modulated by environmental conditions (e.g., food availability), suggesting that the fitness consequences of a given BMR may be context-dependent. In turn, there is indirect evidence that individuals with an increased capacity for aerobic work also have a high capacity for acquiring energy from food. Surprisingly, very few studies have explored the correlation between maximum rates of energy acquisition and BMR in endotherms, and to the best of our knowledge, none have attempted to elucidate relationships between the former and aerobic capacity [e.g., maximum metabolic rate (MMR), aerobic scope (Factorial aerobic scope, FAS; Net aerobic scope, NAS)]. In this study, we measured BMR, MMR, maximum food intake (recorded under low ambient temperature and ad libitum food conditions; MFI), and estimated aerobic scope in the leaf-eared mouse ( Phyllotis darwini ). We, then, examined correlations among these variables to determine whether metabolic rates and aerobic scope are functionally correlated, and whether an increased aerobic capacity is related to a higher MFI. We found that aerobic capacity measured as NAS is positively correlated with MFI in endotherms, but with neither FAS nor BMR. Therefore, it appears plausible that the capacity for assimilating energy under conditions of abundant resources is determined adaptively by NAS, as animals with higher NAS would be promoted by selection. In theory, FAS is an invariant measurement of the extreme capacity for energy turnover in relation to resting expenditure, whereas NAS represents the maximum capacity for simultaneous aerobic processes above maintenance levels. Accordingly, in our study, FAS and NAS represent different biological variables; FAS, in contrast to NAS, may not constrain food intake. The explanations for these differences are discussed in biological and mathematical terms; further, we encourage the use of NAS rather than FAS when analyzing the aerobic capacity of animals.
Effect of ten quaternary ammonium cations on tetrachloromethane sorption to clay from water
Smith, J.A.
1990-01-01
The mineral surface of Wyoming bentonite (clay) was modified by replacing inorganic ions by each of 10 quaternary ammonium compounds, and tetrachloromethane sorption to the modified sorbents from water was studied. Tetrachloromethane sorption from solution to clay modified with tetramethyl-, tetraethyl-, benzyltrimethyl-, or benzyltriethylammonium cations generally is characterized by relatively high solute uptake, isotherm nonlinearity, and competitive sorption (with trichloroethene as the competing sorbate). For these sorbents, the ethyl functional groups yield reduced sorptive capacity relative to methyl groups, whereas the benzyl group appears to have a similar effect on sorbent capacity as the methyl group. Sorption of tetrachloromethane to clay modified with dodecyldimethyl(2-phenoxyethyl)-, dodecyltrimethyl-, tetradecyltrimethyl-, hexadecyltrimethyl-, or benzyldimethylhexadecylammonium bromide is characterized by relatively low solute uptake, isotherm linearity, and noncompetitive sorption. For these sorbents, an increase in the size of the nonpolar functional group(s) causes an increase in the organic carbon normalized sorption coefficient (Koc). No measurable uptake of tetrachloromethane sorption by the unmodified clay or clay modified by ammonium bromide was observed. ?? 1990 American Chemical Society.
Effect of Heavy Metals in Plants of the Genus Brassica
Mourato, Miguel P.; Moreira, Inês N.; Leitão, Inês; Pinto, Filipa R.; Sales, Joana R.; Louro Martins, Luisa
2015-01-01
Several species from the Brassica genus are very important agricultural crops in different parts of the world and are also known to be heavy metal accumulators. There have been a large number of studies regarding the tolerance, uptake and defense mechanism in several of these species, notably Brassica juncea and B. napus, against the stress induced by heavy metals. Numerous studies have also been published about the capacity of these species to be used for phytoremediation purposes but with mixed results. This review will focus on the latest developments in the study of the uptake capacity, oxidative damage and biochemical and physiological tolerance and defense mechanisms to heavy metal toxicity on six economically important species: B. juncea, B. napus, B. oleracea, B. carinata, B. rapa and B. nigra. PMID:26247945
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonggo, Siang Tandi, E-mail: standigonggo@yahoo.com
2015-09-30
The new type of electrolyte membrane materials has been prepared by blend sulfonated polystyrene (SPS), lignosulfonate (LS), and alumina (SPS-LS-Al{sub 2}O{sub 3}) by casting polymer solution. The resulting polymer electrolyte membranes were then characterized by functional groups analysis, mechanical properties, water uptake, ion exchange capacity, and proton conductivity. SPS-LS-Al{sub 2}O{sub 3} membranes with alumina composition various have been proven qualitatively by analysis of functional groups. Increasing the Al{sub 2}O{sub 3} ratio resulted in higher ion exchange capacity (IEC), mechanical strength and proton conductivity, but water uptake decreased. The SPS-LS-Al{sub 2}O{sub 3} blend showed higher proton conductivity than Nafion 117.
( sup 3 H)Dopamine uptake by platelet storage granules in schizophrenia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabey, J.M.; Graff, E.; Oberman, Z.
1992-01-01
({sup 3}H)Dopamine (DA) uptake by platelet storage granules was determined in 26 schizophrenic male patients, paranoid type (14 acute stage; 12 in remission) and 20 age-matched, normal controls. maximum velocity (Vmax) of DA uptake was significantly higher in acute patients, than patients in remission or controls (p>0.05). The apparent Michaelis constant (kM) of DA uptake in acute patients was also significantly different from chronic patients a substantial diminution of DA uptake, while haloperidol produced a substantial diminution of DA uptake, while haloperidol (10{sup {minus}4}, 10{sup {minus}5} M) did not affect the assay. Considering that a DA disequilibrium in schizophrenia maymore » be expressed not only in the brain, but also in the periphery and that an increased amount of DA accumulated in the vesicles, implies that an increased quantity of catecholamine is available for release, our findings suggest additional evidence for the role of DA overactivity in the pathophysiology of this disorder.« less
Stomatal control of leaf fluxes of carbonyl sulfide and CO2 in a Typha freshwater marsh
NASA Astrophysics Data System (ADS)
Sun, Wu; Maseyk, Kadmiel; Lett, Céline; Seibt, Ulli
2018-06-01
Carbonyl sulfide (COS) is an emerging tracer to constrain land photosynthesis at canopy to global scales, because leaf COS and CO2 uptake processes are linked through stomatal diffusion. The COS tracer approach requires knowledge of the concentration normalized ratio of COS uptake to photosynthesis, commonly known as the leaf relative uptake (LRU). LRU is known to increase under low light, but the environmental controls over LRU variability in the field are poorly understood due to scant leaf scale observations. Here we present the first direct observations of LRU responses to environmental variables in the field. We measured leaf COS and CO2 fluxes at a freshwater marsh in summer 2013. Daytime leaf COS and CO2 uptake showed similar peaks in the mid-morning and late afternoon separated by a prolonged midday depression, highlighting the common stomatal control on diffusion. At night, in contrast to CO2, COS uptake continued, indicating partially open stomata. LRU ratios showed a clear relationship with photosynthetically active radiation (PAR), converging to 1.0 at high PAR, while increasing sharply at low PAR. Daytime integrated LRU (calculated from daytime mean COS and CO2 uptake) ranged from 1 to 1.5, with a mean of 1.2 across the campaign, significantly lower than the previously reported laboratory mean value (˜ 1.6). Our results indicate two major determinants of LRU - light and vapor deficit. Light is the primary driver of LRU because CO2 assimilation capacity increases with light, while COS consumption capacity does not. Superimposed upon the light response is a secondary effect that high vapor deficit further reduces LRU, causing LRU minima to occur in the afternoon, not at noon. The partial stomatal closure induced by high vapor deficit suppresses COS uptake more strongly than CO2 uptake because stomatal resistance is a more dominant component in the total resistance of COS. Using stomatal conductance estimates, we show that LRU variability can be explained in terms of different patterns of stomatal vs. internal limitations on COS and CO2 uptake. Our findings illustrate the stomata-driven coupling of COS and CO2 uptake during the most photosynthetically active period in the field and provide an in situ characterization of LRU - a key parameter required for the use of COS as a photosynthetic tracer.
Rajamani, Sathish; Torres, Moacir; Falcao, Vanessa; Ewalt Gray, Jaime; Coury, Daniel A.; Colepicolo, Pio; Sayre, Richard
2014-01-01
We have developed a fluorescence resonance energy transfer (FRET)-based heavy metal biosensor for the quantification of bioavailable free heavy metals in the cytoplasm of the microalga Chlamydomonas reinhardtii. The biosensor is composed of an end-to-end fusion of cyan fluorescent protein (CFP), chicken metallothionein II (MT-II), and yellow fluorescent protein (YFP). In vitro measurements of YFP/CFP fluorescence emission ratios indicated that the addition of metals to the purified biosensor enhanced FRET between CFP and YFP, consistent with heavy metal-induced folding of MT-II. A maximum YFP/CFP FRET ratio of 2.8 was observed in the presence of saturating concentrations of heavy metals. The sensitivity of the biosensor was greatest for Hg2+ followed by Cd2+ ≈ Pb2+ > Zn2+ > Cu2+. The heavy metal biosensor was unresponsive to metals that do not bind to MT-II (Na+ and Mg2+). When expressed in C. reinhardtii, we observed a differential metal-dependent response to saturating external concentrations (1.6 mm) of heavy metals (Pb2+ > Cd2+) that was unlike that observed for the isolated biosensor (in vitro). Significantly, analysis of metal uptake kinetics indicated that equilibration of the cytoplasm with externally applied heavy metals occurred within seconds. Our results also indicated that algae have substantial buffering capacity for free heavy metals in their cytosol, even at high external metal concentrations. PMID:24368336
Rajamani, Sathish; Torres, Moacir; Falcao, Vanessa; Ewalt Gray, Jaime; Coury, Daniel A; Colepicolo, Pio; Sayre, Richard
2014-02-01
We have developed a fluorescence resonance energy transfer (FRET)-based heavy metal biosensor for the quantification of bioavailable free heavy metals in the cytoplasm of the microalga Chlamydomonas reinhardtii. The biosensor is composed of an end-to-end fusion of cyan fluorescent protein (CFP), chicken metallothionein II (MT-II), and yellow fluorescent protein (YFP). In vitro measurements of YFP/CFP fluorescence emission ratios indicated that the addition of metals to the purified biosensor enhanced FRET between CFP and YFP, consistent with heavy metal-induced folding of MT-II. A maximum YFP/CFP FRET ratio of 2.8 was observed in the presence of saturating concentrations of heavy metals. The sensitivity of the biosensor was greatest for Hg2+ followed by Cd2+≈Pb2+>Zn2+>Cu2+. The heavy metal biosensor was unresponsive to metals that do not bind to MT-II (Na+ and Mg2+). When expressed in C. reinhardtii, we observed a differential metal-dependent response to saturating external concentrations (1.6 mm) of heavy metals (Pb2+>Cd2+) that was unlike that observed for the isolated biosensor (in vitro). Significantly, analysis of metal uptake kinetics indicated that equilibration of the cytoplasm with externally applied heavy metals occurred within seconds. Our results also indicated that algae have substantial buffering capacity for free heavy metals in their cytosol, even at high external metal concentrations.
Filipsson, Karl; Brijs, Jeroen; Näslund, Joacim; Wengström, Niklas; Adamsson, Marie; Závorka, Libor; Österling, E Martin; Höjesjö, Johan
2017-04-01
Gill parasites on fish are likely to negatively influence their host by inhibiting respiration, oxygen transport capacity and overall fitness. The glochidia larvae of the endangered freshwater pearl mussel (FPM, Margaritifera margaritifera (Linnaeus, 1758)) are obligate parasites on the gills of juvenile salmonid fish. We investigated the effects of FPM glochidia encystment on the metabolism and haematology of brown trout (Salmo trutta Linnaeus, 1758). Specifically, we measured whole-animal oxygen uptake rates at rest and following an exhaustive exercise protocol using intermittent flow-through respirometry, as well as haematocrit, in infested and uninfested trout. Glochidia encystment significantly affected whole-animal metabolic rate, as infested trout exhibited higher standard and maximum metabolic rates. Furthermore, glochidia-infested trout also had elevated levels of haematocrit. The combination of an increased metabolism and haematocrit in infested fish indicates that glochidia encystment has a physiological effect on the trout, perhaps as a compensatory response to the potential respiratory stress caused by the glochidia. When relating glochidia load to metabolism and haematocrit, fish with low numbers of encysted glochidia were the ones with particularly elevated metabolism and haematocrit. Standard metabolic rate decreased with substantial glochidia loads towards levels similar to those of uninfested fish. This suggests that initial effects visible at low levels of encystment may be countered by additional physiological effects at high loads, e.g. potential changes in energy utilization, and also that high numbers of glochidia may restrict oxygen uptake by the gills.
NASA Astrophysics Data System (ADS)
Rudra, Ruchira; Kumar, Vikash; Pramanik, Nilkamal; Kundu, Patit Paban
2017-02-01
Different membranes with varied molar concentrations of graphite oxide (GO), 'in situ' polymerized sulfonated polystyrene (SS) and glutaraldehyde (GA) cross linked polyvinyl alcohol (PVA), have been analyzed as an effective and low cost nanocomposite barrier in single chambered microbial fuel cells (MFCs). The synthesized composite membranes, namely GO0.2, GO0.4 and GO0.6 exhibited comparatively better results with reduced water uptake (WU) and swelling ratios (SR) over the native PVA. The variation in properties is illustrated with membrane analyses, where GO0.4 showed an increased proton conductivity (PC) and ion exchange capacity (IEC) of 0.128 S cm-1 and 0.33 meq g-1 amongst all of the used membranes. In comparison, reduced oxygen diffusivity with lower water uptake showed a two-fold decrease in GO0.4 over pure PVA membrane (∼2.09 × 10-4 cm s-1). A maximum power density of 193.6 mW m-2 (773.33 mW m-3) with a current density of 803.33 mA m-2 were observed with GO0.4 fitted MFC, where ∼81.89% of chemical oxygen demand (COD) was removed using mixed firmicutes, as biocatalyst, in 25 days operation. In effect, the efficacy of GO incorporated crosslinked PVA and SS nanocomposite membrane has been evaluated as a polymer electrolyte membrane for harnessing bio-energy from single chambered MFCs.
Baselga-Cervera, Beatriz; Romero-López, Julia; García-Balboa, Camino; Costas, Eduardo; López-Rodas, Victoria
2018-01-01
The extraction and processing of uranium (U) have polluted large areas worldwide, rendering anthropogenic extreme environments inhospitable to most species. Noticeably, these sites are of great interest for taxonomical and applied bioprospection of extremotolerant species successfully adapted to U tailings contamination. As an example, in this work we have studied a microalgae species that inhabits extreme U tailings ponds at the Saelices mining site (Salamanca, Spain), characterized as acidic (pH between 3 and 4), radioactive (around 4 μSv h -1 ) and contaminated with metals, mainly U (from 25 to 48 mg L -1 ) and zinc (from 17 to 87 mg L -1 ). After isolation of the extremotolerant ChlSP strain, morphological characterization and internal transcribed spacer (ITS)-5.8S gene sequences placed it in the Chlamydomonadaceae , but BLAST analyses identity values, against the nucleotide datasets at the NCBI database, were very low (<92%). We subjected the ChlSP strain to an artificial selection protocol to increase the U uptake and investigated its response to selection. The ancestral strain ChlSP showed a U-uptake capacity of ≈4.30 mg U g -1 of dry biomass (DB). However, the artificially selected strain ChlSG was able to take up a total of ≈6.34 mg U g -1 DB, close to the theoretical maximum response (≈7.9 mg U g -1 DB). The selected ChlSG strain showed two possible U-uptake mechanisms: the greatest proportion by biosorption onto cell walls (ca. 90%), and only a very small quantity, ~0.46 mg g -1 DB, irreversibly bound by bioaccumulation. Additionally, the kinetics of the U-uptake process were characterized during a microalgae growth curve; ChlSG cells removed close to 4 mg L -1 of U in 24 days. These findings open up promising prospects for sustainable management of U tailings waters based on newly evolved extremotolerants and outline the potential of artificial selection in the improvement of desired features in microalgae by experimental adaptation and selection.
Baselga-Cervera, Beatriz; Romero-López, Julia; García-Balboa, Camino; Costas, Eduardo; López-Rodas, Victoria
2018-01-01
The extraction and processing of uranium (U) have polluted large areas worldwide, rendering anthropogenic extreme environments inhospitable to most species. Noticeably, these sites are of great interest for taxonomical and applied bioprospection of extremotolerant species successfully adapted to U tailings contamination. As an example, in this work we have studied a microalgae species that inhabits extreme U tailings ponds at the Saelices mining site (Salamanca, Spain), characterized as acidic (pH between 3 and 4), radioactive (around 4 μSv h−1) and contaminated with metals, mainly U (from 25 to 48 mg L−1) and zinc (from 17 to 87 mg L−1). After isolation of the extremotolerant ChlSP strain, morphological characterization and internal transcribed spacer (ITS)-5.8S gene sequences placed it in the Chlamydomonadaceae, but BLAST analyses identity values, against the nucleotide datasets at the NCBI database, were very low (<92%). We subjected the ChlSP strain to an artificial selection protocol to increase the U uptake and investigated its response to selection. The ancestral strain ChlSP showed a U-uptake capacity of ≈4.30 mg U g−1 of dry biomass (DB). However, the artificially selected strain ChlSG was able to take up a total of ≈6.34 mg U g−1 DB, close to the theoretical maximum response (≈7.9 mg U g−1 DB). The selected ChlSG strain showed two possible U-uptake mechanisms: the greatest proportion by biosorption onto cell walls (ca. 90%), and only a very small quantity, ~0.46 mg g−1 DB, irreversibly bound by bioaccumulation. Additionally, the kinetics of the U-uptake process were characterized during a microalgae growth curve; ChlSG cells removed close to 4 mg L−1 of U in 24 days. These findings open up promising prospects for sustainable management of U tailings waters based on newly evolved extremotolerants and outline the potential of artificial selection in the improvement of desired features in microalgae by experimental adaptation and selection. PMID:29662476
Physiological responses and air consumption during simulated firefighting tasks in a subway system.
Williams-Bell, F Michael; Boisseau, Geoff; McGill, John; Kostiuk, Andrew; Hughson, Richard L
2010-10-01
Professional firefighters (33 men, 3 women), ranging in age from 30 to 53 years, participated in a simulation of a subway system search and rescue while breathing from their self-contained breathing apparatus (SCBA). We tested the hypothesis that during this task, established by expert firefighters to be of moderate intensity, the rate of air consumption would exceed the capacity of a nominal 30-min cylinder. Oxygen uptake, carbon dioxide output, and air consumption were measured with a portable breath-by-breath gas exchange analysis system, which was fully integrated with the expired port of the SCBA. The task involved descending a flight of stairs, walking, performing a search and rescue, retreat walking, then ascending a single flight of stairs to a safe exit. This scenario required between 9:56 and 13:24 min:s (mean, 12:10 ± 1:10 min:s) to complete, with an average oxygen uptake of 24.3 ± 4.5 mL kg(-1) min(-1) (47 ± 10 % peak oxygen uptake) and heart rate of 76% ± 7% of maximum. The highest energy requirement was during the final single-flight stair climb (30.4 ± 5.4 mL kg(-1) min(-1)). The average respiratory exchange ratio (carbon dioxide output/oxygen uptake) throughout the scenario was 0.95 ± 0.08, indicating a high carbon dioxide output for a relatively moderate average energy requirement. Air consumption from the nominal "30-min" cylinder averaged 51% (range, 26%-68%); however, extrapolation of these rates of consumption suggested that the low-air alarm, signalling that only 25% of the air remains, would have occurred as early as 11 min for an individual with the highest rate of air consumption, and at 16 min for the group average. These data suggest that even the moderate physical demands of walking combined with search and rescue while wearing full protective gear and breathing through the SCBA impose considerable physiological strain on professional firefighters. As well, the rate of air consumption in these tasks classed as moderate, compared with high-rise firefighting, would have depleted the air supply well before the nominal time used to describe the cylinders.
Seasonality of striatal dopamine synthesis capacity in Parkinson's disease.
Kaasinen, Valtteri; Jokinen, Pekka; Joutsa, Juho; Eskola, Olli; Rinne, Juha O
2012-11-14
Recent neuroimaging evidence suggests that the healthy human brain dopaminergic system may show seasonal rhythmicity, as striatal dopamine synthesis capacity has been reported to be higher during fall and winter. There is additional evidence about season of birth effects on morbidity in several neuropsychiatric disorders. We investigated possible seasonal changes in dopamine synthesis capacity in a relatively large sample of Parkinson's disease patients. 6-[(18)F]fluoro-l-DOPA brain PET scans for 109 Parkinson's disease patients were performed during different seasons and the effects of season of scanning and season of birth on striatal tracer uptake were studied, controlling for covariates such as age, sex and disease severity. The patients scanned during fall and winter had 15% higher tracer uptake in the right putamen compared to patients scanned during spring and summer (p=0.04). Patients born during winter and spring had 10% higher dopamine synthesis capacity in the left caudate (p=0.008), 8% higher capacity in the right caudate (p=0.04) and 16% higher capacity in the putamen contralateral to the side of predominant motor symptoms (p=0.02) compared to patients born during summer and fall (after correcting for differences in age, sex, disease severity, scanner and season of scanning). The results suggest that there are seasonal oscillations also in the hypoactive dopaminergic system of Parkinson's disease patients. Findings concerning season of birth further suggest that there may be gestational or perinatal seasonal factors, which influence dopaminergic function in adulthood. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Acclimation of Swedish and Italian ecotypes of Arabidopsis thaliana to light intensity.
Stewart, Jared J; Polutchko, Stephanie K; Adams, William W; Demmig-Adams, Barbara
2017-11-01
This study addressed whether ecotypes of Arabidopsis thaliana from Sweden and Italy exhibited differences in foliar acclimation to high versus low growth light intensity, and compared CO 2 uptake under growth conditions with light- and CO 2 -saturated intrinsic photosynthetic capacity and leaf morphological and vascular features. Differential responses between ecotypes occurred mainly at the scale of leaf architecture, with thicker leaves with higher intrinsic photosynthetic capacities and chlorophyll contents per leaf area, but no difference in photosynthetic capacity on a chlorophyll basis, in high light-grown leaves of the Swedish versus the Italian ecotype. Greater intrinsic photosynthetic capacity per leaf area in the Swedish ecotype was accompanied by a greater capacity of vascular infrastructure for sugar and water transport, but this was not associated with greater CO 2 uptake rates under growth conditions. The Swedish ecotype with its thick leaves is thus constructed for high intrinsic photosynthetic and vascular flux capacity even under growth chamber conditions that may not permit full utilization of this potential. Conversely, the Swedish ecotype was less tolerant of low growth light intensity than the Italian ecotype, with smaller rosette areas and lesser aboveground biomass accumulation in low light-grown plants. Foliar vein density and stomatal density were both enhanced by high growth light intensity with no significant difference between ecotypes, and the ratio of water to sugar conduits was also similar between the two ecotypes during light acclimation. These findings add to the understanding of the foliar vasculature's role in plant photosynthetic acclimation and adaptation.
Conalogue, David Mc; Kinn, Sue; Mulligan, Jo-Ann; McNeil, Malcolm
2017-03-21
In recognition of the need for long-term planning for global health research, and to inform future global health research priorities, the United Kingdom Department for International Development (DfID) carried out a public consultation between May and June 2015. The consultation aimed to elicit views on the (1) the long-term future global health research priorities; (2) areas likely to be less important over time; (3) how to improve research uptake in low-income countries; and (4) how to build research capacity in low-income countries. An online consultation was used to survey a wide range of participants on global health research priorities. The qualitative data was analysed using a thematic analysis, with frequency of codes in responses tabulated to approximate relative importance of themes and sub-themes. The public consultation yielded 421 responses. The survey responses confirmed the growing importance of non-communicable disease as a global health research priority, being placed above infectious diseases. Participants felt that the key area for reducing funding prioritisation was infectious diseases. The involvement of policymakers and other key stakeholders was seen as critical to drive research uptake, as was collaboration and partnership. Several methods to build research capacity in low-income countries were described, including capacity building educational programmes, mentorship programmes and research institution collaboration and partnership. The outcomes from this consultation survey provide valuable insights into how DfID stakeholders prioritise research. The outcomes from this survey were reviewed alongside other elements of a wider DfID consultation process to help inform long-term research prioritisation of global health research. There are limitations in this approach; the opportunistic nature of the survey's dissemination means the findings presented may not be representative of the full range of stakeholders or views.
