Sample records for maximum von mises

  1. Finite element analysis of a bone healing model: 1-year follow-up after internal fixation surgery for femoral fracture.

    PubMed

    Jiang-Jun, Zhou; Min, Zhao; Ya-Bo, Yan; Wei, Lei; Ren-Fa, Lv; Zhi-Yu, Zhu; Rong-Jian, Chen; Wei-Tao, Yu; Cheng-Fei, Du

    2014-03-01

    Finite element analysis was used to compare preoperative and postoperative stress distribution of a bone healing model of femur fracture, to identify whether broken ends of fractured bone would break or not after fixation dislodgement one year after intramedullary nailing. Method s: Using fast, personalized imaging, bone healing models of femur fracture were constructed based on data from multi-slice spiral computed tomography using Mimics, Geomagic Studio, and Abaqus software packages. The intramedullary pin was removed by Boolean operations before fixation was dislodged. Loads were applied on each model to simulate a person standing on one leg. The von Mises stress distribution, maximum stress, and its location was observed. Results : According to 10 kinds of display groups based on material assignment, the nodes of maximum and minimum von Mises stress were the same before and after dislodgement, and all nodes of maximum von Mises stress were outside the fracture line. The maximum von Mises stress node was situated at the bottom quarter of the femur. The von Mises stress distribution was identical before and after surgery. Conclusion : Fast, personalized model establishment can simulate fixation dislodgement before operation, and personalized finite element analysis was performed to successfully predict whether nail dislodgement would disrupt femur fracture or not.

  2. Subject-Specific Fully-Coupled and One-Way Fluid-Structure Interaction Models for Modeling of Carotid Atherosclerotic Plaques in Humans

    PubMed Central

    Tao, Xiaojuan; Gao, Peiyi; Jing, Lina; Lin, Yan; Sui, Binbin

    2015-01-01

    Background Hemodynamics play an important role in the development and progression of carotid atherosclerosis, and may be important in the assessment of plaque vulnerability. The aim of this study was to develop a system to assess the hemodynamics of carotid atherosclerotic plaques using subject-specific fluid-structure interaction (FSI) models based on magnetic resonance imaging (MRI). Material/Methods Models of carotid bifurcations (n=86 with plaques from 52 patients, n=14 normal carotids from 12 participants) were obtained at the Department of Radiology, Beijing Tian Tan Hospital between 2010 and 2013. The maximum von Mises stress, minimum pressure, and flow velocity values were assessed at the most stenotic site in patients, or at the carotid bifurcations in healthy volunteers. Results of one-way FSI were compared with fully-coupled FSI for the plaques of 19 randomly selected models. Results The maximum von Mises stress and the minimum pressure and velocity were significantly increased in the stenosis group compared with controls based on one-way FSI (all P<0.05). The maximum von Mises stress and the minimum pressure were significantly higher and the velocity was significantly lower based on fully coupled FSI compared with on-way FSI (all P<0.05). Although there were differences in numerical values, both methods were equivalent. The maximum von Mises stress of vulnerable plaques was significantly higher than stable plaques (P<0.001). The maximum von Mises stress of the group with fibrous cap defect was significantly higher than the group without fibrous cap defect (P=0.001). Conclusions The hemodynamics of atherosclerotic plaques can be assessed noninvasively using subject-specific models of FSI based on MRI. PMID:26510514

  3. Finite element analysis of stress distribution on the mandible and condylar fracture osteosynthesis during various clenching tasks.

    PubMed

    Hijazi, Loai; Hejazi, Wael; Darwich, Mhd Ayham; Darwich, Khaldoun

    2016-12-01

    The purpose of the study was to evaluate the effect of clenching tasks on the stress and strain of condylar osteosynthesis screws and plates, as well as on the stress, strain distribution and displacement on the whole mandible and bone surrounding screws. Three-dimensional finite element models of the mandible, two straight four-hole plates and eight screws were established. Six static clenching tasks were simulated in this study: incisal clench (INC), intercuspal position (ICP), right unilateral molar clench (RMOL), left unilateral molar clench (LMOL), right group function (RGF) and left group function (LGF). Based on the simulation of the six clenching tasks, none of the inserted screws and plates were broken or bended. For the whole mandibular bone, the maximum von Mises stress and von Mises strain observed were yielded by the ICP. For the bone surrounding the inserted screws, the maximum von Mises stress and von Mises strain were yielded by the LMOL (49.2 MPa and 3795.1 μ). Clenching tasks had significant effects on the stress distribution on the condylar osteosynthesis and the bone surrounding screws. Contralateral occlusion task (LMOL) had the maximal results of von Mises stress and strain and healing problems could be occur, this result confirms the importance of soft diet after surgery.

  4. Software Tool for Computing Maximum Von Mises Stress

    NASA Technical Reports Server (NTRS)

    Chen, Long Y.; Knutson, Kurt; Martin, Eric

    2007-01-01

    The maximum Van Mises stress and stress direction are of interest far analyzing launch accelerations such as with the Mass Acceleration Curves developed by JPL. Maximum launch stresses can be combined with appropriate load cases at consistent locations with resulting stress tensors. Maximum Van Mises stress is also of interest for understanding maximum operational loading such as traverse events. - For example, planetary traversing simulations may prescribe bounding acceleration values during traverse for a rover such as Mars Science Lab (MSL) in (X,Y,Z) of the rover. - Such accelerations can be really in any directions for many parts such as a mast or head mounted components which can be in numerous configurations and orientations when traversing a planet surface.

  5. Stress distribution of oval and circular fiber posts in amandibular premolar: a three-dimensional finite element analysis

    PubMed Central

    Kilic, Kerem; Esim, Emir; Aslan, Tugrul; Kilinc, Halil Ibrahim; Yildirim, Sahin

    2013-01-01

    PURPOSE The aim of the present study was to evaluate the effects of posts with different morphologies on stress distribution in an endodontically treated mandibular premolar by using finite element models (FEMs). MATERIALS AND METHODS A mandibular premolar was modeled using the ANSYS software program. Two models were created to represent circular and oval fiber posts in this tooth model. An oblique force of 300 N was applied at an angle of 45° to the occlusal plane and oriented toward the buccal side. von Mises stress was measured in three regions each for oval and circular fiber posts. RESULTS FEM analysis showed that the von Mises stress of the circular fiber post (426.81 MPa) was greater than that of the oval fiber post (346.34 MPa). The maximum distribution of von Mises stress was in the luting agent in both groups. Additionally, von Mises stresses accumulated in the coronal third of root dentin, close to the post space in both groups. CONCLUSION Oval fiber posts are preferable to circular fiber posts in oval-shaped canals given the stress distribution at the post-dentin interface. PMID:24353882

  6. Combined shape and topology optimization for minimization of maximal von Mises stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Haojie; Christiansen, Asger N.; Tortorelli, Daniel A.

    Here, this work shows that a combined shape and topology optimization method can produce optimal 2D designs with minimal stress subject to a volume constraint. The method represents the surface explicitly and discretizes the domain into a simplicial complex which adapts both structural shape and topology. By performing repeated topology and shape optimizations and adaptive mesh updates, we can minimize the maximum von Mises stress using the p-norm stress measure with p-values as high as 30, provided that the stress is calculated with sufficient accuracy.

  7. Combined shape and topology optimization for minimization of maximal von Mises stress

    DOE PAGES

    Lian, Haojie; Christiansen, Asger N.; Tortorelli, Daniel A.; ...

    2017-01-27

    Here, this work shows that a combined shape and topology optimization method can produce optimal 2D designs with minimal stress subject to a volume constraint. The method represents the surface explicitly and discretizes the domain into a simplicial complex which adapts both structural shape and topology. By performing repeated topology and shape optimizations and adaptive mesh updates, we can minimize the maximum von Mises stress using the p-norm stress measure with p-values as high as 30, provided that the stress is calculated with sufficient accuracy.

  8. Effect of power history on the shape and the thermal stress of a large sapphire crystal during the Kyropoulos process

    NASA Astrophysics Data System (ADS)

    Nguyen, Tran Phu; Chuang, Hsiao-Tsun; Chen, Jyh-Chen; Hu, Chieh

    2018-02-01

    In this study, the effect of the power history on the shape of a sapphire crystal and the thermal stress during the Kyropoulos process are numerically investigated. The simulation results show that the thermal stress is strongly dependent on the power history. The thermal stress distributions in the crystal for all growth stages produced with different power histories are also studied. The results show that high von Mises stress regions are found close to the seed of the crystal, the highly curved crystal surface and the crystal-melt interface. The maximum thermal stress, which occurs at the crystal-melt interface, increases significantly in value as the crystal expands at the crown. After this, there is reduction in the maximum thermal stress as the crystal lengthens. There is a remarkable enhancement in the maximum von Mises stress when the crystal-melt interface is close to the bottom of the crucible. There are two obvious peaks in the maximum Von Mises stress, at the end of the crown stage and in the final stage, when cracking defects can form. To alleviate this problem, different power histories are considered in order to optimize the process to produce the lowest thermal stress in the crystal. The optimal power history is found to produce a significant reduction in the thermal stress in the crown stage.

  9. Influence of solder joint length to the mechanical aspect during the thermal stress analysis

    NASA Astrophysics Data System (ADS)

    Tan, J. S.; Khor, C. Y.; Rahim, Wan Mohd Faizal Wan Abd; Ishak, Muhammad Ikman; Rosli, M. U.; Jamalludin, Mohd Riduan; Zakaria, M. S.; Nawi, M. A. M.; Aziz, M. S. Abdul; Ani, F. Che

    2017-09-01

    Solder joint is an important interconnector in surface mount technology (SMT) assembly process. The real time stress, strain and displacement of the solder joint is difficult to observe and assess the experiment. To tackle these problems, simulation analysis was employed to study the von Mises stress, strain and displacement in the thermal stress analysis by using Finite element based software. In this study, a model of leadless electronic package was considered. The thermal stress analysis was performed to investigate the effect of the solder length to those mechanical aspects. The simulation results revealed that solder length gives significant effect to the maximum von Mises stress to the solder joint. Besides, changes in solder length also influence the displacement of the solder joint in the thermal environment. The increment of the solder length significantly reduces the von Mises stress and strain on the solder joint. Thus, the understanding of the physical parameter for solder joint is important for engineer prior to designing the solder joint of the electronic component.

  10. Biomechanical characteristics of fixation methods for floating pubic symphysis.

    PubMed

    Song, Wenhao; Zhou, Dongsheng; He, Yu

    2017-03-07

    Floating pubic symphysis (FPS) is a relatively rare injury caused by high-energy mechanisms. There are several fixation methods used to treat FPS, including external fixation, subcutaneous fixation, internal fixation, and percutaneous cannulated screw fixation. To choose the appropriate fixation, it is necessary to study the biomechanical performance of these different methods. The goal of this study was to compare the biomechanical characteristics of six methods by finite element analysis. A three-dimensional finite element model of FPS was simulated. Six methods were used in the FPS model, including external fixation (Ext), subcutaneous rod fixation (Sub-rod), subcutaneous plate fixation (Sub-plate), superior pectineal plate fixation (Int-sup), infrapectineal plate fixation (Int-ifa), and cannulated screw fixation (Int-scr). Compressive and rotational loads were then applied in all models. Biomechanical characteristics that were recorded and analyzed included construct stiffness, micromotion of the fracture gaps, von Mises stress, and stress distribution. The construct stiffness of the anterior pelvic ring was decreased dramatically when FPS occurred. Compressive stiffness was restored by the three internal fixation and Sub-rod methods. Unfortunately, rotational stiffness was not restored satisfactorily by the six methods. For micromotion of the fracture gaps, the displacement was reduced significantly by the Int-sup and Int-ifa methods under compression. The internal fixation methods and Sub-plate method performed well under rotation. The maximum von Mises stress of the implants was not large. For the plate-screw system, the maximum von Mises stress occurred over the region of the fracture and plate-screw joints. The maximum von Mises stress appeared on the rod-screw and screw-bone interfaces for the rod-screw system. The present study showed the biomechanical advantages of internal fixation methods for FPS from a finite element view. Superior stabilization of the anterior pelvic ring and fracture gaps was obtained by internal fixation. Subcutaneous fixation had satisfactory outcomes as well. Sub-rod fixation offered good anti-compression, while the Sub-plate fixation provided favorable anti-rotational capacity.

  11. [Stress change of periodontal ligament of the anterior teeth at the stage of space closure in lingual appliances: a 3-dimensional finite element analysis].

    PubMed

    Liu, D W; Li, J; Guo, L; Rong, Q G; Zhou, Y H

    2018-02-18

    To analyze the stress distribution in the periodontal ligament (PDL) under different loading conditions at the stage of space closure by 3D finite element model of customized lingual appliances. The 3D finite element model was used in ANSYS 11.0 to analyze the stress distribution in the PDL under the following loading conditions: (1) buccal sliding mechanics (0.75 N,1.00 N,1.50 N), (2) palatal sliding mechanics (0.75 N,1.00 N,1.50 N), (3) palatal-buccal combined sliding mechanics (buccal 1.00 N + palatal 0.50 N, buccal 0.75 N + palatal 0.75 N, buccal 0.50 N+ palatal 1.00 N). The maximum principal stress, minimum principal stress and von Mises stress were evaluated. (1) buccal sliding mechanics(0.75 N,1.00 N,1.50 N): maximum principal stress: at the initial of loading, maximum principal stress, which was the compressed stress, distributed in labial PDL of cervix of lateral incisor, and palatal distal PDL of cervix of canine. With increasing loa-ding, the magnitude and range of the stress was increased. Minimum principal stress: at the initial of loading, minimum principal stress which was tonsil stress, distributed in palatal PDL of cervix of lateral incisor and mesial PDL of cervix of canine. With increasing loading, the magnitude and range of minimum principal stress was increased. The area of minimum principal stress appeared in distal and mesial PDL of cervix of central incisor. von Mises stress:it distributed in labial and palatal PDL of cervix of lateral incisor and distal PDL of cervix of canine initially. With increasing loading, the magnitude and range of stress was increased towards the direction of root. Finally, there was stress concentration area at mesial PDL of cervix of canine. (2) palatal sliding mechanics(0.75 N,1.00 N,1.50 N): maximum principal stress: at the initial of loading, maximum principal stress which was the compressed stress, distributed in palatal and distal PDL of cervix of canine, and distal-buccal and palatal PDL of cervix of lateral incisor. With increasing loading, the magnitude and range of the stress was increased. Minimum principal stress: at the initial of loading, minimum principal stress which was tonsil stress, distributed in distal-interproximal PDL of cervix of lateral incisor and mesial-interproximal PDL of cervix of canine. With increasing loading, the magnitude and range of the stress was increased.von Mises stress: von Mises stress distributed in palatal and interproximal PDL of cervix of canine. With increasing loading, the magnitude and range of stress was increased. Finally, von Mises stress distributing area appeared at distal-palatal PDL of cervix of canine. (3) palatal-buccal combined sliding mechanics: maximum principal stress: maximum principal stress still distributed in distal-palatal PDL of cervix of canine. Minimum principal stress: minimum principal stress distributed in palatal PDL of cervix of lateral incisor when buccal force was more than palatal force. As palatal force increased, the stress concentrating area transferred to mesial PDL of cervix of canine.von Mises stress: it was lower and more well-distributed in palatal-buccal combined sliding mechanics than palatal or buccal sliding mechanics. Using buccal sliding mechanics,stress majorly distributed in PDL of lateral incisor and canine, and magnitude and range of stress increased with the increase of loading; Using palatal sliding mechanics, stress majorly distributed in PDL of canine, and magnitude and range of stress increased with the increase of loading; With palatal-buccal combined sliding mechanics, the maximum principal stress distributed in the distal PDL of canine. Minimum principal stress distributed in palatal PDL of cervix of lateral incisor when buccal force was more than palatal force. As palatal force was increasing, the minimum principal stress distributing area shifted to mesial PDL of cervix of canine. When using 1.00 N buccal force and 0.50 N palatal force, the von Mises stress distributed uniformly in PDL and minimal stress appeared.

  12. The use of functionally graded dental crowns to improve biocompatibility: a finite element analysis.

    PubMed

    Mahmoudi, Mojtaba; Saidi, Ali Reza; Hashemipour, Maryam Alsadat; Amini, Parviz

    2018-02-01

    In post-core crown restorations, the significant mismatch between stiffness of artificial crowns and dental tissues leads to stress concentration at the interfaces. The aim of the present study was to reduce the destructive stresses by using a class of inhomogeneous materials called functionally graded materials (FGMs). For the purpose of the study, a 3-dimentional computer model of a premolar tooth and its surrounding tissues were generated. A post-core crown restoration with various crown materials, homogenous and FGM materials, were simulated and analyzed by finite element method. Finite element and statistical analysis showed that, in case of oblique loading, a significant difference (p < 0.05) was found at the maximum von Mises stresses of the crown margin between FGM and homogeneous crowns. The maximum von Mises stresses of the crown margin generated by FGM crowns were lower than those generated by homogenous crowns (70.8 vs. 46.3 MPa) and alumina crown resulted in the highest von Mises stress at the crown margin (77.7 MPa). Crown materials of high modulus of elasticity produced high stresses at the cervical region. FGM crowns may reduce the stress concentration at the cervical margins and consequently reduce the possibility of fracture.

  13. Three Dimensional Finite Element Analysis of Distal Abutment Stresses of Removable Partial Dentures with Different Retainer Designs.

    PubMed

    Zarrati, Simindokht; Bahrami, Mehran; Heidari, Fatemeh; Kashani, Jamal

    2015-06-01

    This finite element method study aimed to compare the amount of stress on an isolated mandibular second premolar in two conventional reciprocal parallel interface designs of removable partial dentures (RPDs) and the same RPD abutment tooth (not isolated). A Kennedy Class 1, modification 1 RPD framework was simulated on a 3D model of mandible with three different designs: an isolated tooth with a mesial rest, an isolated tooth with mesial and distal rests and an abutment with a mesial rest (which was not isolated); 26 N occlusal forces were exerted bilaterally on the first molar sites. Stress on the abutment teeth was analyzed using Cosmos Works 2009 Software. In all designs, the abutment tooth stress concentration was located in the buccal alveolar crest. In the first model, the von Mises stress distribution in the contact area of I-bar clasp and cervical portion of the tooth was 19 MPa and the maximum stress was 30 MPa. In the second model, the maximum von Mises stress distribution was 15 MPa in the cervical of the tooth. In the third model, the maximum von Mises stress was located in the cervical of the tooth and the distal proximal plate. We recommend using both mesial and distal rests on the distal abutment teeth of distal extension RPDs. The abutment of an extension base RPD, which is not isolated in presence of its neighboring more anterior tooth, may have a better biomechanical prognosis.

  14. Finite Element Analysis for Turbine Blades with Contact Problems

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Jian; Yang, Liang; Wang, Hai-Kun; Zhu, Shun-Peng; Huang, Hong-Zhong

    2016-12-01

    Turbine blades are one of the key components in a typical turbofan engine, which plays an important role in flight safety. In this paper, we establish a establishes a three-dimensional finite element model of the turbine blades, then analyses the strength of the blade in complicated conditions under the joint function of temperature load, centrifugal load, and aerodynamic load. Furthermore, contact analysis of blade tenon and dovetail slot is also carried out to study the stress based on the contact elements. Finally, the Von Mises stress-strain distributions are obtained to acquire the several dangerous points and maximum Von Mises stress, which provide the basis for life prediction of turbine blade.

  15. Effect of ceramic thickness and composite bases on stress distribution of inlays--a finite element analysis.

    PubMed

    Durand, Letícia Brandão; Guimarães, Jackeline Coutinho; Monteiro Junior, Sylvio; Baratieri, Luiz Narciso

    2015-01-01

    The purpose of this study was to determine the effect of cavity depth, ceramic thickness, and resin bases with different elastic modulus on von Mises stress patterns of ceramic inlays. Tridimensional geometric models were developed with SolidWorks image software. The differences between the models were: depth of pulpal wall, ceramic thickness, and presence of composite bases with different thickness and elastic modulus. The geometric models were constrained at the proximal surfaces and base of maxillary bone. A load of 100 N was applied. The stress distribution pattern was analyzed with von Mises stress diagrams. The maximum von Mises stress values ranged from 176 MPa to 263 MPa and varied among the 3D-models. The highest von Mises stress value was found on models with 1-mm-thick composite resin base and 1-mm-thick ceramic inlay. Intermediate values (249-250 MPa) occurred on models with 2-mm-thick composite resin base and 1-mm-thick ceramic inlay and 1-mm-thick composite resin base and 2-mm-thick ceramic inlay. The lowest values were observed on models restored exclusively with ceramic inlay (176 MPa to 182 MPa). It was found that thicker inlays distribute stress more favorably and bases with low elastic modulus increase stress concentrations on the internal surface of the ceramic inlay. The increase of ceramic thickness tends to present more favorable stress distribution, especially when bonded directly onto the cavity without the use of supporting materials. When the use of a composite base is required, composite resin with high elastic modulus and reduced thickness should be preferred.

  16. Stress analysis in a pedicle screw fixation system with flexible rods in the lumbar spine.

    PubMed

    Kim, Kyungsoo; Park, Won Man; Kim, Yoon Hyuk; Lee, SuKyoung

    2010-01-01

    Breakage of screws has been one of the most common complications in spinal fixation systems. However, no studies have examined the breakage risk of pedicle screw fixation systems that use flexible rods, even though flexible rods are currently being used for dynamic stabilization. In this study, the risk of breakage of screws for the rods with various flexibilities in pedicle screw fixation systems is investigated by calculating the von Mises stress as a breakage risk factor using finite element analysis. Three-dimensional finite element models of the lumbar spine with posterior one-level spinal fixations at L4-L5 using four types of rod (a straight rod, a 4 mm spring rod, a 3 mm spring rod, and a 2 mm spring rod) were developed. The von Mises stresses in both the pedicle screws and the rods were analysed under flexion, extension, lateral bending, and torsion moments of 10 Nm with a follower load of 400 N. The maximum von Mises stress, which was concentrated on the neck region of the pedicle screw, decreased as the flexibility of the rod increased. However, the ratio of the maximum stress in the rod to the yield stress increased substantially when a highly flexible rod was used. Thus, the level of rod flexibility should be considered carefully when using flexible rods for dynamic stabilization because the intersegmental motion facilitated by the flexible rod results in rod breakage.

  17. Finite element analysis of rapid canine retraction through reducing resistance and distraction

    PubMed Central

    XUE, Junjie; YE, Niansong; YANG, Xin; WANG, Sheng; WANG, Jing; WANG, Yan; LI, Jingyu; MI, Congbo; LAI, Wenli

    2014-01-01

    Objective The aims of this study were to compare different surgical approaches to rapid canine retraction by designing and selecting the most effective method of reducing resistance by a three-dimensional finite element analysis. Material and Methods Three-dimensional finite element models of different approaches to rapid canine retraction by reducing resistance and distraction were established, including maxillary teeth, periodontal ligament, and alveolar. The models were designed to dissect the periodontal ligament, root, and alveolar separately. A 1.5 N force vector was loaded bilaterally to the center of the crown between first molar and canine, to retract the canine distally. The value of total deformation was used to assess the initial displacement of the canine and molar at the beginning of force loading. Stress intensity and force distribution were analyzed and evaluated by Ansys 13.0 through comparison of equivalent (von Mises) stress and maximum shear stress. Results The maximum value of total deformation with the three kinds of models occurred in the distal part of the canine crown and gradually reduced from the crown to the apex of the canine; compared with the canines in model 3 and model 1, the canine in model 2 had the maximum value of displacement, up to 1.9812 mm. The lowest equivalent (von Mises) stress and the lowest maximum shear stress were concentrated mainly on the distal side of the canine root in model 2. The distribution of equivalent (von Mises) stress and maximum shear stress on the PDL of the canine in the three models was highly concentrated on the distal edge of the canine cervix. Conclusions Removal of the bone in the pathway of canine retraction results in low stress intensity for canine movement. Periodontal distraction aided by surgical undermining of the interseptal bone would reduce resistance and effectively accelerate the speed of canine retraction. PMID:24626249

  18. Finite Element Analysis of the Endodontically-treated Maxillary Premolars restored with Composite Resin along with Glass Fiber Insertion in Various Positions.

    PubMed

    Navimipour, Elmira Jafari; Firouzmandi, Maryam; Mirhashemi, Fatemeh Sadat

    2015-04-01

    This study evaluated the effect of three methods of glass fiber insertion on stress distribution pattern and cusp movement of the root-filled maxillary premolars using finite element method (FEM) analysis. A three-dimensional (3 D) FEM model of a sound upper premolar tooth and four models of root-filled upper premolars with mesiocclusodistal (MOD) cavities were molded and restored with: (1) Composite resin only (NF); (2) Composite resin along with a ribbon of glass fiber placed in the occlusal third (OF); (3) Composite resin along with a ribbon of glass fiber placed circumferentially in the cervical third (CF), and (4) Composite resin along with occlusal and circumferential fibers (OCF). A static vertical load was applied to calculate the stress distributions. Structural analysis program by Solidworks were used for FEM analysis. Von-Mises stress values and cusp movements induced by occlusal loading were evaluated. Maximum Von-Mises stress of enamel occurred in sound tooth, followed by NF, CF, OF and OCF. Maximum Von-Mises stress of dentin occurred in sound tooth, followed by OF, OCF, CF and NF. Stress distribution patterns of OF and OCF were similar. Maximum overall stress values were concentrated in NF. Although stress distribution patterns of NF and CF were found as similar, CF showed lower stress values. Palatal cusp movement was more than buccal cusp in all of the models. The results of our study indicated that while the circumferential fiber had little effect on overall stress concentration, it provided a more favorable stress distribution pattern in cervical region. The occlusal fiber reduced the average stress in the entire structure but did not reduce cuspal movement. Incorporating glass fiber in composite restorations may alter the stress state within the structure depending on fiber position.

  19. Three-dimensional finite element analysis of the stress distribution pattern in a mandibular first molar tooth restored with five different restorative materials.

    PubMed

    D'souza, Kathleen Manuela; Aras, Meena Ajay

    2017-01-01

    Badly broken or structurally compromised posterior teeth are frequently associated with crown/root fracture. Numerous restorative materials have been used to fabricate indirect full-coverage restorations for such teeth. This study aims to evaluate and compare the effect of restorative materials on the stress distribution pattern in a mandibular first molar tooth, under varying loading conditions and to compare the stress distribution pattern in five commonly used indirect restorative materials. Five three-dimensional finite element models representing a mandibular first molar tooth restored with crowns of gold, porcelain fused to metal, composite (Artglass), alumina-based zirconia (In-Ceram Zirconia [ICZ]), and double-layered zirconia-based materials (zirconia core veneered with porcelain, Lava) were constructed, using a Finite Element Analysis Software (ANSYS version 10; ANSYS Inc., Canonsburg, PA, USA). Two loading conditions were applied, simulating maximum bite force of 600 N axially and normal masticatory bite force of 225 N axially and nonaxially. Both all-ceramic crowns allowed the least amount of stress distribution to the surrounding tooth structure. In maximum bite force-simulation test, alumina-based all-ceramic crown displayed the highest von Mises stresses (123.745 MPa). In the masticatory bite force-simulation test, both all-ceramic crowns (122.503-133.13 MPa) displayed the highest von Mises stresses. ICZ crown displayed the highest peak von Mises stress values under maximum and masticatory bite forces. ICZ and Lava crowns also allowed the least amount of stress distribution to the surrounding tooth structure, which is indicative of a favorable response of the underlying tooth structure to the overlying full-coverage indirect restorative material. These results suggest that ICZ and Lava crowns can be recommended for clinical use in cases of badly damaged teeth.

  20. Maximum von Mises Stress in the Loading Environment of Mass Acceleration Curve

    NASA Technical Reports Server (NTRS)

    Glaser, Robert J.; Chen, Long Y.

    2006-01-01

    Method for calculating stress due to acceleration loading: 1) Part has been designed by FEA and hand calculation in one critical loading direction judged by the analyst; 2) Maximum stress can be due to loading in another direction; 3) Analysis procedure to be presented determines: a) The maximum Mises stress at any point; and b) The direction of maximum loading associated with the "stress". Concept of Mass Acceleration Curves (MAC): 1) Developed by JPL to perform preliminary structural sizing (i.e. Mariners, Voyager, Galileo, Pathfinder, MER,...MSL); 2) Acceleration of physical masses are bounded by a curve; 3) G-levels of vibro-acoustic and transient environments; 4) Convergent process before the couple loads cycle; and 5) Semi-empirical method to effectively bound the loads, not a simulation of the actual response.

  1. Evaluation of stress changes in the mandible with a fixed functional appliance: a finite element study.

    PubMed

    Chaudhry, Anshul; Sidhu, Maninder S; Chaudhary, Girish; Grover, Seema; Chaudhry, Nimisha; Kaushik, Ashutosh

    2015-02-01

    The aim of this study was to evaluate the effects of a fixed functional appliance (Forsus Fatigue Resistant Device; 3M Unitek, Monrovia, Calif) on the mandible with 3-dimensional finite element stress analysis. A 3-dimensional finite element model of the mandible was constructed from the images generated by cone-beam computed tomography of a patient undergoing fixed orthodontic treatment. The changes were studied with the finite element method, in the form of highest von Mises stress and maximum principal stress regions. More areas of stress were seen in the model of the mandible with the Forsus compared with the model of the mandible in the resting stage. This fixed functional appliance studied by finite element model analysis caused increases in the maximum principal stress and the von Mises stress in both the cortical bone and the condylar region of the mandible by more than 2 times. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  2. Biomechanical optimization of implant diameter and length for immediate loading: a nonlinear finite element analysis.

    PubMed

    Kong, Liang; Gu, Zexu; Li, Tao; Wu, Junjie; Hu, Kaijin; Liu, Yanpu; Zhou, Hongzhi; Liu, Baolin

    2009-01-01

    A nonlinear finite element method was applied to examine the effects of implant diameter and length on the maximum von Mises stresses in the jaw, and to evaluate the maximum displacement of the implant-abutment complex in immediate-loading models. The implant diameter (D) ranged from 3.0 to 5.0 mm and implant length (L) ranged from 6.0 to 16.0 mm. The results showed that the maximum von Mises stress in cortical bone was decreased by 65.8% under a buccolingual load with an increase in D. In cancellous bone, it was decreased by 71.5% under an axial load with an increase in L. The maximum displacement in the implant-abutment complex decreased by 64.8% under a buccolingual load with an increase in D. The implant was found to be more sensitive to L than to D under axial loads, while D played a more important role in enhancing its stability under buccolingual loads. When D exceeded 4.0 mm and L exceeded 11.0 mm, both minimum stress and displacement were obtained. Therefore, these dimensions were the optimal biomechanical selections for immediate-loading implants in type B/2 bone.

  3. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    NASA Astrophysics Data System (ADS)

    Bonte, M. H. A.; de Boer, A.; Liebregts, R.

    2007-04-01

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the commercial vehicle business and was implemented in combination with Finite Element software to predict and analyse fatigue failure in the frequency domain.

  4. Three-Dimensional Finite Element Analysis of the Stress Distribution at the Internal Implant-Abutment Connection.

    PubMed

    Cho, Sung-Yong; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    2016-01-01

    This study investigated stress distribution in four different implant-abutment interface conditions in the internal tapered connection implant system. Four different implant diameters (3.5 mm, 4.0 mm, 4.5 mm, and 5.0 mm) and two abutment types (hexagonal and conical) were simulated. Four unique implant-abutment interface conditions were assumed based on wall thickness, mating surface length, distance to the vertical stop, and abutment shape. Axial and oblique loading was applied during abutment screw preload, and the Von Mises stresses were measured at the implant-abutment and abutment-screw interfaces. The implant-abutment interface stress decreased as the wall thickness increased. As the mating surface increased, the stress distribution trended downward, and when the distance to the implant vertical stop was 0 μm, the Von Mises stress was extremely high at the vertical stop. Despite their different shapes, the abutments showed similar stress distributions. However, the maximum Von Mises stress was higher in the conical connection than in the hexagonal connection, particularly at the contralateral side to loading. To decrease the stress distribution at the implant-abutment interface, the implant wall thickness, mating surface contact length, distance to the vertical stop, and abutment shape should be carefully considered.

  5. Maximum Likelihood and Minimum Distance Applied to Univariate Mixture Distributions.

    ERIC Educational Resources Information Center

    Wang, Yuh-Yin Wu; Schafer, William D.

    This Monte-Carlo study compared modified Newton (NW), expectation-maximization algorithm (EM), and minimum Cramer-von Mises distance (MD), used to estimate parameters of univariate mixtures of two components. Data sets were fixed at size 160 and manipulated by mean separation, variance ratio, component proportion, and non-normality. Results…

  6. Investigation of the effects of graded models on the biomechanical behavior of a bone-dental implant system under osteoporotic conditions

    PubMed Central

    Li, Ying; Shuang Liu, Zhong; Ming Bai, Xiao; Zhang, Bin

    2013-01-01

    Objective: To investigate the effects of graded models on the biomechanical behavior of a bone-implant system under osteoporotic conditions. Methodology : A finite element model (FEM) of the jawbone segments with a titanium implant is used. Two types of models (a graded model and a non-graded model) are established. The graded model is established based on the graded variation of the elastic modulus of the cortical bone and the non-graded model is defined by homogeneous cortical bone. The vertical and oblique loads are adopted. The max von Mises stresses and the max displacements of the cortical bone are evaluated. Results: Comparing the two types of models, the difference in the maximum von Mises stresses of the cortical bone is more than 20%. The values of the maximum displacements in the graded models are considerably less than in the non-graded models. Conclusions: These results indicate the significance of taking into account the actual graded properties of the cortical bone so that the biomechanical behavior of the bone-implant system can be analyzed accurately. PMID:24353590

  7. Investigation of the effects of graded models on the biomechanical behavior of a bone-dental implant system under osteoporotic conditions.

    PubMed

    Li, Ying; Shuang Liu, Zhong; Ming Bai, Xiao; Zhang, Bin

    2013-04-01

    To investigate the effects of graded models on the biomechanical behavior of a bone-implant system under osteoporotic conditions. Methodology : A finite element model (FEM) of the jawbone segments with a titanium implant is used. Two types of models (a graded model and a non-graded model) are established. The graded model is established based on the graded variation of the elastic modulus of the cortical bone and the non-graded model is defined by homogeneous cortical bone. The vertical and oblique loads are adopted. The max von Mises stresses and the max displacements of the cortical bone are evaluated. Comparing the two types of models, the difference in the maximum von Mises stresses of the cortical bone is more than 20%. The values of the maximum displacements in the graded models are considerably less than in the non-graded models. These results indicate the significance of taking into account the actual graded properties of the cortical bone so that the biomechanical behavior of the bone-implant system can be analyzed accurately.

  8. Influence of stationary and non-stationary conditions on drying time and mechanical properties of a porcelain slab

    NASA Astrophysics Data System (ADS)

    Hammouda, Imen; Mihoubi, Daoued

    2017-12-01

    This work deals with a numerical study of the response of a porcelain slab when subjected to convective drying in stationary and non-stationary conditions. The used model describes heat, mass, and momentum transfers is applied to an unsaturated viscoelastic medium described by a Maxwell model. The numerical code allows us to determine the effect of the surrounding air temperature on drying kinetics and on mechanical stress intensities. Von Mises stresses are analysed in order to foresee an eventual damage that may occur during drying. Simulation results for several temperatures in the range of [30 °C, 90 °C] shows that for the temperature from 30 °C to 60 °C, Von Mises stresses are always lower than the yield strength. But above 70 °C, Von Mises stresses are higher than the ultimate strength, and consequently there is a risk of crack at the end of the constant drying rate period. The idea proposed in this work is to integrate a reducing temperature phase when the predicted Von Mises stress intensity exceeds the admissible stress. Simulation results shows that a non-stationary convective drying (90-60 °C) allows us to optimize costs and quality by reducing the drying time and maintaining Von Mises stress values under the admissible stress.

  9. A three-dimensional finite element analysis for overdenture attachments supported by teeth and/or mini dental implants.

    PubMed

    Fatalla, Abdalbseet A; Song, Ke; Du, Tianfeng; Cao, Yingguang

    2012-12-01

    The aim of this study was to establish the optimum design and attachment combination to support an overdenture with minimal stress and flexing produced in the alveolar bone surrounding any natural teeth and/or mini dental implants. Twelve models were included in the study: the six main models (A, B, C, D, E, and F) were categorized according to the support designs of the overdenture prosthesis, and each model was further subdivided according to the attachment combinations into model 1: with Dalbo elliptic and/or O-ring attachments only and model 2: with flexible acrylic attachments. Vertical loads (35 N) and 17.5 N lateral loads under static conditions were applied to the models to simulate the occlusal forces following the concept of lingualized occlusion. All conditions were created using a finite element software program. Maximum von Mises stress at the level of the attachments and at the bone support foundation interfaces were compared in all 12 models. The flexing of the mandible and the attachments were also compared qualitatively. Stress on these models was analyzed after the given loading condition. The results showed that the model with three freestanding mini dental implants and flexible acrylic attachments showed the lowest von Mises stress and flexing, while the models with four freestanding mini dental implants and O-ring attachments showed the highest von Mises stress. Three freestanding mini dental implants with flexible acrylic attachment systems supporting an overdenture were better choices than four mini dental implants with O-ring attachment systems, which showed the maximum flexing and stress values in this qualitative comparison. © 2012 by the American College of Prosthodontists.

  10. Modeling and stress analysis of large format InSb focal plane arrays detector under thermal shock

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Wen; Meng, Qing-Duan; Zhang, Xiao-Ling; Yu, Qian; Lv, Yan-Qiu; Si, Jun-Jie

    2013-09-01

    Higher fracture probability, appearing in large format InSb infrared focal plane arrays detector under thermal shock loadings, limits its applicability and suitability for large format equipment, and has been an urgent problem to be solved. In order to understand the fracture mechanism and improve the reliability, three dimensional modeling and stress analysis of large format InSb detector is necessary. However, there are few reports on three dimensional modeling and simulation of large format InSb detector, due to huge meshing numbers and time-consuming operation to solve. To solve the problems, basing on the thermal mismatch displacement formula, an equivalent modeling method is proposed in this paper. With the proposed equivalent modeling method, employing the ANSYS software, three dimensional large format InSb detector is modeled, and the maximum Von Mises stress appearing in InSb chip dependent on array format is researched. According to the maximum Von Mises stress location shift and stress increasing tendency, the adaptability range of the proposed equivalent method is also derived, that is, for 16 × 16, 32 × 32 and 64 × 64 format, its adaptability ranges are not larger than 64 × 64, 256 × 256 and 1024 × 1024 format, respectively. Taking 1024 × 1024 InSb detector as an example, the Von Mises stress distribution appearing in InSb chip, Si readout integrated circuits and indium bump arrays are described, and the causes are discussed in detail. All these will provide a feasible research plan to identify the fracture origins of InSb chip and reduce fracture probability for large format InSb detector.

  11. [Finite element analysis of the maxillary central incisor with traditional and modified crown lengthening surgery and post-core restoration in management of crown-root fracture].

    PubMed

    Zhen, M; Wei, Y P; Hu, W J; Rong, Q G; Zhang, H

    2016-06-01

    To construct three-dimensional finite element models with modified crown lengthening surgery and post-core restoration in management of various crown-root fracture types, to investigate the intensity and distribution of stressin models mentioned above, and to compare and analyze the indications of traditional and modified crown lengthening surgeries from the mechanic point of view. Nine three-dimensional finite element models with modified crown lengthening surgery and post-core restoration were established and analyzed by micro-CT scanning technique, dental impression scanner, Mimics 10.0, Geomagic studio 9.0 and ANSYS 14.0 software. The von Mises stress of dentin, periodontal ligament, alveolar bone, post and core, as well as the periodontal ligament area and threshold limit value were calculated and compared with the findings of traditional crown lengthening models which had been published earlierby our research group. The von Mises stress intensity of modified crown lengthening models were: dentin>post>core>alveolar bone>periodontal ligament. The maximum von Mises stress of dentin(44.37-80.58 MPa)distributed in lingual central shoulder. The periodontal ligament area of the modified crown lengthening surgery was reduced by 6% to 28%, under the same crown-root fracture conditions, the periodontal ligament area of modified crown lengthening models was larger than that of the traditional crown lengthening models. In modified crown lengthening surgery models, the von Mises stress of periodontal ligament of B3L1m, B3L2m, B3L3m models exceeded their limit values, however, the von Mises stress of periodontal ligament of the B2L2c, B2L3c, B3L1c, B3L2c, B3L3c models exceeded their limit values in traditional crown lengthening surgery models. The modified crown lengthening surgery conserves more periodontal supporting tissues, which facilitates the long-term survival of teeth. The indication of modified crown lengthening surgery is wider than traditional method. The maxillary central incisors with labial fracture at gingival margin level and with palatal fracture at or below the alveolar crest level are not the indication of the crown lengthening surgery.

  12. A Novel Rat Model of Orthodontic Tooth Movement Using Temporary Skeletal Anchorage Devices: 3D Finite Element Analysis and In Vivo Validation

    PubMed Central

    Stevenson, Thomas; Doschak, Michael

    2014-01-01

    The aim of this animal study was to develop a model of orthodontic tooth movement using a microimplant as a TSAD in rodents. A finite element model of the TSAD in alveolar bone was built using μCT images of rat maxilla to determine the von Mises stresses and displacement in the alveolar bone surrounding the TSAD. For in vivo validation of the FE model, Sprague-Dawley rats (n = 25) were used and a Stryker 1.2 × 3 mm microimplant was inserted in the right maxilla and used to protract the right first permanent molar using a NiTi closed coil spring. Tooth movement measurements were taken at baseline, 4 and 8 weeks. At 8 weeks, animals were euthanized and tissues were analyzed by histology and EPMA. FE modeling showed maximum von Mises stress of 45 Mpa near the apex of TSAD but the average von Mises stress was under 25 Mpa. Appreciable tooth movement of 0.62 ± 0.04 mm at 4 weeks and 1.99 ± 0.14 mm at 8 weeks was obtained. Histological and EPMA results demonstrated no active bone remodeling around the TSAD at 8 weeks depicting good secondary stability. This study provided evidence that protracted tooth movement is achieved in small animals using TSADs. PMID:25295060

  13. Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor.

    PubMed

    Koca, Omer Lutfi; Eskitascioglu, Gurcan; Usumez, Aslihan

    2005-01-01

    Implants placed in the posterior maxilla have lower success rates compared to implants placed in other oral regions. Inadequate bone levels have been suggested as a reason for this differential success rate. The purpose of this study was to determine the amount and localization of functional stresses in implants and adjacent bone locations when the implants were placed in the posterior maxilla in proximity to the sinus using finite element analysis (FEA). A 3-dimensional finite element model of a maxillary posterior section of bone (Type 3) was used in this study. Different bony dimensions were generated to perform nonlinear calculations. A single-piece 4.1x10-mm screw-shaped dental implant system (ITI solid implant) was modeled and inserted into atrophic maxillary models with crestal bone heights of 4, 5, 7, 10, or 13 mm. In some models the implant penetrated the sinus floor. Cobalt-Chromium (Wiron 99) was used as the crown framework material placed onto the implant, and porcelain was used for occlusal surface of the crown. A total average occlusal force (vertical load) of 300 N was applied at the palatal cusp (150 N) and mesial fossa (150 N) of the crown. The implant and superstructure were simulated in finite element software (Pro/Engineer 2000i program). For the porcelain superstructure for bone levels, maximum von Mises stress values were observed on the mesial fossae and palatal cusp. For the bone structure, the maximum von Mises stress values were observed in the palatal cortical bone adjacent to the implant neck. There was no stress within the spongy bone. High stresses occurred within the implants for all bone levels. The maximum von Mises stresses in the implants were localized in the neck of implants for 4- and 5-mm bone levels, but for 7-, 10-, and 13-mm bone levels more even stresses occurred within the implants.

  14. Contact stresses, pressure and area in a fixed-bearing total ankle replacement: a finite element analysis.

    PubMed

    Martinelli, Nicolo; Baretta, Silvia; Pagano, Jenny; Bianchi, Alberto; Villa, Tomaso; Casaroli, Gloria; Galbusera, Fabio

    2017-11-25

    Mobile-bearing ankle implants with good clinical results continued to increase the popularity of total ankle arthroplasty to address endstage ankle osteoarthritis preserving joint movement. Alternative solutions used fixed-bearing designs, which increase stability and reduce the risk of bearing dislocation, but with a theoretical increase of contact stresses leading to a higher polyethylene wear. The purpose of this study was to investigate the contact stresses, pressure and area in the polyethylene component of a new total ankle replacement with a fixed-bearing design, using 3D finite element analysis. A three-dimensional finite element model of the Zimmer Trabecular Metal Total Ankle was developed and assembled based on computed tomography images. Three different sizes of the polyethylene insert were modeled, and a finite element analysis was conducted to investigate the contact pressure, the von Mises stresses and the contact area of the polyethylene component during the stance phase of the gait cycle. The peak value of pressure was found in the anterior region of the articulating surface, where it reached 19.8 MPa at 40% of the gait cycle. The average contact pressure during the stance phase was 6.9 MPa. The maximum von Mises stress of 14.1 MPa was reached at 40% of the gait cycle in the anterior section. In the central section, the maximum von Mises stress of 10.8 MPa was reached at 37% of the gait cycle, whereas in the posterior section the maximum stress of 5.4 MPa was reached at the end of the stance phase. The new fixed-bearing total ankle replacement showed a safe mechanical behavior and many clinical advantages. However, advanced models to quantitatively estimate the wear are need. To the light of the clinical advantages, we conclude that the presented prosthesis is a good alternative to the other products present in the market.

  15. The von Mises stress distribution on the surface of UHMWPE with texture-shaped variation in the presence of normal load and dry sliding contact

    NASA Astrophysics Data System (ADS)

    Lestari, W. D.; Jamari, J.; Bayuseno, A. P.

    2017-04-01

    The texture shapes play a key role in the tribological performance of the surface material. This paper presents a study on the use of the 3D finite element method for surface stress analysis on the different texture shape under load and dry sliding contact. The five texture-shaped model was investigated in this work, namely square, circle, ellipse, triangle, and chevron. The result shown that the square shape has the highest value of von Mises resultant stress under static load. In contrast, the dry sliding contact on the triangle shape provided the highest von Mises stress distribution. The lowest value of von Mises stress can be found in the texture pattern of circle, square, and chevron under influence of load for 17 N, 30 N, and 50 N, respectively. Those texture patterns applied to surface of Ultra High Molecular Weight Polyethylene (UHMWPE) may have a strong effect on the reduction of wear rate and enhance tribological performance.

  16. Hydrostatic Stress Effect on the Yield Behavior of Inconel 100

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wilson, Christopher D.

    2003-01-01

    Classical metal plasticity theory assumes that hydrostatic stress has negligible effect on the yield and postyield behavior of metals. Recent reexaminations of classical theory have revealed a significant effect of hydrostatic stress on the yield behavior of various geometries. Fatigue tests and nonlinear finite element analyses (FEA) of Inconel 100 (IN100) equal-arm bend specimens and new monotonic tests and nonlinear finite element analyses of IN100 smooth tension, smooth compression, and double-edge notch tension (DENT) test specimens have revealed the effect of internal hydrostatic tensile stresses on yielding. Nonlinear FEA using the von Mises (yielding is independent of hydrostatic stress) and the Drucker-Prager (yielding is linearly dependent on hydrostatic stress) yield functions were performed. A new FEA constitutive model was developed that incorporates a pressure-dependent yield function with combined multilinear kinematic and multilinear isotropic hardening using the ABAQUS user subroutine (UMAT) utility. In all monotonic tensile test cases, the von Mises constitutive model, overestimated the load for a given displacement or strain. Considering the failure displacements or strains for the DENT specimen, the Drucker-Prager FEM s predicted loads that were approximately 3% lower than the von Mises values. For the failure loads, the Drucker Prager FEM s predicted strains that were up to 35% greater than the von Mises values. Both the Drucker-Prager model and the von Mises model performed equally-well in simulating the equal-arm bend fatigue test.

  17. Further study on the wheel-rail impact response induced by a single wheel flat: the coupling effect of strain rate and thermal stress

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Han, Liangliang

    2017-12-01

    A comprehensive dynamic finite-element simulation method was proposed to study the wheel-rail impact response induced by a single wheel flat based on a 3-D rolling contact model, where the influences of the structural inertia, strain rate effect of wheel-rail materials and thermal stress due to the wheel-rail sliding friction were considered. Four different initial conditions (i.e. pure mechanical loading plus rate-independent, pure mechanical loading plus rate-dependent, thermo-mechanical loading plus rate-independent, and thermo-mechanical loading plus rate-dependent) were involved into explore the corresponding impact responses in term of the vertical impact force, von-Mises equivalent stress, equivalent plastic strain and shear stress. Influences of train speed, flat length and axle load on the flat-induced wheel-rail impact response were discussed, respectively. The results indicate that the maximum thermal stresses are occurred on the tread of the wheel and on the top surface of the middle rail; the strain rate hardening effect contributes to elevate the von-Mises equivalent stress and restrain the plastic deformation; and the initial thermal stress due to the sliding friction will aggravate the plastic deformation of wheel and rail. Besides, the wheel-rail impact responses (i.e. impact force, von-Mises equivalent stress, equivalent plastic strain, and XY shear stress) induced by a flat are sensitive to the train speed, flat length and axle load.

  18. Investigation of Structures of Microwave Microelectromechanical-System Switches by Taguchi Method

    NASA Astrophysics Data System (ADS)

    Lai, Yeong-Lin; Lin, Chien-Hung

    2007-10-01

    The optimal design of microwave microelectromechanical-system (MEMS) switches by the Taguchi method is presented. The structures of the switches are analyzed and optimized in terms of the effective stiffness constant, the maximum von Mises stress, and the natural frequency in order to improve the reliability and the performance of the MEMS switches. There are four factors, each of which has three levels in the Taguchi method for the MEMS switches. An L9(34) orthogonal array is used for the matrix experiments. The characteristics of the experiments are studied by the finite-element method and the analytical method. The responses of the signal-to-noise (S/N) ratios of the characteristics of the switches are investigated. The statistical analysis of variance (ANOVA) is used to interpret the experimental results and decide the significant factors. The final optimum setting, A1B3C1D2, predicts that the effective stiffness constant is 1.06 N/m, the maximum von Mises stress is 76.9 MPa, and the natural frequency is 29.331 kHz. The corresponding switching time is 34 μs, and the pull-down voltage is 9.8 V.

  19. Three-dimensional finite element analysis of implant-assisted removable partial dentures.

    PubMed

    Eom, Ju-Won; Lim, Young-Jun; Kim, Myung-Joo; Kwon, Ho-Beom

    2017-06-01

    Whether the implant abutment in implant-assisted removable partial dentures (IARPDs) functions as a natural removable partial denture (RPD) tooth abutment is unknown. The purpose of this 3-dimensional finite element study was to analyze the biomechanical behavior of implant crown, bone, RPD, and IARPD. Finite element models of the partial maxilla, teeth, and prostheses were generated on the basis of a patient's computed tomographic data. The teeth, surveyed crowns, and RPDs were created in the model. With the generated components, four 3-dimensional finite element models of the partial maxilla were constructed: tooth-supported RPD (TB), implant-supported RPD (IB), tooth-tissue-supported RPD (TT), and implant-tissue-supported RPD (IT) models. Oblique loading of 300 N was applied on the crowns and denture teeth. The von Mises stress and displacement of the denture abutment tooth and implant system were identified. The highest von Mises stress values of both IARPDs occurred on the implants, while those of both natural tooth RPDs occurred on the frameworks of the RPDs. The highest von Mises stress of model IT was about twice that of model IB, while the value of model TT was similar to that of model TB. The maximum displacement was greater in models TB and TT than in models IB and IT. Among the 4 models, the highest maximum displacement value was observed in the model TT and the lowest value was in the model IB. Finite element analysis revealed that the stress distribution pattern of the IARPDs was different from that of the natural tooth RPDs and the stress distribution of implant-supported RPD was different from that of implant-tissue-supported RPD. When implants are used for RPD abutments, more consideration concerning the RPD design and the number or location of the implant is necessary. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Hydrostatic Stress Effect On the Yield Behavior of Inconel 100

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wilson, Christopher D.

    2002-01-01

    Classical metal plasticity theory assumes that hydrostatic stress has no effect on the yield and postyield behavior of metals. Recent reexaminations of classical theory have revealed a significant effect of hydrostatic stress on the yield behavior of notched geometries. New experiments and nonlinear finite element analyses (FEA) of Inconel 100 (IN 100) equal-arm bend and double-edge notch tension (DENT) test specimens have revealed the effect of internal hydrostatic tensile stresses on yielding. Nonlinear FEA using the von Mises (yielding is independent of hydrostatic stress) and the Drucker-Prager (yielding is linearly dependent on hydrostatic stress) yield functions was performed. In all test cases, the von Mises constitutive model, which is independent of hydrostatic pressure, overestimated the load for a given displacement or strain. Considering the failure displacements or strains, the Drucker-Prager FEMs predicted loads that were 3% to 5% lower than the von Mises values. For the failure loads, the Drucker Prager FEMs predicted strains that were 20% to 35% greater than the von Mises values. The Drucker-Prager yield function seems to more accurately predict the overall specimen response of geometries with significant internal hydrostatic stress influence.

  1. Numerical investigation on effect of aortic root geometry on flow induced structural stresses developed in a bileaflet mechanical heart valve

    NASA Astrophysics Data System (ADS)

    Abbas, S. S.; Nasif, M. S.; Said, M. A. M.; Kadhim, S. K.

    2017-10-01

    Structural stresses developed in an artificial bileaflet mechanical heart valve (BMHV) due to pulsed blood flow may cause valve failure due to yielding. In this paper, von-Mises stresses are computed and compared for BMHV placed in two types of aortic root geometries that are aortic root with axisymmetric sinuses and with axisymmetric bulb, at different physiological blood flow rates. With BMHV placed in an aortic root with axisymmetric sinuses, the von-Mises stresses developed in the valve were found to be up to 47% higher than BMHV placed in aortic root with axisymmetric bulb under similar physiological conditions. High velocity vectors and therefore high von-Mises stresses have been observed for BMHV placed in aortic root with axisymmetric sinuses, that can lead to valve failure.

  2. Critical assessment of von Mises distribution and an infinite series ansatz for self-propelled particles

    NASA Astrophysics Data System (ADS)

    Kürsten, Rüdiger; Ihle, Thomas

    2017-03-01

    We consider a Vicsek model of self-propelled particles with bounded confidence, where each particle interacts only with neighbors that have a similar direction. Depending on parameters, the system exhibits a continuous or discontinuous polar phase transition from the isotropic phase to a phase with a preferred direction. In a recent paper (Lam, Schindler and Dauchot 2015 J. Stat. Mech. P10017) the von Mises distribution was proposed as an ansatz for polar ordering. In the present system the time evolution of the angular distribution can be solved in Fourier space. We compare the results of the Fourier analysis with the ones obtained by using the von Mises distribution ansatz. In the latter case the qualitative behavior of the system is recovered correctly. However, quantitatively there are serious deviations. We introduce an extended von Mises distribution ansatz such that a second term takes care of the next two Fourier modes. With the extended ansatz we find much better quantitative agreement. As an alternative approach we also use a Gaussian and a geometric series ansatz in Fourier space. The geometric series ansatz is analytically handable but fails for very weak noise, the Gaussian ansatz yields better results but it is not analytically treatable.

  3. Stress Distribution in Splinted and Unsplinted Implant-Supported Maxillary Overdentures: A 3D Finite Element Analysis.

    PubMed

    Geramy, Allahyar; Habibzadeh, Sareh

    2018-02-01

    This study was accomplished to assess the biomechanical state of splinting in implant-supported maxillary overdentures. Two models of maxillary overdentures were designed in SolidWorks 2011. The first model included 4 separate implants and ball abutments, whereas the second one included 4 splinted implants connected with a bar. Evaluation was performed in ANSYS Workbench software with 200 N load applied at the molar-premolar region, bilaterally. The maximum equivalent stress and strain (von Mises) was recorded and analyzed along a path between the implants in the crestal bone and the prosthetic attachments. First model presented higher values of strain in prosthetic attachment and higher values of von Mises stress in crestal bone. The second model presented higher stress concentration in the gingival tissue of premolar area (near the bar), whereas the peak stress values were reported within the most distal part of the soft tissue support of the prosthesis in the first model (unsplinted). Splinting maxillary overdentures implants is associated with significant lower stress levels in the surrounding bone tissue.

  4. Theoretical investigations on plasma processes in the Kaufman thruster

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.

    1973-01-01

    The lateral neutralization of ion beams is treated by standard mathematical methods for first order, nonlinear partial differential equations. A closed form analytical solution is derived for the transient lateral beam neutralization for electron injection by means of a von Mises transformation. A nonlinear theory of the longitudinal ion beam neutralization is developed using the von Mises transformation. By means of the Lenard-Balescu equation, the intercomponent momentum transfer between stable, collisionless electron and ion components is calculated.

  5. Finite Element Analysis of IPS Empress II Ceramic Bridge Reinforced by Zirconia Bar

    PubMed Central

    Kermanshah, H.; Bitaraf, T.; Geramy, A.

    2012-01-01

    Objective: The aim of this study was to determine the effect of trenched zirconia bar on the von Mises stress distribution of IPS –Empress II core ceramics. Materials and Methods: The three-dimensional model including a three-unit bridge from the second premolar to the second molar was designed. The model was reinforced with zirconia bar (ZB), zirconia bar with vertical trench (VZB) and zirconia bar with horizontal trench (HZB) (cross sections of these bars were circular). The model without zirconia bar was designed as the control. The bridges were loaded by 200 N and 500 N on the occlusal surface at the middle of the pontic component and von Mises stresses were evaluated along a defined path. Results: In the connector area, von Mises stress in MPa were approximately identical in the specimens with ZB (at molar connector (MC): 4.75 and at premolar connector (PC): 6.40) and without ZB (MC: 5.50, PC: 6.68), and considerable differences were not recognized. Whereas, Von-Mises stress (MPa) in the specimens with horizontal trenched Zirconia bar (HZB) (MC: 3.91, PC: 2.44) and Vertical trenched Zirconia bar (VZB) (MC: 2.53, PC: 2.56) was decreased considerably. Conclusion: Embeded trenched zirconia bar could reinforce IPS-Empress II at the connector area which is a main failure region in all ceramic fixed partial dentures. PMID:23323181

  6. Finite Element Analysis of IPS Empress II Ceramic Bridge Reinforced by Zirconia Bar.

    PubMed

    Kermanshah, H; Bitaraf, T; Geramy, A

    2012-01-01

    The aim of this study was to determine the effect of trenched zirconia bar on the von Mises stress distribution of IPS -Empress II core ceramics. The three-dimensional model including a three-unit bridge from the second premolar to the second molar was designed. The model was reinforced with zirconia bar (ZB), zirconia bar with vertical trench (VZB) and zirconia bar with horizontal trench (HZB) (cross sections of these bars were circular). The model without zirconia bar was designed as the control. The bridges were loaded by 200 N and 500 N on the occlusal surface at the middle of the pontic component and von Mises stresses were evaluated along a defined path. IN THE CONNECTOR AREA, VON MISES STRESS IN MPA WERE APPROXIMATELY IDENTICAL IN THE SPECIMENS WITH ZB (AT MOLAR CONNECTOR (MC): 4.75 and at premolar connector (PC): 6.40) and without ZB (MC: 5.50, PC: 6.68), and considerable differences were not recognized. Whereas, Von-Mises stress (MPa) in the specimens with horizontal trenched Zirconia bar (HZB) (MC: 3.91, PC: 2.44) and Vertical trenched Zirconia bar (VZB) (MC: 2.53, PC: 2.56) was decreased considerably. Embeded trenched zirconia bar could reinforce IPS-Empress II at the connector area which is a main failure region in all ceramic fixed partial dentures.

  7. Implant-bone interface stress distribution in immediately loaded implants of different diameters: a three-dimensional finite element analysis.

    PubMed

    Ding, Xi; Zhu, Xing-Hao; Liao, Sheng-Hui; Zhang, Xiu-Hua; Chen, Hong

    2009-07-01

    To establish a 3D finite element model of a mandible with dental implants for immediate loading and to analyze stress distribution in bone around implants of different diameters. Three mandible models, embedded with thread implants (ITI, Straumann, Switzerland) with diameters of 3.3, 4.1, and 4.8 mm, respectively, were developed using CT scanning and self-developed Universal Surgical Integration System software. The von Mises stress and strain of the implant-bone interface were calculated with the ANSYS software when implants were loaded with 150 N vertical or buccolingual forces. When the implants were loaded with vertical force, the von Mises stress concentrated on the mesial and distal surfaces of cortical bone around the neck of implants, with peak values of 25.0, 17.6 and 11.6 MPa for 3.3, 4.1, and 4.8 mm diameters, respectively, while the maximum strains (5854, 4903, 4344 muepsilon) were located on the buccal cancellous bone around the implant bottom and threads of implants. The stress and strain were significantly lower (p < 0.05) with the increased diameter of implant. When the implants were loaded with buccolingual force, the peak von Mises stress values occurred on the buccal surface of cortical bone around the implant neck, with values of 131.1, 78.7, and 68.1 MPa for 3.3, 4.1, and 4.8 mm diameters, respectively, while the maximum strains occurred on the buccal surface of cancellous bone adjacent to the implant neck, with peak values of 14,218, 12,706, and 11,504 microm, respectively. The stress of the 4.1-mm diameter implants was significantly lower (p < 0.05) than those of 3.3-mm diameter implants, but not statistically different from that of the 4.8 mm implant. With an increase of implant diameter, stress and strain on the implant-bone interfaces significantly decreased, especially when the diameter increased from 3.3 to 4.1 mm. It appears that dental implants of 10 mm in length for immediate loading should be at least 4.1 mm in diameter, and uniaxial loading to dental implants should be avoided or minimized.

  8. PROCESS SIMULATION OF COLD PRESSING OF ARMSTRONG CP-Ti POWDERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S; Gorti, Sarma B; Peter, William H

    A computational methodology is presented for the process simulation of cold pressing of Armstrong CP-Ti Powders. The computational model was implemented in the commercial finite element program ABAQUSTM. Since the powder deformation and consolidation is governed by specific pressure-dependent constitutive equations, several solution algorithms were developed for the ABAQUS user material subroutine, UMAT. The solution algorithms were developed for computing the plastic strain increments based on an implicit integration of the nonlinear yield function, flow rule, and hardening equations that describe the evolution of the state variables. Since ABAQUS requires the use of a full Newton-Raphson algorithm for the stress-strainmore » equations, an algorithm for obtaining the tangent/linearization moduli, which is consistent with the return-mapping algorithm, also was developed. Numerical simulation results are presented for the cold compaction of the Ti powders. Several simulations were conducted for cylindrical samples with different aspect ratios. The numerical simulation results showed that for the disk samples, the minimum von Mises stress was approximately half than its maximum value. The hydrostatic stress distribution exhibits a variation smaller than that of the von Mises stress. It was found that for the disk and cylinder samples the minimum hydrostatic stresses were approximately 23 and 50% less than its maximum value, respectively. It was also found that the minimum density was noticeably affected by the sample height.« less

  9. The Influence of Post System Design and Material on the Biomechanical Behavior of Teeth with Little Remaining Coronal Structure.

    PubMed

    Pinto, Cristiano Lazzari; Bhering, Claudia Lopes Brilhante; de Oliveira, Gabriel Rodrigues; Maroli, Angélica; Reginato, Vagner Flávio; Caldas, Ricardo Armini; Bacchi, Atais

    2018-05-14

    To evaluate the influence of different post systems on the biomechanical behavior of teeth with a severe loss of remaining coronal structure. Fifty standardized bovine teeth (n = 10 per group) were restored with: cast post-and-core (CPC), prefabricated metallic post (PFM), parallel glass-fiber post (P-FP), conical glass-fiber post (C-FP), or composite core (no post, CC). The survival rate during thermomechanical challenging (TC), the fracture strength (FS), and failure patterns (FP) were evaluated. Finite element models evaluated the stress distribution after the application of 100 N. All specimens survived TC. Similar FS was observed among post-containing groups. Groups P-FP and CC presented 100% repairable fractures. The von Mises analysis showed the maximum stresses into the root canal in groups restored with metallic posts. Glass-fiber posts and CC presented the maximum stresses at the load contact point. Glass-fiber groups showed lower stresses in the analysis of maximal contact pressure; CPC led to the highest values of contact pressure. The modified von Mises (mvM) stress in dentin did not show differences among groups. Moreover, mvM values did not reach the dentin fracture limit for any group. The type of intracanal post had a relevant influence on the biomechanical behavior of teeth with little remaining coronal structure. © 2018 by the American College of Prosthodontists.

  10. Analytical and numerical analysis of the slope of von Mises planar trusses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalina, M.; Frantík, P.

    2016-06-08

    In the present paper, there are presented post-critical stress states which will occur at loading by vertical shift of the top joint in the direction downwards. The formation of certain stress states depends on the size of the angle formed by a straight beam of the von Mises planar truss with horizontal plane. Numerical and analytical methods and their problems with finding the angle were described. The numerical solution applies the method of searching for a minimum of potential energy.

  11. A return mapping algorithm for isotropic and anisotropic plasticity models using a line search method

    DOE PAGES

    Scherzinger, William M.

    2016-05-01

    The numerical integration of constitutive models in computational solid mechanics codes allows for the solution of boundary value problems involving complex material behavior. Metal plasticity models, in particular, have been instrumental in the development of these codes. Here, most plasticity models implemented in computational codes use an isotropic von Mises yield surface. The von Mises, of J 2, yield surface has a simple predictor-corrector algorithm - the radial return algorithm - to integrate the model.

  12. Finite element analysis of the femur during stance phase of gait based on musculoskeletal model simulation.

    PubMed

    Seo, Jeong-Woo; Kang, Dong-Won; Kim, Ju-Young; Yang, Seung-Tae; Kim, Dae-Hyeok; Choi, Jin-Seung; Tack, Gye-Rae

    2014-01-01

    In this study, the accuracy of the inputs required for finite element analysis, which is mainly used for the biomechanical analysis of bones, was improved. To ensure a muscle force and joint contact force similar to the actual values, a musculoskeletal model that was based on the actual gait experiment was used. Gait data were obtained from a healthy male adult aged 29 who had no history of musculoskeletal disease and walked normally (171 cm height and 72 kg weight), and were used as inputs for the musculoskeletal model simulation to determine the muscle force and joint contact force. Among the phases of gait, which is the most common activity in daily life, the stance phase is the most affected by the load. The results data were extracted from five events in the stance phase: heel contact (ST1), loading response (ST2), early mid-stance (ST2), late mid-stance (ST4), and terminal stance (ST5). The results were used as the inputs for the finite element model that was formed using 1.5mm intervals computed tomography (CT) images and the maximum Von-Mises stress and the maximum Von-Mises strain of the right femur were examined. The maximum stress and strain were lowest at the ST4. The maximum values for the femur occurred in the medial part and then in the lateral part after the mid-stance. In this study, the results of the musculoskeletal model simulation using the inverse-dynamic analysis were utilized to improve the accuracy of the inputs, which affected the finite element analysis results, and the possibility of the bone-specific analysis according to the lapse of time was examined.

  13. High-performance mc-Si ingot grown by modified DS system: Numerical investigation

    NASA Astrophysics Data System (ADS)

    Thiyagaragjan, M.; Aravindan, G.; Srinivasan, M.; Ramasamy, P.

    2018-04-01

    Numerical investigation is carried out on multi-crystalline silicon ingot grown by using side-top and side-bottom heaters and the temperature distribution, von Mises stress and maximum shear stress are analyzed. In order to analyze the changes, results from the side-top and side-bottom heaters are compared. The stress values are reduced, when the side-bottom heaters are placed. A 2D numerical approach is successfully applied to study the stress parameters in directional solidification silicon.

  14. Pretest 3D finite element analysis of the WIPP Intermediate Scale Borehole Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arguello, J.G.

    A three dimensional pretest finite element analysis of the Intermediate Scale Borehole Test has been performed. In the analysis, the 7.7 years simulation period includes the mining of Rooms C1 and C2, and the N1420 cross drift, at time zero; drilling of the borehole between the two rooms at 5.7 years; and 2 years of post-drilling response. An all salt configuration was used in the calculation. The 1984 Waste Isolation Pilot Plant (WIPP) reference elastic-secondary creep law, with reduced elastic moduli, was used to model the creeping response of the salt. Results show that after mining of the rooms andmore » cross drift a relatively high von Mises stress state exists around the perimeter of the pillar. However, by 5.7 years, or immediately prior to drilling of the borehole, the pillar has relaxed to an almost uniform von Mises stress of about 7--8 MPa. After the borehole is drilled, a relatively high von Mises stress field is once again set up in the immediate vicinity of the hole. This drives the creep closure of the borehole. The hole closes more in the vertical direction than in the horizontal direction, resulting in ovalling of the hole. At the end of the simulation, the von Mises stress around the borehole is still higher than that in the remained of the pillar. Thus, the closure rates are relatively high at the end of the simulation time.« less

  15. Stress distribution in maxillary first molar periodontium using straight pull headgear with vertical and horizontal tubes: A finite element analysis.

    PubMed

    Feizbakhsh, Masood; Kadkhodaei, Mahmoud; Zandian, Dana; Hosseinpour, Zahra

    2017-01-01

    One of the most effective ways for distal movement of molars to treat Class II malocclusion is using extraoral force through a headgear device. The purpose of this study was the comparison of stress distribution in maxillary first molar periodontium using straight pull headgear in vertical and horizontal tubes through finite element method. Based on the real geometry model, a basic model of the first molar and maxillary bone was obtained using three-dimensional imaging of the skull. After the geometric modeling of periodontium components through CATIA software and the definition of mechanical properties and element classification, a force of 150 g for each headgear was defined in ABAQUS software. Consequently, Von Mises and Principal stresses were evaluated. The statistical analysis was performed using T-paired and Wilcoxon nonparametric tests. Extension of areas with Von Mises and Principal stresses utilizing straight pull headgear with a vertical tube was not different from that of using a horizontal tube, but the numerical value of the Von Mises stress in the vertical tube was significantly reduced ( P < 0/05). On the other hand, the difference of the principal stress between both tubes was not significant ( P > 0/05). Based on the results, when force applied to the straight pull headgear with a vertical tube, Von Mises stress was reduced significantly in comparison with the horizontal tube. Therefore, to correct the mesiolingual movement of the maxillary first molar, vertical headgear tube is recommended.

  16. Glacial isostatic stress shadowing by the Antarctic ice sheet

    NASA Technical Reports Server (NTRS)

    Ivins, E. R.; James, T. S.; Klemann, V.

    2005-01-01

    Numerous examples of fault slip that offset late Quaternary glacial deposits and bedrock polish support the idea that the glacial loading cycle causes earthquakes in the upper crust. A semianalytical scheme is presented for quantifying glacial and postglacial lithospheric fault reactivation using contemporary rock fracture prediction methods. It extends previous studies by considering differential Mogi-von Mises stresses, in addition to those resulting from a Coulomb analysis. The approach utilizes gravitational viscoelastodynamic theory and explores the relationships between ice mass history and regional seismicity and faulting in a segment of East Antarctica containing the great Antarctic Plate (Balleny Island) earthquake of 25 March 1998 (Mw 8.1). Predictions of the failure stress fields within the seismogenic crust are generated for differing assumptions about background stress orientation, mantle viscosity, lithospheric thickness, and possible late Holocene deglaciation for the D91 Antarctic ice sheet history. Similar stress fracture fields are predicted by Mogi-von Mises and Coulomb theory, thus validating previous rebound Coulomb analysis. A thick lithosphere, of the order of 150-240 km, augments stress shadowing by a late melting (middle-late Holocene) coastal East Antarctic ice complex and could cause present-day earthquakes many hundreds of kilometers seaward of the former Last Glacial Maximum grounding line.

  17. A Modified Cramer-von Mises and Anderson-Darling Test for the Weibull Distribution with Unknown Location and Scale Parameters.

    DTIC Science & Technology

    1981-12-01

    preventing the generation of 16 6 negative location estimators. Because of the invariant pro- perty of the EDF statistics, this transformation will...likelihood. If the parameter estimation method developed by Harter and Moore is used, care must be taken to prevent the location estimators from being...vs A 2 Critical Values, Level-.Ol, n-30 128 , 0 6N m m • w - APPENDIX E Computer Prgrams 129 Program to Calculate the Cramer-von Mises Critical Values

  18. Influence of bicortical techniques in internal connection placed in premaxillary area by 3D finite element analysis.

    PubMed

    Verri, Fellippo Ramos; Cruz, Ronaldo Silva; Lemos, Cleidiel Aparecido Araújo; de Souza Batista, Victor Eduardo; Almeida, Daniel Augusto Faria; Verri, Ana Caroline Gonçales; Pellizzer, Eduardo Piza

    2017-02-01

    The aim of study was to evaluate the stress distribution in implant-supported prostheses and peri-implant bone using internal hexagon (IH) implants in the premaxillary area, varying surgical techniques (conventional, bicortical and bicortical in association with nasal floor elevation), and loading directions (0°, 30° and 60°) by three-dimensional (3D) finite element analysis. Three models were designed with Invesalius, Rhinoceros 3D and Solidworks software. Each model contained a bone block of the premaxillary area including an implant (IH, Ø4 × 10 mm) supporting a metal-ceramic crown. 178 N was applied in different inclinations (0°, 30°, 60°). The results were analyzed by von Mises, maximum principal stress, microstrain and displacement maps including ANOVA statistical test for some situations. Von Mises maps of implant, screws and abutment showed increase of stress concentration as increased loading inclination. Bicortical techniques showed reduction in implant apical area and in the head of fixation screws. Bicortical techniques showed slight increase stress in cortical bone in the maximum principal stress and microstrain maps under 60° loading. No differences in bone tissue regarding surgical techniques were observed. As conclusion, non-axial loads increased stress concentration in all maps. Bicortical techniques showed lower stress for implant and screw; however, there was slightly higher stress on cortical bone only under loads of higher inclinations (60°).

  19. Stress distribution in maxillary first molar periodontium using straight pull headgear with vertical and horizontal tubes: A finite element analysis

    PubMed Central

    Feizbakhsh, Masood; Kadkhodaei, Mahmoud; Zandian, Dana; Hosseinpour, Zahra

    2017-01-01

    Background: One of the most effective ways for distal movement of molars to treat Class II malocclusion is using extraoral force through a headgear device. The purpose of this study was the comparison of stress distribution in maxillary first molar periodontium using straight pull headgear in vertical and horizontal tubes through finite element method. Materials and Methods: Based on the real geometry model, a basic model of the first molar and maxillary bone was obtained using three-dimensional imaging of the skull. After the geometric modeling of periodontium components through CATIA software and the definition of mechanical properties and element classification, a force of 150 g for each headgear was defined in ABAQUS software. Consequently, Von Mises and Principal stresses were evaluated. The statistical analysis was performed using T-paired and Wilcoxon nonparametric tests. Results: Extension of areas with Von Mises and Principal stresses utilizing straight pull headgear with a vertical tube was not different from that of using a horizontal tube, but the numerical value of the Von Mises stress in the vertical tube was significantly reduced (P < 0/05). On the other hand, the difference of the principal stress between both tubes was not significant (P > 0/05). Conclusion: Based on the results, when force applied to the straight pull headgear with a vertical tube, Von Mises stress was reduced significantly in comparison with the horizontal tube. Therefore, to correct the mesiolingual movement of the maxillary first molar, vertical headgear tube is recommended. PMID:28584535

  20. IPS-Empress II inlay-retained fixed partial denture reinforced with zirconia bar: three-dimensional finite element and in-vitro studies.

