Sample records for maximum uptake rate

  1. [Kinetics of uptake of phosphates and nitrates by marine multicellular algae Gelidium latifolium (Grev.) Born. et Thur].

    PubMed

    Silkin, V A; Chubchikova, I N

    2007-01-01

    We studied nonstationary kinetics of the uptake of phosphates and nitrates by the red marine algae Gelidium latifolium (Grev.) Born et Thur. and calculated constants of the Michaelis-Menten equation for these elements. In the area of 0-3 microM, the kinetics of phosphate consumption had the following coefficients: maximum rate of uptake 0.8 micromol/(g x h), constant of half-saturation 1.745 microM. For nitrate nitrogen at 0-30 microM, an adaptive strategy of uptake kinetics was noted with change of the equation parameters with time: after 1 h, the maximum rate of uptake was 5.1 micromol/(g x h) and constant of half-saturation 19 gM, while within 2 h, the maximum rate of uptake significantly increased. This could be related to the synthesis of nitrate reductase. Coupled with the uptake of nitrates, nonstationary kinetics of the release of nitrates in the surrounding medium had a one-peak pattern: the maximum concentration of nitrites in the medium and the time of its achievement increased with the initial concentration of nitrates. The maximum concentration of nitrites was 6 to 14% of the initial concentration in the medium.

  2. Gaseous oxygen uptake in porous media at different moisture contents and airflow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G; Kalluri, Prasad N V

    2009-06-01

    The presence and distribution of water in the pore space is a critical factor for flow and transport of gases through unsaturated porous media. The water content also affects the biological activity necessary for treatment of polluted gas streams in biofilters. In this research, microbial activity and quantity of inactive volume in a porous medium as a function of moisture content and gas flow rate were investigated. Yard waste compost was used as a test medium, and oxygen uptake rate measurements were used to quantify microbial activity and effective active compost volume using batch and column flow-through systems. Compost water contents were varied from air-dry to field capacity and gas flows ranged from 0.2 to 2 L x min(-1). The results showed that overall microbial activity and the relative fraction of active compost medium volume increased with airflow velocity for all levels of water content up to a certain flow rate above which the oxygen uptake rate assumed a constant value independent of gas flow. The actual value of the maximum oxygen uptake rate was controlled by the water content. The oxygen uptake rate also increased with increasing water content and reached a maximum between 42 and 48% volumetric water content, above which it decreased, again likely because of formation of inactive zones in the compost medium. Overall, maximum possible oxygen uptake rate as a function of gas flow rate across all water contents and gas flows could be approximated by a linear expression. The relative fraction of active volume also increased with gas flow rate and reached approximately 80% for the highest gas flows used.

  3. Heart Rate and Oxygen Uptake Kinetics in Type 2 Diabetes Patients - A Pilot Study on the Influence of Cardiovascular Medication on Regulatory Processes.

    PubMed

    Koschate, Jessica; Drescher, Uwe; Baum, Klaus; Brinkmann, Christian; Schiffer, Thorsten; Latsch, Joachim; Brixius, Klara; Hoffmann, Uwe

    2017-05-01

    The aim of this pilot study was to investigate whether there are differences in heart rate and oxygen uptake kinetics in type 2 diabetes patients, considering their cardiovascular medication. It was hypothesized that cardiovascular medication would affect heart rate and oxygen uptake kinetics and that this could be detected using a standardized exercise test. 18 subjects were tested for maximal oxygen uptake. Kinetics were measured in a single test session with standardized, randomized moderate-intensity work rate changes. Time series analysis was used to estimate kinetics. Greater maxima in cross-correlation functions indicate faster kinetics. 6 patients did not take any cardiovascular medication, 6 subjects took peripherally acting medication and 6 patients were treated with centrally acting medication. Maximum oxygen uptake was not significantly different between groups. Significant main effects were identified regarding differences in muscular oxygen uptake kinetics and heart rate kinetics. Muscular oxygen uptake kinetics were significantly faster than heart rate kinetics in the group with no cardiovascular medication (maximum in cross-correlation function of muscular oxygen uptake vs. heart rate; 0.32±0.08 vs. 0.25±0.06; p=0.001) and in the group taking peripherally acting medication (0.34±0.05 vs. 0.28±0.05; p=0.009) but not in the patients taking centrally acting medication (0.28±0.05 vs. 0.30±0.07; n.s.). It can be concluded that regulatory processes for the achievement of a similar maximal oxygen uptake are different between the groups. The used standardized test provided plausible results for heart rate and oxygen uptake kinetics in a single measurement session in this patient group. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Phytoplankton productivity, respiration, and nutrient uptake and regeneration in the Potomac River, August 1977 - August 1978

    USGS Publications Warehouse

    Cole, B.E.; Harmon, D.D.

    1981-01-01

    Rates of phytoplankton productivity, respiration, and nutrient uptake and regeneration are presented. These observations were made on the Potomac River estuary (POTE) during four cruises between August 1977 and August 1978. Four experimental methods were used: carbon uptake using carbon-14, carbon uptake and respiration by a pH method, productivity and respiration by the dissolved oxygen method, and nutrient (NH4+, NO3-, NO2-, PO4=, and SiO2=) uptake and regeneration by colorimetry. The experiments were made at sites representative of conditions in four principal reaches of the tidal Potomac River estuary: near the mouth, seaward of the summer nutrient and phytoplankton maximum, near the region of maximum phytoplankton standing stock , and near the maximum anthropogenic nutrient source. (USGS)

  5. Kinetics of 11C-labeled opiates in the brain of rhesus monkeys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartvig, P.; Bergstroem, K.; Lindberg, B.

    1984-07-01

    The regional uptake in the brain of Rhesus monkeys of i.v. administered 11C-labeled morphine, codeine, heroin and pethidine was studied by means of positron emission tomography. The technique measures the sum of parent drug and radiolabeled metabolites. (For the sake of simplicity the drug derived radioactivity is denoted by the drug name.) Morphine had a limited uptake to discrete areas of the brain. The maximum normalized uptake, with respect to dose per kilogram body weight, was about 0.2, i.e., 20% of the calculated activity if the drug had been evenly distributed throughout the body of the monkey. Maximum radioactivity appearedmore » 30 to 45 min after injection. Morphine left the brain slowly with an estimated half-life of more than 2 hr. An area with a normalized uptake of about 1.0 was detected centrally in the lowest horizontal transsection of the skull. The origin of this area was identified as the pituitary. Codeine, heroin and pethidine were taken up to the brain to a larger extent than morphine, with maximum normalized uptakes of 2.6, 4.6 and 6.3, respectively. Maximum radioactivities of these drugs were achieved earlier and the elimination rates were faster than for morphine. Differences in the uptake of these drugs to the brain, as well as differences in time to maximal normalized uptake and rate of disappearance are considered to reflect differences in the lipophilic character between the drugs. Pethidine had the most rapid and extensive uptake followed by heroin, codeine and morphine in order of decreasing lipophilicity.« less

  6. Development of accelerated net nitrate uptake. [Zea mays L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacKown, C.T.; McClure, P.R.

    1988-05-01

    Upon initial nitrate exposure, net nitrate uptake rates in roots of a wide variety of plants accelerate within 6 to 8 hours to substantially greater rates. Effects of solution nitrate concentrations and short pulses of nitrate ({le}1 hour) upon nitrate-induced acceleration of nitrate uptake in maize (Zea mays L.) were determined. Root cultures of dark-grown seedlings, grown without nitrate, were exposed to 250 micromolar nitrate for 0.25 to 1 hour or to various solution nitrate concentration (10-250 micromolar) for 1 hour before returning them to a nitrate-free solution. Net nitrate uptake rates were assayed at various periods following nitrate exposuremore » and compared to rates of roots grown either in the absence of nitrate (CaSO{sub 4}-grown) or with continuous nitrate for at least 20 hours. Three hours after initial nitrate exposure, nitrate pulse treatments increased nitrate uptake rates three- to four-fold compared to the rates of CaSO{sub 4}-grown roots. When cycloheximide (5 micrograms per milliliter) was included during a 1-hour pulse with 250 micromolar nitrate, development of the accelerated nitrate uptake state was delayed. Otherwise, nitrate uptake rates reached maximum values within 6 hours before declining. Maximum rates, however, were significantly less than those of roots exposed continuously for 20, 32, or 44 hours. Pulsing for only 0.25 hour with 250 micromolar nitrate and for 1 hour with 10 micromolar caused acceleration of nitrate uptake, but the rates attained were either less than or not sustained for a duration comparable to those of roots pulsed for 1 hour with 250 micromolar nitrate. These results indicate that substantial development of nitrate-induced accelerated nitrate uptake state can be achieved by small endogenous accumulations of nitrate, which appear to moderate the activity or level of root nitrate uptake.« less

  7. Ozone uptake, water loss and carbon exchange dynamics in annually drought-stressed Pinus ponderosa forests: measured trends and parameters for uptake modeling.

    PubMed

    Panek, Jeanne A

    2004-03-01

    This paper describes 3 years of physiological measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing along an ozone concentration gradient in the Sierra Nevada, California, including variables necessary to parameterize, validate and modify photosynthesis and stomatal conductance algorithms used to estimate ozone uptake. At all sites, gas exchange was under tight stomatal control during the growing season. Stomatal conductance was strongly correlated with leaf water potential (R2=0.82), which decreased over the growing season with decreasing soil water content (R2=0.60). Ozone uptake, carbon uptake, and transpirational water loss closely followed the dynamics of stomatal conductance. Peak ozone and CO2 uptake occurred in early summer and declined progressively thereafter. As a result, periods of maximum ozone uptake did not correspond to periods of peak ozone concentration, underscoring the inappropriateness of using current metrics based on concentration (e.g., SUM0, W126 and AOT40) for assessing ozone exposure risk to plants in this climate region. Both Jmax (maximum CO2-saturated photosynthetic rate, limited by electron transport) and Vcmax (maximum rate of Rubisco-limited carboxylation) increased toward the middle of the growing season, then decreased in September. Intrinsic water-use efficiency rose with increasing drought stress, as expected. The ratio of Jmax to Vcmax was similar to literature values of 2.0. Nighttime respiration followed a Q10 of 2.0, but was significantly higher at the high-ozone site. Respiration rates decreased by the end of the summer as a result of decreased metabolic activity and carbon stores.

  8. The significance of respiration timing in the energetics estimates of free-ranging killer whales (Orcinus orca).

    PubMed

    Roos, Marjoleine M H; Wu, Gi-Mick; Miller, Patrick J O

    2016-07-01

    Respiration rate has been used as an indicator of metabolic rate and associated cost of transport (COT) of free-ranging cetaceans, discounting potential respiration-by-respiration variation in O2 uptake. To investigate the influence of respiration timing on O2 uptake, we developed a dynamic model of O2 exchange and storage. Individual respiration events were revealed from kinematic data from 10 adult Norwegian herring-feeding killer whales (Orcinus orca) recorded with high-resolution tags (DTAGs). We compared fixed O2 uptake per respiration models with O2 uptake per respiration estimated through a simple 'broken-stick' O2-uptake function, in which O2 uptake was assumed to be the maximum possible O2 uptake when stores are depleted or maximum total body O2 store minus existing O2 store when stores are close to saturated. In contrast to findings assuming fixed O2 uptake per respiration, uptake from the broken-stick model yielded a high correlation (r(2)>0.9) between O2 uptake and activity level. Moreover, we found that respiration intervals increased and became less variable at higher swimming speeds, possibly to increase O2 uptake efficiency per respiration. As found in previous studies, COT decreased monotonically versus speed using the fixed O2 uptake per respiration models. However, the broken-stick uptake model yielded a curvilinear COT curve with a clear minimum at typical swimming speeds of 1.7-2.4 m s(-1) Our results showed that respiration-by-respiration variation in O2 uptake is expected to be significant. And though O2 consumption measurements of COT for free-ranging cetaceans remain impractical, accounting for the influence of respiration timing on O2 uptake will lead to more consistent predictions of field metabolic rates than using respiration rate alone. © 2016. Published by The Company of Biologists Ltd.

  9. Hydrologic and geochemical effects on oxygen uptake in bottom sediments of an effluent-dominated river

    USGS Publications Warehouse

    McMahon, P.B.; Tindall, J.A.; Collins, J.A.; Lull, K.J.; Nuttle, J.R.

    1995-01-01

    More than 95% of the water in the South Platte River downstream from the largest wastewater treatment plant serving the metropolitan Denver, Colorado, area consists of treated effluent during some periods of low flow. Fluctuations in effluent-discharge rates caused daily changes in river stage that promoted exchange of water between the river and bottom sediments. Groundwater discharge measurements indicated fluxes of water across the sediment-water interface as high as 18 m3 s−1 km−1. Laboratory experiments indicated that downward movement of surface water through bottom sediments at velocities comparable to those measured in the field (median rate ≈0.005 cm s−1) substantially increased dissolved oxygen uptake rates in bottom sediments (maximum rate 212 ± 10 μmol O2 L−1 h−1) compared with rates obtained when no vertical advective flux was generated (maximum rate 25 ± 8.8 μmol O2 L−1 h−1). Additions of dissolved ammonium to surface waters generally increased dissolved oxygen uptake rates relative to rates measured in experiments without ammonium. However, the magnitude of the advective flux through bottom sediments had a greater effect on dissolved oxygen uptake rates than did the availability of ammonium. Results from this study indicated that efforts to improve dissolved oxygen dynamics in effluent-dominated rivers might include stabilizing daily fluctuations in river stage.

  10. Atmospheric CO and hydrogen uptake and CO oxidizer phylogeny for miyake-jima, Japan volcanic deposits.

    PubMed

    King, Gary M; Weber, Carolyn F; Nanba, Kenji; Sato, Yoshinori; Ohta, Hiroyuki

    2008-01-01

    We have assayed rates of atmospheric CO and hydrogen uptake, maximum potential CO uptake and the major phylogenetic composition of CO-oxidizing bacterial communities for a variety of volcanic deposits on Miyake-jima, Japan. These deposits represented different ages and stages of plant succession, ranging from unvegetated scoria deposited in 1983 to forest soils on deposits >800 yr old. Atmospheric CO and hydrogen uptake rates varied from -2.0±1.8-6.3±0.1 mg CO m(-2) d(-1) and 0.0±0.4-2.0±0.2 mg H(2) m(-2) d(-1), respectively, and were similar to or greater than values reported for sites on Kilauea volcano, Hawaii, USA. At one of the forested sites, CO was emitted to the atmosphere, while two vegetated sites did not consume atmospheric hydrogen, an unusual observation. Although maximum potential CO uptake rates were also comparable to values for Kilauea, the relationship between these rates and organic carbon contents of scoria or soil indicated that CO oxidizers were relatively more abundant in Miyake-jima deposits. Phylogenetic analyses based on the large sub-unit gene for carbon monoxide dehydrogenase (coxL) indicated that many novel lineages were present on Miyake-jima, that CO-oxidizing Proteobacteria were prevalent in vegetated sites and that community structure appeared to vary more than composition among sites.

  11. The logistic growth of duckweed (Lemna minor) and kinetics of ammonium uptake.

    PubMed

    Zhang, Kun; Chen, You-Peng; Zhang, Ting-Ting; Zhao, Yun; Shen, Yu; Huang, Lei; Gao, Xu; Guo, Jin-Song

    2014-01-01

    Mathematical models have been developed to describe nitrogen uptake and duckweed growth experimentally to study the kinetics of ammonium uptake under various concentrations. The kinetics of duckweed ammonium uptake was investigated using the modified depletion method after plants were grown for two weeks at different ammonium concentrations (0.5-14 mg/L) in the culture medium. The maximum uptake rate and Michaelis-Menten constant for ammonium were estimated as 0.082 mg/(g fresh weight x h) and 1.877 mg/L, respectively. Duckweed growth was assessed when supplied at different total nitrogen (TN) concentrations (1-5 mg/L) in the culture medium. The results showed that the intrinsic growth rate was from 0.22 to 0.26 d(-1), and TN concentrations had no significant influence on the duckweed growth rate.

  12. Effects of pH on the growth and NH4-N uptake of Skeletonema costatum and Nitzschia closterium.

    PubMed

    Gu, Xingyan; Li, Keqiang; Pang, Kai; Ma, Yunpeng; Wang, Xiulin

    2017-11-30

    Ocean acidification (OA) and eutrophication intensifies in coastal sea under anthropogenic impact. OA coupled with the NH 4 -N source effect in coastal water is likely to affect the planktonic ecosystem. In this work, Skeletonema costatum and Nitzschia closterium were chosen as typical species of diatom in Chinese coastal ecosystems to test the potential effect of OA and NH 4 -N. Results showed that the growth and NH 4 -N uptake of S. costatum and N. closterium were significantly inhibited by pH decline. The maximum uptake rate is higher than the maximum growth rate, implying that NH 4 -N was assimilated faster for S. costatum and N. closterium with decreasing pH. Therefore, the inhibition rate of the growth of the two diatoms by the coupling effect of OA and eutrophication (pH7.45) is higher that than in the coastal sea by the end of the 21st century (pH7.71). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Uptake of uranium from seawater by amidoxime-based polymeric adsorbent marine testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsouris, C.; Kim, J.; Oyola, Y.

    2013-07-01

    Amidoxime-based polymer adsorbents in the form of functionalized fibers were prepared at the Oak Ridge National Laboratory (ORNL) and screened in laboratory experiments, in terms of uranium uptake capacity, using spiked uranium solution and seawater samples. Batch laboratory experiments conducted with 5-gallon seawater tanks provided equilibrium information. Based on results from 5-gallon experiments, the best adsorbent was selected for field-testing of uranium adsorption from seawater. Flow-through column tests have been performed at different marine sites to investigate the uranium uptake rate and equilibrium capacity under diverse biogeochemistry. The maximum amount of uranium uptake from seawater tests at Sequim, WA, wasmore » 3.3 mg U/g adsorbent after eight weeks of contact of the adsorbent with seawater. This amount was three times higher than the maximum adsorption capacity achieved in this study by a leading adsorbent developed by the Japan Atomic Energy Agency (JAEA), which was 1.1 mg U/g adsorbent at equilibrium. The initial uranium uptake rate of the ORNL adsorbent was 2.6 times higher than that of the JAEA adsorbent under similar conditions. A mathematical model derived from the mass balance of uranium was employed to describe the data. (authors)« less

  14. Spatiotemporal variation of nitrate uptake kinetics within the maize (Zea mays L.) root system is associated with greater nitrate uptake and interactions with architectural phenes.

    PubMed

    York, Larry M; Silberbush, Moshe; Lynch, Jonathan P

    2016-06-01

    Increasing maize nitrogen acquisition efficiency is a major goal for the 21st century. Nitrate uptake kinetics (NUK) are defined by I max and K m, which denote the maximum uptake rate and the affinity of transporters, respectively. Because NUK have been studied predominantly at the molecular and whole-root system levels, little is known about the functional importance of NUK variation within root systems. A novel method was created to measure NUK of root segments that demonstrated variation in NUK among root classes (seminal, lateral, crown, and brace). I max varied among root class, plant age, and nitrate deprivation combinations, but was most affected by plant age, which increased I max, and nitrate deprivation time, which decreased I max K m was greatest for crown roots. The functional-structural simulation SimRoot was used for sensitivity analysis of plant growth to root segment I max and K m, as well as to test interactions of I max with root system architectural phenes. Simulated plant growth was more sensitive to I max than K m, and reached an asymptote near the maximum I max observed in the empirical studies. Increasing the I max of lateral roots had the largest effect on shoot growth. Additive effects of I max and architectural phenes on nitrate uptake were observed. Empirically, only lateral root tips aged 20 d operated at the maximum I max, and simulations demonstrated that increasing all seminal and lateral classes to this maximum rate could increase plant growth by as much as 26%. Therefore, optimizing I max for all maize root classes merits attention as a promising breeding goal. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Crassulacean acid metabolism, CO2-recycling, and tissue desiccation in the Mexican epiphyte Tillandsia schiedeana Steud (Bromeliaceae).

    PubMed

    Martin, C E; Adams, W W

    1987-01-01

    After 23 days without water in a greenhouse, rates of nocturnal CO2 uptake in Tillandsia schiedeana decreased substantially and maximum rates occurred later in the dark period eventually coinciding with the onset of illumination. Nocturnal CO2 uptake accounted for less than half the total nighttime increase in acidity measured in well-watered plants. With increased tissue desiccation, only 11-12% of measured acid accumulation was attributable to atmospheric CO2 uptake. Plants desiccated for 30 days regained initial levels of nocturnal acid accumulation and CO2 uptake after rehydration for 10h. These results stress the importance of CO2 recycling via CAM in this epiphytic bromeliad, especially during droughts.

  16. Prediction of Maximum Oxygen Uptake Using Both Exercise and Non-Exercise Data

    ERIC Educational Resources Information Center

    George, James D.; Paul, Samantha L.; Hyde, Annette; Bradshaw, Danielle I.; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.

    2009-01-01

    This study sought to develop a regression model to predict maximal oxygen uptake (VO[subscript 2max]) based on submaximal treadmill exercise (EX) and non-exercise (N-EX) data involving 116 participants, ages 18-65 years. The EX data included the participants' self-selected treadmill speed (at a level grade) when exercise heart rate first reached…

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guha, A.; Prasad, G.C.; Udupa, K.N.

    Scintillography and autoradiography were used to study the healing of humeral fractures in rats injected with Sr/sup 85/. Among various agents studied for an influence on the rate of fracture healing, the total extract of the herb Cissus quadrangularis was tested. In both controls and animals receiving C. quadrangularis extract there was demineralization of the fractured bone at the site of fracture. In the treated group, there was a somewhat earlier rise in Sr/ sup 85/ uptake just after the first injection. Thereafter, uptake again became high, similar to the control samples from the 6th day onward. The maximum uptakemore » of control bone was found to be around the 19th day after fracturing, while in the treated group, maximum uptake was on 15th day. Though there was a minor difference in the period of maximum uptake between treated and control bone, the rate of uptake in the treated sample was markedly higher than that of the control sample. The fall of Sr/sup 85/ uptake in the treated bone was very rapid, whereas in the untreated animals it was more gradual. All these findings on the uptake of Sr/sup 85/ as measured by a G-M counter, corroborated x-ray pictures and gross autoradiography at different stages of fracture healing. The radiological and autoradiographic findings also clearly showed that the healing in the treated group was quicker than in the controls. Furthermore, the callus in the treated animals underwent remodeling processes much earlier than in the nontreated ones. It is concluded that if the uptake of Sr in the treated andimals is greater thand in the control samples at the site of fracture, healing activity is more pronounced. However, studies on patients have shown that the uptake of Sr/sup 85/ alone in the fractured region may not give an accurate picture of the healing processes. Thus, at the end of first week after fractures, accretion rate of Ca reached a peak and thereafter remained higher than normal throughout the period of healing. But when these results were compared with x-ray pictures, it was observed that the accretion rate in poorly uniting fractures did not diifer from that of normally healing fractures, so that in interpreting the rate of healing by the uptake of Sr/sup 85/, radiography is also required to make the correct assessment of the status of fracture healing. The Sr/sup 85/ uptake curves show that the uptake pattern can be divided into three definite phases. ln the first phase, which lasts for six days, there is and enormous amount of decalcification from the broken fragments of bone possibly due to increased vascularity of the region, and also to the increased accumulation of mucopolysaccharides locally. In the second phase, which lasts for another 8 to 12 days, rapid increase in the accretion of Ca as evidenced by increase in the uptake of Sr/sup 85/ noted. During the 2nd phase, histologic studies indicated that large amounts of collagen fibers appear, which possibly combine with all the available Ca salts there. The third phase shows a rapid fall of Sr/sup 85/ uptake, indicating that the callus formed in the second phase is rapidly being remodeled. (BBB)« less

  18. Respirometric response and microbial succession of nitrifying sludge to m-cresol pulses in a sequencing batch reactor.

    PubMed

    Ordaz, Alberto; Sánchez, Mariana; Rivera, Rodrigo; Rojas, Rafael; Zepeda, Alejandro

    2017-02-01

    A nitrifying consortium was kinetically, stoichiometrically and molecularly characterized via the in situ pulse respirometric method and pyrosequencing analysis before and after the addition of m-cresol (25 mg C L -1 ) in a sequencing batch reactor (SBR). Five important kinetic and stoichiometric parameters were determined: the maximum oxygen uptake rate, the maximum nitrification rate, the oxidation yield, the biomass growth yield, and the substrate affinity constant. An inhibitory effect was observed in the nitrification process with a recovery of this by up to eight SBR cycles after m-cresol was added to the system. However, full recovery of the nitrification process was not observed, as the maximum oxygen uptake rate was 25% lower than that of the previous operation without m-cresol addition. Furthermore, the pyrosequencing analyses of the nitrifying consortium after the addition of only two pulses of 25 mg C L -1 m-cresol showed an important microbial community change represented by a decrease in the nitrifying populations and an increase in the populations degrading phenolic compounds.

  19. Prediction of Maximum Oxygen Consumption from Walking, Jogging, or Running.

    ERIC Educational Resources Information Center

    Larsen, Gary E.; George, James D.; Alexander, Jeffrey L.; Fellingham, Gilbert W.; Aldana, Steve G.; Parcell, Allen C.

    2002-01-01

    Developed a cardiorespiratory endurance test that retained the inherent advantages of submaximal testing while eliminating reliance on heart rate measurement in predicting maximum oxygen uptake (VO2max). College students completed three exercise tests. The 1.5-mile endurance test predicted VO2max from submaximal exercise without requiring heart…

  20. Muscular Oxygen Uptake Kinetics in Aged Adults.

    PubMed

    Koschate, J; Drescher, U; Baum, K; Eichberg, S; Schiffer, T; Latsch, J; Brixius, K; Hoffmann, U

    2016-06-01

    Pulmonary oxygen uptake (V˙O2) kinetics and heart rate kinetics are influenced by age and fitness. Muscular V˙O2 kinetics can be estimated from heart rate and pulmonary V˙O2. In this study the applicability of a test using pseudo-random binary sequences in combination with a model to estimate muscular V˙O2 kinetics was tested. Muscular V˙O2 kinetics were expected to be faster than pulmonary V˙O2 kinetics, slowed in aged subjects and correlated with maximum V˙O2 and heart rate kinetics. 27 elderly subjects (73±3 years; 81.1±8.2 kg; 175±4.7 cm) participated. Cardiorespiratory kinetics were assessed using the maximum of cross-correlation functions, higher maxima implying faster kinetics. Muscular V˙O2 kinetics were faster than pulmonary V˙O2 kinetics (0.31±0.1 vs. 0.29±0.1 s; p=0.004). Heart rate kinetics were not correlated with muscular or pulmonary V˙O2 kinetics or maximum V˙O2. Muscular V˙O2 kinetics correlated with maximum V˙O2 (r=0.35; p=0.033). This suggests, that muscular V˙O2 kinetics are faster than estimates from pulmonary V˙O2 and related to maximum V˙O2 in aged subjects. In the future this experimental approach may help to characterize alterations in muscular V˙O2 under various conditions independent of motivation and maximal effort. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Bioremediation of surface water co-contaminated with zinc (II) and linear alkylbenzene sulfonates by Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Meng, Huijuan; Xia, Yunfeng; Chen, Hong

    Potential remediation of surface water contaminated with linear alkylbenzene sulfonates (LAS) and zinc (Zn (II)) by sorption on Spirulina platensis was studied using batch techniques. Results show that LAS can be biodegraded by Spirulina platensis, and its biodegradation rate after 5 days was 87%, 80%, and 70.5% when its initial concentration was 0.5, 1, and 2 mg/L, respectively. The maximum Zn (II) uptake capacity of Spirulina platensis was found to be 30.96 mg/g. LAS may enhance the maximum Zn (II) uptake capacity of Spirulina platensis, which can be attributed to an increase in bioavailability due to the presence of LAS. The biodegradation rates of LAS by Spirulina platensis increased with Zn (II) and reached the maximum when Zn (II) was 4 mg/L. The joint toxicity test showed that the combined effect of LAS and Zn (II) was Synergistic. LAS can enhance the biosorption of Zn (II), and reciprocally, Zn (II) can enhance LAS biodegradation.

  2. RAPID NITRATE UPTAKE RATES AND LARGE SHORT-TERM STORAGE CAPACITIES MAY EXPLAIN WHY OPPORTUNISTIC GREEN MACROALGAE DOMINATE SHALLOW EUTROPHIC ESTUARIES1.

    PubMed

    Kennison, Rachel L; Kamer, Krista; Fong, Peggy

    2011-06-01

    We quantified the effects of initial macroalgal tissue nitrogen (N) status (depleted and enriched) and varying pulses of nitrate (NO 3 - ) concentration on uptake and storage of nitrogen in Ulva intestinalis L. and Ulva expansa (Setch.) Setch. et N. L. Gardner using mesocosms modeling shallow coastal estuaries in Mediterranean climates. Uptake of NO 3 - (μmol · g dry weight [dwt] -1  · h -1 ) was measured as loss from the water after 1, 2, 4, 8, 12, and 24 h and storage as total tissue nitrogen (% dwt) and nitrate (ppm). Both species of algae exhibited a high affinity for NO 3 - across all N pulses and initial tissue contents. There was greater NO 3 - removal from the water for depleted than enriched algae across all time intervals. In the low-N-pulse treatment, U. intestinalis and U. expansa removed all measurable NO 3 - within 8 and 12 h, respectively, and in the medium and high treatments, removal was high and then decreased over time. Maximum mean uptake rates of nitrate were greater for U. expansa (∼300 μmol · g dwt -1  · h -1 ) than U. intestinalis (∼100 μmol · g dwt -1  · h -1 ); however, uptake rates were highly variable over time. Overall, U. expansa uptake rates were double those of U. intestinalis. Maximum tissue NO 3 - for U. expansa was >1,000 ppm, five times that of U. intestinalis, suggesting that U. expansa has a greater storage capacity in this cellular pool. These results showed that opportunistic green algae with differing tissue nutrient histories were able to efficiently remove nitrate from the water across a wide range of N pulses; thus, both are highly adapted to proliferate in estuarine environments with pulsed nutrient supplies. © 2011 Phycological Society of America.

  3. A field study on the dynamic uptake and transfer of heavy metals in Chinese cabbage and radish in weak alkaline soils.

    PubMed

    Ai, Shiwei; Guo, Rui; Liu, Bailin; Ren, Liang; Naeem, Sajid; Zhang, Wenya; Zhang, Yingmei

    2016-10-01

    Vegetables and crops can take up heavy metals when grown on polluted lands. The concentrations and dynamic uptake of heavy metals vary at different growth points for different vegetables. In order to assess the safe consumption of vegetables in weak alkaline farmlands, Chinese cabbage and radish were planted on the farmlands of Baiyin (polluted site) and Liujiaxia (relatively unpolluted site). Firstly, the growth processes of two vegetables were recorded. The growth curves of the two vegetables observed a slow growth at the beginning, an exponential growth period, and a plateau towards the end. Maximum concentrations of copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) were presented at the slow growth period and showed a downtrend except the radish shoot. The concentrations of heavy metals (Cu, Zn, and Cd) in vegetables of Baiyin were higher than those of Liujiaxia. In the meanwhile, the uptake contents continued to increase during the growth or halted at maximum at a certain stage. The maximum uptake rates were found on the maturity except for the shoot of radish which took place at the exponential growth stages of root. The sigmoid model could simulate the dynamic processes of growth and heavy metals uptake of Chinese cabbage and radish. Conclusively, heavy metals have higher bioaccumulation tendency for roots in Chinese cabbage and for shoots in radish.

  4. Cyclic variations in nitrogen uptake rate of soybean plants: effects of external nitrate concentration

    NASA Technical Reports Server (NTRS)

    Tolley-Henry, L.; Raper, C. D. Jr; Granato, T. C.; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic cultures containing 0.5, 1.0 and 10.0 mol m-3 NO3- was measured daily during a 24-d period of vegetative development to determine if amplitude of maximum and minimum rates of net NO3- uptake are responsive to external concentrations of NO3-. Removal of NO3- from the replenished solutions during each 24-h period was determined by ion chromatography. Neither dry matter accumulation nor the periodicity of oscillations in net uptake rate was altered by the external NO3- concentrations. The maxima of the oscillations in net uptake rate, however, increased nearly 3-fold in response to external NO3- concentrations. The maxima and minima, respectively, changed from 4.0 and 0.6 mmol NO3- per gram root dry weight per day at an external solution level of 0.5 mol m-3 NO3- to 15.2 and -2.7 mmol NO3- per gram root dry weight per day at an external solution level of 10.0 mol m-3 NO3-. The negative values for minimum net uptake rate from 10.0 mol m-3 NO3- solutions show that net efflux was occurring and indicate that the magnitude of the efflux component of net uptake was responsive to external concentration of NO3-.

  5. Kinetics of sulfate and hydrogen uptake by the thermophilic sulfate-reducing bacteria thermodesulfobacterium sp. Strain JSP and thermodesulfovibrio sp. Strain R1Ha3

    PubMed

    Sonne-Hansen; Westermann; Ahring

    1999-03-01

    Half-saturation constants (Km), maximum uptake rates (Vmax), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. Km values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations.

  6. Kinetics of Sulfate and Hydrogen Uptake by the Thermophilic Sulfate-Reducing Bacteria Thermodesulfobacterium sp. Strain JSP and Thermodesulfovibrio sp. Strain R1Ha3

    PubMed Central

    Sonne-Hansen, Jacob; Westermann, Peter; Ahring, Birgitte K.

    1999-01-01

    Half-saturation constants (Km), maximum uptake rates (Vmax), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. Km values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations. PMID:10049897

  7. Influence of substrate diffusion on degradation of dibenzofuran and 3-chlorodibenzofuran by attached and suspended bacteria.

    PubMed Central

    Harms, H; Zehnder, A J

    1994-01-01

    Dibenzofuran uptake-associated kinetic parameters of suspended and attached Sphingomonas sp. strain HH19k cells were compared. The suspended cells were studied in a batch system, whereas glass beads in percolated columns were used as the solid support for attached cells. The maximum specific activities of cells in the two systems were the same. The apparent half-maximum uptake rate-associated concentrations (Kt') of attached cells, however, were considerably greater than those of suspended cells and depended on cell density and on percolation velocity. A mathematical model was developed to explain the observed differences in terms of substrate transport to the cells. This model was based on the assumptions that the intrinsic half-maximum uptake rate-associated concentration (Kt) was unchanged and that deviations of Kt' from Kt resulted from the stereometry and the hydrodynamics around the cells. Our calculations showed that (i) diffusion to suspended cells and to single attached cells is efficient and therefore only slightly affects Kt'; (ii) diffusion to cells located on crowded surfaces is considerably lower than that to single attached cells and greatly increases Kt', which depends on the cell density; (iii) the convective-diffusive transport to attached cells that occurs in a percolated column is influenced by the liquid flow and results in dependency of Kt' on the flow rate; and (iv) higher specific affinity of cells correlates with higher susceptibility to diffusion limitation. Properties of the experimental system which limited quantitative proof of exclusively transport-controlled variations of Kt' are discussed. PMID:8085817

  8. Theoretical Study of Molecular Transport Through a Permeabilized Cell Membrane in a Microchannel.

    PubMed

    Mahboubi, Masoumeh; Movahed, Saeid; Hosseini Abardeh, Reza; Hoshyargar, Vahid

    2017-06-01

    A two-dimensional model is developed to study the molecular transport into an immersed cell in a microchannel and to investigate the effects of finite boundary (a cell is suspended in a microchannel), amplitude of electric pulse, and geometrical parameter (microchannel height and size of electrodes) on cell uptake. Embedded electrodes on the walls of the microchannel generate the required electric pulse to permeabilize the cell membrane, pass the ions through the membrane, and transport them into the cell. The shape of electric pulses is square with the time span of 6 ms; their intensities are in the range of 2.2, 2.4, 2.6, 3 V. Numerical simulations have been performed to comprehensively investigate the molecular uptake into the cell. The obtained results of the current study demonstrate that calcium ions enter the cell from the anodic side (the side near positive electrode); after a while, the cell faces depletion of the calcium ions on a positive electrode-facing side within the microchannel; the duration of depletion depends on the amplitude of electric pulse and geometry that lasts from microseconds to milliseconds. By keeping geometrical parameters and time span constant, increment of a pulse intensity enhances molecular uptake and rate of propagation inside the cell. If a ratio of electrode size to cell diameter is larger than 1, the transported amount of Ca 2+ into the cell, as well as the rate of propagation, will be significantly increased. By increasing the height of the microchannel, the rate of uptake is decreased. In an infinite domain, the peak concentration becomes constant after reaching the maximum value; this value depends on the intra-extracellular conductivity and diffusion coefficient of interior and exterior domains of the cell. In comparison, the maximum concentration is changed by geometrical parameters in the microchannel. After reaching the maximum value, the peak concentration reduces due to the depletion of Ca 2+ ions within the microchannel. Electrophoretic velocity has a significant effect on the cell uptake.

  9. Interactions between bacterial carbon monoxide and hydrogen consumption and plant development on recent volcanic deposits.

    PubMed

    King, Gary M; Weber, Carolyn F

    2008-02-01

    Patterns of microbial colonization and interactions between microbial processes and vascular plants on volcanic deposits have received little attention. Previous reports have shown that atmospheric CO and hydrogen contribute significantly to microbial metabolism on Kilauea volcano (Hawaii) deposits with varied ages and successional development. Relationships between CO oxidation and plant communities were not clear, however, since deposit age and vegetation status covaried. To determine plant-microbe interactions in deposits of uniform ages, CO and hydrogen dynamics have been assayed for unvegetated tephra on a 1959 deposit at Pu'u Puai (PP-bare), at the edge of tree 'islands' within the PP deposit (PP-edge) and within PP tree islands (PP-canopy). Similar assays have been conducted for vegetated and unvegetated sites on a 1969 Mauna Ulu (MU) lava flow. Net in situ atmospheric CO uptake was highest at PP-edge and PP-bare sites (2.2+/-0.5 and 1.3+/-0.1 mg CO m(-2) day(-1), respectively), and least for PP-canopy (-3.2+/-0.9 mg CO m(-2) day(-1), net emission). Respiration rates, microbial biomass and maximum CO uptake potential showed an opposing pattern. Comparisons of atmospheric CO uptake and CO(2) production rates indicate that CO contributes significantly to microbial metabolism in PP-bare and MU-unvegetated sites, but negligibly where vegetation is well developed. Nonetheless, maximum potential CO uptake rates indicate that CO oxidizer populations increase with increasing plant biomass and consume CO actively. Some of these CO oxidizers may contribute to elevated nitrogen fixation rates (acetylene reduction) measured within tree islands, and thus, support plant successional development.

  10. Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain.

    PubMed

    Zhang, Yitao; Wang, Hongyuan; Lei, Qiuliang; Luo, Jiafa; Lindsey, Stuart; Zhang, Jizong; Zhai, Limei; Wu, Shuxia; Zhang, Jingsuo; Liu, Xiaoxia; Ren, Tianzhi; Liu, Hongbin

    2018-03-15

    Optimizing the nitrogen (N) application rate can increase crop yield while reducing the environmental risks. However, the optimal N rates vary substantially when different targets such as maximum yield or maximum economic benefit are considered. Taking the wheat-maize rotation cropping system on the North China Plain as a case study, we quantified the variation of N application rates when targeting constraints on yield, economic performance, N uptake and N utilization, by conducting field experiments between 2011 and 2013. Results showed that the optimal N application rate was highest when targeting N uptake (240kgha -1 for maize, and 326kgha -1 for wheat), followed by crop yield (208kgha -1 for maize, and 277kgha -1 for wheat) and economic income (191kgha -1 for maize, and 253kgha -1 for wheat). If environmental costs were considered, the optimal N application rates were further reduced by 20-30% compared to those when targeting maximum economic income. However, the optimal N rate, with environmental cost included, may result in soil nutrient mining under maize, and an extra input of 43kgNha -1 was needed to make the soil N balanced and maintain soil fertility in the long term. To obtain a win-win situation for both yield and environment, the optimal N rate should be controlled at 179kgha -1 for maize, which could achieve above 99.5% of maximum yield and have a favorable N balance, and at 202kgha -1 for wheat to achieve 97.4% of maximum yield, which was about 20kgNha -1 higher than that when N surplus was nil. Although these optimal N rates vary on spatial and temporal scales, they are still effective for the North China Plain where 32% of China's total maize and 45% of China's total wheat are produced. More experiments are still needed to determine the optimal N application rates in other regions. Use of these different optimal N rates would contribute to improving the sustainability of agricultural development in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effectiveness of Resistance Circuit-Based Training for Maximum Oxygen Uptake and Upper-Body One-Repetition Maximum Improvements: A Systematic Review and Meta-Analysis.

    PubMed

    Muñoz-Martínez, Francisco Antonio; Rubio-Arias, Jacobo Á; Ramos-Campo, Domingo Jesús; Alcaraz, Pedro E

    2017-12-01

    It is well known that concurrent increases in both maximal strength and aerobic capacity are associated with improvements in sports performance as well as overall health. One of the most popular training methods used for achieving these objectives is resistance circuit-based training. The objective of the present systematic review with a meta-analysis was to evaluate published studies that have investigated the effects of resistance circuit-based training on maximum oxygen uptake and one-repetition maximum of the upper-body strength (bench press exercise) in healthy adults. The following electronic databases were searched from January to June 2016: PubMed, Web of Science and Cochrane. Studies were included if they met the following criteria: (1) examined healthy adults aged between 18 and 65 years; (2) met the characteristics of resistance circuit-based training; and (3) analysed the outcome variables of maximum oxygen uptake using a gas analyser and/or one-repetition maximum bench press. Of the 100 articles found from the database search and after all duplicates were removed, eight articles were analysed for maximum oxygen uptake. Of 118 healthy adults who performed resistance circuit-based training, maximum oxygen uptake was evaluated before and after the training programme. Additionally, from the 308 articles found for one-repetition maximum, eight articles were analysed. The bench press one-repetition maximum load, of 237 healthy adults who performed resistance circuit-based training, was evaluated before and after the training programme. Significant increases in maximum oxygen uptake and one-repetition maximum bench press were observed following resistance circuit-based training. Additionally, significant differences in maximum oxygen uptake and one-repetition maximum bench press were found between the resistance circuit-based training and control groups. The meta-analysis showed that resistance circuit-based training, independent of the protocol used in the studies, is effective in increasing maximum oxygen uptake and one-repetition maximum bench press in healthy adults. However, its effect appears to be larger depending on the population and training characteristics. For large effects in maximum oxygen uptake, the programme should include ~14-30 sessions for ~6-12 weeks, with each session lasting at least ~20-30 min, at intensities between ~60 and 90% one-repetition maximum. For large effects in one-repetition maximum bench press, the data indicate that intensity should be ~30-60% one-repetition maximum, with sessions lasting at least ~22.5-60 min. However, the lower participant's baseline fitness level may explain the lighter optimal loads used in the circuit training studies where greater strength gains were reported.

  12. The significance of denitrifying polyphosphate accumulating organisms in biological nutrient removal activated sludge systems.

    PubMed

    Hu, Z R; Wentzel, M C; Ekama, G A

    2002-01-01

    In this paper the advantages and disadvantages of denitrifying PAOs (polyphosphate accumulating organisms) in conventional BNRAS (biological nutrient removal activated sludge) and external nitrification BNRAS (ENBNRAS) systems are evaluated, with experimental data exhibiting a range of anoxic P uptake from low (<10%) to very high (>60%). The results indicate that the specific denitrification rate of the PAOs on internally stored PHB COD is about 1/5th of that of the "ordinary" heterotrophic organisms on SBCOD, and the PAOs contribute little (maximum 20%) to the denitrification in BNRAS systems even when the anoxic P uptake is high (60% of the total P uptake). Considering the unpredictable nature of anoxic P uptake and the reduction in BEPR it causes compared with aerobic P uptake BEPR, it is concluded that anoxic P uptake does not add a significant advantage to the BNR system.

  13. Impact of Glycerol as Carbon Source onto Specific Sugar and Inducer Uptake Rates and Inclusion Body Productivity in E. coli BL21(DE3).

    PubMed

    Kopp, Julian; Slouka, Christoph; Ulonska, Sophia; Kager, Julian; Fricke, Jens; Spadiut, Oliver; Herwig, Christoph

    2017-12-21

    The Gram-negative bacterium E. coli is the host of choice for a multitude of used recombinant proteins. Generally, cultivation is easy, media are cheap, and a high product titer can be obtained. However, harsh induction procedures using isopropyl β-d-1 thiogalactopyranoside as inducer are often referred to cause stress reactions, leading to a phenomenon known as "metabolic" or "product burden". These high expressions of recombinant proteins mainly result in decreased growth rates and cell lysis at elevated induction times. Therefore, approaches tend to use "soft" or "tunable" induction with lactose and reduce the stress level of the production host. The usage of glucose as energy source in combination with lactose as induction reagent causes catabolite repression effects on lactose uptake kinetics and as a consequence reduced product titer. Glycerol-as an alternative carbon source-is already known to have positive impact on product formation when coupled with glucose and lactose in auto-induction systems, and has been referred to show no signs of repression when cultivated with lactose concomitantly. In recent research activities, the impact of different products on the lactose uptake using glucose as carbon source was highlighted, and a mechanistic model for glucose-lactose induction systems showed correlations between specific substrate uptake rate for glucose or glycerol (q s,C ) and the maximum specific lactose uptake rate (q s,lac,max ). In this study, we investigated the mechanistic of glycerol uptake when using the inducer lactose. We were able to show that a product-producing strain has significantly higher inducer uptake rates when being compared to a non-producer strain. Additionally, it was shown that glycerol has beneficial effects on viability of cells and on productivity of the recombinant protein compared to glucose.

  14. Kinetics of phosphate uptake, growth, and accumulation of cyclic diphosphoglycerate in a phosphate-limited continuous culture of Methanobacterium thermoautotrophicum.

    PubMed Central

    Krueger, R D; Harper, S H; Campbell, J W; Fahrney, D E

    1986-01-01

    The archaebacterium Methanobacterium thermoautotrophicum was grown in continuous culture at 65 degrees C in a phosphate-limited medium at specific growth rates from 0.06 to 0.28 h-1 (maximum growth rate [mu max] = 0.36 h-1). Cyclic-2,3-diphosphoglycerate (cyclic DPG) levels ranged from 2 to 20 mM in Pi-limited cells, compared with about 30 mM in batch-grown cells. The Monod constant for Pi-limited growth was 5 nM. Pi uptake rates were determined by following the disappearance of 32Pi from the medium. Interrupting the H2 supply stopped the uptake of Pi and the release of organic phosphates. Little or no efflux of Pi occurred in the presence or absence of H2. Pi uptake of cells adapted to nanomolar Pi concentrations could be accounted for by the operation of one uptake system with an apparent Km of about 25 nM and a Vmax of 58 nmol of Pi per min per g (dry weight). Uptake curves at 30 microM Pi or above were biphasic due to a sevenfold decrease in Vmax after an initial phase of rapid movement of Pi into the cell. Under these conditions the growth rate slowed to zero and the cyclic DPG pool expanded before growth resumed. Thus, three properties of M. thermoautotrophicum make it well adapted to live in a low-P environment: the presence of a low-Km, high-Vmax uptake system for Pi; the ability to accumulate cyclic DPG rapidly; and a growth strategy in which accumulation of Pi and cyclic DPG takes precedence over a shift-up in growth rate when excess Pi becomes available. PMID:3722128

  15. Kinetics of phosphate uptake, growth, and accumulation of cyclic diphosphoglycerate in a phosphate-limited continuous culture of Methanobacterium thermoautotrophicum.

    PubMed

    Krueger, R D; Harper, S H; Campbell, J W; Fahrney, D E

    1986-07-01

    The archaebacterium Methanobacterium thermoautotrophicum was grown in continuous culture at 65 degrees C in a phosphate-limited medium at specific growth rates from 0.06 to 0.28 h-1 (maximum growth rate [mu max] = 0.36 h-1). Cyclic-2,3-diphosphoglycerate (cyclic DPG) levels ranged from 2 to 20 mM in Pi-limited cells, compared with about 30 mM in batch-grown cells. The Monod constant for Pi-limited growth was 5 nM. Pi uptake rates were determined by following the disappearance of 32Pi from the medium. Interrupting the H2 supply stopped the uptake of Pi and the release of organic phosphates. Little or no efflux of Pi occurred in the presence or absence of H2. Pi uptake of cells adapted to nanomolar Pi concentrations could be accounted for by the operation of one uptake system with an apparent Km of about 25 nM and a Vmax of 58 nmol of Pi per min per g (dry weight). Uptake curves at 30 microM Pi or above were biphasic due to a sevenfold decrease in Vmax after an initial phase of rapid movement of Pi into the cell. Under these conditions the growth rate slowed to zero and the cyclic DPG pool expanded before growth resumed. Thus, three properties of M. thermoautotrophicum make it well adapted to live in a low-P environment: the presence of a low-Km, high-Vmax uptake system for Pi; the ability to accumulate cyclic DPG rapidly; and a growth strategy in which accumulation of Pi and cyclic DPG takes precedence over a shift-up in growth rate when excess Pi becomes available.

  16. Routine and active metabolic rates of migrating adult wild sockeye salmon (Oncorhynchus nerka Walbaum) in seawater and freshwater.

    PubMed

    Wagner, G N; Kuchel, L J; Lotto, A; Patterson, D A; Shrimpton, J M; Hinch, S G; Farrell, A P

    2006-01-01

    We present the first data on the differences in routine and active metabolic rates for sexually maturing migratory adult sockeye salmon (Oncorhynchus nerka) that were intercepted in the ocean and then held in either seawater or freshwater. Routine and active oxygen uptake rates (MO2) were significantly higher (27%-72%) in seawater than in freshwater at all swimming speeds except those approaching critical swimming speed. During a 45-min recovery period, the declining postexercise oxygen uptake remained 58%-73% higher in seawater than in freshwater. When fish performed a second swim test, active metabolic rates again remained 28%-81% higher for fish in seawater except at the critical swimming speed. Despite their differences in metabolic rates, fish in both seawater and freshwater could repeat the swim test and reach a similar maximum oxygen uptake and critical swimming speed as in the first swim test, even without restoring routine metabolic rate between swim tests. Thus, elevated MO2 related to either being in seawater as opposed to freshwater or not being fully recovered from previous exhaustive exercise did not present itself as a metabolic loading that limited either critical swimming performance or maximum MO2. The basis for the difference in metabolic rates of migratory sockeye salmon held in seawater and freshwater is uncertain, but it could include differences in states of nutrition, reproduction, and restlessness, as well as ionic differences. Regardless, this study elucidates some of the metabolic costs involved during the migration of adult salmon from seawater to freshwater, which may have applications for fisheries conservation and management models of energy use.

  17. [Bidens maximowicziana's adsorption ability and remediation potential to lead in soils].

    PubMed

    Wang, Hong-qi; Li, Hua; Lu, Si-jin

    2005-11-01

    Bidens maximowicziana's adsorption ability and remediation potential to lead were studied. The results show: (1) The Bidens maximowicziana has a strong adsorption to lead, the concentration of lead in plants increased linearly with the increase of lead concentration in soil. Then maximum concentration was 1509.3 mg x kg(-1) in roots and 2164.7 mg x kg(-1) in shoots when lead concentration in soil was 2000 mg x L(-1); (2) The lead concentration distribution order in the Bidens maximorwicziana is: leaf>stem>root>seed, which indicate that Bidens maximowicziana has a strong ability to transfer lead; (3) Uptaking ability differes in different vegetal periods. Maximum lead uptaking rate occured in the period of blooming for 40-60 days, in which daily uptake capacity was 15.81 mg x (kg x d)(-1) in roots and 19.83 mg x (kg x d)(-1) in shoots respectively. It can be concluded that Bidens maximowicziana appeares to be a moderate Pb accumulator making it suitable for phytoremediation of Pb contaminated soil.

  18. Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited.

    PubMed

    Vazquez, Alexei; Liu, Jiangxia; Zhou, Yi; Oltvai, Zoltán N

    2010-05-06

    Cancer cells simultaneously exhibit glycolysis with lactate secretion and mitochondrial respiration even in the presence of oxygen, a phenomenon known as the Warburg effect. The maintenance of this mixed metabolic phenotype is seemingly counterintuitive given that aerobic glycolysis is far less efficient in terms of ATP yield per moles of glucose than mitochondrial respiration. Here, we resolve this apparent contradiction by expanding the notion of metabolic efficiency. We study a reduced flux balance model of ATP production that is constrained by the glucose uptake capacity and by the solvent capacity of the cell's cytoplasm, the latter quantifying the maximum amount of macromolecules that can occupy the intracellular space. At low glucose uptake rates we find that mitochondrial respiration is indeed the most efficient pathway for ATP generation. Above a threshold glucose uptake rate, however, a gradual activation of aerobic glycolysis and slight decrease of mitochondrial respiration results in the highest rate of ATP production. Our analyses indicate that the Warburg effect is a favorable catabolic state for all rapidly proliferating mammalian cells with high glucose uptake capacity. It arises because while aerobic glycolysis is less efficient than mitochondrial respiration in terms of ATP yield per glucose uptake, it is more efficient in terms of the required solvent capacity. These results may have direct relevance to chemotherapeutic strategies attempting to target cancer metabolism.

  19. Effectiveness of Vegetated Drainage Ditches for Domestic Sewage Effluent Mitigation.

    PubMed

    Kumwimba, Mathieu Nsenga; Zhu, Bo

    2017-05-01

    Plant species have an important role in eco-ditches; however, the Michaelis-Menten kinetic parameters of nutrient uptake, growth rate and purification efficiency of ditch plants and their influences on domestic sewage treatment efficiency are still unclear. Growth rates of all nine species, but especially Lemna gibba, Cladophora and Myriophyllum verticillatum were best in undiluted domestic sewage as opposed to a mixture of domestic sewage. Performance of species to accumulate nutrients was not only species-specific, but was also affected by both sewage treatments. Removal efficiency of nutrients was dependent on both plant species and treatment. Uptake kinetic parameters were significantly affected by both nutrient form and plant species. The maximum uptake rate (Vmax) of NH 4 -N was higher than NO 3 -N. Similarly, Km values for NH 4 -N were greater than NO 3 -N. These results could be used to identify plants for sewage treatment efficiency and enhance water quality in eco-ditch treatment systems.

  20. Primary production in the northern Red Sea

    NASA Astrophysics Data System (ADS)

    Qurban, Mohammed Ali; Balala, Arvin C.; Kumar, Sanjeev; Bhavya, P. S.; Wafar, Mohideen

    2014-04-01

    Rates of uptake of carbon and nitrogen (ammonium, nitrate and urea) by phytoplankton, along with concentrations of nutrients and chlorophyll a, in the Saudi Arabian waters of the northern Red Sea (23 °N-28 °N) were measured in autumn, 2012. Concentrations of nitrate, nitrite and phosphate within the euphotic zone were in trace amounts while those of silicon were in excess of 0.5 μmol L- 1. Concentrations of chlorophyll (Chl a) were very low within the euphotic zone (0.01-0.6 μg L- 1 at discrete depths and 1.53-21.5 mg m- 2 as column-integrated values). A deep chlorophyll maximum and a nitrite maximum were present between 60 and 80 m at almost all of the stations occupied. Rates of carbon uptake at discrete depths ranged from 0.02 to 3 μg C L- 1 h- 1. Chl-normalized carbon uptake rates related with ambient light in a Michaelis-Menten kinetic pattern. About 80% of the carbon uptake was attributable to the < 20 μm fraction. Ammonium and urea were the nitrogen compounds taken up in preference by phytoplankton and accounted for close to 90% of the total N uptake. Considered together, these results indicate that the waters of the northern Red Sea are oligotrophic and that the primary production is strongly N-controlled. Analyses of the data and interpretation of the results led to the following speculations: (1) the perceived north-south gradient in Chl a (and possibly in primary production) in the Red Sea is maintained by circulation of Chl- and nutrient-rich waters through a series of gyres, (2) there is a greater role for heterotrophy and microbial loop in the trophic dynamics, and (3) in situ nitrification in the euphotic zone is an important source of N for phytoplankton and consequently export of carbon to deep sea could be lesser than that indicated by f-ratios.

  1. Maximum sustained fin-kick thrust in underwater swimming.

    PubMed

    Yamaguchi, H; Shidara, F; Naraki, N; Mohri, M

    1995-09-01

    We examined the upper limit of a diver's fin-kick thrust force using a stationary-swimming ergometer. Heart rate, respiratory minute volume, oxygen uptake, and performance rate were measured in four male subjects who swam constantly for 8 min to maintain a horizontal position against an applied force at a depth of 0.7 m. The water temperature was controlled at 26 degrees +/- 1 degree C. The performance rate, which was the parameter of how well the subjects compensated for the applied load, showed an upper limit around 64 N of sustainable thrust force. This meant that the diver could generate the swimming thrust force within 64 N continuously for 8 min in a steady state. Heart rate, respiratory minute volume, and O2 uptake showed almost proportional increases to the applied load within 64 N and tended to plateau about 69 N.

  2. Functional characterization of folic acid transport in the intestine of the laying hen using the everted intestinal sac model.

    PubMed

    Tactacan, G B; Rodriguez-Lecompte, J C; Karmin, O; House, J D

    2011-01-01

    Absorption at the level of the intestine is likely a primary regulatory mechanism for the deposition of dietary supplemented folic acid into the chicken egg. Therefore, factors affecting the intestinal transport of folic acid in the laying hen may influence the level of egg folate concentrations. To this end, a series of experiments using intestinal everted sacs were conducted to characterize intestinal folic acid absorption processes in laying hens. Effects of naturally occurring folate derivatives (5-methyl and 10-formyltetrahydrofolate) as well as heme on folic acid absorption were also investigated. Folic acid absorption was measured based on the rate of uptake of (3)H-labeled folic acid in the everted sac from various segments of the small and large intestines. Folic acid concentration, incubation length, and pH condition were optimized before the performance of uptake experiments. The distribution profile of folic acid transport along the intestine was highest in the upper half of the small intestine. Maximum uptake rate (nmol·100 g tissue(-1)·min(-1)) was observed in the duodenum (20.6 ± 1.9) and jejunum (22.3 ± 2.0) and decreased significantly in the ileum (15.3 ± 1.1) and cecum (9.3 ± 0.9). Transport increased proportionately (P < 0.05) between 0.0001 and 0.1 µM folic acid. Above 0.1 µM, the slope of the regression line was not significantly different from zero (P < 0.137). Folic acid uptake in the jejunum showed a maximum rate of transport at pH 6.0, but was lowest at pH 7.5. The presence of 5-methyl and 10-formyltetrahydrofolate as well as heme impeded folic acid uptake, reducing intestinal folic acid absorption when added at concentrations ranging from 0 to 100 µM. Overall, these data indicated the presence of a folic acid transport system in the entire intestine of the laying hen. Uptake of folic acid in the cecum raises the likelihood of absorption of bacterial-derived folate.

  3. Can increased nitrogen uptake at elevated CO2 be explained by an hypothesis of optimal root function?

    NASA Astrophysics Data System (ADS)

    McMurtrie, R. E.; Norby, R. J.; Näsholm, T.; Iversen, C.; Dewar, R. C.; Medlyn, B. E.

    2011-12-01

    Forest free-air CO2 enrichment (FACE) experiments have shown that annual nitrogen (N) uptake increases when trees are grown at elevated CO2 (eCO2) and that increased N uptake is critical for a sustained growth response to eCO2. Processes contributing to increased N uptake at eCO2 may include: accelerated decomposition of soil organic matter due to enhanced root carbon (C) exudation (so-called rhizosphere priming); increased C allocation to fine roots and increased root production at depth, both of which enhance N acquisition; differences in soil N availability with depth; changes in the abundance of N in chemical forms with differing mobility in soil; and reduced N concentrations, reduced maintenance respiration rates, and increased longevities of deeper roots. These processes have been synthesised in a model of annual N uptake in relation to the spatial distribution of roots. We hypothesise that fine roots are distributed spatially in order to maximise annual N uptake. The optimisation hypothesis leads to equations for the optimal vertical distribution of root biomass in relation to the distribution of available soil N and for maximum annual N uptake. We show how maximum N uptake and rooting depth are related to total root mass, and compare the optimal solution with an empirical function that has been fitted to root-distribution data from all terrestrial biomes. Finally, the model is used to explore the consequences of rhizosphere priming at eCO2 as observed at the Duke forest FACE experiment (Drake et al. 2011, Ecology Letters 14: 349-357) and of increasing N limitation over time as observed at the Oak Ridge FACE experiment (Norby et al. 2010, Proc. Nat. Acad. Sci. USA 107: 19368-19373).

  4. CALCIUM ABSORPTION IN MAN: BASED ON LARGE VOLUME LIQUID SCINTILLATION COUNTER STUDIES.

    PubMed

    LUTWAK, L; SHAPIRO, J R

    1964-05-29

    A technique has been developed for the in vivo measurement of absorption of calcium in man after oral administration of 1 to 5 microcuries of calcium-47 and continuous counting of the radiation in the subject's arm with a large volume liquid scintillation counter. The maximum value for the arm counting technique is proportional to the absorption of tracer as measured by direct stool analysis. The rate of uptake by the arm is lower in subjects with either the malabsorption syndrome or hypoparathyroidism. The administration of vitamin D increases both the absorption rate and the maximum amount of calcium absorbed.

  5. Value of FDG-PET/CT Volumetry After Chemoradiotherapy in Rectal Cancer.

    PubMed

    Okuno, Takayuki; Kawai, Kazushige; Koyama, Keitaro; Takahashi, Miwako; Ishihara, Soichiro; Momose, Toshimitsu; Morikawa, Teppei; Fukayama, Masashi; Watanabe, Toshiaki

    2018-03-01

    Neoadjuvant chemoradiotherapy followed by an optimal surgery is the standard treatment for patients with locally advanced rectal cancer. FDG-PET/CT is commonly used as the modality for assessing the effect of chemoradiotherapy. The purpose of this study was to investigate whether PET/CT-based volumetry could contribute to the prediction of pathological complete response or prognosis after neoadjuvant chemoradiotherapy. This was a retrospective cohort study. This study was conducted at a single research center. Ninety-one consecutive patients with locally advanced rectal cancer were enrolled between January 2005 and December 2015. Patients underwent PET/CT before and after neoadjuvant chemoradiotherapy. Maximum standardized uptake value and total lesion glycolysis on PET/CT before and after neoadjuvant chemoradiotherapy were calculated using isocontour methods. Correlations between these variables and clinicopathological factors and prognosis were assessed. PET/CT-associated variables before chemoradiotherapy were not correlated with either clinicopathological factors or prognosis. Maximum standardized uptake value was associated with pathological complete response, but total lesion glycolysis was not. Maximum standardized uptake value correlated with ypT, whereas total lesion glycolysis correlated with both ypT and ypN. High total lesion glycolysis was associated with a considerably poorer prognosis; the 5-year recurrence rate was 65% and the 5-year mortality rate 42%, whereas in lesions with low total lesion glycolysis, these were 6% and 2%. On multivariate analysis, high total lesion glycolysis was an independent risk factor for recurrence (HR = 4.718; p = 0.04). The gain in fluoro-2-deoxy-D-glucose uptake may differ between scanners, thus the general applicability of this threshold should be validated. In patients with locally advanced rectal cancer, high total lesion glycolysis after neoadjuvant chemoradiotherapy is strongly associated with a worse prognosis. Total lesion glycolysis after chemoradiotherapy may be a promising preoperative predictor of recurrence and death. See Video Abstract at http://links.lww.com/DCR/A464.

  6. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil

    USGS Publications Warehouse

    Borken, W.; Davidson, E.A.; Savage, K.; Sundquist, E.T.; Steudler, P.

    2006-01-01

    Soil moisture strongly controls the uptake of atmospheric methane by limiting the diffusion of methane into the soil, resulting in a negative correlation between soil moisture and methane uptake rates under most non-drought conditions. However, little is known about the effect of water stress on methane uptake in temperate forests during severe droughts. We simulated extreme summer droughts by exclusion of 168 mm (2001) and 344 mm (2002) throughfall using three translucent roofs in a mixed deciduous forest at the Harvard Forest, Massachusetts, USA. The treatment significantly increased CH4 uptake during the first weeks of throughfall exclusion in 2001 and during most of the 2002 treatment period. Low summertime CH4 uptake rates were found only briefly in both control and exclusion plots during a natural late summer drought, when water contents below 0.15 g cm-3 may have caused water stress of methanotrophs in the A horizon. Because these soils are well drained, the exclusion treatment had little effect on A horizon water content between wetting events, and the effect of water stress was smaller and more brief than was the overall treatment effect on methane diffusion. Methane consumption rates were highest in the A horizon and showed a parabolic relationship between gravimetric water content and CH4 consumption, with maximum rate at 0.23 g H2O g-1 soil. On average, about 74% of atmospheric CH4 was consumed in the top 4-5 cm of the mineral soil. By contrast, little or no CH4 consumption occurred in the O horizon. Snow cover significantly reduced the uptake rate from December to March. Removal of snow enhanced CH4 uptake by about 700-1000%, resulting in uptake rates similar to those measured during the growing season. Soil temperatures had little effect on CH4 uptake as long as the mineral soil was not frozen, indicating strong substrate limitation of methanotrophs throughout the year. Our results suggest that the extension of snow periods may affect the annual rate of CH4 oxidation and that summer droughts may increase the soil CH4 sink of temperate forest soils. ?? 2005 Elsevier Ltd. All rights reserved.

  7. Evaluation of the exercise workload of broadcast calisthenics for children and adolescents aged 11-17 years.

    PubMed

    Cui, Yupeng; Liu, Xiaoyan; Liu, Xiaoran; Wu, Jian; Zhao, Minghua; Ren, Jingping; Yang, Junqing; Gu, Fang; Wang, Chao

    2011-02-01

    The aim of this study was to examine the exercise workload of the 3rd Series of National Broadcast Calisthenics for Elementary and Middle School Students. Altogether, 120 students aged 11-17 years were randomly selected from elementary and middle schools to participate in the study. Each participant performed a cycle ergometer test to obtain maximum oxygen uptake ([Vdot]O(2max)) and maximum heart rate values. In the laboratory, oxygen uptake ([Vdot]O(2)), metabolic equivalents (METs), and heart rate were recorded continuously throughout a calisthenics session performed by the participants. Ratings of perceived exertion (RPE) were also recorded. Throughout the calisthenics session, mean percentage of [Vdot]O(2) reserve varied from 30.7% to 41.2%, mean percentage of heart rate reserve from 39.0% to 56.9%, and mean RPE from 9.0 to 10.4. The mean energy cost during most of the segments across the four routines of calisthenics was significantly higher (P < 0.05) than 3.0 METs. In conclusion, the exercise workload of the 3rd Series of National Broadcast Calisthenics for Elementary and Middle School Students session varied from low to moderate. As part of a school-based physical activity intervention project, calisthenics would help to promote an active lifestyle and health in children and adolescents.

  8. The availability of dissolved organic phosphorus compounds to marine phytoplankton

    NASA Astrophysics Data System (ADS)

    Hua-Sheng, Hong; Hai-Li, Wang; Bang-Qin, Huang

    1995-06-01

    The availability of three dissolved organic phosphorus (DOP) compounds as nutrient sources for experimental culture of three algae was studied. Results indicated that these compounds could be utilized by algae, and that dissolved inorganic phosphorus (DIP) was first to be uptaken when various forms of phosphorus (DIP and DOP) co-existed. Dicrateria zhanjiangensis' uptake of sodium glycerophosphate was faster than that of D-ribose-5-phosphate. The increase of sodium glycerophosphate had little effect on the maximum uptake rate( V max) of Chlorella sp., but increased the semisaturation constant( K s) remarkably; the photosynthesis rates(PR) of Dicrateria zhanjiangensis and Chlorella sp. were rarely affected by using various forms of phosphorus in the culture experiments. The possible DOP pathways utilized by algae are discussed.

  9. Assisted phytoremediation of Cd-contaminated soil using poplar rooted cuttings

    NASA Astrophysics Data System (ADS)

    Alizadeh, S.; Zahedi-Amiri, G.; Savaghebi-Firoozabadi, G.; Etemad, V.; Shirvany, A.; Shirmardi, M.

    2012-07-01

    To investigate the effect of amended substrates on cadmium uptake by one-year old poplar rooted cuttings a pot culture was carried out. Pots were filled with three substrates. Four treatments of Cd supply including were organized. The results showed that higher biomass productions in substrates A and B compare to substrate C, led to an increase total Cd uptake two times more than that in substrate C, at 150 mg kg-1 concentration. Meanwhile maximum total uptake occurred in substrate B at 100 mg kg-1 concentration. Using synthetic chelators such as ethylenediaminetetraacetic acid in order to achieve high removal rate led to increased environmental impacts while they are not expected when such environmental friendly approaches are applied.

  10. Influence of soil porosity on water use in Pinus taeda

    Treesearch

    G. Hacke; J.S. Sperry; B.E. Ewers; D.S. Ellsworth; K.V.R. Schäfer; R. Oren

    2000-01-01

    We analyzed the hydraulic constraints imposed on water uptake from soils of different porosities in loblolly pine (Pinus taeda L.) by comparing genetically related and even-aged plantations growing in loam versus sand soil. Water use was evaluated relative to the maximum transpiration rate (Ecrit) allowed by the soil-leaf...

  11. Characteristics of the Freshwater Cyanobacterium Microcystis aeruginosa Grown in Iron-Limited Continuous Culture

    PubMed Central

    Dang, T. C.; Fujii, M.; Rose, A. L.; Bligh, M.

    2012-01-01

    A continuous culturing system (chemostat) made of metal-free materials was successfully developed and used to maintain Fe-limited cultures of Microcystis aeruginosa PCC7806 at nanomolar iron (Fe) concentrations (20 to 50 nM total Fe). EDTA was used to maintain Fe in solution, with bioavailable Fe controlled by absorption of light by the ferric EDTA complex and resultant reduction of Fe(III) to Fe(II). A kinetic model describing Fe transformations and biological uptake was applied to determine the biologically available form of Fe (i.e., unchelated ferrous iron) that is produced by photoreductive dissociation of the ferric EDTA complex. Prediction by chemostat theory modified to account for the light-mediated formation of bioavailable Fe rather than total Fe was in good agreement with growth characteristics of M. aeruginosa under Fe limitation. The cellular Fe quota increased with increasing dilution rates in a manner consistent with the Droop theory. Short-term Fe uptake assays using cells maintained at steady state indicated that M. aeruginosa cells vary their maximum Fe uptake rate (ρmax) depending on the degree of Fe stress. The rate of Fe uptake was lower for cells grown under conditions of lower Fe availability (i.e., lower dilution rate), suggesting that cells in the continuous cultures adjusted to Fe limitation by decreasing ρmax while maintaining a constant affinity for Fe. PMID:22210212

  12. Effectiveness of an upper extremity exercise device integrated with computer gaming for aerobic training in adolescents with spinal cord dysfunction.

    PubMed

    Widman, Lana M; McDonald, Craig M; Abresch, R Ted

    2006-01-01

    To determine whether a new upper extremity exercise device integrated with a video game (GameCycle) requires sufficient metabolic demand and effort to induce an aerobic training effect and to explore the feasibility of using this system as an exercise modality in an exercise intervention. Pre-post intervention. University-based research facility. SUBJECT POPULATION: A referred sample of 8 adolescent subjects with spina bifida (4 girls, 15.5 +/- 0.6 years; 4 boys, 17.5 +/- 0.9 years) was recruited to participate in the project. All subjects had some level of mobility impairment that did not allow them to participate in mainstream sports available to their nondisabled peers. Five subjects used a wheelchair full time, one used a wheelchair occasionally, but walked with forearm crutches, and 2 were fully ambulatory, but had impaired gait. Peak oxygen uptake, maximum work output, aerobic endurance, peak heart rate, rating of perceived exertion, and user satisfaction. Six of the 8 subjects were able to reach a Vo2 of at least 50% of their Vo2 reserve while using the GameCycle. Seven of the 8 subjects reached a heart rate of at least 50% of their heart rate reserve. One subject did not reach either 50% of Vo2 reserve or 50% of heart rate reserve. Seven of the 8 subjects increased their maximum work capability after training with the GameCycle at least 3 times per week for 16 weeks. The data suggest that the GameCycle seems to be adequate as an exercise device to improve oxygen uptake and maximum work capability in adolescents with lower extremity disability caused by spinal cord dysfunction. The subjects in this study reported that the video game component was enjoyable and provided a motivation to exercise.

  13. Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex

    NASA Astrophysics Data System (ADS)

    Bubier, Jill L.; Crill, Patrick M.; Moore, Tim R.; Savage, Kathleen; Varner, Ruth K.

    1998-12-01

    We measured seasonal patterns of net ecosystem exchange (NEE) of CO2 in a diverse peatland complex underlain by discontinuous permafrost in northern Manitoba, Canada, as part of the Boreal Ecosystems Atmosphere Study (BOREAS). Study sites spanned the full range of peatland trophic and moisture gradients found in boreal environments from bog (pH 3.9) to rich fen (pH 7.2). During midseason (July-August, 1996), highest rates of NEE and respiration followed the trophic sequence of bog (5.4 to -3.9 μmol CO2 m-2 s-1) < poor fen (6.3 to -6.5 μmol CO2 m-2 s-1) < intermediate fen (10.5 to -7.8 μmol CO2 m-2 s-1) < rich fen (14.9 to -8.7 μmol CO2m-2 s-1). The sequence changed during spring (May-June) and fall (September-October) when ericaceous shrub (e.g., Chamaedaphne calyculata) bogs and sedge (Carex spp.) communities in poor to intermediate fens had higher maximum CO2 fixation rates than deciduous shrub-dominated (Salix spp. and Betula spp.) rich fens. Timing of snowmelt and differential rates of peat surface thaw in microtopographic hummocks and hollows controlled the onset of carbon uptake in spring. Maximum photosynthesis and respiration were closely correlated throughout the growing season with a ratio of approximately 1/3 ecosystem respiration to maximum carbon uptake at all sites across the trophic gradient. Soil temperatures above the water table and timing of surface thaw and freeze-up in the spring and fall were more important to net CO2 exchange than deep soil warming. This close coupling of maximum CO2 uptake and respiration to easily measurable variables, such as trophic status, peat temperature, and water table, will improve models of wetland carbon exchange. Although trophic status, aboveground net primary productivity, and surface temperatures were more important than water level in predicting respiration on a daily basis, the mean position of the water table was a good predictor (r2 = 0.63) of mean respiration rates across the range of plant community and moisture gradients. Q10 values ranged from 3.0 to 4.1 from bog to rich fen, but when normalized by above ground vascular plant biomass, the Q10 for all sites was 3.3.

  14. Quantitative Assessment of Heterogeneity in Tumor Metabolism Using FDG-PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vriens, Dennis, E-mail: d.vriens@nucmed.umcn.nl; Disselhorst, Jonathan A.; Oyen, Wim J.G.

    2012-04-01

    Purpose: [{sup 18}F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) images are usually quantitatively analyzed in 'whole-tumor' volumes of interest. Also parameters determined with dynamic PET acquisitions, such as the Patlak glucose metabolic rate (MR{sub glc}) and pharmacokinetic rate constants of two-tissue compartment modeling, are most often derived per lesion. We propose segmentation of tumors to determine tumor heterogeneity, potentially useful for dose-painting in radiotherapy and elucidating mechanisms of FDG uptake. Methods and Materials: In 41 patients with 104 lesions, dynamic FDG-PET was performed. On MR{sub glc} images, tumors were segmented in quartiles of background subtracted maximum MR{sub glc} (0%-25%, 25%-50%, 50%-75%, and 75%-100%).more » Pharmacokinetic analysis was performed using an irreversible two-tissue compartment model in the three segments with highest MR{sub glc} to determine the rate constants of FDG metabolism. Results: From the highest to the lowest quartile, significant decreases of uptake (K{sub 1}), washout (k{sub 2}), and phosphorylation (k{sub 3}) rate constants were seen with significant increases in tissue blood volume fraction (V{sub b}). Conclusions: Tumor regions with highest MR{sub glc} are characterized by high cellular uptake and phosphorylation rate constants with relatively low blood volume fractions. In regions with less metabolic activity, the blood volume fraction increases and cellular uptake, washout, and phosphorylation rate constants decrease. These results support the hypothesis that regional tumor glucose phosphorylation rate is not dependent on the transport of nutrients (i.e., FDG) to the tumor.« less

  15. Low rate loading-induced convection enhances net transport into the intervertebral disc in vivo.

    PubMed

    Gullbrand, Sarah E; Peterson, Joshua; Mastropolo, Rosemarie; Roberts, Timothy T; Lawrence, James P; Glennon, Joseph C; DiRisio, Darryl J; Ledet, Eric H

    2015-05-01

    The intervertebral disc primarily relies on trans-endplate diffusion for the uptake of nutrients and the clearance of byproducts. In degenerative discs, diffusion is often diminished by endplate sclerosis and reduced proteoglycan content. Mechanical loading-induced convection has the potential to augment diffusion and enhance net transport into the disc. The ability of convection to augment disc transport is controversial and has not been demonstrated in vivo. To determine if loading-induced convection can enhance small molecule transport into the intervertebral disc in vivo. Net transport was quantified via postcontrast enhanced magnetic resonance imaging (MRI) into the discs of the New Zealand white rabbit lumbar spine subjected to in vivo cyclic low rate loading. Animals were administered the MRI contrast agent gadodiamide intravenously and subjected to in vivo low rate loading (0.5 Hz, 200 N) via a custom external loading apparatus for either 2.5, 5, 10, 15, or 20 minutes. Animals were then euthanized and the lumbar spines imaged using postcontrast enhanced MRI. The T1 constants in the nucleus, annulus, and cartilage endplates were quantified as a measure of gadodiamide transport into the loaded discs compared with the adjacent unloaded discs. Microcomputed tomography was used to quantify subchondral bone density. Low rate loading caused the rapid uptake and clearance of gadodiamide in the nucleus compared with unloaded discs, which exhibited a slower rate of uptake. Relative to unloaded discs, low rate loading caused a maximum increase in transport into the nucleus of 16.8% after 5 minutes of loading. Low rate loading increased the concentration of gadodiamide in the cartilage endplates at each time point compared with unloaded levels. Results from this study indicate that forced convection accelerated small molecule uptake and clearance in the disc induced by low rate mechanical loading. Low rate loading may, therefore, be therapeutic to the disc as it may enhance the nutrient uptake and waste product clearance. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Morphological and physiological studies on Indian national kabaddi players.

    PubMed Central

    Dey, S K; Khanna, G L; Batra, M

    1993-01-01

    Twenty-five national kabaddi players (Asiad gold medalists 1990), mean age 27.91 years, who attended a national camp at the Sports Authority of India, Bangalore before the Beijing Asian Games in 1990, were investigated for their physical characteristics, body fat, lean body mass (LBM) and somatotype. The physiological characteristics assessed included back strength, maximum oxygen uptake capacity and anaerobic capacity (oxygen debt) and related cardiorespiratory parameters (oxygen pulse, breathing equivalent, maximum pulmonary ventilation, maximum heart rate). Body fat was calculated from skinfold thicknesses taken at four different sites, using Harpenden skinfold calipers. An exercise test (graded protocol) was performed on a bicycle ergometer (ER-900) using a computerized EOS Sprint (Jaeger, West Germany). The mean(s.d.) percentage body fat (17.56(3.48)) of kabaddi players was found to be higher than normal sedentary people. Their physique was found to be endomorphic mesomorph (3.8-5.2-1.7). Mean(s.d.) back strength, maximum oxygen uptake capacity (VO2max) and oxygen debt were found to be 162.6(18.08) kg, 42.6(4.91) ml kg-1 min-1 and 5.02(1.29) litre respectively. Physical characteristics, percentage body fat, somatotype, maximum oxygen uptake capacity and anaerobic capacity (oxygen debt) and other cardiorespiratory parameters were compared with other national counterparts. Present data are comparable with data for judo, wrestling and weightlifting. Since no such study has been conducted on international counterparts, these data could not be compared. These data may act as a guideline in the selection of future kabaddi players and to attain the physiological status comparable to the present gold medalists. Images Figure 4 Figure 5 p242-a PMID:8130960

  17. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris.

    PubMed

    Lee, Ho-Sang; Kim, Z-Hun; Park, Hanwool; Lee, Choul-Gyun

    2016-05-01

    Lumostatic operation was applied for efficient astaxanthin production in autotrophic Haematococcus lacustris cultures using 0.4-L bubble column photobioreactors. The lumostatic operation in this study was performed with three different specific light uptake rates (q(e)) based on cell concentration, cell projection area, and fresh weight as one-, two- and three-dimensional characteristics values, respectively. The q(e) value from the cell concentration (q(e1D)) obtained was 13.5 × 10⁻⁸ μE cell⁻¹ s⁻¹, and the maximum astaxanthin concentration was increased to 150 % compared to that of a control with constant light intensity. The other optimum q e values by cell projection area (q(e2D)) and fresh weight (q( e3D)) were determined to be 195 μE m⁻² s⁻¹ and 10.5 μE g⁻¹ s⁻¹ for astaxanthin production, respectively. The maximum astaxanthin production from the lumostatic cultures using the parameters controlled by cell projection area (2D) and fresh weight (3D) also increased by 36 and 22% over that of the controls, respectively. When comparing the optimal q e values among the three different types, the lumostatic cultures using q(e) based on fresh weight showed the highest astaxanthin productivity (22.8 mg L⁻¹ day⁻¹), which was a higher level than previously reported. The lumostatic operations reported here demonstrated that more efficient and effective astaxanthin production was obtained by H. lacustris than providing a constant light intensity, regardless of which parameter is used to calculate the specific light uptake rate.

  18. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles.

    PubMed

    Duffy, M C; Blitzer, B L; Boyer, J L

    1983-10-01

    To determine directly the driving forces for bile acid entry into the hepatocyte, the uptake of [3H]taurocholic acid into rat liver plasma membrane vesicles was studied. The membrane preparation contained predominantly right-side-out vesicles, and was highly enriched in plasma membrane marker enzymes. The uptake of taurocholate at equilibrium was inversely related to medium osmolarity, indicating transport into an osmotically sensitive space. In the presence of an inwardly directed sodium gradient (NaCl or sodium gluconate), the initial rate of uptake was rapid and taurocholate was transiently accumulated at a concentration twice that at equilibrium (overshoot). Other inwardly directed cation gradients (K+, Li+, choline+) or the presence of sodium in the absence of a gradient (Na+ equilibrated) resulted in a slower initial uptake rate and did not sustain an overshoot. Bile acids inhibited sodium-dependent taurocholate uptake, whereas bromsulphthalein inhibited both sodium-dependent and sodium-independent uptake and D-glucose had no effect on uptake. Uptake was temperature dependent, with maximal overshoots occurring at 25 degrees C. Imposition of a proton gradient across the vesicle (pHo less than pHi) in the absence of a sodium gradient failed to enhance taurocholate uptake, indicating that double ion exchange (Na+-H+, OH- -anion) is unlikely. Creation of a negative intravesicular potential by altering accompanying anions or by valinomycin-induced K+-diffusion potentials did not enhance taurocholate uptake, suggesting an electroneutral transport mechanism. The kinetics of taurocholate uptake demonstrated saturability with a Michaelis constant at 52 microM and maximum velocity of 4.5 nmol X mg-1 X protein X min-1. These studies provide definitive evidence for a sodium gradient-dependent, carrier-mediated, electrically neutral transport mechanism for hepatic taurocholate uptake. These findings are consistent with a model for bile secretion in which the basolateral enzyme Na+,K+-ATPase provides the driving force for "uphill" bile acid transport by establishing a trans-membrane sodium gradient.

  19. Enantio-selective molecular dynamics of (±)-o,p-DDT uptake and degradation in water-sediment system.

    PubMed

    Ali, Imran; Alharbi, Omar M L; Alothman, Zeid A; Alwarthan, Abdulrahman

    2018-01-01

    Enantio-selective molecular dynamics of (±)-o,p-DDT uptake and degradation in water-sediment system is described. Both uptake and degradation processes of (-)-o,p-DDT were slightly higher than (+)-o,p-DDT enantiomer. The optimized parameters for uptake were 7.0μgL -1 concentration of o,p-DDT, 60min contact time, 5.0pH, 6.0gL -1 amount of reverine sediment and 25°C temperature. The maximum degradation of both (-)- and (+)-o,p-DDT was obtained with 16 days, 0.4μgL -1 concentration of o,p-DDT, pH 7 and 35°C temperature. Both uptake and degraded process followed first order rate reaction. Thermodynamic parameters indicated exothermic nature of uptake and degradation processes. Both uptake and degradation were slightly higher for (-)-enantiomer in comparison to (+)-enantiomer of o,p-DDT. It was concluded that both uptake and degradation processes are responsible for the removal of o,p-DDT from nature but uptake plays a crucial role. The percentage degradations of (-)- and (+)-o,p-DDT were 30.1 and 29.5, respectively. This study may be useful to manage o,p-DDT contamination of our earth's ecosystem. Copyright © 2017. Published by Elsevier Inc.

  20. CO2 exchange in the Hudson Bay lowlands: Community characteristics and multispectral reflectance properties

    NASA Technical Reports Server (NTRS)

    Whiting, Gary J.

    1994-01-01

    Net ecosystem CO2 exchange was measured during the 1990 growing season (June to August) along a transect starting 10 km inland from James Bay and extending 100 km interior to Kinosheo Lake, Ontario. Sites were chosen in three distinct areas: a coastal fen, an interior fen, and a bog. For the most productive sites in the bog, net daily uptake rates reached a maximum of 2.5 g C-CO2 m(exp -2)/d with an area-weighted exchange of 0.3 g C-CO2 m(exp -2)/d near midsummer. This site was estimated to be a net carbon source of 9 g C-CO2 m(exp -2) to the atmosphere over a 153-day growing season. The interior fen was less productive on a daily basis with a net maximum uptake of 0.5 g C-CO2 m(exp -2)/d and with corresponding area-weighted uptake of 0.1 g C-CO2 m(exp -2)/d during midsummer. Early and late season release of carbon to the atmosphere resulted in a net loss of 21 g C-CO2 m(exp -2) over the growing season from this site. The coastal fen was the most productive site with uptake rates peaking near 1.7 g C-CO2 m(exp -2)/d which corresponded to an area-weighted uptake of 0.8 g C-CO2 m(exp -2)/d during midsummer and an estimated net uptake of 6 g C-CO2 m(exp -2) for the growing season. Associated with net CO2 exchange measurements, multispectral reflectance properties of the sites were measured over the growing season using portable radiometers. These properties were related to exchange rates with the goal of examining the potential for satellite remote sensing to monitor biosphere/atmosphere CO2 exchange in this biome. The normalized difference vegetation index (NDVI) computed from surface reflectance was correlated with net CO2 exchange for all sites with the exception of areas with large proportions of Sphagnum moss cover. These mosses have greater near-infrared reflectance than typical surrounding vegetation and may require special adjustment for regional exchange/remote sensing applications.

  1. Foliar water uptake of Tamarix ramosissima from an atmosphere of high humidity.

    PubMed

    Li, Shuang; Xiao, Hong-lang; Zhao, Liang; Zhou, Mao-Xian; Wang, Fang

    2014-01-01

    Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH) was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants.

  2. Cardiovascular responses during orthostasis - Effect of an increase in maximal O2 uptake

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Montgomery, L. D.; Greenleaf, J. E.

    1984-01-01

    A study is described which tests the hypothesis that changes in aerobic activity (increases in maximum oxygen uptake) will reduce the effectiveness of cardiovascular reflexes to regulate blood pressure during orthostasis. The hypothesis was tested by measuring heart rate, blood pressure and blood volume responses in eight healthy male subjects before and after an eight-day endurance regimen. The results of the study suggest that the physiologic responses to orthostasis are dependent upon the rate of plasma volume loss and pooling, and are associated with training-induced hypervolemia. It is indicated that endurance type exercise training enhances cardiovascular adjustments during tilt. The implications of these results for the use of exercise training as a countermeasure and/or therapeutic method for the prevention of cardiovascular instability during orthostatic stress are discussed.

  3. Influence of taekwondo as security martial arts training on anaerobic threshold, cardiorespiratory fitness, and blood lactate recovery.

    PubMed

    Kim, Dae-Young; Seo, Byoung-Do; Choi, Pan-Am

    2014-04-01

    [Purpose] This study was conducted to determine the influence of Taekwondo as security martial arts training on anaerobic threshold, cardiorespiratory fitness, and blood lactate recovery. [Subjects and Methods] Fourteen healthy university students were recruited and divided into an exercise group and a control group (n = 7 in each group). The subjects who participated in the experiment were subjected to an exercise loading test in which anaerobic threshold, value of ventilation, oxygen uptake, maximal oxygen uptake, heart rate, and maximal values of ventilation / heart rate were measured during the exercise, immediately after maximum exercise loading, and at 1, 3, 5, 10, and 15 min of recovery. [Results] At the anaerobic threshold time point, the exercise group showed a significantly longer time to reach anaerobic threshold. The exercise group showed significantly higher values for the time to reach VO2max, maximal values of ventilation, maximal oxygen uptake and maximal values of ventilation / heart rate. Significant changes were observed in the value of ventilation volumes at the 1- and 5-min recovery time points within the exercise group; oxygen uptake and maximal oxygen uptake were significantly different at the 5- and 10-min time points; heart rate was significantly different at the 1- and 3-min time points; and maximal values of ventilation / heart rate was significantly different at the 5-min time point. The exercise group showed significant decreases in blood lactate levels at the 15- and 30-min recovery time points. [Conclusion] The study results revealed that Taekwondo as a security martial arts training increases the maximal oxygen uptake and anaerobic threshold and accelerates an individual's recovery to the normal state of cardiorespiratory fitness and blood lactate level. These results are expected to contribute to the execution of more effective security services in emergencies in which violence can occur.

  4. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems.

    PubMed

    Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems.

  5. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems

    PubMed Central

    Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; de Visser, Pieter H. B.; Marcelis, Leo F. M.

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15–17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent cultivation in the DeepFlow negatively compared to substrate-based propagation. Water-based propagation resulted in frequent transient discolorations after transplanting in all cultivation systems, indicating a factor, other than irrigation supply of water, nutrients, and oxygen, influencing plant uptake. Plant uptake rates for water, nutrients, and oxygen are offered as a more fundamental way to compare and improve growing systems. PMID:28443129

  6. Repeated Positron Emission Tomography-Computed Tomography and Perfusion-Computed Tomography Imaging in Rectal Cancer: Fluorodeoxyglucose Uptake Corresponds With Tumor Perfusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssen, Marco H.M., E-mail: marco.janssen@maastro.nl; Aerts, Hugo J.W.L.; Buijsen, Jeroen

    2012-02-01

    Purpose: The purpose of this study was to analyze both the intratumoral fluorodeoxyglucose (FDG) uptake and perfusion within rectal tumors before and after hypofractionated radiotherapy. Methods and Materials: Rectal cancer patients, referred for preoperative hypofractionated radiotherapy (RT), underwent FDG-positron emission tomography (PET)-computed tomography (CT) and perfusion-CT (pCT) imaging before the start of hypofractionated RT and at the day of the last RT fraction. The pCT-images were analyzed using the extended Kety model, quantifying tumor perfusion with the pharmacokinetic parameters K{sup trans}, v{sub e}, and v{sub p}. The mean and maximum FDG uptake based on the standardized uptake value (SUV) andmore » transfer constant (K{sup trans}) within the tumor were correlated. Also, the tumor was subdivided into eight subregions and for each subregion the mean and maximum SUVs and K{sup trans} values were assessed and correlated. Furthermore, the mean FDG uptake in voxels presenting with the lowest 25% of perfusion was compared with the FDG uptake in the voxels with the 25% highest perfusion. Results: The mean and maximum K{sup trans} values were positively correlated with the corresponding SUVs ({rho} = 0.596, p = 0.001 and {rho} = 0.779, p < 0.001). Also, positive correlations were found for K{sup trans} values and SUVs within the subregions (mean, {rho} = 0.413, p < 0.001; and max, {rho} = 0.540, p < 0.001). The mean FDG uptake in the 25% highest-perfused tumor regions was significantly higher compared with the 25% lowest-perfused regions (10.6% {+-} 5.1%, p = 0.017). During hypofractionated radiotherapy, stable mean (p = 0.379) and maximum (p = 0.280) FDG uptake levels were found, whereas the mean (p = 0.040) and maximum (p = 0.003) K{sup trans} values were found to significantly increase. Conclusion: Highly perfused rectal tumors presented with higher FDG-uptake levels compared with relatively low perfused tumors. Also, intratumor regions with a high FDG uptake demonstrated with higher levels of perfusion than regions with a relatively low FDG-uptake. Early after hypofractionated RT, stable FDG uptake levels were found, whereas tumor perfusion was found to significantly increase.« less

  7. Growth, ammonium metabolism, and photosynthetic properties of Ulva australis (Chlorophyta) under decreasing pH and ammonium enrichment

    PubMed Central

    Fernandez, Pamela A.; Leal, Pablo P.; Noisette, Fanny; McGraw, Christina M.; Revill, Andrew T.; Hurd, Catriona L.; Kübler, Janet E.

    2017-01-01

    The responses of macroalgae to ocean acidification could be altered by availability of macronutrients, such as ammonium (NH4+). This study determined how the opportunistic macroalga, Ulva australis responded to simultaneous changes in decreasing pH and NH4+ enrichment. This was investigated in a week-long growth experiment across a range of predicted future pHs with ambient and enriched NH4+ treatments followed by measurements of relative growth rates (RGR), NH4+ uptake rates and pools, total chlorophyll, and tissue carbon and nitrogen content. Rapid light curves (RLCs) were used to measure the maximum relative electron transport rate (rETRmax) and maximum quantum yield of photosystem II (PSII) photochemistry (Fv/Fm). Photosynthetic capacity was derived from the RLCs and included the efficiency of light harvesting (α), slope of photoinhibition (β), and the light saturation point (Ek). The results showed that NH4+ enrichment did not modify the effects of pH on RGRs, NH4+ uptake rates and pools, total chlorophyll, rETRmax, α, β, Fv/Fm, tissue C and N, and the C:N ratio. However, Ek was differentially affected by pH under different NH4+ treatments. Ek increased with decreasing pH in the ambient NH4+ treatment, but not in the enriched NH4+ treatment. NH4+ enrichment increased RGRs, NH4+ pools, total chlorophyll, rETRmax, α, β, Fv/Fm, and tissue N, and decreased NH4+ uptake rates and the C:N ratio. Decreased pH increased total chlorophyll content, rETRmax, Fv/Fm, and tissue N content, and decreased the C:N ratio. Therefore, the results indicate that U. australis growth is increased with NH4+ enrichment and not with decreasing pH. While decreasing pH influenced the carbon and nitrogen metabolisms of U. australis, it did not result in changes in growth. PMID:29176815

  8. Ontogenesis of uptake and deamination of 5-hydroxytryptamine, dopamine and beta-phenylethylamine in isolated perfused lung and lung homogenates from rats.

    PubMed Central

    Ben-Harari, R. R.; Youdim, M. B.