Ezeh, Collins I; Huang, Xiani; Yang, Xiaogang; Sun, Cheng-Gong; Wang, Jiawei
2017-11-01
To improve CO 2 adsorption, amine modified Layered double hydroxide (LDH) were prepared via a two stage process, SDS/APTS intercalation was supported by ultrasonic irradiation and then followed by MEA extraction. The prepared samples were characterised using Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDX), X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Temperature Programmed Desorption (TPD), Brunauer-Emmett-Teller (BET), and Thermogravimetric analysis (TGA), respectively. The characterisation results were compared with those obtained using the conventional preparation method with consideration to the effect of sonochemical functionalization on textural properties, adsorption capacity, regeneration and lifetime of the LDH adsorbent. It is found that LDHs prepared by sonochemical modification had improved pore structure and CO 2 adsorption capacity, depending on sonic intensity. This is attributed to the enhanced deprotonation of activated amino functional groups via the sonochemical process. Subsequently, this improved the amine loading and effective amine efficiency by 60% of the conventional. In addition, the sonochemical process improved the thermal stability of the adsorbent and also, reduced the irreversible CO 2 uptake, CUirrev, from 0.18mmol/g to 0.03mmol/g. Subsequently, improving the lifetime and ease of regenerating the adsorbent respectively. This is authenticated by subjecting the prepared adsorbents to series of thermal swing adsorption (TSA) cycles until its adsorption capacity goes below 60% of the original CO 2 uptake. While the conventional adsorbent underwent a 10 TSA cycles before breaking down, the sonochemically functionalized LDH went further than 30 TSA cycles. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Hai; Han, Shaoke; Dong, Yingbo; He, Yinhai
2017-08-01
A low-cost anion adsorbent for Cr(VI) effectively removing was synthesized by hyperbranched polyamide modified corncob (HPMC). Samples were characterized by Brunauer-Emmett-Teller (BET) surface area analysis, field-emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray spectroscopy, Fourier transform infrared (FTIR) and zeta potential analysis. Kinetics, isotherms and thermodynamics studies of HPMC for Cr(VI) adsorption were investigated in batch static experiments, in the temperature range of 25-45 °C, pH = 2.0. Results showed that the adsorption was rapid and stable, with the uptake capacity higher than 80% after 30 min. Adsorption behavior and rate-controlling mechanisms were analyzed using three kinetic models (pseudo-first order, pseudo-second order, intra-particle kinetic model). Kinetic studies showed that the adsorption of HPMC to Cr(VI) relied the pseudo-second-order model, and controlled both by the intra-particle diffusion and film diffusion. Equilibrium data was tested by Langmuir and Freundlich adsorption isotherm models. Langmuir model was more suitable to indicate a homogeneous distribution of active sites on HPMC and monolayer adsorption. The maximum adsorption capacity from the Langmuir model, qmax, was 131.6 mg/g at pH 2.0 and 45 °C for HPMC. Thermodynamic parameters revealed spontaneous and endothermic nature of the Cr(VI) adsorption onto HPMC.
Development of bio based plastic materials for packaging from soybeans waste
NASA Astrophysics Data System (ADS)
Muhammad, A.; Rashidi, A. R.; Roslan, A.; Idris, S. A.
2017-09-01
Demands of plastic material which increase with the increasing of human population encourage researchers to find alternative solution to replace petro based plastic. Thus, in the present study, a novel "green bioplastic" packaging was developed using soybean waste which is a major waste in soy sauce food industry. The evaluation of the effect of ratio of starch, soy waste and plasticizer in this bioplastic production was studied and their characteristics were compared with available bioplastics. Characteristics study was done in terms of burning test, water absorption capacity, thermal and tensile strength measurement and the result obtained were analyzed. The glass transition temperature (Tg) for soy waste bioplastic is 117˚C. The water absorption test shows that an increase in mass up to 114.17% which show large amount of water uptake capacity of this bioplastics. And about 38% of percentage loss was observed when compared with other novel bioplastics. The results clearly show that the amount of glycerol as a plasticizer had an inversely proportional relationship with the Glass Transition Temperature (Tg). The average maximum force value for tensile strength test is 6.71 N. The burning test show that the soy wastes bioplastic release a very faint smell of soy and glue-like substance. The flame ignited a Yellowish-Orange colour and released some sparks. Based on the overall results, soy-based have been proven to become an excellent bio-based packaging materials.
Volpe, Angela; Pagano, Michele; Pastore, Carlo; Cuocci, Corrado; Milella, Antonella
2016-11-09
Titanates may be selectively used as inorganic adsorbents for heavy metal ions owing to their stability and fast adsorption kinetics. Nevertheless, the synthesis of such materials usually requires extreme reaction conditions. In this work, a new titanium-based material was rapidly synthesized under mild laboratory conditions. The obtained amorphous hydroxo titanate was tested for heavy metal sorption through kinetic and equilibrium batch tests, which indicated that the new material had high adsorption rates and adsorption capacities towards Cu(2+), Ni(2+) and Pb(2) ions. Adsorption kinetics were pseudo-second order, and equilibrium data fitted the Langmuir isotherm model. The calculated maximum adsorption capacities of Cu(2+), Ni(2+) and Pb(2+) in deionized water were around 1 mmol g(-1), and they decreased for Cu(2+) and Ni(2+) in the presence of Na(+), Ca(2+) and Mg(2+) ions, whereas the alkali metal ions did not influence Pb(2+) uptake. The efficiency of adsorption and recovery of lead ions were evaluated through column dynamic tests, by feeding the column with groundwater and tap water spiked with Pb(2+). The high performance of the hydroxo titanate over several cycles of retention and elution suggested that the product is potentially useful for the solid phase extraction of lead at trace levels in natural water samples, with potential use in metal pre-concentration for analytical applications.
Hetzel, Terence; Blaesing, Christina; Jaeger, Martin; Teutenberg, Thorsten; Schmidt, Torsten C
2017-02-17
The performance of micro-liquid chromatography columns with an inner diameter of 0.3mm was investigated on a dedicated micro-LC system for gradient elution. Core-shell as well as fully porous particle packed columns were compared on the basis of peak capacity and gradient kinetic plot limits. The results for peak capacity showed the superior performance of columns packed with sub-2μm fully porous particles compared to 3.0μm fully porous and 2.7μm core-shell particles within a range of different gradient time to column void time ratios. For ultra-fast chromatography a maximum peak capacity of 16 can be obtained using a 30s gradient for the sub-2μm fully porous particle packed column. A maximum peak capacity of 121 can be achieved using a 5min gradient. In addition, the influence of an alternative detector cell on the basis of optical waveguide technology and contributing less to system variance was investigated showing an increased peak capacity for all applied gradient time/column void time ratios. Finally, the influence of pressure was evaluated indicating increased peak capacity for maximum performance whereas a limited benefit for ultra-fast chromatography with gradient times below 30s was observed. Copyright © 2017 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of process waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment. The height difference between the maximum safe surge capacity level and the...
NASA Technical Reports Server (NTRS)
Paerl, H. W.; Bebout, B. M.; Joye, S. B.; Des Marais, D. J.
1993-01-01
Intertidal marine microbial mats exhibited biologically mediated uptake of low molecular weight dissolved organic matter (DOM), including D-glucose, acetate, and an L-amino acid mixture at trace concentrations. Uptake of all compounds occurred in darkness, but was frequently enhanced under natural illumination. The photosystem 2 inhibitor, 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) generally failed to inhibit light-stimulated DOM uptake. Occasionally, light plus DCMU-amended treatments led to uptake rates higher than light-incubated samples, possibly due to phototrophic bacteria present in subsurface anoxic layers. Uptake was similar with either 3H- or 14C-labeled substrates, indicating that recycling of labeled CO2 via photosynthetic fixation was not interfering with measurements of light-stimulated DOM uptake. Microautoradiographs showed a variety of pigmented and nonpigmented bacteria and, to a lesser extent, cyanobacteria and eucaryotic microalgae involved in light-mediated DOM uptake. Light-stimulated DOM uptake was often observed in bacteria associated with sheaths and mucilage surrounding filamentous cyanobacteria, revealing a close association of organisms taking up DOM with photoautotrophic members of the mat community. The capacity for dark- and light-mediated heterotrophy, coupled to efficient retention of fixed carbon in the mat community, may help optimize net production and accretion of mats, even in oligotrophic waters.
Water Adsorption on Various Metal Organic Framework
NASA Astrophysics Data System (ADS)
Teo, H. W. B.; Chakraborty, A.
2017-12-01
In this paper, Metal Organic Framework (MOF) undergoes N2 and water adsorption experiment to observe how the material properties affects the water sorption performance. The achieved N2 isotherms is used to estimate the BET surface area, pore volume and, most importantly, the pore size distribution of the adsorbent material. It is noted that Aluminium Fumarate and CAU-10 has pore distribution of about 6Å while MIL-101(Cr) has 16 Å. The water adsorption isotherms at 25°C shows MIL-101(Cr) has a long hydrophobic length from relative pressure of 0 ≤ P/Ps ≤ 0.4 with a maximum water uptake of 1kg/kg sorbent. Alkali metal ions doped MIL-101(Cr) reduced the hydrophobic length and maximum water uptake of original MIL-101(Cr). Aluminium Fumarate and CAU-10 has lower water uptake, but the hydrophobic length of both materials is within relative pressure of P/Ps ≤ 0.2. The kinetic behaviour of doped MIL-101(Cr), Aluminium Fumarate and CAU-10 are faster than MIL-101(Cr).
Immobilization of Rose Waste Biomass for Uptake of Pb(II) from Aqueous Solutions
Ansari, Tariq Mahmood; Hanif, Muhammad Asif; Mahmood, Abida; Ijaz, Uzma; Khan, Muhammad Aslam; Nadeem, Raziya; Ali, Muhammad
2011-01-01
Rosa centifolia and Rosa gruss an teplitz distillation waste biomass was immobilized using sodium alginate for Pb(II) uptake from aqueous solutions under varied experimental conditions. The maximum Pb(II) adsorption occurred at pH 5. Immobilized rose waste biomasses were modified physically and chemically to enhance Pb(II) removal. The Langmuir sorption isotherm and pseudo-second-order kinetic models fitted well to the adsorption data of Pb(II) by immobilized Rosa centifolia and Rosa gruss an teplitz. The adsorbed metal is recovered by treating immobilized biomass with different chemical reagents (H2SO4, HCl and H3PO4) and maximum Pb(II) recovered when treated with sulphuric acid (95.67%). The presence of cometals Na, Ca(II), Al(III), Cr(III), Cr(VI), and Cu(II), reduced Pb(II) adsorption on Rosa centifolia and Rosa gruss an teplitz waste biomass. It can be concluded from the results of the present study that rose waste can be effectively used for the uptake of Pb(II) from aqueous streams. PMID:21350666
Müller, Jan; Ewert, Peter; Hager, Alfred
2018-01-01
Many patients with congenital heart disease (CHD) require surgery to ensure survival into adulthood. But history of previous thoracotomies is associated with respiratory muscle weakness, impairments in chest wall compliance, and moderately to severely impaired lung function. This study evaluated the impact of thoracotomies on functional outcome in patients with CHD. In total 1372 adolescents and adults with CHD (32.4±11.5 years, 624 female), who underwent spirometry and cardiopulmonary exercise testing in our institution from January 2010 to August 2015, were analyzed. After adjusting for confounding variables, with every thoracotomy the prevalence for a restrictive ventilatory pattern increased by 1.8-fold (CI: 1.606-2.050; p<0.001). The number of thoracotomies had no direct influence on an impaired exercise capacity in a multivariate model, but with every percentage point increase in forced vital capacity probability of impaired exercise capacity diminished (OR: 0.944, CI: 0.933-0.955, p<0.001). There was a moderate correlation of forced vital capacity and peak oxygen uptake (r=0.464, p<0.001). After a follow-up of 2.1±1.6 years 21 patients had died. Survival was only related to age (p<0.001) and peak oxygen uptake (p<0.001) after considering together with thoracotomies, oxygen saturation at rest and forced vital capacity in a multivariate model. Independent of CHD complexity and other risk factors, multiple thoracotomies lead to restrictive lung pattern. It could be suggested that those limitations in forced vital capacity contribute to impairments in exercise capacity, which turned out to be the strongest predictor for survival. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Kucuker, Mehmet Ali; Wieczorek, Nils; Kuchta, Kerstin; Copty, Nadim K.
2017-01-01
In recent years, biosorption is being considered as an environmental friendly technology for the recovery of rare earth metals (REE). This study investigates the optimal conditions for the biosorption of neodymium (Nd) from an aqueous solution derived from hard drive disk magnets using green microalgae (Chlorella vulgaris). The parameters considered include solution pH, temperature and biosorbent dosage. Best-fit equilibrium as well as kinetic biosorption models were also developed. At the optimal pH of 5, the maximum experimental Nd uptakes at 21, 35 and 50°C and an initial Nd concentration of 250 mg/L were 126.13, 157.40 and 77.10 mg/g, respectively. Analysis of the optimal equilibrium sorption data showed that the data fitted well (R2 = 0.98) to the Langmuir isotherm model, with maximum monolayer coverage capacity (qmax) of 188.68 mg/g, and Langmuir isotherm constant (KL) of 0.029 L/mg. The corresponding separation factor (RL) is 0.12 indicating that the equilibrium sorption was favorable. The sorption kinetics of Nd ion follows well a pseudo-second order model (R2>0.99), even at low initial concentrations. These results show that Chlorella vulgaris has greater biosorption affinity for Nd than activated carbon and other algae types such as: A. Gracilis, Sargassum sp. and A. Densus. PMID:28388641
Structure, properties, and surfactant adsorption behavior of fly ash carbon
NASA Astrophysics Data System (ADS)
Kulaots, Indrek
The objective of this research was to suggest methods by which certain problems associated with use of coal fly ash as a pozzolanic agent in concrete mixtures could be alleviated, guided by a better characterization of fly ash properties. A sample suite of eighty fly ashes was gathered from utilities across the world (mainly US-based) and included ashes from coals ranging in rank from bituminous to lignite. The widely used foam index test is used to characterize ashes with respect to their propensity to adsorb surfactants (called Air Entraining Admixtures or AEAs) used to impart freeze-thaw resistance to concrete. In ash-containing concrete mixtures, AEAs are adsorbed from the polar concrete-water solution onto non-polar unburned carbon surfaces in the ash. The AEA uptake by fly ashes only crudely correlates with the amount of carbon in the fly ash, because carbon surface area, accessibility and polarity all play a role in determining adsorption capacities. Fly ash carbon particle size distribution is also a key factor. Fine carbon particles in fly ash fractions of <106mum are responsible for about 90% of surfactant adsorption capacity. Surfactant adsorption on fly ash carbon is, in the foam index test, a dynamic process. The time of the test (typically <10 minutes) is not long enough to permit penetration of small porosity by the relatively large AEA molecules, and only the most readily available adsorption surface near the geometrical surface of the carbon particles is utilized. The nature of the foam index test was also examined, and it is recommended that a more standardized test procedure based upon pure reagents be adopted for examining the nature of fly ashes. Several possible reagents were identified. Room temperature fly ash ozonation is a powerful technique that allows increasing fly ash surface polarity in a relatively short time and thus is very effective for decreasing the AEA uptake capacity. Depending on the ozone input concentration, sample amount and contact time, surfactant uptake capacity decreases by a factor of two or more following reaction of only 0--1g O3/kg-ash, bringing many ashes into compliance with AEA uptake requirements.
Saber, Ali; Tafazzoli, Milad; Mortazavian, Soroosh; James, David E
2018-02-01
Two common wetland plants, Pampas Grass (Cortaderia selloana) and Lucky Bamboo (Dracaena sanderiana), were used in hydroponic cultivation systems for the treatment of simulated high-sulfate wastewaters. Plants in initial experiments at pH 7.0 removed sulfate more efficiently compared to the same experimental conditions at pH 6.0. Results at sulfate concentrations of 50, 200, 300, 600, 900, 1200, 1500 and 3000 mg/L during three consecutive 7-day treatment periods with 1-day rest intervals, showed decreasing trends of both removal efficiencies and uptake rates with increasing sulfate concentrations from the first to the second to the third 7-day treatment periods. Removed sulfate masses per unit dry plant mass, calculated after 23 days, showed highest removal capacity at 600 mg/L sulfate for both plants. A Langmuir-type isotherm best described sulfate uptake capacity of both plants. Kinetic studies showed that compared to pseudo first-order kinetics, pseudo-second order kinetic models slightly better described sulfate uptake rates by both plants. The Elovich kinetic model showed faster rates of attaining equilibrium at low sulfate concentrations for both plants. The dimensionless Elovich model showed that about 80% of sulfate uptake occurred during the first four days' contact time. Application of three 4-day contact times with 2-day rest intervals at high sulfate concentrations resulted in slightly higher uptakes compared to three 7-day contact times with 1-day rest intervals, indicating that pilot-plant scale treatment systems could be sized with shorter contact times and longer rest-intervals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wei, Yuanyang; Yu, Danqing; Tong, Shitang; Jia, Charles Q
2015-02-03
Powder activated carbon (AC) injection is widely considered as the most viable technology for removing gaseous elemental mercury (Hg(0)) in flue gases of coal-fired power plants. However, sulfuric acid (H2SO4) can form on the external and internal surfaces of AC particles due to the presence of sulfur oxides, nitrogen oxides, oxygen, and moisture in flue gases. This work focuses on the effects of H2SO4 and O2 on the Hg(0) uptake capacity and reversibility of sulfur impregnated activated carbon (SIAC) under dynamic conditions. Experiments were conducted with 25 μg-Hg(0)/m(3) of nitrogen or air, using a semicontinuous flow fixed-bed reactor kept at 120 or 180 °C. H2SO4 had a profound hindering effect on Hg(0) uptake due to pore blockage. O2 significantly enhanced Hg(0) uptake and its reversibility, via the oxidation of Hg(0) which facilitated chemisorption and the subsequent physisorption onto chemically adsorbed Hg. Absorption of Hg in H2SO4 was unlikely a significant contributor, when Hg(0) concentrations were at levels of typical power plants (tens of ppb). The reversibility of and relative contributions of physisorption and chemisorption to Hg(0) uptake would change with Hg(0) concentrations in flue gases. These findings could be significant in developing a complete solution for Hg capture where the handling of spent sorbent materials and the possible secondary pollution need to be considered.
[Transamination in the mechanism of protection of mitochondria from Ca2+ overload].
Saakian, G G; Saakian, I R
2008-01-01
A high sensitivity of the succinate-dependent uptake of Ca2+ by mitochondria to (1) the transamination (TA) substrates glutamate (GLU) and alpha-ketoglutarate (KGL) and (2) the inhibitor of TA aminooxyacetate (AOA) was revealed. The effect of the TA substrates on Ca2+ uptake depends on the ratio (1:10 mM) of their concentrations: 1 mM GLU activates and 10 mM KGL decreases this activation by 35-46%, whereas AOA suppresses the Ca2+ capacity by 60% and the inhibitor of succinate oxidation malonate, by 80-90%. A similarity in the limiting action of KGL and phosphoenolpyruvate (PEP), two sources of oxaloacetate (OAA) and GTP, on Ca2+ capacity was revealed. The differences in the effects of KGL and GLU and the similarity in the effects of KGL and PEP on succinate oxidation are explained by the effect of OAA and GTP on this oxidation. The alternating inflow of OAA in coupled processes of TA, pyruvate cycle, and tricarboxylic acids cycle provides the reciprocal activation and cyclic recurrence of Ca2+ uptake, i. e., protection from the chronic exhausting activation of Ca2+-regulated dehydrogenases, the overload of Ca2+-outgoing channels, and the excessive production of free radicals in mitochondria. The reciprocal regulation of Ca2+ uptake by TA is considered as a mechanism of the maintenance of Ca2+ homeostasis and protection of mitochondria against Ca2+ overload.
Drout, Riki J.; Otake, Kenichi; Howarth, Ashlee J.; ...
2018-01-10
At the Hanford Site in southeastern Washington state, the U.S. Department of Energy intends to treat 56 million gallons of legacy nuclear waste by encasing it in borosilicate glass via vitrification. This process ineffectively captures radioactive pertechnetate (TcO 4–) because of the ion’s volatility, thereby requiring a different remediation method for this long-lived (t 1/2 = 2.1 × 10 5 years), environmentally mobile species. Currently available sorbents lack the desired combination of high uptake capacity, fast kinetics, and selectivity. Here, we evaluate the ability of the chemically and thermally robust Zr 6-based metal–organic framework (MOF), NU-1000, to capture perrhenate (ReOmore » 4–), a pertechnetate simulant, and pertechnetate. Our material exhibits an excellent perrhenate uptake capacity of 210 mg/g, reaches saturation within 5 min, and maintains perrhenate uptake in the presence of competing anions. Additionally, experiments with pertechnetate confirm perrhenate is a suitable surrogate. Single-crystal X-ray diffraction indicates both chelating and nonchelating perrhenate binding motifs are present in both the small pore and the mesopore of NU-1000. Postadsorption diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) further elucidates the uptake mechanism and powder X-ray diffraction (PXRD) and Brunauer–Emmett–Teller (BET) surface area analysis confirm the retention of crystallinity and porosity of NU-1000 throughout adsorption.« less
Enantio-selective molecular dynamics of (±)-o,p-DDT uptake and degradation in water-sediment system.
Ali, Imran; Alharbi, Omar M L; Alothman, Zeid A; Alwarthan, Abdulrahman
2018-01-01
Enantio-selective molecular dynamics of (±)-o,p-DDT uptake and degradation in water-sediment system is described. Both uptake and degradation processes of (-)-o,p-DDT were slightly higher than (+)-o,p-DDT enantiomer. The optimized parameters for uptake were 7.0μgL -1 concentration of o,p-DDT, 60min contact time, 5.0pH, 6.0gL -1 amount of reverine sediment and 25°C temperature. The maximum degradation of both (-)- and (+)-o,p-DDT was obtained with 16 days, 0.4μgL -1 concentration of o,p-DDT, pH 7 and 35°C temperature. Both uptake and degraded process followed first order rate reaction. Thermodynamic parameters indicated exothermic nature of uptake and degradation processes. Both uptake and degradation were slightly higher for (-)-enantiomer in comparison to (+)-enantiomer of o,p-DDT. It was concluded that both uptake and degradation processes are responsible for the removal of o,p-DDT from nature but uptake plays a crucial role. The percentage degradations of (-)- and (+)-o,p-DDT were 30.1 and 29.5, respectively. This study may be useful to manage o,p-DDT contamination of our earth's ecosystem. Copyright © 2017. Published by Elsevier Inc.
Commissioning and operational results of helium refrigeration system at JLab for the 12GeV upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudsen, Peter N.; Ganni, Venkatarao; Dixon, Kelly D.
The new 4.5 K refrigerator system at the Jefferson Lab (JLab) Central Helium Liquefier (CHL-2) for the 12 GeV upgrade was commissioned in late spring of 2013, following the commissioning of the new compressor system, and has been supporting 12 GeV LINAC commissioning since that time. Six design modes were tested during commissioning, consisting of a maximum capacity, nominal capacity, maximum liquefaction, maximum refrigeration, maximum fill and a stand-by/reduced load condition. The maximum capacity was designed to support a 238 g/s, 30 K and 1.16 bar cold compressor return flow, a 15 g/s, 4.5 K liquefaction load and a 12.6more » kW, 35-55 K shield load. The other modes were selected to ensure proper component sizing and selection to allow the cold box to operate over a wide range of conditions and capacities. The cold box system is comprised of two physically independent cold boxes with interconnecting transfer-lines. The outside (upper) 300-60 K vertical cold box has no turbines and incorporates a liquid nitrogen pre-cooler and 80-K beds. The inside (lower) 60-4.5 K horizontal cold box houses seven turbines that are configured in four expansion stages including one Joule-Thompson expander and a 20-K bed. The helium compression system has five compressors to support three pressure levels in the cold box. This paper will summarize the analysis of the test data obtained over the wide range of operating conditions and capacities which were tested.« less
Internal dosimetry of inhaled iodine-131.