    PubMed

    Kermanshah, Hamid; Geramy, Allahyar; Ebrahimi, Shahram Farzin; Bitaraf, Tahereh

    2012-12-01

    This study evaluated von Mises stress distribution, flexural strength and interface micrographs of IPS-Empress II (IPS) inlay-retained fixed partial dentures (IRFPD) reinforced with Zirconia bars (Zb). In the Finite element analysis, six three-dimensional models of IRFPD were designed using Solid Works 2006. Five models were reinforced with different Zb and a model without Zb was considered as a control. The bridges were loaded by 200 and 500 N forces at the middle of the pontic on the occlusal surface. Subsequently, von Mises stress and displacement of the models were evaluated along a defined path. In the experimental part, 21 bar shape specimens were fabricated from lithium disilicate and zirconia ceramic in three different designs. The zirconia-IPS interfaces and the fractured surfaces of flexural test were observed using SEM. In the connector area, von Mises stress and displacement of the models with Zb under a load of 500 N were decreased compared to the model without the Zb; however, this difference was not considerable at a load of 200 N. In the mesial connector, Von Mises stress and displacement was decreased from 12.5 Mpa for the control model tested at 500 N to 7.0 Mpa for the model with Zb and from 0.0050-0.0041 mm, respectively. SEM analyses showed that, before fracture, interfacial gaps were not observed along the interfaces, but initiated cracks propagated along the interfaces after flexural loading. IPS IRFPD reinforced by Zb can tolerate higher stresses while still functioning effectively and the interfaces may have desirable adaption.

  1. Assessment of Creep Deformation, Damage, and Rupture Life of 304HCu Austenitic Stainless Steel Under Multiaxial State of Stress

    NASA Astrophysics Data System (ADS)

    Sahoo, K. C.; Goyal, Sunil; Parameswaran, P.; Ravi, S.; Laha, K.

    2018-03-01

    The role of the multiaxial state of stress on creep deformation and rupture behavior of 304HCu austenitic stainless steel was assessed by performing creep rupture tests on both smooth and notched specimens of the steel. The multiaxial state of stress was introduced by incorporating circumferential U-notches of different root radii ranging from 0.25 to 5.00 mm on the smooth specimens of the steel. Creep tests were carried out at 973 K over the stress range of 140 to 220 MPa. In the presence of notch, the creep rupture strength of the steel was found to increase with the associated decrease in rupture ductility. Over the investigated stress range and notch sharpness, the strengthening was found to increase drastically with notch sharpness and tended toward saturation. The fractographic studies revealed the mixed mode of failure consisting of transgranular dimples and intergranular creep cavitation for shallow notches, whereas the failure was predominantly intergranular for relatively sharper notches. Detailed finite element analysis of stress distribution across the notch throat plane on creep exposure was carried out to assess the creep failure of the material in the presence of notch. The reduction in von-Mises stress across the notch throat plane, which was greater for sharper notches, increased the creep rupture strength of the material. The variation in fracture behavior of the material in the presence of notch was elucidated based on the von-Mises, maximum principal, and hydrostatic stresses. Electron backscatter diffraction analysis of creep strain distribution across the notch revealed localized creep straining at the notch root for sharper notches. A master curve for predicting creep rupture life under the multiaxial state of stress was generated considering the representative stress having contributions from both the von-Mises and principal stress components of the stress field in the notch throat plane. Rupture ductility was also predicted based on the multiaxial state of stress.

  2. Packing a pinch: functional implications of chela shapes in scorpions using finite element analysis

    PubMed Central

    van der Meijden, Arie; Kleinteich, Thomas; Coelho, Pedro

    2012-01-01

    Scorpions depend on their pedipalps for prey capture, defense, mating and sensing their environment. Some species additionally use their pedipalps for burrowing or climbing. Because the pincers or chelae at the end of the pedipalps vary widely in shape, they have been used as part of a suite of characters to delimit ecomorphotypes. We here evaluate the influence of the different chela cuticular shapes on their performance under natural loading conditions. Chelae of 20 species, representing seven families and spanning most of the range of chela morphologies, were assigned to clusters based on chela shape parameters using hierarchical cluster analysis. Several clusters were identified corresponding approximately to described scorpion ecomorphotypes. Finite element models of the chela cuticulae were constructed from CT scans and loaded with estimated pinch forces based on in vivo force measurements. Chela shape clusters differed significantly in mean Von Mises stress and strain energy. Normalized FEA showed that chela shape significantly influenced Von Mises stress and strain energy in the chela cuticula, with Von Mises stress varying up to an order of magnitude and strain energy up to two orders of magnitude. More elongate, high-aspect ratio chela forms showed significantly higher mean stress compared with more robust low-aspect ratio forms. This suggests that elongate chelae are at a higher risk of failure when operating near the maximum pinch force. Phylogenetic independent contrasts (PIC) were calculated based on a partly resolved phylogram with branch lengths based on an alignment of the 12S, 16S and CO1 mitochondrial genes. PIC showed that cuticular stress and strain in the chela were correlated with several shape parameters, such as aspect ratio, movable finger length, and chela height, independently of phylogenetic history. Our results indicate that slender chela morphologies may be less suitable for high-force functions such as burrowing and defense. Further implications of these findings for the ecology and evolution of the different chela morphologies are discussed. PMID:22360433

  3. Finite element assisted prediction of ductile fracture in sheet bulging

    NASA Astrophysics Data System (ADS)

    Donald, Bryan J. Mac; Lorza, Ruben Lostado; Yoshihara, Shoichiro

    2017-10-01

    With growing demand for energy efficiency, there is much focus on reducing oil consumption rates and utilising alternative fuels. A contributor to the solution in this area is to produce lighter vehicles that are more fuel efficient and/or allow for the use of alternative fuel sources (e.g. electric powered automobiles). Near-net-shape manufacturing processes such as hydroforming have great potential to reduce structural weight while still maintaining structural strength and performance. Finite element analysis techniques have proved invaluable in optimizing such hydroforming processes, however, the majority of such studies have used simple predictors of failure which are usually yield criteria such as von Mises stress. There is clearly potential to obtain more optimal solutions using more advanced predictors of failure. This paper compared the Von Mises stress failure criteria and the Oyane's ductile fracture criteria in the sheet hydroforming of magnesium alloys. It was found that the results obtained from the models which used Oyane's ductile fracture criteria were more realistic than those obtained from those that used Von Mises stress as a failure criteria.

  4. Philipp Frank, Richard von Mises, and the Frank-Mises

    NASA Astrophysics Data System (ADS)

    Siegmund-Schultze, Reinhard

    2007-01-01

    The theoretical physicist Philipp Frank (1884 1966) and the applied mathematician Richard von Mises (1883 1953) both received their university education in Vienna shortly after 1900 and became friends at the latest during the Great War.They were attached to the Vienna Circle of Logical Positivists and wrote an influential two-part work on the differential and integral equations of mechanics and physics, the Frank-Mises, of 1925 and 1927, with its second edition following in 1930 and 1935.This work originated in the lectures that the mathematician Bernhard Riemann (1826 1866) delivered on partial differential equations and their applications to physical questions at the University of Göttingen between 1854 and 1862, which were edited and published posthumously in1869 by the physicist Karl Hattendorff (1834 1882).The immediate precursor of the Frank-Mises, however, was the extensive revision of Hattendorff’s edition of Riemann’s lectures that the mathematician Heinrich Weber (1842 1913) published in two volumes, the Riemann-Weber, of 1900 and 1901, with its second edition following in 1910 and 1912. I trace this historical lineage, explore the nature and contents of the Frank-Mises, and discuss its complementary relationship to the first volume of the text that the mathematicians Richard Courant (1888 1972) and David Hilbert (1862 1943) published on the methods of mathematical physics in 1924, the Courant-Hilbert,which, when it and its second volume of 1937 were translated into English and extensively revised in 1953 and 1961, eclipsed the classic Frank-Mises.

  5. Numerical simulation of thermal stress distributions in Czochralski-grown silicon crystals

    NASA Astrophysics Data System (ADS)

    Kumar, M. Avinash; Srinivasan, M.; Ramasamy, P.

    2018-04-01

    Numerical simulation is one of the important tools in the investigation and optimization of the single-crystal silicon grown by the Czochralski (Cz) method. A 2D steady global heat transfer model was used to investigate the temperature distribution and the thermal stress distributions at particular crystal position during the Cz growth process. The computation determines the thermal stress such as von Mises stress and maximum shear stress distribution along grown crystal and shows possible reason for dislocation formation in the Cz-grown single-crystal silicon.

  6. Laser circular cutting of Kevlar sheets: Analysis of thermal stress filed and assessment of cutting geometry

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Akhtar, S. S.; Karatas, C.

    2017-11-01

    A Kevlar laminate has negative thermal expansion coefficient, which makes it difficult to machine at room temperaures using the conventional cutting tools. Contararily, laser machining of a Kevlar laminate provides advantages over the conventional methods because of the non-mechanical contact between the cutting tool and the workpiece. In the present study, laser circular cutting of Kevlar laminate is considered. The experiment is carried out to examine and evaluate the cutting sections. Temperature and stress fields formed in the cutting section are simulated in line with the experimental study. The influence of hole diameters on temperature and stress fields are investigated incorporating two different hole diameters. It is found that the Kevlar laminate cutting section is free from large size asperities such as large scale sideways burnings and attachemnt of charred residues. The maximum temperature along the cutting circumference remains higher for the large diameter hole than that of the small diameter hole. Temperature decay is sharp around the cutting section in the region where the cutting terminates. This, in turn, results in high temperature gradients and the thermal strain in the cutting region. von Mises stress remains high in the region where temperature gradients are high. von Mises stress follows similar to the trend of temperature decay around the cutting edges.

  7. Dynamic MEMS devices for multi-axial fatigue and elastic modulus measurement

    NASA Astrophysics Data System (ADS)

    White, Carolyn D.; Xu, Rui; Sun, Xiaotian; Komvopoulos, Kyriakos

    2003-01-01

    For reliable MEMS device fabrication and operation, there is a continued demand for precise characterization of materials at the micron scale. This paper presents a novel material characterization device for fatigue lifetime testing. The fatigue specimen is subjected to multi-axial loading, which is typical of most MEMS devices. Polycrystalline silicon (polysilicon) fatigue devices were fabricated using the MUMPS process with a three layer mask process ground plane, anchor, and structural layer of polysilicon. A fatigue device consists of two or three beams, attached to a rotating ring and anchored to the substrate on each end. In order to generate a sufficiently large stress, the fatigue devices were tested in resonance to produce a von Mises equivalent stress as high as 1 GPa, which is in the fracture strength range reported for polysilicon. A further increase of the stress in the beam specimens was obtained by introducing a notch with a focused ion beam. The notch resulted into a stress concentration factor of about 3.8, thereby producing maximum von Mises equivalent stress in the range of 1 through 4 GPa. This study provides insight into multi-axial fatigue testing under typical MEMS conditions and additional information about micron-scale polysilicon mechanical behavior, which is the current basic building material for MEMS devices.

  8. The effects of alveolar bone loss and miniscrew position on initial tooth displacement during intrusion of the maxillary anterior teeth: Finite element analysis

    PubMed Central

    Cho, Sun-Mi; Choi, Sung-Hwan; Sung, Sang-Jin; Yu, Hyung-Seog

    2016-01-01

    Objective The aim of this study was to determine the optimal loading conditions for pure intrusion of the six maxillary anterior teeth with miniscrews according to alveolar bone loss. Methods A three-dimensional finite element model was created for a segment of the six anterior teeth, and the positions of the miniscrews and hooks were varied after setting the alveolar bone loss to 0, 2, or 4 mm. Under 100 g of intrusive force, initial displacement of the individual teeth in three directions and the degree of labial tilting were measured. Results The degree of labial tilting increased with reduced alveolar bone height under the same load. When a miniscrew was inserted between the two central incisors, the amounts of medial-lateral and anterior-posterior displacement of the central incisor were significantly greater than in the other conditions. When the miniscrews were inserted distally to the canines and an intrusion force was applied distal to the lateral incisors, the degree of labial tilting and the amounts of displacement of the six anterior teeth were the lowest, and the maximum von Mises stress was distributed evenly across all the teeth, regardless of the bone loss. Conclusions Initial tooth displacement similar to pure intrusion of the six maxillary anterior teeth was induced when miniscrews were inserted distal to the maxillary canines and an intrusion force was applied distal to the lateral incisors. In this condition, the maximum von Mises stresses were relatively evenly distributed across all the teeth, regardless of the bone loss. PMID:27668194

  9. Flow and fracture behavior of NiAl in relation to the brittle-to-ductile transition temperature

    NASA Technical Reports Server (NTRS)

    Noebe, R. D.; Bowman, R. R.; Cullers, C. L.; Raj, S. V.

    1991-01-01

    NiAl has only three independent slip systems operating at low and intermediate temperatures whereas five independent deformation mechanisms are required to satisfy the von Mises criterion for general plasticity in polycrystalline materials. Yet, it is generally recognized that polycrystalline NiAl can be deformed extensively in compression at room temperature and that limited tensile ductility can be obtained in extruded materials. In order to determine whether these results are in conflict with the von Mises criterion, tension and compression tests were conducted on powder-extruded, binary NiAl between 300 and 1300 K. The results indicate that below the brittle-to-ductile transition temperature (BDTT) the failure mechanism in NiAl involves the initiation and propagation of cracks at the grain boundaries which is consistent with the von Mises analysis. Furthermore, evaluation of the flow behavior of NiAl indicates that the transition from brittle to ductile behavior with increasing temperature coincides with the onset of recovery mechanisms such as dislocation climb. The increase in ductility above the BDTT is therefore attributed to the climb of the 001 line type dislocations which in combination with dislocation glide enable grain boundary compatibility to be maintained at the higher temperatures.

  10. Development and thermal management of 10 kW CW, direct diode laser source

    NASA Astrophysics Data System (ADS)

    Zhu, Hongbo; Hao, Mingming; Zhang, Jianwei; Ji, Wenyu; Lin, Xingchen; Zhang, Jinsheng; Ning, Yongqiang

    2016-01-01

    We report on the development of direct diode laser source with high-power and high reliability. The laser source was realized by the polarization and wavelength combination of four diode laser stacks. When at the operating current of 122 A, the source was capable of producing 10,120 W output while maintaining 46% electro-optical conversion efficiency. The maximum temperature on the lens was decreased from 442.2 K to 320 K by utilizing an efficient thermal dissipation structure, and the corresponding maximum von Mises stress was reduced from 75.4 MPa to 14 MPa. In addition, a reliability test demonstrated that our laser source was reliable and potential in the applications of laser cladding and heat treatment.

  11. An Isogeometric Design-through-analysis Methodology based on Adaptive Hierarchical Refinement of NURBS, Immersed Boundary Methods, and T-spline CAD Surfaces

    DTIC Science & Technology

    2012-01-22

    Computational Mechanics, 2008; 43:3–37. [15] Bazilevs Y, Hsu MC, Kiendl J, Wuechner R, Bletzinger KU. 3D Simulation of Wind Turbine Rotors at Full Scale. Part II...0 and Ψy = 0 on the left, right and bottom boundaries (“no slip ” requirement), Ψx = 0 and Ψx = 1 on the top boundary (the driven surface). At all...superposition of tensile membrane and bending stress, the maximum von Mises stress occurs at the sharp reentrant bend, where the loaded boundary ring bends

  12. [out of scope].

    PubMed

    Siegmund-Schultze, Reinhard

    2008-01-01

    The paper discusses several still unsettled and not systematically investigated questions concerning the situation of Jewish scientists, among them mathematicians, in the Republic of Weimar. Contemporary statements by the well-known leftist and liberal journalists Carl von Ossietzky (1932) and Rudolf Olden (1934) are used to describe the general political situation. A wide-spread feeling of a social and political crisis and changes and perturbations in international scientific communication provide explanatory background for the conditions within academia in the 1920s. A comparison of appointments of Jewish mathematicians to full professorships before and after World War I does not give significant differences. Attitudes of Jewish mathematicians such as Felix Bernstein, Richard Courant, Emil Julius Gumbel, Edmund Landau, Richard von Mises, Johann von Neumann and Adolf A. Fraenkel, but also of non-Jewish mathematicians such as Felix Klein, Walther von Dyck and Theodor Vahlen will be discussed, providing some unpublished material. One statement by Felix Klein (1920), which shows his undecided stance with respect to the problem of anti-Semitism, and an excerpt from Richard von Mises' diary (1933), where he reflects on his status as a Jewish mathematician and as a refugee, are particularly valuable as points of reference for necessary further research.

  13. Effect of root canal treatment procedures with a novel rotary nickel titanium instrument (TRUShape) on stress in mandibular molars: a comparative finite element analysis.

    PubMed

    Bonessio, Noemi; Arias, Ana; Lomiento, Guiseppe; Peters, Ove A

    2017-01-01

    The aim of this study was to investigate and compare, via finite element analysis (FEA), the effects of endodontic access and canal preparation on stress distribution under functional loading of a mandibular molar treated with novel (TRUShape) and conventional (Vortex) rotary root canal preparation instruments. Identical plastic mandibular molars with natural anatomy had all 4 canals shaped with either TRUShape or a conventional rotary, Vortex (#20 and #30, both by Dentsply Tulsa Dental). Finite element analysis was used to evaluate stress distribution in untreated and treated models. Micro-computed tomography (MCT) of the extracted teeth shaped in vitro was used to inform the FEA model regarding the geometry of root canals and external surfaces. Modeling the intact periodontal support and cancellous/cortical bone was based on anatomical data. Profiles of average and maximum von Mises stresses in dentin of the four treated conditions under functional loading were compared to the untreated model. This comparison was performed for each tooth model with and without root canal obturation and composite restoration. On average, the dentin sections with the most changes after preparation were located in the access cavity, with average stress increase up to +5.7, +8.5, +8.9, and +10.2 % for the TRUShape #20, Vortex #20, TRUShape #30 and Vortex #30, respectively, relative to the untreated model. Within the root canal system, the average stress differences were smaller than <5 % with lower values for TRUShape preparation. A reduction of the average stress in the access cavity was observed as an effect of the composite restoration, while about the same von Mises stress' profiles were found into the root canal. In this finite element analysis, preparation of the access cavity resulted in increased von Mises stresses under functional occlusal load. The limited (up to 0.7 %) retained radicular dentin in the TRUShape versus the Vortex cavity proved effective in reducing masticatory stresses. The bonded restoration modeled in this study only partially counterbalance the combined effects of access cavity and root canal preparation.

  14. Comparative finite element analysis of skull mechanical properties following parietal bone graft harvesting in adults.

    PubMed

    Haen, Pierre; Dubois, Guillaume; Goudot, Patrick; Schouman, Thomas

    2018-02-01

    Parietal bone grafts are commonly used in cranio-maxillo-facial surgery. Both the outer and the internal layer of the calvarium can be harvested. The bone defect created by this harvesting may induce significant weakening of the skull that has not been extensively evaluated. Our aim was to evaluate the consequences of parietal bone graft harvesting on mechanical properties of the skull using a finite element analysis. Finite elements models of the skull of 3 adult patients were created from CT scans. Parietal external and internal layer harvest models were created. Frontal, lateral, and parietal loading were modeled and von Mises stress distributions were compared. The maximal von Mises stress was higher for models of bone harvesting, both on the whole skull and at the harvested site. Maximal von Mises stress was even higher for models with internal layer defect. Harvesting parietal bone modifies the skull's mechanical strength and can increase the risk of skull fracture, mainly on the harvested site. Outer layer parietal graft harvesting is indicated. Graft harvesting located in the upper part of the parietal bone, close to the sagittal suture and with smooth internal edges and corners should limit the risk of fracture. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  15. The Effect of Single-Level Disc Degeneration on Dynamic Response of the Whole Lumbar Spine to Vertical Vibration.

    PubMed

    Guo, Li-Xin; Fan, Wei

    2017-09-01

    The objective of this study was to investigate the effect of single-level disc degeneration on dynamic response of the whole lumbar spine to vertical whole body vibration that is typically present when driving vehicles. Ligamentous finite element models of the lumbar L1-S1 motion segment in different grades of degeneration (healthy, mild, and moderate) at the L4-L5 level were developed with consideration of changing disc height and material properties of the nucleus pulpous. All models were loaded with a compressive follower preload of 400 N and a sinusoidal vertical vibration load of ±40 N. After transient dynamic analyses, computational results for the 3 models in terms of disc bulge, von-Mises stress in annulus ground substance, and nucleus pressure were plotted as a function of time and compared. All the predicted results showed a cyclic response with time. At the degenerated L4-L5 disc level, as degeneration progressed, maximum value of the predicted response showed a decrease in disc bulge and von-Mises stress in annulus ground substance but a slight increase in nucleus pressure, and their vibration amplitudes were all decreased. At the adjacent levels of the degenerated disc, there was a slight decrease in maximum value and vibration amplitude of these predicted responses with the degeneration. The results indicated that single-level disc degeneration can alter vibration characteristics of the whole lumbar spine especially for the degenerated disc level, and increasing the degeneration did not deteriorate the effect of vertical vibration on the spine. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Influence of implant collar design on stress and strain distribution in the crestal compact bone: a three-dimensional finite element analysis.

    PubMed

    Shen, Wan-Ling; Chen, Chen-Sheng; Hsu, Ming-Lun

    2010-01-01

    To evaluate the influence of implant collar geometry on the distribution of stress and strain in the crestal compact bone contiguous to an implant collar for four types of bone under axial and oblique loads. Finite element models of threaded implants with three kinds of implant collar designs (divergent, straight, and convergent) with their corresponding suprastructures embedded in the posterior mandible were created with ANSYS software. Eight different test conditions incorporating four types of bone (orthotropic and effectively isotropic in part 1 and high and low densities in part 2) under separate 100-N axial and 35.6-degree oblique forces were created to investigate the stress and strain distributions in the crestal compact bone around the implant collars. In all eight conditions, the divergent collar demonstrated the lowest maximum von Mises and principal stresses and strains in the crestal compact bone contiguous to the implant collar, followed by the straight and convergent collars. The oblique load induced higher peak values than the axial load. The orthotropic design amplified and increased the pathologic microstrains and tensile stresses in the crestal compact bone compared to the effectively isotropic design, especially in models with a convergent collar design. In part 2 of the study, the maximum von Mises stresses and strains increased with a decrease in the cancellous bone density. Under oblique loading, the convergent and straight collars showed pathologic microstrain values as well as excessive ultimate tensile stresses in the orthotropic bone model with low-density cancellous bone. Within the limitations, it was concluded that stress and strain distributions in the adjacent compact bone are influenced by the implant collar design. The divergent implant collar design was associated with the lowest stress and strain concentrations in the crestal compact bone.

  17. Impact response and biomechanical analysis of the knee-thigh-hip complex in frontal impacts with a full human body finite element model.

    PubMed

    Ruan, Jesse S; El-Jawahri, Raed; Barbat, Saeed; Rouhana, Stephen W; Prasad, Priya

    2008-11-01

    Changes in vehicle safety design technology and the increasing use of seat-belts and airbag restraint systems have gradually changed the relative proportion of lower extremity injuries. These changes in real world injuries have renewed interest and the need of further investigation into occupant injury mechanisms and biomechanical impact responses of the knee-thigh-hip complex during frontal impacts. This study uses a detailed finite element model of the human body to simulate occupant knee impacts experienced in frontal crashes. The human body model includes detailed anatomical features of the head, neck, shoulder, chest, thoracic and lumbar spine, abdomen, pelvis, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The human body model used in the current study has been previously validated in frontal and side impacts. It was further validated with cadaver knee-thigh-hip impact tests in the current study. The effects of impactor configuration and flexion angle of the knee on biomechanical impact responses of the knee-thigh-hip complex were studied using the validated human body finite element model. This study showed that the knee flexion angle and the impact direction and shape of the impactors affected the injury outcomes of the knee-thigh-hip complex significantly. The 60 degrees flexed knee impact showed the least impact force, knee pressure, femoral von Mises stress, and pelvic von Mises stress but largest relative displacements of the Posterior Cruciate Ligament (PCL) and Anterior Cruciate Ligament (ACL). The 90 degrees flexed knee impact resulted in a higher impact force, knee pressure, femoral von Mises stress, and pelvic von Mises stress; but smaller PCL and ACL displacements. Stress distributions of the patella, femur, and pelvis were also given for all the simulated conditions.

  18. [Finite element analysis of the maxillary central incisor with crown lengthening surgery and post-core restoration in management of crown-root fracture].

    PubMed

    Zhen, Min; Hu, Wen-jie; Rong, Qi-guo

    2015-12-18

    To construct the finite element models of maxillary central incisor and the simulations with crown lengthening surgery and post-core restoration in management of different crown-root fracture types, to investigate the stress intensity and distributions of these models mentioned above, and to analyze the indications of crown lengthening from the point of view of mechanics. An extracted maxillary central incisor and alveolar bone plaster model were scanned by Micro-CT and dental impression scanner (3shape D700) respectively. Then the 3D finite element models of the maxillary central incisor and 9 simulations with crown lengthening surgery and post-core restoration were constructed by Mimics 10.0, Geomagic studio 9.0 and ANSYS 14.0 software. The oblique static force (100 N) was applied to the palatal surface (the junctional area of the incisal 1/3 and middle 1/3), at 45 degrees to the longitudinal axis, then the von Mises stress of dentin, periodontal ligament, alveolar bone, post and core, as well as the periodontal ligament area, were calculated. A total of 10 high-precision three-dimensional finite element models of maxillary central incisor were established. The von Mises stress of models: post>dentin>alveolar bone>core>periodontal ligament, and the von Mises stress increased linearly with the augmentation of fracture degree (besides the core). The periodontal ligament area of the crown lengthening was reduced by 12% to 33%. The von Mises stress of periodontal ligament of the B2L2c, B2L3c, B3L1c, B3L2c, B3L3c models exceeded their threshold limit value, respectively. The maxillary central incisors with the labial fracture greater than three-quarter crown length and the palatal fracture deeper than 1 mm below the alveolar crest are not the ideal indications of the crown lengthening surgery.

  19. Hyperspherical von Mises-Fisher mixture (HvMF) modelling of high angular resolution diffusion MRI.

    PubMed

    Bhalerao, Abhir; Westin, Carl-Fredrik

    2007-01-01

    A mapping of unit vectors onto a 5D hypersphere is used to model and partition ODFs from HARDI data. This mapping has a number of useful and interesting properties and we make a link to interpretation of the second order spherical harmonic decompositions of HARDI data. The paper presents the working theory and experiments of using a von Mises-Fisher mixture model for directional samples. The MLE of the second moment of the HvMF pdf can also be related to fractional anisotropy. We perform error analysis of the estimation scheme in single and multi-fibre regions and then show how a penalised-likelihood model selection method can be employed to differentiate single and multiple fibre regions.

  20. UOE Pipe Numerical Model: Manufacturing Process And Von Mises Residual Stresses Resulted After Each Technological Step

    NASA Astrophysics Data System (ADS)

    Delistoian, Dmitri; Chirchor, Mihael

    2017-12-01

    Fluid transportation from production areas to final customer is effectuated by pipelines. For oil and gas industry, pipeline safety and reliability represents a priority. From this reason, pipe quality guarantee directly influence pipeline designed life, but first of all protects environment. A significant number of longitudinally welded pipes, for onshore/offshore pipelines, are manufactured by UOE method. This method is based on cold forming. In present study, using finite element method is modeled UOE pipe manufacturing process and is obtained von Mises stresses for each step. Numerical simulation is performed for L415 MB (X60) steel plate with 7,9 mm thickness, length 30 mm and width 1250mm, as result it is obtained a DN 400 pipe.

  1. Modeling of stress distributions on the microstructural level in Alloy 600

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozaczek, K.J.; Petrovic, B.G.; Ruud, C.O.

    1995-04-01

    Stress distribution in a random polycrystalline material (Alloy 600) was studied using a topologically correct microstructural model. Distributions of von Mises and hydrostatic stresses at the grain vertices, which could be important in intergranular stress corrosion cracking, were analyzed as functions of microstructure, grain orientations and loading conditions. Grain size, shape, and orientation had a more pronounced effect on stress distribution than loading conditions. At grain vertices the stress concentration factor was higher for hydrostatic stress (1.7) than for von Mises stress (1.5). The stress/strain distribution in the volume (grain interiors) is a normal distribution and does not depend onmore » the location of the studied material volume i.e., surface vs/bulk. The analysis of stress distribution in the volume showed the von Mises stress concentration of 1.75 and stress concentration of 2.2 for the hydrostatic pressure. The observed stress concentration is high enough to cause localized plastic microdeformation, even when the polycrystalline aggregate is in the macroscopic elastic regime. Modeling of stresses and strains in polycrystalline materials can identify the microstructures (grain size distributions, texture) intrinsically susceptible to stress/strain concentrations and justify the correctness of applied stress state during the stress corrosion cracking tests. Also, it supplies the information necessary to formulate the local failure criteria and interpret of nondestructive stress measurements.« less

  2. Selection of contact bearing couple materials for hip prosthesis using finite element analysis under static conditions

    NASA Astrophysics Data System (ADS)

    Arirajan, K. A.; Chockalingam, K.; Vignesh, C.

    2018-04-01

    Implants are the artificial parts to replace the missing bones or joints in human anatomy to give mechanical support. Hip joint replacement is an important issue in orthopaedic surgery. The main concern limiting the long-run success of the total hip replacement is the limited service life. Hip replacement technique is widely used in replacing the femur head and acetabular cup by materials that are highly biocompatible. The success of the artificial hip replacement depends upon proper material selection, structure, and shape of the hip prosthesis. Many orthopaedic analyses have been tried with different materials, but ended with partial success on the application side. It is a critical task for selecting the best material pair in the hip prosthesis design. This work develops the finite element analysis of an artificial hip implant to study highest von Mises stress, contact pressure and elastic strain occurs for the dissimilar material combination. The different bearing couple considered for the analysis are Metal on Metal, Metal on Plastic, Metal on Ceramic, Ceramic on Plastic, Ceramic on Ceramic combinations. The analysis is carried out at different static positions of a human (i.e) standing, sitting. The results reveals that the combination with metal in contact with plastic (i.e) Titanium femoral head paired with Ultra High Molecular Weight Poly Ethylene acetabular cup reduces maximum von Mises stress and also it gives lowest contact pressure than other combination of bearing couples.

  3. Probabilistic properties of the date of maximum river flow, an approach based on circular statistics in lowland, highland and mountainous catchment

    NASA Astrophysics Data System (ADS)

    Rutkowska, Agnieszka; Kohnová, Silvia; Banasik, Kazimierz

    2018-04-01

    Probabilistic properties of dates of winter, summer and annual maximum flows were studied using circular statistics in three catchments differing in topographic conditions; a lowland, highland and mountainous catchment. The circular measures of location and dispersion were used in the long-term samples of dates of maxima. The mixture of von Mises distributions was assumed as the theoretical distribution function of the date of winter, summer and annual maximum flow. The number of components was selected on the basis of the corrected Akaike Information Criterion and the parameters were estimated by means of the Maximum Likelihood method. The goodness of fit was assessed using both the correlation between quantiles and a version of the Kuiper's and Watson's test. Results show that the number of components varied between catchments and it was different for seasonal and annual maxima. Differences between catchments in circular characteristics were explained using climatic factors such as precipitation and temperature. Further studies may include circular grouping catchments based on similarity between distribution functions and the linkage between dates of maximum precipitation and maximum flow.

  4. Numerical Optimization of the Position in Femoral Head of Proximal Locking Screws of Proximal Femoral Nail System; Biomechanical Study.

    PubMed

    Konya, Mehmet Nuri; Verim, Özgür

    2017-09-29

    Proximal femoral fracture rates are increasing due to osteoporosis and traffic accidents. Proximal femoral nails are routinely used in the treatment of these fractures in the proximal femur. To compare various combinations and to determine the ideal proximal lag screw position in pertrochanteric fractures (Arbeitsgemeinschaft für Osteosynthesefragen classification 31-A1) of the femur by using optimized finite element analysis. Biomechanical study. Computed tomography images of patients' right femurs were processed with Mimics. Afterwards a solid femur model was created with SolidWorks 2015 and transferred to ANSYS Workbench 16.0 for response surface optimization analysis which was carried out according to anterior-posterior (-10°0) and posterior-anterior directions of the femur neck significantly increased these stresses. The most suitable position of the proximal lag screw was confirmed as the middle of the femoral neck by using optimized finite element analysis.

  5. Distributional properties of relative phase in bimanual coordination.

    PubMed

    James, Eric; Layne, Charles S; Newell, Karl M

    2010-10-01

    Studies of bimanual coordination have typically estimated the stability of coordination patterns through the use of the circular standard deviation of relative phase. The interpretation of this statistic depends upon the assumption of a von Mises distribution. The present study tested this assumption by examining the distributional properties of relative phase in three bimanual coordination patterns. There were significant deviations from the von Mises distribution due to differences in the kurtosis of distributions. The kurtosis depended upon the relative phase pattern performed, with leptokurtic distributions occurring in the in-phase and antiphase patterns and platykurtic distributions occurring in the 30° pattern. Thus, the distributional assumptions needed to validly and reliably use the standard deviation are not necessarily present in relative phase data though they are qualitatively consistent with the landscape properties of the intrinsic dynamics.

  6. Effect of process parameters and crystal orientation on 3D anisotropic stress during CZ and FZ growth of silicon

    NASA Astrophysics Data System (ADS)

    Drikis, Ivars; Plate, Matiss; Sennikovs, Juris; Virbulis, Janis

    2017-09-01

    Simulations of 3D anisotropic stress are carried out in <100> and <111> oriented Si crystals grown by FZ and CZ processes for different diameters, growth rates and process stages. Temperature dependent elastic constants and thermal expansion coefficients are used in the FE simulations. The von Mises stress at the triple point line is 5-11% higher in <111> crystals compared to <100> crystals. The process parameters have a larger effect on the von Mises stress than the crystal orientation. Generally, the <111> crystal has a higher azimuthal variation of stress along the triple point line ( 8%) than the <100> crystal ( 2%). The presence of a crystal ridge increases the stress beside the ridge and decreases it on the ridge compared with the round crystal.

  7. [Influence of different designs of marginal preparation on stress distribution in the mandibular premolar restored with endocrown].

    PubMed

    Guo, Jing; Wang, Xiao-Yu; Li, Xue-Sheng; Sun, Hai-Yang; Liu, Lin; Li, Hong-Bo

    2016-02-01

    To evaluate the effect of different designs of marginal preparation on stress distribution in the mandibular premolar restored with endocrown using three-dimensional finite element method. Four models with different designs of marginal preparation, including the flat margin, 90° shoulder, 135° shoulder and chamfer shoulder, were established to imitate mandibular first premolar restored with endocrown. A load of 100 N was applied to the intersection of the long axis and the occlusal surface, either parallel or with an angle of 45° to the long axis of the tooth. The maximum values of Von Mises stress and the stress distribution around the cervical region of the abutment and the endocrown with different designs of marginal preparation were analyzed. The load parallel to the long axis of the tooth caused obvious stress concentration in the lingual portions of both the cervical region of the tooth tissue and the restoration. The stress distribution characteristics on the cervical region of the models with a flat margin and a 90° shoulder were more uniform than those in the models with a 135° shoulder and chamfer shoulder. Loading at 45° to the long axis caused stress concentration mainly on the buccal portion of the cervical region, and the model with a flat margin showed the most favorable stress distribution patterns with a greater maximum Von Mises stress under this circumstance than that with a parallel loading. Irrespective of the loading direction, the stress value was the lowest in the flat margin model, where the stress value in the cervical region of the endocrown was greater than that in the counterpart of the tooth tissue. The stress level on the enamel was higher than that on the dentin nearby in the flat margin model. From the stress distribution point of view, endocrowns with flat margin followed by a 90° shoulder are recommended.

  8. Biomechanical Three-Dimensional Finite Element Analysis of Single Implant-Supported Prostheses in the Anterior Maxilla, with Different Surgical Techniques and Implant Types.

    PubMed

    Verri, Fellippo Ramos; Santiago, Joel Ferreira; Almeida, Daniel Augusto; de Souza Batista, Victor Eduardo; Araujo Lemos, Cleidiel Aparecido; Mello, Caroline Cantieri; Pellizzer, Eduardo Piza

    The aim of this study was to use three-dimensional finite element analysis to analyze the stress distribution transferred by single implant-supported prostheses placed in the anterior maxilla using different connections (external hexagon, internal hexagon, or Morse taper), inclinations of the load (0, 30, or 60 degrees), and surgical techniques for placement (monocortical/conventional, bicortical, or bicortical with nasal floor elevation). Nine models representing a bone block of this region were simulated by computer-aided design software (InVesalius, Rhinoceros, SolidWorks). Each model received one implant, which supported a cemented metalloceramic crown. Using FEMAP software, finite elements were discretized while simulating a 178-N load at 0, 30, and 60 degrees relative to the long axis of the implant. The problem was solved in NEi Nastran software, and postprocessing was performed in FEMAP. Von Mises stress and maximum principal stress maps were made. The von Mises stress analysis revealed that stress increased with increasing inclination of the load, from 0 to 30 to 60 degrees. Morse taper implants showed less stress concentration around the cervical and apical areas of the implant. The bicortical technique, associated or not with nasal floor elevation, contributed to decreasing the stress concentration in the apical area of the implant. Maximum principal stress analysis showed that the increase in inclination was proportional to the increase in stress on the bone tissue in the cervical area. Lower stress concentrations in the cortical bone were obtained with Morse taper implants and the bicortical technique compared with other connections and surgical techniques, respectively. Increasing the inclination of the applied force relative to the long axis of the implant tended to overload the peri-implant bone tissue and the internal structure of the implants. The Morse taper connection and bicortical techniques seemed to be more favorable than other connections or techniques, respectively, for restoring the anterior maxilla.

  9. Effect of Augmentation Material Stiffness on Adjacent Vertebrae after Osteoporotic Vertebroplasty Using Finite Element Analysis with Different Loading Methods.

    PubMed

    Cho, Ah-Reum; Cho, Sang-Bong; Lee, Jae-Ho; Kim, Kyung-Hoon

    2015-11-01

    Vertebroplasty is an effective treatment for osteoporotic vertebral fractures, which are one of the most common fractures associated with osteoporosis. However, clinical observation has shown that the risk of adjacent vertebral body fractures may increase after vertebroplasty. The mechanism underlying adjacent vertebral body fracture after vertebroplasty is not clear; excessive stiffness resulting from polymethyl methacrylate has been suspected as an important mechanism. The aim of our study was to compare the effects of bone cement stiffness on adjacent vertebrae after osteoporotic vertebroplasty under load-controlled versus displacement-controlled conditions. An experimental computer study using a finite element analysis. Medical research institute, university hospital, Korean. A three-dimensional digital anatomic model of L1/2 bone structure was reconstructed from human computed tomographic images. The reconstructed three-dimensional geometry was processed for finite element analysis such as meshing elements and applying material properties. Two boundary conditions, load-controlled and displacement-controlled methods, were applied to each of 5 deformation modes: compression, flexion, extension, lateral bending, and torsion. The adjacent L1 vertebra, irrespective of augmentation, revealed nearly similar maximum von Mises stresses under the load-controlled condition. However, for the displacement-controlled condition, the maximum von Mises stresses in the cortical bone and inferior endplate of the adjacent L1 vertebra increased significantly after cement augmentation. This increase was more significant than that with stiffer bone cement under all modes, except the torsion mode. The finite element model was simplified, excluding muscular forces and incorporating a large volume of bone cement, to more clearly demonstrate effects of bone cement stiffness on adjacent vertebrae after vertebroplasty. Excessive stiffness of augmented bone cement increases the risk of adjacent vertebral fractures after vertebroplasty in an osteoporotic finite element model. This result was most prominently observed using the displacement-controlled method.

  10. Titanium versus zirconia implants supporting maxillary overdentures: three-dimensional finite element analysis.

    PubMed

    Osman, Reham B; Elkhadem, Amr H; Ma, Sunyoung; Swain, Michael V

    2013-01-01

    The purpose of this study was to compare the stress and strain occurring in peri-implant bone and implants used to support maxillary overdentures. Three-dimensional finite element analysis (3D FEA) was used to compare one-piece zirconia and titanium implants. Two types of implants were simulated using a 3D FEA model: one-piece zirconia and titanium implants (diameter, 3.8 × 11.5 mm) with 2.25-mm diameter ball abutments. In each simulation four implants were placed bilaterally in the canine/premolar region of an edentulous maxillary model. Static loads were applied axially and 20 degrees buccolingually on the buccal slope of the lingual cusps of posterior teeth of the first quadrant. Von Mises stresses and equivalent strains generated in peri-implant bone and first principal stresses in the implants were calculated. Comparable stress and strain values were shown in the peri-implant bone for both types of implants. The maximum equivalent strain produced in the peri-implant region was mostly within the range for bone augmentation. Under oblique loading, maximum von Mises stresses and equivalent strain were more evident at the neck of the most distal implant on the loaded side. Under axial load, the stress and strain were transferred to the peri-implant bone around the apex of the implant. Maximum tensile stresses that developed for either material were well below their fracture strength. The highest stresses were mainly located at the distobuccal region of the neck for the two implant materials under both loading conditions. From a biomechanical point of view, ceramic implants made from yttrium-stabilized tetragonal polycrystalline zirconia may be a potential alternative to conventional titanium implants for the support of overdentures. This is particularly relevant for a select group of patients with a proven allergy to titanium. Prospective clinical studies are still required to confirm these in vitro results. Different simulations presenting various cortical bone thicknesses and implant designs are required to provide a better understanding of the biomechanics of zirconia implants.

  11. Mechanical behavior of three nickel-titanium rotary files: A comparison of numerical simulation with bending and torsion tests.

    PubMed

    de Arruda Santos, Leandro; López, Javier Bayod; de Las Casas, Estevam Barbosa; de Azevedo Bahia, Maria Guiomar; Buono, Vicente Tadeu Lopes

    2014-04-01

    To assess the flexibility and torsional stiffness of three nickel-titanium rotary instruments by finite element analysis and compare the numerical results with the experiment. Mtwo (VDW, Munich, Germany) and RaCe (FKG Dentaire, La-Chaux-de-Fonds, Switzerland) size 25, .06 taper (0.25-mm tip diameter, 0.06% conicity) and PTU F1 (Dentsply Maillefer, Ballaigues, Switzerland) instruments were selected for this study. Experimental tests to assess the flexibility and torsional stiffness of the files were performed according to specification ISO 3630-1. Geometric models for finite element analysis were obtained by micro-CT scanning. Boundary conditions for the numerical analysis were based on the specification ISO 3630-1. A good agreement between the simulation and the experiment moment-displacement curves was found for the three types of instruments studied. RaCe exhibited the highest flexibility and PTU presented the highest torsional stiffness. Maximum values of von Mises stress were found for the PTU F1 file (1185MPa) under bending, whereas the values of von Mises stress for the three instruments were quite similar under torsion. The stress patterns proved to be different in Mtwo under bending, according to the displacement orientation. The favorable agreement found between simulation and experiment for the three types of instruments studied confirmed the potential of the numerical method to assess the mechanical behavior of endodontic instruments. Thus, a methodology is established to predict the failure of the instruments under bending and torsion. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Biomechanical analysis of titanium fixation plates and screws in sagittal split ramus osteotomies.

    PubMed

    Atik, F; Atac, M S; Özkan, A; Kılınc, Y; Arslan, M

    2016-01-01

    The aim of the study was to evaluate the mechanical behavior of three different fixation methods used in the bilateral sagittal split ramus osteotomy. Three different three-dimensional finite element models were created, each corresponding to three different fixation methods. The mandibles were fixed with double straight 4-hole, square 4-hole, and 5-hole Y plates. 150 N incisal occlusal loads were simulated on the distal segments. ANSYS software ((v 10; ANSYS Inc., Canonsburg, PA) was used to calculate the Von Mises stresses on fixative appliances. The highest Von Mises stress values were found in Y plate. The lowest values were isolated in double straight plate group. It was concluded that the use of double 4-hole straight plates provided the sufficient stability on the osteotomy site when compared with the other rigid fixation methods used in this study.

  13. Distributed Communications Resource Management for Tracking and Surveillance Networks

    DTIC Science & Technology

    2005-08-01

    Principles of Economics , Ludwig von Mises Institute, Auburn, AL, 2004. 13. J. Wang, L. Li, S. H. Low and J. C. Doyle, “Cross-layer Optimization in TCP/IP Networks,” IEEE/ACM Trans. on Networking, 2005, to appear.

  14. Influence of cross-sectional design and dimension on mechanical behavior of nickel-titanium instruments under torsion and bending: a numerical analysis.

    PubMed

    Zhang, En-Wei; Cheung, Gary S P; Zheng, Yu-Feng

    2010-08-01

    The aim of this study was to examine the influence of the cross-sectional configuration and dimensions (size and taper) on the torsional and bending behavior of nickel-titanium rotary instruments, taking into account the nonlinear mechanical properties of material. Ten cross-sectional configurations, square, triangular, U-type, S-type (large and small), convex-triangle, and 4 proprietary ones (Mani NRT and RT2, Quantec, and Mtwo), were analyzed under torsion or bending by using a 3-dimensional finite element method. The von Mises stresses were correlated with the critical values for various phases of the nickel-titanium material. Different loading conditions led to unequal patterns of stress distribution. Increasing the applied torque or bending angle resulted in a rise in the corresponding stresses in the instrument. Favorable stress distribution without dangerous stress concentration was observed if the material was undergoing superelastic transformation at that applied load. The ultimate strength of the material was not exceeded when the instrument was bent up to a 50-degree curvature. On the other hand, when a torsional moment of greater than 1.0 N*mm was applied, the maximum stresses developed in some designs would exceed the ultimate strength of the material. Little variation in the von Mises stresses was observed for instruments of different nominal sizes and tapers on bending to similar extent. The cross-sectional design has a greater impact than taper or size of the instrument on the stresses developed in the instrument under either torsion or bending. Certain cross-sectional configurations are prone to fracture by excess torsional stresses. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Structural stability of posterior retainer design for resin-bonded prostheses: a 3D finite element study.

    PubMed

    Lin, Jie; Zheng, Zhiqiang; Shinya, Akikazu; Matinlinna, Jukka Pekka; Botelho, Michael George; Shinya, Akiyoshi

    2015-09-01

    The purpose of this in vitro study was to compare the stress distribution and natural frequency of different shape and thickness retainer designs for maxillary posterior resin-bonded prostheses using finite element (FE) method. A 3D FE model of a three unit posterior resin-bonded prosthesis analysis model was generated. Three different shaped retainer designs, viz. C-shaped (three axial surface wraparounds), D-shaped (three axial surface wraparounds with central groove) and O-shaped (360° wraparounds), and three different thicknesses, viz., 0.4, 0.8, and 1.2 mm, resin-bonded prostheses were used in this study. The resin-bonded prosthesis analysis model was imported into an FE analysis software (ANSYS 10.0, ANSYS, USA) and attribution of material properties. The nodes at the bottom surface of the roots were assigned fixed zero displacement in the three spatial dimensions. A simulated angle of 45° loading of a 100 N force was applied to the node of the pontic lingual cusp surface. The stress distributions and corresponding natural frequencies were analyzed and resolved. The C-shaped retainer for 0.4 mm thickness recorded the greatest von Mises stresses of 71.4 MPa for all three groups. C-shaped, D-shaped and O-shaped retainer presented natural frequencies 3,988, 7,754, and 10,494 Hz, respectively. D-shaped retainer and O-shaped retainer increased natural frequencies and structural rigidity over the traditional C-shaped retainer. The maximum von Mises stresses values of the remaining tooth and prosthesis decreased with greater retainer thickness. D-shaped retainer and O-shaped retainer increased natural frequencies and structural rigidity over the traditional C-shaped retainer.

  16. Finite element analysis of intramedullary nailing and double locking plate for treating extra-articular proximal tibial fractures.

    PubMed

    Chen, Fancheng; Huang, Xiaowei; Ya, Yingsun; Ma, Fenfen; Qian, Zhi; Shi, Jifei; Guo, Shuolei; Yu, Baoqing

    2018-01-16

    Proximal tibia fractures are one of the most familiar fractures. Surgical approaches are usually needed for anatomical reduction. However, no single treatment method has been widely established as the standard care. Our present study aims to compare the stress and stability of intramedullary nails (IMN) fixation and double locking plate (DLP) fixation in the treatment of extra-articular proximal tibial fractures. A three-dimensional (3D) finite element model of the extra-articular proximal tibial fracture, whose 2-cm bone gap began 7 cm from the tibial plateau articular surface, was created fixed by different fixation implants. The axial compressive load on an adult knee during single-limb stance was imitated by an axial force of 2500 N with a distribution of 60% to the medial compartment, while the distal end was fixed effectively. The equivalent von Mises stress and displacement of the model was used as the output measures for analysis. The maximal equivalent von Mises stress value of the system in the IMN model was 293.23 MPa, which was higher comparing against that in the DLP fixation model (147.04 MPa). And the mean stress of the model in the IMN model (9.25 MPa) was higher than that of the DLP fixation system in terms of equivalent von Mises stress (EVMS) (P < 0.0001). The maximal value of displacement (sum) in the IMN system was 8.82 mm, which was lower than that in the DLP fixation system (9.48 mm). This study demonstrated that the stability provided by the locking plate fixation system was superior to the intramedullary nails fixation system and served as an alternative fixation for the extra-articular proximal tibial fractures of young patients.

  17. Differences in the stress distribution in the distal femur between patellofemoral joint replacement and total knee replacement: a finite element study

    PubMed Central

    2012-01-01

    Background Patellofemoral joint replacement is a successful treatment option for isolated patellofemoral osteoarthritis. However, results of later conversion to total knee replacement may be compromised by periprosthetic bone loss. Previous clinical studies have demonstrated a decrease in distal femoral bone mineral density after patellofemoral joint replacement. It is unclear whether this is due to periprosthetic stress shielding. The main objective of the current study was to evaluate the stress shielding effect of prosthetic replacement with 2 different patellofemoral prosthetic designs and with a total knee prosthesis. Methods We developed a finite element model of an intact patellofemoral joint, and finite element models of patellofemoral joint replacement with a Journey PFJ prosthesis, a Richards II prosthesis, and a Genesis II total knee prosthesis. For each of these 4 finite element models, the average Von Mises stress in 2 clinically relevant regions of interest were evaluated during a simulated squatting movement until 120 degrees of flexion. Results During deep knee flexion, in the anterior region of interest, the average Von Mises stress with the Journey PFJ design was comparable to the physiological knee, while reduced by almost 25% for both the Richards II design and the Genesis II total knee joint replacement design. The average Von Mises stress in the supracondylar region of interest was similar for both patellofemoral prosthetic designs and the physiological model, with slightly lower stress for the Genesis II design. Conclusions Patellofemoral joint replacement results in periprosthetic stress-shielding, although to a smaller degree than in total knee replacement. Specific patellofemoral prosthetic design properties may result in differences in femoral stress shielding. PMID:22704638

  18. Characterization of phase properties and deformation in ferritic-austenitic duplex stainless steels by nanoindentation and finite element method

    DOE PAGES

    Schwarm, Samuel C.; Kolli, R. Prakash; Aydogan, Eda; ...

    2016-11-03

    The phase properties and deformation behavior of the δ–ferrite and γ–austenite phases of CF–3 and CF–8 cast duplex stainless steels were characterized by nanoindentation and microstructure-based finite element method (FEM) models. We evaluated the elastic modulus of each phase and the results indicate that the mean elastic modulus of the δ–ferrite phase is greater than that of the γ–austenite phase, and the mean nanoindentation hardness values of each phase are approximately the same. Furthermore, the elastic FEM model results illustrate that greater von Mises stresses are located within the δ–ferrite phase, while greater von Mises strains are located in themore » γ–austenite phase in response to elastic deformation. The elastic moduli calculated by FEM agree closely with those measured by tensile testing. Finally, the plastically deformed specimens exhibit an increase in misorientation, deformed grains, and subgrain structure formation as measured by electron backscatter diffraction (EBSD).« less

  19. Optimization of custom cementless stem using finite element analysis and elastic modulus distribution for reducing stress-shielding effect.

    PubMed

    Saravana Kumar, Gurunathan; George, Subin Philip

    2017-02-01

    This work proposes a methodology involving stiffness optimization for subject-specific cementless hip implant design based on finite element analysis for reducing stress-shielding effect. To assess the change in the stress-strain state of the femur and the resulting stress-shielding effect due to insertion of the implant, a finite element analysis of the resected femur with implant assembly is carried out for a clinically relevant loading condition. Selecting the von Mises stress as the criterion for discriminating regions for elastic modulus difference, a stiffness minimization method was employed by varying the elastic modulus distribution in custom implant stem. The stiffness minimization problem is formulated as material distribution problem without explicitly penalizing partial volume elements. This formulation enables designs that could be fabricated using additive manufacturing to make porous implant with varying levels of porosity. Stress-shielding effect, measured as difference between the von Mises stress in the intact and implanted femur, decreased as the elastic modulus distribution is optimized.

  20. Characterization of phase properties and deformation in ferritic-austenitic duplex stainless steels by nanoindentation and finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarm, Samuel C.; Kolli, R. Prakash; Aydogan, Eda

    The phase properties and deformation behavior of the δ–ferrite and γ–austenite phases of CF–3 and CF–8 cast duplex stainless steels were characterized by nanoindentation and microstructure-based finite element method (FEM) models. We evaluated the elastic modulus of each phase and the results indicate that the mean elastic modulus of the δ–ferrite phase is greater than that of the γ–austenite phase, and the mean nanoindentation hardness values of each phase are approximately the same. Furthermore, the elastic FEM model results illustrate that greater von Mises stresses are located within the δ–ferrite phase, while greater von Mises strains are located in themore » γ–austenite phase in response to elastic deformation. The elastic moduli calculated by FEM agree closely with those measured by tensile testing. Finally, the plastically deformed specimens exhibit an increase in misorientation, deformed grains, and subgrain structure formation as measured by electron backscatter diffraction (EBSD).« less

  1. Correlation between von Mises strain and material thinning in a hydroformed sample of Ti35A aerospace grade titanium

    NASA Astrophysics Data System (ADS)

    Bell, Colin; Jump, Ellen; Kerr, William; Corney, Jonathan; Zuelli, Nicola; Savings, David

    2017-10-01

    This paper presents the results of an experimental investigation of the strain measured on a sample of Ti35A (commercially pure) titanium that was formed past the point of failure in a hydroforming operation. The sample was etched prior to forming to allow for a strain map of the exterior to be created and examined by using a circle grid analysis (CGA) technique. The sample was scanned post forming with precise optical inspection to ascertain an accurate model of its geometry. This paper discusses the results of the analyses including the full geometric and surface strain measurements. This paper then compares material thinning properties to strain values and finds a linear relationship of approximately 3:1 between Von Mises strain and material thinning percentage throughout the sample. The slope of the line appears to correlate strongly with the material's Poisson's ratio and could have potential uses in process planning.

  2. The Extended Erlang-Truncated Exponential distribution: Properties and application to rainfall data.

    PubMed

    Okorie, I E; Akpanta, A C; Ohakwe, J; Chikezie, D C

    2017-06-01

    The Erlang-Truncated Exponential ETE distribution is modified and the new lifetime distribution is called the Extended Erlang-Truncated Exponential EETE distribution. Some statistical and reliability properties of the new distribution are given and the method of maximum likelihood estimate was proposed for estimating the model parameters. The usefulness and flexibility of the EETE distribution was illustrated with an uncensored data set and its fit was compared with that of the ETE and three other three-parameter distributions. Results based on the minimized log-likelihood ([Formula: see text]), Akaike information criterion (AIC), Bayesian information criterion (BIC) and the generalized Cramér-von Mises [Formula: see text] statistics shows that the EETE distribution provides a more reasonable fit than the one based on the other competing distributions.

  3. [Stress analysis of femoral stems in cementless total hip arthroplasty by two-dimensional finite element method using boundary friction layer].

    PubMed

    Oomori, H; Imura, S; Gesso, H

    1992-04-01

    To develop stem design achieving primary fixation of stems and effective load transfer to the femur, we studied stress analysis of stems in cementless total hip arthroplasty by two-dimensional finite element method using boundary friction layer in stem-bone interface. The results of analyses of stem-bone interface stresses and von Mises stresses at the cortical bones indicated that ideal stem design features would be as follows: 1) Sufficient length, with the distal end extending beyond the isthmus region. 2) Maximum possible width, to contact the cortical bones in the isthmus region. 3) No collars but a lateral shoulder at the proximal portion. 4) A distal tip, to contact the cortical bones at the distal portion.

  4. [Effect of muscle biofidelity on thoracic impact biomechanical response of a six-year-old child using finite element method].

    PubMed

    Cui, Shihai; Shan, Leilei; Li, Haiyan; Lu, Wenle; He, Lijuan; Ruan, Shijie

    2017-02-01

    Finite element(FE) model of thorax with high biofidelity is one of the most important methods to investigate thoracic injury mechanism because of the absence of pediatric cadaver experiments. Based on the validated thorax finite element model, the FE models with equivalent muscles and real geometric muscles were developed respectively, and the effect of muscle biofidelity on thoracic injury was analyzed with reconstructing pediatric cadaver thorax impact experiments. The simulation results showed that the thoracic impact force, the maximum displacement and the maximum von-Mises stress of FE models with equivalent muscles were slightly greater than those from FE models with real geometric muscles, and the maximum principal strains of heart and lung were a little lower. And the correlation coefficient between cadaver corridor and FE model with real muscles was also greater than that between cadaver corridor and FE model with equivalent muscles. As a conclusion, the FE models with real geometric muscles can accurately reflect the biomechanical response of thorax during the impact.

  5. Static, Dynamic, and Fatigue Analysis of the Mechanical System of Ultrasonic Scanner for Inservice Inspection of Research Reactors

    NASA Astrophysics Data System (ADS)

    Awwaluddin, Muhammad; Kristedjo, K.; Handono, Khairul; Ahmad, H.

    2018-02-01

    This analysis is conducted to determine the effects of static and dynamic loads of the structure of mechanical system of Ultrasonic Scanner i.e., arm, column, and connection systems for inservice inspection of research reactors. The analysis is performed using the finite element method with 520 N static load. The correction factor of dynamic loads used is the Gerber mean stress correction (stress life). The results of the analysis show that the value of maximum equivalent von Mises stress is 1.3698E8 Pa for static loading and value of the maximum equivalent alternating stress is 1.4758E7 Pa for dynamic loading. These values are below the upper limit allowed according to ASTM A240 standards i.e. 2.05E8 Pa. The result analysis of fatigue life cycle are at least 1E6 cycle, so it can be concluded that the structure is in the high life cycle category.

  6. An Assessment of the Axial and Radial Dilation of a DPIMS Tantalum Cartridge for Space Shuttle Flight Experiments

    NASA Technical Reports Server (NTRS)

    Raj, S.V.; Ghosn, L. J.

    1998-01-01

    Ground-based heat treatment tests are planned on an argon gas-filled tantalum cartridge developed as pan of a Diffusion Processes in Molten Semiconductors (DPIMS) experiment conducted on NASA's Space Shuttle. The possibility that the cartridge may creep during testing and touch the furnace walls is of real concern in this program. The present paper discusses the results of calculations performed to evaluate this possibility. Deformation mechanism maps were constructed using literature data in order to identify the creep mechanism dominant under the appropriate stresses and temperatures corresponding to the test conditions. These results showed that power-law creep was dominant when the grain size of the material exceeded 55 gm but Coble creep was the important mechanism below this value of grain size. Finite element analysis was used to analyze the heat treatment tWs assuming a furnace run away condition (which is a worst case scenario) using the appropriate creep parameters corresponding to grain sizes of 1 and 100 gm. Calculations were also conducted to simulate the effect of an initial 3 tilt of the cartridge assembly, the maximum possible tilt angle. The von Mises stress and su-ain distributions were calculated assuming that the cartridge was fixed at one end as it was heated from ambient temperature to 1823 K in 1.42 h, maintained at 1823 K for 9.5 h and then further heated to an over temperature condition of 2028 K in 0.3 h. The inelastic axial and radial displacements of the cartridge walls were evaluated by resolving the von Mises strain along the corresponding directions. These calculations reveal that the maximum axial and radial displacements are expected to be about 2.9 and 0.25 mm, respectively, for both fine and coarse-grained materials at 2028 K. It was determined that these displacements occur during heat-up to temperature and creep of the cartridge is likely to be relatively insignificant irrespective of grain size. Furthermore, with a 3' tilt of the cartridge, the deflection is increased by only 0.39 gm which is negligible. Since the gap between the furnace heating elements and the cartridge is about 7.5 mm and less than the maximum radial dilation of 0.25 mm at 2028 K, it is concluded that the cartridge is unlikely to touch the furnace walls during the experiments.

  7. Patient-specific Distraction Regimen to Avoid Growth-rod Failure.

    PubMed

    Agarwal, Aakash; Jayaswal, Arvind; Goel, Vijay K; Agarwal, Anand K

    2018-02-15

    A finite element study to establish the relationship between patient's curve flexibility (determined using curve correction under gravity) in juvenile idiopathic scoliosis and the required distraction frequency to avoid growth rod fracture, as a function of time. To perform a parametric analysis using a juvenile scoliotic spine model (single mid-thoracic curve with the apex at the eighth thoracic vertebra) and establish the relationship between curve flexibility (determined using curve correction under gravity) and the distraction interval that allows a higher factor of safety for the growth rods. Previous studies have shown that frequent distraction with smaller magnitude of distractions are less likely to result in rod failure. However there has not been any methodology or a chart provided to apply this knowledge on to the individual patients that undergo the treatment. This study aims to fill in that gap. The parametric study was performed by varying the material properties of the disc, hence altering the axial stiffness of the scoliotic spine model. The stresses on the rod were found to increase with increased axial stiffness of the spine, and this resulted in the increase of required optimal frequency to achieve a factor of safety of two for growth rods. A relationship between the percentage correction in Cobb's angle due to gravity alone, and the required distraction interval for limiting the maximum von Mises stress to 255 MPa on the growth rods was established. The distraction interval required to limit the stresses to the selected nominal value reduces with increase in stiffness of the spine. Furthermore, the appropriate distraction interval reduces for each model as the spine becomes stiffer with time (autofusion). This points to the fact the optimal distraction frequency is a time-dependent variable that must be achieved to keep the maximum von Mises stress under the specified factor of safety. The current study demonstrates the possibility of translating fundamental information from finite element modeling to the clinical arena, for mitigating the occurrence of growth rod fracture, that is, establishing a relationship between optimal distraction interval and curve flexibility (determined using curve correction under gravity). N/A.

  8. Finite element investigation of the effect of a bifid arch on loading of the vertebral isthmus.

    PubMed

    Quah, Conal; Yeoman, Mark S; Cizinauskas, Andrius; Cooper, Kevin C; Peirce, Nick S; McNally, Donal S; Boszczyk, Bronek M

    2014-04-01

    The biomechanical effect of a bifid arch as seen in spina bifida occulta and following a midline laminectomy is poorly understood. To test the hypothesis that fatigue failure limits will be exceeded in the case of a bifid arch, but not in the intact case, when the segment is subjected to complex loading corresponding to normal sporting activities. Finite element analysis. Finite element model of an intact L4-S1 human lumbar motion segment including ligaments was used. A section of the L5 vertebral arch and spinous process was removed to create the model with a midline defect. The models were loaded axially to 1 kN and then combined with axial rotation of 3°. Bilateral stresses, alternating stresses, and shear fatigue failure on both models were assessed and compared. Under 1 kN axial load, the von Mises stresses observed in midline defect case and in the intact case were very similar (differences <5 MPa) having a maximum at the ventral end of the isthmus that decreases monotonically to the dorsal end. However, under 1 kN axial load and rotation, the maximum von Mises stresses observed in the ipsilateral L5 isthmus in the midline defect case (31 MPa) was much higher than the intact case (24.2 MPa), indicating a lack of load sharing across the vertebral arch in the midline defect case. When assessing the equivalent alternating shear stress amplitude, this was found to be 22.6 MPa for the midline defect case and 13.6 MPa for the intact case. From this, it is estimated that shear fatigue failure will occur in less than 70,000 cycles, under repetitive axial load and rotation conditions in the midline defect case, whereas for the intact case, fatigue failure will occur only after more than 10 million cycles. A bifid arch predisposes the isthmus to early fatigue fracture by generating increased stresses across the inferior isthmus of the inferior articular process, specifically in combined axial rotation and anteroposterior shear. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Four lateral mass screw fixation techniques in lower cervical spine following laminectomy: a finite element analysis study of stress distribution.

    PubMed

    Song, Mingzhi; Zhang, Zhen; Lu, Ming; Zong, Junwei; Dong, Chao; Ma, Kai; Wang, Shouyu

    2014-08-09

    Lateral mass screw fixation (LSF) techniques have been widely used for reconstructing and stabilizing the cervical spine; however, complications may result depending on the choice of surgeon. There are only a few reports related to LSF applications, even though fracture fixation has become a severe complication. This study establishes the three-dimensional finite element model of the lower cervical spine, and compares the stress distribution of the four LSF techniques (Magerl, Roy-Camille, Anderson, and An), following laminectomy -- to explore the risks of rupture after fixation. CT scans were performed on a healthy adult female volunteer, and Digital imaging and communication in medicine (Dicom) data was obtained. Mimics 10.01, Geomagic Studio 12.0, Solidworks 2012, HyperMesh 10.1 and Abaqus 6.12 software programs were used to establish the intact model of the lower cervical spines (C3-C7), a postoperative model after laminectomy, and a reconstructive model after applying the LSF techniques. A compressive preload of 74 N combined with a pure moment of 1.8 Nm was applied to the intact and reconstructive model, simulating normal flexion, extension, lateral bending, and axial rotation. The stress distribution of the four LSF techniques was compared by analyzing the maximum von Mises stress. The three-dimensional finite element model of the intact C3-C7 vertebrae was successfully established. This model consists of 503,911 elements and 93,390 nodes. During flexion, extension, lateral bending, and axial rotation modes, the intact model's angular intersegmental range of motion was in good agreement with the results reported from the literature. The postoperative model after the three-segment laminectomy and the reconstructive model after applying the four LSF techniques were established based on the validated intact model. The stress distribution for the Magerl and Roy-Camille groups were more dispersive, and the maximum von Mises stress levels were lower than the other two groups in various conditions. The LSF techniques of Magerl and Roy-Camille are safer methods for stabilizing the lower cervical spine. Therefore, these methods potentially have a lower risk of fixation fracture.

  10. Four lateral mass screw fixation techniques in lower cervical spine following laminectomy: a finite element analysis study of stress distribution

    PubMed Central

    2014-01-01

    Background Lateral mass screw fixation (LSF) techniques have been widely used for reconstructing and stabilizing the cervical spine; however, complications may result depending on the choice of surgeon. There are only a few reports related to LSF applications, even though fracture fixation has become a severe complication. This study establishes the three-dimensional finite element model of the lower cervical spine, and compares the stress distribution of the four LSF techniques (Magerl, Roy-Camille, Anderson, and An), following laminectomy -- to explore the risks of rupture after fixation. Method CT scans were performed on a healthy adult female volunteer, and Digital imaging and communication in medicine (Dicom) data was obtained. Mimics 10.01, Geomagic Studio 12.0, Solidworks 2012, HyperMesh 10.1 and Abaqus 6.12 software programs were used to establish the intact model of the lower cervical spines (C3-C7), a postoperative model after laminectomy, and a reconstructive model after applying the LSF techniques. A compressive preload of 74 N combined with a pure moment of 1.8 Nm was applied to the intact and reconstructive model, simulating normal flexion, extension, lateral bending, and axial rotation. The stress distribution of the four LSF techniques was compared by analyzing the maximum von Mises stress. Result The three-dimensional finite element model of the intact C3-C7 vertebrae was successfully established. This model consists of 503,911 elements and 93,390 nodes. During flexion, extension, lateral bending, and axial rotation modes, the intact model’s angular intersegmental range of motion was in good agreement with the results reported from the literature. The postoperative model after the three-segment laminectomy and the reconstructive model after applying the four LSF techniques were established based on the validated intact model. The stress distribution for the Magerl and Roy-Camille groups were more dispersive, and the maximum von Mises stress levels were lower than the other two groups in various conditions. Conclusion The LSF techniques of Magerl and Roy-Camille are safer methods for stabilizing the lower cervical spine. Therefore, these methods potentially have a lower risk of fixation fracture. PMID:25106498

  11. 3D finite element analysis of changes in stress levels and distributions for an osseointegrated implant after vertical bone loss.

    PubMed

    Yoon, Kyung-Ho; Kim, Su-Gwan; Lee, Jeong-Hoon; Suh, Seung-Woo

    2011-10-01

    The effect of stress levels and distributions around the internal nonsubmerged type implants after vertical bone resorption was investigated in this study. An HSII implant was placed in 4 cylindrical alveolar bone models with differing degrees of thread exposures. The load applied to each implant was von Mises stress and principal stress, 250 N in axial direction and 30 degrees lateral pressure. The difference in the load between the bone and the connective portion of the implant was obtained using ANSYS analysis. Bone loss in the cervical area of the implant was more obvious under lateral pressure. When more threads were exposed, bone level decreased and the maximum load applied on the fixture increased. It was concluded that higher bone level has a biomechanical advantage with respect to stress concentration.

  12. Fillet Weld Stress Using Finite Element Methods

    NASA Technical Reports Server (NTRS)

    Lehnhoff, T. F.; Green, G. W.

    1985-01-01

    Average elastic Von Mises equivalent stresses were calculated along the throat of a single lap fillet weld. The average elastic stresses were compared to initial yield and to plastic instability conditions to modify conventional design formulas is presented. The factor is a linear function of the thicknesses of the parent plates attached by the fillet weld.

  13. A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis.

    PubMed

    Liang, Liang; Liu, Minliang; Martin, Caitlin; Sun, Wei

    2018-01-01

    Structural finite-element analysis (FEA) has been widely used to study the biomechanics of human tissues and organs, as well as tissue-medical device interactions, and treatment strategies. However, patient-specific FEA models usually require complex procedures to set up and long computing times to obtain final simulation results, preventing prompt feedback to clinicians in time-sensitive clinical applications. In this study, by using machine learning techniques, we developed a deep learning (DL) model to directly estimate the stress distributions of the aorta. The DL model was designed and trained to take the input of FEA and directly output the aortic wall stress distributions, bypassing the FEA calculation process. The trained DL model is capable of predicting the stress distributions with average errors of 0.492% and 0.891% in the Von Mises stress distribution and peak Von Mises stress, respectively. This study marks, to our knowledge, the first study that demonstrates the feasibility and great potential of using the DL technique as a fast and accurate surrogate of FEA for stress analysis. © 2018 The Author(s).

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Bo; Zhao, Hongwei, E-mail: hwzhao@jlu.edu.cn, E-mail: khl69@163.com; Zhao, Dan

    It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM), especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD) model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulationmore » is Embedded-Atom Method (EAM) potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.« less

  15. Hydrostatic Stress Effects in Metal Plasticity

    NASA Technical Reports Server (NTRS)

    Wilson, Christopher D.

    1999-01-01

    Since the 1940s, the theory of plasticity has assumed that hydrostatic stress does not affect the yield or postyield behavior of metals. This assumption is based on the early work of Bridgman. Bridgman found that hydrostatic pressure (compressive stress) does not affect yield behavior until a substantial amount of pressure (greater than 100 ksi) is present. The objective of this study was to determine the effect of hydrostatic tension on yield behavior. Two different specimen geometries were examined: an equal-arm bend specimen and a double edge notch specimen. The presence of a notch is sufficient to develop high enough hydrostatic tensile stresses to affect yield. The von Mises yield function, which does not have a hydrostatic component, and the Drucker-Prager yield function, which includes a hydrostatic component, were used in finite element analyses of the two specimen geometries. The analyses were compared to test data from IN 100 specimens. For both geometries, the analyses using the Drucker-Prager yield function more closely simulated the test data. The von Mises yield function lead to 5-10% overprediction of the force-displacement or force-strain response of the test specimens.

  16. Strength of orthotropic materials subjected to combined stresses

    Treesearch

    Charles B. Norris

    1962-01-01

    A theory of the strength of orthotropic materials subjected to combined stresses, based on the Henky-von Mises theory of energy due to change of shape, is presented. When this theory is applied to macroscopically isotropic materials, it yields the diagram currently used in design with metals. Equations relating the strength of orthotropic materials subjected to a...

  17. Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot

    PubMed Central

    Wang, Yan; Li, Zengyong; Wong, Duo Wai-Chi; Zhang, Ming

    2015-01-01

    Background/Methodology Ankle arthrodesis is one popular surgical treatment for ankle arthritis, chronic instability, and degenerative deformity. However, complications such as foot pain, joint arthritis, and bone fracture may cause patients to suffer other problems. Understanding the internal biomechanics of the foot is critical for assessing the effectiveness of ankle arthrodesis and provides a baseline for the surgical plan. This study aimed to understand the biomechanical effects of ankle arthrodesis on the entire foot and ankle using finite element analyses. A three-dimensional finite element model of the foot and ankle, involving 28 bones, 103 ligaments, the plantar fascia, major muscle groups, and encapsulated soft tissue, was developed and validated. The biomechanical performances of a normal foot and a foot with ankle arthrodesis were compared at three gait instants, first-peak, mid-stance, and second-peak. Principal Findings/Conclusions Changes in plantar pressure distribution, joint contact pressure and forces, von Mises stress on bone and foot deformation were predicted. Compared with those in the normal foot, the peak plantar pressure was increased and the center of pressure moved anteriorly in the foot with ankle arthrodesis. The talonavicular joint and joints of the first to third rays in the hind- and mid-foot bore the majority of the loading and sustained substantially increased loading after ankle arthrodesis. An average contact pressure of 2.14 MPa was predicted at the talonavicular joint after surgery and the maximum variation was shown to be 80% in joints of the first ray. The contact force and pressure of the subtalar joint decreased after surgery, indicating that arthritis at this joint was not necessarily a consequence of ankle arthrodesis but rather a progression of pre-existing degenerative changes. Von Mises stress in the second and third metatarsal bones at the second-peak instant increased to 52 MPa and 34 MPa, respectively, after surgery. These variations can provide indications for outcome assessment of ankle arthrodesis surgery. PMID:26222188

  18. Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot.

    PubMed

    Wang, Yan; Li, Zengyong; Wong, Duo Wai-Chi; Zhang, Ming

    2015-01-01

    Ankle arthrodesis is one popular surgical treatment for ankle arthritis, chronic instability, and degenerative deformity. However, complications such as foot pain, joint arthritis, and bone fracture may cause patients to suffer other problems. Understanding the internal biomechanics of the foot is critical for assessing the effectiveness of ankle arthrodesis and provides a baseline for the surgical plan. This study aimed to understand the biomechanical effects of ankle arthrodesis on the entire foot and ankle using finite element analyses. A three-dimensional finite element model of the foot and ankle, involving 28 bones, 103 ligaments, the plantar fascia, major muscle groups, and encapsulated soft tissue, was developed and validated. The biomechanical performances of a normal foot and a foot with ankle arthrodesis were compared at three gait instants, first-peak, mid-stance, and second-peak. Changes in plantar pressure distribution, joint contact pressure and forces, von Mises stress on bone and foot deformation were predicted. Compared with those in the normal foot, the peak plantar pressure was increased and the center of pressure moved anteriorly in the foot with ankle arthrodesis. The talonavicular joint and joints of the first to third rays in the hind- and mid-foot bore the majority of the loading and sustained substantially increased loading after ankle arthrodesis. An average contact pressure of 2.14 MPa was predicted at the talonavicular joint after surgery and the maximum variation was shown to be 80% in joints of the first ray. The contact force and pressure of the subtalar joint decreased after surgery, indicating that arthritis at this joint was not necessarily a consequence of ankle arthrodesis but rather a progression of pre-existing degenerative changes. Von Mises stress in the second and third metatarsal bones at the second-peak instant increased to 52 MPa and 34 MPa, respectively, after surgery. These variations can provide indications for outcome assessment of ankle arthrodesis surgery.