    1981-01-01

    1. Uptake of 5-hydroxytryptamine (5-HT) and beta-phenylethylamine (PEA) was studied in perfused lung from male rats between 10 and 70 days old. 2. Monoamine oxidase (MAO) activity towards 5-HT, PEA and dopamine was studied in homogenate preparations of lung from rats aged between 5 and 80 days. 3. Uptake of 5-HT (10 microM) decreased throughout the age range studied but uptake of PEA (50 microM) increased for the first 30 days and beyond this age it decreased. Metabolites formed for both amines reflected the changes in uptake. 4. MAO activity deaminating 5-HT is well developed by day 10 and reaches its maximum by day 40. For dopamine and PEA, MAO activity remained low until day 20, and the developed rapidly, reaching a maximum by day 40 for dopamine; activity towards PEA did not reach a maximum by day 80. 5. These results show that uptake and MAO activity changes with age and thus the lung responds like other tissues. 6. These results also demonstrate the independent development of uptake and MAO activity towards 5-HT, PEA and dopamine. PMID:7284689

  9. Ratings of Perceived Exertion of ACSM Exercise Guidelines in Individuals Varying in Aerobic Fitness

    ERIC Educational Resources Information Center

    Kaufman, Christopher; Berg, Kris; Noble, John; Thomas, James

    2006-01-01

    The physiological responses of high (HF) and low fit (LF) individuals at given perceived exercise intensities were compared to ranges provided by the American College of Sports Medicine (ACSM). Participants were 7 LF and 8 HF men between the ages of 22 and 26 years. All participants performed a maximum oxygen uptake and lactate threshold test and…

  10. The influence of light on copper-limited growth of an oceanic diatom, Thalassiosira oceanica (Coscinodiscophyceae).

    PubMed

    Kim, Jun-Woo; Price, Neil M

    2017-10-01

    Thalassiosira oceanica (CCMP 1005) was grown over a range of copper concentrations at saturating and subsaturating irradiance to test the hypothesis that Cu and light were interacting essential resources. Growth was a hyperbolic function of irradiance in Cu-replete medium (263 fmol Cu' · L -1 ) with maximum rates achieved at 200 μmol photons · m -2  · s -1 . Lowering the Cu concentration at this irradiance to 30.8 fmol Cu' · L -1 decreased cellular Cu quota by 7-fold and reduced growth rate by 50%. Copper-deficient cells had significantly slower (P < 0.0001) rates of maximum, relative photosynthetic electron transport (rETR max ) than Cu-sufficient cells, consistent with the role of Cu in photosynthesis in this diatom. In low-Cu medium (30.8 fmol Cu' · L -1 ), growth rate was best described as a positive, linear function of irradiance and reached the maximum value measured in Cu-replete cells when irradiance increased to 400 μmol photons · m -2  · s -1 . Thus, at high light, low-Cu concentration was no longer limiting to growth: Cu concentration and light interacted strongly to affect growth rate of T. oceanica (P < 0.0001). Relative ETR max and Cu quota of cells grown at low Cu also increased at 400 μmol photons · m -2  · s -1 to levels measured in Cu-replete cells. Steady-state uptake rates of Cu-deficient and sufficient cells were light-dependent, suggesting that faster growth of T. oceanica under high light and low Cu was a result of light-stimulated Cu uptake. © 2017 Phycological Society of America.

  11. Enhanced practical photosynthetic CO2 mitigation

    DOEpatents

    Bayless, David J.; Vis-Chiasson, Morgan L.; Kremer, Gregory G.

    2003-12-23

    This process is unique in photosynthetic carbon sequestration. An on-site biological sequestration system directly decreases the concentration of carbon-containing compounds in the emissions of fossil generation units. In this process, photosynthetic microbes are attached to a growth surface arranged in a containment chamber that is lit by solar photons. A harvesting system ensures maximum organism growth and rate of CO.sub.2 uptake. Soluble carbon and nitrogen concentrations delivered to the cyanobacteria are enhanced, further increasing growth rate and carbon utilization.

  12. Effects of CO(2) enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii.

    PubMed

    Alexandre, Ana; Silva, João; Buapet, Pimchanok; Björk, Mats; Santos, Rui

    2012-10-01

    Seagrass ecosystems are expected to benefit from the global increase in CO(2) in the ocean because the photosynthetic rate of these plants may be C(i)-limited at the current CO(2) level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H(+) across the membrane as in terrestrial plants. Here, we investigate the effects of CO(2) enrichment on both carbon and nitrogen metabolism of the seagrass Zostera noltii in a mesocosm experiment where plants were exposed for 5 months to two experimental CO(2) concentrations (360 and 700 ppm). Both the maximum photosynthetic rate (P(m)) and photosynthetic efficiency (α) were higher (1.3- and 4.1-fold, respectively) in plants exposed to CO(2)-enriched conditions. On the other hand, no significant effects of CO(2) enrichment on leaf growth rates were observed, probably due to nitrogen limitation as revealed by the low nitrogen content of leaves. The leaf ammonium uptake rate and glutamine synthetase activity were not significantly affected by increased CO(2) concentrations. On the other hand, the leaf nitrate uptake rate of plants exposed to CO(2)-enriched conditions was fourfold lower than the uptake of plants exposed to current CO(2) level, suggesting that in the seagrass Z. noltii nitrate is not cotransported with H(+) as in terrestrial plants. In contrast, the activity of nitrate reductase was threefold higher in plant leaves grown at high-CO(2) concentrations. Our results suggest that the global effects of CO(2) on seagrass production may be spatially heterogeneous and depend on the specific nitrogen availability of each system. Under a CO(2) increase scenario, the natural levels of nutrients will probably become limiting for Z. noltii. This potential limitation becomes more relevant because the expected positive effect of CO(2) increase on nitrate uptake rate was not confirmed.

  13. Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii

    PubMed Central

    Alexandre, Ana; Silva, João; Buapet, Pimchanok; Björk, Mats; Santos, Rui

    2012-01-01

    Seagrass ecosystems are expected to benefit from the global increase in CO2 in the ocean because the photosynthetic rate of these plants may be Ci-limited at the current CO2 level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H+ across the membrane as in terrestrial plants. Here, we investigate the effects of CO2 enrichment on both carbon and nitrogen metabolism of the seagrass Zostera noltii in a mesocosm experiment where plants were exposed for 5 months to two experimental CO2 concentrations (360 and 700 ppm). Both the maximum photosynthetic rate (Pm) and photosynthetic efficiency (α) were higher (1.3- and 4.1-fold, respectively) in plants exposed to CO2-enriched conditions. On the other hand, no significant effects of CO2 enrichment on leaf growth rates were observed, probably due to nitrogen limitation as revealed by the low nitrogen content of leaves. The leaf ammonium uptake rate and glutamine synthetase activity were not significantly affected by increased CO2 concentrations. On the other hand, the leaf nitrate uptake rate of plants exposed to CO2-enriched conditions was fourfold lower than the uptake of plants exposed to current CO2 level, suggesting that in the seagrass Z. noltii nitrate is not cotransported with H+ as in terrestrial plants. In contrast, the activity of nitrate reductase was threefold higher in plant leaves grown at high-CO2 concentrations. Our results suggest that the global effects of CO2 on seagrass production may be spatially heterogeneous and depend on the specific nitrogen availability of each system. Under a CO2 increase scenario, the natural levels of nutrients will probably become limiting for Z. noltii. This potential limitation becomes more relevant because the expected positive effect of CO2 increase on nitrate uptake rate was not confirmed. PMID:23145346

  14. Chloride and sodium uptake potential over an entire rotation of Populus irrigated with landfill leachate.

    PubMed

    Zalesny, Jill A; Zalesny, Ronald S

    2009-07-01

    There is a need for information about the response of Populus genotypes to repeated application of high-salinity water and nutrient sources throughout an entire rotation. We have combined establishment biomass and uptake data with mid- and full-rotation growth data to project potential chloride (Cl-) and sodium (Na+) uptake for 2- to 11-year-old Populus in the north central United States. Our objectives were to identify potential levels of uptake as the trees developed and stages of plantation development that are conducive to variable application rates of high-salinity irrigation. The projected cumulative uptake of Cl- and Na+ during mid-rotation plantation development was stable 2 to 3 years after planting but increased steadily from year 3 to 6. Year six cumulative uptake ranged from 22 to 175 kg Cl- ha(-1) and 8 to 74 kg Na+ ha(-1), while annual uptake ranged from 8 to 54 kg Cl- ha(-1) yr(-1) and 3 to 23 kg Na+ ha(-1) yr(-1). Full-rotation uptake was greatest from 4 to 9 years (Cl-) and 4 to 8 years (Na+), with maximum levels of Cl- (32 kg ha(-1) yr(-1)) and Na+ (13 kg ha(-1) yr(-1)) occurring in year six. The relative uptake potential of Cl- and Na+ at peak accumulation (year six) was 2.7 times greater than at the end of the rotation.

  15. Bone and muscle atrophy with suspension of the rat

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Marsh, C.; Evans, H.; Johnson, P.; Schneider, V.; Jhingran, S.

    1985-01-01

    In order to identify a suitable model for the study of muscle atrophy due to suspension in space, a modified version of the Morey tail suspension model was used to measure the atrophic responses of rat bone and muscle to 14-30 days of unloading of the hindlimbs. The progress of atrophy was measured by increases in methylene diphosphonate (MDP) uptake. It is found that bone uptake of methylene diphosphonate followed a phasic pattern similar to changes in the bone formation rate of immobilized dogs and cats. Increased MDP uptake after a period of 60 days indicated an accelerated bone metabolism. Maximum muscle atrophy in the suspended rats was distinctly different from immobilization atrophy. On the basis of the experimental results, it is concluded that the tail suspension model is an adequate simulation of bone atrophy due to suspension.

  16. Findings of 2-fluoro-2-deoxy-d-glucose positron emission tomography in hemorrhoids.

    PubMed

    Tsai, Shih-Chuan; Jeng, Long-Bin; Yeh, Jun-Jun; Lin, Cheng-Chieh; Chen, Jin-Hua; Lin, Wan-Yu; Kao, Chia-Hung

    2011-10-01

    Hemorrhoids are very common in adults. The data regarding the incidence of high 2-fluoro-2-deoxy-D: -glucose (FDG) uptake in hemorrhoids is incomplete. In this study, we evaluated FDG uptake in hemorrhoids and calculated the rate of high FDG uptake in these lesions. One hundred and seventy six subjects who undertook whole body FDG-PET for health screening examination were investigated retrospectively. All patients had colonoscopy and 156 subjects were found to have hemorrhoids and 20 had no hemorrhoids. Quantitative analysis of FDG uptake in the anal region was performed by calculating the maximum standard uptake value (SUV(max)). The SUV(max) ranged from 1.8 to 4.1 (2.8 ± 0.6) for normal subjects and ranged from 1.4 to 8.3 (2.9 ± 0.8) for patients with hemorrhoids. No statistical difference was noted between these two groups using a Student's t-tests. If the highest SUV(max), which was 4.1 in normal subjects, was used as a cutoff, 5.1% (8/156) hemorrhoid patients had a SUV(max) greater than 4.1. Hemorrhoids can be one possible cause of focal high FDG uptake in the rectum.

  17. Estimation of the Maximum Theoretical Productivity of Fed-Batch Bioreactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bomble, Yannick J; St. John, Peter C; Crowley, Michael F

    2017-10-18

    A key step towards the development of an integrated biorefinery is the screening of economically viable processes, which depends sharply on the yields and productivities that can be achieved by an engineered microorganism. In this study, we extend an earlier method which used dynamic optimization to find the maximum theoretical productivity of batch cultures to explicitly include fed-batch bioreactors. In addition to optimizing the intracellular distribution of metabolites between cell growth and product formation, we calculate the optimal control trajectory of feed rate versus time. We further analyze how sensitive the productivity is to substrate uptake and growth parameters.

  18. Maximum Oxygen Uptake Determination in Insulin-Dependent Diabetes Mellitus.

    ERIC Educational Resources Information Center

    Fremion, Amy S.; And Others

    1987-01-01

    A study of 10 children with insulin-dependent diabetes mellitus performing a maximum-effort cycling test indicated blood glucose levels did not change appreciably during test, while maximal oxygen uptake was substandard for their age groups. Findings suggest patients in fair to poor metabolic control can tolerate stress testing without…

  19. Foliar Water Uptake of Tamarix ramosissima from an Atmosphere of High Humidity

    PubMed Central

    Li, Shuang; Xiao, Hong-lang; Zhao, Liang; Zhou, Mao-Xian; Wang, Fang

    2014-01-01

    Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH) was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants. PMID:24982964

  20. Impact of phosphate limitation on PHA production in a feast-famine process.

    PubMed

    Korkakaki, Emmanouela; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2017-12-01

    Double-limitation systems have shown to induce polyhydroxyalkanoates (PHA) production in chemostat studies limited in e.g. carbon and phosphate. In this work the impact of double substrate limitation on the enrichment of a PHA producing community was studied in a sequencing batch process. Enrichments at different C/P concentration ratios in the influent were established and the effect on the PHA production capacity and the enrichment community structure was investigated. Experimental results demonstrated that when a double substrate limitation is imposed at a C/P ratio in the influent in a range of 150 (C-mol/mol), the P-content of the biomass and the specific substrate uptake rates decreased. Nonetheless, the PHA storage capacity remained high (with a maximum of 84 wt%). At a C/P ratio of 300, competition in the microbial community is based on phosphate uptake, and the PHA production capacity is lost. Biomass specific substrate uptake rates are a linear function of the cellular P-content, offering advantages for scaling-up the PHA production process due to lower oxygen requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Microbial endogenous response to acute inhibitory impact of antibiotics.

    PubMed

    Pala-Ozkok, I; Kor-Bicakci, G; Çokgör, E U; Jonas, D; Orhon, D

    2017-06-13

    Enhanced endogenous respiration was observed as the significant/main response of the aerobic microbial culture under pulse exposure to antibiotics: sulfamethoxazole, tetracycline and erythromycin. Peptone mixture and acetate were selected as organic substrates to compare the effect of complex and simple substrates. Experiments were conducted with microbial cultures acclimated to different sludge ages of 10 and 2 days, to visualize the effect of culture history. Evaluation relied on modeling of oxygen uptake rate profiles, reflecting the effect of all biochemical reactions associated with substrate utilization. Model calibration exhibited significant increase in values of endogenous respiration rate coefficient with all antibiotic doses. Enhancement of endogenous respiration was different with antibiotic type and initial dose. Results showed that both peptone mixture and acetate cultures harbored resistance genes against the tested antibiotics, which suggests that biomass spends cellular maintenance energy for activating the required antibiotic resistance mechanisms to survive, supporting higher endogenous decay rates. [Formula: see text]: maximum growth rate for X H (day -1 ); K S : half saturation constant for growth of X H (mg COD/L); b H : endogenous decay rate for X H (day -1 ); k h : maximum hydrolysis rate for S H1 (day -1 ); K X : hydrolysis half saturation constant for S H1 (mg COD/L); k hx : maximum hydrolysis rate for X S1 (day -1 ); K XX : hydrolysis half saturation constant for X S1 (mg COD/L); k STO : maximum storage rate of PHA by X H (day -1 ); [Formula: see text]: maximum growth rate on PHA for X H (day -1 ); K STO : half saturation constant for storage of PHA by X H (mg COD/L); X H1 : initial active biomass (mg COD/L).

  2. Calcium-ion transport by intact Ehrlich ascites-tumour cells. Role of respiratory substrates, Pi and temperature.

    PubMed

    Charlton, R R; Wenner, C E

    1978-03-15

    1. The interaction of intact Ehrlich ascites-tumour cells with Ca2+ at 37 degrees C consists of Ca2+ uptake followed by efflux from the cells. Under optimum conditions, two or three cycles of uptake and efflux are observed in the first 15 min after Ca2+ addition. 2. The respiratory substrates malate, succinate and ascorbate plus p-phenylenediamine support Ca2+ uptake. Ca2+ uptake at 37 degrees C is sensitive to the respiratory inhibitors rotenone and antimycin A when appropriate substrates are present. Ca2+ uptake and retention are inhibited by the uncoupler S-13. 3. Increasing extracellular Pi (12 to 30 mM) stimulates uncoupler-sensitive Ca2+ uptake, which reaches a maximum extent of 15 nmol/mg of protein when supported by succinate respiration. Ca2+ efflux is partially inhibited at 30 mM-Pi. 4. Optimum Ca2+ uptake occurs in the presence of succinate and Pi, suggesting that availability of substrate and Pi are rate-limiting. K. Ca2+ uptake occurs at 4 degrees C and is sensitive to uncouplers and oligomycin. Ca2+ efflux at this temperature is minimal. These data are consistent with a model in which passive diffusion of Ca2+ through the plasma membrane is followed by active uptake by the mitochondria. Ca2+ uptake is supported by substrates entering respiration at all three energy-coupling sites. Ca2+ efflux appears to be an active process with a high temperature coefficient.

  3. Effectiveness of an Upper Extremity Exercise Device Integrated With Computer Gaming for Aerobic Training in Adolescents With Spinal Cord Dysfunction

    PubMed Central

    Widman, Lana M; McDonald, Craig M; Abresch, R. Ted

    2006-01-01

    Background/Objective: To determine whether a new upper extremity exercise device integrated with a video game (GameCycle) requires sufficient metabolic demand and effort to induce an aerobic training effect and to explore the feasibility of using this system as an exercise modality in an exercise intervention. Design: Pre-post intervention. Setting: University-based research facility. Subject Population: A referred sample of 8 adolescent subjects with spina bifida (4 girls, 15.5 ± 0.6 years; 4 boys, 17.5 ± 0.9 years) was recruited to participate in the project. All subjects had some level of mobility impairment that did not allow them to participate in mainstream sports available to their nondisabled peers. Five subjects used a wheelchair full time, one used a wheelchair occasionally, but walked with forearm crutches, and 2 were fully ambulatory, but had impaired gait. Main Outcome Measures: Peak oxygen uptake, maximum work output, aerobic endurance, peak heart rate, rating of perceived exertion, and user satisfaction. Results: Six of the 8 subjects were able to reach a Vo2 of at least 50% of their Vo2 reserve while using the GameCycle. Seven of the 8 subjects reached a heart rate of at least 50% of their heart rate reserve. One subject did not reach either 50% of Vo2 reserve or 50% of heart rate reserve. Seven of the 8 subjects increased their maximum work capability after training with the GameCycle at least 3 times per week for 16 weeks. Conclusions: The data suggest that the GameCycle seems to be adequate as an exercise device to improve oxygen uptake and maximum work capability in adolescents with lower extremity disability caused by spinal cord dysfunction. The subjects in this study reported that the video game component was enjoyable and provided a motivation to exercise. PMID:17044386

  4. 64Cu-DOTATATE for Noninvasive Assessment of Atherosclerosis in Large Arteries and Its Correlation with Risk Factors: Head-to-Head Comparison with 68Ga-DOTATOC in 60 Patients.

    PubMed

    Malmberg, Catarina; Ripa, Rasmus S; Johnbeck, Camilla B; Knigge, Ulrich; Langer, Seppo W; Mortensen, Jann; Oturai, Peter; Loft, Annika; Hag, Anne Mette; Kjær, Andreas

    2015-12-01

    The somatostatin receptor subtype 2 is expressed on macrophages, an abundant cell type in the atherosclerotic plaque. Visualization of somatostatin receptor subtype 2, for oncologic purposes, is frequently made using the DOTA-derived somatostatin analogs DOTATOC or DOTATATE for PET. We aimed to compare the uptake of the PET tracers (68)Ga-DOTATOC and (64)Cu-DOTATATE in large arteries, in the assessment of atherosclerosis by noninvasive imaging technique, combining PET and CT. Further, the correlation of uptake and cardiovascular risk factors was investigated. Sixty consecutive patients with neuroendocrine tumors underwent both (68)Ga-DOTATOC and (64)Cu-DOTATATE PET/CT scans, in random order. For each scan, the maximum and mean standardized uptake values (SUVs) were calculated in 5 arterial segments. In addition, the blood-pool-corrected target-to-background ratio was calculated. Uptake of the tracers was correlated with cardiovascular risk factors collected from medical records. We found detectable uptake of both tracers in all arterial segments studied. Uptake of (64)Cu-DOTATATE was significantly higher than (68)Ga-DOTATOC in the vascular regions both when calculated as maximum and mean uptake. There was a significant association between Framingham risk score and the overall maximum uptake of (64)Cu-DOTATATE using SUV (r = 0.4; P = 0.004) as well as target-to-background ratio (r = 0.3; P = 0.04), whereas no association was found with (68)Ga-DOTATOC. The association of risk factors and maximum SUV of (64)Cu-DOTATATE was found driven by body mass index, smoking, diabetes, and coronary calcium score (P < 0.001, P = 0.01, P = 0.005, and P = 0.03, respectively). In a series of oncologic patients, vascular uptake of (68)Ga-DOTATOC and (64)Cu-DOTATATE was found, with highest uptake of the latter. Uptake of (64)Cu-DOTATATE, but not of (68)Ga-DOTATOC, was correlated with cardiovascular risk factors, suggesting a potential role for (64)Cu-DOTATATE in the assessment of atherosclerosis. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  5. Reverse Engineering of Oxygen Transport in the Lung: Adaptation to Changing Demands and Resources through Space-Filling Networks

    PubMed Central

    Hou, Chen; Gheorghiu, Stefan; Huxley, Virginia H.; Pfeifer, Peter

    2010-01-01

    The space-filling fractal network in the human lung creates a remarkable distribution system for gas exchange. Landmark studies have illuminated how the fractal network guarantees minimum energy dissipation, slows air down with minimum hardware, maximizes the gas- exchange surface area, and creates respiratory flexibility between rest and exercise. In this paper, we investigate how the fractal architecture affects oxygen transport and exchange under varying physiological conditions, with respect to performance metrics not previously studied. We present a renormalization treatment of the diffusion-reaction equation which describes how oxygen concentrations drop in the airways as oxygen crosses the alveolar membrane system. The treatment predicts oxygen currents across the lung at different levels of exercise which agree with measured values within a few percent. The results exhibit wide-ranging adaptation to changing process parameters, including maximum oxygen uptake rate at minimum alveolar membrane permeability, the ability to rapidly switch from a low oxygen uptake rate at rest to high rates at exercise, and the ability to maintain a constant oxygen uptake rate in the event of a change in permeability or surface area. We show that alternative, less than space-filling architectures perform sub-optimally and that optimal performance of the space-filling architecture results from a competition between underexploration and overexploration of the surface by oxygen molecules. PMID:20865052

  6. The evolutionary and behavioral modification of consumer responses to environmental change.

    PubMed

    Abrams, Peter A

    2014-02-21

    How will evolution or other forms of adaptive change alter the response of a consumer species' population density to environmentally driven changes in population growth parameters? This question is addressed by analyzing some simple consumer-resource models to separate the ecological and evolutionary components of the population's response. Ecological responses are always decreased population size, but evolution of traits that have effects on both resource uptake rate and another fitness-related parameter may magnify, offset, or reverse this population decrease. Evolution can change ecologically driven decreases in population size to increases; this is likely when: (1) resources are initially below the density that maximizes resource growth, and (2) the evolutionary response decreases the consumer's resource uptake rate. Evolutionary magnification of the ecological decreases in population size can occur when the environmental change is higher trait-independent mortality. Such evolution-driven decreases are most likely when uptake-rate traits increase and the resource is initially below its maximum growth density. It is common for the difference between the new eco-evolutionary equilibrium and the new ecological equilibrium to be larger than that between the original and new ecological equilibrium densities. The relative magnitudes of ecological and evolutionary effects often depend sensitively on the magnitude of the environmental change and the nature of resource growth. © 2013 Elsevier Ltd. All rights reserved.

  7. Reactivity of alkaline lignite fly ashes towards CO{sub 2} in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin Back; Michael Kuehn; Helge Stanjek

    2008-06-15

    The reaction kinetics between alkaline lignite fly ashes and CO{sub 2} (pCO{sub 2} = 0.01-0.03 MPa) were studied in a laboratory CO{sub 2} flow-through reactor at 25-75{sup o}C. The reaction is characterized by three phases that can be separated according to the predominating buffering systems and the rates of CO{sub 2} uptake. Phase I (pH > 12, < 30 min) is characterized by the dissolution of lime, the onset of calcite precipitation and a maximum uptake, the rate of which seems to be limited by dissolution of CO{sub 2}. Phase II (pH < 10.5, 10-60 min) is dominated by themore » carbonation reaction. CO{sub 2} uptake in phase III (pH < 8.3) is controlled by the dissolution of periclase (MgO) leading to the formation of dissolved magnesium-bicarbonate. Phase I could be significantly extended by increasing the solid-liquid ratios and temperature, respectively. At 75{sup o}C the rate of calcite precipitation was doubled leading to the neutralization of approximately 0.23 kg CO{sub 2} per kg fly ash within 4.5 h, which corresponds to nearly 90% of the total acid neutralizing capacity. 21 refs., 5 figs., 1 tab.« less

  8. CO2 Uptake and Fixation by a Thermoacidophilic Microbial Community Attached to Precipitated Sulfur in a Geothermal Spring▿ †

    PubMed Central

    Boyd, Eric S.; Leavitt, William D.; Geesey, Gill G.

    2009-01-01

    Carbon fixation at temperatures above 73°C, the upper limit for photosynthesis, is carried out by chemosynthetic thermophiles. Yellowstone National Park (YNP), Wyoming possesses many thermal features that, while too hot for photosynthesis, presumably support chemosynthetic-based carbon fixation. To our knowledge, in situ rates of chemosynthetic reactions at these high temperatures in YNP or other high-temperature terrestrial geothermal springs have not yet been reported. A microbial community attached to precipitated elemental sulfur (So floc) at the source of Dragon Spring (73°C, pH 3.1) in Norris Geyser Basin, YNP, exhibited a maximum rate of CO2 uptake of 21.3 ± 11.9 μg of C 107 cells−1 h−1. When extrapolated over the estimated total quantity of So floc at the spring's source, the So floc-associated microbial community accounted for the uptake of 121 mg of C h−1 at this site. On a per-cell basis, the rate was higher than that calculated for a photosynthetic mat microbial community dominated by Synechococcus spp. in alkaline springs at comparable temperatures. A portion of the carbon taken up as CO2 by the So floc-associated biomass was recovered in the cellular nucleic acid pool, demonstrating that uptake was coupled to fixation. The most abundant sequences in a 16S rRNA clone library of the So floc-associated community were related to chemolithoautotrophic Hydrogenobaculum strains previously isolated from springs in the Norris Geyser Basin. These microorganisms likely contributed to the uptake and fixation of CO2 in this geothermal habitat. PMID:19429558

  9. Shifts in Nitrification Kinetics and Microbial Community during Bioaugmentation of Activated Sludge with Nitrifiers Enriched on Sludge Reject Water

    PubMed Central

    Yu, Lifang; Peng, Dangcong; Pan, Ruiling

    2012-01-01

    This study used two laboratory-scale sequencing batch reactors (SBRs) to evaluate the shifts in nitrification kinetics and microbial communities of an activated sludge sewage treatment system (main stream) during bioaugmentation with nitrifiers cultivated on real sludge reject water (side stream). Although bioaugmentation exerted a strong influence on the microbial community and the nitrification kinetics in the main stream, there was 58% of maximum ammonia uptake rate (AUR) and 80% of maximum nitrite uptake rate (NUR) loss of the seed source after bioaugmentation. In addition, nitrite accumulation occurred during bioaugmentation due to the unequal and asynchronous increase of the AUR (from 2.88 to 13.36 mg N/L·h) and NUR (from 0.76 to 4.34 mg N/L·h). FISH results showed that ammonia oxidizing bacteria (AOB) was inclined to be washed out with effluent in contrast to nitrite oxidizing bacteria (NOB), and Nitrosococcus mobilis lineage was the dominant AOB, while the dominant NOB in the main stream gradually transferred from Nitrospira to Nitrobacter. Nitrospina and Nitrococcus which existed in the seed source could not be detected in the main stream. It can be inferred that nitrite accumulation occurred due to the mismatch of NOB structure but washed out with effluent. PMID:23091354

  10. Anaerobic Threshold: Its Concept and Role in Endurance Sport

    PubMed Central

    Ghosh, Asok Kumar

    2004-01-01

    aerobic to anaerobic transition intensity is one of the most significant physiological variable in endurance sports. Scientists have explained the term in various ways, like, Lactate Threshold, Ventilatory Anaerobic Threshold, Onset of Blood Lactate Accumulation, Onset of Plasma Lactate Accumulation, Heart Rate Deflection Point and Maximum Lactate Steady State. But all of these have great role both in monitoring training schedule and in determining sports performance. Individuals endowed with the possibility to obtain a high oxygen uptake need to complement with rigorous training program in order to achieve maximal performance. If they engage in endurance events, they must also develop the ability to sustain a high fractional utilization of their maximal oxygen uptake (%VO2 max) and become physiologically efficient in performing their activity. Anaerobic threshold is highly correlated to the distance running performance as compared to maximum aerobic capacity or VO2 max, because sustaining a high fractional utilization of the VO2 max for a long time delays the metabolic acidosis. Training at or little above the anaerobic threshold intensity improves both the aerobic capacity and anaerobic threshold level. Anaerobic Threshold can also be determined from the speed-heart rate relationship in the field situation, without undergoing sophisticated laboratory techniques. However, controversies also exist among scientists regarding its role in high performance sports. PMID:22977357

  11. Anaerobic threshold: its concept and role in endurance sport.

    PubMed

    Ghosh, Asok Kumar

    2004-01-01

    aerobic to anaerobic transition intensity is one of the most significant physiological variable in endurance sports. Scientists have explained the term in various ways, like, Lactate Threshold, Ventilatory Anaerobic Threshold, Onset of Blood Lactate Accumulation, Onset of Plasma Lactate Accumulation, Heart Rate Deflection Point and Maximum Lactate Steady State. But all of these have great role both in monitoring training schedule and in determining sports performance. Individuals endowed with the possibility to obtain a high oxygen uptake need to complement with rigorous training program in order to achieve maximal performance. If they engage in endurance events, they must also develop the ability to sustain a high fractional utilization of their maximal oxygen uptake (%VO(2) max) and become physiologically efficient in performing their activity. Anaerobic threshold is highly correlated to the distance running performance as compared to maximum aerobic capacity or VO(2) max, because sustaining a high fractional utilization of the VO(2) max for a long time delays the metabolic acidosis. Training at or little above the anaerobic threshold intensity improves both the aerobic capacity and anaerobic threshold level. Anaerobic Threshold can also be determined from the speed-heart rate relationship in the field situation, without undergoing sophisticated laboratory techniques. However, controversies also exist among scientists regarding its role in high performance sports.

  12. Hydroponic Uptake of Atrazine and Lambda-cyhalothrin in Aquatic Macrophytes

    NASA Astrophysics Data System (ADS)

    Bouldin, J. L.; Farris, J. L.; Moore, M. T.; Smith, S.; Cooper, C. M.

    2005-05-01

    Phytoremediation encompasses an array of plant-associated processes known to mitigate contaminants from soil, sediment, and water. Modification of pesticides associated with agricultural runoff includes processes directly associated with aquatic macrophytes in addition to soil geochemical modifications and associated rhizospheric degradation. Remediation attributes of two vegetative species common to agricultural drainages in the Mississippi Delta, USA, were assessed using atrazine and lambda-cyhalothrin. Concentrations used in 8-d hydroponic exposures were calculated using recommended field applications and a 5% runoff model from a 0.65-cm rainfall event on a 2.02-ha field. While greater atrazine uptake was measured in Juncus effusus, greater lambda-cyhalothrin uptake occurred in Ludwigia peploides. Maximum pesticide uptake was reached within 48 h for each exposure and subsequent translocation of pesticides to upper plant biomass occurred in macrophytes exposed to atrazine. Sequestration of 98.2% of lambda-cyhalothrin in roots of L. peploides was measured after 8 d. Translocation of lambda-cyhalothrin in J. effusus resulted in 25.4% of pesticide uptake partitioned to upper plant biomass. These individual macrophyte remediation studies measured species- and pesticide-specific uptake rates, indicating that the seasonality of pesticide applications and macrophyte emergence might interact strongly to enhance mitigation capabilities in edge-of-field conveyance structures.

  13. Hydroponic uptake of atrazine and lambda-cyhalothrin in Juncus effusus and Ludwigia peploides.

    PubMed

    Bouldin, J L; Farris, J L; Moore, M T; Smith, S; Cooper, C M

    2006-11-01

    Phytoremediation encompasses an array of plant-associated processes known to mitigate contaminants from soil, sediment, and water. Modification of pesticides associated with agricultural runoff includes processes directly associated with aquatic macrophytes in addition to changes in soil geochemistry and associated rhizospheric degradation. Remediation attributes of two vegetative species common to agricultural drainages in the Mississippi Delta, USA, were assessed using atrazine and lambda-cyhalothrin. Concentrations used in 8-d hydroponic exposures were calculated using recommended field applications and a 5% runoff model from a 0.65-cm rainfall event on a 2.02-ha field. While greater atrazine uptake was measured in Juncus effusus, greater lambda-cyhalothrin uptake occurred in Ludwigia peploides. Maximum pesticide uptake was reached within 48h for each exposure and subsequent translocation of pesticides to upper plant biomass occurred in macrophytes exposed to atrazine. Sequestration of 98.2% of lambda-cyhalothrin in roots of L. peploides was measured after 8d. Translocation of lambda-cyhalothrin in J. effusus resulted in 25.4% of pesticide uptake partitioned to upper plant biomass. These individual macrophyte remediation studies measured species- and pesticide-specific uptake rates, indicating that seasonality of pesticide applications and macrophyte emergence might interact strongly to enhance mitigation capabilities in edge-of-field conveyance structures.

  14. Dynamics of nitrogen in subtropical wetland and its uptake and storage by Pistia stratiotes.

    PubMed

    Irfan, Sufia; Shardendu

    2009-11-01

    The paper describes the dynamics of nitrogen in different components (water, soil and plants) of Kabar wetland situated in Begusarai district of Bihar. Contents of nitrogen in the natural components were determined and were compared with the rate of uptake and accumulation under the experimental conditions. Physico-chemical characteristics of natural water and of test basins were quite similar. The trend of seasonal variation of NO3(-)-N in water and total N in soil and P. stratiotes tissue was almost similar but content of nitrogen differed significantly in the different components. The accumulation of nitrogen in the tissues of P. stratiotes was 5 to 15 fold higher than the concentration of nitrogen in the water and 2 to 3 fold higher than the nitrogen content measured in the soil. Maximum accumulation of nitrogen in P. stratiotes was 15.25 mg g(-1) when the concentration of NO3(-)-N in water was 0.86 mg l(-1). Under experimental conditions six different nitrogen concentrations were supplied and determined the uptake and accumulation of nitrogen in P. stratiotes. Maximum uptake and accumulation was 82.87 g m(-2) at the end of 60 days after starting the experiment but still the rate of accumulation was in rising trend. In another part of experiment no nitrogen was left in the basins of low concentrations (0.5 and 5 mg N l(-1)) at the end of 60 days of experiment but at higher concentrations (50 and 65 mg N l(-1)) significant amount of N was left in the test basin. The biomass enhancement was parallel with nitrogen supply till 15 mg N l(-1). This was opposite to the relationship between the nitrogen accumulation in the tissues and nitrogen supply in the experimental basins. Though, potassium was added as an essential growth nutrient but its accumulation was 95g m(-2) at 5 mg l(-1).

  15. The Rate and Clinical Significance of Incidental Thyroid Uptake as Detected by Gallium-68 DOTATATE Positron Emission Tomography/Computed Tomography

    PubMed Central

    Nockel, Pavel; Millo, Corina; Keutgen, Xavier; Klubo-Gwiezdzinska, Joanna; Shell, Jasmine; Patel, Dhaval; Nilubol, Naris; Herscovitch, Peter; Sadowski, Samira M.

    2016-01-01

    Background: Gallium-68 (Ga-68) DOTATATE is a radiolabeled peptide–imaging modality that targets the somatostatin receptor (SSTR), especially subtype 2 (SSTR2). Benign and malignant thyroid tumors have been observed to express SSTR. The aim of this study was to evaluate the frequency and clinical significance of incidental atypical thyroid uptake as detected by Ga-68 DOTATATE positron emission tomography/computed tomography (PET/CT). Methods: A retrospective analysis was conducted of a prospective study in which 237 patients underwent Ga-68 DOTATATE PET/CT as part of a work-up for metastatic and unknown primary neuroendocrine tumors. The types of uptake in the thyroid gland (focal/diffuse) and maximum standardized uptake value (SUVmax) levels were evaluated and compared with the background uptake in the liver and salivary glands. Results: Of 237 patients, 26 (11%) had atypical thyroid uptake as detected by Ga-68 DOTATATE PET/CT. There were no significant clinical or biochemical variables associated with atypical thyroid uptake. Fourteen (54%) patients had positive focal uptake, and 12 (46%) patients had diffuse uptake. Of the 14 patients with atypical focal uptake, 10 (71%) had thyroid nodules on the corresponding side, as detected by anatomic imaging. Three of 10 patients (21%) were found to have papillary thyroid cancer, and seven (70%) had adenomatoid nodules. Of the 12 patients with diffuse increased uptake, six (50%) had a history of hypothyroidism, five (42%) had chronic lymphocytic thyroiditis, and one (8%) had nontoxic multinodular goiter. Conclusions: Patients with an incidental focal abnormal thyroid uptake on Ga-68 DOTATATE PET/CT scan should have further clinical evaluation to exclude a diagnosis of thyroid cancer. PMID:27094616

  16. Preliminary Studies to Characterize the Temporal Variation of Micronutrient Composition of the Above Ground Organs of Maize and Correlated Uptake Rates

    PubMed Central

    Martins, Karla Vilaça; Dourado-Neto, Durval; Reichardt, Klaus; de Jong van Lier, Quirijn; Favarin, José Laércio; Sartori, Felipe Fadel; Felisberto, Guilherme; Mello, Simone da Costa

    2017-01-01

    The improvement of agronomic practices and the use of high technology in field crops contributes for significant increases in maize productivity, and may have altered the dynamics of nutrient uptake and partition by the plant. Official recommendations for fertilizer applications to the maize crop in Brazil and in many countries are based on critical soil nutrient contents and are relatively outdated. Since the factors that interact in an agricultural production system are dynamic, mathematical modeling of the growth process turns out to be an appropriate tool for these studies. Agricultural modeling can expand our knowledge about the interactions prevailing in the soil-plant-atmosphere system. The objective of this study is to propose a methodology for characterizing the micronutrient composition of different organs and their extraction, and export during maize crop development, based on modeling nutrient uptake, crop potential evapotranspiration and micronutrient partitioning in the plant, considering the production environment. This preliminary characterization study (experimental growth analysis) considers the temporal variation of the micronutrient uptake rate in the aboveground organs, which defines crop needs and the critical nutrient content of the soil solution. The methodology allowed verifying that, initially, the highest fraction of dry matter, among aboveground organs, was assigned to the leaves. After the R1 growth stage, the largest part of dry matter was partitioned to the stalk, which in this growth stage is the main storage organ of the maize plant. During the reproductive phase, the highest fraction of dry matter was conferred to the reproductive organs, due to the high demand for carbohydrates for grain filling. The micronutrient (B, Cu, Fe, Mn, and Zn) content follows a power model, with higher values for the initial growth stages of development and leveling off to minimum values at the R6 growth stage. The proposed model allows to verify that fertilizer recommendations should be related to the temporal variability of micronutrient absorption rates, in contrast to the classic recommendation based on the critical soil micronutrient content. The maximum micronutrient absorption rates occur between the reproductive R4 and R5 growth stages. These evaluations allowed to predict the maximum micronutrient requirements, considered equal to respective stalk sap concentrations. PMID:28919900

  17. Phosphorus dynamics in biogeochemically distinct regions of the southeast subtropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Duhamel, Solange; Björkman, Karin M.; Repeta, Daniel J.; Karl, David M.

    2017-02-01

    The southeast subtropical Pacific Ocean was sampled along a zonal transect between the coasts of Chile and Easter Island. This remote area of the world's ocean presents strong gradients in physical (e.g., temperature, density and light), chemical (e.g., salinity and nutrient concentrations) and microbiological (e.g., cell abundances, biomass and specific growth rates) properties. The goal of this study was to describe the phosphorus (P) dynamics in three main ecosystems along this transect: the upwelling regime off the northern Chilean coast, the oligotrophic area associated with the southeast subtropical Pacific gyre and the transitional area in between these two biomes. We found that inorganic phosphate (Pi) concentrations were high and turnover times were long (>210 nmol l-1 and >31 d, respectively) in the upper water column, along the entire transect. Pi uptake rates in the gyre were low (euphotic layer integrated rates were 0.26 mmol m-2 d-1 in the gyre and 1.28 mmol m-2 d-1 in the upwelling region), yet not only driven by decreases in particle mass or cell abundance (particulate P- and cell- normalized Pi uptake rates in the euphotic layer were ∼1-4 times and ∼3-15 times lower in the gyre than in the upwelling, respectively). However these Pi uptake rates were at or near the maximum Pi uptake velocity (i.e., uptake rates in Pi amended samples were not significantly different from those at ambient concentration: 1.5 and 23.7 nmol l-1 d-1 at 50% PAR in the gyre and upwelling, respectively). Despite the apparent Pi replete conditions, selected dissolved organic P (DOP) compounds were readily hydrolyzed. Nucleotides were the most bioavailable of the DOP substrates tested. Microbes actively assimilated adenosine-5‧-triphosphate (ATP) leading to Pi and adenosine incorporation as well as Pi release to the environment. The southeast subtropical Pacific Ocean is a Pi-sufficient environment, yet DOP hydrolytic processes are maintained and contribute to P-cycling across the wide range of environmental conditions present in this ecosystem.

  18. Improving phosphorus uptake and wheat productivity by phosphoric acid application in alkaline calcareous soils.

    PubMed

    Akhtar, Muhammad; Yaqub, Muhammad; Naeem, Asif; Ashraf, Muhammad; Hernandez, Vicente Espinosa

    2016-08-01

    Low phosphorus (P) efficiency from existing granular fertilisers necessitates searching for efficient alternatives to improve wheat productivity in calcareous soil. Multi-location trials have shown that phosphoric acid (PA) produced 16% higher wheat grain over commercial P fertilisers, i.e. diammonium phosphate (DAP) and triple superphosphate (TSP). Methods of P application significantly influenced grain yield and the efficiency of methods was observed in the order: PA placement below seed > PA, DAP or TSP fertigation > DAP or TSP broadcast. The sub-surface application of PA produced highest grain yields (mean of all rates), i.e. 4669, 4158 and 3910 kg ha(-1) in Bagh, Bhalwal and Shahpur soil series, respectively. Phosphoric acid at 66 kg P2 O5 ha(-1) was found more effective in increasing gain yield over that of control. Trend in grain P uptake was found similar to that observed for grain yield. Maximum P uptake by grain was recorded at the highest P rate and the lowest at zero P. The significant increase in P uptake with P rates was generally related to the increase in yield rather than its concentration in grain. Phosphorus agronomic efficiency (PAE) and phosphorus recovery efficiency (PRE) were found higher at lower P rate (44 kg P2 O5 ha(-1) ) and decreased with P application. However, PA applied by the either method resulted in higher PAE and PRE compared to DAP and TSP. Phosphoric acid is suggested as an efficient alternative to commercial granular P fertilisers for wheat production in alkaline calcareous soils. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement

    PubMed Central

    Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon

    2016-01-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS’s optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust’s coarse particle size and bulking effect. PMID:26954138

  20. Evaluation of Optimum Moisture Content for Composting of Beef Manure and Bedding Material Mixtures Using Oxygen Uptake Measurement.

    PubMed

    Kim, Eunjong; Lee, Dong-Hyun; Won, Seunggun; Ahn, Heekwon

    2016-05-01

    Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

  1. In vitro Cellular Uptake and Dimerization of Signal Transducer and Activator of Transcription-3 (STAT3) Identify the Photosensitizing and Imaging-Potential of Isomeric Photosensitizers Derived from Chlorophyll-a and Bacteriochlorophyll-a

    PubMed Central

    Srivatsan, Avinash; Wang, Yanfang; Joshi, Penny; Sajjad, Munawwar; Chen, Yihui; Liu, Chao; Thankppan, Krishnakumar; Missert, Joseph R.; Tracy, Erin; Morgan, Janet; Rigual, Nestor; Baumann, Heinz; Pandey, Ravindra K.

    2011-01-01

    Among the photosensitizers investigated, both ring-D and ring-B reduced chlorins containing the m-iodobenzyloxyethyl group at position-3 and a carboxylic acid functionality at position-172 showed highest uptake by tumor cells and light-dependent photo reaction that correlated with maximal tumor-imaging [positron emission tomography (PET) and fluorescence] and long-term photodynamic therapy (PDT) efficacy in BALB/c mice bearing Colon26 tumors. However, among the ring-D reduced compounds, the isomer containing 1′-m-iobenzyloxyethyl group at position-3 was more effective than the corresponding 8-(1′-m-iodobenzyloxyethyl) derivative. All photosensitizers showed maximum uptake by tumor tissue 24h after injection and the tumors exposed with light at low fluence and fluence rates (128 J/cm2, 14 mW/cm2) produced significantly enhanced tumor eradication than those exposed at higher fluence and fluence rate (135 J/cm,2 75mW/cm2). Interestingly, dose-dependent cellular uptake of the compounds and light-dependent STAT3 dimerization have emerged as sensitive rapid indicators for PDT efficacy in vitro and in vivo and could be used as in vitro/in vivo biomarkers for evaluating and optimizing the in vivo treatment parameters of the existing and new PDT candidates. PMID:21842893

  2. Influence of temperature on rate of uptake and subsequent horizontal transfer of [14C]fipronil by eastern subterranean termites (Isoptera: Rhinotermitidae).

    PubMed

    Spomer, Neil A; Kamble, Shripat T; Warriner, Richard A; Davis, Robert W

    2008-06-01

    The effect of temperature on [14C]fipronil uptake and transfer from donor (D) to recipient (R) Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae) workers was evaluated. Test chambers used in the fipronil uptake study were constructed from petri dishes containing autoclaved soil treated with 1 ppm [14C]fipronil (1.14 microCi of total radioactivity per petri dish), distilled water, and R. flavipes workers. Test chambers were held in environmental growth chambers preset at 12, 17, 22, 27, and 32 degrees C. For the fipronil transfer study, donor termites stained with Nile blue-A were exposed to soil treated with 1 ppm [14C]fipronil for 2 h. Donors were then combined with unexposed recipient termite workers at either 1D:5R, 1D:10R, or 1D:20R ratios. Test chambers consisted of a nest and feeding chamber connected by a piece of polyethylene tube and held in growth chambers at 12, 17, 22, 27, and 32 degrees C. Worker termites were sampled over time and the amount of [14C]fipronil present was measured by scintillation counting. Some degree of uptake and transfer occurred at all temperatures and ratios in this study. The highest level of uptake occurred by termites held at 22-32 degrees C, followed decreasingly by 17 and 12 degrees C. Maximum transfer of [14C]fipronil occurred at the higher ratios (1:5 > 1:10 > 1:20) of donors to recipients. Data presented in this study suggest that temperature is one of the key factors affecting the rate of uptake and subsequent horizontal transfer of [14C]fipronil in subterranean termites.

  3. Characterization of ursodeoxycholic and norursodeoxycholic acid as substrates of the hepatic uptake transporters OATP1B1, OATP1B3, OATP2B1 and NTCP.

    PubMed

    König, Jörg; Klatt, Sabine; Dilger, Karin; Fromm, Martin F

    2012-08-01

    Ursodeoxycholic acid (UDCA) is the only approved treatment for primary biliary cirrhosis, and norursodeoxycholic acid (norUDCA) is currently tested in clinical trials for future treatment of primary sclerosing cholangitis because of beneficial effects in cholestatic Mdr2 knock-out mice. Uptake of UDCA and norUDCA into hepatocytes is believed to be a prerequisite for subsequent metabolism and therapeutic action. However, the molecular determinants of hepatocellular uptake of UDCA and norUDCA are poorly understood. We therefore investigated whether UDCA and norUDCA are substrates of the hepatic uptake transporters OATP1B1, OATP1B3, OATP2B1 and Na(+) -taurocholate co-transporting polypeptide (NTCP), which are localized in the basolateral membrane of hepatocytes. Uptake of [(3) H]UDCA and [(14) C]norUDCA into Human embryonic kidney (HEK) cells stably expressing OATP1B1, OATP1B3, OATP2B1 or NTCP was investigated and compared with uptake into vector control cells. Uptake ratios were calculated by dividing uptake into transporter-transfected cells by uptake into respective control cells. Uptake ratios of OATP1B1-, OATP1B3- and OATP2B1-mediated UDCA and norUDCA uptake were at maximum 1.23 and 1.49, respectively. Uptake of UDCA was significantly higher into HEK-NTCP cells only at the lowest tested concentration (1 μM, p < 0.001) compared with the control cells with an uptake ratio of 1.34-fold. NorUDCA was not significantly transported by NTCP. The low uptake rates suggest that OATP1B1, OATP1B3, OATP2B1 and NTCP are not relevant for hepatocellular uptake and effects of UDCA and norUDCA in human beings. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.

  4. Isolation of a spontaneous CHO amino acid transport mutant by a combination of tritium suicide and replica plating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dantzig, A.H.; Slayman, C.W.; Adelberg, E.A.

    A spontaneous transport mutant of Chinese hamster ovary cells, CHY-1, was isolated by a combination of (/sup 3/H)proline suicide and replica plating. The mutant took up less tritium than the parent, resulting in a lower killing rate during storage. Transport by four separate amino acid transport systems (A, ASC, L, Ly+) was examined. The CHY-1 mutant exhibited normal uptake via the ASC, L, and Ly+ systems. By contrast, uptake of the most specific substrate of the A system, 2-(methylamino)-isobutyric acid, was significantly reduced at low, but not high, concentrations, due to a 3.5-fold increase in Km and a 1.5-fold increasemore » in Vmax. Taken together, these data suggest that the CHY-1 mutation may be in the structural gene coding for the A transport protein. The tritium suicide procedure is discussed, and general equations are derived to predict the maximum storage time for the survival of one mutant cell and the optimum size of the cell population for maximum mutant enrichment.« less

  5. Comparative Computational Modeling of Airflows and Vapor Dosimetry in the Respiratory Tracts of Rat, Monkey, and Human

    PubMed Central

    Corley, Richard A.

    2012-01-01

    Computational fluid dynamics (CFD) models are useful for predicting site-specific dosimetry of airborne materials in the respiratory tract and elucidating the importance of species differences in anatomy, physiology, and breathing patterns. We improved the imaging and model development methods to the point where CFD models for the rat, monkey, and human now encompass airways from the nose or mouth to the lung. A total of 1272, 2172, and 135 pulmonary airways representing 17±7, 19±9, or 9±2 airway generations were included in the rat, monkey and human models, respectively. A CFD/physiologically based pharmacokinetic model previously developed for acrolein was adapted for these anatomically correct extended airway models. Model parameters were obtained from the literature or measured directly. Airflow and acrolein uptake patterns were determined under steady-state inhalation conditions to provide direct comparisons with prior data and nasal-only simulations. Results confirmed that regional uptake was sensitive to airway geometry, airflow rates, acrolein concentrations, air:tissue partition coefficients, tissue thickness, and the maximum rate of metabolism. Nasal extraction efficiencies were predicted to be greatest in the rat, followed by the monkey, and then the human. For both nasal and oral breathing modes in humans, higher uptake rates were predicted for lower tracheobronchial tissues than either the rat or monkey. These extended airway models provide a unique foundation for comparing material transport and site-specific tissue uptake across a significantly greater range of conducting airways in the rat, monkey, and human than prior CFD models. PMID:22584687

  6. Successful resection of a giant mediastinal non-seminomatous germ cell tumor showing fluorodeoxyglucose accumulation after neoadjuvant chemotherapy: report of a case.

    PubMed

    Takada, Kazuki; Morodomi, Yosuke; Okamoto, Tatsuro; Suzuki, Yuzo; Fujishita, Takatoshi; Kitahara, Hirokazu; Shimamatsu, Shinichiro; Kohno, Mikihiro; Kawano, Daigo; Hidaka, Noriko; Nakanishi, Yoichi; Maehara, Yoshihiko

    2014-05-01

    A 32-year-old man presented with a mediastinal non-seminomatous germ cell tumor showing fluorodeoxyglucose (FDG) accumulation (maximum standardized uptake value = 22.21) and extremely elevated blood alpha-fetoprotein (AFP) level (9203.0 ng/ml). The patient underwent 4 cycles of neoadjuvant chemotherapy (cisplatin, bleomycin, and etoposide), which normalized the AFP level and reduced the tumor size, allowing complete resection without a support of extracorporeal circulation. Despite preoperative positron emission tomography revealing increased FDG uptake in the residual tumor (maximum standardized uptake value = 3.59), the pathologic evaluation revealed that no viable germ cell tumor cells remained. We believe FDG uptake should not be used as a criterion for surgical resection after neoadjuvant chemotherapy. It is appropriate to resect the residual tumor regardless of FDG uptake after induction chemotherapy if a tumor is resectable and the AFP level normalizes.

  7. pH-Dependent Uptake of Fumaric Acid in Saccharomyces cerevisiae under Anaerobic Conditions

    PubMed Central

    Jamalzadeh, Elaheh; Verheijen, Peter J. T.; Heijnen, Joseph J.

    2012-01-01

    Microbial production of C4 dicarboxylic acids from renewable resources has gained renewed interest. The yeast Saccharomyces cerevisiae is known as a robust microorganism and is able to grow at low pH, which makes it a suitable candidate for biological production of organic acids. However, a successful metabolic engineering approach for overproduction of organic acids requires an incorporation of a proper exporter to increase the productivity. Moreover, low-pH fermentations, which are desirable for facilitating the downstream processing, may cause back diffusion of the undissociated acid into the cells with simultaneous active export, thereby creating an ATP-dissipating futile cycle. In this work, we have studied the uptake of fumaric acid in S. cerevisiae in carbon-limited chemostat cultures under anaerobic conditions. The effect of the presence of fumaric acid at different pH values (3 to 5) has been investigated in order to obtain more knowledge about possible uptake mechanisms. The experimental results showed that at a cultivation pH of 5.0 and an external fumaric acid concentration of approximately 0.8 mmol · liter−1, the fumaric acid uptake rate was unexpectedly high and could not be explained by diffusion of the undissociated form across the plasma membrane alone. This could indicate the presence of protein-mediated import. At decreasing pH levels, the fumaric acid uptake rate was found to increase asymptotically to a maximum level. Although this observation is in accordance with protein-mediated import, the presence of a metabolic bottleneck for fumaric acid conversion under anaerobic conditions could not be excluded. PMID:22113915

  8. Effects of residence time on summer nitrate uptake in Mississippi River flow-regulated backwaters

    USGS Publications Warehouse

    James, W.F.; Richardson, W.B.; Soballe, D.M.

    2008-01-01

    Nitrate uptake may be improved in regulated floodplain rivers by increasing hydrological connectivity to backwaters. We examined summer nitrate uptake in a series of morphologically similar backwaters on the Upper Mississippi River receiving flow-regulated nitrate loads via gated culverts. Flows into individual backwaters were held constant over a summer period but varied in the summers of 2003 and 2004 to provide a range of hydraulic loads and residence times (??). The objectives were to determine optimum loading and ?? for maximum summer uptake. Higher flow adjustment led to increased loading but lower ?? and contact time for uptake. For highest flows, ?? was less than 1 day resulting in lower uptake rates (Unet, 4000 m). For low flows, ?? was greater than 5 days and U% approached 100%, but Unet was 200 mg m-2 day-1. Snet was < half the length of the backwaters under these conditions indicating that most of the load was assimilated in the upper reaches, leading to limited delivery to lower portions. Unet was maximal (384-629 mg m-2 day-1) for intermediate flows and ?? ranging between 1 and 1.5 days. Longer Snet (2000-4000 m) and lower U% (20-40%) reflected limitation of uptake in upper reaches by contact time, leading to transport to lower reaches for additional uptake. Uptake by ???10 000 ha of reconnected backwaters along the Upper Mississippi River (13% of the total backwater surface area) at a Unet of ???630 mg m-2 day-1 would be the equivalent of ???40% of the summer nitrate load (155 mg day-1) discharged from Lock and Dam 4. These results indicate that backwater nitrate uptake can play an important role in reducing nitrate loading to the Gulf of Mexico. Copyright ?? 2008 John Wiley & Sons, Ltd.

  9. Contribution of sediment fluxes and transformations to the summer nitrogen budget of an Upper Mississippi River backwater system

    USGS Publications Warehouse

    James, W.F.; Richardson, W.B.; Soballe, D.M.

    2008-01-01

    Routing nitrate through backwaters of regulated floodplain rivers to increase retention could decrease loading to nitrogen (N)-sensitive coastal regions. Sediment core determinations of N flux were combined with inflow-outflow fluxes to develop mass balance approximations of N uptake and transformations in a flow-controlled backwater of the Upper Mississippi River (USA). Inflow was the dominant nitrate source (>95%) versus nitrification and varied as a function of source water concentration since flow was constant. Nitrate uptake length increased linearly, while uptake velocity decreased linearly, with increasing inflow concentration to 2 mg l-1, indicating limitation of N uptake by loading. N saturation at higher inflow concentration coincided with maximum uptake capacity, 40% uptake efficiency, and an uptake length 2 times greater than the length of the backwater. Nitrate diffusion and denitrification in sediment accounted for 27% of the backwater nitrate retention, indicating that assimilation by other biota or denitrification on other substrates were the dominant uptake mechanisms. Ammonium export from the backwater was driven by diffusive efflux from the sediment. Ammonium increased from near zero at the inflow to a maximum mid-lake, then declined slightly toward the outflow due to uptake during transport. Ammonium export was small compared to nitrate retention. ?? 2007 Springer Science+Business Media B.V.

  10. Investigating the inhibitory effect of cyanide, phenol and 4-nitrophenol on the activated sludge process employed for the treatment of petroleum wastewater.

    PubMed

    Inglezakis, V J; Malamis, S; Omirkhan, A; Nauruzbayeva, J; Makhtayeva, Z; Seidakhmetov, T; Kudarova, A

    2017-12-01

    In this work, the inhibitory effect of cyanide, phenol and 4-nitrophenol on the activated sludge process was investigated. The inhibition of the aerobic oxidation of organic matter, nitrification and denitrification were examined in batch reactors by measuring the specific oxygen uptake rate (sOUR), the specific ammonium uptake rate (sAUR) and the specific nitrogen uptake rate (sNUR) respectively. The tested cyanide, phenol and 4-nitrophenol concentrations were 0.2-1.7 mg/L, 4.8-73.1 mg/L and 8.2-73.0 mg/L respectively. Cyanide was highly toxic as it significantly (>50%) inhibited the activity of autotrophic biomass, heterotrophic biomass under aerobic conditions and denitrifiers even at relatively low concentrations (1.0-1.7 mgCN - /L). The determination of the half maximum inhibitory concentration (IC 50 ) confirmed this, since for cyanide IC 50 values were very low for the examined bioprocesses (<1.5 mg/L). On the other hand, the IC 50 values for phenol and 4-nitrophenol were much higher (>25 mg/L) for the tested bioprocesses since appreciable concentrations were required to accomplish significant inhibition. The autotrophic bacteria were more sensitive to phenol than the aerobic heterotrophs. The denitrifiers were found to be very resistant to phenol. Copyright © 2016. Published by Elsevier Ltd.

  11. Sympathomimetic effects of MIBG: comparison with tyramine.

    PubMed

    Graefe, K H; Bossle, F; Wölfel, R; Burger, A; Souladaki, M; Bier, D; Dutschka, K; Farahati, J; Bönisch, H

    1999-08-01

    Because nothing is known about whether metaiodobenzylguanidine (MIBG) has tyramine-like actions, the sympathomimetic effects of MIBG were determined in the isolated rabbit heart and compared with those of tyramine. Spontaneously beating rabbit hearts were perfused with Tyrode's solution (Langendorff technique; 37 degrees C; 26 mL/min), and the heart rate as well as the norepinephrine and dopamine overflow into the perfusate was measured before and after doses of MIBG or tyramine (0.03-10 micromol) given as bolus injections (100 microL) into the aortic cannula. Km and Vmax values for the neuronal uptake (uptake1) of 125I-MIBG and 14C-tyramine were obtained in human neuroblastoma (SK-N-SH) cells. The Ki of MIBG for inhibition of the 3H-catecholamine uptake mediated by the vesicular monoamine transporter was determined in membrane vesicles obtained from bovine chromaffin granules and compared with the previously reported Ki value for tyramine determined under identical experimental conditions. By producing increases in heart rate and norepinephrine overflow, both compounds had dose-dependent sympathomimetic effects in the rabbit heart. MIBG was much less effective than tyramine in increasing heart rate (maximum effect 59 versus 156 beats/min) and norepinephrine overflow (maximum effect 35 versus 218 pmol/g). Tyramine also caused increases in dopamine overflow, whereas MIBG was a poor dopamine releaser. At a dose of 10 micromol, the increase in heart rate lasted more than 60 min after MIBG and about 20 min after tyramine injection. Accordingly, the norepinephrine overflow caused by 10 micromol MIBG and tyramine declined with half-lives of 57.8 and 2.2 min, respectively. The effects of both drugs were drastically reduced in hearts exposed to 2 micromol/L desipramine. The kinetic parameters characterizing the saturation of neuronal uptake by 125I-MIBG and 14C-tyramine were similar for the two compounds: Km values of MIBG and tyramine were 1.6 and 1.7 micromol/L, respectively, and Vmax values of MIBG and tyramine were 43 and 37 pmol/mg protein/min, respectively. However, in inhibiting the vesicular 3H-catecholamine uptake, MIBG was eight times less potent than tyramine. MIBG is much less effective than tyramine as an indirect sympathomimetic agent. This is probably a result of its relatively low affinity for the vesicular monoamine transporter and explains the relatively poor ability of the drug to mobilize norepinephrine stored in synaptic vesicles. The long duration of MIBG action results primarily from the drug not being metabolized by monoamine oxidase. The sympathomimetic effects of MIBG described here are not likely to come into play in patients given diagnostic or common therapeutic doses of radioiodinated MIBG.

  12. High Permeation Rates in Liposome Systems Explain Rapid Glyphosate Biodegradation Associated with Strong Isotope Fractionation.

    PubMed

    Ehrl, Benno N; Mogusu, Emmanuel O; Kim, Kyoungtea; Hofstetter, Heike; Pedersen, Joel A; Elsner, Martin

    2018-06-19

    Bacterial uptake of charged organic pollutants such as the widely used herbicide glyphosate is typically attributed to active transporters, whereas passive membrane permeation as an uptake pathway is usually neglected. For 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC) liposomes, the pH-dependent apparent membrane permeation coefficients ( P app ) of glyphosate, determined by nuclear magnetic resonance (NMR) spectroscopy, varied from P app (pH 7.0) = 3.7 (±0.3) × 10 -7 m·s -1 to P app (pH 4.1) = 4.2 (±0.1) × 10 -6 m·s -1 . The magnitude of this surprisingly rapid membrane permeation depended on glyphosate speciation and was, at circumneutral pH, in the range of polar, noncharged molecules. These findings point to passive membrane permeation as a potential uptake pathway during glyphosate biodegradation. To test this hypothesis, a Gram-negative glyphosate degrader, Ochrobactrum sp. FrEM, was isolated from glyphosate-treated soil and glyphosate permeation rates inferred from the liposome model system were compared to bacterial degradation rates. Estimated maximum permeation rates were, indeed, 2 orders of magnitude higher than degradation rates of glyphosate. In addition, biodegradation of millimolar glyphosate concentrations gave rise to pronounced carbon isotope fractionation with an apparent kinetic isotope effect, AKIE carbon , of 1.014 ± 0.003. This value lies in the range typical of non-masked enzymatic isotope fractionation demonstrating that glyphosate biodegradation was not subject to mass transfer limitations and glyphosate exchange across the cell membrane was rapid relative to enzymatic turnover.

  13. Phase-dependent phytoavailability of thallium--a synthetic soil experiment.

    PubMed

    Vaněk, Aleš; Mihaljevič, Martin; Galušková, Ivana; Chrastný, Vladislav; Komárek, Michael; Penížek, Vít; Zádorová, Tereza; Drábek, Ondřej

    2013-04-15

    The study deals with the environmental stability of Tl-modified phases (ferrihydrite, goethite, birnessite, calcite and illite) and phytoavailability of Tl in synthetically prepared soils used in a model vegetation experiment. The data presented here clearly demonstrate a strong relationship between the mineralogical position of Tl in the model soil and its uptake by the plant (Sinapis alba L.). The maximum rate of Tl uptake was observed for plants grown on soil containing Tl-modified illite. In contrast, soil enriched in Ksat-birnessite had the lowest potential for Tl release and phytoaccumulation. Root-induced dissolution of synthetic calcite and ferrihydrite in the rhizosphere followed by Tl mobilization was detected. Highly crystalline goethite was more stable in the rhizosphere, compared to ferrihydrite, leading to reduced biological uptake of Tl. Based on the results obtained, the mineralogical aspect must be taken into account prior to general environmental recommendations in areas affected by Tl. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Increased Phosphorus Uptake by Wheat and Field Beans Inoculated with a Phosphorus-Solubilizing Penicillium bilaji Strain and with Vesicular-Arbuscular Mycorrhizal Fungi.

    PubMed

    Kucey, R M

    1987-12-01

    Greenhouse and field experiments were conducted to test the effect of a P-solubilizing isolate of Penicillium bilaji on the availability of Idaho rock phosphate (RP) in a calcareous soil. Under controlled greenhouse conditions, inoculation of soils with P. bilaji along with RP at 45 mug of P per g of soil resulted in plant dry matter production and P uptake by wheat (Triticum aestivum) and beans (Phaseolus vulgaris) that were not significantly different from the increases in dry matter production and P uptake caused by the addition of 15 mug of P per g of soil as triple superphosphate. Addition of RP alone had no effect on plant growth. Addition of vesicular-arbuscular mycorrhizal fungi was necessary for maximum effect in the sterilized soil in the greenhouse experiment. Under field conditions, a treatment consisting of RP (20 kg of P per ha of soil) plus P. bilaji plus straw resulted in wheat yields and P uptake equivalent to increases due to the addition of monoammonium phosphate added at an equivalent rate of P. RP added alone had no effect on wheat growth or P uptake. The results indicate that a biological system of RP solubilization can be used to increase the availability of RP added to calcareous soils.

  15. Phosphate uptake studies of cross-linked chitosan bead materials.

    PubMed

    Mahaninia, Mohammad H; Wilson, Lee D

    2017-01-01

    A systematic experimental study is reported that provides a molecular based understanding of cross-linked chitosan beads and their adsorption properties in aqueous solution containing phosphate dianion (HPO 4 2- ) species. Synthetically modified chitosan using epichlorohydrin and glutaraldehyde cross-linkers result in surface modified beads with variable hydrophile-lipophile character and tunable HPO 4 2- uptake properties. The kinetic and thermodynamic adsorption properties of cross-linked chitosan beads with HPO 4 2- species were studied in aqueous solution. Complementary structure and physicochemical characterization of chitosan beads via potentiometry, Raman spectroscopy, DSC, and dye adsorption measurements was carried out to establish structure-property relationships. The maximum uptake (Q m ) of bead systems with HPO 4 2- at equilibrium was 52.1mgg -1 ; whereas, kinetic uptake results for chitosan bead/phosphate systems are relatively rapid (0.111-0.113min -1 ) with an intraparticle diffusion rate-limiting step. The adsorption process follows a multi-step pathway involving inner- and outer-sphere complexes with significant changes in hydration. Phosphate uptake strongly depends on the composition and type of cross-linker used for preparation of chitosan beads. The adsorption isotherms and structural characterization of bead systems illustrate the role of surface charge, hydrophile-lipophile balance, adsorption site accessibility, and hydration properties of the chitosan bead surface. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Cardiorespiratory performance during prolonged swimming tests with salmonids: a perspective on temperature effects and potential analytical pitfalls.

    PubMed

    Farrell, A P

    2007-11-29

    A prolonged swimming trial is the most common approach in studying steady-state changes in oxygen uptake, cardiac output and tissue oxygen extraction as a function of swimming speed in salmonids. The data generated by these sorts of studies are used here to support the idea that a maximum oxygen uptake is reached during a critical swimming speed test. Maximum oxygen uptake has a temperature optimum. Potential explanations are advanced to explain why maximum aerobic performance falls off at high temperature. The valuable information provided by critical swimming tests can be confounded by non-steady-state swimming behaviours, which typically occur with increasing frequency as salmonids approach fatigue. Two major concerns are noted. Foremost, measurements of oxygen uptake during swimming can considerably underestimate the true cost of transport near critical swimming speed, apparently in a temperature-dependent manner. Second, based on a comparison with voluntary swimming ascents in a raceway, forced swimming trials in a swim tunnel respirometer may underestimate critical swimming speed, possibly because fish in a swim tunnel respirometer are unable to sustain a ground speed.

  17. Examining urea flux across the intestine of the spiny dogfish, Squalus acanthias.

    PubMed

    Gary Anderson, W; McCabe, Chris; Brandt, Catherine; Wood, Chris M

    2015-03-01

    Recent examination of urea flux in the intestine of the spiny dogfish shark, Squalus acanthias, has shown that feeding significantly enhances urea uptake across the intestine, and this was significantly inhibited following mucosal addition of phloretin. The present study examined potential mechanisms of urea uptake across the dogfish intestine in starved and fed dogfish. Unidirectional flux chambers were used to examine the kinetics of urea uptake, and to determine the influence of sodium, ouabain, competitive urea analogues, and phloretin on urea uptake across the gut of fed dogfish. Intestinal epithelial preparations from starved and fed dogfish were mounted in Ussing chambers to examine the effect of phloretin on bidirectional solute transport across the intestine. In the unidirectional studies, the maximum uptake rate of urea was found to be 35.3±6.9 μmol.cm(-2).h(-1) and Km was found to be 291.8±9.6 mM in fed fish, and there was a mild inhibition of urea uptake following mucosal addition of competitive agonists. Addition of phloretin, Na-free Ringers and ouabain to the mucosal side of intestinal epithelia also led to a significant reduction in urea uptake in fed fish. In the Ussing chamber studies there was a net influx of urea in fed fish and a small insignificant efflux in starved fish. Addition of phloretin blocked urea uptake in fed fish when added to the mucosal side. Furthermore, phloretin had no effect on ion transport across the intestinal epithelia with the exception of the divalent cations, magnesium and calcium. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Diffusional limits to the consumption of atmospheric methane by soils

    USGS Publications Warehouse

    Striegl, Robert G.

    1993-01-01

    Net transport of atmospheric gases into and out of soil systems is primarily controlled by diffusion along gas partial pressure gradients. Gas fluxes between soil and the atmosphere can therefore be estimated by a generalization of the equation for ordinary gaseous diffusion in porous unsaturated media. Consumption of CH4 by methylotrophic bacteria in the top several centimeters of soil causes the uptake of atmospheric CH4 by aerated soils. The capacity of the methylotrophs to consume CH4 commonly exceeds the potential of CH4 to diffuse from the atmosphere to the consumers. The maximum rate of uptake of atmospheric CH4 by soil is, therefore, limited by diffusion and can be calculated from soil physical properties and the CH4 concentration gradient. The CH4 concentration versus depth profile is theoretically described by the equation for gaseous diffusion with homogeneous chemical reaction in porous unsaturated media. This allows for calculation of the in situ rate of CH4 consumption within specified depth intervals.

  19. Modeling studies investigating the causes of preferential depletion of silicic acid relative to nitrate during SERIES, a mesoscale iron enrichment in the NE subarctic Pacific

    NASA Astrophysics Data System (ADS)

    Takeda, S.; Yoshie, N.; Boyd, P. W.; Yamanaka, Y.

    2006-10-01

    Numerical modeling experiments were conducted to examine the reasons for observed changes in the silicic acid ([Si(OH) 4]) to nitrate ([NO3-]) drawdown ratio after the onset of algal iron stress during SERIES. During phytoplankton blooms and immediately after them, cells encounter a range of iron stress (between iron-replete and iron-deplete) and therefore show a range of growth rates. For these reasons, the potential influence of phytoplankton growth rate, under conditions of algal iron stress, on silicic acid and nitrate depletion were investigated in numerical experiments by altering the timing of a shift in the [Si(OH) 4]: [NO3-] uptake ratio. These simulations suggested that the continued growth of iron-stressed phytoplankton at sub-maximum rates, with an elevated [Si(OH) 4]: [NO3-] uptake ratio, induced depletion of silicic acid in the surface water and resulted in simultaneous limitation of growth by both iron and silicic-acid supply. Therefore, bottom-up control played an important role in terminating the phytoplankton bloom in SERIES. In the model simulations, the enhancement of diatom silicification due to increased rates of biomass-normalized silicic-acid uptake, led to increases in the export flux of opal after the onset of algal iron-stress and, consequently, it stimulated the silica pump. The regulation of both the [Si(OH) 4]: [NO3-] uptake ratio and the growth rate of phytoplankton by iron supply are important factors that determine the relative consumption of silicic acid and nitrate upon iron stress, although the potential influence of a floristic shift in the diatom assemblage cannot be ruled out. These findings offer insights into the impact of iron fertilization, both artificial and natural, on the biogeochemical cycling of nutrients in high-nitrate, low-chlorophyll waters.

  20. Isotopic and enzymatic analyses of planktonic nitrogen utilisation in the vicinity of Cape Sines (Portugal) during weak upwelling activity

    NASA Astrophysics Data System (ADS)

    Slawyk, Gerd; Coste, Bernard; Collos, Yves; Rodier, Martine

    1997-01-01

    Using measurements of 15N uptake and activities of nitrate reductase and glutamine synthetase, the utilization of nitrogenous nutrients by microplankton in the Portuguese upwelling area was investigated. During this cruise the euphotic zone of coastal waters was in most cases bisected by a nitracline forming two layers. Total inorganic nitrogen uptake rates (NH 4+ + NO 3-) in the upper mixed and nitrate-impoverished layer ranged from 0.1 to 0.8 nM h -1 and were primarily supported by regenerated (ammonium) nitrogen (62-97%), whereas they varied between 0.9 and 10.4 nM h -1 in the deep nitrate-rich layer and were mainly driven by new (nitrate) nitrogen (52-82%). Depth profiles of Chl a-specific uptake rates for ammonium and nitrate paralleled those of absolute uptake rates, i.e. values of VNH 4+Chl were highest (up to 16.1 nmol μg -1 h -1) in nitrate-poor surface waters while values of VNO 3-Chl were maximum (up to 8.4 nmol μg -1 h -1)within the nitracline. This latter vertical ordering of planktonic nitrogen nutrition was consistent with an aged upwelling situation. However, applying several indices of cell metabolism and nutritional status, such as 15N uptake/enzyme activity, surge uptake internally controlled uptake, and V maxChl/K t ratios, we were able to demonstrate that the phytoplankton assemblages inhabiting the nutrient-impoverished upper layer still bore the signature of physically mediated nitrogen (nitrate) supply generated by active upwelling that had occurred during the week before our visit to the area. This signature was the most evident in samples from the station furthest inshore and faded with distance from shore as a result of the deepening of the nitrate isopleths (weakening of upwelling activity), which showed the same offshore trend. The appearance of nitrate-rich waters at the surface, after a strong pulse of upwelling favourable winds just before the end of the cruise, led to a five-fold increase in average (over the euphotic zone) absolute and Chl a-specific nitrate uptake rates (10.4 nM h -1, 7.5 nmol μ -1 h -1) compared to the mean rates during weak upwelling (1.7 nM h -1, 1.5 nmol μ -1 h -1). From a comparison with the neighbouring Moroccan upwelling, it is assumed that new production in the Portuguese upwelling averages 50 nM h -1. Thus, this upwelling would rank with the northwest African upwelling system off Cape Blanc or with the Californian upwelling at Point Conception for the capacity of new production, but seems to be much less efficient (seven-fold) than the highly permanent Peru upwelling.

  1. Size evolution in microorganisms masks trade-offs predicted by the growth rate hypothesis.

    PubMed

    Gounand, Isabelle; Daufresne, Tanguy; Gravel, Dominique; Bouvier, Corinne; Bouvier, Thierry; Combe, Marine; Gougat-Barbera, Claire; Poly, Franck; Torres-Barceló, Clara; Mouquet, Nicolas

    2016-12-28

    Adaptation to local resource availability depends on responses in growth rate and nutrient acquisition. The growth rate hypothesis (GRH) suggests that growing fast should impair competitive abilities for phosphorus and nitrogen due to high demand for biosynthesis. However, in microorganisms, size influences both growth and uptake rates, which may mask trade-offs and instead generate a positive relationship between these traits (size hypothesis, SH). Here, we evolved a gradient of maximum growth rate (μ max ) from a single bacterium ancestor to test the relationship among μ max , competitive ability for nutrients and cell size, while controlling for evolutionary history. We found a strong positive correlation between μ max and competitive ability for phosphorus, associated with a trade-off between μ max and cell size: strains selected for high μ max were smaller and better competitors for phosphorus. Our results strongly support the SH, while the trade-offs expected under GRH were not apparent. Beyond plasticity, unicellular populations can respond rapidly to selection pressure through joint evolution of their size and maximum growth rate. Our study stresses that physiological links between these traits tightly shape the evolution of competitive strategies. © 2016 The Author(s).

  2. Early photosensitizer uptake kinetics predict optimum drug-light interval for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Sinha, Lagnojita; Elliott, Jonathan T.; Hasan, Tayyaba; Pogue, Brian W.; Samkoe, Kimberley S.; Tichauer, Kenneth M.

    2015-03-01

    Photodynamic therapy (PDT) has shown promising results in targeted treatment of cancerous cells by developing localized toxicity with the help of light induced generation of reactive molecular species. The efficiency of this therapy depends on the product of the intensity of light dose and the concentration of photosensitizer (PS) in the region of interest (ROI). On account of this, the dynamic and variable nature of PS delivery and retention depends on many physiological factors that are known to be heterogeneous within and amongst tumors (e.g., blood flow, blood volume, vascular permeability, and lymph drainage rate). This presents a major challenge with respect to how the optimal time and interval of light delivery is chosen, which ideally would be when the concentration of PS molecule is at its maximum in the ROI. In this paper, a predictive algorithm is developed that takes into consideration the variability and dynamic nature of PS distribution in the body on a region-by-region basis and provides an estimate of the optimum time when the PS concentration will be maximum in the ROI. The advantage of the algorithm lies in the fact that it predicts the time in advance as it takes only a sample of initial data points (~12 min) as input. The optimum time calculated using the algorithm estimated a maximum dose that was only 0.58 +/- 1.92% under the true maximum dose compared to a mean dose error of 39.85 +/- 6.45% if a 1 h optimal light deliver time was assumed for patients with different efflux rate constants of the PS, assuming they have the same plasma function. Therefore, if the uptake values of PS for the blood and the ROI is known for only first 12 minutes, the entire curve along with the optimum time of light radiation can be predicted with the help of this algorithm.

  3. Impact of blood glucose, diabetes, insulin, and obesity on standardized uptake values in tumors and healthy organs on 18F-FDG PET/CT.

    PubMed

    Büsing, Karen A; Schönberg, Stefan O; Brade, Joachim; Wasser, Klaus

    2013-02-01

    Chronically altered glucose metabolism interferes with (18)F-FDG uptake in malignant tissue and healthy organs and may therefore lower tumor detection in (18)F-FDG PET/CT. The present study assesses the impact of elevated blood glucose levels (BGL), diabetes, insulin treatment, and obesity on (18)F-FDG uptake in tumors and biodistribution in normal organ tissues. (18)F-FDG PET/CT was analyzed in 90 patients with BGL ranging from 50 to 372 mg/dl. Of those, 29 patients were diabetic and 21 patients had received insulin prior to PET/CT; 28 patients were obese with a body mass index >25. The maximum standardized uptake value (SUV(max)) of normal organs and the main tumor site was measured. Differences in SUV(max) in patients with and without elevated BGLs, diabetes, insulin treatment, and obesity were compared and analyzed for statistical significance. Increased BGLs were associated with decreased cerebral FDG uptake and increased uptake in skeletal muscle. Diabetes and insulin diminished this effect, whereas obesity slightly enhanced the outcome. Diabetes and insulin also increased the average SUV(max) in muscle cells and fat, whereas the mean cerebral SUV(max) was reduced. Obesity decreased tracer uptake in several healthy organs by up to 30%. Tumoral uptake was not significantly influenced by BGL, diabetes, insulin, or obesity. Changes in BGLs, diabetes, insulin, and obesity affect the FDG biodistribution in muscular tissue and the brain. Although tumoral uptake is not significantly impaired, these findings may influence the tumor detection rate and are therefore essential for diagnosis and follow-up of malignant diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Physiological effects of hydrogen sulfide inhalation during exercise in healthy men.

    PubMed

    Bhambhani, Y; Singh, M

    1991-11-01

    Occupational exposure to hydrogen sulfide (H2S) is prevalent in a variety of industries. H2S when inhaled 1) is oxidized into a sulfate or a thiosulfate by oxygen bound to hemoglobin and 2) suppresses aerobic metabolism by inhibiting cytochrome oxidase (c and aa3) activity in the electron transport chain. The purpose of this study was to examine the acute effects of oral inhalation of H2S on the physiological responses during graded cycle exercise performed to exhaustion in healthy male subjects. Sixteen volunteers were randomly exposed to 0 (control), 0.5, 2.0, and 5.0 ppm H2S on four separate occasions. Compared with the control values, the results indicated that the heart rate and expired ventilation were unaffected as a result of the H2S exposures during submaximal and maximal exercise. The oxygen uptake had a tendency to increase, whereas carbon dioxide output had a tendency to decrease as a result of the H2S exposures, but only the 5.0 ppm exposure resulted in a significantly higher maximum oxygen uptake. Blood lactate concentrations increased significantly during submaximal and maximal exercise as a result of the 5.0 ppm exposure. Despite these large increases in lactate concentration, the maximal power output of the subjects was not significantly altered as a result of the 5.0 ppm H2S exposure. It was concluded that healthy young male subjects could safely exercise at their maximum metabolic rates while breathing 5.0 ppm H2S without experiencing a significant reduction in their maximum physical work capacity during short-term incremental exercise.

  5. Accumulation of (18)F-FDG in the liver in hepatic steatosis.

    PubMed

    Keramida, Georgia; Potts, Jonathan; Bush, Jan; Verma, Sumita; Dizdarevic, Sabina; Peters, Adrien M

    2014-09-01

    Nonalcoholic fatty liver disease is associated with hepatic inflammation. An emerging technique to image inflammation is PET using the glucose tracer, (18)F-FDG. The purpose of this study was to determine whether in hepatic steatosis the liver accumulates FDG in excess of FDG physiologically exchanging between blood and hepatocyte. Hepatic FDG uptake, as SUV = [voxel counts / administered activity] × body weight), and CT density were measured in a liver region in images obtained 60 minutes after injection of FDG in 304 patients referred for routine PET/CT. Maximum SUV (region voxel with the highest count rate, SUVmax) and average SUV ( SUVave) were measured. Blood FDG concentration was measured as the maximum SUV over the left ventricular cavity (SUVLV). SUVave was adjusted for hepatic fat using a formula equating percentage fat to CT density. Patients were divided in subgroups on the basis of blood glucose (< 4, 4 to < 5, 5 to < 6, 6 to < 8, 8 to < 10, and > 10 mmol/L). Hepatic steatosis was defined as CT density less than 40 HU (n = 71). The percentage of hepatic fat increased exponentially with blood glucose. SUVmax / SUVLV and fat-adjusted SUVave / SUVLV but not SUVave / SUVLV correlated with blood glucose. Fat-adjusted SUVave was higher in patients with hepatic steatosis (p < 0.001) by ~0.4 in all blood glucose groups. There was a similar difference (~0.3) in SUVmax (p < 0.005) but no difference in SUVave. SUVmax / SUVLV and fat-adjusted SUVave / SUVLV correlated with blood glucose in patients with hepatic steatosis but not in those without. SUVave / SUVLV correlated with blood glucose in neither group. FDG uptake is increased in hepatic steatosis, probably resulting from irreversible uptake in inflammatory cells superimposed on reversible hepatocyte uptake.

  6. The mechanism of zinc uptake by cultured rat liver cells.

    PubMed Central

    Taylor, J A; Simons, T J

    1994-01-01

    1. The initial rate of 65Zn uptake into cultured rat hepatocytes has been measured over a range of Zn2+ concentrations from 3 x 10(-10) M to 5 x 10(-6) M. Histidine and albumin were used to buffer Zn2+ ions at concentrations below 1 x 10(-6) M. 2. The results suggest there are two mechanisms for Zn2+ uptake; a high-affinity, saturable pathway, with a maximum velocity (Vmax) of 20-30 pmol (mg protein)-1 min-1 and a Michaelis-Menten constant (Km) of about 2 x 10(-9) M Zn2+ (with histidine), and a low-affinity, linear pathway, that only makes a significant contribution to Zn2+ uptake at Zn2+ concentrations above 1 x 10(-6) M. 3. Transport via the high-affinity pathway is dependent on the concentration of Zn2+ ions and not on the concentrations of Zn(2+)-ligand complexes, suggesting that Zn2+ is the transported species. 4. The affinity of the saturable pathway for Zn2+ is slightly lower in the presence of albumin, with a Km of about 1.3 x 10(-8) M. The reason for this is uncertain. PMID:8014898

  7. Vanadium Requirements and Uptake Kinetics in the Dinitrogen-Fixing Bacterium Azotobacter vinelandii▿

    PubMed Central

    Bellenger, J. P.; Wichard, T.; Kraepiel, A. M. L.

    2008-01-01

    Vanadium is a cofactor in the alternative V-nitrogenase that is expressed by some N2-fixing bacteria when Mo is not available. We investigated the V requirements, the kinetics of V uptake, and the production of catechol compounds across a range of concentrations of vanadium in diazotrophic cultures of the soil bacterium Azotobacter vinelandii. In strain CA11.70, a mutant that expresses only the V-nitrogenase, V concentrations in the medium between 10−8 and 10−6 M sustain maximum growth rates; they are limiting below this range and toxic above. A. vinelandii excretes in its growth medium micromolar concentrations of the catechol siderophores azotochelin and protochelin, which bind the vanadate oxoanion. The production of catechols increases when V concentrations become toxic. Short-term uptake experiments with the radioactive isotope 49V show that bacteria take up the V-catechol complexes through a regulated transport system(s), which shuts down at high V concentrations. The modulation of the excretion of catechols and of the uptake of the V-catechol complexes allows A. vinelandii to precisely manage its V homeostasis over a range of V concentrations, from limiting to toxic. PMID:18192412

  8. Heart rate, rate-pressure product, and oxygen uptake during four sexual activities.

    PubMed

    Bohlen, J G; Held, J P; Sanderson, M O; Patterson, R P

    1984-09-01

    Heart rate, rate-pressure product, and VO2 were measured in ten healthy men during four specified sexual activities: coitus with husband on top, coitus with wife on top, noncoital stimulation of husband by wife, and self-stimulation by husband. Foreplay generated slight, but statistically significant, increases above resting baseline in cardiac and metabolic variables. From stimulation through orgasm, average effort was modest for relatively short spans. Maximum exercise values occurred during the brief spans of orgasm, then returned quickly to near baseline levels. The two noncoital activities required lower expenditures than the two coital positions, with man-on-top coitus rating the highest. Large variations among subjects and among activities discourage use of a general equivalent activity for comparison, such as "two flights of stairs," to represent "sexual activity."

  9. Effect of MRI Acoustic Noise on Cerebral FDG Uptake in Simultaneous MR-PET Imaging

    PubMed Central

    Abolmaali, Nasreddin; Arabasz, Grae; Guimaraes, Alexander R.; Catana, Ciprian

    2013-01-01

    Integrated scanners capable of simultaneous PET and MRI data acquisition are now available for human use. Although the scanners’ manufacturers have made substantial efforts to understand and minimize the mutual electromagnetic interference between the two modalities, the potential physiological inference has not been evaluated. In this work, we have studied the influence of the acoustic noise produced by the MR gradients on brain FDG uptake in the Siemens MR-BrainPET prototype. While particular attention was paid to the primary auditory cortex (PAC), a brain-wide analysis was also performed. Methods The effects of the MR on the PET count rate and image quantification were first investigated in phantoms. Next, ten healthy volunteers underwent two simultaneous FDG-PET/MR scans in the supine position with the FDG injection occurring inside the MR-BrainPET, alternating between a “quiet” (control) environment in which no MR sequences were run during the FDG uptake phase (the first 40 minutes after radiotracer administration) and a “noisy” (test) case in which MR sequences were run for the entire time. Cortical and subcortical regions of interest (ROIs) were derived from the high-resolution morphological MR data using FreeSurfer. The changes in FDG uptake in the FreeSurfer-derived ROIs between the two conditions were analyzed from parametric and static PET images, and on a voxel-by-voxel basis using SPM8 and FreeSurfer. Results Only minimal to no electromagnetic interference was observed for most of the MR sequences tested, with a maximum drop in count rate of 1.5% and a maximum change in the measured activity of 1.1% in the corresponding images. The ROI-based analysis showed statistically significant increases in the right PAC in both the parametric (9.13±4.73%) and static (4.18±2.87%) images. SPM8 analysis showed no statistically significant clusters in any images when a p<0.05 (corrected) was used; however, a p<0.001 (uncorrected) resolved bilateral statistically significant clusters of increased FDG uptake in the area of the PAC for the parametric image (left: 8.37±1.55%, right: 8.20±1.17%), but only unilateral increase in the static image (left: 8.68±3.89%). Conclusion Although the operation of the BrainPET prototype is virtually unaffected by the MR scanner, the acoustic noise produced by the MR gradients causes a focal increase in FDG uptake in the PAC, which could affect the interpretation of pathological (or brain-activation related) changes in FDG uptake in this region, if the expected effects are of comparable amplitude. PMID:23462677

  10. Effect of MRI acoustic noise on cerebral fludeoxyglucose uptake in simultaneous MR-PET imaging.

    PubMed

    Chonde, Daniel B; Abolmaali, Nasreddin; Arabasz, Grae; Guimaraes, Alexander R; Catana, Ciprian

    2013-05-01

    Integrated scanners capable of simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) data acquisition are now available for human use. Although the scanners' manufacturers have made substantial efforts to understand and minimize the mutual electromagnetic interference between the 2 modalities, the potential physiological inference has not been evaluated. In this study, we have studied the influence of the acoustic noise produced by the magnetic resonance (MR) gradients on brain fludeoxyglucose (FDG) uptake in the Siemens MR-BrainPET prototype. Although particular attention was paid to the primary auditory cortex (PAC), a brain-wide analysis was also performed. The effects of the MR on the PET count rate and image quantification were first investigated in phantoms. Next, 10 healthy volunteers underwent 2 simultaneous FDG-PET/MR scans in the supine position with the FDG injection occurring inside the MR-BrainPET, alternating between a "quiet" (control) environment in which no MR sequences were run during the FDG uptake phase (the first 40 minutes after radiotracer administration) and a "noisy" (test) environment in which MR sequences were run for the entire time. Cortical and subcortical regions of interest were derived from the high-resolution morphological MR data using FreeSurfer. The changes in the FDG uptake in the FreeSurfer-derived regions of interest between the 2 conditions were analyzed from parametric and static PET images, and on a voxel-by-voxel basis using SPM8 and FreeSurfer. Only minimal to no electromagnetic interference was observed for most of the MR sequences tested, with a maximum drop in count rate of 1.5% and a maximum change in the measured activity of 1.1% in the corresponding images. The region of interest-based analysis showed statistically significant increases in the right PAC in both the parametric (9.13% [4.73%]) and static (4.18% [2.87%]) images. The SPM8 analysis showed no statistically significant clusters in any images when a P < 0.05 (corrected) was used; however, a P < 0.001 (uncorrected) resolved bilateral statistically significant clusters of increased FDG uptake in the area of the PAC for the parametric image (left, 8.37% [1.55%]; right, 8.20% [1.17%]) but only unilateral increase in the static image (left, 8.68% [3.89%]). Although the operation of the BrainPET prototype is virtually unaffected by the MR scanner, the acoustic noise produced by the MR gradients causes a focal increase in the FDG uptake in the PAC, which could affect the interpretation of pathological (or brain-activation-related) changes in the FDG uptake in this region if the expected effects are of comparable amplitude.

  11. Formulation and in vitro characterization of protein-loaded liposomes

    NASA Astrophysics Data System (ADS)

    Kuzimski, Lauren

    Background/Objective: Protein-based drugs are increasingly used to treat a variety of conditions including cancer and cardio-vascular disease. Due to the immune system's innate ability to degrade the foreign particles quickly, protein-based treatments are generally short-lived. To address this limitation, the objective of the study was to: 1) develop protein-loaded liposomes; 2) characterize size, stability, encapsulation efficiency and rate of protein release; and 3) determine intracellular uptake and distribution; and 4) protein structural changes. Method: Liposomes were loaded with a fluorescent-albumin using freeze-thaw (F/T) methodology. Albumin encapsulation and release were quantified by fluorescence spectroscopic techniques. Flow cytometry was used to determine liposome uptake by macrophages. Epifluorescence microscopy was used to determine cellular distribution of liposomes. Stability was determined using dynamic light scattering by measuring liposome size over one month period. Protein structure was determined using circular dichroism (CD). Result: Encapsulation of albumin in liposome was ˜90% and was dependent on F/T rates, with fifteen cycles yielding the highest encapsulation efficacy (p < 0.05). Albumin-loaded liposomes demonstrated consistent size (<300nm). Release of encapsulated albumin in physiological buffer at 25°C was ˜60% in 72 h. Fluorescence imaging suggested an endosomal route of cellular entry for the FITC-albumin liposome with maximum uptake rates in immune cells (30% at 2hour incubation). CD suggested protein structure is minimally impacted by freeze-thaw methodology. Conclusion: Using F/T as a loading method, we were able to successfully achieve a protein-loaded liposome that was under 300nm, had encapsulation of ˜90%. Synthesized liposomes demonstrated a burst release of encapsulate protein (60%) at 72 hours. Cellular trafficking confirmed endosomal uptake, and minimal protein damage was noticed in CD.

  12. Nitrate Transport Is Independent of NADH and NAD(P)H Nitrate Reductases in Barley Seedlings 1

    PubMed Central

    Warner, Robert L.; Huffaker, Ray C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings. PMID:11537465

  13. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  14. Models for root water uptake under deficit irrigation

    NASA Astrophysics Data System (ADS)

    Lazarovitch, Naftali; Krounbi, Leilah; Simunek, Jirka

    2010-05-01

    Modern agriculture, with its dependence on irrigation, fertilizers, and pesticide application, contributes significantly to the water and solute influx through the soil into the groundwater, specifically in arid areas. The quality and quantity of this water as it passes through the vadose zone is influenced primarily by plant roots. Root water uptake is a function of both a physical root parameter, commonly referred to as the root length density, and the soil water status. The location of maximum water uptake in a homogenous soil profile of uniform water content and hydraulic conductivity occurs in the soil layer containing the largest root length density. Under field conditions, in a drying soil, plants are both subject to, and the source of, great spatial variability in the soil water content. The upper soil layers containing the bulk of the root zone are usually the most water depleted, while the deeper regions of the soil profile containing fewer roots are wetter. Changes in the physiological functioning of plants have been shown to result from extended periods of water stress, but the short term effects of water stress on root water uptake are less well understood. While plants can minimize transpiration and the resulting growth rates under limiting conditions to conserve water, many plants maintain a constant potential transpiration rate long after the commencement of the drying process. Compensatory uptake, whereby plants respond to non-uniform, limiting conditions by increasing water uptake from areas in the root zone characterized by more favorable conditions, is one such mechanism by which plants sustain potential transpiration rates in drying soils. The development of models which accurately characterize temporal and spatial root water uptake patterns is important for agricultural resource optimization, upon which subsequent management decisions affecting resource conservation and environmental pollution are based. Numerical simulations of root water uptake in various irrigation and fertilization regimes provide a much-needed alternative to tiring and expensive field work. These simulations can aid in raising agricultural water use efficiency while preserving soil and water resources. In this research, controlled lab experiments were carried out in soil-packed lysimeters designed for plant cultivation. Both the water balance of the growing plants as well as the temporary matric head distribution in the soil profile were calculated and measured. The experiment was conducted with sweet sorghum grown in two different soil profiles with different hydraulic properties. The experiment provided the data necessary to calculate the parameters of various models used to simulate root water uptake, by using an inverse solution method imbedded in the HYDRUS-1D code. The observed increase in uptake from the wetter soil regions under drying conditions, as measured and calculated, sheds light on the dominant role of soil hydraulic properties over the root distribution, and consequently root water uptake.