Kiani Nasab, Mitra; Rafat Motavalli, Laleh; Miri Hakimabad, Hashem
2018-01-01
In this paper, the dose assessment for the iodine inhalation exposure in 19 aerosol sizes and three gas/vapor forms at three levels of thyroid uptake, was performed. Two different modes of work (light vs. heavy) and breathing (nose vs. mouth) for aerosol inhalation were investigated. In order to calculate the cumulated activities per unit of inhaled activity, a combined model which included the latest models of both human respiratory and alimentary tract was developed. The S values for 131 I were computed based on the ICRP adult male and female reference voxel phantoms by the Monte Carlo method. Then, the committed equivalent and committed effective dose coefficients were obtained (The data are available at http://www.um.ac.ir/∼mirihakim). In general, for the nonzero thyroid uptakes, the maximum cumulated activity was found in the thyroid. When the thyroid is blocked, however, the maximum depends on the work and breathing mode and radioisotope form. Overall, the maximum CED coefficient was evaluated for the inhalation of elemental iodine at thyroid uptake of ∼27% (2.8 × 10 -8 Sv/Bq). As for the particle inhalation per se, mouth breathing of 0.6 nm and 0.2 μm AMTD particles showed to have the maximum (2.8 × 10 -8 Sv/Bq) and minimum (6.4 × 10 -9 Sv/Bq) CED coefficients, respectively. Compared to the reference CED coefficients, the authors found an increase of about 58% for inhalation of the aerosols with AMAD of 1 μm and 70% for 5 μm. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abbasi, M. K.; Musa, N.; Manzoor, M.
2015-01-01
The ability of soil microorganisms and organic manures to convert insoluble phosphorus (P) to an accessible form offers a biological rescue system for improving P solubilization and utilization in soil-plant systems. Our objective was to examine the P supplying capacity of soluble P fertilizers (SPF) i.e. single super phosphate (SSP) and di-ammonium phosphate (DAP) and insoluble rock phosphate (RP) after adding phosphate solubilizing bacteria (PSB) and poultry manure (PM) and their subsequent effect on the growth, yield and P-utilization efficiency (PUE) of chill (Capsicum annuum L.). An incubation study was carried-out on a sandy loam neutral soil with twelve treatments including T0: control; T1: RP; T2: SSP; T3: DAP; T4: PM; T5: 1/2 RP + 1/2 SSP; T6: 1/2 RP + 1/2 DAP; T7: 1/2 RP + 1/2 PM; T8: RP + PSB; T9: 1/2 RP + 1/2 SSP + PSB; T10: 1/2 RP + 1/2 DAP + PSB; T11: 1/2 RP + 1/2 PM + PSB. Phosphorus release capacity of added amendments was measured by analyzing extractable P from the amended soil incubated under controlled condition at 25 °C for 0, 5, 15, 25, 35, 60 days period. To complement the incubation study, a greenhouse experiment was conducted in pots with chilli (Capsicum annuum L.) used as a test crop. Growth, yield, P-uptake and PUE of the chilli was determined during the study. Results indicated that P release capacity of soil amended with RP varied between 6.0 and 11.5 mg kg-1 while the soluble P fertilizers i.e. SSP and DAP displayed a maximum of 73 and 68 mg P kg-1 at the start of the experiment (day 0). However, the P released tendency from SSP and DAP declined during incubation and at the end 82 and 79% of P initially present had been lost from the mineral pool. Integrated use of PSB and PM with RP in 1/2 RP + 1/2 PM + PSB treatment stimulated P mineralization by releasing a maximum of 25 mg P kg-1 that was maintained at high levels without any loss. Application of PSB tended to decrease pH showing an acidifying effect on soil. In the greenhouse experiment, RP alone or RP + PSB was not able to generate any significant impact on plant while DAP displayed the superiority over the remaining treatments. Combined use of RP, PM and PSB in 1/2 RP + 1/2 PM + PSB resulted in the growth, yield and P-uptake of chilli comparative/equivalent to that recorded under DAP. The PUE of applied P varied between 4-29% and higher in the treatments supplemented with PSB compared to those without PSB. These results suggest that use of PSB and PM with insoluble RP or with soluble P fertilizers could be a promising management strategy and viable technology to utilize both low-grade RP and SPF or PM efficiently for crop production and nutrient improvement in our cropping systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND... submit a final control plan according to the schedule in table 1 of this subpart and comply with § 62...) Calculations of the current maximum combustion capacity and the planned maximum combustion capacity after the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
... (upper reservoir) having a total storage capacity of 8,145 acre- feet at a normal maximum operating... reservoir) 250 feet below the bottom of the upper reservoir having a total/usable storage capacity of 7,465 acre-feet at normal maximum operation elevation of 210 feet msl; (5) a powerhouse with approximate...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koga, Y.; Yamaguchi, R.; Ogata, M.
1990-05-01
Split-dose thallium-dipyridamole myocardial scintigraphy was performed in patients with nonobstructive hypertrophic cardiomyopathy (HC) who had angiographically normal coronary arteries. The dipyridamole-induced increases in thallium-201 uptake, calculated to evaluate coronary vasodilatory capacity, were significantly lower in 30 patients with HC than in 13 control subjects (177 +/- 58 vs 281 +/- 46%) and the reductions were observed in both the septal and lateral segments. The reductions of the septal segment in HC patients were significantly greater than those in 10 hypertensive patients with comparable degrees of septal hypertrophy. Of patients with HC, 16 had increases in thallium uptake well below themore » normal range. Compared with those having normal increases, these patients had significantly lower exercise duration (11 vs 15 minutes), with 33% having ST depression develop at a workload less than or equal to 80 watts. These data indicate that approximately one-half of patients with HC have impaired coronary vasodilatory capacity that could be an important pathophysiologic abnormality of HC resulting in the development of myocardial ischemia and the impairment of cardiac performance during exercise.« less
Hepworth, Christopher; Doheny-Adams, Timothy; Hunt, Lee; Cameron, Duncan D; Gray, Julie E
2015-10-01
Manipulation of stomatal density was investigated as a potential tool for enhancing drought tolerance or nutrient uptake. Drought tolerance and soil water retention were assessed using Arabidopsis epidermal patterning factor mutants manipulated to have increased or decreased stomatal density. Root nutrient uptake via mass flow was monitored under differing plant watering regimes using nitrogen-15 ((15) N) isotope and mass spectrometry. Plants with less than half of their normal complement of stomata, and correspondingly reduced levels of transpiration, conserve soil moisture and are highly drought tolerant but show little or no reduction in shoot nitrogen concentrations especially when water availability is restricted. By contrast, plants with over twice the normal density of stomata have a greater capacity for nitrogen uptake, except when water availability is restricted. We demonstrate the possibility of producing plants with reduced transpiration which have increased drought tolerance, with little or no loss of nutrient uptake. We demonstrate that increasing transpiration can enhance nutrient uptake when water is plentiful. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
26 CFR 1.141-7 - Special rules for output facilities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... nameplate capacity or the equivalent (or where there is no nameplate capacity or the equivalent, its maximum capacity), which is not reduced for reserves, maintenance or other unutilized capacity. (ii) Transmission and other output facilities—(A) In general. For transmission, distribution, cogeneration, and other...
26 CFR 1.141-7 - Special rules for output facilities.
Code of Federal Regulations, 2012 CFR
2012-04-01
... nameplate capacity or the equivalent (or where there is no nameplate capacity or the equivalent, its maximum capacity), which is not reduced for reserves, maintenance or other unutilized capacity. (ii) Transmission and other output facilities—(A) In general. For transmission, distribution, cogeneration, and other...
26 CFR 1.141-7 - Special rules for output facilities.
Code of Federal Regulations, 2013 CFR
2013-04-01
... nameplate capacity or the equivalent (or where there is no nameplate capacity or the equivalent, its maximum capacity), which is not reduced for reserves, maintenance or other unutilized capacity. (ii) Transmission and other output facilities—(A) In general. For transmission, distribution, cogeneration, and other...
26 CFR 1.141-7 - Special rules for output facilities.
Code of Federal Regulations, 2014 CFR
2014-04-01
... nameplate capacity or the equivalent (or where there is no nameplate capacity or the equivalent, its maximum capacity), which is not reduced for reserves, maintenance or other unutilized capacity. (ii) Transmission and other output facilities—(A) In general. For transmission, distribution, cogeneration, and other...
26 CFR 1.141-7 - Special rules for output facilities.
Code of Federal Regulations, 2011 CFR
2011-04-01
... nameplate capacity or the equivalent (or where there is no nameplate capacity or the equivalent, its maximum capacity), which is not reduced for reserves, maintenance or other unutilized capacity. (ii) Transmission and other output facilities—(A) In general. For transmission, distribution, cogeneration, and other...
Qi, Sheng; Belton, Peter; McAuley, William; Codoni, Doroty; Darji, Neerav
2013-04-01
Gelucire 50/13, a polyoxyethylene glycol glyceride mixture, has been widely used in drug delivery, but its moisture uptake behaviour is still poorly understood. In this study, the effects of relative humidity, temperature, and drug incorporation on the moisture uptake of Gelucire are reported in relation to their practical implications for preparation of solid dispersions using this material. DVS combined with kinetics modelling was used as the main experimental method to study the moisture uptake behaviour of Gelucire. Thermal and microscopic methods were employed to investigate the effect of moisture uptake on the physical properties of the material and drug loaded solid dispersions. The moisture uptake by Gelucire 50/13 is temperature and relative humidity dependent. At low temperatures and low relative humidities, moisture sorption follows a GAB model. The model fitting indicated that at high relative humidities the sorption is a complex process, potentially involving PEG being dissolved and the PEG solution acting as solvent to dissolve other components. Careful control of the storage and processing environmental conditions are required when using Gelucire 50/13. The incorporation of model drugs not only influences the moisture uptake capacity of Gelucire 50/13 but also the solidification behaviour.
Rocco, Isadora Salvador; Viceconte, Marcela; Pauletti, Hayanne Osiro; Matos-Garcia, Bruna Caroline; Marcondi, Natasha Oliveira; Bublitz, Caroline; Bolzan, Douglas William; Moreira, Rita Simone Lopes; Reis, Michel Silva; Hossne, Nelson Américo; Gomes, Walter José; Arena, Ross; Guizilini, Solange
2017-12-26
We aimed to investigate the ability of oxygen uptake kinetics to predict short-term outcomes after off-pump coronary artery bypass grafting. Fifty-two patients aged 60.9 ± 7.8 years waiting for off-pump coronary artery bypass surgery were evaluated. The 6-min walk test distance was performed pre-operatively, while simultaneously using a portable cardiopulmonary testing device. The transition of oxygen uptake kinetics from rest to exercise was recorded to calculate oxygen uptake kinetics fitting a monoexponential regression model. Oxygen uptake at steady state, constant time, and mean response time corrected by work rate were analysed. Short-term clinical outcomes were evaluated during the early post-operative of off-pump coronary artery bypass surgery. Multivariate analysis showed body mass index, surgery time, and mean response time corrected by work rate as independent predictors for short-term outcomes. The optimal mean response time corrected by work rate cut-off to estimate short-term clinical outcomes was 1.51 × 10 -3 min 2 /ml. Patients with slower mean response time corrected by work rate demonstrated higher rates of hypertension, diabetes, EuroSCOREII, left ventricular dysfunction, and impaired 6-min walk test parameters. The per cent-predicted distance threshold of 66% in the pre-operative was associated with delayed oxygen uptake kinetics. Pre-operative oxygen uptake kinetics during 6-min walk test predicts short-term clinical outcomes after off-pump coronary artery bypass surgery. From a clinically applicable perspective, a threshold of 66% of pre-operative predicted 6-min walk test distance indicated slower kinetics, which leads to longer intensive care unit and post-surgery hospital length of stay. Implications for rehabilitation Coronary artery bypass grafting is a treatment aimed to improve expectancy of life and prevent disability due to the disease progression; The use of pre-operative submaximal functional capacity test enabled the identification of patients with high risk of complications, where patients with delayed oxygen uptake kinetics exhibited worse short-term outcomes; Our findings suggest the importance of the rehabilitation in the pre-operative in order to "pre-habilitate" the patients to the surgical procedure; Faster oxygen uptake on-kinetics could be achieved by improving the oxidative capacity of muscles and cardiovascular conditioning through rehabilitation, adding better results following cardiac surgery.
Werner, Matthias K; Parker, J Anthony; Kolodny, Gerald M; English, Jeffrey R; Palmer, Matthew R
2009-12-01
The aim of this study was to evaluate prospectively the effects of respiratory gating during FDG PET/CT on the determination of lesion size and the measurement of tracer uptake in patients with pulmonary nodules in a clinical setting. Eighteen patients with known pulmonary nodules (nine women, nine men; mean age, 61.4 years) underwent conventional FDG PET/CT and respiratory-gated PET acquisitions during their scheduled staging examinations. Maximum, minimum, and average standardized uptake values (SUVs) and lesion size and volume were determined with and without respiratory gating. The results were then compared using the two-tailed Student's t test and the nonparametric Wilcoxon's test to assess the effects of respiratory gating on PET acquisitions. Respiratory gating reduced the measured area of lung lesions by 15.5%, the axial dimension by 10.3%, and the volume by 44.5% (p = 0.014, p = 0.007, and p = 0.025, respectively). The lesion volumes in gated studies were closer to those assessed by standard CT (difference decreased by 126.6%, p = 0.025). Respiratory gating increased the measured maximum SUV by 22.4% and average SUV by 13.3% (p < 0.001 and p = 0.002). Our findings suggest that the use of PET respiratory gating in PET/CT results in lesion volumes closer to those assessed by CT and improved measurements of tracer uptake for lesions in the lungs.
McMahon, P.B.; Tindall, J.A.; Collins, J.A.; Lull, K.J.; Nuttle, J.R.
1995-01-01
More than 95% of the water in the South Platte River downstream from the largest wastewater treatment plant serving the metropolitan Denver, Colorado, area consists of treated effluent during some periods of low flow. Fluctuations in effluent-discharge rates caused daily changes in river stage that promoted exchange of water between the river and bottom sediments. Groundwater discharge measurements indicated fluxes of water across the sediment-water interface as high as 18 m3 s−1 km−1. Laboratory experiments indicated that downward movement of surface water through bottom sediments at velocities comparable to those measured in the field (median rate ≈0.005 cm s−1) substantially increased dissolved oxygen uptake rates in bottom sediments (maximum rate 212 ± 10 μmol O2 L−1 h−1) compared with rates obtained when no vertical advective flux was generated (maximum rate 25 ± 8.8 μmol O2 L−1 h−1). Additions of dissolved ammonium to surface waters generally increased dissolved oxygen uptake rates relative to rates measured in experiments without ammonium. However, the magnitude of the advective flux through bottom sediments had a greater effect on dissolved oxygen uptake rates than did the availability of ammonium. Results from this study indicated that efforts to improve dissolved oxygen dynamics in effluent-dominated rivers might include stabilizing daily fluctuations in river stage.
Stinziano, Joseph R; Way, Danielle A
2017-08-01
Climate warming is expected to increase the seasonal duration of photosynthetic carbon fixation and tree growth in high-latitude forests. However, photoperiod, a crucial cue for seasonality, will remain constant, which may constrain tree responses to warming. We investigated the effects of temperature and photoperiod on weekly changes in photosynthetic capacity, leaf biochemistry and growth in seedlings of a boreal evergreen conifer, white spruce [Picea glauca (Moench) Voss]. Warming delayed autumn declines in photosynthetic capacity, extending the period when seedlings had high carbon uptake. While photoperiod was correlated with photosynthetic capacity, short photoperiods did not constrain the maintenance of high photosynthetic capacity under warming. Rubisco concentration dynamics were affected by temperature but not photoperiod, while leaf pigment concentrations were unaffected by treatments. Respiration rates at 25 °C were stimulated by photoperiod, although respiration at the growth temperatures was increased in warming treatments. Seedling growth was stimulated by increased photoperiod and suppressed by warming. We demonstrate that temperature is a stronger control on the seasonal timing of photosynthetic down-regulation than is photoperiod. Thus, while warming can stimulate carbon uptake in boreal conifers, the extra carbon may be directed towards respiration rather than biomass, potentially limiting carbon sequestration under climate change. © 2017 John Wiley & Sons Ltd.
Adsorption of plasmid DNA on anion exchange chromatography media.
Tarmann, Christina; Jungbauer, Alois
2008-08-01
Anion exchange chromatography (AEC) is a useful and effective tool for DNA purification, but due to average pore sizes between 40 and 100 nm most AEC resins lack truly useful binding capacities for plasmid DNA (pDNA). Equilibrium binding capacities and uptake kinetics of AEC media including conventional media (Source 30 Q, Q Sepharose HP), a polymer grafted medium (Fractogel EMD DEAE (M)), media with large pores (Celbeads DEAE, PL SAX 4000 A 30 microm) and a monolithic medium (CIM-DEAE) were investigated by batch uptake or shallow bed experiments at two salt concentrations. Theoretical and experimental binding capacities suggest that the shape of the pDNA molecule can be described by a rod with a length to diameter ratio of 20:1 and that the molecule binds in upright position. The arrangement of DNA like a brush at the surface can be considered as entropy driven, kind of self-assembly process which is inherent to highly and uniformly charged DNA molecules. The initial phase of adsorption is very fast and levels off, associated with a change in mass transfer mechanism. Feed concentrations higher than 0.1 mg/mL pDNA pronounce this effect. Monolithic media showed the fastest adsorption rate and highest binding capacity with 13 mg pDNA per mL.
Uptake and elimination kinetics of metals in soil invertebrates: a review.
Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M
2014-10-01
Uptake and elimination kinetics of metals in soil invertebrates are a function of both soil and organism properties. This study critically reviewed metal toxicokinetics in soil invertebrates and its potential use for assessing bioavailability. Uptake and elimination rate constants of different metals are summarized. Invertebrates have different strategies for essential and non-essential metals. As a consequence, different types of models must be applied to describe metal uptake and elimination kinetics. We discuss model parameters for each metal separately and show how they are influenced by exposure concentrations and by physiological properties of the organisms. Soil pH, cation exchange capacity, clay and organic matter content significantly affect uptake rates of non-essential metals in soil invertebrates. For essential metals, kinetics is hardly influenced by soil properties, but rather prone to physiological regulation mechanisms of the organisms. Our analysis illustrates that toxicokinetics can be a valuable measurement to assess bioavailability of soil-bound metals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Trinh, Huong H; Lamb, Graham D
2006-07-01
1. The twitch characteristics (fast-twitch or slow-twitch) of skeletal muscle fibres are determined not only by the contractile apparatus properties of the fibre, but also by the time-course of Ca2+ release and re-uptake by the sarcoplasmic reticulum (SR). The present study examined, in individual fibres from non-transforming muscle of the rat, whether particular SR properties are matched to the contractile apparatus properties of the fibre, in particular in the case of fibres with fast-twitch contractile apparatus located in a slow-twitch muscle, namely the soleus. 2. Force was recorded in single, mechanically skinned fibres from extensor digitorum longus (EDL), gastrocnemius, peroneus longus and soleus muscles. Using repeated cycles in which the SR was emptied of all releasable Ca2+ and then reloaded, it was possible to determine the relative amount of Ca2+ present in the SR endogenously, the maximum SR capacity and the rate of Ca2+ loading. The sensitivity of the contractile apparatus to Ca2+ and Sr2+ was used to classify the fibres as fast-twitch (FT), slow-twitch (ST) or mixed (< 3% of the fibres examined) and thereby identify the likely troponin C and myosin heavy chain types present. 3. There was no significant difference in SR properties between the groups of FT fibres obtained from the four different muscles, including soleus. Despite some overlap in the SR properties of individual fibres between the FT and ST groups, the properties of the FT fibres in all four muscles studied were significantly different from those of the ST and mixed fibres. 4. In general, in FT fibres the SR had a larger capacity and the endogenous Ca2+ content was a relatively lower percentage of maximum compared with ST fibres. Importantly, in terms of their SR properties, FT fibres from soleus muscle more closely resembled FT fibres from other muscles than they did ST fibres from soleus muscle.
Testing of two different strains of green microalgae for Cu and Ni removal from aqueous media.
Rugnini, L; Costa, G; Congestri, R; Bruno, L
2017-12-01
The concentration of metal ions in aqueous media is a major environmental problem due to their persistence and non-biodegradability that poses hazards to the ecosystem and human health. In this study, the effect of Cu and Ni on the growth of two green microalgal strains, Chlorella vulgaris and Desmodesmus sp., was evaluated along with the removal capacity from single metal solutions (12days exposure; metal concentration range: 1.9-11.9mgL -1 ). Microalgal growth showed to decrease at increasing metal concentrations, but promising metal removal efficiencies were recorded: up to 43% and 39% for Cu by Desmodesmus sp. and C. vulgaris, respectively, with a sorption capacity of 33.4mggDW -1 for Desmodesmus sp. As for Ni, at the concentration of 5.7mgL -1 , the removal efficiency reached 32% for C. vulgaris and 39% for Desmodesmus sp. In addition, Desmodesmus sp. growth and metal removal were evaluated employing bimetallic solutions. In these tests, the removal efficiency for Cu was higher than that of Ni for all the mix solutions tested with a maximum of 95%, while Ni-removal reached 90% only for the lowest concentrations tested. Results revealed that the biosorption of both metals reached maximum removal levels within the fourth day of incubation (with metal uptakes of 67mgCugDW -1 and 37mgNigDW -1 ). Intracellular bioaccumulation of metals in Desmodesmus sp. was evaluated by confocal laser scanning microscopy after DAPI staining of cells exposed or not to Cu during their growth. Imaging suggested that Cu is sequestered in polyphosphate bodies within the cells, as observable also in phosphorus deprived cultures. Our results indicate the potential of employing green microalgae for bioremediation of metal-polluted waters, due to their ability to grow in the presence of high metal concentrations and to remove them efficiently. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zilli, M.; Fabiano, B.; Ferraiolo, A.
1996-02-20
The macro-kinetic behavior of phenol removal from a synthetic exhaust gas was investigated theoretically as well as experimentally by means of two identical continuously operating laboratory-scale biological filter bed columns. A mixture of peat and glass beads was used as filter material. After sterilization it was inoculated with a pure strain of Pseudomonas putida, as employed in previous experimental studies. To determine the influence of the superficial gas flow rate on biofilter performance and to evaluate the phenol concentration profiles along the column, two series of continuous tests were carried out varying either the inlet phenol concentration, up to 1,650more » mg {center_dot} m{sup {minus}3}, or the superficial gas flow rate, from 30 to 460 m{sup 3} {center_dot} m{sup {minus}2} {center_dot} h{sup {minus}1}. The elimination capacity of the biofilter is proved by a maximum volumetric phenol removal rate of 0.73 kg {center_dot} m{sup {minus}3} {center_dot} h{sup {minus}1}. The experimental results are consistent with a biofilm model incorporating first-order substrate elimination kinetics. The model may be considered a useful tool in scaling-up a biofiltration system. Furthermore, the deodorization capacity of the biofilter was investigated, at inlet phenol concentrations up to 280 mg {center_dot} m{sup {minus}3} and superficial gas flow rates ranging from 30 to 92 m{sup 3} {center_dot} m{sup {minus}2} {center_dot} h{sup {minus}1}. The deodorization of the gas was achieved at a maximum inlet phenol concentration of about 255 mg {center_dot} m{sup {minus}3}, operating at a superficial gas flow rate of 30 m{sup 3} {center_dot} m{sup {minus}2} {center_dot} h{sup {minus}1}.« less
Theoretical Study of Molecular Transport Through a Permeabilized Cell Membrane in a Microchannel.
Mahboubi, Masoumeh; Movahed, Saeid; Hosseini Abardeh, Reza; Hoshyargar, Vahid
2017-06-01
A two-dimensional model is developed to study the molecular transport into an immersed cell in a microchannel and to investigate the effects of finite boundary (a cell is suspended in a microchannel), amplitude of electric pulse, and geometrical parameter (microchannel height and size of electrodes) on cell uptake. Embedded electrodes on the walls of the microchannel generate the required electric pulse to permeabilize the cell membrane, pass the ions through the membrane, and transport them into the cell. The shape of electric pulses is square with the time span of 6 ms; their intensities are in the range of 2.2, 2.4, 2.6, 3 V. Numerical simulations have been performed to comprehensively investigate the molecular uptake into the cell. The obtained results of the current study demonstrate that calcium ions enter the cell from the anodic side (the side near positive electrode); after a while, the cell faces depletion of the calcium ions on a positive electrode-facing side within the microchannel; the duration of depletion depends on the amplitude of electric pulse and geometry that lasts from microseconds to milliseconds. By keeping geometrical parameters and time span constant, increment of a pulse intensity enhances molecular uptake and rate of propagation inside the cell. If a ratio of electrode size to cell diameter is larger than 1, the transported amount of Ca 2+ into the cell, as well as the rate of propagation, will be significantly increased. By increasing the height of the microchannel, the rate of uptake is decreased. In an infinite domain, the peak concentration becomes constant after reaching the maximum value; this value depends on the intra-extracellular conductivity and diffusion coefficient of interior and exterior domains of the cell. In comparison, the maximum concentration is changed by geometrical parameters in the microchannel. After reaching the maximum value, the peak concentration reduces due to the depletion of Ca 2+ ions within the microchannel. Electrophoretic velocity has a significant effect on the cell uptake.