  19. The effect of cup outer sizes on the contact mechanics and cement fixation of cemented total hip replacements.

    PubMed

    Hua, Xijin; Li, Junyan; Wang, Ling; Wilcox, Ruth; Fisher, John; Jin, Zhongmin

    2015-10-01

    One important loosening mechanism of the cemented total hip arthroplasty is the mechanical overload at the bone-cement interface and consequent failure of the cement fixation. Clinical studies have revealed that the outer diameter of the acetabular component is a key factor in influencing aseptic loosening of the hip arthroplasty. The aim of the present study was to investigate the influence of the cup outer diameter on the contact mechanics and cement fixation of a cemented total hip replacement (THR) with different wear penetration depths and under different cup inclination angles using finite element (FE) method. A three-dimensional FE model was developed based on a typical Charnley hip prosthesis. Two acetabular cup designs with outer diameters of 40 and 43 mm were modelled and the effect of cup outer diameter, penetration depth and cup inclination angle on the contact mechanics and cement fixation stresses in the cemented THR were studied. The results showed that for all penetration depths and cup inclination angles considered, the contact mechanics in terms of peak von Mises stress in the acetabular cup and peak contact pressure at the bearing surface for the two cup designs were similar (within 5%). However, the peak von Mises stress, the peak maximum principal stress and peak shear stress in the cement mantle at the bone-cement interface for the 43 mm diameter cup design were predicted to be lower compared to those for the 40 mm diameter cup design. The differences were predicted to be 15-19%, 15-22% and 18-20% respectively for different cup penetration depths and inclination angles, which compares to the clinical difference of aseptic loosening incidence of about 20% between the two cup designs. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. The Effect of Framework Design on Stress Distribution in Implant-Supported FPDs: A 3-D FEM Study

    PubMed Central

    Eraslan, Oguz; Inan, Ozgur; Secilmis, Asli

    2010-01-01

    Objectives: The biomechanical behavior of the superstructure plays an important role in the functional longevity of dental implants. However, information about the influence of framework design on stresses transmitted to the implants and supporting tissues is limited. The purpose of this study was to evaluate the effects of framework designs on stress distribution at the supporting bone and supporting implants. Methods: In this study, the three-dimensional (3D) finite element stress analysis method was used. Three types of 3D mathematical models simulating three different framework designs for implant-supported 3-unit posterior fixed partial dentures were prepared with supporting structures. Convex (1), concave (2), and conventional (3) pontic framework designs were simulated. A 300-N static vertical occlusal load was applied on the node at the center of occlusal surface of the pontic to calculate the stress distributions. As a second condition, frameworks were directly loaded to evaluate the effect of the framework design clearly. The Solidworks/Cosmosworks structural analysis programs were used for finite element modeling/analysis. Results: The analysis of the von Mises stress values revealed that maximum stress concentrations were located at the loading areas for all models. The pontic side marginal edges of restorations and the necks of implants were other stress concentration regions. There was no clear difference among models when the restorations were loaded at occlusal surfaces. When the veneering porcelain was removed, and load was applied directly to the framework, there was a clear increase in stress concentration with a concave design on supporting implants and bone structure. Conclusions: The present study showed that the use of a concave design in the pontic frameworks of fixed partial dentures increases the von Mises stress levels on implant abutments and supporting bone structure. However, the veneering porcelain element reduces the effect of the framework and compensates for design weaknesses. PMID:20922156

  1. Stiffness of the endplate boundary layer and endplate surface topography are associated with brittleness of human whole vertebral bodies

    PubMed Central

    Nekkanty, Srikant; Yerramshetty, Janardhan; Kim, Do-Gyoon; Zauel, Roger; Johnson, Evan; Cody, Dianna D.; Yeni, Yener N.

    2013-01-01

    Stress magnitude and variability as estimated from large scale finite element (FE) analyses have been associated with compressive strength of human vertebral cancellous cores but these relationships have not been explored for whole vertebral bodies. In this study, the objectives were to investigate the relationship of FE-calculated stress distribution parameters with experimentally determined strength, stiffness, and displacement based ductility measures in human whole vertebral bodies, investigate the effect of endplate loading conditions on vertebral stiffness, strength, and ductility and test the hypothesis that endplate topography affects vertebral ductility and stress distributions. Eighteen vertebral bodies (T6-L3 levels; 4 female and 5 male cadavers, aged 40-98 years) were scanned using a flat panel CT system and followed with axial compression testing with Wood’s metal as filler material to maintain flat boundaries between load plates and specimens. FE models were constructed using reconstructed CT images and filler material was added digitally. Two different FE models with different filler material modulus simulating Wood’s metal and intervertebral disc (W-layer and D-layer models) were used. Element material modulus to cancellous bone was based on image gray value. Average, standard deviation, and coefficient of variation of von Mises stress in vertebral bone for W-layer and D-layer models and also the ratios of FE parameters from the two models (W/D) were calculated. Inferior and superior endplate surface topographical distribution parameters were calculated. Experimental stiffness, maximum load and work to fracture had the highest correlation with FE-calculated stiffness while experimental ductility measures had highest correlations with FE-calculated average von Mises stress and W-layer to D-layer stiffness ratio. Endplate topography of the vertebra was also associated with its structural ductility and the distribution parameter that best explained this association was kurtosis of inferior endplate topography. Our results indicate that endplate topography variations may provide insight into the mechanisms responsible for vertebral fractures. PMID:20633709

  2. Computational Approach to Identify Different Injuries by Firearms.

    PubMed

    Costa, Sarah Teixeira; Freire, Alexandre Rodrigues; Matoso, Rodrigo Ivo; Daruge Júnior, Eduardo; Rossi, Ana Cláudia; Prado, Felippe Bevilacqua

    2017-03-01

    Complications arise in the analysis of gunshot wounds to the maxillofacial region, when neither the projectile nor the gun is found at the crime scene. We simulated 5- and 15-cm firing distances at a human mandible to investigate the external morphology of entrance wounds based on fire range. The ammunition models, .40-caliber S&W, .380-caliber, and 9 × 19-mm Luger, were constructed with free-form NURBS surfaces. In a dynamic simulation, projectiles were fired against mandibular body 3D model at 5 and 15 cm. All entrance wounds presented oval aspect. Maximum diameter and von Mises stress values were 16.5 mm and 50.8 MPa, both for .40-caliber S&W fired at 5 cm. The maximum energy loss was 138.4 J for .40 S&W fired at 15 cm. In conclusion, the mandible was most affected by .40-caliber S&W and morphological differences were observable in holes caused by different incoming projectile calibers fired at different distances. © 2017 American Academy of Forensic Sciences.

  3. Finite Element Analysis of Single Wheat Mechanical Response to Wind and Rain Loads

    NASA Astrophysics Data System (ADS)

    Liang, Li; Guo, Yuming

    One variety of wheat in the breeding process was chosen to determine the wheat morphological traits and biomechanical properties. ANSYS was used to build the mechanical model of wheat to wind load and the dynamic response of wheat to wind load was simulated. The maximum Von Mises stress is obtained by the powerful calculation function of ANSYS. And the changing stress and displacement of each node and finite element in the process of simulation can be output through displacement nephogram and stress nephogram. The load support capability can be evaluated and to predict the wheat lodging. It is concluded that computer simulation technology has unique advantages such as convenient and efficient in simulating mechanical response of wheat stalk under wind and rain load. Especially it is possible to apply various load types on model and the deformation process can be observed simultaneously.

  4. Stress distribution of various designs of prostheses on short implants or standard implants in posterior maxilla: a three dimensional finite element analysis

    PubMed Central

    JOMJUNYONG, K.; RUNGSIYAKULL, P.; RUNGSIYAKULL, C.; AUNMEUNGTONG, W.; CHANTARAMUNGKORN, M.; KHONGKHUNTHIAN, P.

    2017-01-01

    SUMMARY Introduction. Although many previous studies have reported on the high success rate of short dental implants, prosthetic design still plays an important role in the long-term implant treatment results. This study aims to evaluate stress distribution characteristics involved with various prosthetic designs on standard implants or short implants in the posterior maxilla. Materials and methods. Six finite element models were simulated representing the missing first and second maxillary molars. A standard implant (PW+ implant: 5.0×10 mm) and a short implant (PW+ implant: 5.0×6.0 mm) were applied under the various prosthetic conditions. The peri-implant maximum bone stress (V on mises stress) was evaluated when 200 N 30° oblique load was applied. A type III bone was approximated and complete osseous integration was assumed. Results. Maximum Von mises stress was numerically located at the cortical bone around the implant neck in all models. In every standard implant model shows better stress distribution. Stress values and concentration area decreased in the cortical and cancellous bone when implants were splinted in both the standard and short implant models. With regard to the non-replacing second molar models found that the area of stress at the cortical bone around the first molar implant to be more intensive. Moreover, in the non-replacing second molar models, the stress also spread to the second pre-molar in both the standard and short implant models. Conclusions. The length of the implant and prosthetics designs both affect the stress value and distribution of stress to the cortical and cancellous bones around the implant. PMID:29682254

  5. Containing Revolutionary Islam: Reassessing the Problem and the Approach

    DTIC Science & Technology

    2017-03-01

    2011), xx. 83 Russ Rodgers, Fundamentals of Islamic Asymmetric Warfare: A Documentary Analysis of the Principles of Muhammad (Lewiston, NY: Edwin...have not yet effectively coalesced or managed to spark the greater revolution they seek. They remain fragmented, choosing divergent activities in...Libertarian Rebuttal. Auburn, AL: Ludwig von Mises Institute, 2015. Rodgers, Russ. Fundamentals of Islamic Asymmetric Warfare: A Documentary Analysis

  6. New criteria for isotropic and textured metals

    NASA Astrophysics Data System (ADS)

    Cazacu, Oana

    2018-05-01

    In this paper a isotropic criterion expressed in terms of both invariants of the stress deviator, J2 and J3 is proposed. This criterion involves a unique parameter, α, which depends only on the ratio between the yield stresses in uniaxial tension and pure shear. If this parameter is zero, the von Mises yield criterion is recovered; if a is positive the yield surface is interior to the von Mises yield surface whereas when a is negative, the new yield surface is exterior to it. Comparison with polycrystalline calculations using Taylor-Bishop-Hill model [1] for randomly oriented face-centered (FCC) polycrystalline metallic materials show that this new criterion captures well the numerical yield points. Furthermore, the criterion reproduces well yielding under combined tension-shear loadings for a variety of isotropic materials. An extension of this isotropic yield criterion such as to account for orthotropy in yielding is developed using the generalized invariants approach of Cazacu and Barlat [2]. This new orthotropic criterion is general and applicable to three-dimensional stress states. The procedure for the identification of the material parameters is outlined. Illustration of the predictive capabilities of the new orthotropic is demonstrated through comparison between the model predictions and data on aluminum sheet samples.

  7. The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics.

    PubMed

    Ene, Florentina; Delassus, Patrick; Morris, Liam

    2014-08-01

    The variation in computational assumptions for analysing abdominal aortic aneurysm haemodynamics can influence the desired output results and computational cost. Such assumptions for abdominal aortic aneurysm modelling include static/transient pressures, steady/transient flows and rigid/compliant walls. Six computational methods and these various assumptions were simulated and compared within a realistic abdominal aortic aneurysm model with and without intraluminal thrombus. A full transient fluid-structure interaction was required to analyse the flow patterns within the compliant abdominal aortic aneurysms models. Rigid wall computational fluid dynamics overestimates the velocity magnitude by as much as 40%-65% and the wall shear stress by 30%-50%. These differences were attributed to the deforming walls which reduced the outlet volumetric flow rate for the transient fluid-structure interaction during the majority of the systolic phase. Static finite element analysis accurately approximates the deformations and von Mises stresses when compared with transient fluid-structure interaction. Simplifying the modelling complexity reduces the computational cost significantly. In conclusion, the deformation and von Mises stress can be approximately found by static finite element analysis, while for compliant models a full transient fluid-structure interaction analysis is required for acquiring the fluid flow phenomenon. © IMechE 2014.

  8. Tube Bulge Process : Theoretical Analysis and Finite Element Simulations

    NASA Astrophysics Data System (ADS)

    Velasco, Raphael; Boudeau, Nathalie

    2007-05-01

    This paper is focused on the determination of mechanics characteristics for tubular materials, using tube bulge process. A comparative study is made between two different models: theoretical model and finite element analysis. The theoretical model is completely developed, based first on a geometrical analysis of the tube profile during bulging, which is assumed to strain in arc of circles. Strain and stress analysis complete the theoretical model, which allows to evaluate tube thickness and state of stress, at any point of the free bulge region. Free bulging of a 304L stainless steel is simulated using Ls-Dyna 970. To validate FE simulations approach, a comparison between theoretical and finite elements models is led on several parameters such as: thickness variation at the free bulge region pole with bulge height, tube thickness variation with z axial coordinate, and von Mises stress variation with plastic strain. Finally, the influence of geometrical parameters deviations on flow stress curve is observed using analytical model: deviations of the tube outer diameter, its initial thickness and the bulge height measurement are taken into account to obtain a resulting error on plastic strain and von Mises stress.

  9. A comparison of head dynamic response and brain tissue stress and strain using accident reconstructions for concussion, concussion with persistent postconcussive symptoms, and subdural hematoma.

    PubMed

    Oeur, R Anna; Karton, Clara; Post, Andrew; Rousseau, Philippe; Hoshizaki, T Blaine; Marshall, Shawn; Brien, Susan E; Smith, Aynsley; Cusimano, Michael D; Gilchrist, Michael D

    2015-08-01

    Concussions typically resolve within several days, but in a few cases the symptoms last for a month or longer and are termed persistent postconcussive symptoms (PPCS). These persisting symptoms may also be associated with more serious brain trauma similar to subdural hematoma (SDH). The objective of this study was to investigate the head dynamic and brain tissue responses of injury reconstructions resulting in concussion, PPCS, and SDH. Reconstruction cases were obtained from sports medicine clinics and hospitals. All subjects received a direct blow to the head resulting in symptoms. Those symptoms that resolved in 9 days or fewer were defined as concussions (n = 3). Those with symptoms lasting longer than 18 months were defined as PPCS (n = 3), and 3 patients presented with SDHs (n = 3). A Hybrid III headform was used in reconstruction to obtain linear and rotational accelerations of the head. These dynamic response data were then input into the University College Dublin Brain Trauma Model to calculate maximum principal strain and von Mises stress. A Kruskal-Wallis test followed by Tukey post hoc tests were used to compare head dynamic and brain tissue responses between injury groups. Statistical significance was set at p < 0.05. A significant difference was identified for peak resultant linear and rotational acceleration between injury groups. Post hoc analyses revealed the SDH group had higher linear and rotational acceleration responses (316 g and 23,181 rad/sec(2), respectively) than the concussion group (149 g and 8111 rad/sec(2), respectively; p < 0.05). No significant differences were found between groups for either brain tissue measures of maximum principal strain or von Mises stress. The reconstruction of accidents resulting in a concussion with transient symptoms (low severity) and SDHs revealed a positive relationship between an increase in head dynamic response and the risk for more serious brain injury. This type of relationship was not found for brain tissue stress and strain results derived by finite element analysis. Future research should be undertaken using a larger sample size to confirm these initial findings. Understanding the relationship between the head dynamic and brain tissue response and the nature of the injury provides important information for developing strategies for injury prevention.

  10. Cyclic axial-torsional deformation behavior of a cobalt-base superalloy

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-01-01

    Multiaxial loading, especially at elevated temperature, can cause the inelastic response of a material to differ significantly from that predicted by simple flow rules, i.e., von Mises or Tresca. To quantify some of these differences, the cyclic high-temperature, deformation behavior of a wrought cobalt-based superalloy, Haynes 188, is investigated under combined axial and torsional loads. Haynes 188 is currently used in many aerospace gas turbine and rocket engine applications, e.g., the combustor liner for the T800 turboshaft engine for the RAH-66 Comanche helicopter and the liquid oxygen posts in the main injector of the space shuttle main engine. The deformation behavior of this material is assessed through the examination of hysteresis loops generated from a biaxial fatigue test program. A high-temperature axial, torsional, and combined axial-torsional fatigue data base has been generated on Haynes 188 at 760 C. Cyclic loading tests have been conducted on uniform gauge section tubular specimens in a servohydraulic axial-torsional test rig. Test control and data acquisition were accomplished with a minicomputer. In this paper, the cyclic hardening characteristics and typical hysteresis loops in the axial stress versus axial strain, shear stress versus engineering shear strain, axial strain versus engineering shear strain, and axial stress versus shear stress spaces are presented for cyclic, in-phase and out-of-phase, axial torsional tests. For in-phase tests three different values of the proportionality constant, lambda (ratio of engineering shear strain amplitude to axial strain amplitude), are examined, viz., 0.86, 1.73, and 3.46. In the out-of-phase tests, three different values of the phase angle, phi (between the axial and engineering shear strain waveforms), are studied, viz., 30, 60, and 90 deg with lambda = 1.73. The cyclic hardening behaviors of all the tests conducted on Haynes 188 at 760 C are evaluated using the von Mises equivalent stress-strain and the maximum shear stress-maximum engineering shear strain (Tresca) curves. Comparisons are also made between the hardening behaviors of cyclic axial, torsional, and combined in-phase and out-of-phase axial-torsional fatigue tests. These comparisons are accomplished through simple Ramberg-Osgood type stress-strain functions for cyclic, axial stress-strain and shear stress-engineering shear strain curves.

  11. An Affine Invariant Bivariate Version of the Sign Test.

    DTIC Science & Technology

    1987-06-01

    words: affine invariance, bivariate quantile, bivariate symmetry, model,. generalized median, influence function , permutation test, normal efficiency...calculate a bivariate version of the influence function , and the resulting form is bounded, as is the case for the univartate sign test, and shows the...terms of a blvariate analogue of IHmpel’s (1974) influence function . The latter, though usually defined as a von-Mises derivative of certain

  12. Stress and strain analysis from dynamic loads of mechanical hand using finite element method

    NASA Astrophysics Data System (ADS)

    Hasanuddin, Iskandar; Husaini; Syahril Anwar, M.; Yudha, B. Z. Sandy; Akhyar, Hasan

    2018-05-01

    This research discusses the distribution of stress and strain due to the dynamic loads of mechanical hand. The stress and strain that occur on mechanical hand are the main concern for comparing the value of finite element analysis (FEA) and calculating for its material properties. The stress and strain analysis are done with a loading condition. The given loading condition is dynamic. The loading input condition in the simulation of using hydraulic hand dynamometer is from the grip strength measurement of ten samples. The form of the given loading to the mechanical hand is the increment value with a maximum of 708 N/m2 within 1 minute. The amount of maximum stress (von Mises) simulation is 1.731 x 105 Pa, and the amount of maximum strain is 7.441 x 10-7. The amount of maximum reaction force is 5.864 x 10-2 N, while the amount of maximum displacement that occurs on the distal part is 1.223 x 10 m. Based on the analysis, the maximum stress and strain were found both to occur at the extension part. The result of this study has shown that the stress and strain still occur far below from the yield strength and the shear strength from the material AISI 1010. It can be concluded that the mechanical hand is durable for the given loading and can hold an object with a minimum diameter of 45 mm.

  13. Finite element method (FEM) analysis of the force systems produced by asymmetric inner headgear bows.

    PubMed

    Geramy, Allahyar; Kizilova, Natalya; Terekhov, Leonid

    2011-11-01

    Extra-oral traction appliances were introduced more than a century ago and continue to be used to produce orthopaedic and/or dental changes in the maxilla. While force systems produced by asymmetric outer bows have been studied extensively, the force systems produced by asymmetric inner bows have been overlooked. To analyse the forces acting on the maxillary first molars: when the size of one bayonet bend is increased; when the point of application of the distalising force on the inner bow is moved to one side; when one molar is displaced palatally. Four FEM models of cervical headgear attached to maxillary first molars were designed in SolidWorks 2010 and transferred to an ANSYS Workbench Ver. 12.1. Model 1, each molar was 23 mm from the midpalatal line and the inner bow was symmetrical; Model 2, the left molar was displaced 4 mm towards the midpalatal line and the inner bow was symmetrical; Model 3, the molars were equidistant (23 mm) from the midpalatal line, but the left molar was engaged by a 2 mm larger bayonet bend; Model 4, the molars were equidistant (23 mm) from the midpalatal line but the join between the inner and outer bows was displaced 2 mm towards the left molar. In all FEM models, a 2N force was applied to the inner bow at the join between inner and outer bows and the energy transmitted to the teeth and the von Mises stresses on the molar PDLs were assessed. There were marked differences in the strain energy on the teeth and the von Mises stresses on their PDLs. A 14 to 20 per cent increase in energy and force was produced on the tooth closer to the symmetric plane of the headgear. In addition, the increase in energy produced a 30 to 62 per cent increase in the von Mises stresses within the PDLs. Small asymmetries in molar position, the size of a bayonet bend and the point of application of a force on an inner bow resulted in asymmetrical forces on the molars. These forces were higher on the molar closer to the symmetric plane of the headgear.

  14. Numerical analysis of multi-level versus short instrumentation for the treatment of thoracolumbar fractures.

    PubMed

    Hübner, André Rafael; Gasparin, Daniel; de Meira Junior, Agenor Dias; Israel, Charles Leonardo; Dambrós, Jean Marcel; Ribeiro, Marcelo; de Freitas Spinelli, Leandro

    2015-07-01

    The research analyses the strength of metallic implants in posterior spinal instrumentation for the treatment of thoracolumbar fractures, considering extended and short fixation techniques on the immediate post-surgical load. Considering that short fixation may bring the advantage of a less invasive surgical procedure to the patient and may also result in lower costs, this evaluation becomes necessary. Three-dimensional modelling of the thoracolumbar spine was initially performed. CT images were captured and converted for analysis with the ANSYS program. Both treatment techniques were analysed for stresses, and strains generated in the immediate postoperative period, when the fracture is still not healed. The maximum stress obtained for long fixation by the theory of Von Mises was 230 MPa, and it was located in the rod area next to the L2 vertebra. The maximum stress obtained for short fixation was 274.24 MPa, and it was located in the pedicle screw on the T12 vertebra. There were no significant differences between the two techniques, since the observed stresses are well below the flow stress of the material, ensuring good safety factor (ranging from 3.5 to 4.1).

  15. Joint modelling of annual maximum drought severity and corresponding duration

    NASA Astrophysics Data System (ADS)

    Tosunoglu, Fatih; Kisi, Ozgur

    2016-12-01

    In recent years, the joint distribution properties of drought characteristics (e.g. severity, duration and intensity) have been widely evaluated using copulas. However, history of copulas in modelling drought characteristics obtained from streamflow data is still short, especially in semi-arid regions, such as Turkey. In this study, unlike previous studies, drought events are characterized by annual maximum severity (AMS) and corresponding duration (CD) which are extracted from daily streamflow of the seven gauge stations located in Çoruh Basin, Turkey. On evaluation of the various univariate distributions, the Exponential, Weibull and Logistic distributions are identified as marginal distributions for the AMS and CD series. Archimedean copulas, namely Ali-Mikhail-Haq, Clayton, Frank and Gumbel-Hougaard, are then employed to model joint distribution of the AMS and CD series. With respect to the Anderson Darling and Cramér-von Mises statistical tests and the tail dependence assessment, Gumbel-Hougaard copula is identified as the most suitable model for joint modelling of the AMS and CD series at each station. Furthermore, the developed Gumbel-Hougaard copulas are used to derive the conditional and joint return periods of the AMS and CD series which can be useful for designing and management of reservoirs in the basin.

  16. Global Well-posedness of the Spatially Homogeneous Kolmogorov-Vicsek Model as a Gradient Flow

    NASA Astrophysics Data System (ADS)

    Figalli, Alessio; Kang, Moon-Jin; Morales, Javier

    2018-03-01

    We consider the so-called spatially homogenous Kolmogorov-Vicsek model, a non-linear Fokker-Planck equation of self-driven stochastic particles with orientation interaction under the space-homogeneity. We prove the global existence and uniqueness of weak solutions to the equation. We also show that weak solutions exponentially converge to a steady state, which has the form of the Fisher-von Mises distribution.

  17. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    NASA Astrophysics Data System (ADS)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-03-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  18. Effects of Solder Temperature on Pin Through-Hole during Wave Soldering: Thermal-Fluid Structure Interaction Analysis

    PubMed Central

    Abdul Aziz, M. S.; Abdullah, M. Z.; Khor, C. Y.

    2014-01-01

    An efficient simulation technique was proposed to examine the thermal-fluid structure interaction in the effects of solder temperature on pin through-hole during wave soldering. This study investigated the capillary flow behavior as well as the displacement, temperature distribution, and von Mises stress of a pin passed through a solder material. A single pin through-hole connector mounted on a printed circuit board (PCB) was simulated using a 3D model solved by FLUENT. The ABAQUS solver was employed to analyze the pin structure at solder temperatures of 456.15 K (183°C) < T < 643.15 K (370°C). Both solvers were coupled by the real time coupling software and mesh-based parallel code coupling interface during analysis. In addition, an experiment was conducted to measure the temperature difference (ΔT) between the top and the bottom of the pin. Analysis results showed that an increase in temperature increased the structural displacement and the von Mises stress. Filling time exhibited a quadratic relationship to the increment of temperature. The deformation of pin showed a linear correlation to the temperature. The ΔT obtained from the simulation and the experimental method were validated. This study elucidates and clearly illustrates wave soldering for engineers in the PCB assembly industry. PMID:25225638

  19. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    NASA Astrophysics Data System (ADS)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-02-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  20. Geometry reconstruction method for patient-specific finite element models for the assessment of tibia fracture risk in osteogenesis imperfecta.

    PubMed

    Caouette, Christiane; Ikin, Nicole; Villemure, Isabelle; Arnoux, Pierre-Jean; Rauch, Frank; Aubin, Carl-Éric

    2017-04-01

    Lower limb deformation in children with osteogenesis imperfecta (OI) impairs ambulation and may lead to fracture. Corrective surgery is based on empirical assessment criteria. The objective was to develop a reconstruction method of the tibia for OI patients that could be used as input of a comprehensive finite element model to assess fracture risks. Data were obtained from three children with OI and tibia deformities. Four pQCT scans were registered to biplanar radiographs, and a template mesh was deformed to fit the bone outline. Cortical bone thickness was computed. Sensitivity of the model to missing slices of pQCT was assessed by calculating maximal von Mises stress for a vertical hopping load case. Sensitivity of the model to ±5 % of cortical thickness measurements was assessed by calculating loads at fracture. Difference between the mesh contour and bone outline on the radiographs was below 1 mm. Removal of one pQCT slice increased maximal von Mises stress by up to 10 %. Simulated ±5 % variation of cortical bone thickness leads to variations of up to 4.1 % on predicted fracture loads. Using clinically available tibia imaging from children with OI, the developed reconstruction method allowed the building of patient-specific finite element models.

  1. Effects of solder temperature on pin through-hole during wave soldering: thermal-fluid structure interaction analysis.

    PubMed

    Aziz, M S Abdul; Abdullah, M Z; Khor, C Y

    2014-01-01

    An efficient simulation technique was proposed to examine the thermal-fluid structure interaction in the effects of solder temperature on pin through-hole during wave soldering. This study investigated the capillary flow behavior as well as the displacement, temperature distribution, and von Mises stress of a pin passed through a solder material. A single pin through-hole connector mounted on a printed circuit board (PCB) was simulated using a 3D model solved by FLUENT. The ABAQUS solver was employed to analyze the pin structure at solder temperatures of 456.15 K (183(°)C) < T < 643.15 K (370(°)C). Both solvers were coupled by the real time coupling software and mesh-based parallel code coupling interface during analysis. In addition, an experiment was conducted to measure the temperature difference (ΔT) between the top and the bottom of the pin. Analysis results showed that an increase in temperature increased the structural displacement and the von Mises stress. Filling time exhibited a quadratic relationship to the increment of temperature. The deformation of pin showed a linear correlation to the temperature. The ΔT obtained from the simulation and the experimental method were validated. This study elucidates and clearly illustrates wave soldering for engineers in the PCB assembly industry.

  2. Finite element stress analysis of stainless steel crowns.

    PubMed

    Prabhakar, Attiguppe R; Yavagal, Chandrashekar M; Chakraborty, Amrita; Sugandhan, S

    2015-01-01

    Though stainless steel crowns (SSCs) have often been stated as the best restorative modality, there are limited studies demonstrating its efficacy in restoring the functional integrity of the primary dentition. Hence has arisen, the necessity to establish the supremacy of SSCs. Evaluation of the efficacy of SSC to with stand compressive (0°), shearing (90°), and torsional (45°) stress when used as a restorative material. The study design employed four finite element models, each with differing amounts of tooth structure, which were exported to ANSYS software and subjected to an average simulated bite force of 245N. Four maxillary deciduous primary molars restored with SSCs (3M ESPE) were subjected to spiral computed tomography (CT) in order to obtain three-dimensional (3D) images, which were then converted into finite element models. They were each subjected to forces along the long axis of the tooth and at 45°and 90°. The maximal equivalent von Mises stress was demonstrated in the SSCs of all the models with only a minimal amount observed in the underlying dentine. In all situations, the maximal equivalent von Mises stress was well below the ultimate tensile strength values of stainless steel and dentine. Even at maximal physiologic masticatory force levels, a grossly destructed tooth restored with SSC is able to resist deformation.

  3. The Seasonality of Acute Attack of Primary Angle-Closure Glaucoma in Beijing, China.

    PubMed

    Zhu, Jingyuan; Xu, Yang; Wang, Hongyuan; Liu, Dongjing; Zhu, Jingbo; Wu, Huijuan

    2018-03-05

    In this study, the seasonality of acute attack of primary angle-closure glaucoma (PACG) was analysed. This retrospective case series included 283 patients (200 women, 83 men; mean age, 68.2 ± 10.3 years; range, 37-96 years) with acute attack of PACG from a university-based clinic over 4 years. Patients' age and sex, and the date and season of onset of PACG attack, were analysed. Descriptive analysis and von Mises distribution were used for statistical analysis. The highest incidence of acute attack of PACG was observed in those aged 60-69 years (34.6%). Descriptive analysis showed that the incidence was greater in June and July for men, November for women, and November for the entire sample. An angular plot (using von Mises distribution) of the individual dates of onset revealed the estimated peak onset on September 11, November 8, and October 28 for men, women, and both, respectively. Integration of the results from the two analyses revealed the incidence to be higher in the summer and winter for men, and in the winter for women and for the entire sample. More females than males were affected. Monthly and seasonal variations in onset were observed, which might be related to weather changes.

  4. Structural optimization of an alternate design for the Space Shuttle solid rocket booster field joint

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.; Rogers, James L., Jr.; Chang, Kwan J.

    1987-01-01

    A structural optimization procedure is used to determine the shape of an alternate design for the Shuttle's solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in diameter and 135 studs of 1 3/16 in diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonlinear displacement analysis. The minimum weight design has 135 studs of 1 3/16 in diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design.

  5. The dynamic natures of implant loading.

    PubMed

    Wang, Rui-Feng; Kang, Byungsik; Lang, Lisa A; Razzoog, Michael E

    2009-06-01

    A fundamental problem in fully understanding the dynamic nature of implant loading is the confusion that exists regarding the torque load delivered to the implant complex, the initial force transformation/stress/strain developed within the system during the implant complex assembly, and how the clamping forces at the interfaces and the preload stress impact the implant prior to any external loading. The purpose of this study was to create an accurately dimensioned finite element model with spiral threads and threaded bores included in the implant complex, positioned in a bone model, and to determine the magnitude and distribution of the force transformation/stress/strain patterns developed in the modeled implant system and bone and, thus, provide the foundational data for the study of the dynamic loading of dental implants prior to any external loading. An implant (Brånemark Mark III), abutment (CeraOne), abutment screw (Unigrip), and the bone surrounding the implant were modeled using HyperMesh software. The threaded interfaces between screw/implant and implant/bone were designed as a spiral thread helix assigned with specific coefficient of friction values. Assembly simulation using ABAQUS and LS-DYNA was accomplished by applying a 32-Ncm horizontal torque load on the abutment screw (Step 1), then decreasing the torque load to 0 Ncm to simulate the wrench removal (Step 2). The postscript data were collected and reviewed by HyperMesh. A regression analysis was used to depict the relationships between the torque load and the mechanical parameters. During the 32-Ncm tightening sequence, the abutment screw elongated 13.3 mum. The tightening torque generated a 554-N clamping force at the abutment/implant interface and a 522-N preload. The von Mises stress values were 248 MPa in the abutment at the abutment-implant interface, 765 MPa at the top of the screw shaft, 694 MPa at the bottom of the screw shaft, 1365 MPa in the top screw thread, and 21 MPa in the bone at the top of the implant-bone interface. This study also identified various characteristic isosurface stress patterns. The maximum stress magnitude to complete the von Mises stress joint pattern in the present model was 107 MPa during screw tightening, and was reduced to 104 MPa with removal of the wrench. Various specific stress patterns were identified within all elements of the implant complex during the assembly simulation. During the torque moment application, the abutment screw was elongated, and every 1.0-mum elongation of the screw was equivalent to a 47.9-N increase of the preload in the implant complex. The ideal index to determine the preload amount was the contact force at the interface between the screw threads and the threaded screw bore. The isosurface mode identified various characteristic stress patterns developed within the implant complex at the various interfaces during the assembly simulation. These patterns are the (1) spiral and ying-yang pattern of the XY stress, (2) spring, cap, clamping, and preload pattern of the ZZ stress, and (3) bone holding and joint pattern of the von Mises stress.

  6. Biomechanical evaluation of implant-supported prosthesis with various tilting implant angles and bone types in atrophic maxilla: A finite element study.

    PubMed

    Gümrükçü, Zeynep; Korkmaz, Yavuz Tolga; Korkmaz, Fatih Mehmet

    2017-07-01

    The purpose of this study is to evaluate and compare bone stress that occurs as a result of using vertical implants with simultaneous sinus augmentation with bone stress generated from oblique implants without sinus augmentation in atrophic maxilla. Six, three-dimensional (3D) finite element (FE) models of atrophic maxilla were generated with SolidWorks software. The maxilla models were varied for two different bone types. Models 2a, 2b and 2c represent maxilla models with D2 bone type. Models 3a, 3b and 3c represent maxilla models with D3 bone type. Five implants were embedded in each model with different configurations for vertical implant insertion with sinus augmentation: Model 2a/Model 3a, 30° tilted insertion; Model 2b/Model 3b and 45° tilted insertion; Model 2c/Model 3c. A 150 N load was applied obliquely on the hybrid prosthesis. The maximum von Mises stress values were comparatively evaluated using color scales. The von Mises stress values predicted by the FE models were higher for all D3 bone models in both cortical and cancellous bone. For the vertical implant models, lower stress values were found in cortical bone. Tilting of the distal implants by 30° increased the stress in the cortical layer compared to vertical implant models. Tilting of the distal implant by 45° decreased the stress in the cortical bone compared to the 30° models, but higher stress values were detected in the 45° models compared to the vertical implant models. Augmentation should be the first treatment option in atrophic maxilla in terms of biomechanics. Tilted posterior implants can create higher stress values than vertical posterior implants. During tilting implant planning, the use of a 45° tilted implant results in better biomechanical performance in peri-implant bone than 30° tilted implant due to the decrease in cantilever length. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Shaped Charge Jet Penetration of Discontinuous Media

    DTIC Science & Technology

    1977-07-01

    operational at the Ballistic1Research Laboratory. These codes are OIL, 1 TOIL, 2 DORF, 3 and HELP,4 ,5 which are Eulerian formulated, and HEMP ,6 which...ELastic Plastic ) is a FORTRAN code developed by Systems, Science and Software, Inc. It evolved from three major hydrodynamic codes previously developed...introduced into the treatment of moving surfaces. The HELP code, using the von Mises yield condition, treats materials as being elastic- plastic . The input for

  8. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions

    PubMed Central

    Hua, Xijin; Li, Junyan; Wang, Ling; Jin, Zhongmin; Wilcox, Ruth; Fisher, John

    2014-01-01

    Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR. PMID:25218504

  9. University Engineering Design Challenge

    DTIC Science & Technology

    2015-01-02

    strength its members provide. Trusses are common load - bearing structures, and are found in many modern-day applications due to their simple, strong, and...we ran simulations on was one of the member arms. We applied a bearing load on the surfaces of the holes on one side and tested it for static stress...73.24 ksi yield strength as shown figures 17 below. Figure 17: von Mises stress under static bearing load of 8750 lb. Under the static bearing load

  10. Multiaxial constitutive behavior of an interstitial-free steel: Measurements through X-ray and digital image correlation

    PubMed Central

    Jeong, Y.; Iadicola, M.A.; Gnäupel-Herold, T.; Creuziger, A.

    2017-01-01

    Constitutive behaviors of an interstitial-free steel sample were measured using an augmented Marciniak experiment. In these tests, multiaxial strain field data of the flat specimens were measured by the digital image correlation technique. In addition, the flow stress was measured using an X-ray diffractometer. The flat specimens in three different geometries were tested in order to achieve 1) balanced biaxial strain, and plane strain tests with zero strain in either 2) rolling direction or 3) transverse direction. The multiaxial stress and strain data were processed to obtain plastic work contours with reference to a uniaxial tension test along the rolling direction. The experimental results show that the mechanical behavior of the subjected specimen deviates significantly from isotropic behavior predicted by the von Mises yield criterion. The initial yield loci measured by a Marciniak tester is in good agreement with what is predicted by Hill's yield criterion. However, as deformation increases beyond the vonMises strain of 0.05, the shape of the work contour significantly deviates from that of Hill's yield locus. A prediction made by a viscoplastic self-consistent model is in better agreement with the experimental observation than the Hill yield locus with the isotropic work-hardening rule. However, none of the studied models matched the initial or evolving anisotropic behaviors of the interstitial-free steel measured by the augmented Marciniak experiment. PMID:28690400

  11. TensorCalculator: exploring the evolution of mechanical stress in the CCMV capsid

    NASA Astrophysics Data System (ADS)

    Kononova, Olga; Maksudov, Farkhad; Marx, Kenneth A.; Barsegov, Valeri

    2018-01-01

    A new computational methodology for the accurate numerical calculation of the Cauchy stress tensor, stress invariants, principal stress components, von Mises and Tresca tensors is developed. The methodology is based on the atomic stress approach which permits the calculation of stress tensors, widely used in continuum mechanics modeling of materials properties, using the output from the MD simulations of discrete atomic and C_α -based coarse-grained structural models of biological particles. The methodology mapped into the software package TensorCalculator was successfully applied to the empty cowpea chlorotic mottle virus (CCMV) shell to explore the evolution of mechanical stress in this mechanically-tested specific example of a soft virus capsid. We found an inhomogeneous stress distribution in various portions of the CCMV structure and stress transfer from one portion of the virus structure to another, which also points to the importance of entropic effects, often ignored in finite element analysis and elastic network modeling. We formulate a criterion for elastic deformation using the first principal stress components. Furthermore, we show that von Mises and Tresca stress tensors can be used to predict the onset of a viral capsid’s mechanical failure, which leads to total structural collapse. TensorCalculator can be used to study stress evolution and dynamics of defects in viral capsids and other large-size protein assemblies.

  12. Die attach dimension and material on thermal conductivity study for high power COB LED

    NASA Astrophysics Data System (ADS)

    Sarukunaselan, K.; Ong, N. R.; Sauli, Z.; Mahmed, N.; Kirtsaeng, S.; Sakuntasathien, S.; Suppiah, S.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    High power LED began to gain popularity in the semiconductor market due to its efficiency and luminance. Nonetheless, along with the increased in efficiency, there was an increased in the junction temperature too. The alleviating junction temperature is undesirable since the performances and lifetime will be degraded over time. Therefore, it is crucial to solve this thermal problem by maximizing the heat dissipation to the ambience. Improvising the die attach (DA) layer would be the best option because this layer is sandwiched between the chip (heat source) and the substrate (channel to the ambient). In this paper, the impact of thickness and thermal conductivity onto the junction temperature and Von Mises stress is analyzed. Results obtained showed that the junction temperature is directly proportional to the thickness but the stress was inversely proportional to the thickness of the DA. The thermal conductivity of the materials did affect the junction temperature as there was not much changes once the thermal conductivity reached 20W/mK. However, no significant changes were observed on the Von Mises stress caused by the thermal conductivity. Material with the second highest thermal conductivity had the lowest stress, whereas the highest conductivity material had the highest stress value at 20 µm. Overall, silver sinter provided the best thermal dissipation compared to the other materials.

  13. Multiaxial constitutive behavior of an interstitial-free steel: Measurements through X-ray and digital image correlation.

    PubMed

    Jeong, Y; Iadicola, M A; Gnäupel-Herold, T; Creuziger, A

    2016-06-15

    Constitutive behaviors of an interstitial-free steel sample were measured using an augmented Marciniak experiment. In these tests, multiaxial strain field data of the flat specimens were measured by the digital image correlation technique. In addition, the flow stress was measured using an X-ray diffractometer. The flat specimens in three different geometries were tested in order to achieve 1) balanced biaxial strain, and plane strain tests with zero strain in either 2) rolling direction or 3) transverse direction. The multiaxial stress and strain data were processed to obtain plastic work contours with reference to a uniaxial tension test along the rolling direction. The experimental results show that the mechanical behavior of the subjected specimen deviates significantly from isotropic behavior predicted by the von Mises yield criterion. The initial yield loci measured by a Marciniak tester is in good agreement with what is predicted by Hill's yield criterion. However, as deformation increases beyond the vonMises strain of 0.05, the shape of the work contour significantly deviates from that of Hill's yield locus. A prediction made by a viscoplastic self-consistent model is in better agreement with the experimental observation than the Hill yield locus with the isotropic work-hardening rule. However, none of the studied models matched the initial or evolving anisotropic behaviors of the interstitial-free steel measured by the augmented Marciniak experiment.

  14. Biomechanical evaluation of tibial bone adaptation after revision total knee arthroplasty: A comparison of different implant systems

    PubMed Central

    Quilez, María Paz; Seral, Belen; Pérez, María Angeles

    2017-01-01

    The best methods to manage tibial bone defects following total knee arthroplasty remain under debate. Different fixation systems exist to help surgeons reconstruct knee osseous bone loss (such as tantalum cones, cement, modular metal augments, autografts, allografts and porous metaphyseal sleeves) However, the effects of the various solutions on the long-term outcome remain unknown. In the present work, a bone remodeling mathematical model was used to predict bone remodeling after total knee arthroplasty (TKA) revision. Five different types of prostheses were analyzed: one with a straight stem; two with offset stems, with and without supplements; and two with sleeves, with and without stems. Alterations in tibia bone density distribution and implant Von Mises stresses were quantified. In all cases, the bone density decreased in the proximal epiphysis and medullary channels, and an increase in bone density was predicted in the diaphysis and around stem tips. The highest bone resorption was predicted for the offset prosthesis without the supplement, and the highest bone formation was computed for the straight stem. The highest Von Mises stress was obtained for the straight tibial stem, and the lowest was observed for the stemless metaphyseal sleeves prosthesis. The computational model predicted different behaviors among the five systems. We were able to demonstrate the importance of choosing an adequate revision system and that in silico models may help surgeons choose patient-specific treatments. PMID:28886100

  15. Contact of dual mobility implants: effects of cup wear and inclination.

    PubMed

    Uddin, M S

    2015-01-01

    Cup wear and inclination on the pelvic bone are significant factors, which change the contact of the articulating surfaces, thus, impacting the long-term performance of hip implants. This paper presents a finite element (FE) analysis of the contact of the dual mobility implants under the influence of cup wear and inclination. A 3D FE model of the implant was developed with the application of equivalent physiological loading and boundary conditions. Effects of cup inclination angle ranging from 45° to 60° and the wear depth ranging from 0 to 2.46 mm equivalent to up to 30 years of the implant's life on the contact pressure and von Mises stress were investigated. Simulation results show that the contact pressure and von Mises stress decrease significantly with a modest wear depth and remains quite in-sensitive to the cup inclination angle and wear depth up to 1.64 mm. With wear depth further up to 2.46 mm, the cup thickness (i.e. cup thinning on worn region) may be more predominant than increasing of contact area between the cup and the head. The wear on the inner surface of the cup is found to rule out the overall contact pressure and stress in the implant. Furthermore, individual and combined effects of both important parameters are analysed and discussed with respect to available clinical/laboratory studies.

  16. In-phase and out-of-phase axial-torsional fatigue behavior of Haynes 188 at 760 C

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Bonacuse, Peter J.

    1991-01-01

    Isothermal, in-phase and out-of-phase axial-torsional fatigue experiments have been conducted at 760 C on uniform gage section, thin-walled tubular specimens of a wrought cobalt-base superalloy, Haynes 188. Test-control and data acquisition were accomplished with a minicomputer. Fatigue lives of the in- and out-of-phase axial-torsional fatigue tests have been estimated with four different multiaxial fatigue life prediction models that were developed primarly for predicting axial-torsional fatigue lives at room temperature. The models investigated were: (1) the von Mises equivalent strain range; (2) the Modified Multiaxiality Factor Approach; (3) the Modified Smith-Watson-Topper Parameter; and (4) the critical shear plane method of Fatemi, Socie, and Kurath. In general, life predictions by the von Mises equivalent strain range model were within a factor of 2 for a majority of the tests and the predictions by the Modified Multiaxiality Factor Approach were within a factor of 2, while predictions of the Modified Smith-Watson-Topper Parameter and of the critical shear plane method of Fatemi, Socie, and Kurath were unconservative and conservative, respectively, by up to factors of 4. In some of the specimens tested under combined axial-torsional loading conditions, fatigue cracks initiated near extensometer indentations. Two design modifications have been proposed to the thin-walled tubular specimen to overcome this problem.

  17. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1995-01-01

    The results are reported for high-temperature axial and torsional low-cycle fatigue experiments performed at 760 C in air on thin-walled tubular specimens of Haynes 188, a wrought cobalt-based superalloy. Data are also presented for mean coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. This data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME Boiler and Pressure Code), Manson-Halford, modified multiaxiality factor (proposed in this paper), modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The modified multiaxiality factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  18. Poly(dl)lactic acid/polyglycolic acid/iron and poly(dl)lactic acid/polyglycolic acid/samarium cobalt composites for use as a delivery mechanism for magnetically directed chondrogenesis

    NASA Astrophysics Data System (ADS)

    Oppermann, Dean Alan

    Magnetically directed chondrogenesis (MDC) is a fundamental approach to articular cartilage repair. In MDC a magnet is implanted into the subchondral trabecular bone underlying a cartilage defect and used to attract chondrocytes, magnetically tagged with Fe nanoparticles, to the defect site. Pilot studies by Halpern, Crimp and Grande, using solid neodymium (Nd) magnets, indicated optimistic results by producing a hyaline-like articular cartilage after 8 weeks implantation. Since solid Nd magnets introduce long-term biocompatibility issues, the focus of this dissertation was to develop P(dl)A/PGA/Fe and P(dl)A/PGA/SmCo 5 implants for use in MDC. The effect of implant porosity, implant composition and magnetic material (Fe or SmCo5) on the initial and degraded magnetic properties were evaluated. The biocompatibility of P(dl)A/PGA/Fe implants were investigated by implantation into New Zealand white rabbits for 8 weeks. The effect of hydrogen peroxide (H2O2) and ethylene oxide (EO) sterilization techniques on the molecular weight and chemical structure of P(dl)A/PGA polymers were evaluated using gel permeation chromatography and Fourier transform infrared spectroscopy. The effect of implant morphology, size and number on the von Mises stress in the trabecular bone surrounding the implant was evaluated using a finite element model. In general, SmCo5 implants resulted in higher magnetic fields initially and after 8 weeks of degradation than comparable Fe implants. Increases in magnetic field strength were achieved by increasing the volume fraction of magnetic material and by increasing the PGA concentration. The magnetic field strength degradation rate decreased with increases in volume fraction of magnetic material and increases in PLA concentration. Implantation studies indicated that 50/50 P(dl)A/PGA were more bioactive than 75/25 P(dl)A/PGA with an increased cellular response that is specific to bone growth. The compressive strength and elastic modulus of porous implants were comparable to trabecular bone, and the compressive strength and elastic modulus of solid implants was higher than trabecular bone but less than cortical bone. Finite element modeling showed that the implantation of solid and porous P(dl)A/PGA/Fe implants did not significantly increase the von Mises stress concentration adjacent to the implant. The von Mises stress surrounding porous implants was higher than the solid implants which predicts faster bone remodeling. Comparing single implants to multiple implants indicated a significant decrease in von Mises stress between the implants. This would predict bone resorption in that area. H2O2 sterilization resulted in a gradual decrease in the molecular weight of P(dl)A/PGA polymers that was a result of hydrolytic scission of the ester bonds present between the individual monomers. The polymers were less affected by EO sterilization with only the 75/25 P(dl)A/PGA, indicating a decrease in molecular weight. From these results, it was concluded that solid 50/50 P(dl)A/PGA/SmCo 5 implants that span the entire width of the cartilage defect should be used to optimize the attraction potential and bioactivity of the implant. Also ethylene oxide, which caused less premature implant degradation, should be used for sterilization.

  19. RELATIONSHIP BETWEEN RIGIDITY OF EXTERNAL FIXATOR AND NUMBER OF PINS: COMPUTER ANALYSIS USING FINITE ELEMENTS

    PubMed Central

    Sternick, Marcelo Back; Dallacosta, Darlan; Bento, Daniela Águida; do Reis, Marcelo Lemos

    2015-01-01

    Objective: To analyze the rigidity of a platform-type external fixator assembly, according to different numbers of pins on each clamp. Methods: Computer simulation on a large-sized Cromus dynamic external fixator (Baumer SA) was performed using a finite element method, in accordance with the standard ASTM F1541. The models were generated with approximately 450,000 quadratic tetrahedral elements. Assemblies with two, three and four Schanz pins of 5.5 mm in diameter in each clamp were compared. Every model was subjected to a maximum force of 200 N, divided into 10 sub-steps. For the components, the behavior of the material was assumed to be linear, elastic, isotropic and homogeneous. For each model, the rigidity of the assembly and the Von Mises stress distribution were evaluated. Results: The rigidity of the system was 307.6 N/mm for two pins, 369.0 N/mm for three and 437.9 N/mm for four. Conclusion: The results showed that four Schanz pins in each clamp promoted rigidity that was 19% greater than in the configuration with three pins and 42% greater than with two pins. Higher tension occurred in configurations with fewer pins. In the models analyzed, the maximum tension occurred on the surface of the pin, close to the fixation area. PMID:27047879

  20. Assessing the feasibility of yttria-stabilized zirconia in novel designs as mandibular anterior fixed lingual retention following orthodontic treatment

    NASA Astrophysics Data System (ADS)

    Stout, Matthew

    The purpose of this study is to explore the feasibility of yttria-stabilized zirconia (Y-TZP) in fixed lingual retention as an alternative to stainless steel. Exploratory Y-TZP specimens were milled to establish design parameters. Next, specimens were milled according to ASTM standard C1161-13 and subjected to four-point flexural test to determine materials properties. Finite Element (FE) Analysis was employed to evaluate nine novel cross-sectional designs and compared to stainless steel wire. Each design was analyzed under the loading conditions to determine von Mises and bond stress. The most promising design was fabricated to assess accuracy and precision of current CAD/CAM milling technology. The superior design had a 1.0 x 0.5 mm semi-elliptical cross section and was shown to be fabricated reliably. Overall, the milling indicated a maximum percent standard deviation of 9.3 and maximum percent error of 13.5 with a cost of $30 per specimen. Y-TZP can be reliably milled to dimensions comparable to currently available metallic retainer wires. Further research is necessary to determine the success of bonding protocol and clinical longevity of Y-TZP fixed retainers. Advanced technology is necessary to connect the intraoral scan to an aesthetic and patient-specific Y-TZP fixed retainer.

  1. To reduce the maximum stress and the stress shielding effect around a dental implant-bone interface using radial functionally graded biomaterials.

    PubMed

    Asgharzadeh Shirazi, H; Ayatollahi, M R; Asnafi, A

    2017-05-01

    In a dental implant system, the value of stress and its distribution plays a pivotal role on the strength, durability and life of the implant-bone system. A typical implant consists of a Titanium core and a thin layer of biocompatible material such as the hydroxyapatite. This coating has a wide range of clinical applications in orthopedics and dentistry due to its biocompatibility and bioactivity characteristics. Low bonding strength and sudden variation of mechanical properties between the coating and the metallic layers are the main disadvantages of such common implants. To overcome these problems, a radial distributed functionally graded biomaterial (FGBM) was proposed in this paper and the effect of material property on the stress distribution around the dental implant-bone interface was studied. A three-dimensional finite element simulation was used to illustrate how the use of radial FGBM dental implant can reduce the maximum von Mises stress and, also the stress shielding effect in both the cortical and cancellous bones. The results, of course, give anybody an idea about optimized behaviors that can be achieved using such materials. The finite element solver was validated by familiar methods and the results were compared to previous works in the literature.

  2. Biaxial Testing of 2219-T87 Aluminum Alloy Using Cruciform Specimens

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Pollock, W. D.

    1997-01-01

    A cruciform biaxial test specimen was designed and seven biaxial tensile tests were conducted on 2219-T87 aluminum alloy. An elastic-plastic finite element analysis was used to simulate each tests and predict the yield stresses. The elastic-plastic finite analysis accurately simulated the measured load-strain behavior for each test. The yield stresses predicted by the finite element analyses indicated that the yield behavior of the 2219-T87 aluminum alloy agrees with the von Mises yield criterion.

  3. Characterization of the Nonlinear Viscoelastic and Adhesive Properties of Polyurea and Characterization of Polyurea-Clad Metallic Structures

    DTIC Science & Technology

    2009-10-14

    10mm away from the defect in the undeformed state in both cases) respectively from the defect. The time variation of von Mises effective stress at...specimen experiences a multiaxial compressive stress state , consisting of a pressure and superposed shear. The Arcan test is used in the direct...conductivity (OHFC) copper the stress -strain curve is also shown in Fig. 1. Fitting the power-law hardening model of Eq. 1, we obtain n ~ 0.3; it is apparent

  4. Modeling and Characterization of PMMA for High Strain-Rate and Finite Deformations (Postprint)

    DTIC Science & Technology

    2010-05-01

    List of parameters for the modified MuUiken- model for PMMA . Von Mises [MPa] ^AJ3 V 00 ^ Aa ^Afi CR ha hp Value 3386 1748 0.35 298 1979...AFRL-RW-EG-TP-2010-073 Modeling and Characterization of PMMA for High Strain-Rate and Finite Deformations (Postprint) Eric B. Herbold Jennifer L...SUBTITLE Modeling and Characterization of PMMA for High Strain-Rate and Finite Deformations (Postprint) 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  5. Development of a Pressure-Dependent Constitutive Model with Combined Multilinear Kinematic and Isotropic Hardening

    NASA Technical Reports Server (NTRS)

    Allen Phillip A.; Wilson, Christopher D.

    2003-01-01

    The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.

  6. Elastic-plastic mixed-iterative finite element analysis: Implementation and performance assessment

    NASA Technical Reports Server (NTRS)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    An elastic-plastic algorithm based on Von Mises and associative flow criteria is implemented in MHOST-a mixed iterative finite element analysis computer program developed by NASA Lewis Research Center. The performance of the resulting elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors of 4-node quadrilateral shell finite elements are tested for elastic-plastic performance. Generally, the membrane results are excellent, indicating the implementation of elastic-plastic mixed-iterative analysis is appropriate.

  7. Implant-Supported Fixed Partial Prostheses With Different Prosthetic Materials: A Three-Dimensional Finite Element Stress Analysis.

    PubMed

    Arinc, Hakan

    2018-06-01

    To evaluate the effects of prosthetic material on the degree of stress to the cortical bone, trabecular bone, framework, and implants using finite element analysis (FEA). A mandibular implant-supported fixed prosthesis was designed. Different prosthetic materials [cobalt-chromium-supported ceramic, zirconia-supported ceramic, and zirconia-reinforced polymethyl methacrylate (ZRPMMA)-supported resin] were used. FEA was used to evaluate stress under different loading conditions. Maximum principal (σmax), minimum principal (σmin), and von Mises (σvM) stress values were obtained. Similar σmax, σmin, and σvM values were observed in the cortical and trabecular bones and in implants under both loading conditions, with the exception of the ZRPMMA model, which showed the highest σmax, σmin, and σvM values in oblique loading. The ZRPMMA model had the lowest σvM value in the framework under both loading conditions. ZRPMMA had the lowest stress values in the framework, with increased stress values in the implants and bone tissue. Framework and veneering materials may influence stress values under different loading conditions.

  8. Modern Optimization Methods in Minimum Weight Design of Elastic Annular Rotating Disk with Variable Thickness

    NASA Astrophysics Data System (ADS)

    Jafari, S.; Hojjati, M. H.

    2011-12-01

    Rotating disks work mostly at high angular velocity and this results a large centrifugal force and consequently induce large stresses and deformations. Minimizing weight of such disks yields to benefits such as low dead weights and lower costs. This paper aims at finding an optimal disk thickness profile for minimum weight design using the simulated annealing (SA) and particle swarm optimization (PSO) as two modern optimization techniques. In using semi-analytical the radial domain of the disk is divided into some virtual sub-domains as rings where the weight of each rings must be minimized. Inequality constrain equation used in optimization is to make sure that maximum von Mises stress is always less than yielding strength of the material of the disk and rotating disk does not fail. The results show that the minimum weight obtained for all two methods is almost identical. The PSO method gives a profile with slightly less weight (6.9% less than SA) while the implementation of both PSO and SA methods are easy and provide more flexibility compared with classical methods.

  9. [Analysis of stress in periodontal ligament of the maxillary first molar on distal movement by nonlinear finite element method].

    PubMed

    Dong, Jing; Zhang, Zhe-chen; Zhou, Guo-liang

    2015-06-01

    To analyze the stress distribution in periodontal ligament of maxillary first molar during distal movement with nonlinear finite element analysis, and to compare it with the result of linear finite element analysis, consequently to provide biomechanical evidence for clinical application. The 3-D finite element model including a maxillary first molar, periodontal ligament, alveolar bone, cancellous bone, cortical bone and a buccal tube was built up by using Mimics, Geomagic, ProE and Ansys Workbench. The material of periodontal ligament was set as nonlinear material and linear elastic material, respectively. Loads of different combinations were applied to simulate the clinical situation of distalizing the maxillary first molar. There were channels of low stress in peak distribution of Von Mises equivalent stress and compressive stress of periodontal ligament in nonlinear finite element model. The peak of Von Mises equivalent stress was lower when it was satisfied that Mt/F minus Mr/F approximately equals 2. The peak of compressive stress was lower when it was satisfied that Mt/F was approximately equal to Mr/F. The relative stress of periodontal ligament was higher and violent in linear finite element model and there were no channels of low stress in peak distribution. There are channels in which stress of periodontal ligament is lower. The condition of low stress should be satisfied by applied M/F during the course of distalizing the maxillary first molar.

  10. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    NASA Astrophysics Data System (ADS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-06-01

    The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  11. Constitutive modeling of aluminum foam and finite element implementation for crash simulations

    NASA Astrophysics Data System (ADS)

    Bi, Jing

    In the past decades metallic foams have been increasingly used as filler materials in crashworthiness applications due to their relatively low cost and high capacity of energy absorption. Due to the destructive nature of crashes, studies on the performance of metallic foams using physical testing have been limited to examining the crushing force histories and/or folding patterns that are insufficient for crashworthiness designs. For this reason, numerical simulations, particularly nonlinear finite element (FE) analyses, play an important role in designing crashworthy foam-filled structures. An effective and numerically stable model is needed for modeling metallic foams that are porous and encounter large nonlinear deformations in crashes. In this study a new constitutive model for metallic foams is developed to overcome the deficiency of existing models in commercial FE codes such as LS-DYNA. The new constitutive model accounts for volume changes under hydrostatic compression and combines the hydrostatic pressure and von Mises stress into one yield function. The change of the compressibility of the metallic foam is handled in the constitutive model by allowing for shape changes of the yield surface in the hydrostatic pressure-von Mises stress space. The backward Euler method is adopted to integrate the constitutive equations to achieve numerical accuracy and stability. The new foam model is verified and validated by existing experimental data before used in FE simulations of crushing of foam-filled columns that have square and hexagonal cross-sections.

  12. Elevated temperature axial and torsional fatigue behavior of Haynes 188

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1992-01-01

    The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.

  13. Stress distribution in the temporo-mandibular joint discs during jaw closing: a high-resolution three-dimensional finite-element model analysis.

    PubMed

    Savoldelli, Charles; Bouchard, Pierre-Olivier; Loudad, Raounak; Baque, Patrick; Tillier, Yannick

    2012-07-01

    This study aims at analysing the stresses distribution in the temporomandibular joint (TMJ) using a complete high-resolution finite element model (FE Model). This model is used here to analyse the stresses distribution in the discs during a closing jaw cycle. In the end, this model enables the prediction of the stress evolution in the TMJ disc submitted to various loadings induced by mandibular trauma, surgery or parafunction. The geometric data for the model were obtained from MRI and CT scans images of a healthy male patient. Surface and volume meshes were successively obtained using a 3D image segmentation software (AMIRA(®)). Bone components of skull and mandible, both of joint discs, temporomandibular capsules and ligaments and dental arches were meshed as separate bodies. The volume meshes were transferred to the FE analysis software (FORGE(®)). Material properties were assigned for each region. Boundary conditions for closing jaw simulations were represented by different load directions of jaws muscles. The von Mises stresses distribution in both joint discs during closing conditions was analyzed. The pattern of von Mises stresses in the TMJ discs is non-symmetric and changed continuously during jaw movement. Maximal stress is reached on the surface disc in areas in contact with others bodies. The three-dimension finite element model of masticatory system will make it possible to simulate different conditions that appear to be important in the cascade of events leading to joint damage.

  14. Finite element simulation of lower limb injuries to the driver in minibus frontal collisions.

    PubMed

    Shi, Liang-Liang; Lei, Chen; Li, Kui; Fu, Shuo-Zhen; Wu, Zheng-Wei; Yin, Zhi-Yong

    2016-06-01

    This study aims to explore the biomechanical mechanism of lower limb injuries to the driver by establishing a finite element (FE) simulation model of collisions. First a minibus FE model was integrated with a seat belt system. Then it was used to rebuild two collisions together with the total human model for safety (THUMS) provided by Toyota Motor Corporation: a rear-end collision between a minibus and a truck and a head-on collision of a minibus to a rigid wall. The impact velocities of both collisions were set at 56 km/h. The vehicle dynamic response, vehicle deceleration, and dashboard intrusion in the two collisions were compared. In the minibus rear-end truck collision, the peak values of the von Mises equivalent stress at the tibia and the femur were 133 MPa and 126 MPa respectively; while in the minibus head-on rigid wall collision, the data were 139 MPa and 99 MPa. Compared with the minibus head-on rigid wall collision, the vehicle deceleration was smaller and the dashboard intrusion was larger in the minibus rear-end truck collision. The results illustrate that a longer dashboard incursion distance corresponds to a higher von Mises equivalent stress at the femur. The simulation results are consistent with the driver's autopsy report on lower limbs injuries. These findings verify that FE simulation method is reliable and useful to analyze the mechanisms of lower limb injuries to the driver in minibus frontal collisions.

  15. Influence of Alveolar Bone Defects on the Stress Distribution in Quad Zygomatic Implant-Supported Maxillary Prosthesis.

    PubMed

    Duan, Yuanyuan; Chandran, Ravi; Cherry, Denise

    The purpose of this study was to create three-dimensional composite models of quad zygomatic implant-supported maxillary prostheses with a variety of alveolar bone defects around implant sites, and to investigate the stress distribution in the surrounding bone using the finite element analysis (FEA) method. Three-dimensional models of titanium zygomatic implants, maxillary prostheses, and human skulls were created and assembled using Mimics based on microcomputed tomography and cone beam computed tomography images. A variety of additional bone defects were created at the locations of four zygomatic implants to simulate multiple clinical scenarios. The volume meshes were created and exported into FEA software. Material properties were assigned respectively for all the structures, and von Mises stress data were collected and plotted in the postprocessing module. The maximum stress in the surrounding bone was located in the crestal bone around zygomatic implants. The maximum stress in the prostheses was located at the angled area of the implant-abutment connection. The model with anterior defects had a higher peak stress value than the model with posterior defects. All the models with additional bone defects had higher maximum stress values than the control model without additional bone loss. Additional alveolar bone loss has a negative influence on the stress concentration in the surrounding bone of quad zygomatic implant-supported prostheses. More care should be taken if these additional bone defects are at the sites of anterior zygomatic implants.

  16. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.

    PubMed

    Kvit, Anton A; Devine, Erin E; Jiang, Jack J; Vamos, Andrew C; Tao, Chao

    2015-05-01

    Vocal fold tissue is biphasic and consists of a solid extracellular matrix skeleton swelled with interstitial fluid. Interactions between the liquid and solid impact the material properties and stress response of the tissue. The objective of this study was to model the movement of liquid during vocal fold vibration and to estimate the volume of liquid accumulation and stress experienced by the tissue near the anterior-posterior midline, where benign lesions are observed to form. A three-dimensional biphasic finite element model of a single vocal fold was built to solve for the liquid velocity, pore pressure, and von Mises stress during and just after vibration using the commercial finite element software COMSOL Multiphysics (Version 4.3a, 2013, Structural Mechanics and Subsurface Flow Modules). Vibration was induced by applying direct load pressures to the subglottal and intraglottal surfaces. Pressure ranges, frequency, and material parameters were chosen based on those reported in the literature. Postprocessing included liquid velocity, pore pressure, and von Mises stress calculations as well as the frequency-stress and amplitude-stress relationships. Resulting time-averaged velocity vectors during vibration indicated liquid movement toward the midline of the fold, as well as upward movement in the inferior-superior direction. Pore pressure and von Misses stresses were higher in this region just after vibration. A linear relationship was found between the amplitude and pore pressure, whereas a nonlinear relationship was found between the frequency and pore pressure. Although this study had certain computational simplifications, it is the first biphasic finite element model to use a realistic geometry and demonstrate the ability to characterize liquid movement due to vibration. Results indicate that there is a significant amount of liquid that accumulates at the midline; however, the role of this accumulation still requires investigation. Further investigation of these mechanical factors may lend insight into the mechanism of benign lesion formation. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  17. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis

    PubMed Central

    Kvit, Anton A.; Devine, Erin E.; Vamos, Andrew C.; Tao, Chao; Jiang, Jack J.

    2015-01-01

    OBJECTIVE Vocal fold tissue is biphasic and consists of a solid extracellular matric skeleton swelled with interstitial fluid. Interactions between the liquid and solid impact the material properties and stress response of the tissue. The objective of this study was to model the movement of liquid during vocal fold vibration and estimate the volume of liquid accumulation and stress experienced by the tissue near the anterior-posterior midline, where benign lesions are observed to form. METHODS A three-dimensional biphasic finite element model of a single vocal fold was built to solve for the liquid velocity, pore pressure, and von Mises stress during and just after vibration using the commercial finite element software COMSOL Multiphysics (Version 4.3a, 2013, Structural Mechanics and Subsurface Flow Modules). Vibration was induced by applying direct-load pressures to the subglottal and intraglottal surfaces. Pressure ranges, frequency and material parameters were chosen based on those reported in the literature. Post-processing included liquid velocity, pore pressure and von Mises stress calculations, as well as the frequency-stress and amplitude-stress relationships. RESULTS Resulting time-averaged velocity vectors during vibration indicated liquid movement towards the midline of the fold, as upwards movement in the inferior-superior direction. Pore pressure and von Misses stresses were higher in this region just following vibration. A linear relationship was found between the amplitude and pore pressure, while a nonlinear relationship was found between the frequency and pore pressure. CONCLUSIONS While this study had certain computational simplifications, it is the first biphasic finite element model to employ a realistic geometry and demonstrated the ability to characterize liquid movement due to vibration. Results indicate that there is a significant amount of liquid that accumulates at the midline, however the role of this accumulation still requires investigation. Further investigation of these mechanical factors may lend insight into the mechanism of benign lesion formation. PMID:25619469

  18. On the computation of steady Hopper flows. II: von Mises materials in various geometries

    NASA Astrophysics Data System (ADS)

    Gremaud, Pierre A.; Matthews, John V.; O'Malley, Meghan

    2004-11-01

    Similarity solutions are constructed for the flow of granular materials through hoppers. Unlike previous work, the present approach applies to nonaxisymmetric containers. The model involves ten unknowns (stresses, velocity, and plasticity function) determined by nine nonlinear first order partial differential equations together with a quadratic algebraic constraint (yield condition). A pseudospectral discretization is applied; the resulting problem is solved with a trust region method. The important role of the hopper geometry on the flow is illustrated by several numerical experiments of industrial relevance.

  19. Stress distributions of a bracket type orthodontic miniscrew and the surrounding bone under moment loadings: Three-dimensional finite element analysis

    PubMed Central

    Ajami, Shabnam; Mina, Ahmad; Nabavizadeh, Seyed Amin

    2016-01-01

    Objectives: To evaluate the effect of moments and the combination of forces and moments on the mechanical properties of a bracket type miniscrew, resembling engagement of a rectangular wire by three-dimensional (3D) finite element study. Materials and Methods: By solid work software (Dassaunlt systems solid works, concord, Mass), a 3D miniscrew model of 6, 8, 10 mm lengths was designed and inserted in the osseous block, consisted of the cortical, and cancellous bones. The stress distributions, maximum stresses, and deflections of the miniscrew were evaluated for all parts using ANSYS (Work Bench, 2014). Results: As the magnitudes of the load increased from 100 to 200, 400 and 800 grf-mm, the peak of stresses in the 6 mm long miniscrew were increased from 7.7 to 61.5 Mpa. The maximum values of Von Mises in the cancellous bone were tremendously lower in comparison to the cortical bone by one hundredth. As the length of the miniscrew in contact with the bone was increased, the amounts and patterns of stress distribution in the cortical bone and the miniscrew did not change significantly. Conclusions: As the moment magnitude increased, the pick stresses increased linearly. The existence of cancellous bone was not significantly responsible for the stress distribution. The pattern of stress distribution did not change by the length of the miniscrew. PMID:27127753

  20. A two-system, single-analysis, fluid-structure interaction technique for modelling abdominal aortic aneurysms.

    PubMed

    Kelly, S C; O'Rourke, M J

    2010-01-01

    This work reports on the implementation and validation of a two-system, single-analysis, fluid-structure interaction (FSI) technique that uses the finite volume (FV) method for performing simulations on abdominal aortic aneurysm (AAA) geometries. This FSI technique, which was implemented in OpenFOAM, included fluid and solid mesh motion and incorporated a non-linear material model to represent AAA tissue. Fully implicit coupling was implemented, ensuring that both the fluid and solid domains reached convergence within each time step. The fluid and solid parts of the FSI code were validated independently through comparison with experimental data, before performing a complete FSI simulation on an idealized AAA geometry. Results from the FSI simulation showed that a vortex formed at the proximal end of the aneurysm during systolic acceleration, and moved towards the distal end of the aneurysm during diastole. Wall shear stress (WSS) values were found to peak at both the proximal and distal ends of the aneurysm and remain low along the centre of the aneurysm. The maximum von Mises stress in the aneurysm wall was found to be 408kPa, and this occurred at the proximal end of the aneurysm, while the maximum displacement of 2.31 mm occurred in the centre of the aneurysm. These results were found to be consistent with results from other FSI studies in the literature.

  1. Micromotion and stress distribution of immediate loaded implants: a finite element analysis.

    PubMed

    Fazel, A; Aalai, S; Rismanchian, M; Sadr-Eshkevari, P

    2009-12-01

    Primary stability and micromotion of the implant fixture is mostly influenced by its macrodesign. To assess and compare the peri-implant stress distribution and micromotion of two types of immediate loading implants, immediate loaded screw (ILS) Nisastan and Xive (DENTSPLY/Friadent, Monnheim, Germany), and to determine the best macrodesign of these two implants by finite element analysis. In this experimental study, the accurate pictures of two fixtures (ILS: height = 13, diameter = 4 mm and Xive: height = 13, diameter = 3.8 mm) were taken by a new digital camera (Nikon Coolpix 5700 [Nikon, Japan], resolution = 5.24 megapixel, lens = 8x optical, 4x digital zoom). Following accurate measurements, the three-dimensional finite element computer model was simulated and inserted in simulated mandibular bone (D(2)) in SolidWorks 2003 (SolidWork Corp., MA, USA) and Ansys 7.1 (Ansys, Inc., Canonsburg, PA, USA). After loading (500 N, 75 degrees above horizon), the displacement was displayed and von Mises stress was recorded. It was found that the primary stability of ILS was greater (152 microm) than Xive (284 microm). ILS exhibited more favorable stress distribution. Maximum stress concentration found in periapical bone around Xive ( approximately 30 MPa) was lesser than Nisastan ( approximately 37 MPa). Macrodesign of ILS leads to better primary stability and stress distribution. Maximum stress around Xive was less.

  2. Circular Regression in a Dual-Phase Lock-In Amplifier for Coherent Detection of Weak Signal

    PubMed Central

    Wang, Gaoxuan; Reboul, Serge; Fertein, Eric

    2017-01-01

    Lock-in amplification (LIA) is an effective approach for recovery of weak signal buried in noise. Determination of the input signal amplitude in a classical dual-phase LIA is based on incoherent detection which leads to a biased estimation at low signal-to-noise ratio. This article presents, for the first time to our knowledge, a new architecture of LIA involving phase estimation with a linear-circular regression for coherent detection. The proposed phase delay estimate, between the input signal and a reference, is defined as the maximum-likelihood of a set of observations distributed according to a von Mises distribution. In our implementation this maximum is obtained with a Newton Raphson algorithm. We show that the proposed LIA architecture provides an unbiased estimate of the input signal amplitude. Theoretical simulations with synthetic data demonstrate that the classical LIA estimates are biased for SNR of the input signal lower than −20 dB, while the proposed LIA is able to accurately recover the weak signal amplitude. The novel approach is applied to an optical sensor for accurate measurement of NO2 concentrations at the sub-ppbv level in the atmosphere. Side-by-side intercomparison measurements with a commercial LIA (SR830, Stanford Research Inc., Sunnyvale, CA, USA ) demonstrate that the proposed LIA has an identical performance in terms of measurement accuracy and precision but with simplified hardware architecture. PMID:29135951

  3. A three-dimensional finite element study on the stress distribution pattern of two prosthetic abutments for external hexagon implants.

    PubMed

    Moreira, Wagner; Hermann, Caio; Pereira, Jucélio Tomás; Balbinoti, Jean Anacleto; Tiossi, Rodrigo

    2013-10-01

    The purpose of this study was to evaluate the mechanical behavior of two different straight prosthetic abutments (one- and two-piece) for external hex butt-joint connection implants using three-dimensional finite element analysis (3D-FEA). Two 3D-FEA models were designed, one for the two-piece prosthetic abutment (2 mm in height, two-piece mini-conical abutment, Neodent) and another one for the one-piece abutment (2 mm in height, Slim Fit one-piece mini-conical abutment, Neodent), with their corresponding screws and implants (Titamax Ti, 3.75 diameter by 13 mm in length, Neodent). The model simulated the single restoration of a lower premolar using data from a computerized tomography of a mandible. The preload (20 N) after torque application for installation of the abutment and an occlusal loading were simulated. The occlusal load was simulated using average physiological bite force and direction (114.6 N in the axial direction, 17.1 N in the lingual direction and 23.4 N toward the mesial at an angle of 75° to the occlusal plan). The regions with the highest von Mises stress results were at the bottom of the initial two threads of both prosthetic abutments that were tested. The one-piece prosthetic abutment presented a more homogeneous behavior of stress distribution when compared with the two-piece abutment. Under the simulated chewing loads, the von Mises stresses for both tested prosthetic-abutments were within the tensile strength values of the materials analyzed which thus supports the clinical use of both prosthetic abutments.

  4. Effects of Leaflet Design on Transvalvular Gradients of Bioprosthetic Heart Valves.

    PubMed

    Dabiri, Yaghoub; Ronsky, Janet; Ali, Imtiaz; Basha, Ameen; Bhanji, Alisha; Narine, Kishan

    2016-12-01

    Bioprosthetic aortic valves (BAVs) are becoming the prostheses of choice in heart valve replacement. The objective of this paper is to assess the effects of leaflet geometry on the mechanics and hemodynamics of BAVs in a fluid structure interaction model. The curvature and angle of leaflets were varied in 10 case studies whereby the following design parameters were altered: a circular arch, a line, and a parabola for the radial curvature, and a circular arch, a spline, and a parabola for the circumferential curvature. Six different leaflet angles (representative of the inclination of the leaflets toward the surrounding aortic wall) were analyzed. The 3-dimensional geometry of the models were created using SolidWorks, Pointwise was used for meshing, and Comsol Multiphysics was used for implicit finite element calculations. Realistic loading was enforced by considering the time-dependent strongly-coupled interaction between blood flow and leaflets. Higher mean pressure gradients as well as von Mises stresses were obtained with a parabolic or circular curvature for radial curvature or a parabolic or spline curvature for the circumferential curvature. A smaller leaflet angle was associated with a lower pressure gradient, and, a lower von Mises stress. The leaflet curvature and angle noticeably affected the speed of valve opening, and closing. When a parabola was used for circumferential or radial curvature, leaflets displacements were asymmetric, and they opened and closed more slowly. A circular circumferential leaflet curvature, a linear leaflet radial curvature, and leaflet inclination toward the surrounding aortic wall were associated with superior BAVs mechanics.