  15. Effects of salinity on short-term waterborne zinc uptake, accumulation and sub-lethal toxicity in the green shore crab (Carcinus maenas).

    PubMed

    Niyogi, Som; Blewett, Tamzin A; Gallagher, Trevor; Fehsenfeld, Sandra; Wood, Chris M

    2016-09-01

    Waterborne zinc (Zn) is known to cause toxicity to freshwater animals primarily by disrupting calcium (Ca) homeostasis during acute exposure, but its effects in marine and estuarine animals are not well characterized. The present study investigated the effects of salinity on short-term Zn accumulation and sub-lethal toxicity in the euryhaline green shore crab, Carcinus maenas. The kinetic and pharmacological properties of short-term branchial Zn uptake were also examined. Green crabs (n=10) were exposed to control (no added Zn) and 50μM (3.25mgL(-1)) of waterborne Zn (∼25% of 96h LC50 in 100 seawater) for 96h at 3 different salinity regimes (100%, 60% and 20% seawater). Exposure to waterborne Zn increased tissue-specific Zn accumulation across different salinities. However, the maximum accumulation occurred in 20% seawater and no difference was recorded between 60% and 100% seawater. Gills appeared to be the primary site of Zn accumulation, since the accumulation was significantly higher in the gills relative to the hepatopancreas, haemolymph and muscle. Waterborne Zn exposure induced a slight increase in haemolymph osmolality and chloride levels irrespective of salinity. In contrast, Zn exposure elicited marked increases in both haemolymph and gill Ca levels, and these changes were more pronounced in 20% seawater relative to that in 60% or 100% seawater. An in vitro gill perfusion technique was used to examine the characteristics of short-term (1-4h) branchial Zn uptake over an exposure concentration range of 3-12μM (200-800μgL(-1)). The rate of short-term branchial Zn uptake did not change significantly after 2h, and no difference was recorded in the rate of uptake between the anterior (respiratory) and posterior (ion transporting) gills. The in vitro branchial Zn uptake occurred in a concentration-dependent manner across different salinities. However, the rate of uptake was consistently higher in 20% seawater relative to 60% or 100% seawater - similar to the trend observed with tissue Zn accumulation during in vivo exposure. The short-term branchial Zn uptake was found to be inhibited by lanthanum (a blocker of voltage-independent Ca channels), suggesting that branchial Zn uptake occurs via the Ca transporting pathways, at least in part. Overall, our findings indicate that acute exposure to waterborne Zn leads to the disruption of Zn and Ca homeostasis in green crab, and these effects are exacerbated at the lower salinity. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Microbial Group Specific Uptake Kinetics of Inorganic Phosphate and Adenosine-5′-Triphosphate (ATP) in the North Pacific Subtropical Gyre

    PubMed Central

    Björkman, Karin; Duhamel, Solange; Karl, David M.

    2012-01-01

    We investigated the concentration dependent uptake of inorganic phosphate (Pi) and adenosine-5′-triphosphate (ATP) in microbial populations in the North Pacific Subtropical Gyre (NPSG). We used radiotracers to measure substrate uptake into whole water communities, differentiated microbial size classes, and two flow sorted groups; Prochlorococcus (PRO) and non-pigmented bacteria (NPB). The Pi concentrations, uptake rates, and Pi pool turnover times (Tt) were (mean, ±SD); 54.9 ± 35.0 nmol L−1 (n = 22), 4.8 ± 1.9 nmol L−1 day−1 (n = 19), and 14.7 ± 10.2 days (n = 19), respectively. Pi uptake into >2 μm cells was on average 12 ± 7% (n = 15) of the total uptake. The kinetic response to Pi (10–500 nmol L−1) was small, indicating that the microorganisms were close to their maximum uptake velocity (Vmax). Vmax averaged 8.0 ± 3.6 nmol L−1 day−1 (n = 19) in the >0.2 μm group, with half saturation constants (Km) of 40 ± 28 nmol L−1 (n = 19). PRO had three times the cell specific Pi uptake rate of NPB, at ambient concentrations, but when adjusted to cells L−1 the rates were similar, and these two groups were equally competitive for Pi. The Tt of γ-P-ATP in the >0.2 μm group were shorter than for the Pi pool (4.4 ± 1.0 days; n = 6), but this difference diminished in the larger size classes. The kinetic response to ATP was large in the >0.2 μm class with Vmax exceeding the rates at ambient concentrations (mean 62 ± 27 times; n = 6) with a mean Vmax for γ-P-ATP of 2.8 ± 1.0 nmol L−1 day−1, and Km at 11.5 ± 5.4 nmol L−1 (n = 6). The NPB contribution to γ-P-ATP uptake was high (95 ± 3%, n = 4) at ambient concentrations but decreased to ∼50% at the highest ATP amendment. PRO had Km values 5–10 times greater than NPB. The above indicates that PRO and NPB were in close competition in terms of Pi acquisition, whereas P uptake from ATP could be attributed to NPB. This apparent resource partitioning may be a niche separating strategy and an important factor in the successful co-existence within the oligotrophic upper ocean of the NPSG. PMID:22701449

  17. Prognostic implications of 62Cu-diacetyl-bis (N4-methylthiosemicarbazone) PET/CT in patients with glioma.

    PubMed

    Toriihara, Akira; Ohtake, Makoto; Tateishi, Kensuke; Hino-Shishikura, Ayako; Yoneyama, Tomohiro; Kitazume, Yoshio; Inoue, Tomio; Kawahara, Nobutaka; Tateishi, Ukihide

    2018-05-01

    The potential of positron emission tomography/computed tomography using 62 Cu-diacetyl-bis (N 4 -methylthiosemicarbazone) ( 62 Cu-ATSM PET/CT), which was originally developed as a hypoxic tracer, to predict therapeutic resistance and prognosis has been reported in various cancers. Our purpose was to investigate prognostic value of 62 Cu-ATSM PET/CT in patients with glioma, compared to PET/CT using 2-deoxy-2-[ 18 F]fluoro-D-glucose ( 18 F-FDG). 56 patients with glioma of World Health Organization grade 2-4 were enrolled. All participants had undergone both 62 Cu-ATSM PET/CT and 18 F-FDG PET/CT within mean 33.5 days prior to treatment. Maximum standardized uptake value and tumor/background ratio were calculated within areas of increased radiotracer uptake. The prognostic significance for progression-free survival and overall survival were assessed by log-rank test and Cox's proportional hazards model. Disease progression and death were confirmed in 37 and 27 patients in follow-up periods, respectively. In univariate analysis, there was significant difference of both progression-free survival and overall survival in age, tumor grade, history of chemoradiotherapy, maximum standardized uptake value and tumor/background ratio calculated using 62 Cu-ATSM PET/CT. Multivariate analysis revealed that maximum standardized uptake value calculated using 62 Cu-ATSM PET/CT was an independent predictor of both progression-free survival and overall survival (p < 0.05). In a subgroup analysis including patients of grade 4 glioma, only the maximum standardized uptake values calculated using 62 Cu-ATSM PET/CT showed significant difference of progression-free survival (p < 0.05). 62 Cu-ATSM PET/CT is a more promising imaging method to predict prognosis of patients with glioma compared to 18 F-FDG PET/CT.

  18. Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222--Part I: kinetic modeling and parameters.

    PubMed

    Zhang, Jiayi; Shao, Xiongjun; Townsend, Oliver V; Lynd, Lee R

    2009-12-01

    A kinetic model was developed to predict batch simultaneous saccharification and co-fermentation (SSCF) of paper sludge by the xylose-utilizing yeast Saccharomyces cerevisiae RWB222 and the commercial cellulase preparation Spezyme CP. The model accounts for cellulose and xylan enzymatic hydrolysis and competitive uptake of glucose and xylose. Experimental results show that glucan and xylan enzymatic hydrolysis are highly correlated, and that the low concentrations of xylose encountered during SSCF do not have a significant inhibitory effect on enzymatic hydrolysis. Ethanol is found to not only inhibit the specific growth rate, but also to accelerate cell death. Glucose and xylose uptake rates were found to be competitively inhibitory, but this did not have a large impact during SSCF because the sugar concentrations are low. The model was used to evaluate which constants had the greatest impact on ethanol titer for a fixed substrate loading, enzyme loading, and fermentation time. The cellulose adsorption capacity and cellulose hydrolysis rate constants were found to have the greatest impact among enzymatic hydrolysis related constants, and ethanol yield and maximum ethanol tolerance had the greatest impact among fermentation related constants.

  19. Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation.

    PubMed

    Hatt, Mathieu; Cheze-le Rest, Catherine; van Baardwijk, Angela; Lambin, Philippe; Pradier, Olivier; Visvikis, Dimitris

    2011-11-01

    The objectives of this study were to investigate the relationship between CT- and (18)F-FDG PET-based tumor volumes in non-small cell lung cancer (NSCLC) and the impact of tumor size and uptake heterogeneity on various approaches to delineating uptake on PET images. Twenty-five NSCLC cancer patients with (18)F-FDG PET/CT were considered. Seventeen underwent surgical resection of their tumor, and the maximum diameter was measured. Two observers manually delineated the tumors on the CT images and the tumor uptake on the corresponding PET images, using a fixed threshold at 50% of the maximum (T(50)), an adaptive threshold methodology, and the fuzzy locally adaptive Bayesian (FLAB) algorithm. Maximum diameters of the delineated volumes were compared with the histopathology reference when available. The volumes of the tumors were compared, and correlations between the anatomic volume and PET uptake heterogeneity and the differences between delineations were investigated. All maximum diameters measured on PET and CT images significantly correlated with the histopathology reference (r > 0.89, P < 0.0001). Significant differences were observed among the approaches: CT delineation resulted in large overestimation (+32% ± 37%), whereas all delineations on PET images resulted in underestimation (from -15% ± 17% for T(50) to -4% ± 8% for FLAB) except manual delineation (+8% ± 17%). Overall, CT volumes were significantly larger than PET volumes (55 ± 74 cm(3) for CT vs. from 18 ± 25 to 47 ± 76 cm(3) for PET). A significant correlation was found between anatomic tumor size and heterogeneity (larger lesions were more heterogeneous). Finally, the more heterogeneous the tumor uptake, the larger was the underestimation of PET volumes by threshold-based techniques. Volumes based on CT images were larger than those based on PET images. Tumor size and tracer uptake heterogeneity have an impact on threshold-based methods, which should not be used for the delineation of cases of large heterogeneous NSCLC, as these methods tend to largely underestimate the spatial extent of the functional tumor in such cases. For an accurate delineation of PET volumes in NSCLC, advanced image segmentation algorithms able to deal with tracer uptake heterogeneity should be preferred.

  20. Limitations of oxygen uptake and leg muscle activity during ascending evacuation in stairways.

    PubMed

    Halder, Amitava; Kuklane, Kalev; Gao, Chuansi; Miller, Michael; Delin, Mattias; Norén, Johan; Fridolf, Karl

    2018-01-01

    Stair ascending performance is critical during evacuation from buildings and underground infrastructures. Healthy subjects performed self-paced ascent in three settings: 13 floor building, 31 floor building, 33 m stationary subway escalator. To investigate leg muscle and cardiorespiratory capacities and how they constrain performance, oxygen uptake (VO 2 ), heart rate (HR) and ascending speed were measured in all three; electromyography (EMG) in the first two. The VO 2 and HR ranged from 89 to 96% of the maximum capacity reported in the literature. The average highest VO 2 and HR ranged from 39 to 41 mL·kg -1 ·min -1 and 162 to 174 b·min -1 , respectively. The subjects were able to sustain their initial preferred maximum pace for a short duration, while the average step rate was 92-95 steps·min -1 . In average, VO 2 reached relatively stable values at ≈37 mL·kg -1 ·min -1 . EMG amplitudes decreased significantly and frequencies were unchanged. Speed reductions indicate that climbing capacity declined in the process of fatigue development. In the two buildings, the reduction of muscle power allowed the subjects to extend their tolerance and complete ascents in the 48 m and 109 m high stairways in 2.9 and 7.8 min, respectively. Muscle activity interpretation squares were developed and proved advantageous to observe fatigue and recovery over time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Influence of substrate surface loading on the kinetic behaviour of aerobic granules.

    PubMed

    Liu, Yu; Liu, Yong-Qiang; Wang, Zhi-Wu; Yang, Shu-Fang; Tay, Joo-Hwa

    2005-06-01

    In the aerobic granular sludge reactor, the substrate loading is related to the size of the aerobic granules cultivated. This study investigated the influence of substrate surface loading on the growth and substrate-utilization kinetics of aerobic granules. Results showed that microbial surface growth rate and surface biodegradation rate are fairly related to the substrate surface loading by the Monod-type equation. In this study, both the theoretical maximum growth yield and the Pirt maintenance coefficient were determined. It was found that the estimated theoretical maximum growth yield of aerobic granules was as low as 0.2 g biomass g(-1) chemical oxygen demand (COD) and 10-40% of input substrate-COD was consumed through the maintenance metabolism, while experimental results further showed that the unit oxygen uptake by aerobic granules was 0.68 g oxygen g(-1) COD, which was much higher than that reported in activated sludge processes. Based on the growth yield and unit oxygen uptake determined, an oxidative assimilation equation of acetate-fed aerobic granules was derived; and this was confirmed by respirometric tests. In aerobic granular culture, about 74% of the input substrate-carbon was converted to carbon dioxide. The growth yield of aerobic granules was three times lower than that of activated sludge. It is likely that high carbon dioxide production is the main cause of the low growth yield of aerobic granules, indicating a possible energy uncoupling in aerobic granular culture.

  2. Analysis of heart rate and oxygen uptake kinetics studied by two different pseudo-random binary sequence work rate amplitudes.

    PubMed

    Drescher, U; Koschate, J; Schiffer, T; Schneider, S; Hoffmann, U

    2017-06-01

    The aim of the study was to compare the kinetics responses of heart rate (HR), pulmonary (V˙O 2 pulm) and predicted muscular (V˙O 2 musc) oxygen uptake between two different pseudo-random binary sequence (PRBS) work rate (WR) amplitudes both below anaerobic threshold. Eight healthy individuals performed two PRBS WR protocols implying changes between 30W and 80W and between 30W and 110W. HR and V˙O 2 pulm were measured beat-to-beat and breath-by-breath, respectively. V˙O 2 musc was estimated applying the approach of Hoffmann et al. (Eur J Appl Physiol 113: 1745-1754, 2013) considering a circulatory model for venous return and cross-correlation functions (CCF) for the kinetics analysis. HR and V˙O 2 musc kinetics seem to be independent of WR intensity (p>0.05). V˙O 2 pulm kinetics show prominent differences in the lag of the CCF maximum (39±9s; 31±4s; p<0.05). A mean difference of 14W between the PRBS WR amplitudes impacts venous return significantly, while HR and V˙O 2 musc kinetics remain unchanged. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Ammonium and nitrate uptake by leaves of the seagrass Thalassia testudinum: impact of hydrodynamic regime and epiphyte cover on uptake rates

    NASA Astrophysics Data System (ADS)

    Cornelisen, Christopher D.; Thomas, Florence I. M.

    2004-08-01

    Seagrasses rely on the uptake of dissolved inorganic nitrogen (DIN) from both sediment pore water and the water column for metabolic processes. Rates at which their leaves remove nutrients from the water column may be influenced by physiological factors, such as enzyme kinetics, and physical factors, including water flow and the presence of epiphytes on the leaf surface. While there is some evidence of the individual effects of these factors on uptake rates for individual plants, there is little information on the effects of these factors on seagrasses that are situated in their natural environment. In order to isolate the combined effects of water flow and epiphyte cover on uptake rates for Thalassia testudinum leaves while they were situated in a natural canopy we applied 15N-labeled ammonium and 15N-labeled nitrate in a series of field flume experiments. Hydrodynamic parameters related to thickness of diffusive boundary layers, including bottom shear stress and the rate of turbulent energy dissipation, were estimated from velocity profiles collected with an acoustic Doppler velocimeter. Rates of NH 4+ uptake for leaves with and without epiphyte cover were proportional to bottom shear stress and energy dissipation rate, while rates of NO 3- uptake were not. For epiphytes, rates of both NH 4+ and NO 3- uptake were dependent on hydrodynamic parameters. Epiphytes covering the leaf surface reduced rates of NH 4+ uptake for seagrass leaves by an amount proportional to the spatial area covered by the epiphytes (˜90%) and although epiphytes reduced NO 3- uptake rates, the amount was not proportional to the extent of epiphyte cover. Results suggest that the rate at which seagrass leaves removed ammonium was limited by the rate of delivery to the surface of the leaves and was greatly reduced due to blockage of active uptake sites by epiphytes. Conversely, rates of nitrate uptake for the seagrass leaves were limited by the rate at which the leaves could process nitrate rather than the rate of delivery. Our findings quantitatively demonstrate the potential impact of hydrodynamic regime and epiphyte cover on rates of DIN uptake by T. testudinum leaves and how the importance of these factors in affecting uptake rates can vary depending on the form of DIN being assimilated.

  4. Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra

    NASA Technical Reports Server (NTRS)

    Fan, S. M.; Wofsy, S. C.; Bakwin, P. S.; Jacob, D. J.; Anderson, S. M.; Kebabian, P. L.; Mcmanus, J. B.; Kolb, C. E.; Fitzjarrald, D. R.

    1992-01-01

    Eddy correlation flux measurements and concentration profiles of total hydrocarbons (THC) and CO2 were combined to provide a comprehensive record of atmosphere-biosphere exchange for these gases over a 30-day period in July-August 1988 in the Yukon-Kuskokwin River Delta of Alaska. Over 90 percent of net ecosystem exchanges of THC were due to methane. Lakes and wet meadow tundra provided the major sources of methane. The average fluxes from lake, dry tundra, and wet tundra were 11 +/- 3, 29 +/- 3, and 57 +/- 6 mg CH4/sq m/d, respectively. The mean remission rate for the site was 25 mg/sq m/d. Maximum uptake of CO2 by the tundra was 1.4 gC/sq m/d between 1000 and 1500 hrs, and nocturnal respiration averaged 0.73 gC/sq m/d. Net uptake of CO2 was 0.30 gC/sq m/d for the 30 days of measurement; methane flux accounted for 6 percent of CO2 net uptake.

  5. Cardiorespiratory response to exercise after renal sympathetic denervation in patients with resistant hypertension.

    PubMed

    Ukena, Christian; Mahfoud, Felix; Kindermann, Ingrid; Barth, Christine; Lenski, Matthias; Kindermann, Michael; Brandt, Mathias C; Hoppe, Uta C; Krum, Henry; Esler, Murray; Sobotka, Paul A; Böhm, Michael

    2011-09-06

    This study sought to investigate the effects of interventional renal sympathetic denervation (RD) on cardiorespiratory response to exercise. RD reduces blood pressure at rest in patients with resistant hypertension. We enrolled 46 patients with therapy-resistant hypertension as extended investigation of the Symplicity HTN-2 (Renal Denervation With Uncontrolled Hypertension) trial. Thirty-seven patients underwent bilateral RD and 9 patients were assigned to the control group. Cardiopulmonary exercise tests were performed at baseline and 3-month follow-up. In the RD group, compared with baseline examination, blood pressure at rest and at maximum exercise after 3 months was significantly reduced by 31 ± 13/9 ± 13 mm Hg (p < 0.0001) and by 21 ± 20/5 ± 14 mm Hg (p < 0.0001), respectively. Achieved work rate increased by 5 ± 13 W (p = 0.029) whereas peak oxygen uptake remained unchanged. Blood pressure 2 min after exercise was significantly reduced by 29 ± 17/8 ± 15 mm Hg (p < 0.001 for systolic blood pressure; p = 0.002 for diastolic blood pressure). Heart rate at rest decreased after RD (4 ± 11 beats/min; p = 0.028), whereas maximum heart rate and heart rate increase during exercise were not different. Heart rate recovery improved significantly by 4 ± 7 beats/min after renal denervation (p = 0.009). In the control group, there were no significant changes in blood pressure, heart rate, maximum work rate, or ventilatory parameters after 3 months. RD reduces blood pressure during exercise without compromising chronotropic competence in patients with resistant hypertension. Heart rate at rest decreased and heart rate recovery improved after the procedure. (Renal Denervation With Uncontrolled Hypertension; [Symplicity HTN-2]; NCT00888433). Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. The influence of hepatic transport on the distribution volumes and mean residence time of drug in the body and the accuracy of estimating these parameters by the traditional pharmacokinetic calculations.

    PubMed

    Berezhkovskiy, Leonid M

    2011-11-01

    The influence of hepatic uptake and efflux, which includes passive diffusion and transporter-mediated component, on drug distribution volumes [steady-state volume of distribution (V(ss)) and terminal volume of distribution (V(β))], mean residence time (MRT), clearance, and terminal half-life is considered using a simplified physiologically based pharmacokinetic model. To account for hepatic uptake, liver is treated as two-compartmental unit with drug transfer from extracellular water into hepatocytes. The exactly calculated distribution volumes and MRT are compared with that obtained by the traditional equations based on the assumption of central elimination. It was found that V(ss) may increase more than 10-fold and V(β) more than 100-fold due to the contribution of transporter-mediated uptake. The terminal half-life may be substantially shortened (more than 100-fold) due to transporters. It may also decrease significantly due to the increase of intrinsic hepatic clearance (CL(int)), whereas hepatic clearance has already reached saturation (and stays close to the possible maximum value). It is shown that in case of transporter-mediated uptake of compound into hepatocytes, in the absence of efflux and passive diffusion (unidirectional uptake), hepatic clearance is independent of CL(int) and is determined by hepatic blood flow and uptake rate constant. The effects of transporter-mediated uptake are mostly pronounced for hydrophilic acidic compounds and moderately lipophilic neutral compounds. For basic compounds and lipophilic neutral compounds the change of distribution volumes due to transporters is rather unlikely. It was found that the traditional equations provide very accurate values of V(ss), V(β), and MRT in the absence of transporter action even for very low rates of passive diffusion. On the other hand, the traditional equations fail to provide the correct values of these parameters when the increase of distribution volumes due to transporters takes place, and actually yield the values substantially smaller than the true ones (up to an order of magnitude for V(ss) and MRT, and three orders of magnitude for V(β)). Copyright © 2011 Wiley-Liss, Inc.

  7. Primary, new and export production in the NW Pacific subarctic gyre during the vertigo K2 experiments

    NASA Astrophysics Data System (ADS)

    Elskens, M.; Brion, N.; Buesseler, K.; Van Mooy, B. A. S.; Boyd, P.; Dehairs, F.; Savoye, N.; Baeyens, W.

    2008-07-01

    This paper presents results on tracer experiments using 13C and 15N to estimate uptake rates of dissolved inorganic carbon (DIC) and nitrogen (DIN). Experiments were carried out at station K2 (47°N, 161°E) in the NW Pacific subarctic gyre during July-August 2005. Our goal was to investigate relationships between new and export production. New production was inferred from the tracer experiments using the f ratio concept (0-50 m); while export production was assessed with neutrally buoyant sediment traps (NBSTs) and the e ratio concept (at 150 m). During trap deployments, K2 was characterized both by changes in primary production (523-404 mg C m -2 d -1), new production (119-67 mg C m -2 d -1), export production (68-24 mg C m -2 d -1) and phytoplankton composition (high to low proportion of diatoms). The data indicate that 17-23% of primary production is exportable to deeper layers ( f ratio) but only 6-13% collected as a sinking particle flux at 150 m ( e ratio). Accordingly, >80% of the carbon fixed by phytoplankton would be mineralized in the upper 50 m (1- f), while <11% would be within 50-150 m ( f- e). DIN uptake flux amounted to 0.5 mM m -2 h -1, which was equivalent to about 95% particulate nitrogen (PN) remineralized and/or grazed within the upper 150 m. Most of the shallow PN remineralization occurred just above the depth of the deep chlorophyll maximum (DCM), where a net ammonium production was measured. Below the DCM, while nitrate uptake rates became negligible because of light limitation, ammonium uptake did continue to be significant. The uptake of ammonium by heterotrophic bacteria was estimated to be 14-17% of the DIN assimilation. Less clear are the consequences of this uptake on the phytoplankton community and biogeochemical processes, e.g. new production. It was suggested that competition for ammonium could select for small cells and may force large diatoms to use nitrate. This implies that under Fe stress as observed here, ammonium uptake is preferred and new production progressively suppressed despite the surplus of nitrate.

  8. Delivery Rate Affects Uptake of a Fluorescent Glucose Analog in Murine Metastatic Breast Cancer

    PubMed Central

    Rajaram, Narasimhan; Frees, Amy E.; Fontanella, Andrew N.; Zhong, Jim; Hansen, Katherine; Dewhirst, Mark W.; Ramanujam, Nirmala

    2013-01-01

    We demonstrate an optical strategy using intravital microscopy of dorsal skin flap window chamber models to image glucose uptake and vascular oxygenation in vivo. Glucose uptake was imaged using a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). SO2 was imaged using the differential absorption properties of oxygenated [HbO2] and deoxygenated hemoglobin [dHb]. This study was carried out on two sibling murine mammary adenocarcinoma lines, 4T1 and 4T07. 2-NBDG uptake in the 4T1 tumors was lowest when rates of delivery and clearance were lowest, indicating perfusion-limited uptake in poorly oxygenated tumor regions. For increasing rates of delivery that were still lower than the glucose consumption rate (as measured in vitro), both 2-NBDG uptake and the clearance rate from the tumor increased. When the rate of delivery of 2-NBDG exceeded the glucose consumption rate, 2-NBDG uptake decreased with any further increase in rate of delivery, but the clearance rate continued to increase. This inflection point was not observed in the 4T07 tumors due to an absence of low delivery rates close to the glucose consumption rate. In the 4T07 tumors, 2-NBDG uptake increased with increasing rates of delivery at low rates of clearance. Our results demonstrate that 2-NBDG uptake in tumors is influenced by the rates of delivery and clearance of the tracer. The rates of delivery and clearance are, in turn, dependent on vascular oxygenation of the tumors. Knowledge of the kinetics of tracer uptake as well as vascular oxygenation is essential to make an informed assessment of glucose demand of a tumor. PMID:24204635

  9. Arsenic toxicity and accumulation in radish as affected by arsenic chemical speciation.

    PubMed

    Carbonell-Barrachina, A A; Burló, F; López, E; Martínez-Sánchez, F

    1999-07-01

    Arsenic (As) uptake by Rhapanus sativus L. (radish), cv. Nueva Orleans, growing in soil-less culture conditions was studied in relation to the chemical form and concentration of As. A 4 x 3 factorial experiment was conducted with treatments consisting of four As chemical forms [As(III), As(V), MMAA, DMAA] and three As concentrations (1.0, 2.0, and 5.0 mg As L-1). None of the As treatments were clearly phytotoxic to this radish cultivar. Arsenic phytoavailability was primarily determined by the As chemical form present in the nutrient solution and followed the trend DMAA < or = As(V) < or = As(III) < MMAA. Root and shoot As concentrations significantly increased with increasing As application rates. Monomethyl arsonic acid treatments caused the highest As accumulation in both roots and shoots, and this organic arsenical showed a higher uptake rate than the other As compounds. Inner root As concentrations were, in general, within the normal range for As contents in food crops but root skin As levels were close or above the maximum threshold set for As content in edible fruit, crops and vegetables. The statement that toxicity limits plant As uptake to safe levels was not confirmed in our study. If radish plants are exposed to a large pulse of As, as growth on contaminated nutrient solutions, they may accumulate residues which are unacceptable for animal and human consumption without exhibiting symptoms of phytotoxicity.

  10. Dopamine Release and Uptake Impairments and Behavioral Alterations Observed in Mice that Model Fragile X Mental Retardation Syndrome.

    PubMed

    Fulks, Jenny L; O'Bryhim, Bliss E; Wenzel, Sara K; Fowler, Stephen C; Vorontsova, Elena; Pinkston, Jonathan W; Ortiz, Andrea N; Johnson, Michael A

    2010-10-20

    In this study we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared to wild type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically-evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared to WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding pre-drug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice.

  11. Physiological responses and air consumption during simulated firefighting tasks in a subway system.

    PubMed

    Williams-Bell, F Michael; Boisseau, Geoff; McGill, John; Kostiuk, Andrew; Hughson, Richard L

    2010-10-01

    Professional firefighters (33 men, 3 women), ranging in age from 30 to 53 years, participated in a simulation of a subway system search and rescue while breathing from their self-contained breathing apparatus (SCBA). We tested the hypothesis that during this task, established by expert firefighters to be of moderate intensity, the rate of air consumption would exceed the capacity of a nominal 30-min cylinder. Oxygen uptake, carbon dioxide output, and air consumption were measured with a portable breath-by-breath gas exchange analysis system, which was fully integrated with the expired port of the SCBA. The task involved descending a flight of stairs, walking, performing a search and rescue, retreat walking, then ascending a single flight of stairs to a safe exit. This scenario required between 9:56 and 13:24 min:s (mean, 12:10 ± 1:10 min:s) to complete, with an average oxygen uptake of 24.3 ± 4.5 mL kg(-1) min(-1) (47 ± 10 % peak oxygen uptake) and heart rate of 76% ± 7% of maximum. The highest energy requirement was during the final single-flight stair climb (30.4 ± 5.4 mL kg(-1) min(-1)). The average respiratory exchange ratio (carbon dioxide output/oxygen uptake) throughout the scenario was 0.95 ± 0.08, indicating a high carbon dioxide output for a relatively moderate average energy requirement. Air consumption from the nominal "30-min" cylinder averaged 51% (range, 26%-68%); however, extrapolation of these rates of consumption suggested that the low-air alarm, signalling that only 25% of the air remains, would have occurred as early as 11 min for an individual with the highest rate of air consumption, and at 16 min for the group average. These data suggest that even the moderate physical demands of walking combined with search and rescue while wearing full protective gear and breathing through the SCBA impose considerable physiological strain on professional firefighters. As well, the rate of air consumption in these tasks classed as moderate, compared with high-rise firefighting, would have depleted the air supply well before the nominal time used to describe the cylinders.

  12. Implication of using different carbon sources for denitrification in wastewater treatments.

    PubMed

    Cherchi, Carla; Onnis-Hayden, Annalisa; El-Shawabkeh, Ibrahim; Gu, April Z

    2009-08-01

    Application of external carbon sources for denitrification becomes necessary for wastewater treatment plants that have to meet very stringent effluent nitrogen limits (e.g., 3 to 5 mgTN/L). In this study, we evaluated and compared three carbon sources--MicroC (Environmental Operating Solutions, Bourne, Massachusetts), methanol, and acetate-in terms of their denitrification rates and kinetics, effect on overall nitrogen removal performance, and microbial community structure of carbon-specific denitrifying enrichments. Denitrification rates and kinetics were determined with both acclimated and non-acclimated biomass, obtained from laboratory-scale sequencing batch reactor systems or full-scale plants. The results demonstrate the feasibility of the use of MicroC for denitrification processes, with maximum denitrification rates (k(dmax)) of 6.4 mgN/gVSSh and an observed yield of 0.36 mgVSS/mgCOD. Comparable maximum nitrate uptake rates were found with methanol, while acetate showed a maximum denitrification rate nearly twice as high as the others. The maximum growth rates measured at 20 degrees C for MicroC and methanol were 3.7 and 1.2 day(-1), respectively. The implications resulting from the differences in the denitrification rates and kinetics of different carbon sources on the full-scale nitrogen removal performance, under various configurations and operational conditions, were assessed using Biowin (EnviroSim Associates, Ltd., Flamborough, Ontario, Canada) simulations for both pre- and post-denitrification systems. Examination of microbial population structures using Automated Ribosomal Intergenic Spacer Analysis (ARISA) throughout the study period showed dynamic temporal changes and distinct microbial community structures of different carbon-specific denitrifying cultures. The ability of a specific carbon-acclimated denitrifying population to instantly use other carbon source also was investigated, and the chemical-structure-associated behavior patterns observed suggested that the complex biochemical pathways/enzymes involved in the denitrification process depended on the carbon sources used.

  13. Kinetics of sulfate and hydrogen uptake by the thermophilic sulfate-reducing bacteria Thermodesulfobacterium sp. strain JSP and Thermodesulfovibrio sp. strain R1Ha3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonne-Hansen, J.; Ahring, B.K.; Westermann, P.

    1999-03-01

    Dissimilatory sulfate reduction and methanogenesis are the main terminal processes in the anaerobic food chain. Both the sulfate-reducing bacteria (SRB) and the methane-producing archaea (MPA) use acetate and hydrogen as substrates and, therefore, compete for common electron donors in sulfate-containing natural environments. Due to a higher affinity for the electron donors acetate and hydrogen, SRB outcompete MPA for these compounds whenever sulfate is present in sufficient concentrations. Half-saturation constants (K{sub m}), maximum uptake rates (V{sub max}), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. K{sub m} valuesmore » determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations.« less

  14. Longitudinal observation of [11C]4DST uptake in turpentine-induced inflammatory tissue.

    PubMed

    Toyohara, Jun; Sakata, Muneyuki; Oda, Keiichi; Ishii, Kenji; Ishiwata, Kiichi

    2013-02-01

    Longitudinal changes of 4'-[methyl-(11)C]thiothymidine ([(11)C]4DST) uptake were evaluated in turpentine-induced inflammation. Turpentine (0.1 ml) was injected intramuscularly into the right hind leg of male Wistar rats. Longitudinal [(11)C]4DST uptake was evaluated by the tissue dissection method at 1, 2, 4, 7, and 14 days after turpentine injection (n=5). The tumor selectivity index was calculated using the previously published biodistribution data in C6 glioma-bearing rats. Dynamic PET scan was performed on day 4 when maximum [(11)C]4DST uptake was observed during the longitudinal study. Histopathological analysis and Ki-67 immunostaining were also performed. The uptake of [(11)C]4DST in inflammatory tissue was significantly increased on days 2-4 after turpentine injection, and then decreased. On day 14, tracer uptake returned to the day 1 level. The maximum SUV of inflamed muscle was 0.6 and was 3 times higher than that of the contralateral healthy muscle on days 2-4 after turpentine injection. However, tumor selectivity index remains very high (>10) because of the low inflammation uptake. A dynamic PET scan showed that the radioactivity in inflammatory tissues peaked at 5 min after [(11)C]4DST injection, and then washed out until 20 min. At intervals >20 min, radioactivity levels were constant and double that of healthy muscle. The changes in Ki-67 index were paralleled with those of [(11)C]4DST uptake, indicating cell proliferation-dependent uptake of [(11)C]4DST in inflammatory tissues. In our animal model, low but significant levels of [(11)C]4DST uptake were observed in subacute inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Aortitis in giant cell arteritis: diagnosis with FDG PET/CT and agreement with CT angiography.

    PubMed

    Hommada, Mona; Mekinian, Arsène; Brillet, Pierre-Yves; Abad, Sébastien; Larroche, Claire; Dhôte, Robin; Fain, Olivier; Soussan, Michael

    2017-11-01

    To assess the detection rate of aortitis in giant cell arteritis (GCA) with fluorodeoxyglucose positron emission tomography/computed tomography (PET) and to compare the findings with CT angiography (CTA). Fifty-two GCA patients and 27 controls were included. GCA patients had a PET scan at diagnosis (35/52) or during relapse (17/52). Concomitant CTA was performed in 35/52 patients. Aortitis was defined as FDG uptake higher than the liver for PET and wall thickness≥3mm for CTA. Agreement between PET and CTA was evaluated by the kappa coefficient and Spearman correlation coefficient. Aortitis was diagnosed using PET in 40% (14/35) of patients at diagnosis and in 0% of controls (0/27). Agreement was perfect between PET and CT at a patient-based level, and very good at a vascular segment-based level (kappa: 0.72 to 1). PET was positive in 35% (6/17) of patients scanned during GCA relapse, showing aortitis (n=4) and/or articular uptake (n=4). Discrepancies between PET and CT were observed only in relapsing GCA (n=3). Correlation between the maximum standardized uptake value and wall thickness was moderate at diagnosis (r: 0.57 to 0.7) and not statistically significant during relapse. The detection rate of aortitis in GCA patients using PET is 40%, approximately in the range of CTA rates, suggesting that the two techniques have similar sensitivity. PET seems valuable in relapsing GCA, allowing the detection of vascular and articular activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Differences in dissolved cadmium and zinc uptake among stream insects: Mechanistic explanations

    USGS Publications Warehouse

    Buchwalter, D.B.; Luoma, S.N.

    2005-01-01

    This study examined the extent to which dissolved Cd and Zn uptake rates vary in several aquatic insect taxa commonly used as indicators of ecological health. We further attempted to explain the mechanisms underlying observed differences. By comparing dissolved Cd and Zn uptake rates in several aquatic insect species, we demonstrated that species vary widely in these processes. Dissolved uptake rates were not related to gross morphological features such as body size or gill size-features that influence water permeability and therefore have ionoregulatory importance. However, finer morphological features, specifically, the relative numbers of ionoregulatory cells (chloride cells), appeared to be related to dissolved metal uptake rates. This observation was supported by Michaelis-Menten type kinetics experiments, which showed that dissolved Cd uptake rates were driven by the numbers of Cd transporters and not by the affinities of those transporters to Cd. Calcium concentrations in exposure media similarly affected Cd and Zn uptake rates in the caddisfly Hydropsyche californica. Dissolved Cd and Zn uptake rates strongly co-varied among species, suggesting that these metals are transported by similar mechanisms.

  17. Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides.

    PubMed

    Rakhshaee, Roohan; Khosravi, Morteza; Ganji, Masoud Taghi

    2006-06-30

    Dead Azolla filiculoides can remove Pb(2+),Cd(2+), Ni(2+) and Zn(2+) corresponding to second-order kinetic model. The maximum adsorption capacity (Q(max)) to remove these metal ions by the alkali and CaCl(2)/MgCl(2)/NaCl (2:1:1, molar ratio) activated Azolla from 283 to 313K was 1.431-1.272, 1.173-0.990, 1.365-1.198 and 1.291-0.981mmol/g dry biomass, respectively. Q(max) to remove these heavy metals by the non-activated Azolla at the mentioned temperature range was obtained 1.131-0.977, 1.092-0.921, 1.212-0.931 and 1.103-0.923mmol/g dry biomass, respectively. In order to remove these metal ions by the activated Azolla, the enthalpy change (DeltaH) was -4.403, -4.495, -4.557 and -4.365kcal/mol and the entropy change (DeltaS) was 2.290, 1.268, 1.745 and 1.006cal/molK, respectively. While, to remove these metal ions by the non-activated Azolla, DeltaH was -3.685, -3.766, -3.967 and -3.731kcal/mol and DeltaS was 2.440, 1.265, 1.036 and 0.933cal/molK, respectively. On the other hand, the living Azolla removed these heavy metals corresponding to first-order kinetic model. It was also shown that pH, temperature and photoperiod were effective both on the rate of Azolla growth and the rate of heavy metals uptake during 10 days. It was appeared the use of Ca(NO(3))(2) increased both Azolla growth rate and the rate of heavy metals uptake while the using KNO(3) although increased Azolla growth rate but decreased the rate of heavy metals uptake.

  18. Quantifying stream nutrient uptake from ambient to saturation with instantaneous tracer additions

    NASA Astrophysics Data System (ADS)

    Covino, T. P.; McGlynn, B. L.; McNamara, R.

    2009-12-01

    Stream nutrient tracer additions and spiraling metrics are frequently used to quantify stream ecosystem behavior. However, standard approaches limit our understanding of aquatic biogeochemistry. Specifically, the relationship between in-stream nutrient concentration and stream nutrient spiraling has not been characterized. The standard constant rate (steady-state) approach to stream spiraling parameter estimation, either through elevating nutrient concentration or adding isotopically labeled tracers (e.g. 15N), provides little information regarding the stream kinetic curve that represents the uptake-concentration relationship analogous to the Michaelis-Menten curve. These standard approaches provide single or a few data points and often focus on estimating ambient uptake under the conditions at the time of the experiment. Here we outline and demonstrate a new method using instantaneous nutrient additions and dynamic analyses of breakthrough curve (BTC) data to characterize the full relationship between spiraling metrics and nutrient concentration. We compare the results from these dynamic analyses to BTC-integrated, and standard steady-state approaches. Our results indicate good agreement between these three approaches but we highlight the advantages of our dynamic method. Specifically, our new dynamic method provides a cost-effective and efficient approach to: 1) characterize full concentration-spiraling metric curves; 2) estimate ambient spiraling metrics; 3) estimate Michaelis-Menten parameters maximum uptake (Umax) and the half-saturation constant (Km) from developed uptake-concentration kinetic curves, and; 4) measure dynamic nutrient spiraling in larger rivers where steady-state approaches are impractical.

  19. Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off.

    PubMed

    Manzoni, Stefano; Vico, Giulia; Katul, Gabriel; Palmroth, Sari; Jackson, Robert B; Porporato, Amilcare

    2013-04-01

    Soil and plant hydraulics constrain ecosystem productivity by setting physical limits to water transport and hence carbon uptake by leaves. While more negative xylem water potentials provide a larger driving force for water transport, they also cause cavitation that limits hydraulic conductivity. An optimum balance between driving force and cavitation occurs at intermediate water potentials, thus defining the maximum transpiration rate the xylem can sustain (denoted as E(max)). The presence of this maximum raises the question as to whether plants regulate transpiration through stomata to function near E(max). To address this question, we calculated E(max) across plant functional types and climates using a hydraulic model and a global database of plant hydraulic traits. The predicted E(max) compared well with measured peak transpiration across plant sizes and growth conditions (R = 0.86, P < 0.001) and was relatively conserved among plant types (for a given plant size), while increasing across climates following the atmospheric evaporative demand. The fact that E(max) was roughly conserved across plant types and scales with the product of xylem saturated conductivity and water potential at 50% cavitation was used here to explain the safety-efficiency trade-off in plant xylem. Stomatal conductance allows maximum transpiration rates despite partial cavitation in the xylem thereby suggesting coordination between stomatal regulation and xylem hydraulic characteristics. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  20. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period].

    PubMed

    Schulze, E -D; Lange, O L; Koch, W

    1972-12-01

    The influence of climatic factors on net photosynthesis, dark respiration and transpiration was investigated in the Negev Desert at the end of the dry summer period when plant water stress was at a maximum. Species studied included: dominant species of the natural vegetation (Artemisia herba-alba, Hammada scoparia, Noaea mucronata, Reaumuria negevensis, Salsola inermis, Zygophyllum dumosum), cultivated plants receiving rainfall and run-off water during the winter season in the run-off farm Avdat (Prunus armeniaca, Vitis vinifera), and irrigated cultivated plants receiving additional water during the summer season (Citrullus colocynthis, Datura metel). 1. Light saturation of net photosynthesis was reached at 60-90 klx conforming to the high solar radiation intensities of the desert. 2. Maximum rates of CO 2 uptake per unit of dry weight for the irrigated mesomorphic plants was ten times that of the wild plants. However, in comparison to the other species, maximal rates of CO 2 uptake for wild plants were higher when calculated on a leaf area basis than when represented on a dry weight basis. Maximum rates of net photosynthesis per unit chlorophyll content for some of the wild plants (Salsola and Noaea) were comparable to those of the cultivated Vitis and irrigated Citrullus and Datura, Hammada exhibited even higher rates than Prunus. This demonstrates the great photosynthetic capacity of the wild plants even at the end of the dry season. 3. The upper temperature compensation point for net photosynthesis of the wild plants was unusually high as an adaptation to the temperatures of the habitat. Compensation points higher than 49°C exceed the maxima known so far for other flowering species. Maximum rates of net photosynthesis of Hammada were measured when the temperature of the photosynthetic organs was 37°C; at 49°C photosynthesis was only reduced by 50%. 4. Leaf temperature affects plant gas exchange by influencing stomatal aperture. Diffusion resistance of leaves to water vapour was reduced at low temperatures and increased at high temperatures. Reduction of net photosynthesis and transpiration of desert plants at midday may, therefore, be the result of temperature-induced stomatal closure. The possible influence of peristomatal transpiration on stomatal aperture is also discussed. Peristomatal transpiration is directly related to the vapour pressure gradient between the leaf mesophyll and the ambient air which increases with increasing temperatures. 5. Diffusion resistance to water vapour was reduced at high temperatures approaching the limits of heat resistance, due to increased stomatal aperture. This resulted in greater transpirational cooling. 6. Under conditions of increased leaf water stress, diffusion resistance increased, either by sudden stomatal closure at specific threshold values of water stress or through a continuous increase in resistance. This increased resistance is coupled with decreases in transpiration and photosynthesis. 7. In several plant species increased diffusion resistance during the course of the day caused decreased transpiration without a corresponding decrease in photosynthesis. Under these conditions, the ratio of CO 2 uptake to transpiration became more favourable as the day progressed. The possibility that this favourable gas exchange response is the result of an increased mesophyll resistance to water vapour loss is discussed.

  1. Soil Methane uptake Model (MeMo): a process based model for global methane consumption by soils

    NASA Astrophysics Data System (ADS)

    Murguia-Flores, F.; Arndt, S.; Ganesan, A.; Hornibrook, E. R. C.; Murray-Tortarolo, G.

    2016-12-01

    Atmospheric methane (CH4) is a powerful greenhouse gas, responsible for 20% of global warming. The only terrestrial and biological sink is the uptake in the soils by methanotrophic bacteria, however there is large spatial and temporal heterogeneity in the magnitude of this sink. One way to provide a global understanding of this process is by using a mathematical model to simulate the mechanisms of the underlying physical and biological drivers. Here we present the soil Methane uptake Model (MeMo) a process-based model for the global methane consumption by soils. We have built on previous models by Ridgwell et al., (1999) and Curry et al., (2007), by making several advances. First, a general analytical solution of the one-dimensional diffusion-reaction equation was implemented that accounts for a maximum uptake depth and for a CH4 flux coming from below the surface (i.e. CH4 production in the soil). Secondly, we revisited and improved the effect of nitrogen inhibition, soil moisture and soil temperature on CH4 uptake in the light of newly available data and advances in our understanding of these drivers. Using observed forcing data, we estimated a global mean CH4 uptake of 31.2±1.2 Tg y-1 for the period 1990-2009 with an increasing trend of 0.1 Tg y-2. Our model represented the latitudinal pattern of uptake shown by field observations, with the highest uptake per unit area occurring over dry tropical forest and the lowest uptake in the polar desert. The highest seasonality occurred in the Northern Hemisphere, showing that the main driver of variability in a given year is from a combination of temperature and soil moisture. Our model showed that CH4 uptake is reduced from previous studies by approximately 10% at the regions with the highest nitrogen deposition: East Asia and Europe. Finally, our results suggest that more field measurements are needed to improve the modelling of the process, such as the basal oxidation rate for different ecosystems, the Q10 temperature response across different conditions and long term field CH4 uptake records.

  2. Maximum Oxygen Uptake During Long-Duration Space Flight: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Moore, A. D., Jr.; Evetts, S. N.; Feiveson, A.H.; Lee, S. M. C.; McCleary, F. A.; Platts, S. H.; Ploutz-Snyder, L.

    2010-01-01

    INTRODUCTION: Maximum oxygen uptake (VO2max) is maintained during space flight lasting <15 d, but has not been measured during long-duration missions. This abstract describes pre-flight and in-flight preliminary findings from the International Space Station (ISS) VO2max experiment. METHODS: Seven astronauts (4 M, 3 F: 47 +/- 5 yr, 174 +/- 7 cm, 74.1 +/- 14.7 kg [mean +/- SD]) performed cycle exercise tests to volitional maximum approx.45 d before flight and tests were scheduled every 30 d during flight beginning on flight day (FD) 14. Tests consisted of three 5-min stages designed to elicit 25%, 50%, and 75% of preflight VO2max, followed by 25 W/min increases. VO2 and heart rate (HR) were measured using the ISS Portable Pulmonary Function System (PPFS) (Damec, Odense, DK). Unfortunately the PPFS did not arrive at the ISS in time to support early test sessions for 3 crewmembers. Descriptive statistics are presented for pre-flight vs. late-flight (FD 147 +/- 33 d) comparisons for all subjects (n=7); and pre-flight, early (FD 18 +/- 3) and late-flight (FD 156 +/- 5) data are presented for subjects (n=4) who completed all of these test sessions. RESULTS: When all subjects are considered, average VO2max decreased from pre- to late in-flight (2.98 +/- 0.85 vs. 2.57 +/- 0.50 L/min) while maximum HR late-flight seemed unchanged (178 +/- 9 vs. 175 +/- 8 beats/min). Similarly, for subjects who completed pre-, early, and late flight measurements (n=4), mean VO2max declined from 3.19 +/- 0.75 L/min preflight to 2.43 +/- 0.43 and 2.62 +/- 0.38 L/min early and late-flight, respectively. Maximum HR was 183 +/- 8, 174 +/- 8, and 179 +/- 6 beats/min pre-, early- and late-flight. DISCUSSION: Average VO2max declined during flight and did not appreciably recover as flight duration increased; however much inter-subject variation occurred in these changes.

  3. rRNA and Poly-β-Hydroxybutyrate Dynamics in Bioreactors Subjected to Feast and Famine Cycles

    PubMed Central

    Frigon, Dominic; Muyzer, Gerard; van Loosdrecht, Mark; Raskin, Lutgarde

    2006-01-01

    Feast and famine cycles are common in activated sludge wastewater treatment systems, and they select for bacteria that accumulate storage compounds, such as poly-β-hydroxybutyrate (PHB). Previous studies have shown that variations in influent substrate concentrations force bacteria to accumulate high levels of rRNA compared to the levels in bacteria grown in chemostats. Therefore, it can be hypothesized that bacteria accumulate more rRNA when they are subjected to feast and famine cycles. However, PHB-accumulating bacteria can form biomass (grow) throughout a feast and famine cycle and thus have a lower peak biomass formation rate during the cycle. Consequently, PHB-accumulating bacteria may accumulate less rRNA when they are subjected to feast and famine cycles than bacteria that are not capable of PHB accumulation. These hypotheses were tested with Wautersia eutropha H16 (wild type) and W. eutropha PHB-4 (a mutant not capable of accumulating PHB) grown in chemostat and semibatch reactors. For both strains, the cellular RNA level was higher when the organism was grown in semibatch reactors than when it was grown in chemostats, and the specific biomass formation rates during the feast phase were linearly related to the cellular RNA levels for cultures. Although the two strains exhibited maximum uptake rates when they were grown in semibatch reactors, the wild-type strain responded much more rapidly to the addition of fresh medium than the mutant responded. Furthermore, the chemostat-grown mutant culture was unable to exhibit maximum substrate uptake rates when it was subjected to pulse-wise addition of fresh medium. These data show that the ability to accumulate PHB does not prevent bacteria from accumulating high levels of rRNA when they are subjected to feast and famine cycles. Our results also demonstrate that the ability to accumulate PHB makes the bacteria more responsive to sudden increases in substrate concentrations, which explains their ecological advantage. PMID:16597926

  4. rRNA and poly-beta-hydroxybutyrate dynamics in bioreactors subjected to feast and famine cycles.

    PubMed

    Frigon, Dominic; Muyzer, Gerard; van Loosdrecht, Mark; Raskin, Lutgarde

    2006-04-01

    Feast and famine cycles are common in activated sludge wastewater treatment systems, and they select for bacteria that accumulate storage compounds, such as poly-beta-hydroxybutyrate (PHB). Previous studies have shown that variations in influent substrate concentrations force bacteria to accumulate high levels of rRNA compared to the levels in bacteria grown in chemostats. Therefore, it can be hypothesized that bacteria accumulate more rRNA when they are subjected to feast and famine cycles. However, PHB-accumulating bacteria can form biomass (grow) throughout a feast and famine cycle and thus have a lower peak biomass formation rate during the cycle. Consequently, PHB-accumulating bacteria may accumulate less rRNA when they are subjected to feast and famine cycles than bacteria that are not capable of PHB accumulation. These hypotheses were tested with Wautersia eutropha H16 (wild type) and W. eutropha PHB-4 (a mutant not capable of accumulating PHB) grown in chemostat and semibatch reactors. For both strains, the cellular RNA level was higher when the organism was grown in semibatch reactors than when it was grown in chemostats, and the specific biomass formation rates during the feast phase were linearly related to the cellular RNA levels for cultures. Although the two strains exhibited maximum uptake rates when they were grown in semibatch reactors, the wild-type strain responded much more rapidly to the addition of fresh medium than the mutant responded. Furthermore, the chemostat-grown mutant culture was unable to exhibit maximum substrate uptake rates when it was subjected to pulse-wise addition of fresh medium. These data show that the ability to accumulate PHB does not prevent bacteria from accumulating high levels of rRNA when they are subjected to feast and famine cycles. Our results also demonstrate that the ability to accumulate PHB makes the bacteria more responsive to sudden increases in substrate concentrations, which explains their ecological advantage.

  5. Heterotrophic Potential for Amino Acid Uptake in a Naturally Eutrophic Lake1

    PubMed Central

    Burnison, B. Kent; Morita, Richard Y.

    1974-01-01

    The uptake of sixteen 14C-labeled amino acids by the indigenous heterotrophic microflora of Upper Klamath Lake, Oregon, was measured using the kinetic approach. The year-long study showed a seasonal variation in the maximum uptake velocity, Vmax, of all the amino acids which was proportional to temperature. The maximum total flux of amino acids by the heterotrophic microflora ranged from 1.2 to 11.9 μmol of C per liter per day (spring to summer). Glutamate, asparagine, aspartate, and serine had the highest Vmax values and were respired to the greatest extent. The percentages of the gross (net + respired) uptake of the amino acids which were respired to CO2 ranged from 2% for leucine to 63% for glutamate. Serine, lysine, and glycine were the most abundant amino acids found in Upper Klamath Lake surface water; at intermediate concentrations were alanine, aspartate, and threonine; and the remaining amino acids were always below 7.5 × 10-8 M (10 μg/liter). The amino acid concentrations determined chemically appear to be the sum of free and adsorbed amino acids, since the values obtained were usually greater than the (Kt + Sn) values obtained by the heterotrophic uptake experiments. PMID:4207581

  6. Estimation of cardiac reserve by peak power: validation and initial application of a simplified index

    NASA Technical Reports Server (NTRS)

    Armstrong, G. P.; Carlier, S. G.; Fukamachi, K.; Thomas, J. D.; Marwick, T. H.

    1999-01-01

    OBJECTIVES: To validate a simplified estimate of peak power (SPP) against true (invasively measured) peak instantaneous power (TPP), to assess the feasibility of measuring SPP during exercise and to correlate this with functional capacity. DESIGN: Development of a simplified method of measurement and observational study. SETTING: Tertiary referral centre for cardiothoracic disease. SUBJECTS: For validation of SPP with TPP, seven normal dogs and four dogs with dilated cardiomyopathy were studied. To assess feasibility and clinical significance in humans, 40 subjects were studied (26 patients; 14 normal controls). METHODS: In the animal validation study, TPP was derived from ascending aortic pressure and flow probe, and from Doppler measurements of flow. SPP, calculated using the different flow measures, was compared with peak instantaneous power under different loading conditions. For the assessment in humans, SPP was measured at rest and during maximum exercise. Peak aortic flow was measured with transthoracic continuous wave Doppler, and systolic and diastolic blood pressures were derived from brachial sphygmomanometry. The difference between exercise and rest simplified peak power (Delta SPP) was compared with maximum oxygen uptake (VO(2)max), measured from expired gas analysis. RESULTS: SPP estimates using peak flow measures correlated well with true peak instantaneous power (r = 0.89 to 0.97), despite marked changes in systemic pressure and flow induced by manipulation of loading conditions. In the human study, VO(2)max correlated with Delta SPP (r = 0.78) better than Delta ejection fraction (r = 0.18) and Delta rate-pressure product (r = 0.59). CONCLUSIONS: The simple product of mean arterial pressure and peak aortic flow (simplified peak power, SPP) correlates with peak instantaneous power over a range of loading conditions in dogs. In humans, it can be estimated during exercise echocardiography, and correlates with maximum oxygen uptake better than ejection fraction or rate-pressure product.

  7. [New methods for determining the relative load due to physical effort of the human body].

    PubMed

    Szubert, Józef; Szubert, Sławomir; Koszada-Włodarczyk, Wiesława; Bortkiewicz, Alicja

    2014-01-01

    The relative physical load (% VO2max) is the quotient of oxygen uptake (Vo2) during physical effort and maximum oxygen uptake (VO2max) by the human body. For this purpose the stress test must be performed. The relative load shows a high correlation with minute ventilation, cardiac output, heart rate, stroke volume, increased concentrations of catecholamines in the blood, inner temperature, weight, height and human body surface area. The relative load is a criterion for the maximum workloads admissible for healthy and sick workers. Besides, the classification of effort can be more precise when based on the relative load than on the energy output. Based on our own and international empirical evidence and the laws of heat transfer and fluid mechanics, a model of temperature control system has been developed, involving the elements of human cardiovascular and respiratory systems. Using this model, we have been able to develop our own methods of determining the relative load, applying only the body core temperature (Tw) or heart rate within one minute (HR), body mass (m), height (H), and body surface area (AD) instead of VO,max. The values of the relative physical load (% VO2max) obtained by using our own methods do not differ significantly from those obtained by other methods and by other researchers. The developed methods for determining the relative physical load (% VO2max) do not require the exercise test to be performed, therefore, they may be considered (after verification in an experimental study) a feasible alternative to current methods.

  8. Counter-Gradient Variation in Respiratory Performance of Coral Reef Fishes at Elevated Temperatures

    PubMed Central

    Gardiner, Naomi M.; Munday, Philip L.; Nilsson, Göran E.

    2010-01-01

    The response of species to global warming depends on how different populations are affected by increasing temperature throughout the species' geographic range. Local adaptation to thermal gradients could cause populations in different parts of the range to respond differently. In aquatic systems, keeping pace with increased oxygen demand is the key parameter affecting species' response to higher temperatures. Therefore, respiratory performance is expected to vary between populations at different latitudes because they experience different thermal environments. We tested for geographical variation in respiratory performance of tropical marine fishes by comparing thermal effects on resting and maximum rates of oxygen uptake for six species of coral reef fish at two locations on the Great Barrier Reef (GBR), Australia. The two locations, Heron Island and Lizard Island, are separated by approximately 1200 km along a latitudinal gradient. We found strong counter-gradient variation in aerobic scope between locations in four species from two families (Pomacentridae and Apogonidae). High-latitude populations (Heron Island, southern GBR) performed significantly better than low-latitude populations (Lizard Island, northern GBR) at temperatures up to 5°C above average summer surface-water temperature. The other two species showed no difference in aerobic scope between locations. Latitudinal variation in aerobic scope was primarily driven by up to 80% higher maximum rates of oxygen uptake in the higher latitude populations. Our findings suggest that compensatory mechanisms in high-latitude populations enhance their performance at extreme temperatures, and consequently, that high-latitude populations of reef fishes will be less impacted by ocean warming than will low-latitude populations. PMID:20949020

  9. Coupling of methylmercury uptake with respiration and water pumping in freshwater tilapia Oreochromis niloticus.

    PubMed

    Wang, Rui; Wong, Ming-Hung; Wang, Wen-Xiong

    2011-09-01

    The relationships among the uptake of toxic methylmercury (MeHg) and two important fish physiological processes-respiration and water pumping--in the Nile tilapia (Oreochromis niloticus) were explored in the present study. Coupled radiotracer and respirometric techniques were applied to measure simultaneously the uptake rates of MeHg, water, and oxygen under various environmental conditions (temperature, dissolved oxygen level, and water flow). A higher temperature enhanced MeHg influx and the oxygen consumption rate but had no effect on the water uptake, indicating the influence of metabolism on MeHg uptake. The fish showed a high tolerance to hypoxia, and the oxygen consumption rate was not affected until the dissolved oxygen concentration decreased to extremely low levels (below 1 mg/L). The MeHg and water uptake rates increased simultaneously as the dissolved oxygen level decreased, suggesting the coupling of water flux and MeHg uptake. The influence of fish swimming performance on MeHg uptake was also investigated for the first time. Rapidly swimming fish showed significantly higher uptake rates of MeHg, water, and oxygen, confirming the coupling relationships among respiration, water pumping, and metal uptake. Moreover, these results support that MeHg uptake is a rate-limiting process involving energy. Our study demonstrates the importance of physiological processes in understanding mercury bioaccumulation in fluctuating aquatic environments. Copyright © 2011 SETAC.

  10. Estuarine microbial food web patterns in a Lake Erie coastal wetland.

    PubMed

    Lavrentyev, P J; McCarthy, M J; Klarer, D M; Jochem, F; Gardner, W S

    2004-11-01

    Composition and distribution of planktonic protists were examined relative to microbial food web dynamics (growth, grazing, and nitrogen cycling rates) at the Old Woman Creek (OWC) National Estuarine Research Reserve during an episodic storm event in July 2003. More than 150 protistan taxa were identified based on morphology. Species richness and microbial biomass measured via microscopy and flow cytometry increased along a stream-lake (Lake Erie) transect and peaked at the confluence. Water column ammonium (NH4+) uptake (0.06 to 1.82 microM N h(-1)) and regeneration (0.04 to 0.55 microM N h(-1)) rates, measured using 15NH4+ isotope dilution, followed the same pattern. Large light/dark NH4+ uptake differences were observed in the hypereutrophic OWC interior, but not at the phosphorus-limited Lake Erie site, reflecting the microbial community structural shift from net autotrophic to net heterotrophic. Despite this shift, microbial grazers (mostly choreotrich ciliates, taxon-specific growth rates up to 2.9 d(-1)) controlled nanophytoplankton and bacteria at all sites by consuming 76 to 110% and 56 to 97% of their daily production, respectively, in dilution experiments. Overall, distribution patterns and dynamics of microbial communities in OWC resemble those in marine estuaries, where plankton productivity increases along the river-sea gradient and reaches its maximum at the confluence.

  11. The rate of nitrite reduction in leaves as indicated by O2 and CO2 exchange during photosynthesis

    PubMed Central

    Eichelmann, H.; Oja, V.; Peterson, R.B.; Laisk, A.

    2011-01-01

    Light response (at 300 ppm CO2 and 10–50 ppm O2 in N2) and CO2 response curves [at absorbed photon fluence rate (PAD) of 550 μmol m−2 s−1] of O2 evolution and CO2 uptake were measured in tobacco (Nicotiana tabacum L.) leaves grown on either NO3− or NH4+ as N source and in potato (Solanum tuberosum L.), sorghum (Sorghum bicolor L. Moench), and amaranth (Amaranthus cruentus L.) leaves grown on NH4NO3. Photosynthetic O2 evolution in excess of CO2 uptake was measured with a stabilized zirconia O2 electrode and an infrared CO2 analyser, respectively, and the difference assumed to represent the rate of electron flow to acceptors alternative to CO2, mainly NO2−, SO42−, and oxaloacetate. In NO3−-grown tobacco, as well as in sorghum, amaranth, and young potato, the photosynthetic O2–CO2 flux difference rapidly increased to about 1 μmol m−2 s−1 at very low PADs and the process was saturated at 50 μmol quanta m−2 s−1. At higher PADs the O2–CO2 flux difference continued to increase proportionally with the photosynthetic rate to a maximum of about 2 μmol m−2 s−1. In NH4+-grown tobacco, as well as in potato during tuber filling, the low-PAD component of surplus O2 evolution was virtually absent. The low-PAD phase was ascribed to photoreduction of NO2− which successfully competes with CO2 reduction and saturates at a rate of about 1 μmol O2 m−2 s−1 (9% of the maximum O2 evolution rate). The high-PAD component of about 1 μmol O2 m−2 s−1, superimposed on NO2− reduction, may represent oxaloacetate reduction. The roles of NO2−, oxaloacetate, and O2 reduction in the regulation of ATP/NADPH balance are discussed. PMID:21239375

  12. Differential uptake of salicylate in serum, cerebrospinal fluid, and perilymph.

    PubMed

    Jastreboff, P J; Hansen, R; Sasaki, P G; Sasaki, C T

    1986-10-01

    After intraperitoneal administration of salicylate in anesthetized rats and guinea pigs, we found that salicylate levels in perilymph (PL) are closely related to both drug levels in cerebrospinal fluid (CSF) and in serum, with higher levels systematically observed in PL than in CSF. Further analysis suggests that salicylate is not passively transported into PL across CSF but, rather, is transported from blood directly to PL. The time course of salicylate uptake in rats reveals maximum levels at 1 1/2 hours (serum) and two to four hours (CSF and PL). On the other hand, salicylate uptake into serum and CSF of guinea pigs exhibits a longer time course, with maximum levels reached at four hours (serum) and five hours (CSF). These data, not previously available, are basic to our understanding of salicylate-related auditory effects.

  13. [Effects of carbon sources, temperature and electron acceptors on biological phosphorus removal].

    PubMed

    Han, Yun; Xu, Song; Dong, Tao; Wang, Bin-Fan; Wang, Xian-Yao; Peng, Dang-Cong

    2015-02-01

    Effects of carbon sources, temperature and electron acceptors on phosphorus uptake and release were investigated in a pilot-scale oxidation ditch. Phosphorus uptake and release rates were measured with different carbon sources (domestic sewage, sodium acetate, glucose) at 25 degrees C. The results showed that the minimum phosphorus uptake and release rates of glucose were 5.12 mg x (g x h)(-1) and 6.43 mg x (g x h)(-1), respectively, and those of domestic sewage are similar to those of sodium acetate. Phosphorus uptake and release rates increased with the increase of temperature (12, 16, 20 and 25 degrees C) using sodium acetate as carbon sources. Anoxic phosphorus uptake rate decreased with added COD. Electron acceptors (oxygen, nitrate, nitrite) had significant effects on phosphorus uptake rate and their order was in accordance with oxygen > nitrate > nitrite. The mass ratio of anoxic P uptake and N consumption (P(uptake)/N (consumption)) of nitrate and nitrite were 0.96 and 0.65, respectively.

  14. The contribution of water soluble and water insoluble organic fractions to oxygen uptake rate during high rate composting.

    PubMed

    Giuliana, D'Imporzano; Fabrizio, Adani

    2007-02-01

    This study aims to establish the contribution of the water soluble and water insoluble organic fractions to total oxygen uptake rate during high rate composting process of a mixture of organic fraction of municipal solid waste and lignocellulosic material. This mixture was composted using a 20 l self-heating pilot scale composter for 250 h. The composter was fully equipped to record both the biomass-temperature and oxygen uptake rate. Representative compost samples were taken at 0, 70, 100, 110, 160, and 250 h from starting time. Compost samples were fractionated in water soluble and water insoluble fractions. The water soluble fraction was then fractionated in hydrophilic, hydrophobic, and neutral hydrophobic fractions. Each fraction was then studied using quantitative (total organic carbon) and qualitative analysis (diffuse reflectance infrared spectroscopy and biodegradability test). Oxygen uptake rates were high during the initial stages of the process due to rapid degradation of the soluble degradable organic fraction (hydrophilic plus hydrophobic fractions). Once this fraction was depleted, polymer hydrolysis accounted for most of the oxygen uptake rate. Finally, oxygen uptake rate could be modeled using a two term kinetic. The first term provides the oxygen uptake rate resulting from the microbial growth kinetic type on easily available, no-limiting substrate (soluble fraction), while the second term considers the oxygen uptake rate caused by the degradation of substrate produced by polymer hydrolysis.

  15. Entomotoxicity, protease and chitinase activity of Bacillus thuringiensis fermented wastewater sludge with a high solids content.

    PubMed

    Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2009-10-01

    This study investigated the production of biopesticides, protease and chitinase activity by Bacillus thuringiensis grown in raw wastewater sludge at high solids concentration (30 g/L). The rheology of wastewater sludge was modified with addition of Tween-80 (0.2% v/v). This addition resulted in 1.6 and 1.3-fold increase in cell and spore count, respectively. The maximum specific growth rate (micro(max)) augmented from 0.17 to 0.22 h(-1) and entomotoxicity (Tx) increased by 29.7%. Meanwhile, volumetric mass transfer coefficient (k(L)a) showed marked variations during fermentation, and oxygen uptake rate (OUR) increased 2-fold. The proteolytic activity increased while chitinase decreased for Tween amended wastewater sludge, but the entomotoxicity increased. The specific entomotoxicity followed power law when plotted against spore concentration and the relation between Tx and protease activity was linear. The viscosity varied and volume percent of particles increased in Tween-80 amended wastewater sludge and particle size (D(50)) decreased at the end of fermentation. Thus, there was an increase in entomotoxicity at higher suspended solids (30 g/L) as Tween addition improved rheology (viscosity, particle size, surface tension); enhanced maximum growth rate and OUR.

  16. Non-covalent pomegranate (Punica granatum) hydrolyzable tannin-protein complexes modulate antigen uptake, processing and presentation by a T-cell hybridoma line co-cultured with murine peritoneal macrophages.

    PubMed

    Madrigal-Carballo, Sergio; Haas, Linda; Vestling, Martha; Krueger, Christian G; Reed, Jess D

    2016-12-01

    In this work we characterize the interaction of pomegranate hydrolyzable tannins (HT) with hen egg-white lysozyme (HEL) and determine the effects of non-covalent tannin-protein complexes on macrophage endocytosis, processing and presentation of antigen. We isolated HT from pomegranate and complex to HEL, the resulting non-covalent tannin-protein complex was characterized by gel electrophoresis and MALDI-TOF MS. Finally, cell culture studies and confocal microscopy imaging were conducted on the non-covalent pomegranate HT-HEL protein complexes to evaluate its effect on macrophage antigen uptake, processing and presentation to T-cell hybridomas. Our results indicate that non-covalent pomegranate HT-HEL protein complexes modulate uptake, processing and antigen presentation by mouse peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL alone, whereas a non-covalent pomegranate HT-HEL complex had already reached maximum IL-2 expression. Pomegranate HT may increase rate of endocytose of HEL and subsequent expression of IL-2 by the T-cell hybridomas.

  17. Independent Colimitation for Carbon Dioxide and Inorganic Phosphorus

    PubMed Central

    Spijkerman, Elly; de Castro, Francisco; Gaedke, Ursula

    2011-01-01

    Simultaneous limitation of plant growth by two or more nutrients is increasingly acknowledged as a common phenomenon in nature, but its cellular mechanisms are far from understood. We investigated the uptake kinetics of CO2 and phosphorus of the algae Chlamydomonas acidophila in response to growth at limiting conditions of CO2 and phosphorus. In addition, we fitted the data to four different Monod-type models: one assuming Liebigs Law of the minimum, one assuming that the affinity for the uptake of one nutrient is not influenced by the supply of the other (independent colimitation) and two where the uptake affinity for one nutrient depends on the supply of the other (dependent colimitation). In addition we asked whether the physiological response under colimitation differs from that under single nutrient limitation. We found no negative correlation between the affinities for uptake of the two nutrients, thereby rejecting a dependent colimitation. Kinetic data were supported by a better model fit assuming independent uptake of colimiting nutrients than when assuming Liebigs Law of the minimum or a dependent colimitation. Results show that cell nutrient homeostasis regulated nutrient acquisition which resulted in a trade-off in the maximum uptake rates of CO2 and phosphorus, possibly driven by space limitation on the cell membrane for porters for the different nutrients. Hence, the response to colimitation deviated from that to a single nutrient limitation. In conclusion, responses to single nutrient limitation cannot be extrapolated to situations where multiple nutrients are limiting, which calls for colimitation experiments and models to properly predict growth responses to a changing natural environment. These deviations from single nutrient limitation response under colimiting conditions and independent colimitation may also hold for other nutrients in algae and in higher plants. PMID:22145031

  18. Estimating uncertainty in ambient and saturation nutrient uptake metrics from nutrient pulse releases in stream ecosystems

    DOE PAGES

    Brooks, Scott C.; Brandt, Craig C.; Griffiths, Natalie A.

    2016-10-07

    Nutrient spiraling is an important ecosystem process characterizing nutrient transport and uptake in streams. Various nutrient addition methods are used to estimate uptake metrics; however, uncertainty in the metrics is not often evaluated. A method was developed to quantify uncertainty in ambient and saturation nutrient uptake metrics estimated from saturating pulse nutrient additions (Tracer Additions for Spiraling Curve Characterization; TASCC). Using a Monte Carlo (MC) approach, the 95% confidence interval (CI) was estimated for ambient uptake lengths (S w-amb) and maximum areal uptake rates (U max) based on 100,000 datasets generated from each of four nitrogen and five phosphorous TASCCmore » experiments conducted seasonally in a forest stream in eastern Tennessee, U.S.A. Uncertainty estimates from the MC approach were compared to the CIs estimated from ordinary least squares (OLS) and non-linear least squares (NLS) models used to calculate S w-amb and U max, respectively, from the TASCC method. The CIs for Sw-amb and Umax were large, but were not consistently larger using the MC method. Despite the large CIs, significant differences (based on nonoverlapping CIs) in nutrient metrics among seasons were found with more significant differences using the OLS/NLS vs. the MC method. Lastly, we suggest that the MC approach is a robust way to estimate uncertainty, as the calculation of S w-amb and U max violates assumptions of OLS/NLS while the MC approach is free of these assumptions. The MC approach can be applied to other ecosystem metrics that are calculated from multiple parameters, providing a more robust estimate of these metrics and their associated uncertainties.« less

  19. Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation1

    PubMed Central

    Wang, Junru; Zhao, Fang-Jie; Meharg, Andrew A.; Raab, Andrea; Feldmann, Joerg; McGrath, Steve P.

    2002-01-01

    The mechanisms of arsenic (As) hyperaccumulation in Pteris vittata, the first identified As hyperaccumulator, are unknown. We investigated the interactions of arsenate and phosphate on the uptake and distribution of As and phosphorus (P), and As speciation in P. vittata. In an 18-d hydroponic experiment with varying concentrations of arsenate and phosphate, P. vittata accumulated As in the fronds up to 27,000 mg As kg−1 dry weight, and the frond As to root As concentration ratio varied between 1.3 and 6.7. Increasing phosphate supply decreased As uptake markedly, with the effect being greater on root As concentration than on shoot As concentration. Increasing arsenate supply decreased the P concentration in the roots, but not in the fronds. Presence of phosphate in the uptake solution decreased arsenate influx markedly, whereas P starvation for 8 d increased the maximum net influx by 2.5-fold. The rate of arsenite uptake was 10% of that for arsenate in the absence of phosphate. Neither P starvation nor the presence of phosphate affected arsenite uptake. Within 8 h, 50% to 78% of the As taken up was distributed to the fronds, with a higher translocation efficiency for arsenite than for arsenate. In fronds, 49% to 94% of the As was extracted with a phosphate buffer (pH 5.6). Speciation analysis using high-performance liquid chromatography-inductively coupled plasma mass spectroscopy showed that >85% of the extracted As was in the form of arsenite, and the remaining mostly as arsenate. We conclude that arsenate is taken up by P. vittata via the phosphate transporters, reduced to arsenite, and sequestered in the fronds primarily as As(III). PMID:12428020

  20. Estimating uncertainty in ambient and saturation nutrient uptake metrics from nutrient pulse releases in stream ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Scott C.; Brandt, Craig C.; Griffiths, Natalie A.

    Nutrient spiraling is an important ecosystem process characterizing nutrient transport and uptake in streams. Various nutrient addition methods are used to estimate uptake metrics; however, uncertainty in the metrics is not often evaluated. A method was developed to quantify uncertainty in ambient and saturation nutrient uptake metrics estimated from saturating pulse nutrient additions (Tracer Additions for Spiraling Curve Characterization; TASCC). Using a Monte Carlo (MC) approach, the 95% confidence interval (CI) was estimated for ambient uptake lengths (S w-amb) and maximum areal uptake rates (U max) based on 100,000 datasets generated from each of four nitrogen and five phosphorous TASCCmore » experiments conducted seasonally in a forest stream in eastern Tennessee, U.S.A. Uncertainty estimates from the MC approach were compared to the CIs estimated from ordinary least squares (OLS) and non-linear least squares (NLS) models used to calculate S w-amb and U max, respectively, from the TASCC method. The CIs for Sw-amb and Umax were large, but were not consistently larger using the MC method. Despite the large CIs, significant differences (based on nonoverlapping CIs) in nutrient metrics among seasons were found with more significant differences using the OLS/NLS vs. the MC method. Lastly, we suggest that the MC approach is a robust way to estimate uncertainty, as the calculation of S w-amb and U max violates assumptions of OLS/NLS while the MC approach is free of these assumptions. The MC approach can be applied to other ecosystem metrics that are calculated from multiple parameters, providing a more robust estimate of these metrics and their associated uncertainties.« less

  1. Genome-Based Metabolic Mapping and 13C Flux Analysis Reveal Systematic Properties of an Oleaginous Microalga Chlorella protothecoides

    DOE PAGES

    Wu, Chao; Xiong, Wei; Dai, Junbiao; ...

    2014-12-15

    We report that integrated and genome-based flux balance analysis, metabolomics, and 13C-label profiling of phototrophic and heterotrophic metabolism in Chlorella protothecoides, an oleaginous green alga for biofuel. The green alga Chlorella protothecoides, capable of autotrophic and heterotrophic growth with rapid lipid synthesis, is a promising candidate for biofuel production. Based on the newly available genome knowledge of the alga, we reconstructed the compartmentalized metabolic network consisting of 272 metabolic reactions, 270 enzymes, and 461 encoding genes and simulated the growth in different cultivation conditions with flux balance analysis. Phenotype-phase plane analysis shows conditions achieving theoretical maximum of the biomass andmore » corresponding fatty acid-producing rate for phototrophic cells (the ratio of photon uptake rate to CO 2 uptake rate equals 8.4) and heterotrophic ones (the glucose uptake rate to O 2 consumption rate reaches 2.4), respectively. Isotope-assisted liquid chromatography-mass spectrometry/mass spectrometry reveals higher metabolite concentrations in the glycolytic pathway and the tricarboxylic acid cycle in heterotrophic cells compared with autotrophic cells. We also observed enhanced levels of ATP, nicotinamide adenine dinucleotide (phosphate), reduced, acetyl-Coenzyme A, and malonyl-Coenzyme A in heterotrophic cells consistently, consistent with a strong activity of lipid synthesis. To profile the flux map in experimental conditions, we applied nonstationary 13C metabolic flux analysis as a complementing strategy to flux balance analysis. We found that the result reveals negligible photorespiratory fluxes and a metabolically low active tricarboxylic acid cycle in phototrophic C. protothecoides. In comparison, high throughput of amphibolic reactions and the tricarboxylic acid cycle with no glyoxylate shunt activities were measured for heterotrophic cells. Lastly, taken together, the metabolic network modeling assisted by experimental metabolomics and 13C labeling better our understanding on global metabolism of oleaginous alga, paving the way to the systematic engineering of the microalga for biofuel production.« less

  2. Encystment of parasitic freshwater pearl mussel (Margaritifera margaritifera) larvae coincides with increased metabolic rate and haematocrit in juvenile brown trout (Salmo trutta).

    PubMed

    Filipsson, Karl; Brijs, Jeroen; Näslund, Joacim; Wengström, Niklas; Adamsson, Marie; Závorka, Libor; Österling, E Martin; Höjesjö, Johan

    2017-04-01

    Gill parasites on fish are likely to negatively influence their host by inhibiting respiration, oxygen transport capacity and overall fitness. The glochidia larvae of the endangered freshwater pearl mussel (FPM, Margaritifera margaritifera (Linnaeus, 1758)) are obligate parasites on the gills of juvenile salmonid fish. We investigated the effects of FPM glochidia encystment on the metabolism and haematology of brown trout (Salmo trutta Linnaeus, 1758). Specifically, we measured whole-animal oxygen uptake rates at rest and following an exhaustive exercise protocol using intermittent flow-through respirometry, as well as haematocrit, in infested and uninfested trout. Glochidia encystment significantly affected whole-animal metabolic rate, as infested trout exhibited higher standard and maximum metabolic rates. Furthermore, glochidia-infested trout also had elevated levels of haematocrit. The combination of an increased metabolism and haematocrit in infested fish indicates that glochidia encystment has a physiological effect on the trout, perhaps as a compensatory response to the potential respiratory stress caused by the glochidia. When relating glochidia load to metabolism and haematocrit, fish with low numbers of encysted glochidia were the ones with particularly elevated metabolism and haematocrit. Standard metabolic rate decreased with substantial glochidia loads towards levels similar to those of uninfested fish. This suggests that initial effects visible at low levels of encystment may be countered by additional physiological effects at high loads, e.g. potential changes in energy utilization, and also that high numbers of glochidia may restrict oxygen uptake by the gills.

  3. Variable phosphorus uptake rates and allocation across microbial groups in the oligotrophic Gulf of Mexico.

    PubMed

    Popendorf, Kimberly J; Duhamel, Solange

    2015-10-01

    Microbial uptake of dissolved phosphorus (P) is an important lever in controlling both microbial production and the fate and cycling of marine P. We investigated the relative role of heterotrophic bacteria and phytoplankton in P cycling by measuring the P uptake rates of individual microbial groups (heterotrophic bacteria and the phytoplankton groups Synechococcus, Prochlorococcus and picoeukaryotic phytoplankton) in the P-depleted Gulf of Mexico. Phosphorus uptake rates were measured using incubations with radiolabelled phosphate and adenosine triphosphate coupled with cell sorting flow cytometry. We found that heterotrophic bacteria were the dominant consumers of P on both a biomass basis and a population basis. Biovolume normalized heterotrophic bacteria P uptake rate per cell (amol P μm(-3) h(-1)) was roughly an order of magnitude greater than phytoplankton uptake rates, and heterotrophic bacteria were responsible for generally greater than 50% of total picoplankton P uptake. We hypothesized that this variation in uptake rates reflects variation in cellular P allocation strategies, and found that, indeed, the fraction of cellular P uptake utilized for phospholipid production was significantly higher in heterotrophic bacteria compared with cyanobacterial phytoplankton. These findings indicate that heterotrophic bacteria have a uniquely P-oriented physiology and play a dominant role in cycling dissolved P. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Prolonged Maltose-Limited Cultivation of Saccharomyces cerevisiae Selects for Cells with Improved Maltose Affinity and Hypersensitivity

    PubMed Central

    Jansen, Mickel L. A.; Daran-Lapujade, Pascale; de Winde, Johannes H.; Piper, Matthew D. W.; Pronk, Jack T.

    2004-01-01

    Prolonged cultivation (>25 generations) of Saccharomyces cerevisiae in aerobic, maltose-limited chemostat cultures led to profound physiological changes. Maltose hypersensitivity was observed when cells from prolonged cultivations were suddenly exposed to excess maltose. This substrate hypersensitivity was evident from massive cell lysis and loss of viability. During prolonged cultivation at a fixed specific growth rate, the affinity for the growth-limiting nutrient (i.e., maltose) increased, as evident from a decreasing residual maltose concentration. Furthermore, the capacity of maltose-dependent proton uptake increased up to 2.5-fold during prolonged cultivation. Genome-wide transcriptome analysis showed that the increased maltose transport capacity was not primarily due to increased transcript levels of maltose-permease genes upon prolonged cultivation. We propose that selection for improved substrate affinity (ratio of maximum substrate consumption rate and substrate saturation constant) in maltose-limited cultures leads to selection for cells with an increased capacity for maltose uptake. At the same time, the accumulative nature of maltose-proton symport in S. cerevisiae leads to unrestricted uptake when maltose-adapted cells are exposed to a substrate excess. These changes were retained after isolation of individual cell lines from the chemostat cultures and nonselective cultivation, indicating that mutations were involved. The observed trade-off between substrate affinity and substrate tolerance may be relevant for metabolic engineering and strain selection for utilization of substrates that are taken up by proton symport. PMID:15066785

  5. Diurnal changes in net uptake rate of nitrate are associated with changes in estimated export of carbohydrates to roots

    NASA Technical Reports Server (NTRS)

    Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    The rate of NO3- uptake by soybean (Glycine max [L.] Merrill) roots generally declines during the night in association with progressive depletion of the nonstructural carbohydrate pool in the shoot as well as the concentration of carbohydrates in roots. To determine if NO3- uptake rate changes in response to variations in translocation rate of carbohydrates from shoot to roots per se or to carbohydrate status of the roots, the night period was interrupted with a low light level from incandescent lamps to alter the diurnal pattern of NO3- uptake by roots and export of carbohydrate from shoots of nonnodulated soybean. Depletion of NO3- from replenished, complete nutrient solutions containing 1 mM NO3- was measured by ion chromatography and rates of NO3- uptake were calculated. Changes in export of carbohydrates from shoot to roots during intervals of the night period were calculated as the differences between rates of disappearance in contents of nonstructural carbohydrates and their estimated rates of utilization in shoot respiration and growth. A positive, significant correlation occurred between changes in calculated rates of carbohydrate export from shoots and NO3- uptake rates. Conversely, there was no significant correlation between concentrations of nonstructural carbohydrates in roots and NO3- uptake rates. These results support the hypothesis that carbohydrate flux from shoot to roots has a direct role in regulation of nitrogen uptake by the whole plant.

  6. Inhibitory effect on the uptake and diffusion of Cd(2+) onto soybean hull sorbent in Cd-Pb binary sorption systems.

    PubMed

    Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Colombo, Andréia; Geraldi, Claudinéia L; Trigueros, Daniela E G

    2015-05-01

    The uptake of Cd(2+) and Pb(2+) ions by a soybean hull (SH) biosorbent in single and binary systems has been investigated. Sorption tests regarding SH in natura and chemically treated were carried out testing a suitable value range of solution pH, sorption temperature and shaking velocity. Sorption capacity is improved at pH 4, 30 °C temperature and 100 rpm. When a strong base is applied, a related-to-untreated SH increasing of 20% in the sorption capacity of Pb(2+) ions was observed, but with poor results for Cd(2+) uptake. Additionally, a relatively strong decreasing in both sorption capacities of Pb(2+) and Cd(2+) ions was evidenced for all acidic treatments. Regarding untreated SH, kinetic sorption data of both metals were well-interpreted by a pseudo second-order model and a rate-limiting step on the basis of an intra-particle diffusion model was suggested to occur. An inhibitory effect of Pb(2+) diffusion over Cd(2+) one was observed, limiting to reach the obtained maximum sorption capacity in single system. Maximum adsorption capacities of 0.49 and 0.67mequivg(-1) for Cd(2+) and Pb(2+), respectively, were predicted by the Langmuir isotherm model that reproduced well the equilibrium sorption data for single systems. The inhibitory effect of one metal over the other one was verified in equilibrium sorption data for binary systems interpreted on the basis of a modified extended Langmuir isotherm model, predicting changes in metal affinity onto the SH surface. Finally, SH is an alternative biosorbent with a great potential for the wastewater treatment containing cadmium and lead ions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. O3 uptake and drought stress effects on carbon acquisition of ponderosa pine in natural stands

    Treesearch

    N.E. Grulke; H.K. Preisler; C. Rose; J. Kirsch; L. Balduman

    2002-01-01

    • The effect of O3 exposure or uptake on carbon acquisition (net assimilation (A) or gross photosynthesis (Pg)), with and without drought stress, is reported here in 40-yr-old-ponderosa pine (Pinus ponderosa) trees. • Maximum daily gas exchange was...

  8. Uptake of Nickel by Synthetic Mackinawite

    EPA Science Inventory

    The uptake of aqueous Ni(II) by synthetic mackinawite (FeS) was examined in anaerobic batch experiments at near-neutral pH (5.2 to 8.4). Initial molar ratios of Ni(II) to FeS ranged from 0.008 to 0.83 and maximum Ni concentrations in mackinawite, expressed as the cation mol fract...

  9. Amino acid production exceeds plant nitrogen demand in Siberian tundra

    NASA Astrophysics Data System (ADS)

    Wild, Birgit; Eloy Alves, Ricardo J.; Bárta, Jiři; Čapek, Petr; Gentsch, Norman; Guggenberger, Georg; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Prommer, Judith; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Richter, Andreas

    2018-03-01

    Arctic plant productivity is often limited by low soil N availability. This has been attributed to slow breakdown of N-containing polymers in litter and soil organic matter (SOM) into smaller, available units, and to shallow plant rooting constrained by permafrost and high soil moisture. Using 15N pool dilution assays, we here quantified gross amino acid and ammonium production rates in 97 active layer samples from four sites across the Siberian Arctic. We found that amino acid production in organic layers alone exceeded literature-based estimates of maximum plant N uptake 17-fold and therefore reject the hypothesis that arctic plant N limitation results from slow SOM breakdown. High microbial N use efficiency in organic layers rather suggests strong competition of microorganisms and plants in the dominant rooting zone. Deeper horizons showed lower amino acid production rates per volume, but also lower microbial N use efficiency. Permafrost thaw together with soil drainage might facilitate deeper plant rooting and uptake of previously inaccessible subsoil N, and thereby promote plant productivity in arctic ecosystems. We conclude that changes in microbial decomposer activity, microbial N utilization and plant root density with soil depth interactively control N availability for plants in the Arctic.

  10. Contemporary reliance on bicarbonate acquisition predicts increased growth of seagrass Amphibolis antarctica in a high-CO2 world

    PubMed Central

    Burnell, Owen W.; Connell, Sean D.; Irving, Andrew D.; Watling, Jennifer R.; Russell, Bayden D.

    2014-01-01

    Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3−. Currently, many marine primary producers use HCO3− for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to HCO3− pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also maintained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica was significantly reduced by AZ and TRIS, indicating utilization of HCO3−-uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth conditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration. The greater increase in photosynthesis (measured as O2 production) compared with the electron transport rate at forecasted CO2 concentration suggests that photosynthetic efficiency increased, possibly due to a decrease in photorespiration. Thus, it appears that the photosynthesis and growth of seagrasses reliant on energetically costly HCO3− acquisition, such as A. antarctica, might increase at forecasted CO2 concentrations. Greater growth might enhance the future prosperity and rehabilitation of these important habitat-forming plants, which have experienced declines of global significance. PMID:27293673

  11. Contemporary reliance on bicarbonate acquisition predicts increased growth of seagrass Amphibolis antarctica in a high-CO2 world.

    PubMed

    Burnell, Owen W; Connell, Sean D; Irving, Andrew D; Watling, Jennifer R; Russell, Bayden D

    2014-01-01

    Rising atmospheric CO2 is increasing the availability of dissolved CO2 in the ocean relative to HCO3 (-). Currently, many marine primary producers use HCO3 (-) for photosynthesis, but this is energetically costly. Increasing passive CO2 uptake relative to HCO3 (-) pathways could provide energy savings, leading to increased productivity and growth of marine plants. Inorganic carbon-uptake mechanisms in the seagrass Amphibolis antarctica were determined using the carbonic anhydrase inhibitor acetazolamide (AZ) and the buffer tris(hydroxymethyl)aminomethane (TRIS). Amphibolis antarctica seedlings were also maintained in current and forecasted CO2 concentrations to measure their physiology and growth. Photosynthesis of A. antarctica was significantly reduced by AZ and TRIS, indicating utilization of HCO3 (-)-uptake mechanisms. When acclimated plants were switched between CO2 treatments, the photosynthetic rate was dependent on measurement conditions but not growth conditions, indicating a dynamic response to changes in dissolved CO2 concentration, rather than lasting effects of acclimation. At forecast CO2 concentrations, seedlings had a greater maximum electron transport rate (1.4-fold), photosynthesis (2.1-fold), below-ground biomass (1.7-fold) and increase in leaf number (2-fold) relative to plants in the current CO2 concentration. The greater increase in photosynthesis (measured as O2 production) compared with the electron transport rate at forecasted CO2 concentration suggests that photosynthetic efficiency increased, possibly due to a decrease in photorespiration. Thus, it appears that the photosynthesis and growth of seagrasses reliant on energetically costly HCO3 (-) acquisition, such as A. antarctica, might increase at forecasted CO2 concentrations. Greater growth might enhance the future prosperity and rehabilitation of these important habitat-forming plants, which have experienced declines of global significance.

  12. Application of a rotation system to oilseed rape and rice fields in Cd-contaminated agricultural land to ensure food safety.

    PubMed

    Yu, Lingling; Zhu, Junyan; Huang, Qingqing; Su, Dechun; Jiang, Rongfeng; Li, Huafen

    2014-10-01

    This field experiment analyzed the phytoremediation effects of oilseed rape in moderately cadmium (Cd)-contaminated farmland and the food safety of successive rice in an oilseed rape-rice rotation system. Two oilseed rape cultivars accumulated Cd at different rates. The rapeseed cultivar Zhucang Huazi exhibited high Cd accumulation rates, higher than the legal limit for human consumption (0.2mgkg(-1)); Cd concentrations in the cultivar Chuanyou II-93 were all below the maximum allowed level. Planting oilseed rape increased the uptake of Cd by the successive rice crop compared with a previous fallow treatment. Most Cd concentrations of brown rice were below the maximum allowed level. The phytoextraction efficiency was lower in the moderately Cd-contaminated soil in field experiments. The results suggest screening rice cultivars with lower Cd accumulation can assure the food safety; the mobilization of heavy metals by roots of different plant species should be considered during crop rotation to assure food safety. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Sucrose uptake by pinocytosis in Amoeba proteus and the influence of external calcium

    PubMed Central

    1979-01-01

    The relationship between Ca++ and pinocytosis was investigated in Amoeba proteus. Pinocytosis was induced with 0.01% alcian blue, a large molecular weight dye which binds irreversibly to the cell surface. The time-course and intensity of pinocytosis was monitored by following the uptake of [3H]SUCROSE. When the cells are exposed to 0.01% alcian blue, there is an immediate uptake of sucrose. The cells take up integral of 10% of their initial volume during the time-course of pinocytosis. The duration of pinocytosis in the amoeba is integral of 50 min, with maximum sucrose uptake occurring 15 min after the induction of pinocytosis. The pinocytotic uptake of sucrose is reversibly blocked at 3 degrees C and a decrease in pH increases the uptake of sucrose by pinocytosis. The process of pinocytosis is also dependent upon the concentration of the inducer in the external medium. The association between Ca++ and pinocytosis in A. proteus was investigated initially by determining the effect of the external Ca++ concentration on sucrose uptake induced by alcian blue. In Ca++-free medium, no sucrose uptake is observed in the presence of 0.01% alcian blue. As the Ca++ concentration is increased, up to a maximum of 0.1 mM, pinocytotic sucrose uptake is also increased. Increases in the external Ca++ concentration above 0.1 mM brings about a decrease in sucrose uptake. Further investigations into the association between Ca++ and pinocytosis demonstrated that the inducer of pinocytosis displaces surface calcium in the amoeba. It is suggested that Ca++ is involved in two separate stages in the process of pinocytosis; an initial displacement of surface calcium by the inducer which may increase the permeability of the membrane to solutes and a subsequent Ca++ influx bringing about localized increases in cytoplasmic Ca++ ion activity. PMID:512629

  14. Pre-incubation with cyclosporine A potentiates its inhibitory effects on pitavastatin uptake mediated by recombinantly expressed cynomolgus monkey hepatic organic anion transporting polypeptide.