NASA Astrophysics Data System (ADS)
Odalen, M.; Nycander, J.; Oliver, K. I. C.; Nilsson, J.; Brodeau, L.; Ridgwell, A.
2016-02-01
During glacials, atmospheric CO2 is significantly lowered; the decrease is about 1/3 or 90 ppm during the last four glacial cycles. Since the ocean reservoir of carbon, and hence the ocean capacity for storing carbon, is substantially larger than the atmospheric and terrestrial counterparts, it is likely that this lowering was caused by ocean processes, drawing the CO2 into the deep ocean. The Southern Ocean circulation and biological efficiency are widely accepted as having played an important part in this CO2 drawdown. However, the relative effects of different processes contributing to this oceanic uptake have not yet been well constrained. In this work, we focus on better constraining two of these processes; 1) the effect of increased efficiency of the biological carbon uptake, and 2) the effect of changes in global mean ocean temperature on the abiotic ocean-atmosphere CO2 equilibrium. By performing ensemble runs using an Earth System Model of Intermediate Complexity (EMIC) we examine the changes in atmospheric pCO2 achieved by 100% nutrient utilization efficiency of biology. The simulations display different ocean circulation patterns and hence different global ocean mean temperatures. By restoring the atmospheric pCO2 to a target value during the spin-up phase, the total carbon content differs between each of the ensemble members. The difference is due to circulation having direct effects on biology, but also on global ocean mean temperature, changing the solubility of CO2. This study reveals the relative importance of of the processes 1 and 2 (mentioned above) for atmospheric pCO2 in a changed climate. The results of this study also show that a difference in carbon content after spin-up can have a significant effect on the drawdown potential of a maximised biological efficiency. Thus, the choice of spin-up characteristics in a model study of climate change CO2 dynamics may significantly affect the outcome of the study.
Rakhshaee, Roohan; Khosravi, Morteza; Ganji, Masoud Taghi
2006-06-30
Dead Azolla filiculoides can remove Pb(2+),Cd(2+), Ni(2+) and Zn(2+) corresponding to second-order kinetic model. The maximum adsorption capacity (Q(max)) to remove these metal ions by the alkali and CaCl(2)/MgCl(2)/NaCl (2:1:1, molar ratio) activated Azolla from 283 to 313K was 1.431-1.272, 1.173-0.990, 1.365-1.198 and 1.291-0.981mmol/g dry biomass, respectively. Q(max) to remove these heavy metals by the non-activated Azolla at the mentioned temperature range was obtained 1.131-0.977, 1.092-0.921, 1.212-0.931 and 1.103-0.923mmol/g dry biomass, respectively. In order to remove these metal ions by the activated Azolla, the enthalpy change (DeltaH) was -4.403, -4.495, -4.557 and -4.365kcal/mol and the entropy change (DeltaS) was 2.290, 1.268, 1.745 and 1.006cal/molK, respectively. While, to remove these metal ions by the non-activated Azolla, DeltaH was -3.685, -3.766, -3.967 and -3.731kcal/mol and DeltaS was 2.440, 1.265, 1.036 and 0.933cal/molK, respectively. On the other hand, the living Azolla removed these heavy metals corresponding to first-order kinetic model. It was also shown that pH, temperature and photoperiod were effective both on the rate of Azolla growth and the rate of heavy metals uptake during 10 days. It was appeared the use of Ca(NO(3))(2) increased both Azolla growth rate and the rate of heavy metals uptake while the using KNO(3) although increased Azolla growth rate but decreased the rate of heavy metals uptake.
Hassanein, Naziha M.; Abd El-Hay Ibrahim, Hussein; Abd El-Baky, Doaa H.
2017-01-01
The ability of dead cells of endophytic Drechslera hawaiiensis of Morus alba L. grown in heavy metals habitats for bioremoval of cadmium (Cd2+), copper (Cu2+), and lead (Pb2+) in aqueous solution was evaluated under different conditions. Whereas the highest extent of Cd2+ and Cu2+ removal and uptake occurred at pH 8 as well as Pb2+ occurred at neutral pH (6–7) after equilibrium time 10 min. Initial concentration 30 mg/L of Cd2+ for 10 min contact time and 50 to 90 mg/L of Pb2+ and Cu2+ supported the highest biosorption after optimal contact time of 30 min achieved with biomass dose equal to 5 mg of dried died biomass of D. hawaiiensis. The maximum removal of Cd2+, Cu2+, and Pb2+ equal to 100%, 100%, and 99.6% with uptake capacity estimated to be 0.28, 2.33, and 9.63 mg/g from real industrial wastewater, respectively were achieved within 3 hr contact time at pH 7.0, 7.0, and 6.0, respectively by using the dead biomass of D. hawaiiensis compared to 94.7%, 98%, and 99.26% removal with uptake equal to 0.264, 2.3, and 9.58 mg/g of Cd2+, Cu2+, and Pb2+, respectively with the living cells of the strain under the same conditions. The biosorbent was analyzed by Fourier Transformer Infrared Spectroscopy (FT-IR) analysis to identify the various functional groups contributing in the sorption process. From FT-IR spectra analysis, hydroxyl and amides were the major functional groups contributed in biosorption process. It was concluded that endophytic D. hawaiiensis biomass can be used potentially as biosorbent for removing Cd2+, Cu2+, and Pb2+ in aqueous solutions. PMID:28781539
Win, Thida; Screaton, Nicholas J; Porter, Joanna C; Ganeshan, Balaji; Maher, Toby M; Fraioli, Francesco; Endozo, Raymondo; Shortman, Robert I; Hurrell, Lynn; Holman, Beverley F; Thielemans, Kris; Rashidnasab, Alaleh; Hutton, Brian F; Lukey, Pauline T; Flynn, Aiden; Ell, Peter J; Groves, Ashley M
2018-05-01
There is a lack of prognostic biomarkers in idiopathic pulmonary fibrosis (IPF) patients. The objective of this study is to investigate the potential of 18 F-FDG-PET/ CT to predict mortality in IPF. A total of 113 IPF patients (93 males, 20 females, mean age ± SD: 70 ± 9 years) were prospectively recruited for 18 F-FDG-PET/CT. The overall maximum pulmonary uptake of 18 F-FDG (SUV max ), the minimum pulmonary uptake or background lung activity (SUV min ), and target-to-background (SUV max / SUV min ) ratio (TBR) were quantified using routine region-of-interest analysis. Kaplan-Meier analysis was used to identify associations of PET measurements with mortality. We also compared PET associations with IPF mortality with the established GAP (gender age and physiology) scoring system. Cox analysis assessed the independence of the significant PET measurement(s) from GAP score. We investigated synergisms between pulmonary 18 F-FDG-PET measurements and GAP score for risk stratification in IPF patients. During a mean follow-up of 29 months, there were 54 deaths. The mean TBR ± SD was 5.6 ± 2.7. Mortality was associated with high pulmonary TBR (p = 0.009), low forced vital capacity (FVC; p = 0.001), low transfer factor (TLCO; p < 0.001), high GAP index (p = 0.003), and high GAP stage (p = 0.003). Stepwise forward-Wald-Cox analysis revealed that the pulmonary TBR was independent of GAP classification (p = 0.010). The median survival in IPF patients with a TBR < 4.9 was 71 months, whilst in those with TBR > 4.9 was 24 months. Combining PET data with GAP data ("PET modified GAP score") refined the ability to predict mortality. A high pulmonary TBR is independently associated with increased risk of mortality in IPF patients.
Polyamine Uptake in Carrot Cell Cultures 1
Pistocchi, Rossella; Bagni, Nello; Creus, José A.
1987-01-01
Putrescine and spermidine uptake into carrot (Daucus carota L.) cells in culture was studied. The time course of uptake showed that the two polyamines were very quickly transported into the cells, reaching a maximum absorption within 1 minute. Increasing external polyamine concentrations up to 100 millimolar showed the existence of a biphasic system with different affinities at low and high polyamine concentrations. The cellular localization of absorbed polyamines was such that a greater amount of putrescine was present in the cytoplasmic soluble fraction, while spermidine was mostly present in cell walls. The absorbed polyamines were released into the medium in the presence of increasing external concentrations of the corresponding polyamine or Ca2+. The effects of Ca2+ were different for putrescine and spermidine; putrescine uptake was slightly stimulated by 10 micromolar Ca2+ and inhibited by higher concentrations, while for spermidine uptake there was an increasing stimulation in the Ca2+ concentration range between 10 micromolar and 1 millimolar. La3+ nullified the stimulatory effect of 10 micromolar Ca2+ on putrescine uptake and that of 1 millimolar Ca2+ on spermidine uptake. La3+ at 0.5 to 1 millimolar markedly inhibited the uptake of both polyamines, suggesting that it interferes with the sites of polyamine uptake. Putrescine uptake was affected to a lesser extent by metabolic inhibitors than was spermidine uptake. It is proposed that the entry of polyamines into the cells is driven by the transmembrane electrical gradient, with a possible antiport mechanism between external and internal polyamine molecule. PMID:16665446
Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran
2018-03-01
A key weakness in current Earth System Models is the representation of thermal acclimation of photosynthesis in response to changes in growth temperatures. Previous studies in boreal and temperate ecosystems have shown leaf-scale photosynthetic capacity parameters, the maximum rates of carboxylation (V cmax ) and electron transport (J max ), to be positively correlated with foliar nitrogen (N) content at a given reference temperature. It is also known that V cmax and J max exhibit temperature optima that are affected by various environmental factors and, further, that N partitioning among the foliar photosynthetic pools is affected by N availability. However, despite the strong recent anthropogenic influence on atmospheric temperatures and N deposition to forests, little is known about the role of foliar N contents in controlling the photosynthetic temperature responses. In this study, we investigated the temperature dependencies of V cmax and J max in 1-year-old needles of mature boreal Pinus sylvestris (Scots pine) trees growing under low and high N availabilities in northern Sweden. We found that needle N status did not significantly affect the temperature responses of V cmax or J max when the responses were fitted to a peaked function. If such N insensitivity is a common tree trait it will simplify the interpretation of the results from gradient and multi-species studies, which commonly use sites with differing N availabilities, on temperature acclimation of photosynthetic capacity. Moreover, it will simplify modeling efforts aimed at understanding future carbon uptake by precluding the need to adjust the shape of the temperature response curves to variation in N availability. © 2017 Scandinavian Plant Physiology Society.
Learsi, S K; Bastos-Silva, V J; Lima-Silva, A E; Bertuzzi, R; De Araujo, G G
2015-10-01
The aim of this study was to determine the ergogenic effects of metformin in high-intensity exercise, as well as its effects on anaerobic capacity, in healthy and physically active men. Ten subjects (mean (± standard deviation) maximal oxygen uptake (V˙O2max ) 38.6 ± 4.5 mL/kg per min) performed the following tests in a cycle ergometer: (i) an incremental test; (ii) six submaximal constant workload tests at 40%-90% (V˙O2max ); and (iii) two supramaximal tests (110% (V˙O2max ). Metformin (500 mg) or placebo was ingested 60 min before the supramaximal test. There were no significant differences between the placebo and metformin groups in terms of maximum accumulated oxygen deficit (2.8 ± 0.6 vs 3.0 ± 0.8 L, respectively; P = 0.08), lactate concentrations (7.8 ± 2.6 vs 7.5 ± 3.0 mmol/L, respectively; P = 0.75) or O2 consumed in either the last 30 s of exercise (40.4 ± 4.4 vs 39.9 ± 4.0 mL/kg per min, respectively; P = 0.35) or the first 110 s of exercise (29.0 ± 2.5 vs 29.5 ± 3.0 mL/kg per min, respectively; P = 0.42). Time to exhaustion was significantly higher after metformin than placebo ingestion (191 ± 33 vs 167 ± 32 s, respectively; P = 0.001). The fast component of V˙O2 recovery was higher in the metformin than placebo group (12.71 vs 12.18 mL/kg per min, respectively; P = 0.025). Metformin improved performance and anaerobic alactic contribution during high-intensity exercise, but had no effect on overall anaerobic capacity in healthy subjects. © 2015 Wiley Publishing Asia Pty Ltd.
Bishop, Kristen A; Lemonnier, Pauline; Quebedeaux, Jennifer C; Montes, Christopher M; Leakey, Andrew D B; Ainsworth, Elizabeth A
2018-06-02
Species have different strategies for loading sugars into the phloem, which vary in the route that sugars take to enter the phloem and the energetics of sugar accumulation. Species with passive phloem loading are hypothesized to have less flexibility in response to changes in some environmental conditions because sucrose export from mesophyll cells is dependent on fixed anatomical plasmodesmatal connections. Passive phloem loaders also have high mesophyll sugar content, and may be less likely to exhibit sugar-mediated down-regulation of photosynthetic capacity at elevated CO 2 concentrations. To date, the effect of phloem loading strategy on the response of plant carbon metabolism to rising atmospheric CO 2 concentrations is unclear, despite the widespread impacts of rising CO 2 on plants. Over three field seasons, five species with apoplastic loading, passive loading, or polymer-trapping were grown at ambient and elevated CO 2 concentration in free air concentration enrichment plots. Light-saturated rate of photosynthesis, photosynthetic capacity, leaf carbohydrate content, and anatomy were measured and compared among the species. All five species showed significant stimulation in midday photosynthetic CO 2 uptake by elevated CO 2 even though the two passive loading species showed significant down-regulation of maximum Rubisco carboxylation capacity at elevated CO 2 . There was a trend toward greater starch accumulation at elevated CO 2 in all species, and was most pronounced in passive loaders. From this study, we cannot conclude that phloem loading strategy is a key determinant of plant response to elevated CO 2 , but compelling differences in response counter to our hypothesis were observed. A phylogenetically controlled experiment with more species may be needed to fully test the hypothesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ming; Kang, Zhan, E-mail: zhankang@dlut.edu.cn; Huang, Xiaobo
2015-08-28
Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-networkmore » (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.« less
Removal of lead from aqueous solutions using Cassia grandis seed gum-graft-poly(methylmethacrylate).
Singh, Vandana; Tiwari, Stuti; Sharma, Ajit Kumar; Sanghi, Rashmi
2007-12-15
Using persulfate/ascorbic acid redox system, a series of Cassia grandis seed gum-graft-poly(methylmethacrylate) samples were synthesized. The copolymer samples were evaluated for lead(II) removal from the aqueous solutions where the sorption capacities were found proportional to the grafting extent. The conditions for the sorption were optimized using copolymer sample of highest percent grafting. The sorption was found pH and concentration dependent, pH 2.0 being the optimum value. Adsorption of lead by the grafted seed gum followed a pseudo-second-order kinetics with a rate constant of 4.64 x 10(-5) g/mg/min. The equilibrium data followed the Langmuir isotherm model with maximum sorption capacity of 126.58 mg/g. The influence of electrolytes NaCl, Na(2)SO(4) on lead uptake was also studied. Desorption with 2 N HCl could elute 76% of the lead ions from the lead-loaded copolymer. The regeneration experiments revealed that the copolymer could be successfully reused for at least four cycles though there was a successive loss in lead sorption capacity with every cycle. The adsorbent was also evaluated for Pb(II) removal from battery waste-water containing 2166 mg/L Pb(II). From 1000 times diluted waste water, 86.1% Pb(II) could be removed using 0.05 g/20 ml adsorbent dose, while 0.5 g/20 ml adsorbent dose was capable of removing 60.29% Pb from 10 times diluted waste water. Optimum Pb(II) binding under highly acidic conditions indicated that there was a significant contribution of nonelectrostatic interactions in the adsorption process. A possible mechanism for the adsorption has been discussed.
Mahardika, Dedy; Park, Hak-Soon; Choo, Kwang-Ho
2018-05-23
Adsorptive removal of phosphorus from wastewater effluents has attracted attention because of its reduced sludge production and potential P recovery. In this study, we investigated granular activated carbons (GACs) impregnated with amorphous ferrihydrite (FH@GAC) for the sorption of phosphorus from aqueous solutions. Preoxidation of intact GAC surfaces using an oxidant (e.g., hypochlorite) and strong acids (e.g., HNO 3 /H 2 SO 4 ) was performed to create active functional groups (e.g., carboxyl or phenolic) for enhanced iron binding, leading to greater phosphorus uptake. Both the rate and the capacity of phosphorus sorption onto FH@GAC had significant, positive relationships (Pearson correlation coefficient r > 0.9) with the product of surface area and Fe content. The pseudo-second-order reaction kinetics explained the P sorption rate better than the pseudo-first-order reaction kinetics, whereas the Langmuir model fit the P sorption isotherm better than the Freundlich model. The iron content in the FH@GAC increased significantly (>10 mg/g) when GAC (e.g., BMC1050) was preoxidized by a 1:1 (w/w) concentrated HNO 3 /H 2 SO 4 mixture. The Langmuir maximum P sorption capacity of a functionalized FH@BMC1050 adsorbent prepared with acid pretreatment was estimated to be substantial (5.73 mg P/g GAC corresponding to 526 mg P/g Fe). This sorption capacity was superior to that of a FH slurry, possibly because the nano-sized FH formed inside the GAC pores (<2.5 nm) can bind phosphate ions more effectively than FH aggregates. Fixed-bed column reactor operation with bicarbonate regeneration showed potential for efficient, continuous phosphorus removal by FH@GAC media. Copyright © 2018 Elsevier Ltd. All rights reserved.
In vivo quantitation of the rat liver's ability to eliminate endotoxin from portal vein blood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, Y.; Yamaguchi, K.; Babb, J.L.
The in vivo uptake of endotoxin by the liver from portal vein blood was assessed during a single passage through the liver. /sup 51/Cr labeled and unlabeled endotoxin were infused in different amounts into the femoral vein of three groups of lead-sensitized rats: a nonoperated, a sham-operated, and a surgically created reversed Eck fistula (REF) group. Whereas in the former two the infused endotoxin encounters the lung as the first filter organ, the liver performs this function in the latter experimental model. The mortality rates observed in control and sham-operated, lead-sensitized rats were found to correlate closely and reproducibly tomore » the degree of endotoxemia. This assay was then applied to determine the amount of endotoxin eliminated by the liver by establishing, in the REF rat, the amounts of endotoxin that escaped hepatic clearance. The capacity of the liver to eliminate endotoxin from portal vein blood during a single passage increases as the portal vein endotoxin level rises; it approaches a maximum, suggesting that endotoxin's interaction with the Kupffer cells conforms to classical saturation kinetics. A Lineweaver-Burk plot prepared from these data indicates that the maximal in vivo capacity of the liver to remove endotoxin from portal vein blood approximates 1.5 micrograms/gm liver/hr. Data obtained with the use of radiolabeled endotoxin corroborate the information obtained with the bioassay technique. Endotoxin eliminated by the Kupffer cells in these quantities is slowly disintegrated; 4 hr after termination of the endotoxin infusion, less than 4% of the radiolabel is found in the urine and none in the bile. These observations indicate that the Kupffer cell's functional capacity to sequester and detoxify endotoxin is extensive and far exceeds the requirements imposed by physiological and most pathological conditions.« less
Water transport dynamics in trees and stands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pallardy, S.G.; Cermak, J.; Ewers, F.W.
1995-07-01
Water transport dynamics in trees and stands of conifers have certain features that are characteristic of this group and are at least rare among angiosperms. Among these features is the xylem transport system that is dependent on tracheids for long-distance water transport. Tracheid-containing xylem is relatively inefficient, a property that can reduce submaximum allowable rates of gas exchange, but tracheids also offer substantial capacity for water storage and high resistance to freezing-induced dysfunction. Thus, they are quite compatible with the typical evergreen habit and long transpiration season of conifers. At the stand level, canopy transpiration in conifers is primarily controlledmore » by stomatal conductance. In contrast, in dense canopies of angio-sperms, particularly those of tropical forests with limited air mixing, stand transpiration is limited by radiation input rather than by stomatal control. Because of their evergreen habit a greater proportion of evapotranspiration in conifer forests is associated with evaporation of water intercepted by the tree crowns. Other features of transport dynamics are characteristic of most conifers, but are not unique to this group. Among these features are typically shallow root systems that often must supply water in winter to replace transpiration needs of evergreen species, common occurrence of mycorrhizae that enhance mineral and water uptake, and drought tolerance adaptations that include elements of both dehydration avoidance (e.g., stomatal closure under water stress, shifts in allocation of dry matter to below-ground sinks) and dehydration tolerance (e.g., capacity for acclimation of photosynthetic apparatus to drought, osmotic adjustment). Transpiration rates from conifer foliage often are lower than those of deciduous angiosperms, probably because of the lower maximum capacity of tracheid-bearing xylem to transport water.« less
NASA Astrophysics Data System (ADS)
Li, Ming; Huang, Xiaobo; Kang, Zhan
2015-08-01
Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.
Fu, Shi-Jian; Peng, Jing; Killen, Shaun S
2018-06-14
Metabolic rates vary widely within species, but little is known about how variation in the 'floor' [i.e. standard metabolic rate (SMR) in ectotherms] and 'ceiling' [maximum metabolic rate (MMR)] for an individual's aerobic scope (AS) are linked with digestive and locomotor function. Any links among metabolic traits and aspects of physiological performance may also be modulated by fluctuations in food availability. This study followed changes in SMR, MMR, and digestive and locomotor capacity in southern catfish ( Silurus meridionalis ) throughout 15 days of food deprivation and 15 days of refeeding. Individuals downregulated SMR during food deprivation and showed only a 10% body mass decrease during this time. Whereas critical swim speed ( U crit ) was robust to food deprivation, digestive function decreased after fasting with a reduced peak oxygen uptake during specific dynamic action (SDA) and prolonged SDA duration. During refeeding, individuals displayed rapid growth and digestive function recovered to pre-fasting levels. However, refed fish showed a lower U crit than would be expected for their increased body length and in comparison to measures at the start of the study. Reduced swimming ability may be a consequence of compensatory growth: growth rate was negatively correlated with changes in U crit during refeeding. Southern catfish downregulate digestive function to reduce energy expenditure during food deprivation, but regain digestive capacity during refeeding, potentially at the cost of decreased swimming performance. The plasticity of maintenance requirements suggests that SMR is a key fitness trait for in this ambush predator. Shifts in trait correlations with food availability suggest that the potential for correlated selection may depend on context. © 2018. Published by The Company of Biologists Ltd.
Androgens enhance in vivo 2-deoxyglucose uptake by rat striated muscle
NASA Technical Reports Server (NTRS)
Max, S. R.; Toop, J.
1983-01-01
It is shown that testosterone propionate (TP) causes a striking increase in the in vivo uptake of 2-deoxyglucose (2-DG) by the levator ani muscle of immature male rats, which was found to be uniformly distributed over the entire muscle. After a single subcutaneous injection of TP, no enhancement of 2-DG was observed before 3.5 hr, at which time uptake was increased 2-fold; maximum enhancement (4-fold) was attained at 12 hr. At 72 hr, 2-DG uptake remained elevated at twice the control value. It was determined that the effect of TP probably is mediated by specific androgen receptors. In addition, it was found that the effect of TP was blocked by the simultaneous administration of an androgen antagonist, cyproterone acetate. TP also was found to enhance the uptake of 2-DG in the bulbocavernosus (253 percent over control) and extensor digitorum longus muscles (150 percent over control), but not in the biceps brachii or soleus. It is suggested that the increased uptake of glucose may be an important early step in the anabolic response of muscle to androgens.
Foliar water uptake of Tamarix ramosissima from an atmosphere of high humidity.
Li, Shuang; Xiao, Hong-lang; Zhao, Liang; Zhou, Mao-Xian; Wang, Fang
2014-01-01
Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH) was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants.