  5. [A finite element analysis of petal-shaped poly-axial locking plate fixation in treatment of Y-shaped patellar fracture].

    PubMed

    Meng, Depeng; Ouyang, Yueping; Hou, Chunlin

    2017-12-01

    To establish the finite element model of Y-shaped patellar fracture fixed with titanium-alloy petal-shaped poly-axial locking plate and to implement the finite element mechanical analysis. The three-dimensional model was created by software Mimics 19.0, Rhino 5.0, and 3-Matic 11.0. The finite element analysis was implemented by ANSYS Workbench 16.0 to calculate the Von-Mises stress and displacement. Before calculated, the upper and lower poles of the patella were constrained. The 2.0, 3.5, and 4.4 MPa compressive stresses were applied to the 1/3 patellofemoral joint surface of the lower, middle, and upper part of the patella respectively, and to simulated the force upon patella when knee flexion of 20, 45, and 90°. The number of nodes and elements of the finite element model obtained was 456 839 and 245 449, respectively. The max value of Von-Mises stress of all the three conditions simulated was 151.48 MPa under condition simulating the knee flexion of 90°, which was lower than the yield strength value of the titanium-alloy and patella. The max total displacement value was 0.092 8 mm under condition simulating knee flexion of 45°, which was acceptable according to clinical criterion. The stress concentrated around the non-vertical fracture line and near the area where the screws were sparse. The titanium-alloy petal-shaped poly-axial locking plate have enough biomechanical stiffness to fix the Y-shaped patellar fracture, but the result need to be proved in future.

  6. Analyse of socket-prosthesis-blunt complex for lower limb amputee using objective measure of patient's gait cycle.

    PubMed

    Rotariu, Mariana; Filep, R; Turnea, M; Ilea, M; Arotăriţei, D; Popescu, Marilena

    2015-01-01

    The prosthetic application is a highly complex process. Modeling and simulation of biomechanics processes in orthopedics is a certainly field of interest in current medical research. Optimization of socket in order to improve the quality of patient's life is a major objective in prosthetic rehabilitation. A variety of numerical methods for prosthetic application have been developed and studied. An objective method is proposed to evaluate the performance of a prosthetic patient according to surface pressure map over the residual limb. The friction coefficient due to various liners used in transtibial and transfemoral prosthesis is taken into account also. Creation of a bio-based modeling and mathematical simulation allows the design, construction and optimization of contact between the prosthesis cup and lack of functionality of the patient amputated considering the data collected and processed in real time and non-invasively. The von Mises stress distribution in muscle flap tissue at the bone ends shows a larger region subjected to elevated von Mises stresses in the muscle tissue underlying longer truncated bones. Finite element method was used to conduct a stress analysis and show the force distribution along the device. The results contribute to a better understanding the design of an optimized prosthesis that increase the patient's performance along with a god choice of liner, made by an appropriate material that fit better to a particular blunt. The study of prosthetic application is an exciting and important topic in research and will profit considerably from theoretical input. Interpret these results to be a permanent collaboration between math's and medical orthopedics.

  7. FEM analysis of the mandibular first premolar with different post diameters.

    PubMed

    Du, Je-Kang; Lin, Wei-Ko; Wang, Chau-Hsiang; Lee, Huey-Er; Li, Hung-Yuan; Wu, Ju-Hui

    2011-07-01

    Several reports have pointed out that endodontically treated teeth can lack strength, and that the teeth can be reinforced using posts. However, it has not been clear how to select posts that meet the needs of most clinical situations, particularly in terms of the post diameter, which has a major influence on the occurrence of root fracture. The purpose of this study was to analyze the stress distributions of posts of various diameters during masticatory loads using a finite element method. A 3-dimensional (3D) finite element model of a lower first premolar was developed. We used the image software Geomagic Studio (3D Digital 2002; Geomagic, Research Triangle Park, NC, USA) to reduce the post diameter by 6 ratios to a root diameter of 20, 30, 40, 50, 60, and 80% and then individually implemented them into the root of a tooth. A chewing static force of 100 N was applied as a 45° diagonal load on the buccal cusp tip, and the σ(von Mises) and σ(max) stresses were calculated. Analysis of the σ(von Mises) values revealed that the stresses were concentrated in the middle 1/3 of both the post and the root surface for all models, as were the σ(max) values. The results also indicated that when the diameter of the post was 50% of that of the root, the stress distributions of the post and the root surface were most favorable. In conclusion, the clinical implications of the results will need to be further studied and discussed.

  8. Probabilistic Structural Evaluation of Uncertainties in Radiator Sandwich Panel Design

    NASA Technical Reports Server (NTRS)

    Kuguoglu, Latife; Ludwiczak, Damian

    2006-01-01

    The Jupiter Icy Moons Orbiter (JIMO) Space System is part of the NASA's Prometheus Program. As part of the JIMO engineering team at NASA Glenn Research Center, the structural design of the JIMO Heat Rejection Subsystem (HRS) is evaluated. An initial goal of this study was to perform sensitivity analyses to determine the relative importance of the input variables on the structural responses of the radiator panel. The desire was to let the sensitivity analysis information identify the important parameters. The probabilistic analysis methods illustrated here support this objective. The probabilistic structural performance evaluation of a HRS radiator sandwich panel was performed. The radiator panel structural performance was assessed in the presence of uncertainties in the loading, fabrication process variables, and material properties. The stress and displacement contours of the deterministic structural analysis at mean probability was performed and results presented. It is followed by a probabilistic evaluation to determine the effect of the primitive variables on the radiator panel structural performance. Based on uncertainties in material properties, structural geometry and loading, the results of the displacement and stress analysis are used as an input file for the probabilistic analysis of the panel. The sensitivity of the structural responses, such as maximum displacement and maximum tensile and compressive stresses of the facesheet in x and y directions and maximum VonMises stresses of the tube, to the loading and design variables is determined under the boundary condition where all edges of the radiator panel are pinned. Based on this study, design critical material and geometric parameters of the considered sandwich panel are identified.

  9. Study on bending behaviour of nickel–titanium rotary endodontic instruments by analytical and numerical analyses

    PubMed Central

    Tsao, C C; Liou, J U; Wen, P H; Peng, C C; Liu, T S

    2013-01-01

    Aim To develop analytical models and analyse the stress distribution and flexibility of nickel–titanium (NiTi) instruments subject to bending forces. Methodology The analytical method was used to analyse the behaviours of NiTi instruments under bending forces. Two NiTi instruments (RaCe and Mani NRT) with different cross-sections and geometries were considered. Analytical results were derived using Euler–Bernoulli nonlinear differential equations that took into account the screw pitch variation of these NiTi instruments. In addition, the nonlinear deformation analysis based on the analytical model and the finite element nonlinear analysis was carried out. Numerical results are obtained by carrying out a finite element method. Results According to analytical results, the maximum curvature of the instrument occurs near the instrument tip. Results of the finite element analysis revealed that the position of maximum von Mises stress was near the instrument tip. Therefore, the proposed analytical model can be used to predict the position of maximum curvature in the instrument where fracture may occur. Finally, results of analytical and numerical models were compatible. Conclusion The proposed analytical model was validated by numerical results in analysing bending deformation of NiTi instruments. The analytical model is useful in the design and analysis of instruments. The proposed theoretical model is effective in studying the flexibility of NiTi instruments. Compared with the finite element method, the analytical model can deal conveniently and effectively with the subject of bending behaviour of rotary NiTi endodontic instruments. PMID:23173762

  10. Reliability analysis of dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an

    2008-03-01

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  11. Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.

    In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less

  12. Brain Injury Differences in Frontal Impact Crash Using Different Simulation Strategies

    PubMed Central

    Ma, Chunsheng; Shen, Ming; Li, Peiyu; Zhang, Jinhuan

    2015-01-01

    In the real world crashes, brain injury is one of the leading causes of deaths. Using isolated human head finite element (FE) model to study the brain injury patterns and metrics has been a simplified methodology widely adopted, since it costs significantly lower computation resources than a whole human body model does. However, the degree of precision of this simplification remains questionable. This study compared these two kinds of methods: (1) using a whole human body model carried on the sled model and (2) using an isolated head model with prescribed head motions, to study the brain injury. The distribution of the von Mises stress (VMS), maximum principal strain (MPS), and cumulative strain damage measure (CSDM) was used to compare the two methods. The results showed that the VMS of brain mainly concentrated at the lower cerebrum and occipitotemporal region close to the cerebellum. The isolated head modelling strategy predicted higher levels of MPS and CSDM 5%, while the difference is small in CSDM 10% comparison. It suggests that isolated head model may not equivalently reflect the strain levels below the 10% compared to the whole human body model. PMID:26495029

  13. Fabrication of low-cost, cementless femoral stem 316L stainless steel using investment casting technique.

    PubMed

    Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Suhasril, Andril Arafat; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Omar, Mohd Afian; Abd Kader, Ab Saman; Mohd Noor, Alias; A Harris, Arief Ruhullah; Abdul Majid, Norazman

    2014-07-01

    Total hip arthroplasty is a flourishing orthopedic surgery, generating billions of dollars of revenue. The cost associated with the fabrication of implants has been increasing year by year, and this phenomenon has burdened the patient with extra charges. Consequently, this study will focus on designing an accurate implant via implementing the reverse engineering of three-dimensional morphological study based on a particular population. By using finite element analysis, this study will assist to predict the outcome and could become a useful tool for preclinical testing of newly designed implants. A prototype is then fabricated using 316L stainless steel by applying investment casting techniques that reduce manufacturing cost without jeopardizing implant quality. The finite element analysis showed that the maximum von Mises stress was 66.88 MPa proximally with a safety factor of 2.39 against endosteal fracture, and micromotion was 4.73 μm, which promotes osseointegration. This method offers a fabrication process of cementless femoral stems with lower cost, subsequently helping patients, particularly those from nondeveloped countries. Copyright © 2013 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  14. Investigation of grain-scale microstructural variability in tantalum using crystal plasticity-finite element simulations

    DOE PAGES

    Lim, Hojun; Dingreville, Rémi; Deibler, Lisa A.; ...

    2016-02-27

    In this research, a crystal plasticity-finite element (CP-FE) model is used to investigate the effects of microstructural variability at a notch tip in tantalum single crystals and polycrystals. It is shown that at the macroscopic scale, the mechanical response of single crystals is sensitive to the crystallographic orientation while the response of polycrystals shows relatively small susceptibility to it. However, at the microscopic scale, the local stress and strain fields in the vicinity of the crack tip are completely determined by the local crystallographic orientation at the crack tip for both single and polycrystalline specimens with similar mechanical field distributions.more » Variability in the local metrics used (maximum von Mises stress and equivalent plastic strain at 3% deformation) for 100 different realizations of polycrystals fluctuates by up to a factor of 2–7 depending on the local crystallographic texture. Comparison with experimental data shows that the CP model captures variability in stress–strain response of polycrystals that can be attributed to the grain-scale microstructural variability. In conclusion, this work provides a convenient approach to investigate fluctuations in the mechanical behavior of polycrystalline materials induced by grain morphology and crystallographic orientations.« less

  15. Flight Testing of Novel Compliant Spines for Passive Wing Morphing on Ornithopters

    NASA Technical Reports Server (NTRS)

    Wissa, Aimy; Guerreiro, Nelson; Grauer, Jared; Altenbuchner, Cornelia; Hubbard, James E., Jr.; Tummala, Yashwanth; Frecker, Mary; Roberts, Richard

    2013-01-01

    Unmanned Aerial Vehicles (UAVs) are proliferating in both the civil and military markets. Flapping wing UAVs, or ornithopters, have the potential to combine the agility and maneuverability of rotary wing aircraft with excellent performance in low Reynolds number flight regimes. The purpose of this paper is to present new free flight experimental results for an ornithopter equipped with one degree of freedom (1DOF) compliant spines that were designed and optimized in terms of mass, maximum von-Mises stress, and desired wing bending deflections. The spines were inserted in an experimental ornithopter wing spar in order to achieve a set of desired kinematics during the up and down strokes of a flapping cycle. The ornithopter was flown at Wright Patterson Air Force Base in the Air Force Research Laboratory Small Unmanned Air Systems (SUAS) indoor flight facility. Vicon motion tracking cameras were used to track the motion of the vehicle for five different wing configurations. The effect of the presence of the compliant spine on wing kinematics and leading edge spar deflection during flight is presented. Results show that the ornithopter with the compliant spine inserted in its wing reduced the body acceleration during the upstroke which translates into overall lift gains.

  16. The Effect of Composite Thickness on the Stress Distribution Pattern of Restored Premolar Teeth with Cusp Reduction.

    PubMed

    Panahandeh, Narges; Torabzadeh, Hassan; Ziaee, Nargess; Mahdian, Mina; Tootiaee, Bahman; Ghasemi, Amir

    2017-07-01

    Different thicknesses of restorative material can alter the stress distribution pattern in remaining tooth structure. The assumption is that a thicker composite restoration will induce a higher fracture resistance. Therefore, the present study evaluated the effect of composite thickness on stress distribution in a restored premolar with cusp reduction. A 3D solid model of a maxillary second premolar was prepared and meshed. MOD cavities were designed with different cusp reduction thicknesses (0, 0.5, 1, 1.5, 2.5 mm). Cavities were restored with Valux Plus composite. They were loaded with 200 N force on the occlusal surface in the direction of the long axis. Von Mises stresses were evaluated with Abaqus software. Stress increased from occlusal to gingival and was maximum in the cervical region. The stressed area in the palatal cusp was more than that of the buccal cusp. Increasing the thickness of composite altered the shear stress to compressive stress in the occlusal area of the teeth. The model with 2.5 mm cusp reduction exhibited the most even stress distribution. © 2015 by the American College of Prosthodontists.

  17. A Dictionary Approach to Electron Backscatter Diffraction Indexing.

    PubMed

    Chen, Yu H; Park, Se Un; Wei, Dennis; Newstadt, Greg; Jackson, Michael A; Simmons, Jeff P; De Graef, Marc; Hero, Alfred O

    2015-06-01

    We propose a framework for indexing of grain and subgrain structures in electron backscatter diffraction patterns of polycrystalline materials. We discretize the domain of a dynamical forward model onto a dense grid of orientations, producing a dictionary of patterns. For each measured pattern, we identify the most similar patterns in the dictionary, and identify boundaries, detect anomalies, and index crystal orientations. The statistical distribution of these closest matches is used in an unsupervised binary decision tree (DT) classifier to identify grain boundaries and anomalous regions. The DT classifies a pattern as an anomaly if it has an abnormally low similarity to any pattern in the dictionary. It classifies a pixel as being near a grain boundary if the highly ranked patterns in the dictionary differ significantly over the pixel's neighborhood. Indexing is accomplished by computing the mean orientation of the closest matches to each pattern. The mean orientation is estimated using a maximum likelihood approach that models the orientation distribution as a mixture of Von Mises-Fisher distributions over the quaternionic three sphere. The proposed dictionary matching approach permits segmentation, anomaly detection, and indexing to be performed in a unified manner with the additional benefit of uncertainty quantification.

  18. Failure Assessment of Brazed Structures

    NASA Technical Reports Server (NTRS)

    Flom, Yuri

    2012-01-01

    Despite the great advances in analytical methods available to structural engineers, designers of brazed structures have great difficulties in addressing fundamental questions related to the loadcarrying capabilities of brazed assemblies. In this chapter we will review why such common engineering tools as Finite Element Analysis (FEA) as well as many well-established theories (Tresca, von Mises, Highest Principal Stress, etc) don't work well for the brazed joints. This chapter will show how the classic approach of using interaction equations and the less known Coulomb-Mohr failure criterion can be employed to estimate Margins of Safety (MS) in brazed joints.

  19. A Modified Kolmogorov-Smirnov, Anderson-Darling, and Cramer-Von Mises Test for the Cauchy Distribution with Unknown Location and Scale Parameters.

    DTIC Science & Technology

    1985-12-01

    statistics, each of the a levels fall. The mirror image of this is to work with the percentiles, or the I - a levels . These then become the minimum...To be valid, the power would have to be close to the *-levels, and that Is the case. The powers are not exactly equal to the a - levels , but that is a...Information available increases with sample size. When a - levels are analyzed, for a = .0 1, the only reasonable power Is 33 L 4 against the

  20. Power of tests of normality for detecting contaminated normal samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thode, H.C. Jr.; Smith, L.A.; Finch, S.J.

    1981-01-01

    Seventeen tests of normality or goodness of fit were evaluated for power at detecting a contaminated normal sample. This study used 1000 replications each of samples of size 12, 17, 25, 33, 50, and 100 from six different contaminated normal distributions. The kurtosis test was the most powerful over all sample sizes and contaminations. The Hogg and weighted Kolmogorov-Smirnov tests were second. The Kolmogorov-Smirnov, chi-squared, Anderson-Darling, and Cramer-von-Mises tests had very low power at detecting contaminated normal random variables. Tables of the power of the tests and the power curves of certain tests are given.

  1. A nonlinear viscoelastic constitutive equation - Yield predictions in multiaxial deformations

    NASA Technical Reports Server (NTRS)

    Shay, R. M., Jr.; Caruthers, J. M.

    1987-01-01

    Yield stress predictions of a nonlinear viscoelastic constitutive equation for amorphous polymer solids have been obtained and are compared with the phenomenological von Mises yield criterion. Linear viscoelasticity theory has been extended to include finite strains and a material timescale that depends on the instantaneous temperature, volume, and pressure. Results are presented for yield and the correct temperature and strain-rate dependence in a variety of multiaxial deformations. The present nonlinear viscoelastic constitutive equation can be formulated in terms of either a Cauchy or second Piola-Kirchhoff stress tensor, and in terms of either atmospheric or hydrostatic pressure.

  2. Infinite von Mises-Fisher Mixture Modeling of Whole Brain fMRI Data.

    PubMed

    Røge, Rasmus E; Madsen, Kristoffer H; Schmidt, Mikkel N; Mørup, Morten

    2017-10-01

    Cluster analysis of functional magnetic resonance imaging (fMRI) data is often performed using gaussian mixture models, but when the time series are standardized such that the data reside on a hypersphere, this modeling assumption is questionable. The consequences of ignoring the underlying spherical manifold are rarely analyzed, in part due to the computational challenges imposed by directional statistics. In this letter, we discuss a Bayesian von Mises-Fisher (vMF) mixture model for data on the unit hypersphere and present an efficient inference procedure based on collapsed Markov chain Monte Carlo sampling. Comparing the vMF and gaussian mixture models on synthetic data, we demonstrate that the vMF model has a slight advantage inferring the true underlying clustering when compared to gaussian-based models on data generated from both a mixture of vMFs and a mixture of gaussians subsequently normalized. Thus, when performing model selection, the two models are not in agreement. Analyzing multisubject whole brain resting-state fMRI data from healthy adult subjects, we find that the vMF mixture model is considerably more reliable than the gaussian mixture model when comparing solutions across models trained on different groups of subjects, and again we find that the two models disagree on the optimal number of components. The analysis indicates that the fMRI data support more than a thousand clusters, and we confirm this is not a result of overfitting by demonstrating better prediction on data from held-out subjects. Our results highlight the utility of using directional statistics to model standardized fMRI data and demonstrate that whole brain segmentation of fMRI data requires a very large number of functional units in order to adequately account for the discernible statistical patterns in the data.

  3. A finite element analysis of the stress distribution to the mandible from impact forces with various orientations of third molars*

    PubMed Central

    Liu, Yun-feng; Wang, Russell; Baur, Dale A.; Jiang, Xian-feng

    2018-01-01

    Objective: To investigate the stress distribution to the mandible, with and without impacted third molars (IM3s) at various orientations, resulting from a 2000-Newton impact force either from the anterior midline or from the body of the mandible. Materials and methods: A 3D mandibular virtual model from a healthy dentate patient was created and the mechanical properties of the mandible were categorized to 9 levels based on the Hounsfield unit measured from computed tomography (CT) images. Von Mises stress distributions to the mandibular angle and condylar areas from static impact forces (Load I-front blow and Load II left blow) were evaluated using finite element analysis (FEA). Six groups with IM3 were included: full horizontal bony, full vertical bony, full 450 mesioangular bony, partial horizontal bony, partial vertical, and partial 450 mesioangular bony impaction, and a baseline group with no third molars. Results: Von Mises stresses in the condyle and angle areas were higher for partially than for fully impacted third molars under both loading conditions, with partial horizontal IM3 showing the highest fracture risk. Stresses were higher on the contralateral than on the ipsilateral side. Under Load II, the angle area had the highest stress for various orientations of IM3s. The condylar region had the highest stress when IM3s were absent. Conclusions: High-impact forces are more likely to cause condylar rather than angular fracture when IM3s are missing. The risk of mandibular fracture is higher for partially than fully impacted third molars, with the angulation of impaction having little effect on facture risk. PMID:29308606

  4. The Role of Posterior Screw Fixation in Single-Level Transforaminal Lumbar Interbody Fusion During Whole Body Vibration: A Finite Element Study.

    PubMed

    Fan, Wei; Guo, Li-Xin

    2018-06-01

    Few studies have evaluated the need for supplementary instrumentation after lumbar interbody fusion under the condition of whole body vibration (WBV) that is typically present in vehicles. This study aimed to determine the effect of posterior pedicle screw fixation on dynamic response of the whole lumbar spine to vertical WBV after transforaminal lumbar interbody fusion (TLIF). A previously validated nonlinear, osteoligamentous finite element (FE) model of the intact L1-sacrum human lumbar spine was modified to simulate single-level (L4-L5) TLIF without and with bilateral pedicle screw fixation (BPSF). Transit dynamic analysis was performed on the 2 developed models under a sinusoidal vertical vibration load of ±40 N and a compressive follower preload of 400 N. The resulting dynamic response results for the 2 models in terms of stresses and deformations were recorded and compared. When compared with no fixation, BPSF decreased dynamic responses of the spinal levels to the vertical vibration after TLIF. At the fused level (L4-L5), vibration amplitudes of the von-Mises stresses in L4 inferior endplate and L5 superior endplate decreased after BPSF by 48.0% and 46.4%, respectively. At other disc levels (L1-L2, L2-L3, L3-L4, and L5-S1), vibration amplitudes of the disc bulge, von-Mises stress in annulus ground substance and intradiscal pressure also produced 4.2%-9.0%, 2.3%-8.9%, and 3.4%-8.8% deceases, respectively, after BPSF. After TLIF, application of BPSF can be helpful in the prevention of spine injury during vertical WBV. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Influence of length and diameter of implants associated with distal extension removable partial dentures.

    PubMed

    Verri, Fellippo Ramos; Pellizzer, Eduardo Piza; Rocha, Eduardo Passos; Pereira, João Antônio

    2007-09-01

    The aim of this study was to evaluate the influence of the length and diameter of the implant incorporated under the saddle of a distal-extension removable partial denture, acting as support. Six hemi-mandibular models were made with the presence of left inferior cuspid and first bicuspid, with the following differences: model A, without removable partial denture; model B, removable partial denture only; model C, removable partial denture and implant of 3.75 x x mm; model D, removable partial denture and implant of 3.75 x x3 mm; model E, removable partial denture and implant of 5 x x mm; and model F, removable partial denture and implant of 5 x x3 mm. These models were designed with the aid of AutoCAD 2000 (Autodesk, Inc., San Rafael, CA) and processed for finite element analysis by ANSYS 5.4 (Swanson Analysis Systems, Houston, PA). The loads applied were 50 N vertical on each cuspid point. It was noted that the presence of the removable partial denture overloaded the supporting tooth and other structures. The introduction of the implant reduced tensions, mainly at the extremities of the edentulous edge. Both the length and diameter tended to reduce tensions as their dimensions increased. Increasing the length of the implant had a great influence on the decrease of displacement and von Mises tension values. Increasing the diameter of the implant had a great influence on the decrease of von Mises tension values, but did not influence the displacement values. According to the results of this study, it is a good choice to use the greater and larger implant possible in the association between implant and distal extension removable partial denture.

  6. Investigation of the Influence of Shapes-Texture on Surface Deformation of UHMWPE as a Bearing Material in Static Normal Load and Rolling Contact

    NASA Astrophysics Data System (ADS)

    Lestari, W. D.; Ismail, R.; Jamari, J.; Bayuseno, A. P.

    2017-05-01

    Surface texture is a common method for improving wear properties of a tribo-pair of soft and hard bearing material. The reduction of wear rates on the contacting surface material is becoming important issues. In the present study, analysis of the contact pressure on the flat surface of UHMWPE (Ultra High Molecular Weight Polyethylene) under the static- and rolling motion with the surface of steel ball used the 3D finite element method (FEM) (the ABAQUS software version 6.12). Five shaped-texture models (square, circle, ellipse, triangle, and chevron) were presented on the flat surface for analysis. The normal load of 17, 30 and 50 N was deliberately set-up for static and rolling contact analysis. The contact pressure was determined to predict the wear behavior of the shaped-texture on the flat surface of UHMWPE. The results have shown that the static normal load yielded the lowest von-Mises stress distribution on the shaped-texture of the ellipse for all values applied a load, while the square shape experienced the highest stress distribution. Under rolling contact, however, the increasing load yielded the increasing von Mises stress distribution for the texture with a triangle shape. Moreover, the texture shapes for circle, ellipse, and chevron respectively, may undergo the lowest stress distribution for all load. The wear calculation provided that the circle and square shape may undergo the highest wear rates. Obviously, the surface texture of circle, ellipse, and chevron may experience the lowest wear rates and is potential for use in the surface engineering of bearing materials.

  7. Biomechanical comparison of two different collar structured implants supporting 3-unit fixed partial denture: a 3-D FEM study.

    PubMed

    Meriç, Gökçe; Erkmen, Erkan; Kurt, Ahmet; Eser, Atilim; Ozden, Ahmet Utku

    2012-01-01

    The purpose of the study was to compare the effects of two distinct collar geometries of implants on stress distribution in the bone as well as in the fixture-abutment complex, in the framework and in the veneering material of 3-unit fixed partial denture (FPD). The 3-dimensional finite element analysis method was selected to evaluate the stress distribution in the system composed of 3-unit FPD supported by two different dental implant systems with two distinct collar geometries; microthread collar structure (MCS) and non-microthread collar structure (NMCS). In separate load cases, 300 N vertical, 150 N oblique and 60 N horizontal, forces were utilized to simulate the multidirectional chewing forces. Tensile and compressive stress values in the cortical and cancellous bone and von Mises stresses in the fixture-abutment complex, in the framework and veneering material, were simulated as a body and investigated separately. In the cortical bone lower stress values were found in the MCS model, when compared with NMCS. In the cancellous bone, lower stress values were observed in the NMCS model when compared with MCS. In the implant-abutment complex, highest von Mises stress values were noted in the NMCS model; however, in the framework and veneering material, highest stress values were calculated in MCS model. MCS implants when compared with NMCS implants supporting 3-unit FPDs decrease the stress values in the cortical bone and implant-abutment complex. The results of the present study will be evaluated as a base for our ongoing FEA studies focused on stress distribution around the microthread and non-microthread collar geometries with various prosthesis design.

  8. Stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture: a comparative finite element study.

    PubMed

    Huang, Xiaowei; Zhi, Zhongzheng; Yu, Baoqing; Chen, Fancheng

    2015-11-25

    The purpose of this study is to compare the stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture. A three-dimensional (3D) finite element model of the medial tibial plateau fracture (Schatzker type IV fracture) was created. An axial force of 2500 N with a distribution of 60% to the medial compartment was applied to simulate the axial compressive load on an adult knee during single-limb stance. The equivalent von Mises stress, displacement of the model relative to the distal tibia, and displacement of the implants were used as the output measures. The mean stress value of the plate-screw fixation system was 18.78 MPa, which was significantly (P < 0.001) smaller than that of the screw fixation system. The maximal value of displacement (sum) in the plate-screw fixation system was 2.46 mm, which was lower than that in the screw fixation system (3.91 mm). The peak stress value of the triangular fragment in the plate-screw fixation system model was 42.04 MPa, which was higher than that in the screw fixation model (24.18 MPa). But the mean stress of the triangular fractured fragment in the screw fixation model was significantly higher in terms of equivalent von Mises stress (EVMS), x-axis, and z-axis (P < 0.001). This study demonstrated that the load transmission mechanism between plate-screw fixation system and screw fixation system was different and the stability provided by the plate-screw fixation system was superior to the screw fixation system.

  9. Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue.

    PubMed

    Kelly, Nicola; McGarry, J Patrick

    2012-05-01

    The inelastic pressure dependent compressive behaviour of bovine trabecular bone is investigated through experimental and computational analysis. Two loading configurations are implemented, uniaxial and confined compression, providing two distinct loading paths in the von Mises-pressure stress plane. Experimental results reveal distinctive yielding followed by a constant nominal stress plateau for both uniaxial and confined compression. Computational simulation of the experimental tests using the Drucker-Prager and Mohr-Coulomb plasticity models fails to capture the confined compression behaviour of trabecular bone. The high pressure developed during confined compression does not result in plastic deformation using these formulations, and a near elastic response is computed. In contrast, the crushable foam plasticity models provide accurate simulation of the confined compression tests, with distinctive yield and plateau behaviour being predicted. The elliptical yield surfaces of the crushable foam formulations in the von Mises-pressure stress plane accurately characterise the plastic behaviour of trabecular bone. Results reveal that the hydrostatic yield stress is equal to the uniaxial yield stress for trabecular bone, demonstrating the importance of accurate characterisation and simulation of the pressure dependent plasticity. It is also demonstrated in this study that a commercially available trabecular bone analogue material, cellular rigid polyurethane foam, exhibits similar pressure dependent yield behaviour, despite having a lower stiffness and strength than trabecular bone. This study provides a novel insight into the pressure dependent yield behaviour of trabecular bone, demonstrating the inadequacy of uniaxial testing alone. For the first time, crushable foam plasticity formulations are implemented for trabecular bone. The enhanced understanding of the inelastic behaviour of trabecular bone established in this study will allow for more realistic simulation of orthopaedic device implantation and failure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Parametric optimization and design validation based on finite element analysis of hybrid socket adapter for transfemoral prosthetic knee.

    PubMed

    Kumar, Neelesh

    2014-10-01

    Finite element analysis has been universally employed for the stress and strain analysis in lower extremity prosthetics. The socket adapter was the principal subject of interest due to its importance in deciding the knee motion range. This article focused on the static and dynamic stress analysis of the designed hybrid adapter developed by the authors. A standard mechanical design validation approach using von Mises was followed. Four materials were considered for the analysis, namely, carbon fiber, oil-filled nylon, Al-6061, and mild steel. The paper analyses the static and dynamic stress on designed hybrid adapter which incorporates features of conventional male and female socket adapters. The finite element analysis was carried out for possible different angles of knee flexion simulating static and dynamic gait situation. Research was carried out on available design of socket adapter. Mechanical design of hybrid adapter was conceptualized and a CAD model was generated using Inventor modelling software. Static and dynamic stress analysis was carried out on different materials for optimization. The finite element analysis was carried out on the software Autodesk Inventor Professional Ver. 2011. The peak value of von Mises stress occurred in the neck region of the adapter and in the lower face region at rod eye-adapter junction in static and dynamic analyses, respectively. Oil-filled nylon was found to be the best material among the four with respect to strength, weight, and cost. Research investigations on newer materials for development of improved prosthesis will immensely benefit the amputees. The study analyze the static and dynamic stress on the knee joint adapter to provide better material used for hybrid design of adapter. © The International Society for Prosthetics and Orthotics 2013.

  11. Computational comparison of three posterior lumbar interbody fusion techniques by using porous titanium interbody cages with 50% porosity.

    PubMed

    Lee, Yung-Heng; Chung, Chi-Jen; Wang, Chih-Wei; Peng, Yao-Te; Chang, Chih-Han; Chen, Chih-Hsien; Chen, Yen-Nien; Li, Chun-Ting

    2016-04-01

    This study investigated the biomechanical response of porous cages and lumbar spine segments immediately after surgery and after bone fusion, in addition to the long-term effects of various posterior lumbar interbody fusion (PLIF) techniques, by using the finite element method. Lumbar L3-L4 models based on three PLIF techniques (a single cage at the center of the intervertebral space, a single cage half-anterior to the intervertebral space, and two cages bilateral to the intervertebral space) with and without bone ingrowth were used to determine the biomechanical response of porous cages and lumbar segments instrumented with porous titanium cages (cage porosity=50%, pore diameter=1mm). The results indicated that bone fusion enhanced the stability of the lumbar segments with porous cages without any posterior instrumentation and reduced the peak von Mises stress in the cortical bones and porous cages. Two cages placed bilateral to the intervertebral space achieved the highest structural stability in the lumbar segment and lowest von Mises stress in the cages under both bone fusion conditions. Under identical loading (2-Nm), the range of motion in the single cage at the center of the intervertebral space with bone fusion decreased by 11% (from 1.18° to 1.05°) during flexion and by 66.5% (from 4.46° to 1.5°) during extension in the single cage half-anterior to the intervertebral space with bone fusion compared with no-fusion models. Thus, two porous titanium cages with 50% porosity can achieve high stability of a lumbar segment with PLIF. If only one cage is available, placing the cage half-anterior to the intervertebral space is recommended for managing degenerated lumbar segments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Influence of different abutment diameter of implants on the peri-implant stress in the crestal bone: A three-dimensional finite element analysis--In vitro study.

    PubMed

    Aradya, Anupama; Kumar, U Krishna; Chowdhary, Ramesh

    2016-01-01

    The study was designed to evaluate and compare stress distribution in transcortical section of bone with normal abutment and platform switched abutment under vertical and oblique forces in posterior mandible region. A three-dimensional finite element model was designed using ANSYS 13.0 software. The type of bone selection for the model was made of type II mandibular bone, having cortical bone thickness ranging from 0.595 mm to 1.515 mm with the crestal region measuring 1.5 mm surrounding dense trabecular bone. The implant will be modulated at 5 mm restorative platform and tapering down to 4.5 mm wide at the threads, 13 mm long with an abutment 3 mm in height. The models will be designed for two situations: (1) An implant with a 5 mm diameter abutment representing a standard platform in the posterior mandible region. (2) An implant with a 4.5 mm diameter abutment representing platform switching in the posterior mandible region. Force application was performed in both oblique and vertical conditions using 100 N as a representative masticatory force. For oblique loading, a force of 100 N was applied at 15° from the vertical axis. von Mises stress analysis was evaluated. The results of the study showed cortical stress in the conventional and platform switching model under oblique forces were 59.329 MPa and 39.952 MPa, respectively. Cortical stress in the conventional and platform switching model under vertical forces was 13.914 MPa and 12.793 MPa, respectively. Results from this study showed the platform switched abutment led to relative decrease in von Mises stress in transcortical section of bone compared to normal abutment under vertical and oblique forces in posterior mandible region.

  13. Molecular dynamics simulations showing 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) membrane mechanoporation damage under different strain paths.

    PubMed

    Murphy, M A; Mun, Sungkwang; Horstemeyer, M F; Baskes, M I; Bakhtiary, A; LaPlaca, Michelle C; Gwaltney, Steven R; Williams, Lakiesha N; Prabhu, R K

    2018-04-09

    Continuum finite element material models used for traumatic brain injury lack local injury parameters necessitating nanoscale mechanical injury mechanisms be incorporated. One such mechanism is membrane mechanoporation, which can occur during physical insults and can be devastating to cells, depending on the level of disruption. The current study investigates the strain state dependence of phospholipid bilayer mechanoporation and failure. Using molecular dynamics, a simplified membrane, consisting of 72 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) phospholipids, was subjected to equibiaxial, 2:1 non-equibiaxial, 4:1 non-equibiaxial, strip biaxial, and uniaxial tensile deformations at a von Mises strain rate of 5.45 × 10 8 s -1 , resulting in velocities in the range of 1 to 4.6 m·s -1 . A water bridge forming through both phospholipid bilayer leaflets was used to determine structural failure. The stress magnitude, failure strain, headgroup clustering, and damage responses were found to be strain state-dependent. The strain state order of detrimentality in descending order was equibiaxial, 2:1 non-equibiaxial, 4:1 non-equibiaxial, strip biaxial, and uniaxial. The phospholipid bilayer failed at von Mises strains of .46, .47, .53, .77, and 1.67 during these respective strain path simulations. Additionally, a Membrane Failure Limit Diagram (MFLD) was created using the pore nucleation, growth, and failure strains to demonstrate safe and unsafe membrane deformation regions. This MFLD allowed representative equations to be derived to predict membrane failure from in-plane strains. These results provide the basis to implement a more accurate mechano-physiological internal state variable continuum model that captures lower length scale damage and will aid in developing higher fidelity injury models.

  14. Biomechanical analysis of a novel hemipelvic endoprosthesis during ascending and descending stairs.

    PubMed

    Liu, Dongxu; Hua, Zikai; Yan, Xinyi; Jin, Zhongmin

    2016-10-01

    In this study, the biomechanical characteristic of a newly developed adjustable hemipelvic prosthesis under dynamic loading conditions was investigated using explicit finite element method. Both intact and reconstructed pelvis models, including pelvis, femur and soft tissues, were established referring to human anatomic data using a solid geometry of a human pelvic bone. Hip contact forces during ascending stairs and descending stairs were imposed on pelvic models. Results showed that maximum von Mises stresses in reconstructed pelvis were 421.85 MPa for prostheses and 109.12 MPa for cortical bone, which were still within a low and elastic range below the yielding strength of Ti-6Al-4V and cortical bone, respectively. Besides, no significant difference of load transferring paths along pelvic rings was observed between the reconstructed pelvis and natural pelvis models. And good agreement was found between the overall distribution of maximum principal stresses in trabecular bones of reconstructed pelvis and natural pelvis, while at limited stances, principal stresses in trabecular bone of reconstructed pelvis were slightly lower than natural pelvis. The results indicated that the load transferring function of pelvis could be restored by this adjustable hemipelvic prosthesis. Moreover, the prosthesis was predicted to have a reliable short- and long-term performance. However, due to the occurrence of slightly lower principal stresses at a few stances, a porous structure applied on the interface between the prosthesis and bone would be studied in future work to obtain better long-term stability. © IMechE 2016.

  15. Dynamic finite element simulation of dental prostheses during chewing using muscle equivalent force and trajectory approaches.

    PubMed

    Razaghi, Reza; Biglari, Hasan; Karimi, Alireza

    2017-05-01

    The long-term application of dental prostheses inside the bone has a narrow relation to its biomechanical performance. Chewing is the most complicated function of a dental implant as it implements different forces to the implant at various directions. Therefore, a suitable holistic modelling of the jaw bone, implant, food, muscles, and their forces would be deemed significant to figure out the durability as well as functionality of a dental implant while chewing. So far, two approaches have been proposed to employ the muscle forces into the Finite Element (FE) models, i.e. Muscle Equivalent Force (MEF) and trajectory. This study aimed at propounding a new three-dimensional dynamic FE model based on two muscle forces modelling approaches in order to investigate the stresses and deformations in the dental prosthesis as well as maxillary bone during the time of chewing a cornflakes bio. The results revealed that both contact and the maximum von Mises stress in the implant and bones for trajectory approach considerably exceed those of the MEF. The maximum stresses, moreover, are located around the neck of implant which should be both clinically and structurally strong enough to functionally maintain the bone-implant interface. In addition, a higher displacement due to compressive load is observed for the implant head in trajectory approach. The results suggest the benefits provided by trajectory approach since MEF approach would significantly underestimate the stresses and deformations in both the dental prosthesis and bones.

  16. A Comparative Analysis on Two Types of Oral Implants, Bone-Level and Tissue-Level, with Different Cantilever Lengths of Fixed Prosthesis.

    PubMed

    Mosavar, Alireza; Nili, Monireh; Hashemi, Sayed Raouf; Kadkhodaei, Mahmoud

    2017-06-01

    Depending on esthetic, anatomical, and functional aspects, in implant-prosthetic restoration of a completely edentulous jaw, the selection of implant type is highly important; however, bone- and tissue-level implants and their stress distribution in bone have not yet been comparatively investigated. Hence, finite element analysis was used to study the influence of cantilever length in a fixed prosthesis on stress distribution in peri-implant bone around these two types of oral implants. A 3D edentulous mandible was modeled. In simulations, a framework with four posterior cantilever lengths and two types of implants, bone-level and tissue-level, was considered. A compressive load was applied to the distal regions of the cantilevers, and the von-Mises stress of peri-implant bone was investigated. The independent t-test and the Pearson correlation coefficient analyzed the results (α = 0.05). Stresses in the cortical bone around the bone-level implants were greater than those in the tissue-level implants with the same cantilever length. In addition, by extending the cantilever length, the stress values in peri-implant bone increased. Therefore, when the cantilever was at its maximum length, the maximum stress was in cortical bone and around the bone-level distal implants. The results of the present study indicate that treatment with tissue-level implants is potentially more advantageous than with bone-level implants for implant-supported fixed prostheses. © 2015 by the American College of Prosthodontists.

  17. Analysis of load distribution in tooth-implant supported fixed partial dentures by the use of resilient abutment.

    PubMed

    Glisić, Mirko; Stamenković, Dragoslav; Grbović, Aleksandar; Todorović, Aleksandar; Marković, Aleksa; Trifković, Branka

    2016-01-01

    Differences between the tooth and implant response to load can lead to many biological and technical implications in the conditions of occlusal forces. The objective of this study was to analyze load distribution in tooth/implant-supported fixed partial dentures with the use of resilient TSA (Titan Shock Absorber, BoneCare GmbH, Augsburg, Germany) abutment and conventional non-resilient abutment using finite element method. This study presents two basic 3D models. For one model a standard non-resilient abutment is used, and on the implant of the second model a resilient TSA abutment is applied. The virtual model contains drawn contours of tooth, mucous membranes, implant, cortical bones and spongiosa, abutment and suprastructure. The experiment used 500 N of vertical force, applied in three different cases of axial load. Calculations of von Mises equivalent stresses of the tooth root and periodontium, implants and peri-implant tissue were made. For the model to which a non-resilient abutment is applied, maximum stress values in all three cases are observed in the cortical part of the bone (maximum stress value of 49.7 MPa). Measurements of stress and deformation in the bone tissue in the model with application of the resilientTSA abutment demonstrated similar distribution; however, these values are many times lower than in the model with non-resilient TSA abutment (maximum stress value of 28.9 MPa). Application of the resilient TSA abutment results in more equal distribution of stress and deformations in the bone tissue under vertical forces. These values are many times lower than in the model with the non-resilient abutment.

  18. Finite element analysis of a novel implant distribution to support maxillary overdentures.

    PubMed

    Osman, Reham B; Elkhadem, Amr H; Ma, Sunyoung; Swain, Michael V

    2013-01-01

    To evaluate the biomechanics of a novel implant placement distribution and compare it with that of conventional maxillary overdenture support using three-dimensional finite element analysis (FEA). The application of zirconia implants in the context of this novel design was also evaluated. Detailed FEA models were created to analyze the loading responses of two different distributions of implants to support maxillary overdentures. The two implant distributions were as follows: the conventional design (D1) included four unsplinted implants in the premolar regions, whereas the novel design (D2) included one midpalatal implant, bilateral canine/premolar implants, and one anterior off-center crestal implant. Anatomical models were created with computed tomographic data and static loads were applied axially and obliquely. Von Mises stresses and equivalent strains generated in peri-implant bone and first principal stresses in the implants were calculated, including any denture displacement. Comparable stress and strain values were seen in the peri-implant bone for both designs. A significant decrease in the first principal stresses of D2 implants was observed with oblique loads. The maximum equivalent strain produced in the peri-implant region was mostly within the range for bone augmentation. D2 displayed lower maximum displacement values than D1. Maximum tensile stresses in the zirconia implants for either design were well below their fracture strength. A novel four-implant distribution involving midpalatal and crestal implants may be an alternative to the conventional design used for maxillary overdentures. This is particularly relevant when anatomical considerations prevent the placement of four anterior crestal implants. Zirconia implants may also be a valid option for a selected group of patients or for those requesting metal-free restorations. Prospective clinical studies are required to confirm these in vitro results.

  19. The Inclusion of In-Plane Stresses in Delamination Criteria

    NASA Technical Reports Server (NTRS)

    Vizzini, Anthony J.; Fenske, Matthew T.

    1998-01-01

    A study of delamination is performed including strength of materials and fracture mechanics approaches with emphasis placed on methods of delamination prediction. Evidence is presented which supports the inclusion of the in-plane stresses in addition to the inter-laminar stress terms in delamination criteria. The delamination can be modeled as a resin rich region in between ply sets. The entire six component stress state in this resin layer is calculated through a finite element analysis and inputted into a new Modified Von Mises Delamination Criterion. This criterion builds onto previous criteria by including all six stress components. The MVMDC shows improved correlation to experimental data.

  20. Transformation of localized necking of strain space into stress space for advanced high strength steel sheet

    NASA Astrophysics Data System (ADS)

    Nakwattanaset, Aeksuwat; Suranuntchai, Surasak

    2018-03-01

    Normally, Forming Limit Curves (FLCs) can’t explain for shear fracture better than Damage Curve, this article aims to show the experimental of Forming Limit Curve (FLC) for Advanced High Strength Steel (AHSS) sheets grade JAC780Y with the Nakazima forming test and tensile tests of different sample geometries. From these results, the Forming Limit Curve (strain space) was transformed to damage curve (stress space) between plastic strain and stress triaxiality. Therefore, Stress space transformed using by Hill-48 and von-Mises yield function. This article shows that two of these yield criterions can use in the transformation.

  1. [Analysis of the influence of lower premolar rotation on TMJ stress distribution by finite element method].

    PubMed

    Zhang, Yuan; Wang, Mei-qing; Ling, Wei

    2005-10-01

    To evaluate the resultant differences of stress distribution in bilateral condyle when occlusal loads were changed with teeth rotation. A three-dimensional FEA model containing human TMJ and left lower second premolar was developed using commercial FEA software ANSYS. Lower second premolar was applied with ICO occlusal loading in the load case 1. According to the same upper dentition in the load case 2, lower premolar was applied with occlusal loading when it was rotated 30 degree counter-clockwise in Frankfort horizontal plane level. In this two load cases,the different stress distributions of the condyle was investigated. The stress distribution of loading side condyle had changed abnormally when premolar rotation was performed. It had showed more disorderly than ICO loading in load case 1. In load case 1 the maximum main stress and Von Mises stress values increased from medial pole to lateral pole. In load case 2,the stress values mainly decreased from medial pole to lateral pole, but along the path there were some parts with values-increasing. The stress values of bilateral condyle in load case 2 were lower than that in load case 1, especially for the stress values of the opposite condyle. The stress distribution of loading side condyle got in disorder resulting from rotation of unilateral lower premolar.

  2. Biomechanical Evaluation of Different Fixation Methods for Mandibular Anterior Segmental Osteotomy Using Finite Element Analysis, Part Two: Superior Repositioning Surgery With Bone Allograft.

    PubMed

    Kilinç, Yeliz; Erkmen, Erkan; Kurt, Ahmet

    2016-01-01

    In this study, the biomechanical behavior of different fixation methods used to fix the mandibular anterior segment following various amounts of superior repositioning was evaluated by using Finite Element Analysis (FEA). The three-dimensional finite element models representing 3 and 5 mm superior repositioning were generated. The gap in between segments was assumed to be filled by block bone allograft and resignated to be in perfect contact with the mandible and segmented bone. Six different finite element models with 2 distinct mobilization rate including 3 different fixation configurations, double right L (DRL), double left L (DLL), or double I (DI) miniplates with monocortical screws, correspondingly were created. A comparative evaluation has been made under vertical, horizontal and oblique loads. The von Mises and principal maximum stress (Pmax) values were calculated by finite element solver programme. The first part of our ongoing Finite Element Analysis research has been addressed to the mechanical behavior of the same fixation configurations in nongrafted models. In comparison with the findings of the first part of the study, it was concluded that bone graft offers superior mechanical stability without any limitation of mobilization and less stress on the fixative appliances as well as in the bone.

  3. Multi-objective shape optimization of plate structure under stress criteria based on sub-structured mixed FEM and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Garambois, Pierre; Besset, Sebastien; Jézéquel, Louis

    2015-07-01

    This paper presents a methodology for the multi-objective (MO) shape optimization of plate structure under stress criteria, based on a mixed Finite Element Model (FEM) enhanced with a sub-structuring method. The optimization is performed with a classical Genetic Algorithm (GA) method based on Pareto-optimal solutions and considers thickness distributions parameters and antagonist objectives among them stress criteria. We implement a displacement-stress Dynamic Mixed FEM (DM-FEM) for plate structure vibrations analysis. Such a model gives a privileged access to the stress within the plate structure compared to primal classical FEM, and features a linear dependence to the thickness parameters. A sub-structuring reduction method is also computed in order to reduce the size of the mixed FEM and split the given structure into smaller ones with their own thickness parameters. Those methods combined enable a fast and stress-wise efficient structure analysis, and improve the performance of the repetitive GA. A few cases of minimizing the mass and the maximum Von Mises stress within a plate structure under a dynamic load put forward the relevance of our method with promising results. It is able to satisfy multiple damage criteria with different thickness distributions, and use a smaller FEM.

  4. Mechanical characterization and modeling of brazed tungsten and Cu-Cr-Zr alloy using stress relief interlayers

    NASA Astrophysics Data System (ADS)

    Qu, Dandan; Zhou, Zhangjian; Yum, Youngjin; Aktaa, Jarir

    2014-12-01

    A rapidly solidified foil-type Ti-Zr based amorphous filler with a melting temperature of 850 °C was used to braze tungsten to Cu-Cr-Zr alloy for water cooled divertors and plasma facing components application. Brazed joints of dissimilar materials suffer from a mismatch in coefficients of thermal expansion. In order to release the residual stress caused by the mismatch, brazed joints of tungsten and Cu-Cr-Zr alloy using different interlayers were studied. The shear strength tests of brazed W/Cu joints show that the average strength of the joint with a W70Cu30 composite plate interlayer reached 119.8 MPa, and the average strength of the joint with oxygen free high conductivity copper (OFHC Cu)/Mo multi-interlayers reached 140.8 MPa, while the joint without interlayer was only 16.6 MPa. Finite element method (FEM) has been performed to investigate the stress distribution and effect of stress relief interlayers. FEM results show that the maximum von Mises stress occurs in the tungsten/filler interface and that the filler suffers the peak residual stresses and becomes the weakest zone. And the use of OFHC Cu/Mo multi-interlayers can reduce the residual stress significantly, which agrees with the mechanical experiment data.

  5. Anatomical evaluation and stress distribution of intact canine femur.

    PubMed

    Verim, Ozgur; Tasgetiren, Suleyman; Er, Mehmet S; Ozdemir, Vural; Yuran, Ahmet F

    2013-03-01

    In the biomedical field, three-dimensional (3D) modeling and analysis of bones and tissues has steadily gained in importance. The aim of this study was to produce more accurate 3D models of the canine femur derived from computed tomography (CT) data by using several modeling software programs and two different methods. The accuracy of the analysis depends on the modeling process and the right boundary conditions. Solidworks, Rapidform, Inventor, and 3DsMax software programs were used to create 3D models. Data derived from CT were converted into 3D models using two different methods: in the first, 3D models were generated using boundary lines, while in the second, 3D models were generated using point clouds. Stress analyses in the models were made by ANSYS v12, also considering any muscle forces acting on the canine femur. When stress values and statistical values were taken into consideration, more accurate models were obtained with the point cloud method. It was found that the maximum von Mises stress on the canine femur shaft was 34.8 MPa. Stress and accuracy values were obtained from the model formed using the Rapidform software. The values obtained were similar to those in other studies in the literature. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Research on the Micro Sheet Stamping Process Using Plasticine as Soft Punch

    PubMed Central

    Wang, Xiao; Zhang, Di; Gu, Chunxing; Shen, Zongbao; Liu, Huixia

    2014-01-01

    Plasticine is widely used in the analysis of metal forming processes, due to its excellent material flow ability. In this study, plasticine is used as the soft punch to fabricate array micro-channels on metal sheet in the micro sheet stamping process. This is because plasticine can produce a large material flow after being subjected to force and through the material flow, the plasticine can cause the sheet to fill into the micro-channels of the rigid die, leading to the generation of micro-channels in the sheet. The distribution of array micro-channels was investigated as well as the influence of load forces on the sheet deformations. It was found that the depth of micro-channels increases as the load force increases. When the load force reaches a certain level, a crack can be observed. The micro sheet stamping process was also investigated by the method of numerical simulation. The obtained experimental and numerical results for the stamping process showed that they were in good agreement. Additionally, from the simulation results, it can be seen that the corner region of the micro-channel-shape work piece has a risk to crack due to the existence of maximum von Mises stress and significant thinning. PMID:28788668

  7. Effect of Notches on Creep-Fatigue Behavior of a P/M Nickel-Based Superalloy

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Gabb, Timothy P.; Ghosn, Louis J.; Gayda, John, Jr.

    2015-01-01

    A study was performed to determine and model the effect of high temperature dwells on notched low cycle fatigue (NLCF) and notch stress rupture behavior of a fine grain LSHR powder metallurgy (PM) nickel-based superalloy. It was shown that a 90 second dwell applied at the minimum stress (min dwell) was considerably more detrimental to the NLCF lives than similar dwell applied at the maximum stress (max dwell). The short min dwell NLCF lives were shown to be caused by growth of small oxide blisters which caused preferential cracking when coupled with high concentrated notch root stresses. The cyclic max dwell notch tests failed mostly by a creep accumulation, not by fatigue, with the crack origin shifting internally to a substantial distance away from the notch root. The classical von Mises plastic flow model was unable to match the experimental results while the hydrostatic stress profile generated using the Drucker-Prager plasticity flow model was consistent with the experimental findings. The max dwell NLCF and notch stress rupture tests exhibited substantial creep notch strengthening. The triaxial Bridgman effective stress parameter was able to account for the notch strengthening by collapsing the notched and uniform gage geometry test data into a singular grouping.

  8. Effect of Endocrown Restorations with Different CAD/CAM Materials: 3D Finite Element and Weibull Analyses

    PubMed Central

    Ulusoy, Nuran

    2017-01-01

    The aim of this study was to evaluate the effects of two endocrown designs and computer aided design/manufacturing (CAD/CAM) materials on stress distribution and failure probability of restorations applied to severely damaged endodontically treated maxillary first premolar tooth (MFP). Two types of designs without and with 3 mm intraradicular extensions, endocrown (E) and modified endocrown (ME), were modeled on a 3D Finite element (FE) model of the MFP. Vitablocks Mark II (VMII), Vita Enamic (VE), and Lava Ultimate (LU) CAD/CAM materials were used for each type of design. von Mises and maximum principle values were evaluated and the Weibull function was incorporated with FE analysis to calculate the long term failure probability. Regarding the stresses that occurred in enamel, for each group of material, ME restoration design transmitted less stress than endocrown. During normal occlusal function, the overall failure probability was minimum for ME with VMII. ME restoration design with VE was the best restorative option for premolar teeth with extensive loss of coronal structure under high occlusal loads. Therefore, ME design could be a favorable treatment option for MFPs with missing palatal cusp. Among the CAD/CAM materials tested, VMII and VE were found to be more tooth-friendly than LU. PMID:29119108

  9. Pre-clinical evaluation of the mechanical properties of a low-stiffness cement-injectable hip stem.

    PubMed

    Eldesouky, Ibrahim; Harrysson, Ola; Marcellin-Little, Denis J; West, Harvey; El-Hofy, Hassan

    2017-11-01

    In total hip arthroplasty (THA), the femoral stem can be fixed with or without bone cement. Cementless stem fixation is recommended for young and active patients as it eliminates the risk of loss of fixation at the bone-cement and cement-implant interfaces. Cementless fixation, however, suffers from a relatively high early revision rate. In the current research, a novel low-stiffness hip stem was designed, fabricated and tested. The stem design provided the option to inject biodegradable bone cement that could enhance initial stem stability. The stem was made of Ti6Al4V alloy. The proximal portion of the stem was porous, with cubic cells. The stem was fabricated using electron beam melting (EBM) technology and tested in compression and bending. Finite-element analysis was used to evaluate stem performance under a dynamic load representing a stair descending cycle and compare it to the performance of a solid stem with similar geometry. The von Mises stresses and maximum principal strains generated within the bone increased after porous stem insertion compared to solid stem insertion. The low-modulus stem tested in this study has acceptable mechanical properties and generates strain patterns in bone that appear compatible with clinical use.

  10. Structural Mechanics Predictions Relating to Clinical Coronary Stent Fracture in a 5 Year Period in FDA MAUDE Database

    PubMed Central

    Everett, Kay D.; Conway, Claire; Desany, Gerard J.; Baker, Brian L.; Choi, Gilwoo; Taylor, Charles A.; Edelman, Elazer R.

    2016-01-01

    Endovascular stents are the mainstay of interventional cardiovascular medicine. Technological advances have reduced biological and clinical complications but not mechanical failure. Stent strut fracture is increasingly recognized as of paramount clinical importance. Though consensus reigns that fractures can result from material fatigue, how fracture is induced and the mechanisms underlying its clinical sequelae remain ill-defined. In this study, strut fractures were identified in the prospectively maintained Food and Drug Administration's (FDA) Manufacturer and User Facility Device Experience Database (MAUDE), covering years 2006–2011, and differentiated based on specific coronary artery implantation site and device configuration. These data, and knowledge of the extent of dynamic arterial deformations obtained from patient CT images and published data, were used to define boundary conditions for 3D finite element models incorporating multimodal, multi-cycle deformation. The structural response for a range of stent designs and configurations was predicted by computational models and included estimation of maximum principal, minimum principal and equivalent plastic strains. Fatigue assessment was performed with Goodman diagrams and safe/unsafe regions defined for different stent designs. Von Mises stress and maximum principal strain increased with multimodal, fully reversed deformation. Spatial maps of unsafe locations corresponded to the identified locations of fracture in different coronary arteries in the clinical database. These findings, for the first time, provide insight into a potential link between patient adverse events and computational modeling of stent deformation. Understanding of the mechanical forces imposed under different implantation conditions may assist in rational design and optimal placement of these devices. PMID:26467552

  11. Force Transfer and Stress Distribution in an Implant-Supported Overdenture Retained with a Hader Bar Attachment: A Finite Element Analysis

    PubMed Central

    Satheesh Kumar, Preeti; Satheesh, Kumar K. S.; John, Jins; Patil, Geetha; Patel, Ruchi

    2013-01-01

    Background and Objectives. A key factor for the long-term function of a dental implant is the manner in which stresses are transferred to the surrounding bone. The effect of adding a stiffener to the tissue side of the Hader bar helps to reduce the transmission of the stresses to the alveolar bone. But the ideal thickness of the stiffener to be attached to the bar is a subject of much debate. This study aims to analyze the force transfer and stress distribution of an implant-supported overdenture with a Hader bar attachment. The stiffener of the bar attachments was varied and the stress distribution to the bone around the implant was studied. Methods. A CT scan of edentulous mandible was used and three models with 1, 2, and 3 mm thick stiffeners were created and subjected to loads of emulating the masticatory forces. These different models were analyzed by the Finite Element Software (Ansys, Version 8.0) using von Mises stress analysis. Results. The results showed that the maximum stress concentration was seen in the neck of the implant for models A and B. In model C the maximum stress concentration was in the bar attachment making it the model with the best stress distribution, as far as implant failures are concerned. Conclusion. The implant with Hader bar attachment with a 3 mm stiffener is the best in terms of stress distribution, where the stress is concentrated at the bar and stiffener regions. PMID:24459589

  12. Stress distribution pattern of screw-retained restorations with segmented vs. non-segmented abutments: A finite element analysis

    PubMed Central

    Aalaei, Shima; Rajabi Naraki, Zahra; Nematollahi, Fatemeh; Beyabanaki, Elaheh; Shahrokhi Rad, Afsaneh

    2017-01-01

    Background. Screw-retained restorations are favored in some clinical situations such as limited inter-occlusal spaces. This study was designed to compare stresses developed in the peri-implant bone in two different types of screw-retained restorations (segmented vs. non-segmented abutment) using a finite element model. Methods. An implant, 4.1 mm in diameter and 10 mm in length, was placed in the first molar site of a mandibular model with 1 mm of cortical bone on the buccal and lingual sides. Segmented and non-segmented screw abutments with their crowns were placed on the simulated implant in each model. After loading (100 N, axial and 45° non-axial), von Mises stress was recorded using ANSYS software, version 12.0.1. Results. The maximum stresses in the non-segmented abutment screw were less than those of segmented abutment (87 vs. 100, and 375 vs. 430 MPa under axial and non-axial loading, respectively). The maximum stresses in the peri-implant bone for the model with segmented abutment were less than those of non-segmented ones (21 vs. 24 MPa, and 31 vs. 126 MPa under vertical and angular loading, respectively). In addition, the micro-strain of peri-implant bone for the segmented abutment restoration was less than that of non-segmented abutment. Conclusion. Under axial and non-axial loadings, non-segmented abutment showed less stress concentration in the screw, while there was less stress and strain in the peri-implant bone in the segmented abutment. PMID:29184629

  13. Cortical bone stress distribution in mandibles with different configurations restored with prefabricated bar-prosthesis protocol: a three-dimensional finite-element analysis.

    PubMed

    de Almeida, Erika Oliveira; Rocha, Eduardo Passos; Assunção, Wirley Gonçalves; Júnior, Amílcar Chagas Freitas; Anchieta, Rodolfo Bruniera

    2011-01-01

    To evaluate stress distribution in different horizontal mandibular arch formats restored by protocol-type prostheses using three-dimensional finite element analysis (3D-FEA). A representative model (M) of a completely edentulous mandible restored with a prefabricated bar using four interforaminal implants was created using SolidWorks 2010 software (Inovart, São Paulo, Brazil) and analyzed by Ansys Workbench 10.0 (Swanson Analysis Inc., Houston, PA) to obtain the stress fields. Three mandibular arch sizes were considered for analysis, regular (M), small (MS), and large (ML). Three unilateral posterior loads (L) (150 N) were used: perpendicular to the prefabricated bar (L1); 30° oblique in a buccolingual direction (L2); 30° oblique in a lingual-buccal direction (L3). The maximum and minimum principal stresses (σ(max), σ(min)), the equivalent von Mises (σ(vM)), and the maximum principal strain (σ(max) ) were obtained for type I (M.I) and type II (M.II) cortical bones. Tensile stress was more evident than compression stress in type I and II bone; however, type II bone showed lower stress values. The L2 condition showed highest values for all parameters (σ(vM), σ(max), σ(min), ɛ(max)). The σ(vM) was highest for the large and small mandibular arches. The large arch model had a higher influence on σ(max) values than did the other formats, mainly for type I bone. Vertical and buccolingual loads showed considerable influence on both σ(max) and σ(min) stresses. © 2010 by The American College of Prosthodontists.

  14. Structural Mechanics Predictions Relating to Clinical Coronary Stent Fracture in a 5 Year Period in FDA MAUDE Database.

    PubMed

    Everett, Kay D; Conway, Claire; Desany, Gerard J; Baker, Brian L; Choi, Gilwoo; Taylor, Charles A; Edelman, Elazer R

    2016-02-01

    Endovascular stents are the mainstay of interventional cardiovascular medicine. Technological advances have reduced biological and clinical complications but not mechanical failure. Stent strut fracture is increasingly recognized as of paramount clinical importance. Though consensus reigns that fractures can result from material fatigue, how fracture is induced and the mechanisms underlying its clinical sequelae remain ill-defined. In this study, strut fractures were identified in the prospectively maintained Food and Drug Administration's (FDA) Manufacturer and User Facility Device Experience Database (MAUDE), covering years 2006-2011, and differentiated based on specific coronary artery implantation site and device configuration. These data, and knowledge of the extent of dynamic arterial deformations obtained from patient CT images and published data, were used to define boundary conditions for 3D finite element models incorporating multimodal, multi-cycle deformation. The structural response for a range of stent designs and configurations was predicted by computational models and included estimation of maximum principal, minimum principal and equivalent plastic strains. Fatigue assessment was performed with Goodman diagrams and safe/unsafe regions defined for different stent designs. Von Mises stress and maximum principal strain increased with multimodal, fully reversed deformation. Spatial maps of unsafe locations corresponded to the identified locations of fracture in different coronary arteries in the clinical database. These findings, for the first time, provide insight into a potential link between patient adverse events and computational modeling of stent deformation. Understanding of the mechanical forces imposed under different implantation conditions may assist in rational design and optimal placement of these devices.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadovskii, V. M., E-mail: sadov@icm.krasn.ru; Sadovskaya, O. V., E-mail: o-sadov@icm.krasn.ru

    Based on the generalized rheological method, the mathematical model describing small deformations of a single-phase porous medium without regard to the effects of a fluid or gas in pores is constructed. The change in resistance of a material to the external mechanical impacts at the moment of pore collapse is taken into account by means of the von Mises–Schleicher strength condition. In order to consider irreversible deformations, alongside with the classical yield conditions by von Mises and Tresca– Saint-Venant, the special condition modeling the plastic loss of stability of a porous skeleton is used. The random nature of the poremore » size distribution is taken into account. It is shown that the proposed mathematical model satisfies the principles of thermodynamics of irreversible processes. Phenomenological parameters of the model are determined on the basis of the approximate calculation of the problem on quasi-static loading of a cubic periodicity cell with spherical voids. In the framework of the obtained model, the process of propagation of plane longitudinal waves of the compression in a homogenous porous medium, accompanied by the plastic deformation of a skeleton and the collapse of pores, is analyzed.« less

  16. Laser cutting of Kevlar laminates and thermal stress formed at cutting sections

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Akhtar, S. S.

    2012-02-01

    Laser cutting of Kevlar laminates is carried out and thermal stress field developed in the cutting region is predicted using the finite element code. Temperature predictions are validated through the thermocouple data. The morphological changes in the cutting section are examined by incorporating optical and scanning electron microscopes. It is found that temperature predictions agree well with the thermocouple data. High values of von Mises stress are observed at the cutting edges and at the mid-thickness of the Kevlar laminate due to thermal compression formed in this region. The laser cut edges are free from whiskers; however, striation formation and some small sideways burning is observed at the kerf edges.

  17. Structural Analysis of Kufasat Using Ansys Program

    NASA Astrophysics Data System (ADS)

    Al-Maliky, Firas T.; AlBermani, Mohamed J.

    2018-03-01

    The current work focuses on vibration and modal analysis of KufaSat structure using ANSYS 16 program. Three types of Aluminum alloys (5052-H32, 6061-T6 and 7075-T6) were selected for investigation of the structure under design loads. Finite element analysis (FEA) in design static load of 51 g was performed. The natural frequencies for five modes were estimated using modal analysis. In order to ensure that KufaSat could withstand with various conditions during launch, the Margin of safety was calculated. The results of deformation and Von Mises stress for linear buckling analysis were also performed. The comparison of data was done to select the optimum material for KufaSat structures.

  18. [Three-dimensional finite element analysis of three conjunctive methods of free iliac bone graft for established mandibular body defects].

    PubMed

    Wang, Dong; Yang, Zhuang-qun; Hu, Xiao-yi

    2007-08-01

    To analyze the stress and displacement distribution of 3D-FE models in three conjunctive methods of vascularized iliac bone graft for established mandibular body defects. Using computer image process technique, a series of spiral CT images were put into Ansys preprocess programe to establish three 3D-FE models of different conjunctions. The three 3D-FE models of established mandibular body defects by vascularized iliac bone graft were built up. The distribution of Von Mises stress and displacement around mandibular segment, grafted ilium, plates and screws was obtained. It may be determined successfully that the optimal conjunctive shape be the on-lay conjunction.

  19. Strong consistency of nonparametric Bayes density estimation on compact metric spaces with applications to specific manifolds

    PubMed Central

    Bhattacharya, Abhishek; Dunson, David B.

    2012-01-01

    This article considers a broad class of kernel mixture density models on compact metric spaces and manifolds. Following a Bayesian approach with a nonparametric prior on the location mixing distribution, sufficient conditions are obtained on the kernel, prior and the underlying space for strong posterior consistency at any continuous density. The prior is also allowed to depend on the sample size n and sufficient conditions are obtained for weak and strong consistency. These conditions are verified on compact Euclidean spaces using multivariate Gaussian kernels, on the hypersphere using a von Mises-Fisher kernel and on the planar shape space using complex Watson kernels. PMID:22984295

  20. Generation of Finite Life Distributional Goodman Diagrams for Reliability Prediction

    NASA Technical Reports Server (NTRS)

    Kececioglu, D.; Guerrieri, W. N.

    1971-01-01

    The methodology of developing finite life distributional Goodman diagrams and surfaces is described for presenting allowable combinations of alternating stress and mean stress to the design engineer. The combined stress condition is that of an alternating bending stress and a constant shear stress. The finite life Goodman diagrams and surfaces are created from strength distributions developed at various ratios of alternating to mean stress at particular cycle life values. The conclusions indicate that the Von Mises-Hencky ellipse, for cycle life values above 1000 cycles, is an adequate model of the finite life Goodman diagram. In addition, suggestions are made which reduce the number of experimental data points required in a fatigue data acquisition program.

  1. Biomechanical investigation of naso-orbitoethmoid trauma by finite element analysis.

    PubMed

    Huempfner-Hierl, Heike; Schaller, Andreas; Hemprich, Alexander; Hierl, Thomas

    2014-11-01

    Naso-orbitoethmoid fractures account for 5% of all facial fractures. We used data derived from a white 34-year-old man to make a transient dynamic finite element model, which consisted of about 740 000 elements, to simulate fist-like impacts to this anatomically complex area. Finite element analysis showed a pattern of von Mises stresses beyond the yield criterion of bone that corresponded with fractures commonly seen clinically. Finite element models can be used to simulate injuries to the human skull, and provide information about the pathogenesis of different types of fracture. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Thermal analysis of a diffusion bonded Er3+,Yb3+:glass/Co2+: MgAl2O4 microchip lasers

    NASA Astrophysics Data System (ADS)

    Belghachem, Nabil; Mlynczak, Jaroslaw; Kopczynski, krzysztof; Mierczyk, Zygmunt; Gawron, Michal

    2016-10-01

    The analysis of thermal effects in a diffusion bonded Er3+,Yb3+:glass/Co2+:MgAl2O4 microchip laser is presented. The analysis is performed for both wavelengths at 940 nm and at 975 nm as well as for two different sides of pumping, glass side and saturable absorber side. The heat sink effect of Co2+:MgAl2O4, as well as the impact of the thermal expansion and induced stress on the diffusion bonding are emphasised. The best configurations for reducing the temperature peaks, the Von Mises stresses on the diffusion bonding, and the thermal lensing are determined.

  3. Brain injury tolerance limit based on computation of axonal strain.

    PubMed

    Sahoo, Debasis; Deck, Caroline; Willinger, Rémy

    2016-07-01

    Traumatic brain injury (TBI) is the leading cause of death and permanent impairment over the last decades. In both the severe and mild TBIs, diffuse axonal injury (DAI) is the most common pathology and leads to axonal degeneration. Computation of axonal strain by using finite element head model in numerical simulation can enlighten the DAI mechanism and help to establish advanced head injury criteria. The main objective of this study is to develop a brain injury criterion based on computation of axonal strain. To achieve the objective a state-of-the-art finite element head model with enhanced brain and skull material laws, was used for numerical computation of real world head trauma. The implementation of new medical imaging data such as, fractional anisotropy and axonal fiber orientation from Diffusion Tensor Imaging (DTI) of 12 healthy patients into the finite element brain model was performed to improve the brain constitutive material law with more efficient heterogeneous anisotropic visco hyper-elastic material law. The brain behavior has been validated in terms of brain deformation against Hardy et al. (2001), Hardy et al. (2007), and in terms of brain pressure against Nahum et al. (1977) and Trosseille et al. (1992) experiments. Verification of model stability has been conducted as well. Further, 109 well-documented TBI cases were simulated and axonal strain computed to derive brain injury tolerance curve. Based on an in-depth statistical analysis of different intra-cerebral parameters (brain axonal strain rate, axonal strain, first principal strain, Von Mises strain, first principal stress, Von Mises stress, CSDM (0.10), CSDM (0.15) and CSDM (0.25)), it was shown that axonal strain was the most appropriate candidate parameter to predict DAI. The proposed brain injury tolerance limit for a 50% risk of DAI has been established at 14.65% of axonal strain. This study provides a key step for a realistic novel injury metric for DAI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Influence of finish line in the distribution of stress trough an all ceramic implant-supported crown.

    PubMed Central

    SANNINO, G.; GLORIA, F.; OTTRIA, L.; BARLATTANI, A.

    2010-01-01

    SUMMARY Porpose. The aim of this study was to evaluate, by finite element analysis (FEA), the influence of finish line on stress distribution and resistance to the loads of a ZrO2 crown and porcelain in implant-supported. Material and methods. The object of this analysis consisted of a fxture, an abutment, a passing screw, a layer of cement, a framework crown, a feldspatic porcelain veneering. The abutment’s marginal design was used in 3 different types of preparation: feather edge, slight chamfer and 50°, each of them was of 1 mm depth over the entire circumference. The ZrO2Y-TZP coping was 0.6 mm thick. Two material matching for the abutment and the framework was used for the simulations: ZrO2 framework and ZrO2 abutment, ZrO2 framework and T abutment. A 600 N axial force distributed over the entire surface of the crown was applied. The numerical simulations with finite elements were used to verify the different distribution of equivalent von Mises stress for three different geometries of abutment and framework. Results Slight chamfer on the matching ZrO2 - ZrO2 is the geometry with minimum equivalent stress of von Mises. Even for T abutment and ZrO2 framework slight chamfer is the best configuration to minimize the localized stress. Geometry that has the highest average stress is one with abutment at 50°, we see a downward trend for all three configurations using only zirconium for both components. Conclusions Finite element analysis. performed for the manifacturing of implant-supported crown, gives exact geometric guide lines about the choice of chamfer preparation, while the analysis of other marginal geometries suggests a possible improved behavior of the mating between ZrO2 abutment and ZrO2 coping. for three different geometries of the abutment and the coping. PMID:23285359

  5. Model-data comparisons of crevasses in accelerating glaciers exemplified for the 2011-2013 surge of Bering Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Trantow, T.; Herzfeld, U. C.

    2017-12-01

    Glacier acceleration, ubiquitous along the periphery of the major icesheets, presents one of the main uncertainties in modeling future global sea-level rise according to the IPCC 5th Assessment Report (2013). The surge phenomenon is one type of glacial acceleration and is the least understood. During a surge, large-scale elevation change and significant crevassing occurs throughout the entire ice system. Crevasses are the most obvious manifestations of the surge dynamics and provide a source of geophysical information that allows reconstruction of deformation processes. The recent surge of the Bering-Bagley Glacier System (BBGS), Alaska, in 2011-2013 provides an excellent test case to study surging through airborne and satellite observations together with numerical modeling. A 3D full-Stokes finite element model of the BBGS has been created using the Elmer/Ice software for structural and dynamical investigations of the surge. A von Mises condition is applied to modeled surface stresses to predict where crevassing would occur during the surge. The model uses CryoSat-2 derived surface topography (Baseline-C), bedrock topography, Glen's flow law with an isothermal assumption and a uniform linear friction law at the ice/bedrock boundary to represent the surge state in early 2011 when peak velocities were observed. Additionally, geostatistical characterization applied to optical satellite imagery provides an observational data set for model-data comparisons. Observed and modeled crevasse characteristics are compared with respect to their location, magnitude and orientation. Similarity mapping applied to the modeled von Mises stress and observed surface roughness values indicates that the two quantities are correlated. Results indicate that large-scale surface crevasses resulting from a surge are connected to the bedrock topography of the glacier system. The model-data comparisons used in this analysis serve to validate the numerical model and provide insight into the quality of our model input.