    PubMed

    Takahashi, Tsuyoshi; Ohtsuka, Tatsuyuki; Uno, Yasuhiro; Utoh, Masahiro; Yamazaki, Hiroshi; Kume, Toshiyuki

    2016-11-01

    Cyclosporine A, an inhibitor of hepatic organic anion transporting polypeptides (OATPs), reportedly increased plasma concentrations of probe substrates, although its maximum unbound blood concentrations were lower than the experimental half-maximal inhibitory (IC 50 ) concentrations. Pre-incubation with cyclosporine A in vitro before simultaneous incubation with probes has been reported to potentiate its inhibitory effects on recombinant human OATP-mediated probe uptake. In the present study, the effects of cyclosporine A and rifampicin on recombinant cynomolgus monkey OATP-mediated pitavastatin uptake were investigated in pre- and simultaneous incubation systems. Pre-incubation with cyclosporine A, but not with rifampicin, decreased the apparent IC 50 values on recombinant cynomolgus monkey OATP1B1- and OATP1B3-mediated pitavastatin uptake. Application of the co-incubated IC 50 values toward R values (1 + [unbound inhibitor] inlet to the liver, theoretically maximum /inhibition constant) in static models, 1.1 in monkeys and 1.3 in humans, for recombinant cynomolgus monkey and human OATP1B1-mediated pitavastatin uptake might result in the poor prediction of drug interaction magnitudes. In contrast, the lowered IC 50 values after pre-incubation with cyclosporine A provided better prediction with R values of 3.9 for monkeys and 2.7 for humans when the estimated maximum cyclosporine A concentrations at the inlet to the liver were used. These results suggest that the enhanced inhibitory potential of perpetrator medicines by pre-incubation on cynomolgus monkey OATP-mediated pitavastatin uptake in vitro could be of value for the precise estimation of drug interaction magnitudes in silico, in accordance with the findings from pre-administration of inhibitors on pitavastatin pharmacokinetics validated in monkeys. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Bioaccumulation of metals by lichens: Uptake of aqueous uranium by Peltigera membranacea as a function of time and pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, J.R.; Bailey, E.H.; Purvis, O.W.

    1998-11-01

    Uranium sorption experiments were carried out at {approximately}25 C using natural samples of the lichen Peltigera membranacea. Thalli were incubated in solutions containing 100 ppm U for up to 24 h at pH values from 2 to 10. Equilibrium sorption was not observed at less than {approximately}6 h under any pH condition. U sorption was strongest in the pH range 4--5, with maximum sorption occurring at a pH of 4.5 and an incubation time of 24 h. Maximum U uptake by P. membranacea averaged {approximately}42,000 ppm, or {approximately}4.2 wt% U. This appears to represent the highest concentration of biosorbed U,more » relative to solution U activity, of any lichen reported to date. Investigation of post-experimental lichen tissues using electron probe microanalysis (EPM) reveals that U uptake is spatially heterogeneous within the lichen body, and that U attains very high local concentrations on scattered areas of the upper cortex. Energy dispersive spectroscopic (EDS) analysis reveals that strong U uptake correlates with P signal intensity, suggesting involvement of biomass-derived phosphate ligands or surface functional groups in the uptake process.« less

  16. Linking Fruit Ca Uptake Capacity to Fruit Growth and Pedicel Anatomy, a Cross-Species Study

    PubMed Central

    Song, Wenpei; Yi, Junwen; Kurniadinata, Odit F.; Wang, Huicong; Huang, Xuming

    2018-01-01

    Calcium (Ca) in flesh fruits is important for quality formation and maintenance. Most studies on fruit Ca focus on one species. This study attempted to understand some universal relations to fruit Ca uptake across species. Calcium contents in fruit tissues were analyzed in different fruits, including three cultivars of litchi, two cultivars each of grape and citrus, and one cultivar each of loquat, apple, pear, Indian jujube, and longan. In situ Ca distribution was revealed with electron probe and xylem functionality visualized by dye tracing. Fruit Ca uptake rate and activity were calculated and correlated with fruit growth and pedicel anatomy. The results showed that fruit Ca uptake rate was the highest in pomes (loquat, apple, and pear), followed by Indian jujube drupe, arillate fruits (litchis and longan) and citrus, while grape berries were the lowest. Fruit Ca uptake rate showed a strong positive correlation to growth rate. However, Ca uptake activity, reflecting Ca uptake rate relative to growth, was the highest in arillate fruits and loquat and lowest in grape berries, and had a poor correlation with fruit growth rate. In all fruits, Ca concentration in the pedicel was higher than in the fruit, and they displayed a good positive correlation. In the pedicel, Ca was most abundant in the phloem. Dye tracing showed that xylem function loss occurred with maturation in all species/varieties. Apple had the poorest xylem functionality with the least development of secondary xylem, but its Ca uptake rate was among the highest. Vessel density, size and area in the pedicel showed no correlation with fruit Ca uptake rate. It is concluded that: (1) fruit growth may be a key determinant of Ca uptake; (2) the universal pattern of Ca being higher in the pedicel than in the fruit indicates existence of a pedicel-fruit “bottleneck” effect in Ca transport across species; (3) xylem functionality loss with fruit maturation is also a universal event; (4) in the pedicel, Ca is more distributed in the phloem; (5) vessel morphology in the pedicel is not rate-limiting for fruit Ca uptake; (6) phloem pathway might contribute to fruit Ca uptake. PMID:29868049

  17. A longitudinal analysis of the effect of nonmedical exemption law and vaccine uptake on vaccine-targeted disease rates.

    PubMed

    Yang, Y Tony; Debold, Vicky

    2014-02-01

    We assessed how nonmedical exemption (NME) laws and annual uptake of vaccines required for school or daycare entry affect annual incidence rates for 5 vaccine-targeted diseases: pertussis, measles, mumps, Haemophilus influenzae type B, and hepatitis B. We employed longitudinal mixed-effects models to examine 2001-2008 vaccine-targeted disease data obtained from the National Notifiable Disease Surveillance System. Key explanatory variables were state-level vaccine-specific uptake rates from the National Immunization Survey and a state NME law restrictiveness level. NME law restrictiveness and vaccine uptake were not associated with disease incidence rate for hepatitis B, Haemophilus influenzae type B, measles, or mumps. Pertussis incidence rate, however, was negatively associated with NME law restrictiveness (b = -0.20; P = .03) and diphtheria-pertussis-tetanus vaccine uptake (b = -0.01; P = .05). State NME laws and vaccine uptake rates did not appear to influence lower-incidence diseases but may influence reported disease rates for higher-incidence diseases. If all states increased their NME law restrictiveness by 1 level and diphtheria-pertussis-tetanus uptake by 1%, national annual pertussis cases could decrease by 1.14% (171 cases) and 0.04% (5 cases), respectively.

  18. Seasonal soil VOC exchange rates in a Mediterranean holm oak forest and their responses to drought conditions

    NASA Astrophysics Data System (ADS)

    Asensio, Dolores; Peñuelas, Josep; Ogaya, Romà; Llusià, Joan

    Available information on soil volatile organic compound (VOC) exchange, emissions and uptake, is very scarce. We here describe the amounts and seasonality of soil VOC exchange during a year in a natural Mediterranean holm oak forest growing in Southern Catalonia. We investigated changes in soil VOC dynamics in drought conditions by decreasing the soil moisture to 30% of ambient conditions by artificially excluding rainfall and water runoff, and predicted the response of VOC exchange to the drought forecasted in the Mediterranean region for the next decades by GCM and ecophysiological models. The annual average of the total (detected) soil VOC and total monoterpene exchange rates were 3.2±3.2 and -0.4±0.3 μg m -2 h -1, respectively, in control plots. These values represent 0.003% of the total C emitted by soil at the study site as CO 2 whereas the annual mean of soil monoterpene exchange represents 0.0004% of total C. Total soil VOC exchange rates in control plots showed seasonal variations following changes in soil moisture and phenology. Maximum values were found in spring (17±8 μg m -2 h -1). Although there was no significant global effect of drought treatment on the total soil VOC exchange rates, annual average of total VOC exchange rates in drought plots resulted in an uptake rate (-0.5±1.8 μg m -2 h -1) instead of positive net emission rates. Larger soil VOC and monoterpene exchanges were measured in drought plots than in control plots in summer, which might be mostly attributable to autotrophic (roots) metabolism. The results show that the diversity and magnitude of monoterpene and VOC soil emissions are low compared with plant emissions, that they are driven by soil moisture, that they represent a very small part of the soil-released carbon and that they may be strongly reduced or even reversed into net uptakes by the predicted decreases of soil water availability in the next decades. In all cases, it seems that VOC fluxes in soil might have greater impact on soil ecology than on atmospheric chemistry.

  19. Maple sap uptake, exudation, and pressure changes correlated with freezing exotherms and thawing endotherms.

    PubMed

    Tyree, M T

    1983-10-01

    Sap flow rates and sap pressure changes were measured in dormant sugar maple trees (Acer saccharum Marsh.). In the forest, sap flow rates and pressure changes were measured from tap holes drilled into tree trunks in mature trees and sap flow rates were measured from the base of excised branches. Excised branches were also brought into the laboratory where air temperature could be carefully controlled in a refrigerated box and sap flow rates and sap pressures were measured from the cut base of the branches.Under both forest and laboratory conditions, sap uptake occurred as the wood temperature declined but much more rapid sap uptake correlated with the onset of the freezing exotherm. When sap pressures were measured under conditions of negligible volume displacement, the sap pressure rapidly fell to -60 to -80 kilopascals at the start of the freezing exotherm. The volume of water uptake and the rate of uptake depended on the rate of freezing. A slow freezing rate correlated with a large volume of water uptake, a fast freezing rate induced a smaller volume of water uptake. The volume of water uptake ranged from 0.02 to 0.055 grams water per gram dry weight of sapwood. The volume of water exuded after thawing was usually less than the volume of uptake so that after several freezing and thawing cycles the sapwood water content increased from 0.7 to 0.8 grams water per gram dry weight.These results are discussed in terms of a physical model of the mechanism of maple sap uptake and exudation first proposed by P. E. R. O'Malley. The proposed mechanism of sap uptake is by vapor distillation in air filled wood fiber lumina during the freezing of minor branches. Gravity and pressurized air bubbles (compressed during freezing) cause sap flow from the canopy down the tree after the thaw.

  20. Maple Sap Uptake, Exudation, and Pressure Changes Correlated with Freezing Exotherms and Thawing Endotherms 1

    PubMed Central

    Tyree, Melvin T.

    1983-01-01

    Sap flow rates and sap pressure changes were measured in dormant sugar maple trees (Acer saccharum Marsh.). In the forest, sap flow rates and pressure changes were measured from tap holes drilled into tree trunks in mature trees and sap flow rates were measured from the base of excised branches. Excised branches were also brought into the laboratory where air temperature could be carefully controlled in a refrigerated box and sap flow rates and sap pressures were measured from the cut base of the branches. Under both forest and laboratory conditions, sap uptake occurred as the wood temperature declined but much more rapid sap uptake correlated with the onset of the freezing exotherm. When sap pressures were measured under conditions of negligible volume displacement, the sap pressure rapidly fell to −60 to −80 kilopascals at the start of the freezing exotherm. The volume of water uptake and the rate of uptake depended on the rate of freezing. A slow freezing rate correlated with a large volume of water uptake, a fast freezing rate induced a smaller volume of water uptake. The volume of water uptake ranged from 0.02 to 0.055 grams water per gram dry weight of sapwood. The volume of water exuded after thawing was usually less than the volume of uptake so that after several freezing and thawing cycles the sapwood water content increased from 0.7 to 0.8 grams water per gram dry weight. These results are discussed in terms of a physical model of the mechanism of maple sap uptake and exudation first proposed by P. E. R. O'Malley. The proposed mechanism of sap uptake is by vapor distillation in air filled wood fiber lumina during the freezing of minor branches. Gravity and pressurized air bubbles (compressed during freezing) cause sap flow from the canopy down the tree after the thaw. PMID:16663208

  1. Fate and effects of nitrogen and phosphorus in shallow vegetated aquatic ecosystems

    USGS Publications Warehouse

    Fairchild, James F.; Vradenburg, Leigh Ann

    2006-01-01

    Nitrate concentrations have greatly increased in streams and rivers draining agricultural regions of the Midwestern United States, increasing nitrate transport to the Gulf of Mexico has been implicated in the hypoxic conditions that threaten the productivity of marine fisheries. Increases in nitrate concentrations have been attributed to a combination of factors including agricultural expansion, increased nitrogen application rates, increased tile drainage, and loss of riparian Wetlands, These landscape-level changes have resulted in a decreased natural capacity for nitrogen uptake, removal, and cycling back to the atmosphere. Land managers are increasingly interested in using wetland construction and rehabilitation as a management practice to reduce loss of nitrate from the terrestrial systems. Yet, relatively little is known about the limnological factors involved in nitrate removal by Wetland systems.We conducted a series of studies from 1999-2000 to investigate the functional capacity of shallow, macrophyte-dominated pond wetland systems for uptake, assimilation, and retention of nitrogen (N) and phosphorus (P). We evaluated four factors that were hypothesized to influence nutrient uptake and assimilation: 1) nitrate loading rates; 2) nitrogen to phosphorus (N.P) ratios; 3) frequency of dosing/application; and 4) timing of dose initiation.Nutrient assimilation was rapid; store than 90% of added nutrients were removed from the water column in all treatments. Neither variation in N:P ratios (evaluated range, <13:1 to -114.1), frequency of application (weekly or bi-weekly), nor liming of dose initiation relative to macrophyte development (0%, 15-25%, or 75-90% maximum biomass) had significant effects on nutrient assimilation of wetland community dynamics. Maximum loading of nitrate (60 g N/m2 2.4 g P/m2) applied as six weekly doses stimulated algal communities, but inhibited macrophyte communities.Predicted shifts from a stable state of macrophyte- to phytoplankton-dominance did not occur due to nutrient additions. Macrophytes, phytoplankton, and the sediment surface were all significant factors in the removal of nitrate from the Water column. Overall, these shallow macrophyte-dominated systems provided an efficient means of removing nutrients from the water column. Construction or rehabilitation of shallow, vegetated wetlands may offer promise as land management practices for nutrient removal in agricultural watersheds.

  2. A geographical and seasonal comparison of nitrogen uptake by phytoplankton in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Philibert, R.; Waldron, H.; Clark, D.

    2015-03-01

    The impact of light and nutrients (such as silicate and iron) availability on nitrogen uptake and primary production vary seasonally and regionally in the Southern Ocean. The seasonal cycle of nitrogen uptake by phytoplankton in the Southern Ocean is not fully resolved over an annual scale due to the lack of winter in situ measurements. In this study, nitrate and ammonium uptake rates were measured using 15N tracers during a winter cruise in July 2012 and a summer cruise in February-March 2013. The winter cruise consisted of two legs: leg 1 extended from Cape Town to the ice margin along the GoodHope line and leg 2 stretched from the ice margin to Marion Island. The summer cruise was mostly focused on the subantarctic zone of the Atlantic sector. In winter, nitrogen uptake rates were measured at 55 and 1% of the surface photosynthetically active radiation (sPAR). The summer uptake rates were measured at four light depths corresponding to 55, 30, 10 and 3% sPAR. The integrated nitrate uptake rates during the winter cruise ranged from 0.17 to 5.20 mmol N m-2 d-1 (average 1.14 mmol N m-2 d-1) while the ammonium uptake rates ranged from 0.60 to 32.86 mmol N m-2 d-1 (average 6.73 mmol N m-2 d-1). During the summer cruise, the mean-integrated nitrate uptake rate was 0.20 mmol N m-2 d-1 with a range between 0.10 and 0.38 mmol N m-2 d-1. The integrated ammonium uptake rate averaged 4.39 mmol N m-2 d-1 and ranged from 1.12 to 9.05 mmol N m-2 d-1. The factors controlling nitrogen uptake in winter and summer were investigated. During the winter cruise, it was found that the different nitrogen uptake regimes were not separated by the fronts of the Antarctic Circumpolar Current (ACC). Light (in terms of day length) and ammonium concentration had the most influence on the nitrogen uptake. In the summer, increases in the mixed layer depth (MLD) resulted in increased nitrogen uptake rates. This suggests that the increases in the MLD could be alleviating nutrient limitations experienced by the phytoplankton at the end of summer.

  3. Design of a recombinant Escherichia coli for producing L-phenylalanine from glycerol.

    PubMed

    Thongchuang, Mayura; Pongsawasdi, Piamsook; Chisti, Yusuf; Packdibamrung, Kanoktip

    2012-10-01

    A recombinant Escherichia coli was engineered to produce the commercially important amino acid L-phenylalanine (L-Phe) using glycerol as the carbon source. Compared to the conventionally used glucose and sucrose, glycerol is a less expensive carbon source. As phenylalanine dehydrogenase (PheDH) activity is involved in the last step of L-Phe synthesis in E. coli, a phenylalanine dehydrogenase gene (phedh) from the thermotolerant Bacillus lentus was cloned into pRSFDuet-1 (pPheDH) and expressed in E. coli BL21(DE3). The resulting clone had a limited ability to produce L-Phe from glycerol, possibly because of a poor glycerol uptake by the cell, or an inability to excrete L-Phe, or both. Therefore, yddG gene encoding an aromatic amino acid exporter and glpF gene encoding a glycerol transport facilitator were coexpressed with the phedh in a reengineered E. coli. In a glycerol medium, the maximum L-Phe production rates of the clones pPY (phedh and yddG genes) and pPYF (phedh, yddG and glpF genes) were 1.4- and 1.8-fold higher than the maximum production rate of the pPheDH clone. The better producing pPYF clone was further evaluated in a 5 l stirred-tank fermenter (37 °C, an aeration rate of 1 vvm, an agitation speed of 400 rpm). In the fermenter, the maximum concentration of L-Phe (366 mg/l) was achieved in a much shorter period compared to in the shake flasks. In the latter, the highest titer of L-Phe was only 76 % of the maximum value attained in the fermenter.

  4. In Vivo potassium-39 NMR spectra by the burg maximum-entropy method

    NASA Astrophysics Data System (ADS)

    Uchiyama, Takanori; Minamitani, Haruyuki

    The Burg maximum-entropy method was applied to estimate 39K NMR spectra of mung bean root tips. The maximum-entropy spectra have as good a linearity between peak areas and potassium concentrations as those obtained by fast Fourier transform and give a better estimation of intracellular potassium concentrations. Therefore potassium uptake and loss processes of mung bean root tips are shown to be more clearly traced by the maximum-entropy method.

  5. Biosorption of cesium-137 and strontium-90 by mucilaginous seeds of Ocimum basilicum.

    PubMed

    Chakraborty, Dipjyoti; Maji, Samir; Bandyopadhyay, Abhijit; Basu, Sukalyan

    2007-11-01

    Mucilaginous seeds of Ocimum basilicum were used in uptake studies with cesium-137 and strontium-90. Results showed that uptake was dependent on the structural integrity of the mucilage fibrils. Water imbibed seeds showed higher adsorption of both 137Cs and 90Sr in comparison to seeds pretreated with NaOH, HCl and Na-periodate solution. The uptake was pH dependent and while some divalent metal ions had no or little detrimental effect, the alkali metal ions Li+, Na+ and K+ decreased the uptake. The maximum adsorption capacity was 160 mg cesium g(-1) and 247 mg strontium g(-1) seed dry weight.

  6. Assessing the Physiological Cost of Active Videogames (Xbox Kinect) Versus Sedentary Videogames in Young Healthy Males.

    PubMed

    Barry, Gillian; Tough, Daniel; Sheerin, Phillip; Mattinson, Oliver; Dawe, Rachael; Board, Elisabeth

    2016-02-01

    The aims of this study were twofold: (1) to compare the physiological costs of active videogames (AVGs) and sedentary videogames (SVGs) and (2) to compare the exercise intensities attained during AVGs with the exercise intensity criteria for moderate and vigorous physical activity, as stated in current physical activity recommendations for improving public health. Nineteen young males participated in the study (age, 23 ± 3 years; height, 178 ± 6 cm; weight, 78 ± 15 kg). Participants completed a maximum oxygen uptake ([Formula: see text]) test and a gaming session, including AVGs ("Reflex Ridge," "River Rush," and "Boxing" for the Microsoft [Redmond, WA] Kinect™) and SVGs ("FIFA 14" [Electronic Arts, Burnaby, BC, Canada] and "Call of Duty" [Activision, Santa Monica, CA]). Heart rate (HR) and oxygen uptake [Formula: see text]) were recorded continuously during all videogames. Rating of perceived exertion (RPE) was taken every 3 minutes during AVGs and SVGs. Energy expenditure (EE), expressed as metabolic equivalents (METs), was calculated. One MET was defined as the volume of oxygen consumed at rest in a seated position and is equal to 3.5 mL of O2/kg of body mass/minute. The exercise intensity for each game was expressed as a percentage of [Formula: see text] and percentage of age-predicted maximum HR (HRmax). Exercise intensity (percentage HRmax, percentage [Formula: see text], and RPE) and EE (METs) were significantly higher during active gaming compared with sedentary gameplay (P < 0.01). AVGs elicited moderate levels of exercise intensity (64-72 percent HRmax) in line with current recommended physical activity guidelines. Our results indicate AVGs provoke physiological responses equivalent to a moderate-intensity physical activity.

  7. Impaired systemic oxygen extraction in treated exercise pulmonary hypertension: a new engine in an old car?

    PubMed

    Faria-Urbina, Mariana; Oliveira, Rudolf K F; Segrera, Sergio A; Lawler, Laurie; Waxman, Aaron B; Systrom, David M

    2018-01-01

    Ambrisentan in 22 patients with pulmonary hypertension diagnosed during exercise (ePH) improved pulmonary hemodynamics; however, there was only a trend toward increased maximum oxygen uptake (VO 2 max) secondary to decreased maximum exercise systemic oxygen extraction (Ca-vO 2 ). We speculate that improved pulmonary hemodynamics at maximum exercise "unmasked" a pre-existing skeletal muscle abnormality.

  8. Equilibrium and Kinetic Studies of Cd2+ Biosorption by the Brown Algae Sargassum fusiforme

    PubMed Central

    Zou, Hui-Xi; Li, Nan; Wang, Li-Hua; Yu, Ping; Yan, Xiu-Feng

    2014-01-01

    A fundamental investigation of the biosorption of Cd2+ from aqueous solution by the edible seaweed Sargassum fusiforme was performed under batch conditions. The influences of experimental parameters, such as the initial pH, sorption time, temperature, and initial Cd2+ concentration, on Cd2+ uptake by S. fusiforme were evaluated. The results indicated that the biosorption of Cd2+ depended on the initial Cd2+ concentration, as well as the pH. The uptake of Cd2+ could be described by the Langmuir isotherm model, and both the Langmuir biosorption equilibrium constant and the maximum biosorption capacity of the monolayer decreased with increasing temperature, thereby confirming the exothermic character of the sorption process. The biosorption kinetics follows the pseudo-second-order kinetic model, and intraparticle diffusion is the sole rate-limiting step for the entire biosorption period. These fundamental equilibrium and kinetic results can support further studies to the removal of cadmium from S. fusiforme harvested from cadmium-polluted waters. PMID:24736449

  9. Water use and carbon exchange of red oak- and eastern hemlock-dominated forests in the northeastern USA: implications for ecosystem-level effects of hemlock woolly adelgid.

    PubMed

    Hadley, Julian L; Kuzeja, Paul S; Daley, Michael J; Phillips, Nathan G; Mulcahy, Thomas; Singh, Safina

    2008-04-01

    Water use and carbon exchange of a red oak-dominated (Quercus rubra L.) forest and an eastern hemlock-dominated (Tsuga canadensis L.) forest, each located within the Harvard Forest in north-central Massachusetts, were measured for 2 years by the eddy flux method. Water use by the red oak forest reached 4 mm day(-1), compared to a maximum of 2 mm day(-1) by the eastern hemlock forest. Maximal carbon (C) uptake rate was also higher in the red oak forest than in the eastern hemlock forest (about 25 versus 15 micromol m(-2) s(-1)). Sap flux measurements indicated that transpiration of red oak, and also of black birch (Betula lenta L.), which frequently replaces eastern hemlock killed by hemlock woolly adelgid (Adelges tsugae Annand.), were almost twice that of eastern hemlock. Despite the difference between species in maximum summertime C assimilation rate, annual C storage of the eastern hemlock forest almost equaled that of the red oak forest because of net C uptake by eastern hemlock during unusually warm fall and spring weather, and a near-zero C balance during the winter. Thus, the effect on C storage of replacing eastern hemlock forest with a forest dominated by deciduous species is unclear. Carbon storage by eastern hemlock forests during fall, winter and spring is likely to increase in the event of climate warming, although this may be offset by C loss during hotter summers. Our results indicate that, although forest water use will decrease immediately following eastern hemlock mortality due to the hemlock woolly adelgid, the replacement of eastern hemlock by deciduous species such as red oak will likely increase summertime water use over current rates in areas where hemlock is a major forest species.

  10. Intermediate-scale community-level flux of CO 2 and CH 4 in a Minnesota peatland: Putting the SPRUCE project in a global context

    DOE PAGES

    Hanson, Paul J.; Gill, Allison; Xu, Xiaofeng; ...

    2016-08-20

    Peatland measurements of CO 2 and CH 4 flux were obtained at scales appropriate to the in situ biological community below the tree layer to demonstrate representativeness of the spruce and peatland responses under climatic and environmental change (SPRUCE) experiment. Surface flux measurements were made using dual open-path analyzers over an area of 1.13 m 2 in daylight and dark conditions along with associated peat temperatures, water table height, hummock moisture, atmospheric pressure and incident radiation data. Observations from August 2011 through December 2014 demonstrated seasonal trends correlated with temperature as the dominant apparent driving variable. The S1-Bog for themore » SPRUCE study was found to be representative of temperate peatlands in terms of CO 2 and CH 4 flux. Maximum net CO 2 flux in midsummer showed similar rates of C uptake and loss: daytime surface uptake was -5 to -6 µmol m -2 s -1 and dark period loss rates were 4–5 µmol m -2 s -1 (positive values are carbon lost to the atmosphere). Maximum midsummer CH4-C flux ranged from 0.4 to 0.5 µmol m -2 s -1 and was a factor of 10 lower than dark CO 2–C efflux rates. Midwinter conditions produced near-zero flux for both CO 2 and CH 4 with frozen surfaces. Integrating temperature-dependent models across annual periods showed dark CO 2–C and CH 4–C flux to be 894 ± 34 and 16 ± 2 gC m -2 y -1, respectively. Net ecosystem exchange of carbon from the shrub-forb-Sphagnum-microbial community (excluding tree contributions) ranged from -3.1 gCO2–C m -2 y -1 in 2013, to C losses from 21 to 65 gCO 2–C m -2 y -1 for the other years.« less

  11. CFD Study of Full-Scale Aerobic Bioreactors: Evaluation of Dynamic O2 Distribution, Gas-Liquid Mass Transfer and Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbird, David; Sitaraman, Hariswaran; Stickel, Jonathan

    If advanced biofuels are to measurably displace fossil fuels in the near term, they will have to operate at levels of scale, efficiency, and margin unprecedented in the current biotech industry. For aerobically-grown products in particular, scale-up is complex and the practical size, cost, and operability of extremely large reactors is not well understood. Put simply, the problem of how to attain fuel-class production scales comes down to cost-effective delivery of oxygen at high mass transfer rates and low capital and operating costs. To that end, very large reactor vessels (>500 m3) are proposed in order to achieve favorable economiesmore » of scale. Additionally, techno-economic evaluation indicates that bubble-column reactors are more cost-effective than stirred-tank reactors in many low-viscosity cultures. In order to advance the design of extremely large aerobic bioreactors, we have performed computational fluid dynamics (CFD) simulations of bubble-column reactors. A multiphase Euler-Euler model is used to explicitly account for the spatial distribution of air (i.e., gas bubbles) in the reactor. Expanding on the existing bioreactor CFD literature (typically focused on the hydrodynamics of bubbly flows), our simulations include interphase mass transfer of oxygen and a simple phenomenological reaction representing the uptake and consumption of dissolved oxygen by submerged cells. The simulations reproduce the expected flow profiles, with net upward flow in the center of column and downward flow near the wall. At high simulated oxygen uptake rates (OUR), oxygen-depleted regions can be observed in the reactor. By increasing the gas flow to enhance mixing and eliminate depleted areas, a maximum oxygen transfer (OTR) rate is obtained as a function of superficial velocity. These insights regarding minimum superficial velocity and maximum reactor size are incorporated into NREL's larger techno-economic models to supplement standard reactor design equations.« less

  12. Cyclic variations in nitrogen uptake rate of soybean plants: ammonium as a nitrogen source

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr

    1989-01-01

    When NO3- is the sole nitrogen source in flowing solution culture, the net rate of nitrogen uptake by nonnodulated soybean (Glycine max L. Merr. cv Ransom) plants cycles between maxima and minima with a periodicity of oscillation that corresponds with the interval of leaf emergence. Since soybean plants accumulate similar quantities of nitrogen when either NH4+ or NO3- is the sole source in solution culture controlled at pH 6.0, an experiment was conducted to determine if the oscillations in net rate of nitrogen uptake also occur when NH4+ is the nitrogen source. During a 21-day period of vegetative development, net uptake of NH4+ was measured daily by ion chromatography as depletion of NH4+ from a replenished nutrient solution containing 1.0 millimolar NH4+. The net rate of NH4+ uptake oscillated with a periodicity that was similar to the interval of leaf emergence. Instances of negative net rates of uptake indicate that the transition between maxima and minima involved changes in influx and efflux components of net NH4+ uptake.

  13. Effects of experimental warming and mowing on greenhouse gas fluxes in an alpine meadow on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Jinsong; Quan, Quan; Sun, Jian; Niu, Shuli

    2017-04-01

    Rapid climate change and intensified human activities on the Tibetan Plateau may alter the magnitude and direction of greenhouse gas (GHG) emissions, affecting the climate change impact on these fragile ecosystems. We conducted a controlled experiment to investigate the effects of warming and mowing (simulation of grazing) on soil CO2, CH4 and N2O fluxes in an alpine meadow in eastern Tibetan Plateau between August 2015 and July 2016. Three levels of temperature (C, ambient temperature; W1, < 2 °C warming at 5 cm soil depth by infrared heaters; and W2, > 2 °C warming) were combined with two levels of mowing treatment (UM, un-mowing; and M, mowing). GHG fluxes were measured once an hour using static chamber. Both CO2 emission and CH4 uptake rates showed a seasonal fluctuation, with the maximum value occurred in late summer and the minimum in winter. However, N2O flux did not show a strong seasonal pattern. High level of warming (W2) regardless of mowing significantly increased CO2 emission and CH4 uptake by 15.4 % and 38.2 % averaged over the year, compared with no-warming (C). Moderate warming (W1) did not have significant effects on either CO2 or CH4 fluxes. N2O flux was reduced by 54.1% by W2 and 15.7% by W1 warming. Mowing alone increased CH4 uptake and N2O emission by 18.0 % and 12.7%, respectively, but had no significant effect on CO2 flux. The interactions between warming and mowing were detected in CO2 and CH4 fluxes. Among all treatments, W2UM in general had the highest rates of CO2 emission and CH4 uptake but the lowest rate of N2O flux, while CUM and CM showed the opposite. In addition, warming induced increase in CH4 uptake and decline in N2O release had very limited ability to offset the enhanced CO2 emission, resulting in a net positive feedback of the three GHGs to climate warming. Furthermore, daily CO2 flux increased exponentially with soil temperature at 5 cm. CH4 flux correlated negatively with soil temperature but positively with soil moisture.

  14. Kinetics of butyrate, acetate, and hydrogen metabolism in a thermophilic, anaerobic, butyrate-degrading triculture.

    PubMed

    Ahring, B K; Westermann, P

    1987-02-01

    Kinetics of butyrate, acetate, and hydrogen metabolism were determined with butyrate-limited, chemostat-grown tricultures of a thermophilic butyrate-utilizing bacterium together with Methanobacterium thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic rod. Kinetic parameters were determined from progress curves fitted to the integrated form of the Michaelis-Menten equation. The apparent half-saturation constants, K(m), for butyrate, acetate, and dissolved hydrogen were 76 muM, 0.4 mM, and 8.5 muM, respectively. Butyrate and hydrogen were metabolized to a concentration of less than 1 muM, whereas acetate uptake usually ceased at a concentration of 25 to 75 muM, indicating a threshold level for acetate uptake. No significant differences in K(m) values for butyrate degradation were found between chemostat- and batch-grown tricultures, although the maximum growth rate was somewhat higher in the batch cultures in which the medium was supplemented with yeast extract. Acetate utilization was found to be the rate-limiting reaction for complete degradation of butyrate to methane and carbon dioxide in continuous culture. Increasing the dilution rate resulted in a gradual accumulation of acetate. The results explain the low concentrations of butyrate and hydrogen normally found during anaerobic digestion and the observation that acetate is the first volatile fatty acid to accumulate upon a decrease in retention time or increase in organic loading of a digestor.

  15. Sphagnum Mosses - Masters of Efficient N-Uptake while Avoiding Intoxication

    PubMed Central

    Fritz, Christian; Lamers, Leon P. M.; Riaz, Muhammad; van den Berg, Leon J. L.; Elzenga, Theo J. T. M.

    2014-01-01

    Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to play a key role in differential N availability, plant competition, and carbon sequestration in Sphagnum peatlands. The interacting effects of rain N concentration and exposure time on moss N-uptake rates are, however, poorly understood. We investigated the effects of N-concentration (1, 5, 10, 50, 100, 500 µM), N-form (15N - ammonium or nitrate) and exposure time (0.5, 2, 72 h) on uptake kinetics for Sphagnum magellanicum from a pristine bog in Patagonia (Argentina) and from a Dutch bog exposed to decades of N-pollution. Uptake rates for ammonium were higher than for nitrate, and N-binding at adsorption sites was negligible. During the first 0.5 h, N-uptake followed saturation kinetics revealing a high affinity (Km 3.5–6.5 µM). Ammonium was taken up 8 times faster than nitrate, whereas over 72 hours this was only 2 times. Uptake rates decreased drastically with increasing exposure times, which implies that many short-term N-uptake experiments in literature may well have overestimated long-term uptake rates and ecosystem retention. Sphagnum from the polluted site (i.e. long-term N exposure) showed lower uptake rates than mosses from the pristine site, indicating an adaptive response. Sphagnum therefore appears to be highly efficient in using short N pulses (e.g. rainfall in pristine areas). This strategy has important ecological and evolutionary implications: at high N input rates, the risk of N-toxicity seems to be reduced by lower uptake rates of Sphagnum, at the expense of its long-term filter capacity and related competitive advantage over vascular plants. As shown by our conceptual model, interacting effects of N-deposition and climate change (changes in rainfall) will seriously alter the functioning of Sphagnum peatlands. PMID:24416125

  16. Sphagnum mosses--masters of efficient N-uptake while avoiding intoxication.

    PubMed

    Fritz, Christian; Lamers, Leon P M; Riaz, Muhammad; van den Berg, Leon J L; Elzenga, Theo J T M

    2014-01-01

    Peat forming Sphagnum mosses are able to prevent the dominance of vascular plants under ombrotrophic conditions by efficiently scavenging atmospherically deposited nitrogen (N). N-uptake kinetics of these mosses are therefore expected to play a key role in differential N availability, plant competition, and carbon sequestration in Sphagnum peatlands. The interacting effects of rain N concentration and exposure time on moss N-uptake rates are, however, poorly understood. We investigated the effects of N-concentration (1, 5, 10, 50, 100, 500 µM), N-form ((15)N-ammonium or nitrate) and exposure time (0.5, 2, 72 h) on uptake kinetics for Sphagnum magellanicum from a pristine bog in Patagonia (Argentina) and from a Dutch bog exposed to decades of N-pollution. Uptake rates for ammonium were higher than for nitrate, and N-binding at adsorption sites was negligible. During the first 0.5 h, N-uptake followed saturation kinetics revealing a high affinity (Km 3.5-6.5 µM). Ammonium was taken up 8 times faster than nitrate, whereas over 72 hours this was only 2 times. Uptake rates decreased drastically with increasing exposure times, which implies that many short-term N-uptake experiments in literature may well have overestimated long-term uptake rates and ecosystem retention. Sphagnum from the polluted site (i.e. long-term N exposure) showed lower uptake rates than mosses from the pristine site, indicating an adaptive response. Sphagnum therefore appears to be highly efficient in using short N pulses (e.g. rainfall in pristine areas). This strategy has important ecological and evolutionary implications: at high N input rates, the risk of N-toxicity seems to be reduced by lower uptake rates of Sphagnum, at the expense of its long-term filter capacity and related competitive advantage over vascular plants. As shown by our conceptual model, interacting effects of N-deposition and climate change (changes in rainfall) will seriously alter the functioning of Sphagnum peatlands.

  17. Comparative photosynthetic production of Mojave Desert shrubs. [Ambrosia dumosa, Lycium andersonii, L. pallidum, Larrea tridentata, Krameria parvifolia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberg, S.A.; Kleinkopf, G.E.; Wallace, A.

    Transpirational and net photosynthetic rates of several species of desert shrubs were measured as a function of season and environmental variables at the Nevada Test Site in the northern Mojave Desert. Drought-deciduous species, Ambrosia dumosa (Grey) Payne, Lycium andersonii Grey, and Lycium pallidum Miers, had higher maximum rates and greater water loss than the evergreen, Larrea tridentata Munz, and summer green, Krameria parvifolia Benth., species. Moisture status was the most critical factor determining gas exchange rates and affected temperature optima and acclimation as the season progressed. Because of a dry spring season, the drought-deciduous species became dormant in late May-earlymore » June; the other two species exhibited by mid-June a small positive CO/sub 2/ uptake during the morning period. Desert plant species, with few exceptions, are extremely labile and exhibit large variability and different adaptive strategies.« less

  18. Ecophysiology of gelatinous Nostoc colonies: unprecedented slow growth and survival in resource-poor and harsh environments

    PubMed Central

    Sand-Jensen, Kaj

    2014-01-01

    Background The cyanobacterial genus Nostoc includes several species forming centimetre-large gelatinous colonies in nutrient-poor freshwaters and harsh semi-terrestrial environments with extended drought or freezing. These Nostoc species have filaments with normal photosynthetic cells and N2-fixing heterocysts embedded in an extensive gelatinous matrix of polysaccharides and many other organic substances providing biological and environmental protection. Large colony size imposes constraints on the use of external resources and the gelatinous matrix represents extra costs and reduced growth rates. Scope The objective of this review is to evaluate the mechanisms behind the low rates of growth and mortality, protection against environmental hazards and the persistence and longevity of gelatinous Nostoc colonies, and their ability to economize with highly limiting resources. Conclusions Simple models predict the decline in uptake of dissolved inorganic carbon (DIC) and a decline in the growth rate of spherical freshwater colonies of N. pruniforme and N. zetterstedtii and sheet-like colonies of N. commune in response to a thicker diffusion boundary layer, lower external DIC concentration and higher organic carbon mass per surface area (CMA) of the colony. Measured growth rates of N. commune and N. pruniforme at high DIC availability comply with general empirical predictions of maximum growth rate (i.e. doubling time 10–14 d) as functions of CMA for marine macroalgae and as functions of tissue thickness for aquatic and terrestrial plants, while extremely low growth rates of N. zetterstedtii (i.e. doubling time 2–3 years) are 10-fold lower than model predictions, either because of very low ambient DIC and/or an extremely costly colony matrix. DIC uptake is limited by diffusion at low concentrations for all species, although they exhibit efficient HCO3– uptake, accumulation of respiratory DIC within the colonies and very low CO2 compensation points. Long light paths and light attenuation by structural substances in large Nostoc colonies cause lower quantum efficiency and assimilation number and higher light compensation points than in unicells and other aquatic macrophytes. Extremely low growth and mortality rates of N. zetterstedtii reflect stress-selected adaptation to nutrient- and DIC-poor temperate lakes, while N. pruniforme exhibits a mixed ruderal- and stress-selected strategy with slow growth and year-long survival prevailing in sub-Arctic lakes and faster growth and shorter longevity in temperate lakes. Nostoc commune and its close relative N. flagelliforme have a mixed stress–disturbance strategy not found among higher plants, with stress selection to limiting water and nutrients and disturbance selection in quiescent dry or frozen stages. Despite profound ecological differences between species, active growth of temperate specimens is mostly restricted to the same temperature range (0–35 °C; maximum at 25 °C). Future studies should aim to unravel the processes behind the extreme persistence and low metabolism of Nostoc species under ambient resource supply on sediment and soil surfaces. PMID:24966352

  19. Seasonal growth and translocation of some major and trace elements in two Mediterranean grasses (Stipa tenacissima Loefl. ex L. and Lygeum spartum Loefl. ex L.)

    NASA Astrophysics Data System (ADS)

    Nedjimi, Bouzid

    2018-05-01

    The rangelands of Stipa tenacissima and Lygeum spartum (Poaceae) constitute one of the main typical ecosystems in the Iberian Peninsula and North Africa. This study examines the seasonal changes in aboveground biomass accumulation and translocation of some major (Ca and K) and trace elements (Br, Cr, Cu, Fe, Mn, Sr and Zn) from topsoil to shoots of these perennial grasses. Species, season and their interaction significantly affected the dry biomass (DW) and chemical composition of both species and their surrounding soil. The maximum DW was found in spring due to high physiological activity and was correlated positively with rainfall. A significant relationship between seasons and chemical elements was found. For both species the maximum concentrations of Ca, Cu and Zn were found in spring season. However L. spartum had the highest concentrations of K, Cr, Br, and Sr in autumn season, indicating exceptional ability of these species to accumulate large contents of these elements during the active growth periods. By way of contrast, in the topsoil the highest concentrations of almost all chemical elements were found in summer and autumn. Principal component analyses (PCA) showed that growth of L. spartum was highly associated with K, Ca, Zn, Br and Sr, whereas topsoil was correlated with Cu, Cr, Fe and Mn concentrations. Translocation factor (TFx) of chemical elements was not identical across the two species, demonstrating inter-specific variability to uptake chemical elements. The maximum values of TFx were recorded for K, Ca and Sr especially for L. spartum. To cope with arid conditions, S. tenacissima and L. spartum sprout quickly by increasing their rate of growth and nutrient uptake as soon as soil water is available after the rain.

  20. Combined Aerobic/Strength Training and Energy Expenditure in Older Women

    PubMed Central

    Hunter, Gary R.; Bickel, C. Scott; Fisher, Gordon; Neumeier, William; McCarthy, John

    2013-01-01

    Purpose To examine the effects of three different frequencies of combined resistance and aerobic training on total energy expenditure (TEE) and activity related energy expenditure (AEE) in a group of older adults. Methods Seventy-two women, 60 – 74 years old, were randomly assigned to one of three groups: 1 day/week of aerobic and 1 day/week of resistance (1+1); 2 days/week of aerobic and 2 days/week resistance (2+2); or 3 days/week aerobic and 3 days/week resistance (3+3). Body composition (DXA), feeling of fatigue, depression, and vigor (questionnaire), strength (1RM), serum cytokines (ELISA), maximal oxygen uptake (progressive treadmill test), resting energy expenditure, and TEE were measured before and after 16 weeks of training. Aerobic training consisted of 40 minutes of aerobic exercise at 80% maximum heart rate and resistance training consisted of 2 sets of 10 repetitions for 10 different exercises at 80% of one repetition maximum. Results All groups increased fat free mass, strength and aerobic fitness and decreased fat mass. No changes were observed in cytokines or perceptions of fatigue/depression. No time by group interaction was found for any fitness/body composition variable. TEE and AEE increased with the 2+2 group but not with the other two groups. Non-exercise training AEE (NEAT) increased significantly in the 2+2 group (+200 kcal/day), group 1×1 showed a trend for an increase (+68 kcal/day) and group 3+3 decreased significantly (−150 kcal/day). Conclusion Results indicate that 3+3 training may inhibit NEAT by being too time consuming and does not induce superior training adaptations to 1+1 and 2+2 training. Key words: physical activity, older adults, total energy expenditure, maximum oxygen uptake. PMID:23774582

  1. Temporal variability in trace metal solubility in a paddy soil not reflected in uptake by rice (Oryza sativa L.).

    PubMed

    Pan, Yunyu; Koopmans, Gerwin F; Bonten, Luc T C; Song, Jing; Luo, Yongming; Temminghoff, Erwin J M; Comans, Rob N J

    2016-12-01

    Alternating flooding and drainage conditions have a strong influence on redox chemistry and the solubility of trace metals in paddy soils. However, current knowledge of how the effects of water management on trace metal solubility are linked to trace metal uptake by rice plants over time is still limited. Here, a field-contaminated paddy soil was subjected to two flooding and drainage cycles in a pot experiment with two rice plant cultivars, exhibiting either high or low Cd accumulation characteristics. Flooding led to a strong vertical gradient in the redox potential (Eh). The pH and Mn, Fe, and dissolved organic carbon concentrations increased with decreasing Eh and vice versa. During flooding, trace metal solubility decreased markedly, probably due to sulfide mineral precipitation. Despite its low solubility, the Cd content in rice grains exceeded the food quality standards for both cultivars. Trace metal contents in different rice plant tissues (roots, stem, and leaves) increased at a constant rate during the first flooding and drainage cycle but decreased after reaching a maximum during the second cycle. As such, the high temporal variability in trace metal solubility was not reflected in trace metal uptake by rice plants over time. This might be due to the presence of aerobic conditions and a consequent higher trace metal solubility near the root surface, even during flooding. Trace metal solubility in the rhizosphere should be considered when linking water management to trace metal uptake by rice over time.

  2. Evaluation of Maximal Oxygen Uptake and Submaximal Estimates of VO2max Before, During, and After Long Duration International Space Station Missions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Evaluation of Maximal Oxygen Uptake and Submaximal Estimates of VO2max Before, During, and After Long Duration International Space Station Missions (VO2max) will document changes in maximum oxygen uptake for crewmembers onboard the International Space Station (ISS) on long-duration missions, greater than 90 days. This investigation will establish the characteristics of VO2max during flight and assess the validity of the current methods of tracking aerobic capacity change during and following the ISS missions.

  3. Three-dimensional positron emission tomography image texture analysis of esophageal squamous cell carcinoma: relationship between tumor 18F-fluorodeoxyglucose uptake heterogeneity, maximum standardized uptake value, and tumor stage.

    PubMed

    Dong, Xinzhe; Xing, Ligang; Wu, Peipei; Fu, Zheng; Wan, Honglin; Li, Dengwang; Yin, Yong; Sun, Xiaorong; Yu, Jinming

    2013-01-01

    To explore the relationship of a new PET image parameter, (18)F-fluorodeoxyglucose ((18)F-FDG) uptake heterogeneity assessed by texture analysis, with maximum standardized uptake value (SUV(max)) and tumor TNM staging. Forty consecutive patients with esophageal squamous cell carcinoma were enrolled. All patients underwent whole-body preoperative (18)F-FDG PET/CT. Heterogeneity of intratumoral (18)F-FDG uptake was assessed on the basis of the textural features (entropy and energy) of the three-dimensional images using MATLAB software. The correlations between the textural parameters and SUV(max), histological grade, tumor location, and TNM stage were analyzed. Tumors with higher SUV(max) were seen to be more heterogenous on (18)F-FDG uptake. Significant correlations were observed between T stage and SUV(max) (r(s)=0.390, P=0.013), entropy (rs=0.693, P<0.001), and energy (r(s)=-0.469, P=0.002). Correlations were also found between SUV(max), entropy, energy, and N stage (r(s)=0.326, P=0.04; r(s)=0.501, P=0.001; r(s)=-0.413, P=0.008). The American Joint Committee on Cancer stage correlated significantly with all metabolic parameters. The receiver-operating characteristic curve demonstrated an entropy of 4.699 as the optimal cutoff point for detecting tumors above stage II(b) with an areas under the ROC curve of 0.789 (P<0.001). This study provides initial evidence for the relationship between the new parameter of tumor uptake heterogeneity and the commonly used simplistic parameter of SUV and tumor stage. Our findings suggest a complementary role of these parameters in the staging and prognosis of esophageal squamous cell carcinoma.

  4. Nutrient controls on new production in the Bodega Bay, California, coastal upwelling plume

    NASA Astrophysics Data System (ADS)

    Dugdale, R. C.; Wilkerson, F. P.; Hogue, V. E.; Marchi, A.

    2006-12-01

    A theoretical framework for the time-dependent processes leading to the high rates of new production in eastern boundary upwelling systems has been assembled from a series of past upwelling studies. As part of the CoOP WEST (Wind Events and Shelf Transport) study, new production in the Bodega Bay upwelling area and it's control by ambient nitrate and ammonium concentrations and the advective wind regime are described. Data and analyses are focused primarily on the WEST 2001 cruise (May-June 2001) when the two legs differed greatly in wind regimes but not nutrient concentrations. Elevated concentrations of ammonium in upwelled water with high nitrate were observed in both legs. Nitrate uptake by phytoplankton as a function of nitrate concentration was linear rather than Michaelis-Menten-like, modulated by inhibitory levels of ammonium, yielding coefficients that enable the specific nitrate uptake element of new production to be estimated from nutrient concentrations. The range of specific nitrate uptake rates for the two legs of WEST 2001 were similar, essentially a physiological response to nutrient conditions. However, the low "realization" of new production i.e. incorporation of biomass as particulate nitrogen that occurred in this system compared to the theoretical maximum possible was determined by the strong advective and turbulent conditions that dominated the second leg of the WEST 2001 study. These data are compared with other upwelling areas using a physiological shift-up model [Dugdale, R.C., Wilkerson, F.P., Morel, A. 1990. Realization of new production in coastal upwelling areas: a means to compare relative performance. Limnology and Oceanography 35, 822-829].

  5. Inhibition of catalase-dependent ethanol metabolism in alcohol dehydrogenase-deficient deermice by fructose.

    PubMed Central

    Handler, J A; Bradford, B U; Glassman, E B; Forman, D T; Thurman, R G

    1987-01-01

    Hepatic microsomal fractions from ADH (alcohol dehydrogenase)-negative deermice incubated with an NADPH-generating system metabolized butanol and ethanol at rates around 10 nmol/min per mg. In contrast, cytosolic catalase from ADH-negative deermouse liver oxidized ethanol, but not butanol, when incubated with an H2O2-generating system. Thus butanol is oxidized by cytochrome P-450 in microsomal fractions, but not by cytosolic catalase, in tissues from ADH-negative deermice. In perfused livers from ADH-negative deermice, rates of ethanol uptake at low concentrations of ethanol (1.5 mM) were about 60 mumol/h per g, yet butanol (1.5 mM) uptake was undetectable (less than 4 mumol/h per g). At higher concentrations of alcohol (25-30 mM), rates of ethanol uptake were about 80 mumol/h per g, whereas rates of butanol uptake were only about 9 mumol/h per g. Because rates of butanol metabolism via cytochrome P-450 in deermice were more than an order of magnitude lower than rates of ethanol uptake in livers from ADH-negative deermice, it is concluded that ethanol uptake by perfused livers from ADH-negative deermice is catalysed predominantly via catalase-H2O2. In support of this conclusion, rates of H2O2 generation, which are rate-limiting for the peroxidation of ethanol by catalase, were about 65 mumol/h per g in livers from ADH-negative deermice, values similar to rates of ethanol uptake of about 60 mumol/h per g measured under identical conditions. Rates of ethanol uptake by perfused livers from ADH-positive, but not from ADH-negative, deermice were increased by about 50% by infusion of fructose. Thus it is concluded that the stimulation of hepatic ethanol uptake by fructose is dependent on the presence of ADH. Unexpectedly, fructose decreased rates of ethanol metabolism and H2O2 generation by about 60% in perfused livers from ADH-negative deermice, probably by decreasing activation of fatty acids and thus diminishing rates of peroxisomal beta-oxidation. PMID:3435455

  6. Temperature Dependence of Inorganic Nitrogen Uptake: Reduced Affinity for Nitrate at Suboptimal Temperatures in Both Algae and Bacteria

    PubMed Central

    Reay, David S.; Nedwell, David B.; Priddle, Julian; Ellis-Evans, J. Cynan

    1999-01-01

    Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10 ≈ 3, where Q10 is the proportional change with a 10°C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures. PMID:10347046

  7. Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Loureiro, José M; Boaventura, Rui A R

    2008-09-01

    Marine algae Gelidium and algal composite material were investigated for the continuous removal of Cu(II) from aqueous solution in a packed bed column. The biosorption behaviour was studied during one sorption-desorption cycle of Cu(II) in the flow through column fed with 50 and 25 mg l(-1) of Cu(II) in aqueous solution, at pH 5.3, leading to a maximum uptake capacity of approximately 13 and 3 mg g(-1), respectively, for algae Gelidium and composite material. The breakthrough time decreases as the inlet copper concentration increases, for the same flow rate. The pH of the effluent decreases over the breakthrough time of copper ions, which indicates that ion exchange is one of the mechanisms involved in the biosorption process. Temperature has little influence on the metal uptake capacity and the increase of the ionic strength reduces the sorption capacity, decreasing the breakthrough time. Desorption using 0.1M HNO(3) solution was 100% effective. After two consecutive sorption-desorption cycles no changes in the uptake capacity of the composite material were observed. A mass transfer model including film and intraparticle resistances, and the equilibrium relationship, for adsorption and desorption, was successfully applied for the simulation of the biosorption column performance.

  8. Effects of Oxygen Limitation on Xylose Fermentation, Intracellular Metabolites, and Key Enzymes of Neurospora crassa AS3.1602

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihua; Qu, Yinbo; Zhang, Xiao; Lin, Jianqiang

    The effects of oxygen limitation on xylose fermentation of Neurospora crassa AS3.1602 were studied using batch cultures. The maximum yield of ethanol was 0.34 g/g at oxygen transfer rate (OTR) of 8.4 mmol/L·h. The maximum yield of xylitol was 0.33 g/g at OTR of 5.1 mmol/L·h. Oxygen limitation greatly affected mycelia growth and xylitol and ethanol productions. The specific growth rate (μ) decreased 82% from 0.045 to 0.008 h-1 when OTR changed from 12.6 to 8.4 mmol/L·h. Intracellular metabolites of the pentose phosphate pathway, glycolysis, and tricarboxylic acid cycle were determined at various OTRs. Concentrations of most intracellular metabolites decreased with the increase in oxygen limitation. Intracellular enzyme activities of xylose reductase, xylitol dehydrogenase, and xylulokinase, the first three enzymes in xylose metabolic pathway, decreased with the increase in oxygen limitation, resulting in the decreased xylose uptake rate. Under all tested conditions, transaldolase and transketolase activities always maintained at low levels, indicating a great control on xylose metabolism. The enzyme of glucose-6-phosphate dehydrogenase played a major role in NADPH regeneration, and its activity decreased remarkably with the increase in oxygen limitation.

  9. Acetate transport and utilization in the rat brain.

    PubMed

    Deelchand, Dinesh K; Shestov, Alexander A; Koski, Dee M; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2009-05-01

    Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-13C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMR(ace)) increased progressively and reached close to saturation for plasma acetate concentration > 2-3 mM, whereas brain acetate concentration continued to increase. The Michaelis-Menten constant for brain acetate utilization (K(M)(util) = 0.01 +/- 0.14 mM) was much smaller than for acetate transport through the blood-brain barrier (BBB) (K(M)(t) = 4.18 +/- 0.83 mM). The maximum transport capacity of acetate through the BBB (V(max)(t) = 0.96 +/- 0.18 micromol/g/min) was nearly twofold higher than the maximum rate of brain acetate utilization (V(max)(util) = 0.50 +/- 0.08 micromol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2-3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the BBB, but occurs after entry of acetate into the brain.

  10. Evaluation of Maximal Oxygen Uptake (V02max) and Submaximal Estimates of VO2max Before, During and After Long Duration ISS Missions

    NASA Technical Reports Server (NTRS)

    Moore, Alan; Evetts, Simon; Feiveson, Alan; Lee, Stuart; McCleary, Frank; Platts, Steven

    2009-01-01

    NASA's Human Research Program Integrated Research Plan (HRP-47065) serves as a road-map identifying critically needed information for future space flight operations (Lunar, Martian). VO2max (often termed aerobic capacity) reflects the maximum rate at which oxygen can be taken up and utilized by the body during exercise. Lack of in-flight and immediate postflight VO2max measurements was one area identified as a concern. The risk associated with not knowing this information is: Unnecessary Operational Limitations due to Inaccurate Assessment of Cardiovascular Performance (HRP-47065).

  11. Naval Research Laboratory Ecological -- Photochemical -- Bio-optical--Numerical Experiment (Neptune) Version 1: A Portable, Flexible Modeling Environment Designed to Resolve Time-dependent Feedbacks Between Upper Ocean Ecology, Photochemistry, and Optics

    DTIC Science & Technology

    2007-02-21

    dependent upon the carbon gross growth efficiency ( GGE ) and the C:N:P ratio of the organic substrate. This calculation and its structural...product of the temperature adjusted maximum gross carbon assimilation rate, the carbon gross growth efficiency ( GGE ), and the uptake kinetics for DOC...substrate: max T 4 [ ]( ) [ ]Cb b DOCg g GGE n DOC ⎛ ⎞ = ⎜ ⎟+⎝ ⎠ (21) and ( )( 30)max T m30 m30min[ , ]Kt Tb b bg g g e −= (22) To

  12. Oxygen delivery does not limit thermal tolerance in a tropical eurythermal crustacean.

    PubMed

    Ern, Rasmus; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Wang, Tobias; Bayley, Mark

    2014-03-01

    In aquatic environments, rising water temperatures reduce water oxygen content while increasing oxygen demand, leading several authors to propose cardiorespiratory oxygen transport capacity as the main determinant of aquatic animal fitness. It has also been argued that tropical species, compared with temperate species, live very close to their upper thermal limit and hence are vulnerable to even small elevations in temperature. Little, however, is known about physiological responses to high temperatures in tropical species. Here we report that the tropical giant freshwater shrimp (Macrobrachium rosenbergii) maintains normal growth when challenged by a temperature rise of 6°C above the present day average (from 27°C to 33°C). Further, by measuring heart rate, gill ventilation rate, resting and maximum oxygen uptake, and hemolymph lactate, we show that oxygen transport capacity is maintained up to the critical maximum temperature around 41°C. In M. rosenbergii heart rate and gill ventilation rate increases exponentially until immediately below critical temperatures and at 38°C animals still retained more than 76% of aerobic scope measured at 30°C, and there was no indication of anaerobic metabolism at the high temperatures. Our study shows that the oxygen transport capacity is maintained at high temperatures, and that other mechanisms, such as protein dysfunction, are responsible for the loss of ecological performance at elevated temperatures.

  13. The Effect of Patient Age on Standardized, Uptake Value-Hounsfield Unit Values of Male Genitourinery Structures In F-18 FDG PET/CT

    PubMed Central

    Çavuşoğlu, Berrin; Durak, Hatice

    2011-01-01

    Objective: Relation between patient age and Hounsfield Unit (HU),which is the linear attenuation coefficient, and Standardized Uptake Values (SUV) which is the amount of 18F-fluorodeoxyglucose (F-18 FDG) uptake, measured in the areas of interest drawn to prostate, seminal vesicles and testicles in F-18 FDG Positron Emission Tomography/Computed Tomography (PET/CT) images was investigated. Material and Methods: Mean and maximum SUV and HU values were recorded from the areas of interest (min 12 mm in diameter) which showed FDG uptake in prostate, seminal vesicles and testicles from F-18 FDG PET-CT images of 21 male patients under 40 years without genitourinary cancer. The effect of patient age to SUV and HU values was examined with Pearson correlation test using SPSS program. Results: There was a negative insignificant correlation between patient age and SUV and HU values for prostate. For seminal vesicles, correlation between patient age and SUV values and HUmax were positive but insignificant, while correlation with HUmean was significant (r=0.459, p=0.00). Correlation between patient age and SUVmax and SUVmean values were significant for testicles (r=0.506, p=0.002 and r=0.467, p=0.005, respectively) but the correlation between patient age and HUmax and HUmean values was not significant. Conclusion: F-18 FDG uptake in testicles in males increases with age until 40, suggesting an increase in metabolic rate. The significant correlation between age and mean HU values is probably caused by thickening of the tissue without an increase in glucose metabolism in seminal vesicles. In prostate, the effect of patient age to SUV and HU values was not observed until the age 40. Conflict of interest:None declared. PMID:23486855

  14. Improving representation of nitrogen uptake, allocation, and carbon assimilation in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ghimire, B.; Riley, W. J.; Koven, C.

    2013-12-01

    Nitrogen is the most important nutrient limiting plant carbon assimilation and growth, and is required for production of photosynthetic enzymes, growth and maintenance respiration, and maintaining cell structure. The forecasted rise in plant available nitrogen through atmospheric nitrogen deposition and the release of locked soil nitrogen by permafrost thaw in high latitude ecosystems is likely to result in an increase in plant productivity. However a mechanistic representation of plant nitrogen dynamics is lacking in earth system models. Most earth system models ignore the dynamic nature of plant nutrient uptake and allocation, and further lack tight coupling of below- and above-ground processes. In these models, the increase in nitrogen uptake does not translate to a corresponding increase in photosynthesis parameters, such as maximum Rubisco capacity and electron transfer rate. We present an improved modeling framework implemented in the Community Land Model version 4.5 (CLM4.5) for dynamic plant nutrient uptake, and allocation to different plant parts, including leaf enzymes. This modeling framework relies on imposing a more realistic flexible carbon to nitrogen stoichiometric ratio for different plant parts. The model mechanistically responds to plant nitrogen uptake and leaf allocation though changes in photosynthesis parameters. We produce global simulations, and examine the impacts of the improved nitrogen cycling. The improved model is evaluated against multiple observations including TRY database of global plant traits, nitrogen fertilization observations and 15N tracer studies. Global simulations with this new version of CLM4.5 showed better agreement with the observations than the default CLM4.5-CN model, and captured the underlying mechanisms associated with plant nitrogen cycle.

  15. Thermal Imaging Is a Noninvasive Alternative to PET/CT for Measurement of Brown Adipose Tissue Activity in Humans

    PubMed Central

    Law, James; Morris, David E.; Izzi-Engbeaya, Chioma; Salem, Victoria; Coello, Christopher; Robinson, Lindsay; Jayasinghe, Maduka; Scott, Rebecca; Gunn, Roger; Rabiner, Eugenii; Tan, Tricia; Dhillo, Waljit S.; Bloom, Stephen; Budge, Helen

    2018-01-01

    Obesity and its metabolic consequences are a major cause of morbidity and mortality. Brown adipose tissue (BAT) utilizes glucose and free fatty acids to produce heat, thereby increasing energy expenditure. Effective evaluation of human BAT stimulators is constrained by the current standard method of assessing BAT—PET/CT—as it requires exposure to high doses of ionizing radiation. Infrared thermography (IRT) is a potential noninvasive, safe alternative, although direct corroboration with PET/CT has not been established. Methods: IRT and 18F-FDG PET/CT data from 8 healthy men subjected to water-jacket cooling were directly compared. Thermal images were geometrically transformed to overlay PET/CT-derived maximum intensity projection (MIP) images from each subject, and the areas with the most intense temperature and glucose uptake within the supraclavicular regions were compared. Relationships between supraclavicular temperatures (TSCR) from IRT and the metabolic rate of glucose uptake (MR(gluc)) from PET/CT were determined. Results: Glucose uptake on MR(gluc)MIP was found to correlate positively with a change in TSCR relative to a reference region (r2 = 0.721; P = 0.008). Spatial overlap between areas of maximal MR(gluc)MIP and maximal TSCR was 29.5% ± 5.1%. Prolonged cooling, for 60 min, was associated with a further TSCR rise, compared with cooling for 10 min. Conclusion: The supraclavicular hotspot identified on IRT closely corresponded to the area of maximal uptake on PET/CT-derived MR(gluc)MIP images. Greater increases in relative TSCR were associated with raised glucose uptake. IRT should now be considered a suitable method for measuring BAT activation, especially in populations for whom PET/CT is not feasible, practical, or repeatable. PMID:28912148

  16. Uptake of oleate by isolated rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwieterman, W.; Sorrentino, D.; Potter, B.J.

    1988-01-01

    A portion of the hepatocellular uptake of nonesterified long-chain fatty acids is mediated by a specific 40-kDa plasma membrane fatty acid binding protein, which has also been isolated from the gut. To investigate whether a similar transport process exists in other tissues with high transmembrane fatty acid fluxes, initial rates (V/sub O/) of (/sup 3/H)-oleate uptake into isolated rat adipocytes were studied as a function of the concentration of unbound (/sup 3/H)oleate in the medium. V/sub O/ reached a maximum as the concentration of unbound oleate was increased and was significantly inhibited both by phloretin and by prior incubation ofmore » the cells with Pronase. A rabbit antibody to the rat liver plasma membrane fatty acid binding protein inhibited adipocyte fatty acid uptake by up to 63% in dose-dependent fashion. Inhibition was noncompetitive; at an immunoglobulin concentration of 250 ..mu..g/ml V/sub max/ was reduced from 2480 /plus minus/ 160 to 1870 /plus minus/ 80 pmol/min per 5 /times/ 10/sup 4/ adipocytes, with no change in K/sub m/. A basic kDa adipocyte plasma membrane fatty acid binding protein, isolated from crude adipocyte plasma membrane fractions, reacted strongly in both agar gel diffusion and electrophoretic blots with the antibody raised against the corresponding hepatic plasma membrane protein. These data indicate that the uptake of oleate by rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut.« less

  17. The absorption of protons with specific amino acids and carbohydrates by yeast

    PubMed Central

    Seaston, A.; Inkson, C.; Eddy, A. A.

    1973-01-01

    1. Proton uptake in the presence of various amino acids was studied in washed yeast suspensions containing deoxyglucose and antimycin to inhibit energy metabolism. A series of mutant strains of Saccharomyces cerevisiae with defective amino acid permeases was used. The fast absorption of glycine, l-citrulline and l-methionine through the general amino acid permease was associated with the uptake of about 2 extra equivalents of protons per mol of amino acid absorbed, whereas the slower absorption of l-methionine, l-proline and, possibly, l-arginine through their specific permeases was associated with about 1 proton equivalent. l-Canavanine and l-lysine were also absorbed with 1–2 equivalents of protons. 2. A strain of Saccharomyces carlsbergensis behaved similarly with these amino acids. 3. Preparations of the latter yeast grown with maltose subsequently absorbed it with 2–3 equivalents of protons. The accelerated rate of proton uptake increased up to a maximum value with the maltose concentration (Km=1.6mm). The uptake of protons was also faster in the presence of α-methylglucoside and sucrose, but not in the presence of glucose, galactose or 2-deoxyglucose. All of these compounds except the last could cause acid formation. The uptake of protons induced by maltose, α-methylglucoside and sucrose was not observed when the yeast was grown with glucose, although acid was then formed both from sucrose and glucose. 4. A strain of Saccharomyces fragilis that both fermented and formed acid from lactose absorbed extra protons in the presence of lactose. 5. The observations show that protons were co-substrates in the systems transporting the amino acids and certain of the carbohydrates. PMID:4587071

  18. Simultaneous Hydrogen and Methane Production Through Multi-Phase Anaerobic Digestion of Paperboard Mill Wastewater Under Different Operating Conditions.

    PubMed

    Farghaly, Ahmed; Tawfik, Ahmed

    2017-01-01

    Multi-phase anaerobic reactor for H 2 and CH 4 production from paperboard mill wastewater was studied. The reactor was operated at hydraulic retention times (HRTs) of 12, 18, 24, and 36 h, and organic loading rates (OLRs) of 2.2, 1.5, 1.1, and 0.75 kg chemical oxygen demand (COD)/m 3  day, respectively. HRT of 12 h and OLR of 2.2 kg COD/m 3  day provided maximum hydrogen yield of 42.76 ± 14.5 ml/g COD removed and volumetric substrate uptake rate (-rS) of 16.51 ± 4.43 mg COD/L h. This corresponded to the highest soluble COD/total COD (SCOD/TCOD) ratio of 56.25 ± 3.3 % and the maximum volatile fatty acid (VFA) yield (Y VFA ) of 0.21 ± 0.03 g VFA/g COD, confirming that H 2 was mainly produced through SCOD conversion. The highest methane yield (18.78 ± 3.8 ml/g COD removed ) and -rS of 21.74 ± 1.34 mgCOD/L h were achieved at an HRT of 36 h and OLR of 0.75 kg COD/m 3  day. The maximum hydrogen production rate (HPR) and methane production rate (MPR) were achieved at carbon to nitrogen (C/N) ratio of 47.9 and 14.3, respectively. This implies the important effect of C/N ratio on the distinction between the dominant microorganism bioactivities responsible for H 2 and CH 4 production.

  19. Bulking sludge for PHA production: energy saving and comparative storage capacity with well-settled sludge.

    PubMed

    Wen, Qinxue; Chen, Zhiqiang; Wang, Changyong; Ren, Nanqi

    2012-01-01

    Two acetate-fed sequencing batch reactors (SBR) were operated under an aerobic dynamic feeding (ADF) model (SBR#2) and with anaerobic phase before aerobic phase (SBR#1) to select mixed cultures with a high polyhydroxyalkanoates (PHA) storage response. Although kinetic selection based on storage response should bring about a predominance of floc-formers, a bulking sludge with storage response comparable to well-settled sludge was steadily established. An anaerobic phase was introduced before the aerobic phase in the ADF model to improve the sludge settleability (SBR #1), however, due to the consequent increased feast/famine ratio, the performance of SBR #1, in terms of both the maximum PHB (polyhydroxybutyrate) cell content and deltaPHB, was lower than that of SBR #2. SBR #2 gradually reached a steady state while SBR #1 failed suddenly after 50 days of operation. The maximum specific substrate uptake rate and storage rate for the selected bulking sludge were 0.4 Cmol Ac/(Cmol X x hr) and 0.18 Cmol Ac/(Cmol PHB x hr), respectively, resulting a yield of 0.45 Cmol PHB/(Cmol Ac) in SBR #2 in the culture enrichment phase. A maximum PHB content of 53% of total suspended solids and PHB storage rate of 1.36 Cmol Ac/(Cmol PHB x hr) was achieved at 10.2 hr in batch accumulation tests under nitrogen starvation. The results indicated that it was feasible to utilize filamentous bacteria to accumulate PHA with a rate comparable to well-settled sludge. Furthermore, the lower dissolved oxygen demand of filamentous bacteria would save energy required for aeration in the culture enrichment stage.

  20. Controlled field evaluation of water flow rate effects on sampling polar organic compounds using polar organic chemical integrative samplers.

    PubMed

    Li, Hongxia; Vermeirssen, Etiënne L M; Helm, Paul A; Metcalfe, Chris D

    2010-11-01

    The uptake of polar organic contaminants into polar organic chemical integrative samplers (POCIS) varies with environmental factors, such as water flow rate. To evaluate the influence of water flow rate on the uptake of contaminants into POCIS, flow-controlled field experiments were conducted with POCIS deployed in channel systems through which treated sewage effluent flowed at rates between 2.6 and 37 cm/s. Both pharmaceutical POCIS and pesticide POCIS were exposed to effluent for 21 d and evaluated for uptake of pharmaceuticals and personal care products (PPCPs) and endocrine disrupting substances (EDS). The pesticide POCIS had higher uptake rates for PPCPs and EDS than the pharmaceutical POCIS, but there are some practical advantages to using pharmaceutical POCIS. The uptake of contaminants into POCIS increased with flow rate, but these effects were relatively small (i.e., less than twofold) for most of the test compounds. There was no relationship observed between the hydrophobicity (log octanol/water partition coefficient, log K(OW)) of model compounds and the effects of flow rate on the uptake kinetics by POCIS. These data indicate that water flow rate has a relatively minor influence on the accumulation of PPCPs and EDS into POCIS. © 2010 SETAC.

  1. Acetate injection into anaerobic settled sludge for biological P-removal in an intermittently aerated reactor.

    PubMed

    Ahn, K H; Yoo, H; Lee, J W; Maeng, S K; Park, K Y; Song, K G

    2001-01-01

    Injecting acetate into the sludge layer during the settling and decanting periods was adopted to enhance phosphorus release inside the sludge layer during those periods and phosphorus uptake during the subsequent aeration period in a KIST Intermittently Decanted Extended Aeration (KIDEA) process. The relationship among nitrification, denitrification and phosphorus removal was investigated in detail and analyzed with a qualitative floc model. Dependencies of nitrification on the maximum DO level during the aerobic phase and phosphorus release on residual nitrate concentration during the settling phase were significant. High degree of nitrification resulted that phosphorus release inside the sludge layer was significantly interfered with nitrate due to the limitation of available acetate and the carbon sources from influent. Such limitation was related to the primary utilization of organic substance for denitrification in the outer layer of the floc and the retarded mass transfer into the inner layer of the floc. Nevertheless, effects of acetate injection on both denitrification and phosphorus release during the settling phase were significant. Denitrification rate after acetate injection was two times as high as that before acetate injection, and phosphorus release reached about 14 mg PO4(3-)-P/g MLVSS/hr during the decanting phase after the termination of denitrification inside the sludge layer. Extremely low level of maximum DO (around 0.5 mg/L) during the aerobic phase may inhibited nitrification, considerably, and thus nearly no nitrate was present. However, the absence of nitrate increased when the phosphorus release rate was reached up to 33 mg PO4(3-)-P/g MLVSS/hr during the settling and decanting phase, and nearly all phosphorus was taken up during subsequent aerobic phase. Since the sludge layer could function as a blocking layer, phosphorus concentrations in the supernatant was not influenced by the released phosphorus inside the sludge layer during the settling and decanting period. Phosphorus removal was directly (for uptake) and indirectly (for release) dependent on the median and maximum DO concentration during the aerobic phase, and those optimal values may exist within the range from 0.2 to 0.6 mg/L and 0.4 to 1.2 mg/L, respectively.

  2. CO2 emissions from a temperate drowned river valley estuary adjacent to an emerging megacity (Sydney Harbour)

    NASA Astrophysics Data System (ADS)

    Tanner, E. L.; Mulhearn, P. J.; Eyre, B. D.

    2017-06-01

    The Sydney Harbour Estuary is a large drowned river valley adjacent to Sydney, a large urban metropolis on track to become a megacity; estimated to reach a population of 10 million by 2100. Monthly underway surveys of surface water pCO2 were undertaken along the main channel and tributaries, from January to December 2013. pCO2 showed substantial spatio-temporal variability in the narrow high residence time upper and mid sections of the estuary, with values reaching a maximum of 5650 μatm in the upper reaches and as low as 173 μatm in the mid estuary section, dominated by respiration and photosynthesis respectively. The large lower estuary displayed less variability in pCO2 with values ranging from 343 to 544 μatm controlled mainly by tidal pumping and temperature. Air-water CO2 emissions reached a maximum of 181 mmol C m-2 d-1 during spring in the eutrophic upper estuary. After a summer high rainfall event nutrient-stimulated biological pumping promoted a large uptake of CO2 transitioning the Sydney Harbour Estuary into a CO2 sink with a maximum uptake of rate of -10.6 mmol C m-2 d-1 in the mid-section of the estuary. Annually the Sydney Harbour Estuary was heterotrophic and a weak source of CO2 with an air-water emission rate of 1.2-5 mmol C m-2 d-1 (0.4-1.8 mol C m-2 y-1) resulting in a total carbon emission of around 930 tonnes per annum. CO2 emissions (weighted m3 s-1 of discharge per km2 of estuary surface area) from Sydney Harbour were an order of magnitude lower than other temperate large tectonic deltas, lagoons and engineered systems of China, India, Taiwan and Europe but were similar to other natural drowned river valley systems in the USA. Discharge per unit area appears to be a good predictor of CO2 emissions from estuaries of a similar climate and geomorphic class.

  3. Effect of low molecular weight organic acids on the uptake of 226Ra by corn (Zea mays L.) in a region of high natural radioactivity in Ramsar-Iran.

    PubMed

    Nezami, Sareh; Malakouti, Mohammad Jafar; Bahrami Samani, Ali; Ghannadi Maragheh, Mohammad

    2016-11-01

    To study the benefit of including citric and oxalic acid treatments for phytoremediation of 226 Ra contaminated soils a greenhouse experiment with corn was conducted. A soil was sampled from a region of high natural 226 Ra radioactivity in Ramsar, Iran. After cultivation of corn seed and using organic acid treatments at 1, 10 and 100 mM concentrations, plants (shoots and roots) were harvested, digested and prepared to measure 226 Ra activity. Simultaneously, sequential selective extraction were performed to estimate the partitioning of 226 Ra among geochemical extraction. Results showed that the maximum uptake of 226 Ra in plants was observed in citric acid (6.3%) and then oxalic acid (6%) at 100 mM concentration. These treatments increased radium uptake by a factor of 1.5 than the control. Enhancement of radium uptake by plants was related to soil pH reduction of organic acids in comparison to control. Also, the maximum uptake of this radionuclide in all treatments was obtained in roots compared to shoots. 226 Ra fractionations results revealed that 91.8% of radium was in the residual phase of the soil and the available fractions were less than 2%. As the main percent of 226 Ra was in the residual phase of the soil in this region, it seems that organic acids had not significant effect on the uptake of 226 Ra for phytoremediation by corn in this condition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Nitrogen uptake by wheat seedlings, interactive effects of four nitrogen sources: NO3-, NO2-, NH4+, and urea

    NASA Technical Reports Server (NTRS)

    Criddle, R. S.; Ward, M. R.; Huffaker, R. C.

    1988-01-01

    The net influx (uptake) rates of NO3-, NH4+, NO2-, and urea into roots of wheat (Triticum aestivum cv Yecora Rojo) seedlings from complete nutrient solutions containing all four compounds were monitored simultaneously. Although urea uptake was too slow to monitor, its presence had major inhibitory effects on the uptake of each of the other compounds. Rates of NO3-, NH4+, and NO2- uptake depended in a complex fashion on the concentration of all four N compounds. Equations were developed which describe the uptake rates of each of the compounds, and of total N, as functions of concentrations of all N sources. Contour plots of the results show the interactions over the range of concentrations employed. The coefficients of these equations provide quantitative values for evaluating primary and interactive effects of each compound on N uptake.

  5. Investigation of the column performance of cadmium(II) biosorption by Cladophora crispata flocs in a packed bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksu, Z.; Kutsal, T.; Caglar, A.

    1998-03-01

    In this study the biosorption of cadmium(II) ions to dried flocs of Cladophora crispata, a kind of green algae, was investigated in a packed bed column. The cadmium(II) removal performance of the column was investigated as a function of the cadmium(II)-bearing solution flow rate and the inlet cadmium(II) concentration. Removal and total removal percentages of cadmium(II) related to flow volume were determined by evaluating the breakthrough curves obtained at three different flow rates for two different constant inlet concentrations. At the lowest flow rate the effect of inlet cadmium(II) concentration on the column capacity was also investigated. Data confirmed thatmore » early saturation and lower cadmium(II) removals were observed at higher flow rates and at higher cadmium(II) concentrations. Column experiments also showed that maximum specific cadmium(II) uptake values of C. crispata flocs were as high as those of other biomass sorbents.« less

  6. Uptake of free amino acids by bacteria-free larvae of the sand dollar Dendraster excentricus.

    PubMed

    Davis, J P; Stephens, G C

    1984-10-01

    Larvae of Dendraster excentricus were produced by collecting gametes and carrying out fertilization under aseptic conditions. Since gametes are free of bacteria in the gonad, bacteria-free (axenic) suspensions of larvae result. Net rates of entry of 14 amino acids and the rate of production of ammonia were simultaneously determined by high-performance liquid chromatography. The net rates of uptake of neutral amino acids were an order of magnitude greater than rates for basic and acidic amino acids. Influx of 14C-labeled leucine, arginine, and glutamate accurately reflects the net entry rate of these substrates. Uptake of amino acids by axenic suspensions of larvae was compared with uptake by suspensions prepared without aseptic precautions. There was no significant difference in net uptake of the 14 amino acids or in the pattern of oxidation and assimilation of [14C]leucine during short-term experiments of 4-h duration or less.

  7. A dynamic growth model of macroalgae: Application in an estuary recovering from treated wastewater and earthquake-driven eutrophication

    NASA Astrophysics Data System (ADS)

    Ren, Jeffrey S.; Barr, Neill G.; Scheuer, Kristin; Schiel, David R.; Zeldis, John

    2014-07-01

    A dynamic growth model of macroalgae was developed to predict growth of the green macroalga Ulva sp. in response to changes in environmental variables. The model is based on common physiological behaviour of macroalgae and hence has general applicability to macroalgae. Three state variables (nitrogen, carbon and phosphorus) were used to describe physiological processes and functional differences between nutrient and carbon uptakes. Carbon uptake is modelled as a function of temperature, light, algal internal state and water current, while nutrient uptake depends on internal state, temperature and environmental nutrient level. Growth can only occur when nutrients in the environment and in the internal storage pools (N-quota and P-quota) reach threshold levels. Physiological rates follow the Arrhenius relationship and increase exponentially with increasing temperature within the temperature tolerance range of a species. When parameterised and applied to Ulva sp. in the eutrophic Avon-Heathcote Estuary, New Zealand, the model generally reproduced field observations of Ulva sp. growth and abundance. Growth followed a clear seasonal cycle with biomass increasing from early-middle summer, reaching peak values in early autumn and then decreasing. Conversely, N-quotient levels were maximal during the winter months, declining during summer peak growth. These seasonal patterns were collectively driven by temperature, light intensity and nutrients. The model captured the N-quota and growth responses of Ulva sp. to the N-reduction arising from diversion of treated wastewater from the Avon-Heathcote Estuary to an offshore outfall in 2010, and of raw sewage N-discharges resulting from wastewater infrastructure damage caused by the Canterbury earthquakes in 2011. Sensitivity analyses revealed that temperature-related parameters and maximum uptake rate of C were among the most sensitive parameters in predicting biomass. In addition, the earthquake-derived changes in reduction of immersion time and decrease in the start biomass prior to summer blooms were shown to drive considerable declines in summer growth and biomass of Ulva sp.

  8. Exploratory clinical trial of (4S)-4-(3-[18F]fluoropropyl)-L-glutamate for imaging xC- transporter using positron emission tomography in patients with non-small cell lung or breast cancer.

    PubMed

    Baek, Sora; Choi, Chang-Min; Ahn, Sei Hyun; Lee, Jong Won; Gong, Gyungyub; Ryu, Jin-Sook; Oh, Seung Jun; Bacher-Stier, Claudia; Fels, Lüder; Koglin, Norman; Hultsch, Christina; Schatz, Christoph A; Dinkelborg, Ludger M; Mittra, Erik S; Gambhir, Sanjiv S; Moon, Dae Hyuk

    2012-10-01

    (4S)-4-(3-[(18)F]fluoropropyl)-l-glutamate (BAY 94-9392, alias [(18)F]FSPG) is a new tracer to image x(C)(-) transporter activity with positron emission tomography (PET). We aimed to explore the tumor detection rate of [(18)F]FSPG in patients relative to 2-[(18)F]fluoro-2-deoxyglucose ([(18)F]FDG). The correlation of [(18)F]FSPG uptake with immunohistochemical expression of x(C)(-) transporter and CD44, which stabilizes the xCT subunit of system x(C)(-), was also analyzed. Patients with non-small cell lung cancer (NSCLC, n = 10) or breast cancer (n = 5) who had a positive [(18)F]FDG uptake were included in this exploratory study. PET images were acquired following injection of approximately 300 MBq [(18)F]FSPG. Immunohistochemistry was done using xCT- and CD44-specific antibody. [(18)F]FSPG PET showed high uptake in the kidney and pancreas with rapid blood clearance. [(18)F]FSPG identified all 10 NSCLC and three of the five breast cancer lesions that were confirmed by pathology. [(18)F]FSPG detected 59 of 67 (88%) [(18)F]FDG lesions in NSCLC, and 30 of 73 (41%) in breast cancer. Seven lesions were additionally detected only on [(18)F]FSPG in NSCLC. The tumor-to-blood pool standardized uptake value (SUV) ratio was not significantly different from that of [(18)F]FDG in NSCLC; however, in breast cancer, it was significantly lower (P < 0.05). The maximum SUV of [(18)F]FSPG correlated significantly with the intensity of immunohistochemical staining of x(C)(-) transporter and CD44 (P < 0.01). [(18)F]FSPG seems to be a promising tracer with a relatively high cancer detection rate in patients with NSCLC. [(18)F]FSPG PET may assess x(C)(-) transporter activity in patients with cancer.

  9. Effects of prolonged drought stress on Scots pine seedling carbon allocation.

    PubMed

    Aaltonen, Heidi; Lindén, Aki; Heinonsalo, Jussi; Biasi, Christina; Pumpanen, Jukka

    2017-04-01

    As the number of drought occurrences has been predicted to increase with increasing temperatures, it is believed that boreal forests will become particularly vulnerable to decreased growth and increased tree mortality caused by the hydraulic failure, carbon starvation and vulnerability to pests following these. Although drought-affected trees are known to have stunted growth, as well as increased allocation of carbon to roots, still not enough is known about the ways in which trees can acclimate to drought. We studied how drought stress affects belowground and aboveground carbon dynamics, as well as nitrogen uptake, in Scots pine (Pinus sylvestris L.) seedlings exposed to prolonged drought. Overall 40 Scots pine seedlings were divided into control and drought treatments over two growing seasons. Seedlings were pulse-labelled with 13CO2 and litter bags containing 15N-labelled root biomass, and these were used to follow nutrient uptake of trees. We determined photosynthesis, biomass distribution, root and rhizosphere respiration, water potential, leaf osmolalities and carbon and nitrogen assimilation patterns in both treatments. The photosynthetic rate of the drought-induced seedlings did not decrease compared to the control group, the maximum leaf specific photosynthetic rate being 0.058 and 0.045 µmol g-1 s-1 for the drought and control treatments, respectively. The effects of drought were, however, observed as lower water potentials, increased osmolalities as well as decreased growth and greater fine root-to-shoot ratio in the drought-treated seedlings. We also observed improved uptake of labelled nitrogen from soil to needles in the drought-treated seedlings. The results indicate acclimation of seedlings to long-term drought by aiming to retain sufficient water uptake with adequate allocation to roots and root-associated mycorrhizal fungi. The plants seem to control water potential with osmolysis, for which sufficient photosynthetic capability is needed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Effects of trimetazidine in nonischemic heart failure: a randomized study.

    PubMed

    Winter, José Luis; Castro, Pablo F; Quintana, Juan Carlos; Altamirano, Rodrigo; Enriquez, Andres; Verdejo, Hugo E; Jalil, Jorge E; Mellado, Rosemarie; Concepción, Roberto; Sepúlveda, Pablo; Rossel, Victor; Sepúlveda, Luis; Chiong, Mario; García, Lorena; Lavandero, Sergio

    2014-03-01

    Heart failure (HF) is associated with changes in myocardial metabolism that lead to impairment of contractile function. Trimetazidine (TMZ) modulates cardiac energetic efficiency and improves outcomes in ischemic heart disease. We evaluated the effects of TMZ on left ventricular ejection fraction (LVEF), cardiac metabolism, exercise capacity, O2 uptake, and quality of life in patients with nonischemic HF. Sixty patients with stable nonischemic HF under optimal medical therapy were included in this randomized double-blind study. Patients were randomized to TMZ (35 mg orally twice a day) or placebo for 6 months. LVEF, 6-minute walk test (6MWT), maximum O2 uptake in cardiopulmonary exercise test, different markers of metabolism, oxidative stress, and endothelial function, and quality of life were assessed at baseline and after TMZ treatment. Left ventricular peak glucose uptake was evaluated with the use of the maximum standardized uptake value (SUV) by 18-fluorodeoxyglucose positron emission tomography ((18)FDG-PET). Etiology was idiopathic in 85% and hypertensive in 15%. Both groups were similar in age, functional class, LVEF, and levels of N-terminal pro-B-type natriuretic peptide at baseline. After 6 months of TMZ treatment, no changes were observed in LVEF (31 ± 10% vs 34 ± 8%; P = .8), 6MWT (443 ± 25 m vs 506 ± 79 m; P = .03), maximum O2 uptake (19.1 ± 5.0 mL kg(-1) min(-1) vs 23.0 ± 7.2 mL kg(-1) min(-1); P = .11), functional class (percentages of patients in functional classes I/II/III/IV 10/3753/0 vs 7/40/50/3; P = .14), or quality of life (32 ± 26 points vs 24 ± 18 points; P = .25) in TMZ versus placebo, respectively. In the subgroup of patients evaluated with (18)FDG-PET, no significant differences were observed in SUV between both groups (7.0 ± 3.6 vs 8.2 ± 3.4 respectively; P = .47). In patients with nonischemic HF, the addition of TMZ to optimal medical treatment does not result in significant changes of LVEF, exercise capacity, O2 uptake, or quality of life. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The effects of temperature and salinity on 17-α-ethynylestradiol uptake and its relationship to oxygen consumption in the model euryhaline teleost (Fundulus heteroclitus).

    PubMed

    Blewett, Tamzin; MacLatchy, Deborah L; Wood, Chris M

    2013-02-01

    The synthetic estrogen 17-α-ethynylestradiol (EE2), a component of birth control and hormone replacement therapy, is discharged into the environment via wastewater treatment plant (WWTP) effluents. The present study employed radiolabeled EE2 to examine impacts of temperature and salinity on EE2 uptake in male killifish (Fundulus heteroclitus). Fish were exposed to a nominal concentration of 100ng/L EE2 for 2h. The rate of EE2 uptake was constant over the 2h period. Oxygen consumption rates (MO(2)), whole body uptake rates, and tissue-specific EE2 distribution were determined. In killifish acclimated to 18°C at 16ppt (50% sea water), MO(2) and EE2 uptake were both lower after 24h exposure to 10°C and 4°C, and increased after 24h exposure to 26°C. Transfer to fresh water (FW) for 24h lowered EE2 uptake rate, and long-term acclimation to fresh water reduced it by 70%. Both long-term acclimation to 100% sea water (32ppt) and a 24h transfer to 100% sea water also reduced EE2 uptake rate by 50% relative to 16ppt. Tissue-specific accumulation of EE2 was highest (40-60% of the total) in the liver plus gall bladder across all exposures, and the vast majority of this was in the bile at 2h, regardless of temperature or salinity. The carcass was the next highest accumulator (30-40%), followed by the gut (10-20%) with only small amounts in gill and spleen. Killifish chronically exposed (15 days) to 100ng/L EE2 displayed no difference in EE2 uptake rate or tissue-specific distribution. Drinking rate, measured with radiolabeled polyethylene glycol-4000, was about 25 times greater in 16ppt-acclimated killifish relative to FW-acclimated animals. However, drinking accounted for less than 30% of gut accumulation, and therefore a negligible percentage of whole body EE2 uptake rates. In general, there were strong positive relationships between EE2 uptake rates and MO(2), suggesting similar uptake pathways of these lipophilic molecules across the gills. These data will be useful in developing a predictive model of how key environmental parameter variations (salinity, temperature, dissolved oxygen) affect EE2 uptake in estuarine fish, to determine optimal timing and location of WWTP discharges. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Computer-aided rational design of the phosphotransferase system for enhanced glucose uptake in Escherichia coli

    PubMed Central

    Nishio, Yousuke; Usuda, Yoshihiro; Matsui, Kazuhiko; Kurata, Hiroyuki

    2008-01-01

    The phosphotransferase system (PTS) is the sugar transportation machinery that is widely distributed in prokaryotes and is critical for enhanced production of useful metabolites. To increase the glucose uptake rate, we propose a rational strategy for designing the molecular architecture of the Escherichia coli glucose PTS by using a computer-aided design (CAD) system and verified the simulated results with biological experiments. CAD supports construction of a biochemical map, mathematical modeling, simulation, and system analysis. Assuming that the PTS aims at controlling the glucose uptake rate, the PTS was decomposed into hierarchical modules, functional and flux modules, and the effect of changes in gene expression on the glucose uptake rate was simulated to make a rational strategy of how the gene regulatory network is engineered. Such design and analysis predicted that the mlc knockout mutant with ptsI gene overexpression would greatly increase the specific glucose uptake rate. By using biological experiments, we validated the prediction and the presented strategy, thereby enhancing the specific glucose uptake rate. PMID:18197177

  13. Monosaccharide uptake by erythrocytes of the embryonic and adult chicken.

    PubMed

    Ingermann, R L; Stock, M K; Metcalfe, J; Bissonnette, J M

    1985-01-01

    Rates of monosaccharide uptake by adult and 10-18 day old embryonic chicken erythrocytes were quantitated. The rate of carrier-mediated, stereospecific transport decreased 28% from day 10 to day 14 of incubation and was unchanged thereafter. At no time, however, did the rate of carrier-mediated transport by embryonic erythrocytes differ significantly from that of the adult cells. The rate of transfer by simple diffusion was 3-5 fold faster in embryonic than in adult erythrocytes. Uptake by simple diffusion decreased slightly as the embryo developed. Chronic hyperoxic incubation (70% O2) had little influence on total monosaccharide uptake by embryonic erythrocytes.

  14. Kinetics of heterotrophic biomass and storage mechanism in wetland cores measured by respirometry.

    PubMed

    Ortigara, A R C; Foladori, P; Andreottola, G

    2011-01-01

    Although oxygen uptake rate has been widely used in activated sludge for measuring kinetic and stoichiometric parameters or for wastewater characterization, its application in constructed wetlands (CWs) cores has been recently proposed. The aim of this research is to estimate the kinetic and stoichiometric parameters of the heterotrophic biomass in CW cores. Respirometric tests were carried out with pure carbonaceous substrate and real wastewater. Endogenous respiration was about 2 gO2 m(-3) h(-1) (per unit of bed volume), while the kinetic parameters obtained for COD oxidation were very high (maximum rate per unit of bed volume of 10.7-26.8 gCOD m(-3) h(-1)) which indicates high biodegradation potential in fully aerobic environment. Regarding to stoichiometric parameter, the maximum growth yield, Y(H), was 0.56-0.59 mgCOD/mgCOD, while the storage yield, Y(STO), was 0.75-0.77 mgCOD/mgCOD. The storage mechanism was observed in CW cores during COD oxidation, which leads to the transformation of the external soluble substrate in internal storage products, probably as response to intermittent loads applied in CW systems, transient concentrations of readily biodegradable substrate and alternance of feast/famine periods.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šefl, Martin, E-mail: martin.sefl@gmail.com; Kyriakou, Ioanna; Emfietzoglou, Dimitris, E-mail: demfietz@cc.uoi.gr

    Purpose: To study theoretically the impact on cell survival of the radionuclide uptake rate inside tumor cells for a single administration of a radiopharmaceutical. Methods: The instantaneous-uptake model of O’Donoghue [“The impact of tumor cell proliferation in radioimmunotherapy,” Cancer 73, 974–980 (1994)] for a proliferating cell population irradiated by an exponentially decreasing dose-rate is here extended to allow for the monoexponential uptake of the radiopharmaceutical by the targeted cells. The time derivative of the survival curve is studied in detail deducing an expression for the minimum of the surviving fraction and the biologically effective dose (BED). Results: Surviving fractions aremore » calculated over a parameter range that is clinically relevant and broad enough to establish general trends. Specifically, results are presented for the therapy radionuclides Y-90, I-131, and P-32, assuming uptake half-times 1–24 h, extrapolated initial dose-rates 0.5–1 Gy h{sup −1}, and a biological clearance half-life of seven days. Representative radiobiological parameters for radiosensitive and rapidly proliferating tumor cells are used, with cell doubling time equal to 2 days and α-coefficient equal to 0.3 and 0.5 Gy{sup −1}. It is shown that neglecting the uptake phase of the radiopharmaceutical (i.e., assuming instantaneous-uptake) results in a sizeable over-estimation of cell-kill (i.e., under-estimation of cell survival) even for uptake half-times of only a few hours. The differences between the exponential-uptake model and the instantaneous-uptake model become larger for high peak dose-rates, slow uptakes, and (slightly) for long-lived radionuclides. Moreover, the sensitivity of the survival curve on the uptake model was found to be higher for the tumor cells with the larger α-coefficient. Conclusions: The exponential-uptake rate of the radiopharmaceutical inside targeted cells appears to have a considerable effect on the survival of a proliferating cell population and might need to be considered in radiobiological models of tumor cell-kill in radionuclide therapy.« less

  16. beta-Blockade used in precision sports: effect on pistol shooting performance.

    PubMed

    Kruse, P; Ladefoged, J; Nielsen, U; Paulev, P E; Sørensen, J P

    1986-08-01

    In a double-blind cross-over study of 33 marksmen (standard pistol, 25 m) the adrenergic beta 1-receptor blocker, metoprolol, was compared to placebo. Metoprolol obviously improved the pistol shooting performance compared with placebo. Shooting improved by 13.4% of possible improvement (i.e., 600 points minus actual points obtained) as an average (SE = 4%, 2P less than 0.002). The most skilled athletes demonstrated the clearest metoprolol improvement. We found no correlation between the shooting improvement and changes in the cardiovascular variables (i.e., changes of heart rate and systolic blood pressure) and no correlation to the estimated maximum O2 uptake. The shooting improvement is an effect of metoprolol on hand tremor. Emotional increase of heart rate and systolic blood pressure seem to be a beta 1-receptor phenomenon.