Enhanced chromium adsorption capacity via plasma modification of natural zeolites
NASA Astrophysics Data System (ADS)
Cagomoc, Charisse Marie D.; Vasquez, Magdaleno R., Jr.
2017-01-01
Natural zeolites such as mordenite are excellent adsorbents for heavy metals. To enhance the adsorption capacity of zeolite, sodium-exchanged samples were irradiated with 13.56 MHz capacitively coupled radio frequency (RF) argon gas discharge. Hexavalent chromium [Cr(VI)] was used as the test heavy metal. Pristine and plasma-treated zeolite samples were soaked in 50 mg/L Cr solution and the amount of adsorbed Cr(VI) on the zeolites was calculated at predetermined time intervals. Compared with untreated zeolite samples, initial Cr(VI) uptake was 70% higher for plasma-treated zeolite granules (50 W 30 min) after 1 h of soaking. After 24 h, all plasma-treated zeolites showed increased Cr(VI) uptake. For a 2- to 4-month period, Cr(VI) uptake increased about 130% compared with untreated zeolite granules. X-ray diffraction analyses between untreated and treated zeolite samples revealed no major difference in terms of its crystal structure. However, for plasma-treated samples, an increase in the number of surface defects was observed from scanning electron microscopy images. This increase in the number of surface defects induced by plasma exposure played a crucial role in increasing the number of active sorption sites on the zeolite surface.
NO3 uptake in shallow, oligotrophic, mountain lakes: The influence of elevated NO3 concentrations
Nydick, K.R.; LaFrancois, B.M.; Baron, Jill S.
2004-01-01
Nutrient enrichment experiments were conducted in 1.2-m deep enclosures in 2 shallow, oligotrophic, mountain lakes. 15N-NO3 isotope tracer was used to compare the importance of phytoplankton and benthic compartments (epilithon, surface sediment [epipelon], and subsurface sediment) for NO3 uptake under high and low NO3 conditions. NO3 uptake approached saturation in the high-N lake, but not in the low-N lake. The capacity of phytoplankton and benthic compartments to take up NO3 differed among treatments and between lakes, and depended on water-column nutrient conditions and the history of NO3 availability. Phytoplankton productivity responded strongly to addition of limiting nutrients, and NO3 uptake was related to phytoplankton biomass and photosynthesis. However, more NO3 usually was taken up by benthic compartments (57–92% combined) than by phytoplankton, even though the response of benthic algal biomass to nutrient additions was less pronounced than that of phytoplankton and benthic NO3 uptake was unrelated to benthic algal biomass. In the low-N lake where NO3 uptake was unsaturated, C content or % was related to NO3 uptake in benthic substrates, suggesting that heterotrophic bacterial processes could be important in benthic NO3 uptake. These results suggest that phytoplankton are most sensitive to nutrient additions, but benthic processes are important for NO3 uptake in shallow, oligotrophic lakes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... rated for manual propulsion and boats rated for outboard motors of 2 horsepower or less. 183.37 Section... for manual propulsion and boats rated for outboard motors of 2 horsepower or less. (a) The maximum weight capacity marked on a boat that is rated for manual propulsion or for motors of 2 horsepower or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... rated for manual propulsion and boats rated for outboard motors of 2 horsepower or less. 183.37 Section... for manual propulsion and boats rated for outboard motors of 2 horsepower or less. (a) The maximum weight capacity marked on a boat that is rated for manual propulsion or for motors of 2 horsepower or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... rated for manual propulsion and boats rated for outboard motors of 2 horsepower or less. 183.37 Section... for manual propulsion and boats rated for outboard motors of 2 horsepower or less. (a) The maximum weight capacity marked on a boat that is rated for manual propulsion or for motors of 2 horsepower or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... rated for manual propulsion and boats rated for outboard motors of 2 horsepower or less. 183.37 Section... for manual propulsion and boats rated for outboard motors of 2 horsepower or less. (a) The maximum weight capacity marked on a boat that is rated for manual propulsion or for motors of 2 horsepower or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... rated for manual propulsion and boats rated for outboard motors of 2 horsepower or less. 183.37 Section... for manual propulsion and boats rated for outboard motors of 2 horsepower or less. (a) The maximum weight capacity marked on a boat that is rated for manual propulsion or for motors of 2 horsepower or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jungseung; Tsouris, Constantinos; Oyola, Yatsandra
2014-04-09
Uranium recovery from seawater has been investigated for several decades for the purpose of securing nuclear fuel for energy production. In this study, field column experiments have been performed at the Marine Sciences Laboratory of the Pacific Northwest National Laboratory (PNNL) using a laboratory-proven, amidoxime-based polymeric adsorbent developed at the Oak Ridge National Laboratory (ORNL). The adsorbent was packed either in in-line filters or in flow-through columns. The maximum amount of uranium uptake from seawater was 3.3 mg of U/g of adsorbent after 8 weeks of contact between the adsorbent and seawater. This uranium adsorption amount was about 3 timesmore » higher than the maximum amount achieved in this study by a leading adsorbent developed at the Japan Atomic Energy Agency (JAEA).« less
Effects of acute moderate hypoxia on anaerobic capacity in endurance-trained runners.
Friedmann, Birgit; Frese, Falko; Menold, Elmar; Bärtsch, Peter
2007-09-01
While there is some controversy whether anaerobic capacity might be improved after altitude training little is known about changes in anaerobic capacity during hypoxic exposure in highly trained athletes. In order to analyze the effects of acute moderate normobaric hypoxia on anaerobic capacity, 18 male competitive triathletes, middle- and long-distance runners VO2max 67.4 +/- 3.8 ml kg min(-1) performed 2 supra-VO2max treadmill runs with the same speed, one in normoxia and one after 4 h exposure to normobaric hypoxia (FiO(2) 0.15), for estimation of their maximal accumulated oxygen deficit (MAOD) and measurement of peak capillary lactate and peak capillary ammonia concentration. MAOD was not significantly different in normoxia and in moderate hypoxia while time to exhaustion and accumulated O(2) uptake were significantly (P < 0.001) reduced in hypoxia compared to normoxia by 28 and 45%, respectively. The reduction in time to exhaustion was significantly correlated to the decrement in accumulated O(2) uptake (R = 0.730, P = 0.001). In hypoxia, there was a tendency for peak capillary lactate concentration to be decreased compared to normoxia (12.9 +/- 2.1 vs. 13.8 +/- 2.2 mmol l(-1), P = 0.082); peak capillary ammonia concentration was significantly decreased in hypoxia (97 +/- 52 vs. 121 +/- 44 micromol l(-1), P = 0.032). In conclusion, anaerobic capacity is not significantly changed during acute exposure to moderate hypoxia in endurance-trained athletes. The performance reduction during all-out exercise of short duration has to be attributed to the decrement in aerobic capacity.
Arjomandi, Mehrdad; Zeng, Siyang; Geerts, Jeroen; Stiner, Rachel K; Bos, Bruce; van Koeverden, Ian; Keene, Jason; Elicker, Brett; Blanc, Paul D; Gold, Warren M
2018-01-01
Exposure to secondhand smoke (SHS) is associated with occult obstructive lung disease as evident by abnormal airflow indices representing small airway disease despite having preserved spirometry (normal forced expiratory volume in 1 s-to-forced vital capacity ratio, FEV 1 /FVC). The significance of lung volumes that reflect air trapping in the presence of preserved spirometry is unclear. To investigate whether lung volumes representing air trapping could determine susceptibility to respiratory morbidity in people with SHS exposure but without spirometric chronic obstructive pulmonary disease, we examined a cohort of 256 subjects with prolonged occupational SHS exposure and preserved spirometry. We elicited symptom prevalence by structured questionnaires, examined functional capacity (maximum oxygen uptake, VO 2max ) by exercise testing, and estimated associations of those outcomes with air trapping (plethysmography-measured residual volume-to-total lung capacity ratio, RV/TLC), and progressive air trapping with exertion (increase in fraction of tidal breathing that is flow limited on expiration during exercise (per cent of expiratory flow limitation, %EFL)). RV/TLC was within the predicted normal limits, but was highly variable spanning 22%±13% and 16%±8% across the increments of FEV 1 /FVC and FEV 1 , respectively. Respiratory complaints were prevalent (50.4%) with the most common symptom being ≥2 episodes of cough per year (44.5%). Higher RV/TLC was associated with higher OR of reporting respiratory symptoms (n=256; r 2 =0.03; p=0.011) and lower VO 2max (n=179; r 2 =0.47; p=0.013), and %EFL was negatively associated with VO 2max (n=32; r 2 =0.40; p=0.017). In those at risk for obstruction due to SHS exposure but with preserved spirometry, higher RV/TLC identifies a subgroup with increased respiratory symptoms and lower exercise capacity.
Vazquez, Alexei; de Menezes, Marcio A; Barabási, Albert-László; Oltvai, Zoltan N
2008-10-01
The cell's cytoplasm is crowded by its various molecular components, resulting in a limited solvent capacity for the allocation of new proteins, thus constraining various cellular processes such as metabolism. Here we study the impact of the limited solvent capacity constraint on the metabolic rate, enzyme activities, and metabolite concentrations using a computational model of Saccharomyces cerevisiae glycolysis as a case study. We show that given the limited solvent capacity constraint, the optimal enzyme activities and the metabolite concentrations necessary to achieve a maximum rate of glycolysis are in agreement with their experimentally measured values. Furthermore, the predicted maximum glycolytic rate determined by the solvent capacity constraint is close to that measured in vivo. These results indicate that the limited solvent capacity is a relevant constraint acting on S. cerevisiae at physiological growth conditions, and that a full kinetic model together with the limited solvent capacity constraint can be used to predict both metabolite concentrations and enzyme activities in vivo.
Vazquez, Alexei; de Menezes, Marcio A.; Barabási, Albert-László; Oltvai, Zoltan N.
2008-01-01
The cell's cytoplasm is crowded by its various molecular components, resulting in a limited solvent capacity for the allocation of new proteins, thus constraining various cellular processes such as metabolism. Here we study the impact of the limited solvent capacity constraint on the metabolic rate, enzyme activities, and metabolite concentrations using a computational model of Saccharomyces cerevisiae glycolysis as a case study. We show that given the limited solvent capacity constraint, the optimal enzyme activities and the metabolite concentrations necessary to achieve a maximum rate of glycolysis are in agreement with their experimentally measured values. Furthermore, the predicted maximum glycolytic rate determined by the solvent capacity constraint is close to that measured in vivo. These results indicate that the limited solvent capacity is a relevant constraint acting on S. cerevisiae at physiological growth conditions, and that a full kinetic model together with the limited solvent capacity constraint can be used to predict both metabolite concentrations and enzyme activities in vivo. PMID:18846199
van der Zwaard, Stephan; de Ruiter, C Jo; Noordhof, Dionne A; Sterrenburg, Renske; Bloemers, Frank W; de Koning, Jos J; Jaspers, Richard T; van der Laarse, Willem J
2016-09-01
V̇o2 max during whole body exercise is presumably constrained by oxygen delivery to mitochondria rather than by mitochondria's ability to consume oxygen. Humans and animals have been reported to exploit only 60-80% of their mitochondrial oxidative capacity at maximal oxygen uptake (V̇o2 max). However, ex vivo quantification of mitochondrial overcapacity is complicated by isolation or permeabilization procedures. An alternative method for estimating mitochondrial oxidative capacity is via enzyme histochemical quantification of succinate dehydrogenase (SDH) activity. We determined to what extent V̇o2 max attained during cycling exercise differs from mitochondrial oxidative capacity predicted from SDH activity of vastus lateralis muscle in chronic heart failure patients, healthy controls, and cyclists. V̇o2 max was assessed in 20 healthy subjects and 28 cyclists, and SDH activity was determined from biopsy cryosections of vastus lateralis using quantitative histochemistry. Similar data from our laboratory of 14 chronic heart failure patients and 6 controls were included. Mitochondrial oxidative capacity was predicted from SDH activity using estimated skeletal muscle mass and the relationship between ex vivo fiber V̇o2 max and SDH activity of isolated single muscle fibers and myocardial trabecula under hyperoxic conditions. Mitochondrial oxidative capacity predicted from SDH activity was related (r(2) = 0.89, P < 0.001) to V̇o2 max measured during cycling in subjects with V̇o2 max ranging from 9.8 to 79.0 ml·kg(-1)·min(-1) V̇o2 max measured during cycling was on average 90 ± 14% of mitochondrial oxidative capacity. We conclude that human V̇o2 max is related to mitochondrial oxidative capacity predicted from skeletal muscle SDH activity. Mitochondrial oxidative capacity is likely marginally limited by oxygen supply to mitochondria. Copyright © 2016 the American Physiological Society.
Wen, Qinxue; Chen, Zhiqiang; Wang, Changyong; Ren, Nanqi
2012-01-01
Two acetate-fed sequencing batch reactors (SBR) were operated under an aerobic dynamic feeding (ADF) model (SBR#2) and with anaerobic phase before aerobic phase (SBR#1) to select mixed cultures with a high polyhydroxyalkanoates (PHA) storage response. Although kinetic selection based on storage response should bring about a predominance of floc-formers, a bulking sludge with storage response comparable to well-settled sludge was steadily established. An anaerobic phase was introduced before the aerobic phase in the ADF model to improve the sludge settleability (SBR #1), however, due to the consequent increased feast/famine ratio, the performance of SBR #1, in terms of both the maximum PHB (polyhydroxybutyrate) cell content and deltaPHB, was lower than that of SBR #2. SBR #2 gradually reached a steady state while SBR #1 failed suddenly after 50 days of operation. The maximum specific substrate uptake rate and storage rate for the selected bulking sludge were 0.4 Cmol Ac/(Cmol X x hr) and 0.18 Cmol Ac/(Cmol PHB x hr), respectively, resulting a yield of 0.45 Cmol PHB/(Cmol Ac) in SBR #2 in the culture enrichment phase. A maximum PHB content of 53% of total suspended solids and PHB storage rate of 1.36 Cmol Ac/(Cmol PHB x hr) was achieved at 10.2 hr in batch accumulation tests under nitrogen starvation. The results indicated that it was feasible to utilize filamentous bacteria to accumulate PHA with a rate comparable to well-settled sludge. Furthermore, the lower dissolved oxygen demand of filamentous bacteria would save energy required for aeration in the culture enrichment stage.
Ordaz, Alberto; Sánchez, Mariana; Rivera, Rodrigo; Rojas, Rafael; Zepeda, Alejandro
2017-02-01
A nitrifying consortium was kinetically, stoichiometrically and molecularly characterized via the in situ pulse respirometric method and pyrosequencing analysis before and after the addition of m-cresol (25 mg C L -1 ) in a sequencing batch reactor (SBR). Five important kinetic and stoichiometric parameters were determined: the maximum oxygen uptake rate, the maximum nitrification rate, the oxidation yield, the biomass growth yield, and the substrate affinity constant. An inhibitory effect was observed in the nitrification process with a recovery of this by up to eight SBR cycles after m-cresol was added to the system. However, full recovery of the nitrification process was not observed, as the maximum oxygen uptake rate was 25% lower than that of the previous operation without m-cresol addition. Furthermore, the pyrosequencing analyses of the nitrifying consortium after the addition of only two pulses of 25 mg C L -1 m-cresol showed an important microbial community change represented by a decrease in the nitrifying populations and an increase in the populations degrading phenolic compounds.
Faisal, Muhammad; Hasnain, Shahida
2005-01-01
This study deals with the use of three chromium-resistant bacterial strains (Ochrobactrum intermedium CrT-1, Brevibacterium CrT-13, and CrM-1) in conjunction with Eichornia crassipes for the removal of toxic chromium from wastewater. Bacterial strains resulted in reduced uptake of chromate into inoculated plants as compared to noninoculated control plants. In the presence of different heavy metals, chromium uptake into the plants was 28.7 and 7.15% less at an initial K2CrO4 concentration of 100 and 500 microg ml(-1) in comparison to a metal free chromium solution. K2CrO4 uptake into the plant occurred at different pHs tested, but maximum uptake was observed at pH 5. Nevertheless, the bacterial strains caused some decrease in chromate uptake into the plants, but the combined effect of plants and bacterial strains conduce more removal of Cr(VI) from the solution.
Species turnover (β-diversity) in ectomycorrhizal fungi linked to NH4+ uptake capacity.
Kranabetter, J M; Hawkins, B J; Jones, M D; Robbins, S; Dyer, T; Li, T
2015-12-01
Ectomycorrhizal (EcM) fungal communities may be shaped by both deterministic and stochastic processes, potentially influencing ecosystem development and function. We evaluated community assembly processes for EcM fungi of Pseudotsuga menziesii among 12 sites up to 400 km apart in southwest British Columbia (Canada) by investigating species turnover (β-diversity) in relation to soil nitrogen (N) availability and physical distance. We then examined functional traits for an N-related niche by quantifying net fluxes of NH4+, NO3- and protons on excised root tips from three contrasting sites using a microelectrode ion flux measurement system. EcM fungal communities were well aligned with soil N availability and pH, with no effect of site proximity (distance-decay curve) on species assemblages. Species turnover was significant (β(1/2) = 1.48) along soil N gradients, with many more Tomentella species on high N than low N soils, in contrast to Cortinarius species. Ammonium uptake was greatest in the spring on the medium and rich sites and averaged over 190 nmol/m(2)/s for Tomentella species. The lowest uptake rates of NH4+ were by nonmycorrhizal roots of axenically grown seedlings (10 nmol/m(2)/s), followed by Cortinarius species (60 nmol/m(2)/s). EcM roots from all sites displayed only marginal uptake of nitrate (8.3 nmol/m(2)/s). These results suggest NH4+ uptake capacity is an important functional trait influencing the assembly of EcM fungal communities. The diversity of EcM fungal species across the region arguably provides critical belowground adaptations to organic and inorganic N supply that are integral to temperate rainforest ecology. © 2015 John Wiley & Sons Ltd.
Mandela, Prashant; Chandley, Michelle; Xu, Yao-Yu; Zhu, Meng-Yang; Ordway, Gregory A
2010-01-01
Treatment of rats with reserpine, an inhibitor of the vesicular monoamine transporter (VMAT), depletes norepinephrine (NE) and regulates NE transporter (NET) expression. The present study examined the molecular mechanisms involved in regulation of the NET by reserpine using cultured cells. Exposure of rat PC12 cells to reserpine for a period as short as 5min decreased [(3)H]NE uptake capacity, an effect characterized by a robust decrease in the V(max) of the transport of [(3)H]NE. As expected, reserpine did not displace the binding of [(3)H]nisoxetine from the NET in membrane homogenates. The potency of reserpine for reducing [(3)H]NE uptake was dramatically lower in SK-N-SH cells that have reduced storage capacity for catecholamines. Reserpine had no effect on [(3)H]NE uptake in HEK-293 cells transfected with the rat NET (293-hNET), cells that lack catecholamine storage vesicles. NET regulation by reserpine was independent of trafficking of the NET from the cell surface. Pre-exposure of cells to inhibitors of several intracellular signaling cascades known to regulate the NET, including Ca(2+)/Ca(2+)-calmodulin dependent kinase and protein kinases A, C and G, did not affect the ability of reserpine to reduce [(3)H]NE uptake. Treatment of PC12 cells with the catecholamine depleting agent, alpha-methyl-p-tyrosine, increased [(3)H]NE uptake and eliminated the inhibitory effects of reserpine on [(3)H]NE uptake. Reserpine non-competitively inhibits NET activity through a Ca(2+)-independent process that requires catecholamine storage vesicles, revealing a novel pharmacological method to modify NET function. Further characterization of the molecular nature of reserpine's action could lead to the development of alternative therapeutic strategies for treating disorders known to be benefitted by treatment with traditional competitive NET inhibitors. Copyright 2010 Elsevier Ltd. All rights reserved.
Huang, J; Jia, Y; Li, Q; Burris, W R; Bridges, P J; Matthews, J C
2018-05-01
Hepatic glutamate uptake and conversion to glutamine is critical for whole-body N metabolism, but how this process is regulated during growth is poorly described. The hepatic glutamate uptake activities, protein content of system [Formula: see text] transporters (EAAC1, GLT-1) and regulatory proteins (GTRAP3-18, ARL6IP1), glutamine synthetase (GS) activity and content, and glutathione (GSH) content, were compared in liver tissue of weaned Angus steers randomly assigned (n = 8) to predominantly lean (growing) or predominantly lipid (finished) growth regimens. Steers were fed a cotton seed hull-based diet to achieve final body weights of 301 or 576 kg, respectively, at a constant rate of growth. Liver tissue was collected at slaughter and hepatic membranes fractionated. Total (75%), Na + -dependent (90%), system [Formula: see text]-dependent (abolished) glutamate uptake activity, and EAAC1 content (36%) in canalicular membrane-enriched vesicles decreased as steers developed from growing (n = 6) to finished (n = 4) stages, whereas Na + -independent uptake did not change. In basolateral membrane-enriched vesicles, total (60%), Na + -dependent (60%), and Na + -independent (56%) activities decreased, whereas neither system [Formula: see text]-dependent uptake nor protein content changed. EAAC1 protein content in liver homogenates (n = 8) decreased in finished vs. growing steers, whereas GTRAP3-18 and ARL6IP1 content increased and GLT-1 content did not change. Concomitantly, hepatic GS activity decreased (32%) as steers fattened, whereas GS and GSH contents did not differ. We conclude that hepatic glutamate uptake and GS synthesis capacities are reduced in livers of finished versus growing beef steers, and that hepatic system [Formula: see text] transporter activity/EAAC1 content is inversely proportional to GTRAP3-18 content.
Mathematical Modeling of Intestinal Iron Absorption Using Genetic Programming
Colins, Andrea; Gerdtzen, Ziomara P.; Nuñez, Marco T.; Salgado, J. Cristian
2017-01-01
Iron is a trace metal, key for the development of living organisms. Its absorption process is complex and highly regulated at the transcriptional, translational and systemic levels. Recently, the internalization of the DMT1 transporter has been proposed as an additional regulatory mechanism at the intestinal level, associated to the mucosal block phenomenon. The short-term effect of iron exposure in apical uptake and initial absorption rates was studied in Caco-2 cells at different apical iron concentrations, using both an experimental approach and a mathematical modeling framework. This is the first report of short-term studies for this system. A non-linear behavior in the apical uptake dynamics was observed, which does not follow the classic saturation dynamics of traditional biochemical models. We propose a method for developing mathematical models for complex systems, based on a genetic programming algorithm. The algorithm is aimed at obtaining models with a high predictive capacity, and considers an additional parameter fitting stage and an additional Jackknife stage for estimating the generalization error. We developed a model for the iron uptake system with a higher predictive capacity than classic biochemical models. This was observed both with the apical uptake dataset used for generating the model and with an independent initial rates dataset used to test the predictive capacity of the model. The model obtained is a function of time and the initial apical iron concentration, with a linear component that captures the global tendency of the system, and a non-linear component that can be associated to the movement of DMT1 transporters. The model presented in this paper allows the detailed analysis, interpretation of experimental data, and identification of key relevant components for this complex biological process. This general method holds great potential for application to the elucidation of biological mechanisms and their key components in other complex systems. PMID:28072870
Compensatory Root Water Uptake of Overlapping Root Systems
NASA Astrophysics Data System (ADS)
Agee, E.; Ivanov, V. Y.; He, L.; Bisht, G.; Shahbaz, P.; Fatichi, S.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.
2015-12-01
Land-surface models use simplified representations of root water uptake based on biomass distributions and empirical functions that constrain water uptake during unfavorable soil moisture conditions. These models fail to capture the observed hydraulic plasticity that allows plants to regulate root hydraulic conductivity and zones of active uptake based on local gradients. Recent developments in root water uptake modeling have sought to increase its mechanistic representation by bridging the gap between physically based microscopic models and computationally feasible macroscopic approaches. It remains to be demonstrated whether bulk parameterization of microscale characteristics (e.g., root system morphology and root conductivity) can improve process representation at the ecosystem scale. We employ the Couvreur method of microscopic uptake to yield macroscopic representation in a coupled soil-root model. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model a one-hectare temperate forest stand under natural and synthetic climatic forcing. Our results show that as shallow soil layers dry, uptake at the tree and stand level shift to deeper soil layers, allowing the transpiration stream demanded by the atmosphere. We assess the potential capacity of the model to capture compensatory root water uptake. Further, the hydraulic plasticity of the root system is demonstrated by the quick response of uptake to rainfall pulses. These initial results indicate a promising direction for land surface models in which significant three-dimensional information from large root systems can be feasibly integrated into the forest scale simulations of root water uptake.