  6. Limit analysis of multi-layered plates. Part I: The homogenized Love-Kirchhoff model

    NASA Astrophysics Data System (ADS)

    Dallot, Julien; Sab, Karam

    The purpose of this paper is to determine Gphom, the overall homogenized Love-Kirchhoff strength domain of a rigid perfectly plastic multi-layered plate, and to study the relationship between the 3D and the homogenized Love-Kirchhoff plate limit analysis problems. In the Love-Kirchhoff model, the generalized stresses are the in-plane (membrane) and the out-of-plane (flexural) stress field resultants. The homogenization method proposed by Bourgeois [1997. Modélisation numérique des panneaux structuraux légers. Ph.D. Thesis, University Aix-Marseille] and Sab [2003. Yield design of thin periodic plates by a homogenization technique and an application to masonry wall. C. R. Méc. 331, 641-646] for in-plane periodic rigid perfectly plastic plates is justified using the asymptotic expansion method. For laminated plates, an explicit parametric representation of the yield surface ∂Gphom is given thanks to the π-function (the plastic dissipation power density function) that describes the local strength domain at each point of the plate. This representation also provides a localization method for the determination of the 3D stress components corresponding to every generalized stress belonging to ∂Gphom. For a laminated plate described with a yield function of the form F(x3,σ)=σu(x3)F^(σ), where σu is a positive even function of the out-of-plane coordinate x3 and F^ is a convex function of the local stress σ, two effective constants and a normalization procedure are introduced. A symmetric sandwich plate consisting of two Von-Mises materials ( σu=σ1u in the skins and σu=σ2u in the core) is studied. It is found that, for small enough contrast ratios ( r=σ1u/σ2u≤5), the normalized strength domain G^phom is close to the one corresponding to a homogeneous Von-Mises plate [Ilyushin, A.-A., 1956. Plasticité. Eyrolles, Paris].

  7. Fracture strength and probability of survival of narrow and extra-narrow dental implants after fatigue testing: In vitro and in silico analysis.

    PubMed

    Bordin, Dimorvan; Bergamo, Edmara T P; Fardin, Vinicius P; Coelho, Paulo G; Bonfante, Estevam A

    2017-07-01

    To assess the probability of survival (reliability) and failure modes of narrow implants with different diameters. For fatigue testing, 42 implants with the same macrogeometry and internal conical connection were divided, according to diameter, as follows: narrow (Ø3.3×10mm) and extra-narrow (Ø2.9×10mm) (21 per group). Identical abutments were torqued to the implants and standardized maxillary incisor crowns were cemented and subjected to step-stress accelerated life testing (SSALT) in water. The use-level probability Weibull curves, and reliability for a mission of 50,000 and 100,000 cycles at 50N, 100, 150 and 180N were calculated. For the finite element analysis (FEA), two virtual models, simulating the samples tested in fatigue, were constructed. Loading at 50N and 100N were applied 30° off-axis at the crown. The von-Mises stress was calculated for implant and abutment. The beta (β) values were: 0.67 for narrow and 1.32 for extra-narrow implants, indicating that failure rates did not increase with fatigue in the former, but more likely were associated with damage accumulation and wear-out failures in the latter. Both groups showed high reliability (up to 97.5%) at 50 and 100N. A decreased reliability was observed for both groups at 150 and 180N (ranging from 0 to 82.3%), but no significant difference was observed between groups. Failure predominantly involved abutment fracture for both groups. FEA at 50N-load, Ø3.3mm showed higher von-Mises stress for abutment (7.75%) and implant (2%) when compared to the Ø2.9mm. There was no significant difference between narrow and extra-narrow implants regarding probability of survival. The failure mode was similar for both groups, restricted to abutment fracture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Understanding calving dynamics of Greenland outlet glaciers by comparing calving laws in a 3D ice sheet model

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Morlighem, M.; Wood, M.; Bondzio, J. H.; Mouginot, J.

    2017-12-01

    Mass loss from marine terminating glaciers along coastal Greenland is a significant contributor to global sea-level rise. Calving is one of the important processes that control the dynamics, and therefore the discharge, of these glaciers. As glacier termini are exposed to warmer ocean currents, ocean-induced melt at the calving front increases, which may lead to glacier retreat and ice flow acceleration. It is therefore important to accurately parameterize calving in ice sheet models in order to improve the projections of ice sheet change. Several calving laws have been proposed, but most of them have been applied only to a specific region and have not been tested on other glaciers, while some others have only been implemented in one-dimensional flowline or vertical flowband models. Here, we test and compare several calving laws recently proposed in the literature using a 3D ice sheet model. Namely: the height-above-buoyancy criterion (Vieli et al., 2002), the crevasse-depth calving law (Benn et al., 2007), the eigencalving law (Levermann et al., 2012) and von Mises tensile stress calving law (Morlighem et al., 2016). We test these calving laws on Zachariae Isstrøm (Northeast), Upernavik (Central West) and Helheim (East) glaciers of Greenland. We compare the modeled ice front evolution to the observed retreat from Landsat data, and assess which calving law has the best predictive skills for each glacier. Overall, von Mises tensile stress calving laws is more satisfactory than others for most regions. This study shows that calving dynamics needs to be 3D in ice sheet models to account for the complex geometry and narrow fjords along the coast of Greenland. Comparing calving laws in a 3D model makes it possible to find missing mechanisms in each criterion and to improve existing calving laws in numerical ice sheet models, which could reduce uncertainties in future sea level rise projections.

  9. Biomechanical evaluation of a spherical lumbar interbody device at varying levels of subsidence.

    PubMed

    Rundell, Steven A; Isaza, Jorge E; Kurtz, Steven M

    2011-01-01

    Ulf Fernström implanted stainless steel ball bearings following discectomy, or for painful disc disease, and termed this procedure disc arthroplasty. Today, spherical interbody spacers are clinically available, but there is a paucity of associated biomechanical testing. The primary objective of the current study was to evaluate the biomechanics of a spherical interbody implant. It was hypothesized that implantation of a spherical interbody implant, with combined subsidence into the vertebral bodies, would result in similar ranges of motion (RoM) and facet contact forces (FCFs) when compared with an intact condition. A secondary objective of this study was to determine the effect of using a polyetheretherketone (PEEK) versus a cobalt chrome (CoCr) implant on vertebral body strains. We hypothesized that the material selection would have a negligible effect on vertebral body strains since both materials have elastic moduli substantially greater than the annulus. A finite element model of L3-L4 was created and validated by use of ROM, disc pressure, and bony strain from previously published data. Virtual implantation of a spherical interbody device was performed with 0, 2, and 4 mm of subsidence. The model was exercised in compression, flexion, extension, axial rotation, and lateral bending. The ROM, vertebral body effective (von Mises) strain, and FCFs were reported. Implantation of a PEEK implant resulted in slightly lower strain maxima when compared with a CoCr implant. For both materials, the peak strain experienced by the underlying bone was reduced with increasing subsidence. All levels of subsidence resulted in ROM and FCFs similar to the intact model. The results suggest that a simple spherical implant design is able to maintain segmental ROM and provide minimal differences in FCFs. Large areas of von Mises strain maxima were generated in the bone adjacent to the implant regardless of whether the implant was PEEK or CoCr.

  10. Statistical differences between relative quantitative molecular fingerprints from microbial communities.

    PubMed

    Portillo, M C; Gonzalez, J M

    2008-08-01

    Molecular fingerprints of microbial communities are a common method for the analysis and comparison of environmental samples. The significance of differences between microbial community fingerprints was analyzed considering the presence of different phylotypes and their relative abundance. A method is proposed by simulating coverage of the analyzed communities as a function of sampling size applying a Cramér-von Mises statistic. Comparisons were performed by a Monte Carlo testing procedure. As an example, this procedure was used to compare several sediment samples from freshwater ponds using a relative quantitative PCR-DGGE profiling technique. The method was able to discriminate among different samples based on their molecular fingerprints, and confirmed the lack of differences between aliquots from a single sample.

  11. Effect of punch and orifice base sizes in different push-out test setups: stress distribution analysis.

    PubMed

    Zanatta, Rayssa Ferreira; Barreto, Bruno de Castro Ferreira; Xavier, Tathy Aparecida; Versluis, Antheunis; Soares, Carlos José

    2015-02-01

    This study evaluated the influence of punch and base orifice diameters on push-out test results by means of finite element analysis (FEA). FEA was performed using 3D models of the push-out test with 3 base orifice diameters (2.5, 3.0, and 3.5 mm) and 3 punch diameters (0.5, 1.0, and 1.5 mm) using MARC/MENTAT (MSC.Software). The image of a cervical slice from a root restored with a fiberglass post was used to construct the models. The mechanical properties of dentin, post, and resin cement were obtained from the literature. Bases and punches were constructed as rigid bodies. A 10-N force was applied by the punch in the center of the post in a nonlinear contact analysis. Modified von Mises stress, maximum principal stress, as well as shear and normal stress components were calculated. Both punch and base orifice sizes influenced the stress distribution of the push-out test. Bases with larger diameters and punches with smaller diameters caused higher stress in dentin and at the dentin/cement interface. FEA showed that the diameter of the orifice base had a more significant influence on the stress distribution than did the punch diameter. For this reason, both factors should be taken into account during push-out experimental tests.

  12. The influence of acetabular bone cracks in the press-fit hip replacement: Numerical and experimental analysis.

    PubMed

    Ramos, A; Duarte, R J; Relvas, C; Completo, A; Simões, J A

    2013-07-01

    The press-fit hip acetabular prosthesis implantation can cause crack formation in the thin regions surrounding the acetabular. As a consequence the presence of cracks in this region can lead to poor fixation and fibrous tissue formation. Numerical and experimental models of commercial press-fit hip replacements were developed to compare the behavior between the intact and implanted joints. Numerical models with an artificial crack and without crack were considered. The iliac and the femur were created through 3D geometry acquisition based on composite human replicas and 3D-Finite Element models were generated. The mechanical behavior was assessed numerically and experimentally considering the principal strains. The comparison between Finite Element model predictions and experimental measurements revealed a maximum difference of 9%. Similar distribution of the principal strains around the acetabular cavity was obtained for the intact and implanted models. When comparing the Von Mises stresses, it is possible to observe that the intact model is the one that presents the highest stress values in the entire acetabular cavity surface. The crack in the posterior side changes significantly the principal strain distribution, suggesting bone loss after hip replacement. Relatively to micromotions, these were higher on the superior side of the acetabular cavity and can change the implant stability and bone ingrowth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Modeling and Evaluation of Canted Coil Springs as High Temperature Seal Preloading Devices

    NASA Technical Reports Server (NTRS)

    Oswald, Jay J.; Mullen, Robert L.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2004-01-01

    Future reusable launch vehicles will require advanced structural seals. This includes propulsion seals along edges and hinge lines in hypersonic engines, and control surface seals for movable flaps and elevons on proposed reentry vehicles. Seals must remain in sealing engagement with opposing surfaces, for multiple missions, even though the seal gap may be opening and closing due to thermal and structural loads. To meet this requirement either the seals themselves must be resilient or there must be a resilient structural element behind the seals. Case Western Reserve University is working with NASA s Glenn Research Center to develop more resilient high temperature seal components and preloading devices. Results are presented for a finite element analysis of a canted coil spring that is being considered as a high temperature seal preloading device. This type of spring is a leading candidate due to its ability to provide nearly constant force over a large deflection. The finite element analyses were verified by comparing them to experimental results of canted coil springs of three different stiffnesses, measured at Glenn Research Center. Once validated the parameterized model was combined with a scripting algorithm to assess the effects of key spring design variables (wire diameter, coils per inch, cant amplitude, eccentricity, and spring width) on spring stiffness and maximum Von Mises stress to aid in subsequent design.

  14. Snake fangs: 3D morphological and mechanical analysis by microCT, simulation, and physical compression testing.

    PubMed

    du Plessis, Anton; Broeckhoven, Chris; le Roux, Stephan G

    2018-01-01

    This Data Note provides data from an experimental campaign to analyse the detailed internal and external morphology and mechanical properties of venomous snake fangs. The aim of the experimental campaign was to investigate the evolutionary development of 3 fang phenotypes and investigate their mechanical behaviour. The study involved the use of load simulations to compare maximum Von Mises stress values when a load is applied to the tip of the fang. The conclusions of this study have been published elsewhere, but in this data note we extend the analysis, providing morphological comparisons including details such as curvature comparisons, thickness, etc. Physical compression results of individual fangs, though reported in the original paper, were also extended here by calculating the effective elastic modulus of the entire snake fang structure including internal cavities for the first time. This elastic modulus of the entire fang is significantly lower than the locally measured values previously reported from indentation experiments, highlighting the possibility that the elastic modulus is higher on the surface than in the rest of the material. The micro-computed tomography (microCT) data are presented both in image stacks and in the form of STL files, which simplifies the handling of the data and allows its re-use for future morphological studies. These fangs might also serve as bio-inspiration for future hypodermic needles. © The Author 2017. Published by Oxford University Press.

  15. Numerical investigation on the prefabricated crack propagation of FV520B stainless steel

    NASA Astrophysics Data System (ADS)

    Pan, Juyi; Qin, Ming; Chen, Songying

    FV520B is a common stainless steel for manufacturing centrifugal compressor impeller and shaft. The internal metal flaw destroys the continuity of the material matrix, resulting in the crack propagation fracture of the component, which seriously reduces the service life of the equipment. In this paper, Abaqus software was used to simulate the prefabricated crack propagation of FV520B specimen with unilateral gap. The results of static crack propagation simulation results show that the maximum value of stress-strain located at the tip of the crack and symmetrical distributed like a butterfly along the prefabricated crack direction, the maximum stress is 1990 MPa and the maximum strain is 9.489 × 10-3. The Mises stress and stress intensity factor KI increases with the increase of the expansion step, the critical value of crack initiation is reached at the 6th extension step. The dynamic crack propagation simulation shows that the crack propagation path is perpendicular to the load loading direction. Similarly, the maximum Mises stress located at the crack tip and is symmetrically distributed along the crack propagation direction. The critical stress range of the crack propagation is 23.3-43.4 MPa. The maximum value of stress-strain curve located at the 8th extension step, that is, the crack initiation point, the maximum stress is 55.22 MPa, and the maximum strain is 2.26 × 10-4. On the crack tip, the stress changed as 32.24-40.16 MPa, the strain is at 1.292 × 10-4-1.897 × 10-4.

  16. Shape-memory-alloy-based smart knee spacer for total knee arthroplasty: 3D CAD modelling and a computational study.

    PubMed

    Gautam, Arvind; Callejas, Miguel A; Acharyya, Amit; Acharyya, Swati Ghosh

    2018-05-01

    This study introduced a shape memory alloy (SMA)-based smart knee spacer for total knee arthroplasty (TKA). Subsequently, a 3D CAD model of a smart tibial component of TKA was designed in Solidworks software, and verified using a finite element analysis in ANSYS Workbench. The two major properties of the SMA (NiTi), the pseudoelasticity (PE) and shape memory effect (SME), were exploited, modelled, and analysed for a TKA application. The effectiveness of the proposed model was verified in ANSYS Workbench through the finite element analysis (FEA) of the maximum deformation and equivalent (von Mises) stress distribution. The proposed model was also compared with a polymethylmethacrylate (PMMA)-based spacer for the upper portion of the tibial component for three subjects with body mass index (BMI) of 23.88, 31.09, and 38.39. The proposed SMA -based smart knee spacer contained 96.66978% less deformation with a standard deviation of 0.01738 than that of the corresponding PMMA based counterpart for the same load and flexion angle. Based on the maximum deformation analysis, the PMMA-based spacer had 30 times more permanent deformation than that of the proposed SMA-based spacer for the same load and flexion angle. The SME property of the lower portion of the tibial component for fixation of the spacer at its position was verified by an FEA in ANSYS. Wherein, a strain life-based fatigue analysis was performed and tested for the PE and SME built spacers through the FEA. Therefore, the SMA-based smart knee spacer eliminated the drawbacks of the PMMA-based spacer, including spacer fracture, loosening, dislocation, tilting or translation, and knee subluxation. Copyright © 2018. Published by Elsevier Ltd.

  17. Effects of Prosthetic Material and Framework Design on Stress Distribution in Dental Implants and Peripheral Bone: A Three-Dimensional Finite Element Analysis.

    PubMed

    Arinc, Hakan

    2018-06-22

    BACKGROUND The purpose of this study was to evaluate the effects of prosthetic material and framework design on the stress within dental implants and peripheral bone using finite element analysis (FEA). MATERIAL AND METHODS A mandibular implant-supported fixed dental prosthesis with different prosthetic materials [cobalt-chromium-supported ceramic (C), zirconia-supported ceramic (Z), and zirconia-reinforced polymethyl methacrylate (ZRPMMA)-supported resin (ZP)] and different connector widths (2, 3, and 4 mm) within the framework were used to evaluate stress via FEA under oblique loading conditions. Maximum principal (smax), minimum principal (smin), and von Mises (svM) stress values were obtained. RESULTS Minimum stress values were observed in the model with a 2-mm connector width for C and ZP. The models with 3-mm and 4-mm connector widths showed higher stress values than the model with a 2-mm connector width for C (48-50%) and ZP (50-52%). Similar stress values were observed in the 3- and 4-mm models. There was no significant difference in the amount of stress with Z regardless of connector width. The Z and ZP models showed similar stress values in the 3- and 4-mm models and higher stress values than in the C model. Z, ZP, and C showed the highest stress values for the model with a 2-mm connector width. CONCLUSIONS Changes in the material and width of connectors may influence stress on cortical bone, cancellous bone, and implants. C was associated with the lowest stress values. Higher maximum and minimum principal stress values were seen in cortical bone compared to cancellous bone.

  18. Dynamic simulation of stent deployment - effects of design, material and coating

    NASA Astrophysics Data System (ADS)

    Schiavone, A.; Zhao, L. G.; Abdel-Wahab, A. A.

    2013-07-01

    Dynamic finite-element simulations have been carried out to study the effects of cell design, material choice and drug eluting coating on the mechanical behaviour of stents during deployment. Four representative stent designs have been considered, i.e., Palmaz-Schatz, Cypher, Xience and Endeavor. The former two are made of stainless steel while the latter two made of Co-Cr alloy. Geometric model for each design was created using ProEngineer software, and then imported into Abaqus for simulation of the full process of stent deployment within a diseased artery. In all cases, the delivery system was based on the dynamic expansion of a polyurethane balloon under applied internal pressure. Results showed that the expansion is mainly governed by the design, in particular open-cell design (e.g. Endeavor) tends to have greater expansion than closed-cell design (e.g. Cypher). Dogboning effect was strong for slotted tube design (e.g. Palmaz-Schatz) but reduced significantly for sinusoidal design (e.g. Cypher). Under the same pressure, the maximum von Mises stress in the stent was higher for the open-cell designs and located mostly at the inner corners of each cell. For given deformation, stents made of Co-Cr alloys tend to experience higher stress level than those made of stainless steels, mainly due to the difference in material properties. For artery-plaque system, the maximum stress occurred on the stenosis and dogboning led to stress concentration at the ends of the plaque. The drug eluting coating affected the stent expansion by reducing the recoiling phenomenon considerably, but also raised the stress level on the stent due to property mismatch.

  19. Effect of bar cross-section geometry on stress distribution in overdenture-retaining system simulating horizontal misfit and bone loss.

    PubMed

    Spazzin, Aloísio Oro; Costa, Ana Rosa; Correr, Américo Bortolazzo; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço; dos Santos, Mateus Bertolini Fernandes

    2013-08-09

    This study evaluated the influence of cross-section geometry of the bar framework on the distribution of static stresses in an overdenture-retaining bar system simulating horizontal misfit and bone loss. Three-dimensional FE models were created including two titanium implants and three cross-section geometries (circular, ovoid or Hader) of bar framework placed in the anterior part of a severely resorbed jaw. One model with 1.4-mm vertical loss of the peri-implant tissue was also created. The models set were exported to mechanical simulation software, where horizontal displacement (10, 50 or 100 μm) was applied simulating the settling of the framework, which suffered shrinkage during the laboratory procedures. The bar material used for the bar framework was a cobalt--chromium alloy. For evaluation of bone loss effect, only the 50-μm horizontal misfit was simulated. Data were qualitatively and quantitatively evaluated using von Mises stress for the mechanical part and maximum principal stress and μ-strain for peri-implant bone tissue given by the software. Stresses were concentrated along the bar and in the join between the bar and cylinder. In the peri-implant bone tissue, the μ-strain was higher in the cervical third. Higher stress levels and μ-strain were found for the models using the Hader bar. The bone loss simulated presented considerable increase on maximum principal stresses and μ-strain in the peri-implant bone tissue. In addition, for the amplification of the horizontal misfit, the higher complexity of the bar cross-section geometry and bone loss increases the levels of static stresses in the peri-implant bone tissue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Crack Growth Prediction Methodology for Multi-Site Damage: Layered Analysis and Growth During Plasticity

    NASA Technical Reports Server (NTRS)

    James, Mark Anthony

    1999-01-01

    A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.

  1. Numerical simulation of artificial hip joint motion based on human age factor

    NASA Astrophysics Data System (ADS)

    Ramdhani, Safarudin; Saputra, Eko; Jamari, J.

    2018-05-01

    Artificial hip joint is a prosthesis (synthetic body part) which usually consists of two or more components. Replacement of the hip joint due to the occurrence of arthritis, ordinarily patients aged or older. Numerical simulation models are used to observe the range of motion in the artificial hip joint, the range of motion of joints used as the basis of human age. Finite- element analysis (FEA) is used to calculate stress von mises in motion and observes a probability of prosthetic impingement. FEA uses a three-dimensional nonlinear model and considers the position variation of acetabular liner cups. The result of numerical simulation shows that FEA method can be used to analyze the performance calculation of the artificial hip joint at this time more accurate than conventional method.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartkiewicz, Karol; Miranowicz, Adam

    We find an optimal quantum cloning machine, which clones qubits of arbitrary symmetrical distribution around the Bloch vector with the highest fidelity. The process is referred to as phase-independent cloning in contrast to the standard phase-covariant cloning for which an input qubit state is a priori better known. We assume that the information about the input state is encoded in an arbitrary axisymmetric distribution (phase function) on the Bloch sphere of the cloned qubits. We find analytical expressions describing the optimal cloning transformation and fidelity of the clones. As an illustration, we analyze cloning of qubit state described by themore » von Mises-Fisher and Brosseau distributions. Moreover, we show that the optimal phase-independent cloning machine can be implemented by modifying the mirror phase-covariant cloning machine for which quantum circuits are known.« less

  3. Resizing procedure for structures under combined mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Narayanaswami, R.

    1976-01-01

    The fully-stressed design (FSD) appears to be the most widely used approach for sizing of flight structures under strength and minimum-gage constraints. Almost all of the experience with FSD has been with structures primarily under mechanical loading as opposed to thermal loading. In this method the structural sizes are iterated with the step size, depending on the ratio of the total stress to the allowable stress. In this paper, the thermal fully-stressed design (TFSD) procedure developed for problems involving substantial thermal stress is extended to biaxial stress members using a Von Mises failure criterion. The TFSD resizing procedure for uniaxial stress is restated and the new procedure for biaxial stress members is developed. Results are presented for an application of the two procedures to size a simplified wing structure.

  4. On the symbolic manipulation and code generation for elasto-plastic material matrices

    NASA Technical Reports Server (NTRS)

    Chang, T. Y.; Saleeb, A. F.; Wang, P. S.; Tan, H. Q.

    1991-01-01

    A computerized procedure for symbolic manipulations and FORTRAN code generation of an elasto-plastic material matrix for finite element applications is presented. Special emphasis is placed on expression simplifications during intermediate derivations, optimal code generation, and interface with the main program. A systematic procedure is outlined to avoid redundant algebraic manipulations. Symbolic expressions of the derived material stiffness matrix are automatically converted to RATFOR code which is then translated into FORTRAN statements through a preprocessor. To minimize the interface problem with the main program, a template file is prepared so that the translated FORTRAN statements can be merged into the file to form a subroutine (or a submodule). Three constitutive models; namely, von Mises plasticity, Drucker-Prager model, and a concrete plasticity model, are used as illustrative examples.

  5. Quadratic semiparametric Von Mises calculus

    PubMed Central

    Robins, James; Li, Lingling; Tchetgen, Eric

    2009-01-01

    We discuss a new method of estimation of parameters in semiparametric and nonparametric models. The method is based on U-statistics constructed from quadratic influence functions. The latter extend ordinary linear influence functions of the parameter of interest as defined in semiparametric theory, and represent second order derivatives of this parameter. For parameters for which the matching cannot be perfect the method leads to a bias-variance trade-off, and results in estimators that converge at a slower than n–1/2-rate. In a number of examples the resulting rate can be shown to be optimal. We are particularly interested in estimating parameters in models with a nuisance parameter of high dimension or low regularity, where the parameter of interest cannot be estimated at n–1/2-rate. PMID:23087487

  6. Type I and type II residual stress in iron meteorites determined by neutron diffraction measurements

    NASA Astrophysics Data System (ADS)

    Caporali, Stefano; Pratesi, Giovanni; Kabra, Saurabh; Grazzi, Francesco

    2018-04-01

    In this work we present a preliminary investigation by means of neutron diffraction experiment to determine the residual stress state in three different iron meteorites (Chinga, Sikhote Alin and Nantan). Because of the very peculiar microstructural characteristic of this class of samples, all the systematic effects related to the measuring procedure - such as crystallite size and composition - were taken into account and a clear differentiation in the statistical distribution of residual stress in coarse and fine grained meteorites were highlighted. Moreover, the residual stress state was statistically analysed in three orthogonal directions finding evidence of the existence of both type I and type II residual stress components. Finally, the application of von Mises approach allowed to determine the distribution of type II stress.

  7. Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas.

    PubMed

    Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier

    2014-08-01

    Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas.

  8. Branching angles of pyramidal cell dendrites follow common geometrical design principles in different cortical areas

    PubMed Central

    Bielza, Concha; Benavides-Piccione, Ruth; López-Cruz, Pedro; Larrañaga, Pedro; DeFelipe, Javier

    2014-01-01

    Unraveling pyramidal cell structure is crucial to understanding cortical circuit computations. Although it is well known that pyramidal cell branching structure differs in the various cortical areas, the principles that determine the geometric shapes of these cells are not fully understood. Here we analyzed and modeled with a von Mises distribution the branching angles in 3D reconstructed basal dendritic arbors of hundreds of intracellularly injected cortical pyramidal cells in seven different cortical regions of the frontal, parietal, and occipital cortex of the mouse. We found that, despite the differences in the structure of the pyramidal cells in these distinct functional and cytoarchitectonic cortical areas, there are common design principles that govern the geometry of dendritic branching angles of pyramidal cells in all cortical areas. PMID:25081193

  9. Vertical bending strength and torsional rigidity analysis of formula student car chassis

    NASA Astrophysics Data System (ADS)

    Hazimi, Hashfi; Ubaidillah, Setiyawan, Adi Eka Putra; Ramdhani, Hanief Cahya; Saputra, Murnanda Zaesy; Imaduddin, Fitrian

    2018-02-01

    Formula Society of Automotive Engineers (FSAE) is a competition for students to construct formula student car. One of an essential part of a formula student car is its chassis. Chassis is an internal vehicle frame which holds all another part of the vehicle and secures the driver. The team have to design their chassis and tests their design to achieve the best chassis that fulfill the regulation. This paper contains chassis design from Bengawan FSAE Team and some FEA tests to find out the Tensile Strength, Torsional Rigidity, and Von Misses Stress of Formula SAE car. Torsional rigidity was found by applying the static torsional test. The results from torsional rigidity test are a maximum deformation of 9.9512 mm with 1.7064 safety factor, and 35.935 MPa maximum Von Misses Stress. Moreover, then the result of the vertical bending strength test is 8.1214 mm max deformation with safety factor 4.2717, and 29.226 MPa maximum Von Misses Stress.

  10. Biomechanical effect of the configuration of screw hole style on locking plate fixation in proximal humerus fracture with a simulated gap: A finite element analysis.

    PubMed

    Zhang, Ya-Kui; Wei, Hung-Wen; Lin, Kang-Ping; Chen, Wen-Chuan; Tsai, Cheng-Lun; Lin, Kun-Jhih

    2016-06-01

    Locking plate fixation for proximal humeral fractures is a commonly used device. Recently, plate breakages were continuously reported that the implants all have a mixture of holes allowing placement of both locking and non-locking screws (so-called combi plates). In commercialized proximal humeral plates, there still are two screw hole styles included "locking and dynamic holes separated" and "locking hole only" configurations. It is important to understand the biomechanical effect of different screw hole style on the stress distribution in bone plate. Finite element method was employed to conduct a computational investigation. Three proximal humeral plate models with different screw hole configurations were reconstructed depended upon an identical commercialized implant. A three-dimensional model of a humerus was created using process of thresholding based on the grayscale values of the CT scanning of an intact humerus. A "virtual" subcapital osteotomy was performed. Simulations were performed under an increasing axial load. The von Mises stresses around the screw holes of the plate shaft, the construct stiffness and the directional displacement within the fracture gap were calculated for comparison. The mean value of the peak von Mises stresses around the screw holes in the plate shaft was the highest for combi hole design while it was smallest for the locking and dynamic holes separated design. The stiffness of the plate-bone construct was 15% higher in the locking screw only design (132.6N/mm) compared with the combi design (115.0N/mm), and it was 4% higher than the combi design for the locking and dynamic holes separated design (119.5N/mm). The displacement within the fracture gap was greatest in the combi hole design, whereas it was smallest for the locking hole only design. The computed results provide a possible explanation for the breakages of combi plates revealed in clinical reports. The locking and dynamic holes separated design may be a better configuration to reduce the risk of plate fracture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Stress Distribution Around Single Short Dental Implants: A Finite Element Study.

    PubMed

    Vidya Bhat, S; Premkumar, Priyanka; Kamalakanth Shenoy, K

    2014-12-01

    Bone height restrictions are more common in the posterior regions of the mandible, because of either bone resorption resulting from tooth loss or even anatomic limitations, such as the position of the inferior alveolar nerve. In situations where adequate bone height is not available in the posterior mandible region, smaller lengths of implants may have to be used but it has been reported that the use of long implants (length ≥10 mm) is a positive factor in osseointegration and authors have reported failures with short implants. Hence knowledge about the stress generated on the bone with different lengths of implants needs scientific evaluation. The purpose of this study was to compare and evaluate the influence of different lengths of implants on stress upon bone in mandibular posterior area. A 3 D finite element model was made of the posterior mandible using the details from a CT scan, using computer software (ANSYS 12). Four simulated implants with lengths 6 mm, 8 mm, 10 mm and 13 mm were placed in the centre of the bone. A static vertical force of 250 N and a static horizontal force of 100 N were applied. The stress generated in the cortical and cancellous bone around the implant were recorded and evaluated with the help of ANSYS. In this study, Von Mises stress on a 6 mm implant under a static vertical load of 250 N appeared to be almost in the same range of 8 and 10 mm implant which were more as compared to 13 mm implant. Von Mises stress on a 6mm implant under a static horizontal load of 100 N appeared to be less when compared to 8, 10 and 13 mm implants. From the results obtained it may be inferred that under static horizontal loading conditions, shorter implants receive lesser load and thus may tend to transfer more stresses to the surrounding bone. While under static vertical loading the shorter implants bear more loads and comparatively transmit lesser load to the surrounding bone.

  12. Effect of restoration volume on stresses in a mandibular molar: a finite element study.

    PubMed

    Wayne, Jennifer S; Chande, Ruchi; Porter, H Christian; Janus, Charles

    2014-10-01

    There can be significant disagreement among dentists when planning treatment for a tooth with a failing medium-to-large--sized restoration. The clinician must determine whether the restoration should be replaced or treated with a crown, which covers and protects the remaining weakened tooth structure during function. The purpose of this study was to evaluate the stresses generated in different sized amalgam restorations via a computational modeling approach and reveal whether a predictable pattern emerges. A computer tomography scan was performed of an extracted mandibular first molar, and the resulting images were imported into a medical imaging software package for tissue segmentation. The software was used to separate the enamel, dentin, and pulp cavity through density thresholding and surface rendering. These tissue structures then were imported into 3-dimensional computer-aided design software in which material properties appropriate to the tissues in the model were assigned. A static finite element analysis was conducted to investigate the stresses that result from normal occlusal forces. Five models were analyzed, 1 with no restoration and 4 with increasingly larger restoration volume proportions: a normal-sized tooth, a small-sized restoration, 2 medium-sized restorations, and 1 large restoration as determined from bitewing radiographs and occlusal surface digital photographs. The resulting von Mises stresses for dentin-enamel of the loaded portion of the tooth grew progressively greater as the size of the restoration increased. The average stress in the normal, unrestored tooth was 4.13 MPa, whereas the smallest restoration size increased this stress to 5.52 MPa. The largest restoration had a dentin-enamel stress of 6.47 MPa. A linear correlation existed between restoration size and dentin-enamel stress, with an R(2) of 0.97. A larger restoration volume proportion resulted in higher dentin-enamel stresses under static loading. A comparison of the von Mises stresses to the yield strengths of the materials revealed a relationship between a tooth's restoration volume proportion and the potential for failure, although factors other than restoration volume proportion may also impact the stresses generated in moderate-sized restorations. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. 3D multicellular model of shock wave-cell interaction.

    PubMed

    Li, Dongli; Hallack, Andre; Cleveland, Robin O; Jérusalem, Antoine

    2018-05-01

    Understanding the interaction between shock waves and tissue is critical for ad- vancing the use of shock waves for medical applications, such as cancer therapy. This work aims to study shock wave-cell interaction in a more realistic environment, relevant to in vitro and in vivo studies, by using 3D computational models of healthy and cancerous cells. The results indicate that for a single cell embedded in an extracellular environment, the cellular geometry does not influence significantly the membrane strain but does influence the von Mises stress. On the contrary, the presence of neighbouring cells has a strong effect on the cell response, by increasing fourfold both quantities. The membrane strain response of a cell converges with more than three neighbouring cell layers, indicating that a cluster of four layers of cells is sufficient to model the membrane strain in a large domain of tissue. However, a full 3D tissue model is needed if the stress evaluation is of main interest. A tumour mimicking multicellular spheroid model is also proposed to study mutual interaction between healthy and cancer cells and shows that cancer cells can be specifically targeted in an early stage tumour-mimicking environment. This work presents 3D computational models of shock-wave/cell interaction in a biophysically realistic environment using real cell morphology in tissue-mimicking phantom and multicellular spheroid. Results show that cell morphology does not strongly influence the membrane strain but influences the von Mises stress. While the presence of neighbouring cells significantly increases the cell response, four cell layers are enough to capture the membrane strain change in tissue. However, a full tissue model is necessary if accurate stress analysis is needed. The work also shows that cancer cells can be specifically targetted in early stage tumourmimicking environment. This work is a step towards realistic modelling of shock-wave/cell interactions in tissues and provides insight on the use of 3D models for different scenarios. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Comparison between all-on-four and all-on-six treatment concepts and framework material on stress distribution in atrophic maxilla: A prototyping guided 3D-FEA study.

    PubMed

    Bhering, Cláudia Lopes Brilhante; Mesquita, Marcelo Ferraz; Kemmoku, Daniel Takanori; Noritomi, Pedro Yoshito; Consani, Rafael Leonardo Xediek; Barão, Valentim Adelino Ricardo

    2016-12-01

    We evaluated two treatment concepts for the rehabilitation of moderate atrophic maxilla with dental implants (all-on-four and all-on-six) and the effect of framework material on the stress distribution of implant-support system. A three-dimensional finite element model based on a prototype was built to simulate an entirely edentulous maxilla with moderate sinus pneumatization that was rehabilitated with a full-arch fixed dental prosthesis. Four standard implants were positioned according to the all-on-four concept and four standard implants and two short implants were placed according to the all-on-six concept. Three framework materials were evaluated: cobalt-chrome (CoCr), titanium (Ti) and zirconia (Zr), totalizing six groups. A unilateral oblique force of 150N was applied to the posterior teeth. The von Mises (σVM), maximum (σmax) and minimum (σmin) principal stress and displacements were obtained. All-on-six showed smaller σmin, σVM and σmax values on the cortical bone, implants and trabecular bone, respectively. All-on-four exhibited higher displacement levels. Ti presented the highest stress values on the cortical bone, implants, abutments, prosthetic screws and displacement levels. In conclusion, the all-on-six approach and framework stiffer materials showed the most favorable biomechanical behavior. However, the stress values did not exceed the bone resistance limits for both treatment concepts. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effect of lubricant on the reliability of dental implant abutment screw joint: An in vitro laboratory and three-dimension finite element analysis.

    PubMed

    Wu, Tingting; Fan, Hongyi; Ma, Ruiyang; Chen, Hongyu; Li, Zhi; Yu, Haiyang

    2017-06-01

    Biomechanical factors play a key role in the success of dental implants. Fracture and loosening of abutment screws are major issues. This study investigated the effect of lubricants on the stability of dental implant-abutment connection. As lubricants, graphite and vaseline were coated on the abutment screw surface, respectively, and a blank without lubricant served as the control. The total friction coefficient (μ tot ), clamping force, fatigue behavior and detorque of the joint combined with dynamic cyclic loading were measured under different lubricating conditions. Further, a three-dimensional finite element analysis was used to investigate stress distribution, in conjunction with experimental images. The results showed that the lubricant reduced μ tot , which in turn led to an increase in clamping force. Decrease in loading increased the fatigue life of the screw. However, use of lubricant at high load reduced the fatigue life. Ductile fracture at the first thread of the screw was the chief failure mode, which was due to maximum von Mises stress. Higher stress levels occurred in the lubricant groups. Lubricated screws resulted in lower detorque which made the joint easier to loosen. In conclusion, the lubricant cannot effectively improve the reliability of dental implant-abutment connection. Keeping the interfaces of implant-screw uncontaminated and strengthening the surface of the screw may be recommend for clinical operation and future design. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Evaluation of bone insertion level of support teeth in class I mandibular removable partial denture associated with an osseointegrated implant: a study using finite element analysis.

    PubMed

    Verri, Fellippo Ramos; Pellizzer, Eduardo Piza; Pereira, João Antônio; Zuim, Paulo Renato Junqueira; Santiago Júnior, Joel Ferreira

    2011-06-01

    : This study evaluated the influence of distal extension removable partial denture associated with implant in cases of different bone level of abutment tooth, using 2D finite element analysis. : Eight hemiarch models were simulated: model A-presenting tooth 33 and distal extension removable partial denture replacing others teeth, using distal rest connection and no bone lost; model B-similar to model A but presenting distal guide plate connection; model C- similar to model A but presenting osseointegrated implant with ERA retention system associated under prosthetic base; model D-similar to model B but presenting osseointegrated implant as described in model C; models E, F, G, and H were similar to models A, B, C, and D but presenting reduced periodontal support around tooth 33. Using ANSYS 9.0 software, the models were loaded vertically with 50 N on each cusp tip. For results, von Mises Stress Maps were plotted. : Maximum stress value was encountered in model G (201.023 MPa). Stress distribution was concentrated on implant and retention system. The implant/removable partial denture association decreases stress levels on alveolar mucosa for all models. : Use of implant and ERA system decreased stress concentrations on supporting structures in all models. Use of distal guide plate decreased stress levels on abutment tooth and cortical and trabecular bone. Tooth apex of models with reduced periodontal support presented increased stress when using distal rest.

  17. Zirconia-based dental crown to support a removable partial denture: a three-dimensional finite element analysis using contact elements and micro-CT data.

    PubMed

    Rocha, Eduardo Passos; Anchieta, Rodolfo Bruniera; de Almeida, Erika Oliveira; Freitas, Amilcar Chagas; Martini, Ana Paula; Sotto-Maior, Bruno Sales; Luersen, Marco Antonio; Ko, Ching Chang

    2015-01-01

    Veneer fracture is the most common complication in zirconia-based restorations. The aim of this study was to evaluate the mechanical behavior of a zirconia-based crown in a lower canine tooth supporting removable partial denture (RPD) prosthesis, varying the bond quality of the veneer/coping interface. Microtomography (μCT) data of an extracted left lower canine were used to build the finite element model (M) varying the core material (gold core - MAu; zirconia core - MZi) and the quality of the veneer/core interface (complete bonded - MZi; incomplete bonded - MZi-NL). The incomplete bonding condition was only applied for zirconia coping by using contact elements (Target/Contact) with 0.3 frictional coefficients. Stress fields were obtained using Ansys Workbench 10.0. The loading condition (L = 1 N) was vertically applied at the base of the RPD prosthesis metallic support towards the dental apex. Maximum principal (σmax) and von Mises equivalent (σvM) stresses were obtained. The σmax (MPa) for the bonded condition was similar between gold and zirconia cores (MAu, 0.42; MZi, 0.40). The incomplete bonded condition (MZi-NL) raised σmax in the veneer up to 800% (3.23 MPa) in contrast to the bonded condition. The peak of σvM increased up to 270% in the MZi-NL. The incomplete bond condition increasing the stress in the veneer/zirconia interface.

  18. Dynamic responses of concrete-filled steel tubular member under axial compression considering creep effect

    NASA Astrophysics Data System (ADS)

    Jiang, X. T.; Wang, Y. D.; Dai, C. H.; Ding, M.

    2017-08-01

    The finite element model of concrete-filled steel tubular member was established by the numerical analysis software considering material nonlinearity to analyze concrete creep effect on the dynamic responses of the member under axial compression and lateral impact. In the model, the constitutive model of core concrete is the plastic damage model, that of steel is the Von Mises yield criterion and kinematic hardening model, and the creep effect at different ages is equivalent to the change of concrete elastic modulus. Then the dynamic responses of concrete-filled steel tubular member considering creep effects was simulated, and the effects of creep on contact time, impact load, deflection, stress and strain were discussed. The fruits provide a scientific basis for the design of the impact resistance of concrete filled steel tubular members.

  19. Influence of stress interaction on the behavior of off-axis unidirectional composites

    NASA Technical Reports Server (NTRS)

    Pindera, M. J.; Herakovich, C. T.

    1980-01-01

    The yield function for plane stress of a transversely isotropic composite lamina consisting of stiff, linearly elastic fibers and a von Mises matrix material is formulated in terms of Hill's elastic stress concentration factors and a single plastic constraint parameter. The above are subsequently evaluated on the basis of observed average lamina and constituent response for the Avco 5505 boron epoxy system. It is shown that inclusion of residual stresses in the yield function together with the incorporation of Dubey and Hillier's concept of generalized yield stress for anisotropic media in the constitutive equation correctly predicts the trends observed in experiments. The incorporation of the strong axial stress interaction necessary to predict the correct trends in the shear response is directly traced to the high residual axial stresses in the matrix induced during fabrication of the composite.

  20. Influence of Diamondlike Carbon Coating of Screws on Axial Tightening Force and Stress Distribution on Overdenture Bar Frameworks with Different Fit Levels and Materials.

    PubMed

    dos Santos, Mateus Bertolini Fernandes; Bacchi, Atais; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço

    2015-01-01

    The aim of this study was to evaluate the axial tightening force applied by conventional and diamondlike carbon (DLC)-coated screws and to verify, through three-dimensional finite element analysis (FEA), the stress distribution caused by different framework materials and prosthetic screws in overdenture frameworks with different misfit levels. The axial tightening force applied by the screw was evaluated by means of a titanium matrix connected to a load cell. Conventional titanium or DLC-coated screws were tightened with a digital torque wrench, and the load values were recorded. The values were applied in an FEA to a bar-clip attachment system connected to two 4.0 × 11-mm external-hexagon titanium implants placed in an anterior edentulous arch. DLC-coated and conventional screws were modeled with their respective axial forces obtained on the experimental evaluation for three bar framework materials (titanium, nickel-chromium, and cobalt-chromium) and three levels of misfit (100, 150, and 200 μm). Von Mises stresses for prosthetic components and maximum principal stress and microstrains (maximum principal strains) for bone tissue were measured. The mean force applied by the conventional screw was 25.55 N (± 1.78); the prosthetic screw coated with a DLC layer applied a mean force of 31.44 N (± 2.11), a statistically significant difference. In the FEA, the DLC screw led to higher stresses on the framework; however, the prosthetic screw suffered lower stress. No influence of screw type was seen in the bone tissue. Titanium frameworks reduced the stress transmitted to the bone tissue and the bar framework but had no influence on the screws. Higher misfit values resulted in an increased stress/strain in bone tissue and bar framework, which was not the case for retention screws.

  1. Widespread Moulin Formation During Supraglacial Lake Drainages in Greenland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Matthew J.; Perego, Mauro; Andrews, Lauren C.

    Moulins permit access of surface meltwater to the glacier bed, causing basal lubrication and ice speedup in the ablation zone of western Greenland during summer. In spite of the substantial impact of moulins on ice dynamics, the conditions under which they form are poorly understood. We assimilate a time series of ice surface velocity from a network of eleven Global Positioning System receivers into an ice sheet model to estimate ice sheet stresses during winter, spring, and summer in a ~30 × 10 km region. Surface-parallel von Mises stress increases slightly during spring speedup and early summer, sufficient to allowmore » formation of 16% of moulins mapped in the study area. Conversely, 63% of moulins experience stresses over the tensile strength of ice during a short (hours) supraglacial lake drainage event. Lake drainages appear to control moulin density, which is itself a control on subglacial drainage efficiency and summer ice velocities.« less

  2. Impact Cratering Calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2001-01-01

    We examined the von Mises and Mohr-Coulomb strength models with and without damage effects and developed a model for dilatancy. The models and results are given in O'Keefe et al. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting with the bolide in the atmosphere produce final crater profiles having the major features found in the field measurements. These features included a central uplift, an inner ring, circular terracing and faulting. This was accomplished with undamaged surface strengths of approximately 0.1 GPa and at depth strengths of approximately 1.0 GPa. We modeled the damage in geologic materials using a phenomenological approach, which coupled the Johnson-Cook damage model with the CTH code geologic strength model. The objective here was not to determine the distribution of fragment sizes, but rather to determine the effect of brecciated and comminuted material on the crater evolution, fault production, ejecta distribution, and final crater morphology.

  3. Widespread Moulin Formation During Supraglacial Lake Drainages in Greenland

    DOE PAGES

    Hoffman, Matthew J.; Perego, Mauro; Andrews, Lauren C.; ...

    2018-01-17

    Moulins permit access of surface meltwater to the glacier bed, causing basal lubrication and ice speedup in the ablation zone of western Greenland during summer. In spite of the substantial impact of moulins on ice dynamics, the conditions under which they form are poorly understood. We assimilate a time series of ice surface velocity from a network of eleven Global Positioning System receivers into an ice sheet model to estimate ice sheet stresses during winter, spring, and summer in a ~30 × 10 km region. Surface-parallel von Mises stress increases slightly during spring speedup and early summer, sufficient to allowmore » formation of 16% of moulins mapped in the study area. Conversely, 63% of moulins experience stresses over the tensile strength of ice during a short (hours) supraglacial lake drainage event. Lake drainages appear to control moulin density, which is itself a control on subglacial drainage efficiency and summer ice velocities.« less

  4. Reliability growth modeling analysis of the space shuttle main engines based upon the Weibull process

    NASA Technical Reports Server (NTRS)

    Wheeler, J. T.

    1990-01-01

    The Weibull process, identified as the inhomogeneous Poisson process with the Weibull intensity function, is used to model the reliability growth assessment of the space shuttle main engine test and flight failure data. Additional tables of percentage-point probabilities for several different values of the confidence coefficient have been generated for setting (1-alpha)100-percent two sided confidence interval estimates on the mean time between failures. The tabled data pertain to two cases: (1) time-terminated testing, and (2) failure-terminated testing. The critical values of the three test statistics, namely Cramer-von Mises, Kolmogorov-Smirnov, and chi-square, were calculated and tabled for use in the goodness of fit tests for the engine reliability data. Numerical results are presented for five different groupings of the engine data that reflect the actual response to the failures.

  5. Thermal elastoplastic structural analysis of non-metallic thermal protection systems

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Yagawa, G.

    1972-01-01

    An incremental theory and numerical procedure to analyze a three-dimensional thermoelastoplastic structure subjected to high temperature, surface heat flux, and volume heat supply as well as mechanical loadings are presented. Heat conduction equations and equilibrium equations are derived by assuming a specific form of incremental free energy, entropy, stresses and heat flux together with the first and second laws of thermodynamics, von Mises yield criteria and Prandtl-Reuss flow rule. The finite element discretization using the linear isotropic three-dimensional element for the space domain and a difference operator corresponding to a linear variation of temperature within a small time increment for the time domain lead to systematic solutions of temperature distribution and displacement and stress fields. Various boundary conditions such as insulated surfaces and convection through uninsulated surface can be easily treated. To demonstrate effectiveness of the present formulation a number of example problems are presented.

  6. Widespread Moulin Formation During Supraglacial Lake Drainages in Greenland

    NASA Astrophysics Data System (ADS)

    Hoffman, Matthew J.; Perego, Mauro; Andrews, Lauren C.; Price, Stephen F.; Neumann, Thomas A.; Johnson, Jesse V.; Catania, Ginny; Lüthi, Martin P.

    2018-01-01

    Moulins permit access of surface meltwater to the glacier bed, causing basal lubrication and ice speedup in the ablation zone of western Greenland during summer. Despite the substantial impact of moulins on ice dynamics, the conditions under which they form are poorly understood. We assimilate a time series of ice surface velocity from a network of eleven Global Positioning System receivers into an ice sheet model to estimate ice sheet stresses during winter, spring, and summer in a ˜30 × 10 km region. Surface-parallel von Mises stress increases slightly during spring speedup and early summer, sufficient to allow formation of 16% of moulins mapped in the study area. In contrast, 63% of moulins experience stresses over the tensile strength of ice during a short (hours) supraglacial lake drainage event. Lake drainages appear to control moulin density, which is itself a control on subglacial drainage efficiency and summer ice velocities.

  7. A kinematic hardening constitutive model for the uniaxial cyclic stress-strain response of magnesium sheet alloys at room temperature

    NASA Astrophysics Data System (ADS)

    He, Zhitao; Chen, Wufan; Wang, Fenghua; Feng, Miaolin

    2017-11-01

    A kinematic hardening constitutive model is presented, in which a modified form of von Mises yield function is adopted, and the initial asymmetric tension and compression yield stresses of magnesium (Mg) alloys at room temperature (RT) are considered. The hardening behavior was classified into slip, twinning, and untwinning deformation modes, and these were described by two forms of back stress to capture the mechanical response of Mg sheet alloys under cyclic loading tests at RT. Experimental values were obtained for AZ31B-O and AZ31B sheet alloys under both tension-compression-tension (T-C-T) and compression-tension (C-T) loadings to calibrate the parameters of back stresses in the proposed model. The predicted parameters of back stresses in the twinning and untwinning modes were expressed as a cubic polynomial. The predicted curves based on these parameters showed good agreement with the tests.

  8. Study of the mechanical behavior of the hydride blister/rim structure in Zircaloy-4 using in-situ synchrotron X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jun-li; Han, Xiaochun; Heuser, Brent J.

    2016-04-01

    High-energy synchrotron X-ray diffraction was utilized to study the mechanical response of the f.c.c delta hydride phase, the intermetallic precipitation with hexagonal C14 lave phase and the alpha-Zr phase in the Zircaloy-4 materials with a hydride rim/blister structure near one surface of the material during in-situ uniaxial tension experiment at 200 degrees C. The f.c.c delta was the only hydride phase observed in the rim/blister structure. The conventional Rietveld refinement was applied to measure the macro-strain equivalent response of the three phases. Two regions were delineated in the applied load versus lattice strain measurement: a linear elastic strain region andmore » region that exhibited load partitioning. Load partitioning was quantified by von Mises analysis. The three phases were observed to have similar elastic modulus at 200 degrees C.« less

  9. A Hierarchy of Heuristic-Based Models of Crowd Dynamics

    NASA Astrophysics Data System (ADS)

    Degond, P.; Appert-Rolland, C.; Moussaïd, M.; Pettré, J.; Theraulaz, G.

    2013-09-01

    We derive a hierarchy of kinetic and macroscopic models from a noisy variant of the heuristic behavioral Individual-Based Model of Ngai et al. (Disaster Med. Public Health Prep. 3:191-195, 2009) where pedestrians are supposed to have constant speeds. This IBM supposes that pedestrians seek the best compromise between navigation towards their target and collisions avoidance. We first propose a kinetic model for the probability distribution function of pedestrians. Then, we derive fluid models and propose three different closure relations. The first two closures assume that the velocity distribution function is either a Dirac delta or a von Mises-Fisher distribution respectively. The third closure results from a hydrodynamic limit associated to a Local Thermodynamical Equilibrium. We develop an analogy between this equilibrium and Nash equilibria in a game theoretic framework. In each case, we discuss the features of the models and their suitability for practical use.

  10. NASALIFE - Component Fatigue and Creep Life Prediction Program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2014-01-01

    NASALIFE is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although the primary focus was for CMC components, the underlying methodologies are equally applicable to other material systems as well. The program references empirical data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method or a peak counting type method. Lastly, damage due to cyclic loading and creep is combined with Minor's Rule to determine damage due to cyclic loading, damage due to creep, and the total damage per mission and the number of potential missions the component can provide before failure.

  11. ANSYS Modeling of Hydrostatic Stress Effects

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.

    1999-01-01

    Classical metal plasticity theory assumes that hydrostatic pressure has no effect on the yield and postyield behavior of metals. Plasticity textbooks, from the earliest to the most modem, infer that there is no hydrostatic effect on the yielding of metals, and even modem finite element programs direct the user to assume the same. The object of this study is to use the von Mises and Drucker-Prager failure theory constitutive models in the finite element program ANSYS to see how well they model conditions of varying hydrostatic pressure. Data is presented for notched round bar (NRB) and "L" shaped tensile specimens. Similar results from finite element models in ABAQUS are shown for comparison. It is shown that when dealing with geometries having a high hydrostatic stress influence, constitutive models that have a functional dependence on hydrostatic stress are more accurate in predicting material behavior than those that are independent of hydrostatic stress.

  12. Design of biped hip simulator using SolidWorks

    NASA Astrophysics Data System (ADS)

    Zainudin, M. R.; Yahya, A.; Fazli, M. I. M.; Syahrom, A.; Harun, F. K. C.; Nazarudin, M. S.

    2017-10-01

    The increasing number of people who underwent both hip implant surgery based on World Health Organization (WHO) has received massive attention from researchers lately to develop various types of hip simulators in order to test the hip implant. Various number of hip simulator have been developed with different functions and capabilities. This paper presents the design development of biped hip simulator using SolidWorks software by taking into consideration some improvement and modifications. The finite element method is used to test the design whether it is safe to be used or not. The biped hip simulator has been successfully designed and ready to be fabricated as the endurance testing shown a positive results. The von Mises stress induced in the material is an alloy steel which is 2,975,862.3 N/m2 lower than the yield strength. Thus, the design is safe to be used as it obey the safety criterion.

  13. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 1; Stringer-Feet Imperfections and Assembly

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Song, Kyongchan; Elliott, Kenny B.; Raju, Ivatury S.; Warren, Jerry E.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear stress analyses are performed for the external hat-shaped stringers (or stiffeners) on the intertank portion of the Space Shuttle s external tank. These stringers are subjected to assembly strains when the stringers are initially installed on an intertank panel. Four different stringer-feet configurations including the baseline flat-feet, the heels-up, the diving-board, and the toes-up configurations are considered. The assembly procedure is analytically simulated for each of these stringer configurations. The location, size, and amplitude of the strain field associated with the stringer assembly are sensitive to the assumed geometry and assembly procedure. The von Mises stress distributions from these simulations indicate that localized plasticity will develop around the first eight fasteners for each stringer-feet configuration examined. However, only the toes-up configuration resulted in high assembly hoop strains.

  14. The Inclusion of In-Plane Stresses in Delamination Criteria

    NASA Technical Reports Server (NTRS)

    Fenske, Matthew T.

    1999-01-01

    A study of delamination failure was conducted with emphasis on delamination criteria. Evidence is presented which supports the inclusion of the in-plane stresses in addition to the interlaminar stress terms in delamination criteria. The delamination is characterized as the failure of a resin rich region in between ply sets. The entire six component stress state in this resin layer is calculated through a finite element analysis, averaged over a dimension of 1.75 ply thicknesses, and used in a Modified von Mises Delamination Criterion. This criterion builds onto previous criteria by including all six stress components in the interply resin layer. The MVMDC shows good correlation to experimental data. The results show that the treatment of delamination as the failure of a finite interply resin layer is a valid method and that the MVMDC, considering the full stress state, accurately indicates delamination for different laminate families.

  15. The effectiveness of element downsizing on a three-dimensional finite element model of bone trabeculae in implant biomechanics.

    PubMed

    Sato, Y; Wadamoto, M; Tsuga, K; Teixeira, E R

    1999-04-01

    More validity of finite element analysis in implant biomechanics requires element downsizing. However, excess downsizing needs computer memory and calculation time. To investigate the effectiveness of element downsizing on the construction of a three-dimensional finite element bone trabeculae model, with different element sizes (600, 300, 150 and 75 microm) models were constructed and stress induced by vertical 10 N loading was analysed. The difference in von Mises stress values between the models with 600 and 300 microm element sizes was larger than that between 300 and 150 microm. On the other hand, no clear difference of stress values was detected among the models with 300, 150 and 75 microm element sizes. Downsizing of elements from 600 to 300 microm is suggested to be effective in the construction of a three-dimensional finite element bone trabeculae model for possible saving of computer memory and calculation time in the laboratory.

  16. Goodness-of-Fit Tests for Generalized Normal Distribution for Use in Hydrological Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Das, Samiran

    2018-04-01

    The use of three-parameter generalized normal (GNO) as a hydrological frequency distribution is well recognized, but its application is limited due to unavailability of popular goodness-of-fit (GOF) test statistics. This study develops popular empirical distribution function (EDF)-based test statistics to investigate the goodness-of-fit of the GNO distribution. The focus is on the case most relevant to the hydrologist, namely, that in which the parameter values are unidentified and estimated from a sample using the method of L-moments. The widely used EDF tests such as Kolmogorov-Smirnov, Cramer von Mises, and Anderson-Darling (AD) are considered in this study. A modified version of AD, namely, the Modified Anderson-Darling (MAD) test, is also considered and its performance is assessed against other EDF tests using a power study that incorporates six specific Wakeby distributions (WA-1, WA-2, WA-3, WA-4, WA-5, and WA-6) as the alternative distributions. The critical values of the proposed test statistics are approximated using Monte Carlo techniques and are summarized in chart and regression equation form to show the dependence of shape parameter and sample size. The performance results obtained from the power study suggest that the AD and a variant of the MAD (MAD-L) are the most powerful tests. Finally, the study performs case studies involving annual maximum flow data of selected gauged sites from Irish and US catchments to show the application of the derived critical values and recommends further assessments to be carried out on flow data sets of rivers with various hydrological regimes.

  17. Utility of cement injection to stabilize split-depression tibial plateau fracture by minimally invasive methods: A finite element analysis.

    PubMed

    Belaid, D; Vendeuvre, T; Bouchoucha, A; Brémand, F; Brèque, C; Rigoard, P; Germaneau, A

    2018-05-08

    Treatment for fractures of the tibial plateau is in most cases carried out by stable fixation in order to allow early mobilization. Minimally invasive technologies such as tibioplasty or stabilization by locking plate, bone augmentation and cement filling (CF) have recently been used to treat this type of fracture. The aim of this paper was to determine the mechanical behavior of the tibial plateau by numerically modeling and by quantifying the mechanical effects on the tibia mechanical properties from injury healing. A personalized Finite Element (FE) model of the tibial plateau from a clinical case has been developed to analyze stress distribution in the tibial plateau stabilized by balloon osteoplasty and to determine the influence of the cement injected. Stress analysis was performed for different stages after surgery. Just after surgery, the maximum von Mises stresses obtained for the fractured tibia treated with and without CF were 134.9 MPa and 289.9 MPa respectively on the plate. Stress distribution showed an increase of values in the trabecular bone in the treated model with locking plate and CF and stress reduction in the cortical bone in the model treated with locking plate only. The computed results of stresses or displacements of the fractured models show that the cement filling of the tibial depression fracture may increase implant stability, and decrease the loss of depression reduction, while the presence of the cement in the healed model renders the load distribution uniform. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Retention System and Splinting on Morse Taper Implants in the Posterior Maxilla by 3D Finite Element Analysis.

    PubMed

    Lemos, Cleidiel Aparecido Araujo; Verri, Fellippo Ramos; Santiago, Joel Ferreira; Almeida, Daniel Augusto de Faria; Batista, Victor Eduardo de Souza; Noritomi, Pedro Yoshito; Pellizzer, Duardo Piza

    2018-01-01

    The purpose of this study was to evaluate different retention systems (cement- or screw-retained) and crown designs (non-splinted or splinted) of fixed implant-supported restorations, in terms of stress distributions in implants/components and bone tissue, by 3-dimensional (3D) finite element analysis. Four 3D models were simulated with the InVesalius, Rhinoceros 3D, and SolidWorks programs. Models were made of type III bone from the posterior maxillary area. Models included three 4.0-mm-diameter Morse taper (MT) implants with different lengths, which supported metal-ceramic crowns. Models were processed by the Femap and NeiNastran programs, using an axial force of 400 N and oblique force of 200 N. Results were visualized as the von Mises stress and maximum principal stress (σmax). Under axial loading, there was no difference in the distribution of stress in implants/components between retention systems and splinted crowns; however, in oblique loading, cemented prostheses showed better stress distribution than screwed prostheses, whereas splinted crowns tended to reduce stress in the implant of the first molar. In the bone tissue cemented prostheses showed better stress distribution in bone tissue than screwed prostheses under axial and oblique loading. The splinted design only had an effect in the screwed prosthesis, with no influence in the cemented prosthesis. Cemented prostheses on MT implants showed more favorable stress distributions in implants/components and bone tissue. Splinting was favorable for stress distribution only for screwed prostheses under oblique loading.

  19. Finite Element Analysis of Foot and Ankle Impact Injury: Risk Evaluation of Calcaneus and Talus Fracture.

    PubMed

    Wong, Duo Wai-Chi; Niu, Wenxin; Wang, Yan; Zhang, Ming

    2016-01-01

    Foot and ankle impact injury is common in geriatric trauma and often leads to fracture of rearfoot, including calcaneus and talus. The objective of this study was to assess the influence of foot impact on the risk of calcaneus and talus fracture via finite element analysis. A three-dimensional finite element model of foot and ankle was constructed based on magnetic resonance images of a female aged 28. The foot sustained a 7-kg passive impact through a foot plate. The simulated impact velocities were from 2.0 to 7.0 m/s with 1.0 m/s interval. At 5.0 m/s impact velocity, the maximum von Mises stress of the trabecular calcaneus and talus were 3.21MPa and 2.41MPa respectively, while that of the Tresca stress were 3.46MPa and 2.55MPa. About 94% and 84% of the trabecular calcaneus and talus exceeded the shear yielding stress, while 21.7% and 18.3% yielded the compressive stress. The peak stresses were distributed around the talocalcaneal articulation and the calcaneal tuberosity inferiorly, which corresponded to the common fracture sites. The prediction in this study showed that axial compressive impact at 5.0 m/s could produce considerable yielding of trabecular bone in both calcaneus and talus, dominantly by shear and compounded with compression that predispose the rearfoot in the risk of fracture. This study suggested the injury pattern and fracture mode of high energy trauma that provides insights in injury prevention and fracture management.

  20. Biomechanical consequences of subtalar joint arthroereisis in treating posterior tibial tendon dysfunction: a theoretical analysis using finite element analysis.

    PubMed

    Wong, Duo Wai-Chi; Wang, Yan; Chen, Tony Lin-Wei; Leung, Aaron Kam-Lun; Zhang, Ming

    2017-11-01

    Subtalar joint arthroereisis (SJA) has been introduced to control the hyperpronation in cases of flatfoot. The objective of this study is to evaluate the biomechanical consequence of SJA to restore the internal stress and load transfer to the intact state from the attenuated biomechanical condition induced by posterior tibial tendon dysfunction (PTTD). A three-dimensional finite element model of the foot and ankle complex was constructed based on clinical images of a healthy female (age 28 years, height 165 cm, body mass 54 kg). The boundary and loading condition during walking was acquired from the gait experiment of the model subject. Five sets of simulations (conditions) were completed: intact condition, mild PTTD, severe PTTD, mild PTTD with SJA, severe PTTD with SJA. The maximum von Mises stress of the metatarsal shafts and the load transfer along the midfoot during stance were analyzed. Generally, SJA deteriorated the joint force of the medial cuneonavicular and calcaneocuboid joints during late stance, while that of the metatarsocuneiform joints during early stance were over-corrected. Only the calcaneocuboid joint force at 45% stance demonstrated a trend of improvement. Besides, SJA exaggerated the increased stress of the metatarsals compared to the PTTD conditions, except that of the first metatarsal. Our study did not support the hypothesis that SJA can restore the internal load transfer and midfoot stress. SJA cannot compensate the salvage of midfoot stability attributed by PTTD and could be biomechanically insufficient to restore the biomechanical environment. Additional procedures such as orthotic intervention may be necessary.

  1. Optimization of the Conical Angle Design in Conical Implant-Abutment Connections: A Pilot Study Based on the Finite Element Method.

    PubMed

    Yao, Kuang-Ta; Chen, Chen-Sheng; Cheng, Cheng-Kung; Fang, Hsu-Wei; Huang, Chang-Hung; Kao, Hung-Chan; Hsu, Ming-Lun

    2018-02-01

    Conical implant-abutment connections are popular for their excellent connection stability, which is attributable to frictional resistance in the connection. However, conical angles, the inherent design parameter of conical connections, exert opposing effects on 2 influencing factors of the connection stability: frictional resistance and abutment rigidity. This pilot study employed an optimization approach through the finite element method to obtain an optimal conical angle for the highest connection stability in an Ankylos-based conical connection system. A nonlinear 3-dimensional finite element parametric model was developed according to the geometry of the Ankylos system (conical half angle = 5.7°) by using the ANSYS 11.0 software. Optimization algorithms were conducted to obtain the optimal conical half angle and achieve the minimal value of maximum von Mises stress in the abutment, which represents the highest connection stability. The optimal conical half angle obtained was 10.1°. Compared with the original design (5.7°), the optimal design demonstrated an increased rigidity of abutment (36.4%) and implant (25.5%), a decreased microgap at the implant-abutment interface (62.3%), a decreased contact pressure (37.9%) with a more uniform stress distribution in the connection, and a decreased stress in the cortical bone (4.5%). In conclusion, the methodology of design optimization to determine the optimal conical angle of the Ankylos-based system is feasible. Because of the heterogeneity of different systems, more studies should be conducted to define the optimal conical angle in various conical connection designs.

  2. Optimization of Casting Design Parameters on Fabrication of Reliable Semi-Solid Aluminum Suspension Control Arm

    NASA Astrophysics Data System (ADS)

    Ragab, Kh. A.; Bouaicha, A.; Bouazara, M.

    2017-09-01

    The semi-solid casting process has the advantage of providing reliable mechanical aluminum parts that work continuously in dynamic as control arm of the suspension system in automotive vehicles. The quality performance of dynamic control arm is related to casting mold and gating system designs that affect the fluidity of semi-solid metal during filling the mold. Therefore, this study focuses on improvement in mechanical performance, depending on material characterization, and casting design optimization, of suspension control arms made of A357 aluminum semi-solid alloys. Mechanical and design analyses, applied on the suspension arm, showed the occurrence of mechanical failures at unexpected weak points. Metallurgical analysis showed that the main reason lies in the difficult flow of semi-solid paste through the thin thicknesses of a complex geometry. A design modification procedure is applied to the geometry of the suspension arm to avoid this problem and to improve its quality performance. The design modification of parts was carried out by using SolidWorks design software, evaluation of constraints with ABAQUS, and simulation of flow with ProCast software. The proposed designs showed that the modified suspension arm, without ribs and with a central canvas designed as Z, is considered as a perfect casting design showing an increase in the structural strength of the component. In this case, maximum von Mises stress is 199 MPa that is below the yield strength of the material. The modified casting mold design shows a high uniformity and minim turbulence of molten metal flow during semi-solid casting process.

  3. Effect of framework material and vertical misfit on stress distribution in implant-supported partial prosthesis under load application: 3-D finite element analysis.

    PubMed

    Bacchi, Ataís; Consani, Rafael Leonardo Xediek; Mesquita, Marcelo Ferraz; Dos Santos, Mateus Bertolini Fernandes

    2013-09-01

    This study evaluated the influence of framework material and vertical misfit on stress created in an implant-supported partial prosthesis under load application. The posterior part of a severely reabsorbed jaw with a fixed partial prosthesis above two osseointegrated titanium implants at the place of the second premolar and second molar was modeled using SolidWorks 2010 software. Finite element models were obtained by importing the solid model into an ANSYS Workbench 11 simulation. The models were divided into 15 groups according to their prosthetic framework material (type IV gold alloy, silver-palladium alloy, commercially pure titanium, cobalt-chromium alloy or zirconia) and vertical misfit level (10 µm, 50 µm and 100 µm). After settlement of the prosthesis with the closure of the misfit, simultaneous loads of 110 N vertical and 15 N horizontal were applied on the occlusal and lingual faces of each tooth, respectively. The data was evaluated using Maximum Principal Stress (framework, porcelain veneer and bone tissue) and a von Mises Stress (retention screw) provided by the software. As a result, stiffer frameworks presented higher stress concentrations; however, these frameworks led to lower stresses in the porcelain veneer, the retention screw (faced to 10 µm and 50 µm of the misfit) and the peri-implant bone tissues. The increase in the vertical misfit resulted in stress values increasing in all of the prosthetic structures and peri-implant bone tissues. The framework material and vertical misfit level presented a relevant influence on the stresses for all of the structures evaluated.

  4. Effect of progressive wear on the contact mechanics of hip replacements--does the realistic surface profile matter?

    PubMed

    Wang, Ling; Yang, Wenjian; Peng, Xifeng; Li, Dichen; Dong, Shuangpeng; Zhang, Shu; Zhu, Jinyu; Jin, Zhongmin

    2015-04-13

    The contact mechanics of artificial metal-on-polyethylene hip joints are believed to affect the lubrication, wear and friction of the articulating surfaces and may lead to the joint loosening. Finite element analysis has been widely used for contact mechanics studies and good agreements have been achieved with current experimental data; however, most studies were carried out with idealist spherical geometries of the hip prostheses rather than the realistic worn surfaces, either for simplification reason or lacking of worn surface profile. In this study, the worn surfaces of the samples from various stages of hip simulator testing (0 to 5 million cycles) were reconstructed as solid models and were applied in the contact mechanics study. The simulator testing results suggested that the center of the head has various departure value from that of the cup and the value of the departure varies with progressively increased wear. This finding was adopted into the finite element study for better evaluation accuracy. Results indicated that the realistic model provided different evaluation from that of the ideal spherical model. Moreover, with the progressively increased wear, large increase of the contact pressure (from 12 to 31 MPa) was predicted on the articulating surface, and the predicted maximum von Mises stress was increased from 7.47 to 13.26 MPa, indicating the marked effect of the worn surface profiles on the contact mechanics of the joint. This study seeks to emphasize the importance of realistic worn surface profile of the acetabular cup especially following large wear volume. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Influence of transmucosal height in abutments of single and multiple implant-supported prostheses: a non-linear three-dimensional finite element analysis.

    PubMed

    Borie, Eduardo; Leal, Eduardo; Orsi, Iara Augusta; Salamanca, Carlos; Dias, Fernando José; Weber, Benjamin

    2018-01-01

    The aim of this study was to analyze the influence of three different transmucosal heights of the abutments in single and multiple implant-supported prostheses through the finite element method. External hexagon implants, MicroUnit, and EsthetiCone abutments were scanned and placed in an edentulous maxillary model obtained from a tomography database. The simulations were divided into two groups: (1) one implant with 3.75 × 10 mm placed in the upper central incisor, simulating a single implant-supported fixed prosthesis with an EsthetiCone abutment; and (2) two implants with 3.75 × 10 mm placed in the upper lateral incisors with MicroUnit abutments, simulating a multiple implant-supported prosthesis. Subsequently, each group was subdivided into three models according to the transmucosal height (1, 2, and 3 mm). A static oblique load at an angle of 45 degrees to the long axis of the implant in palatal-buccal direction of 150 and 75 N was applied for multiple and single implant-supported prosthesis, respectively. The implants and abutments were assessed according to the equivalent Von Mises stress analyses while the bone and ceramics were analyzed through maximum and minimum principal stresses. The total deformation values increased in all models, while the transmucosal height was augmented. The transmucosal height of the abutments influences the stress values at the bone, ceramics, implants, and abutments of both the single and multiple implant-supported prostheses, with the transmucosal height of 1 mm showing the lowest stress values.

  6. The Second Victim Phenomenon After a Clinical Error: The Design and Evaluation of a Website to Reduce Caregivers' Emotional Responses After a Clinical Error.

    PubMed

    Mira, José Joaquín; Carrillo, Irene; Guilabert, Mercedes; Lorenzo, Susana; Pérez-Pérez, Pastora; Silvestre, Carmen; Ferrús, Lena

    2017-06-08

    Adverse events (incidents that harm a patient) can also produce emotional hardship for the professionals involved (second victims). Although a few international pioneering programs exist that aim to facilitate the recovery of the second victim, there are no known initiatives that aim to raise awareness in the professional community about this issue and prevent the situation from worsening. The aim of this study was to design and evaluate an online program directed at frontline hospital and primary care health professionals that raises awareness and provides information about the second victim phenomenon. The design of the Mitigating Impact in Second Victims (MISE) online program was based on a literature review, and its contents were selected by a group of 15 experts on patient safety with experience in both clinical and academic settings. The website hosting MISE was subjected to an accreditation process by an external quality agency that specializes in evaluating health websites. The MISE structure and content were evaluated by 26 patient safety managers at hospitals and within primary care in addition to 266 frontline health care professionals who followed the program, taking into account its comprehension, usefulness of the information, and general adequacy. Finally, the amount of knowledge gained from the program was assessed with three objective measures (pre- and posttest design). The website earned Advanced Accreditation for health websites after fulfilling required standards. The comprehension and practical value of the MISE content were positively assessed by 88% (23/26) and 92% (24/26) of patient safety managers, respectively. MISE was positively evaluated by health care professionals, who awarded it 8.8 points out of a maximum 10. Users who finished MISE improved their knowledge on patient safety terminology, prevalence and impact of adverse events and clinical errors, second victim support models, and recommended actions following a severe adverse event (P<.001). The MISE program differs from existing intervention initiatives by its preventive nature in relation to the second victim phenomenon. Its online nature makes it an easily accessible tool for the professional community. This program has shown to increase user's knowledge on this issue and it helps them correct their approach. Furthermore, it is one of the first initiatives to attempt to bring the second victim phenomenon closer to primary care. ©José Joaquín Mira, Irene Carrillo, Mercedes Guilabert, Susana Lorenzo, Pastora Pérez-Pérez, Carmen Silvestre, Lena Ferrús, Spanish Second Victim Research Team. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 08.06.2017.

  7. Design of inside cut von koch fractal UWB MIMO antenna

    NASA Astrophysics Data System (ADS)

    Tharani, V.; Shanmuga Priya, N.; Rajesh, A.

    2017-11-01

    An Inside Cut Hexagonal Von Koch fractal MIMO antenna is designed for UWB applications and its characteristics behaviour are studied. Self-comparative and space filling properties of Koch fractal structure are utilized in the antenna design which leads to the desired miniaturization and wideband characteristics. The hexagonal shaped Von Koch Fractal antenna with Defected Ground Structure (DGS) is designed on FR4 substrate with a compact size of 30mm x 20mm x 1.6mm. The antenna achieves a maximum of -44dB and -51dB at 7.1GHz for 1-element and 2-element case respectively.