  17. Effect of flow rate on growth and oxygen consumption of biofilm in gravity sewer.

    PubMed

    Xu, Jingwei; Li, Muzhi; He, Qiang; Sun, Xingfu; Zhou, Xiangren; Su, Zhenping; Ai, Hainan

    2017-01-01

    The function of sewer as reactors must rely on the biofilm in it. In this paper, the formation, structure, oxygen transfer, and activity of the biofilm under different hydraulic conditions were studied by the microelectrode technology, oxygen uptake rate (OUR) technology, and 454 high-throughput pyrosequencing technology. Results showed that when the wall-shear stresses were 1.12, 1.29, and 1.45 Pa, the porosity of the steady-state biofilm were 69.1, 64.4, and 55.1 %, respectively. The maximum values of OUR were 0.033, 0.027, and 0.022 mg/(L*s), respectively, and the COD removal efficiency in the sewers reached 40, 35, and 32 %, respectively. The research findings had an important significance on how to improve the treatment efficiency of the sewers. Fig. a Graphical Abstract.

  18. Regulation of the Na+2Cl–K+ cotransporter in in vitro perfused rectal gland tubules of Squalus acanthias.

    PubMed

    Warth, R; Bleich, M; Thiele, I; Lang, F; Greger, R

    1998-07-01

    Previously it has been shown that the Na+2Cl–K+ cotransporter accepts NH4 + at its K+ binding site. This property can be used to estimate its transport rates by adding NH4 + to the bath and measuring the initial furosemide-dependent rates of change in BCECF fluorescence. We have utilized this technique to determine the regulation of the furosemide-inhibitable Na+2Cl–K+ cotransporter in in vitroperfused rectal gland tubules (RGT) of Squalus acanthias. Addition of NH4 + to the bath (20 mmol/l) led to an initial alkalinization, corresponding to NH3 uptake. This was followed by an acidification, corresponding to NH4 + uptake. The rate of this uptake was quantified by exponential curve fitting and is given in arbitrary units (Δfluorescence/time). This acidification could be completely inhibited by furosemide. In the absence of any secretagogue preincubation of RGT in a low Cl– solution (6 mmol/l, low Cl–) for 10 min enhanced the uptake rate significantly from 4.04±0.51 to 12.7±1.30 (n=5). The addition of urea (200 mmol/l) was without effect, but the addition of 300 mmol/l mannitol (+300 mannitol) enhanced the rate significantly from 7.24±1.33 to 14.7±4.6 (n=6). Stimulation of NaCl secretion by a solution maximizing the cytosolic cAMP concentration (Stim) led to a significant increase in NH4 + uptake rate from 5.00±1.33 to 13.3±1.54 (n=6). Similar results were obtained in the additional presence of Ba2+ (1 mmol/l): the uptake rate was increased significantly from 4.23±0.34 to 15.1±1.86 (n=16). In the presence of Stim low Cl– had no additional effect on the uptake rate: 15.1±3.1 versus 15.2±2.8 in high Cl– (n=6). The uptake rate in Stim containing additional +300 mannitol (22.3±4.0, n=5) was not significantly different from that obtained with Stim or +300 mannitol alone. By whatever mechanism the NH4 + uptake rate was increased furosemide (500 µmol/l) always reduced this rate to control values. Hence three manoeuvres enhanced furosemide-inhibitable uptake rates of the Na+2Cl–K+ cotransporter probably independently: (1) lowering of cytosolic Cl– concentration; (2) cell shrinkage; and (3) activation by cAMP.

  19. Screening of Tropical Wood-Rotting Mushrooms for Copper Biosorption

    PubMed Central

    Muraleedharan, T. R.; Iyengar, L.; Venkobachar, C.

    1995-01-01

    Fruiting bodies (mushrooms) of nine nonedible macrofungi were screened for copper(II) uptake potential. The maximum uptake potentials (Q(infmax)s) derived from equilibrium studies indicated that all nine species exhibited higher Q(infmax)s at pH 4.0 than that of Filtrasorb-400, a generally used adsorbent for metal removal. Wide variation in Q(infmax) was observed among the species and ranged from 0.048 to 0.383 mmol per g of sorbent. The uptake capacity of Ganoderma lucidum, which exhibited the highest Q(infmax), was higher than those of other microbial biosorbents reported in the literature. PMID:16535136

  20. Biogeochemical controls of uranium bioavailability from the dissolved phase in natural freshwaters

    USGS Publications Warehouse

    Croteau, Marie-Noele; Fuller, Christopher C.; Cain, Daniel J.; Campbell, Kate M.; Aiken, George R.

    2016-01-01

    To gain insights into the risks associated with uranium (U) mining and processing, we investigated the biogeochemical controls of U bioavailability in the model freshwater speciesLymnaea stagnalis (Gastropoda). Bioavailability of dissolved U(VI) was characterized in controlled laboratory experiments over a range of water hardness, pH, and in the presence of complexing ligands in the form of dissolved natural organic matter (DOM). Results show that dissolved U is bioavailable under all the geochemical conditions tested. Uranium uptake rates follow first order kinetics over a range encompassing most environmental concentrations. Uranium uptake rates in L. stagnalis ultimately demonstrate saturation uptake kinetics when exposure concentrations exceed 100 nM, suggesting uptake via a finite number of carriers or ion channels. The lack of a relationship between U uptake rate constants and Ca uptake rates suggest that U does not exclusively use Ca membrane transporters. In general, U bioavailability decreases with increasing pH, increasing Ca and Mg concentrations, and when DOM is present. Competing ions did not affect U uptake rates. Speciation modeling that includes formation constants for U ternary complexes reveals that the aqueous concentration of dicarbonato U species (UO2(CO3)2–2) best predicts U bioavailability to L. stagnalis, challenging the free-ion activity model postulate.

  1. Modification of the Fox method to predict maximum oxygen uptake in female university students of Kolkata, India.

    PubMed

    Bandyopadhyay, Amit

    2011-12-01

    The present study was aimed to develop a simple method, i.e. the modified Fox test protocol (MFT) to predict VO2(max) in female sedentary university students of Kolkata, India. One hundred and eleven (111) healthy untrained female students of the University of Calcutta (mean age, body height and body mass of 22.76 ± 1.72 years, 163.52 ± 4.70 cm and 53.03 ± 3.78 kg, respectively) were randomly sampled for the study. They were further randomly divided into the study group (n = 60) and confirmatory group (n = 51). Direct estimation of the maximum oxygen uptake (VO2(max)) comprised an incremental bicycle exercise followed by expired gas analysis by the Scholander micro-gas analyzer. The submaximal heart rate (HR(sub)) was measured at the completion of five min of exercise at 110W workload. HR(sub) exhibited significant negative correlation (r = -0.87, P < 0.001) with VO2(max). Application of the computed norm in the confirmatory group depicted insignificant difference between VO2(max) and predicted VO2(max) or PVO2(max). Limits of agreement between PVO2(max) and VO2(max) were substantially small. The standard error of estimate of the norm was also substantially small. From the present study, MFT is recommended for application in the sedentary female university students for accurate and reliable assessment of cardiorespiratory fitness in terms of VO2(max).

  2. Responses of photosynthetic O2 evolution to PPFD in the CAM epiphyte Tillandsia usneoides L. (Bromeliaceae).

    PubMed

    Martin, C E; McKee, J M; Schmitt, A K

    1989-09-01

    Past studies of the effects of varying levels of photosynthetic photon flux density (PPFD) on the morphology and physiology of the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides L. (Bromeliaceae) have resulted in two important findings: (1) CAM, measured as integrated nocturnal CO2 uptake or as nocturnal increases in tissue acidity, saturates at relatively low PPFD, and (2) this plant does not acclimate to different PPFD levels, these findings require substantiation using photosynthetic responses immediately attributable to different PPFD levels, e.g., O2 evolution, as opposed to the delayed, nocturnal responses (CO2 uptake and acid accumulation). In the present study, instantaneous responses of O2 evolution to PPFD level were measured using plants grown eight weeks at three PPFD (20-45, 200-350, and 750-800 μmol m(-2)s(-1)) in a growth chamber, and using shoots taken from the exposed upper portions (maximum PPFD of 800 μmol m(-2)s(-1)) and shaded lower portions (maximum PPFD of 140 μmol m(-2)s(-1)) of plants grown ten years in a greenhouse. In addition, nocturnal increases in acidity were measured in the growth chamber plants. Regardless of the PPFD levels during growth, O2 evolution rates saturated around 500 μmol m(-2)s(-1). Furthermore, nocturnal increases in tissue acidity saturated at much lower PPFD. Thus, previous results were confirmed: photosynthesis saturated at low PPFD, and this epiphyte does not acclimate to different levels of PPFD.

  3. Preoperative [18F]fluorodeoxyglucose positron emission tomography standardized uptake value of neck lymph nodes predicts neck cancer control and survival rates in patients with oral cavity squamous cell carcinoma and pathologically positive lymph nodes.

    PubMed

    Liao, Chun-Ta; Chang, Joseph Tung-Chieh; Wang, Hung-Ming; Ng, Shu-Hang; Hsueh, Chuen; Lee, Li-Yu; Lin, Chih-Hung; Chen, I-How; Huang, Shiang-Fu; Cheng, Ann-Joy; Yen, Tzu-Chen

    2009-07-15

    Survival in oral cavity squamous cell carcinoma (OSCC) depends heavily on locoregional control. In this prospective study, we sought to investigate whether preoperative maximum standardized uptake value of the neck lymph nodes (SUVnodal-max) may predict prognosis in OSCC patients. A total of 120 OSCC patients with pathologically positive lymph nodes were investigated. All subjects underwent a [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) scan within 2 weeks before radical surgery and neck dissection. All patients were followed up for at least 24 months after surgery or until death. Postoperative adjuvant therapy was performed in the presence of pathologic risk factors. Optimal cutoff values of SUVnodal-max were chosen based on 5-year disease-free survival (DFS), disease-specific survival (DSS), and overall survival (OS). Independent prognosticators were identified by Cox regression analysis. The median follow-up for surviving patients was 41 months. The optimal cutoff value for SUVnodal-max was 5.7. Multivariate analyses identified the following independent predictors of poor outcome: SUVnodal-max >or=5.7 for the 5-year neck cancer control rate, distant metastatic rate, DFS, DSS, and extracapsular spread (ECS) for the 5-year DSS and OS. Among ECS patients, the presence of a SUVnodal-max >or=5.7 identified patients with the worst prognosis. A SUVnodal-max of 5.7, either alone or in combination with ECS, is an independent prognosticator for 5-year neck cancer control and survival rates in OSCC patients with pathologically positive lymph nodes.

  4. Associations of Methanotrophs With the Roots and Rhizomes of Aquatic Vegetation

    NASA Technical Reports Server (NTRS)

    King, Gary M.

    1994-01-01

    Results of an in vitro assay revealed that root-associated methane consumption was a common attribute or diverse emergent wetland macrophytes from a variety of habitats. Maximum potential uptake rates (V(sub maxp)) varied between about 1 and 10 micro mol g/ (dry weight) h, with no obvious correlation between rate and gross morphological characteristics of the plants. The V(sub maxp) corresponded to about 2 x 10(exp 18) to 2 x 10(exp 9) methanotrophs g/ (dry weight), assuming that root-associated methanotrophs have cell-specific activities comparable to those of known isolates. V(sub maxp) varied seasonally for an aquatic grass, Calamogrostis canadensis, and for the cattail, Typha latifolia, with highest rates in late summer. V(sub maxp) was well correlated with ambient temperature for C. canadensis but weakly correlated for T. Wifolia. The seasonal changes in V(sub maxp), as well as inferences from apparent half-saturation constants for methane uptake (K(sub app); generally 3 to 6 micro M), indicated that oxygen availability might be more important than methane as a rate determinant. In addition, roots incubated under anoxic conditions showed little or no postanoxia aerobic methane consumption, indicating that root-associated metbanotrophic populations might not tolerate variable oxygen availability. Hybridization of oligodeoxynucleotide probes specific for group 1 or group 2 methylotrophs also varied seasonally. The group 2-specific probe consistently hybridized to a greater extent than the group 1 probe, and the relative amount of group 2 probe hybridization to C. canadensis root extracts was positively correlated with V(sub maxp).

  5. The role of exercise testing in heart failure.

    PubMed

    Swedberg, K; Gundersen, T

    1993-01-01

    The objectives of exercise testing in congestive heart failure (CHF) may be summarized as follows: (a) detect impaired cardiac performance, (b) grade severity of cardiac failure and classify functional capability, and (c) assess effects of interventions. Several different methods are available to make these assessments, and we have to ask ourselves how well exercise testing achieves these objectives. It has to be kept in mind that the power generated by the exercising muscles is dependent on the oxygen delivery to the skeletal muscles. Oxygen uptake is the result of an integrated performance of the lungs, heart, and peripheral circulation. In patients, as well as in normal subjects, oxygen uptake is related to hemodynamic indices such as cardiac output, stroke volume, or exercise duration when a stepwise regulated maximal exercise protocol is used. However, there are major differences in the concept of a true maximum in normal subjects versus heart failure patients. Fit-normal subjects will achieve a real maximal oxygen uptake, whereas patients may stop testing before a maximum is reached because of symptoms such as dyspnea or leg fatigue. Therefore, it is better if the actual oxygen uptake can be measured. "Peak" rather than true maximal oxygen uptake has been suggested for the classification of the severity of heart failure. Peripheral factors modify the cardiac output through such factors as vascular resistance, organ function, and hormonal release. Maximal exercise will stress the cardiovascular system to a point where the weakest chain will impose a limiting effect.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. A five-year study of the impact of nitrogen addition on methane uptake in alpine grassland.

    PubMed

    Yue, Ping; Li, Kaihui; Gong, Yanming; Hu, Yukun; Mohammat, Anwar; Christie, Peter; Liu, Xuejun

    2016-08-30

    It remains unclear how nitrogen (N) deposition affects soil methane (CH4) uptake in semiarid and arid zones. An in situ field experiment was conducted from 2010 to 2014 to systematically study the effect of various N application rates (0, 10, 30, and 90 kg N ha(-1) yr(-1)) on CH4 flux in alpine grassland in the Tianshan Mountains. No significant influence of N addition on CH4 uptake was found. Initially the CH4 uptake rate increased with increasing N application rate by up to 11.5% in 2011 and then there was gradual inhibition by 2014. However, the between-year variability in CH4 uptake was very highly significant with average uptake ranging from 52.9 to 106.6 μg C m(-2) h(-1) and the rate depended largely on seasonal variability in precipitation and temperature. CH4 uptake was positively correlated with soil temperature, air temperature and to a lesser extent with precipitation, and was negatively correlated with soil moisture and NO3(-)-N content. The results indicate that between-year variability in CH4 uptake was impacted by precipitation and temperature and was not sensitive to elevated N deposition in alpine grassland.

  7. A five-year study of the impact of nitrogen addition on methane uptake in alpine grassland

    PubMed Central

    Yue, Ping; Li, Kaihui; Gong, Yanming; Hu, Yukun; Mohammat, Anwar; Christie, Peter; Liu, Xuejun

    2016-01-01

    It remains unclear how nitrogen (N) deposition affects soil methane (CH4) uptake in semiarid and arid zones. An in situ field experiment was conducted from 2010 to 2014 to systematically study the effect of various N application rates (0, 10, 30, and 90 kg N ha−1 yr−1) on CH4 flux in alpine grassland in the Tianshan Mountains. No significant influence of N addition on CH4 uptake was found. Initially the CH4 uptake rate increased with increasing N application rate by up to 11.5% in 2011 and then there was gradual inhibition by 2014. However, the between-year variability in CH4 uptake was very highly significant with average uptake ranging from 52.9 to 106.6 μg C m−2 h−1 and the rate depended largely on seasonal variability in precipitation and temperature. CH4 uptake was positively correlated with soil temperature, air temperature and to a lesser extent with precipitation, and was negatively correlated with soil moisture and NO3−-N content. The results indicate that between-year variability in CH4 uptake was impacted by precipitation and temperature and was not sensitive to elevated N deposition in alpine grassland. PMID:27571892

  8. Factors Influencing Uptake of Sylvatic Plague Vaccine Baits by Prairie Dogs.

    PubMed

    Abbott, Rachel C; Russell, Robin E; Richgels, Katherine L D; Tripp, Daniel W; Matchett, Marc R; Biggins, Dean E; Rocke, Tonie E

    2017-11-20

    Sylvatic plague vaccine (SPV) is a virally vectored bait-delivered vaccine expressing Yersinia pestis antigens that can protect prairie dogs (Cynomys spp.) from plague and has potential utility as a management tool. In a large-scale 3-year field trial, SPV-laden baits containing the biomarker rhodamine B (used to determine bait consumption) were distributed annually at a rate of approximately 100-125 baits/hectare along transects at 58 plots encompassing the geographic ranges of four species of prairie dogs. We assessed site- and individual-level factors related to bait uptake in prairie dogs to determine which were associated with bait uptake rates. Overall bait uptake for 7820 prairie dogs sampled was 70% (95% C.I. 69.9-72.0). Factors influencing bait uptake rates by prairie dogs varied by species, however, in general, heavier animals had greater bait uptake rates. Vegetation quality and day of baiting influenced this relationship for black-tailed, Gunnison's, and Utah prairie dogs. For these species, baiting later in the season, when normalized difference vegetation indices (a measure of green vegetation density) are lower, improves bait uptake by smaller animals. Consideration of these factors can aid in the development of species-specific SPV baiting strategies that maximize bait uptake and subsequent immunization of prairie dogs against plague.

  9. Factors influencing uptake of sylvatic plague vaccine baits by prairie dogs

    USGS Publications Warehouse

    Abbott, Rachel C.; Russell, Robin E.; Richgels, Katherine; Tripp, Daniel W.; Matchett, Marc R.; Biggins, Dean E.; Rocke, Tonie E.

    2017-01-01

    Sylvatic plague vaccine (SPV) is a virally vectored bait-delivered vaccine expressing Yersinia pestis antigens that can protect prairie dogs (Cynomys spp.) from plague and has potential utility as a management tool. In a large-scale 3-year field trial, SPV-laden baits containing the biomarker rhodamine B (used to determine bait consumption) were distributed annually at a rate of approximately 100–125 baits/hectare along transects at 58 plots encompassing the geographic ranges of four species of prairie dogs. We assessed site- and individual-level factors related to bait uptake in prairie dogs to determine which were associated with bait uptake rates. Overall bait uptake for 7820 prairie dogs sampled was 70% (95% C.I. 69.9–72.0). Factors influencing bait uptake rates by prairie dogs varied by species, however, in general, heavier animals had greater bait uptake rates. Vegetation quality and day of baiting influenced this relationship for black-tailed, Gunnison’s, and Utah prairie dogs. For these species, baiting later in the season, when normalized difference vegetation indices (a measure of green vegetation density) are lower, improves bait uptake by smaller animals. Consideration of these factors can aid in the development of species-specific SPV baiting strategies that maximize bait uptake and subsequent immunization of prairie dogs against plague.

  10. Liquid phase adsorptions of Rhodamine B dye onto raw and chitosan supported mesoporous adsorbents: isotherms and kinetics studies

    NASA Astrophysics Data System (ADS)

    Inyinbor, A. A.; Adekola, F. A.; Olatunji, G. A.

    2017-09-01

    Irvingia gabonensis endocarp waste was charred (DNc) and subsequently coated with chitosan (CCDNc). Physicochemical characteristics of the two adsorbents were established, while Fourier transform infrared (FTIR), Scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area methods were further employed for characterization. Efficiencies of the prepared adsorbents in the uptake of Rhodamine B (RhB) from aqueous effluent were investigated and adsorption data were tested using four isotherms and four kinetics models. The BET surface areas of the prepared adsorbent were 0.0092 and 4.99 m2/g for DNc and CCDNc, respectively, and maximum adsorption was recorded at pH between 3 and 4, respectively. While monolayer adsorption dominates the uptake of RhB onto DNc, uptake of RhB onto CCDNc was onto heterogeneous surface. The maximum monolayer adsorption capacities ( q max) obtained from the Langmuir equation are 52.90 and 217.39 mg/g for DNc and CCDNc, respectively. Pseudo second order and Elovich kinetic models well described the kinetics of the two adsorption processes. The mean sorption energy ( E) calculated from the D-R model and desorption efficiencies suggests that while the uptake of RhB onto DNc was physical in nature, for RhB-CCDNc system chemisorption dominates.

  11. Guava (Psidium guajava) leaf powder: novel adsorbent for removal of methylene blue from aqueous solutions.

    PubMed

    Ponnusami, V; Vikram, S; Srivastava, S N

    2008-03-21

    Batch sorption experiments were carried out using a novel adsorbent, guava leaf powder (GLP), for the removal of methylene blue (MB) from aqueous solutions. Potential of GLP for adsorption of MB from aqueous solution was found to be excellent. Effects of process parameters pH, adsorbent dosage, concentration, particle size and temperature were studied. Temperature-concentration interaction effect on dye uptake was studied and a quadratic model was proposed to predict dye uptake in terms of concentration, time and temperature. The model conforms closely to the experimental data. The model was used to find optimum temperature and concentration that result in maximum dye uptake. Langmuir model represent the experimental data well. Maximum dye uptake was found to be 295mg/g, indicating that GLP can be used as an excellent low-cost adsorbent. Pseudo-first-order, pseudo-second order and intraparticle diffusion models were tested. From experimental data it was found that adsorption of MB onto GLP follow pseudo second order kinetics. External diffusion and intraparticle diffusion play roles in adsorption process. Free energy of adsorption (DeltaG degrees ), enthalpy change (DeltaH degrees ) and entropy change (DeltaS degrees ) were calculated to predict the nature of adsorption. Adsorption in packed bed was also evaluated.

  12. Diagenesis in subrecent marine sediments in the Eastern Scheldt, Southwest Netherlands

    NASA Astrophysics Data System (ADS)

    Oenema, O.

    The diagenesis in fine-grained sediments from a 300 to 400-years-old Dunkirk deposit, exposed on the intertidal flat, was studied at a site in the Eastern Scheldt. A new in situ pore water sampling technique that allowed repeated sampling at exactly the same place was used to monitor the seasonal fluctuations in interstitial water composition. Concentrations of organic carbon (1.5 to 2%), nitrogen (C/N = 19), phosphorus (500 μg·g -1) and manganese (250 μg·g -1) in the subrecent anoxic sediments were low, probably because they had already been depleted during earlier stages of diagenesis. Rates of organic carbon mineralization by sulphate reduction (0.1 Mole·m -2·y -1) and rates of nutrient regeneration were 1 to 2 orders of magnitude lower than in recent fine-grained sediments elsewhere in the Eastern Scheldt. Pore water NH 4+ and ΣPO 4 concentrations were controlled by mineralization, uptake by Zostera noltii and sediment-seawater exchange. During the summer the uptake exceeded the mineralization rate at 0 to 5 cm. Mineralization and diffusional processes dominated the changes in the NH 4+ and ΣPO 4 profiles in the other seasons. Dissolved manganese and iron concentrations showed a typical subsurface maximum at 0 to 3 cm, and low (<5 μMole) concentrations below this depth. Dissolved iron concentrations were probably controlled by the solubility of iron sulphides, and manganese probably by the solubility of Mn, Ca-carbonate.

  13. Microbial activity during a coastal phytoplankton bloom on the Western Antarctic Peninsula in late summer.

    PubMed

    Alcamán-Arias, María E; Farías, Laura; Verdugo, Josefa; Alarcón-Schumacher, Tomás; Díez, Beatriz

    2018-05-01

    Phytoplankton biomass during the austral summer is influenced by freezing and melting cycles as well as oceanographic processes that enable nutrient redistribution in the West Antarctic Peninsula (WAP). Microbial functional capabilities, metagenomic and metatranscriptomic activities as well as inorganic 13C- and 15N-assimilation rates were studied in the surface waters of Chile Bay during two contrasting summer periods in 2014. Concentrations of Chlorophyll a (Chla) varied from 0.3 mg m-3 in February to a maximum of 2.5 mg m-3 in March, together with a decrease in nutrients; however, nutrients were never depleted. The microbial community composition remained similar throughout both sampling periods; however, microbial abundance and activity changed with Chla levels. An increased biomass of Bacillariophyta, Haptophyceae and Cryptophyceae was observed along with night-grazing activity of Dinophyceae and ciliates (Alveolates). During high Chla conditions, HCO3- uptake rates during daytime incubations increased 5-fold (>2516 nmol C L-1 d-1), and increased photosynthetic transcript numbers that were mainly associated with cryptophytes; meanwhile night time NO3- (>706 nmol N L-1 d-1) and NH4+ (41.7 nmol N L-1 d-1) uptake rates were 2- and 3-fold higher, respectively, due to activity from Alpha-/Gammaproteobacteria and Bacteroidetes (Flavobacteriia). Due to a projected acceleration in climate change in the WAP, this information is valuable for predicting the composition and functional changes in Antarctic microbial communities.

  14. Switching industrial production processes from complex to defined media: method development and case study using the example of Penicillium chrysogenum.

    PubMed

    Posch, Andreas E; Spadiut, Oliver; Herwig, Christoph

    2012-06-22

    Filamentous fungi are versatile cell factories and widely used for the production of antibiotics, organic acids, enzymes and other industrially relevant compounds at large scale. As a fact, industrial production processes employing filamentous fungi are commonly based on complex raw materials. However, considerable lot-to-lot variability of complex media ingredients not only demands for exhaustive incoming components inspection and quality control, but unavoidably affects process stability and performance. Thus, switching bioprocesses from complex to defined media is highly desirable. This study presents a strategy for strain characterization of filamentous fungi on partly complex media using redundant mass balancing techniques. Applying the suggested method, interdependencies between specific biomass and side-product formation rates, production of fructooligosaccharides, specific complex media component uptake rates and fungal strains were revealed. A 2-fold increase of the overall penicillin space time yield and a 3-fold increase in the maximum specific penicillin formation rate were reached in defined media compared to complex media. The newly developed methodology enabled fast characterization of two different industrial Penicillium chrysogenum candidate strains on complex media based on specific complex media component uptake kinetics and identification of the most promising strain for switching the process from complex to defined conditions. Characterization at different complex/defined media ratios using only a limited number of analytical methods allowed maximizing the overall industrial objectives of increasing both, method throughput and the generation of scientific process understanding.

  15. Switching industrial production processes from complex to defined media: method development and case study using the example of Penicillium chrysogenum

    PubMed Central

    2012-01-01

    Background Filamentous fungi are versatile cell factories and widely used for the production of antibiotics, organic acids, enzymes and other industrially relevant compounds at large scale. As a fact, industrial production processes employing filamentous fungi are commonly based on complex raw materials. However, considerable lot-to-lot variability of complex media ingredients not only demands for exhaustive incoming components inspection and quality control, but unavoidably affects process stability and performance. Thus, switching bioprocesses from complex to defined media is highly desirable. Results This study presents a strategy for strain characterization of filamentous fungi on partly complex media using redundant mass balancing techniques. Applying the suggested method, interdependencies between specific biomass and side-product formation rates, production of fructooligosaccharides, specific complex media component uptake rates and fungal strains were revealed. A 2-fold increase of the overall penicillin space time yield and a 3-fold increase in the maximum specific penicillin formation rate were reached in defined media compared to complex media. Conclusions The newly developed methodology enabled fast characterization of two different industrial Penicillium chrysogenum candidate strains on complex media based on specific complex media component uptake kinetics and identification of the most promising strain for switching the process from complex to defined conditions. Characterization at different complex/defined media ratios using only a limited number of analytical methods allowed maximizing the overall industrial objectives of increasing both, method throughput and the generation of scientific process understanding. PMID:22727013

  16. Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings.

    PubMed

    Chen, Shuangchen; Zhao, Hongjiao; Zou, Chenchen; Li, Yongsheng; Chen, Yifei; Wang, Zhonghong; Jiang, Yan; Liu, Airong; Zhao, Puyan; Wang, Mengmeng; Ahammed, Golam J

    2017-01-01

    Mycorrhizal inoculation stimulates growth, photosynthesis and nutrient uptake in a wide range of host plants. However, the ultimate effects of arbuscular mycorrhyzal (AM) symbiosis vary with the plants and fungal species involved in the association. Therefore, identification of the appropriate combinations of AM fungi (AMF) that interact synergistically to improve their benefits is of high significance. Here, three AM fungal compositions namely VT ( Claroideoglomus sp., Funneliformis sp., Diversispora sp., Glomus sp., and Rhizophagus sp.) and BF ( Glomus intraradices , G. microageregatum BEG and G. Claroideum BEG 210), and Funneliformis mosseae (Fm) were investigated with respect to the growth, gas exchange parameters, enzymes activities in Calvin cycles and related gene expression in cucumber seedlings. The results showed that VT, BF and Fm could successfully colonize cucumber root to a different degree with the colonization rates 82.38, 74.65, and 70.32% at 46 days post inoculation, respectively. The plant height, stem diameter, dry weight, root to shoot ratio of cucumber seedlings inoculated with AMF increased significantly compared with the non-inoculated control. Moreover, AMF colonization greatly increased the root activity, chlorophyll content, net photosynthetic rate, light saturated rate of the CO 2 assimilation ( A sat), maximum carboxylation rate ( V cmax ) and maximum ribulose-1,5-bis-phosphate (RuBP) regeneration rate ( J max), which were increased by 52.81, 30.75, 58.76, 47.00, 69.15, and 65.53% when inoculated with VT, respectively. The activities of some key enzymes such RuBP carboxylase/oxygenase (RuBisCO), D-fructose-1,6-bisphosphatase (FBPase), D-fructose-6-phosphatase (F6P) and ribulose-5-phosphate kinase (Ru5PK), and related gene expression involved in the Calvin cycle including RCA , FBPase , FBPA , SBPase , rbcS and rbcL were upregulated by AMF colonization. AMF inoculation also improved macro- and micro nutrient contents such as N, P, K, S, Ca, Cu, Fe, Mn, Mg, and Zn in roots. Further analysis revealed that inoculation with VT had relatively better effect on growth of cucumber seedling followed by BF and Fm, indicating that AMF composition consisting of distant AMF species may have a better effect than a single or closely related AMF spp. This study advances the understanding of plant responses to different AM fungi toward development of strategies on AMF-promoted vegetable production.

  17. Lacrimal gland uptake of (67)Ga-gallium citrate correlates with biopsy results in patients with suspected sarcoidosis.

    PubMed

    Tannen, Bradford L; Kolomeyer, Anton M; Turbin, Roger E; Frohman, Larry; Langer, Paul D; Oh, Cheongeun; Ghesani, Nasrin V; Zuckier, Lionel S; Chu, David S

    2014-02-01

    To investigate whether lacrimal gland uptake on (67)Ga-gallium citrate scintigraphy correlates with histopathologic evidence of sarcoidosis. A retrospective, pilot study of 31 patients with suspected sarcoidosis who underwent gallium scintigraphy and lacrimal gland biopsy. Lacrimal gland gallium uptake was assessed by subjective visual scoring (SVS) and lacrimal uptake ratio (LUR). Eleven (36%) patients had lacrimal gland biopsies containing noncaseating granulomas. A statistically significant correlation was found between lacrimal gland gallium uptake and biopsy positivity using SVS (p = 0.03) or LUR (p = 0.01). Using SVS, biopsy positivity rate increased from 0 to 50% in patients with mild to intense uptake. Using LUR, biopsy positivity rate increased linearly as the ratio increased from 13% (LUR < 4) to 100% (LUR > 8). Lacrimal biopsy positivity rate significantly correlated with gallium uptake on scintigraphy. Both SVS and LUR methods appear to correlate with histologic results and may potentially aid in patient selection for biopsy.

  18. Pesticide-contaminated feeds in integrated grass carp aquaculture: toxicology and bioaccumulation.

    PubMed

    Pucher, J; Gut, T; Mayrhofer, R; El-Matbouli, M; Viet, P H; Ngoc, N T; Lamers, M; Streck, T; Focken, U

    2014-02-19

    Effects of dissolved pesticides on fish are widely described, but little is known about effects of pesticide-contaminated feeds taken up orally by fish. In integrated farms, pesticides used on crops may affect grass carp that feed on plants from these fields. In northern Vietnam, grass carp suffer seasonal mass mortalities which may be caused by pesticide-contaminated plants. To test effects of pesticide-contaminated feeds on health and bioaccumulation in grass carp, a net-cage trial was conducted with 5 differently contaminated grasses. Grass was spiked with 2 levels of trichlorfon/fenitrothion and fenobucarb. Unspiked grass was used as a control. Fish were fed at a daily rate of 20% of body mass for 10 d. The concentrations of fenitrothion and fenobucarb in pond water increased over time. Effects on fish mortality were not found. Fenobucarb in feed showed the strongest effects on fish by lowering feed uptake, deforming the liver, increasing blood glucose and reducing cholinesterase activity in blood serum, depending on feed uptake. Fenobucarb showed increased levels in flesh in all treatments, suggesting bio-concentration. Trichlorfon and fenitrothion did not significantly affect feed uptake but showed concentration-dependent reduction of cholinesterase activity and liver changes. Fenitrothion showed bioaccumulation in flesh which was dependant on feed uptake, whereas trichlorfon was only detected in very low concentrations in all treatments. Pesticide levels were all detected below the maximum residue levels in food. The pesticide-contaminated feeds tested did not cause mortality in grass carp but were associated with negative physiological responses and may increase susceptibility to diseases.

  19. Relationship between pretreatment FDG-PET and diffusion-weighted MRI biomarkers in diffuse large B-cell lymphoma

    PubMed Central

    de Jong, Antoinette; Kwee, Thomas C; de Klerk, John MH; Adam, Judit A; de Keizer, Bart; Fijnheer, Rob; Kersten, Marie José; Ludwig, Inge; Jauw, Yvonne WS; Zijlstra, Josée M; den Bos, Indra C Pieters - Van; Stoker, Jaap; Hoekstra, Otto S; Nievelstein, Rutger AJ

    2014-01-01

    The purpose of this study was to determine the correlation between the 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) standardized uptake value (SUV) and the diffusion-weighted magnetic resonance imaging (MRI) apparent diffusion coefficient (ADC) in newly diagnosed diffuse large B-cell lymphoma (DLBCL). Pretreatment FDG-PET and diffusion-weighted MRI of 21 patients with histologically proven DLBCL were prospectively analyzed. In each patient, maximum, mean and peak standardized uptake value (SUV) was measured in the lesion with visually highest FDG uptake and in the largest lesion. Mean ADC (ADCmean, calculated with b-values of 0 and 1000 s/mm2) was measured in the same lesions. Correlations between FDG-PET metrics (SUVmax, SUVmean, SUVpeak) and ADCmean were assessed using Pearson’s correlation coefficients. In the lesions with visually highest FDG uptake, no significant correlations were found between the SUVmax, SUVmean, SUVpeak and the ADCmean (P=0.498, P=0.609 and P=0.595, respectively). In the largest lesions, there were no significant correlations either between the SUVmax, SUVmean, SUVpeak and the ADCmean (P=0.992, P=0.843 and P=0.894, respectively). The results of this study indicate that the glycolytic rate as measured by FDG-PET and changes in water compartmentalization and water diffusion as measured by the ADC are independent biological phenomena in newly diagnosed DLBCL. Further studies are warranted to assess the complementary roles of these different imaging biomarkers in the evaluation and follow-up of DLBCL. PMID:24795837

  20. Behavioral Intervention, Exercise, and Nutrition Education to Improve Health and Fitness (BENEfit) in Adolescents With Mobility Impairment Due to Spinal Cord Dysfunction

    PubMed Central

    Liusuwan, Rungsinee Amanda; Widman, Lana M; Abresch, Richard Ted; Johnson, Allan J; McDonald, Craig M

    2007-01-01

    Background/Objective: Determine the effects of a nutrition education and exercise intervention on the health and fitness of adolescents with mobility impairment due to spinal cord dysfunction from myelomeningocele and spinal cord injury. Subjects participated in a 16-week intervention consisting of a behavioral approach to lifestyle change, exercise, and nutrition education to improve fitness (BENEfit) program. Participants were given a schedule of aerobic and strengthening exercises and attended nutrition education and behavior modification sessions every other week along with their parent(s). Subjects: Twenty adolescents (aged 11–18 years, mean 15.4 ± 2.2 years) with spinal cord dysfunction. Methods: Subjects were tested immediately prior to starting and upon completion of the program. Aerobic fitness was measured using a ramp protocol with an arm ergometer. Heart rate and oxygen uptake were measured. Values at anaerobic threshold and maximum oxygen uptake were recorded. Peak isokinetic arm and shoulder strength were determined with a dynamometer. Body composition was estimated with dual-energy x-ray absorptiometry. Serum chemistry included measures of cholesterol, high-density lipoprotein, low-density lipoprotein, and triglycerides. Results: Fourteen individuals completed all testing sessions. There was no significant overall change in weight, body mass index, body mass index z-scores, or serum chemistry. Overall, there was a significant increase in whole body lean tissue without a concomitant increase in whole body fat. Fitness measures revealed a significant increase in maximum power output, work efficiency as measured by the amount of power output produced aerobically, and resting oxygen uptake. Strength measurements revealed a significant increase in shoulder extension strength and a trend towards increased shoulder flexion strength. There were no significant changes in high-density lipoprotein, low-density lipoprotein, total cholesterol, or triglycerides. Conclusions: The BENEfit program shows promise as a method for improving the health and fitness of adolescents with mobility impairments who are at high risk for obesity and obesity-related health conditions. PMID:17874697

  1. ( sup 3 H)Dopamine uptake by platelet storage granules in schizophrenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabey, J.M.; Graff, E.; Oberman, Z.

    1992-01-01

    ({sup 3}H)Dopamine (DA) uptake by platelet storage granules was determined in 26 schizophrenic male patients, paranoid type (14 acute stage; 12 in remission) and 20 age-matched, normal controls. maximum velocity (Vmax) of DA uptake was significantly higher in acute patients, than patients in remission or controls (p>0.05). The apparent Michaelis constant (kM) of DA uptake in acute patients was also significantly different from chronic patients a substantial diminution of DA uptake, while haloperidol produced a substantial diminution of DA uptake, while haloperidol (10{sup {minus}4}, 10{sup {minus}5} M) did not affect the assay. Considering that a DA disequilibrium in schizophrenia maymore » be expressed not only in the brain, but also in the periphery and that an increased amount of DA accumulated in the vesicles, implies that an increased quantity of catecholamine is available for release, our findings suggest additional evidence for the role of DA overactivity in the pathophysiology of this disorder.« less

  2. Nano modification of NZVI with an aquatic plant Azolla filiculoides to remove Pb(II) and Hg(II) from water: Aging time and mechanism study.

    PubMed

    Arshadi, M; Abdolmaleki, M K; Mousavinia, F; Foroughifard, S; Karimzadeh, A

    2017-01-15

    This paper reports the preparation and stabilization of nano zero valent iron (NZVI) on a modified aquatic plant, Azolla filiculoides, and investigates its potential for the adsorption/reduction of Pb(II) and Hg(II) ions from aqueous media even after six months of storage in the lab condition. XRD, TEM and zeta potential results demonstrated that the Azolla-NaOH could be a good stabilizer of aged NZVI (six months) and the green support suppressed the oxidation and aggregation of immobilized NZVI. Kinetic and equilibrium models for lead and mercury ions uptake were developed by considering the effect of the initial Pb(II) and Hg(II) concentrations, contact time, adsorbent dosage, initial pH and effect of temperature. The contact time to obtain equilibrium for maximum uptake by Azolla-OH-NZVI was 20min. The removal of toxic metal ions has been monitored in terms of pseudo-first- and -second-order kinetics, and the Freundlich and Langmuir isotherms models have also been utilized to the equilibrium uptake results. The uptake kinetics followed the mechanism of the pseudo-second-order equation for all systems studied, confirming chemical sorption as the rate-limiting step of adsorption mechanisms and not involving a mass transfer in solution. The thermodynamic results confirmed that the uptake of Pb(II) and Hg(II) ions were feasible, spontaneous and endothermic at 25-80°C. XRD and zeta potential data displayed the existence of Pb(0) and Hg(0) on the Azolla-OH-NZVI surface. The nanobioadsorbent revealed high recyclability due to its reasonable uptake efficiency after 7th adsorption-desorption cycles. The proposed nano biocomposite could also be utilized to uptake Pb(II) and Hg(II) ions from the real water (Anzali lagoon water). However, coated NZVI with Azolla filiculoides as a green and environmentally friendly support suppressed rapid oxidation and aggregation of the immobilized NZVI, therefore vastly enhancing the probability of environmental transport and reducing the sedimentation and potential for toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Light-enhanced dark respiration in leaves, isolated cells and protoplasts of various types of C4 plants.

    PubMed

    Parys, Eugeniusz; Jastrzebski, Hubert

    2006-04-01

    The rate of respiratory CO2 evolution from the leaves of Zea mays, Panicum miliaceum, and Panicum maximum, representing NADP-ME, NAD-ME, and PEP-CK types of C4 plants, respectively, was increased by approximately two to four times after a period of photosynthesis. This light-enhanced dark respiration (LEDR) was a function of net photosynthetic rate specific to plant species, and was depressed by 1% O2. When malate, aspartate, oxaloacetate or glycine solution at 50 mM concentration was introduced into the leaves instead of water, the rate of LEDR was enhanced, far less in Z. mays (by 10-25%) than in P. miliaceum (by 25-35%) or P. maximum (by 40-75%). The enhancement of LEDR under glycine was relatively stable over a period of 1 h, whereas the remaining metabolites caused its decrease following a transient increase. The metabolites reduced the net photosynthesis rate in the two Panicum species, but not in Z. mays, where this process was stimulated by glycine. The bundle sheath cells from P. miliaceum exhibited a higher rate of LEDR than those of Z. mays and P. maximum. Glycine had no effect on the respiration rate of the cells, but malate increased in cells of Z. mays and P. miliaceum by about 50% and 30%, respectively. With the exception of aspartate, which stimulated both the O2 evolution and O2 uptake in P. maximum, the remaining metabolites reduced photosynthetic O2 evolution from bundle sheath cells in Panicun species. The net O2 exchange in illuminated cells of Z. mays did not respond to CO2 or metabolites. Leaf mesophyll protoplasts of Z. mays and P. miliaceum, and bundle sheath protoplasts of Z. mays, which are unable to fix CO2 photosynthetically, also produced LEDR, but the mesophyll protoplasts, compared with bundle sheath protoplasts, required twice the time of illumination to obtain the maximal rate. The results suggest that the substrates for LEDR in C4 plants are generated during a period of illumination not only via the Calvin cycle reactions, but also by the conversion of endogenous compounds present in leaf cells. The stimulation of LEDR under glycine is discussed in relation to its direct or indirect effect on mitochondrial respiration.

  4. Novel biosynthesized silver nanoparticles from cobweb as adsorbent for Rhodamine B: equilibrium isotherm, kinetic and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Azeez, Luqmon; Lateef, Agbaje; Adebisi, Segun A.; Oyedeji, Abdulrasaq O.

    2018-03-01

    This study has investigated the adsorption of Rhodamine B (Rh-B) dye on novel biosynthesized silver nanoparticles (AgNPs) from cobweb. The effects of contact time, initial pH, initial dye concentration, adsorbent dosage and temperature were studied on the removal of Rh-B and they significantly affected its uptake. Adsorption isotherms were evaluated using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The adsorption process was best described by Langmuir isotherm with R 2 of 0.9901, indicating monolayer adsorption. The maximum adsorption capacity ( q max) of 59.85 mg/g showed that it has relatively high performance, while adsorption intensity showed a favourable adsorption process. Pseudo-second-order kinetics fitted best the rate of adsorption and intra-particle diffusion revealed both surface adsorption and intra-particle diffusion-controlled adsorption process. Negative values of thermodynamic parameters (Δ H°, Δ S° and Δ G°) indicated an exothermic and spontaneous adsorption process. The mean sorption energy ( E) and activation energy ( E a) suggested the uptake of Rh-B onto AgNPs was chemical in nature (chemosorption).

  5. Sorption of lead from aqueous solution by chemically modified carbon adsorbents.

    PubMed

    Nadeem, Muhammad; Mahmood, A; Shahid, S A; Shah, S S; Khalid, A M; McKay, G

    2006-12-01

    An indigenously prepared, steam activated and chemically modified carbon from husk and pods of Moringa oleifera (M. oleifera), an agricultural waste, was comparatively examined as an adsorbent for the removal of lead from aqueous solutions. Studies were conducted as a function of contact time, initial metal concentration, dose of adsorbent, agitation speed, particle size and pH. Maximum uptake capacities were found to be, 98.89, 96.58, 91.8, 88.63, 79.43% for cetyltrimethyl ammonium bromide (CTAB), phosphoric, sulfuric, hydrochloric acid treated and untreated carbon adsorbents, respectively. Bangham, pseudo-first- and second-order, intra-particle diffusion equations were implemented to express the sorption mechanism by utilized adsorbents. Adsorption rate of lead ions was found to be considerably faster for chemically modified adsorbents than unmodified. The results of adsorption were fitted to both the Langmuir and Freundlich models. Satisfactory agreement between the metal uptake capacities by the adsorbents at different time intervals was expressed by the correlation coefficient (R(2)). The Langmuir model represented the sorption process better than the Freundlich one, with R(2) values ranging from 0.994 to 0.998.

  6. Effects of different culture media on biodegradation of triclosan by Rhodotorula mucilaginosa and Penicillium sp.

    PubMed

    Ertit Taştan, Burcu; Özdemir, Caner; Tekinay, Turgay

    Triclosan is an antimicrobial agent and a persistent pollutant. The biodegradation of triclosan is dependent on many variables including the biodegradation organism and the environmental conditions. Here, we evaluated the triclosan degradation potential of two fungi strains, Rhodotorula mucilaginosa and Penicillium sp., and the rate of its turnover to 2,4-dichlorophenol (2,4-DCP). Both of these strains showed less susceptibility to triclosan when grown in minimal salt medium. In order to further evaluate the effects of environmental conditions on triclosan degradation, three different culture conditions including original thermal power plant wastewater, T6 nutrimedia and ammonium mineral salts medium were used. The maximum triclosan degradation yield was 48% for R. mucilaginosa and 82% for Penicillium sp. at 2.7 mg/L triclosan concentration. Biodegradation experiments revealed that Penicillium sp. was more tolerant to triclosan. Scanning electron microscopy micrographs also showed the morphological changes of fungus when cells were treated with triclosan. Overall, these fungi strains could be used as effective microorganisms in active uptake (degradation) and passive uptake (sorption) of triclosan and their efficiency can be increased by optimizing the culture conditions.

  7. Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal.

    PubMed

    Song, Jooyoung; Oh, Hyuntaek; Kong, Hyeyoung; Jang, Jyongsik

    2011-03-15

    Polyrhodanine was immobilized onto the inner surface of anodic aluminum oxide (AAO) membrane via vapor deposition polymerization method. The polyrhodanine modified membrane was applied to remove heavy metal ions from aqueous solution because polyrhodanine could be coordinated with specific metal ions. Several parameters such as initial metal concentration, contact time and metal species were evaluated systematically for uptake efficiencies of the fabricated membrane under continuous flow condition. Adsorption isotherms of Hg(II) ion on the AAO-polyrhodanine membrane were analyzed with Langmuir and Freundlich isotherm models. The adsorption rate of Hg(II) ion on the membrane was obeyed by a pseudo-second order equation, indicating the chemical adsorption. The maximum removal capacity of Hg(II) ion onto the fabricated membrane was measured to be 4.2 mmol/g polymer. The AAO-polyrhodanine membrane had also remarkable uptake performance toward Ag(I) and Pb(II) ions. Furthermore, the polyrhodanine modified membrane could be recycled after recovery process. These results demonstrated that the polyrhodanine modified AAO membrane provided potential applications for removing the hazardous heavy metal ions from wastewater. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. A poly(acrylonitrile)-functionalized porous aromatic framework synthesized by atom-transfer radical polymerization for the extraction of uranium from seawater

    DOE PAGES

    Yue, Yanfeng; Zhang, Chenxi; Tang, Qing; ...

    2015-10-30

    In order to ensure a sustainable reserve of fuel for nuclear power generation, tremendous research efforts have been devoted to developing advanced sorbent materials for extracting uranium from seawater. In this work, a porous aromatic framework (PAF) was surface-functionalized with poly(acrylonitrile) through atom-transfer radical polymerization (ATRP). Batches of this adsorbent were conditioned with potassium hydroxide (KOH) at room temperature or 80 °C prior to contact with a uranium-spiked seawater simulant, with minimal differences in uptake observed as a function of conditioning temperature. A maximum capacity of 4.81 g-U/kg-ads was obtained following 42 days contact with uranium-spiked filtered environmental seawater, whichmore » demonstrates a comparable adsorption rate. A kinetic investigation revealed extremely rapid uranyl uptake, with more than 80% saturation reached within 14 days. Furthermore, relying on the semiordered structure of the PAF adsorbent, density functional theory (DFT) calculations reveal cooperative interactions between multiple adsorbent groups yield a strong driving force for uranium binding.« less

  9. MRI of perfluorocarbon emulsion kinetics in rodent mammary tumours

    NASA Astrophysics Data System (ADS)

    Fan, Xiaobing; River, Jonathan N.; Muresan, Adrian S.; Popescu, Carmen; Zamora, Marta; Culp, Rita M.; Karczmar, Gregory S.

    2006-01-01

    Perfluorocarbon (PFC) emulsions can be imaged directly by fluorine-19 MRI. We developed an optimized protocol for preparing PFC droplets of uniform size, evaluated use of the resulting droplets as blood pool contrast agents, studied their uptake by tumours and determined the spatial resolution with which they can be imaged at 4.7 T. Perfluorocarbon droplets of three different average sizes (324, 293 and 225 nm) were prepared using a microemulsifier. Images of PFC droplets with good signal-to-noise ratio were acquired with 625 µm in-plane resolution, 3 mm slice thickness and acquisition time of ~4.5 min per image. Kinetics of washout were determined using a simple mathematical model. The maximum uptake of the PFC droplets was three times greater at the tumour rim than in muscle, but the washout rate was two to three times slower in the tumour. The results are consistent with leakage of the droplets into the tumour extravascular space due to the hyper-permeability of tumour capillaries. PFC droplets may allow practical and quantitative measurements of blood volume and capillary permeability in tumours with reasonable spatial resolution.

  10. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants.

    PubMed

    Ahmad, Munir; Usman, Adel R A; Al-Faraj, Abdullah S; Ahmad, Mahtab; Sallam, Abdelazeem; Al-Wabel, Mohammad I

    2018-03-01

    Biochar (BC) was produced by pyrolyzing the date palm leaf waste at 600 °C and then loaded with phosphorus (P) via sorption process. Greenhouse pot experiment was conducted to investigate the application effects of BC and P-loaded biochar (BCP) on growth and availability of P and heavy metals to maize (Zea mays L.) plants grown in contaminated mining soil. The treatments consisted of BC and BCP (at application rates of 5, 10, 20, and 30 g kg -1 of soil), recommended NK and NPK, and a control (no amendment). Sorption experiment showed that Langmuir predicted maximum P sorption capacity of BC was 13.71 mg g -1 . Applying BCP increased the soil available P, while BC and BCP significantly decreased the soil labile heavy metals compared to control. Likewise, heavy metals in exchangeable and reducible fractions were transformed to more stable fraction with BC and BCP applications. The highest application rate of BCP (3%) was most effective treatment in enhancing plant growth parameters (shoot and root lengths and dry matter) and uptake of P and heavy metals by 2-3 folds. However, based on metal uptake and phytoextraction indices, total heavy metals extraction by maize plants was very small for practical application. It could be concluded that using P-loaded biochar as a soil additive may be considered a promising tool to immobilize heavy metals in contaminated mining areas, while positive effects on the biomass growth of plants may assist the stabilization of contaminated areas affected by wind and water erosion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer.

    PubMed

    Miles, Kenneth A; Ganeshan, Balaji; Rodriguez-Justo, Manuel; Goh, Vicky J; Ziauddin, Zia; Engledow, Alec; Meagher, Marie; Endozo, Raymondo; Taylor, Stuart A; Halligan, Stephen; Ell, Peter J; Groves, Ashley M

    2014-03-01

    This study explores the potential for multifunctional imaging to provide a signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) gene mutations in colorectal cancer. This prospective study approved by the institutional review board comprised 33 patients undergoing PET/CT before surgery for proven primary colorectal cancer. Tumor tissue was examined histologically for presence of the KRAS mutations and for expression of hypoxia-inducible factor-1 (HIF-1) and minichromosome maintenance protein 2 (mcm2). The following imaging parameters were derived for each tumor: (18)F-FDG uptake ((18)F-FDG maximum standardized uptake value [SUVmax]), CT texture (expressed as mean of positive pixels [MPP]), and blood flow measured by dynamic contrast-enhanced CT. A recursive decision tree was developed in which the imaging investigations were applied sequentially to identify tumors with KRAS mutations. Monte Carlo analysis provided mean values and 95% confidence intervals for sensitivity, specificity, and accuracy. The final decision tree comprised 4 decision nodes and 5 terminal nodes, 2 of which identified KRAS mutants. The true-positive rate, false-positive rate, and accuracy (95% confidence intervals) of the decision tree were 82.4% (63.9%-93.9%), 0% (0%-10.4%), and 90.1% (79.2%-96.0%), respectively. KRAS mutants with high (18)F-FDG SUVmax and low MPP showed greater frequency of HIF-1 expression (P = 0.032). KRAS mutants with low (18)F-FDG SUV(max), high MPP, and high blood flow expressed mcm2 (P = 0.036). Multifunctional imaging with PET/CT and recursive decision-tree analysis to combine measurements of tumor (18)F-FDG uptake, CT texture, and perfusion has the potential to identify imaging signatures for colorectal cancers with KRAS mutations exhibiting hypoxic or proliferative phenotypes.

  12. [Effects of irrigation using dairy effluent on grain yield, phosphorus utilization and distribu- tion in soil profile in winter wheat-summer maize rotation system].

    PubMed

    Du, Hui-ying; Feng, Jie; Guo, Hai-gang; Wang, Feng; Zhang, Ke-qiang

    2015-08-01

    Field experiments of winter wheat-summer maize rotation were conducted in North China Plain irrigation area to explore the effects of wheat season irrigation with dairy effluent on grain yield, phosphorus uptake, accumulative phosphorus usage efficiency and phosphorus accumulation in soil. The results showed that the irrigation with dairy effluent significantly improved the yields of winter wheat and summer maize. With the increasing of P2O5 carried by dairy effluent into soil, winter wheat yield increased at first and then decreased. When the P2O5 increased 137 kg · hm(-2), winter wheat yield increased to the maximum (7646.4 kg · hm(-2)) and the phosphorus utilization rate was the highest (24.8%). But excessive phosphorus decreased the winter wheat yield and phosphorus utilization efficiency. Summer maize yield and phosphorus uptake increased with the increase of P2O5 carried by dairy effluent. The summer maize yield increased by 2222.4-2628.6 kg · hm(-2) and the phosphorus uptake increased by 13.9-21.1 kg · hm(-2) in contrast to the control (CK). Under conventional phosphorus fertilization at 88 kg · hm(-2), and the summer maize yield increased by 2235.0 kg · hm(-2) compared with CK. As the time of irrigation with dairy effluent increasing, the grain yield increased more significantly. The cumulative phosphorus utilization in this rotation system increased year by year. After six seasons of crop harvest, the cumulative phosphorus utilization rate increased into 40.0%-47.7%. Under the experimental condition, two times of irrigation with the dairy effluents in the winter wheat-summer maize rotation system was the best operating mode.

  13. Production and Isolation of Amphibactin siderophores in Iron-stressed cultures of the marine bacteria Vibrio spp.

    NASA Astrophysics Data System (ADS)

    McLean, C.; Boiteau, R.; Bundy, R.; Gauglitz, J.; Repeta, D.

    2016-02-01

    Iron is an important micronutrient for marine microbes. Low concentrations of dissolved iron limit production in much of the ocean, putting pressure on microbial communities to develop efficient iron acquisition strategies. One such strategy is the production of siderophores, high affinity iron binding ligands, to facilitate iron uptake to meet their physiological iron quota. Recently, our lab has shown that amphibactins, siderophores with lipid side chains, are present in iron-deficient regions of the ocean. However, little is known about which organisms can utilize amphibactin bound iron. Here we describe a method to isolate amphibactins from laboratory cultures in order to identify the conditional stability constants and uptake rates of purified amphibactin compounds. We searched the National Center for Biotechnology Information database to identify microbial genomes containing homologous to the known amphibactin biosynthesis genes. Several of these strains were screened with high performance reverse-phase liquid chromatography electrospray ionization mass spectrometry (HPLC-ESIMS) to confirm amphibactin production. We then optimized amphibactin production for the strain Vibrio cyclitrophicus 1F53 under different shaking speeds and iron concentrations, using a chrome azurol S (CAS) assay to screen for siderophore abundance. Maximum production was found after 38 hours of shaking at 150-rpm, and with the addition of 10nM of desferrioxamine B to induce iron limitation. Amphibactins were extracted from the media by solid phase extraction and purified by reverse phase HPLC. The conditional stability constants for several amphibactins were then measured in seawater using competitive ligand exchange absorptive cathodic stripping voltammetry with salicylaldoxime as the added ligand. Future work will determine the uptake rates of these compounds by natural communities of marine bacteria, and give insight on the bioavailability of amphibactins in the marine environment.

  14. ( sup 14 C)-Sucrose uptake by guard cell protoplasts of pisum sativum, argenteum mutant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrig, K.; Raschke, K.

    1991-05-01

    Guard cells rely on import for their supply with reduced carbon. The authors tested by silicone oil centrifugation the ability of guard cell protoplasts to accumulated ({sup 14}C)-sucrose. Uptake rates were corrected after measurement of {sup 14}C-sorbitol and {sup 3}H{sub 2}O spaces. Sucrose uptake followed biphasic kinetics, with a high-affinity component below 1 mM external sucrose (apparent K{sub m} 0.8 mM at 25C) and a low-affinity nonsaturable component above. Uptake depended on pH (optimum at pH 5.0). Variations in the concentrations of external KCl, CCCP, and valinomycin indicated that about one-half of the sucrose uptake rate could be related tomore » an electrochemical gradient across the plasmalemma. Total uptake rates measured at 5 mM external sucrose seem to be sufficient to replenish emptied plastids with starch within a few hours.« less

  15. Comparison of phosphate uptake rates by the smallest plastidic and aplastidic protists in the North Atlantic subtropical gyre.

    PubMed

    Hartmann, Manuela; Grob, Carolina; Scanlan, David J; Martin, Adrian P; Burkill, Peter H; Zubkov, Mikhail V

    2011-11-01

    The smallest phototrophic protists (<3 μm) are important primary producers in oligotrophic subtropical gyres - the Earth's largest ecosystems. In order to elucidate how these protists meet their inorganic nutrient requirements, we compared the phosphate uptake rates of plastidic and aplastidic protists in the phosphate-depleted subtropical and tropical North Atlantic (4-29°N) using a combination of radiotracers and flow cytometric sorting on two Atlantic Meridional Transect cruises. Plastidic protists were divided into two groups according to their size (<2 and 2-3 μm). Both groups of plastidic protists showed higher phosphate uptake rates per cell than the aplastidic protists. Although the phosphate uptake rates of protist cells were on average seven times (P<0.001) higher than those of bacterioplankton, the biomass-specific phosphate uptake rates of protists were one fourth to one twentieth of an average bacterioplankton cell. The unsustainably low biomass-specific phosphate uptake by both plastidic and aplastidic protists suggests the existence of a common alternative means of phosphorus acquisition - predation on phosphorus-rich bacterioplankton cells. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Physical and Physiological Characteristics of Judo Athletes: An Update

    PubMed Central

    Torres-Luque, Gema; Hernández-García, Raquel; Escobar-Molina, Raquel; Garatachea, Nuria; Nikolaidis, Pantelis T.

    2016-01-01

    Judo competition is characterized structurally by weight category, which raises the importance of physiological control training in judo. The aim of the present review was to examine scientific papers on the physiological profile of the judokas, maintenance or loss of weight, framing issues, such as anthropometric parameters (body fat percentage), heart rate responses to training and combat, maximal oxygen uptake, hematological, biological and hormones indicators. The values shown in this review should be used as a reference for the evaluation of physical fitness and the effectiveness of training programs. Hence, this information is expected to contribute to the development of optimal training interventions aiming to achieve maximum athletic performance and to maintain the health of judokas.

  17. Effect of cysteine and humic acids on bioavailability of Ag from Ag nanoparticles to a freshwater snail

    USGS Publications Warehouse

    Luoma, Samuel N.; Tasha Stoiber,; Croteau, Marie-Noele; Isabelle Romer,; Ruth Merrifeild,; Lead, Jamie

    2016-01-01

    Metal-based engineered nanoparticles (NPs) will undergo transformations that will affect their bioavailability, toxicity and ecological risk when released to the environment, including interactions with dissolved organic material. The purpose of this paper is to determine how interactions with two different types of organic material affect the bioavailability of silver nanoparticles (AgNPs). Silver uptake rates by the pond snail Lymnaea stagnalis were determined after exposure to 25 nmol l-1 of Ag as PVP AgNPs, PEG AgNPs or AgNO3, in the presence of either Suwannee River humic acid or cysteine, a high-affinity thiol-rich organic ligand. Total uptake rate of Ag from the two NPs was either increased or not strongly affected in the presence of 1 – 10 mg 1-1 humic acid. Humic substances contain relatively few strong ligands for Ag explaining their limited effects on Ag uptake rate. In contrast, Ag uptake rate was substantially reduced by cysteine. Three components of uptake from the AgNPs were quantified in the presence of cysteine using a biodynamic modeling approach: uptake of dissolved Ag released by the AgNPs, uptake of a polymer or large (>3kD) Ag-cysteine complex and uptake of the nanoparticle itself. Addition of 1:1 Ag:cysteine reduced concentrations of dissolved Ag, which contributed to, but did not fully explain the reductions in uptake. A bioavailable Ag-cysteine complex (> 3kD) appeared to be the dominant avenue of uptake from both PVP AgNPs and PEG AgNPs in the presence of cysteine. Quantifying the different avenues of uptake sets the stage for studies to assess toxicity unique to NPs.

  18. Ecophysiology of gelatinous Nostoc colonies: unprecedented slow growth and survival in resource-poor and harsh environments.

    PubMed

    Sand-Jensen, Kaj

    2014-07-01

    The cyanobacterial genus Nostoc includes several species forming centimetre-large gelatinous colonies in nutrient-poor freshwaters and harsh semi-terrestrial environments with extended drought or freezing. These Nostoc species have filaments with normal photosynthetic cells and N2-fixing heterocysts embedded in an extensive gelatinous matrix of polysaccharides and many other organic substances providing biological and environmental protection. Large colony size imposes constraints on the use of external resources and the gelatinous matrix represents extra costs and reduced growth rates. The objective of this review is to evaluate the mechanisms behind the low rates of growth and mortality, protection against environmental hazards and the persistence and longevity of gelatinous Nostoc colonies, and their ability to economize with highly limiting resources. Simple models predict the decline in uptake of dissolved inorganic carbon (DIC) and a decline in the growth rate of spherical freshwater colonies of N. pruniforme and N. zetterstedtii and sheet-like colonies of N. commune in response to a thicker diffusion boundary layer, lower external DIC concentration and higher organic carbon mass per surface area (CMA) of the colony. Measured growth rates of N. commune and N. pruniforme at high DIC availability comply with general empirical predictions of maximum growth rate (i.e. doubling time 10-14 d) as functions of CMA for marine macroalgae and as functions of tissue thickness for aquatic and terrestrial plants, while extremely low growth rates of N. zetterstedtii (i.e. doubling time 2-3 years) are 10-fold lower than model predictions, either because of very low ambient DIC and/or an extremely costly colony matrix. DIC uptake is limited by diffusion at low concentrations for all species, although they exhibit efficient HCO3(-) uptake, accumulation of respiratory DIC within the colonies and very low CO2 compensation points. Long light paths and light attenuation by structural substances in large Nostoc colonies cause lower quantum efficiency and assimilation number and higher light compensation points than in unicells and other aquatic macrophytes. Extremely low growth and mortality rates of N. zetterstedtii reflect stress-selected adaptation to nutrient- and DIC-poor temperate lakes, while N. pruniforme exhibits a mixed ruderal- and stress-selected strategy with slow growth and year-long survival prevailing in sub-Arctic lakes and faster growth and shorter longevity in temperate lakes. Nostoc commune and its close relative N. flagelliforme have a mixed stress-disturbance strategy not found among higher plants, with stress selection to limiting water and nutrients and disturbance selection in quiescent dry or frozen stages. Despite profound ecological differences between species, active growth of temperate specimens is mostly restricted to the same temperature range (0-35 °C; maximum at 25 °C). Future studies should aim to unravel the processes behind the extreme persistence and low metabolism of Nostoc species under ambient resource supply on sediment and soil surfaces. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Response of soil methane uptake to simulated nitrogen deposition and grazing management across three types of steppe in Inner Mongolia, China.

    PubMed

    Li, Xianglan; He, Hong; Yuan, Wenping; Li, Linghao; Xu, Wenfang; Liu, Wei; Shi, Huiqiu; Hou, Longyu; Chen, Jiquan; Wang, Zhiping

    2018-01-15

    The response of soil methane (CH 4 ) uptake to increased nitrogen (N) deposition and grazing management was studied in three types of steppe (i.e., meadow steppe, typical steppe, and desert steppe) in Inner Mongolia, China. The experiment was designed with four simulated N deposition rates such as 0, 50, 100, and 200kgNha -1 , respectively, under grazed and fenced management treatments. Results showed that the investigated steppes were significant sinks for CH 4 , with an uptake flux of 1.12-3.36kgha -1 over the grass growing season and that the magnitude of CH 4 uptake significantly (P<0.05) decreased with increasing N deposition rates. The soil CH 4 uptake rates were highest in the desert steppe, moderate in the typical steppe, and lowest in the meadow steppe. Compared with grazed plots, fencing increased the CH 4 uptake by 4.7-40.2% with a mean value of 20.2% across the three different steppe types. The responses of soil CH 4 uptake to N deposition in the continental steppe varied depending on the N deposition rate, steppe type, and grazing management. A significantly positive correlation between CH 4 uptake and soil temperature was found in this study, whereas no significant relationship between soil moisture and CH 4 uptake occurred. Our results may contribute to the improvement of model parameterization for simulating biosphere-atmosphere CH 4 exchange processes and for evaluating the climate change feedback on CH 4 soil uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Protein and Peptide Gas-phase Structure Investigation Using Collision Cross Section Measurements and Hydrogen Deuterium Exchange

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar

    Protein and peptide gas-phase structure analysis provides the opportunity to study these species outside of their explicit environment where the interaction network with surrounding molecules makes the analysis difficult [1]. Although gas-phase structure analysis offers a unique opportunity to study the intrinsic behavior of these biomolecules [2-4], proteins and peptides exhibit very low vapor pressures [2]. Peptide and protein ions can be rendered in the gas-phase using electrospray ionization (ESI) [5]. There is a growing body of literature that shows proteins and peptides can maintain solution structures during the process of ESI and these structures can persist for a few hundred milliseconds [6-9]. Techniques for monitoring gas-phase protein and peptide ion structures are categorized as physical probes and chemical probes. Collision cross section (CCS) measurement, being a physical probe, is a powerful method to investigate gas-phase structure size [3, 7, 10-15]; however, CCS values alone do not establish a one to one relation with structure(i.e., the CCS value is an orientationally averaged value [15-18]. Here we propose the utility of gas-phase hydrogen deuterium exchange (HDX) as a second criterion of structure elucidation. The proposed approach incudes extensive MD simulations to sample biomolecular ion conformation space with the production of numerous, random in-silico structures. Subsequently a CCS can be calculated for these structures and theoretical CCS values are compared with experimental values to produce a pool of candidate structures. Utilizing a chemical reaction model based on the gas-phase HDX mechanism, the HDX kinetics behavior of these candidate structures are predicted and compared to experimental results to nominate the best in-silico structures which match (chemically and physically) with experimental observations. For the predictive approach to succeed, an extensive technique and method development is essential. To combine CCS measurements and gas-phase HDX studies at the amino acid residue level, for the first time a drift tube is connected to a linear ion trap (LIT) with electron transfer dissociation (ETD) capability[19, 20]. In this manner CCS and per-residue deuterium uptake measurements for a model peptide carried out successfully[19]. In this study, the gas-phase conformations of electrosprayed ions of the model peptide KKDDDDIIKIIK have been examined. Using ion structures obtained from molecular dynamics (MD) simulation and considering charge-site/exchange-site density the level of the maximum total deuterium uptake for the gas-phase ions is explained. Also a new hydrogen accessibility scoring (HAS) model that includes two distance calculations (charge site to carbonyl group and carbonyl group to exchange site) is applied to the in-silico structures to describe the expected HDX behavior for these structures. Further investigation to improve the accuracy of the model is accomplished by a "per-residue" HDX kinetics study of the model peptide [21]. In this study, the ion residence time and the deuterium uptake of each residue is measured at different partial pressures of D2O. Subsequently the contribution each residue to the overall HDX rate of the intact peptide ion is calculated. These rate contributions of the residues exhibit a better fit to HAS than their maximum deuterium uptake. Proteins and peptides with very frequent acidic residue in their sequence provide very poor signal levels when employing positive polarity ESI. Also, the comparison of protonated and deprotonated ions of these biomolecules offers the potential to provide a better structural characterization [22]. Per-residue deuterium uptake values resulting from collision-induced dissociation (CID) of the model peptide KKDDDDIIKIIK were used to investigated the degree of hydrogen deuterium scrambling for deprotonated ions [23]. Remarkably, limited isotopic scrambling was observed in this study of this small model peptide. This data and the per-residue deuterium uptake of the triply-protonated model peptide Acetyl-PAAAAKAAAAKAAAAKAAAAK are exploited to propose a lemma to allocate protonation and deprotonation sites for peptide ions in the gas-phase. Insulin ions, as a small protein model system, are examined to investigate the relation of the maximum deuterium uptake value for each insulin chain to the exposed surface area of each insulin subunit [22]. The results show that the methodology can be applied on the protein complexes to provide information about the exposed surface area of each subunit.

  1. A sensitivity study of diffusional mass transfer of gases in tropical storm hydrometeors

    NASA Astrophysics Data System (ADS)

    Ghosh, Satyajit; Gumber, Siddharth; Varotsos, C.

    2017-11-01

    This paper quantifies mass transfer and diffusional uptake rates of gases in liquid and solid hydrometeors within a cyclonic system. The non-availability of transfer rates for trace gases diffusing into storm hydrometeors, particularly over polluted urban conurbations, often constrain modellers the world over; however, this is an essential requirement to quantify the scavenging rates over the region concerned. The present paper seeks to provide modellers with such rates. Further, all of the earlier studies apply only to temperate regimes, and surprisingly identical formulations are assumed even for tropical conditions. The present analysis fills this research gap and couples cloud morphology with the associated thermodynamics through Weather Research and Forecasting (WRF) runs for cyclone Chapala (27 October 2015-04 November 2015) which battered the coasts of Yemen (Skamarock et al. 2008). It was a good example for undertaking this sensitivity study because the vertical extent spanned from around 0.75 to 16 km—enabling uptake rate calculations over both droplet and ice phases. Many of the diffusing gases were polar; the dipole moment of sulphur dioxide (SO2) and water vapour (H2O) was also included using a full Lennard-Jones model to compute the binary diffusivities of these gases as they diffused into the droplets mixed with water vapour. The first-order uptake rate constants ranged from 2.08 × 10-07 to 3.44 × 10-06 (s-1) and 1.97 × 10-07 to 7.81 × 10-07 (s-1) for H2O and SO2 respectively. The rates are of the order of 10-09 (s-1) for diffusion of water vapour into ice crystals further aloft. Closely linked with the gas uptake rates is another crucial parameter—the mass accommodation coefficient, α. The most widely used values are 1 and 0.036 (Pruppacher and Klett 1998)—the chosen values are restrictive and warrants a closer look. In storm systems, the vertical extents are in the kilometre range. Chapala with a large vertical extent warrants a full profile calculation. This study shows that for H2O vapour, α values range from a low of 0.004 reaching up to 0.046, and for SO2 impacting the liquid droplets, they are 0.004 to 0.077. Using these values in cloud droplet growth equations showed large changes in the positioning of the cloud base height up to about a maximum of 30%—a classic example illustrating the coupling of microphysics with dynamics suggesting that even large-scale models should cautiously use standard un-corrected accommodation and diffusion coefficients. Over polluted environments, aerosol number concentrations are very high—several hundreds of particles in a cubic centimetre—the cumulative effect involving such large-scale scavenging ends up in causing substantive changes in the actual scavenging rates. This is likely to affect overall radiative transfer calculations and must be corrected.

  2. Water Adsorption on Various Metal Organic Framework

    NASA Astrophysics Data System (ADS)

    Teo, H. W. B.; Chakraborty, A.

    2017-12-01

    In this paper, Metal Organic Framework (MOF) undergoes N2 and water adsorption experiment to observe how the material properties affects the water sorption performance. The achieved N2 isotherms is used to estimate the BET surface area, pore volume and, most importantly, the pore size distribution of the adsorbent material. It is noted that Aluminium Fumarate and CAU-10 has pore distribution of about 6Å while MIL-101(Cr) has 16 Å. The water adsorption isotherms at 25°C shows MIL-101(Cr) has a long hydrophobic length from relative pressure of 0 ≤ P/Ps ≤ 0.4 with a maximum water uptake of 1kg/kg sorbent. Alkali metal ions doped MIL-101(Cr) reduced the hydrophobic length and maximum water uptake of original MIL-101(Cr). Aluminium Fumarate and CAU-10 has lower water uptake, but the hydrophobic length of both materials is within relative pressure of P/Ps ≤ 0.2. The kinetic behaviour of doped MIL-101(Cr), Aluminium Fumarate and CAU-10 are faster than MIL-101(Cr).

  3. Immobilization of Rose Waste Biomass for Uptake of Pb(II) from Aqueous Solutions

    PubMed Central

    Ansari, Tariq Mahmood; Hanif, Muhammad Asif; Mahmood, Abida; Ijaz, Uzma; Khan, Muhammad Aslam; Nadeem, Raziya; Ali, Muhammad

    2011-01-01

    Rosa centifolia and Rosa gruss an teplitz distillation waste biomass was immobilized using sodium alginate for Pb(II) uptake from aqueous solutions under varied experimental conditions. The maximum Pb(II) adsorption occurred at pH 5. Immobilized rose waste biomasses were modified physically and chemically to enhance Pb(II) removal. The Langmuir sorption isotherm and pseudo-second-order kinetic models fitted well to the adsorption data of Pb(II) by immobilized Rosa centifolia and Rosa gruss an teplitz. The adsorbed metal is recovered by treating immobilized biomass with different chemical reagents (H2SO4, HCl and H3PO4) and maximum Pb(II) recovered when treated with sulphuric acid (95.67%). The presence of cometals Na, Ca(II), Al(III), Cr(III), Cr(VI), and Cu(II), reduced Pb(II) adsorption on Rosa centifolia and Rosa gruss an teplitz waste biomass. It can be concluded from the results of the present study that rose waste can be effectively used for the uptake of Pb(II) from aqueous streams. PMID:21350666

  4. Engineering rhizosphere hydraulics: pathways to improve plant adaptation to drought

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez; Zarebanadkouki, Mohsen; Ahmadi, Katayoun; Kroener, Eva; Kostka, Stanley; Carminati, Andrea

    2017-04-01

    Developing new technologies to optimize the use of water in irrigated croplands is of increasing importance. Recent studies have drawn attention to the role of mucilage in shaping rhizosphere hydraulic properties and regulating root water uptake. During drying mucilage keeps the rhizosphere wet and conductive, but upon drying it turns hydrophobic limiting root water uptake. Here we introduced the concept of rhizoligands, defined as additives that 1) rewet the rhizosphere and 2) reduce mucilage swelling hereby reducing the rhizosphere conductivity. We then tested its effect on rhizosphere water dynamics and transpiration. The following experiments were carried out to test if selected surfactants behave as a rhizoligand. We used neutron radiography to monitor water redistribution in the rhizosphere of lupine and maize irrigated with water and rhizoligand solution. In a parallel experiment, we tested the effect of rhizoligand on the transpiration rate of lupine and maize subjected to repeated drying and wetting cycles. We also measured the effect of rhizoligand on the maximum swelling of mucilage and the saturated hydraulic conductivity of soil mixed with various mucilage concentrations. The results were then simulated using a root water uptake model. Rhizoligand treatment quickly and uniformly rewetted the rhizosphere of maize and lupine. Interestingly, rhizoligand also reduced transpiration during drying/wetting cycles. Evaporation from the bare soil was of minor importance. Our hypothesis is that the reduction in transpiration was triggered by the interaction between rhizoligand and mucilage exuded by roots. This hypothesis is supported by the fact that rhizoligand reduced the maximum swelling of mucilage, increased its viscosity, and decreased the hydraulic conductivity of soil-mucilage mixtures. The reduced conductivity of the rhizosphere induced a moderate stress to the plants reducing transpiration. Simulation with a reduced hydraulic conductivity of the rhizosphere reproduced well the experimental observations. Rhizoligands increase the rhizosphere wetting kinetics and decrease the maximum swelling of mucilage. As a consequence, root rehydration upon irrigation is faster, a larger volume of water is available to the plant and this water is used more slowly. This slower water consumption would allow the plant to stay turgid over a prolonged dying period. We propose that by managing the hydraulic properties of the rhizosphere, we can improve plants adaptation to drought.

  5. Quantifying the relative contributions of different solute carriers to aggregate substrate transport

    PubMed Central

    Taslimifar, Mehdi; Oparija, Lalita; Verrey, Francois; Kurtcuoglu, Vartan; Olgac, Ufuk; Makrides, Victoria

    2017-01-01

    Determining the contributions of different transporter species to overall cellular transport is fundamental for understanding the physiological regulation of solutes. We calculated the relative activities of Solute Carrier (SLC) transporters using the Michaelis-Menten equation and global fitting to estimate the normalized maximum transport rate for each transporter (Vmax). Data input were the normalized measured uptake of the essential neutral amino acid (AA) L-leucine (Leu) from concentration-dependence assays performed using Xenopus laevis oocytes. Our methodology was verified by calculating Leu and L-phenylalanine (Phe) data in the presence of competitive substrates and/or inhibitors. Among 9 potentially expressed endogenous X. laevis oocyte Leu transporter species, activities of only the uniporters SLC43A2/LAT4 (and/or SLC43A1/LAT3) and the sodium symporter SLC6A19/B0AT1 were required to account for total uptake. Furthermore, Leu and Phe uptake by heterologously expressed human SLC6A14/ATB0,+ and SLC43A2/LAT4 was accurately calculated. This versatile systems biology approach is useful for analyses where the kinetics of each active protein species can be represented by the Hill equation. Furthermore, its applicable even in the absence of protein expression data. It could potentially be applied, for example, to quantify drug transporter activities in target cells to improve specificity. PMID:28091567

  6. Cu2+ inhibition of gel secretion in the xylem and its potential implications for water uptake of cut Acacia holosericea stems.

    PubMed

    Ratnayake, Kamani; Joyce, Daryl C; Webb, Richard I

    2013-08-01

    Maintaining a high rate of water uptake is crucial for maximum longevity of cut stems. Physiological gel/tylosis formation decreases water transport efficiency in the xylem. The primary mechanism of action for post-harvest Cu(2+) treatments in improving cut flower and foliage longevity has been elusive. The effect of Cu(2+) on wound-induced xylem vessel occlusion was investigated for Acacia holosericea A. Cunn. ex G. Don. Experiments were conducted using a Cu(2+) pulse (5 h, 2.2 mM) and a Cu(2+) vase solution (0.5 mM) vs a deionized water (DIW) control. Development of xylem blockage in the stem-end region 10 mm proximal to the wounded stem surface was examined over 21 days by light and transmission electron microscopy. Xylem vessels of stems stood into DIW were occluded with gels secreted into vessel lumens via pits from surrounding axial parenchyma cells. Gel secretion was initiated within 1-2 days post-wounding and gels were detected in the xylem from day 3. In contrast, Cu(2+) treatments disrupted the surrounding parenchyma cells, thereby inhibiting gel secretion and maintaining the vessel lumens devoid of occlusions. The Cu(2+) treatments significantly improved water uptake by the cut stems as compared to the control. © 2013 Scandinavian Plant Physiology Society.

  7. Study on kinetics of glucose uptake by some species of plankton

    NASA Astrophysics Data System (ADS)

    Li, Wenquan; Wang, Xian; Zhang, Yaohua

    1993-03-01

    The rates of glucose uptake by some species of plankton were determined by3H-glucose tracer method. Experimental results indicated that the observed glucose uptake at natural seawater concentrations by Platymonas subcordiformis and Brachionus plicatilis was principally a metabolic process fitted with the Michaelis-Menten equation in the range of adaptive temperatures. Heterotrophic uptake by Platymonas subcordiformis was mainly dependent on diffusion at high glucose levels. The uptake by Brachionus plicatilis showed active transport even at high glucose levels, indicating its high heterotrophic activity. The uptake rate by Artemia salina was lower, and its V m/K ratio was lower than those of the other two species of plankton.

  8. Kinetic control on Zn isotope signatures recorded in marine diatoms

    NASA Astrophysics Data System (ADS)

    Köbberich, Michael; Vance, Derek

    2017-08-01

    Marine diatoms dominate the oceanic cycle of the essential micronutrient zinc (Zn). The stable isotopes of zinc and other metals are increasingly used to understand trace metal micronutrient cycling in the oceans. One clear feature of the early isotope data is the heavy Zn isotope signature of the average oceanic dissolved pool relative to the inputs, potentially driven by uptake of light isotopes into phytoplankton cells and export to sediments. However, despite the fact that diatoms strip Zn from surface waters across the Antarctic polar front in the Southern Ocean, the local upper ocean is not isotopically heavy. Here we use culturing experiments to quantify the extent of Zn isotope fractionation by diatoms and to elucidate the mechanisms driving it. We have cultured two different open-ocean diatom species (T. oceanica and Chaetoceros sp.) in a series of experiments at constant medium Zn concentration but at bioavailable medium Fe ranging from limiting to replete. We find that T. oceanica can maintain high growth rates and Zn uptake rates over the full range of bioavailable iron (Fe) investigated, and that the Zn taken up has a δ66Zn that is unfractionated relative to that of the bioavailable free Zn in the medium. The studied representative of the genus Chaetoceros, on the other hand, shows more significantly reduced Zn uptake rates at low Fe and records more variable biomass δ66Zn signatures, of up to 0.85‰ heavier than the medium. We interpret the preferential uptake of heavy isotopes at extremely low Zn uptake rates as potentially due to either of the following two mechanisms. First, the release of extracellular polymeric substances (EPS), at low Fe levels, may preferentially scavenge heavy Zn isotopes. Second, the Zn uptake rate may be slow enough to establish pseudo-equilibrium conditions at the transporter site, with heavy Zn isotopes forming more stable surface complexes. Thus we find that, in our experiments, Fe-limitation exerts a key control that not only limits diatom growth, but also affects the Zn uptake physiology of diatoms. Uptake of heavy isotopes occurs under Fe-limiting conditions that drive extremely low Zn uptake rates. On the other hand, more rapid Zn uptake rates result in biomass that is indistinguishable from the external bioavailable free Zn pool. These experimental results can, in principle, explain the range of Zn isotopic compositions found in the real surface ocean, given the geographically variable interplay between Fe-limitation, Zn uptake rates, and the degree of organic complexation of oceanic Zn.

  9. Geochemical Influence on Microbial Diversity in the Warm, Salty, Stinking Spring, Utah, USA

    NASA Astrophysics Data System (ADS)

    Spear, J. R.

    2012-12-01

    Little is known of the geochemistry and microbiology in the Stinking Springs, a sulfidic, saline, warm spring northeast of the Great Salt Lake, Utah. The International Geobiology Course of 2012 investigated the geochemistry, lipid abundances, dissolved inorganic carbon (DIC) uptake rates and microbial diversity on different kinds of samples from a number of locations in the spring. The measured pH, temperature, salinity, and sulfide concentration along the 100 m flow path ranged from 6.64-7.77, 40-28° C, 2.9-2.2%, and 250 μM - negligible, respectively. Five sites were selected along the flow path and within each site microbial mats were sub-sampled according to their morphological characteristics; a range from floating to streamer-style in zones of higher flow rates to highly-layered mats in low- or sheet-flow zones. Geochemical characterization of the above plus metals, anions and cations were conducted at each site. Genomic DNA was extracted from each microbial sample / layer, and 16S rRNA genes were amplified and subjected to pyrosequencing. Fatty acids and pigments were extracted from the mat samples / layers and analyzed by liquid chromatography and mass spectrometry for lipid / pigment composition. Bicarbonate uptake rates for mat samples / layers were determined with 24 hour light and dark incubations of 13HCO3-spiked spring water. Microbial diversity varied by site and was generally high in all three domains of life with phototrophs, sulfur oxidizers, sulfate reducers, methanogens, and other bacteria / archaea identified by 16S rRNA gene sequence. Diatoms, identified by both microscopy and lipid analyses were found to increase in abundance with distance from the source. Methanogens were generally more abundant in deeper mat laminae and underlying sediments. Photoheterotrophs were found in all mat layers. Microbial diversity increased significantly with depth at most sites. In addition, two distinct microbial streamers were also identified and characterized at the two fast flowing sites. These two streamer varieties were dominated by either cyanobacteria or flavobacteria. Bicarbonate uptake in the light ranged from 0-2.1%/day with maximum rates found in floating, surface mats. Uptake in the dark ranged from 0-0.3%/day and was higher in lower layers. Both 16S rRNA analysis and pigment extractions showed no correlation between high autotrophic rates and presence of cyanobacteria or chlorophyll A. Lipid analysis showed no correlation between bicarbonate uptake and diatom abundance. The results suggest that carbon cycling in the various kinds of mats sampled is dominated by heterotrophs and anaerobic phototrophs despite abundant cyanobacteria and diatoms. A large depletion in sulfate from 16 mM to almost zero combined with low concentrations of measured sulfide and presence of elemental sulfur crystals in most mat samples indicate that the mats are a major sink of S in the system. Overall, our geochemical, genetic, lipid and bicarbonate analysis suggests that the physical and geochemical environment was more predictive of the community composition than mat morphology.

  10. Effect of Thiols, Zinc, and Redox Conditions on Hg Uptake in Shewanella oneidensis

    DOE PAGES

    Szczuka, Aleksandra; Morel, Francois M. M.; Schaefer, Jeffra K.

    2015-05-18

    Mercury uptake in bacteria represents a key first step in the production and accumulation Of methylmercury in biota. Previous experiments with mercury methylating bacteria have shown that Hg uptake is enhanced by some thiols, in particular cysteine, and that it is an energy-dependent process through heavy Metal TA transporters. In this study, we examine Hg uptake in the nonmethylating facultative aerobe, Shewanella oneidensis, under both anaerobic and aerobic conditions. Our results demonstrate similar characteristics of the Hg uptake system to those of the Hg methylating strains: uptake is enhanced in the presence of some thiols but not others; uptake ismore » energy dependent as evidenced by inhibition by a protonophore; and uptake is inhibited by high Zn(II) concentrations. Initial cellular uptake rates in S. oneidensis were remarkably similar under aerobic and fumarate-reducing conditions. In conclusion, these data support a similar Hg(II) uptake mechanism within the proteobacteria of accidental Hg(II) transport through heavy metal transporters with similar rates of uptake but differences in the ability to take up Hg bound to different thiols.« less

  11. A Thermodynamically-consistent FBA-based Approach to Biogeochemical Reaction Modeling

    NASA Astrophysics Data System (ADS)

    Shapiro, B.; Jin, Q.

    2015-12-01

    Microbial rates are critical to understanding biogeochemical processes in natural environments. Recently, flux balance analysis (FBA) has been applied to predict microbial rates in aquifers and other settings. FBA is a genome-scale constraint-based modeling approach that computes metabolic rates and other phenotypes of microorganisms. This approach requires a prior knowledge of substrate uptake rates, which is not available for most natural microbes. Here we propose to constrain substrate uptake rates on the basis of microbial kinetics. Specifically, we calculate rates of respiration (and fermentation) using a revised Monod equation; this equation accounts for both the kinetics and thermodynamics of microbial catabolism. Substrate uptake rates are then computed from the rates of respiration, and applied to FBA to predict rates of microbial growth. We implemented this method by linking two software tools, PHREEQC and COBRA Toolbox. We applied this method to acetotrophic methanogenesis by Methanosarcina barkeri, and compared the simulation results to previous laboratory observations. The new method constrains acetate uptake by accounting for the kinetics and thermodynamics of methanogenesis, and predicted well the observations of previous experiments. In comparison, traditional methods of dynamic-FBA constrain acetate uptake on the basis of enzyme kinetics, and failed to reproduce the experimental results. These results show that microbial rate laws may provide a better constraint than enzyme kinetics for applying FBA to biogeochemical reaction modeling.

  12. Changes in salivary gland function after radiotherapy of head and neck tumors measured by quantitative pertechnetate scintigraphy: Comparison of intensity-modulated radiotherapy and conventional radiation therapy with and without Amifostine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muenter, Marc W.; Hoffner, Simone; Department of Nuclear Medicine, University of Heidelberg, Heidelberg

    2007-03-01

    Purpose: The aim of this study was to compare changes in salivary gland function after intensity-modulated radiotherapy (IMRT) and conventional radiotherapy (RT), with or without Amifostine, for tumors of the head-and-neck region using quantitative salivary gland scintigraphy (QSGS). Methods and Materials: A total of 75 patients received pre- and post-therapeutic QSGS to quantify the salivary gland function. In all, 251 salivary glands were independently evaluated. Changes in the maximum uptake ({delta}U) and relative excretion rate ({delta}F) both pre- and post-RT were determined to characterize radiation-induced changes in the salivary gland function. In addition, dose-response curves were calculated. Results: In allmore » groups, maximum uptake and relative excretion rate were reduced after RT ({delta}U {<=}0 and {delta}F {<=}0). The reduction was significantly lower for IMRT than for conventional RT. For the parotid glands, the reduction was smaller for the IMRT-low than for the IMRT-high group. For the Amifostine-high and the conventional group the difference was significant only for one parameter ({delta}U, parotid and submandibular glands, p < 0.05). In contrast to this, the difference between the Amifostine-low and the conventional group was always significant or at least showed a clear trend for both changes in U and F. In regard to the endpoint 'reduction of the salivary gland excretion rate of more than 50%,' the dose-response curves yielded D{sub 50}-values of 34.2 {+-} 12.2 Gy for the conventionally treated group and 36.8 {+-} 2.9 Gy for the IMRT group. For the Amifostine group, an increased D{sub 50}-values of 46.3 {+-} 2.3 Gy was obtained. Conclusion: Intensity-modulated RT can significantly reduce the loss of parotid gland function when respecting a certain dose threshold. Conventional RT plus Amifostine prevents reduced salivary gland function only in the patient group treated with <40.6 Gy.« less

  13. β2-Adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+–K+-ATPase Vmax in trained men

    PubMed Central

    Hostrup, M; Kalsen, A; Ørtenblad, N; Juel, C; Mørch, K; Rzeppa, S; Karlsson, S; Backer, V; Bangsbo, J

    2014-01-01

    The aim of the present study was to examine the effect of β2-adrenergic stimulation on skeletal muscle contractile properties, sarcoplasmic reticulum (SR) rates of Ca2+ release and uptake, and Na+–K+-ATPase activity before and after fatiguing exercise in trained men. The study consisted of two experiments (EXP1, n = 10 males, EXP2, n = 20 males), where β2-adrenoceptor agonist (terbutaline) or placebo was randomly administered in double-blinded crossover designs. In EXP1, maximal voluntary isometric contraction (MVC) of m. quadriceps was measured, followed by exercise to fatigue at 120% of maximal oxygen uptake (). A muscle biopsy was taken after MVC (non-fatigue) and at time of fatigue. In EXP2, contractile properties of m. quadriceps were measured with electrical stimulations before (non-fatigue) and after two fatiguing 45 s sprints. Non-fatigued MVCs were 6 ± 3 and 6 ± 2% higher (P < 0.05) with terbutaline than placebo in EXP1 and EXP2, respectively. Furthermore, peak twitch force was 11 ± 7% higher (P < 0.01) with terbutaline than placebo at non-fatigue. After sprints, MVC declined (P < 0.05) to the same levels with terbutaline as placebo, whereas peak twitch force was lower (P < 0.05) and half-relaxation time was prolonged (P < 0.05) with terbutaline. Rates of SR Ca2+ release and uptake at 400 nm [Ca2+] were 15 ± 5 and 14 ± 5% (P < 0.05) higher, respectively, with terbutaline than placebo at non-fatigue, but declined (P < 0.05) to similar levels at time of fatigue. Na+–K+-ATPase activity was unaffected by terbutaline compared with placebo at non-fatigue, but terbutaline counteracted exercise-induced reductions in maximum rate of activity (Vmax) at time of fatigue. In conclusion, increased contractile force induced by β2-adrenergic stimulation is associated with enhanced rate of Ca2+ release in humans. While β2-adrenergic stimulation elicits positive inotropic and lusitropic effects on non-fatigued m. quadriceps, these effects are blunted when muscles fatigue. PMID:25344552

  14. Estimation of uptake rate constants for PCB congeners accumulated by semipermeable membrane devices and brown treat (Salmo trutta)

    USGS Publications Warehouse

    Meadows, J.C.; Echols, K.R.; Huckins, J.N.; Borsuk, F.A.; Carline, R.F.; Tillitt, D.E.

    1998-01-01

    The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMD to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB- contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and dissolved concentrations averaged 4.9 and 3.7 ??g/L, respectively, during the exposure. Total concentrations of PCBs in fish rose from 0.06 to 118.3 ??g/g during the 28-day exposure, while concentrations in the SPMD rose from 0.03 to 203.4 ??g/ g. Uptake rate constants (k1) estimated for SPMDs and brown trout were very similar, with k1 values for SPMDs ranging from one to two times those of the fish. The pattern of congener uptake by the fish and SPMDs was also similar. The rates of uptake generally increased or decreased with increasing K(ow), depending on the assumption of presence or absence of TOC.The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMB to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB-contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and dissolved concentrations averaged 4.9 and 3.7 ??g/L, respectively, during the exposure. Total concentrations of PCBs in fish rose from 0.06 to 118.3 ??g/g during the 28-day exposure, while concentrations in the SPMD rose from 0.03 to 203.4 ??g/g. Uptake rate constants (k1) estimated for SPMDs and brown trout were very similar, with k1 values for SPMDs ranging from one to two times those of the fish. The pattern of congener uptake by the fish and SPMBs was also similar. The rates of uptake generally increased or decreased with increasing KOW, depending on the assumption of presence or absence of TOC.

  15. Explaining variation in Down's syndrome screening uptake: comparing the Netherlands with England and Denmark using documentary analysis and expert stakeholder interviews.