Zalesny, Jill A; Zalesny, Ronald S
2009-07-01
There is a need for information about the response of Populus genotypes to repeated application of high-salinity water and nutrient sources throughout an entire rotation. We have combined establishment biomass and uptake data with mid- and full-rotation growth data to project potential chloride (Cl-) and sodium (Na+) uptake for 2- to 11-year-old Populus in the north central United States. Our objectives were to identify potential levels of uptake as the trees developed and stages of plantation development that are conducive to variable application rates of high-salinity irrigation. The projected cumulative uptake of Cl- and Na+ during mid-rotation plantation development was stable 2 to 3 years after planting but increased steadily from year 3 to 6. Year six cumulative uptake ranged from 22 to 175 kg Cl- ha(-1) and 8 to 74 kg Na+ ha(-1), while annual uptake ranged from 8 to 54 kg Cl- ha(-1) yr(-1) and 3 to 23 kg Na+ ha(-1) yr(-1). Full-rotation uptake was greatest from 4 to 9 years (Cl-) and 4 to 8 years (Na+), with maximum levels of Cl- (32 kg ha(-1) yr(-1)) and Na+ (13 kg ha(-1) yr(-1)) occurring in year six. The relative uptake potential of Cl- and Na+ at peak accumulation (year six) was 2.7 times greater than at the end of the rotation.
A theoretical model to determine the capacity performance of shape-specific electrodes
NASA Astrophysics Data System (ADS)
Yue, Yuan; Liang, Hong
2018-06-01
A theory is proposed to explain and predict the electrochemical process during reaction between lithium ions and electrode materials. In the model, the process of reaction is proceeded into two steps, surface adsorption and diffusion of lithium ions. The surface adsorption is an instantaneous process for lithium ions to adsorb onto the surface sites of active materials. The diffusion of lithium ions into particles is determined by the charge-discharge condition. A formula to determine the maximum specific capacity of active materials at different charging rates (C-rates) is derived. The maximum specific capacity is correlated to characteristic parameters of materials and cycling - such as size, aspect ratio, surface area, and C-rate. Analysis indicates that larger particle size or greater aspect ratio of active materials and faster C-rates can reduce maximum specific capacity. This suggests that reducing particle size of active materials and slowing the charge-discharge speed can provide enhanced electrochemical performance of a battery cell. Furthermore, the model is validated by published experimental results. This model brings new understanding in quantification of electrochemical kinetics and capacity performance. It enables development of design strategies for novel electrodes and future generation of energy storage devices.
Sunshine, Joel C.; Peng, Daniel Y.; Green, Jordan J.
2012-01-01
Development of non-viral particles for gene delivery requires a greater understanding of the properties that enable gene delivery particles to overcome the numerous barriers to intracellular DNA delivery. Linear poly(beta-amino) esters (PBAE) have shown substantial promise for gene delivery, but the mechanism behind their effectiveness is not well quantified with respect to these barriers. In this study, we synthesized, characterized, and evaluated for gene delivery an array of linear PBAEs that differed by small changes along the backbone, side chain, and end-group of the polymers. We examined particle size and surface charge, polymer molecular weight, polymer degradation rate, buffering capacity, cellular uptake, transfection, and cytotoxicity of nanoparticles formulated with these polymers. Significantly, this is the first study that has quantified how small differential structural changes to polymers of this class modulate buffering capacity and polymer degradation rate and relates these findings to gene delivery efficacy. All polymers formed positively charged (zeta potential 21–29 mV) nanosized articles (~ 150 nm). The polymers hydrolytically degraded quickly in physiological conditions, with half-lives ranging from 90 minutes to 6 hours depending on polymer structure. The PBAE buffering capacities in the relevant pH range (pH 5.1 – 7.4) varied from 34% to 95% protonable amines, and on a per mass basis, PBAEs buffered 1.4–4.6 mmol H+/g. When compared to 25 kDa branched polyethyleneimine (PEI), PBAEs buffer significantly fewer protons/mass, as PEI buffers 6.2 mmol H+/g over the same range. However, due to the relatively low cytotoxicity of PBAEs, higher polymer mass can be used to form particles than with PEI and total buffering capacity of PBAE-based particles significantly exceeds that of PEI. Uptake into COS-7 cells ranged from 0% to 95% of cells and transfection ranged from 0% to 93% of cells, depending on the base polymer structure and the end-modifications examined. Five polymers achieved higher uptake and transfection efficacy with less toxicity than branched-PEI control. Surprisingly, acrylate-terminated base polymers were dramatically less efficacious than their end-capped versions, both in terms of uptake (1–3% for acrylate, 75–94% for end-capped) and transfection efficacy (0–1% vs. 20–89%), even though there are minimal differences between acrylate and end-capped polymers in terms of DNA retardation in gel electrophoresis, particle size, zeta potential, and cytotoxicity. These studies further elucidate the role of polymer structure for gene delivery and highlight that small molecule end-group modification of a linear polymer can be critical for cellular uptake in a manner that is largely independent of polymer/DNA binding, particle size, and particle surface charge. PMID:22970908
The mechanism of thorium biosorption by Rhizopus arrhizus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsezos, M.; Volesky, B.
1982-04-01
Inactive cells of Rhizopus arrhizus have been documented to exhibit a high thorium biosorptive uptake (170 mg/g) from aqueous solutions. The mechanism of thorium sequestering by this biomass type was investigated following the same method as for the uranium biosorption emchanism. The thorium sequestering mechanism appeared somewhat different from that of uranium. Experimental evidence is presented which indicates that, at optimum biosorption pH (4), thorium coordinates with the nitroge of the chitin cell wall network and, in addition, more thorium is adsorbed by the external section of the fungal cell wall. At pH 2 the overall thorium uptake is reduced.more » The kinetic study of thorium biosorption revealed a very rapid rate of uptake. Unlike uranium at optimum solution pH, Fe/sup 2 +/ and Zn/sup 2 +/ did not interfere significantly with the thorium biosorptive uptake capacity of R. arrhizus.« less
NASA Astrophysics Data System (ADS)
Mudzielwana, Rabelani; Gitari, Wilson M.; Akinyemi, Segun A.; Msagati, Titus A. M.
2017-12-01
The study synthesizes a low-cost adsorbent made from Mn2+-modified bentonite clay for groundwater defluoridation. The clays were characterized using X-ray diffraction, X-ray fluorescence, scanning electron microscopy, and Fourier transform infrared techniques. The fluoride adsorption capacity of the modified clay was evaluated using batch experiments. The adsorption kinetics results showed that the optimum fluoride (F-) uptake was achieved within the 30 min' contact time. The data fitted well to pseudo-second-order of reaction kinetics indicating that adsorption of F- occurred via chemisorption. In addition, the adsorption isotherm data fitted well to Langmuir isotherm model indicating that adsorption occurred on a mono-layered surface. Maximum F- removal of 57% was achieved from groundwater with an initial F- concentration of 5.4 mg L-1 and natural pH of 8.6 using adsorbent dosage of 1 g/100 mL. Fluoride adsorption occurred through ligands and ion exchange mechanisms. The synthesized adsorbent was successfully regenerated for up to five times. The study shows that Mn2+-intercalated bentonite clay has potential for application in defluoridation of groundwater.
Treatment of complex Remazol dye effluent using sawdust- and coal-based activated carbons.
Vijayaraghavan, K; Won, Sung Wook; Yun, Yeoung-Sang
2009-08-15
A complex Remazol dye effluent, comprised of four reactive dyes and auxiliary chemicals, was decolorized using SPS-200 (sawdust-based) and SPC-100 (coal-based) activated carbons. A detailed characterization revealed that the pore diameter of the activated carbon played an important role in dye adsorption. The solution pH had no significant effect on the adsorption capacity in the pH range of 2-10.7. According to the Langmuir model, the maximum uptakes of SPS-200 were 415.4, 510.3, 368.5 and 453.0 mg g(-1) for Reactive Black 5 (RB5), Reactive Orange 16 (RO16), Remazol Brilliant Blue R (RBBR) and Remazol Brilliant Violet 5R (RBV), respectively. Conversely, those of SPC-100 were slightly lower, at 150.8, 197.4, 178.3 and 201.1 mg g(-1) for RB5, RO16, RBBR and RBV, respectively. In the case of Remazol effluent, SPS-200 exhibited a decolorization efficiency of 100% under unadjusted pH conditions at 10.7, compared to that of 52% for SPC-100.
Thakur, Neha; Sargur Ranganath, Anupama; Sopiha, Kostiantyn; Baji, Avinash
2017-08-30
In this study, we used core-shell electrospinning to fabricate cellulose acetate-poly(N-isopropylacrylamide) (CA-PNIPAM) fibrous membranes and demonstrated the ability of these fibers to capture water from a high humid atmosphere and release it when thermally stimulated. The wettability of the fibers was controlled by using thermoresponsive PNIPAM as the shell layer. Scanning electron and fluorescence microscopes are used to investigate the microstructure of the fibers and confirm the presence of the core and shell phases within the fibers. The moisture capturing and releasing ability of these core-shell CA-PNIPAM fibers was compared with those of the neat CA and neat PNIPAM fibers at room temperature as well as at an elevated temperature. At room temperature, the CA-PNIPAM core-shell fibers are shown to have the maximum moisture uptake capacity among the three samples. The external temperature variations which trigger the moisture response behavior of these CA-PNIPAM fibers fall within the range of typical day and night cycles of deserts, demonstrating the potential use of these fibers for water harvesting applications.
Monthly hydroclimatology of the continental United States
NASA Astrophysics Data System (ADS)
Petersen, Thomas; Devineni, Naresh; Sankarasubramanian, A.
2018-04-01
Physical/semi-empirical models that do not require any calibration are of paramount need for estimating hydrological fluxes for ungauged sites. We develop semi-empirical models for estimating the mean and variance of the monthly streamflow based on Taylor Series approximation of a lumped physically based water balance model. The proposed models require mean and variance of monthly precipitation and potential evapotranspiration, co-variability of precipitation and potential evapotranspiration and regionally calibrated catchment retention sensitivity, atmospheric moisture uptake sensitivity, groundwater-partitioning factor, and the maximum soil moisture holding capacity parameters. Estimates of mean and variance of monthly streamflow using the semi-empirical equations are compared with the observed estimates for 1373 catchments in the continental United States. Analyses show that the proposed models explain the spatial variability in monthly moments for basins in lower elevations. A regionalization of parameters for each water resources region show good agreement between observed moments and model estimated moments during January, February, March and April for mean and all months except May and June for variance. Thus, the proposed relationships could be employed for understanding and estimating the monthly hydroclimatology of ungauged basins using regional parameters.
Xu, Mingyu; Yin, Ping; Liu, Xiguang; Tang, Qinghua; Qu, Rongjun; Xu, Qiang
2013-12-01
Novel biosorbent materials (RH-2 and RH-3) obtained from agricultural waste materials rice husks (RH-1) were successfully developed through fast and facile esterification reactions with hydroxylethylidenediphosphonic acid and nitrilotrimethylenetriphosphonic acid, respectively. The present paper reported the feasibility of using RH-1, RH-2 and RH-3 for removal of heavy metals from simulated wastewater, the results revealed that the adsorption property of functionalized rice husks with organotriphosphonic acid RH-3 for Au(III) was very excellent, especially for gold ions. The combined effect of initial solution pH, RH-3 dosage and initial Au(III) concentration was investigated using response surface methodology (RSM), the results showed that initial Au(III) concentration exerted stronger influence on Au(III) uptake than initial pH and biomass dosage. The analysis of variance (ANOVA) of the quadratic model demonstrated that the model was highly significant, and under the optimum process conditions, the maximum adsorption capacity could reach 3.25 ± 0.07 mmol/g that is higher than other reported adsorbents. Copyright © 2013 Elsevier Ltd. All rights reserved.
Osman, Aart M; Struik, Paul C; van Bueren, Edith T Lammerts
2012-01-30
Northwestern European consumers like their bread to be voluminous and easy to chew. These attributes require a raw material that is rich in protein with, among other characteristics, a suitable ratio between gliadins and glutenins. Achieving this is a challenge for organic growers, because they lack cultivars that can realise high protein concentrations under the relatively low and variable availability of nitrogen during the grain-filling phase common in organic farming. Relatively low protein content in wheat grains thus needs to be compensated by a high proportion of high-quality protein. Organic farming therefore needs cultivars with genes encoding for optimal levels of glutenins and gliadins, a maximum ability for nitrogen uptake, a large storage capacity of nitrogen in the biomass, an adequate balance between vegetative and reproductive growth, a high nitrogen translocation efficiency for the vegetative parts into the grains during grain filling and an efficient conversion of nitrogen into high-quality proteins. In this perspective paper the options to breed and grow such varieties are discussed. Copyright © 2011 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Du, Zongjun; Zhang, Yue; Li, Zhengjie; Chen, Hui; Wang, Ying; Wang, Guangtu; Zou, Ping; Chen, Huaping; Zhang, Yunsong
2017-01-01
Nano-Fe3O4/carboxyl-functionalized baker's yeast composites (NF/CF-BYs) were prepared for the first time based on the ultrasonic cavitation assisted oxygen implosion method using single Fe2+ as iron source. The series of characterization analysis results showed that the obtained NF/CF-BYs had not only the superparamagnetic properties of nano-Fe3O4, but their surface also had plenty of functional groups (especially carboxyl groups) introduced by strong oxidization. The adsorption properties of NF/CF-BYs for methylene blue (MB) were also evaluated. The results displayed that the uptakes of NF/CF-BYs for MB were higher than that of pristine baker's yeast (P-BYs), and the adsorption process was followed by the pseudo-second-order kinetic model and Langmuir isotherm. The maximum adsorption capacity of NF/CF-BYs for MB was estimated to be 141.75 mg g-1 at pH 6. The regeneration efficiency of the obtained NF/CF-BYs was attained to be more than 90%.
Biosorption of toxic lead (II) ions using tomato waste (Solanum lycopersicum) activated by NaOH
NASA Astrophysics Data System (ADS)
Permatasari, Diah; Heraldy, Eddy; Lestari, Witri Wahyu
2016-02-01
This research present to uptake lead (II) ion from aqueous solutions by activated tomato waste. Biosorbent were characterized by applying Fourier Transform Infrared Spectroscopy (FTIR) and Surface Area Analyzer (SAA). The biosorption investigated with parameters including the concentration of NaOH, effects of solution pH, biosorbent dosage, contact time,and initial metal concentration. Experimental data were analyzed in terms of two kinetic model such us the pseudo-first order and pseudo-second order. Langmuir and Freundlich isotherm models were applied todescribe the biosorption process. According to the experiment, the optimum concentration of NaOH was achieved at 0.1 M. The maximum % lead (II) removal was achieved at pH 4 with 94.5%. Optimum biosorbentdosage were found as 0.1 g/25 mL solution while optimum contact time were found at 75 minutes. The results showed that the biosorption processes of Lead (II) followed pseudo-second order kinetics. Langmuir adsorption isotherm was found fit the adsorption data with amaximum capacity of 24.079 mg/g with anadsorption energy of 28.046 kJ/mol.
Ramos-Ramírez, Esthela; Ortega, Norma L Gutiérrez; Soto, Cesar A Contreras; Gutiérrez, Maria T Olguín
2009-12-30
In under-developed countries, industries such as paint and pigment manufacturing, leather tanning, chrome plating and textile processing, usually discharge effluents containing Cr(VI) and Cr(III) into municipal sanitary sewers. It has been reported that Cr(VI) acts as a powerful epithelial irritant and as a human carcinogen. In the present work, hydrotalcite-like compounds with a Mg/Al ratio=2 were synthesized by the sol-gel method. The hydrotalcite-like compounds and their corresponding thermally treated products were characterized by powder X-ray diffraction, infrared spectroscopy and N(2) adsorption. The hydrotalcite-like compounds and the heated solids were used as adsorbents for Cr(VI) in aqueous solutions. Adsorption isotherm studies of Cr(VI) from aqueous solution are described. The adsorbent capacity was determined using the Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models. The Cr(VI) adsorption isotherm data fit best to the Langmuir isotherm model. The maximum Cr(VI) uptake by hydrotalcite and the heated solids was determined using the Langmuir equation and was found to range between 26 and 29 mg Cr(VI)/g adsorbent.
Influence of volatile terpenes on the capacity of leaves to uptake and detoxify ozone. (Invited)
NASA Astrophysics Data System (ADS)
Loreto, F.; Fares, S.
2009-12-01
Tropospheric ozone is considered the most dangerous air pollutant for plant ecosystems, and its concentration is increasing throughout the earth. Oxidative damage takes place when ozone penetrates inside the leaves through the stomata and the cuticles. The latest guidelines suggest considering the dose entering stomata to evaluate ozone risk on vegetation. We have shown that this metric may not consider important detoxification mechanisms activated by the production of volatile antioxidants, especially terpenes. We review here how volatile terpenes may increase ozone uptake by leaves yet reducing the risk of damage to internal leaf structures. We also argue that volatile terpene production by plants phases-in with episodes on high ozone whereas other detoxification mechanisms are phased-out. Our results suggests that volatile isoprenoids play a major role in determining the capacity of ozone removal and detoxification by vegetation.
Improving the hydrogen storage properties of metal-organic framework by functionalization.
Xia, Liangzhi; Liu, Qing; Wang, Fengling; Lu, Jinming
2016-10-01
Based on the structure of MOF-808, different substituents were introduced to replace hydrogen atom on the phenyl ring of MOF-808. The GCMC method was used to study the effect of functional groups on the hydrogen storage properties of MOF-808-X (X = -OH, -NO 2 , -CH 3 , -CN, -I). The H 2 uptakes and isosteric heat of adsorption were simulated at 77 K. The results indicate that all these substituents have favorable impact on the hydrogen storage capacity, and -CN is found to be the most promising substituent to improve H 2 uptake. These results may be helpful for the design of MOFs with higher hydrogen storage capacity. Graphical abstract Atomistic structures of MOFs. (a) The structures of MOF-808-X. (b) Model of organic linker. Atom color scheme: C, gray; H, white; O, red; X, palegreen (X = -OH, -NO 2 , -CH 3 , -CN, -I).
Adsorption of cadmium by activated carbon cloth: influence of surface oxidation and solution pH.
Rangel-Mendez, J R; Streat, M
2002-03-01
The surface of activated carbon cloth (ACC), based on polyacrylonitrile fibre as a precursor, was oxidised using nitric acid, ozone and electrochemical oxidation to enhance cadmium ion exchange capacity. Modified adsorbents were physically and chemically characterised by pH titration, direct titration, X-ray photoelectron spectroscopy, elemental analysis, surface area and porosimetry, and scanning electron microscopy. BET surface area decreased after oxidation, however, the total ion exchange capacity increased by a factor of approximately 3.5 compared to the commercial as-received ACC. A very significant increase in cadmium uptake, by a factor of 13, was observed for the electrochemically oxidised ACC. Equilibrium sorption isotherms were determined at pH 4, 5 and 6 and these showed that cadmium uptake increased with increasing pH. There was clear evidence of physical damage to ozone-oxidised fibre, however, acid and electrochemically oxidised samples were completely stable.
Rojas, Ricardo; Bruna, Felipe; de Pauli, Carlos P; Ulibarri, M Ángeles; Giacomelli, Carla E
2011-07-01
Layered double hydroxides (LDHs) reactivity and interfacial behavior are closely interconnected and control particle properties relevant to the wide range of these solids' applications. Despite their importance, their relationship has been hardly described. In this work, chloride and dodecylsulfate (DDS(-)) intercalated LDHs are studied combining experimental data (electrophoretic mobility and contact angle measurements, hydroxyl and organic compounds uptake) and a simple mathematical model that includes anion-binding and acid-base reactions. This approach evidences the anion effect on LDHs interfacial behavior, reflected in the opposite particle charge and the different surface hydrophobic/hydrophilic character. LDHs reactivity are also determined by the interlayer composition, as demonstrated by the cation uptake capability of the DDS(-) intercalated sample. Consequently, the interlayer anion modifies the LDHs interfacial properties and reactivity, which in turn extends the customization capacity of these solids. Copyright © 2011 Elsevier Inc. All rights reserved.
Sultana, Razia; Kobayashi, Katsuichiro; Kim, Ki-Hyun
2015-01-01
In this research, the relative performance in arsenic (As) remediation was evaluated among some barnyard grass and rice species under hydroponic conditions. To this end, four barnyard grass varieties and two rice species were selected and tested for their remediation potential of arsenic. The plants were grown for 2 weeks in As-rich solutions up to 10 mg As L(-1) to measure their tolerance to As and their uptake capabilities. Among the varieties of plants tested in all treatment types, BR-29 rice absorbed the highest amount of As in the root, while Nipponbare translocated the maximum amount of As in the shoot. Himetainubie barnyard grass produced the highest biomass, irrespective of the quantity of As in the solution. In all As-treated solutions, the maximum uptake of As was found in BR-29 followed by Choto shama and Himetainubie. In contrast, while the bioaccumulation factor was found to be the highest in Nipponbare followed by BR-29 and Himetainubie. The results suggest that both Choto shama and Himetainubie barnyard grass varieties should exhibit a great potential for As removal, while BR-29 and Nipponbare rice species are the best option for arsenic phytoremediation.
Supercritical CO2 uptake by nonswelling phyllosilicates
Tokunaga, Tetsu K.; Ashby, Paul D.; Kim, Yongman; Voltolini, Marco; Gilbert, Benjamin; DePaolo, Donald J.
2018-01-01
Interactions between supercritical (sc) CO2 and minerals are important when CO2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubation with scCO2), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO2, can increase CO2 storage capacity by up to ∼30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO2 uptake constitutes a previously unrecognized potential trapping mechanism. PMID:29339499
Supercritical CO2 uptake by nonswelling phyllosilicates.
Wan, Jiamin; Tokunaga, Tetsu K; Ashby, Paul D; Kim, Yongman; Voltolini, Marco; Gilbert, Benjamin; DePaolo, Donald J
2018-01-30
Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubation with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2 , can increase CO 2 storage capacity by up to ∼30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism. Copyright © 2018 the Author(s). Published by PNAS.
Meneghelo, Romeu S; Magalhães, Hélio M; Smanio, Paola E P; Fuchs, Angela R C N; Ferraz, Almir S; Buchler, Rica D D; Buglia, Susimeire; Mastrocolla, Luiz E; Thom, Anneliese F
2008-10-01
It is advisable that the intensity of the exercises for rehabilitation of patients with coronary artery disease does not cause myocardial ischemia. Compare the capacity of myocardial tomographic scintigraphy with the electrocardiogram capacity in ischemia detection during rehabilitation session. Twenty six patients with coronary artery disease, undergoing the rehabilitation program and with previous scintigraphy, with transient hypo-uptake have been administered a new injection of MIBI-Tc-99m during a training session when they were also monitored with dynamic electrocardiography. The rest scintigraphies, after ergometric treadmill test and rehabilitation session, were assessed in a semi-quantitative way using scores from 0 to 4 to classify each one of the chosen segments (0 = normal; 1 = discrete hypo-uptake; 2 = moderate; 3 = intense; 4 = lack of uptake). The means of the total scores found were: at rest = 12.9; after treadmill test = 19.3; after rehabilitation session = 15.1. There were statistically significant differences among them. An individual assessment showed that in 14 cases (53.8 %) hypo-uptake to some degree was identified during rehabilitation and in 12 cases (46.6%) it was not. Monitoring with the Holter system didn't show in any of the cases a ST segment depression equal or greater than 1mm. The exercises prescribed for patients with coronary artery disease, according to recommendations found in the literature, may trigger myocardial ischemia, assessed by scintigraphy during a rehabilitation session.
Supercritical CO 2 uptake by nonswelling phyllosilicates
Wan, Jiamin; Tokunaga, Tetsu K.; Ashby, Paul D.; ...
2018-01-16
Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubationmore » with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2, can increase CO 2 storage capacity by up to ~30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism.« less
Hofman, Jan-Willem; Carstens, Myrra G.; van Zeeland, Femke; Helwig, Conny; Flesch, Frits M.; Hennink, Wim E.