  8. Finite element analysis of smart reinforced concrete beam with super elastic shape memory alloy subjected to static loading for seismic mitigation

    NASA Astrophysics Data System (ADS)

    Hamid, Nubailah Abd; Ismail, Muhammad Hussain; Ibrahim, Azmi; Adnan, Azlan

    2018-05-01

    Reinforced concrete beam has been among major applications in construction nowadays. However, the application of nickel titanium alloy as a replacement for steel rebar in reinforced concrete beam is a new approach nowadays despite of their ability to undergo large deformations and return to their undeformed shape by removal of stresses. In this paper, the response of simply supported reinforced concrete (RC) beams with smart rebars, control beam subjected to static load has been numerically studied, and highlighted, using finite element method (FEM) where the material employed in this study is the superelastic shape memory alloys (SESMA). The SESMA is a unique alloy that has the ability to undergo large deformations and return to their undeformed shape by removal of stresses. The size of the analysed beam is 125 mm × 270 mm × 2800 mm with 2 numbers of 12 mm diameter bars as main reinforcement for compression and 12 numbers of 12 as tension or hanger bars while 6 mm diameter at 100 mm c/c used as shear reinforcement bars respectively. The concrete was modelled using solid 65 element (in ANSYS) and rebars were modelled using beam 188 elements (in ANSYS). The result for reinforced concrete with nickel titanium alloy rebar is compared with the result obtained for reinforced concrete beam with steel rebar in term of flexural behavior, load displacement relationship, crack behaviour and failure modes for various loading conditions starting from 10kN to 100kN using 3D FE modelling in ANSYS v 15. The response and result obtained from the 3D finite element analysis used in this study is load-displacement curves, residual displacements, Von-Misses, strain and stiffness are suitable for the corresponding result showed a satisfactory performance in the structural analysis. Resultant displacement, Von-Mises stress and maximum strain were influenced by the factors of the material properties, load increments and the mesh size. Nickel titanium alloy was superior to the conventional steel at limiting residual displacements and crack formation in the concrete beams and this ability makes this smart structure special to maintain their serviceability even after a strong earthquake for seismic mitigation.

  9. Contact Mechanics and Failure Modes of Compliant Polymeric Bearing Materials for Knee Cartilage Replacement

    NASA Astrophysics Data System (ADS)

    Tohfafarosh, Mariya Shabbir

    Osteoarthritis (OA) is the most common cause of disability affecting millions of people worldwide. Total knee replacement is the current state-of-the-art treatment to alleviate pain and improve mobility among patients in the late stage of knee OA. The current gold standard materials for total knee arthroplasty are cobalt-chromium and ultra-high molecular weight polyethylene (UHMWPE). However, wear debris and implant loosening-related revision persists; consequently, total knee replacements are not universally recommended for all patient subgroups with OA. This work explores the potential of using compliant polymeric materials in knee cartilage replacement devices, which are closer in lubrication and mechanical properties of articular cartilage, to prevent excessive removal of underlying bone and prolong the need for a total knee replacement. Two materials investigated in this thesis are polycarbonate urethane, Bionate 80A, and a novel hydrogel, Cyborgel, both of which have shown promising wear and lubrication properties under physiological loads. Polycarbonate urethane has been previously tested for the effects of gamma sterilization and has shown no significant changes in its mechanical strength or chemical bonds. Since an important aspect of medical device development is the sterilization process, this thesis first evaluated the effect of 30-35 kGy electron beam and gamma radiation on the polymer swell ratio, and the mechanical, chemical and tribological behavior of the novel hydrogel. Three different formulations were mechanically tested, and biphasic material properties were identified using finite element analysis. Fourier transform infrared spectroscopy was used to investigate chemical changes, while the wear properties were tested for 2 million cycles in bovine serum. The results showed no significant difference (p > 0.05) in the swell ratio, mechanical and tribological properties of the electron beam and gamma sterilized hydrogel sample as compared to the control samples. However, chemical spectra of electron beam sterilized samples revealed minor changes, which were absent in unsterilized and gamma sterilized samples. Upon successful sterilization evaluation, both polycarbonate urethane and the novel hydrogel were investigated for the contact mechanics of compliant-on-compliant artificial knee bearings using a finite element analysis approach. A simplified, axisymmetric, finite element model of a medial knee compartment was developed and validated, and a design of simulation experiments was carried out to evaluate the effect of implant conformity, implant thickness and material properties on the contact mechanics of compliant knee bearings under normal walking and stair climbing loads. All input parameters, namely, implant conformity, implant thickness and material properties, significantly (p<0.001) affected the maximum principal stress, Von Mises stress, maximum shear stress, maximum principal strain, maximum contact pressure and contact area. The knee implant contact mechanics demonstrated sensitivity to all the three design factors, and a correlation between resulting stresses and implant conformity as well as thickness was observed. However, the conformity had the highest effect-size on the contact mechanics. The maximum principal stress value halves and the contact area doubles when ≥ 95% implant conformity (i.e. the ratio of femoral to tibial surface’s radii of curvature) and ≥ 3mm thickness was used, hence, these parameters were recommended for the design of compliant knee bearings. Finally, a battery of mechanical tests was carried out to evaluate the failure criteria of the proposed compliant polymers under physiological loads and strain rates. Uniaxial tests, including tension and unconfined compression, and biaxial tests, such as plane strain compression, were carried out to characterize the mechanical behavior of different material formulations at physiologically relevant testing rates. The materials failed under tension between 250 - 750% true strain, while those under uniaxial and biaxial compression test sustained compression of 50 - 70% engineering strain (39 - 53% true strain) without any signs of cracking or fracture. The tension was determined to be the primary failure mode for the proposed materials, and the tensile test was used to define the failure criteria of the materials. The unconfined compression tests were used to define the yield stresses and strains under compression, which is the main mode of loading for the knee joint. The results of the plane strain compression were modeled using a finite element model and the maximum principal stress, von Mises stress, maximum shear stress, and maximum principal strain failure criteria were predicted at the corresponding yield strain of each material formulation. Upon comparing the knee model contact stress and strain prediction under normal walking and stair climbing loads with those of the empirical failure criteria at yield, the polycarbonate urethane showed better overall potential for use in compliant knee implants, while the hydrogels exhibited higher potential for delamination or fracture, especially if appropriate implant conformity and thickness are not employed. The outcome of this study and the previous parametric model results helped to determine a niche design space within which designing a knee implant with compliant bearing materials may be feasible. In summary, the potential of compliant bearing materials was thoroughly examined in this thesis, and the results provided a foundation for future testing and development of a compliant cartilage replacement implant. Such an implant would be a promising improvement and alternative to conventional total knee replacements.

  10. Satellite Vibration Testing: Angle optimisation method to Reduce Overtesting

    NASA Astrophysics Data System (ADS)

    Knight, Charly; Remedia, Marcello; Aglietti, Guglielmo S.; Richardson, Guy

    2018-06-01

    Spacecraft overtesting is a long running problem, and the main focus of most attempts to reduce it has been to adjust the base vibration input (i.e. notching). Instead this paper examines testing alternatives for secondary structures (equipment) coupled to the main structure (satellite) when they are tested separately. Even if the vibration source is applied along one of the orthogonal axes at the base of the coupled system (satellite plus equipment), the dynamics of the system and potentially the interface configuration mean the vibration at the interface may not occur all along one axis much less the corresponding orthogonal axis of the base excitation. This paper proposes an alternative testing methodology in which the testing of a piece of equipment occurs at an offset angle. This Angle Optimisation method may have multiple tests but each with an altered input direction allowing for the best match between all specified equipment system responses with coupled system tests. An optimisation process that compares the calculated equipment RMS values for a range of inputs with the maximum coupled system RMS values, and is used to find the optimal testing configuration for the given parameters. A case study was performed to find the best testing angles to match the acceleration responses of the centre of mass and sum of interface forces for all three axes, as well as the von Mises stress for an element by a fastening point. The angle optimisation method resulted in RMS values and PSD responses that were much closer to the coupled system when compared with traditional testing. The optimum testing configuration resulted in an overall average error significantly smaller than the traditional method. Crucially, this case study shows that the optimum test campaign could be a single equipment level test opposed to the traditional three orthogonal direction tests.

  11. Stress and displacement patterns in the craniofacial skeleton with rapid maxillary expansion: a finite element method study.

    PubMed

    Gautam, Pawan; Valiathan, Ashima; Adhikari, Raviraj

    2007-07-01

    The purpose of this finite element study was to evaluate stress distribution along craniofacial sutures and displacement of various craniofacial structures with rapid maxillary expansion (RME) therapy. The analytic model for this study was developed from sequential computed tomography scan images taken at 2.5-mm intervals of a dry young human skull. Subsequently, a finite element method model was developed from computed tomography images by using AutoCAD software (2004 version, Autodesk, Inc, San Rafael, Calif) and ANSYS software (version 10, Belcan Engineering Group, Downers Grove, Ill). The maxilla moved anteriorly and downward and rotated clockwise in response to RME. The pterygoid plates were displaced laterally. The distant structures of the craniofacial skeleton--zygomatic bone, temporal bone, and frontal bone--were also affected by transverse orthopedic forces. The center of rotation of the maxilla in the X direction was somewhere between the lateral and the medial pterygoid plates. In the frontal plane, the center of rotation of the maxilla was approximately at the superior orbital fissure. The maximum von Mises stresses were found along the frontomaxillary, nasomaxillary, and frontonasal sutures. Both tensile and compressive stresses could be demonstrated along the same suture. RME facilitates expansion of the maxilla in both the molar and the canine regions. It also causes downward and forward displacement of the maxilla and thus can contribute to the correction of mild Class III malocclusion. The downward displacement and backward rotation of the maxilla could be a concern in patients with excessive lower anterior facial height. High stresses along the deep structures and the various sutures of the craniofacial skeleton signify the role of the circummaxillary sutural system in downward and forward displacement of the maxilla after RME.

  12. Effect of crown-to-implant ratio on peri-implant stress: a finite element analysis.

    PubMed

    Verri, Fellippo Ramos; Batista, Victor Eduardo de Souza; Santiago, Joel Ferreira; Almeida, Daniel Augusto de Faria; Pellizzer, Eduardo Piza

    2014-12-01

    The aim of this study was to evaluate stress distribution in the fixation screws and bone tissue around implants in single-implant supported prostheses with crowns of different heights (10, 12.5, 15 mm - crown-to-implant ratio 1:1, 1.25:1, 1.5:1, respectively). It was designed using three 3-D models. Each model was developed with a mandibular segment of bone block including an internal hexagon implant supporting a screw-retained, single metal-ceramic crown. The crown height was set at 10, 12.5, and 15 mm with crown-to-implant ratio of 1:1, 1.25:1, 1.5:1, respectively. The applied forces were 200N (axial) and 100 N (oblique). The increase of crown height showed differences with the oblique load in some situations. By von Mises' criterion, a high stress area was concentrated at the implant/fixation screw and abutment/implant interfaces at crown-to-implant ratio of 1:1, 1.25:1, 1.5:1, respectively. Using the maximum principal criteria, the buccal regions showed higher traction stress intensity, whereas the distal regions showed the largest compressive stress in all models. The increase of C/I ratio must be carefully evaluated by the dentist since the increase of this C/I ratio is proportional to the increase of average stress for both screw fixation (C/I 1:1 to 1:1.25 ratio=30.1% and C/I 1:1 to 1:1.5 ratio=46.3%) and bone tissue (C/I 1:1 to 1:1.25 ratio=30% and C/I 1:1 to 1:1.5 ratio=51.5%). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The effect of vertical bracket positioning on torque and the resultant stress in the periodontal ligament--a finite element study.

    PubMed

    Sardarian, Ahmadreza; Danaei, Shahla Momeni; Shahidi, Shoaleh; Boushehri, Sahar Ghodsi; Geramy, Allahyar

    2014-01-01

    The ideal built-in tip and torque values of the straight wire appliance reduce the need for wire bending and hence reduce chair time. The vertical position of the bracket on the tooth surface can alter the torque exerted on the tooth. This is a result of the altered surface curvature observed at each vertical position. To further clarify the role of vertical bracket positioning on the applied torque and the resultant stresses in the periodontal ligament (PDL), we designed a mandibular first premolar using finite element modeling. Cone beam computed tomography of 52 patients (83 lower first premolars) was selected to be included in the study. Curvature was measured for points along the labial surface with increasing distances (0.5 mm increments) from the cusp tip by calculating the angle between tangents drawn from these points and the axis joining the cusp tip and the root apex. The mean values for each distance were calculated, and a finite element model was designed incorporating these mean values. The resultant stress and hydrostatic pressure in the PDL were calculated using finite element analysis. The labial surface of the mandibular first premolar demonstrated a 26.39° change from 2.5 to 6 mm from the cusp tip. The maximum Von-Mises stress and hydrostatic pressure in the PDL were observed at the root apex for all of the bracket positions, and these values demonstrated, respectively, a change of up to 0.059 and 0.186 MPa between two successive points. It can be concluded that the variation in the vertical position of the bracket can have an important effect on the torque and subsequently on the stresses and pressures in the PDL.

  14. Establishment of sequential software processing for a biomechanical model of mandibular reconstruction with custom-made plate.

    PubMed

    Li, Peng; Tang, Youchao; Li, Jia; Shen, Longduo; Tian, Weidong; Tang, Wei

    2013-09-01

    The aim of this study is to describe the sequential software processing of computed tomography (CT) dataset for reconstructing the finite element analysis (FEA) mandibular model with custom-made plate, and to provide a theoretical basis for clinical usage of this reconstruction method. A CT scan was done on one patient who had mandibular continuity defects. This CT dataset in DICOM format was imported into Mimics 10.0 software in which a three-dimensional (3-D) model of the facial skeleton was reconstructed and the mandible was segmented out. With Geomagic Studio 11.0, one custom-made plate and nine virtual screws were designed. All parts of the reconstructed mandible were converted into NURBS and saved as IGES format for importing into pro/E 4.0. After Boolean operation and assembly, the model was switched to ANSYS Workbench 12.0. Finally, after applying the boundary conditions and material properties, an analysis was performed. As results, a 3-D FEA model was successfully developed using the softwares above. The stress-strain distribution precisely indicated biomechanical performance of the reconstructed mandible on the normal occlusion load, without stress concentrated areas. The Von-Mises stress in all parts of the model, from the maximum value of 50.9MPa to the minimum value of 0.1MPa, was lower than the ultimate tensile strength. In conclusion, the described strategy could speedily and successfully produce a biomechanical model of a reconstructed mandible with custom-made plate. Using this FEA foundation, the custom-made plate may be improved for an optimal clinical outcome. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Overdenture retaining bar stress distribution: a finite-element analysis.

    PubMed

    Caetano, Conrado Reinoldes; Mesquita, Marcelo Ferraz; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço; Dos Santos, Mateus Bertolini Fernandes

    2015-05-01

    Evaluate the stress distribution on the peri-implant bone tissue and prosthetic components of bar-clip retaining systems for overdentures presenting different implant inclinations, vertical misfit and framework material. Three-dimensional models of a jaw and an overdenture retained by two implants and a bar-clip attachment were modeled using specific software (SolidWorks 2010). The studied variables were: latero-lateral inclination of one implant (-10°, -5°, 0°, +5°, +10°); vertical misfit on the other implant (50, 100, 200 µm); and framework material (Au type IV, Ag-Pd, Ti cp, Co-Cr). Solid models were imported into mechanical simulation software (ANSYS Workbench 11). All nodes on the bone's external surface were constrained and a displacement was applied to simulate the settling of the framework on the ill-fitted component. Von Mises stress for the prosthetic components and maximum principal stress to the bone tissue were evaluated. The +10° inclination presented the worst biomechanical behavior, promoting the highest stress values on the bar framework and peri-implant bone tissue. The -5° group presented the lowest stress values on the prosthetic components and the lowest stress value on peri-implant bone tissue was observed in -10°. Increased vertical misfit caused an increase on the stress values in all evaluated structures. Stiffer framework materials caused a considerable stress increase in the framework itself, prosthetic screw of the fitted component and peri-implant bone tissue. Inclination of one implant associated with vertical misfit caused a relevant effect on the stress distribution in bar-clip retained overdentures. Different framework materials promoted increased levels of stress in all the evaluated structures.

  16. Frequency-sensitive competitive learning for scalable balanced clustering on high-dimensional hyperspheres.

    PubMed

    Banerjee, Arindam; Ghosh, Joydeep

    2004-05-01

    Competitive learning mechanisms for clustering, in general, suffer from poor performance for very high-dimensional (>1000) data because of "curse of dimensionality" effects. In applications such as document clustering, it is customary to normalize the high-dimensional input vectors to unit length, and it is sometimes also desirable to obtain balanced clusters, i.e., clusters of comparable sizes. The spherical kmeans (spkmeans) algorithm, which normalizes the cluster centers as well as the inputs, has been successfully used to cluster normalized text documents in 2000+ dimensional space. Unfortunately, like regular kmeans and its soft expectation-maximization-based version, spkmeans tends to generate extremely imbalanced clusters in high-dimensional spaces when the desired number of clusters is large (tens or more). This paper first shows that the spkmeans algorithm can be derived from a certain maximum likelihood formulation using a mixture of von Mises-Fisher distributions as the generative model, and in fact, it can be considered as a batch-mode version of (normalized) competitive learning. The proposed generative model is then adapted in a principled way to yield three frequency-sensitive competitive learning variants that are applicable to static data and produced high-quality and well-balanced clusters for high-dimensional data. Like kmeans, each iteration is linear in the number of data points and in the number of clusters for all the three algorithms. A frequency-sensitive algorithm to cluster streaming data is also proposed. Experimental results on clustering of high-dimensional text data sets are provided to show the effectiveness and applicability of the proposed techniques. Index Terms-Balanced clustering, expectation maximization (EM), frequency-sensitive competitive learning (FSCL), high-dimensional clustering, kmeans, normalized data, scalable clustering, streaming data, text clustering.

  17. Effect of Integration Patterns Around Implant Neck on Stress Distribution in Peri-Implant Bone: A Finite Element Analysis.

    PubMed

    Han, Jingyun; Sun, Yuchun; Wang, Chao

    2017-08-01

    To investigate the biomechanical performance of different osseointegration patterns between cortical bone and implants using finite element analysis. Fifteen finite element models were constructed of the mandibular fixed prosthesis supported by implants. Masticatory loads (200 N axial, 100 N oblique, 40 N horizontal) were applied. The cortical bone/implant interface was divided equally into four layers: upper, upper-middle, lower-middle, and lower. The bone stress and implant displacement were calculated for 5 degrees of uniform integration (0, 20%, 40%, 60%, and 100%) and 10 integration patterns. The stress was concentrated in the bone margin and gradually decreased as osseointegration progressed, when the integrated and nonintegrated areas were alternated on the bone-implant surface. Compared with full integration, the integration of only the lower-middle layer or lower half layers significantly decreased von Mises, tensile, and compressive stresses in cortical bone under oblique and horizontal loads, and these patterns did not induce higher stress in the cancellous bone. For the integration of only the upper or upper-middle layer, stress in the cortical and cancellous bones significantly increased and was considerably higher than in the case of nonintegration. In addition, the maximum stress in the cortical bone was sensitive to the quantity of integrated nodes at the bone margin; lower quantity was associated with higher stress. There was no significant difference in the displacement of implants among 15 models. Integration patterns of cortical bone significantly affect stress distribution in peri-implant bone. The integration of only the lower-middle or lower half layers helps to increase the load-bearing capacity of peri-implant bone and decrease the risk of overloading, while upper integration may further increase the risk of bone resorption. © 2016 by the American College of Prosthodontists.

  18. Stress distribution in delayed replanted teeth splinted with different orthodontic wires: a three-dimensional finite element analysis.

    PubMed

    de Souza, Fernando Isquierdo; Poi, Wilson Roberto; da Silva, Vanessa Ferreira; Martini, Ana Paula; Melo, Regis Alexandre da Cunha; Panzarini, Sonia Regina; Rocha, Eduardo Passos

    2015-06-01

    The aim was to evaluate the biomechanical behavior of the supporting bony structures of replanted teeth and the periodontal ligament (PDL) of adjacent teeth when orthodontic wires with different mechanical properties are applied, with three-dimensional finite element analysis. Based on tomographic and microtomographic data, a three-dimensional model of the anterior maxilla with the corresponding teeth (tooth 13-tooth 23) was generated to simulate avulsion and replantation of the tooth 21. The teeth were splinted with orthodontic wire (Ø 0.8 mm) and composite resin. The elastic modulus of the three orthodontic wires used, that is, steel wire (FA), titanium-molybdenum wire (FTM), and nitinol wire (FN) were 200 GPa, 84 GPa, and 52 GPa, respectively. An oblique load (100 N) was applied at an angle of 45° on the incisal edge of the replanted tooth and was analyzed using Ansys Workbench software. The maximum (σmax) and minimum (σmin) principal stresses generated in the PDL, cortical and alveolar bones, and the modified von Mises (σvM) values for the orthodontic wires were obtained. With regard to the cortical bone and PDL, the highest σmin and σmax values for FTM, FN, and FA were checked. With regard to the alveolar bone, σmax and σmin values were highest for FA, followed by FTM and FN. The σvM values of the orthodontic wires followed the order of rigidity of the alloys, that is, FA > FTM > FN. The biomechanical behavior of the analyzed structures with regard to all the three patterns of flexibility was similar. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. A CAD Approach to Integrating NDE With Finite Element

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Downey, James; Ghosn, Louis J.; Baaklini, George Y.

    2004-01-01

    Nondestructive evaluation (NDE) is one of several technologies applied at NASA Glenn Research Center to determine atypical deformities, cracks, and other anomalies experienced by structural components. NDE consists of applying high-quality imaging techniques (such as x-ray imaging and computed tomography (CT)) to discover hidden manufactured flaws in a structure. Efforts are in progress to integrate NDE with the finite element (FE) computational method to perform detailed structural analysis of a given component. This report presents the core outlines for an in-house technical procedure that incorporates this combined NDE-FE interrelation. An example is presented to demonstrate the applicability of this analytical procedure. FE analysis of a test specimen is performed, and the resulting von Mises stresses and the stress concentrations near the anomalies are observed, which indicates the fidelity of the procedure. Additional information elaborating on the steps needed to perform such an analysis is clearly presented in the form of mini step-by-step guidelines.

  20. Fluid pressure waves trigger earthquakes

    NASA Astrophysics Data System (ADS)

    Mulargia, Francesco; Bizzarri, Andrea

    2015-03-01

    Fluids-essentially meteoric water-are present everywhere in the Earth's crust, occasionally also with pressures higher than hydrostatic due to the tectonic strain imposed on impermeable undrained layers, to the impoundment of artificial lakes or to the forced injections required by oil and gas exploration and production. Experimental evidence suggests that such fluids flow along preferred paths of high diffusivity, provided by rock joints and faults. Studying the coupled poroelastic problem, we find that such flow is ruled by a nonlinear partial differential equation amenable to a Barenblatt-type solution, implying that it takes place in form of solitary pressure waves propagating at a velocity which decreases with time as v ∝ t [1/(n - 1) - 1] with n ≳ 7. According to Tresca-Von Mises criterion, these waves appear to play a major role in earthquake triggering, being also capable to account for aftershock delay without any further assumption. The measure of stress and fluid pressure inside active faults may therefore provide direct information about fault potential instability.

  1. The effect of implant design of linked total elbow arthroplasty on stability and stress: a finite element analysis.

    PubMed

    Willing, Ryan; King, Graham J W; Johnson, James A

    2014-01-01

    Several linked total elbow arthroplasty designs exist, which function similar to a loose hinge joint. Constraint behaviour is an important design consideration, as it affects joint stability, or how much secondary [e.g. varus-valgus (VV)] motion is permitted. Implant durability is also a concern, as bearing failures have been reported. This finite element analysis investigates the constraint characteristics and ultra high molecular weight polyethylene bearing stresses of three linked elbow design concepts [cylindrical (CY), hourglass (HG) and concave cylinder (CC)]. The bearing of the CY design was subjected to elevated Von Mises stresses (2.1-5.4 times higher than the HG and CC designs) due to edge loading. The HG design maintained low stresses, but was unable to provide consistent VV stability. The CC design also maintained low stresses while providing consistent VV stability. These results suggest that CC designs may provide better stability characteristics and durability in vivo, compared to the other two designs.

  2. Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Chermahini, R. G.

    1985-01-01

    Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.

  3. Finite-Element Analysis of Current-Induced Thermal Stress in a Conducting Sphere

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Yang, Fuqian

    2012-02-01

    Understanding the electrothermal-mechanical behavior of electronic interconnects is of practical importance in improving the structural reliability of electronic devices. In this work, we use the finite-element method to analyze the Joule-heating-induced thermomechanical deformation of a metallic sphere that is sandwiched between two rigid plates. The deformation behavior of the sphere is elastic-perfectly plastic with Young's modulus and yield stress decreasing with temperature. The mechanical stresses created by Joule heating are found to depend on the thermal and mechanical contact conditions between the sphere and the plates. The temperature rise in the sphere for the diathermal condition between the sphere and the plates deviates from the square relation between Joule heat and electric current, due to the temperature dependence of the electrothermal properties of the material. For large electric currents, the simulations reveal the decrease of von Mises stress near the contact interfaces, which suggests that current-induced structural damage will likely occur near the contact interfaces.

  4. Varying coefficient subdistribution regression for left-truncated semi-competing risks data.

    PubMed

    Li, Ruosha; Peng, Limin

    2014-10-01

    Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying co-efficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov-Smirnov type and Cramér Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method.

  5. Design and static structural analysis of a race car chassis for Formula Society of Automotive Engineers (FSAE) event

    NASA Astrophysics Data System (ADS)

    Mohamad, M. L.; Rahman, M. T. A.; Khan, S. F.; Basha, M. H.; Adom, A. H.; Hashim, M. S. M.

    2017-10-01

    The main purpose of this study is to make improvement for the UniMAP Automotive Racing Team car chassis which has several problems associated with the chassis must be fixed and some changes are needed to be made in order to perform well. This study involves the process of designing three chassis that are created based on the rules stated by FSAE rules book (2017/2018). The three chassis will undergo analysis test that consists of five tests which are main roll hoop test, front roll hoop test, static shear, side impact, static torsional loading and finally one of them will be selected as the best design in term of Von Mises Stress and torsional displacement. From the results obtained, the new selected chassis design which also declared as the new improved design poses the weight of 27.66 kg which was decreased by 16.7% from the existing chassis (32.77 kg). The torsional rigidity of the improved chassis increased by 37.74%.

  6. Preferred numbers and the distributions of trade sizes and trading volumes in the Chinese stock market

    NASA Astrophysics Data System (ADS)

    Mu, G.-H.; Chen, W.; Kertész, J.; Zhou, W.-X.

    2009-03-01

    The distributions of trade sizes and trading volumes are investigated based on the limit order book data of 22 liquid Chinese stocks listed on the Shenzhen Stock Exchange in the whole year 2003. We observe that the size distribution of trades for individualstocks exhibits jumps, which is caused by the number preference of traders when placing orders. We analyze the applicability of the “q-Gamma” function for fitting the distribution by the Cramér-von Mises criterion. The empirical PDFs of tradingvolumes at different timescales Δt ranging from 1 min to 240 min can be well modeled. The applicability of the q-Gamma functions for multiple trades is restricted to the transaction numbers Δn≤ 8. We find that all the PDFs have power-law tails for large volumes. Using careful estimation of the average tail exponents α of the distributions of trade sizes and trading volumes, we get α> 2, well outside the Lévy regime.

  7. [Stress analysis on the acetabular side of bipolar hemiarthroplasty by the two-dimensional finite element method incorporating the boundary friction layer].

    PubMed

    Ichihashi, K; Imura, S; Oomori, H; Gesso, H

    1994-11-01

    We compared the biomechanical characteristics of bipolar and unipolar hemiarthroplasty on the proximal migration of the outer head by determining the von Mises stress distribution and acetabular (outer head) displacement with clinical assessment of hemiarthroplasty in 75 patients. This analysis used the two-dimensional finite element method, which incorporated boundary friction layers on both the inner and outer bearings of the prosthesis. Acetabular reaming increased stress within the pelvic bone and migration of the outer head. A combination of the acetabular reaming and bone transplantation increased the stress within the pelvic bone and grafted bone, and caused outer head migration. These findings were supported by clinical results. Although the bipolar endoprosthesis was biomechanically superior to the unipolar endoprosthesis, migration of the outer head still occurred. The bipolar endoprosthesis appeared to be indicated in cases of a femoral neck fracture or of avascular necrosis in the femoral head, but its use in cases of osteoarthritis in the hip required caution.

  8. Design of High Altitude Long Endurance UAV: Structural Analysis of Composite Wing using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Kholish Rumayshah, Khodijah; Prayoga, Aditya; Mochammad Agoes Moelyadi, Ing., Dr.

    2018-04-01

    Research on a High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) is currently being conducted at Bandung Institute of Technology (ITB). Previously, the 1st generation of HALE UAV ITB used balsa wood for most of its structure. Flight test gave the result of broken wings due to extreme side-wind that causes large bending to its high aspect ratio wing. This paper conducted a study on designing the 2nd generation of HALE UAV ITB which used composite materials in order to substitute balsa wood at some critical parts of the wing’s structure. Finite element software ABAQUS/CAE is used to predict the stress and deformation that occurred. Tsai-Wu and Von-Mises failure criteria were applied to check whether the structure failed or not. The initial configuration gave the results that the structure experienced material failure. A second iteration was done by proposing a new configuration and it was proven safe against the load given.

  9. Finite element analysis of container ship's cargo hold using ANSYS and POSEIDON software

    NASA Astrophysics Data System (ADS)

    Tanny, Tania Tamiz; Akter, Naznin; Amin, Osman Md.

    2017-12-01

    Nowadays ship structural analysis has become an integral part of the preliminary ship design providing further support for the development and detail design of ship structures. Structural analyses of container ship's cargo holds are carried out for the balancing of their safety and capacity, as those ships are exposed to the high risk of structural damage during voyage. Two different design methodologies have been considered for the structural analysis of a container ship's cargo hold. One is rule-based methodology and the other is a more conventional software based analyses. The rule based analysis is done by DNV-GL's software POSEIDON and the conventional package based analysis is done by ANSYS structural module. Both methods have been applied to analyze some of the mechanical properties of the model such as total deformation, stress-strain distribution, Von Mises stress, Fatigue etc., following different design bases and approaches, to indicate some guidance's for further improvements in ship structural design.

  10. Apparent Yield Strength of Hot-Pressed SiCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daloz, William L; Wereszczak, Andrew A; Jadaan, Osama M.

    2008-01-01

    Apparent yield strengths (YApp) of four hot-pressed silicon carbides (SiC-B, SiC-N,SiC-HPN, and SiC-SC-1RN) were estimated using diamond spherical or Hertzian indentation. The von Mises and Tresca criteria were considered. The developed test method was robust, simple and quick to execute, and thusly enabled the acquisition of confident sampling statistics. The choice of indenter size, test method, and method of analysis are described. The compressive force necessary to initiate apparent yielding was identified postmortem using differential interference contrast (or Nomarski) imaging with an optical microscope. It was found that the YApp of SiC-HPN (14.0 GPa) was approximately 10% higher than themore » equivalently valued YApp of SiC-B, SiC-N, and SiC-SC-1RN. This discrimination in YApp shows that the use of this test method could be insightful because there were no differences among the average Knoop hardnesses of the four SiC grades.« less

  11. Recrystallization texture in nickel heavily deformed by accumulative roll bonding

    NASA Astrophysics Data System (ADS)

    Mishin, O. V.; Zhang, Y. B.; Godfrey, A.

    2017-07-01

    The recrystallization behavior of Ni processed by accumulative roll bonding to a total accumulated von Mises strain of 4.8 has been examined, and analyzed with respect to heterogeneity in the deformation microstructure. The regions near the bonding interface are found to be more refined and contain particle deformation zones around fragments of the steel wire brush used to prepare the surface for bonding. Sample-scale gradients are also observed, manifested as differences between the subsurface, intermediate and central layers, where the distributions of texture components are different. These heterogeneities affect the progress of recrystallization. While the subsurface and near-interface regions typically contain lower frequencies of cube-oriented grains than anywhere else in the sample, a strong cube texture forms in the sample during recrystallization, attributed to both a high nucleation rate and fast growth rate of cube-oriented grains. The observations highlight the sensitivity of recrystallization to heterogeneity in the deformation microstructure and demonstrate the importance of characterizing this heterogeneity over several length scales.

  12. On Compression of a Heavy Compressible Layer of an Elastoplastic or Elastoviscoplastic Medium

    NASA Astrophysics Data System (ADS)

    Kovtanyuk, L. V.; Panchenko, G. L.

    2017-11-01

    The problem of deformation of a horizontal plane layer of a compressible material is solved in the framework of the theory of small strains. The upper boundary of the layer is under the action of shear and compressing loads, and the no-slip condition is satisfied on the lower boundary of the layer. The loads increase in absolute value with time, then become constant, and then decrease to zero.Various plasticity conditions are consideredwith regard to the material compressibility, namely, the Coulomb-Mohr plasticity condition, the von Mises-Schleicher plasticity condition, and the same conditions with the viscous properties of the material taken into account. To solve the system of partial differential equations for the components of irreversible strains, a finite-difference scheme is developed for a spatial domain increasing with time. The laws of motion of elastoplastic boundaries are presented, the stresses, strains, rates of strain, and displacements are calculated, and the residual stresses and strains are found.

  13. Effects of fiber and interfacial layer architectures on the thermoplastic response of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Freed, Alan D.; Arnold, Steven M.

    1992-01-01

    Examined here is the effect of fiber and interfacial layer morphologies on thermal fields in metal matrix composites (MMCs). A micromechanics model based on an arbitrarily layered concentric cylinder configuration is used to calculate thermal stress fields in MMCs subjected to spatially uniform temperature changes. The fiber is modelled as a layered material with isotropic or orthotropic elastic layers, whereas the surrounding matrix, including interfacial layers, is treated as a strain-hardening, elastoplastic, von Mises solid with temperature-dependent parameters. The solution to the boundary-value problem of an arbitrarily layered concentric cylinder under the prescribed thermal loading is obtained using the local/global stiffness matrix formulation originally developed for stress analysis of multilayered elastic media. Examples are provided that illustrate how the morphology of the SCS6 silicon carbide fiber and the use of multiple compliant layers at the fiber/matrix interface affect the evolution of residual stresses in SiC/Ti composites during fabrication cool-down.

  14. Role of Excessive Autophagy Induced by Mechanical Overload in Vein Graft Neointima Formation: Prediction and Prevention

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Ju; Huang, Hui-Chun; Hsueh, Yuan-Yu; Wang, Shao-Wei; Su, Fong-Chin; Chang, Chih-Han; Tang, Ming-Jer; Li, Yi-Shuan; Wang, Shyh-Hau; Shung, Kirk K.; Chien, Shu; Wu, Chia-Ching

    2016-02-01

    Little is known regarding the interplays between the mechanical and molecular bases for vein graft restenosis. We elucidated the stenosis initiation using a high-frequency ultrasonic (HFU) echogenicity platform and estimated the endothelium yield stress from von-Mises stress computation to predict the damage locations in living rats over time. The venous-arterial transition induced the molecular cascades for autophagy and apoptosis in venous endothelial cells (ECs) to cause neointimal hyperplasia, which correlated with the high echogenicity in HFU images and the large mechanical stress that exceeded the yield strength. The ex vivo perfusion of arterial laminar shear stress to isolated veins further confirmed the correlation. EC damage can be rescued by inhibiting autophagy formation using 3-methyladenine (3-MA). Pretreatment of veins with 3-MA prior to grafting reduced the pathological increases of echogenicity and neointima formation in rats. Therefore, this platform provides non-invasive temporal spatial measurement and prediction of restenosis after venous-arterial transition as well as monitoring the progression of the treatments.

  15. NASALife-Component Fatigue and Creep Life Prediction Program and Illustrative Examples

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Mital, Subodh K.; Gyekenyesi, John Z.

    2005-01-01

    NASALife is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although, the primary focus was for CMC components the underlying methodologies are equally applicable to other material systems as well. The program references data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method. Lastly, damage due to cyclic loading (Miner s rule) and creep are combined to determine the total damage per mission and the number of missions the component can survive before failure are calculated. Illustration of code usage is provided through example problem of a CMC turbine stator vane made of melt-infiltrated, silicon carbide fiber-reinforced, silicon carbide matrix composite (MI SiC/SiC)

  16. The effects of hydroxyapatite coatings on stress distribution near the dental implant bone interface

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Wang, W. D.; Shi, X. H.; Chen, H. Z.; Zou, W.; Guo, Z.; Luo, J. M.; Gu, Z. W.; Zhang, X. D.

    2008-11-01

    The effects of different thickness of hydroxyapatite (HA) coatings on bone stress distribution near the dental implant-bone interface are very important factors for the HA-coated dental implant design and clinical application. By means of finite element analysis (FEA), the bone stress distributions near the dental implant coated with different thicknesses from 0 to 200 μm were calculated and analyzed under the 200 N chewing load. In all cases, the maximal von Mises stresses in the bone are at the positions near the neck of dental implant on the lingual side, and decrease with the increase of the HA coatings thickness. The HA coatings weaken the stress concentration and improve the biomechanical property in the bone, however, in HA coatings thickness range of 60-120 μm, the distinctions of that benefit are not obvious. In addition, considering the technical reason of HA coatings, we conclude that thickness of HA coatings range from 60 to 120 μm would be the better choice for clinical application.

  17. Dynamic compaction of granular materials

    PubMed Central

    Favrie, N.; Gavrilyuk, S.

    2013-01-01

    An Eulerian hyperbolic multiphase flow model for dynamic and irreversible compaction of granular materials is constructed. The reversible model is first constructed on the basis of the classical Hertz theory. The irreversible model is then derived in accordance with the following two basic principles. First, the entropy inequality is satisfied by the model. Second, the corresponding ‘intergranular stress’ coming from elastic energy owing to contact between grains decreases in time (the granular media behave as Maxwell-type materials). The irreversible model admits an equilibrium state corresponding to von Mises-type yield limit. The yield limit depends on the volume fraction of the solid. The sound velocity at the yield surface is smaller than that in the reversible model. The last one is smaller than the sound velocity in the irreversible model. Such an embedded model structure assures a thermodynamically correct formulation of the model of granular materials. The model is validated on quasi-static experiments on loading–unloading cycles. The experimentally observed hysteresis phenomena were numerically confirmed with a good accuracy by the proposed model. PMID:24353466

  18. The effects of pressure dependent constitutive model to simulate concrete structures failure under impact loads

    NASA Astrophysics Data System (ADS)

    Mokhatar, S. N.; Sonoda, Y.; Kamarudin, A. F.; Noh, M. S. Md; Tokumaru, S.

    2018-04-01

    The main objective of this paper is to explore the effect of confining pressure in the compression and tension zone by simulating the behaviour of reinforced concrete/mortar structures subjected to the impact load. The analysis comprises the numerical simulation of the influences of high mass low speed impact weight dropping on concrete structures, where the analyses are incorporated with meshless method namely as Smoothed Particle Hydrodynamics (SPH) method. The derivation of the plastic stiffness matrix of Drucker-Prager (DP) that extended from Von-Mises (VM) yield criteria to simulate the concrete behaviour were presented in this paper. In which, the displacements for concrete/mortar structures are assumed to be infinitesimal. Furthermore, the influence of the different material model of DP and VM that used numerically for concrete and mortar structures are also discussed. Validation upon existing experimental test results is carried out to investigate the effect of confining pressure, it is found that VM criterion causes unreal impact failure (flexural cracking) of concrete structures.

  19. How log-normal is your country? An analysis of the statistical distribution of the exported volumes of products

    NASA Astrophysics Data System (ADS)

    Annunziata, Mario Alberto; Petri, Alberto; Pontuale, Giorgio; Zaccaria, Andrea

    2016-10-01

    We have considered the statistical distributions of the volumes of 1131 products exported by 148 countries. We have found that the form of these distributions is not unique but heavily depends on the level of development of the nation, as expressed by macroeconomic indicators like GDP, GDP per capita, total export and a recently introduced measure for countries' economic complexity called fitness. We have identified three major classes: a) an incomplete log-normal shape, truncated on the left side, for the less developed countries, b) a complete log-normal, with a wider range of volumes, for nations characterized by intermediate economy, and c) a strongly asymmetric shape for countries with a high degree of development. Finally, the log-normality hypothesis has been checked for the distributions of all the 148 countries through different tests, Kolmogorov-Smirnov and Cramér-Von Mises, confirming that it cannot be rejected only for the countries of intermediate economy.

  20. [Design of Minimal Invasive Screw on Posterior Pelvis Ring and Pelvic Finite Element Analysis].

    PubMed

    Tang, Fan; Min, Li; Wang, Yan-Ling; Qu, Bo; Zhou, Yong; Luo, Yi; Zhang, Wen-Li; Shi, Rui; Duan, Hong; Tu, Chong-Qi

    2017-09-01

    To design minimal invasive screw on posterior pelvic ring and perform threedimensional finite element analysis based on a pelvis finite element model. We measured the pelvic anatomical data of 20 healthy volunteers and identified potential designs for minimal invasive screw on posterior pelvic ring. A finite element model of pelvis was then established. Threedimensional finite element analyses were performed under static and dynamic mechanical loading,respectively. Three screw tracks on ilium (A,B and C) were identified based on a threedimensional reconstruction of pelvis. Nail track B and C had greater length and width,but shorter distance between nailing and soft tissue compared with nail track A. Static loading under an external rotation load of 500 N generated a maximum Mises Von stress of 582.05 Pa and sacral iliac complex of 107.38 Pa. The greatest strain was located at the articular cartilage on the side of the nail,followed by lateral sacral joint cartilage and symphysis pubis. The largest displacement was located at the ilium on the side of the nail,with a gradient decrease to the opposite side. The largest displacement of the anterior superior iliac spine was 0.35 cm on the side of the nail. The dynamic loading identified displacement of the anterior superior iliac spine with 1.5 mm in Z axis,1.8 mm in X axis and -0.2 mm in Y axis; and displacement of the pubic bone with 0.8 mm in Z axis,1.0 mm in X axis and 0.03 mm in Y axis. The maximum displacement appeared along the impact direction: Y axis. Relatively large equivalent stress was found in pubis and ischium,anterior superior iliac spine,sacrum,acetabular that are prone to fracture. With increased impact force,the stress of pelvis increased over time. The maximum impact force,stress and displacement of the pelvis occurred at 10 ms when peak force was reached. Under the impact of 4 000 N and 5 000 N,the bone was subject to a stress level of over 200 MPa,exceeding its average yield strength,which suggests a possibility of pelvic fracture. Taking B/C as a main screw track and A as an auxiliary screw track is a reasonable choice. The pelvic finite element model lays a foundation for further studies into sacral fracture and design of screw tracks.

  1. A customized fixation plate with novel structure designed by topological optimization for mandibular angle fracture based on finite element analysis.

    PubMed

    Liu, Yun-Feng; Fan, Ying-Ying; Jiang, Xian-Feng; Baur, Dale A

    2017-11-15

    The purpose of this study was to design a customized fixation plate for mandibular angle fracture using topological optimization based on the biomechanical properties of the two conventional fixation systems, and compare the results of stress, strain and displacement distributions calculated by finite element analysis (FEA). A three-dimensional (3D) virtual mandible was reconstructed from CT images with a mimic angle fracture and a 1 mm gap between two bone segments, and then a FEA model, including volume mesh with inhomogeneous bone material properties, three loading conditions and constraints (muscles and condyles), was created to design a customized plate using topological optimization method, then the shape of the plate was referenced from the stress concentrated area on an initial part created from thickened bone surface for optimal calculation, and then the plate was formulated as "V" pattern according to dimensions of standard mini-plate finally. To compare the biomechanical behavior of the "V" plate and other conventional mini-plates for angle fracture fixation, two conventional fixation systems were used: type A, one standard mini-plate, and type B, two standard mini-plates, and the stress, strain and displacement distributions within the three fixation systems were compared and discussed. The stress, strain and displacement distributions to the angle fractured mandible with three different fixation modalities were collected, respectively, and the maximum stress for each model emerged at the mandibular ramus or screw holes. Under the same loading conditions, the maximum stress on the customized fixation system decreased 74.3, 75.6 and 70.6% compared to type A, and 34.9, 34.1, and 39.6% compared to type B. All maximum von Mises stresses of mandible were well below the allowable stress of human bone, as well as maximum principal strain. And the displacement diagram of bony segments indicated the effect of treatment with different fixation systems. The customized fixation system with topological optimized structure has good biomechanical behavior for mandibular angle fracture because the stress, strain and displacement within the plate could be reduced significantly comparing to conventional "one mini-plate" or "two mini-plates" systems. The design methodology for customized fixation system could be used for other fractures in mandible or other bones to acquire better mechanical behavior of the system and improve stable environment for bone healing. And together with SLM, the customized plate with optimal structure could be designed and fabricated rapidly to satisfy the urgent time requirements for treatment.

  2. Effects of NaOCl, EDTA and MTAD when applied to dentine on stress distribution in post-restored roots with flared canals.

    PubMed

    Belli, S; Eraslan, O; Eraslan, O; Eskitascioglu, M; Eskitascioglu, G

    2014-12-01

    To evaluate the effect of NaOCl, EDTA and MTAD on the stress distribution and levels in roots with flared canals and three different aesthetic post systems using finite element stress analysis (FEA). Three-dimensional (3D) FEA models simulating a maxillary incisor with excessive structural loss and flared root canals were created. The dentine of the first models of each post group was assumed as homogenous, whereas the others were deemed as having their elastic modulus affected up to 100 μm deep as a result of irrigation protocol (5.25 NaOCl, 17% EDTA and MTAD for 2 h). A sound incisor tooth model was used as the control. Restorations were created according to the post system used (pre-fabricated fibre post (PFP)), polyethylene fibre (Ribbond) post and core build-up (RBP), and one-piece milled zirconia post and core (ZP). Ceramic crowns were added to the models. A 300-N static load was applied at the centre of the palatal surface of the models to calculate the stress distributions. The SolidWorks/Cosmosworks structural analysis programmes were used for FEA analysis. Results were presented by considering von Mises criteria. The analysis of the von Mises stresses revealed that RBP created less stress in the remaining root dentine when compared to PFP and ZP. ZP maintained the stresses inside its body and reduced stress on the palatal surface of the root; however, it forwarded more stress towards the apical area. NaOCl-, EDTA- and MTAD-treated dentine increased the stresses within the root structure regardless of the effect of the post system used (11-15.4 MPa for PFP, 9.5-13.02 MPa for RBP and 14.2 MPa for ZP). Amongst the irrigation solutions used, EDTA and MTAD increased the stresses more than NaOCl in all models. All the irrigation solutions showed the same stress levels and distributions in the ZP model. NaOCl-, EDTA- and MTAD- treated dentine and a rigid post with high elastic modulus may increase fracture risk in roots with flared canals by increasing the stresses within root dentine. Therefore, solutions that alter the elastic modulus of dentine less (such as NaOCl) or an individually shaped post-core system constructed with a material that has an elastic modulus close to dentine (polyethylene fibre) should be used in weak roots. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  3. Predictors for traumatic brain injuries evaluated through accident reconstructions.

    PubMed

    Kleiven, Svein

    2007-10-01

    The aim of this study is to evaluate all the 58 available NFL cases and compare various predictors for mild traumatic brain injuries using a detailed and extensively validated finite element model of the human head. Global injury measures such as magnitude in angular and translational acceleration, change in angular velocity, head impact power (HIP) and HIC were also investigated with regard to their ability to predict the intracranial pressure and strains associated with injury. The brain material properties were modeled using a hyperelastic and viscoelastic constitutive law. Also, three different stiffness parameters, encompassing a range of published brain tissue properties, were tested. 8 tissue injury predictors were evaluated for 6 different regions, covering the entire cerebrum, as well as for the whole brain. In addition, 10 head kinematics based predictors were evaluated both for correlation with injury as well as with strain and pressure. When evaluating the results, a statistical correlation between strain, strain rate, product of strain and strain rate, Cumulative Strain Damage Measure (CSDM), strain energy density, maximum pressure, magnitude of minimum pressure, as well as von Mises effective stress, with injury was found when looking into specific regions of the brain. However, the maximal pressure in the gray matter showed a higher correlation with injury than other evaluated measures. On the other hand, it was possible, through the reconstruction of a motocross accident, to re-create the injury pattern in the brain of the injured rider using maximal principal strain. It was also found that a simple linear combination of peak change in rotational velocity and HIC showed a high correlation (R=0.98) with the maximum principal strain in the brain, in addition to being a significant predictor of injury. When applying the rotational and translational kinematics separately for one of the cases, it was found that the translational kinematics contribute very little to the intracranial distortional strains while the rotational kinematics contributes insignificantly to the pressure response. This study underlines that the strain based brain tissue injury predictors are very sensitive to the choice of stiffness for the brain tissue.

  4. Cyclic Axial-Torsional Deformation Behavior of a Cobalt-Base Superalloy

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1995-01-01

    The cyclic, high-temperature deformation behavior of a wrought cobalt-base super-alloy, Haynes 188, is investigated under combined axial and torsional loads. This is accomplished through the examination of hysteresis loops generated from a biaxial fatigue test program. A high-temperature axial, torsional, and combined axial-torsional fatigue database has been generated on Haynes 188 at 760 C. Cyclic loading tests have been conducted on uniform gage section tubular specimens in a servohydraulic axial-torsional test rig. Test control and data acquisition were accomplished with a minicomputer. The fatigue behavior of Haynes 188 at 760 C under axial, torsional, and combined axial-torsional loads and the monotonic and cyclic deformation behaviors under axial and torsional loads have been previously reported. In this paper, the cyclic hardening characteristics and typical hysteresis loops in the axial stress versus axial strain, shear stress ,versus engineering shear strain, axial strain versus engineering shear strain. and axial stress versus shear stress spaces are presented for cyclic in-phase and out-of-phase axial-torsional tests. For in-phase tests, three different values of the proportionality constant lambda (the ratio of engineering shear strain amplitude to axial strain amplitude, are examined, viz. 0.86, 1.73, and 3.46. In the out-of-phase tests, three different values of the phase angle, phi (between the axial and engineering shear strain waveforms), are studied, viz., 30, 60, and 90 degrees with lambda equals 1.73. The cyclic hardening behaviors of all the tests conducted on Haynes 188 at 760 C are evaluated using the von Mises equivalent stress-strain and the maximum shear stress-maximum engineering shear strain (Tresca) curves. Comparisons are also made between the hardening behaviors of cyclic axial, torsional, and combined in-phase (lambda = 1.73 and phi = 0) and out-of-phase (lambda = 1.73 and phi = 90') axial-torsional fatigue tests. These comparisons are accomplished through simple Ramberg-Osgood type stress-strain functions for cyclic, axial stress-strain and shear stress-engineering shear strain curves.

  5. MISE: A Search for Organics on Europa

    NASA Astrophysics Data System (ADS)

    Whalen, Kelly; Lunine, Jonathan I.; Blaney, Diana L.

    2017-01-01

    NASA’s planned Europa Flyby Mission will try to assess the habitability of Jupiter’s moon, Europa. One of the selected instruments on the mission is the Mapping Imaging Spectrometer for Europa (MISE). MISE is a near-infrared imaging spectrometer that takes spectra in the 0.8-5 micron range, and it will be capable of mapping Europa’s surface chemical composition. A primary goal of the MISE instrument is to determine if Europa is capable of supporting life by searching for amino acid signatures in the infrared spectra. We present spectra of pure amino acid at MISE’s resolution, and we analyze the effect of chirality on these spectra. Lastly, we present model spectra for diluted/mixed amino acids to simulate more realistic concentrations. We show MISE can distinguish between different types of amino acids, such as isoleucine, leucine, and their enantiomers.

  6. Turbulent drag reduction by flexible and rodlike polymers: Crossover effects at small concentrations.

    PubMed

    Ching, Emily S C; Lo, T S; Procaccia, Itamar

    2006-08-01

    Drag reduction by polymers is bounded between two universal asymptotes, the von Kármán log law of the law and the maximum drag reduction (MDR) asymptote. It is theoretically understood why the MDR asymptote is universal, independent of whether the polymers are flexible or rodlike. The crossover behavior from the Newtonian von Kármán log law to the MDR is, however, not universal, showing different characteristics for flexible and rodlike polymers. In this paper we provide a theory for this crossover phenomenology.

  7. Time dependence of Hawking radiation entropy

    NASA Astrophysics Data System (ADS)

    Page, Don N.

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM02, or about 7.509M02 ≈ 6.268 × 1076(M0/Msolar)2, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M02 ≈ 1.254 × 1077(M0/Msolar)2, and then decreases back down to 4πM02 = 1.049 × 1077(M0/Msolar)2.

  8. Angulated Dental Implants in Posterior Maxilla FEA and Experimental Verification.

    PubMed

    Hamed, Hamed A; Marzook, Hamdy A; Ghoneem, Nahed E; El-Anwar, Mohamed I

    2018-02-15

    This study aimed to evaluate the effect of different implant angulations in posterior maxilla on stress distribution by finite element analysis and verify its results experimentally. Two simplified models were prepared for an implant placed vertically and tilted 25° piercing the maxillary sinus. Geometric models' components were prepared by Autodesk Inventor then assembled in ANSYS for finite element analysis. The results of finite element analysis were verified against experimental trials results which were statistically analysed using student t-test (level of significance p < 0.05). Implant - abutment complex absorbed the load energy in case of vertical implant better than the case of angulated one. That was reflected on cortical bone stress, while both cases showed stress levels within the physiological limits. Comparing results between FEA and experiment trials showed full agreement. It was found that the tilted implant by 25° can be utilised in the posterior region maxilla for replacing maxillary first molar avoiding sinus penetration. The implant-bone interface and peri-implant bones received the highest Von Mises stress. Implant - bone interface with angulated implant received about 66% more stresses than the straight one.

  9. Numerical reconstruction and injury biomechanism in a car-pedestrian crash accident.

    PubMed

    Zou, Dong-Hua; Li, Zheng-Dong; Shao, Yu; Feng, Hao; Chen, Jian-Guo; Liu, Ning-Guo; Huang, Ping; Chen, Yi-Jiu

    2012-12-01

    To reconstruct a car-pedestrian crash accident using numerical simulation technology and explore the injury biomechanism as forensic evidence for injury identification. An integration of multi-body dynamic, finite element (FE), and classical method was applied to a car-pedestrian crash accident. The location of the collision and the details of the traffic accident were determined by vehicle trace verification and autopsy. The accident reconstruction was performed by coupling the three-dimensional car behavior from PC-CRASH with a MADYMO dummy model. The collision FE models of head and leg, developed from CT scans of human remains, were loaded with calculated dummy collision parameters. The data of the impact biomechanical responses were extracted in terms of von Mises stress, relative displacement, strain and stress fringes. The accident reconstruction results were identical with the examined ones and the biomechanism of head and leg injuries, illustrated through the FE methods, were consistent with the classical injury theories. The numerical simulation technology is proved to be effective in identifying traffic accidents and exploring of injury biomechanism.

  10. Simulation of Shear and Bending Cracking in RC Beam: Material Model and its Application to Impact

    NASA Astrophysics Data System (ADS)

    Mokhatar, S. N.; Sonoda, Y.; Zuki, S. S. M.; Kamarudin, A. F.; Noh, M. S. Md

    2018-04-01

    This paper presents a simple and reliable non-linear numerical analysis incorporated with fully Lagrangian method namely Smoothed Particle Hydrodynamics (SPH) to predict the impact response of the reinforced concrete (RC) beam under impact loading. The analysis includes the simulation of the effects of high mass low-velocity impact load falling on beam structures. Three basic ideas to present the localized failure of structural elements are: (1) the accurate strength of concrete and steel reinforcement during the short period (dynamic), Dynamic Increase Factor (DIF) has been employed for the effect of strain rate on the compression and tensile strength (2) linear pressure-sensitive yield criteria (Drucker-Prager type) with a new volume dependent Plane-Cap (PC) hardening in the pre-peak regime is assumed for the concrete, meanwhile, shear-strain energy criterion (Von-Mises) is applied to steel reinforcement (3) two kinds of constitutive equation are introduced to simulate the crushing and bending cracking of the beam elements. Then, these numerical analysis results were compared with the experimental test results.

  11. Plaque components affect wall stress in stented human carotid artery: A numerical study

    NASA Astrophysics Data System (ADS)

    Fan, Zhen-Min; Liu, Xiao; Du, Cheng-Fei; Sun, An-Qiang; Zhang, Nan; Fan, Zhan-Ming; Fan, Yu-Bo; Deng, Xiao-Yan

    2016-12-01

    Carotid artery stenting presents challenges of in-stent restenosis and late thrombosis, which are caused primarily by alterations in the mechanical environment of the artery after stent implantation. The present study constructed patient-specific carotid arterial bifurcation models with lipid pools and calcified components based on magnetic resonance imaging. We numerically analyzed the effects of multicomponent plaques on the distributions of von Mises stresses (VMSs) in the patient-specific models after stenting. The results showed that when a stent was deployed, the large soft lipid pool in atherosclerotic plaques cushioned the host artery and reduced the stress within the arterial wall; however, this resulted in a sharp increase of VMS in the fibrous cap. When compared with the lipid pool, the presence of the calcified components led to slightly increased stresses on the luminal surface. However, when a calcification was located close to the luminal surface of the host artery and the stenosis, the local VMS was elevated. Overall, compared with calcified components, large lipid pools severely damaged the host artery after stenting. Furthermore, damage due to the calcified component may depend on location.

  12. Recurrence interval analysis of trading volumes

    NASA Astrophysics Data System (ADS)

    Ren, Fei; Zhou, Wei-Xing

    2010-06-01

    We study the statistical properties of the recurrence intervals τ between successive trading volumes exceeding a certain threshold q . The recurrence interval analysis is carried out for the 20 liquid Chinese stocks covering a period from January 2000 to May 2009, and two Chinese indices from January 2003 to April 2009. Similar to the recurrence interval distribution of the price returns, the tail of the recurrence interval distribution of the trading volumes follows a power-law scaling, and the results are verified by the goodness-of-fit tests using the Kolmogorov-Smirnov (KS) statistic, the weighted KS statistic and the Cramér-von Mises criterion. The measurements of the conditional probability distribution and the detrended fluctuation function show that both short-term and long-term memory effects exist in the recurrence intervals between trading volumes. We further study the relationship between trading volumes and price returns based on the recurrence interval analysis method. It is found that large trading volumes are more likely to occur following large price returns, and the comovement between trading volumes and price returns is more pronounced for large trading volumes.

  13. The stability of a hip fracture determines the fatigue of an intramedullary nail.

    PubMed

    Eberle, S; Bauer, C; Gerber, C; von Oldenburg, G; Augat, P

    2010-01-01

    The purpose of this study was to address the question of how the stability of a proximal hip fracture determines the fatigue and failure mechanism of an intramedullary implant. To answer this question, mechanical experiments and finite element simulations with two different loading scenarios were conducted. The two load scenarios differed in the mechanical support of the fracture by an artificial bone sleeve, representing the femoral head and neck. The experiments confirmed that an intramedullary nail fails at a lower load in an unstable fracture situation in the proximal femur than in a stable fracture. The nails with an unstable support failed at a load 28 per cent lower than the nails with a stable support by the femoral neck. Hence, the mechanical support of a fracture is crucial to the fatigue failure of an implant. The simulation showed why the fatigue fracture of the nail starts at the aperture of the lag screw. It is the location of the highest von Mises stress, which is the failure criterion for ductile materials.

  14. Gaussian step-pressure loading of rigid viscoplastic plates. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J.; Durling, B. J.

    1978-01-01

    The response of a thin, rigid viscoplastic plate subjected to a spatially axisymmetric Gaussian step pressure impulse loading was studied analytically. A Gaussian pressure distribution in excess of the collapse load was applied to the plate, held constant for a length of time, and then suddenly removed. The plate deforms with monotonically increasing deflections until the dynamic energy is completely dissipated in plastic work. The simply supported plate of uniform thickness obeys the von Mises yield criterion and a generalized constitutive equation for rigid viscoplastic materials. For the small deflection bending response of the plate, the governing system of equations is essentially nonlinear. Transverse shear stress is neglected in the yield condition and rotary inertia in the equations of dynamic equilibrium. A proportional loading technique, known to give excellent approximations of the exact solution for the uniform load case, was used to linearize the problem and to obtain the analytical solutions in the form of eigenvalue expansions. The effects of load concentration, of an order of magnitude change in the viscosity of the plate material, and of load duration were examined while holding the total impulse constant.

  15. Multi-layered bird beaks: a finite-element approach towards the role of keratin in stress dissipation

    PubMed Central

    Soons, Joris; Herrel, Anthony; Genbrugge, Annelies; Adriaens, Dominique; Aerts, Peter; Dirckx, Joris

    2012-01-01

    Bird beaks are layered structures, which contain a bony core and an outer keratin layer. The elastic moduli of this bone and keratin were obtained in a previous study. However, the mechanical role and interaction of both materials in stress dissipation during seed crushing remain unknown. In this paper, a multi-layered finite-element (FE) model of the Java finch's upper beak (Padda oryzivora) is established. Validation measurements are conducted using in vivo bite forces and by comparing the displacements with those obtained by digital speckle pattern interferometry. Next, the Young modulus of bone and keratin in this FE model was optimized in order to obtain the smallest peak von Mises stress in the upper beak. To do so, we created a surrogate model, which also allows us to study the impact of changing material properties of both tissues on the peak stresses. The theoretically best values for both moduli in the Java finch are retrieved and correspond well with previous experimentally obtained values, suggesting that material properties are tuned to the mechanical demands imposed during seed crushing. PMID:22337628

  16. Comparison of stress on knee cartilage during kneeling and standing using finite element models.

    PubMed

    Wang, Yuxing; Fan, Yubo; Zhang, Ming

    2014-04-01

    Kneeling is a common activity required for both occupational and cultural reasons and has been shown to be associated with an increased risk of knee disorders. While excessive contact pressure is considered to be a possible aggressor, it is not clear whether and to what extent stress on the cartilage during kneeling is different from that while standing. In this study, finite element models of the knee joint for both kneeling and standing positions were constructed. The results indicated differences in high-stress regions between kneeling and standing. And both the peak von-Mises stress and contact pressure on the cartilage were larger in kneeling. During kneeling, the contact pressure reached 4.25 MPa under a 300 N compressive load. It then increased to 4.66 MPa at 600 N and 5.15 MPa at 1000 N. Changing the Poisson's ratio of the cartilage, which represents changes in compressibility caused by different loading rates, was found to have an influence on the magnitude of stress. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Experimental Verification of Steel Pipe Collapse under Vacuum Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Autrique, R.; Rodal, E.

    2016-11-01

    Steel pipes are used widely in hydroelectric systems and in pumping systems. Both systems are subject to hydraulic transient effects caused by changes in boundary conditions, such as sudden valve closures, pump failures, or accidents. Water column separation, and its associated vaporization pressure inside the pipe, can cause the collapse of thin walled steel pipes subject to atmospheric pressure, as happened during the well known Oigawa Power Plant accident in Japan, in 1950. The conditions under which thin walled pipes subject to external pressure can collapse have been studied mathematically since the second half of the XIX century, with classical authors Southwell and Von Mises obtaining definitive equations for long and short pipes in the second decade of the XX century, in which the fundamental variables are the diameter to thickness ratio D/t and the length to diameter ratio L/D. In this paper, the predicted critical D/t ratio for steel pipe collapse is verified experimentally, in a physical model able to reproduce hydraulic transients, generating vacuum pressures through rapid upstream valve closures.

  18. Design of Semi-composite Pressure Vessel using Fuzzy and FEM

    NASA Astrophysics Data System (ADS)

    Sabour, Mohammad H.; Foghani, Mohammad F.

    2010-04-01

    The present study attempts to present a new method to design a semi-composite pressure vessel (known as hoop-wrapped composite cylinder) using fuzzy decision making and finite element method. A metal-composite vessel was designed based on ISO criteria and then the weight of the vessel was optimized for various fibers of carbon, glass and Kevlar in the cylindrical vessel. Failure criteria of von-Mises and Hoffman were respectively employed for the steel liner and the composite reinforcement to characterize the yielding/ buckling of the cylindrical pressure vessel. The fuzzy decision maker was used to estimate the thickness of the steel liner and the number of composite layers. The ratio of stresses on the composite fibers and the working pressure as well as the ratio of stresses on the composite fibers and the burst (failure) pressure were assessed. ANSYS nonlinear finite element solver was used to analyze the residual stress in the steel liner induced due to an auto-frettage process. Result of analysis verified that carbon fibers are the most suitable reinforcement to increase strength of cylinder while the weight stayed appreciably low.

  19. Exact nonstationary responses of rectangular thin plate on Pasternak foundation excited by stochastic moving loads

    NASA Astrophysics Data System (ADS)

    Chen, Guohai; Meng, Zeng; Yang, Dixiong

    2018-01-01

    This paper develops an efficient method termed as PE-PIM to address the exact nonstationary responses of pavement structure, which is modeled as a rectangular thin plate resting on bi-parametric Pasternak elastic foundation subjected to stochastic moving loads with constant acceleration. Firstly, analytical power spectral density (PSD) functions of random responses for thin plate are derived by integrating pseudo excitation method (PEM) with Duhamel's integral. Based on PEM, the new equivalent von Mises stress (NEVMS) is proposed, whose PSD function contains all cross-PSD functions between stress components. Then, the PE-PIM that combines the PEM with precise integration method (PIM) is presented to achieve efficiently stochastic responses of the plate by replacing Duhamel's integral with the PIM. Moreover, the semi-analytical Monte Carlo simulation is employed to verify the computational results of the developed PE-PIM. Finally, numerical examples demonstrate the high accuracy and efficiency of PE-PIM for nonstationary random vibration analysis. The effects of velocity and acceleration of moving load, boundary conditions of the plate and foundation stiffness on the deflection and NEVMS responses are scrutinized.

  20. The influence of the attachment type and implant number supporting mandibular overdentures on stress distribution: an in vitro study, part I.

    PubMed

    Arat Bilhan, Selda; Bilhan, Hakan; Bozdag, Ergun; Sunbuloglu, Emin; Baykasoglu, Cengiz; Kutay, Omer

    2013-02-01

    The main goal of this study was to compare the stress distribution of mandibular overdentures (OVD) with different numbers of supporting implants and single versus splinted attachment types. Four different biting situations were simulated for the 2-, 3-, and 4-implant retentive anchor as well as bar attachment OVDs on a formalin-fixed cadaver mandible, and strains were recorded under vertical loading of 100 N. The calculated von Mises values from measured strains in all measurement sites and loading conditions for nonsplinted attachments (retentive anchor) were higher than splinted (bar) attachments. It may be concluded that in cases with low quality and quantity of bone, the increase in number of implants and the use of a splinted attachment should be preferred to reduce forces emerging around the implants during function. The use of 2 single attachments in cases with good bone quality and ideal size implants still seems to be a safe and sufficient solution for the treatment of mandibular edentulism with OVDs.

  1. Design and Analysis of a Compact Precision Positioning Platform Integrating Strain Gauges and the Piezoactuator

    PubMed Central

    Huang, Hu; Zhao, Hongwei; Yang, Zhaojun; Fan, Zunqiang; Wan, Shunguang; Shi, Chengli; Ma, Zhichao

    2012-01-01

    Miniaturization precision positioning platforms are needed for in situ nanomechanical test applications. This paper proposes a compact precision positioning platform integrating strain gauges and the piezoactuator. Effects of geometric parameters of two parallel plates on Von Mises stress distribution as well as static and dynamic characteristics of the platform were studied by the finite element method. Results of the calibration experiment indicate that the strain gauge sensor has good linearity and its sensitivity is about 0.0468 mV/μm. A closed-loop control system was established to solve the problem of nonlinearity of the platform. Experimental results demonstrate that for the displacement control process, both the displacement increasing portion and the decreasing portion have good linearity, verifying that the control system is available. The developed platform has a compact structure but can realize displacement measurement with the embedded strain gauges, which is useful for the closed-loop control and structure miniaturization of piezo devices. It has potential applications in nanoindentation and nanoscratch tests, especially in the field of in situ nanomechanical testing which requires compact structures. PMID:23012566

  2. Laser-Induced Thermal-Mechanical Damage Characteristics of Cleartran Multispectral Zinc Sulfide with Temperature-Dependent Properties

    NASA Astrophysics Data System (ADS)

    Peng, Yajing; Jiang, Yanxue; Yang, Yanqiang

    2015-01-01

    Laser-induced thermal-mechanical damage characteristics of window materials are the focus problems in laser weapon and anti-radiation reinforcement technology. Thermal-mechanical effects and damage characteristics are investigated for cleartran multispectral zinc sulfide (ZnS) thin film window materials irradiated by continuous laser using three-dimensional (3D) thermal-mechanical model. Some temperature-dependent parameters are introduced into the model. The temporal-spatial distributions of temperature and thermal stress are exhibited. The damage mechanism is analyzed. The influences of temperature effect of material parameters and laser intensity on the development of thermal stress and the damage characteristics are examined. The results show, the von Mises equivalent stress along the thickness direction is fluctuant, which originates from the transformation of principal stresses from compressive stress to tensile stress with the increase of depth from irradiated surface. The damage originates from the thermal stress but not the melting. The thermal stress is increased and the damage is accelerated by introducing the temperature effect of parameters or the increasing laser intensity.

  3. Multiscale Microstructures and Microstructural Effects on the Reliability of Microbumps in Three-Dimensional Integration

    PubMed Central

    Huang, Zhiheng; Xiong, Hua; Wu, Zhiyong; Conway, Paul; Altmann, Frank

    2013-01-01

    The dimensions of microbumps in three-dimensional integration reach microscopic scales and thus necessitate a study of the multiscale microstructures in microbumps. Here, we present simulated mesoscale and atomic-scale microstructures of microbumps using phase field and phase field crystal models. Coupled microstructure, mechanical stress, and electromigration modeling was performed to highlight the microstructural effects on the reliability of microbumps. The results suggest that the size and geometry of microbumps can influence both the mesoscale and atomic-scale microstructural formation during solidification. An external stress imposed on the microbump can cause ordered phase growth along the boundaries of the microbump. Mesoscale microstructures formed in the microbumps from solidification, solid state phase separation, and coarsening processes suggest that the microstructures in smaller microbumps are more heterogeneous. Due to the differences in microstructures, the von Mises stress distributions in microbumps of different sizes and geometries vary. In addition, a combined effect resulting from the connectivity of the phase morphology and the amount of interface present in the mesoscale microstructure can influence the electromigration reliability of microbumps. PMID:28788356

  4. A Microstructure-Based Constitutive Model for Superplastic Forming

    NASA Astrophysics Data System (ADS)

    Jafari Nedoushan, Reza; Farzin, Mahmoud; Mashayekhi, Mohammad; Banabic, Dorel

    2012-11-01

    A constitutive model is proposed for simulations of hot metal forming processes. This model is constructed based on dominant mechanisms that take part in hot forming and includes intergranular deformation, grain boundary sliding, and grain boundary diffusion. A Taylor type polycrystalline model is used to predict intergranular deformation. Previous works on grain boundary sliding and grain boundary diffusion are extended to drive three-dimensional macro stress-strain rate relationships for each mechanism. In these relationships, the effect of grain size is also taken into account. The proposed model is first used to simulate step strain-rate tests and the results are compared with experimental data. It is shown that the model can be used to predict flow stresses for various grain sizes and strain rates. The yield locus is then predicted for multiaxial stress states, and it is observed that it is very close to the von Mises yield criterion. It is also shown that the proposed model can be directly used to simulate hot forming processes. Bulge forming process and gas pressure tray forming are simulated, and the results are compared with experimental data.

  5. Recurrence interval analysis of trading volumes.

    PubMed

    Ren, Fei; Zhou, Wei-Xing

    2010-06-01

    We study the statistical properties of the recurrence intervals τ between successive trading volumes exceeding a certain threshold q. The recurrence interval analysis is carried out for the 20 liquid Chinese stocks covering a period from January 2000 to May 2009, and two Chinese indices from January 2003 to April 2009. Similar to the recurrence interval distribution of the price returns, the tail of the recurrence interval distribution of the trading volumes follows a power-law scaling, and the results are verified by the goodness-of-fit tests using the Kolmogorov-Smirnov (KS) statistic, the weighted KS statistic and the Cramér-von Mises criterion. The measurements of the conditional probability distribution and the detrended fluctuation function show that both short-term and long-term memory effects exist in the recurrence intervals between trading volumes. We further study the relationship between trading volumes and price returns based on the recurrence interval analysis method. It is found that large trading volumes are more likely to occur following large price returns, and the comovement between trading volumes and price returns is more pronounced for large trading volumes.

  6. FEA of the clinching process of short fiber reinforced thermoplastic with an aluminum sheet using LS-DYNA

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Bouguecha, A.; Vucetic, M.; Grbic, N.

    2016-10-01

    A structural concept in multi-material design is used in the automotive industry with the aim of achieving significant weight reductions of conventional car bodies. In this respect, the use of aluminum and short fiber reinforced plastics represents an interesting material combination. A wide acceptance of such a material combination requires a suitable joining technique. Among different joining techniques, clinching represents one of the most appealing alternative for automotive applications. This contribution deals with the FE simulation of the clinching process of two representative materials PA6GF30 and EN AW 5754 using the FE software LS-DYNA. With regard to the material modelling of the aluminum sheet, an isotropic material model based on the von Mises plasticity implemented in LS-DYNA was chosen. Analogous to aluminum, the same material model is used for modelling the short fiber reinforced thermoplastic. Additionally, a semi-analytical model for polymers (SAMP-1) also available in LS-DYNA was taken. Finally, the FEA of clinching process is carried out and the comparison of the simulation results is presented above.

  7. Application of at-site peak-streamflow frequency analyses for very low annual exceedance probabilities

    USGS Publications Warehouse

    Asquith, William H.; Kiang, Julie E.; Cohn, Timothy A.

    2017-07-17

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Nuclear Regulatory Commission, has investigated statistical methods for probabilistic flood hazard assessment to provide guidance on very low annual exceedance probability (AEP) estimation of peak-streamflow frequency and the quantification of corresponding uncertainties using streamgage-specific data. The term “very low AEP” implies exceptionally rare events defined as those having AEPs less than about 0.001 (or 1 × 10–3 in scientific notation or for brevity 10–3). Such low AEPs are of great interest to those involved with peak-streamflow frequency analyses for critical infrastructure, such as nuclear power plants. Flood frequency analyses at streamgages are most commonly based on annual instantaneous peak streamflow data and a probability distribution fit to these data. The fitted distribution provides a means to extrapolate to very low AEPs. Within the United States, the Pearson type III probability distribution, when fit to the base-10 logarithms of streamflow, is widely used, but other distribution choices exist. The USGS-PeakFQ software, implementing the Pearson type III within the Federal agency guidelines of Bulletin 17B (method of moments) and updates to the expected moments algorithm (EMA), was specially adapted for an “Extended Output” user option to provide estimates at selected AEPs from 10–3 to 10–6. Parameter estimation methods, in addition to product moments and EMA, include L-moments, maximum likelihood, and maximum product of spacings (maximum spacing estimation). This study comprehensively investigates multiple distributions and parameter estimation methods for two USGS streamgages (01400500 Raritan River at Manville, New Jersey, and 01638500 Potomac River at Point of Rocks, Maryland). The results of this study specifically involve the four methods for parameter estimation and up to nine probability distributions, including the generalized extreme value, generalized log-normal, generalized Pareto, and Weibull. Uncertainties in streamflow estimates for corresponding AEP are depicted and quantified as two primary forms: quantile (aleatoric [random sampling] uncertainty) and distribution-choice (epistemic [model] uncertainty). Sampling uncertainties of a given distribution are relatively straightforward to compute from analytical or Monte Carlo-based approaches. Distribution-choice uncertainty stems from choices of potentially applicable probability distributions for which divergence among the choices increases as AEP decreases. Conventional goodness-of-fit statistics, such as Cramér-von Mises, and L-moment ratio diagrams are demonstrated in order to hone distribution choice. The results generally show that distribution choice uncertainty is larger than sampling uncertainty for very low AEP values.

  8. Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong

    2011-06-01

    Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent plastic strains are reduced; and (3) the maximum first principal stresses for certain burnup at the matrix or the cladding are lower than the ones without the hardening effect, and the differences are found to increase with burnup; and the variation rules of the interfacial stresses are similar.