    PubMed

    Crombag, Neeltje M T H; Vellinga, Ynke E; Kluijfhout, Sandra A; Bryant, Louise D; Ward, Pat A; Iedema-Kuiper, Rita; Schielen, Peter C J I; Bensing, Jozien M; Visser, Gerard H A; Tabor, Ann; Hirst, Janet

    2014-09-25

    The offer of prenatal Down's syndrome screening is part of routine antenatal care in most of Europe; however screening uptake varies significantly across countries. Although a decision to accept or reject screening is a personal choice, it is unlikely that the widely differing uptake rates across countries can be explained by variation in individual values alone.The aim of this study was to compare Down's syndrome screening policies and programmes in the Netherlands, where uptake is relatively low (<30%) with England and Denmark where uptake is higher (74 and > 90% respectively), in an attempt to explain the observed variation in national uptake rates. We used a mixed methods approach with an embedded design: a) documentary analysis and b) expert stakeholder analysis. National central statistical offices and legal documents were studied first to gain insight in demographic characteristics, cultural background, organization and structure of healthcare followed by documentary analysis of primary and secondary sources on relevant documents on DSS policies and programme. To enhance interpretation of these findings we performed in-depth interviews with relevant expert stakeholders. There were many similarities in the demographics, healthcare systems, government abortion legislation and Down's syndrome screening policy across the studied countries. However, the additional cost for Down's syndrome screening over and above standard antenatal care in the Netherlands and an emphasis on the 'right not to know' about screening in this country were identified as potential explanations for the 'low' uptake rates of Down's syndrome screening in the Netherlands. The social context and positive framing of the offer at the service delivery level may play a role in the relatively high uptake rates in Denmark. This paper makes an important contribution to understanding how macro-level demographic, social and healthcare delivery factors may have an impact on national uptake rates for Down's syndrome screening. It has suggested a number of policy level and system characteristics that may go some way to explaining the relatively low uptake rates of Down's syndrome screening in the Netherlands when compared to England and Denmark.

  16. Internal dosimetry of inhaled iodine-131.

    PubMed

    Kiani Nasab, Mitra; Rafat Motavalli, Laleh; Miri Hakimabad, Hashem

    2018-01-01

    In this paper, the dose assessment for the iodine inhalation exposure in 19 aerosol sizes and three gas/vapor forms at three levels of thyroid uptake, was performed. Two different modes of work (light vs. heavy) and breathing (nose vs. mouth) for aerosol inhalation were investigated. In order to calculate the cumulated activities per unit of inhaled activity, a combined model which included the latest models of both human respiratory and alimentary tract was developed. The S values for 131 I were computed based on the ICRP adult male and female reference voxel phantoms by the Monte Carlo method. Then, the committed equivalent and committed effective dose coefficients were obtained (The data are available at http://www.um.ac.ir/∼mirihakim). In general, for the nonzero thyroid uptakes, the maximum cumulated activity was found in the thyroid. When the thyroid is blocked, however, the maximum depends on the work and breathing mode and radioisotope form. Overall, the maximum CED coefficient was evaluated for the inhalation of elemental iodine at thyroid uptake of ∼27% (2.8 × 10 -8 Sv/Bq). As for the particle inhalation per se, mouth breathing of 0.6 nm and 0.2 μm AMTD particles showed to have the maximum (2.8 × 10 -8 Sv/Bq) and minimum (6.4 × 10 -9 Sv/Bq) CED coefficients, respectively. Compared to the reference CED coefficients, the authors found an increase of about 58% for inhalation of the aerosols with AMAD of 1 μm and 70% for 5 μm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Nitrogen-removal performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch.

    PubMed

    Guo, Chang-Zi; Fu, Wei; Chen, Xue-Mei; Peng, Dang-Cong; Jin, Peng-Kang

    2013-07-01

    Oxidation-ditch operation modes were simulated using sequencing batch reactors (SBRs) with alternate stirring and aerating. The nitrogen-removal efficiencies and nitrifying characteristics of two aeration modes, point aeration and step aeration, were investigated. Under the same air-supply capacity, oxygen dissolved more efficiently in the system with point aeration, forming a larger aerobic zone. The nitrifying effects were similar in point aeration and step aeration, where the average removal efficiencies of NH4(+) N were 98% and 96%, respectively. When the proportion of anoxic and oxic zones was 1, the average removal efficiencies of total nitrogen (TN) were 45% and 66% under point aeration and step aeration, respectively. Step aeration was more beneficial to both anoxic denitrification and simultaneous nitrification and denitrification (SND). The maximum specific ammonia-uptake rates (AUR) of point aeration and step aeration were 4.7 and 4.9 mg NH4(+)/(gMLVSS h), respectively, while the maximum specific nitrite-uptake rates (NUR) of the two systems were 7.4 and 5.3 mg NO2(-)-N/(gMLVSS h), respectively. The proportions of ammonia-oxidizing bacteria (AOB) to all bacteria were 5.1% under point aeration and 7.0% under step aeration, and the proportions of nitrite-oxidizing bacteria (NOB) reached 6.5% and 9.0% under point and step aeration, respectively. The dominant genera of AOB and NOB were Nitrosococcus and Nitrospira, which accounted for 90% and 91%, respectively, under point aeration, and the diversity of nitrifying bacteria was lower than under step aeration. Point aeration was selective of nitrifying bacteria. The abundance of NOB was greater than that of AOB in both of the operation modes, and complete transformation of NH4(+) N to NO3(-)-N was observed without NO2(-)-N accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris.

    PubMed

    Li, Shuai; Harley, Peter C; Niinemets, Ülo

    2017-09-01

    Acute ozone exposure triggers major emissions of volatile organic compounds (VOCs), but quantitatively, it is unclear how different ozone doses alter the start and the total amount of these emissions, and the induction rate of different stress volatiles. It is also unclear whether priming (i.e. pre-exposure to lower O 3 concentrations) can modify the magnitude and kinetics of volatile emissions. We investigated photosynthetic characteristics and VOC emissions in Phaseolus vulgaris following acute ozone exposure (600 nmol mol -1 for 30 min) under illumination and in darkness and after priming with 200 nmol mol -1 O 3 for 30 min. Methanol and lipoxygenase (LOX) pathway product emissions were induced rapidly, followed by moderate emissions of methyl salicylate (MeSA). Stomatal conductance prior to acute exposure was lower in darkness and after low O 3 priming than in light and without priming. After low O 3 priming, no MeSA and lower LOX emissions were detected under acute exposure. Overall, maximum emission rates and the total amount of emitted LOX products and methanol were quantitatively correlated with total stomatal ozone uptake. These results indicate that different stress volatiles scale differently with ozone dose and highlight the key role of stomatal conductance in controlling ozone uptake, leaf injury and volatile release. © 2017 John Wiley & Sons Ltd.

  19. Brown Carbon Production in Ammonium- or Amine-Containing Aerosol Particles by Reactive Uptake of Methylglyoxal and Photolytic Cloud Cycling.

    PubMed

    De Haan, David O; Hawkins, Lelia N; Welsh, Hannah G; Pednekar, Raunak; Casar, Jason R; Pennington, Elyse A; de Loera, Alexia; Jimenez, Natalie G; Symons, Michael A; Zauscher, Melanie; Pajunoja, Aki; Caponi, Lorenzo; Cazaunau, Mathieu; Formenti, Paola; Gratien, Aline; Pangui, Edouard; Doussin, Jean-François

    2017-07-05

    The effects of methylglyoxal uptake on the physical and optical properties of aerosol containing amines or ammonium sulfate were determined before and after cloud processing in a temperature- and RH-controlled chamber. The formation of brown carbon was observed upon methylglyoxal addition, detected as an increase in water-soluble organic carbon mass absorption coefficients below 370 nm and as a drop in single-scattering albedo at 450 nm. The imaginary refractive index component k 450 reached a maximum value of 0.03 ± 0.009 with aqueous glycine aerosol particles. Browning of solid particles occurred at rates limited by chamber mixing (<1 min), and in liquid particles occurred more gradually, but in all cases occurred much more rapidly than in bulk aqueous studies. Further browning in AS and methylammonium sulfate seeds was triggered by cloud events with chamber lights on, suggesting photosensitized brown carbon formation. Despite these changes in optical aerosol characteristics, increases in dried aerosol mass were rarely observed (<1 μg/m 3 in all cases), consistent with previous experiments on methylglyoxal. Under dry, particle-free conditions, methylglyoxal reacted (presumably on chamber walls) with methylamine with a rate constant k = (9 ± 2) × 10 -17 cm 3 molecule -1 s -1 at 294 K and activation energy E a = 64 ± 37 kJ/mol.

  20. Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris

    PubMed Central

    Li, Shuai; Harley, Peter C.; Niinemets, Ülo

    2018-01-01

    Acute ozone exposure triggers major emissions of volatile organic compounds (VOC), but quantitatively, it is unclear how different ozone doses alter the start and the total amount of these emissions, and the induction rate of different stress volatiles. It is also unclear whether priming (i.e., pre-exposure to lower O3 concentrations) can modify the magnitude and kinetics of volatile emissions. We investigated photosynthetic characteristics and VOC emissions in Phaseolus vulgaris following acute ozone exposure (600 nmol mol-1 for 30 min) under illumination and in darkness and after priming with 200 nmol mol-1 O3 for 30 min. Methanol and lipoxygenase (LOX) pathway product emissions were induced rapidly, followed by moderate emissions of methyl salicylate (MeSA). Stomatal conductance prior to acute exposure was lower in darkness and after low O3 priming than in light and without priming. After low O3 priming, no MeSA and lower LOX emissions were detected under acute exposure. Overall, maximum emission rates and the total amount of emitted LOX products and methanol were quantitatively correlated with total stomatal ozone uptake. These results indicate that different stress volatiles scale differently with ozone dose and highlight the key role of stomatal conductance in controlling ozone uptake, leaf injury and volatile release. PMID:28623868

  1. A montane Mediterranean climate supports year-round photosynthesis and high forest biomass.

    PubMed

    Kelly, Anne E; Goulden, Michael L

    2016-04-01

    The mid-elevation forest of California's Sierra Nevada poses a bioclimatic paradox. Mid-elevation trees experience a montane Mediterranean climate, with near-freezing winter days and rain-free summers. The asynchrony between warmth and water input suggests low primary production, limited by photosynthetic dormancy in winter cold, and again in summer and early autumn with drought, yet this forest is characterized by tall trees and high biomass. We used eddy covariance in a mid-elevation Sierra stand to understand how winter cold and summer drought limit canopy photosynthesis and production. The trees exhibited canopy photosynthesis year-round. Trees avoided winter dormancy, and daytime CO2uptake continued despite a deep snowpack and near-freezing temperatures. Photosynthesis on sunny days continued at half of maximum rates when air temperature was 0 °C. Likewise, the vegetation avoided summer drought dormancy, and high rates of daytime CO2uptake and transpiration continued despite a 5-month period with only negligible water input. We attribute this drought avoidance to deep rooting and availability of deep soil water. Year-round photosynthesis helps explain the large biomass observed in the Sierra Nevada, and implies adaptive strategies that may contribute to the resiliency or vulnerability of Sierran vegetation to climate change. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Nitrogen uptake of phytoplankton assemblages under contrasting upwelling and downwelling conditions: The Ría de Vigo, NW Iberia

    NASA Astrophysics Data System (ADS)

    Seeyave, Sophie; Probyn, Trevor; Álvarez-Salgado, Xosé Antón; Figueiras, Francisco G.; Purdie, Duncan A.; Barton, Eric D.; Lucas, Michael

    2013-06-01

    Regenerated production (including organic nitrogen) is shown here to be important in the Ría de Vigo (Galicia, NW Iberia) in supporting both harmful algal bloom communities during the downwelling season, but also (to a lesser extent) diatom communities during stratified periods of weak to moderate upwelling. The Galician Rías, situated in the Iberian upwelling system, are regularly affected by blooms of toxic dinoflagellates, which pose serious threats to the local mussel farming industry. These tend to occur towards the end of summer, during the transition from upwelling to downwelling favourable seasons, when cold bottom shelf waters in the rías are replaced by warm surface shelf waters. Nitrate, ammonium and urea uptake rates were measured in the Ría de Vigo during a downwelling event in September 2006 and during an upwelling event in June 2007. In September the ría was well mixed, with a downwelling front observed towards the middle of the ría and relatively high nutrient concentrations (1.0-2.6 μmol L-1 nitrate; 1.0-5.6 μmol L-1 ammonium; 0.1-0.8 μmol L-1 phosphate; 2.0-9.0 μmol L-1 silicic acid) were present throughout the water column. Ammonium represented more than 80% of the nitrogenous nutrients, and the phytoplankton assemblage was dominated by dinoflagellates and small flagellates. In June the water column was stratified, with nutrient-rich, upwelled water below the thermocline and warm, nutrient-depleted water in the surface. At this time, nitrate represented more than 80% of the nitrogenous nutrients, and a mixed diatom assemblage was present. Primary phytoplankton production during both events was mainly sustained by regenerated nitrogen, with ammonium uptake rates of 0.035-0.063 μmol N L-1 h-1 in September and 0.078-0.188 μmol N L-1 h-1 in June. Although f-ratios were generally low (<0.2) in both June and September, a maximum of 0.61 was reached in June due to higher nitrate uptake (0.225 μmol N L-1 h-1). Total nitrogen uptake was also higher during the upwelling event (0.153-0.366 in June and 0.053-0.096 μmol N L-1 h-1 in September). Nitrogen uptake kinetics demonstrated a strong preference for ammonium and urea over nitrate in June.

  3. Respiratory gating enhances imaging of pulmonary nodules and measurement of tracer uptake in FDG PET/CT.

    PubMed

    Werner, Matthias K; Parker, J Anthony; Kolodny, Gerald M; English, Jeffrey R; Palmer, Matthew R

    2009-12-01

    The aim of this study was to evaluate prospectively the effects of respiratory gating during FDG PET/CT on the determination of lesion size and the measurement of tracer uptake in patients with pulmonary nodules in a clinical setting. Eighteen patients with known pulmonary nodules (nine women, nine men; mean age, 61.4 years) underwent conventional FDG PET/CT and respiratory-gated PET acquisitions during their scheduled staging examinations. Maximum, minimum, and average standardized uptake values (SUVs) and lesion size and volume were determined with and without respiratory gating. The results were then compared using the two-tailed Student's t test and the nonparametric Wilcoxon's test to assess the effects of respiratory gating on PET acquisitions. Respiratory gating reduced the measured area of lung lesions by 15.5%, the axial dimension by 10.3%, and the volume by 44.5% (p = 0.014, p = 0.007, and p = 0.025, respectively). The lesion volumes in gated studies were closer to those assessed by standard CT (difference decreased by 126.6%, p = 0.025). Respiratory gating increased the measured maximum SUV by 22.4% and average SUV by 13.3% (p < 0.001 and p = 0.002). Our findings suggest that the use of PET respiratory gating in PET/CT results in lesion volumes closer to those assessed by CT and improved measurements of tracer uptake for lesions in the lungs.

  4. Cyclic variations in nitrogen uptake rate in soybean plants: uptake during reproductive growth

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Raper, C. D. Jr; Henry, L. T.; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Net uptake of NO3- by non-nodulated soybean plants [Glycine max (L.) Merr. cv. Ransom] growing in flowing hydroponic culture was measured daily during a 63 d period of reproductive development between the first florally inductive photoperiod and [unknown word] seed growth. Removal of NO3- from a replenished solution containing 1.0 mol m-3 NO3- was determined by ion chromatography. Uptake of NO3- continued throughout reproductive development. The net uptake rate of NO3- cycled between maxima and minima with a periodicity of oscillation of 3 to 7 d during the floral stage and about 6 d during the fruiting stage. Coupled with increasing concentrations of carbon and C : N ratios in tissues, the oscillations in net uptake rates of NO3- are evidence that the demand for carbohydrate by reproductive organs is contingent on the availability of nitrogen in the shoot pool rather than that the demand for nitrogen follows the flux of carbohydrate into reproductive tissues.

  5. Nutrient inputs via rock weathering point to enhanced CO2 uptake capacity of the terrestrial biosphere

    NASA Astrophysics Data System (ADS)

    Dass, P.; Houlton, B. Z.; Wang, Y.; Pak, B. C.; Morford, S.

    2016-12-01

    Empirical evidence of widespread scarcity of nitrogen (N) and phosphorus (P) availability in natural land ecosystems constrains the carbon dioxide (CO2) uptake capacity of the global biosphere. Recent studies have pointed to the importance of rock weathering in supplying both N and P to terrestrial soils and vegetation; however, the potential for N and P to rapidly weather from different rocks and thereby alter the global carbon (C) cycle remains an open question, particularly at the global scale. Here, we combine empirical measurements and a new global simulation model to quantify the flux of N and P released from rocks to the terrestrial biosphere. Our model considers the role of tectonic uplift and physical and chemical weathering on rock nutrient cycling by using a probabilistic approach that is anchored in watershed-scale 10Be and Na data from the world's rivers. We use USGS DEM data for relief, monthly averaged MODIS evapotranspiration data and global precipitation datasets. Based on simulations using mean climate data for the past 10 years, we estimate annual values of 11 Tg of N and 6 Tg of P to weather from rocks to the terrestrial biosphere. The rate of N weathering rivals that of atmospheric N deposition in natural ecosystems, and the P weathering flux is approximately 6 times higher than prior estimates based on a modeling approach where the chemical weathering is dependant on lithology and runoff with further factors correcting for soil shielding and temperature. The increase in nutrient inputs we simulate reveals an important role for rock weathering to support new production in terrestrial ecosystems, and thereby allow for additional CO2 uptake in sectors of the biosphere where weathering rates are substantial. Given that current generation of models are yet to consider how short-term weathering of rocks can affect nutrient limited C storage, these results will help to advance the geochemical aspects of carbon-climate feedback this century. Moreover, we will present results for CO2 uptake capacity based on the future climate scenario involving the least mitigation storyline, i.e. RCP 8.5 as well as historic uptake from the beginning of the retreat if the glaciers, i.e. the Last Glacial Maximum.

  6. Effects and limitations of elemental sulphur applications for enhanced phytoextraction.

    PubMed

    Fässler, Erika; Stauffer, Werner; Gupta, Satish K; Schulin, Rainer

    2012-08-01

    The application of elemental sulphur (S) to heavy metal contaminated soils is a strategy to increase metal extraction by plants. Here, we examined to which degree the efficiency of phytoextraction could be enhanced by increasing the S application rate on afield where S had already been applied for 6 years. For this purpose, the field experiment was continued for another two years doubling the S application rate on half of the S treatment plots, while continuing application at the previous rate on the other half. Doubling the application rate significantly accelerated the dissolution of calcite and the decrease in soil pH and also increased cadmium (Cd) and zinc (Zn) uptake by sunflower and tobacco. But even in a best-case-scenario remediation of the site would still take more than a century. The results indicate that we reached the maximum potential of S application to enhance metal phytoextraction on the study site. Further decrease in pH by additional S applications would bear an excessive risk of decreasing yields and increasing metal leaching out of the root zone.

  7. Predicting dietborne metal toxicity from metal influxes

    USGS Publications Warehouse

    Croteau, M.-N.; Luoma, S.N.

    2009-01-01

    Dietborne metal uptake prevails for many species in nature. However, the links between dietary metal exposure and toxicity are not well understood. Sources of uncertainty include the lack of suitable tracers to quantify exposure for metals such as copper, the difficulty to assess dietary processes such as food ingestion rate, and the complexity to link metal bioaccumulation and effects. We characterized dietborne copper, nickel, and cadmium influxes in a freshwater gastropod exposed to diatoms labeled with enriched stable metal isotopes. Metal influxes in Lymnaea stagnalis correlated linearly with dietborne metal concentrations over a range encompassing most environmental exposures. Dietary Cd and Ni uptake rate constants (kuf) were, respectively, 3.3 and 2.3 times higher than that for Cu. Detoxification rate constants (k detox) were similar among metals and appeared 100 times higher than efflux rate constants (ke). Extremely high Cu concentrations reduced feeding rates, causing the relationship between exposure and influx to deviate from linearity; i.e., Cu uptake rates leveled off between 1500 and 1800 nmol g-1 day-1. L. stagnalis rapidly takes up Cu, Cd, and Ni from food but detoxifies the accumulated metals, instead of reducing uptake or intensifying excretion. Above a threshold uptake rate, however, the detoxification capabilities of L. stagnalis are overwhelmed.

  8. Lesion-induced plasticity of high affinity choline uptake in the developing rat fascia dentata.

    PubMed

    Nadler, J V; Shelton, D L; Cotman, C W

    1979-03-23

    After removal of the perforant path input to the rat fascia dentata at the age of 11 days, cholinergic septohippocampal fibers invade the denervated area. We have examined the effect of this lesion on hemicholinium-sensitive, high affinity choline uptake and its coupling to acetylcholine synthesis, specific properties of the septohippocampal input. Removal of the ipsilateral perforant path fibers increased the velocity of high affinity choline uptake by dentate particulate preparations, usually within 1 day. Studies conducted 5--104 days after operation showed a consistent 50--65% elevation in the molecular (denervated) layer. In contrast, the choline uptake rate in the granular layer eventually decreased slightly. Calculation of choline uptake rates independently of protein (per whole region) revealed that fasciae dentatae from operated and control sides accumulated choline at approximately equal rates, but on the operated side a greater percentage was transported by structures from the molecular layer and a lesser percentage by those from the granular layer. The rate of acetylcholine synthesis from exogenous choline increased to the same extent as high affinity choline uptake from 3 days after operation onwards. The changes in high affinity choline uptake and acetylcholine synthesis coincided spatially and temporally with the reactive growth of septohippocampal fibers. Our results support the view that a perforant path lesion during development permanently alters the distribution of functional septohippocampal boutons in the fascia dentata. Acetylcholine synthesis is regulated to the same extent by high affinity choline uptake in the anomalous boutons as in normally located boutons.

  9. A Radiochemical Biotechnological Approach: Preliminary Study of Lactose Uptake Rate by Kefir Cells, Using 14C-labeled Lactose, in Anaerobic Fermentation

    NASA Astrophysics Data System (ADS)

    Golfinopoulos, A.; Soupioni, M.; Kanellaki, M.; Koutinas, A. A.

    2008-08-01

    The effect of initial lactose concentration on lactose uptake rate by kefir free cells, during the lactose fermentation, was studied in this work. For the investigation 14C-labelled lactose was used due to the fact that labeled and unlabeled molecules are fermented in the same way. The results illustrated lactose uptake rates are about up to two fold higher at lower initial ∘Bé densities as compared with higher initial ∘Bé densities.

  10. Uptake of Free HPV Vaccination among Young Women: A Comparison of Rural versus Urban Rates

    ERIC Educational Resources Information Center

    Crosby, Richard A.; Casey, Baretta R.; Vanderpool, Robin; Collins, Tom; Moore, Gregory R.

    2011-01-01

    Purpose: To contrast rates of initial HPV vaccine uptake, offered at no cost, between a rural clinic, a rural community college, and an urban college clinic and to identify rural versus urban differences in uptake of free booster doses. Methods: Young rural women attending rural clinics (n = 246), young women attending a rural community college (n…

  11. Liquid scintillation counting for /sup 14/C uptake of single algal cells isolated from natural samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkin, R.B.; Seliger, H.H.

    1981-07-01

    Short term rates of /sup 14/C uptake for single cells and small numbers of isolated algal cells of five phytoplankton species from natural populations were measured by liquid scintillation counting. Regression analysis of uptake rates per cell for cells isolated from unialgal cultures of seven species of dinoflagellates, ranging in volume from ca. 10/sup 3/ to 10/sup 7/ ..mu..m/sup 3/, gave results identical to uptake rates per cell measured by conventional /sup 14/C techniques. Relative standard errors or regression coefficients ranged between 3 and 10%, indicating that for any species there was little variation in photosynthesis per cell.

  12. Individual variability in the core interthreshold zone as related to body physique, somatotype, and physical constitution.

    PubMed

    Kakitsuba, Naoshi; Mekjavic, Igor B; Katsuura, Tetsuo

    2009-11-01

    For evaluating the effect of body physique, somatotype, and physical constitution on individual variability in the core interthreshold zone (CIZ), data from 22 healthy young Japanese male subjects were examined. The experiment was carried out in a climatic chamber in which air temperature was maintained at 20-24 degrees C. The subjects' body physique and the maximum work load were measured. Somatotype was predicted from the Heath-Carter Somatotype method. In addition, factors reflecting physical constitution, for example, susceptibility to heat and cold, and quality of sleep were obtained by questionnaire. The subjects wore a water-perfused suit which was perfused with water at a temperature of 25 degrees C and at a rate of 600 cc/min, and exercised on an ergometer at 50% of their maximum work rate for 10-15 min until their sweating rate increased. They then remained continuously seated without exercise until shivering increased. Rectal temperature (T(re)) and skin temperatures at four sites were monitored by thermistors, and sweating rate was measured at the forehead with a sweat rate monitor. Oxygen uptake was monitored with a gas analyzer. The results showed individual variability in the CIZ. According to the reciprocal cross-inhibition (RCI) theory, thermoafferent information from peripheral and core sensors is activated by T(re), mean skin temperature (T(sk)), and their changes. Since T(sk) was relatively unchanged, the data were selected to eliminate the influence of the core cooling rate on the sensor-to-effector pathway before RCI, and the relationship between the CIZ and the various factors was then analyzed. The results revealed that susceptibility to heat showed a good correlation with the CIZ, indicating that individual awareness of heat may change the CIZ due to thermoregulatory behavior.

  13. Diflerent formulations of microbial respiratory losses and microbial efficiency have pronounced short and long term consequences for soil C dynamics and soil respiration

    NASA Astrophysics Data System (ADS)

    Ballantyne, F.; Billings, S. A.

    2016-12-01

    Much of the variability in projections of Earth's future C balance derives from uncertainty in how to formulate and parameterize models of biologically mediated transformations of soil organic C (SOC). Over the past decade, models of belowground decomposition have incorporated more realism, namely microbial biomass and exoenzyme pools, but it remains unclear whether microbially mediated decomposition is accurately formulated. Different models and different assumptions about how microbial efficiency, defined in terms of respiratory losses, varies with temperature exert great influence on SOC and CO2 flux projections for the future. Here, we incorporate a physiologically realistic formulation of CO2 loss from microbes, distinct from extant formulations and logically consistent with microbial C uptake and losses, into belowground dynamics and contrast its projections for SOC pools and CO2 flux from soils to those from the phenomenological formulations of efficiency in current models. We quantitatively describe how short and long term SOC dynamics are influenced by different mathematical formulations of efficiency, and that our lack of knowledge regarding loss rates from SOC and microbial biomass pools, specific respiration rate and maximum substrate uptake rate severely constrains our ability to confidently parameterize microbial SOC modules in Earth System Models. Both steady-state SOC and microbial biomass C pools, as well as transient responses to perturbations, can differ substantially depending on how microbial efficiency is derived. In particular, the discrepancy between SOC stocks for different formulations of efficiency varies from negligible to more than two orders of magnitude, depending on the relative values of respiratory versus non-respiratory losses from microbial biomass. Mass-specific respiration and proportional loss rates from soil microbes emerge as key determinants of the consequences of different formulations of efficiency for C flux in soils.

  14. Preoperative [18F]Fluorodeoxyglucose Positron Emission Tomography Standardized Uptake Value of Neck Lymph Nodes Predicts Neck Cancer Control and Survival Rates in Patients With Oral Cavity Squamous Cell Carcinoma and Pathologically Positive Lymph Nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, C.-T.; Head and Neck Oncology Group, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Chang, J.T.-C.

    Purpose: Survival in oral cavity squamous cell carcinoma (OSCC) depends heavily on locoregional control. In this prospective study, we sought to investigate whether preoperative maximum standardized uptake value of the neck lymph nodes (SUVnodal-max) may predict prognosis in OSCC patients. Methods and Materials: A total of 120 OSCC patients with pathologically positive lymph nodes were investigated. All subjects underwent a [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) scan within 2 weeks before radical surgery and neck dissection. All patients were followed up for at least 24 months after surgery or until death. Postoperative adjuvant therapy was performed in the presence ofmore » pathologic risk factors. Optimal cutoff values of SUVnodal-max were chosen based on 5-year disease-free survival (DFS), disease-specific survival (DSS), and overall survival (OS). Independent prognosticators were identified by Cox regression analysis. Results: The median follow-up for surviving patients was 41 months. The optimal cutoff value for SUVnodal-max was 5.7. Multivariate analyses identified the following independent predictors of poor outcome: SUVnodal-max {>=}5.7 for the 5-year neck cancer control rate, distant metastatic rate, DFS, DSS, and extracapsular spread (ECS) for the 5-year DSS and OS. Among ECS patients, the presence of a SUVnodal-max {>=}5.7 identified patients with the worst prognosis. Conclusion: A SUVnodal-max of 5.7, either alone or in combination with ECS, is an independent prognosticator for 5-year neck cancer control and survival rates in OSCC patients with pathologically positive lymph nodes.« less

  15. Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects.

    PubMed

    Scheibener, S A; Richardi, V S; Buchwalter, D B

    2016-02-01

    The importance of insects in freshwater ecosystems has led to their extensive use in ecological monitoring programs. As freshwater systems are increasingly challenged by salinization and metal contamination, it is important to understand fundamental aspects of aquatic insect physiology (e.g., osmoregulatory processes) that contribute to insect responses to these stressors. Here we compared the uptake dynamics of Na as NaCl, NaHCO3 and Na2SO4 in the caddisfly Hydropsyche betteni across a range of Na concentrations (0.06-15.22 mM) encompassing the vast majority of North American freshwater ecosystems. Sulfate as the major anion resulted in decreased Na uptake rates relative to the chloride and bicarbonate salts. A comparison of Na (as NaHCO3) turnover rates in the caddisfly Hydropsyche sparna and the mayfly Maccaffertium sp. revealed different patterns in the 2 species. Both species appeared to tightly regulate their whole body sodium concentrations (at ∼47±1.8 μmol/g wet wt) across a range of Na concentrations (0.06-15.22 mM) over 7 days. However, at the highest Na concentration (15.22 mM), Na uptake rates in H. sparna (419.1 μM Na g(-1) hr(-1) wet wt) appeared close to saturation while Na uptake rates in Maccaffertium sp. were considerably faster (715 g μM Na g(-1) hr(-1) wet wt) and appeared to not be close to saturation. Na efflux studies in H. sparna revealed that loss rates are commensurate with uptake rates and are responsive to changes in water Na concentrations. A comparison of Na uptake rates (at 0.57 mM Na) across 9 species representing 4 major orders (Ephemeroptera, Plecoptera, Trichoptera and Diptera) demonstrated profound physiological differences across species after accounting for the influence of body weight. Faster Na uptake rates were associated with species described as being sensitive to salinization in field studies. The metals silver (Ag) and copper (Cu), known to be antagonistic to Na uptake in other aquatic taxa did not generally exhibit this effect in aquatic insects. Ag only reduced Na uptake at extremely high concentrations, while Cu generally stimulated Na uptake in aquatic insects, rather than suppress it. These results help explain the lack of insect responses to dissolved metal exposures in traditional toxicity testing and highlight the need to better understand fundamental physiological processes in this ecologically important faunal group. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Polyamine Uptake in Carrot Cell Cultures 1

    PubMed Central

    Pistocchi, Rossella; Bagni, Nello; Creus, José A.

    1987-01-01

    Putrescine and spermidine uptake into carrot (Daucus carota L.) cells in culture was studied. The time course of uptake showed that the two polyamines were very quickly transported into the cells, reaching a maximum absorption within 1 minute. Increasing external polyamine concentrations up to 100 millimolar showed the existence of a biphasic system with different affinities at low and high polyamine concentrations. The cellular localization of absorbed polyamines was such that a greater amount of putrescine was present in the cytoplasmic soluble fraction, while spermidine was mostly present in cell walls. The absorbed polyamines were released into the medium in the presence of increasing external concentrations of the corresponding polyamine or Ca2+. The effects of Ca2+ were different for putrescine and spermidine; putrescine uptake was slightly stimulated by 10 micromolar Ca2+ and inhibited by higher concentrations, while for spermidine uptake there was an increasing stimulation in the Ca2+ concentration range between 10 micromolar and 1 millimolar. La3+ nullified the stimulatory effect of 10 micromolar Ca2+ on putrescine uptake and that of 1 millimolar Ca2+ on spermidine uptake. La3+ at 0.5 to 1 millimolar markedly inhibited the uptake of both polyamines, suggesting that it interferes with the sites of polyamine uptake. Putrescine uptake was affected to a lesser extent by metabolic inhibitors than was spermidine uptake. It is proposed that the entry of polyamines into the cells is driven by the transmembrane electrical gradient, with a possible antiport mechanism between external and internal polyamine molecule. PMID:16665446

  17. An activity-based intervention for obese and physically inactive children organized in primary care: feasibility and impact on fitness and BMI A one-year follow-up study.

    PubMed

    Sola, Kirsten; Brekke, Nina; Brekke, Mette

    2010-12-01

    To investigate the feasibility and impact on BMI and physical fitness of an intervention for obese and inactive children, based on physical activity and carried out in primary health care. A prospective, longitudinal one-year follow-up study. The community of Kristiansand, Norway (80 000 inhabitants). A 40-week structured intervention based on physical training with some lifestyle advice for the obese child and one parent. Subjects. A total of 62 physically inactive children aged 6-14 years with iso-BMI ≥ 30 kg/m². Body mass index (BMI), maximum oxygen uptake, and physical fitness in tests of running, jumping, throwing, and climbing assessed at baseline and after six and 12 months as well as number of dropouts and predicting factors. A total of 49 out of 62 children completed the first six months and 37 children completed 12 months. Dropout rate was higher when parents reported being physically inactive at baseline or avoided physical participation in the intervention. The children's maximum oxygen uptake increased significantly after 12 months from 27.0 to 32.0 ml/kg/min (means), as did physical fitness (endurance, speed, agility, coordination, balance, strength) and BMI was significantly reduced. This one-year activity-based intervention for obese and inactive children performed in primary health care succeeded by increasing cardiovascular capacity and physical fitness combined with reduced BMI in those who completed. Dropout was substantial and depended on the attendance and compliance with physical activity by the parents.

  18. Physical Activation of Oil Palm Empty Fruit Bunch via CO2 Activation Gas for CO2 Adsorption

    NASA Astrophysics Data System (ADS)

    Joseph, C. G.; Quek, K. S.; Daud, W. M. A. W.; Moh, P. Y.

    2017-06-01

    In this study, different parameters for the preparation of activated carbon were investigated for their yield and CO2 capture capabilities. The activated carbon was prepared from Oil Palm Empty Fruit Bunch (OPEFB) via a 2-step physical activation process. The OPEFB was pyrolyzed under inert conditions at 500 °C and activated via CO2. A 2-factorial design was employed and the effects of activation temperature, activation dwell time and gas flow rate on yield and CO2 capture capabilities were compared and studied. The yield obtained ranged from between 20 - 26, whereby the temperature was determined to be the most significant factor in influencing CO2 uptake. The CO2 capture capacity was determined using Temperature Programmed Desorption (TPD) technique. The CO2 uptake of EFB activated carbon achieved was between 1.85 - 2.09 mmol/g. TPD analysis has shown that the surface of AC were of basic nature. AC was found to be able to withhold the CO2 up to 663°C before maximum desorption occurs. The surface area and pore size of OPEFB obtained from BET analysis is 2.17 m2 g-1 and 0.01 cm3 g-1. After activation, both surface area and pore size increased with a maximum observed surface area and pore size of 548.07 m2 g-1 and 0.26 cm3 g-1. Surface morphology, functional groups, pore size and surface area were analyzed using SEM, FT-IR, TPD and BET.

  19. Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests.

    PubMed

    Liu, Min; Li, Changcheng; Xu, Xingliang; Wanek, Wolfgang; Jiang, Ning; Wang, Huimin; Yang, Xiaodong

    2017-11-01

    Evidence shows that many tree species can take up organic nitrogen (N) in the form of free amino acids from soils, but few studies have been conducted to compare organic and inorganic N uptake patterns in temperate and tropical tree species in relation to mycorrhizal status and successional state. We labeled intact tree roots by brief 15N exposures using field hydroponic experiments in a temperate forest and a tropical forest in China. A total of 21 dominant tree species were investigated, 8 in the temperate forest and 13 in the tropical forest. All investigated tree species showed highest uptake rates for NH4+ (ammonium), followed by glycine and NO3- (nitrate). Uptake of NH4+ by temperate trees averaged 12.8 μg N g-1 dry weight (d.w.) root h-1, while those by tropical trees averaged 6.8 μg N g-1 d.w. root h-1. Glycine uptake rates averaged 3.1 μg N g-1 d.w. root h-1 for temperate trees and 2.4 μg N g-1 d.w. root h-1 for tropical trees. NO3- uptake was the lowest (averaging 0.8 μg N g-1 d.w. root h-1 for temperate trees and 1.2 μg N g-1 d.w. root h-1 for tropical trees). Uptake of NH4+ accounted for 76% of the total uptake of all three N forms in the temperate forest and 64% in the tropical forest. Temperate tree species had similar glycine uptake rates as tropical trees, with the contribution being slightly lower (20% in the temperate forest and 23% in the tropical forest). All tree species investigated in the temperate forest were ectomycorrhizal and all species but one in the tropical forest were arbuscular mycorrhizal (AM). Ectomycorrhizal trees showed significantly higher NH4+ and lower NO3- uptake rates than AM trees. Mycorrhizal colonization rates significantly affected uptake rates and contributions of NO3- or NH4+, but depended on forest types. We conclude that tree species in both temperate and tropical forests preferred to take up NH4+, with organic N as the second most important N source. These findings suggest that temperate and tropical forests demonstrate similar N uptake patterns although they differ in physiology of trees and soil biogeochemical processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Integrated crop management practices for maximizing grain yield of double-season rice crop.

    PubMed

    Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing

    2017-01-12

    Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers' practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha -1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.

  1. Role of ethnicity in human papillomavirus vaccination uptake: a cross-sectional study of girls from ethnic minority groups attending London schools

    PubMed Central

    Rockliffe, Lauren; Waller, Jo; Marlow, Laura A V; Forster, Alice S

    2017-01-01

    Objectives Research suggests that girls from ethnic minority groups are less likely to receive the human papillomavirus (HPV) vaccination than white British girls; however, the specific ethnic minority groups that have lower uptake have not been identified. This study aimed to examine the relationship between school-level uptake and ethnicity as well as uptake and other ethnicity-related factors, to understand which specific groups are less likely to receive the vaccination. Methods Aggregated uptake rates from 195 schools were obtained for each of the three recommended vaccine doses from 2008 to 2010. Census data at the lower super output area (LSOA) level for the postcode of each school were also obtained, describing the ethnic breakdown of the resident population (ethnicity, language spoken, religion, proficiency in English and duration of residency in the UK). These were used as proxy measures of the ethnic make-up of the schools. The most prevalent non-majority group for each ethnicity and ethnicity-related factor was assigned to each school. Analyses explored differences in uptake by ethnicity and ethnicity-related factors. Results No significant differences in vaccination uptake were found by ethnicity or ethnicity-related factors, although descriptive differences were apparent. Schools in areas where black ethnicities were the most prevalent non-white British ethnicities had consistently low rates of uptake for all doses. Schools in areas where some Asian ethnicities were the most prevalent non-white British ethnicities had consistently high rates of uptake for all doses. There was evidence of variability in mean uptake rates for ethnicities within ‘black’ and ‘Asian’ ethnic groups. Conclusions Future research would benefit from focusing on specific ethnicities rather than broad ethnic categories. Replication of this study with a larger sample and using complete individual-level data, collected on a national level, would provide a clearer indication of where ethnic differences in HPV vaccination uptake exist. PMID:28235971

  2. Androgens enhance in vivo 2-deoxyglucose uptake by rat striated muscle

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Toop, J.

    1983-01-01

    It is shown that testosterone propionate (TP) causes a striking increase in the in vivo uptake of 2-deoxyglucose (2-DG) by the levator ani muscle of immature male rats, which was found to be uniformly distributed over the entire muscle. After a single subcutaneous injection of TP, no enhancement of 2-DG was observed before 3.5 hr, at which time uptake was increased 2-fold; maximum enhancement (4-fold) was attained at 12 hr. At 72 hr, 2-DG uptake remained elevated at twice the control value. It was determined that the effect of TP probably is mediated by specific androgen receptors. In addition, it was found that the effect of TP was blocked by the simultaneous administration of an androgen antagonist, cyproterone acetate. TP also was found to enhance the uptake of 2-DG in the bulbocavernosus (253 percent over control) and extensor digitorum longus muscles (150 percent over control), but not in the biceps brachii or soleus. It is suggested that the increased uptake of glucose may be an important early step in the anabolic response of muscle to androgens.

  3. Functional significance of cardiac reinnervation in heart transplant recipients.

    PubMed

    Schwaiblmair, M; von Scheidt, W; Uberfuhr, P; Ziegler, S; Schwaiger, M; Reichart, B; Vogelmeier, C

    1999-09-01

    There is accumulating evidence of structural sympathetic reinnervation after human cardiac transplantation. However, the functional significance of reinnervation in terms of exercise capacity has not been established as yet; we therefore investigated the influence of reinnervation on cardiopulmonary exercise testing. After orthotopic heart transplantation 35 patients (mean age, 49.1 +/- 8.4 years) underwent positron emission tomography with scintigraphically measured uptake of C11-hydroxyephedrine (HED), lung function testing, and cardiopulmonary exercise testing. Two groups were defined based on scintigraphic findings, indicating a denervated group (n = 15) with a HED uptake of 5.45%/min and a reinnervated group (n = 20) with a HED uptake of 10.59%/min. The two study groups did not show significant differences with regard to anthropometric data, number of rejection episodes, preoperative hemodynamics, and postoperative lung function data. The reinnervated group had a significant longer time interval from transplantation (1625 +/- 1069 versus 800 +/- 1316 days, p < .05). In transplant recipients with reinnervation, heart rate at maximum exercise (137 +/- 15 versus 120 +/- 20 beats/min, p = .012), peak oxygen uptake (21.0 +/- 4 versus 16.1 +/- 5 mL/min/kg, p = .006), peak oxygen pulse (12.4 +/- 2.9 versus 10.2 +/- 2.7 mL/min/beat, p = .031), and anaerobic threshold (11.2 +/- 1.8 versus 9.5 +/- 2.1 mL/min, p = .046) were significantly increased in comparison to denervated transplant recipients. Additionally, a decreased functional dead space ventilation (0.24 +/- 0.05 versus 0.30 +/- 0.05, p = .004) was observed in the reinnervated group. Our study results support the hypothesis that partial sympathetic reinnervation after cardiac transplantation is of functional significance. Sympathetic reinnervation enables an increased peak oxygen uptake. This is most probably due to partial restoration of the chronotropic and inotropic competence of the heart as well as an improved oxygen delivery to the exercising muscles and a reduced ventilation-perfusion mismatching.

  4. Uptake of Uranium from Seawater by Amidoxime-Based Polymeric Adsorbent: Field Experiments, Modeling, and Updated Economic Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungseung; Tsouris, Constantinos; Oyola, Yatsandra

    2014-04-09

    Uranium recovery from seawater has been investigated for several decades for the purpose of securing nuclear fuel for energy production. In this study, field column experiments have been performed at the Marine Sciences Laboratory of the Pacific Northwest National Laboratory (PNNL) using a laboratory-proven, amidoxime-based polymeric adsorbent developed at the Oak Ridge National Laboratory (ORNL). The adsorbent was packed either in in-line filters or in flow-through columns. The maximum amount of uranium uptake from seawater was 3.3 mg of U/g of adsorbent after 8 weeks of contact between the adsorbent and seawater. This uranium adsorption amount was about 3 timesmore » higher than the maximum amount achieved in this study by a leading adsorbent developed at the Japan Atomic Energy Agency (JAEA).« less

  5. Dietary saturated triacylglycerols suppress hepatic low density lipoprotein receptor activity in the hamster.

    PubMed

    Spady, D K; Dietschy, J M

    1985-07-01

    The liver plays a key role in the regulation of circulating levels of low density lipoproteins (LDL) because it is both the site for the production of and the major organ for the degradation of this class of lipoproteins. In this study, the effects of feeding polyunsaturated or saturated triacylglycerols on receptor-dependent and receptor-independent hepatic LDL uptake were measured in vivo in the hamster. In control animals, receptor-dependent LDL transport manifested an apparent Km value of 85 mg/dl (plasma LDL-cholesterol concentration) and reached a maximum transport velocity of 131 micrograms of LDL-cholesterol/hr per g, whereas receptor-independent uptake increased as a linear function of plasma LDL levels. Thus, at normal plasma LDL-cholesterol concentrations, the hepatic clearance rate of LDL equaled 120 and 9 microliter/hr per g by receptor-dependent and receptor-independent mechanisms, respectively. As the plasma LDL-cholesterol was increased, the receptor-dependent (but not the receptor-independent) component declined. When cholesterol (0.12%) alone or in combination with polyunsaturated triacylglycerols was fed for 30 days, receptor-dependent clearance was reduced to 36-42 microliter/hr per g, whereas feeding of cholesterol plus saturated triacylglycerols essentially abolished receptor-dependent LDL uptake (5 microliter/hr per g). When compared to the appropriate kinetic curves, these findings indicated that receptor-mediated LDL transport was suppressed approximately equal to 30% by cholesterol feeding alone and this was unaffected by the addition of polyunsaturated triacylglycerols to the diet. In contrast, receptor-dependent uptake was suppressed approximately equal to 90% by the intake of saturated triacylglycerols. As compared to polyunsaturated triacylglycerols, the intake of saturated lipids was also associated with significantly higher plasma LDL-cholesterol concentrations and lower levels of cholesteryl esters in the liver.

  6. Multiphase CT scanning and different intravenous contrast media concentrations in combined F-18-FDG PET/CT: Effect on quantitative and clinical assessment.

    PubMed

    Rebière, Marilou; Verburg, Frederik A; Palmowski, Moritz; Krohn, Thomas; Pietsch, Hubertus; Kuhl, Christiane K; Mottaghy, Felix M; Behrendt, Florian F

    2012-08-01

    To evaluate the influence of multiphase CT scanning and different intravenous contrast media on contrast enhancement, attenuation correction and image quality in combined PET/CT. 140 patients were prospectively enrolled for F-18-FDG-PET/CT including a low-dose unenhanced, arterial and venous contrast enhanced CT. The first (second) 70 patients, received contrast medium with 370 (300) mg iodine/ml. The iodine delivery rate (1.3mg/s) and total iodine load (44.4g) were identical for both groups. Contrast enhancement and maximum and mean standardized FDG uptake values (SUVmax and SUVmean) were determined for the un-enhanced, arterial and venous PET/CT at multiple anatomic sites and PET reconstructions were visually evaluated. Arterial contrast enhancement was significantly higher for the 300mg/ml contrast medium compared to 370mgI/ml at all anatomic sites. Venous enhancement was not different between the two contrast media. SUVmean and SUVmax were significantly higher for the contrast enhanced compared to the non-enhanced PET/CT at all anatomic sites (all P<0.001). Tracer uptake was significantly higher in the arterial than in the venous PET/CT in the arteries using both contrast media (all P<0.001). No differences in tracer uptake were found between the contrast media (all P>0.05). Visual assessment revealed no relevant differences between the different PET reconstructions. There is no relevant qualitative influence on the PET scan from the use of different intravenous contrast media in its various phases in combined multiphase PET/CT. For quantitative analysis of tracer uptake it is required to use an identical PET/CT protocol. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Atmospheric nitrous oxide uptake in boreal spruce forest soil

    NASA Astrophysics Data System (ADS)

    Siljanen, Henri; Welti, Nina; Heikkinen, Juha; Biasi, Christina; Martikainen, Pertti

    2017-04-01

    Nitrous oxide (N2O) uptake from the atmosphere has been found in forest soils but environmental factors controlling the uptake and its atmospheric impact are poorly known. We measured N2O fluxes over growing season in a boreal spruce forest having control plots and plots with long nitrogen fertilization history. Also methane (CH4) fluxes were measured to compare the atmospheric impact of N2O and CH4fluxes. Soil chemical and physical characteristics and climatic conditions were measured as background data. Nitrous oxide consumption and uptake mechanisms were measured in complementary laboratory incubation experiments using stable isotope approaches. Gene transcript numbers of nitrous oxide reductase (nosZ) I and II genes were quantified along the incubation with elevated N2O atmosphere. The spruce forests without fertilization history showed highest N2O uptake rates whereas pine forest had low emissions. Nitrous oxide uptake correlated positively with soil moisture, high soil silt content, and low temperature. Nitrous oxide uptake varied seasonally, being highest in spring and autumn when temperature was low and water content was high. The spruce forest was sink for CH4.Methane fluxes were decoupled from the N2O fluxes (i.e. when the N2O uptake was high the CH4 uptake was low). By using GWP approach, the cooling effect of N2O uptake was on average 30% of the cooling effect of CH4 uptake in spruce forest without fertilization. Anoxic conditions promoted higher N2O consumption rates in all soils. Gene transcription of nosZ-I genes were activated at beginning of the incubation. However, atypical/clade-II nosZ was not detected. These results suggests, that also N2O uptake rates have to be considered when accounting for the GHG budget of spruce forests.

  8. Relative contributions of copper oxide nanoparticles and dissolved copper to Cu uptake kinetics of Gulf killifish (Fundulus grandis) embryos

    USGS Publications Warehouse

    Jiang, Chuanjia; Castellon, Benjamin T.; Matson, Cole W.; Aiken, George R.; Hsu-Kim, Heileen

    2017-01-01

    The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3–7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1–10 mg-C L–1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.

  9. Diurnal and Seasonal Variations in the Net Ecosystem CO2 Exchange of a Pasture in the Three-River Source Region of the Qinghai−Tibetan Plateau

    PubMed Central

    Wang, Bin; Jin, Haiyan; Li, Qi; Chen, Dongdong; Zhao, Liang; Tang, Yanhong; Kato, Tomomichi; Gu, Song

    2017-01-01

    Carbon dioxide (CO2) exchange between the atmosphere and grassland ecosystems is very important for the global carbon balance. To assess the CO2 flux and its relationship to environmental factors, the eddy covariance method was used to evaluate the diurnal cycle and seasonal pattern of the net ecosystem CO2 exchange (NEE) of a cultivated pasture in the Three-River Source Region (TRSR) on the Qinghai−Tibetan Plateau from January 1 to December 31, 2008. The diurnal variations in the NEE and ecosystem respiration (Re) during the growing season exhibited single-peak patterns, the maximum and minimum CO2 uptake observed during the noon hours and night; and the maximum and minimum Re took place in the afternoon and early morning, respectively. The minimum hourly NEE rate and the maximum hourly Re rate were −7.89 and 5.03 μmol CO2 m−2 s−1, respectively. The NEE and Re showed clear seasonal variations, with lower values in winter and higher values in the peak growth period. The highest daily values for C uptake and Re were observed on August 12 (−2.91 g C m−2 d−1) and July 28 (5.04 g C m−2 day−1), respectively. The annual total NEE and Re were −140.01 and 403.57 g C m−2 year−1, respectively. The apparent quantum yield (α) was −0.0275 μmol μmol−1 for the entire growing period, and the α values for the pasture’s light response curve varied with the leaf area index (LAI), air temperature (Ta), soil water content (SWC) and vapor pressure deficit (VPD). Piecewise regression results indicated that the optimum Ta and VPD for the daytime NEE were 14.1°C and 0.65 kPa, respectively. The daytime NEE decreased with increasing SWC, and the temperature sensitivity of respiration (Q10) was 3.0 during the growing season, which was controlled by the SWC conditions. Path analysis suggested that the soil temperature at a depth of 5 cm (Tsoil) was the most important environmental factor affecting daily variations in NEE during the growing season, and the photosynthetic photon flux density (PPFD) was the major limiting factor for this cultivated pasture. PMID:28129406

  10. Systematic evaluation of tumoral 99mTc-MAA uptake using SPECT and SPECT/CT in 502 patients before 90Y radioembolization.

    PubMed

    Ilhan, Harun; Goritschan, Anna; Paprottka, Phillip; Jakobs, Tobias F; Fendler, Wolfgang P; Bartenstein, Peter; Hacker, Marcus; Haug, Alexander R

    2015-03-01

    The aim of this study was to evaluate the (99m)Tc-macroaggregated albumin ((99m)Tc-MAA) uptake of primary and secondary liver tumors in a large patient cohort before (90)Y radioembolization. We included 502 patients during the years 2005-2013 (55% male; mean age, 62 ± 11 y), who were examined with (99m)Tc-MAA SPECT or SPECT/CT before planned radioembolization. The patients had colorectal cancer (CRC; n = 195, 38.8%), neuroendocrine tumors (NET; n = 77, 15.3%), mammary cancer (MAM; n = 68, 13.5%), hepatocellular carcinoma (HCC; n = 59, 11.8%), cholangiocellular carcinoma (CCC; n = 40, 8.0%), or urologic tumors (URO; n = 14, 2.8%). SPECT with coregistered contrast-enhanced CT or MR imaging and SPECT/CT images of these patients were analyzed using dedicated software with regard to the (99m)Tc-MAA uptake of the liver tumors. Regions of interest were drawn around the lesions manually and quantified the uptake of up to 3 lesions per patient and also adjacent healthy liver tissue without evidence of tumor. We quantified maximum and mean counts per pixel and calculated tumor-to-background ratio (TBR). Data are reported as mean ± SD. Lesion uptake was classified as being homogeneously high (grade 1), heterogeneously high (grade 2), equal to that of the liver (grade 3), or low (grade 4). Grade 1 uptake was seen in 230 of 1,008 lesions (with the highest rates in sarcoma [47%], MAM [37%], and NET [32%]), grade 2 in 706 lesions (with the highest rates in CRC [77%], HCC [75%], and CCC [74%]), grade 4 in 57 lesions (with the highest rates in pancreatic cancer [17%], sarcoma [SAR] [13%], and MAM [8%]), and grade 3 in only 15 lesions. In quantitative analysis, the mean TBRmax of all lesions was 4.8 ± 4.1 (range, 0.2-50.1), with the highest values in HCC (6.0 ± 4.7; range, 1.4-21.6), NET (5.4 ± 4.9; range, 0.8-43.0), pancreatic cancer (4.0 ± 2.8; range, 0.9-12.2), and CCC (4.7 ± 2.9; range, 0.9-11.6), and the lowest values in SAR (3.5 ± 1.8; range, 0.8-2.7) and MAM (3.6 ± 2.2; range, 0.9-11.6). The mean TBRmean was 1.9 ± 1.0 (range, 0.1-7.2), with the highest values in NET (2.2 ± 1.2; range, 0.2-7.2), HCC (2.1 ± 1.2; range, 0.3-6.3), and CCC (2.0 ± 1.0; range, 0.2-6.3) and the lowest values in MAM (1.7 ± 0.8; range, 0.2-4.1), CRC (1.8 ± 0.9; range, 0.4-6.6), and SAR (1.7 ± 1.1; range, 0.3-3.9). The (99m)Tc-MAA uptake of different tumor entities shows a wide variation, with generally highest values for NET, HCC, and CCC and lowest values for MAM, CRC, and SAR. However, the variation of uptake within the different tumor entities is high. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  11. Aquatic Plant Control Research Program: Chemical Control of Hydrilla in Flowing Water: Herbicide Uptake Characteristics and Concentrations versus Exposure.

    DTIC Science & Technology

    1988-03-01

    and di ecious hydrilla with diquat, endothall, and fluridone , and (c) to examine time-course uptak characteristics of these herbicides by hydrilla...diquat is effective in hydrilla control at a lower rate than is endothall. Uptake of fluridone by excised hydrilla tissue was linear with time when...ambient fluridone levels were 0.1 to 0.5 mg/i. However, a biphasic uptake curve was obtained at the high treatment rate of 1.0 mg/i fluridone . At this

  12. Beneficial role of hydrophytes in removing Cr(VI) from wastewater in association with chromate-reducing bacterial strains Ochrobactrum intermedium and Brevibacterium.

    PubMed

    Faisal, Muhammad; Hasnain, Shahida

    2005-01-01

    This study deals with the use of three chromium-resistant bacterial strains (Ochrobactrum intermedium CrT-1, Brevibacterium CrT-13, and CrM-1) in conjunction with Eichornia crassipes for the removal of toxic chromium from wastewater. Bacterial strains resulted in reduced uptake of chromate into inoculated plants as compared to noninoculated control plants. In the presence of different heavy metals, chromium uptake into the plants was 28.7 and 7.15% less at an initial K2CrO4 concentration of 100 and 500 microg ml(-1) in comparison to a metal free chromium solution. K2CrO4 uptake into the plant occurred at different pHs tested, but maximum uptake was observed at pH 5. Nevertheless, the bacterial strains caused some decrease in chromate uptake into the plants, but the combined effect of plants and bacterial strains conduce more removal of Cr(VI) from the solution.

  13. Recovery of phenotypes obtained by adaptive evolution through inverse metabolic engineering.

    PubMed

    Hong, Kuk-Ki; Nielsen, Jens

    2012-11-01

    In a previous study, system level analysis of adaptively evolved yeast mutants showing improved galactose utilization revealed relevant mutations. The governing mutations were suggested to be in the Ras/PKA signaling pathway and ergosterol metabolism. Here, site-directed mutants having one of the mutations RAS2(Lys77), RAS2(Tyr112), and ERG5(Pro370) were constructed and evaluated. The mutants were also combined with overexpression of PGM2, earlier proved as a beneficial target for galactose utilization. The constructed strains were analyzed for their gross phenotype, transcriptome and targeted metabolites, and the results were compared to those obtained from reference strains and the evolved strains. The RAS2(Lys77) mutation resulted in the highest specific galactose uptake rate among all of the strains with an increased maximum specific growth rate on galactose. The RAS2(Tyr112) mutation also improved the specific galactose uptake rate and also resulted in many transcriptional changes, including ergosterol metabolism. The ERG5(Pro370) mutation only showed a small improvement, but when it was combined with PGM2 overexpression, the phenotype was almost the same as that of the evolved mutants. Combination of the RAS2 mutations with PGM2 overexpression also led to a complete recovery of the adaptive phenotype in galactose utilization. Recovery of the gross phenotype by the reconstructed mutants was achieved with much fewer changes in the genome and transcriptome than for the evolved mutants. Our study demonstrates how the identification of specific mutations by systems biology can direct new metabolic engineering strategies for improving galactose utilization by yeast.

  14. Oxidative phosphorylation. Halide-dependent and halide-independent effects of triorganotin and trioganolead compounds on mitochondrial functions.

    PubMed Central

    Aldridge, W N; Street, B W; Skilleter, D N

    1977-01-01

    1. Each of five triorganotin and five triorganolead compounds was shown to perturb mithochondrial functions in three different ways. One is dependent and two are independent of Cl- in the medium. 2. Structure-activity relationships for the three interactions are described, and compounds suitable as tools for the separate study of each process are defined. 3. In a Cl- -containing medium trimethyltin, triethyltin, trimethyl-lead, triethyl-lead and tri-n-propyl-lead all produce the same maximum rate of ATP hydrolysis and O2 uptake; this rate is much less than that produced by uncoupling agents such as 2,4-dinitrophenol. 4. Increase in ATP hydrolysis and O2 uptake are measures on energy ultilization when triogranotin and triorganolead compounds bring about an exchange of external C1- for intramitochondrial OH- ions. Possible rate-limiting steps in this process are discussed. 5. In a C1- -containing medium ATP synthesis linked to the oxidation of beta-hydroxybutyrate or reduced cytochrone c is less inhibited by triethyltin or triethyl-lead than is ATP synthesis linked to the oxidation of succinate, pyruvate or L-glutamate. 6. The inhibition of ATP synthesis linked to the oxidation of both beta-hydroxybutyrate and reduced cytochrome c consists of two processes: one is a limited uncoupling and is C1- -dependent and the other is a C1- -independent inhibition of the energy-conservation system. 7. The different sensitivities to inhibition by triethyltin of mitochondrial functions involving the oxidation of beta-hydroxybutyrate and succinate are compared and discussed. PMID:24436

  15. Microbial Enzyme Activity, Nutrient Uptake, and Nutrient Limitation in Forested Streams

    EPA Science Inventory

    We measured NH4 + and PO4 -3 uptake length (Sw), uptake velocity (Vf), uptake rate (U), biofilm enzyme activity (BEA), and channel geomorphology in streams draining forested catchments in the Northwestern (Northern California Coast Range and Cascade Mountains) and Southeastern (A...

  16. Experimentally validated mathematical model of analyte uptake by permeation passive samplers.

    PubMed

    Salim, F; Ioannidis, M; Górecki, T

    2017-11-15

    A mathematical model describing the sampling process in a permeation-based passive sampler was developed and evaluated numerically. The model was applied to the Waterloo Membrane Sampler (WMS), which employs a polydimethylsiloxane (PDMS) membrane as a permeation barrier, and an adsorbent as a receiving phase. Samplers of this kind are used for sampling volatile organic compounds (VOC) from air and soil gas. The model predicts the spatio-temporal variation of sorbed and free analyte concentrations within the sampler components (membrane, sorbent bed and dead volume), from which the uptake rate throughout the sampling process can be determined. A gradual decline in the uptake rate during the sampling process is predicted, which is more pronounced when sampling higher concentrations. Decline of the uptake rate can be attributed to diminishing analyte concentration gradient within the membrane, which results from resistance to mass transfer and the development of analyte concentration gradients within the sorbent bed. The effects of changing the sampler component dimensions on the rate of this decline in the uptake rate can be predicted from the model. Performance of the model was evaluated experimentally for sampling of toluene vapors under controlled conditions. The model predictions proved close to the experimental values. The model provides a valuable tool to predict changes in the uptake rate during sampling, to assign suitable exposure times at different analyte concentration levels, and to optimize the dimensions of the sampler in a manner that minimizes these changes during the sampling period.

  17. Influence of environmental conditions on the toxicokinetics of cadmium in the marine copepod Acartia tonsa.

    PubMed

    Pavlaki, Maria D; Morgado, Rui G; van Gestel, Cornelis A M; Calado, Ricardo; Soares, Amadeu M V M; Loureiro, Susana

    2017-11-01

    mMarine and estuarine ecosystems are highly productive areas that often act as a final sink for several pollutants, such as cadmium. Environmental conditions in these habitats can affect metal speciation, as well as its uptake and depuration by living organisms. The aim of this study was to assess cadmium uptake and depuration rates in the euryhaline calanoid copepod Acartia tonsa under different pH, salinity and temperature conditions. Cadmium speciation did not vary with changing pH or temperature, but varied with salinity. Free Cd 2+ ion activity increased with decreasing salinities resulting in increased cadmium concentrations in A. tonsa. However, uptake rate, derived using free Cd 2+ ion activity, showed no significant differences at different salinities indicating a simultaneous combined effect of Cd 2+ speciation and metabolic rates for osmoregulation. Cadmium concentration in A. tonsa and uptake rate increased with increasing pH, showing a peak at the intermediate pH of 7.5, while depuration rate fluctuated, thus suggesting that both parameters are mediated by metabolic processes (to maintain homeostasis at pH levels lower than normal) and ion competition at membrane binding sites. Cadmium concentration in A. tonsa, uptake and depuration rates increased with increasing temperature, a trend that can be attributed to an increase in metabolic energy demand at higher temperatures. The present study shows that cadmium uptake and depuration rates in the marine copepod A. tonsa is mostly affected by biological processes, mainly driven by metabolic mechanisms, and to a lesser extent by metal speciation in the exposure medium. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density.

    PubMed

    Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf

    2015-12-07

    Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High-NLS-L-NPs). Results indicate that a higher NLS density does not result in maximum protein nuclear localization and that a universal optimal density for NPs of different sizes does not exist.

  19. [Effects of nitrogen application rate on potassium uptake and utilization of direct-seeded cotton after wheat harvest].

    PubMed

    Zhang, Guo Wei; Yang, Chang Qin; Liu, Rui Xian; Zhang, Lei; Ni, Wan Chao

    2016-10-01

    By using cotton cultivar CCRI-50 as material, field experiments were conducted in the summer seasons of 2013 and 2014 at the experimental station of Jiangsu Academy of Agricultural Sciences (Nanjing, China) to study the effects of different nitrogen application rates (0, 60, 120, 150, 180 and 240 kg N·hm -2 ) on the potassium uptake and utilization of the cotton plant that was direct-seeded after wheat harvest. Data suggested that the elevated nitrogen application rates increased the cotton potassium uptake of all growth stages, and the largest increment was observed at the peak flowering-boll opening stage. Nitrogen application also changed the uptake percentage of potassium uptake of each stage, i.e., the percentage of potassium uptake decreased in the stage from seedling to peak flowering, while increased in the stage from peak flowering to boll maturing. In addition, the elevated nitrogen applications reduced the decreasing rate of nitrogen concentration in upper fruiting branches, but promoted the decreasing rate in middle and low fruiting branches at later growth stages. As the nitrogen application rate increased, the marginal effect of potassium uptake (promoted amount of potassium uptake due to 1 kg increase of N application) increased first and then decreased, and the lint production efficiency of potassium descended steadily. In cotton plants that were direct-seeded after wheat harvest, potassium and biomass were mainly accumulated in the lower and middle fruiting branches. At the 150 and 180 kg N·hm -2 application levels, much more potassium was allocated to the reproductive organs and the characters and the eigenvalues of simulated curves of potassium concentration and total potassium accumulation were more optimized than those at the higher or the lower N application levels. At the high nitrogen application (more than 180 kg N·hm -2 ) level, the marginal effect of potassium uptake and lint production efficiency decreased, and at the lower nitrogen application (less than 150 kg N·hm -2 ) level, lint yield was lower due to the decrease of economic coefficient of biomass and potassium in the middle and low fruiting branches.

  20. Achieving Lower Nitrogen Balance and Higher Nitrogen Recovery Efficiency Reduces Nitrous Oxide Emissions in North America's Maize Cropping Systems

    PubMed Central

    Omonode, Rex A.; Halvorson, Ardell D.; Gagnon, Bernard; Vyn, Tony J.

    2017-01-01

    Few studies have assessed the common, yet unproven, hypothesis that an increase of plant nitrogen (N) uptake and/or recovery efficiency (NRE) will reduce nitrous oxide (N2O) emission during crop production. Understanding the relationships between N2O emissions and crop N uptake and use efficiency parameters can help inform crop N management recommendations for both efficiency and environmental goals. Analyses were conducted to determine which of several commonly used crop N uptake-derived parameters related most strongly to growing season N2O emissions under varying N management practices in North American maize systems. Nitrogen uptake-derived variables included total aboveground N uptake (TNU), grain N uptake (GNU), N recovery efficiency (NRE), net N balance (NNB) in relation to GNU [NNB(GNU)] and TNU [NNB(TNU)], and surplus N (SN). The relationship between N2O and N application rate was sigmoidal with relatively small emissions for N rates <130 kg ha−1, and a sharp increase for N rates from 130 to 220 kg ha−1; on average, N2O increased linearly by about 5 g N per kg of N applied for rates up to 220 kg ha−1. Fairly strong and significant negative relationships existed between N2O and NRE when management focused on N application rate (r2 = 0.52) or rate and timing combinations (r2 = 0.65). For every percentage point increase, N2O decreased by 13 g N ha−1 in response to N rates, and by 20 g N ha−1 for NRE changes in response to rate-by-timing treatments. However, more consistent positive relationships (R2 = 0.73–0.77) existed between N2O and NNB(TNU), NNB(GNU), and SN, regardless of rate and timing of N application; on average N2O emission increased by about 5, 7, and 8 g N, respectively, per kg increase of NNB(GNU), NNB(TNU), and SN. Neither N source nor placement influenced the relationship between N2O and NRE. Overall, our analysis indicated that a careful selection of appropriate N rate applied at the right time can both increase NRE and reduce N2O. However, N2O reduction benefits of optimum N rate-by-timing practices were achieved most consistently with management systems that reduced NNB through an increase of grain N removal or total plant N uptake relative to the total fertilizer N applied to maize. Future research assessing crop or N management effects on N2O should include N uptake parameter measurements to better understand N2O emission relationships to plant NRE and N uptake. PMID:28690623

  1. Light Conditions Affect the Measurement of Oceanic Bacterial Production via Leucine Uptake

    PubMed Central

    Morán, Xosé Anxelu G.; Massana, Ramon; Gasol, Josep M.

    2001-01-01

    The effect of irradiance in the range of 400 to 700 nm or photosynthetically active radiation (PAR) on bacterial heterotrophic production estimated by the incorporation of 3H-leucine (referred to herein as Leu) was investigated in the northwestern Mediterranean Sea and in a coastal North Atlantic site, with Leu uptake rates ranging over 3 orders of magnitude. We performed in situ incubations under natural irradiance levels of Mediterranean samples taken from five depths around solar noon and compared them to incubations in the dark. In two of the three stations large differences were found between light and dark uptake rates for the surfacemost samples, with dark values being on average 133 and 109% higher than in situ ones. Data obtained in coastal North Atlantic waters confirmed that dark enclosure may increase Leu uptake rates more than threefold. To explain these differences, on-board experiments of Leu uptake versus irradiance were performed with Mediterranean samples from depths of 5 and 40 m. Incubations under a gradient of 12 to 1,731 μmol of photons m−2 s−1 evidenced a significant increase in incorporation rates with increasing PAR in most of the experiments, with dark-incubated samples departing from this pattern. These results were not attributed to inhibition of Leu uptake in the light but to enhanced bacterial response when transferred to dark conditions. The ratio of dark to light uptake rates increased as dissolved inorganic nitrogen concentrations decreased, suggesting that bacterial nutrient deficiency was overcome by some process occurring only in the dark bottles. PMID:11525969

  2. Relation between the location of elements in the periodic table and tumor-uptake rate.

    PubMed

    Ando, A; Ando, I; Hiraki, T; Hisada, K

    1985-01-01

    The bipositive ions and anions, with few exceptions, indicated a low tumor uptake rate. On the other hand, compounds of Hg, Au and Bi, which have a strong binding power to protein, showed a high tumor uptake rate. As Hg2+, Au+ and Bi3+ are soft acids according to the classification of Lewis acids, it was thought that these ions would bind strongly to soft bases (R-SH, R-S-) present in tumor tissue. For many hard acids such as 85Sr2+, 67Ga3+, 181Hf4+, and 95Nb5+, tumor uptake rates are shown as a function of ionic potentials (valency/ionic radii) of the metal ions. Considering the present data and previously reported results, it was presumed that hard acids of trivalence, quadrivalence and pentavalence would replace calcium in the calcium salts of hard bases (calcium salts of acid mucopolysaccharides, etc.). Ionic potentials of alkaline metals and Tl were small, but the tumor-uptake rate of these elements indicated various values. As Ge and Sb are bound by covalent bonds to chloride, GeCl4 and SbCl3 behaved differently from many metallic compounds in tumor tissue.

  3. Comparison of arsenic uptake ability of barnyard grass and rice species for arsenic phytoremediation.

    PubMed

    Sultana, Razia; Kobayashi, Katsuichiro; Kim, Ki-Hyun

    2015-01-01

    In this research, the relative performance in arsenic (As) remediation was evaluated among some barnyard grass and rice species under hydroponic conditions. To this end, four barnyard grass varieties and two rice species were selected and tested for their remediation potential of arsenic. The plants were grown for 2 weeks in As-rich solutions up to 10 mg As L(-1) to measure their tolerance to As and their uptake capabilities. Among the varieties of plants tested in all treatment types, BR-29 rice absorbed the highest amount of As in the root, while Nipponbare translocated the maximum amount of As in the shoot. Himetainubie barnyard grass produced the highest biomass, irrespective of the quantity of As in the solution. In all As-treated solutions, the maximum uptake of As was found in BR-29 followed by Choto shama and Himetainubie. In contrast, while the bioaccumulation factor was found to be the highest in Nipponbare followed by BR-29 and Himetainubie. The results suggest that both Choto shama and Himetainubie barnyard grass varieties should exhibit a great potential for As removal, while BR-29 and Nipponbare rice species are the best option for arsenic phytoremediation.

  4. Within-session responses to high-intensity interval training in spinal cord injury.

    PubMed

    Astorino, Todd Anthony; Thum, Jacob S

    2018-02-01

    Completion of high-intensity interval training (HIIT) increases maximal oxygen uptake and health status, yet its feasibility in persons with spinal cord injury is unknown. To compare changes in cardiorespiratory and metabolic variables between two interval training regimes and moderate intensity exercise. Nine adults with spinal cord injury (duration = 6.8 ± 6.2 year) initially underwent determination of peak oxygen uptake. During subsequent sessions, they completed moderate intensity exercise, HIIT, or sprint interval training. Oxygen uptake, heart rate, and blood lactate concentration were measured. Oxygen uptake and heart rate increased (p < 0.05) during both interval training sessions and were similar (p > 0.05) to moderate intensity exercise. Peak oxygen uptake and heart rate were higher (p < 0.05) with HIIT (90% peak oxygen uptake and 99% peak heart rate) and sprint interval training (80% peak oxygen uptake and 96% peak heart rate) versus moderate intensity exercise. Despite a higher intensity and peak cardiorespiratory strain, all participants preferred interval training versus moderate exercise. Examining long-term efficacy and feasibility of interval training in this population is merited, considering that exercise intensity is recognized as the most important variable factor of exercise programming to optimize maximal oxygen uptake. Implications for Rehabilitation Spinal cord injury (SCI) reduces locomotion which impairs voluntary physical activity, typically resulting in a reduction in peak oxygen uptake and enhanced chronic disease risk. In various able-bodied populations, completion of high-intensity interval training (HIIT) has been consistently reported to improve cardiorespiratory fitness and other health-related outcomes, although its efficacy in persons with SCI is poorly understood. Data from this study in 9 men and women with SCI show similar changes in oxygen uptake and heart in response to HIIT compared to a prolonged bout of aerobic exercise, although peak values were higher in response to HIIT. Due to the higher peak metabolic strain induced by HIIT as well as universal preference for this modality versus aerobic exercise as reported in this study, further work testing utility of HIIT in this population is merited.

  5. Sorption-reduction coupled gold recovery process boosted by Pycnoporus sanguineus biomass: Uptake pattern and performance enhancement via biomass surface modification.

    PubMed

    Shi, Chaohong; Zhu, Nengwu; Kang, Naixin; Wu, Pingxiao; Zhang, Xiaoping; Zhang, Yanhong

    2017-09-01

    Biorecovery is emerging as a promising process to retrieve gold from secondary resources. The present study aimed to explore the uptake pattern of Pycnoporus sanguineus biomass for gold, identify the effective functional groups in gold recovery process, and thus further intensify the process via microbial surface modification. Results showed that P. sanguineus biomass could effectively recover gold with the formation of highly crystal AuNPs without any exogeneous electron donor. Under the conditions of various initial gold concentrations (1.0, 2.0, and 3.0 mM), biomass dosage of 2.0 g/L, solution pH value of 4.0, and incubation temperature of 30°C, the uptake equilibrium established after 4, 8, and 12 h, respectively. The uptake process could be well described by pseudo-second order kinetics model (R 2  = 0.9988) and Langmuir isotherm model (R 2  = 0.9958). The maximum uptake capacity of P. sanguineus reached as high as 358.69 mg/g. Further analysis indicated that amino, carboxyl and hydroxyl groups positively contributed to the uptake process. Among them, amino group significantly favored the uptake of gold during recovery process. When P. sanguineus biomass was modified by introduction of amino group, the gold uptake process was successfully intensified by shortening the uptake period and enhancing the uptake capacity. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1314-1322, 2017. © 2017 American Institute of Chemical Engineers.

  6. Highly selective and stable carbon dioxide uptake in polyindole-derived microporous carbon materials.

    PubMed

    Saleh, Muhammad; Tiwari, Jitendra N; Kemp, K Christain; Yousuf, Muhammad; Kim, Kwang S

    2013-05-21

    Adsorption with solid sorbents is considered to be one of the most promising methods for the capture of carbon dioxide (CO₂) from power plant flue gases. In this study, microporous carbon materials used for CO₂ capture were synthesized by the chemical activation of polyindole nanofibers (PIF) at temperatures from 500 to 800 °C using KOH, which resulted in nitrogen (N)-doped carbon materials. The N-doped carbon materials were found to be microporous with an optimal adsorption pore size for CO₂ of 0.6 nm and a maximum (Brunauer-Emmett-Teller) BET surface area of 1185 m(2) g(-1). The PIF activated at 600 °C (PIF6) has a surface area of 527 m(2) g(-1) and a maximum CO₂ storage capacity of 3.2 mmol g(-1) at 25 °C and 1 bar. This high CO₂ uptake is attributed to its highly microporous character and optimum N content. Additionally, PIF6 material displays a high CO₂ uptake at low pressure (1.81 mmol g(-1) at 0.2 bar and 25 °C), which is the best low pressure CO₂ uptake reported for carbon-based materials. The adsorption capacity of this material remained remarkably stable even after 10 cycles. The isosteric heat of adsorption was calculated to be in the range of 42.7-24.1 kJ mol(-1). Besides the excellent CO₂ uptake and stability, PIF6 also exhibits high selectivity values for CO₂ over N₂, CH₄, and H₂ of 58.9, 12.3, and 101.1 at 25 °C, respectively, and these values are significantly higher than reported values.

  7. Effects of calcium on hepatocyte iron uptake from transferrin, iron-pyrophosphate and iron-ascorbate.

    PubMed

    Nilsen, T

    1991-10-16

    Calcium stimulates hepatocyte iron uptake from transferrin, ferric-iron-pyrophosphate and ferrous-iron-ascorbate. Maximal stimulation of iron uptake is observed at 1-1.5 mM of extra-cellular calcium and the effect is reversible and immediate. Neither the receptor affinity for transferrin, nor the total amounts of transferrin associated with the cells or the rate of transferrin endocytosis are significantly affected by calcium. In the presence of calcium the rate of iron uptake of non-transferrin bound iron increases abruptly at approximate 17 degrees C and 27 degrees C and as assessed by Arrhenius plots, the activation energy is reduced in a calcium dependent manner at approx. 27 degrees C. At a similar temperature, i.e., between 25 degrees C and 28 degrees C, calcium increases the rates of cellular iron uptake from transferrin in a way that is not reflected in the rate of transferrin endocytosis. By the results of this study it is concluded that calcium increases iron transport across the plasma membrane by a mechanism dependent on membrane fluidity.

  8. Correction for photobleaching in dynamic fluorescence microscopy: application in the assessment of pharmacokinetic parameters in ultrasound-mediated drug delivery

    NASA Astrophysics Data System (ADS)

    Derieppe, M.; Bos, C.; de Greef, M.; Moonen, C.; de Senneville, B. Denis

    2016-01-01

    We have previously demonstrated the feasibility of monitoring ultrasound-mediated uptake of a hydrophilic model drug in real time with dynamic confocal fluorescence microscopy. In this study, we evaluate and correct the impact of photobleaching to improve the accuracy of pharmacokinetic parameter estimates. To model photobleaching of the fluorescent model drug SYTOX Green, a photobleaching process was added to the current two-compartment model describing cell uptake. After collection of the uptake profile, a second acquisition was performed when SYTOX Green was equilibrated, to evaluate the photobleaching rate experimentally. Photobleaching rates up to 5.0 10-3 s-1 were measured when applying power densities up to 0.2 W.cm-2. By applying the three-compartment model, the model drug uptake rate of 6.0 10-3 s-1 was measured independent of the applied laser power. The impact of photobleaching on uptake rate estimates measured by dynamic fluorescence microscopy was evaluated. Subsequent compensation improved the accuracy of pharmacokinetic parameter estimates in the cell population subjected to sonopermeabilization.

  9. Baseline Tumor Lipiodol Uptake after Transarterial Chemoembolization for Hepatocellular Carcinoma: Identification of a Threshold Value Predicting Tumor Recurrence.

    PubMed

    Matsui, Yusuke; Horikawa, Masahiro; Jahangiri Noudeh, Younes; Kaufman, John A; Kolbeck, Kenneth J; Farsad, Khashayar

    2017-12-01

    The aim of the study was to evaluate the association between baseline Lipiodol uptake in hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE) with early tumor recurrence, and to identify a threshold baseline uptake value predicting tumor response. A single-institution retrospective database of HCC treated with Lipiodol-TACE was reviewed. Forty-six tumors in 30 patients treated with a Lipiodol-chemotherapy emulsion and no additional particle embolization were included. Baseline Lipiodol uptake was measured as the mean Hounsfield units (HU) on a CT within one week after TACE. Washout rate was calculated dividing the difference in HU between the baseline CT and follow-up CT by time (HU/month). Cox proportional hazard models were used to correlate baseline Lipiodol uptake and other variables with tumor response. A receiver operating characteristic (ROC) curve was used to identify the optimal threshold for baseline Lipiodol uptake predicting tumor response. During the follow-up period (mean 5.6 months), 19 (41.3%) tumors recurred (mean time to recurrence = 3.6 months). In a multivariate model, low baseline Lipiodol uptake and higher washout rate were significant predictors of early tumor recurrence ( P = 0.001 and < 0.0001, respectively). On ROC analysis, a threshold Lipiodol uptake of 270.2 HU was significantly associated with tumor response (95% sensitivity, 93% specificity). Baseline Lipiodol uptake and washout rate on follow-up were independent predictors of early tumor recurrence. A threshold value of baseline Lipiodol uptake > 270.2 HU was highly sensitive and specific for tumor response. These findings may prove useful for determining subsequent treatment strategies after Lipiodol TACE.

  10. AMPKα2 deficiency uncovers time dependency in the regulation of contraction-induced palmitate and glucose uptake in mouse muscle.

    PubMed

    Abbott, Marcia J; Bogachus, Lindsey D; Turcotte, Lorraine P

    2011-07-01

    AMP-activated protein kinase (AMPK) is a fuel sensor in skeletal muscle with multiple downstream signaling targets that may be triggered by increases in intracellular Ca(2+) concentration ([Ca(2+)]). The purpose of this study was to determine whether increases in intracellular [Ca(2+)] induced by caffeine act solely via AMPKα(2) and whether AMPKα(2) is essential to increase glucose uptake, fatty acid (FA) uptake, and FA oxidation in contracting skeletal muscle. Hindlimbs from wild-type (WT) or AMPKα(2) dominant-negative (DN) transgene mice were perfused during rest (n = 11), treatment with 3 mM caffeine (n = 10), or muscle contraction (n = 11). Time-dependent effects on glucose and FA uptake were uncovered throughout the 20-min muscle contraction perfusion period (P < 0.05). Glucose uptake rates did not increase in DN mice during muscle contraction until the last 5 min of the protocol (P < 0.05). FA uptake rates were elevated at the onset of muscle contraction and diminished by the end of the protocol in DN mice (P < 0.05). FA oxidation rates were abolished in the DN mice during muscle contraction (P < 0.05). The DN transgene had no effect on caffeine-induced FA uptake and oxidation (P > 0.05). Glucose uptake rates were blunted in caffeine-treated DN mice (P < 0.05). The DN transgene resulted in a greater use of intramuscular triglycerides as a fuel source during muscle contraction. The DN transgene did not alter caffeine- or contraction-mediated changes in the phosphorylation of Ca(2+)/calmodulin-dependent protein kinase I or ERK1/2 (P > 0.05). These data suggest that AMPKα(2) is involved in the regulation of substrate uptake in a time-dependent manner in contracting muscle but is not necessary for regulation of FA uptake and oxidation during caffeine treatment.

  11. Optimum moisture levels for biodegradation of mortality composting envelope materials.

    PubMed

    Ahn, H K; Richard, T L; Glanville, T D

    2008-01-01

    Moisture affects the physical and biological properties of compost and other solid-state fermentation matrices. Aerobic microbial systems experience different respiration rates (oxygen uptake and CO2 evolution) as a function of moisture content and material type. In this study the microbial respiration rates of 12 mortality composting envelope materials were measured by a pressure sensor method at six different moisture levels. A wide range of respiration (1.6-94.2mg O2/g VS-day) rates were observed for different materials, with alfalfa hay, silage, oat straw, and turkey litter having the highest values. These four envelope materials may be particularly suitable for improving internal temperature and pathogen destruction rates for disease-related mortality composting. Optimum moisture content was determined based on measurements across a range that spans the maximum respiration rate. The optimum moisture content of each material was observed near water holding capacity, which ranged from near 60% to over 80% on a wet basis for all materials except a highly stabilized soil compost blend (optimum around 25% w.b.). The implications of the results for moisture management and process control strategies during mortality composting are discussed.

  12. Nitrogen removal in maturation waste stabilisation ponds via biological uptake and sedimentation of dead biomass.

    PubMed

    Camargo Valero, M A; Mara, D D; Newton, R J

    2010-01-01

    In this work a set of experiments was undertaken in a pilot-scale WSP system to determine the importance of organic nitrogen sedimentation on ammonium and total nitrogen removals in maturation ponds and its seasonal variation under British weather conditions, from September 2004 to May 2007. The nitrogen content in collected sediment samples varied from 4.17% to 6.78% (dry weight) and calculated nitrogen sedimentation rates ranged from 273 to 2868 g N/ha d. High ammonium removals were observed together with high concentrations of chlorophyll-a in the pond effluent. Moreover, chlorophyll-a had a very good correlation with the corresponding increment of VSS (algal biomass) and suspended organic nitrogen (biological nitrogen uptake) in the maturation pond effluents. Therefore, when ammonium removal reached its maximum, total nitrogen removal was very poor as most of the ammonia taken up by algae was washed out in the pond effluent in the form of suspended solids. After sedimentation of the dead algal biomass, it was clear that algal-cell nitrogen was recycled from the sludge layer into the pond water column. Recycled nitrogen can either be taken up by algae or washed out in the pond effluent. Biological (mainly algal) uptake of inorganic nitrogen species and further sedimentation of dead biomass (together with its subsequent mineralization) is one of the major mechanisms controlling in-pond nitrogen recycling in maturation WSP, particularly when environmental and operational conditions are favourable for algal growth.

  13. Heterogeneous Reaction of SO2 on Manganese Oxides: the Effect of Crystal Structure and Relative Humidity.

    PubMed

    Yang, Weiwei; Zhang, Jianghao; Ma, Qingxin; Zhao, Yan; Liu, Yongchun; He, Hong

    2017-07-03

    Manganese oxides from anthropogenic sources can promote the formation of sulfate through catalytic oxidation of SO 2 . In this study, the kinetics of SO 2 reactions on MnO 2 with different morphologies (α, β, γ and δ) was investigated using flow tube reactor and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Under dry conditions, the reactivity towards SO 2 uptake was highest on δ-MnO 2 but lowest on β-MnO 2 , with a geometric uptake coefficient (γ obs ) of (2.42 ± 0.13) ×10 -2 and a corrected uptake coefficient (γ c ) of (1.48 ± 0.21) ×10 -6 for the former while γ obs of (3.35 ± 0.43) ×10 -3 and γ c of (7.46 ± 2.97) ×10 -7 for the latter. Under wet conditions, the presence of water altered the chemical form of sulfate and was in favor for the heterogeneous oxidation of SO 2 . The maximum sulfate formation rate was reached at 25% RH and 45% for δ-MnO 2 and γ-MnO 2 , respectively, possibly due to their different crystal structures. The results suggest that morphologies and RH are important factors influencing the heterogeneous reaction of SO 2 on mineral aerosols, and that aqueous oxidation process involving transition metals of Mn might be a potential important pathway for SO 2 oxidation in the atmosphere.

  14. Hot and Cool Spots of Primary Production, Respiration and 15N Nitrate and Ammonium Uptake: Spatial Heterogeneity in Tropical Streams and Rivers

    NASA Astrophysics Data System (ADS)

    Dodds, W. K.; Tromboni, F.; Neres-Lima, V.; Zandoná, E.; Moulton, T. P.

    2016-12-01

    While whole-stream measures of metabolism and uptake have become common methods to characterize biogeochemical transport and processing, less is known about how nitrogen (N) uptake, gross primary production (GPP) and ecosystem respiration (ER) covary among different stream substrata as smaller scales. We measured 15N ammonium and nitrate uptake seperately, and GPP and ER of ecosystem compartments (leaves, epilithon, sand-associated biota and macrophytes) in closed circulating chambers in three streams/ rivers of varied size. The streams drain pristine Brazilian Atlantic Rainforest watersheds and are all within a few km of eachother. The smallest stream had dense forest canopy cover; the largest river was almost completely open. GPP could not be detected in the closed canopy stream. Epilithon (biofilms on rocks) was a dominant compartment for GPP and N uptake in the two open streams, and macrophytes rivaled epilithon GPP and N uptake rates in the most open stream. Even though leaves covered only 1-3% of the stream bottom, they could account for around half of all the ER in the streams but almost no N uptake. Sand had minimal rates of N uptake, GPP and R associated with it in all streams due to relatively low organic material content. The data suggest that N uptake, GPP and ER of different substrata are not closely linked over relatively small spatial (dm) scales, and that different biogeochemical processes may map to different hot and cool spots for ecosystem rates.

  15. Correlation of {sup 18}F-FDG Avid Volumes on Pre–Radiation Therapy and Post–Radiation Therapy FDG PET Scans in Recurrent Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shusharina, Nadya, E-mail: nshusharina@partners.org; Cho, Joseph; Sharp, Gregory C.

    2014-05-01

    Purpose: To investigate the spatial correlation between high uptake regions of 2-deoxy-2-[{sup 18}F]-fluoro-D-glucose positron emission tomography ({sup 18}F-FDG PET) before and after therapy in recurrent lung cancer. Methods and Materials: We enrolled 106 patients with inoperable lung cancer into a prospective study whose primary objectives were to determine first, the earliest time point when the maximum decrease in FDG uptake representing the maximum metabolic response (MMR) is attainable and second, the optimum cutoff value of MMR based on its predicted tumor control probability, sensitivity, and specificity. Of those patients, 61 completed the required 4 serial {sup 18}F-FDG PET examinations aftermore » therapy. Nineteen of 61 patients experienced local recurrence at the primary tumor and underwent analysis. The volumes of interest (VOI) on pretherapy FDG-PET were defined by use of an isocontour at ≥50% of maximum standard uptake value (SUV{sub max}) (≥50% of SUV{sub max}) with correction for heterogeneity. The VOI on posttherapy images were defined at ≥80% of SUV{sub max}. The VOI of pretherapy and posttherapy {sup 18}F-FDG PET images were correlated for the extent of overlap. Results: The size of VOI at pretherapy images was on average 25.7% (range, 8.8%-56.3%) of the pretherapy primary gross tumor volume (GTV), and their overlap fractions were 0.8 (95% confidence interval [CI]: 0.7-0.9), 0.63 (95% CI: 0.49-0.77), and 0.38 (95% CI: 0.19-0.57) of VOI of posttherapy FDG PET images at 10 days, 3 months, and 6 months, respectively. The residual uptake originated from the pretherapy VOI in 15 of 17 cases. Conclusions: VOI defined by the SUV{sub max}-≥50% isocontour may be a biological target volume for escalated radiation dose.« less

  16. The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae.

    PubMed

    Klein, Mathias; Islam, Zia-Ul; Knudsen, Peter Boldsen; Carrillo, Martina; Swinnen, Steve; Workman, Mhairi; Nevoigt, Elke

    2016-12-01

    Glycerol is an abundant by-product during biodiesel production and additionally has several assets compared to sugars when used as a carbon source for growing microorganisms in the context of biotechnological applications. However, most strains of the platform production organism Saccharomyces cerevisiae grow poorly in synthetic glycerol medium. It has been hypothesized that the uptake of glycerol could be a major bottleneck for the utilization of glycerol in S. cerevisiae . This species exclusively relies on an active transport system for glycerol uptake. This work demonstrates that the expression of predicted glycerol facilitators (Fps1 homologues) from superior glycerol-utilizing yeast species such as Pachysolen tannophilus , Komagataella pastoris , Yarrowia lipolytica and Cyberlindnera jadinii significantly improves the growth performance on glycerol of the previously selected glycerol-consuming S. cerevisiae wild-type strain (CBS 6412-13A). The maximum specific growth rate increased from 0.13 up to 0.18 h -1 and a biomass yield coefficient of 0.56 g DW /g glycerol was observed. These results pave the way for exploiting the assets of glycerol in the production of fuels, chemicals and pharmaceuticals based on baker's yeast.

  17. Kd Values for Agricultural and Surface Soils for Use in Hanford Site Farm, Residential, and River Shoreline Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R. Jeffrey

    This report provides best estimate Kd values and a minimum and maximum range of Kd values to be used for agricultural soils and Columbia River bank sediments that exist today or would exist in the future when portions of the Hanford Site are released for farming, residential, and recreational use after the U. S. Department of Energy (DOE) completes clean up of defense waste on the site. The Kd values should be used to determine the fate and transport rates of contaminants and their availability for plant and animal uptake in selected non-groundwater scenarios included in Hanford Site environmental impactmore » statements, risk assessments and specific facility performance assessments. This report describes scenarios such as a small farm where drilling of a well inadvertently goes through buried waste and brings waste to the surface, allowing the tailings to become available for direct human exposure or incorporation into garden crops and farm animals used for food by the farm family. The Kd values recommended in this report can also be used to calculate sediment-water partitioning factors used to predict plant and animal uptake from interaction with the contaminated soil.« less

  18. Fetal radiation dose estimates for I-131 sodium iodide in cases where conception occurs after administration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sparks, R.B.; Stabin, M.G.

    1999-01-01

    After administration of I-131 to the female patient, the possibility of radiation exposure of the embryo/fetus exists if the patient becomes pregnant while radioiodine remains in the body. Fetal radiation dose estimates for such cases were calculated. Doses were calculated for various maternal thyroid uptakes and time intervals between administration and conception, including euthyroid and hyperthyroid cases. The maximum fetal dose calculating was about 9.8E-03 mGy/MBq, which occurred with 100% maternal thyroid uptake and a 1 week interval between administration and conception. Placental crossover of the small amount of radioiodine remaining 90 days after conception was also considered. Such crossovermore » could result in an additional fetal dose of 9.8E-05 mGy/MBq and a maximum fetal thyroid self dose of 3.5E-04 mGy/MBq.« less

  19. The effects of in-flight treadmill exercise on postflight orthostatic tolerance

    NASA Technical Reports Server (NTRS)

    Siconolfi, Steven F.; Charles, John B.

    1992-01-01

    In-flight aerobic exercise is thought to decrease the deconditioning effects of microgravity. Two deconditioning characteristics are the decreases in aerobic capacity (maximum O2 uptake) and an increased cardiovascular response to orthostatic stress (supine to standing). Changes in both parameters were examined after Shuttle flights of 8 to 11 days in astronauts who performed no in-flight exercise, a lower than normal volume of exercise, and a near-normal volume of exercise. The exercise regimen was a traditional continuous protocol. Maximum O2 uptake was maintained in astronauts who completed a near-normal exercise volume of in-flight exercise. Cardiovascular responses to stand test were equivocal among the groups. The use of the traditional exercise regimen as a means to maintain adequate orthostatic responses produced equivocal responses. A different exercise prescription may be more effective in maintaining both exercise capacity and orthostatic tolerance.

  20. A study in the adsorption of Fe(2+) and NO(3)(-) on pine needles based hydrogels.

    PubMed

    Chauhan, Ghanshyam S; Chauhan, Sandeep; Kumar, Sunil; Kumari, Anita

    2008-09-01

    Novel supports for use as cation and anion adsorbents were prepared from lignocellulosics using pine needles and their carboxymethylated forms by network/hydrogel formation with acrylamide and N,N-methylene bisacrylamide. The hydrogels thus prepared were further functionalized by partial alkaline hydrolysis with 0.5 N NaOH and were characterized by FTIR, SEM and nitrogen analysis. Adsorption of Fe(2+) on these hydrogels was carried as a function of time, temperature, pH and ionic strength. The hydrogel having the maximum adsorption capacity was loaded with Fe(2+) at the conditions those afforded maximum uptake and was used as novel anionic adsorbent for NO(3)(-). The water uptake capacities and biodegradability of the hydrogels before and after the ion loading was studied to evaluate the possible end-uses of these hydrogels as alternate materials in the removal of ionic species from water.