2008-01-01
Purpose To study the in vitro photocytotoxicity and cellular uptake of biodegradable polymeric micelles loaded with the photosensitizer mTHPC, including the effect of lipase-catalyzed micelle degradation. Methods Micelles of mPEG750-b-oligo(ɛ-caprolactone)5 (mPEG750-b-OCL5) with a hydroxyl (OH), benzoyl (Bz) or naphthoyl (Np) end group were formed and loaded with mTHPC by the film hydration method. The cellular uptake of the loaded micelles, and their photocytotoxicity on human neck squamous carcinoma cells in the absence and presence of lipase were compared with free and liposomal mTHPC (Fospeg®). Results Micelles composed of mPEG750-b-OCL5 with benzoyl and naphtoyl end groups had the highest loading capacity up to 30% (w/w), likely due to π–π interactions between the aromatic end group and the photosensitizer. MTHPC-loaded benzoylated micelles (0.5 mg/mL polymer) did not display photocytotoxicity or any mTHPC-uptake by the cells, in contrast to free and liposomal mTHPC. After dilution of the micelles below the critical aggregation concentration (CAC), or after micelle degradation by lipase, photocytotoxicity and cellular uptake of mTHPC were restored. Conclusion The high loading capacity of the micelles, the high stability of mTHPC-loaded micelles above the CAC, and the lipase-induced release of the photosensitizer makes these micelles very promising carriers for photodynamic therapy in vivo. PMID:18597164
Kausar, Abida; Bhatti, Haq Nawaz; MacKinnon, Gillian
2013-11-01
In this research, biosorption efficiency of different agro-wastes was evaluated with rice husk showing maximum biosorption capacity among the selected biosorbents. Optimization of native, SDS-treated and immobilized rice husk adsorption parameters including pH, biosorbent amount, contact time, initial U(VI) concentration and temperature for maximum U(VI) removal was investigated. Maximum biosorption capacity for native (29.56 mg g(-1)) and immobilized biomass (17.59 mg g(-1)) was observed at pH 4 while SDS-treated biomass showed maximum removal (28.08 mg g(-1)) at pH 5. The Langmuir sorption isotherm model correlated best with the U(IV) biosorption equilibrium data for the 10-100 mg L(-1) concentration range. The kinetics of the reaction followed pseudo-second order kinetic model. Thermodynamic parameters like free energy (ΔG(0)) and enthalpy (ΔH°) confirmed the spontaneous and exothermic nature of the process. Experiments to determine the regeneration capacity of the selected biosorbents and the effect of competing metal ions on biosorption capacity were also conducted. The biomass was characterized using scanning electron microscopy, surface area analysis, Fourier transformed infra-red spectroscopy and thermal gravimetric analysis. The study proved that rice husk has potential to treat uranium in wastewater. Copyright © 2013 Elsevier B.V. All rights reserved.
Charlton, R R; Wenner, C E
1978-03-15
1. The interaction of intact Ehrlich ascites-tumour cells with Ca2+ at 37 degrees C consists of Ca2+ uptake followed by efflux from the cells. Under optimum conditions, two or three cycles of uptake and efflux are observed in the first 15 min after Ca2+ addition. 2. The respiratory substrates malate, succinate and ascorbate plus p-phenylenediamine support Ca2+ uptake. Ca2+ uptake at 37 degrees C is sensitive to the respiratory inhibitors rotenone and antimycin A when appropriate substrates are present. Ca2+ uptake and retention are inhibited by the uncoupler S-13. 3. Increasing extracellular Pi (12 to 30 mM) stimulates uncoupler-sensitive Ca2+ uptake, which reaches a maximum extent of 15 nmol/mg of protein when supported by succinate respiration. Ca2+ efflux is partially inhibited at 30 mM-Pi. 4. Optimum Ca2+ uptake occurs in the presence of succinate and Pi, suggesting that availability of substrate and Pi are rate-limiting. K. Ca2+ uptake occurs at 4 degrees C and is sensitive to uncouplers and oligomycin. Ca2+ efflux at this temperature is minimal. These data are consistent with a model in which passive diffusion of Ca2+ through the plasma membrane is followed by active uptake by the mitochondria. Ca2+ uptake is supported by substrates entering respiration at all three energy-coupling sites. Ca2+ efflux appears to be an active process with a high temperature coefficient.
Microcolumn studies of dye adsorption onto manganese oxides modified diatomite.
Al-Ghouti, M A; Khraisheh, M A M; Ahmad, M N; Allen, S J
2007-07-19
The method described here cannot fully replace the analysis of large columns by small test columns (microcolumns). The procedure, however, is suitable for speeding up the determination of adsorption parameters of dye onto the adsorbent and for speeding up the initial screening of a large adsorbent collection that can be tedious if a several adsorbents and adsorption conditions must be tested. The performance of methylene blue (MB), a basic dye, Cibacron reactive black (RB) and Cibacron reactive yellow (RY) was predicted in this way and the influence of initial dye concentration and other adsorption conditions on the adsorption behaviour were demonstrated. On the basis of the experimental results, it can be concluded that the adsorption of RY onto manganese oxides modified diatomite (MOMD) exhibited a characteristic "S" shape and can be simulated effectively by the Thomas model. It is shown that the adsorption capacity increased as the initial dye concentration increased. The increase in the dye uptake capacity with the increase of the adsorbent mass in the column was due to the increase in the surface area of adsorbent, which provided more binding sites for the adsorption. It is shown that the use of high flow rates reduced the time that RY in the solution is in contact with the MOMD, thus allowing less time for adsorption to occur, leading to an early breakthrough of RY. A rapid decrease in the column adsorption capacity with an increase in particle size with an average 56% reduction in capacity resulting from an increase in the particle size from 106-250 microm to 250-500 microm. The experimental data correlated well with calculated data using the Thomas equation and the bed depth-service time (BDST) equation. Therefore, it might be concluded that the Thomas equation and the BDST equations can produce accurate predication for variation of dye concentration, mass of the adsorbent, flow rate and particle size. In general, the values of adsorption isotherm capacity obtained in a batch system show the maximum values and are considerably higher than those obtained in a fixed-bed.
Light dependence of carboxylation capacity for C3 photosynthesis models
USDA-ARS?s Scientific Manuscript database
Photosynthesis at high light is often modelled by assuming limitation by the maximum capacity of Rubisco carboxylation at low carbon dioxide concentrations, by electron transport capacity at higher concentrations, and sometimes by triose-phosphate utilization rate at the highest concentrations. Pho...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shusharina, Nadya, E-mail: nshusharina@partners.org; Cho, Joseph; Sharp, Gregory C.
2014-05-01
Purpose: To investigate the spatial correlation between high uptake regions of 2-deoxy-2-[{sup 18}F]-fluoro-D-glucose positron emission tomography ({sup 18}F-FDG PET) before and after therapy in recurrent lung cancer. Methods and Materials: We enrolled 106 patients with inoperable lung cancer into a prospective study whose primary objectives were to determine first, the earliest time point when the maximum decrease in FDG uptake representing the maximum metabolic response (MMR) is attainable and second, the optimum cutoff value of MMR based on its predicted tumor control probability, sensitivity, and specificity. Of those patients, 61 completed the required 4 serial {sup 18}F-FDG PET examinations aftermore » therapy. Nineteen of 61 patients experienced local recurrence at the primary tumor and underwent analysis. The volumes of interest (VOI) on pretherapy FDG-PET were defined by use of an isocontour at ≥50% of maximum standard uptake value (SUV{sub max}) (≥50% of SUV{sub max}) with correction for heterogeneity. The VOI on posttherapy images were defined at ≥80% of SUV{sub max}. The VOI of pretherapy and posttherapy {sup 18}F-FDG PET images were correlated for the extent of overlap. Results: The size of VOI at pretherapy images was on average 25.7% (range, 8.8%-56.3%) of the pretherapy primary gross tumor volume (GTV), and their overlap fractions were 0.8 (95% confidence interval [CI]: 0.7-0.9), 0.63 (95% CI: 0.49-0.77), and 0.38 (95% CI: 0.19-0.57) of VOI of posttherapy FDG PET images at 10 days, 3 months, and 6 months, respectively. The residual uptake originated from the pretherapy VOI in 15 of 17 cases. Conclusions: VOI defined by the SUV{sub max}-≥50% isocontour may be a biological target volume for escalated radiation dose.« less
Value of FDG-PET/CT Volumetry After Chemoradiotherapy in Rectal Cancer.
Okuno, Takayuki; Kawai, Kazushige; Koyama, Keitaro; Takahashi, Miwako; Ishihara, Soichiro; Momose, Toshimitsu; Morikawa, Teppei; Fukayama, Masashi; Watanabe, Toshiaki
2018-03-01
Neoadjuvant chemoradiotherapy followed by an optimal surgery is the standard treatment for patients with locally advanced rectal cancer. FDG-PET/CT is commonly used as the modality for assessing the effect of chemoradiotherapy. The purpose of this study was to investigate whether PET/CT-based volumetry could contribute to the prediction of pathological complete response or prognosis after neoadjuvant chemoradiotherapy. This was a retrospective cohort study. This study was conducted at a single research center. Ninety-one consecutive patients with locally advanced rectal cancer were enrolled between January 2005 and December 2015. Patients underwent PET/CT before and after neoadjuvant chemoradiotherapy. Maximum standardized uptake value and total lesion glycolysis on PET/CT before and after neoadjuvant chemoradiotherapy were calculated using isocontour methods. Correlations between these variables and clinicopathological factors and prognosis were assessed. PET/CT-associated variables before chemoradiotherapy were not correlated with either clinicopathological factors or prognosis. Maximum standardized uptake value was associated with pathological complete response, but total lesion glycolysis was not. Maximum standardized uptake value correlated with ypT, whereas total lesion glycolysis correlated with both ypT and ypN. High total lesion glycolysis was associated with a considerably poorer prognosis; the 5-year recurrence rate was 65% and the 5-year mortality rate 42%, whereas in lesions with low total lesion glycolysis, these were 6% and 2%. On multivariate analysis, high total lesion glycolysis was an independent risk factor for recurrence (HR = 4.718; p = 0.04). The gain in fluoro-2-deoxy-D-glucose uptake may differ between scanners, thus the general applicability of this threshold should be validated. In patients with locally advanced rectal cancer, high total lesion glycolysis after neoadjuvant chemoradiotherapy is strongly associated with a worse prognosis. Total lesion glycolysis after chemoradiotherapy may be a promising preoperative predictor of recurrence and death. See Video Abstract at http://links.lww.com/DCR/A464.
The Interactions Between Three Typical PPCPs and LDH
Li, Erwei; Liao, Libing; Lv, Guocheng; Li, Zhaohui; Yang, Chengxue; Lu, Yanan
2018-01-01
With a layered structure, layered double hydroxide (LDH) has potential applications in remediation of anionic contaminants, which has been a hot topic for recent years. In this study, a Cl type Mg-Al hydrotalcite (Cl-LDH) was prepared by a co-precipitation method. The adsorption process of three pharmaceuticals and personal care products (PPCPs) [tetracycline (TC), diclofenac sodium (DF), chloramphenicol (CAP)] by Cl-LDH was investigated by X-ray diffraction (XRD), Zeta potential, dynamic light scattering (DLS), BET, Fourier transform infrared (FTIR) spectroscopy, and molecular dynamics simulation. The results showed that the adsorption equilibrium of TC and DF could be reached in 120 min, and the maximum adsorption capacity of the TC and DF were 1.85 and 0.95 mmol/g, respectively. The isothermal adsorption model of TC was fitted with the Freundlich adsorption model, and the isothermal adsorption model of DF was fitted with the Langmuir adsorption model. The adsorption dynamics of TC and DF followed the pseudo-second-order model. The adsorption mechanisms of the three PPCPs into Cl-LDH were different based on the experimental results and molecular dynamics simulation. The TC adsorption on Cl-LDH was accompanied by the electrostatic interactions between the negative charge of TC and the positive charge of Cl-LDH. The uptake of DF was attributed to anion exchange and electrostatic interaction. Cl-LDH does not adsorb CAP due to no electrostatic interaction. The molecular dynamic simulation further confirmed different configurations of three selected PPCPs, which were ultimately responsible for the uptake of PPCPs on Cl-LDH. PMID:29556493
Intercalated theophylline-smectite hybrid for pH-mediated delivery.
Trivedi, Vivek; Nandi, Uttom; Maniruzzaman, Mohammed; Coleman, Nichola J
2018-01-23
On the basis of their large specific surface areas, high adsorption and cation exchange capacities, swelling potential and low toxicity, natural smectite clays are attractive substrates for the gastric protection of neutral and cationic drugs. Theophylline is an amphoteric xanthine derivative that is widely used as a bronchodilator in the treatment of asthma and chronic obstructive pulmonary disease. This study considers the in vitro uptake and release characteristics of the binary theophylline-smectite system. The cationic form of theophylline was readily ion exchanged into smectite clay at pH 1.2 with a maximum uptake of 67 ± 2 mg g -1 . Characterisation of the drug-clay hybrid system by powder X-ray diffraction analysis, Fourier transform infrared spectroscopy, differential scanning calorimetry and scanning electron microscopy confirmed that the theophylline had been exclusively intercalated into the clay system in an amorphous form. The drug remained bound within the clay under simulated gastric conditions at pH 1.2; and the prolonged release of approximately 40% of the drug was observed in simulated intestinal fluid at pH 6.8 and 7.4 within a 2-h timeframe. The incomplete reversibility of the intercalation process was attributed to chemisorption of the drug within the clay lattice. These findings indicate that smectite clay is a potentially suitable vehicle for the safe passage of theophylline into the duodenum. Protection from absorption in the stomach and subsequent prolonged release in the small intestine are advantageous in reducing fluctuations in serum concentration which may impact therapeutic effect and toxicity.
Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R
2008-03-01
Biosorption of copper ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). The effects of contact time, pH, ionic strength (IS) and temperature on the biosorption process have been studied. Equilibrium data follow both Langmuir and Langmuir-Freundlich models. The parameters of Langmuir equilibrium model were: q(max)=33.0mgg(-1), K(L)=0.015mgl(-1); q(max)=16.7mgg(-1), K(L)=0.028mgl(-1) and q(max)=10.3mgg(-1), K(L)=0.160mgl(-1) respectively for Gelidium, algal waste and composite material at pH=5.3, T=20 degrees C and IS=0.001M. Increasing the pH, the number of deprotonated active sites increases and so the uptake capacity of copper ions. In the case of high ionic strengths, the contribution of the electrostatic component to the overall binding decreases, and so the uptake capacity. The temperature has little influence on the uptake capacity principally for low equilibrium copper concentrations. Changes in standard enthalpy, Gibbs energy and entropy during biosorption were determined. Kinetic data at different solution pH (3, 4 and 5.3) were fitted to pseudo-first-order and pseudo-second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch reactor mass transfer kinetic model, which successfully predicts Cu(II) concentration profiles.
Montiel-Jarillo, Gabriela; Carrera, Julián; Suárez-Ojeda, María Eugenia
2017-04-01
Polyhydroxyalkanoates (PHA) are biopolymers that can be an alternative against conventional plastics. The study reported herein evaluated the enrichment of a mixed microbial culture (MMC) operated under feast/famine regime and different pHs in a sequencing batch reactor (SBR) using acetate as sole carbon source to produce polyhydroxyalkanoates (PHAs). The enrichment step was evaluated at controlled pH of 7.5 and also without pH control (averaged value of 9.0). The acetate uptake rate (-q S ) of both enrichments at the end of the experimental period exhibited similar behaviour being about 0.18CmolAcCmolX -1 h -1 and 0.19CmolAcCmolX -1 h -1 for SBR-A and SBR-B, respectively. However, the PHA-storing capacity of the biomass enriched without pH control was better, exhibiting a maximum PHA content of 36% (gPHAg -1 VSS) with a PHA production rate (q PHA ) of 0.16CmolPHACmolX -1 h -1 . Batch experiments were performed to evaluate PHA-storing capacity of the enriched culture at different pHs and nutrients concentrations. In the pH experiments (without nutrient limitation), it was found that in the absence of controlled pH, the enriched biomass exhibited a PHA content of 44% gPHAg -1 VSS with -q S and PHA to substrate yield (Y PHA/Ac ) of 0.57CmolAcCmolX -1 h -1 and 0.33CmolPHACmolAc -1 , respectively. Regarding the experiments at variable nutrients concentration (pH ranging 8.8 to 9.2), the results indicate that the PHA content in the enriched biomass is significantly higher being around 51% gPHAg -1 VSS under nitrogen limitation. This work demonstrated the feasibility of the enrichment of a MMC with PHA storage ability without pH control. Results also suggest that better PHAs contents and substrate uptake rates are obtained without controlling the pH in the accumulation step. Finally, this work also highlights the importance of understanding the role of nutrients concentration during the accumulation step. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Xue-Xia; Zhang, Xiao-Xia; Zheng, Yu-Ji; Wang, Rong-Ping; Chen, Neng-Chang; Lu, Pu-Xiang
2013-07-01
The interactions between the concentrations of sulfur, iron and cadmium in the rhizosphere and their uptakes in rice (Oryza sativa L. ) were studied using paddy soil which was contaminated by acid mine drainage under five water-management treatments of 60%, 80%, 100% field moisture capacity (FMC), flooded throughout the entire rice growth period and flooded followed by keeping 80% FMC after heading-flowering period. The water managements had no significant influence on the Fe and Cd concentrations in rhizosphere soil in maturity stage, although the concentration of Cd slightly increased with the increase of soil moisture in the tillering stage. However, the uptake of Fe and Cd in rice was obviously related to water managements. The increase of soil moisture enhanced the uptake of Fe, but decreased the uptake of Cd in different organs of rice (roots, stems and leaves, grains) except for Cd uptake of the root in the 60% FMC treatment. However, aerobic treatment after heading-flowering period enhanced Cd uptake in rice in all treatments, but did not influence the uptake of Fe in rice. On the other hand, the increase of soil moisture reduced the concentrations of total sulfur and available sulfur in the rhizosphere soil except for the 60% FMC treatment, which corresponded with the reduction of Cd uptake in rice. And the aerobic treatment promoted Cd uptake in rice, which was also positively related to the increase of total sulfur and available sulfur in rhizosphere soil. Therefore, it was concluded that the uptake and speciation of sulfur in rhizosphere soil other than the change of Fe concentration induced by water management could play an important role in Cd uptake of rice.
Inoue, A; Nakata, Y; Yajima, H; Segawa, T
1984-10-01
In the present study, we demonstrated the existence of an active uptake system for substance P carboxy-terminal heptapeptide, (5-11)SP. When a fraction from rabbit brain enriched in glial cells was incubated with [3H] (5-11)SP, an uptake of [3H](5-11)SP was observed. The uptake system has the properties of an active transport mechanism. Kinetic analysis indicated two components of [3H](5-11)SP uptake, one representing a high and the other a low affinity transport system. After unilateral ablation of the striatum, approximately 30% of the high affinity [3H](5-11)SP uptake capacity of substantia nigra slices disappeared. The subcellular distribution of the high affinity uptake indicated that [3H] 5-hydroxytryptamine was taken up mostly into the P2B fraction (synaptosomal fraction), whereas [3H](5-11)SP was taken up into the P2A fraction (myelin fraction) to the same extent as into the P2B fraction. These results suggest that when SP is released from nerve terminals, it is hydrolysed into (5-11)SP, which is in turn accumulated into glial cells as well as nerve terminals and that this high affinity uptake mechanism may play an important role in terminating the synaptic action of SP.
Qaddoumi, Mohamed; Lee, Vincent H L
2004-07-01
To investigate the binding and uptake pattern of three plant lectins in rabbit conjunctival epithelial cells (RCECs) with respect to their potential for enhancing cellular macromolecular uptake. Three fluorescein-labeled plant lectins (Lycoperison esculentum, TL; Solanum tuberosum, STL; and Ulex europaeus 1, UEA-1) were screened with respect to time-, concentration-, and temperature-dependent binding and uptake. Chitin (30 mg/ml) and L-alpha-fucose (10 mM) were used as inhibitory sugars to correct for nonspecific binding of TL or STL and UEA-1, respectively. Confocal microscopy was used to confirm internalization of STL. The binding and uptake of all three lectins in RCECs was time-dependent (reaching a plateau at 1-2 h period) and saturable at 1-h period. The rank order of affinity constants (km) was STL>TL>UEA-1 with values of 0.39>0.48>4.81 microM, respectively. However, maximal, specific binding/uptake potential was in the order UEA-1>STL>TL with values of 53.7, 52.3, and 15.0 nM/mg of cell protein, respectively. Lectins showed temperature dependence in their uptake, with STL exhibiting the highest endocytic capacity. Internalized STL was visualized by confocal microscopy to be localized to the cell membrane and cytoplasm. Based on favorable binding and uptake characteristics, potato lectin appears to be a useful candidate for further investigation as an ocular drug delivery system.
Morris, Eric A; Kirk, Donald W; Jia, Charles Q; Morita, Kazuki
2012-07-17
This work addresses the discrepancy in the literature regarding the effects of sulfuric acid (H(2)SO(4)) on elemental Hg uptake by activated carbon (AC). H(2)SO(4) in AC substantially increased Hg uptake by absorption particularly in the presence of oxygen. Hg uptake increased with acid amount and temperature exceeding 500 mg-Hg/g-AC after 3 days at 200 °C with AC treated with 20% H(2)SO(4). In the absence of other strong oxidizers, oxygen was able to oxidize Hg. Upon oxidation, Hg was more readily soluble in the acid, greatly enhancing its uptake by acid-treated AC. Without O(2), S(VI) in H(2)SO(4) was able to oxidize Hg, thus making it soluble in H(2)SO(4). Consequently, the presence of a bulk H(2)SO(4) phase within AC pores resulted in an orders of magnitude increase in Hg uptake capacity. However, the bulk H(2)SO(4) phase lowered the AC pore volume and could block the access to the active surface sites and potentially hinder Hg uptake kinetics. AC treated with SO(2) at 700 °C exhibited a much faster rate of Hg uptake attributed to sulfur functional groups enhancing adsorption kinetics. SO(2)-treated carbon maintained its fast uptake kinetics even after impregnation by 20% H(2)SO(4).
Osborne, C. P.; Drake, B. G.; LaRoche, J.; Long, S. P.
1997-05-01
As the partial pressure of CO2 (pCO2) in the atmosphere rises, photorespiratory loss of carbon in C3 photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. We tested this expectation for Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor. Open-top chambers were used to elevate the pCO2 of a forest floor habitat to 67 Pa and were paired with control chambers providing an ambient pCO2 of 38 Pa. After 3.5 years, D. indica leaves grown and measured in the elevated pCO2 showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) and a lower light compensation point (by 42%) than leaves grown and measured in the control chambers. The quantum efficiency to minimize photorespiration, measured in 1% O2, was the same for controls and plants grown at elevated pCO2. This showed that the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and that the increase in light-limited photosynthesis at elevated pCO2 was simply a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Even so, leaves of D. indica grown and measured at elevated pCO2 showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO2. In situ measurements under natural forest floor lighting showed large increases in leaf photosynthesis at elevated pCO2, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO2 allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborne, C.P.; Long, S.P.; Drake, B.G.
1997-05-01
As the partial pressure of CO{sub 2} (pCO{sub 2}) in the atmosphere rises, photorespiratory loss of carbon in C, photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor was tested. Open-top chambers were used to elevate the pCO{sub 2} of a forest floor habitat to 67 Pa and were paired with control chambers with an ambient pCO{sub 2} of 38 Pa. After 3.5 years, D. indica leaves in the elevated pCO{sub 2} showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) andmore » a lower light compensation point (by 42%) than leaves in the control chambers. The quantum efficiency to minimize photorespiration was the same for controls and plants grown at elevated pCO{sub 2}, showing the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and the increase in light-limited photosynthesis at elevated pCO{sub 2} was a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Leaves of D. indica grown and measured at elevated pCO{sub 2} showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO{sub 2}. In situ measurements under natural lighting showed large increases in leaf photosynthesis at elevated pCO{sub 2}, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO{sub 2} allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO{sub 2}. 33 refs., 3 figs., 3 tabs.« less
Anthropogenic Impacts on Biological Carbon Sequestration in the Coastal Waters
NASA Astrophysics Data System (ADS)
Jiao, N.