  9. Time dependence of Hawking radiation entropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Don N., E-mail: profdonpage@gmail.com

    2013-09-01

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its originalmore » Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4πM{sub 0}{sup 2}, or about 7.509M{sub 0}{sup 2} ≈ 6.268 × 10{sup 76}(M{sub 0}/M{sub s}un){sup 2}, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M{sub 0}{sup 2} ≈ 1.254 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}, and then decreases back down to 4πM{sub 0}{sup 2} = 1.049 × 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}.« less

  10. Comparative Evaluation of Stress Distribution in Experimentally Designed Nickel-titanium Rotary Files with Varying Cross Sections: A Finite Element Analysis.

    PubMed

    Basheer Ahamed, Shadir Bughari; Vanajassun, Purushothaman Pranav; Rajkumar, Kothandaraman; Mahalaxmi, Sekar

    2018-04-01

    Single cross-sectional nickel-titanium (NiTi) rotary instruments during continuous rotations are subjected to constant and variable stresses depending on the canal anatomy. This study was intended to create 2 new experimental, theoretic single-file designs with combinations of triple U (TU), triangle (TR), and convex triangle (CT) cross sections and to compare their bending stresses in simulated root canals with a single cross-sectional instrument using finite element analysis. A 3-dimensional model of the simulated root canal with 45° curvature and NiTi files with 5 cross-sectional designs were created using Pro/ENGINEER Wildfire 4.0 software (PTC Inc, Needham, MA) and ANSYS software (version 17; ANSYS, Inc, Canonsburg, PA) for finite element analysis. The NiTi files of 3 groups had single cross-sectional shapes of CT, TR, and TU designs, and 2 experimental groups had a CT, TR, and TU (CTU) design and a TU, TR, and CT (UTC) design. The file was rotated in simulated root canals to analyze the bending stress, and the von Mises stress value for every file was recorded in MPa. Statistical analysis was performed using the Kruskal-Wallis test and the Bonferroni-adjusted Mann-Whitney test for multiple pair-wise comparison with a P value <.05 (95 %). The maximum bending stress of the rotary file was observed in the apical third of the CT design, whereas comparatively less stress was recorded in the CTU design. The TU and TR designs showed a similar stress pattern at the curvature, whereas the UTC design showed greater stress in the apical and middle thirds of the file in curved canals. All the file designs showed a statistically significant difference. The CTU designed instruments showed the least bending stress on a 45° angulated simulated root canal when compared with all the other tested designs. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Platform switching: biomechanical evaluation using three-dimensional finite element analysis.

    PubMed

    Tabata, Lucas Fernando; Rocha, Eduardo Passos; Barão, Valentim Adelino Ricardo; Assunção, Wirley Goncalves

    2011-01-01

    The objective of this study was to evaluate, using three-dimensional finite element analysis (3D FEA), the stress distribution in peri-implant bone tissue, implants, and prosthetic components of implant-supported single crowns with the use of the platform-switching concept. Three 3D finite element models were created to replicate an external-hexagonal implant system with peri-implant bone tissue in which three different implant-abutment configurations were represented. In the regular platform (RP) group, a regular 4.1-mm-diameter abutment (UCLA) was connected to regular 4.1-mm-diameter implant. The platform-switching (PS) group was simulated by the connection of a wide implant (5.0 mm diameter) to a regular 4.1-mm-diameter UCLA abutment. In the wide-platform (WP) group, a 5.0-mm-diameter UCLA abutment was connected to a 5.0-mm-diameter implant. An occlusal load of 100 N was applied either axially or obliquely on the models using ANSYS software. Both the increase in implant diameter and the use of platform switching played roles in stress reduction. The PS group presented lower stress values than the RP and WP groups for bone and implant. In the peri-implant area, cortical bone exhibited a higher stress concentration than the trabecular bone in all models and both loading situations. Under oblique loading, higher intensity and greater distribution of stress were observed than under axial loading. Platform switching reduced von Mises (17.5% and 9.3% for axial and oblique loads, respectively), minimum (compressive) (19.4% for axial load and 21.9% for oblique load), and maximum (tensile) principal stress values (46.6% for axial load and 26.7% for oblique load) in the peri-implant bone tissue. Platform switching led to improved biomechanical stress distribution in peri-implant bone tissue. Oblique loads resulted in higher stress concentrations than axial loads for all models. Wide-diameter implants had a large influence in reducing stress values in the implant system.

  12. Comparison of femoral strength and fracture risk index derived from DXA-based finite element analysis for stratifying hip fracture risk: A cross-sectional study.

    PubMed

    Yang, Shuman; Luo, Yunhua; Yang, Lang; Dall'Ara, Enrico; Eastell, Richard; Goertzen, Andrew L; McCloskey, Eugene V; Leslie, William D; Lix, Lisa M

    2018-05-01

    Dual-energy X-ray absorptiometry (DXA)-based finite element analysis (FEA) has been studied for assessment of hip fracture risk. Femoral strength (FS) is the maximum force that the femur can sustain before its weakest region reaches the yielding limit. Fracture risk index (FRI), which also considers subject-specific impact force, is defined as the ratio of von Mises stress induced by a sideways fall to the bone yield stress over the proximal femur. We compared risk stratification for prior hip fracture using FS and FRI derived from DXA-based FEA. The study cohort included women aged ≥65years undergoing baseline hip DXA, with femoral neck T-scores <-1 and no osteoporosis treatment; 324 cases had prior hip fracture and 655 controls had no prior fracture. Using anonymized DXA hip scans, we measured FS and FRI. Separate multivariable logistic regression models were used to estimate odds ratios (ORs), c-statistics and their 95% confidence intervals (95% CIs) for the association of hip fracture with FS and FRI. Increased hip fracture risk was associated with lower FS (OR per SD 1.36, 95% CI: 1.15, 1.62) and higher FRI (OR per SD 1.99, 95% CI: 1.63, 2.43) after adjusting for Fracture Risk Assessment Tool (FRAX) hip fracture probability computed with bone mineral density (BMD). The c-statistic for the model containing FS (0.69; 95% CI: 0.65, 0.72) was lower than the c-statistic for the model with FRI (0.77; 95% CI: 0.74, 0.80) or femoral neck BMD (0.74; 95% CI: 0.71, 0.77; all P<0.05). FS and FRI were independently associated with hip fracture, but there were differences in performance characteristics. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Effect of platform connection and abutment material on stress distribution in single anterior implant-supported restorations: a nonlinear 3-dimensional finite element analysis.

    PubMed

    Carvalho, Marco Aurélio; Sotto-Maior, Bruno Salles; Del Bel Cury, Altair Antoninha; Pessanha Henriques, Guilherme Elias

    2014-11-01

    Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Stress analysis in platform-switching implants: a 3-dimensional finite element study.

    PubMed

    Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Júnior, Joel Ferreira Santiago; de Carvalho, Paulo Sérgio Perri; de Moraes, Sandra Lúcia Dantas; Noritomi, Pedro Yoshito

    2012-10-01

    The aim of this study was to evaluate the influence of the platform-switching technique on stress distribution in implant, abutment, and peri-implant tissues, through a 3-dimensional finite element study. Three 3-dimensional mandibular models were fabricated using the SolidWorks 2006 and InVesalius software. Each model was composed of a bone block with one implant 10 mm long and of different diameters (3.75 and 5.00 mm). The UCLA abutments also ranged in diameter from 5.00 mm to 4.1 mm. After obtaining the geometries, the models were transferred to the software FEMAP 10.0 for pre- and postprocessing of finite elements to generate the mesh, loading, and boundary conditions. A total load of 200 N was applied in axial (0°), oblique (45°), and lateral (90°) directions. The models were solved by the software NeiNastran 9.0 and transferred to the software FEMAP 10.0 to obtain the results that were visualized through von Mises and maximum principal stress maps. Model A (implants with 3.75 mm/abutment with 4.1 mm) exhibited the highest area of stress concentration with all loadings (axial, oblique, and lateral) for the implant and the abutment. All models presented the stress areas at the abutment level and at the implant/abutment interface. Models B (implant with 5.0 mm/abutment with 5.0 mm) and C (implant with 5.0 mm/abutment with 4.1 mm) presented minor areas of stress concentration and similar distribution pattern. For the cortical bone, low stress concentration was observed in the peri-implant region for models B and C in comparison to model A. The trabecular bone exhibited low stress that was well distributed in models B and C. Model A presented the highest stress concentration. Model B exhibited better stress distribution. There was no significant difference between the large-diameter implants (models B and C).

  15. Influence of the veneer-framework interface on the mechanical behavior of ceramic veneers: a nonlinear finite element analysis.

    PubMed

    Lazari, Priscilla Cardoso; Sotto-Maior, Bruno Salles; Rocha, Eduardo Passos; de Villa Camargos, Germana; Del Bel Cury, Altair Antoninha

    2014-10-01

    The chipping of ceramic veneers is a common problem for zirconia-based restorations and is due to the weak interface between both structures. The purpose of this study was to evaluate the mechanical behavior of ceramic veneers on zirconia and metal frameworks under 2 different bond-integrity conditions. The groups were created to simulate framework-veneer bond integrity with the crowns partially debonded (frictional coefficient, 0.3) or completely bonded as follows: crown with a silver-palladium framework cemented onto a natural tooth, ceramic crown with a zirconia framework cemented onto a natural tooth, crown with a silver-palladium framework cemented onto a Morse taper implant, and ceramic crown with a zirconia framework cemented onto a Morse taper implant. The test loads were 49 N applied to the palatal surface at 45 degrees to the long axis of the crown and 25.5 N applied perpendicular to the incisal edge of the crown. The maximum principal stress, shear stress, and deformation values were calculated for the ceramic veneer; and the von Mises stress was determined for the framework. Veneers with partial debonding to the framework (frictional coefficient, 0.3) had greater stress concentrations in all structures compared with the completely bonded veneers. The metal ceramic crowns experienced lower stress values than ceramic crowns in models that simulate a perfect bond between the ceramic and the framework. Frameworks cemented to a tooth exhibited greater stress values than frameworks cemented to implants, regardless of the material used. Incomplete bonding between the ceramic veneer and the prosthetic framework affects the mechanical performance of the ceramic veneer, which makes it susceptible to failure, independent of the framework material or complete crown support. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Flow Strength of Shocked Aluminum in the Solid-Liquid Mixed Phase Region

    NASA Astrophysics Data System (ADS)

    Reinhart, William

    2011-06-01

    Shock waves have been used to determine material properties under high shock stresses and very-high loading rates. The determination of mechanical properties such as compressive strength under shock compression has proven to be difficult and estimates of strength have been limited to approximately 100 GPa or less in aluminum. The term ``strength'' has been used in different ways. For a Von-Mises solid, the yield strength is equal to twice the shear strength of the material and represents the maximum shear stress that can be supported before yield. Many of these concepts have been applied to materials that undergo high strain-rate dynamic deformation, as in uni-axial strain shock experiments. In shock experiments, it has been observed that the shear stress in the shocked state is not equal to the shear strength, as evidenced by elastic recompressions in reshock experiments. This has led to an assumption that there is a yield surface with maximum (loading)and minimum (unloading), shear strength yet the actual shear stress lies somewhere between these values. This work provides the first simultaneous measurements of unloading velocity and flow strength for transition of solid aluminum to the liquid phase. The investigation describes the flow strength observed in 1100 (pure), 6061-T6, and 2024 aluminum in the solid-liquid mixed phase region. Reloading and unloading techniques were utilized to provide independent data on the two unknowns (τc and τo) , so that the actual critical shear strength and the shear stress at the shock state could be estimated. Three different observations indicate a change in material response for stresses of 100 to 160 GPa; 1) release wave speed (reloading where applicable) measurements, 2) yield strength measurements, and 3) estimates of Poisson's ratio, all of which provide information on the melt process including internal consistency and/or non-equilibrium and rate-dependent melt behavior. The study investigates the strength properties in the solid region and as the material transverses the solid-mixed-liquid regime. Differences observed appear to be the product of alloying and/or microstructural composition of the aluminum. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  17. Mechanical strength assessment of a drilled hole in the contralateral cortex at the end of the open wedge for high tibial osteotomy.

    PubMed

    Diffo Kaze, Arnaud; Maas, Stefan; Hoffmann, Alexander; Pape, Dietrich

    2017-12-01

    This study aimed to investigate, by means of finite element analysis, the effect of a drill hole at the end of a horizontal osteotomy to reduce the risk of lateral cortex fracture while performing an opening wedge high tibial osteotomy (OWHTO). The question was whether drilling a hole relieves stress and increases the maximum correction angle without fracture of the lateral cortex depending on the ductility of the cortical bone. Two different types of osteotomy cuts were considered; one with a drill hole (diameter 5 mm) and the other without the hole. The drill holes were located about 20 mm distally to the tibial plateau and 6 mm medially to the lateral cortex, such that the minimal thickness of the contralateral cortical bone was 5 mm. Based on finite element calculations, two approaches were used to compare the two types of osteotomy cuts considered: (1) Assessing the static strength using local stresses following the idea of the FKM-guideline, subsequently referred to as the "FKM approach" and (2) limiting the total strain during the opening of the osteotomy wedge, subsequently referred to as "strain approach". A critical opening angle leading to crack initiation in the opposite lateral cortex was determined for each approach and was defined as comparative parameter. The relation to bone aging was investigated by considering the material parameters of cortical bones from young and old subjects. The maximum equivalent (von-Mises) stress was smaller for the cases with a drill hole at the end of the osteotomy cut. The critical angle was approximately 1.5 times higher for the specimens with a drill hole compared to those without. This corresponds to an average increase of 50%. The calculated critical angle for all approaches is below 5°. The critical angle depends on the used approach, on patient's age and assumed ductility of the cortical bone. Drilling a hole at the end of the osteotomy reduces the stresses in the lateral cortex and increases the critical opening angle prior to cracking of the opposite cortex in specimen with small correction angles. But the difference from having a drill hole or not is not so significant, especially for older patients. The ductility of the cortical bone is the decisive parameter for the critical opening angle.

  18. Fatigue design of a mechanically biocompatible lattice for a proof-of-concept femoral stem.

    PubMed

    Arabnejad Khanoki, Sajad; Pasini, Damiano

    2013-06-01

    A methodology is proposed to design a spatially periodic microarchitectured material for a two-dimensional femoral implant under walking gait conditions. The material is composed of a graded lattice with controlled property distribution that minimizes concurrently bone resorption and interface failure. The periodic microstructure of the material is designed for fatigue fracture caused by cyclic loadings on the hip joint as a result of walking. The bulk material of the lattice is Ti6AL4V and its microstructure is assumed free of defects. The Soderberg diagram is used for the fatigue design under multiaxial loadings. Two cell topologies, square and Kagome, are chosen to obtain optimized property gradients for a two-dimensional implant. Asymptotic homogenization (AH) theory is used to address the multiscale mechanics of the implant as well as to capture the stress and strain distribution at both the macro and the microscale. The microstress distribution found with AH is also compared with that obtained from a detailed finite element analysis. For the maximum value of the von Mises stress, we observe a deviation of 18.6% in unit cells close to the implant boundary, where the AH assumption of spatial periodicity of the fluctuating fields ceases to hold. In the second part of the paper, the metrics of bone resorption and interface shear stress are used to benchmark the graded cellular implant with existing prostheses made of fully dense titanium implant. The results show that the amount of initial postoperative bone loss for square and Kagome lattice implants decreases, respectively, by 53.8% and 58%. In addition, the maximum shear interface failure at the distal end is significantly reduced by about 79%. A set of proof-of-concepts of planar implants have been fabricated via Electron Beam Melting (EBM) to demonstrate the manufacturability of Ti6AL4V into graded lattices with alternative cell size. Optical microscopy has been used to measure the morphological parameters of the cellular microstructure, including cell wall thickness and pore size, and compared them with the nominal values. No sign of fracture or incomplete cell walls was observed, an assessment that shows the satisfactory metallurgical bond of cell walls and the structural integrity of the implants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Ethnobotany of religious and supernatural beliefs of the Mising tribes of Assam with special reference to the 'Dobur Uie'.

    PubMed

    Sharma, Uma Kanta; Pegu, Shyamanta

    2011-06-02

    Assam is very rich in plant biodiversity as well as in ethnic diversity and has a great traditional knowledge base in plant resources. It is inhabited by the largest number of tribes and they lead an intricate life totally dependent on forest plants. The Mising is the major section and second largest tribal community of Assam and have a rich tradition of religion and culture. Their religious practices and beliefs are based on supernaturalism. A study of the plants related to magico religious beliefs in Dobur Uie of Mising is carried out. The results revealed the use of 30 plants belonging to 23 families. All plant species are used both in religious purpose as well as in the treatment of different ailments. Details of the uses of plants and conservational practices employed in Dobur Uie are provided. Our findings on the use of plants in Dobur Uie ritual reflect that some plants are facing problems for survival and they need urgent conservation before their elimination. Because this elimination may threat the rich tradition of Mising culture. Most of the plants that are domesticated for different rituals are almost same in all Mising populated areas.

  20. Ethnobotany of religious and supernatural beliefs of the Mising tribes of Assam with special reference to the 'Dobur Uie'

    PubMed Central

    2011-01-01

    Assam is very rich in plant biodiversity as well as in ethnic diversity and has a great traditional knowledge base in plant resources. It is inhabited by the largest number of tribes and they lead an intricate life totally dependent on forest plants. The Mising is the major section and second largest tribal community of Assam and have a rich tradition of religion and culture. Their religious practices and beliefs are based on supernaturalism. A study of the plants related to magico religious beliefs in Dobur Uie of Mising is carried out. The results revealed the use of 30 plants belonging to 23 families. All plant species are used both in religious purpose as well as in the treatment of different ailments. Details of the uses of plants and conservational practices employed in Dobur Uie are provided. Our findings on the use of plants in Dobur Uie ritual reflect that some plants are facing problems for survival and they need urgent conservation before their elimination. Because this elimination may threat the rich tradition of Mising culture. Most of the plants that are domesticated for different rituals are almost same in all Mising populated areas. PMID:21635766

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belu, Radian; Koracin, Darko

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  2. Influence of Different Yield Loci on Failure Prediction with Damage Models

    NASA Astrophysics Data System (ADS)

    Heibel, S.; Nester, W.; Clausmeyer, T.; Tekkaya, A. E.

    2017-09-01

    Advanced high strength steels are widely used in the automotive industry to simultaneously improve crash performance and reduce the car body weight. A drawback of these multiphase steels is their sensitivity to damage effects and thus the reduction of ductility. For that reason the Forming Limit Curve is only partially suitable for this class of steels. An improvement in failure prediction can be obtained by using damage mechanics. The objective of this paper is to comparatively review the phenomenological damage model GISSMO and the Enhanced Lemaitre Damage Model. GISSMO is combined with three different yield loci, namely von Mises, Hill48 and Barlat2000 to investigate the influence of the choice of the plasticity description on damage modelling. The Enhanced Lemaitre Model is used with Hill48. An inverse parameter identification strategy for a DP1000 based on stress-strain curves and optical strain measurements of shear, uniaxial, notch and (equi-)biaxial tension tests is applied to calibrate the models. A strong dependency of fracture strains on the choice of yield locus can be observed. The identified models are validated on a cross-die cup showing ductile fracture with slight necking.

  3. Angulated Dental Implants in Posterior Maxilla FEA and Experimental Verification

    PubMed Central

    Hamed, Hamed A.; Marzook, Hamdy A.; Ghoneem, Nahed E.; El–Anwar, Mohamed I.

    2018-01-01

    AIM: This study aimed to evaluate the effect of different implant angulations in posterior maxilla on stress distribution by finite element analysis and verify its results experimentally. METHODS: Two simplified models were prepared for an implant placed vertically and tilted 25° piercing the maxillary sinus. Geometric models’ components were prepared by Autodesk Inventor then assembled in ANSYS for finite element analysis. The results of finite element analysis were verified against experimental trials results which were statistically analysed using student t-test (level of significance p < 0.05). RESULTS: Implant - abutment complex absorbed the load energy in case of vertical implant better than the case of angulated one. That was reflected on cortical bone stress, while both cases showed stress levels within the physiological limits. Comparing results between FEA and experiment trials showed full agreement. CONCLUSION: It was found that the tilted implant by 25° can be utilised in the posterior region maxilla for replacing maxillary first molar avoiding sinus penetration. The implant-bone interface and peri-implant bones received the highest Von Mises stress. Implant - bone interface with angulated implant received about 66% more stresses than the straight one. PMID:29531612

  4. Stress and Strain in Silicon Electrode Models

    DOE PAGES

    Higa, Kenneth; Srinivasan, Venkat

    2015-03-24

    While the high capacity of silicon makes it an attractive negative electrode for Li-ion batteries, the associated large volume change results in fracture and capacity fade. Composite electrodes incorporating silicon have additional complexity, as active material is attached to surrounding material which must likewise experience significant volume change. In this paper, a finite-deformation model is used to explore, for the first time, mechanical interactions between a silicon particle undergoing lithium insertion, and attached binder material. Simulations employ an axisymmetric model system in which solutions vary in two spatial directions and shear stresses develop at interfaces between materials. The mechanical responsemore » of the amorphous active material is dependent on lithium concentration, and an equation of state incorporating reported volume expansion data is used. Simulations explore the influence of active material size and binder stiffness, and suggest delamination as an additional mode of material damage. Computed strain energies and von Mises equivalent stresses are in physically-relevant ranges, comparable to reported yield stresses and adhesion energies, and predicted trends are largely consistent with reported experimental results. It is hoped that insights from this work will support the design of more robust silicon composite electrodes.« less

  5. A fiber-resin micromechanics analysis of the delamination front in a DCB specimen

    NASA Technical Reports Server (NTRS)

    Crews, J. H.; Shivakumar, K. N.; Raju, I. S.

    1988-01-01

    A 3-D finite element model was developed to analyze the fiber-resin behavior near the delamination front in a graphite-epoxy double cantilever beam (DCB) specimen. The specimen interior was analyzed using a typical one-fiber slice, represented by a local 3-D fiber-resin model. The resin stresses were computed for the resin-rich layer at the ply interface as well as for the regions between the fibers close to the delamination front. However, the computed strain energy release rate G sub I along the delamination front varied by less than two percent, and was within about four percent of the plane-strain value. The von Mises yield criterion was used to estimate the extent of yielding near the delamination front. The yielding extended ahead of the delamination and also developed between the fibers. Although the fibers had only a negligible effect on G sub I, they caused yielding within the ply and therefore could influence delamination fracture toughness. The normal and shear stresses at the fiber-resin interface were computed near the delamination front. These results suggest that multi-axial stress criteria may be required to analyze fiber-resin interfaces.

  6. Implementation of compressive sensing for preclinical cine-MRI

    NASA Astrophysics Data System (ADS)

    Tan, Elliot; Yang, Ming; Ma, Lixin; Zheng, Yahong Rosa

    2014-03-01

    This paper presents a practical implementation of Compressive Sensing (CS) for a preclinical MRI machine to acquire randomly undersampled k-space data in cardiac function imaging applications. First, random undersampling masks were generated based on Gaussian, Cauchy, wrapped Cauchy and von Mises probability distribution functions by the inverse transform method. The best masks for undersampling ratios of 0.3, 0.4 and 0.5 were chosen for animal experimentation, and were programmed into a Bruker Avance III BioSpec 7.0T MRI system through method programming in ParaVision. Three undersampled mouse heart datasets were obtained using a fast low angle shot (FLASH) sequence, along with a control undersampled phantom dataset. ECG and respiratory gating was used to obtain high quality images. After CS reconstructions were applied to all acquired data, resulting images were quantitatively analyzed using the performance metrics of reconstruction error and Structural Similarity Index (SSIM). The comparative analysis indicated that CS reconstructed images from MRI machine undersampled data were indeed comparable to CS reconstructed images from retrospective undersampled data, and that CS techniques are practical in a preclinical setting. The implementation achieved 2 to 4 times acceleration for image acquisition and satisfactory quality of image reconstruction.

  7. Residual Strength Prediction of Fuselage Structures with Multiple Site Damage

    NASA Technical Reports Server (NTRS)

    Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1999-01-01

    This paper summarizes recent results on simulating full-scale pressure tests of wide body, lap-jointed fuselage panels with multiple site damage (MSD). The crack tip opening angle (CTOA) fracture criterion and the FRANC3D/STAGS software program were used to analyze stable crack growth under conditions of general yielding. The link-up of multiple cracks and residual strength of damaged structures were predicted. Elastic-plastic finite element analysis based on the von Mises yield criterion and incremental flow theory with small strain assumption was used. A global-local modeling procedure was employed in the numerical analyses. Stress distributions from the numerical simulations are compared with strain gage measurements. Analysis results show that accurate representation of the load transfer through the rivets is crucial for the model to predict the stress distribution accurately. Predicted crack growth and residual strength are compared with test data. Observed and predicted results both indicate that the occurrence of small MSD cracks substantially reduces the residual strength. Modeling fatigue closure is essential to capture the fracture behavior during the early stable crack growth. Breakage of a tear strap can have a major influence on residual strength prediction.

  8. Determination of Yield in Inconel 718 for Axial-Torsional Loading at Temperatures up to 649 C

    NASA Technical Reports Server (NTRS)

    Gil, Christopher M.; Lissenden, Cliff J.; Lerch, Bradley A.

    1998-01-01

    An experimental program has been implemented to determine small offset yield loci under axial-torsional loading at elevated temperatures. The nickel-base superalloy Inconel 718 (IN718) was chosen for study due to its common use in aeropropulsion applications. Initial and subsequent yield loci were determined for solutioned IN718 at 23, 371, and 454 C and for aged (precipitation hardened) IN718 at 23 and 649 C. The shape of the initial yield loci for solutioned and aged IN718 agreed well with the von Mises prediction. However, in general, the centers of initial yield loci were eccentric to the origin due to a strength-differential (S-D) effect that increased with temperature. Subsequent yield loci exhibited anisotropic hardening in the form of translation and distortion of the locus. This work shows that it is possible to determine yield surfaces for metallic materials at temperatures up to at least 649 C using multiple probes of a single specimen. The experimental data is first-of-its-kind for a superalloy at these very high temperatures and will facilitate a better understanding of multiaxial material response, eventually leading to improved design tools for engine designers.

  9. Functional parameter screening for predicting durability of rolling sliding contacts with different surface finishes

    NASA Astrophysics Data System (ADS)

    Dimkovski, Z.; Lööf, P.-J.; Rosén, B.-G.; Nilsson, P. H.

    2018-06-01

    The reliability and lifetime of machine elements such as gears and rolling bearings depend on their wear and fatigue resistance. In order to screen the wear and surface damage, three finishing processes: (i) brushing, (ii) manganese phosphating and (iii) shot peening were applied on three disc pairs and long-term tested on a twin-disc tribometer. In this paper, the elastic contact of the disc surfaces (measured after only few revolutions) was simulated and a number of functional and roughness parameters were correlated. The functional parameters consisted of subsurface stresses at different depths and a new parameter called ‘pressure spikes’ factor’. The new parameter is derived from the pressure distribution and takes into account the proximity and magnitude of the pressure spikes. Strong correlations were found among the pressure spikes’ factor and surface peak/height parameters. The orthogonal shear stresses and Von Mises stresses at the shallowest depths under the surface have shown the highest correlations but no good correlations were found when the statistics of the whole stress fields was analyzed. The use of the new parameter offers a fast way to screen the durability of the contacting surfaces operating at similar conditions.

  10. Rifle bullet penetration into ballistic gelatin.

    PubMed

    Wen, Yaoke; Xu, Cheng; Jin, Yongxi; Batra, R C

    2017-03-01

    The penetration of a rifle bullet into a block of ballistic gelatin is experimentally and computationally studied for enhancing our understanding of the damage caused to human soft tissues. The gelatin is modeled as an isotropic and homogeneous elastic-plastic linearly strain-hardening material that obeys a polynomial equation of state. Effects of numerical uncertainties on penetration characteristics are found by repeating simulations with minute variations in the impact speed and the angle of attack. The temporary cavity formed in the gelatin and seen in pictures taken by two high speed cameras is found to compare well with the computed one. The computed time histories of the hydrostatic pressure at points situated 60 mm above the line of impact are found to have "two peaks", one due to the bullet impact and the other due to the bullet tumbling. Contours of the von Mises stress and of the effective plastic strain in the gelatin block imply that a very small region adjacent to the cavity surface is plastically deformed. The angle of attack is found to noticeably affect the penetration depth at the instant of the bullet tumbling through 90°. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effects of temperature, loading rate and nanowire length on torsional deformation and mechanical properties of aluminium nanowires investigated using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Sung, Po-Hsien; Wu, Cheng-Da; Fang, Te-Hua

    2012-05-01

    Single-crystal aluminium nanowires under torsion are studied using molecular dynamics simulations based on the many-body tight-binding potential. The effects of temperature, loading rate and nanowire length are evaluated in terms of atomic trajectories, potential energy, von Mises stress, a centrosymmetry parameter, torque, shear modulus and radial distribution function. Simulation results clearly show that torsional deformation begins at the surface, extends close to the two ends and finally diffuses to the middle part. The critical torsional angle which represents the beginning of plastic deformation varies with different conditions. Before the critical torsional angle is reached, the potential energy and the torque required for the deformation of a nanowire significantly increase with the torsional angle. The critical torsional angle increases with increasing nanowire length and loading rate and decreasing temperature. The torque required for the deformation decreases and the shear modulus increases with increasing nanowire length. For higher temperatures and higher loading rates, torsional buckling more easily occurs at the two ends of a nanowire, whereas it occurs towards the middle part at or below room temperature with lower loading rates. Geometry instability occurs before material instability (buckling) for a long nanowire.

  12. Meso-Scale Progressive Damage Behavior Characterization of Triaxial Braided Composites under Quasi-Static Tensile Load

    NASA Astrophysics Data System (ADS)

    Ren, Yiru; Zhang, Songjun; Jiang, Hongyong; Xiang, Jinwu

    2018-04-01

    Based on continuum damage mechanics (CDM), a sophisticated 3D meso-scale finite element (FE) model is proposed to characterize the progressive damage behavior of 2D Triaxial Braided Composites (2DTBC) with 60° braiding angle under quasi-static tensile load. The modified Von Mises strength criterion and 3D Hashin failure criterion are used to predict the damage initiation of the pure matrix and fiber tows. A combining interface damage and friction constitutive model is applied to predict the interface damage behavior. Murakami-Ohno stiffness degradation scheme is employed to predict the damage evolution process of each constituent. Coupling with the ordinary and translational symmetry boundary conditions, the tensile elastic response including tensile strength and failure strain of 2DTBC are in good agreement with the available experiment data. The numerical results show that the main failure modes of the composites under axial tensile load are pure matrix cracking, fiber and matrix tension failure in bias fiber tows, matrix tension failure in axial fiber tows and interface debonding; the main failure modes of the composites subjected to transverse tensile load are free-edge effect, matrix tension failure in bias fiber tows and interface debonding.

  13. Maxillofacial fractures and craniocerebral injuries - stress propagation from face to neurocranium in a finite element analysis.

    PubMed

    Huempfner-Hierl, Heike; Schaller, Andreas; Hierl, Thomas

    2015-04-21

    Severe facial trauma is often associated with intracerebral injuries. So it seemed to be of interest to study stress propagation from face to neurocranium after a fistlike impact on the facial skull in a finite element analysis. A finite element model of the human skull without mandible consisting of nearly 740,000 tetrahedrons was built. Fistlike impacts on the infraorbital rim, the nasoorbitoethmoid region, and the supraorbital arch were simulated and stress propagations were depicted in a time-dependent display. Finite element simulation revealed von Mises stresses beyond the yield criterion of facial bone at the site of impacts and propagation of stresses in considerable amount towards skull base in the scenario of the fistlike impact on the infraorbital rim and on the nasoorbitoethmoid region. When impact was given on the supraorbital arch stresses seemed to be absorbed. As patients presenting with facial fractures have a risk for craniocerebral injuries attention should be paid to this and the indication for a CT-scan should be put widely. Efforts have to be made to generate more precise finite element models for a better comprehension of craniofacial and brain injury.

  14. A Theory of the von Weimarn Rules Governing the Average Size of Crystals Precipitated from a Supersaturated Solution

    NASA Technical Reports Server (NTRS)

    Barlow, Douglas A.; Baird, James K.; Su, Ching-Hua

    2003-01-01

    More than 75 years ago, von Weimarn summarized his observations of the dependence of the average crystal size on the initial relative concentration supersaturation prevailing in a solution from which crystals were growing. Since then, his empirically derived rules have become part of the lore of crystal growth. The first of these rules asserts that the average crystal size measured at the end of a crystallization increases as the initial value of the relative supersaturation decreases. The second rule states that for a given crystallization time, the average crystal size passes through a maximum as a function of the initial relative supersaturation. Using a theory of nucleation and growth due to Buyevich and Mansurov, we calculate the average crystal size as a function of the initial relative supersaturation. We confirm the von Weimarn rules for the case where the nucleation rate is proportional to the third power or higher of the relative supersaturation.

  15. Supporting interoperability of collaborative networks through engineering of a service-based Mediation Information System (MISE 2.0)

    NASA Astrophysics Data System (ADS)

    Benaben, Frederick; Mu, Wenxin; Boissel-Dallier, Nicolas; Barthe-Delanoe, Anne-Marie; Zribi, Sarah; Pingaud, Herve

    2015-08-01

    The Mediation Information System Engineering project is currently finishing its second iteration (MISE 2.0). The main objective of this scientific project is to provide any emerging collaborative situation with methods and tools to deploy a Mediation Information System (MIS). MISE 2.0 aims at defining and designing a service-based platform, dedicated to initiating and supporting the interoperability of collaborative situations among potential partners. This MISE 2.0 platform implements a model-driven engineering approach to the design of a service-oriented MIS dedicated to supporting the collaborative situation. This approach is structured in three layers, each providing their own key innovative points: (i) the gathering of individual and collaborative knowledge to provide appropriate collaborative business behaviour (key point: knowledge management, including semantics, exploitation and capitalisation), (ii) deployment of a mediation information system able to computerise the previously deduced collaborative processes (key point: the automatic generation of collaborative workflows, including connection with existing devices or services) (iii) the management of the agility of the obtained collaborative network of organisations (key point: supervision of collaborative situations and relevant exploitation of the gathered data). MISE covers business issues (through BPM), technical issues (through an SOA) and agility issues of collaborative situations (through EDA).

  16. Démarche pour la mise à niveau d’un secteur de soins pharmaceutiques : le cas de l’hémato-oncologie pédiatrique

    PubMed Central

    Bussières, Jean-François; Robelet, Antoine; Therrien, Roxane; Touzin, Karine

    2010-01-01

    Contexte : Bien que le concept de pharmacie clinique ait été développé dans les années soixante, il existe une grande variété de programmes et une grande disparité entre les programmes en clinique externe et en hospitalisation, bénéficiant de la présence d’un pharmacien dans un secteur de soins. Objectif: Éprouver une méthode de mise à niveau des secteurs de soins pharmaceutiques en établissement de santé. Méthode : Il s’agit d’une étude descriptive se déroulant au Centre hospitalier universitaire Sainte-Justine, un établissement mère-enfant de 500 lits. Le secteur de soins pharmaceutiques ciblé pour illustrer la méthode de mise à niveau est l’hématologie-oncologie pédiatrique. La méthode comporte trois étapes, soit une revue de la documentation scientifique, un profil du secteur et une mise à jour du niveau de pratique selon un profil des activités pharmaceutiques dans le secteur avant et après la mise à niveau. Résultats : Au total, 108 articles ont été recensés et 22 ont été retenus à partir d’une recherche dans PubMed. Après une recherche manuelle complémentaire, 36 articles ont finalement été évalués. Parmi les articles retenus, on compte trois lignes directrices, 11 études de développement, une revue de la littérature scientifique, six études pré- et post-interventions et 15 études quasi expérimentales. Bien que les patients de ce secteur ne comptent que pour 5 % des admissions de l’hôpital, la complexité des cas est élevée tant sur le plan de la codification de l’épisode de soins que du potentiel d’intervention pharmaceutique par admission. Conclusion : Il existe peu de données illustrant une démarche de mise à niveau de la pratique dans un secteur de soins pharmaceutiques. Cette étude a éprouvé une méthode de mise à niveau dans un service d’hématologie-oncologie pédiatrique et comporte une revue de la documentation scientifique, un profil du secteur et une description des tâches des pharmaciens de ce secteur avant et après la mise à niveau. PMID:22478967

  17. Maximum and minimum entropy states yielding local continuity bounds

    NASA Astrophysics Data System (ADS)

    Hanson, Eric P.; Datta, Nilanjana

    2018-04-01

    Given an arbitrary quantum state (σ), we obtain an explicit construction of a state ρɛ * ( σ ) [respectively, ρ * , ɛ ( σ ) ] which has the maximum (respectively, minimum) entropy among all states which lie in a specified neighborhood (ɛ-ball) of σ. Computing the entropy of these states leads to a local strengthening of the continuity bound of the von Neumann entropy, i.e., the Audenaert-Fannes inequality. Our bound is local in the sense that it depends on the spectrum of σ. The states ρɛ * ( σ ) and ρ * , ɛ (σ) depend only on the geometry of the ɛ-ball and are in fact optimizers for a larger class of entropies. These include the Rényi entropy and the minimum- and maximum-entropies, providing explicit formulas for certain smoothed quantities. This allows us to obtain local continuity bounds for these quantities as well. In obtaining this bound, we first derive a more general result which may be of independent interest, namely, a necessary and sufficient condition under which a state maximizes a concave and Gâteaux-differentiable function in an ɛ-ball around a given state σ. Examples of such a function include the von Neumann entropy and the conditional entropy of bipartite states. Our proofs employ tools from the theory of convex optimization under non-differentiable constraints, in particular Fermat's rule, and majorization theory.

  18. Computational modeling and experimental studies of the dynamic performance of ultrasonic horn profiles used in plastic welding.

    PubMed

    Roopa Rani, M; Rudramoorthy, R

    2013-03-01

    Ultrasonic horns are tuned components designed to vibrate in a longitudinal mode at ultrasonic frequencies. Reliable performance of such horns is normally decided by the uniformity of vibration amplitude at the working surface and the stress developed during loading condition. The horn design engineer must pay particular attention to designing a tool that will produce the desired amplitude without fracturing. The present work discusses horn configurations which satisfy these criteria and investigates the design requirements of horns in ultrasonic system. Different horn profiles for ultrasonic welding of thermoplastics have been characterized in terms of displacement amplitude and von-Mises stresses using modal and harmonic analysis. To validate the simulated results, five different horns are fabricated from Aluminum, tested and tuned to the operating frequency. Standard ABS plastic parts are welded using these horns. Temperature developed during the welding of ABS test parts using different horns is recorded using sensors and National Instruments (NIs) data acquisition system. The recorded values are compared with the predicted values. Experimental results show that welding using a Bezier horn has a high interface temperature and the welded joints had higher strength as compared to the other horn profiles. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. [Individualized fluid-solid coupled model of intracranial aneurysms based on computed tomography angiography data].

    PubMed

    Wang, Fuyu; Xu, Bainan; Sun, Zhenghui; Liu, Lei; Wu, Chen; Zhang, Xiaojun

    2012-10-01

    To establish an individualized fluid-solid coupled model of intracranial aneurysms based on computed tomography angiography (CTA) image data. The original Dicom format image data from a patient with an intracranial aneurysm were imported into Mimics software to construct the 3D model. The fluid-solid coupled model was simulated with ANSYS and CFX software, and the sensitivity of the model was analyzed. The difference between the rigid model and fluid-solid coupled model was also compared. The fluid-solid coupled model of intracranial aneurysm was established successfully, which allowed direct simulation of the blood flow of the intracranial aneurysm and the deformation of the solid wall. The pressure field, stress field, and distribution of Von Mises stress and deformation of the aneurysm could be exported from the model. A small Young's modulus led to an obvious deformation of the vascular wall, and the walls with greater thicknesses had smaller deformations. The rigid model and the fluid-solid coupled model showed more differences in the wall shear stress and blood flow velocity than in pressure. The fluid-solid coupled model more accurately represents the actual condition of the intracranial aneurysm than the rigid model. The results of numerical simulation with the model are reliable to study the origin, growth and rupture of the aneurysms.

  20. Fabrication and modeling of shape memory alloy springs

    NASA Astrophysics Data System (ADS)

    Heidari, B.; Kadkhodaei, M.; Barati, M.; Karimzadeh, F.

    2016-12-01

    In this paper, shape memory alloy (SMA) helical springs are produced by shape setting two sets of NiTi (Ti-55.87 at% Ni) wires, one of which showing shape memory effect and another one showing pseudoelasticity at the ambient temperature. Different pitches as well as annealing temperatures are tried to investigate the effect of such parameters on the thermomechanical characteristics of the fabricated springs. Phase transformation temperatures of the products are measured by differential scanning calorimetry and are compared with those of the original wires. Compression tests are also carried out, and stiffness of each spring is determined. The desired pitches are so that a group of springs experiences phase transition during loading while the other does not. The former shows a varying stiffness upon the application of compression, but the latter acts as passive springs with a predetermined stiffness. Based on the von-Mises effective stress and strain, an enhanced one-dimensional constitutive model is further proposed to describe the shear stress-strain response within the coils of an SMA spring. The theoretically predicted force-displacement responses of the produced springs are shown to be in a reasonable agreement with the experimental results. Finally, effects of variations in geometric parameters on the axial force-displacement response of an SMA spring are investigated.

  1. Numerical Investigation on Head and Brain Injuries Caused by Windshield Impact on Riders Using Electric Self-Balancing Scooters

    PubMed Central

    Zheng, Yanting; Shen, Ming; Yang, Xianfeng

    2018-01-01

    To investigate head-brain injuries caused by windshield impact on riders using electric self-balancing scooters (ESS). Numerical vehicle ESS crash scenarios are constructed by combining the finite element (FE) vehicle model and multibody scooter/rider models. Impact kinematic postures of the head-windshield contact under various impact conditions are captured. Then, the processes during head-windshield contact are reconstructed using validated FE head/laminated windshield models to assess the severity of brain injury caused by the head-windshield contact. Governing factors, such as vehicle speed, ESS speed, and the initial orientation of ESS rider, have nontrivial influences over the severity of a rider's brain injuries. Results also show positive correlations between vehicle speed and head-windshield impact speeds (linear and angular). Meanwhile, the time of head-windshield contact happens earlier when the vehicle speed is faster. According to the intensive study, windshield-head contact speed (linear and angular), impact location on the windshield, and head collision area are found to be direct factors on ESS riders' brain injuries during an impact. The von Mises stress and shear stress rise when relative contact speed of head-windshield increases. Brain injury indices vary widely when the head impacting the windshield from center to the edge or impacting with different areas. PMID:29770161

  2. In silico investigation of blast-induced intracranial fluid cavitation as it potentially leads to traumatic brain injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haniff, S.; Taylor, P. A.

    In this paper, we conducted computational macroscale simulations predicting blast-induced intracranial fluid cavitation possibly leading to brain injury. To further understanding of this problem, we developed microscale models investigating the effects of blast-induced cavitation bubble collapse within white matter axonal fiber bundles of the brain. We model fiber tracks of myelinated axons whose diameters are statistically representative of white matter. Nodes of Ranvier are modeled as unmyelinated sections of axon. Extracellular matrix envelops the axon fiber bundle, and gray matter is placed adjacent to the bundle. Cavitation bubbles are initially placed assuming an intracranial wave has already produced them. Pressuremore » pulses, of varied strengths, are applied to the upper boundary of the gray matter and propagate through the model, inducing bubble collapse. Simulations, conducted using the shock wave physics code CTH, predict an increase in pressure and von Mises stress in axons downstream of the bubbles after collapse. This appears to be the result of hydrodynamic jetting produced during bubble collapse. Interestingly, results predict axon cores suffer significantly lower shear stresses from proximal bubble collapse than does their myelin sheathing. Finally, simulations also predict damage to myelin sheathing, which, if true, degrades axonal electrical transmissibility and general health of the white matter structures in the brain.« less

  3. Development of a finite element model of female foot for high-heeled shoe design.

    PubMed

    Yu, Jia; Cheung, Jason Tak-Man; Fan, Yubo; Zhang, Yan; Leung, Aaron Kam-Lun; Zhang, Ming

    2008-01-01

    Wearing high-heeled shoes may produce deleterious effects on the musculoskeletal system while elevation of the shoe heel with arch insole insert is used as a treatment strategy for plantar fasciitis. Due to limitations of the experimental approaches, direct measurements of internal stress/strain of the foot are impossible or invasive. This study aims at developing a finite element model for evaluating the biomechanical effects of high-heeled support on the ankle-foot complex. A 3D anatomically detailed FE model of the female foot and ankle together with a high-heeled support was developed and used to investigate the plantar contact pressure and internal loading responses of the bony and soft tissue structures of the foot with varying heel heights during simulated balanced standing. In the balanced standing position with high-heeled support, a pronounced increase in von Mises stress at the first metatarsophalangeal (MTP) joint was predicted. The strain on plantar fascia decreased compared to the flat horizontal support and valgus deformity of the hallux was not significant. The increased stress in forefoot especially at the first MTP segment during prolonged high-heeled standing may contribute to progressive hallux valgus (HV) deformity. However, the reduced tensile strain in the plantar fascia with heel elevation may help relieve plantar fasciitis related pain and inflammation.

  4. Adhesion of new bioactive glass coating.

    PubMed

    Schrooten, J; Van Oosterwyck, H; Vander Sloten, J; Helsen, J A

    1999-03-05

    A valuable alternative to the existing biomedical implant coatings is a bioactive glass (BAG) coating that is produced by reactive plasma spraying. A mechanical performance requirement that is of the utmost importance is the adhesion strength of the coating. Considering the application as dental implant, a new adhesion test (shear test), which was close to the service conditions, was designed. A Ti6Al4V rod (3 mm) with a sprayed BAG coating of 50 microm was glued with an epoxy glue to a hollow cylindrical counterpart and was used as such in the tensile machine. This test was evaluated by finite element analysis (FEA). Preliminary experiments showed that a conversion from shear to tensile adhesion strength is possible by using the Von Mises criterion (sigma = 3(1/2)tau), indicating that thin coatings of brittle materials can behave as a ductile material. The new coating technique was proved to produce a high quality coating with an adhesion strength of 40.1 +/- 4.8 MPa in shear and 69.4 +/- 8.4 MPa in tension. The FEA revealed that no one homogeneously distributed shear stress is present but several nonhomogeneously distributed stress components (shear and tensile) are present in the coating. This analysis indicated that real service conditions are much more complicated than standard adhesion tests. Copyright 1999 John Wiley & Sons, Inc.

  5. An investigation of the inelastic behaviour of trabecular bone during the press-fit implantation of a tibial component in total knee arthroplasty.

    PubMed

    Kelly, N; Cawley, D T; Shannon, F J; McGarry, J P

    2013-11-01

    The stress distribution and plastic deformation of peri-prosthetic trabecular bone during press-fit tibial component implantation in total knee arthroplasty is investigated using experimental and finite element techniques. It is revealed that the computed stress distribution, implantation force and plastic deformation in the trabecular bone is highly dependent on the plasticity formulation implemented. By incorporating pressure dependent yielding using a crushable foam plasticity formulation to simulate the trabecular bone during implantation, highly localised stress concentrations and plastic deformation are computed at the bone-implant interface. If the pressure dependent yield is neglected using a traditional von Mises plasticity formulation, a significantly different stress distribution and implantation force is computed in the peri-prosthetic trabecular bone. The results of the study highlight the importance of: (i) simulating the insertion process of press-fit stem implantation; (ii) implementing a pressure dependent plasticity formulation, such as the crushable foam plasticity formulation, for the trabecular bone; (iii) incorporating friction at the implant-bone interface during stem insertion. Simulation of the press-fit implantation process with an appropriate pressure dependent plasticity formulation should be implemented in the design and assessment of arthroplasty prostheses. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. In silico investigation of blast-induced intracranial fluid cavitation as it potentially leads to traumatic brain injury

    DOE PAGES

    Haniff, S.; Taylor, P. A.

    2017-10-17

    In this paper, we conducted computational macroscale simulations predicting blast-induced intracranial fluid cavitation possibly leading to brain injury. To further understanding of this problem, we developed microscale models investigating the effects of blast-induced cavitation bubble collapse within white matter axonal fiber bundles of the brain. We model fiber tracks of myelinated axons whose diameters are statistically representative of white matter. Nodes of Ranvier are modeled as unmyelinated sections of axon. Extracellular matrix envelops the axon fiber bundle, and gray matter is placed adjacent to the bundle. Cavitation bubbles are initially placed assuming an intracranial wave has already produced them. Pressuremore » pulses, of varied strengths, are applied to the upper boundary of the gray matter and propagate through the model, inducing bubble collapse. Simulations, conducted using the shock wave physics code CTH, predict an increase in pressure and von Mises stress in axons downstream of the bubbles after collapse. This appears to be the result of hydrodynamic jetting produced during bubble collapse. Interestingly, results predict axon cores suffer significantly lower shear stresses from proximal bubble collapse than does their myelin sheathing. Finally, simulations also predict damage to myelin sheathing, which, if true, degrades axonal electrical transmissibility and general health of the white matter structures in the brain.« less

  7. [Three-dimensional finite element analysis of the upper cervical-defected incisor with labial access or lingual access].

    PubMed

    Su, Fan; Zhao, Ying; Su, Qin

    2013-08-01

    To evaluate the stress distribution of the cervical-defected incisor with labial or lingual endodontic access with finite element analysis (FEA), and to explore the advantage of resistance in labial endodontic access. 3-D finite element models of upper cervical-defected incisor were established using cone-beam CT (CBCT), Mimics Catia, and Ansys software. The subjects were categorized according to the two endodontic accesses and three restorative ways, which were composite resin, glass fiber-reinforced composite resin and glass fiber-reinforced post-crown. All the models were loaded.The von Mises stress values and distribution were recorded and analyzed with Ansys 10.0 software. In this study, direct composite resin restoration showed no significant difference between the labial and lingual access. In glass fiber-reinforced composite resin, labial access could transfer the stress concentration area. It could reduce the incidence of fracture of the cervical lesion but increase the incidence of root fracture. Post-crown restoration could obviously reduce the incidence of fracture of the cervical lesion. When the cervical-defected incisor is restored with composite resin, labial and lingual accesses can be considered. Labial access with glass fiber-reinforced composite resin or post-crown restoration is a good choice.

  8. Coarse-grained molecular dynamics simulations of the tensile behavior of a thermosetting polymer.

    PubMed

    Yang, Shaorui; Qu, Jianmin

    2014-07-01

    Using a previously developed coarse-grained model, we conducted large-scale (∼ 85 × 85 × 85 nm(3)) molecular dynamics simulations of uniaxial-strain deformation to study the tensile behavior of an epoxy molding compound, epoxy phenol novolacs (EPN) bisphenol A (BPA). Under the uniaxial-strain deformation, the material is found to exhibit cavity nucleation and growth, followed by stretching of the ligaments separated by the cavities, until the ultimate failure through ligament scissions. The nucleation sites of cavities are rather random and the subsequent cavity growth accounts for much (87%) of the volumetric change during the uniaxial-strain deformation. Ultimate failure of the materials occurs when the cavity volume fraction reaches ∼ 60%. During the entire deformation process, polymer strands in the network are continuously extended to their linear states and broken in the postyielding strain hardening stage. When most of the strands are stretched to their taut configurations, rapid scission of a large number of strands occurs within a small strain increment, which eventually leads to fracture. Finally, through extensive numerical simulations of various loading conditions in addition to uniaxial strain, we find that yielding of the EPN-BPA can be described by the pressure-modified von Mises yield criterion.

  9. Mechanical stress in plates for bridging reconstruction mandibular defects and purposes of double plate reinforcement.

    PubMed

    Hoefert, Sebastian; Taier, Roberto

    2018-05-01

    To evaluate the biomechanical performance of a commercially available bridging plate (2.4) as well as screws and bone simulating the reconstruction of hemimandibular defects and to indicate alternatives of reinforcement to prevent plate fractures either by strength or fatigue. Two common hemimandibular defects are investigated using computed finite element analysis (FEA) approach. Simplified and refined computational models are developed for the geometry of the screw. Conditions of non-locking and locking plate-screw interfaces are considered. Static loads of 120 N are applied. Von Mises stresses and fatigue are calculated. As reinforcement, a second complete or partial plate is placed onto the original plate. Results demonstrate that reconstruction plates are often subjected to excessive stress that may lead to fracture either by strength or by fatigue. An attached complete or partial second plate is able to reduce stress in the plate, in screws and bone so that stress remains below the allowable limit of the materials. A simplified technique of attaching a whole or sectioned second plate onto the original plate can reduce the stress calculated and may reduce the frequency of plate fractures for the patient's comfort, security and financial savings. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. How to generate a sound-localization map in fish

    NASA Astrophysics Data System (ADS)

    van Hemmen, J. Leo

    2015-03-01

    How sound localization is represented in the fish brain is a research field largely unbiased by theoretical analysis and computational modeling. Yet, there is experimental evidence that the axes of particle acceleration due to underwater sound are represented through a map in the midbrain of fish, e.g., in the torus semicircularis of the rainbow trout (Wubbels et al. 1997). How does such a map arise? Fish perceive pressure gradients by their three otolithic organs, each of which comprises a dense, calcareous, stone that is bathed in endolymph and attached to a sensory epithelium. In rainbow trout, the sensory epithelia of left and right utricle lie in the horizontal plane and consist of hair cells with equally distributed preferred orientations. We model the neuronal response of this system on the basis of Schuijf's vector detection hypothesis (Schuijf et al. 1975) and introduce a temporal spike code of sound direction, where optimality of hair cell orientation θj with respect to the acceleration direction θs is mapped onto spike phases via a von-Mises distribution. By learning to tune in to the earliest synchronized activity, nerve cells in the midbrain generate a map under the supervision of a locally excitatory, yet globally inhibitory visual teacher. Work done in collaboration with Daniel Begovic. Partially supported by BCCN - Munich.

  11. Numerical Methods for the Analysis of Power Transformer Tank Deformation and Rupture Due to Internal Arcing Faults

    PubMed Central

    Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao

    2015-01-01

    Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3MJ and a 6.3MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers. PMID:26230392

  12. Numerical Methods for the Analysis of Power Transformer Tank Deformation and Rupture Due to Internal Arcing Faults.

    PubMed

    Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao

    2015-01-01

    Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3 MJ and a 6.3 MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers.

  13. How does the canine paw pad attenuate ground impacts? A multi-layer cushion system.

    PubMed

    Miao, Huaibin; Fu, Jun; Qian, Zhihui; Ren, Luquan; Ren, Lei

    2017-12-15

    Macroscopic mechanical properties of digitigrade paw pads, such as non-linear elastic and variable stiffness, have been investigated in previous studies; however, little is known about the micro-scale structural characteristics of digitigrade paw pads, or the relationship between these characteristics and the exceptional cushioning of the pads. The digitigrade paw pad consists of a multi-layered structure, which is mainly comprised of a stratified epithelium layer, a dermis layer and a subcutaneous layer. The stratified epithelium layer and dermal papillae constitute the epidermis layer. Finite element analyses were carried out and showed that the epidermis layer effectively attenuated the ground impact across impact velocities of 0.05-0.4 m/s, and that the von Mises stresses were uniformly distributed in this layer. The dermis layer encompassing the subcutaneous layer can be viewed as a hydrostatic system, which can store, release and dissipate impact energy. All three layers in the paw pad work as a whole to meet the biomechanical requirements of animal locomotion. These findings provide insights into the biomechanical functioning of digitigrade paw pads and could be used to facilitate bio-inspired, ground-contacting component development for robots and machines, as well as contribute to footwear design. © 2017. Published by The Company of Biologists Ltd.

  14. Clinical workflow for personalized foot pressure ulcer prevention.

    PubMed

    Bucki, M; Luboz, V; Perrier, A; Champion, E; Diot, B; Vuillerme, N; Payan, Y

    2016-09-01

    Foot pressure ulcers are a common complication of diabetes because of patient's lack of sensitivity due to neuropathy. Deep pressure ulcers appear internally when pressures applied on the foot create high internal strains nearby bony structures. Monitoring tissue strains in persons with diabetes is therefore important for an efficient prevention. We propose to use personalized biomechanical foot models to assess strains within the foot and to determine the risk of ulcer formation. Our workflow generates a foot model adapted to a patient's morphology by deforming an atlas model to conform it to the contours of segmented medical images of the patient's foot. Our biomechanical model is composed of rigid bodies for the bones, joined by ligaments and muscles, and a finite element mesh representing the soft tissues. Using our registration algorithm to conform three datasets, three new patient models were created. After applying a pressure load below these foot models, the Von Mises equivalent strains and "cluster volumes" (i.e. volumes of contiguous elements with strains above a given threshold) were measured within eight functionally meaningful foot regions. The results show the variability of both location and strain values among the three considered patients. This study also confirms that the anatomy of the foot has an influence on the risk of pressure ulcer. Copyright © 2016. Published by Elsevier Ltd.

  15. Coarse-grained molecular dynamics simulations of the tensile behavior of a thermosetting polymer

    NASA Astrophysics Data System (ADS)

    Yang, Shaorui; Qu, Jianmin

    2014-07-01

    Using a previously developed coarse-grained model, we conducted large-scale (˜85×85×85nm3) molecular dynamics simulations of uniaxial-strain deformation to study the tensile behavior of an epoxy molding compound, epoxy phenol novolacs (EPN) bisphenol A (BPA). Under the uniaxial-strain deformation, the material is found to exhibit cavity nucleation and growth, followed by stretching of the ligaments separated by the cavities, until the ultimate failure through ligament scissions. The nucleation sites of cavities are rather random and the subsequent cavity growth accounts for much (87%) of the volumetric change during the uniaxial-strain deformation. Ultimate failure of the materials occurs when the cavity volume fraction reaches ˜60%. During the entire deformation process, polymer strands in the network are continuously extended to their linear states and broken in the postyielding strain hardening stage. When most of the strands are stretched to their taut configurations, rapid scission of a large number of strands occurs within a small strain increment, which eventually leads to fracture. Finally, through extensive numerical simulations of various loading conditions in addition to uniaxial strain, we find that yielding of the EPN-BPA can be described by the pressure-modified von Mises yield criterion.

  16. Determination of Yield and Flow Surfaces for Inconel 718 Under Axial-Torsional Loading at Temperatures Up to 649 C

    NASA Technical Reports Server (NTRS)

    Gil, Christopher M.

    1998-01-01

    An experimental program to determine flow surfaces has been established and implemented for solution annealed and aged IN718. The procedure involved subjecting tubular specimens to various ratios of axial-torsional stress at temperatures between 23 and 649 C and measuring strain with a biaxial extensometer. Each stress probe corresponds to a different direction in stress space, and unloading occurs when a 30 microstrain (1 micro eplison = 10(exp -6) mm/mm) offset is detected. This technique was used to map out yield loci in axial-torsional stress space. Flow surfaces were determined by post-processing the experimental data to determine the inelastic strain rate components. Surfaces of constant inelastic strain rate (SCISRS) and surfaces of constant inelastic power (SCIPS) were mapped out in the axial-shear stress plane. The von Mises yield criterion appeared to closely fit the initial loci for solutioned IN718 at 23 C. However, the initial loci for solutioned IN718 at 371 and 454 C, and all of the initial loci for aged IN718 were offset in the compression direction. Subsequent loci showed translation, distortion, and for the case of solutioned IN718, a slight cross effect. Aged IN718 showed significantly more hardening behavior than solutioned IN718.

  17. Statistical and Spectral Analysis of Wind Characteristics Relevant to Wind Energy Assessment Using Tower Measurements in Complex Terrain

    DOE PAGES

    Belu, Radian; Koracin, Darko

    2013-01-01

    The main objective of the study was to investigate spatial and temporal characteristics of the wind speed and direction in complex terrain that are relevant to wind energy assessment and development, as well as to wind energy system operation, management, and grid integration. Wind data from five tall meteorological towers located in Western Nevada, USA, operated from August 2003 to March 2008, used in the analysis. The multiannual average wind speeds did not show significant increased trend with increasing elevation, while the turbulence intensity slowly decreased with an increase were the average wind speed. The wind speed and direction weremore » modeled using the Weibull and the von Mises distribution functions. The correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multiday periodicity with increasing lag periods. The spectral analysis shows significant annual periodicity with similar characteristics at all locations. The relatively high correlations between the towers and small range of the computed turbulence intensity indicate that wind variability is dominated by the regional synoptic processes. Knowledge and information about daily, seasonal, and annual wind periodicities are very important for wind energy resource assessment, wind power plant operation, management, and grid integration.« less

  18. Biomechanical evaluation of a novel Limb Prosthesis Osseointegrated Fixation System designed to combine the advantages of interference-fit and threaded solutions.

    PubMed

    Prochor, Piotr; Piszczatowski, Szczepan; Sajewicz, Eugeniusz

    2016-01-01

    The study was aimed at biomechanical evaluation of a novel Limb Prosthesis Osseointegrated Fixation System (LPOFS) designed to combine the advantages of interference-fit and threaded solutions. Three cases, the LPOFS (designed), the OPRA (threaded) and the ITAP (interference-fit) implants were studied. Von-Mises stresses in bone patterns and maximal values generated while axial loading on an implant placed in bone and the force reaction values in contact elements while extracting an implant were analysed. Primary and fully osteointegrated connections were considered. The results obtained for primary connection indicate more effective anchoring of the OPRA, however the LPOFS provides more appropriate stress distribution (lower stress-shielding, no overloading) in bone. In the case of fully osteointegrated connection the LPOFSs kept the most favourable stress distribution in cortical bone which is the most important long-term feature of the implant usage and bone remodelling. Moreover, in fully bound connection its anchoring elements resist extracting attempts more than the ITAP and the OPRA. The results obtained allow us to conclude that in the case of features under study the LPOFS is a more functional solution to direct skeletal attachment of limb prosthesis than the referential implants during short and long-term use.

  19. A cell-centered Lagrangian finite volume approach for computing elasto-plastic response of solids in cylindrical axisymmetric geometries

    NASA Astrophysics Data System (ADS)

    Sambasivan, Shiv Kumar; Shashkov, Mikhail J.; Burton, Donald E.

    2013-03-01

    A finite volume cell-centered Lagrangian formulation is presented for solving large deformation problems in cylindrical axisymmetric geometries. Since solid materials can sustain significant shear deformation, evolution equations for stress and strain fields are solved in addition to mass, momentum and energy conservation laws. The total strain-rate realized in the material is split into an elastic and plastic response. The elastic and plastic components in turn are modeled using hypo-elastic theory. In accordance with the hypo-elastic model, a predictor-corrector algorithm is employed for evolving the deviatoric component of the stress tensor. A trial elastic deviatoric stress state is obtained by integrating a rate equation, cast in the form of an objective (Jaumann) derivative, based on Hooke's law. The dilatational response of the material is modeled using an equation of state of the Mie-Grüneisen form. The plastic deformation is accounted for via an iterative radial return algorithm constructed from the J2 von Mises yield condition. Several benchmark example problems with non-linear strain hardening and thermal softening yield models are presented. Extensive comparisons with representative Eulerian and Lagrangian hydrocodes in addition to analytical and experimental results are made to validate the current approach.

  20. Thermomechanical modelling of laser surface glazing for H13 tool steel

    NASA Astrophysics Data System (ADS)

    Kabir, I. R.; Yin, D.; Tamanna, N.; Naher, S.

    2018-03-01

    A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress-strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.

  1. Improved Bayesian Infrasonic Source Localization for regional infrasound

    DOE PAGES

    Blom, Philip S.; Marcillo, Omar; Arrowsmith, Stephen J.

    2015-10-20

    The Bayesian Infrasonic Source Localization (BISL) methodology is examined and simplified providing a generalized method of estimating the source location and time for an infrasonic event and the mathematical framework is used therein. The likelihood function describing an infrasonic detection used in BISL has been redefined to include the von Mises distribution developed in directional statistics and propagation-based, physically derived celerity-range and azimuth deviation models. Frameworks for constructing propagation-based celerity-range and azimuth deviation statistics are presented to demonstrate how stochastic propagation modelling methods can be used to improve the precision and accuracy of the posterior probability density function describing themore » source localization. Infrasonic signals recorded at a number of arrays in the western United States produced by rocket motor detonations at the Utah Test and Training Range are used to demonstrate the application of the new mathematical framework and to quantify the improvement obtained by using the stochastic propagation modelling methods. Moreover, using propagation-based priors, the spatial and temporal confidence bounds of the source decreased by more than 40 per cent in all cases and by as much as 80 per cent in one case. Further, the accuracy of the estimates remained high, keeping the ground truth within the 99 per cent confidence bounds for all cases.« less

  2. In silico investigation of blast-induced intracranial fluid cavitation as it potentially leads to traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Haniff, S.; Taylor, P. A.

    2017-11-01

    We conducted computational macroscale simulations predicting blast-induced intracranial fluid cavitation possibly leading to brain injury. To further understanding of this problem, we developed microscale models investigating the effects of blast-induced cavitation bubble collapse within white matter axonal fiber bundles of the brain. We model fiber tracks of myelinated axons whose diameters are statistically representative of white matter. Nodes of Ranvier are modeled as unmyelinated sections of axon. Extracellular matrix envelops the axon fiber bundle, and gray matter is placed adjacent to the bundle. Cavitation bubbles are initially placed assuming an intracranial wave has already produced them. Pressure pulses, of varied strengths, are applied to the upper boundary of the gray matter and propagate through the model, inducing bubble collapse. Simulations, conducted using the shock wave physics code CTH, predict an increase in pressure and von Mises stress in axons downstream of the bubbles after collapse. This appears to be the result of hydrodynamic jetting produced during bubble collapse. Interestingly, results predict axon cores suffer significantly lower shear stresses from proximal bubble collapse than does their myelin sheathing. Simulations also predict damage to myelin sheathing, which, if true, degrades axonal electrical transmissibility and general health of the white matter structures in the brain.

  3. Research on the Stress and Material Flow with Single Particle—Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-04-01

    The scratching process of particle is a complex material removal process involving cutting, plowing, and rubbing. In this study, scratch experiments under different loads are performed on a multifunctional tester for material surface. Natural diamond and Fe-Cr-Ni stainless steel are chosen as indenter and workpiece material, respectively. The cutting depth and side flow height of scratch are measured using a white light interferometer. The finite element model is developed, and the numerical simulation of scratching is conducted using AdvantEdgeTM. The simulated forces and side flow height under different cutting depths correspond well with experimental results, validating the accuracy of the scratching simulation. The mises stress distribution of the particle is presented, with the maximum stress occurring inside the particle rather than on the surface. The pressure distribution of the particle is also given, and results show that the maximum pressure occurs on the contact surface of particle and workpiece. The material flow contour is presented, and material flow direction and velocity magnitude are analyzed.

  4. Regular and platform switching: bone stress analysis varying implant type.

    PubMed

    Gurgel-Juarez, Nália Cecília; de Almeida, Erika Oliveira; Rocha, Eduardo Passos; Freitas, Amílcar Chagas; Anchieta, Rodolfo Bruniera; de Vargas, Luis Carlos Merçon; Kina, Sidney; França, Fabiana Mantovani Gomes

    2012-04-01

    This study aimed to evaluate stress distribution on peri-implant bone simulating the influence of platform switching in external and internal hexagon implants using three-dimensional finite element analysis. Four mathematical models of a central incisor supported by an implant were created: External Regular model (ER) with 5.0 mm × 11.5 mm external hexagon implant and 5.0 mm abutment (0% abutment shifting), Internal Regular model (IR) with 4.5 mm × 11.5 mm internal hexagon implant and 4.5 mm abutment (0% abutment shifting), External Switching model (ES) with 5.0 mm × 11.5 mm external hexagon implant and 4.1 mm abutment (18% abutment shifting), and Internal Switching model (IS) with 4.5 mm × 11.5 mm internal hexagon implant and 3.8 mm abutment (15% abutment shifting). The models were created by SolidWorks software. The numerical analysis was performed using ANSYS Workbench. Oblique forces (100 N) were applied to the palatal surface of the central incisor. The maximum (σ(max)) and minimum (σ(min)) principal stress, equivalent von Mises stress (σ(vM)), and maximum principal elastic strain (ε(max)) values were evaluated for the cortical and trabecular bone. For cortical bone, the highest stress values (σ(max) and σ(vm) ) (MPa) were observed in IR (87.4 and 82.3), followed by IS (83.3 and 72.4), ER (82 and 65.1), and ES (56.7 and 51.6). For ε(max), IR showed the highest stress (5.46e-003), followed by IS (5.23e-003), ER (5.22e-003), and ES (3.67e-003). For the trabecular bone, the highest stress values (σ(max)) (MPa) were observed in ER (12.5), followed by IS (12), ES (11.9), and IR (4.95). For σ(vM), the highest stress values (MPa) were observed in IS (9.65), followed by ER (9.3), ES (8.61), and IR (5.62). For ε(max) , ER showed the highest stress (5.5e-003), followed by ES (5.43e-003), IS (3.75e-003), and IR (3.15e-003). The influence of platform switching was more evident for cortical bone than for trabecular bone, mainly for the external hexagon implants. In addition, the external hexagon implants showed less stress concentration in the regular and switching platforms in comparison to the internal hexagon implants. © 2012 by the American College of Prosthodontists.

  5. A 3D finite element model to investigate prosthetic interface stresses of different posterior tibial slope.

    PubMed

    Shen, Yi; Li, Xiaomiao; Fu, Xiaodong; Wang, Weili

    2015-11-01

    Posterior tibial slope that is created during proximal tibial resection in total knee arthroplasty has emerged as an important factor in the mechanics of the knee joint and the surgical outcome. But the ideal degree of posterior tibial slope for recovery of the knee joint function and preventions of complications remains controversial and should vary in different racial groups. The objective of this paper is to investigate the effects of posterior tibial slope on contact stresses in the tibial polyethylene component of total knee prostheses. Three-dimensional finite element analysis was used to calculate contact stresses in tibial polyethylene component of total knee prostheses subjected to a compressive load. The 3D finite element model of total knee prosthesis was constructed from the images produced by 3D scanning technology. Stresses in tibial polyethylene component were calculated with four different posterior tibial slopes (0°, 3°, 6° and 9°). The 3D finite element model of total knee prosthesis we presented was well validated. We found that the stress distribution in the polythene as evaluated by the distributions of the von Mises stress, the maximum principle stress, the minimum principle stress and the Cpress were more uniform with 3° and 6° posterior tibial slopes than with 0° and 9° posterior tibial slopes. Moreover, the peaks of the above stresses and trends of changes with increasing degree of knee flexion were more ideal with 3° and 6° posterior slopes. The results suggested that the tibial component inclination might be favourable to 7°-10° so far as the stress distribution is concerned. The range of the tibial component inclination also can decrease the wear of polyethylene. Chinese posterior tibial slope is bigger than in the West, and the current domestic use of prostheses is imported from the West, so their demands to tilt back bone cutting can lead to shorten the service life of prostheses; this experiment result is of important clinical significance, guiding orthopaedic surgeon after the best angle to cut bone.

  6. Stress distribution of single-implant-retained overdenture reinforced with a framework: A finite element analysis study.

    PubMed

    Amaral, Camilla F; Gomes, Rafael S; Rodrigues Garcia, Renata C M; Del Bel Cury, Altair A

    2018-05-01

    Studies have demonstrated the effectiveness of a single-implant-retained mandibular overdenture for elderly patients with edentulism. However, due to the high concentration of stress around the housing portion of the single implant, this prosthesis tends to fracture at the anterior region more than the 2-implant-retained mandibular overdenture. The purpose of this finite-element analysis study was to evaluate the stress distribution in a single-implant-retained mandibular overdenture reinforced with a cobalt-chromium framework, to minimize the incidence of denture base fracture. Two 3-dimensional finite element models of mandibular overdentures supported by a single implant with a stud attachment were designed in SolidWorks 2013 software. The only difference between the models was the presence or absence of a cobalt-chromium framework at the denture base between canines. Subsequently, the models were imported into the mathematical analysis software ANSYS Workbench v15.0. A mesh was generated with an element size of 0.7 mm and submitted to convergence analysis before mechanical simulation. All materials were considered to be homogeneous, isotropic, and linearly elastic. A 100-N load was applied to the incisal edge of the central mandibular incisors at a 30-degree angle. Maximum principal stress was calculated for the overdenture, von Mises stress was calculated for the attachment and implant, and minimum principal stress was calculated for cortical and cancellous bone. In both models, peak stress on the overdenture was localized at the anterior intaglio surface region around the implant. However, the presence of the framework reduced the stress by almost 62% compared with the overdenture without a framework (8.7 MPa and 22.8 MPa, respectively). Both models exhibited similar stress values in the attachment, implant, and bone. A metal framework reinforcement for a single-implant-retained mandibular overdenture concentrates less stress through the anterior area of the prosthesis and could minimize the incidence of fracture. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Parafunctional loading and occlusal device on stress distribution around implants: A 3D finite element analysis.

    PubMed

    Borges Radaelli, Manuel Tomás; Idogava, Henrique Takashi; Spazzin, Aloisio Oro; Noritomi, Pedro Yoshito; Boscato, Noéli

    2018-04-30

    An occlusal device is frequently recommended for patients with bruxism to protect implant-supported restorations and prevent marginal bone loss. Scientific evidence to support this treatment is lacking. The purpose of this 3-dimensional (3D) finite element study was to evaluate the influence of an acrylic resin occlusal device, implant length, and insertion depth on stress distribution with functional and parafunctional loadings. Computer-aided design software was used to construct 8 models. The models were composed of a mandibular bone section including the second premolar and first and second molars. Insertion depths (bone level and 2 mm subcrestal) were simulated at the first molar. Three natural antagonist maxillary teeth and the placement or not of an occlusal device were simulated. Functional (200-N axial and 10-N oblique) and parafunctional (1000-N axial and 25-N oblique) forces were applied. Finite element analysis (FEA) was used to determine the maximum principal stress for the cortical and trabecular bone and von Mises for implant and prosthetic abutment. Stress concentration was observed at the abutment-implant and the implant-bone interfaces. Occlusal device placement changed the pattern of stress distribution and reduced stress levels from parafunctional loading in all structures, except in the trabecular bone. Implants with subcrestal insertion depths had reduced stress at the implant-abutment interface and cortical bone around the implant abutment, while the stress increased in the bone in contact with the implant. Parafunctional loading increased the stress levels in all structures when compared with functional loading. An occlusal device resulted in the lowest stress levels at the abutment and implant and the most favorable stress distribution between the cortical and trabecular bone. Under parafunctional loading, an occlusal device was more effective in reducing stress distribution for longer implants inserted at bone level. Subcrestally, implant insertion yielded the most favorable biomechanical conditions at the abutment-implant interface and at the coronal surface of the cortical bone, mainly when there was no occlusal device. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Biomechanical comparison of a novel transoral atlantoaxial anchored cage with established fixation technique - a finite element analysis.

    PubMed

    Zhang, Bao-cheng; Liu, Hai-bo; Cai, Xian-hua; Wang, Zhi-hua; Xu, Feng; Kang, Hui; Ding, Ran; Luo, Xiao-qing

    2015-09-22

    The transoral atlantoaxial reduction plate (TARP) fixation has been introduced to achieve reduction, decompression, fixation and fusion of C1-C2 through a transoral-only approach. However, it may also be associated with potential disadvantages, including dysphagia and load shielding of the bone graft. To prevent potential disadvantages related to TARP fixation, a novel transoral atlantoaxial fusion cage with integrated plate (Cage + Plate) device for stabilization of the C1-C2 segment is designed. The aims of the present study were to compare the biomechanical differences between Cage + Plate device and Cage + TARP device for the treatment of basilar invagination (BI) with irreducible atlantoaxial dislocation (IAAD). A detailed, nonlinear finite element model (FEM) of the intact upper cervical spine had been developed and validated. Then a FEM of an unstable BI model treated with Cage + Plate fixation, was compared to that with Cage + TARP fixation. All models were subjected to vertical load with pure moments in flexion, extension, lateral bending and axial rotation. Range of motion (ROM) of C1-C2 segment and maximum von Mises Stress of the C2 endplate and bone graft were quantified for the two devices. Both devices significantly reduced ROM compared with the intact state. In comparison with the Cage + Plate model, the Cage + TARP model reduced the ROM by 82.5 %, 46.2 %, 10.0 % and 74.3 % in flexion, extension, lateral bending, and axial rotation. The Cage + Plate model showed a higher increase stresses on C2 endplate and bone graft than the Cage + TARP model in all motions. Our results indicate that the novel Cage + Plate device may provide lower biomechanical stability than the Cage + TARP device in flexion, extension, and axial rotation, however, it may reduce stress shielding of the bone graft for successful fusion and minimize the risk of postoperative dysphagia. Clinical trials are now required to validate the reproducibility and advantages of our findings using this anchored cage for the treatment of BI with IAAD.