  1. Evaluation of a low-carbohydrate diet-based preparation protocol without fasting for cardiac PET/MR imaging.

    PubMed

    Nensa, Felix; Tezgah, E; Schweins, K; Goebel, J; Heusch, P; Nassenstein, K; Schlosser, T; Poeppel, T D

    2017-06-01

    Assessment of increased glucose uptake in inflammatory or malignant myocardial disease using PET/MRI relies on uptake suppression in normal myocardium. We evaluated the efficacy of a ≥24 hours high-fat, low-carbohydrate, and protein-permitted diet (HFLCPP) in combination with unfractionated heparin for suppression of "physiologic" myocardial glucose uptake. PET/MRI was successfully performed in 89 patients. HFLCPP was started ≥24 hours prior to PET/MRI. All patients received i.v. injection of unfractionated heparin (50 IU·kg -1 ) 15 minutes prior to FDG administration. Left ventricular FDG uptake was visually evaluated by two readers. Diffuse myocardial uptake exceeding liver uptake, isolated uptake in the lateral wall, or diffuse uptake in the entire circumference of the heart base were defined as failed suppression. Homogeneous myocardial uptake below liver uptake with/without focal uptake was defined as successful suppression. Success rate was 84%. Suppression was unsuccessful in 14 patients. No significant influence of gender (P = .40) or age (P = .21) was found. However, insufficient suppression was more common in patients younger than 45 years (20% vs 7%). PET/MR imaging completion rate was >97%. A HFLCPP diet in combination with unfractionated heparin was successfully implemented for cardiac PET/MRI and resulted in a sufficient suppression of myocardial FDG uptake in 84% of patients.

  2. Uptake Kinetics of Arsenic Species in Rice Plants

    PubMed Central

    Abedin, Mohammed Joinal; Feldmann, Jörg; Meharg, Andy A.

    2002-01-01

    Arsenic (As) finds its way into soils used for rice (Oryza sativa) cultivation through polluted irrigation water, and through historic contamination with As-based pesticides. As is known to be present as a number of chemical species in such soils, so we wished to investigate how these species were accumulated by rice. As species found in soil solution from a greenhouse experiment where rice was irrigated with arsenate contaminated water were arsenite, arsenate, dimethylarsinic acid, and monomethylarsonic acid. The short-term uptake kinetics for these four As species were determined in 7-d-old excised rice roots. High-affinity uptake (0–0.0532 mm) for arsenite and arsenate with eight rice varieties, covering two growing seasons, rice var. Boro (dry season) and rice var. Aman (wet season), showed that uptake of both arsenite and arsenate by Boro varieties was less than that of Aman varieties. Arsenite uptake was active, and was taken up at approximately the same rate as arsenate. Greater uptake of arsenite, compared with arsenate, was found at higher substrate concentration (low-affinity uptake system). Competitive inhibition of uptake with phosphate showed that arsenite and arsenate were taken up by different uptake systems because arsenate uptake was strongly suppressed in the presence of phosphate, whereas arsenite transport was not affected by phosphate. At a slow rate, there was a hyperbolic uptake of monomethylarsonic acid, and limited uptake of dimethylarsinic acid. PMID:11891266

  3. Bioaccumulation of Fe2O3(magnetic) nanoparticles in Ceriodaphnia dubia.

    PubMed

    Hu, Ji; Wang, Demin; Wang, Jiangtao; Wang, Jianmin

    2012-03-01

    While nano-Fe(2)O(3)(magnetic) is generally considered non-toxic, it could serve as a carrier of other toxic chemicals such as As(V) and enhance their toxicity. The bioaccumulation of nano-Fe(2)O(3)(m) with different exposure times, NP concentrations, and pH conditions was investigated using Ceriodaphnia dubia (C. dubia) as the model organism. Under natural pH conditions, C. dubia significantly accumulated nano-Fe(2)O(3)(m) in the gut, with the maximum accumulation being achieved after 6 h of exposure. The concentration of nano-Fe(2)O(3) also impacted its accumulation, with the maximum uptake occurring at 20 mg/L or more. In addition, the highest bioaccumulation occurred in a pH range of 7-8 where the highest feeding rate was reported, confirming that the ingestion of NPs is the main route of nano-Fe(2)O(3)(m) bioaccumulation. In a clean environment without NPs, depuration of nano-Fe(2)O(3)(m) occurred, and food addition accelerated the depuration process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Biodistribution of [(68)Ga]PSMA-HBED-CC in Patients with Prostate Cancer: Characterization of Uptake in Normal Organs and Tumour Lesions.

    PubMed

    Prasad, Vikas; Steffen, Ingo G; Diederichs, Gerd; Makowski, Marcus R; Wust, Peter; Brenner, Winfried

    2016-06-01

    The aim of this study was to determine the physiological and pathophysiological biodistribution of [(68)Ga]PSMA-HBED-CC (PSMA-11) ([(68)Ga]PSMA) in patients with prostate cancer (PCA) to establish the range of normal uptake in relevant organs and primary prostate tumours, locally recurrent PCA, lymph and bone metastases and other metastatic lesions. Additionally, we aimed to determine a cut-off uptake value for differentiation of primary tumours from normal prostate tissue. Overall, [(68)Ga]PSMA positron emission tomography/x-ray computed tomography (PET/CT) of 101 patients (mean age 69.1 years) with PCA was analysed retrospectively. For assessment of tracer biodistribution, maximum standardized uptake values (SUVmax) were calculated for various normal organs, as well as for primary tumours (PT) and/or metastases. Results are presented as median, interquartile range (IQR; 25th quantil-75th quantil) and range (minimum-maximum). [(68)Ga]PSMA PET/CT was performed 50 min (range 30-126) after injection of 109 MBq (range 84-158). Regarding biodistribution, highest uptake (median/IQR/range) of the tracer was found in the kidneys (49.6/40.7-57.6/2.7-97.0) followed by the submandibular glands (17.3/13.7-21.2/7.5-30.4), parotid glands (16.1/12.2-19.8/5.5-30.9) and duodenum (13.8/10.5-17.2/5.8-26.9). The best cut-off value for differentiating physiological uptake in the primary tumour from that in the prostate was found to be an SUVmax of 3.2. The median SUVmax in the PT (n = 35), locally recurrent PCA (n = 8), lymph node (n = 166), bone (n = 157) and other metastases (n = 3) were 10.2, 5.9, 6.2, 7.4 and 3.8, respectively. The best cut-off values for differentiating non-pathological uptake in lymph nodes and bones from tumour uptake were found to be SUVmax of 3.2 and 1.9, respectively. Patients with PSA <2 had significantly lower SUVmax in bone metastases as compared to patients with PSA ≥2 (p < 0.01). This biodistribution study provided a broad range of uptake data of [(68)Ga]PSMA-11 for normal organs/tissues, primary prostate tumours and metastatic lesions based on a large patient cohort. Both PT and small metastatic lesions were detectable due to their high tracer uptake. Four-times-higher median uptake in PT in comparison to normal prostate stroma resulted in a high diagnostic accuracy that could potentially be used for multimodal image-guided biopsy with dedicated reconstruction software.

  5. Role of ethnicity in human papillomavirus vaccination uptake: a cross-sectional study of girls from ethnic minority groups attending London schools.

    PubMed

    Rockliffe, Lauren; Waller, Jo; Marlow, Laura A V; Forster, Alice S

    2017-02-23

    Research suggests that girls from ethnic minority groups are less likely to receive the human papillomavirus (HPV) vaccination than white British girls; however, the specific ethnic minority groups that have lower uptake have not been identified. This study aimed to examine the relationship between school-level uptake and ethnicity as well as uptake and other ethnicity-related factors, to understand which specific groups are less likely to receive the vaccination. Aggregated uptake rates from 195 schools were obtained for each of the three recommended vaccine doses from 2008 to 2010. Census data at the lower super output area (LSOA) level for the postcode of each school were also obtained, describing the ethnic breakdown of the resident population (ethnicity, language spoken, religion, proficiency in English and duration of residency in the UK). These were used as proxy measures of the ethnic make-up of the schools. The most prevalent non-majority group for each ethnicity and ethnicity-related factor was assigned to each school. Analyses explored differences in uptake by ethnicity and ethnicity-related factors. No significant differences in vaccination uptake were found by ethnicity or ethnicity-related factors, although descriptive differences were apparent. Schools in areas where black ethnicities were the most prevalent non-white British ethnicities had consistently low rates of uptake for all doses. Schools in areas where some Asian ethnicities were the most prevalent non-white British ethnicities had consistently high rates of uptake for all doses. There was evidence of variability in mean uptake rates for ethnicities within 'black' and 'Asian' ethnic groups. Future research would benefit from focusing on specific ethnicities rather than broad ethnic categories. Replication of this study with a larger sample and using complete individual-level data, collected on a national level, would provide a clearer indication of where ethnic differences in HPV vaccination uptake exist. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Changes in calcium uptake rate by rat cardiac mitochondria during postnatal development.

    PubMed

    Bassani, R A; Fagian, M M; Bassani, J W; Vercesi, A E

    1998-10-01

    Ca2+ uptake, transmembrane electrical potential (Deltapsim) and oxygen consumption were measured in isolated ventricular mitochondria of rats from 3 days to 5 months of age. Estimated values of ruthenium red-sensitive, succinate-supported maximal rate of Ca2+ uptake (Vmax, expressed as nmol Ca2+/min/mg protein) were higher in neonates and gradually fell during postnatal development (from 435+/-24 at 3-6 days, to 156+/-10 in adults,P<0.001), whereas K0.5 values (approximately 10 microM were not significantly affected by age. Under similar conditions, mitochondria from adults (5 months old) and neonates (4-6 days old) showed comparable state 4 (succinate and alpha-ketoglutarate as substrates) and state 3ADP (alpha-ketoglutarate-supported) respiration rates, as well as Deltapsim values (approximately-150 mV). Respiration-independent Deltapsim and Ca2+ uptake, supported by valinomycin-induced K+ efflux were also investigated at these ages. A transient Deltapsim (approximately -30 mV) was evoked by valinomycin in both neonatal and adult mitochondria. Respiration-independent Ca2+ uptake was also transient, but its initial rate was significantly higher in neonates than in adults (49. 4+/-10.0v 28.0+/-5.7 mmol Ca2+/min/mg protein,P<0.01). These results indicate that Ca2+ uptake capacity of rat cardiac mitochondria is remarkably high just after birth and declines over the first weeks of postnatal life, without change in apparent affinity of the transporter. Increased mitochondrial Ca2+ uptake rate in neonates appears to be related to the uniporter itself, rather than to modification of the driving force of the transport. Copyright 1998 Academic Press

  7. Rate and predictors of human papillomavirus vaccine uptake among women who have sex with women in the United States, the National Health and Nutrition Examination Survey, 2009-2012.

    PubMed

    Makris, Nicole; Vena, Catherine; Paul, Sudeshna

    2016-12-01

    To examine rates and associated correlates of human papilloma virus vaccine uptake in women who have sex with women in the United States, and to determine whether they differ from those in women who do not have sex with women. Women who have sex with women are at risk for human papilloma virus infection but are less likely to receive preventive gynaecological services. Little research has been carried out to evaluate human papilloma virus vaccination rates and associated predictors of vaccination uptake in this population. Cross-sectional descriptive study. Data from two consecutive cohorts of the National Health and Nutrition Examination Survey conducted by the United States' Centers for Disease Control were analysed. The sample (N = 1105) consisted of women aged 18-26 years. There was no difference in human papilloma virus vaccine uptake between women who have sex with women and women who do not have sex with women. Overall, the vaccination rate was low (32·5%). Having health insurance and more education were significant predictors of vaccine uptake in women who have sex with women. Higher education and younger age were predictors in women who do not have sex with women. Vaccination rates of women are far lower than the national target of 80%. The predictors of vaccine uptake were different in women who have sex with women than for women who do not have sex with women. Women in their 20s (regardless of their sexual orientation) should be recognised as an undervaccinated population and require targeted interventions to improve vaccination uptake. © 2016 John Wiley & Sons Ltd.

  8. Coral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH

    PubMed Central

    Godinot, Claire; Houlbrèque, Fanny

    2011-01-01

    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification. PMID:21949839

  9. Determinants of physiological uptake of 18F-fluorodeoxyglucose in palatine tonsils.

    PubMed

    Birkin, Emily; Moore, Katherine S; Huang, Chao; Christopher, Marshall; Rees, John I; Jayaprakasam, Vetrisudar; Fielding, Patrick A

    2018-06-01

    To determine the extent of physiological variation of uptake of F-flurodeoxyglucose (FDG) within palatine tonsils. To define normal limits for side-to-side variation and characterize factors affecting tonsillar uptake of FDG.Over a period of 16 weeks 299 adult patients at low risk for head and neck pathology, attending our center for FDG positron emission tomography/computed tomography (PET/CT) scans were identified. The maximum standardized uptake value (SUVmax) was recorded for each palatine tonsil. For each patient age, gender, smoking status, scan indication and prior tonsillectomy status as well as weather conditions were noted.There was a wide variation in palatine tonsil FDG uptake with SUVmax values between 1.3 and 11.4 recorded. There was a strong left to right correlation for tonsillar FDG uptake within each patient (P < .01). The right palatine tonsil showed increased FDG uptake (4.63) compared to the left (4.47) (P < .01). In multivariate analysis, gender, scan indication, and prevailing weather had no significant impact of tonsillar FDG uptake. Lower tonsillar uptake was seen in patients with a prior history of tonsillectomy (4.13) than those without this history (4.64) (P < .01). Decreasing tonsillar FDG uptake was seen with advancing age (P < .01). Significantly lower uptake was seen in current smokers (SUVmax 4.2) than nonsmokers (SUV 4.9) (P = .03).Uptake of FDG in palatine tonsils is variable but shows a strong side-to-side correlation. We suggest the left/ right SUVmax ratio as a guide to normality with a first to 99th percentiles of (0.70-1.36) for use in patients not suspected to have tonsillar pathology.

  10. Measurement and modeling of polychlorinated biphenyl bioaccumulation from sediment for the marine polychaete neanthes arenaceodentata and response to sorbent amendment

    USGS Publications Warehouse

    Janssen, E.M.-L.; Croteau, M.-N.; Luoma, S.N.; Luthy, R.G.

    2010-01-01

    Bioaccumulation rates of polychlorinated biphenyls (PCBs) for the marine polychaete Neanthes arenaceodentata were characterized, including PCB uptake rates from water and sediment, and the effect of sorbent amendment to the sediment on PCB bioavailability, organism growth, and lipid content. Physiological parameters were incorporated into a biodynamic model to predict contaminant uptake. The results indicate rapid PCB uptake from contaminated sediment and significant organism growth dilution during time-series exposure studies. PCB uptake from the aqueous phase accounted for less than 3% of the total uptake for this deposit-feeder. Proportional increase of gut residence time and assimilation efficiency as a consequence of the organism's growth was assessed by PCB uptake and a reactor theory model of gut architecture. Pulse-chase feeding and multilabeled stable isotope tracing techniques proved high sediment ingestion rates (i.e., 6?10 times of dry body weight per day) indicating that such deposit-feeders are promising biological indicators for sediment risk assessment. Activated carbon amendment reduced PCB uptake by 95% in laboratory experiments with no observed adverse growth effects on the marine polychaete. Biodynamic modeling explained the observed PCB body burdens for N. arenaceodentata, with and without sorbent amendment. ?? 2009 American Chemical Society.

  11. Subunit III-depleted cytochrome c oxidase provides insight into the process of proton uptake by proteins

    PubMed Central

    Varanasi, Lakshman; Hosler, Jonathan P.

    2011-01-01

    We review studies of subunit III-depleted cytochrome c oxidase (CcO III (−)) that elucidate the structural basis of steady-state proton uptake from solvent into an internal proton transfer pathway. The removal of subunit III from R. sphaeroides CcO makes proton uptake into the D pathway a rate-determining step, such that measurements of the pH dependence of steady-state O2 consumption can be used to compare the rate and functional pKa of proton uptake by D pathways containing different initial proton acceptors. The removal of subunit III also promotes spontaneous suicide inactivation by CcO, greatly shortening its catalytic lifespan. Because the probability of suicide inactivation is controlled by the rate at which the D pathway delivers protons to the active site, measurements of catalytic lifespan provide a second method to compare the relative efficacy of proton uptake by engineered CcO III (−) forms. These simple experimental systems have been used to explore general questions of proton uptake by proteins, such as the functional value of an initial proton acceptor, whether an initial acceptor must be surface-exposed, which side chains will function as initial proton acceptors and whether multiple acceptors can speed proton uptake. PMID:22023935

  12. Elucidating the Function of Penetratin and a Static Magnetic Field in Cellular Uptake of Magnetic Nanoparticles

    PubMed Central

    Chaudhary, Suman; Smith, Carol Anne; del Pino, Pablo; de la Fuente, Jesus M.; Mullin, Margaret; Hursthouse, Andrew; Stirling, David; Berry, Catherine C.

    2013-01-01

    Nanotechnology plays an increasingly important role in the biomedical arena. In particular, magnetic nanoparticles (mNPs) have become important tools in molecular diagnostics, in vivo imaging and improved treatment of disease, with the ultimate aim of producing a more theranostic approach. Due to their small sizes, the nanoparticles can cross most of the biological barriers such as the blood vessels and the blood brain barrier, thus providing ubiquitous access to most tissues. In all biomedical applications maximum nanoparticle uptake into cells is required. Two promising methods employed to this end include functionalization of mNPs with cell-penetrating peptides to promote efficient translocation of cargo into the cell and the use of external magnetic fields for enhanced delivery. This study aimed to compare the effect of both penetratin and a static magnetic field with regards to the cellular uptake of 200 nm magnetic NPs and determine the route of uptake by both methods. Results demonstrated that both techniques increased particle uptake, with penetratin proving more cell specific. Clathrin- medicated endocytosis appeared to be responsible for uptake as shown via PCR and western blot, with Pitstop 2 (known to selectively block clathrin formation) blocking particle uptake. Interestingly, it was further shown that a magnetic field was able to reverse or overcome the blocking, suggesting an alternative route of uptake. PMID:24275948

  13. Routes of uptake of diclofenac, fluoxetine, and triclosan into sediment-dwelling worms.

    PubMed

    Karlsson, Maja V; Marshall, Stuart; Gouin, Todd; Boxall, Alistair B A

    2016-04-01

    The present study investigated the route and degree of uptake of 2 ionizable pharmaceuticals (diclofenac and fluoxetine) and 1 ionizable compound used in personal care products (triclosan) into the sediment-dwelling worm Lumbriculus variegatus. Studies were done on complete worms ("feeding") and worms where the head was absent ("nonfeeding") using (14) C-labeled ingredients. Biota sediment accumulation factors (BSAF), based on uptake of (14) C, for feeding worms increased in the order fluoxetine (0.3) < diclofenac (0.5) < triclosan (9), which is correlated with a corresponding increase in log octanol-water partition coefficient. Biota sediment accumulation factor estimates are representative of maximum values because the degree of biotransformation in the worms was not quantified. Although no significant differences were seen between the uptake of diclofenac and that of fluoxetine in feeding and nonfeeding worms, uptake of the more hydrophobic antimicrobial, triclosan, into the feeding worms was significantly greater than that in the nonfeeding worms, with the 48-h BSAF for feeding worms being 36% higher than that for the nonfeeding worms. The results imply that dietary uptake contributes to the uptake of triclosan, which may be a result of the high hydrophobicity of the compound. Models that estimate exposure of ionizable substances may need to consider uptake from both the water column and food, particularly when assessing risks from dynamic exposures to organic contaminants. © 2015 SETAC.

  14. Comparative analysis of nitrite uptake and hemoglobin-nitrite reactions in erythrocytes: sorting out uptake mechanisms and oxygenation dependencies.

    PubMed

    Jensen, Frank B; Rohde, Sabina

    2010-04-01

    Nitrite uptake into red blood cells (RBCs) precedes its intracellular reactions with hemoglobin (Hb) that forms nitric oxide (NO) during hypoxia. We investigated the uptake of nitrite and its reactions with Hb at different oxygen saturations (So(2)), using RBCs with (carp and rabbit) and without (hagfish and lamprey) anion exchanger-1 (AE1) in the membrane, with the aim to unravel the mechanisms and oxygenation dependencies of nitrite transport. Added nitrite rapidly diffused into the RBCs until equilibrium. The distribution ratio of nitrite across the membrane agreed with that expected from HNO(2) diffusion and AE1-mediated facilitated NO(2)(-) diffusion. Participation of HNO(2) diffusion was emphasized by rapid transmembrane nitrite equilibration also in the natural AE1 knockouts. Following the equilibration, nitrite was consumed by reacting with Hb, which created a continued inward diffusion controlled by intracellular reaction rates. Changes in nitrite uptake with So(2), pH, or species were accordingly explained by corresponding changes in reaction rates. In carp, nitrite uptake rates increased linearly with decreasing So(2) over the entire So(2) range. In rabbit, nitrite uptake rates were highest at intermediate So(2), producing a bell-shaped relationship with So(2). Nitrite consumption increased approximately 10-fold with a 1 unit decrease in pH, as expected from the involvement of protons in the reactions with Hb. The reaction of nitrite with deoxyhemoglobin was favored over that with oxyhemoglobin at intermediate So(2). We propose a model for RBC nitrite uptake that involves both HNO(2) diffusion and AE1-mediated transport and that explains both the present and previous (sometimes puzzling) results.

  15. Biosorption of mercury by the inactivated cells of Pseudomonas aeruginosa PU21 (Rip64)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J.S.; Hong, J.

    1994-10-01

    Biomass of a mercury-resistance strain Pseudomonas aeruginosa PU21 (Rip64) and hydrogen-form cation exchange resin (AG 50W-X8) were investigated for their ability to adsorb mercury. The maximum adsorption capacity was approximately 180 mg Hg/g dry cell in deionized water and 400 mg Hg/g dry cell in sodium phosphate solution of pH 7.4, higher than the maximum mercury uptake capacity in the cation exchange resin. The mercury selectivity of the biomass over sodium ions was evaluated when 50 mM and 150 mM of Na[sup +] were present. Biosorption of mercury was also examined in sodium phosphate solution and phosphate-buffered saline solution containingmore » 50 mM and 150 mM of Na[sup +], respectively. It was found that the presence of Na[sup +] did not severely affect the biosorption of Hg[sup 2+], indicating a high mercury selectivity of the biomass over sodium ions. In contrast, the mercury uptake by the ion exchange resin was strongly inhibited by high sodium concentrations. The mercury biosorption was most favorable in sodium phosphate solution (pH 7.4), with a more than twofold increase in the maximum mercury uptake capacity. The pH was found to affect the adsorption of Hg[sup 2+] by the biomass and the optimal pH value was approximately 7.4. The adsorption of mercury on the biomass and the ion exchange resin appeared to follow the Langmuir or Freundlich adsorption isotherms.« less

  16. Herbivores, tidal elevation, and species richness simultaneously mediate nitrate uptake by seaweed assemblages.

    PubMed

    Bracken, Matthew E S; Jones, Emily; Williams, Susan L

    2011-05-01

    In order for research into the consequences of biodiversity changes to be more applicable to real-world ecosystems, experiments must be conducted in the field, where a variety of factors other than diversity can affect the rates of key biogeochemical and physiological processes. Here, we experimentally evaluate the effects of two factors known to affect the diversity and composition of intertidal seaweed assemblages--tidal elevation and herbivory--on nitrate uptake by those assemblages. Based on surveys of community composition at the end of a 1.5-year press experiment, we found that both tide height and herbivores affected seaweed community structure. Not surprisingly, seaweed species richness was greater at lower tidal elevations. Herbivores did not affect richness, but they altered the types of species that were present; seaweed species characterized by higher rates of nitrate uptake were more abundant in herbivore-removal plots. Both tide height and herbivores affected nitrate uptake by seaweed assemblages. Individual seaweed species, as well as entire seaweed assemblages, living higher on the shore had greater rates of biomass-specific nitrate uptake, particularly at high ambient nitrate concentrations. Grazed seaweed assemblages exhibited reduced nitrate uptake, but only at low nitrate concentrations. We evaluated the effect of seaweed richness on nitrate uptake, both alone and after accounting for effects of tidal elevation and herbivores. When only richness was considered, we found no effect on uptake. However, when simultaneous effects of richness, tide height, and herbivores on uptake were evaluated, we found that all three had relatively large and comparable effects on nitrate uptake coefficients and that there was a negative relationship between seaweed richness and nitrate uptake. Particularly because effects of richness on uptake were not apparent unless the effects of tide height and herbivory were also considered, these results highlight the importance of considering the effects of environmental context when evaluating the consequences of biodiversity change in more realistic systems.

  17. [Effects of reduced N application rate on yield and nutrient uptake and utilization in maize-soybean relay strip intercropping system].

    PubMed

    Yong, Tai-Wen; Liu, Xiao-Ming; Wen-Yu, Liu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu

    2014-02-01

    A field experiment with three N application rates (0, 180, 240 N kg x hm(-2), representing zero, reduced and conventional N application, respectively) and three planting patterns (maize monoculture, soybean monoculture and maize-soybean relay strip intercropping) was conducted to reveal the effects of cropping patterns and N application rates on yield, nutrient uptake and nitrogen use efficiency of maize and soybean. The results showed that the grain yield, N, P and K uptake and harvest index of the intercropped maize reduced slightly compared with the monoculture maize, however these indices of the intercropped soybean increased significantly compared with the monoculture. With the increase in nitrogen fertilizer application, the excellence of relay strip intercropping was weakened in the maize-soybean intercropping system. The grain yield, economic coefficient, N, P and K uptake, harvest index, N agronomy efficiency and N uptake efficiency of maize and soybean increased significantly at the reduced nitrogen rate (180 N kg x hm(-2)), but the rate of soil N contribution declined, compared with the conventional rate of N application by local farmers (240 N kg x hm(-2)). In the reduced nitrogen rate treatment, total soil N and P contents of the maize strip reduced, whereas the total soil N, P and K contents of soybean strip and the total K content of maize strip increased compared with the zero N application treatment. With the reduced N application, the annual total grain yield, N, P and K uptake of above-ground biomass in the maize-soybean relay strip intercropping system were higher than in the monoculture, and the land equivalent ratio (LER) was 2.28. N uptake efficiency of maize in the relay strip intercropping system was 20.2% higher than in the maize monoculture, and the index of soybean was 30.5% lower than in the monoculture. The rate of soil N contribution in the relay strip intercropping system was 20.0% and 8.8% lower than in the maize and soybean monoculture, respectively. The reduced N application in the maize-soybean relay strip intercropping system was helpful to promote annual grain yield and improve N utilization efficiency.

  18. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse

    PubMed Central

    den Haan, Joost; Huisman, Jef; Brocke, Hannah J.; Goehlich, Henry; Latijnhouwers, Kelly R. W.; van Heeringen, Seth; Honcoop, Saskia A. S.; Bleyenberg, Tanja E.; Schouten, Stefan; Cerli, Chiara; Hoitinga, Leo; Vermeij, Mark J. A.; Visser, Petra M.

    2016-01-01

    Terrestrial runoff after heavy rainfall can increase nutrient concentrations in waters overlying coral reefs that otherwise experience low nutrient levels. Field measurements during a runoff event showed a sharp increase in nitrate (75-fold), phosphate (31-fold) and ammonium concentrations (3-fold) in waters overlying a fringing reef at the island of Curaçao (Southern Caribbean). To understand how benthic reef organisms make use of such nutrient pulses, we determined ammonium, nitrate and phosphate uptake rates for one abundant coral species, turf algae, six macroalgal and two benthic cyanobacterial species in a series of laboratory experiments. Nutrient uptake rates differed among benthic functional groups. The filamentous macroalga Cladophora spp., turf algae and the benthic cyanobacterium Lyngbya majuscula had the highest uptake rates per unit biomass, whereas the coral Madracis mirabilis had the lowest. Combining nutrient uptake rates with the standing biomass of each functional group on the reef, we estimated that the ammonium and phosphate delivered during runoff events is mostly taken up by turf algae and the two macroalgae Lobophora variegata and Dictyota pulchella. Our results support the often proposed, but rarely tested, assumption that turf algae and opportunistic macroalgae primarily benefit from episodic inputs of nutrients to coral reefs. PMID:27353576

  19. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse

    NASA Astrophysics Data System (ADS)

    den Haan, Joost; Huisman, Jef; Brocke, Hannah J.; Goehlich, Henry; Latijnhouwers, Kelly R. W.; van Heeringen, Seth; Honcoop, Saskia A. S.; Bleyenberg, Tanja E.; Schouten, Stefan; Cerli, Chiara; Hoitinga, Leo; Vermeij, Mark J. A.; Visser, Petra M.

    2016-06-01

    Terrestrial runoff after heavy rainfall can increase nutrient concentrations in waters overlying coral reefs that otherwise experience low nutrient levels. Field measurements during a runoff event showed a sharp increase in nitrate (75-fold), phosphate (31-fold) and ammonium concentrations (3-fold) in waters overlying a fringing reef at the island of Curaçao (Southern Caribbean). To understand how benthic reef organisms make use of such nutrient pulses, we determined ammonium, nitrate and phosphate uptake rates for one abundant coral species, turf algae, six macroalgal and two benthic cyanobacterial species in a series of laboratory experiments. Nutrient uptake rates differed among benthic functional groups. The filamentous macroalga Cladophora spp., turf algae and the benthic cyanobacterium Lyngbya majuscula had the highest uptake rates per unit biomass, whereas the coral Madracis mirabilis had the lowest. Combining nutrient uptake rates with the standing biomass of each functional group on the reef, we estimated that the ammonium and phosphate delivered during runoff events is mostly taken up by turf algae and the two macroalgae Lobophora variegata and Dictyota pulchella. Our results support the often proposed, but rarely tested, assumption that turf algae and opportunistic macroalgae primarily benefit from episodic inputs of nutrients to coral reefs.

  20. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse.

    PubMed

    den Haan, Joost; Huisman, Jef; Brocke, Hannah J; Goehlich, Henry; Latijnhouwers, Kelly R W; van Heeringen, Seth; Honcoop, Saskia A S; Bleyenberg, Tanja E; Schouten, Stefan; Cerli, Chiara; Hoitinga, Leo; Vermeij, Mark J A; Visser, Petra M

    2016-06-29

    Terrestrial runoff after heavy rainfall can increase nutrient concentrations in waters overlying coral reefs that otherwise experience low nutrient levels. Field measurements during a runoff event showed a sharp increase in nitrate (75-fold), phosphate (31-fold) and ammonium concentrations (3-fold) in waters overlying a fringing reef at the island of Curaçao (Southern Caribbean). To understand how benthic reef organisms make use of such nutrient pulses, we determined ammonium, nitrate and phosphate uptake rates for one abundant coral species, turf algae, six macroalgal and two benthic cyanobacterial species in a series of laboratory experiments. Nutrient uptake rates differed among benthic functional groups. The filamentous macroalga Cladophora spp., turf algae and the benthic cyanobacterium Lyngbya majuscula had the highest uptake rates per unit biomass, whereas the coral Madracis mirabilis had the lowest. Combining nutrient uptake rates with the standing biomass of each functional group on the reef, we estimated that the ammonium and phosphate delivered during runoff events is mostly taken up by turf algae and the two macroalgae Lobophora variegata and Dictyota pulchella. Our results support the often proposed, but rarely tested, assumption that turf algae and opportunistic macroalgae primarily benefit from episodic inputs of nutrients to coral reefs.

  1. Can adaptive threshold-based metabolic tumor volume (MTV) and lean body mass corrected standard uptake value (SUL) predict prognosis in head and neck cancer patients treated with definitive radiotherapy/chemoradiotherapy?

    PubMed

    Akagunduz, Ozlem Ozkaya; Savas, Recep; Yalman, Deniz; Kocacelebi, Kenan; Esassolak, Mustafa

    2015-11-01

    To evaluate the predictive value of adaptive threshold-based metabolic tumor volume (MTV), maximum standardized uptake value (SUVmax) and maximum lean body mass corrected SUV (SULmax) measured on pretreatment positron emission tomography and computed tomography (PET/CT) imaging in head and neck cancer patients treated with definitive radiotherapy/chemoradiotherapy. Pretreatment PET/CT of the 62 patients with locally advanced head and neck cancer who were treated consecutively between May 2010 and February 2013 were reviewed retrospectively. The maximum FDG uptake of the primary tumor was defined according to SUVmax and SULmax. Multiple threshold levels between 60% and 10% of the SUVmax and SULmax were tested with intervals of 5% to 10% in order to define the most suitable threshold value for the metabolic activity of each patient's tumor (adaptive threshold). MTV was calculated according to this value. We evaluated the relationship of mean values of MTV, SUVmax and SULmax with treatment response, local recurrence, distant metastasis and disease-related death. Receiver-operating characteristic (ROC) curve analysis was done to obtain optimal predictive cut-off values for MTV and SULmax which were found to have a predictive value. Local recurrence-free (LRFS), disease-free (DFS) and overall survival (OS) were examined according to these cut-offs. Forty six patients had complete response, 15 had partial response, and 1 had stable disease 6 weeks after the completion of treatment. Median follow-up of the entire cohort was 18 months. Of 46 complete responders 10 had local recurrence, and of 16 partial or no responders 10 had local progression. Eighteen patients died. Adaptive threshold-based MTV had significant predictive value for treatment response (p=0.011), local recurrence/progression (p=0.050), and disease-related death (p=0.024). SULmax had a predictive value for local recurrence/progression (p=0.030). ROC curves analysis revealed a cut-off value of 14.00 mL for MTV and 10.15 for SULmax. Three-year LRFS and DFS rates were significantly lower in patients with MTV ≥ 14.00 mL (p=0.026, p=0.018 respectively), and SULmax≥10.15 (p=0.017, p=0.022 respectively). SULmax did not have a significant predictive value for OS whereas MTV had (p=0.025). Adaptive threshold-based MTV and SULmax could have a role in predicting local control and survival in head and neck cancer patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Effect of temperature on rates of ammonium uptake and nitrification in the western coastal Arctic during winter, spring, and summer

    NASA Astrophysics Data System (ADS)

    Baer, Steven E.; Connelly, Tara L.; Sipler, Rachel E.; Yager, Patricia L.; Bronk, Deborah A.

    2014-12-01

    Biogeochemical rate processes in the Arctic are not currently well constrained, and there is very limited information on how rates may change as the region warms. Here we present data on the sensitivity of ammonium (NH4+) uptake and nitrification rates to short-term warming. Samples were collected from the Chukchi Sea off the coast of Barrow, Alaska, during winter, spring, and summer and incubated for 24 h in the dark with additions of 15NH4+ at -1.5, 6, 13, and 20°C. Rates of NH4+ uptake and nitrification were measured in conjunction with bacterial production. In all seasons, NH4+ uptake rates were highest at temperatures similar to current summertime conditions but dropped off with increased warming, indicative of psychrophilic (i.e., cold-loving) microbial communities. In contrast, nitrification rates were less sensitive to temperature and were higher in winter and spring compared to summer. These findings suggest that as the Arctic coastal ecosystem continues to warm, NH4+ assimilation may become increasingly important, relative to nitrification, although the magnitude of NH4+ assimilation would be still be lower than nitrification.

  3. High energy deficit in an ultraendurance athlete in a 24-hour ultracycling race

    PubMed Central

    Rodríguez, Ferran A.; Iglesias, Xavier; Benítez, Adolfo; Marina, Míchel; Padullés, Josep M.; Torrado, Priscila; Vázquez, Jairo; Knechtle, Beat

    2012-01-01

    This case study examined the nutritional behavior and energy balance in an official finisher of a 24-hour ultracycling race. The food and beverages consumed by the cyclist were continuously weighed and recorded to estimate intake of energy, macronutrients, sodium, and caffeine. In addition, during the race, heart rate was continuously monitored. Energy expenditure was assessed using a heart rate–oxygen uptake regression equation obtained previously from a laboratory test. The athlete (39 years, 175.6 cm, 84.2 kg, maximum oxygen uptake, 64 mL/kg/min) cycled during 22 h 22 min, in which he completed 557.3 km with 8760 m of altitude at an average speed of 25.1 km/h. The average heart rate was 131 beats/min. Carbohydrates were the main macronutrient intake (1102 g, 13.1 g/kg); however, intake was below current recommendations. The consumption of protein and fat was 86 g and 91 g, respectively. He ingested 20.7 L (862 mL/h) of fluids, with sport drinks the main fluid used for hydration. Sodium concentration in relation to total fluid intake was 34.0 mmol/L. Caffeine consumption over the race was 231 mg (2.7 mg/kg). During the race, he expended 15,533 kcal. Total energy intake was 5571 kcal, with 4058 (73%) and 1513 (27%) kcal derived from solids and fluids, respectively. The energy balance resulted in an energy deficit of 9915 kcal. PMID:22481841

  4. In vitro digestion and absorption of BDE-28, -47, -99 and -153 in indoor dust and its implication in risk assessment.

    PubMed

    Kang, Yuan; Pan, Weijian; Liang, Siyun; Zeng, Lixuan; Zhang, Qiuyun; Luo, Jiwen; Guo, Xinmei

    2016-12-01

    The bioaccessibility of polybrominated diphenyl ethers (PBDEs) in indoor dust was estimated by a series of in vitro digestion methods. However, the absorption of PBDEs by intestinal cells after in vitro digestion was seldom studied. In the present study, the bioaccessibility of BDE-28, 47, 99 and 153 in indoor dust was firstly investigated by using the in vitro digestion method. Bioaccessibility in intestinal phase (BDE-28: 24.5-30.1%; BDE-47: 6.99-13.0; BDE-99: 1.61-14.2%; and BDE-153 5.97-24.4%.) was higher than that in gastric phase (BDE-28: 38.3-58.0; BDE-47: 9.62-30.9%; BDE-99: 9.71-24.3%; and BDE-153: 13.8-57.4%). The organic matter contents in indoor dust showed variable influence on the bioaccessibility of PBDEs. For the Caco-2 uptake assay, the BDE-28 showed greatest transport rate from medium to cell (K mc : 0.525h -1 ), followed by -47, -99 and -153. The K mc of PBDEs was significantly negative correlated with its corresponding K OW value. Similar pattern was found for the maximum uptake flux (J u, max ) and the transport rate from cell to medium (K cm ). The combination of bioacessibility and the absorption factor by Caco-2 cells could be used to estimate human intake of PBDEs via indoor dust would avoid overestimate the health risk. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. The effect of CO2 availability on the growth, iron oxidation and CO2-fixation rates of pure cultures of Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans.

    PubMed

    Bryan, C G; Davis-Belmar, C S; van Wyk, N; Fraser, M K; Dew, D; Rautenbach, G F; Harrison, S T L

    2012-07-01

    Understanding how bioleaching systems respond to the availability of CO(2) is essential to developing operating conditions that select for optimum microbial performance. Therefore, the effect of inlet gas and associated dissolved CO(2) concentration on the growth, iron oxidation and CO(2) -fixation rates of pure cultures of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum was investigated in a batch stirred tank system. The minimum inlet CO(2) concentrations required to promote the growth of At. ferrooxidans and L. ferriphilum were 25 and 70 ppm, respectively, and corresponded to dissolved CO(2) concentrations of 0.71 and 1.57 µM (at 30°C and 37°C, respectively). An actively growing culture of L. ferriphilum was able to maintain growth at inlet CO(2) concentrations less than 30 ppm (0.31-0.45 µM in solution). The highest total new cell production and maximum specific growth rates from the stationary phase inocula were observed with CO(2) inlet concentrations less than that of air. In contrast, the amount of CO(2) fixed per new cell produced increased with increasing inlet CO(2) concentrations above 100 ppm. Where inlet gas CO(2) concentrations were increased above that of air the additional CO(2) was consumed by the organisms but did not lead to increased cell production or significantly increase performance in terms of iron oxidation. It is proposed that At. ferrooxidans has two CO(2) uptake mechanisms, a high affinity system operating at low available CO(2) concentrations, which is subject to substrate inhibition and a low affinity system operating at higher available CO(2) concentrations. L. ferriphilum has a single uptake system characterised by a moderate CO(2) affinity. At. ferrooxidans performed better than L. ferriphilum at lower CO(2) availabilities, and was less affected by CO(2) starvation. Finally, the results demonstrate the limitations of using CO(2) uptake or ferrous iron oxidation data as indirect measures of cell growth and performance across varying physiological conditions. Copyright © 2012 Wiley Periodicals, Inc.

  6. The use of a mercury biosensor to evaluate the bioavailability of mercury-thiol complexes and mechanisms of mercury uptake in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ndu, Udonna; Barkay, Tamar; Mason, Robert P.

    We discuss as mercury (Hg) biosensors are sensitive to only intracellular Hg, they are useful in the investigation of Hg uptake mechanisms and the effects of speciation on Hg bioavailability to microbes. In this study, bacterial biosensors were used to evaluate the roles that several transporters such as the glutathione, cystine/cysteine, and Mer transporters play in the uptake of Hg from Hg-thiol complexes by comparing uptake rates in strains with functioning transport systems to strains where these transporters had been knocked out by deletion of key genes. The Hg uptake into the biosensors was quantified based on the intracellular conversionmore » of inorganic mercury (Hg(II)) to elemental mercury (Hg(0)) by the enzyme MerA. It was found that uptake of Hg from Hg-cysteine (Hg(CYS) 2) and Hg-glutathione (Hg(GSH) 2) complexes occurred at the same rate as that of inorganic complexes of Hg(II) into Escherichia coli strains with and without intact Mer transport systems. However, higher rates of Hg uptake were observed in the strain with a functioning Mer transport system. These results demonstrate that thiol-bound Hg is bioavailable to E. coli and that this bioavailability is higher in Hg-resistant bacteria with a complete Mer system than in non-resistant strains. No difference in the uptake rate of Hg from Hg(GSH) 2 was observed in E. coli strains with or without functioning glutathione transport systems. There was also no difference in uptake rates between a wildtype Bacillus subtilis strain with a functioning cystine/cysteine transport system, and a mutant strain where this transport system had been knocked out. These results cast doubt on the viability of the hypothesis that the entire Hg-thiol complex is taken up into the cell by a thiol transporter. It is more likely that the Hg in the Hg-thiol complex is transferred to a transport protein on the cell membrane and is subsequently internalized.« less

  7. The use of a mercury biosensor to evaluate the bioavailability of mercury-thiol complexes and mechanisms of mercury uptake in bacteria

    DOE PAGES

    Ndu, Udonna; Barkay, Tamar; Mason, Robert P.; ...

    2015-09-15

    We discuss as mercury (Hg) biosensors are sensitive to only intracellular Hg, they are useful in the investigation of Hg uptake mechanisms and the effects of speciation on Hg bioavailability to microbes. In this study, bacterial biosensors were used to evaluate the roles that several transporters such as the glutathione, cystine/cysteine, and Mer transporters play in the uptake of Hg from Hg-thiol complexes by comparing uptake rates in strains with functioning transport systems to strains where these transporters had been knocked out by deletion of key genes. The Hg uptake into the biosensors was quantified based on the intracellular conversionmore » of inorganic mercury (Hg(II)) to elemental mercury (Hg(0)) by the enzyme MerA. It was found that uptake of Hg from Hg-cysteine (Hg(CYS) 2) and Hg-glutathione (Hg(GSH) 2) complexes occurred at the same rate as that of inorganic complexes of Hg(II) into Escherichia coli strains with and without intact Mer transport systems. However, higher rates of Hg uptake were observed in the strain with a functioning Mer transport system. These results demonstrate that thiol-bound Hg is bioavailable to E. coli and that this bioavailability is higher in Hg-resistant bacteria with a complete Mer system than in non-resistant strains. No difference in the uptake rate of Hg from Hg(GSH) 2 was observed in E. coli strains with or without functioning glutathione transport systems. There was also no difference in uptake rates between a wildtype Bacillus subtilis strain with a functioning cystine/cysteine transport system, and a mutant strain where this transport system had been knocked out. These results cast doubt on the viability of the hypothesis that the entire Hg-thiol complex is taken up into the cell by a thiol transporter. It is more likely that the Hg in the Hg-thiol complex is transferred to a transport protein on the cell membrane and is subsequently internalized.« less

  8. Kalman filter based glucose control at small set points during fed-batch cultivation of Saccharomyces cerevisiae.

    PubMed

    Arndt, Michael; Hitzmann, Bernd

    2004-01-01

    A glucose control system is presented, which is able to control cultivations of Saccharomyces cerevisiae even at low glucose concentrations. Glucose concentrations are determined using a special flow injection analysis (FIA) system, which does not require a sampling module. An extended Kalman filter is employed for smoothing the glucose measurements as well as for the prediction of glucose and biomass concentration, the maximum specific growth rate, and the volume of the culture broth. The predicted values are utilized for feedforward/feedback control of the glucose concentration at set points of 0.08 and 0.05 g/L. The controller established well-defined conditions over several hours up to biomass concentrations of 13.5 and 20.7 g/L, respectively. The specific glucose uptake rates at both set points were 1.04 and 0.68 g/g/h, respectively. It is demonstrated that during fed-batch cultivation an overall pure oxidative metabolism of glucose is maintained at the lower set point and a specific ethanol production rate of 0.18 g/g/h at the higher set point.

  9. Noise pollution limits metal bioaccumulation and growth rate in a filter feeder, the Pacific oyster Magallana gigas

    PubMed Central

    Charifi, Mohcine; Miserazzi, Alison; Sow, Mohamedou; Perrigault, Mickael; Gonzalez, Patrice; Ciret, Pierre; Benomar, Soumaya

    2018-01-01

    Shipping has increased dramatically in recent decades and oysters can hear them. We studied the interaction between noise pollution and trace metal contamination in the oyster Magallana gigas. Four oyster-groups were studied during a 14-day exposure period. Two were exposed to cadmium in the presence of cargo ship-noise ([Cd++]w ≈ 0.5 μg∙L-1; maximum sound pressure level 150 dBrms re 1 μPa), and 2 were exposed only to cadmium. The Cd concentration in the gills ([Cd]g) and the digestive gland ([Cd]dg), the valve closure duration, number of valve closures and circadian distribution of opening and closure, the daily shell growth-rate and the expression of 19 genes in the gills were studied. Oysters exposed to Cd in the presence of cargo ship-noise accumulated 2.5 times less Cd in their gills than did the controls without ship noise and their growth rate was 2.6 times slower. In the presence of ship noise, oysters were closed more during the daytime, and their daily valve activity was reduced. Changes in gene activity in the gills were observed in 7 genes when the Cd was associated with the ship noise. In the absence of ship noise, a change in expression was measured in 4 genes. We conclude that chronic exposure to cargo ship noise has a depressant effect on the activity in oysters, including on the volume of the water flowing over their gills (Vw). In turn, a decrease in the Vw and valve-opening duration limited metal exposure and uptake by the gills but also limited food uptake. This latter conclusion would explain the slowing observed in the fat metabolism and growth rate. Thus, we propose that cargo ship noise exposure could protect against metal bioaccumulation and affect the growth rate. This latter conclusion points towards a potential risk in terms of ecosystem productivity. PMID:29617387

  10. Physiological responses during continuous work in hot dry and hot humid environments in Indians

    NASA Astrophysics Data System (ADS)

    Sen Gupta, J.; Swamy, Y. V.; Pichan, G.; Dimri, G. P.

    1984-06-01

    Studies have been conducted on six young healthy heat acclimatised Indians to determine the physiological changes in prolonged continuous work in thermally neutral and in hot dry and hot humid environments. Physiological responses in maximal efforts i.e. Vo2 max, VE max and Cf max were noted. In addition, duration in continuous work at three sub-maximal rate of work in three simulated environments were also noted. Physiological responses like Vo2, VE and Cf were noted every 15 minutes of work. Besides these responses, rectal temperature (Tre), mean skin temperature (Ts) and mean sweat rate were also recorded during continuous work. Results indicated a significant decrease in maximum oxygen uptake capacity (Vo2 max) in heat with no change in maximum exercise ventilation (VE max) and maximum cardiac frequency. However, the fall in Vo2 max was more severe in the hot humid environment than in the hot dry climate. Cardiac frequency at fixed oxygen consumption of 1.0, 1.5 and 2.0 l/min was distinctly higher in the hot humid environment than in the hot dry and comfortable temperature. The duration in continuous physical effort in various grades of activities decreased in hot dry environment from that in the-comfortable climate and further decreased significantly in hot humid environment. The highest rate of sweating was observed during work in humid heat. The mean skin temperature (Ts) showed a fall in all the three rates of work in comfortable and hot dry conditions whereas in hot humid environment it showed a linear rise during the progress of work. The rectal temperature on the other hand maintained a near steady state while working at 65 and 82 watts in comfortable and hot dry environments but kept on rising during work in hot humid environment. At the highest work rate of 98 watts, the rectal temperature showed a steady increase even in the hot dry condition. It was thus concluded from the study that a hot humid climate imposes more constraints on the thermoregulatory system during work than in the hot dry condition because of less effective heat dissipation so resulting in reduced tolerance to work.

  11. Accelerated Analyte Uptake on Single Beads in Microliter-scale Batch Separations using Acoustic Streaming: Plutonium Uptake by Anion Exchange for Analysis by Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paxton, Walter F.; O'Hara, Matthew J.; Peper, Shane M.

    2008-06-01

    The use of acoustic streaming as a non-contact mixing platform to accelerate mass transport-limited diffusion processes in small volume heterogeneous reactions has been investigated. Single bead anion exchange of plutonium at nanomolar and sub-picomolar concentrations in 20 microliter liquid volumes was used to demonstrate the effect of acoustic mixing. Pu uptake rates on individual ~760 micrometer diameter AG 1x4 anion exchange resin beads were determined using acoustic mixing and compared with Pu uptake rates achieved by static diffusion alone. An 82 MHz surface acoustic wave (SAW) device was placed in contact with the underside of a 384-well microplate containing flat-bottomedmore » semiconical wells. Acoustic energy was coupled into the solution in the well, inducing acoustic streaming. Pu uptake rates were determined by the plutonium remaining in solution after specific elapsed time intervals, using liquid scintillation counting (LSC) for nanomolar concentrations and thermal ionization mass spectrometry (TIMS) analysis for the sub-picomolar concentration experiments. It was found that this small batch uptake reaction could be accelerated by a factor of about five-fold or more, depending on the acoustic power applied.« less

  12. Influence of a Vented Mouthguard on Physiological Responses in Handball.

    PubMed

    Schulze, Antina; Laessing, Johannes; Kwast, Stefan; Busse, Martin

    2018-05-23

    Schulze, A, Laessing, J, Kwast, S, and Busse, M. Influence of a vented mouthguard on physiological responses in handball. J Strength Cond Res XX(X): 000-000, 2018-Mouthguards (MGs) improve sports safety. However, airway obstruction and a resulting decrease in performance are theoretical disadvantages regarding their use. The study aim was to assess possible limitations of a "vented" MG on aerobic performance in handball. The physiological effects were investigated in 14 male professional players in a newly developed handball-specific course. The measured values were oxygen uptake, ventilation, heart rate, and lactate. Similar oxygen uptake (V[Combining Dot Above]O2) values were observed with and without MG use (51.9 ± 6.4 L·min·kg vs. 52.1 ± 10.9 L·min·kg). During maximum load, ventilation was markedly lower with the vented MG (153.1 ± 25 L·min vs. 166.3 ± 20.8 L·min). The endexpiratory concentrations of O2 (17.2 ± 0.5% vs. 17.6 ± 0.8%) and CO2 (4.0 ± 0.5% vs. 3.7 ± 0.6%) were significantly lower and higher, respectively, when using the MG. The inspiration and expiration times with and without the MG were 0.6 ± 0.1 seconds vs. 0.6 ± 0.1 seconds and 0.7 ± 0.2 seconds vs. 0.6 ± 0.2 seconds (all not significant), respectively, indicating that there was no relevant airflow restriction. The maximum load was not significantly affected by the MG. The lower ventilation for given V[Combining Dot Above]O2 values associated with MG use may be an effect of improved biomechanics and lower respiratory drive of the peripheral musculature.

  13. A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin.

    PubMed

    Arnis, S; Fahmy, K; Hofmann, K P; Sakmar, T P

    1994-09-30

    A carboxylic acid residue is conserved at the cytoplasmic border of the third transmembrane segment among nearly all G protein-coupled receptors. In the visual receptor rhodopsin, replacement of the conserved Glu134 by a neutral glutamine results in enhanced transducin activation. Here we show that a key event in forming the active state of rhodopsin is proton uptake by Glu134 in the metarhodopsin II (MII) photoproduct. Site-directed mutants E134D and E134Q were studied by flash photolysis, where formation rates of their photoproducts and rates of pH change could be monitored simultaneously. Both mutants showed normal MII formation rates. However, E134D displayed a slowed rate of proton uptake and E134Q displayed a loss of light-induced uptake of two protons from the aqueous phase. Thus, Glu134 mediates light-dependent proton uptake by MII. We propose that receptor activation requires a light-induced conformational change that allows protonation of Glu134 and subsequent protonation of a second group. The strong conservation of Glu134 in G protein-coupled receptors implies a general requirement for a proton acceptor group at this position to allow light- or ligand-dependent receptor activation.

  14. Spatiotemporal dynamics of soil phosphorus and crop uptake in global cropland during the 20th century

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Beusen, Arthur H. W.; Van Apeldoorn, Dirk F.; Mogollón, José M.; Yu, Chaoqing; Bouwman, Alexander F.

    2017-04-01

    Phosphorus (P) plays a vital role in global crop production and food security. In this study, we investigate the changes in soil P pool inventories calibrated from historical countrywide crop P uptake, using a 0.5-by-0.5° spatially explicit model for the period 1900-2010. Globally, the total P pool per hectare increased rapidly between 1900 and 2010 in soils of Europe (+31 %), South America (+2 %), North America (+15 %), Asia (+17 %), and Oceania (+17 %), while it has been stable in Africa. Simulated crop P uptake is influenced by both soil properties (available P and the P retention potential) and crop characteristics (maximum uptake). Until 1950, P fertilizer application had a negligible influence on crop uptake, but recently it has become a driving factor for food production in industrialized countries and a number of transition countries like Brazil, Korea, and China. This comprehensive and spatially explicit model can be used to assess how long surplus P fertilization is needed or how long depletions of built-up surplus P can continue without affecting crop yield.

  15. Nitrogen uptake by the shoots of smooth cordgrass Spartina alterniflora

    USGS Publications Warehouse

    Mozdzer, T.J.; Kirwan, M.; McGlathery, K.J.; Zieman, J.C.

    2011-01-01

    The smooth cordgrass Spartina alterniflora is the foundation species in intertidal salt marshes of the North American Atlantic coast. Depending on its elevation within the marsh, S. alterniflora may be submerged for several hours per day. Previous ecosystem-level studies have demonstrated that S. alterniflora marshes are a net sink for nitrogen (N), and that removal of N from flooding tidal water can provide enough N to support the aboveground biomass. However, studies have not specifically investigated whether S. alterniflora plants assimilate nutrients through their aboveground tissue. We determined in situ foliar and stem N uptake kinetics for 15NH4, 15NO3, and 15N-glycine by artificially flooding plants in a mid-Atlantic salt marsh. To determine the ecological importance of shoot uptake, a model was created to estimate the time of inundation of S. alterniflora in 20 cm height intervals during the growing season. Estimates of inundation time, shoot mass, N uptake rates, and N availability from long-term data sets were used to model seasonal shoot N uptake. Rates of aboveground N uptake rates (leaves + stems) were ranked as follows: NH4+ > glycine > NO3–. Our model suggests that shoot N uptake may satisfy up to 15% of the growing season N demand in mid-Atlantic salt marshes, with variation depending on plant elevation and water column N availability. However, in eutrophic estuaries, our model indicates the potential of the plant canopy as a nutrient filter, with shoot uptake contributing 66 to 100% of plant N demand.

  16. Season and application rates affect vaccine bait consumption by prairie dogs in Colorado and Utah, USA

    USGS Publications Warehouse

    Tripp, Daniel W.; Rocke, Tonie E.; Streich, Sean P.; Brown, Nathanael L.; Fernandez, Julia Rodriguez-Ramos; Miller, Michael W.

    2014-01-01

    Plague, a zoonotic disease caused by the bacterium Yersinia pestis, causes high rates of mortality in prairie dogs (Cynomys spp.). An oral vaccine against plague has been developed for prairie dogs along with a palatable bait to deliver vaccine and a biomarker to track bait consumption. We conducted field trials between September 2009 and September 2012 to develop recommendations for bait distribution to deliver plague vaccine to prairie dogs. The objectives were to evaluate the use of the biomarker, rhodamine B, in field settings to compare bait distribution strategies, to compare uptake of baits distributed at different densities, to assess seasonal effects on bait uptake, and to measure bait uptake by nontarget small mammal species. Rhodamine B effectively marked prairie dogs' whiskers during these field trials. To compare bait distribution strategies, we applied baits around active burrows or along transects at densities of 32, 65, and 130 baits/ha. Distributing baits at active burrows or by transect did not affect uptake by prairie dogs. Distributing baits at rates of ≥65/ha (or ≥1 bait/active burrow) produced optimal uptake, and bait uptake by prairie dogs in the autumn was superior to uptake in the spring. Six other species of small mammals consumed baits during these trials. All four species of tested prairie dogs readily consumed the baits, demonstrating that vaccine uptake will not be an obstacle to plague control via oral vaccination.

  17. Calcium uptake in aquatic insects: influences of phylogeny and metals (Cd and Zn).

    PubMed

    Poteat, Monica D; Buchwalter, David B

    2014-04-01

    Calcium sequestration in the hypo-osmotic freshwater environment is imperative in maintaining calcium homeostasis in freshwater aquatic organisms. This uptake process is reported to have the unintended consequence of potentially toxic heavy metal (Cd, Zn) uptake in a variety of aquatic species. However, calcium uptake remains poorly understood in aquatic insects, the dominant invertebrate faunal group in most freshwater ecosystems. Here, we examined Ca uptake and interactions with heavy metals (Cd, Zn) at low ambient Ca levels (12.5 μmol l(-1)) in 12 aquatic insect species within Ephemerellidae (mayfly) and Hydropsychidae (caddisfly), two families differentially responsive to trace metal pollution. We found Ca uptake varied 70-fold across the 12 species studied. Body mass and clade (family) were found to significantly influence both Ca uptake and adsorption (P≤0.05). Zn and Cd uptake rate constants (ku) exhibited a strong correlation (r=0.96, P<0.0001), suggesting a shared transport system. Ca uptake failed to significantly correlate with either Zn or Cd ku values. Further, neither Zn nor Cd exhibited inhibitory effects toward Ca uptake. In fact, we saw evidence of modest stimulation of Ca uptake rates in some metal treatments. This work suggests that insects generally differ from other freshwater taxa in that aqueous Ca uptake does not appear to be compromised by Cd or Zn exposure. It is important to understand the trace metal and major ion physiology of aquatic insects because of their ecological importance and widespread use as ecological indicators.

  18. Seasonal fluctuations of tissue mercury contents in the European shore crab Carcinus maenas from low and high contamination areas (Ria de Aveiro, Portugal).

    PubMed

    Pereira, E; Abreu, S N; Coelho, J P; Lopes, C B; Pardal, M A; Vale, C; Duarte, A C

    2006-11-01

    The main objective was to study the seasonal variation of mercury concentrations in different tissues (muscle, hepatopancreas and gills) of Carcinus maenas from low and high Hg contaminated areas, a valuable resource in temperate estuaries and a possible pathway for human uptake. Individuals of two size classes (around 35 and 55 mm cephalothorax wide) were captured monthly between March 1999 and May 2000 in two areas of Ria de Aveiro: in the main navigation channel that connects the lagoon to the sea, and in the inner lagoon area heavily contaminated by mercury (maximum Hg in sediments of 5.4 microg g(-1)). Pronounced decreases in salinity and temperature and reduced food availability in winter seemed to be the responsible for the decline of the crab condition index (0.75-0.45) in larger individuals. Muscle and hepatopancreas exhibited higher mercury concentrations than gills, with concentrations in the contaminated site ranging from 0.03 to 0.63 microg g(-1) and 0.02 to 0.34 microg g(-1), respectively. Linear regressions between muscle and hepatopancreas (r=0.94, p<0.001) and muscle and gills (r=0.97, p<0.001) suggested a rapid redistribution of mercury inside the organism. During winter, a rapid elimination of mercury was found in the three analysed tissues followed by uptake. Larger crabs presented elimination rates from 18 to 34 ng g(-1) per week, while the smaller crabs showed lower elimination rates (10-24 ng g(-1) per week). The uptake was similar in both size classes (11-15 ng g(-1) and 8.1-15 ng g(-1) per week, respectively for large and small crabs). Our results suggest that C. maenas harvested in the contaminated areas must be considered with caution, since Hg concentrations were found to exceed the threshold concentration allowed for human consumption (0.5 microg g(-1)).

  19. Nitrite oxidation kinetics of two Nitrospira strains: The quest for competition and ecological niche differentiation.

    PubMed

    Ushiki, Norisuke; Jinno, Masaru; Fujitani, Hirotsugu; Suenaga, Toshikazu; Terada, Akihiko; Tsuneda, Satoshi

    2017-05-01

    Nitrite oxidation is an aerobic process of the nitrogen cycle in natural ecosystems, and is performed by nitrite-oxidizing bacteria (NOB). Also, nitrite oxidation is a rate-limiting step of nitrogen removal in wastewater treatment plants (WWTPs). Although Nitrospira is known as dominant NOB in WWTPs, information on their physiological properties and kinetic parameters is limited. Here, we report the kinetic parameters and inhibition of nitrite oxidation by free ammonia in pure cultures of Nitrospira sp. strain ND1 and Nitrospira japonica strain NJ1, which were previously isolated from activated sludge in a WWTP. The maximum nitrite uptake rate ( [Formula: see text] ) and the half-saturation constant for nitrite uptake ( [Formula: see text] ) of strains ND1 and NJ1 were 45 ± 7 and 31 ± 5 (μmol NO 2 - /mg protein/h), and 6 ± 1 and 10 ± 2 (μM NO 2 - ), respectively. The [Formula: see text] and [Formula: see text] of two strains indicated that they adapt to low-nitrite-concentration environments like activated sludge. The half-saturation constants for oxygen uptake ( [Formula: see text] ) of the two strains were 4.0±2.5 and 2.6±1.1 (μM O 2 ), respectively. The [Formula: see text] values of the two strains were lower than those of other NOB, suggesting that Nitrospira in activated sludge could oxidize nitrite in the hypoxic environments often found in the interiors of biofilms and flocs. The inhibition thresholds of the two strains by free ammonia were 0.85 and 4.3 (mg-NH 3 l -1 ), respectively. Comparing the physiological properties of the two strains, we suggest that tolerance for free ammonia determines competition and partitioning into ecological niches among Nitrospira populations. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil

    PubMed Central

    Shrestha, Pravin Malla; Kammann, Claudia; Lenhart, Katharina; Dam, Bomba; Liesack, Werner

    2012-01-01

    Microbial oxidation is the only biological sink for atmospheric methane. We assessed seasonal changes in atmospheric methane oxidation and the underlying methanotrophic communities in grassland near Giessen (Germany), along a soil moisture gradient. Soil samples were taken from the surface layer (0–10 cm) of three sites in August 2007, November 2007, February 2008 and May 2008. The sites showed seasonal differences in hydrological parameters. Net uptake rates varied seasonally between 0 and 70 μg CH4 m−2 h−1. Greatest uptake rates coincided with lowest soil moisture in spring and summer. Over all sites and seasons, the methanotrophic communities were dominated by uncultivated methanotrophs. These formed a monophyletic cluster defined by the RA14, MHP and JR1 clades, referred to as upland soil cluster alphaproteobacteria (USCα)-like group. The copy numbers of pmoA genes ranged between 3.8 × 105–1.9 × 106 copies g−1 of soil. Temperature was positively correlated with CH4 uptake rates (P<0.001), but had no effect on methanotrophic population dynamics. The soil moisture was negatively correlated with CH4 uptake rates (P<0.001), but showed a positive correlation with changes in USCα-like diversity (P<0.001) and pmoA gene abundance (P<0.05). These were greatest at low net CH4 uptake rates during winter times and coincided with an overall increase in bacterial 16S rRNA gene abundances (P<0.05). Taken together, soil moisture had a significant but opposed effect on CH4 uptake rates and methanotrophic population dynamics, the latter being increasingly stimulated by soil moisture contents >50 vol% and primarily related to members of the MHP clade. PMID:22189499

  1. Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil.

    PubMed

    Shrestha, Pravin Malla; Kammann, Claudia; Lenhart, Katharina; Dam, Bomba; Liesack, Werner

    2012-06-01

    Microbial oxidation is the only biological sink for atmospheric methane. We assessed seasonal changes in atmospheric methane oxidation and the underlying methanotrophic communities in grassland near Giessen (Germany), along a soil moisture gradient. Soil samples were taken from the surface layer (0-10 cm) of three sites in August 2007, November 2007, February 2008 and May 2008. The sites showed seasonal differences in hydrological parameters. Net uptake rates varied seasonally between 0 and 70 μg CH(4) m(-2) h(-1). Greatest uptake rates coincided with lowest soil moisture in spring and summer. Over all sites and seasons, the methanotrophic communities were dominated by uncultivated methanotrophs. These formed a monophyletic cluster defined by the RA14, MHP and JR1 clades, referred to as upland soil cluster alphaproteobacteria (USCα)-like group. The copy numbers of pmoA genes ranged between 3.8 × 10(5)-1.9 × 10(6) copies g(-1) of soil. Temperature was positively correlated with CH(4) uptake rates (P<0.001), but had no effect on methanotrophic population dynamics. The soil moisture was negatively correlated with CH(4) uptake rates (P<0.001), but showed a positive correlation with changes in USCα-like diversity (P<0.001) and pmoA gene abundance (P<0.05). These were greatest at low net CH(4) uptake rates during winter times and coincided with an overall increase in bacterial 16S rRNA gene abundances (P<0.05). Taken together, soil moisture had a significant but opposed effect on CH(4) uptake rates and methanotrophic population dynamics, the latter being increasingly stimulated by soil moisture contents >50 vol% and primarily related to members of the MHP clade.

  2. Effects of temperature, algae biomass and ambient nutrient on the absorption of dissolved nitrogen and phosphate by Rhodophyte Gracilaria asiatica

    NASA Astrophysics Data System (ADS)

    Du, Rongbin; Liu, Liming; Wang, Aimin; Wang, Yongqiang

    2013-03-01

    Gracilaria asiatica, being highly efficient in nutrient absorption, is cultivated in sea cucumber ponds to remove nutrients such as nitrogen and phosphate. It was cultured in a laboratory simulating field conditions, and its nutrient absorption was measured to evaluate effects of environmental conditions. Ammonia nitrogen (AN), nitrate nitrogen (NN), total inorganic nitrogen (TIN), and soluble reactive phosphorus (SRP) uptake rate and removal efficiency were determined in a 4×2 factorial design experiment in water temperatures ( T) at 15°C and 25°C, algae biomass (AB) at 0.5 g/L and 1.0 g/L, total inorganic nitrogen (TIN) at 30 μmol/L and 60 μmol/L, and soluble reactive phosphorus (SRP) at 3 and 6 μmol/L. AB and ambient TIN or SRP levels significantly affected uptake rate and removal efficiency of AN, NN, TIN, and SRP ( P< 0.001). G. asiatica in AB of 0.5 g/L showed higher uptake rate and lower removal efficiency relative to that with AB of 1.0 g/L. Nitrogen and phosphorus uptake rate rose with increasing ambient nutrient concentrations; nutrient removal efficiency decreased at higher environmental nutrient concentrations. The algae preferred to absorb AN to NN. Uptake rates of AN, NN, and SRP were significantly affected by temperature ( P < 0.001); uptake rate was higher for the 25°C group than for the 15°C group at the initial experiment stage. Only the removal efficiency of AN and SRP showed a significant difference between the two temperature groups ( P< 0.01). The four factors had significant interactive effects on absorption of N and P, implying that G. asiatica has great bioremedial potential in sea cucumber culture ponds.

  3. Quaternized wood as sorbent for hexavalent chromium.

    PubMed

    Low, K S; Lee, C K; Lee, C Y

    2001-01-01

    The potential of quaternized wood (QW) chips in removing hexavalent chromium from synthetic solution and chrome waste under both batch and continuous-flow conditions was investigated. Sorption was found to be dependent on pH, metal concentration, and temperature. QW chips provide higher sorption capacity and wider pH range compared with untreated wood chips. The equilibrium data could be fitted into the Langmuir isotherm model, and maximum sorption capacities were calculated to be 27.03 and 25.77 mg/g in synthetic chromate solution and chrome waste, respectively. The presence of sulfate in high concentration appeared to suppress the uptake of chromium by QW chips. Column studies showed that bed depth influenced the breakthrough time greatly whereas flow rate of influent had little effect on its sorption on the column.

  4. {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography Can Quantify and Predict Esophageal Injury During Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niedzielski, Joshua S., E-mail: jsniedzielski@mdanderson.org; University of Texas Houston Graduate School of Biomedical Science, Houston, Texas; Yang, Jinzhong

    Purpose: We sought to investigate the ability of mid-treatment {sup 18}F-fluorodeoxyglucose positron emission tomography (PET) studies to objectively and spatially quantify esophageal injury in vivo from radiation therapy for non-small cell lung cancer. Methods and Materials: This retrospective study was approved by the local institutional review board, with written informed consent obtained before enrollment. We normalized {sup 18}F-fluorodeoxyglucose PET uptake to each patient's low-irradiated region (<5 Gy) of the esophagus, as a radiation response measure. Spatially localized metrics of normalized uptake (normalized standard uptake value [nSUV]) were derived for 79 patients undergoing concurrent chemoradiation therapy for non-small cell lung cancer. We usedmore » nSUV metrics to classify esophagitis grade at the time of the PET study, as well as maximum severity by treatment completion, according to National Cancer Institute Common Terminology Criteria for Adverse Events, using multivariate least absolute shrinkage and selection operator (LASSO) logistic regression and repeated 3-fold cross validation (training, validation, and test folds). This 3-fold cross-validation LASSO model procedure was used to predict toxicity progression from 43 asymptomatic patients during the PET study. Dose-volume metrics were also tested in both the multivariate classification and the symptom progression prediction analyses. Classification performance was quantified with the area under the curve (AUC) from receiver operating characteristic analysis on the test set from the 3-fold analyses. Results: Statistical analysis showed increasing nSUV is related to esophagitis severity. Axial-averaged maximum nSUV for 1 esophageal slice and esophageal length with at least 40% of axial-averaged nSUV both had AUCs of 0.85 for classifying grade 2 or higher esophagitis at the time of the PET study and AUCs of 0.91 and 0.92, respectively, for maximum grade 2 or higher by treatment completion. Symptom progression was predicted with an AUC of 0.75. Dose metrics performed poorly at classifying esophagitis (AUC of 0.52, grade 2 or higher mid treatment) or predicting symptom progression (AUC of 0.67). Conclusions: Normalized uptake can objectively, locally, and noninvasively quantify esophagitis during radiation therapy and predict eventual symptoms from asymptomatic patients. Normalized uptake may provide patient-specific dose-response information not discernible from dose.« less

  5. (18)F-Fluorodeoxyglucose Positron Emission Tomography Can Quantify and Predict Esophageal Injury During Radiation Therapy.

    PubMed

    Niedzielski, Joshua S; Yang, Jinzhong; Liao, Zhongxing; Gomez, Daniel R; Stingo, Francesco; Mohan, Radhe; Martel, Mary K; Briere, Tina M; Court, Laurence E

    2016-11-01

    We sought to investigate the ability of mid-treatment (18)F-fluorodeoxyglucose positron emission tomography (PET) studies to objectively and spatially quantify esophageal injury in vivo from radiation therapy for non-small cell lung cancer. This retrospective study was approved by the local institutional review board, with written informed consent obtained before enrollment. We normalized (18)F-fluorodeoxyglucose PET uptake to each patient's low-irradiated region (<5 Gy) of the esophagus, as a radiation response measure. Spatially localized metrics of normalized uptake (normalized standard uptake value [nSUV]) were derived for 79 patients undergoing concurrent chemoradiation therapy for non-small cell lung cancer. We used nSUV metrics to classify esophagitis grade at the time of the PET study, as well as maximum severity by treatment completion, according to National Cancer Institute Common Terminology Criteria for Adverse Events, using multivariate least absolute shrinkage and selection operator (LASSO) logistic regression and repeated 3-fold cross validation (training, validation, and test folds). This 3-fold cross-validation LASSO model procedure was used to predict toxicity progression from 43 asymptomatic patients during the PET study. Dose-volume metrics were also tested in both the multivariate classification and the symptom progression prediction analyses. Classification performance was quantified with the area under the curve (AUC) from receiver operating characteristic analysis on the test set from the 3-fold analyses. Statistical analysis showed increasing nSUV is related to esophagitis severity. Axial-averaged maximum nSUV for 1 esophageal slice and esophageal length with at least 40% of axial-averaged nSUV both had AUCs of 0.85 for classifying grade 2 or higher esophagitis at the time of the PET study and AUCs of 0.91 and 0.92, respectively, for maximum grade 2 or higher by treatment completion. Symptom progression was predicted with an AUC of 0.75. Dose metrics performed poorly at classifying esophagitis (AUC of 0.52, grade 2 or higher mid treatment) or predicting symptom progression (AUC of 0.67). Normalized uptake can objectively, locally, and noninvasively quantify esophagitis during radiation therapy and predict eventual symptoms from asymptomatic patients. Normalized uptake may provide patient-specific dose-response information not discernible from dose. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Probing the Bioeffects of Cavitation at the Single-Cell Level

    NASA Astrophysics Data System (ADS)

    Yuan, Fang

    The primary goal of this dissertation research is to develop an experimental system and associated techniques that can be used to investigate the bioeffects produced by cavitation bubbles at the single cell level. Such information has been lacking due to the randomness and complexity in cavitation inception and subsequent bubble-bubble interaction generated by an acoustic field typically used in therapeutic ultrasound applications. Connection between cavitation activities and bioeffects produced in cells nearby presents another challenge that has not been resolved satisfactorily. In this work, we developed a laser-based system for generating tandem bubbles with a maximum diameter about 50 microm (i.e., on the scale of a single cell) in a microfluidic channel of 25 microm in height and 800 microm in width. We further developed techniques for micropatterning of individual gold dots (15 nm thick and 6 microm in diameter) used for bubble generation, which are precisely aligned at various stand-off distances (SD) from individual islands (32 x 32 microm2) coated with fibronectin used for cell adhesion. The dynamics of tandem bubble interaction with resultant jet formation, microstreaming and vortex flow in the microfluidic channel were captured by high-speed imaging and particle image velocimetry (PIV). The deformation of the target cell was recorded by high-speed imaging as well (using a second camera) immediately after the tandem bubble interaction and assessment of membrane strain was aided with 2 microm sized polystyrene beads attached to the cell membrane. Membrane poration was characterized by uptake of fluorescent propodium iodide (PI) into the target cell, from which the normalized maximum pore size was estimated. Using this experimental system, we have observed the complete process of bubble-bubble interaction with resultant jetting flow, cell deformation, and localized pinpoint membrane rupture with progressive diffusion of macromolecules into the target cell. Furthermore, we observed a clear SD dependence in the treatment outcome produced by the tandem bubbles. At short SD of 10 microm, all treated cells underwent necrosis with high yet unsaturated level of PI uptake, indicating that the cell could not reseal the poration site. At intermediate SD of 20 ˜ 30 microm, 58% to 80% of the cells were observed to have repairable membrane poration with low to medium but saturated level of PI uptake. At long SD of 40 microm, no detectable PI uptake was observed, corresponding to no membrane compromise. Within the repairable membrane poration group, the sub-population of cells that eventually survived without apoptosis increased from about 9% at SD of 20 microm with strong adhesion to about 70% at SD of 30 microm with no adhesion at the leading edge facing the jetting flow. The maximum PI uptake, pore size, and membrane strain estimated could vary by more than an order of magnitude, which is similar to the magnitude of variations in pore size (0.2 ˜ 2 microm) produced by tandem bubbles observed by SEM. The large principal strain (> 500%) with associated high strain-rate (> 106·s -1) produced by the tandem bubbles provide a unique tool to examine the bioeffects of cavitation at the single cell level and potentially a diverse range of applications to be explored.

  7. Role of Pseudomonas putida tol-oprL Gene Products in Uptake of Solutes through the Cytoplasmic Membrane

    PubMed Central

    Llamas, María A.; Rodríguez-Herva, José J.; Hancock, Robert E. W.; Bitter, Wilbert; Tommassen, Jan; Ramos, Juan L.

    2003-01-01

    Proteins of the Tol-Pal (Tol-OprL) system play a key role in the maintenance of outer membrane integrity and cell morphology in gram-negative bacteria. Here we describe an additional role for this system in the transport of various carbon sources across the cytoplasmic membrane. Growth of Pseudomonas putida tol-oprL mutant strains in minimal medium with glycerol, fructose, or arginine was impaired, and the growth rate with succinate, proline, or sucrose as the carbon source was lower than the growth rate of the parental strain. Assays with radiolabeled substrates revealed that the rates of uptake of these compounds by mutant cells were lower than the rates of uptake by the wild-type strain. The pattern and amount of outer membrane protein in the P. putida tol-oprL mutants were not changed, suggesting that the transport defect was not in the outer membrane. Consistently, the uptake of radiolabeled glucose and glycerol in spheroplasts was defective in the P. putida tol-oprL mutant strains, suggesting that there was a defect at the cytoplasmic membrane level. Generation of a proton motive force appeared to be unaffected in these mutants. To rule out the possibility that the uptake defect was due to a lack of specific transporter proteins, the PutP symporter was overproduced, but this overproduction did not enhance proline uptake in the tol-oprL mutants. These results suggest that the Tol-OprL system is necessary for appropriate functioning of certain uptake systems at the level of the cytoplasmic membrane. PMID:12896989

  8. The fates of 15N-labeled fertilizer in a wheat-soil system as influenced by fertilization practice in a loamy soil

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoming; Wang, Huoyan; Liu, Xiaowei; Lu, Dianjun; Zhou, Jianmin

    2016-10-01

    Appropriate fertilization practice is crucial to achieve maximum wheat grain yield with minimum nitrogen (N) loss. A field 15N micro-plot experiment was conducted to determine the effects of application methods [split application (SA) and band application (BA)] and N rates (60, 150 and 240 kg ha-1) on the wheat grain yield, urea-15N fate and N efficiency in Jiangyan County, China. At high N rates, wheat grain yield was significantly higher for SA than BA treatment, but there was no difference at the lower N rates. Plant N derived from fertilizer was higher in SA than in BA treatment. The high N fertilizer application increased total N uptake by wheat derived from fertilizer, but wheat plant N derived from soil was not affected by the N rate. Fertilizer-N recovery in SA treatment was higher than in BA treatment. Residual N recovery in the 0-80 cm soil layer was 31-51%, which decreased with increasing N rate. The highest N loss was found for BA treatment at the N application of 240 kg ha-1. The one-time BA of N fertilizer, especially for higher N rates, led to reduced wheat grain yield and N efficiency, and increased the N loss.

  9. Dissimilar Physiological and Perceptual Responses Between Sprint Interval Training and High-Intensity Interval Training.

    PubMed

    Wood, Kimberly M; Olive, Brittany; LaValle, Kaylyn; Thompson, Heather; Greer, Kevin; Astorino, Todd A

    2016-01-01

    High-intensity interval training (HIIT) and sprint interval training (SIT) elicit similar cardiovascular and metabolic adaptations vs. endurance training. No study, however, has investigated acute physiological changes during HIIT vs. SIT. This study compared acute changes in heart rate (HR), blood lactate concentration (BLa), oxygen uptake (VO2), affect, and rating of perceived exertion (RPE) during HIIT and SIT. Active adults (4 women and 8 men, age = 24.2 ± 6.2 years) initially performed a VO2max test to determine workload for both sessions on the cycle ergometer, whose order was randomized. Sprint interval training consisted of 8 bouts of 30 seconds of all-out cycling at 130% of maximum Watts (Wmax). High-intensity interval training consisted of eight 60-second bouts at 85% Wmax. Heart rate, VO2, BLa, affect, and RPE were continuously assessed throughout exercise. Repeated-measures analysis of variance revealed a significant difference between HIIT and SIT for VO2 (p < 0.001), HR (p < 0.001), RPE (p = 0.03), and BLa (p = 0.049). Conversely, there was no significant difference between regimens for affect (p = 0.12). Energy expenditure was significantly higher (p = 0.02) in HIIT (209.3 ± 40.3 kcal) vs. SIT (193.5 ± 39.6 kcal). During HIIT, subjects burned significantly more calories and reported lower perceived exertion than SIT. The higher VO2 and lower BLa in HIIT vs. SIT reflected dissimilar metabolic perturbation between regimens, which may elicit unique long-term adaptations. If an individual is seeking to burn slightly more calories, maintain a higher oxygen uptake, and perceive less exertion during exercise, HIIT is the recommended routine.

  10. Primary production export flux in Marguerite Bay (Antarctic Peninsula): Linking upper water-column production to sediment trap flux

    NASA Astrophysics Data System (ADS)

    Weston, Keith; Jickells, Timothy D.; Carson, Damien S.; Clarke, Andrew; Meredith, Michael P.; Brandon, Mark A.; Wallace, Margaret I.; Ussher, Simon J.; Hendry, Katharine R.

    2013-05-01

    A study was carried out to assess primary production and associated export flux in the coastal waters of the western Antarctic Peninsula at an oceanographic time-series site. New, i.e., exportable, primary production in the upper water-column was estimated in two ways; by nutrient deficit measurements, and by primary production rate measurements using separate 14C-labelled radioisotope and 15N-labelled stable isotope uptake incubations. The resulting average annual exportable primary production estimates at the time-series site from nutrient deficit and primary production rates were 13 and 16 mol C m-2, respectively. Regenerated primary production was measured using 15N-labelled ammonium and urea uptake, and was low throughout the sampling period. The exportable primary production measurements were compared with sediment trap flux measurements from 2 locations; the time-series site and at a site 40 km away in deeper water. Results showed ˜1% of the upper mixed layer exportable primary production was exported to traps at 200 m depth at the time-series site (total water column depth 520 m). The maximum particle flux rate to sediment traps at the deeper offshore site (total water column depth 820 m) was lower than the flux at the coastal time-series site. Flux of particulate organic carbon was similar throughout the spring-summer high flux period for both sites. Remineralisation of particulate organic matter predominantly occurred in the upper water-column (<200 m depth), with minimal remineralisation below 200 m, at both sites. This highly productive region on the Western Antarctic Peninsula is therefore best characterised as 'high recycling, low export'.

  11. Vertebral Bomb Radiocarbon Suggests Extreme Longevity in White Sharks

    PubMed Central

    Hamady, Li Ling; Natanson, Lisa J.; Skomal, Gregory B.; Thorrold, Simon R.

    2014-01-01

    Conservation and management efforts for white sharks (Carcharodon carcharias) remain hampered by a lack of basic demographic information including age and growth rates. Sharks are typically aged by counting growth bands sequentially deposited in their vertebrae, but the assumption of annual deposition of these band pairs requires testing. We compared radiocarbon (Δ14C) values in vertebrae from four female and four male white sharks from the northwestern Atlantic Ocean (NWA) with reference chronologies documenting the marine uptake of 14C produced by atmospheric testing of thermonuclear devices to generate the first radiocarbon age estimates for adult white sharks. Age estimates were up to 40 years old for the largest female (fork length [FL]: 526 cm) and 73 years old for the largest male (FL: 493 cm). Our results dramatically extend the maximum age and longevity of white sharks compared to earlier studies, hint at possible sexual dimorphism in growth rates, and raise concerns that white shark populations are considerably more sensitive to human-induced mortality than previously thought. PMID:24416189

  12. Vertebral bomb radiocarbon suggests extreme longevity in white sharks.

    PubMed

    Hamady, Li Ling; Natanson, Lisa J; Skomal, Gregory B; Thorrold, Simon R

    2014-01-01

    Conservation and management efforts for white sharks (Carcharodon carcharias) remain hampered by a lack of basic demographic information including age and growth rates. Sharks are typically aged by counting growth bands sequentially deposited in their vertebrae, but the assumption of annual deposition of these band pairs requires testing. We compared radiocarbon (Δ(14)C) values in vertebrae from four female and four male white sharks from the northwestern Atlantic Ocean (NWA) with reference chronologies documenting the marine uptake of (14)C produced by atmospheric testing of thermonuclear devices to generate the first radiocarbon age estimates for adult white sharks. Age estimates were up to 40 years old for the largest female (fork length [FL]: 526 cm) and 73 years old for the largest male (FL: 493 cm). Our results dramatically extend the maximum age and longevity of white sharks compared to earlier studies, hint at possible sexual dimorphism in growth rates, and raise concerns that white shark populations are considerably more sensitive to human-induced mortality than previously thought.

  13. β2-adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+-K+-ATPase Vmax in trained men.

    PubMed

    Hostrup, M; Kalsen, A; Ortenblad, N; Juel, C; Mørch, K; Rzeppa, S; Karlsson, S; Backer, V; Bangsbo, J

    2014-12-15

    The aim of the present study was to examine the effect of β2-adrenergic stimulation on skeletal muscle contractile properties, sarcoplasmic reticulum (SR) rates of Ca(2+) release and uptake, and Na(+)-K(+)-ATPase activity before and after fatiguing exercise in trained men. The study consisted of two experiments (EXP1, n = 10 males, EXP2, n = 20 males), where β2-adrenoceptor agonist (terbutaline) or placebo was randomly administered in double-blinded crossover designs. In EXP1, maximal voluntary isometric contraction (MVC) of m. quadriceps was measured, followed by exercise to fatigue at 120% of maximal oxygen uptake (V̇O2, max ). A muscle biopsy was taken after MVC (non-fatigue) and at time of fatigue. In EXP2, contractile properties of m. quadriceps were measured with electrical stimulations before (non-fatigue) and after two fatiguing 45 s sprints. Non-fatigued MVCs were 6 ± 3 and 6 ± 2% higher (P < 0.05) with terbutaline than placebo in EXP1 and EXP2, respectively. Furthermore, peak twitch force was 11 ± 7% higher (P < 0.01) with terbutaline than placebo at non-fatigue. After sprints, MVC declined (P < 0.05) to the same levels with terbutaline as placebo, whereas peak twitch force was lower (P < 0.05) and half-relaxation time was prolonged (P < 0.05) with terbutaline. Rates of SR Ca(2+) release and uptake at 400 nm [Ca(2+)] were 15 ± 5 and 14 ± 5% (P < 0.05) higher, respectively, with terbutaline than placebo at non-fatigue, but declined (P < 0.05) to similar levels at time of fatigue. Na(+)-K(+)-ATPase activity was unaffected by terbutaline compared with placebo at non-fatigue, but terbutaline counteracted exercise-induced reductions in maximum rate of activity (Vmax) at time of fatigue. In conclusion, increased contractile force induced by β2-adrenergic stimulation is associated with enhanced rate of Ca(2+) release in humans. While β2-adrenergic stimulation elicits positive inotropic and lusitropic effects on non-fatigued m. quadriceps, these effects are blunted when muscles fatigue. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  14. Assessment of methane biodegradation kinetics in two-phase partitioning bioreactors by pulse respirometry.

    PubMed

    Ordaz, Alberto; López, Juan C; Figueroa-González, Ivonne; Muñoz, Raúl; Quijano, Guillermo

    2014-12-15

    Biological methane biodegradation is a promising treatment alternative when the methane produced in waste management facilities cannot be used for energy generation. Two-phase partitioning bioreactors (TPPBs), provided with a non-aqueous phase (NAP) with high affinity for the target pollutant, are particularly suitable for the treatment of poorly water-soluble compounds such as methane. Nevertheless, little is known about the influence of the presence of the NAP on the resulting biodegradation kinetics in TPPBs. In this study, an experimental framework based on the in situ pulse respirometry technique was developed to assess the impact of NAP addition on the methane biodegradation kinetics using Methylosinus sporium as a model methane-degrading microorganism. A comprehensive mass transfer characterization was performed in order to avoid mass transfer limiting scenarios and ensure a correct kinetic parameter characterization. The presence of the NAP mediated significant changes in the apparent kinetic parameters of M. sporium during methane biodegradation, with variations of 60, 120, and 150% in the maximum oxygen uptake rate, half-saturation constant and maximum specific growth rate, respectively, compared with the intrinsic kinetic parameters retrieved from a control without NAP. These significant changes in the kinetic parameters mediated by the NAP must be considered for the design, operation and modeling of TPPBs devoted to air pollution control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. [Effects of Triton X-100 on the oxygen uptake rate of photosystem I particles treated at 70 degrees C].

    PubMed

    Chen, Wei; Yang, Zhen-Le; Li, Liang-Bi; Kuang, Ting-Yun

    2005-06-01

    The characteristics including oxygen uptake rates, fluorescence spectra and absorption spectra of photosystem I particles with or without Triton-X 100 treatment before or after the incubation at 70 degrees C for 10 min were compared. The oxygen uptake rates of photosystem I particles decreased after being incubated at 70 degrees C for 10 min, which could be recovered by the addition of Triton-X 100. Singlet oxygen was formed when the light-harvesting complex I was separated from the core complex of photosystem I, which resulted in high oxygen uptake rate. There was much difference in the fluorescence spectra of photosystem I particles between photosystem I particles treated with Triton-X 100 after the incubation at 70 degrees C for 10 min or not, which implies the ability of Triton-X 100 to promote the recovery of photosystem I particles after the incubation at 70 degrees C for 10 min.

  16. Relation between the location of elements in the periodic table and various organ-uptake rates.

    PubMed

    Ando, A; Ando, I; Hiraki, T; Hisada, K

    1989-01-01

    Fifty four elements and 65 radioactive compounds were examined to determine the organ uptake rates for rats 3, 24 and 48 h after i.v. injection of these compounds. They were prepared as carrier free nuclides, or containing a small amount of stable nuclide. Generally speaking, behaviors of K, Rb, Cs and Tl in all the organs were very similar to one another, but they differed from that of Na. Bivalent hard acids were avidly taken up into bone; therefore, uptake rates in soft tissues were very small. Hard acids of tri-, quadri- and pentavalence which were taken up into the soft tissue organs decreased more slowly from these organs than other ions. Soft acids such as Hg2+ were bound very firmly to the component in the kidney. Anions (with few exceptions), GeCl4 and SbCl3 were rapidly excreted in urine, so that the uptake rates in organs were low.

  17. Effect of the amino acid histidine on the uptake of cadmium from the digestive system of the blue crab, Callinectes sapidus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecon, J.; Powell, E.N.

    1981-07-01

    The digestive tract functions in the storage, metabolism, and excretion of heavy metals in invertebrates. The importance of the digestive tract and the processes governing digestion and absorption of nutrients in heavy metal uptake is becoming increasingly clear. The results of this study suggest that in order to understand the processes controlling heavy metal uptake in invertebrates, it will be necessary to investigate the role that digestion and absorption play in determining the transport rate of metals across the gut wall into the blood. For example, some amino acids increase metal absorption rates, whereas other compounds, such as phytate, decreasemore » metal absorption rates. The results also suggest that experimental designs to investigate metal absorption must include an appreciation of the significant role that the feeding state of the animal (e.g. fed or starved) and the role chelators, particularly those produced by the organisms themselves during digestion, may play in the observed uptake rates of metal ions.« less

  18. Effect of raw humus under two adult Scots pine stands on ectomycorrhization, nutritional status, nitrogen uptake, phosphorus uptake and growth of Pinus sylvestris seedlings.

    PubMed

    Schulz, Horst; Schäfer, Tina; Storbeck, Veronika; Härtling, Sigrid; Rudloff, Renate; Köck, Margret; Buscot, François

    2012-01-01

    Ectomycorrhiza (EM) formation improves tree growth and nutrient acquisition, particularly that of nitrogen (N). Few studies have coupled the effects of naturally occurring EM morphotypes to the nutrition of host trees. To investigate this, pine seedlings were grown on raw humus substrates collected at two forest sites, R2 and R3. Ectomycorrhiza morphotypes were identified, and their respective N uptake rates from organic (2-(13)C, (15)N-glycine) and inorganic ((15)NH(4)Cl, Na(15)NO(3), (15)NH(4)NO(3), NH(4)(15)NO(3)) sources as well as their phosphate uptake rates were determined. Subsequently, the growth and nutritional status of the seedlings were analyzed. Two dominant EM morphotypes displayed significantly different mycorrhization rates in the two substrates. Rhizopogon luteolus Fr. (RL) was dominant in R2 and Suillus bovinus (Pers.) Kuntze (SB) was dominant in R3. (15)N uptake of RL EM was at all times higher than that of SB EM. Phosphate uptake rates by the EM morphotypes did not differ significantly. The number of RL EM correlated negatively and the number of SB EM correlated positively with pine growth rate. Increased arginine concentrations and critical P/N ratios in needles indicated nutrient imbalances of pine seedlings from humus R2, predominantly mycorrhizal with RL. We conclude that different N supply in raw humus under Scots pine stands can induce shifts in the EM frequency of pine seedlings, and this may lead to EM formation by fungal strains with different ability to support tree growth.

  19. Picophytoplankton physiology and the microbial loop

    NASA Astrophysics Data System (ADS)

    Stawiarski, Beate

    2013-04-01

    Physiological observations are needed for a better understanding of the complexity of marine ecosystem processes. This information is important for a better model formulation and parameterisation to identify the consequences of, and feedbacks to, global change and to make future projections. Picophytoplankton form the smallest component of the phytoplankton community (˜ 3μm) and show a substantial contribution to phytoplankton biomass in oligotrophic oceans. Here they also have an important function as primary producers in the microbial loop. They include cyanobacteria, represented by Prochlorococcus and Synechococcus, and picoeukaryotes. The aim of this project is to achieve a better representation of picophytoplankton in the global biogeochemical model PlankTOM 10. PlankTOM 10 simplifies the complex ecosystem into 10 conceptual groups also known as plankton functional types (PFTs). These groups of organisms are defined by physiological and biochemical parameters (6 of phytoplankton, 3 of zooplankton and 1 of bacteria). Furthermore, the question will be addressed, whether picophytoplankton are typical K-strategists with low minimum nutrient and high maximum chlorophyll quota relative to carbon, or by having superior nutrient uptake kinetics and light harvesting (high αChl). Laboratory experiments showed that the smaller picoprokaryotes respond faster to increasing light intensities than their picoeukaryotic counterpart. Preliminary data show that the initial slope of the photosynthesis vs. irradiance curve (αChl) of picoprokaryotes is about 1.5 times higher than of picoeukaryotes. This is consistent with their common distribution at the deep chlorophyll maximum. The maximum chlorophyll quota are not significantly different. Temperature experiments confirmed that the maximum growth rates of picophytoplankton at the optimum temperature (0.47 ± 0.17 d-1 for prokaryotes and 1.05 ± 0.47 d-1 for eukaryotes) are significantly lower than of diatoms (1.57 ± 0.73 d-1, Chollet et al. in prep.) and not significantly different from coccolithophores (0.68 ± 0.10 d-1, Buitenhuis et al. 2008), consistent with the characterisation of picophytoplanton as K-strategists. Their optimum temperatures were found to be 22.7 ± 2.0 ° C for prokaryotes and 23.6 ± 3.1 ° C for eukaryotes. Nutrient limitation experiments will be conducted to characterize the nutrient uptake and elemental composition of picophytoplankton. Finally the results of all experiments will then be used to improve the representation of picophytoplankton in PlankTOM10, evaluated against a recently compiled global database of picophytoplankton biomass.

  20. Quantitative analysis of [99mTc]C2A-GST distribution in the area at risk after myocardial ischemia and reperfusion using a compartmental model.