2016-02-01
The well-known biological mechanism for carbon sequestration in the ocean is the biological pump (BP) which is driven by primary production initially in the surface water and then dependent on particulate organic carbon sinking process in the water column. In contrast microbial carbon pump (MCP) depends on microbial transformation of dissolved organic carbon (DOC) to refractory DOC (RDOC).Although the BP and the MCP are distinct mechanisms, they are intertwined. Both mechanisms should be considered regarding maximum sequestration of carbon in the ocean. Recent studies have showed that excess nutrients could facilitate the uptake of DOC and enhance both bacterial production and respiration. Bacterial growth efficiency increases with increasing nitrogen concentration to certain levels and then decreases thereafter, while the remaining DOC in the water usually decreases with increasing nitrogen concentration, suggesting that excess nitrogen could simulate uptake of DOC in the environment and thus have negative impacts on the ocean DOC storage.This is somehow against the case of the BP which is known to increase with increasing availability of nutrients. Another responsible factor is the nature of algal products. If it is labile, the organic carbon cannot be preserved in the environment.On top of that, labile organic carbon has priming effects for river discharged semi-labile DOC for bacterial respiration.That is, labile organic matter will become the incubator for bacteria. While bacteria respire DOC into CO2, they consume oxygen, and finally result in hypoxia. Under anoxic condition, anaerobic bacteria successively work on the rest of the organic carbon and produce harmful gasses such as methane and H2S. Such story did have happened during geological events in the history of the earth. The above processes not only result in ecological disasters but also reduce the capacity of carbon sequestration in the ocean. To achieve maximum carbon sinks, both BP and MCP should be considered in management, especially in the coastal waters where eutrophication and hypoxia are severe. Currently, farm over-fertilization is found world widely to be responsible for coastal water eutrophication. Therefore nutrients input must be under control for optimum outputs of the sum of BP and MCP towards sustainable coastal ecosystems.
Schulze, E -D; Lange, O L; Koch, W
1972-12-01
The influence of climatic factors on net photosynthesis, dark respiration and transpiration was investigated in the Negev Desert at the end of the dry summer period when plant water stress was at a maximum. Species studied included: dominant species of the natural vegetation (Artemisia herba-alba, Hammada scoparia, Noaea mucronata, Reaumuria negevensis, Salsola inermis, Zygophyllum dumosum), cultivated plants receiving rainfall and run-off water during the winter season in the run-off farm Avdat (Prunus armeniaca, Vitis vinifera), and irrigated cultivated plants receiving additional water during the summer season (Citrullus colocynthis, Datura metel). 1. Light saturation of net photosynthesis was reached at 60-90 klx conforming to the high solar radiation intensities of the desert. 2. Maximum rates of CO 2 uptake per unit of dry weight for the irrigated mesomorphic plants was ten times that of the wild plants. However, in comparison to the other species, maximal rates of CO 2 uptake for wild plants were higher when calculated on a leaf area basis than when represented on a dry weight basis. Maximum rates of net photosynthesis per unit chlorophyll content for some of the wild plants (Salsola and Noaea) were comparable to those of the cultivated Vitis and irrigated Citrullus and Datura, Hammada exhibited even higher rates than Prunus. This demonstrates the great photosynthetic capacity of the wild plants even at the end of the dry season. 3. The upper temperature compensation point for net photosynthesis of the wild plants was unusually high as an adaptation to the temperatures of the habitat. Compensation points higher than 49°C exceed the maxima known so far for other flowering species. Maximum rates of net photosynthesis of Hammada were measured when the temperature of the photosynthetic organs was 37°C; at 49°C photosynthesis was only reduced by 50%. 4. Leaf temperature affects plant gas exchange by influencing stomatal aperture. Diffusion resistance of leaves to water vapour was reduced at low temperatures and increased at high temperatures. Reduction of net photosynthesis and transpiration of desert plants at midday may, therefore, be the result of temperature-induced stomatal closure. The possible influence of peristomatal transpiration on stomatal aperture is also discussed. Peristomatal transpiration is directly related to the vapour pressure gradient between the leaf mesophyll and the ambient air which increases with increasing temperatures. 5. Diffusion resistance to water vapour was reduced at high temperatures approaching the limits of heat resistance, due to increased stomatal aperture. This resulted in greater transpirational cooling. 6. Under conditions of increased leaf water stress, diffusion resistance increased, either by sudden stomatal closure at specific threshold values of water stress or through a continuous increase in resistance. This increased resistance is coupled with decreases in transpiration and photosynthesis. 7. In several plant species increased diffusion resistance during the course of the day caused decreased transpiration without a corresponding decrease in photosynthesis. Under these conditions, the ratio of CO 2 uptake to transpiration became more favourable as the day progressed. The possibility that this favourable gas exchange response is the result of an increased mesophyll resistance to water vapour loss is discussed.
Wagner, P D; Simonson, T S; Wei, G; Wagner, H E; Wuren, T; Qin, G; Yan, M; Ge, R L
2015-11-01
What is the topic of this review? Recent developments link relatively lower hemoglobin concentration in Tibetans at high altitude to exercise capacity and components of oxygen transport. What advances does it highlight? Haemoglobin concentration (ranging from 15.2 to 22.9 g dl(-1) ) in Tibetan males was negatively associated with peak oxygen (O2 ) uptake per kilogram, cardiac output and muscle O2 diffusion conductance. Most variance in the peak O2 uptake per kilogram of Tibetan males was attributed to cardiac output, muscle diffusional conductance and arterial partial pressure of CO2 . The mechanisms underlying these differences in oxygen transport in Tibetans require additional analyses. Despite residence at >4000 m above sea level, many Tibetan highlanders, unlike Andean counterparts and lowlanders at altitude, exhibit haemoglobin concentration ([Hb]) within the typical sea-level range. Genetic adaptations in Tibetans are associated with this relatively low [Hb], yet the functional relevance of the lower [Hb] remains unknown. To address this, we examined each major step of the oxygen transport cascade [ventilation (VE), cardiac output (QT) and diffusional conductance in lung (DL) and muscle (DM)] in Tibetan males at maximal exercise on a cycle ergometer. Ranging from 15.2 to 22.9 g dl(-1) , [Hb] was negatively associated with peak O2 uptake per kilogram (r = -0.45, P < 0.05) and both cardiac output (QT/kg: r = -0.54, P < 0.02) and muscle O2 diffusion conductance (DM/kg: r = -0.44, P < 0.05) but not ventilation, arterial partial pressure of O2 or pulmonary diffusing capacity. Most variance in peak O2 uptake per kilogram was attributed to QT, DM and arterial partial pressure of CO2 (r(2) = 0.90). In summary, lack of polycythaemia in Tibetans is associated with increased exercise capacity, which is explained by elevated cardiac, muscle and, to a small extent, ventilatory responses rather than pulmonary gas exchange. Whether lower [Hb] is the cause or result of these changes in O2 transport or is causally unrelated will require additional study. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Hettrick, Lisa; Revenko, Alexey; Kinberger, Garth A.; Prakash, Thazha P.; Seth, Punit P.
2017-01-01
Abstract Antisense oligonucleotide (ASO) therapeutics show tremendous promise for the treatment of previously intractable human diseases but to exert their effects on cellular RNA processing they must first cross the plasma membrane by endocytosis. The conjugation of ASOs to a receptor ligand can dramatically increase their entry into certain cells and tissues, as demonstrated by the implementation of N-acetylgalactosamine (GalNAc)-conjugated ASOs for Asialoglycoprotein Receptor (ASGR)-mediated uptake into liver hepatocytes. We compared the internalization and activity of GalNAc-conjugated ASOs and their parents in endogenous ASGR-expressing cells and were able to recapitulate hepatocyte ASO uptake and activity in cells engineered to heterologously express the receptor. We found that the minor receptor subunit, ASGR2, is not required for effective in vitro or in vivo uptake of GalNAc-conjugated ASO and that the major subunit, ASGR1, plays a small but significant role in the uptake of unconjugated phosphorothioate ASOs into hepatocytes. Moreover, our data demonstrates there is a large excess capacity of liver ASGR for the effective uptake of GalNAc–ASO conjugates, suggesting broad opportunities to exploit receptors with relatively moderate levels of expression. PMID:29069408
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, R.B.; Stabin, M.G.
1999-01-01
After administration of I-131 to the female patient, the possibility of radiation exposure of the embryo/fetus exists if the patient becomes pregnant while radioiodine remains in the body. Fetal radiation dose estimates for such cases were calculated. Doses were calculated for various maternal thyroid uptakes and time intervals between administration and conception, including euthyroid and hyperthyroid cases. The maximum fetal dose calculating was about 9.8E-03 mGy/MBq, which occurred with 100% maternal thyroid uptake and a 1 week interval between administration and conception. Placental crossover of the small amount of radioiodine remaining 90 days after conception was also considered. Such crossovermore » could result in an additional fetal dose of 9.8E-05 mGy/MBq and a maximum fetal thyroid self dose of 3.5E-04 mGy/MBq.« less
van den Berg, Linda E M; Favejee, Marein M; Wens, Stephan C A; Kruijshaar, Michelle E; Praet, Stephan F E; Reuser, Arnold J J; Bussmann, Johannes B J; van Doorn, Pieter A; van der Ploeg, Ans T
2015-07-19
Pompe disease is a proximal myopathy. We investigated whether exercise training is a safe and useful adjuvant therapy for adult Pompe patients, receiving enzyme replacement therapy. Training comprised 36 sessions of standardized aerobic, resistance and core stability exercises over 12 weeks. Before and after, the primary outcome measures safety, endurance (aerobic exercise capacity and distance walked on the 6 min walk test) and muscle strength, and secondary outcome measures core stability, muscle function and body composition, were evaluated. Of 25 patients enrolled, 23 successfully completed the training. Improvements in endurance were shown by increases in maximum workload capacity (110 W before to 122 W after training, [95 % CI of the difference 6 · 0 to 19 · 7]), maximal oxygen uptake capacity (69 · 4 % and 75 · 9 % of normal, [2 · 5 to 10 · 4]), and maximum walking distance (6 min walk test: 492 meters and 508, [-4 · 4 to 27 · 7] ). There were increases in muscle strength of the hip flexors (156 · 4 N to 180 · 7 N [1 · 6 to 13 · 6) and shoulder abductors (143 · 1 N to 150 · 7 N [13 · 2 to 35 · 2]). As an important finding in secondary outcome measures the number of patients who were able to perform the core stability exercises rose, as did the core stability balancing time (p < 0.05, for all four exercises). Functional tests showed small reductions in the time needed to climb four steps (2 · 4 sec to 2 · 1, [- 0 · 54 to -0 · 04 ]) and rise to standing position (5 · 8 sec to 4 · 8, [-2 · 0 to 0 · 0]), while time to run, the quick motor function test results and body composition remained unchanged. Our study shows that a combination of aerobic, strength and core stability exercises is feasible, safe and beneficial to adults with Pompe disease.
Maksin, Danijela D; Nastasović, Aleksandra B; Milutinović-Nikolić, Aleksandra D; Suručić, Ljiljana T; Sandić, Zvjezdana P; Hercigonja, Radmila V; Onjia, Antonije E
2012-03-30
Two porous and one non-porous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [abbreviated PGME] were prepared by suspension copolymerization and functionalized with diethylene triamine [abbreviated PGME-deta]. Samples were characterized by elemental analysis, mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Kinetics of Cr(VI) sorption by PGME-deta were investigated in batch static experiments, in the temperature range 25-70°C. Sorption was rapid, with the uptake capacity higher than 80% after 30 min. Sorption behavior and rate-controlling mechanisms were analyzed using five kinetic models (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion and Bangham model). Kinetic studies showed that Cr(VI) adsorption adhered to the pseudo-second-order model, with definite influence of pore diffusion. Equilibrium data was tested with Langmuir, Freundlich and Tempkin adsorption isotherm models. Langmuir model was the most suitable indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption. The maximum adsorption capacity from the Langmuir model, Q(max), at pH 1.8 and 25°C was 143 mg g(-1) for PGME2-deta (sample with the highest amino group concentration) while at 70°C Q(max) reached the high value of 198 mg g(-1). Thermodynamic parameters revealed spontaneous and endothermic nature of Cr(VI) adsorption onto PGME-deta. Copyright © 2012 Elsevier B.V. All rights reserved.
Ghorai, Soumitra; Sarkar, Asish; Raoufi, Mohammad; Panda, Asit Baran; Schönherr, Holger; Pal, Sagar
2014-04-09
The synthesis and characterization of a novel nanocomposite is reported that was developed as an efficient adsorbent for the removal of toxic methylene blue (MB) and methyl violet (MV) from aqueous solution. The nanocomposite comprises hydrolyzed polyacrylamide grafted onto xanthan gum as well as incorporated nanosilica. The synthesis exploits the saponification of the grafted polyacrylamide and the in situ formation of nanoscale SiO2 by a sol-gel reaction, in which the biopolymer matrix promotes the silica polymerization and therefore acts as a novel template for nanosilica formation. The detailed investigation of the kinetics and the adsorption isotherms of MB and MV from aqueous solution showed that the dyes adsorb rapidly, in accordance with a pseudo-second-order kinetics and a Langmuir adsorption isotherm. The entropy driven process was furthermore found to strongly depend on the point of zero charge (pzc) of the adsorbent. The remarkably high adsorption capacity of dyes on the nanocomposites (efficiency of MB removal, 99.4%; maximum specific removal Qmax, 497.5 mg g(-1); and efficiency of MV removal, 99.1%; Qmax, 378.8 mg g(-1)) is rationalized on the basis of H-bonding interactions as well as dipole-dipole and electrostatic interactions between anionic adsorbent and cationic dye molecules. Because of the excellent regeneration capacity the nanocomposites are considered interesting materials for the uptake of, for instance, toxic dyes from wastewater.
Sources of secondary organic aerosols over North China Plain in winter
NASA Astrophysics Data System (ADS)
Xing, L.; Li, G.; Tie, X.; Junji, C.; Long, X.
2017-12-01
Organic aerosol (OA) concentrations are simulated over the North China Plain (NCP) from 10th to 26th January, 2014 using the Weather Research and Forecasting model coupled to chemistry (WRF-CHEM), with the goal of examining the impact of heterogeneous HONO sources on atmospheric oxidation capacity and consequently on SOA formation and SOA formation from different pathways in winter. Generally, the model well reproduced the spatial and temporal distribution of PM2.5, SO2, NO2, and O3 concentrations. The heterogeneous HONO formation contributed a major part of atmospheric HONO concentrations in Beijing. The heterogeneous HONO sources significantly increased the daily maximum OH concentrations by 260% on average in Beijing, which enhanced the atmospheric oxidation capacity and consequently SOA concentrations by 80% in Beijing on average. Under severe haze pollution on January 16th 2014, the regional average HONO concentration over NCP was 0.86 ppb, which increased SOA concentration by 68% on average. The average mass fractions of ASOA (SOA from oxidation of anthropogenic VOCs), BSOA (SOA from oxidation of biogenic VOCs), PSOA (SOA from oxidation of evaporated POA), and GSOA (SOA from irreversible uptake of glyoxal and methylglyoxal) during the simulation period over NCP were 24%, 5%, 26% and 45%, respectively. GSOA contributed most to the total SOA mass over NCP in winter. The model sensitivity simulation revealed that GSOA in winter was mainly from primary residential sources. The regional average of GSOA from primary residential sources constituted 87% of total GSOA mass.
Liquid-phase separation of reactive dye by wood-rotting fungus: a biotechnological approach.
Binupriya, Arthur R; Sathishkumar, Muthuswamy; Dhamodaran, Kavitha; Jayabalan, Rasu; Swaminathan, Krishnaswamy; Yun, Sei Eok
2007-08-01
The live and pretreated mycelial pellets/biomass of Trametes versicolor was used for the biosorption of a textile dye, reactive blue MR (RBMR) from aqueous solution. The parameters that affect the biosorption of RBMR, such as contact time, concentration of dye and pH, on the extent of RBMR adsorption were investigated. To develop an effective and accurate design model for removal of dye, adsorption kinetics and equilibrium data are essential basic requirements. Lagergren first-order, second-order and Bangham's model were used to fit the experimental data. Results of the kinetic studies showed that the second order kinetic model fitted well for the present experimental data. The Langmuir, Freundlich and Temkin adsorption models were used for the mathematical description of the biosorption equilibrium. The biosorption equilibrium data obeyed well for Langmuir isotherm and the maximum adsorption capacities were found to be 49.8, 51.6, 47.4 and 46.7 mg/g for live, autoclaved, acid- and alkali-pretreated biomass. The dye uptake capacity order of the fungal biomass was found as autoclaved > live > acid-treated > alkali-pretreated. The Freundlich and Temkin models were also able to describe the biosorption equilibrium on RBMR on live and pretreated fungal biomass. Acidic pH was favorable for the adsorption of dye. Studies on pH effect and desorption show that chemisorption seems to play a major role in the adsorption process. On comparison with fixed bed adsorption, batch mode adsorption was more efficient in adsorption of RBMR.
NASA Astrophysics Data System (ADS)
Jiang, L.; Shi, Z.; Xia, J.; Liang, J.; Lu, X.; Wang, Y.; Luo, Y.
2017-12-01
Uptake of anthropogenically emitted carbon (C) dioxide by terrestrial ecosystem is critical for determining future climate. However, Earth system models project large uncertainties in future C storage. To help identify sources of uncertainties in model predictions, this study develops a transient traceability framework to trace components of C storage dynamics. Transient C storage (X) can be decomposed into two components, C storage capacity (Xc) and C storage potential (Xp). Xc is the maximum C amount that an ecosystem can potentially store and Xp represents the internal capacity of an ecosystem to equilibrate C input and output for a network of pools. Xc is co-determined by net primary production (NPP) and residence time (𝜏N), with the latter being determined by allocation coefficients, transfer coefficients, environmental scalar, and exit rate. Xp is the product of redistribution matrix (𝜏ch) and net ecosystem exchange. We applied this framework to two contrasting ecosystems, Duke Forest and Harvard Forest with an ecosystem model. This framework helps identify the mechanisms underlying the responses of carbon cycling in the two forests to climate change. The temporal trajectories of X are similar between the two ecosystems. Using this framework, we found that two different mechanisms leading to the similar trajectory. This framework has potential to reveal mechanisms behind transient C storage in response to various global change factors. It can also identify sources of uncertainties in predicted transient C storage across models and can therefore be useful for model intercomparison.
Muscular Oxygen Uptake Kinetics in Aged Adults.
Koschate, J; Drescher, U; Baum, K; Eichberg, S; Schiffer, T; Latsch, J; Brixius, K; Hoffmann, U
2016-06-01
Pulmonary oxygen uptake (V˙O2) kinetics and heart rate kinetics are influenced by age and fitness. Muscular V˙O2 kinetics can be estimated from heart rate and pulmonary V˙O2. In this study the applicability of a test using pseudo-random binary sequences in combination with a model to estimate muscular V˙O2 kinetics was tested. Muscular V˙O2 kinetics were expected to be faster than pulmonary V˙O2 kinetics, slowed in aged subjects and correlated with maximum V˙O2 and heart rate kinetics. 27 elderly subjects (73±3 years; 81.1±8.2 kg; 175±4.7 cm) participated. Cardiorespiratory kinetics were assessed using the maximum of cross-correlation functions, higher maxima implying faster kinetics. Muscular V˙O2 kinetics were faster than pulmonary V˙O2 kinetics (0.31±0.1 vs. 0.29±0.1 s; p=0.004). Heart rate kinetics were not correlated with muscular or pulmonary V˙O2 kinetics or maximum V˙O2. Muscular V˙O2 kinetics correlated with maximum V˙O2 (r=0.35; p=0.033). This suggests, that muscular V˙O2 kinetics are faster than estimates from pulmonary V˙O2 and related to maximum V˙O2 in aged subjects. In the future this experimental approach may help to characterize alterations in muscular V˙O2 under various conditions independent of motivation and maximal effort. © Georg Thieme Verlag KG Stuttgart · New York.
Chen, Wei-Yu; Liao, Chung-Min
2012-11-01
The purpose of this study was to link toxicokinetics/toxicodynamics (TK/TD) and bioavailability-based metal uptake kinetics to assess arsenic (As) uptake and bioaccumulation in three common farmed species of tilapia (Oreochromis mossambicus), milkfish (Chanos chanos), and freshwater clam (Corbicula fluminea). We developed a mechanistic framework by linking damage assessment model (DAM) and bioavailability-based Michaelis-Menten model for describing TK/TD and As uptake mechanisms. The proposed model was verified with published acute toxicity data. The estimated TK/TD parameters were used to simulate the relationship between bioavailable As uptake and susceptibility probability. The As toxicity was also evaluated based on a constructed elimination-recovery scheme. Absorption rate constants were estimated to be 0.025, 0.016, and 0.175 mL g(-1) h(-1) and As uptake rate constant estimates were 22.875, 63.125, and 788.318 ng g(-1) h(-1) for tilapia, milkfish, and freshwater clam, respectively. Here we showed that a potential trade-off between capacities of As elimination and damage recovery was found among three farmed species. Moreover, the susceptibility probability can also be estimated by the elimination-recovery relations. This study suggested that bioavailability-based uptake kinetics and TK/TD-based DAM could be integrated for assessing metal uptake and toxicity in aquatic organisms. This study is useful to quantitatively assess the complex environmental behavior of metal uptake and implicate to risk assessment of metals in aquaculture systems.
NASA Technical Reports Server (NTRS)
Moore, Alan D.; Lee, S.M.C.; Everett, M.E.; Guined, J.R.; Knudsen, P.
2010-01-01
Maximum oxygen uptake (VO2max) is reduced immediately following space flights lasting <15 d, but has not been measured following long-duration missions. The purpose of this study is to measure VO2max and maximum work rate (WRmax) data from astronauts following ISS flights (91 to 188 d). Methods: Five astronauts [3 M, 2 F: 47+/-6 yr, 174+/-6 cm, 71.9+/-10.9 kg (mean +/- SD)] have participated in the study. Subjects performed upright cycle exercise tests to symptom-limited maximum. An initial test was done approx.270 d before flight to establish work rates for subsequent tests. Subsequent tests, conducted approx.45 d before flight and repeated on the first or second day (R+1/2) and at approx.10 d (R+10) following landing, consisted of 3 5 min stages designed to elicit 25%, 50%, and 75% of preflight VO2max, followed by 25 W(dot)/min increases. VO2, WR, and heart rate (HR) were measured using the ISS Portable Pulmonary Function System [Damec, Odense, DK]. Descriptive statistics are reported. Results: On R+1/2 mean VO2max decreased compared to preflight (Pre: 2.98+/-0.99, R+1/2: 2.63+/-0.56 L(dot)/min); 4 of 5 subjects demonstrated a loss of > 6%. WRmax also decreased on R+1/2 compared to preflight (Pre: 245+/-69, R+1/2: 210+/-45 W). On R+10, VO2max was 2.86+/-0.62 L(dot)/min, with 2 subjects still demonstrating a loss of > 6% from preflight. WRmax on R+10 was 240+/-49 W. HRmax did not change from pre to post-flight. Conclusions: These preliminary results, from the first 5 of 12 planned subjects of an ongoing ISS study, suggest that the majority of astronauts will experience a decrease in VO2max after long-duration space-flight. Interestingly, the two astronauts with the highest preflight VO2max had the greatest loss on R+1/2, and the astronaut with the lowest preflight VO2max increased by 13%. Thus, maintenance of VO2max may be more difficult in astronauts who have a high aerobic capacity, perhaps requiring more intense in-flight exercise countermeasure prescriptions.
Rezaeetalab, Fariba; Kazemian, Mozhgan; Vaezi, Touraj; Shaban, Barratollah
2015-12-01
Bimaxillary orthognathic surgery can cause changes to respiration and the airways. We used body plethysmography to evaluate its effect on airway resistance and lung volumes in 20 patients with class III malocclusions (8 men and 12 women, aged 17 - 32 years). Lung volumes (forced vital capacity; forced inspiratory volume/one second; forced expiratory volume/one second: forced vital capacity; peak expiratory flow; maximum expiratory flow 25-75; maximum inspiratory flow; total lung capacity; residual volume; residual volume:total lung capacity), and airway resistance were evaluated one week before, and six months after, operation. Bimaxillary operations to correct class III malocclusions significantly increased airway resistance, residual volume, total lung capacity, and residual volume:total lung capacity. Other variables also changed after operation but not significantly so. Orthognathic operations should be done with caution in patients who have pre-existing respiratory diseases. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.