    PubMed

    Audi, Said; Poellmann, Michael; Zhu, Xiaoguang; Li, Zhixin; Zhao, Ming

    2007-11-01

    It was recently demonstrated that the radiolabeled C2A domain of synaptotagmin I accumulates avidly in the area at risk after ischemia and reperfusion. The objective was to quantitatively characterize the dynamic uptake of radiolabeled C2A in normal and ischemically injured myocardia using a compartmental model. To induce acute myocardial infarction, the left descending coronary artery was ligated for 18 min, followed by reperfusion. [99mTc]C2A-GST or its inactivated form, [99mTc]C2A-GST-NHS, was injected intravenously at 2 h after reperfusion. A group of four rats was sacrificed at 10, 30, 60 and 180 after injection. Uptake of [99mTc]C2A-GST and [99mTc]C2A-GST-NHS in the area at risk and in the normal myocardium were determined by gamma counting. A compartmental model was developed to quantitatively interpret myocardial uptake kinetic data. The model consists of two physical spaces (vascular space and tissue space), with plasma activity as input. The model allows for [99mTc]C2A-GST and [99mTc]C2A-GST-NHS diffusion between vascular and tissue spaces, as well as for [99mTc]C2A-GST sequestration in vascular and tissue spaces via specific binding. [99mTc]C2A-GST uptake in the area at risk was significantly higher than that for [99mTc]C2A-GST-NHS at all time points. The compartmental model separated [99mTc]C2A-GST uptake in the area at risk due to passive retention from that due to specific binding. The maximum amount of [99mTc]C2A-GST that could be sequestered in the area at risk due to specific binding was estimated at a total of 0.048 nmol/g tissue. The rate of [99mTc]C2A-GST sequestration within the tissue space of the area at risk was 0.012 ml/min. Modeling results also revealed that the diffusion rate of radiotracer between vascular and tissue spaces is the limiting factor of [99mTc]C2A-GST sequestration within the tissue space of the area at risk. [99mTc]C2A-GST is sequestered in the ischemically injured myocardium in a well-defined dynamic profile. Model parameters will be valuable indicators for gauging and guiding the development of future-generation molecular probes.

  1. A quality improvement initiative to increase HPV vaccine rates using an educational and reminder strategy with parents of preteen girls.

    PubMed

    Cassidy, Brenda; Braxter, Betty; Charron-Prochownik, Denise; Schlenk, Elizabeth A

    2014-01-01

    A quality improvement project was undertaken to determine if an evidence-based educational brochure and reminder system can increase human papillomavirus (HPV) vaccine uptake and dose completion rates. Development of a brochure to promote HPV vaccine uptake was based on predictors of parental acceptance and Health Belief Model concepts. Electronic alerts prompted telephone reminders for dose completion. This quality improvement project utilized a quasi-experimental design with 24 parents of preteen girls from a private pediatric practice and a historical control group of 29 parents. HPV vaccine rates were compared between the groups. A significant difference in HPV vaccine uptake (χ(2) = 11.668, P = .001; odds ratio [OR] = 9.429, 95% confidence interval [CI] = 2.686-33.101) and dose completion (χ(2) = 16.171, P < .001; OR = 22.500, 95% CI = 4.291-117.990) rates were found between the historical control and intervention groups. Parents who received the clinical protocol were 9.4 times and 22.5 times more likely to have HPV vaccine uptake and dose completion, respectively. Low national HPV vaccine rates demonstrate the need for theory-based vaccine delivery programs. These results show that an evidence-based educational brochure and reminder system appeared to improve HPV vaccine uptake and dose completion rates at this private pediatric practice. Copyright © 2014 National Association of Pediatric Nurse Practitioners. Published by Mosby, Inc. All rights reserved.

  2. Effects of nitrogen and phosphorus additions on soil methane uptake in disturbed forests

    NASA Astrophysics Data System (ADS)

    Zheng, Mianhai; Zhang, Tao; Liu, Lei; Zhang, Wei; Lu, Xiankai; Mo, Jiangming

    2016-12-01

    Atmospheric nitrogen (N) deposition is generally thought to suppress soil methane (CH4) uptake in natural forests, and phosphorus (P) input may alleviate this negative effect. However, it remains unclear how N and P inputs control soil CH4 uptake in disturbed forests. In this study, soil CH4 uptake rates were measured in two disturbed forests, including a secondary forest (with previous, but not recent, disturbance) and a plantation forest (with recent continuous disturbance), in southern China for 34 months of N and/or P additions: control, N addition (150 kg N ha-1 yr-1), P addition (150 kg P ha-1 yr-1), and NP addition (150 kg N ha-1 yr-1 plus 150 kg P ha-1 yr-1). Mean CH4 uptake rate in control plots was significantly higher in the secondary forest (24.40 ± 0.81 µg CH4-C m-2 h-1) than in the plantation forest (17.07 ± 0.70 µg CH4-C m-2 h-1). CH4 uptake rate had negative relationships with soil water-filled pore space in both forests. In the secondary forest, N, P, and NP additions significantly decreased CH4 uptake by 39.7%, 27.8%, and 37.6%, respectively, but had no significant effects in the plantation forest, indicating that P input does not alleviate the suppression of CH4 uptake by N deposition. Taken together, our findings suggest that reducing anthropogenic disturbance, including harvesting of forest floor, and anthropogenic N and P inputs will increase soil CH4 uptake in disturbed forests, which is important in view of the increased trends in global warming during recent decades.

  3. Improving pneumococcal and herpes zoster vaccination uptake: expanding pharmacist privileges.

    PubMed

    Taitel, Michael S; Fensterheim, Leonard E; Cannon, Adam E; Cohen, Edward S

    2013-09-01

    To investigate how state-authorized pharmacist immunization privileges influence pharmacist intervention effectiveness in delivering pneumococcal and herpes zoster vaccinations and assess the implications these privileges have on vaccination rates. Cross-sectional study of Walgreens vaccination records from August 2011 to March 2012. A random sample of patients having a claim for influenza vaccination in the study period was selected. Vaccination uptake rates for pneumococcal disease and herpes zoster were calculated for previously unvaccinated patients at high risk for these conditions. Rates were examined by state-level pharmacist privileges. For states authorizing immunization by protocol or prescriptive authority, the 1-year pneumococcal vaccination uptake rate for previously unvaccinated, high-risk persons was 6.6%, compared with 2.5% for states requiring a prescription (P <.0001), and 2.8% for states with no authorization (P <.0001). For herpes zoster, the 1-year vaccination uptake rate was 3.3% for states authorizing per protocol/prescriptive authority, compared with 2.8% (not significant, P <.05) for states authorizing by prescription, and 1.0% for states with no authorization (P <.0001). A 148% increase of pneumococcal vaccination and a 77% increase of herpes zoster vaccination would result if all states granted pharmacists full immunization privileges. This analysis demonstrates that states that offer pharmacists full immunization privileges have higher vaccination uptake rates than states with restricted or no authorization. Considering the suboptimal vaccination rates of pneumonia and shingles and the public health goals of 2020, states with limited or no immunization authorization for pharmacists should consider expanding pharmacist privileges for these vaccinations.

  4. Glucose uptake and glycolytic flux in adipose tissue from rats adapted to a high-protein, carbohydrate-free diet.

    PubMed

    Brito, S R; Moura, M A; Kawashita, N H; Brito, M N; Kettelhut, I C; Migliorini, R H

    2001-10-01

    Rates of glucose uptake by epididymal and retroperitoneal adipose tissue in vivo, as well as rates of hexose uptake and glycolytic flux in isolated adipocytes, were determined in rats adapted to a high-protein, carbohydrate-free (HP) diet and in control rats fed a balanced (N) diet. Adaptation to the HP diet induced a significant reduction in rates of glucose uptake, estimated with 2-deoxy-[1-(3)H]-glucose, both by adipose tissue (epididymal and retroperitoneal) in vivo and by isolated adipocytes. Twelve hours after replacement of the HP diet with the balanced diet, rates of adipose tissue uptake in vivo in HP-adapted rats returned to levels that did not differ significantly from those in N-fed rats. The rate of flux in the glycolytic pathway, estimated with (3)H[5]-glucose, was also significantly reduced in adipocytes from HP-fed rats. In agreement with the above findings, the activities of hexokinase (HK), phosphofructo-1-kinase (PFK-1), and pyruvate kinase (PK) were markedly reduced in adipose tissue from HP-adapted rats. The activity of pyruvate kinase was partially reverted by diet replacement for 12 hours. The low-plasma insulin and high-glucagon levels in HP-fed rats may have played an important role in the reduction of adipose tissue glucose utilization in these animals. Copyright 2001 by W.B. Saunders Company

  5. Distribution of Carbon Uptake Capacity of Plant Functional Groups Across the Canopy Gradient in Old-Growth Tropical Wet Forest in Costa Rica

    NASA Astrophysics Data System (ADS)

    Oberbauer, S. F.; Cruz, H. O.; Ryan, M. G.; Clark, D. B.; Clark, D. A.; Olivas, P.

    2004-12-01

    Because of the difficulties of accessing leaves within tree crowns, little is known about the photosynthetic capacity of different functional groups within tropical rain forest canopies. To address this deficiency, we measured photosynthetic capacity (Amax) in situ along vertical transects through old-growth forest canopy using a mobile walkup tower at the La Selva Biological Station in Costa Rica. We asked: What groups are responsible for most C-fixation and at what height in the canopy does most C-fixation occur? Photosynthesis (using a LI-COR Li-6400) and total leaf area were measured for all vascular plant species encountered within the tower footprint (4.6 m2). Plants were grouped into trees, palms, ferns, lianas, epiphytes, herbs, Pentaclethra macroloba (the dominant canopy tree), and vines. Amax values differed among functional groups. The ranking of Amax among the groups was trees > P. macroloba > palms > lianas > vines > epiphytes > herbs > ferns. Trees and P. macroloba had the highest photosynthetic rates, but the maximum rates occur at different heights. Amax of P. macroloba increases with canopy height to a maximum 10.3 \\mumol m-2 s-1 at 17.5 m. Amax of trees increases with canopy height (r2 = 0.77) and attains the highest Amax at 32.5 m (10.6 \\mumol m-2 s-1). Palms and lianas presented similar patterns of Amax. However, lianas reach the canopy top whereas palms are shorter and were not observed above 27.5 m. The maximum photosynthetic rates for both groups were: lianas 9.2 \\mumol m-2 s-1 at 27.5 m and palms 9.6 \\mumol m-2 s-1 at 17.5 m. By scaling the functional group Amax values with their leaf area, we estimated that most of the photosynthetic capacity occurs between 17.5 m and 37.5 m and is attributed mainly to trees, followed by P. macroloba and then lianas.

  6. Drinking Water Uranium and Potential Health Effects in the German Federal State of Bavaria.

    PubMed

    Banning, Andre; Benfer, Mira

    2017-08-18

    Mainly due to its nephrotoxic and osteotoxic potential, uranium (U) increasingly finds itself in the spotlight of environmental and health-related research. Germany decided on a binding U guideline value in drinking water of 10 µg/L, valid since 2011. It is yet widely unknown if and how public health was affected by elevated U concentrations before that. In this ecological study we summarized available drinking water U data for the German federal state of Bavaria (703 analyses in total for 553 different municipalities) at county level (for 76 out of 96 Bavarian counties, representing about 83% of Bavaria's and about 13% of Germany's total population) in terms of mean and maximum U concentration. Bavaria is known to regionally exhibit mainly geogenically elevated groundwater U with a maximum value of 40 µg/L in the database used here. Public health data were obtained from federal statistical authorities at county resolution. These included incidence rates of diagnosed diseases suspected to be potentially associated with chronic U uptake, e.g., diseases of the skeleton, the liver or the thyroid as well as tumor and genito-urinary diseases. The datasets were analyzed for interrelations and mutual spatial occurrence using statistical approaches and GIS as well as odds ratios and relative risks calculations. Weak but significant positive associations between maximum U concentrations and aggregated ICD-10 diagnose groups for growths/tumors as well as liver diseases were observed, elevated incidence rates of thyroid diseases seem to occur where mean drinking water U concentrations exceed 2 µg/L. Here, we discuss obtained results and their implications for potential impacts of hydrochemistry on public health in southeast Germany.

  7. Drinking Water Uranium and Potential Health Effects in the German Federal State of Bavaria

    PubMed Central

    Benfer, Mira

    2017-01-01

    Mainly due to its nephrotoxic and osteotoxic potential, uranium (U) increasingly finds itself in the spotlight of environmental and health-related research. Germany decided on a binding U guideline value in drinking water of 10 µg/L, valid since 2011. It is yet widely unknown if and how public health was affected by elevated U concentrations before that. In this ecological study we summarized available drinking water U data for the German federal state of Bavaria (703 analyses in total for 553 different municipalities) at county level (for 76 out of 96 Bavarian counties, representing about 83% of Bavaria’s and about 13% of Germany’s total population) in terms of mean and maximum U concentration. Bavaria is known to regionally exhibit mainly geogenically elevated groundwater U with a maximum value of 40 µg/L in the database used here. Public health data were obtained from federal statistical authorities at county resolution. These included incidence rates of diagnosed diseases suspected to be potentially associated with chronic U uptake, e.g., diseases of the skeleton, the liver or the thyroid as well as tumor and genito-urinary diseases. The datasets were analyzed for interrelations and mutual spatial occurrence using statistical approaches and GIS as well as odds ratios and relative risks calculations. Weak but significant positive associations between maximum U concentrations and aggregated ICD-10 diagnose groups for growths/tumors as well as liver diseases were observed, elevated incidence rates of thyroid diseases seem to occur where mean drinking water U concentrations exceed 2 µg/L. Here, we discuss obtained results and their implications for potential impacts of hydrochemistry on public health in southeast Germany. PMID:28820453

  8. Bioprocess development workflow: Transferable physiological knowledge instead of technological correlations.

    PubMed

    Reichelt, Wieland N; Haas, Florian; Sagmeister, Patrick; Herwig, Christoph

    2017-01-01

    Microbial bioprocesses need to be designed to be transferable from lab scale to production scale as well as between setups. Although substantial effort is invested to control technological parameters, usually the only true constant parameter is the actual producer of the product: the cell. Hence, instead of solely controlling technological process parameters, the focus should be increasingly laid on physiological parameters. This contribution aims at illustrating a workflow of data life cycle management with special focus on physiology. Information processing condenses the data into physiological variables, while information mining condenses the variables further into physiological descriptors. This basis facilitates data analysis for a physiological explanation for observed phenomena in productivity. Targeting transferability, we demonstrate this workflow using an industrially relevant Escherichia coli process for recombinant protein production and substantiate the following three points: (1) The postinduction phase is independent in terms of productivity and physiology from the preinduction variables specific growth rate and biomass at induction. (2) The specific substrate uptake rate during induction phase was found to significantly impact the maximum specific product titer. (3) The time point of maximum specific titer can be predicted by an easy accessible physiological variable: while the maximum specific titers were reached at different time points (19.8 ± 7.6 h), those maxima were reached all within a very narrow window of cumulatively consumed substrate dSn (3.1 ± 0.3 g/g). Concluding, this contribution provides a workflow on how to gain a physiological view on the process and illustrates potential benefits. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:261-270, 2017. © 2016 American Institute of Chemical Engineers.

  9. Point-particle method to compute diffusion-limited cellular uptake.

    PubMed

    Sozza, A; Piazza, F; Cencini, M; De Lillo, F; Boffetta, G

    2018-02-01

    We present an efficient point-particle approach to simulate reaction-diffusion processes of spherical absorbing particles in the diffusion-limited regime, as simple models of cellular uptake. The exact solution for a single absorber is used to calibrate the method, linking the numerical parameters to the physical particle radius and uptake rate. We study the configurations of multiple absorbers of increasing complexity to examine the performance of the method by comparing our simulations with available exact analytical or numerical results. We demonstrate the potential of the method to resolve the complex diffusive interactions, here quantified by the Sherwood number, measuring the uptake rate in terms of that of isolated absorbers. We implement the method in a pseudospectral solver that can be generalized to include fluid motion and fluid-particle interactions. As a test case of the presence of a flow, we consider the uptake rate by a particle in a linear shear flow. Overall, our method represents a powerful and flexible computational tool that can be employed to investigate many complex situations in biology, chemistry, and related sciences.

  10. Calculating CO2 uptake for existing concrete structures during and after service life.

    PubMed

    Andersson, Ronny; Fridh, Katja; Stripple, Håkan; Häglund, Martin

    2013-10-15

    This paper presents a model that can calculate the uptake of CO2 in all existing concrete structures, including its uptake after service life. This is important for the calculation of the total CO2 uptake in the society and its time dependence. The model uses the well-documented cement use and knowledge of how the investments are distributed throughout the building sector to estimate the stock of concrete applications in a country. The depth of carbonation of these applications is estimated using two models, one theoretical and one based on field measurements. The maximum theoretical uptake potential is defined as the amount of CO2 that is emitted during calcination at the production of Portland cement, but the model can also, with some adjustments, be used for the other cement types. The model has been applied on data from Sweden and the results show a CO2 uptake in 2011 in all existing structures of about 300,000 tonnes, which corresponds to about 17% of the total emissions (calcination and fuel) from the production of new cement for use in Sweden in the same year. The study also shows that in the years 2030 and 2050, an increase in the uptake in crushed concrete, from 12,000 tonnes today to 200,000 and 500,000 tonnes of CO2, respectively, could be possible if the waste handling is redesigned.

  11. New Synthesis of nZVI/C Composites as an Efficient Adsorbent for the Uptake of U(VI) from Aqueous Solutions.

    PubMed

    Liu, Haibo; Li, Mengxue; Chen, Tianhu; Chen, Changlun; Alharbi, Njud S; Hayat, Tasawar; Chen, Dong; Zhang, Qiang; Sun, Yubing

    2017-08-15

    New nanoscale zerovalent iron/carbon (nZVI/C) composites were successfully prepared via heating natural hematite and pine sawdust at 800 °C under nitrogen conditions. Characterization by SEM, XRD, FTIR, and XPS analyses indicated that the as-prepared nZVI/C composites contained a large number of reactive sites. The lack of influence of the ionic strength revealed inner-sphere complexation dominated U(VI) uptake by the nZVI/C composites. Simultaneous adsorption and reduction were involved in the uptake process of U(VI) according to the results of XPS and XANES analyses. The presence of U-C/U-U shells demonstrated that innersphere complexation and surface coprecipitation dominated the U(VI) uptake at low and high pH conditions, respectively. The uptake behaviors of U(VI) by the nZVI/C composites were fitted well by surface complexation modeling with two weak and two strong sites. The maximum uptake capacity of U(VI) by the nZVI/C composites was 186.92 mg/g at pH 4.0 and 328 K. Additionally, the nZVI/C composites presented good recyclability and recoverability for U(VI) uptake in regeneration experiments. These observations indicated that the nZVI/C composites can be considered as potential adsorbents to remove radionuclides for environmental remediation.

  12. Measurements of nitrogen productivity in the equatorial Pacific

    NASA Technical Reports Server (NTRS)

    Wilkerson, Frances P.; Dugdale, Richard C.

    1992-01-01

    During the R/V Wecoma WEC88 cruise that sampled a meridional transect along 150 deg W from 15 deg N to 15 deg S, uptake of nitrate and ammonium by phytoplankton was measured using the stable isotope N-15 with simulated in-situ bottle incubations and shipboard mass spectrometry. A set of 25 daily productivity stations showed the influence of equatorial upwelling on nitrate distribution and N-15 uptake in a band from 6 deg N to 7.5 deg S compared with the oligotrophic waters to the north and south, with the highest values of nitrate uptake occurring at the equator. During a 5-day time series at the equator, there was an increase in nitrate accompanied by increased nitrate uptake. Interestingly, nitrate uptake rates (equivalent to new production rates) at the equator were lower than those predicted by previous investigators. Holdover experiments and uptake versus irradiance curves showed that the phytoplankton was in an early stage of metabolic adaptation and that can be a contributing factor.

  13. INTERREGIONAL COMPARISON OF NUTRIENT UPTAKE RATES IN MANAGED AND OLD-GROWTH WATERSHEDS

    EPA Science Inventory

    We compared nutrient uptake rates to examine the effect of timber harvest on streams. From 1999-2002, nutrient additions were conducted in 50 stream reaches in 4 ecoregions (southern Blue Ridge, NC, Ouachita Mountains, AR, Cascade Mountains, OR, and the redwood forests of the Co...

  14. Inhibition of Phosphate Uptake in Corn Roots by Aluminum-Fluoride Complexes1

    PubMed Central

    Façanha, Arnoldo Rocha; Okorokova-Façanha, Anna L.

    2002-01-01

    F forms stable complexes with Al at conditions found in the soil. Fluoroaluminate complexes (AlFx) have been widely described as effective analogs of inorganic phosphate (Pi) in Pi-binding sites of several proteins. In this work, we explored the possibility that the phytotoxicity of AlFx reflects their activity as Pi analogs. For this purpose, 32P-labeled phosphate uptake by excised roots and plasma membrane H+-ATPase activity were investigated in an Al-tolerant variety of maize (Zea mays L. var. dwarf hybrid), either treated or not with AlFx. In vitro, AlFx competitively inhibited the rate of root phosphate uptake as well as the H+-ATPase activity. Conversely, pretreatment of seedlings with AlFx in vivo promoted no effect on the H+-ATPase activity, whereas a biphasic effect on Pi uptake by roots was observed. Although the initial rate of phosphate uptake by roots was inhibited by AlFx pretreatment, this situation changed over the following minutes as the rate of uptake increased and a pronounced stimulation in subsequent 32Pi uptake was observed. This kinetic behavior suggests a reversible and competitive inhibition of the phosphate transporter by fluoroaluminates. The stimulation of root 32Pi uptake induced by AlFx pretreatment was tentatively interpreted as a phosphate starvation response. This report places AlF3 and AlF4− among Al-phytotoxic species and suggests a mechanism of action where the accumulation of Pi-mimicking fluoroaluminates in the soil may affect the phosphate absorption by plants. The biochemical, physiological, and environmental significance of these findings is discussed. PMID:12177489

  15. Nitrogen uptake by the shoots of smooth cordgrass Spartina alterniflora

    USGS Publications Warehouse

    Mozdzer, T.J.; Kirwan, M.; McGlathery, K.J.; Zieman, J.C.

    2011-01-01

    The smooth cordgrass Spartina alterniflora is the foundation species in intertidal salt marshes of the North American Atlantic coast. Depending on its elevation within the marsh, S. alterniflora may be submerged for several hours per day. Previous ecosystem-level studies have demonstrated that S. alterniflora marshes are a net sink for nitrogen (N), and that removal of N from flooding tidal water can provide enough N to support the aboveground biomass. However, studies have not specifically investigated whether S. alterniflora plants assimilate nutrients through their aboveground tissue. We determined in situ foliar and stem N uptake kinetics for 15NH4, 15NO3, and 15N-glycine by artificially flooding plants in a mid-Atlantic salt marsh. To determine the ecological importance of shoot uptake, a model was created to estimate the time of inundation of S. alterniflora in 20 cm height intervals during the growing season. Estimates of inundation time, shoot mass, N uptake rates, and N availability from long-term data sets were used to model seasonal shoot N uptake. Rates of aboveground N uptake rates (leaves + stems) were ranked as follows: NH4 + > glycine > NO3 -. Our model suggests that shoot N uptake may satisfy up to 15% of the growing season N demand in mid-Atlantic salt marshes, with variation depending on plant elevation and water column N availability. However, in eutrophic estuaries, our model indicates the potential of the plant canopy as a nutrient filter, with shoot uptake contributing 66 to 100% of plant N demand. ?? 2011 Inter-Research.

  16. Relationship between root water uptake and soil respiration: A modeling perspective

    NASA Astrophysics Data System (ADS)

    Teodosio, Bertrand; Pauwels, Valentijn R. N.; Loheide, Steven P.; Daly, Edoardo

    2017-08-01

    Soil moisture affects and is affected by root water uptake and at the same time drives soil CO2 dynamics. Selecting root water uptake formulations in models is important since this affects the estimation of actual transpiration and soil CO2 efflux. This study aims to compare different models combining the Richards equation for soil water flow to equations describing heat transfer and air-phase CO2 production and flow. A root water uptake model (RWC), accounting only for root water compensation by rescaling water uptake rates across the vertical profile, was compared to a model (XWP) estimating water uptake as a function of the difference between soil and root xylem water potential; the latter model can account for both compensation (XWPRWC) and hydraulic redistribution (XWPHR). Models were compared in a scenario with a shallow water table, where the formulation of root water uptake plays an important role in modeling daily patterns and magnitudes of transpiration rates and CO2 efflux. Model simulations for this scenario indicated up to 20% difference in the estimated water that transpired over 50 days and up to 14% difference in carbon emitted from the soil. The models showed reduction of transpiration rates associated with water stress affecting soil CO2 efflux, with magnitudes of soil CO2 efflux being larger for the XWPHR model in wet conditions and for the RWC model as the soil dried down. The study shows the importance of choosing root water uptake models not only for estimating transpiration but also for other processes controlled by soil water content.

  17. Nitrate concentration effects on NO3-N uptake and reduction, growth, and fruit yield in strawberry

    NASA Technical Reports Server (NTRS)

    Darnell, R. L.; Stutte, G. W.; Sager, J. C. (Principal Investigator)

    2001-01-01

    Strawberries (Fragaria xananassa Duch. 'Osogrande') were grown hydroponically with three NO3-N concentrations (3.75, 7.5, or 15.0 mM) to determine effects of varying concentration on NO3-N uptake and reduction rates, and to relate these processes to growth and fruit yield. Plants were grown for 32 weeks, and NO3-N uptake and nitrate reductase (NR) activities in roots and shoots were measured during vegetative and reproductive growth. In general, NO3-N uptake rates increased as NO3-N concentration in the hydroponics system increased. Tissue NO3- concentration also increased as external NO3-N concentration increased, reflecting the differences in uptake rates. There was no effect of external NO3-N concentration on NR activities in leaves or roots during either stage of development. Leaf NR activity averaged approximately 360 nmol NO2 formed/g fresh weight (FW)/h over both developmental stages, while NR activity in roots was much lower, averaging approximately 115 nmol NO2 formed/g FW/h. Vegetative organ FW, dry weight (DW), and total fruit yield were unaffected by NO3-N concentration. These data suggest that the inability of strawberry to increase growth and fruit yield in response to increasing NO3-N concentrations is not due to limitations in NO3-N uptake rates, but rather to limitations in NO3- reduction and/or assimilation in both roots and leaves.

  18. Criterion-Related Validity of the Distance- and Time-Based Walk/Run Field Tests for Estimating Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis.

    PubMed

    Mayorga-Vega, Daniel; Bocanegra-Parrilla, Raúl; Ornelas, Martha; Viciana, Jesús

    2016-01-01

    The main purpose of the present meta-analysis was to examine the criterion-related validity of the distance- and time-based walk/run tests for estimating cardiorespiratory fitness among apparently healthy children and adults. Relevant studies were searched from seven electronic bibliographic databases up to August 2015 and through other sources. The Hunter-Schmidt's psychometric meta-analysis approach was conducted to estimate the population criterion-related validity of the following walk/run tests: 5,000 m, 3 miles, 2 miles, 3,000 m, 1.5 miles, 1 mile, 1,000 m, ½ mile, 600 m, 600 yd, ¼ mile, 15 min, 12 min, 9 min, and 6 min. From the 123 included studies, a total of 200 correlation values were analyzed. The overall results showed that the criterion-related validity of the walk/run tests for estimating maximum oxygen uptake ranged from low to moderate (rp = 0.42-0.79), with the 1.5 mile (rp = 0.79, 0.73-0.85) and 12 min walk/run tests (rp = 0.78, 0.72-0.83) having the higher criterion-related validity for distance- and time-based field tests, respectively. The present meta-analysis also showed that sex, age and maximum oxygen uptake level do not seem to affect the criterion-related validity of the walk/run tests. When the evaluation of an individual's maximum oxygen uptake attained during a laboratory test is not feasible, the 1.5 mile and 12 min walk/run tests represent useful alternatives for estimating cardiorespiratory fitness. As in the assessment with any physical fitness field test, evaluators must be aware that the performance score of the walk/run field tests is simply an estimation and not a direct measure of cardiorespiratory fitness.

  19. Study of The Maximum Uptake Capacity on Various Sizes of Electric Arc Furnace Slag in Phosphorus Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Afnizan, W. M. W.; Hamdan, R.; Othman, N.

    2016-07-01

    The high content of uncontrolled phosphorus concentration in wastewater has emerged as a major problem recently. The excessive amount of phosphorus that is originated from domestic waste, unproper treated waste from septic tanks, as well as agricultural activities have led to the eutrophication problem. Therefore, a laboratory experiment was initiated to evaluate the potential of the Electric Arc Furnace Slag (EAFS), a by-product waste from steel making industry in removing phosphorus concentrations in aqueous solutions. In this work several particle sizes ranging from (9.5-12.4 mm, 12.5-15.9 mm, 16.0-19.9 mm, 20.0-24.9 mm, 25-37.4 mm) with a known weight (20±0.28 g, 40±0.27 g, 60±0.30 g, 80±0.29 g and 100±0.38 g) were used to study the effect of different particle sizes towards phosphorus removal. Each particle size of EAFS was shaken in synthetic phosphorus solutions (10 mg/l, 20 mg/l, 30 mg/l, 40 mg/l and 50 mg/l) at a contact time of 2 hours. Final concentrations of phosphorus were sampled and the measurement was made using WESTCO Discrete Analyzer equipment. Results showed that the highest of the maximum uptake capacity of each EAFS particle size distribution achieved at 0.287, 0.313, 0.266, 0.241 and 0.25 mg/g as particle size range was varied from 9.5-12.4 mm to 25-37.4 mm. In conclusion, the maximum uptake capacity of each EAFS mostly was determined to occur at adsorbent weight of 20 to 40 g in most conditions.

  20. Positron emission mammography in the diagnosis of breast cancer. Is maximum PEM uptake value a valuable threshold for malignant breast cancer detection?

    PubMed

    Müller, F H H; Farahati, J; Müller, A G; Gillman, E; Hentschel, M

    2016-01-01

    To evaluate the diagnostic value (sensitivity, specificity) of positron emission mammography (PEM) in a single site non-interventional study using the maximum PEM uptake value (PUVmax). In a singlesite, non-interventional study, 108 patients (107 women, 1 man) with a total of 151 suspected lesions were scanned with a PEM Flex Solo II (Naviscan) at 90 min p.i. with 3.5 MBq 18F-FDG per kg of body weight. In this ROI(region of interest)-based analysis, maximum PEM uptake value (PUV) was determined in lesions, tumours (PUVmaxtumour), benign lesions (PUVmaxnormal breast) and also in healthy tissues on the contralateral side (PUVmaxcontralateral breast). These values were compared and contrasted. In addition, the ratios of PUVmaxtumour / PUVmaxcontralateral breast and PUVmaxnormal breast / PUVmaxcontralateral breast were compared. The image data were interpreted independently by two experienced nuclear medicine physicians and compared with histology in cases of suspected carcinoma. Based on a criteria of PUV>1.9, 31 out of 151 lesions in the patient cohort were found to be malignant (21%). A mean PUVmaxtumour of 3.78 ± 2.47 was identified in malignant tumours, while a mean PUVmaxnormal breast of 1.17 ± 0.37 was reported in the glandular tissue of the healthy breast, with the difference being statistically significant (p < 0.001). Similarly, the mean ratio between tumour and healthy glandular tissue in breast cancer patients (3.15 ± 1.58) was found to be significantly higher than the ratio for benign lesions (1.17 ± 0.41, p < 0.001). PEM is capable of differentiating breast tumours from benign lesions with 100% sensitivity along with a high specificity of 96%, when a threshold of PUVmax >1.9 is applied.

  1. Correlation of Glut-1 and Glut-3 expression with F-18 FDG uptake in pulmonary inflammatory lesions

    PubMed Central

    Wang, Zhen Guang; Yu, Ming Ming; Han, Yu; Wu, Feng Yu; Yang, Guang Jie; Li, Da Cheng; Liu, Si Min

    2016-01-01

    Abstract The aim of the study was to investigate the correlation of glucose transporter-1 (Glut-1) and glucose transporter-3 (Glut-3) expression with F-18 FDG uptake in pulmonary inflammatory lesions. Twenty-two patients with pulmonary inflammatory lesions underwent positron emission tomography/computed tomography (PET/CT) examination preoperatively, and Glut-1 and Glut-3 expression were detected by immunohistochemistry in these lesions. Correlations of Glut-1 and Glut-3 with 18F-FDG uptake were assessed using Spearman's rank correlation test. The maximum standardized uptake value (SUVmax) of pulmonary inflammatory lesions in 22 patients was 0.50 to 7.50, with a mean value of 3.66 ± 1.62. Immunohistochemical staining scores of Glut-1 and Glut-3 were 2.18 ± 0.96 and 2.82 ± 1.37, respectively. The expression of Glut-1 and Glut-3 was positively correlated with F-18 FDG uptake. Glut-3 expression was evidently higher than Glut-1 expression in 22 patients. Glut-1 and Glut-3 expressions are high in pulmonary inflammatory lesions, and Glut-3 plays a more important role in F-18 FDG uptake in pulmonary inflammatory lesions. PMID:27902598

  2. Transport of Gold Nanoparticles by Vascular Endothelium from Different Human Tissues

    PubMed Central

    Gromnicova, Radka; Kaya, Mehmet; Romero, Ignacio A.; Williams, Phil; Satchell, Simon; Sharrack, Basil; Male, David

    2016-01-01

    The selective entry of nanoparticles into target tissues is the key factor which determines their tissue distribution. Entry is primarily controlled by microvascular endothelial cells, which have tissue-specific properties. This study investigated the cellular properties involved in selective transport of gold nanoparticles (<5 nm) coated with PEG-amine/galactose in two different human vascular endothelia. Kidney endothelium (ciGENC) showed higher uptake of these nanoparticles than brain endothelium (hCMEC/D3), reflecting their biodistribution in vivo. Nanoparticle uptake and subcellular localisation was quantified by transmission electron microscopy. The rate of internalisation was approximately 4x higher in kidney endothelium than brain endothelium. Vesicular endocytosis was approximately 4x greater than cytosolic uptake in both cell types, and endocytosis was blocked by metabolic inhibition, whereas cytosolic uptake was energy-independent. The cellular basis for the different rates of internalisation was investigated. Morphologically, both endothelia had similar profiles of vesicles and cell volumes. However, the rate of endocytosis was higher in kidney endothelium. Moreover, the glycocalyces of the endothelia differed, as determined by lectin-binding, and partial removal of the glycocalyx reduced nanoparticle uptake by kidney endothelium, but not brain endothelium. This study identifies tissue-specific properties of vascular endothelium that affects their interaction with nanoparticles and rate of transport. PMID:27560685

  3. Use of an uncertainty analysis for genome-scale models as a prediction tool for microbial growth processes in subsurface environments.

    PubMed

    Klier, Christine

    2012-03-06

    The integration of genome-scale, constraint-based models of microbial cell function into simulations of contaminant transport and fate in complex groundwater systems is a promising approach to help characterize the metabolic activities of microorganisms in natural environments. In constraint-based modeling, the specific uptake flux rates of external metabolites are usually determined by Michaelis-Menten kinetic theory. However, extensive data sets based on experimentally measured values are not always available. In this study, a genome-scale model of Pseudomonas putida was used to study the key issue of uncertainty arising from the parametrization of the influx of two growth-limiting substrates: oxygen and toluene. The results showed that simulated growth rates are highly sensitive to substrate affinity constants and that uncertainties in specific substrate uptake rates have a significant influence on the variability of simulated microbial growth. Michaelis-Menten kinetic theory does not, therefore, seem to be appropriate for descriptions of substrate uptake processes in the genome-scale model of P. putida. Microbial growth rates of P. putida in subsurface environments can only be accurately predicted if the processes of complex substrate transport and microbial uptake regulation are sufficiently understood in natural environments and if data-driven uptake flux constraints can be applied.

  4. A quantitative model for oxygen uptake and release in a family of hemeproteins.

    PubMed

    Bustamante, Juan P; Szretter, María E; Sued, Mariela; Martí, Marcelo A; Estrin, Darío A; Boechi, Leonardo

    2016-06-15

    Hemeproteins have many diverse functions that largely depend on the rate at which they uptake or release small ligands, like oxygen. These proteins have been extensively studied using either simulations or experiments, albeit only qualitatively and one or two proteins at a time. We present a physical-chemical model, which uses data obtained exclusively from computer simulations, to describe the uptake and release of oxygen in a family of hemeproteins, called truncated hemoglobins (trHbs). Through a rigorous statistical analysis we demonstrate that our model successfully recaptures all the reported experimental oxygen association and dissociation kinetic rate constants, thus allowing us to establish the key factors that determine the rates at which these hemeproteins uptake and release oxygen. We found that internal tunnels as well as the distal site water molecules control ligand uptake, whereas oxygen stabilization by distal site residues controls ligand release. Because these rates largely determine the functions of these hemeproteins, these approaches will also be important tools in characterizing the trHbs members with unknown functions. lboechi@ic.fcen.uba.ar Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice.

    PubMed

    Zia, Zahida; Bakhat, Hafiz Faiq; Saqib, Zulfiqar Ahmad; Shah, Ghulam Mustafa; Fahad, Shah; Ashraf, Muhammad Rizwan; Hammad, Hafiz Mohkum; Naseem, Wajid; Shahid, Muhammad

    2017-10-01

    Silicon (Si) is the 2nd most abundant element in soil which is known to enhance stress tolerance in wide variety of crops. Arsenic (As), a toxic metalloid enters into the human food chain through contaminated water and food or feed. To alleviate the deleterious effect of As on human health, it is a need of time to find out an effective strategy to reduce the As accumulation in the food chain. The experiments were conducted during September-December 2014, and 2016 to optimize Si concentration for rice (Oryza sativa L.) exposed to As stress. Further experiment were carried out to evaluate the effect of optimum Si on rice seed germination, seedling growth, phosphorus and As uptake in rice plant. During laboratory experiment, rice seeds were exposed to 150 and 300µM As with and without 3mM Si supplementation. Results revealed that As application, decreased the germination up to 40-50% as compared to control treatment. Arsenic stress also significantly (P < 0.05) reduced the seedling length but Si supplementation enhanced the seedlings length. Maximum seedling length (4.94cm) was recorded for 3mM Si treatment while, minimum seedling length (0.60cm) was observed at day7 by the application of 300µM As. Silicon application resulted in 10% higher seedling length than the control treatment. In soil culture experiment, plants were exposed to same concentrations of As and Si under aerobic and anaerobic conditions. Irrigation water management, significantly (P˂0.05) affected the plant growth, Si and As concentrations in the plant. Arsenic uptake was relatively less under aerobic conditions. The maximum As concentration (9.34 and 27.70mgkg DW -1 in shoot and root, respectively) was found in plant treated with 300µM As in absence of Si under anaerobic condition. Similarly, anaerobic condition resulted in higher As uptake in the plants. The study demonstrated that aerobic cultivation is suitable to decrease the As uptake and in rice exogenous Si supply is beneficial to decrease As uptake under both anaerobic and aerobic conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Oxygen uptake on-kinetics during six-minute walk test predicts short-term outcomes after off-pump coronary artery bypass surgery.

    PubMed

    Rocco, Isadora Salvador; Viceconte, Marcela; Pauletti, Hayanne Osiro; Matos-Garcia, Bruna Caroline; Marcondi, Natasha Oliveira; Bublitz, Caroline; Bolzan, Douglas William; Moreira, Rita Simone Lopes; Reis, Michel Silva; Hossne, Nelson Américo; Gomes, Walter José; Arena, Ross; Guizilini, Solange

    2017-12-26

    We aimed to investigate the ability of oxygen uptake kinetics to predict short-term outcomes after off-pump coronary artery bypass grafting. Fifty-two patients aged 60.9 ± 7.8 years waiting for off-pump coronary artery bypass surgery were evaluated. The 6-min walk test distance was performed pre-operatively, while simultaneously using a portable cardiopulmonary testing device. The transition of oxygen uptake kinetics from rest to exercise was recorded to calculate oxygen uptake kinetics fitting a monoexponential regression model. Oxygen uptake at steady state, constant time, and mean response time corrected by work rate were analysed. Short-term clinical outcomes were evaluated during the early post-operative of off-pump coronary artery bypass surgery. Multivariate analysis showed body mass index, surgery time, and mean response time corrected by work rate as independent predictors for short-term outcomes. The optimal mean response time corrected by work rate cut-off to estimate short-term clinical outcomes was 1.51 × 10 -3  min 2 /ml. Patients with slower mean response time corrected by work rate demonstrated higher rates of hypertension, diabetes, EuroSCOREII, left ventricular dysfunction, and impaired 6-min walk test parameters. The per cent-predicted distance threshold of 66% in the pre-operative was associated with delayed oxygen uptake kinetics. Pre-operative oxygen uptake kinetics during 6-min walk test predicts short-term clinical outcomes after off-pump coronary artery bypass surgery. From a clinically applicable perspective, a threshold of 66% of pre-operative predicted 6-min walk test distance indicated slower kinetics, which leads to longer intensive care unit and post-surgery hospital length of stay. Implications for rehabilitation Coronary artery bypass grafting is a treatment aimed to improve expectancy of life and prevent disability due to the disease progression; The use of pre-operative submaximal functional capacity test enabled the identification of patients with high risk of complications, where patients with delayed oxygen uptake kinetics exhibited worse short-term outcomes; Our findings suggest the importance of the rehabilitation in the pre-operative in order to "pre-habilitate" the patients to the surgical procedure; Faster oxygen uptake on-kinetics could be achieved by improving the oxidative capacity of muscles and cardiovascular conditioning through rehabilitation, adding better results following cardiac surgery.

  7. Precipitation of CaCO3 due to the Uptake of CO2 in Aqueous Solutions - Mechanisms and Rates

    NASA Astrophysics Data System (ADS)

    Dietzel, M.; Purgstaller, B.; Rinder, T.; Niedermayr, A.

    2012-12-01

    In natural and man-made environments the exchange of CO2 between aqueous solutions and the atmosphere frequently induces precipitation of CaCO3 polymorphs. Liberation of gaseous CO2 is well known to induce carbonate formation and extensively studied. In contrast significant gaps of knowledge exist with respect to the combined CO2 uptake and CaCO3 formation, although it is known to be highly valid for many natural and man-made surroundings causing e.g. travertine and scaling in analogy to CO2 liberation. Recently CO2 uptake is also discussed for biomineralization issues and debated for CO2 sequestration by using alkaline residue materials. In the present study CO2 uptake and CaCO3 precipitation mechanisms and rates were experimentally studied by diffusion of CO2 through a polyethylene membrane from an inner to an outer solution containing carbonic acid and CaCl2 (10 mM), respectively. The pH of the outer solution was kept constant between 8.3 and 11.5 by pH stat. technique (25°C). At a critical Ion Activity Product (IAP) CaCO3 is formed in the outer solution. The NaOH titration curve and Ca2+ concentrations reflect CO2 uptake and CaCO3 precipitation rates. To discover the impact of a drift in pH due to CO2 uptake on CaCO3 precipitation hydrogeochemical modeling was applied. XRD, (micro)Raman pattern and SEM imaging reveal the formation of calcite and vaterite at pH 8.3 and 9, whereas at pH > 10 vaterite is additionally formed. However at a given pH the formation of individual CaCO3 polymorphs strongly depends on the CO2 uptake rate (adjusted by membrane thickness), which controls carbonate accumulation in the solution. At elevated pH of the outer solution the uptake rate of CO2 is significantly higher and less time for nucleation of CaCO3 is required compared to lower pH. Surprisingly at the total experimental time of ≈ 20 h the amount of precipitated CaCO3 is similar for all experiments. This can be explained by significant higher CaCO3 precipitation rates at low versus high pH if once a critical IAP is reached. If a drift in pH is permitted the internal Pco2 value can be used as a reliable proxy to evaluate whether uptake of CO2 results in an increase or decrease of IAP with a threshold value of 10-6.15 atm at 25°C (pH ≈ 11). The obtained relationships for CaCO3 formation through CO2 uptake are discussed for selected alkaline environments.

  8. Modelling and Evaluation of Non-Linear Rootwater Uptake for Winter Cropping of Wheat and Berseem

    NASA Astrophysics Data System (ADS)

    GS, K.; Prasad, K. S. H.

    2017-12-01

    The plant water uptake is significant for study to monitor the irrigation supplied to the plant. The Richards equation has been the key governing equation to quantify the root water uptake in the vadose zone and it takes all the sources and sink terms into consideration. The β parameter or the non linearity parameter is used in this modeling to bring the non linearity in the plant root water uptake. The soil parameters are obtained by experimentation and are employed in the Van-Genuchten equation for soil moisture study. Field experiments were carried out at Civil Engineering Department IIT Roorkee, Uttarakhand, India, during the winter season of 2013 and 2014 for berseem and 2016 for wheat as per the local cropping practices. Drainage type lysimeters were installed to study the soil water balance. Soil moisture was monitored using profile probe. Precipitation and all meteorological data were obtained from the nearby gauges located at the National Institute of Hydrology, Roorkee.The moisture data and the deep percolation data were collected on a daily basis and the irrigation supply was controlled and monitored to satisfy the moisture requirements of the crops respectively.In order to study the effect of water scarcity on the crops, the plot was divided and deficited irrigation was applied for the second cropping season for Berseem.The yields for both the seasons was also measured. The solution of Richards equation as applied to the moisture movement in the root zone was modeled. For estimation of root water uptake, the governing equation is the one-dimensional mixed form of Richards' equation is employed (Ji et al., 2007; Shankar et al., 2012).The sink term in the model accounts for the root water uptake, which is utilized by the plant for transpiration. Smaxor the maximum root water uptake for the root zone on a given day must be equal to the maximum transpiration on the corresponding day The model computed moisture content and pressure head is calibrated with the measured soil water content in the crop root zone. The Model output is compared with the output of the HYDRUS 1D software package. The complete calibrated model is now employed to determine the irrigation requirement of crops for a known initial moisture content and available precipitation and can be useful for economical agriculture in the semi-arid regions of India.

  9. Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense.

    PubMed

    Liu, Zebin; Cheng, Ruimei; Xiao, Wenfa; Guo, Quanshui; Wang, Na

    2014-01-01

    Distylium chinense is an evergreen shrub used for the vegetation recovery of floodplain and riparian areas in Three Gorges Reservoir Region. To clarify the morphological and physiological responses and tolerance of Distylium chinense to off-season flooding, a simulation flooding experiment was conducted during autumn and winter. Results indicated that the survival rate of seedlings was 100%, and that plant height and stem diameter were not significantly affected by flooding. Adventitious roots and hypertrophic lenticels were observed in flooded seedlings after 30 days of flooding. Flooding significantly reduced the plant biomass of roots, net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr), maximum photochemical efficiency (Fv/Fm), photochemical quenching (qP), and electron transport rate (ETR) in leaves, and also affected the allocation and transport of carbohydrate and nutrients. However, D. chinense was able to maintain stable levels of Pn, Fv/Fm, qP, ETR, and nutrient content (N and P) in leaves and to store a certain amount of carbohydrate in roots over prolonged durations of flooding. Based on these results, we conclude that there is a high flooding tolerance in D. chinense, and the high survival rate of D. chinense may be attributable to a combination of morphological and physiological responses to flooding.

  10. Effects of Atrazine, Metolachlor, Carbaryl and Chlorothalonil on Benthic Microbes and Their Nutrient Dynamics

    PubMed Central

    Elias, Daniel; Bernot, Melody J.

    2014-01-01

    Atrazine, metolachlor, carbaryl, and chlorothalonil are detected in streams throughout the U.S. at concentrations that may have adverse effects on benthic microbes. Sediment samples were exposed to these pesticides to quantify responses of ammonium, nitrate, and phosphate uptake by the benthic microbial community. Control uptake rates of sediments had net remineralization of nitrate (−1.58 NO3 µg gdm−1 h−1), and net assimilation of phosphate (1.34 PO4 µg gdm−1 h−1) and ammonium (0.03 NH4 µg gdm−1 h−1). Metolachlor decreased ammonium and phosphate uptake. Chlorothalonil decreased nitrate remineralization and phosphate uptake. Nitrate, ammonium, and phosphate uptake rates are more pronounced in the presence of these pesticides due to microbial adaptations to toxicants. Our interpretation of pesticide availability based on their water/solid affinities supports no effects for atrazine and carbaryl, decreasing nitrate remineralization, and phosphate assimilation in response to chlorothalonil. Further, decreased ammonium and phosphate uptake in response to metolachlor is likely due to affinity. Because atrazine target autotrophs, and carbaryl synaptic activity, effects on benthic microbes were not hypothesized, consistent with results. Metolachlor and chlorothalonil (non-specific modes of action) had significant effects on sediment microbial nutrient dynamics. Thus, pesticides with a higher affinity to sediments and/or broad modes of action are likely to affect sediment microbes' nutrient dynamics than pesticides dissolved in water or specific modes of action. Predicted nutrient uptake rates were calculated at mean and peak concentrations of metolachlor and chlorothalonil in freshwaters using polynomial equations generated in this experiment. We concluded that in natural ecosystems, peak chlorothalonil and metolachlor concentrations could affect phosphate and ammonium by decreasing net assimilation, and nitrate uptake rates by decreasing remineralization, relative to mean concentrations of metolachlor and chlorothalonil. Our regression equations can complement models of nitrogen and phosphorus availability in streams to predict potential changes in nutrient dynamics in response to pesticides in freshwaters. PMID:25275369

  11. Age alters uptake pattern of organic and inorganic nitrogen by rubber trees.

    PubMed

    Liu, Min; Xu, Fanzhen; Xu, Xingliang; Wanek, Wolfgang; Yang, Xiaodong

    2018-04-05

    Several studies have explored plant nutrient acquisition during ecosystem succession, but it remains unclear how age affects nitrogen (N) acquisition by the same tree species. Clarifying the age effect will be beneficial to fertilization management through improving N-use efficiency and reducing the risk of environmental pollution due to NO3- leaching. To clarify the effect of age on N uptake, rubber (Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg.) plantations of five ages (7, 16, 24, 32 and 49 years) were selected in Xishuangbanna of southern China for brief 15N exposures of intact roots using field hydroponic experiments. 15N-labeled NH4+, NO3- or glycine were applied in this study. All targeted rubber trees uptake rates followed an order of NH4+ > glycine > NO3-. As age increased, NH4+ uptake increased first and then decreased sharply, partly consistent with the pattern of soil NH4+ concentrations. Uptake of glycine decreased first and then increased gradually, while no significant change of NO3- uptake rates existed with increasing age. Overall, rubber trees with ages from 7 to 49 years all showed a preference for NH4+ uptake. Young rubber trees (7 and 16 years) had higher NH4+ and lower glycine preferences than older trees (24, 32 and 49 years). Mycorrhizal colonization rates of rubber trees were higher in intermediately aged plantations (16, 24 and 32 years) than in plantations aged 7 and 49 years. A positive relationship was observed between arbuscular mycorrhizal colonization rates and NO3- preference. The results from this study demonstrate that rubber trees do not change their preference for NH4+ but strongly decreased their reliance on it with age. These findings indicate that the shift of N uptake patterns with age should be taken into account for rubber fertilization management to improve N-use efficiency and reduce the risk of environmental pollution during rubber production.

  12. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake.

    PubMed

    Rehman, Muhammad Zia-Ur; Rizwan, Muhammad; Ali, Shafaqat; Fatima, Nida; Yousaf, Balal; Naeem, Asif; Sabir, Muhammad; Ahmad, Hamaad Raza; Ok, Yong Sik

    2016-11-01

    Nickel (Ni) toxicity in agricultural crops is a widespread problem while little is known about the role of biochar (BC) and other organic amendments like farm manure (FM) from cattle farm and compost (Cmp) on its alleviation. A greenhouse experiment was conducted to evaluate the effects of BC, Cmp and FM on physiological and biochemical characteristics of maize (Zea mays L.) under Ni stress. Maize was grown in Ni spiked soil without and with two rates of the amendments (equivalent to 1% and 2% organic carbon, OC) applied separately to the soil. After harvest, plant height, root length, dry weight, chlorophyll contents, gas exchange characteristics and trace elements in plants were determined. In addition, post-harvest soil characteristics like pHs, ECe and bioavailable Ni were also determined. Compared to the control, all of the amendments increased plant height, root length, shoot and root dry weight with the maximum increase in all parameters by FM (2% OC) treatment. Similarly, total chlorophyll contents and gas exchange characteristics significantly increased with the application of amendments being maximum with FM (2% OC) application. Amendments significantly increased copper, zinc, manganese and iron concentrations and decreased Ni concentrations in the plants. The highest reduction in shoot Ni concentration was recorded with FM (2% OC) followed by BC (2% OC) being 73.2% and 61.1% lower compared to the control, respectively. The maximum increase in soil pH and decrease in AB-DTPA extractable Ni was recorded with BC (2% OC) followed by FM (2% OC). It is concluded that FM (2% OC) was the most effective in reducing Ni toxicity to plants by reducing Ni uptake while BC (2% OC) was the most effective in decreasing bioavailable Ni in the soil through increasing soil pH. However, long-term field studies are needed to evaluate the effects of these amendments in reducing Ni toxicity in plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Social disparities in access to breast and cervical cancer screening by women living in Spain.

    PubMed

    Ricardo-Rodrigues, I; Jiménez-García, R; Hernández-Barrera, V; Carrasco-Garrido, P; Jiménez-Trujillo, I; López de Andrés, A

    2015-07-01

    To describe uptake of breast and cervical cancer screening by women living in Spain, analyse the possible associated social and health factors, and compare uptake rates with those obtained in previous surveys. Cross-sectional study using data from the 2011 Spanish national health survey. Uptake of breast cancer screening was analysed by asking women aged 40-69 years whether they had undergone mammography in the previous two years. Uptake of cervical cancer screening was analysed by asking women aged 25-65 years whether they had undergone cervical cytology in the previous three years. Independent variables included sociodemographic characteristics, and variables related to health status and lifestyle. Seventy-two percent of women had undergone mammography in the previous two years. Having private health insurance increased the probability of breast screening uptake four-fold [odds ratio (OR) 3.96, 95% confidence interval (CI) 2.71-5.79], and being an immigrant was a negative predictor for breast screening uptake. Seventy percent of women had undergone cervical cytology in the previous three years. Higher-educated women were more likely to have undergone cervical cancer screening (OR 2.59, 95% CI 1.97-3.40), and obese women and women living in rural areas were less likely to have undergone cervical cancer screening. There have been no relevant improvements in uptake rates of either breast or cervical cancer screening since 2006. Uptake of breast and cervical cancer screening could be improved in Spain, and uptake rates have stagnated over recent years. Social disparities have been detected with regard to access to these screening tests, indicating that it is necessary to continue researching and optimizing prevention programmes in order to improve uptake and reduce these disparities. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  14. Combining endocytic and freezing-induced trehalose uptake for cryopreservation of mammalian cells.

    PubMed

    Zhang, Miao; Oldenhof, Harriëtte; Sieme, Harald; Wolkers, Willem F

    2017-01-01

    Fibroblasts take up trehalose during freezing and thawing, which facilitates cryosurvival of the cells. The aim of this study was to investigate if trehalose uptake via fluid-phase endocytosis prefreeze increases cryosurvival. To determine endocytic trehalose uptake in attached as well as suspended fibroblasts, intracellular trehalose concentrations were determined during incubation at 37°C using an enzymatically based trehalose assay. In addition, freezing-induced trehalose uptake of extracellularly added trehalose was determined. Cryosurvival rates were determined via trypan blue staining. Intracellular trehalose contents of attached as well as suspended cells were found to increase linearly with time, consistent with fluid-phase endocytosis. Furthermore, the intracellular trehalose concentration increased with increasing extracellular trehalose concentration (0-100 mM) in a linear fashion. Prefreeze loading of cells with trehalose via fluid-phase endocytosis only showed increased cryosurvival rates at extracellular trehalose concentrations lower than 50 mM in the cryopreservation medium. To obtain satisfactory cryosurvival rates after endocytic preloading, extracellular trehalose is needed to prevent efflux of trehalose during freezing and thawing and for freezing-induced trehalose uptake. At trehalose concentrations greater than 100 mM, cryosurvival rates were similar or slightly higher if cells were not loaded with trehalose prefreeze. Cells that were grown in the presence of trehalose showed a tendency to aggregate after harvesting. It is concluded that it is particularly freezing-induced trehalose uptake that facilitates cryosurvival when trehalose is used as the sole cryoprotectant for cryopreservation of fibroblasts. Preloading with trehalose does not increase cryosurvival rates if trehalose is also added as extracellular protectant. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:229-230, 2017. © 2016 American Institute of Chemical Engineers.

  15. Laboratory investigation of inorganic carbon uptake by cryoconite debris from Werenskioldbreen, Svalbard

    NASA Astrophysics Data System (ADS)

    Stibal, Marek; Tranter, Martyn

    2007-12-01

    Laboratory experiments were undertaken to determine the inorganic carbon uptake rate and the interactions between photosynthesis and water chemistry, particularly pH and nutrient concentrations, for cryoconite debris from Werenskioldbreen, a well-researched Svalbard glacier. Microorganisms in cryoconite debris took up inorganic carbon at rates between 0.6 and 15 μg C L-1 h-1 and fixed it as organic carbon. Cyanobacterial photosynthesis (75-93%) was the main process responsible for inorganic carbon fixation, while heterotrophic uptake (6-15%) only accounted for a minor part. The microbes in cryoconite debris were active shortly after melt and fixed carbon as long as there were favorable conditions. They were not truly psychrophilic: their physiological optimum temperature was higher than is prevalent in cryoconite holes. The pH was also a factor affecting photosynthesis in the cryoconite slurry. The highest dissolved inorganic carbon (DIC) uptake rates per liter of slurry occurred at pH ˜7, and there was a significant correlation between the initial pH and DIC fixation on a per cell basis, showing increasing DIC uptake rates when pH increased from ˜5.5 to 9. Inorganic carbon fixation resulted in an increased pH in solution. However, the microbes were able to photosynthesize in a wide range of pH from ˜4 to ˜10. The average C:N:P molar ratios in solution were ˜350:75:1. Unlike nitrogen, phosphorus concentrations decreased with increasing carbon uptake, and when the rate approached ˜15 μg C L-1 h-1, all available dissolved phosphorus was utilized within 6 h. Hence phosphorus is probably biolimiting in this system.

  16. Macro-kinetic investigation on phenol uptake from air by biofiltration: Influence of superficial gas flow rate and inlet pollutant concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zilli, M.; Fabiano, B.; Ferraiolo, A.

    1996-02-20

    The macro-kinetic behavior of phenol removal from a synthetic exhaust gas was investigated theoretically as well as experimentally by means of two identical continuously operating laboratory-scale biological filter bed columns. A mixture of peat and glass beads was used as filter material. After sterilization it was inoculated with a pure strain of Pseudomonas putida, as employed in previous experimental studies. To determine the influence of the superficial gas flow rate on biofilter performance and to evaluate the phenol concentration profiles along the column, two series of continuous tests were carried out varying either the inlet phenol concentration, up to 1,650more » mg {center_dot} m{sup {minus}3}, or the superficial gas flow rate, from 30 to 460 m{sup 3} {center_dot} m{sup {minus}2} {center_dot} h{sup {minus}1}. The elimination capacity of the biofilter is proved by a maximum volumetric phenol removal rate of 0.73 kg {center_dot} m{sup {minus}3} {center_dot} h{sup {minus}1}. The experimental results are consistent with a biofilm model incorporating first-order substrate elimination kinetics. The model may be considered a useful tool in scaling-up a biofiltration system. Furthermore, the deodorization capacity of the biofilter was investigated, at inlet phenol concentrations up to 280 mg {center_dot} m{sup {minus}3} and superficial gas flow rates ranging from 30 to 92 m{sup 3} {center_dot} m{sup {minus}2} {center_dot} h{sup {minus}1}. The deodorization of the gas was achieved at a maximum inlet phenol concentration of about 255 mg {center_dot} m{sup {minus}3}, operating at a superficial gas flow rate of 30 m{sup 3} {center_dot} m{sup {minus}2} {center_dot} h{sup {minus}1}.« less

  17. Encapsulation of Ibuprofen in CD-MOF and Related Bioavailability Studies.

    PubMed

    Hartlieb, Karel J; Ferris, Daniel P; Holcroft, James M; Kandela, Irawati; Stern, Charlotte L; Nassar, Majed S; Botros, Youssry Y; Stoddart, J Fraser

    2017-05-01

    Although ibuprofen is one of the most widely used nonsteroidal anti-inflammatory drugs (NSAIDs), it exhibits poor solubility in aqueous and physiological environments as a free acid. In order to improve its oral bioavailability and rate of uptake, extensive research into the development of new formulations of ibuprofen has been undertaken, including the use of excipients as well as ibuprofen salts, such as ibuprofen lysinate and ibuprofen, sodium salt. The ultimate goals of these studies are to reduce the time required for maximum uptake of ibuprofen, as this period of time is directly proportional to the rate of onset of analgesic/anti-inflammatory effects, and to increase the half-life of the drug within the body; that is, the duration of action of the effects of the drug. Herein, we present a pharmaceutical cocrystal of ibuprofen and the biocompatible metal-organic framework called CD-MOF. This metal-organic framework (MOF) is based upon γ-cyclodextrin (γ-CD) tori that are coordinated to alkali metal cations (e.g., K + ions) on both their primary and secondary faces in an alternating manner to form a porous framework built up from (γ-CD) 6 cubes. We show that ibuprofen can be incorporated within CD-MOF-1 either by (i) a crystallization process using the potassium salt of ibuprofen as the alkali cation source for production of the MOF or by (ii) absorption and deprotonation of the free-acid, leading to an uptake of 23-26 wt % of ibuprofen within the CD-MOF. In vitro viability studies revealed that the CD-MOF is inherently not affecting the viability of the cells with no IC 50 value determined up to a concentration of 100 μM. Bioavailability investigations were conducted on mice, and the ibuprofen/CD-MOF pharmaceutical cocrystal was compared to control samples of the potassium salt of ibuprofen in the presence and absence of γ-CD. From these animal studies, we observed that the ibuprofen/CD-MOF-1 cocrystal exhibits the same rapid uptake of ibuprofen as the ibuprofen potassium salt control sample with a peak plasma concentration observed within 20 min, and the cocrystal has the added benefit of a 100% longer half-life in blood plasma samples and is intrinsically less hygroscopic than the pure salt form.

  18. A Study of influence on sulfonated TiO2-Poly (Vinylidene fluoride-co-hexafluoropropylene) nano composite membranes for PEM Fuel cell application

    NASA Astrophysics Data System (ADS)

    kumar, K. Selva; Rajendran, S.; Prabhu, M. Ramesh

    2017-10-01

    The present work describes the sulfonated Titania directly blended with Poly (Vinylidene fluoride-co-hexafluoropropylene) as a host polymer by solvent casting technique for PEM fuel cell application. Characterization studies such as FT-IR, SEM, EDX, AFM, Proton conductivity, contact angle measurement, IEC, TG, water uptake, tensile strength were performed by for synthesized proton conducting polymer electrolytes. The maximum proton conductivity value was found to be 3.6 × 10-3S/cm for 25 wt% sulfonated Titania based system at 80 °C. The temperature dependent proton conductivity of the polymer electrolyte follows an Arrhenius relationship. Surface morphology of the composite membranes was investigated by tapping mode. Thermal stability of the system was studied by TG analysis. The fabricated composite membranes with high proton conductivity, good water uptake and IEC parameters exhibited a maximum fuel cell power density of 85 Mw/cm2for PEM fuel cell application.

  19. Hepatitis A and B vaccination--the rate of uptake and course completion in patients with hepatitis C.

    PubMed

    Fredericks, Trinity; Kwan, Kellie; Mak, Donna

    2010-10-01

    Western Australian general practitioners may order Department of Health funded hepatitis A and B vaccines for patients newly notified with hepatitis C to prevent complications associated with co-infections. The aim of this study was to determine vaccination uptake of hepatitis C patients through this program. We reviewed hepatitis C notifications and hepatitis A and B vaccine orders received in 2007 and 2008 to determine the rate of vaccine uptake and course completion. Vaccination orders for initial doses were received for 37% (448/1209) of patients. Vaccination uptake was positively associated with age and non- Aboriginality. Final vaccination doses were ordered for 30% of patients for whom an initial order had been received. Uptake of hepatitis A and B vaccination was higher than that of similar populations. However, vaccination course completion was low. General practitioners need to emphasise to their patients the importance of completing a vaccine course.

  20. Nitrogen Uptake and Denitrification in Restored and Unrestored Streams in Urban Maryland, USA

    EPA Science Inventory

    There is growing interest in rates of nitrate uptake and denitrification in restored streams to better understand the effects of restoration on nitrogen processing. This study quantified nitrate uptake in 2 restored and 2 unrestored streams in Baltimore, Maryland, U.S.A. using n...

  1. Carbonyl sulfide exchange in a temperate loblolly pine forest grown under ambient and elevated CO2

    NASA Astrophysics Data System (ADS)

    White, M. L.; Zhou, Y.; Russo, R. S.; Mao, H.; Talbot, R.; Varner, R. K.; Sive, B. C.

    2009-08-01

    Vegetation, soil and ecosystem level carbonyl sulfide (COS) exchange was observed at Duke Forest, a temperate loblolly pine forest, grown under ambient (Ring 1, R1) and elevated (Ring 2, R2) carbon dioxide (CO2). During calm meteorological conditions, ambient COS mixing ratios at the top of the forest canopy followed a distinct diurnal pattern in both CO2 growth regimes, with maximum COS mixing ratios during the day (R1=380±4 pptv and R2=373±3 pptv, daytime mean ±standard error) and minimums at night (R1=340±6 pptv and R2=346±5 pptv, nighttime mean ±standard error) reflecting a significant nighttime sink. Nocturnal vegetative uptake (-11 to -21 pmol m-2 s-1, negative values indicate uptake from the atmosphere) dominated nighttime net ecosystem COS flux estimates (-10 to -30 pmol m-2 s-1) in both CO2 regimes. In comparison, soil uptake (-0.8 to -1.7 pmol m-2 s-1) was a minor component of net ecosystem COS flux. In both CO2 regimes, loblolly pine trees exhibited substantial COS consumption overnight (50% of daytime rates) that was independent of CO2 assimilation. This suggests current estimates of the global vegetative COS sink, which assume that COS and CO2 are consumed simultaneously, may need to be reevaluated. Ambient COS mixing ratios, species specific diurnal patterns of stomatal conductance, temperature and canopy position were the major factors influencing the vegetative COS flux at the branch level. While variability in branch level vegetative COS consumption measurements in ambient and enhanced CO2 environments could not be attributed to CO2 enrichment effects, estimates of net ecosystem COS flux based on ambient canopy mixing ratio measurements suggest less nighttime uptake of COS in R2, the CO2 enriched environment.

  2. Carbonyl sulfide exchange in a temperate loblolly pine forest grown under ambient and elevated CO2

    NASA Astrophysics Data System (ADS)

    White, M. L.; Zhou, Y.; Russo, R. S.; Mao, H.; Talbot, R.; Varner, R. K.; Sive, B. C.

    2010-01-01

    Vegetation, soil and ecosystem level carbonyl sulfide (COS) exchange was observed at Duke Forest, a temperate loblolly pine forest, grown under ambient (Ring 1, R1) and elevated (Ring 2, R2) CO2. During calm meteorological conditions, ambient COS mixing ratios at the top of the forest canopy followed a distinct diurnal pattern in both CO2 growth regimes, with maximum COS mixing ratios during the day (R1=380±4 pptv and R2=373±3 pptv, daytime mean ± standard error) and minimums at night (R1=340±6 pptv and R2=346±5 pptv, nighttime mean ± standard error) reflecting a significant nighttime sink. Nocturnal vegetative uptake (-11 to -21 pmol m-2s-1, negative values indicate uptake from the atmosphere) dominated nighttime net ecosystem COS flux estimates (-10 to -30 pmol m-2s-1) in both CO2 regimes. In comparison, soil uptake (-0.8 to -1.7 pmol m-2 s-1) was a minor component of net ecosystem COS flux. In both CO2 regimes, loblolly pine trees exhibited substantial COS consumption overnight (50% of daytime rates) that was independent of CO2 assimilation. This suggests current estimates of the global vegetative COS sink, which assume that COS and CO2 are consumed simultaneously, may need to be reevaluated. Ambient COS mixing ratios, species specific diurnal patterns of stomatal conductance, temperature and canopy position were the major factors influencing the vegetative COS flux at the branch level. While variability in branch level vegetative COS consumption measurements in ambient and enhanced CO2 environments could not be attributed to CO2 enrichment effects, estimates of net ecosystem COS flux based on ambient canopy mixing ratio measurements suggest less nighttime uptake of COS in R2, the CO2 enriched environment.

  3. Negative impacts of elevated nitrate on physiological performance are not exacerbated by low pH.

    PubMed

    Gomez Isaza, Daniel F; Cramp, Rebecca L; Franklin, Craig E

    2018-05-15

    Multiple environmental stressors, including nutrient effluents (i.e. nitrates [NO 3 - ]) and altered pH regimes, influence the persistence of freshwater species in anthropogenically disturbed habitats. Independently, nitrate and low pH affect energy allocation by increasing maintenance costs and disrupting oxygen uptake, which ultimately results in impacts upon whole animal performance. However, the interaction between these two stressors has not been characterised. To address this, the effects of nitrate and pH and their interaction on aerobic scope and physiological performance were investigated in the blueclaw crayfish, Cherax destructor. Crayfish were exposed to a 2 × 3 factorial combination, with two pH levels (pH 5.0 and 7.0) and three nitrate concentrations (0, 50 and 100 mg L -1 NO 3 - ). Crayfish were exposed to experimental conditions for 65 days and growth and survival were monitored. Aerobic scope (i.e. maximal - standard oxygen uptake) was measured at six time points (1, 3, 5, 7, 14, and 21 days) during exposure to experimental treatments. Crayfish performance was assessed after 28 days, by measuring chelae strength and whole animal activity capacity via the righting response. Survival was reduced in crayfish exposed to pH 5.0, but there was no exacerbation of this effect by exposure to high nitrate levels. Aerobic scope was compromised by the interaction between low pH and nitrate and resulted in prolonged elevations of standard oxygen uptake rates. Exposure to nitrate alone affected aerobic scope, causing a 59% reduction in maximum oxygen uptake. Reduced aerobic capacity translated to reduced chelae strength and righting capacity. Together, these data show that low pH and elevated nitrate levels reduce aerobic scope and translate to poorer performance in C. destructor, which may have the potential to affect organismal fitness in disturbed habitats. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A novel Na+/HCO3--codependent choline transporter in the syncytial epithelium of the cestode Hymenolepis diminuta.

    PubMed

    Webb, R A; Xue, L

    1998-02-01

    Absorption of exogenous choline by the cestode Hymenolepis diminuta was found to be both Na+- and HCO3--dependent and, at pH 6 to 7, accounted for up to 65% of the total choline uptake. Na+/HCO3- dependent choline uptake was activated at approximately 6 mM HCO3- (EC50 approximately 9 mM), and, above 100 mM Na+, the rate of uptake was directly proportional to the Na+ concentration. Atempts to uncouple Na+-dependent uptake from HCO3--dependent uptake were not successful: K+-depolarization was without effect on HCO3--dependent choline uptake, and use of valinoomycin to hyperpolarize the brush-border membrane resulted in inhibition of uptake. Na-/HCO3--dependent choline uptake was not associated with solvent drag. The Na+/HCO3--dependent choline uptake displayed a Q10 of 6.4 (27 degrees to 37 degrees) and a relatively high activation energy of 126 kJ x mol(-1). At pH 6.0 and 7.0, Na-/HCO3--dependent choline uptake rates were similar, but Na+/HCO3--dependent choline uptake was reduced at pH 5.0. The Na+/HCO3--dependent choline uptake, at pH 7.0, displayed a Kt of approximately 500 microM and a Vmax of 4.01 pmol x mg wet weight(-1) x min(-1). The Na+/HCO3--dependent choline uptake was hemicholinium-3 sensitive, but not significantly inhibited by 200 microM bumetanide, 100 microM amiloride, benzamil, or EIPA or by 1 mM 4,4'-diisothiocyano-2,2'-stilbene disulfonate (DIDS) or 4-acetamido-4'-isothiocvanostilbene-2,2'-disulfonic acid (SITS). Although it remains to be shown that HCO3- uptake is coupled directly to both choline and Na+ uptake, the data suggest that choline up take occurs via choline/Na+/HCO3--co-trans porter.

  5. Nitrate consumption in sediments of the German Bight (North Sea)

    NASA Astrophysics Data System (ADS)

    Neumann, Andreas; van Beusekom, Justus E. E.; Holtappels, Moritz; Emeis, Kay-Christian

    2017-09-01

    Denitrification on continental margins and in coastal sediments is a major sink of reactive N in the present nitrogen cycle and a major ecosystem service of eutrophied coastal waters. We analyzed the nitrate removal in surface sediments of the Elbe estuary, Wadden Sea, and adjacent German Bight (SE North Sea) during two seasons (spring and summer) along a eutrophication gradient ranging from a high riverine nitrate concentrations at the Elbe Estuary to offshore areas with low nitrate concentrations. The gradient encompassed the full range of sediment types and organic carbon concentrations of the southern North Sea. Based on nitrate penetration depth and concentration gradient in the porewater we estimated benthic nitrate consumption rates assuming either diffusive transport in cohesive sediments or advective transport in permeable sediments. For the latter we derived a mechanistic model of porewater flow. During the peak nitrate discharge of the river Elbe in March, the highest rates of diffusive nitrate uptake were observed in muddy sediments (up to 2.8 mmol m- 2 d- 1). The highest advective uptake rate in that period was observed in permeable sediment and was tenfold higher (up to 32 mmol m- 2 d- 1). The intensity of both diffusive and advective nitrate consumption dropped with the nitrate availability and thus decreased from the Elbe estuary towards offshore stations, and were further decreased during late summer (minimum nitrate discharge) compared to late winter (maximum nitrate discharge). In summary, our rate measurements indicate that the permeable sediment accounts for up to 90% of the total benthic reactive nitrogen consumption in the study area due to the high efficiency of advective nitrate transport into permeable sediment. Extrapolating the averaged nitrate consumption of different sediment classes to the areas of Elbe Estuary, Wadden Sea and eastern German Bight amounts to an N-loss of 3.1 ∗ 106 mol N d- 1 from impermeable, diffusion-controlled sediment, and 5.2 ∗ 107 mol N d- 1 from permeable sediment with porewater advection.

  6. Three-compartment model for contaminant accumulation by semipermeable membrane devices

    USGS Publications Warehouse

    Gale, Robert W.

    1998-01-01

    Passive sampling of dissolved hydrophobic contaminants with lipid (triolein)-containing semipermeable membrane devices (SPMDs) has been gaining acceptance for environmental monitoring. Understanding of the accumulation process has employed a simple polymer film-control model of uptake by the polymer-enclosed lipid, while aqueous film control has been only briefly discussed. A more complete three-compartment model incorporating both aqueous film (turbulent-diffusive) and polymer film (diffusive) mass transfer is developed here and is fit to data from accumulation studies conducted in constant-concentration, flow-through dilutors. This model predicts aqueous film control of the whole device for moderate to high Kow compounds, rather than polymer film control. Uptake rates for phenanthrene and 2,2‘,5,5‘-tetrachlorobiphenyl were about 4.8 and 4.2 L/day/standard SPMD, respectively. Maximum 28 day SPMD concentration factors of 30 000 are predicted for solutes with log Kow values of >5.5. Effects of varying aqueous and polymer film thicknesses and solute diffusivities in the polymer film are modeled, and overall accumulation by the whole device is predicted to remain under aqueous film control, although accumulation in the triolein may be subject to polymer film control. The predicted half-life and integrative response of SPMDs to pulsed concentration events is proportional to log KSPMD.

  7. Uptake of CeO2 nanoparticles and its effect on growth of Medicago arborea In vitro plantlets.

    PubMed

    Gomez-Garay, Aranzazu; Pintos, Beatriz; Manzanera, Jose Antonio; Lobo, Carmen; Villalobos, Nieves; Martín, Luisa

    2014-10-01

    The present study analyzes some effects of nano-CeO2 particles on the growth of in vitro plantlets of Medicago arborea when the nanoceria was added to the culture medium. Various concentrations of nano-CeO2 and bulk ceric oxide particles in suspension form were introduced to the agar culture medium to compare the effects of nanoceria versus ceric oxide bulk material. Germination rate and shoot dry weight were not affected by the addition of ceric oxide to the culture media. Furthermore, no effects were observed on chlorophyll content (single-photon avalanche diode (SPAD) measurements) due to the presence of either nano- or micro-CeO2 in the culture medium. When low concentrations of nanoceria were added to the medium, the number of trifoliate leaves and the root length increased but the root dry weight decreased. Also the values of maximum photochemical efficiency of PSII (F(v)/F m) showed a significant decrease. Dark-adapted minimum fluorescence (F 0) significantly increased in the presence of 200 mg L(-1) nanoceria and 400 mg L(-1) bulk material. Root tissues were more sensitive to nanoceria than were the shoots at lower concentrations of nanoceria. A stress effect was observed on M. arborea plantlets due to cerium uptake.

  8. Carbon sequestration via reaction with basaltic rocks: geochemical modeling and experimental results

    USGS Publications Warehouse

    Rosenbauer, Robert J.; Thomas, Burt; Bischoff, James L.; Palandri, James

    2012-01-01

    Basaltic rocks are potential repositories for sequestering carbon dioxide (CO2) because of their capacity for trapping CO2 in carbonate minerals. We carried out a series of thermodynamic equilibrium models and high pressure experiments, reacting basalt with CO2-charged fluids over a range of conditions from 50 to 200 °C at 300 bar. Results indicate basalt has a high reactivity to CO2 acidified brine. Carbon dioxide is taken up from solution at all temperatures from 50 to 200 °C, 300 bar, but the maximum extent and rate of reaction occurs at 100 °C, 300 bar. Reaction path simulations utilizing the geochemical modeling program CHILLER predicted an equilibrium carbonate alteration assemblage of calcite, magnesite, and siderite, but the only secondary carbonate identified in the experiments was a ferroan magnesite. The amount of uptake at 100 °C, 300 bar ranged from 8% by weight for a typical tholeite to 26% for a picrite. The actual amount of CO2 uptake and extent of rock alteration coincides directly with the magnesium content of the rock suggesting that overall reaction extent is controlled by bulk basalt Mg content. In terms of sequestering CO2, an average basaltic MgO content of 8% is equivalent to 2.6 × 108 metric ton CO2/km3 basalt.

  9. Functional effects of uridine triphosphate on human skinned skeletal muscle fibers.

    PubMed

    Vianna-Jorge, R; Oliveira, C F; Mounier, Y; Suarez-Kurtz, G

    1998-02-01

    Chemically skinned human skeletal muscle fibers were used to study the effects of uridine triphosphate (UTP) on the tension-pCa relationship and on Ca2+ uptake and release by the sarcoplasmic reticulum (SR). Total replacement (2.5 mM) of adenosine triphosphate (ATP) with UTP (i) displaced the tension-pCa relationship to the left along the abcissae and increased maximum Ca(2+)-activated tension, both effects being larger in slow- than in fast-type fibers; (ii) markedly reduced Ca2+ uptake by the SR (evaluated by the caffeine-evoked tension) in both fiber types; (iii) had no effect on the rate of depletion of caffeine-sensitive Ca2+ stores during soaking in relaxing solutions; (iv) induced tension in slow- but not in fast-type fibers. The effects on the SR functional properties are consistent with the notion that UTP is a poor substitute for ATP as a substrate for the Ca ATPase pump and as an agonist of the ryanodine-sensitive Ca(2+)-release channel. The UTP-induced tension in human slow-type fibers is attributed to effect(s) of the nucleotide on the tension-pCa relationship of the contractile machinery. The present data reveal important differences between the effects of UTP on human versus rat muscle fibers.

  10. Protein synthesis and specific dynamic action in crustaceans: effects of temperature.

    PubMed

    Whiteley, N M; Robertson, R F; Meagor, J; El Haj, A J; Taylor, E W

    2001-03-01

    Temperature influences the specific dynamic action (SDA), or rise in oxygen uptake rate after feeding, in eurythermal and stenothermal crustaceans by changing the timing and the magnitude of the response. Intra-specific studies on the eurythermal crab, Carcinus maenas, show that a reduction in acclimation temperature is associated with a decrease in SDA magnitude, resulting from an increase in SDA duration but a decrease in peak factorial scope (the factorial rise in peak SDA over prefeeding values). Inter-specific feeding studies on stenothermal polar isopods revealed marked differences in SDA response between the Antarctic species, Glyptonotus antarcticus and the Arctic species, Saduria entomon. Compared to S. entomon held at 4 and 13 degrees C, the SDA response in G. antarcticus held at 1 degrees C was characterised by a lower absolute oxygen uptake rate at peak SDA and an extended SDA duration. At peak SDA, whole animal rates of protein synthesis increased in proportion to the postprandial increase in oxygen uptake rate in the Antarctic and the Arctic species. Rates of oxygen uptake plotted against whole animal rates of protein synthesis gave similar relationships in both isopod species, indicating similar costs of protein synthesis after a meal, despite their differences in SDA response and thermal habitat.

  11. Effect of chromium (VI) on the multiple nitrogen removal pathways and microbial community of aerobic granular sludge.

    PubMed

    Zheng, Xiao-Ying; Lu, Dan; Wang, Ming-Yang; Chen, Wei; Zhou, Gan; Zhang, Yuan

    2017-06-12

    The frequent appearance of Cr(VI) significantly impacts the microbial metabolism in wastewater. In this study, long-term effects of Cr(VI) on microbial community, nitrogen removal pathways and mechanism of aerobic granular sludge (AGS) were investigated. AGS had strong resistance ability to 1.0 mg/L Cr(VI). 3.0 mg/L Cr(VI) increased the heterotrophic-specific ammonia uptake rate (HSAUR) and heterotrophic-specific nitrate uptake rate (HSNUR) transiently, whereas 5.0 mg/L Cr(VI) sharply decreased the specific ammonia uptake rate (SAUR), specific nitrate uptake rate (SNUR) and simultaneous nitrification denitrification rate (SNDR). It was found that Cr (VI) has a greater inhibitory effect on autotrophic nitrification (ASAUR), and the maximal inhibition rate (IR) was 139.19%. Besides, the inhibition of Cr (VI) on nitrogen removal process belongs to non-competitive inhibition. Cr(VI) had a weaker negative impact on heterotrophic bacteria compared with that on autotrophic bacteria. Denaturing gradient gel electrophoresis analyses suggest that Acidovorax sp., flavobacterium sp., uncultured soil bacterium, uncultured nitrosospira sp., uncultured prokaryote, uncultured β-proteobacterium and uncultured pseudomonas sp. were the dominant species. The inhibition of Cr(VI) on nitrite-oxidizing bacteria was the strongest, followed by ammonia-oxidizing bacteria and denitrifying bacteria. Linear correlations between bacterial count and biomass-specific uptake rate were observed when the Cr(VI) concentration exceeded 3 mg/L. This study revealed the effect of Cr(VI) on nitrification is more serious than that on denitrification. Autotrophic and heterotrophic nitrification, heterotrophic denitrification and simultaneous nitrification denitrification played a significant role on nitrogen removal under Cr(VI) stress.

  12. The uptake of 3H-vincristine by a mouse carcinoma during a course of fractionated radiotherapy.

    PubMed

    Zanelli, G D; Rota, L; Trovo, M; Grigoletto, E; Roncadin, M

    1989-09-01

    The variations in uptake of 3H-vincristine sulphate, given as a bolus i.v. injection, by a transplantable murine tumour during a realistic course of fractionated daily gamma-radiation of 25 x 2.0 Gy have been investigated. Maximum levels of 3H in the tumours are found when the tracer is injected 4h after irradiation and the tumours are dissected out 1 h after injection. During the course of daily irradiation the pattern of uptake varies considerably but reproducibly. There are peaks of uptake after 7, 13 and 22 fractions of 2.0 Gy when the amount of 3H in the tumours is as much as three times that found in non-irradiated tumours. After 17-18 fractions, however, the tumour content of 3H is lower than that of non-irradiated tumours. The wave-like pattern of uptake could be due either to capillary occlusion brought about by radiation induced cellular swelling and oedema followed by re-opening of the capillaries during periods of decreased cellularity, or to some mechanism of recovery from radiation damage during the week-end rest period.

  13. The uptake of 3H-vincristine by a mouse carcinoma during a course of fractionated radiotherapy.

    PubMed Central

    Zanelli, G. D.; Rota, L.; Trovo, M.; Grigoletto, E.; Roncadin, M.

    1989-01-01

    The variations in uptake of 3H-vincristine sulphate, given as a bolus i.v. injection, by a transplantable murine tumour during a realistic course of fractionated daily gamma-radiation of 25 x 2.0 Gy have been investigated. Maximum levels of 3H in the tumours are found when the tracer is injected 4h after irradiation and the tumours are dissected out 1 h after injection. During the course of daily irradiation the pattern of uptake varies considerably but reproducibly. There are peaks of uptake after 7, 13 and 22 fractions of 2.0 Gy when the amount of 3H in the tumours is as much as three times that found in non-irradiated tumours. After 17-18 fractions, however, the tumour content of 3H is lower than that of non-irradiated tumours. The wave-like pattern of uptake could be due either to capillary occlusion brought about by radiation induced cellular swelling and oedema followed by re-opening of the capillaries during periods of decreased cellularity, or to some mechanism of recovery from radiation damage during the week-end rest period. PMID:2789937

  14. Water sorption studies of hybrid biofiber-reinforced natural rubber biocomposites.

    PubMed

    Jacob, Maya; Varughese, K T; Thomas, Sabu

    2005-01-01

    Hybrid biofibers (sisal and oil palm) were incorporated into natural rubber matrix. The water absorption characteristics of the composites were evaluated with reference to fiber loading. The influence of temperature on water sorption of the composites is also analyzed. Moisture uptake was found to be dependent on the properties of the biofibers. The mechanism of diffusion in the gum sample was found to be Fickian in nature, while in the loaded composites, it was non-Fickian. Sisal and oil palm fibers were subjected to different treatments such as mercerization and silanation. The effect of chemical modification on moisture uptake was also analyzed. Chemical modification was seen to decrease the water uptake in the composites. The thermodynamic parameters of the sorption process were also evaluated. Activation energy was found to be maximum for the gum sample.

  15. Survival analysis of time to uptake of modern contraceptives among sexually active women of reproductive age in Nigeria

    PubMed Central

    Adebowale, Ayo Stephen; Morhason-Bello, ImranOludare

    2015-01-01

    Objective To assess the timing of modern contraceptive uptake among married and never-married women in Nigeria. Design A retrospective cross-sectional study. Data and method We used nationally representative 2013 Demographic and Health Survey data in Nigeria. Modern contraceptive uptake time was measured as the period between first sexual intercourse and first use of a modern contraceptive. Non-users of modern contraceptives were censored on the date of the survey. Kaplan–Meier survival curves were used to determine the rate of uptake. A Cox proportional-hazards model was used to determine variables influencing the uptake at 5% significance level. Participants A total of 33 223 sexually active women of reproductive age. Outcome measure Time of uptake of a modern contraceptive after first sexual intercourse. Results The median modern contraceptive uptake time was 4 years in never-married and 14 years among ever-married women. Significant differences in modern contraceptive uptake existed in respondents’ age, location, education and wealth status. Never-married women were about three times more likely to use a modern contraceptive than ever-married women (aHR=3.24 (95% CI 2.82 to 3.65)). Women with higher education were six times more likely to use a modern contraceptive than those without education (aHR=6.18 (95% CI 5.15 to 7.42)). Conclusions The rate of modern contraceptive uptake is low, and timing of contraceptive uptake during or after first sexual intercourse differed according to marital status. Age and number of children ever born influenced modern contraceptive uptake among the never-married women, but religion and place of residence were associated with the probability of modern contraceptive uptake among ever-married women. PMID:26671948

  16. Imaging vascular endothelial growth factor (VEGF) receptors in turpentine-induced sterile thigh abscesses with radiolabeled single-chain VEGF.

    PubMed

    Levashova, Zoia; Backer, Marina; Backer, Joseph M; Blankenberg, Francis G

    2009-12-01

    Angiogenesis plays a central role in the pathogenesis of chronic inflammatory disorders. Vascular endothelial growth factor (VEGF) and its receptors are the most important regulators of angiogenesis. We wished to determine whether labeled forms of single-chain VEGF (scVEGF) could be used to image VEGF receptors in a well-characterized model of sterile soft-tissue inflammation induced by intramuscular injection of turpentine. Anesthetized adult male Swiss-Webster mice received a 20-microL intramuscular injection of turpentine into the right thigh. At 4, 7, or 10 d later, groups of 3-5 mice were injected via the tail vein with 50 microg of either scVEGF that had been site specifically labeled with Cy5.5 (scVEGF/Cy) or inactivated scVEGF/Cy (inVEGF/Cy) and then examined by fluorescence imaging. At 3, 4, 6, 7, 9, 10, or 12 d, additional groups of 3-5 mice were injected via the tail vein with 74-111 MBq of (99m)Tc-scVEGF (or (99m)Tc-inVEGF) and then examined by SPECT imaging. On days 3 through 10, both forms of scVEGF (scVEGF/Cy and (99m)Tc-scVEGF) showed significantly higher uptake (P < 0.05) in the right (abscessed) thigh than in the contralateral thigh (and higher uptake than the inactivated tracer). Peak uptake occurred on day 7 (3.67 +/- 1.79 [ratio of uptake in abscessed thigh to uptake in normal thigh, mean +/- SD] and 0.72 +/- 0.01 for scVEGF/Cy and inVEGF/Cy, respectively, and 3.49 +/- 1.22 and 1.04 +/- 0.41 for (99m)Tc-scVEGF and (99m)Tc-inVEGF, respectively) and slowly decreased thereafter. Autoradiography revealed peak tracer uptake in the thick irregular angiogenic rim of the abscess cavity on day 9 (5.83 x 10(-7) +/- 9.22 x 10(-8) and 5.85 x 10(-8) +/- 5.95 x 10(-8) percentage injected dose per pixel for (99m)Tc-scVEGF and (99m)Tc-inVEGF, respectively); in comparison, a thin circumscribed rim of uptake was seen with (99m)Tc-inVEGF. Immunostaining revealed that VEGFR-2 (VEGF receptor) colocalized with CD31 (endothelial cell marker) at all time points in the abscess rim, whereas F4/80 (macrophage) immunostaining reached a maximum at day 7 and decreased by day 10. The uptake of scVEGF in turpentine-induced abscesses was specific and directly related to VEGFR-2 expression in the neovasculature of the angiogenic rim. Peak tracer uptake coincided with maximum macrophage infiltration, suggesting that scVEGF imaging may be useful for the detection, localization, and monitoring of chronic inflammation in bone, joints, or soft tissues.

  17. Amino acid uptake by temperate tree species characteristic of low- and high-fertility habitats.

    PubMed

    Scott, Emily E; Rothstein, David E

    2011-10-01

    The relationship between inorganic nitrogen (N) cycling and plant productivity is well established. However, recent research has demonstrated the ability of plants to take up low molecular weight organic N compounds (i.e., amino acids) at rates that often rival those of inorganic N forms. In this study, we hypothesize that temperate forest tree species characteristic of low-fertility habitats will prefer amino acids over species characteristic of high-fertility habitats. We measured the uptake of (15)N-labeled amino acids (glycine, glutamine, arginine, serine), ammonium (NH(4)(+)), and nitrate (NO(3)(-)) by four tree species that commonly occur in eastern North America, where their abundances have been correlated with inorganic N availability. Specific uptake rates of amino acids were largely similar for all tree species; however, high-fertility species took up NH(4)(+) at rates more than double those of low-fertility species, rendering amino acid N relatively more important to the N nutrition of low-fertility species. Low-fertility species acquired over four times more total N from arginine compared to NH(4)(+) and NO(3)(-); high-fertility species acquired the most N from NH(4)(+). Arginine had the highest uptake rates of any amino acid by all species; there were no significant differences in uptake rates of the remaining amino acids. Our results support the idea that the dominant species in a particular habitat are those best able to utilize the most available N resources.

  18. Uranium biosorption by Padina sp. algae biomass: kinetics and thermodynamics.

    PubMed

    Khani, Mohammad Hassan

    2011-11-01

    Kinetic, thermodynamic, and equilibrium isotherms of the biosorption of uranium ions onto Padina sp., a brown algae biomass, in a batch system have been studied. The kinetic data were found to follow the pseudo-second-order model. Intraparticle diffusion is not the sole rate-controlling factor. The equilibrium experimental results were analyzed in terms of Langmuir isotherm depending with temperature. Equilibrium data fitted very well to the Langmuir model. The maximum uptakes estimated by using the Langmuir model were 434.8, 416.7, 400.0, and 370.4 mg/g at 10°C, 20°C, 30°C, and 40°C, respectively. Gibbs free energy was spontaneous for all interactions, and the adsorption process exhibited exothermic enthalpy values. Padina sp. algae were shown to be a favorable biosorbent for uranium removal from aqueous solutions.

  19. Light Levels Affect Carbon Utilisation in Tropical Seagrass under Ocean Acidification.

    PubMed

    Ow, Yan X; Uthicke, Sven; Collier, Catherine J

    2016-01-01

    Under future ocean acidification (OA), increased availability of dissolved inorganic carbon (DIC) in seawater may enhance seagrass productivity. However, the ability to utilise additional DIC could be regulated by light availability, often reduced through land runoff. To test this, two tropical seagrass species, Cymodocea serrulata and Halodule uninervis were exposed to two DIC concentrations (447 μatm and 1077 μatm pCO2), and three light treatments (35, 100, 380 μmol m(-2) s(-1)) for two weeks. DIC uptake mechanisms were separately examined by measuring net photosynthetic rates while subjecting C. serrulata and H. uninervis to changes in light and addition of bicarbonate (HCO3-) use inhibitors (carbonic anhydrase inhibitor, acetazolamide) and TRIS buffer (pH 8.0). We observed a strong dependence on energy driven H+-HCO3- co-transport (TRIS, which disrupts H+ extrusion) in C. serrulata under all light levels, indicating greater CO2 dependence in low light. This was confirmed when, after two weeks exposure, DIC enrichment stimulated maximum photosynthetic rates (Pmax) and efficiency (α) more in C. serrulata grown under lower light levels (36-60% increase) than for those in high light (4% increase). However, C. serrulata growth increased with both DIC enrichment and light levels. Growth, NPP and photosynthetic responses in H. uninervis increased with higher light treatments and were independent of DIC availability. Furthermore, H. uninervis was found to be more flexible in HCO3- uptake pathways. Here, light availability influenced productivity responses to DIC enrichment, via both carbon fixation and acquisition processes, highlighting the role of water quality in future responses to OA.

  20. Relationship of water potential to growth of leaves.

    PubMed

    Boyer, J S

    1968-07-01

    A thermocouple psychrometer that measures water potentials of intact leaves was used to study the water potentials at which leaves grow. Water potentials and water uptake during recovery from water deficits were measured simultaneously with leaves of sunflower (Helianthus annuus L.), tomato (Lycopersicon esculentum Mill.), papaya (Carica papaya L.), and Abutilon striatum Dickson. Recovery occurred in 2 phases. The first was associated with elimination of water deficits; the second with cell enlargement. The second phase was characterized by a steady rate of water uptake and a relatively constant leaf water potential. Enlargement was 70% irreversible and could be inhibited by puromycin and actinomycin D. During this time, leaves growing with their petioles in contact with pure water remained at a water potential of -1.5 to -2.5 bars regardless of the length of the experiment. It was not possible to obtain growing leaf tissue with a water potential of zero. It was concluded that leaves are not in equilibrium with the potential of the water which is absorbed during growth. The nonequilibrium is brought about by a resistance to water flow which requires a potential difference of 1.5 to 2.5 bars in order to supply water at the rate necessary for maximum growth.Leaf growth occurred in sunflower only when leaf water potentials were above -3.5 bars. Sunflower leaves therefore require a minimum turgor for enlargement, in this instance equivalent to a turgor of about 6.5 bars. The high water potentials required for growth favored rapid leaf growth at night and reduced growth during the day.

Top