  9. Effect of increased crown height on stress distribution in short dental implant components and their surrounding bone: A finite element analysis.

    PubMed

    Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Safari, Hamed; Samandari, Mohammad Mahdi; Geramipanah, Farideh

    2015-06-01

    Implants in posterior regions of the jaw require short dental implants with long crown heights, leading to increased crown-to-implant ratios and mechanical stress. This can lead to fracture and screw loosening. The purpose of this study was to investigate the dynamic nature and behavior of prosthetic components and preimplant bone and evaluate the effect of increased crown height space (CHS) and crown-to-implant ratio on stress concentrations under external oblique forces. The severely resorbed bone of a posterior mandible site was modeled with Mimics and Catia software. A second mandibular premolar tooth was modeled with CHS values of 8.8, 11.2, 13.6, and 16 mm. A Straumann implant (4.1×8 mm), a directly attached crown, and an abutment screw were modeled with geometric data and designed by using SolidWorks software. Abaqus software was used for the dynamic simulation of screw tightening and the application of an external load to the buccal cusp at a 75.8-degree angle with the occlusal plane. The distribution of screw load and member load at each step was compared, and the stress values were calculated within the dental implant complex and surrounding bone. During tightening, the magnitude and distribution of the preload and clamp load were uniform and equal at the cross section of all CHSs. Under an external load, the screw load decreased and member load increased. An increase in the CHS caused the corresponding distribution to become more nonuniform and increased the maximum compressive and tensile stresses in the preimplant bone. Additionally, the von Mises stress decreased at the abutment screw and increased at the abutment and fixture. Under nonaxial forces, increased CHS does not influence the decrease in screw load or increase in member load. However, it contributes to screw loosening and fatigue fracture by skewing the stress distribution to the transverse section of the implant. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Biomechanical behavior of 2-implant-and single-implant-retained mandibular overdentures with conventional or mini implants.

    PubMed

    Pisani, Marina Xavier; Presotto, Anna Gabriella Camacho; Mesquita, Marcelo Ferraz; Barão, Valentim Adelino Ricardo; Kemmoku, Daniel Takanori; Del Bel Cury, Altair Antoninha

    2018-04-24

    The use of single or mini dental implants to retain mandibular overdentures is still questionable. The purpose of this finite element analysis (FEA) study was to investigate the biomechanical behavior of 2- and single-implant-retained mandibular overdentures with conventional or mini implants. Four 3-dimensional (3D) finite element models were constructed with the following designs of mandibular overdentures: 2 (group 2-C) and single (group 1-C) conventional external hexagon implants with ball or O-ring attachment and 2 (group 2-M) and single (group 1-M) 1-piece mini implants. A 150-N axial load was applied bilaterally and simultaneously on the first molar. Overdenture displacement, von Mises equivalent stress (implants and/or prosthetic components), and maximum principal stresses (peri-implant bone) were recorded numerically and then color-coded and compared among the groups. The overdenture displacement (in mm) was higher for the 1-M (0.16) and 2-M (0.17) groups when compared with 1-C (0.09) and 2-C (0.08). Irrespective of the type of implant, the single-implant groups presented higher values of stress (in MPa) on the implants than did the 2-implant groups (1-C=52.53; 1-M=2.95; 2-C=34.66; 2-M=2.37), ball attachment (1-C=201.33; 2-C=159.06), housing or O-ring (1-C=125.01; 1-M=1.96; 2-C=88.84; 2-M=1.27), and peri-implant cortical bone (1-C=19.37; 1-M=1.47; 2-C=15.70; 2-M=1.06). The mini implant overdentures presented lower stress values on the implants, housing or O-ring, and peri-implant bone than did the conventional implant overdentures, regardless of the number of implants. The 2-implant-retained overdentures exhibited lower stresses than the single- implant-retained overdentures, irrespective of the type of implant. The mini implants demonstrated higher overdenture displacement and lower stresses than did conventional implant overdentures for single- and 2-implant-retained overdentures. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. [Effect of zirconia abutment angulation on stress distribution in the abutment and the bone around implant: a finite element study].

    PubMed

    Yang, Yan-zhong; Tian, Xiao-hua; Zhou, Yan-min

    2015-08-01

    To investigate the effect of three different zirconia angular abutments on the stress distribution in bone and abutment using three-dimensional finite element analysis, and provide instruction for clinical application. Finite element analysis (FEA) was applied to analyze the stress distribution of three different zirconia/titanium angular abutments and bone around implant. The maximum Von Minses stress that existed in abutment, bolt and bone of the angular abutment model was significantly higher than that existed in the straight abutment model. The maximum Von Minses stress that existed in abutment, bolt and bone of the 20 ° angular abutment model was significantly higher than that existed in 15 ° angular abutment model. There was no significant difference between zirconia abutment model and titanium abutment model. The abutment angulation has a significant influence on the stress distribution in the abutment, bolt and bone, and exacerbates as the angulation increases, which suggest that we should take more attention to the implant orientation and use straight abutment or little angular abutment. The zirconia abutment can be used safely, and there is no noticeable difference between zirconia abutment and titanium abutment on stress distribution.

  12. Experimental tests of the von Karman self-preservation hypothesis: decay of an electron plasma to a near-maximum entropy state

    NASA Astrophysics Data System (ADS)

    Rodgers, D.; Servidio, S.; Matthaeus, W. H.; Montgomery, D.; Mitchell, T.; Aziz, T.

    2009-12-01

    The self-preservation hypothesis of von Karman [1] implies that in three dimensiolnal turbulence the energy E decays as dE/dt = - a Z^3/L, where a is a constant, Z is the turbulence amplitude and L is a simlarity length scale. Extensions of this idea to MHD [2] has been of great utility in solar wind and coronal heating studies. Here we conduct an experimental study of this idea in the context of two dimensional electron plasma turbulence. In particular, we examine the time evolution that leads to dynamical relaxation of a pure electron plasma in a Malmberg-Penning (MP) trap, comparing experiments and statistical theories of weakly dissipative two-dimensional (2D) turbulence [3]. A formulation of von Karman-Howarth (vKH) self-preserving decay is presented for a 2D positive-vorticity fluid, a system that corresponds closely to a 2D electron ExB drift plasma. When the enstrophy of the meta-stable equilibrium is accounted for, the enstrophy decay follows the predicted vKH decay for a variety of initial conditions in the MP experiment. Statistical analysis favors a theoretical picture of relaxation to a near-maximum entropy state, evidently driven by a self-preserving decay of enstrophy. [1] T. de Karman and L. Howarth, Proc. Roy. Soc Lon. A, 164, 192, 1938. [2] W. H. Matthaeus, G. P. Zank, and S. Oughton. J. Plas. Phys., 56:659, 1996. [3] D. J. Rodgers, S. Servidio, W. H. Matthaeus, D. C. Montgomery, T. B. Mitchell, and T. Aziz. Phys. Rev. Lett., 102(24):244501, 2009.

  13. The joint in vitro action of polymyxin B and miconazole against pathogens associated with canine otitis externa from three European countries

    PubMed Central

    Pietschmann, Silvia; Meyer, Michael; Voget, Michael; Cieslicki, Michael

    2013-01-01

    Background Canine otitis externa, an inflammation of the external ear canal, can be maintained and worsened by bacterial or fungal infections. For topical treatment, combinations of anti-inflammatory and antimicrobial ingredients are mainly used. Hypothesis/Objectives This study was conducted to elucidate the in vitro activity of polymyxin B and miconazole against clinical bacterial isolates from three European countries, to investigate possible differences in sensitivity and to assess drug interactions. Animals Seventeen strains of Escherichia coli, 24 strains of Pseudomonas aeruginosa, 24 strains of Proteus mirabilis and 25 strains of Staphylococcus pseudintermedius from dogs with diagnosed otitis externa had been isolated in Germany, France and Italy. Methods Drug activities were evaluated by minimal inhibitory concentration (MIC) and minimal bactericidal concentration. The potentiation of polymyxin B plus miconazole was calculated using the fractional inhibitory concentration index (FICI). An FICI ≤0.5 defined synergy. Furthermore, geographical variations in the FICI and MIC were assessed by statistical analysis. Results Bacterial susceptibilities were comparable in different European countries, because there were no significant MIC and FICI variations (P > 0.05). As a single agent, polymyxin B had bactericidal activity against most E. coli and P. aeruginosa strains and, in higher concentrations, against S. pseudintermedius strains. Miconazole was bactericidal against all Staphylococcus strains. Synergy was demonstrated against strains of E. coli and P. aeruginosa (FICI = 0.25 and 0.50, respectively), whereas overall there was no interaction against S. pseudintermedius strains (FICI = 1.25). Proteus mirabilis strains were not inhibited by each of the drugs individually or by their combination. Conclusions and clinical importance In vitro synergy of polymyxin B and miconazole against E. coli and P. aeruginosa isolates indicates a rationale for applying both agents in combination to treat otitis externa when infected with these types of bacteria. Résumé Contexte L'otite externe canine, une inflammation du conduit auriculaire externe, peut être entretenue et aggravée par les infections bactériennes ou fongiques. Pour le traitement topique, les associations d'anti-inflammatoires et d'antimicrobiens sont principalement utilisées. Hypothèses/Objectifs Cette étude a été menée pour déterminer l'activité in vitro de la polymyxine B et du miconazole contre les souches bactériennes cliniques isolées dans trois pays européens, d'étudier les différences possibles de sensibilité et de déterminer les interactions médicamenteuses. Sujets Dix-sept souches d'Escherichia coli, 24 souches de Pseudomonas aeruginosa, 24 souches de Proteus mirabilis et 25 souches de Staphylococcus pseudintermedius ont été isolées de chiens atteints d'otite externe en Allemagne, France et Italie. Résultats L'activité des molécules a été évaluée par la concentration minimale inhibitrice (CMI) et la concentration minimale bactéricide. La potentialisation de la polymyxine B et du miconazole a été calculée par l'indice de concentration inhibitrice fractionnaire (FICI). Un FICI ≤ 0.5 définissait la synergie. En outre, les variations géographiques dans le FICI et la CMI étaient évaluées par analyses statistiques. Résultats Les sensibilités bactériennes étaient comparables dans les différents pays européens parce qu'aucune différence significative n'a été mise en évidence entre les variations de CMI et de FICI (P > 0.05). La polymyxine B en tant que seul agent avait une activité bactéricide contre la plupart des souches de E. coli et P. aeruginosa, et, à plus forte concentration, contre les souches de S. pseudintermedius. Le miconazole était bactéricide contre toutes les souches de S. pseudintermedius. Une synergie a été mise en évidence contre les souches de E. coli et P. aeruginosa (FICI = 0.25 et 0.50, respectivement), alors qu'aucune interaction n'a été mise en évidence contre les souches de S. pseudintermedius (FICI = 1.25). Les souches de Proteus mirabilis n'ont été inhibées par aucune des molécules, individuellement ou en association. Conclusions et importance clinique La synergie in vitro de la polymyxine B et du miconazole contre les souches d'E. coli et de P. aeruginosa justifie l'application de la combinaison des deux agents dans le traitement de l'otite externe lors d'infection par ces bactéries. Resumen Introducción la otitis externa canina, inflamación del canal auditivo externo, puede perpetuarse y empeorar debido a la presencia de infecciones bacterianas o fúngicas. Para el tratamiento tópico se utilizan fundamentalmente combinaciones de ingredientes antiinflamatorios y antimicrobianos. Hipótesis/objetivos este estudio se condujo para elucidar la actividad in vitro de polimixina B y miconazol frente a aislados clínicos bacterianos de tres países europeos, investigar posibles diferencias en sensibilidad y analizar interacciones de fármacos. Animales diecisiete cepas de Escherichia coli, 24 cepas de Pseudomonas aeruginosa, 24 cepas de Proteus mirabilis y 25 cepas de Staphylococcus pseudintermedius de perros diagnosticados con otitis externa asilados de Alemania, Francia e Italia. Métodos se evaluó la actividad de los fármacos mediante la concentración inhibitoria minima (MIC) y la concentración bactericida minima. La potenciación de polimixina B y miconazol se calculó usando el índice de concentración fraccional inhibitoria (FICI). Un FICI≤ 0,5 definía sinergismo. Además se analizaron estadísticamente las variaciones en la FICI y MIC dependiendo de la región de origen. Resultados la susceptibilidad bacteriana fue comparable en los diferentes países europeos ya que no hubo diferencias significativas en MIC y FICI (P > 0,05). Como agente único la polimixina B tuvo actividad antimicrobiana frente a la mayoría de cepas de E. coli y P. aeruginosa, y a mayores concentraciones frente a cepas de S. pseudintermedius. El miconazol fue bactericida frente a todas las cepas de Staphylococcus. Se observó sinergismo frente a cepas de E. coli y P. aeruginosa (FICI = 0.25 y 0,50, respectivamente), mientras en general no hubo sinergismo frente a las cepas de S. pseudintermedius (FICI = 1.25). Cepas de Proteus mirabilis no fueron inhibidas por los fármacos individualmente ni en combinación. Conclusiones e importancia clínica el sinergismo in vitro de la polimixina B y el miconazol frente a aislados de E. coli y P. aeruginosa indica un motivo para utilizar ambos agentes en combinación para tratar casos de otitis externa producidos por infecciones con estas bacterias. Zusammenfassung Hintergrund Die canine Otitis externa, eine Entzündung des äußeren Ohrkanals, kann durch eine bakterielle Infektion oder durch eine Infektion mit Hefepilzen aufrechterhalten bzw. verschlimmert werden. Zur topischen Behandlung werden hauptsächlich Kombinationen aus entzündungshemmenden und antimikrobiellen Wirkstoffen verwendet. Hypothese/Ziele Diese Studie wurde durchgeführt, um die in vitro Aktivität von Polymyxin B und Mikonazol gegenüber klinischen Bakterienisolaten aus drei europäischen Ländern zu beleuchten und um mögliche Unterschiede in der Sensibilität zu untersuchen und um Interaktionen von Medikamenten zu beurteilen. Tiere Siebzehn Stämme von Escherichia coli, 24 Stämme von Pseudomonas aeruginosa, 24 Stämme von Proteus mirabilis und 25 Stämme von Staphylokokkus pseudintermedius von Hunden mit einer diagnostizierten Otitis externa waren in Deutschland, Frankreich und Italien isoliert worden. Methoden Die Wirkstoffaktivitäten wurden mittels minimaler inhibitorischer Konzentration (MIC) und minimaler bakterizider Konzentration evaluiert. Die Potenzierung von Polymyxin B plus Mikonazol wurde mittels „Fractional Inhibitory Concentration Index” (FICI) kalkuliert. Ein FICI ≤ 0,5 definierte eine Synergie. Weiters wurden geographische Variationen des FICI und der MIC mittels statistischer Analyse beurteilt. Ergebnisse Die bakteriellen Empfindlichkeiten waren in den verschiedenen europäischen Ländern vergleichbar, da keine signifikanten Unterschiede bei MIC und FICI bestanden (P > 0,05). Als alleiniger Wirkstoff zeigte Polymyxin B eine bakterizide Wirkung gegenüber den meisten E. coli und P. aeruginosa Stämmen und, in höheren Konzentrationen, gegenüber S. pseudintermedius Stämmen. Eine Synergie wurde gegen E. coli und P. aeruginosa Stämme (FICI = 0.25 bzw. 0,50) demonstriert, während insgesamt keine Interaktion gegen S. pseudintermedius Stämme (FICI = 1.25) bestand. Proteus mirabilis Stämme wurden von keinem dieser Wirkstoffe, weder individuell noch in Kombination, inhibiert. Schlussfolgerungen und klinische Bedeutung Eine in vitro Synergie von Polymyxin B und Mikonazol gegenüber E. coli und P. aeruginosa Isolaten bekräftigt die Argumentation dafür, beide Wirkstoffe in Kombination zu verwenden, um eine Otitis externa, bei der diese Bakterien vorkommen, zu behandeln. PMID:23721182

  14. Finite Element Simulation of NiTi Umbrella-Shaped Implant Used on Femoral Head under Different Loadings.

    PubMed

    Mehrabi, Reza; Dorri, Milad; Elahinia, Mohammad

    2017-03-12

    In this study, an umbrella-shaped device that is used for osteonecrosis treatment is simulated. The femoral head is subjected to various complex loadings as a result of a person's daily movements. Implant devices used in the body are made of shape memory alloy materials because of their remarkable resistance to wear and corrosion, good biocompatibility, and variable mechanical properties. Since this NiTi umbrella-shaped implant is simultaneously under several loadings, a 3-D model of shape memory alloy is utilized to investigate the behavior of the implant under different conditions. Shape memory and pseudo-elasticity behavior of NiTi is analyzed using a numerical model. The simulation is performed within different temperatures and in an isothermal condition with varied and complex loadings. The objective of this study is to evaluate the performance of the device under thermal and multi-axial forces via numerically study. Under tensile loading, the most critical points are on the top part of the implant. It is also shown that changes in temperature have a minor effect on the Von Mises stress. Applied forces and torques have significant influence on the femoral head. Simulations results indicate that the top portion of the umbrella is under the most stress when embedded in the body. Consequently, the middle, curved portion of the umbrella is under the least amount of stress.

  15. Finite Element Simulation of NiTi Umbrella-Shaped Implant Used on Femoral Head under Different Loadings

    PubMed Central

    Mehrabi, Reza; Dorri, Milad; Elahinia, Mohammad

    2017-01-01

    In this study, an umbrella-shaped device that is used for osteonecrosis treatment is simulated. The femoral head is subjected to various complex loadings as a result of a person’s daily movements. Implant devices used in the body are made of shape memory alloy materials because of their remarkable resistance to wear and corrosion, good biocompatibility, and variable mechanical properties. Since this NiTi umbrella-shaped implant is simultaneously under several loadings, a 3-D model of shape memory alloy is utilized to investigate the behavior of the implant under different conditions. Shape memory and pseudo-elasticity behavior of NiTi is analyzed using a numerical model. The simulation is performed within different temperatures and in an isothermal condition with varied and complex loadings. The objective of this study is to evaluate the performance of the device under thermal and multi-axial forces via numerically study. Under tensile loading, the most critical points are on the top part of the implant. It is also shown that changes in temperature have a minor effect on the Von Mises stress. Applied forces and torques have significant influence on the femoral head. Simulations results indicate that the top portion of the umbrella is under the most stress when embedded in the body. Consequently, the middle, curved portion of the umbrella is under the least amount of stress. PMID:28952502

  16. The influence of chromium on structure and mechanical properties of B2 nickel aluminide alloys. Ph.D. Thesis - Florida Univ., 1991 Final Report

    NASA Technical Reports Server (NTRS)

    Cotton, James Dean

    1992-01-01

    Major obstacles to the use of NiAl-based alloys and composites are low ductility and toughness. These shortcomings result in part from a lack of sufficient slip systems to accommodate plastic deformation of polycrystalline material (von Mises Criterion). It has been reported that minor additions of chromium to polycrystalline NiAl cause the predominant slip system to shift from the usual. If true, then a major step toward increasing ductility in this compound may be realized. The purpose of the present study was to verify this phenomenon, characterize it with respect to chromium level and Ni to Al ratio, and correlate any change in slip system with microstructure and mechanical properties. Compression and tensile specimens were prepared from alloys containing 0 to 5 percent chromium and 45 to 55 percent aluminum. Following about one percent strain, transmission electron microscopy foils were produced and the slip systems determined using the g x b = 0 invisibility criterion. Contrary to previous results, chromium was found to have no effect on the preferred slip system of any of the alloys studied. Possible reasons for the inconsistency of the current results with previous work are considered. Composition-structure-property relationships are discerned for the alloys, and good correlation are demonstrated in terms of conventional strengthening models for metallic systems.

  17. Nanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties.

    PubMed

    Dey, Arjun; Nayak, Manish Kumar; Esther, A Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A K; Bera, Parthasarathi; Barshilia, Harish C; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D Raghavendra; Sridhara, N; Sharma, Anand Kumar

    2016-11-17

    Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V 2 O 5 , V 2 O 3 and VO 2 along with MoO 3 . Reversible or smart transition was found to occur just above the room temperature i.e., at ~45-50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10 -5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.

  18. Life Assessment of Steam Turbine Components Based on Viscoplastic Analysis

    NASA Astrophysics Data System (ADS)

    Choi, Woo-Sung; Fleury, Eric; Kim, Bum-Shin; Hyun, Jung-Seob

    Unsteady thermal and mechanical loading in turbine components is caused due to the transient regimes arising during start-ups and shut-downs and due to changes in the operating regime in steam power plants; this results in nonuniform strain and stress distribution. Thus, an accurate knowledge of the stresses caused by various loading conditions is required to ensure the integrity and to ensure an accurate life assessment of the components of a turbine. Although the materials of the components of the steam turbine deform inelastically at a high temperature, currently, only elastic calculations are performed for safety and simplicity. Numerous models have been proposed to describe the viscoplastic (time-dependent) behavior; these models are rather elaborate and it is difficult to incorporate them into a finite element code in order to simulate the loading of complex structures. In this paper, the total lifetime of the components of a steam turbine was calculated by combining the viscoplastic constitutive equation with the ABAQUS finite element code. Viscoplastic analysis was conducted by focusing mainly on simplified constitutive equations with linear kinematic hardening, which is simple enough to be used effectively in computer simulation. The von Mises stress distribution of an HIP turbine rotor was calculated during the cold start-up operation of the rotor, and a reasonable number of cycles were obtained from the equation of Langer.

  19. FEM evaluation of cemented-retained versus screw-retained dental implant single-tooth crown prosthesis

    PubMed Central

    Cicciu, Marco; Bramanti, Ennio; Matacena, Giada; Guglielmino, Eugenio; Risitano, Giacomo

    2014-01-01

    Prosthetic rehabilitation of partial or total edentulous patients is today a challenge for clinicians and dental practitioners. The application of dental implants in order to recover areas of missing teeth is going to be a predictable technique, however some important points about the implant angulation, the stress distribution over the bone tissue and prosthetic components should be well investigated for having final long term clinical results. Two different system of the prosthesis fixation are commonly used. The screw retained crown and the cemented retained one. All of the two restoration techniques give to the clinicians several advantages and some disadvantages. Aim of this work is to evaluate all the mechanical features of each system, through engineering systems of investigations like FEM and Von Mises analyses. The FEM is today a useful tool for the prediction of stress effect upon material and biomaterial under load or strengths. Specifically three different area has been evaluated through this study: the dental crown with the bone interface; the passant screw connection area; the occlusal surface of the two different type of crown. The elastic features of the materials used in the study have been taken from recent literature data. Results revealed an adequate response for both type of prostheses, although cemented retained one showed better results over the occlusal area. PMID:24955150

  20. Nanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties

    NASA Astrophysics Data System (ADS)

    Dey, Arjun; Nayak, Manish Kumar; Esther, A. Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A. K.; Bera, Parthasarathi; Barshilia, Harish C.; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D. Raghavendra; Sridhara, N.; Sharma, Anand Kumar

    2016-11-01

    Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., at ~45-50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10-5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.

  1. Biomechanical effects of two different collar implant structures on stress distribution under cantilever fixed partial dentures.

    PubMed

    Merıç, Gökçe; Erkmen, Erkan; Kurt, Ahmet; Eser, Atilim; özden, Ahmet Utku

    2011-11-01

    The purpose of the study was to compare the effects of two distinct collar geometries of implants on stress distribution in the bone around the implants supporting cantilever fixed partial dentures (CFPDs) as well as in the implant-abutment complex and superstructures. The three-dimensional finite element method was selected to evaluate the stress distribution. CFPDs which was supported by microthread collar structured (MCS) and non-microthread collar structured (NMCS) implants was modeled; 300 N vertical, 150 N oblique and 60 N horizontal forces were applied to the models separately. The stress values in the bone, implant-abutment complex and superstructures were calculated. In the MCS model, higher stresses were located in the cortical bone and implant-abutment complex in the case of vertical load while decreased stresses in cortical bone and implant-abutment complex were noted within horizontal and oblique loading. In the case of vertical load, decreased stresses have been noted in cancellous bone and framework. Upon horizontal and oblique loading, a MCS model had higher stress in cancellous bone and framework than the NMCS model. Higher von Mises stresses have been noted in veneering material for NMCS models. It has been concluded that stress distribution in implant-supported CFPDs correlated with the macro design of the implant collar and the direction of applied force.

  2. Influence of custom-made implant designs on the biomechanical performance for the case of immediate post-extraction placement in the maxillary esthetic zone: a finite element analysis.

    PubMed

    Chen, Jianyu; Zhang, Zhiguang; Chen, Xianshuai; Zhang, Xiao

    2017-05-01

    Due to the increasing adoption of immediate implantation strategies and the rapid development of the computer aided design/computer aided manufacturing technology, a therapeutic concept based on patient-specific implant dentistry has recently been reintroduced by many researchers. However, little information is available on the designs of custom-made dental implant systems, especially their biomechanical behavior. The influence of the custom-made implant designs on the biomechanical performance for both an immediate and a delayed loading protocol in the maxillary esthetic zone was evaluated by means of the finite element (FE) method. FE models of three dental implants were considered: a state of the art cylindrical implant and two custom-made implants designed by reverse engineering technology, namely a root-analogue implant and a root-analogue threaded implant. The von Mises stress distributions and micro-motions around the bone-implant interfaces were calculated using ANSYS software. In a comparison of the three implant designs for both loading protocols, a favorable biomechanical performance was observed for the use of root-analogue threaded implant which approximated the geometry of natural anterior tooth and maintained the original long-axis. The results indicated that bone-implant interfacial micro-motion was reduced and a favorable stress distribution after osseointegration was achieved.

  3. Effects of Process Parameters on Copper Powder Compaction Process Using Multi-Particle Finite Element Method

    NASA Astrophysics Data System (ADS)

    Güner, F.; Sofuoğlu, H.

    2018-01-01

    Powder metallurgy (PM) has been widely used in several industries; especially automotive and aerospace industries and powder metallurgy products grow up every year. The mechanical properties of the final product that is obtained by cold compaction and sintering in powder metallurgy are closely related to the final relative density of the process. The distribution of the relative density in the die is affected by parameters such as compaction velocity, friction coefficient and temperature. Moreover, most of the numerical studies utilizing finite element approaches treat the examined environment as a continuous media with uniformly homogeneous porosity whereas Multi-Particle Finite Element Method (MPFEM) treats every particles as an individual body. In MPFEM, each of the particles can be defined as an elastic- plastic deformable body, so the interactions of the particles with each other and the die wall can be investigated. In this study, each particle was modelled and analyzed as individual deformable body with 3D tetrahedral elements by using MPFEM approach. This study, therefore, was performed to investigate the effects of different temperatures and compaction velocities on stress distribution and deformations of copper powders of 200 µm-diameter in compaction process. Furthermore, 3-D MPFEM model utilized von Mises material model and constant coefficient of friction of μ=0.05. In addition to MPFEM approach, continuum modelling approach was also performed for comparison purposes.

  4. Biomechanical study of tarsometatarsal joint fusion using finite element analysis.

    PubMed

    Wang, Yan; Li, Zengyong; Zhang, Ming

    2014-11-01

    Complications of surgeries in foot and ankle bring patients with severe sufferings. Sufficient understanding of the internal biomechanical information such as stress distribution, contact pressure, and deformation is critical to estimate the effectiveness of surgical treatments and avoid complications. Foot and ankle is an intricate and synergetic system, and localized intervention may alter the functions to the adjacent components. The aim of this study was to estimate biomechanical effects of the TMT joint fusion using comprehensive finite element (FE) analysis. A foot and ankle model consists of 28 bones, 72 ligaments, and plantar fascia with soft tissues embracing all the segments. Kinematic information and ground reaction force during gait were obtained from motion analysis. Three gait instants namely the first peak, second peak and mid-stance were simulated in a normal foot and a foot with TMT joint fusion. It was found that contact pressure on plantar foot increased by 0.42%, 19% and 37%, respectively after TMT fusion compared with normal foot walking. Navico-cuneiform and fifth meta-cuboid joints sustained 27% and 40% increase in contact pressure at second peak, implying potential risk of joint problems such as arthritis. Von Mises stress in the second metatarsal bone increased by 22% at midstance, making it susceptible to stress fracture. This study provides biomechanical information for understanding the possible consequences of TMT joint fusion. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. A Method for Characterizing Phenotypic Changes in Highly Variable Cell Populations and its Application to High Content Screening of Arabidopsis thaliana Protoplastsa

    PubMed Central

    Johnson, Gregory R.; Kangas, Joshua D.; Dovzhenko, Alexander; Trojok, Rüdiger; Voigt, Karsten; Majarian, Timothy D.; Palme, Klaus; Murphy, Robert F.

    2017-01-01

    Quantitative image analysis procedures are necessary for the automated discovery of effects of drug treatment in large collections of fluorescent micrographs. When compared to their mammalian counterparts, the effects of drug conditions on protein localization in plant species are poorly understood and underexplored. To investigate this relationship, we generated a large collection of images of single plant cells after various drug treatments. For this, protoplasts were isolated from six transgenic lines of A. thaliana expressing fluorescently tagged proteins. Nine drugs at three concentrations were applied to protoplast cultures followed by automated image acquisition. For image analysis, we developed a cell segmentation protocol for detecting drug effects using a Hough-transform based region of interest detector and a novel cross-channel texture feature descriptor. In order to determine treatment effects, we summarized differences between treated and untreated experiments with an L1 Cramér-von Mises statistic. The distribution of these statistics across all pairs of treated and untreated replicates was compared to the variation within control replicates to determine the statistical significance of observed effects. Using this pipeline, we report the dose dependent drug effects in the first high-content Arabidopsis thaliana drug screen of its kind. These results can function as a baseline for comparison to other protein organization modeling approaches in plant cells. PMID:28245335

  6. The influence of the alveolar ridge shape on the stress distribution in a free-end saddle removable partial denture supported by implant.

    PubMed

    Júnior, Manoel M; Anchieta, Rodolfo B; Rocha, Eduardo P; Pereira, João A; Archangelo, Carlos M; Freitas-Júnior, Amilcar C; Almeida, Erika O

    2011-01-01

    The alveolar ridge shape plays an important role in predicting the demand on the support tooth and alveolar bone in the removable partial denture (RPD) treatment. However, these data are unclear when the RPD is associated with implants. This study evaluated the influence of the alveolar ridge shape on the stress distribution of a free-end saddle RPD partially supported by implant using 2-dimensioanl finite element analysis (FEA). Four mathematical models (M) of a mandibular hemiarch simulating various alveolar ridge shapes (1-distal desceding, 2-concave, 3-horizontal and 4-distal ascending) were built. Tooth 33 was placed as the abutment. Two RPDs, one supported by tooth and fibromucosa (MB) and other one supported by tooth and implant (MC) were simulated. MA was the control (no RPD). The load (50N) were applied simultaneously on each cusp. Appropriate boundary conditions were assigned on the border of alveolar bone. Ansys 10.0 software was used to calculate the stress fields and the von Mises equivalent stress criteria (sigmavM) was applied to analyze the results. The distal ascending shape showed the highest sigmavM for cortical and medullar bone. The alveolar ridge shape had little effect on changing the sigmavM based on the same prosthesis, mainly around the abutment tooth.

  7. Simulation of mechanical behavior and optimization of simulated injection molding process for PLA based antibacterial composite and nanocomposite bone screws using central composite design.

    PubMed

    Heidari, Behzad Shiroud; Oliaei, Erfan; Shayesteh, Hadi; Davachi, Seyed Mohammad; Hejazi, Iman; Seyfi, Javad; Bahrami, Mozhgan; Rashedi, Hamid

    2017-01-01

    In this study, injection molding of three poly lactic acid (PLA) based bone screws was simulated and optimized through minimizing the shrinkage and warpage of the bone screws. The optimization was carried out by investigating the process factors such as coolant temperature, mold temperature, melt temperature, packing time, injection time, and packing pressure. A response surface methodology (RSM), based on the central composite design (CCD), was used to determine the effects of the process factors on the PLA based bone screws. Upon applying the method of maximizing the desirability function, optimization of the factors gave the lowest warpage and shrinkage for nanocomposite PLA bone screw (PLA9). Moreover, PLA9 has the greatest desirability among the selected materials for bone screw injection molding. Meanwhile, a finite element analysis (FE analysis) was also performed to determine the force values and concentration points which cause yielding of the screws under certain conditions. The Von-Mises stress distribution showed that PLA9 screw is more resistant against the highest loads as compared to the other ones. Finally, according to the results of injection molding simulations, the design of experiments (DOE) and structural analysis, PLA9 screw is recommended as the best candidate for the production of biomedical materials among all the three types of screws. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Biomechanical comparison of locking plate and crossing metallic and absorbable screws fixations for intra-articular calcaneal fractures.

    PubMed

    Ni, Ming; Wong, Duo Wai-Chi; Mei, Jiong; Niu, Wenxin; Zhang, Ming

    2016-09-01

    The locking plate and percutaneous crossing metallic screws and crossing absorbable screws have been used clinically to treat intra-articular calcaneal fractures, but little is known about the biomechanical differences between them. This study compared the biomechanical stability of calcaneal fractures fixed using a locking plate and crossing screws. Three-dimensional finite-element models of intact and fractured calcanei were developed based on the CT images of a cadaveric sample. Surgeries were simulated on models of Sanders type III calcaneal fractures to produce accurate postoperative models fixed by the three implants. A vertical force was applied to the superior surface of the subtalar joint to simulate the stance phase of a walking gait. This model was validated by an in vitro experiment using the same calcaneal sample. The intact calcaneus showed greater stiffness than the fixation models. Of the three fixations, the locking plate produced the greatest stiffness and the highest von Mises stress peak. The micromotion of the fracture fixated with the locking plate was similar to that of the fracture fixated with the metallic screws but smaller than that fixated with the absorbable screws. Fixation with both plate and crossing screws can be used to treat intra-articular calcaneal fractures. In general, fixation with crossing metallic screws is preferable because it provides sufficient stability with less stress shielding.

  9. A 3/D finite element approach for metal matrix composites based on micromechanical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svobodnik, A.J.; Boehm, H.J.; Rammerstorfer, F.G.

    Based on analytical considerations by Dvorak and Bahel-El-Din, a 3/D finite element material law has been developed for the elastic-plastic analysis of unidirectional fiber-reinforced metal matrix composites. The material law described in this paper has been implemented in the finite element code ABAQUS via the user subroutine UMAT. A constitutive law is described under the assumption that the fibers are linear-elastic and the matrix is of a von Mises-type with a Prager-Ziegler kinematic hardening rule. The uniaxial effective stress-strain relationship of the matrix in the plastic range is approximated by a Ramberg-Osgood law, a linear hardening rule or a nonhardeningmore » rule. Initial yield surface of the matrix material and for the fiber reinforced composite are compared to show the effect of reinforcement. Implementation of this material law in a finite element program is shown. Furthermore, the efficiency of substepping schemes and stress corrections for the numerical integration of the elastic-plastic stress-strain relations for anisotropic materials are investigated. The results of uniaxial monotonic tests of a boron/aluminum composite are compared to some finite element analyses based on micromechanical considerations. Furthermore a complete 3/D analysis of a tensile test specimen made of a silicon-carbide/aluminum MMC and the analysis of an MMC inlet inserted in a homogenous material are shown. 12 refs.« less

  10. A Biomechanical Comparison of Three 1.5-mm Plate and Screw Configurations and a Single 2.0-mm Plate for Internal Fixation of a Mandibular Condylar Fracture

    PubMed Central

    Aquilina, Peter; Parr, William C.H.; Chamoli, Uphar; Wroe, Stephen; Clausen, Philip

    2014-01-01

    The most stable pattern of internal fixation for mandibular condyle fractures is an area of ongoing discussion. This study investigates the stability of three patterns of plate fixation using readily available, commercially pure titanium implants. Finite element models of a simulated mandibular condyle fracture were constructed. The completed models were heterogeneous in bone material properties, contained approximately 1.2 million elements and incorporated simulated jaw adducting musculature. Models were run assuming linear elasticity and isotropic material properties for bone. No human subjects were involved in this investigation. The stability of the simulated condylar fracture reduced with the different implant configurations, and the von Mises stresses of a 1.5-mm X-shaped plate, a 1.5-mm rectangular plate, and a 1.5-mm square plate (all Synthes (Synthes GmbH, Zuchwil, Switzerland) were compared. The 1.5-mm X plate was the most stable of the three 1.5-mm profile plate configurations examined and had comparable mechanical performance to a single 2.0-mm straight four-hole plate. This study does not support the use of rectangular or square plate patterns in the open reduction and internal fixation of mandibular condyle fractures. It does provide some support for the use of a 1.5-mm X plate to reduce condylar fractures in selected clinical cases. PMID:25136411

  11. Relationships among the structural topology, bond strength, and mechanical properties of single-walled aluminosilicate nanotubes.

    PubMed

    Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen

    2015-10-21

    Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.

  12. Burst Pressure Failure of Titanium Tanks Damaged by Secondary Plumes from Hypervelocity Impacts on Aluminum Shields

    NASA Technical Reports Server (NTRS)

    Nahra, Henry; Ghosn, Louis; Christiansen, Eric; Davis, B. Alan; Keddy, Chris; Rodriquez, Karen; Miller, Joshua; Bohl, William

    2011-01-01

    Metallic pressure tanks used in space missions are inherently vulnerable to hypervelocity impacts from micrometeoroids and orbital debris; thereby knowledge of impact damage and its effect on the tank integrity is crucial to a spacecraft risk assessment. This paper describes tests that have been performed to assess the effects of hypervelocity impact (HVI) damage on Titanium alloy (Ti-6Al-4V) pressure vessels burst pressure and characteristics. The tests consisted of a pair of HVI impact tests on water-filled Ti-6Al-4V tanks (water being used as a surrogate to the actual propellant) and subsequent burst tests as well as a burst test on an undamaged control tank. The tanks were placed behind Aluminum (Al) shields and then each was impacted with a 7 km/s projectile. The resulting impact debris plumes partially penetrated the Ti-6Al-4V tank surfaces resulting in a distribution of craters. During the burst tests, the tank that failed at a lower burst pressure did appear to have the failure initiating at a crater site with observed spall cracks. A fracture mechanics analysis showed that the tanks failure at the impact location may have been due to a spall crack that formed upon impact of a fragmentation on the Titanium surface. This result was corroborated with a finite element analysis from calculated Von-Mises and hoop stresses.

  13. Limit analysis of hollow spheres or spheroids with Hill orthotropic matrix

    NASA Astrophysics Data System (ADS)

    Pastor, Franck; Pastor, Joseph; Kondo, Djimedo

    2012-03-01

    Recent theoretical studies of the literature are concerned by the hollow sphere or spheroid (confocal) problems with orthotropic Hill type matrix. They have been developed in the framework of the limit analysis kinematical approach by using very simple trial velocity fields. The present Note provides, through numerical upper and lower bounds, a rigorous assessment of the approximate criteria derived in these theoretical works. To this end, existing static 3D codes for a von Mises matrix have been easily extended to the orthotropic case. Conversely, instead of the non-obvious extension of the existing kinematic codes, a new original mixed approach has been elaborated on the basis of the plane strain structure formulation earlier developed by F. Pastor (2007). Indeed, such a formulation does not need the expressions of the unit dissipated powers. Interestingly, it delivers a numerical code better conditioned and notably more rapid than the previous one, while preserving the rigorous upper bound character of the corresponding numerical results. The efficiency of the whole approach is first demonstrated through comparisons of the results to the analytical upper bounds of Benzerga and Besson (2001) or Monchiet et al. (2008) in the case of spherical voids in the Hill matrix. Moreover, we provide upper and lower bounds results for the hollow spheroid with the Hill matrix which are compared to those of Monchiet et al. (2008).

  14. Mechanical Characterisation and Biomechanical and Biological Behaviours of Ti-Zr Binary-Alloy Dental Implants

    PubMed Central

    Jiménez-Garrudo, Antonio; Gil-Mur, Francisco Javier; Manero, José María; Punset-Fuste, Miquel; Chávarri-Prado, David; Diéguez-Pereira, Markel; Monticelli, Francesca

    2017-01-01

    The objective of the study is to characterise the mechanical properties of Ti-15Zr binary alloy dental implants and to describe their biomechanical behaviour as well as their osseointegration capacity compared with the conventional Ti-6Al-4V (TAV) alloy implants. The mechanical properties of Ti-15Zr binary alloy were characterised using Roxolid© implants (Straumann, Basel, Switzerland) via ultrasound. Their biomechanical behaviour was described via finite element analysis. Their osseointegration capacity was compared via an in vivo study performed on 12 adult rabbits. Young's modulus of the Roxolid© implant was around 103 GPa, and the Poisson coefficient was around 0.33. There were no significant differences in terms of Von Mises stress values at the implant and bone level between both alloys. Regarding deformation, the highest value was observed for Ti-15Zr implant, and the lowest value was observed for the cortical bone surrounding TAV implant, with no deformation differences at the bone level between both alloys. Histological analysis of the implants inserted in rabbits demonstrated higher BIC percentage for Ti-15Zr implants at 3 and 6 weeks. Ti-15Zr alloy showed elastic properties and biomechanical behaviours similar to TAV alloy, although Ti-15Zr implant had a greater BIC percentage after 3 and 6 weeks of osseointegration. PMID:29318142

  15. A dual-trace model for visual sensory memory.

    PubMed

    Cappiello, Marcus; Zhang, Weiwei

    2016-11-01

    Visual sensory memory refers to a transient memory lingering briefly after the stimulus offset. Although previous literature suggests that visual sensory memory is supported by a fine-grained trace for continuous representation and a coarse-grained trace of categorical information, simultaneous separation and assessment of these traces can be difficult without a quantitative model. The present study used a continuous estimation procedure to test a novel mathematical model of the dual-trace hypothesis of visual sensory memory according to which visual sensory memory could be modeled as a mixture of 2 von Mises (2VM) distributions differing in standard deviation. When visual sensory memory and working memory (WM) for colors were distinguished using different experimental manipulations in the first 3 experiments, the 2VM model outperformed Zhang and Luck (2008) standard mixture model (SM) representing a mixture of a single memory trace and random guesses, even though SM outperformed 2VM for WM. Experiment 4 generalized 2VM's advantages of fitting visual sensory memory data over SM from color to orientation. Furthermore, a single trace model and 4 other alternative models were ruled out, suggesting the necessity and sufficiency of dual traces for visual sensory memory. Together these results support the dual-trace model of visual sensory memory and provide a preliminary inquiry into the nature of information loss from visual sensory memory to WM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Circular Mixture Modeling of Color Distribution for Blind Stain Separation in Pathology Images.

    PubMed

    Li, Xingyu; Plataniotis, Konstantinos N

    2017-01-01

    In digital pathology, to address color variation and histological component colocalization in pathology images, stain decomposition is usually performed preceding spectral normalization and tissue component segmentation. This paper examines the problem of stain decomposition, which is a naturally nonnegative matrix factorization (NMF) problem in algebra, and introduces a systematical and analytical solution consisting of a circular color analysis module and an NMF-based computation module. Unlike the paradigm of existing stain decomposition algorithms where stain proportions are computed from estimated stain spectra using a matrix inverse operation directly, the introduced solution estimates stain spectra and stain depths via probabilistic reasoning individually. Since the proposed method pays extra attentions to achromatic pixels in color analysis and stain co-occurrence in pixel clustering, it achieves consistent and reliable stain decomposition with minimum decomposition residue. Particularly, aware of the periodic and angular nature of hue, we propose the use of a circular von Mises mixture model to analyze the hue distribution, and provide a complete color-based pixel soft-clustering solution to address color mixing introduced by stain overlap. This innovation combined with saturation-weighted computation makes our study effective for weak stains and broad-spectrum stains. Extensive experimentation on multiple public pathology datasets suggests that our approach outperforms state-of-the-art blind stain separation methods in terms of decomposition effectiveness.

  17. Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex.

    PubMed

    Ozen, Mustafa; Sayman, Onur; Havitcioglu, Hasan

    2013-01-01

    Total ankle replacement (TAR) is a relatively new concept and is becoming more popular for treatment of ankle arthritis and fractures. Because of the high costs and difficulties of experimental studies, the developments of TAR prostheses are progressing very slowly. For this reason, the medical imaging techniques such as CT, and MR have become more and more useful. The finite element method (FEM) is a widely used technique to estimate the mechanical behaviors of materials and structures in engineering applications. FEM has also been increasingly applied to biomechanical analyses of human bones, tissues and organs, thanks to the development of both the computing capabilities and the medical imaging techniques. 3-D finite element models of the human foot and ankle from reconstruction of MR and CT images have been investigated by some authors. In this study, data of geometries (used in modeling) of a normal and a prosthetic foot and ankle were obtained from a 3D reconstruction of CT images. The segmentation software, MIMICS was used to generate the 3D images of the bony structures, soft tissues and components of prosthesis of normal and prosthetic ankle-foot complex. Except the spaces between the adjacent surface of the phalanges fused, metatarsals, cuneiforms, cuboid, navicular, talus and calcaneus bones, soft tissues and components of prosthesis were independently developed to form foot and ankle complex. SOLIDWORKS program was used to form the boundary surfaces of all model components and then the solid models were obtained from these boundary surfaces. Finite element analyses software, ABAQUS was used to perform the numerical stress analyses of these models for balanced standing position. Plantar pressure and von Mises stress distributions of the normal and prosthetic ankles were compared with each other. There was a peak pressure increase at the 4th metatarsal, first metatarsal and talus bones and a decrease at the intermediate cuneiform and calcaneus bones, in prosthetic ankle-foot complex compared to normal one. The predicted plantar pressures and von Misses stress distributions for a normal foot were consistent with other FE models given in the literature. The present study is aimed to open new approaches for the development of ankle prosthesis.

  18. Factors determining growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2.7)

    NASA Astrophysics Data System (ADS)

    Bissinger, Vera

    2003-04-01

    In this thesis, I investigated the factors influencing the growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2-3). In the focal study site, Lake 111 (pH 2.7; Lusatia, Germany), the chrysophyte, Ochromonas sp., dominates in the upper water strata and the chlorophyte, Chlamydomonas sp., in the deeper strata, forming a pronounced deep chlorophyll maximum (DCM). Inorganic carbon (IC) limitation influenced the phototrophic growth of Chlamydomonas sp. in the upper water strata. Conversely, in deeper strata, light limited its phototrophic growth. When compared with published data for algae from neutral lakes, Chlamydomonas sp. from Lake 111 exhibited a lower maximum growth rate, an enhanced compensation point and higher dark respiration rates, suggesting higher metabolic costs due to the extreme physico-chemical conditions. The photosynthetic performance of Chlamydomonas sp. decreased in high-light-adapted cells when IC limited. In addition, the minimal phosphorus (P) cell quota was suggestive of a higher P requirement under IC limitation. Subsequently, it was shown that Chlamydomonas sp. was a mixotroph, able to enhance its growth rate by taking up dissolved organic carbon (DOC) via osmotrophy. Therefore, it could survive in deeper water strata where DOC concentrations were higher and light limited. However, neither IC limitation, P availability nor in situ DOC concentrations (bottom-up control) could fully explain the vertical distribution of Chlamydomonas sp. in Lake 111. Conversely, when a novel approach was adopted, the grazing influence of the phagotrophic phototroph, Ochromonas sp., was found to exert top-down control on its prey (Chlamydomonas sp.) reducing prey abundance in the upper water strata. This, coupled with the fact that Chlamydomonas sp. uses DOC for growth, leads to a pronounced accumulation of Chlamydomonas sp. cells at depth; an apparent DCM. Therefore, grazing appears to be the main factor influencing the vertical distribution of algae observed in Lake 111. The knowledge gained from this thesis provides information essential for predicting the effect of strategies to neutralize the acidic mining lakes on the food-web. Die vorliegende Dissertation beschäftigt sich mit den Faktoren, die das Wachstum und die Vertikalverteilung von Planktonalgen in extrem sauren Tagebaurestseen (TBS; pH 2-3) beeinflussen. Im exemplarisch untersuchten TBS 111 (pH 2.7; Lausitzer Revier) dominiert die Goldalge Ochromonas sp. in oberen und die Grünalge Chlamydomonas sp. in tieferen Wasserschichten, wobei letztere ein ausgeprägtes Tiefenchlorophyll-Maximum (DCM) ausbildet. Es wurde ein deutlicher Einfluss von Limitation durch anorganischen Kohlenstoff (IC) auf das phototrophe Wachstum von Chlamydomonas sp. in oberen Wasserschichten nachgewiesen, die mit zunehmender Tiefe von Lichtlimitation abgelöst wird. Im Vergleich mit Arbeiten aus neutralen Seen zeigte Chlamydomonas sp. erniedrigte maximale Wachstumsraten, einen gesteigerten Kompensationspunkt und erhöhte Dunkelrespirationsraten, was auf gesteigerte metabolische Kosten unter den extremen physikalisch-chemischen Bedingungen hinweist. Die Photosyntheseleistungen von Chlamydomonas sp. waren in Starklicht-adaptierten Zellen durch IC-Limitation deutlich verringert. Außerdem ergaben die ermittelten minimalen Zellquoten für Phosphor (P) einen erhöhten P-Bedarf unter IC-Limitation. Anschließend konnte gezeigt werden, dass Chlamydomonas sp. ein mixotropher Organismus ist, der seine Wachstumsraten über die osmotrophe Aufnahme gelösten organischen Kohlenstoffs (DOC) erhöhen kann. Dadurch ist dieser Organismus fähig, in tieferen, Licht-limitierten Wasserschichten zu überleben, die einen höheren DOC-Gehalt aufweisen. Da die Vertikalverteilung der Algen im TBS 111 jedoch weder durch IC-Limitation, P-Verfügbarkeit noch die in situ DOC-Konzentrationen abschließend erklärt werden konnte (bottom-up Kontrolle), wurde eine neue Theorie zur Entstehung der Vertikalverteilung geprüft. Grazing der phagotrophen und phototrophen Alge Ochromonas sp. auf der phototrophen Alge Chlamydomonas sp. erwies sich als herausragender Faktor, der über top-down Kontrolle die Abundanz der Beute in höheren Wasserschichten beeinflussen kann. Gemeinsam mit der Tatsache, dass Chlamydomonas sp. DOC zur Wachstumssteigerung verwendet, führt dies zu einer Akkumulation von Chlamydomonas sp. in der Tiefe, ausgeprägt als DCM. Daher erscheint grazing als der Hauptfaktor, der die beobachtete Vertikalschichtung der Algen im TBS 111 hervorruft. Die erzielten Ergebnisse liefern grundlegende Informationen, um die Auswirkungen von Strategien zur Neutralisierung der TBS auf das Nahrungsnetz abschätzen zu können.

  19. Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1981-01-01

    A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.

  20. Sprint training shortens prolonged action potential duration in postinfarction rat myocyte: mechanisms.

    PubMed

    Zhang, X Q; Zhang, L Q; Palmer, B M; Ng, Y C; Musch, T I; Moore, R L; Cheung, J Y

    2001-05-01

    Two electrophysiological manifestations of myocardial infarction (MI)-induced myocyte hypertrophy are prolongation of action potential duration (APD) and reduction of transient outward current (I(to)) density. Because high-intensity sprint training (HIST) ameliorated myocyte hypertrophy and improved myocyte Ca(2+) homeostasis and contractility after MI, the present study evaluated whether 6-8 wk of HIST would shorten the prolonged APD and improve the depressed I(to) in post-MI myocytes. There were no differences in resting membrane potential and action potential amplitude (APA) measured in myocytes isolated from sham-sedentary (Sed), MI-Sed, and MI-HIST groups. Times required for repolarization to 50 and 90% APA were significantly (P < 0.001) prolonged in MI-Sed myocytes. HIST reduced times required for repolarization to 50 and 90% APA to values observed in Sham-Sed myocytes. The fast and slow components of I(to) were significantly (P < 0.0001) reduced in MI-Sed myocytes. HIST significantly (P < 0.001) enhanced the fast and slow components of I(to) in MI myocytes, although not to levels observed in Sham-Sed myocytes. There were no significant differences in steady-state I(to) inactivation and activation parameters among Sham-Sed, MI-Sed, and MI-HIST myocytes. Likewise, recovery from time-dependent inactivation was also similar among the three groups. We suggest that normalization of APD after MI by HIST may be mediated by restoration of I(to) toward normal levels.

  1. Three computational mise-en-scènes of red- and blue-shifted hydrogen bonding motifs: Concept of negative intramolecular coupling-What else?

    NASA Astrophysics Data System (ADS)

    Kryachko, Eugene S.

    This work is a kind of attempt to rethink some problems which are related to the blue-shifted "hydrogen bonds" and which have been left in the past decade as not yet fully resolved. The impetus for such rethink is originated from the three computational mise-en-scènes on red- and blue-shifted hydrogen bonding motifs, which are aimed to be thoroughly studied in this work, thus resolving the above problems.

  2. Stress Analysis for the Critical Metal Structure of Bridge Crane

    NASA Astrophysics Data System (ADS)

    Ling, Zhangwei; Wang, Min; Xia, Junfang; Wang, Songhua; Guo, Xiaolian

    2018-01-01

    Based on the type of connection between the main girder and end beam of electrical single beam crane, the finite element analysis model of a full portal crane was established. The stress distribution of the critical structure under different loading conditions was analyzed. The results shown that the maximum Mises stress and deflection of the main girder were within the allowable range. And the connecting location between end beam web and main girder had higher stress than other region, especially at the lower edge and upper edge of the end beam web and the area near the bolt hole of upper wing panel. Therefore it is important to inspect the connection status, the stress condition and the crack situation nearing connection location during the regular inspection process to ensure the safety of the connection between the main girder and end beam.

  3. On the generation of a reverse von Kármán street for the controlled cylinder wake in the laminar regime

    NASA Astrophysics Data System (ADS)

    Bergmann, Michel; Cordier, Laurent; Brancher, Jean-Pierre

    2006-02-01

    In this Brief Communication we are interested in the maximum mean drag reduction that can be achieved under rotary sinusoidal control for the circular cylinder wake in the laminar regime. For a Reynolds number equal to 200, we give numerical evidence that partial control restricted to an upstream part of the cylinder surface may considerably increase the effectiveness of the control. Indeed, a maximum value of relative mean drag reduction equal to 30% is obtained when applying a specific sinusoidal control to the whole cylinder, where up to 75% of reduction can be obtained when the same control law is applied only to a well-selected upstream part of the cylinder. This result suggests that a mean flow correction field with negative drag is observable for this controlled flow configuration. The significant thrust force that is locally generated in the near wake corresponds to a reverse von Kármán vortex street as commonly observed in fish-like locomotion or flapping wing flight. Finally, the energetic efficiency of the control is quantified by examining the power saving ratio: it is shown that our approach is energetically inefficient. However, it is also demonstrated that for this control scheme the improvement of the effectiveness generally occurs along with an improvement of the efficiency.

  4. Mise en Scene: Conversion of Scenarios to CSP Traces for the Requirements-to-Design-to-Code Project

    NASA Technical Reports Server (NTRS)

    Carter. John D.; Gardner, William B.; Rash, James L.; Hinchey, Michael G.

    2007-01-01

    The "Requirements-to-Design-to-Code" (R2D2C) project at NASA's Goddard Space Flight Center is based on deriving a formal specification expressed in Communicating Sequential Processes (CSP) notation from system requirements supplied in the form of CSP traces. The traces, in turn, are to be extracted from scenarios, a user-friendly medium often used to describe the required behavior of computer systems under development. This work, called Mise en Scene, defines a new scenario medium (Scenario Notation Language, SNL) suitable for control-dominated systems, coupled with a two-stage process for automatic translation of scenarios to a new trace medium (Trace Notation Language, TNL) that encompasses CSP traces. Mise en Scene is offered as an initial solution to the problem of the scenarios-to-traces "D2" phase of R2D2C. A survey of the "scenario" concept and some case studies are also provided.

  5. Assessing the local mechanical environment in medial opening wedge high tibial osteotomy using finite element analysis.

    PubMed

    Pauchard, Yves; Ivanov, Todor G; McErlain, David D; Milner, Jaques S; Giffin, J Robert; Birmingham, Trevor B; Holdsworth, David W

    2015-03-01

    High-tibial osteotomy (HTO) is a surgical technique aimed at shifting load away from one tibiofemoral compartment, in order the reduce pain and progression of osteoarthritis (OA). Various implants have been designed to stabilize the osteotomy and previous studies have been focused on determining primary stability (a global measure) that these designs provide. It has been shown that the local mechanical environment, characterized by bone strains and segment micromotion, is important in understanding healing and these data are not currently available. Finite element (FE) modeling was utilized to assess the local mechanical environment provided by three different fixation plate designs: short plate with spacer, long plate with spacer and long plate without spacer. Image-based FE models of the knee were constructed from healthy individuals (N = 5) with normal knee alignment. An HTO gap was virtually added without changing the knee alignment and HTO implants were inserted. Subsequently, the local mechanical environment, defined by bone compressive strain and wedge micromotion, was assessed. Furthermore, implant stresses were calculated. Values were computed under vertical compression in zero-degree knee extension with loads set at 1 and 2 times the subject-specific body weight (1 BW, 2 BW). All studied HTO implant designs provide an environment for successful healing at 1 BW and 2 BW loading. Implant von Mises stresses (99th percentile) were below 60 MPa in all experiments, below the material yield strength and significantly lower in long spacer plates. Volume fraction of high compressive strain ( > 3000 microstrain) was below 5% in all experiments and no significant difference between implants was detected. Maximum vertical micromotion between bone segments was below 200 μm in all experiments and significantly larger in the implant without a tooth. Differences between plate designs generally became apparent only at 2 BW loading. Results suggest that with compressive loading of 2 BW, long spacer plates experience the lowest implant stresses, and spacer plates (long or short) result in smaller wedge micromotion, potentially beneficial for healing. Values are sensitive to subject bone geometry, highlighting the need for subject-specific modeling. This study demonstrates the benefits of using image-based FE modeling and bone theory to fine-tune HTO implant design.

  6. Optimisation de l'émission du continuum femtoseconde de lumière blanche entre 600 nm et 800 nm

    NASA Astrophysics Data System (ADS)

    Ramstein, S.; Mottin, S.

    2005-06-01

    Un dispositif de spectroscopie avec résolution du temps de vol des photons en milieu diffus a été développé. Celui-ci repose sur l'utilisation d'un continuum de lumière blanche généré par focalisation d'un laser amplifié (830 nm, 1 kHz, 0.5 W, 170 fs) dans de l'eau déminéralisée. Afin d'optimiser spectralement et en puissance la source blanche sur la fenêtre spectrale 600 800 nm, une étude de la mise en forme spatio-temporelle avant autofocalisation de l'impulsion laser par le milieu a été menée. Cette mise en forme est effectuée de manière spatiale en changeant la focale de la lentille de focalisation et de manière temporelle en changeant le taux de compression de l'impulsion. L'étude montre que le cône de lumière émise possède plus de puissance dans la fenêtre spectrale d'intérêt pour des focales longues. Sur la fenêtre 600-800 nm, le rendement énergétique intégré varie de 5%, avec une focalef=6cm, à 15%, avec une focale f = 30 cm. La mise en forme temporelle montre des effets similaires avec les mêmes ordres de grandeur.

  7. Hydrothermal Activity on the Mid-Cayman Rise: ROV Jason sampling and site characterization at the Von Damm and Piccard hydrothermal fields

    NASA Astrophysics Data System (ADS)

    German, C. R.

    2012-12-01

    In January 2012 our multi-national and multi-disciplinary team conducted a series of 10 ROV Jason dives to conduct first detailed and systematic sampling of the Mid Cayman Rise hydrothermal systems at the Von Damm and Piccard hydrothermal fields. At Von Damm, hydrothermal venting is focused at and around a large conical structure that is approximately 120 m in diameter and rises at least 80m from the surrounding, largely sedimented seafloor. Clear fluids emitted from multiple sites around the flanks of the mound fall in the temperature range 110-130°C and fall on a common mixing line with hotter (>200°C) clear fluids emitted from an 8m tall spire at the summit which show clear evidence of ultramafic influence. Outcrop close to the vent-site is rare and the cone itself appear to consist of clay minerals derived from highly altered host rock. The dominant fauna at the summit of Von Damm are a new species of chemosynthetic shrimp but elsewhere the site also hosts two distinct species of chemosynthetic tube worm as well as at least one species of gastropod. The adjacent Piccard site, at ~5000m depth comprises 7 distinct sulfide mounds, 3 of which are currently active: Beebe Vents, Beebe Woods and Beebe Sea. Beebe Vents consists of 5 vigorous black smoker chimneys with maximum temperatures in the range 400-403°C while at Beebe Woods a more highly colonized thicket of up to 8m tall chimneys includes predominantly beehive diffusers with rare black smokers emitting fluids up to 353°C. Beebe Sea a diffuse site emitting fluids at 38°C Tmax, is the largest of the currently active mounds and immediately abuts a tall (8m) rift that strikes NE-SW bisecting the host Axial Volcanic Ridge. The fauna at Piccard are less diverse than at Von Damm and, predominantly, comprise the same species of MCR shrimp, a distinct gastropod species and abundant anemones.

  8. Managed Readiness Simulator (MARS) V2: Implementation of the Managed Readiness Model

    DTIC Science & Technology

    2010-12-01

    mesure de répondre aux besoins propres à un ensemble de tâches opérationnelles. La première version du programme MARS (V1) a...mise en œuvre du modèle de gestion de la disponibilité opérationnelle du MARS V2 dans la nouvelle architecture logicielle. La public cible de ce...l’établissement. Le but de la présente étude est de documenter la mise en œuvre du modèle de

  9. Impact of the lower third molar presence and position on the fragility of mandibular angle and condyle: A Three-dimensional finite element study.

    PubMed

    Antic, Svetlana; Vukicevic, Arso M; Milasinovic, Marko; Saveljic, Igor; Jovicic, Gordana; Filipovic, Nenad; Rakocevic, Zoran; Djuric, Marija

    2015-07-01

    The aim of the present study was to investigate the influences of the presence and position of a lower third molar (M3) on the fragility of mandibular angle and condyle, using finite element analysis. From computed tomographic scans of a human mandible with normally erupted M3, two additional virtual models were generated: a mandibular model with partially impacted M3 and a model without M3. Two cases of impact were considered: a frontal and a lateral blow. The results are based on the chromatic analysis of the distributed von Mises and principal stresses, and calculation of their failure indices. In the frontal blow, the angle region showed the highest stress in the case with partially impacted M3, and the condylar region in the case without M3. Compressive stresses were dominant but caused no failure. Tensile stresses were recorded in the retromolar areas, but caused failure only in the case with partially impacted M3. In the lateral blow, the stress concentrated at the point of impact, in the ipsilateral and contralateral angle and condylar regions. The highest stresses were recorded in the case with partially impacted M3. Tensile stresses caused the failure on the ipsilateral side, whereas compressive stresses on the contralateral side. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Hemodynamics model of fluid–solid interaction in internal carotid artery aneurysms

    PubMed Central

    Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju

    2010-01-01

    The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography. PMID:20812022

  11. Hemodynamics model of fluid-solid interaction in internal carotid artery aneurysms.

    PubMed

    Bai-Nan, Xu; Fu-Yu, Wang; Lei, Liu; Xiao-Jun, Zhang; Hai-Yue, Ju

    2011-01-01

    The objective of this study is to present a relatively simple method to reconstruct cerebral aneurysms as 3D numerical grids. The method accurately duplicates the geometry to provide computer simulations of the blood flow. Initial images were obtained by using CT angiography and 3D digital subtraction angiography in DICOM format. The image was processed by using MIMICS software, and the 3D fluid model (blood flow) and 3D solid model (wall) were generated. The subsequent output was exported to the ANSYS workbench software to generate the volumetric mesh for further hemodynamic study. The fluid model was defined and simulated in CFX software while the solid model was calculated in ANSYS software. The force data calculated firstly in the CFX software were transferred to the ANSYS software, and after receiving the force data, total mesh displacement data were calculated in the ANSYS software. Then, the mesh displacement data were transferred back to the CFX software. The data exchange was processed in workbench software. The results of simulation could be visualized in CFX-post. Two examples of grid reconstruction and blood flow simulation for patients with internal carotid artery aneurysms were presented. The wall shear stress, wall total pressure, and von Mises stress could be visualized. This method seems to be relatively simple and suitable for direct use by neurosurgeons or neuroradiologists, and maybe a practical tool for planning treatment and follow-up of patients after neurosurgical or endovascular interventions with 3D angiography.

  12. Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis.

    PubMed

    Chen, W P; Tang, F T; Ju, C W

    2001-08-01

    To quantify stress distribution of the foot during mid-stance to push-off in barefoot gait using 3-D finite element analysis. To simulate the foot structure and facilitate later consideration of footwear. Finite element model was generated and loading condition simulating barefoot gait during mid-stance to push-off was used to quantify the stress distributions. A computational model can provide overall stress distributions of the foot subject to various loading conditions. A preliminary 3-D finite element foot model was generated based on the computed tomography data of a male subject and the bone and soft tissue structures were modeled. Analysis was performed for loading condition simulating barefoot gait during mid-stance to push-off. The peak plantar pressure ranged from 374 to 1003 kPa and the peak von Mises stress in the bone ranged from 2.12 to 6.91 MPa at different instants. The plantar pressure patterns were similar to measurement result from previous literature. The present study provides a preliminary computational model that is capable of estimating the overall plantar pressure and bone stress distributions. It can also provide quantitative analysis for normal and pathological foot motion. This model can identify areas of increased pressure and correlate the pressure with foot pathology. Potential applications can be found in the study of foot deformities, footwear, surgical interventions. It may assist pre-treatment planning, design of pedorthotic appliances, and predict the treatment effect of foot orthosis.

  13. Measurements and simulations analysing the noise behaviour of grating-based X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Weber, T.; Bartl, P.; Durst, J.; Haas, W.; Michel, T.; Ritter, A.; Anton, G.

    2011-08-01

    In the last decades, phase-contrast imaging using a Talbot-Lau grating interferometer is possible even with a low-brilliance X-ray source. With the potential of increasing the soft-tissue contrast, this method is on its way into medical imaging. For this purpose, the knowledge of the underlying physics of this technique is necessary.With this paper, we would like to contribute to the understanding of grating-based phase-contrast imaging by presenting results on measurements and simulations regarding the noise behaviour of the differential phases.These measurements were done using a microfocus X-ray tube with a hybrid, photon-counting, semiconductor Medipix2 detector. The additional simulations were performed by our in-house developed phase-contrast simulation tool “SPHINX”, combining both wave and particle contributions of the simulated photons.The results obtained by both of these methods show the same behaviour. Increasing the number of photons leads to a linear decrease of the standard deviation of the phase. The number of used phase steps has no influence on the standard deviation, if the total number of photons is held constant.Furthermore, the probability density function (pdf) of the reconstructed differential phases was analysed. It turned out that the so-called von Mises distribution is the physically correct pdf, which was also confirmed by measurements.This information advances the understanding of grating-based phase-contrast imaging and can be used to improve image quality.

  14. A finite element study of teeth restored with post and core: Effect of design, material, and ferrule.

    PubMed

    Upadhyaya, Viram; Bhargava, Akshay; Parkash, Hari; Chittaranjan, B; Kumar, Vivek

    2016-01-01

    Different postdesigns and materials are available; however, no consensus exists regarding superiority for stress distribution. The aim of this study was to evaluate the effect of design and material of post with or without ferrule on stress distribution using finite element analysis. A total of 12 three-dimensional (3D) axisymmetric models of postretained central incisors were made: Six with ferrule design and six without it. Three of these six models had tapered posts, and three had parallel posts. The materials tested were titanium post with a composite resin core, nickel chromium cast post and core, and fiber reinforced composite (FRC) post with a composite resin core. The stress analysis was done using ANSYS software. The load of 100 N at an angle of 45΀ was applied 2 mm cervical to incisal edge on the palatal surface and results were analyzed using 3D von Mises criteria. The highest amount of stress was in the cervical region. Overall, the stress in the tapered postsystem was more than the parallel one. FRC post and composite resin core recorded minimal stresses within the post but the stresses transmitted to cervical dentin were more as compared to other systems. Minimal stresses in cervical dentine were observed where the remaining coronal dentin was strengthen by ferrule. A rigid material with high modulus of elasticity for post and core system creates most uniform stress distribution pattern. Ferrule provides uniform distribution of stresses and decreases the cervical stresses.

  15. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    PubMed

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  16. Nanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties

    PubMed Central

    Dey, Arjun; Nayak, Manish Kumar; Esther, A. Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A. K.; Bera, Parthasarathi; Barshilia, Harish C.; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D. Raghavendra; Sridhara, N.; Sharma, Anand Kumar

    2016-01-01

    Vanadium oxide-molybdenum oxide (VO-MO) thin (21–475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V2O5, V2O3 and VO2 along with MoO3. Reversible or smart transition was found to occur just above the room temperature i.e., at ~45–50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10−5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films. PMID:27853234

  17. Influence of the lithosphere-asthenosphere boundary on the stress field northwest of the Alps

    NASA Astrophysics Data System (ADS)

    Maury, J.; Cornet, F. H.; Cara, M.

    2014-11-01

    In 1356, a magnitude 6-7 earthquake occurred near Basel, in Switzerland. But recent compilations of GPS measurements reveal that measured horizontal deformation rates in northwestern continental Europe are smaller than error bars on the measurements, proving present tectonic activity, if any, is very small in this area. We propose to reconcile these apparently antinomic observations with a mechanical model of the lithosphere that takes into account the geometry of the lithosphere-asthenosphere boundary, assuming that the only loading mechanism is gravity. The lithosphere is considered to be an elastoplastic material satisfying a Von Mises plasticity criterion. The model, which is 400 km long, 360 km wide and 230 km thick, is centred near Belfort in eastern France, with its width oriented parallel to the N145°E direction. It also takes into account the real topography of both the ground surface and that of the Moho discontinuity. Not only does the model reproduce observed principal stress directions orientations, it also identifies a plastic zone that fits roughly the most seismically active domain of the region. Interestingly, a somewhat similar stress map may be produced by considering an elastic lithosphere and an ad-hoc horizontal `tectonic' stress field. However, for the latter model, examination of the plasticity criterion suggests that plastic deformation should have taken place. It is concluded that the present-day stress field in this region is likely controlled by gravity and rheology, rather than by active Alpine tectonics.

  18. Coupling image processing and stress analysis for damage identification in a human premolar tooth.

    PubMed

    Andreaus, U; Colloca, M; Iacoviello, D

    2011-08-01

    Non-carious cervical lesions are characterized by the loss of dental hard tissue at the cement-enamel junction (CEJ). Exceeding stresses are therefore generated in the cervical region of the tooth that cause disruption of the bonds between the hydroxyapatite crystals, leading to crack formation and eventual loss of enamel and the underlying dentine. Damage identification was performed by image analysis techniques and allowed to quantitatively assess changes in teeth. A computerized two-step procedure was generated and applied to the first left maxillary human premolar. In the first step, dental images were digitally processed by a segmentation method in order to identify the damage. The considered morphological properties were the enamel thickness and total area, the number of fragments in which the enamel is chipped. The information retrieved by the data processing of the section images allowed to orient the stress investigation toward selected portions of the tooth. In the second step, a three-dimensional finite element model based on CT images of both the tooth and the periodontal ligament was employed to compare the changes occurring in the stress distributions in normal occlusion and malocclusion. The stress states were analyzed exclusively in the critical zones designated in the first step. The risk of failure at the CEJ and of crack initiation at the dentin-enamel junction through the quantification of first and third principal stresses, von Mises stress, and normal and tangential stresses, were also estimated. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Redistribution of knee stress using laterally wedged insole intervention: Finite element analysis of knee-ankle-foot complex.

    PubMed

    Liu, Xuan; Zhang, Ming

    2013-01-01

    Laterally wedged insoles are widely applied in the conservative treatment for medial knee osteoarthritis. Experimental studies have been conducted to understand the effectiveness of such an orthotic intervention. However, the information was limited to the joint external loading such as knee adduction moment. The internal stress distribution is difficult to be obtained from in vivo experiment alone. Thus, a three-dimensional finite element model of the human knee-ankle-foot complex, together with orthosis, was developed in this study and used to investigate the redistribution of knee stress using laterally wedged insole intervention. Laterally wedged insoles with wedge angles of 0, 5, and 10° were fabricated for intervention. The subject-specific geometry of the lower extremity with details was characterized in the reconstruction of MR images. Motion analysis data and muscle forces were input to drive the model. The established finite element model was employed to investigate the loading responses of tibiofemoral articulation in three wedge angle conditions during simulated walking stance phase. With either of the 5° or 10° laterally wedged insole, significant decreases in von Mises stress and contact force at the medial femur cartilage region and the medial meniscus were predicted comparing with the 0° insole. The diminished stress and contact force at the medial compartment of the knee joint demonstrate the immediate effect of the laterally wedged insoles. The intervention may contribute to medial knee osteoarthritis rehabilitation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Hydromechanics in dentine: role of dentinal tubules and hydrostatic pressure on mechanical stress-strain distribution.

    PubMed

    Kishen, A; Vedantam, S

    2007-10-01

    This investigation is to understand the role of free water in the dentinal tubules on the mechanical integrity of bulk dentine. Three different experiments were conducted in this study. In experiment 1, three-dimensional models of dentine with gradient elastic modulus, homogenous elastic modulus, and with and without hydrostatic pressure were simulated using the finite element method. Static compressive loads of 15, 50 and 100 N were applied and the distribution of the principal stresses, von Mises stresses, and strains in loading direction were determined. In experiment 2, experimental compression testing of fully hydrated and partially dehydrated dentine (21 degrees C for 72 h) was conducted using a Universal testing machine. In experiment 3, Fourier transform infrared spectroscopic analysis of hydrated and partially dehydrated dentine was carried out. The finite element analysis revealed that the dentine model with simulated hydrostatic pressure displayed residual tensile stresses and strains in the inner region adjacent to the root canal. When external compressive loads were applied to the model, the residual stresses and strains counteracted the applied loads. Similarly the hydrated specimens subjected to experimental compression loads showed greater toughness when compared to the partially dehydrated specimens. The stress at fracture was significantly higher in partially dehydrated specimens (p=0.014), while the strain at fracture was significantly higher in hydrated dentine specimens (p=0.037). These experiments highlighted the distinct role of free water in the dentinal tubules and hydrostatic pressure on the stress-strain distribution within the bulk dentine.

  1. Stress analysis at bone-implant interface of single- and two-implant-retained mandibular overdenture using three-dimensional finite element analysis.

    PubMed

    Lahoti, Krishnakumar; Pathrabe, Anup; Gade, Jaykumar

    2016-01-01

    The purpose of this research was to compare stress distribution on the bone between single implant-retained and two-implant-retained mandibular overdentures using three-dimensional (3D) finite element analysis. Two 3D finite element models were designed. The first model included single implant-supported mandibular overdenture placed in the midline of the mandible while the second model included two-implant-supported mandibular overdenture placed in the intra-foramen region, retained by ball attachment of the same diameter. The bone was modeled on the D2 bone depending on the classification given by Misch. A computed tomography scan of the mandible was used to model the bone by plotting the key points on the graph and generating the identical key points on the ANSYS Software (ANSYS, Inc., USA). The implant was modeled using appropriate dimensions as provided by the manufacturer. Stresses were calculated based on the von Mises criteria. Stresses produced in the hard bone (HB) and soft bone (SB) were higher in single implant-retained mandibular overdenture while stresses produced around the denture as well as implant were higher in two-implant-retained mandibular overdenture. Within the limitations of the study, it had been seen that stresses produced were the highest on HB and SB in single implant-retained mandibular overdenture while stresses produced across the denture as well as implant were the highest in two-implant-retained mandibular overdenture.

  2. Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil

    2016-05-01

    This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.

  3. 2D FEA of evaluation of micromovements and stresses at bone-implant interface in immediately loaded tapered implants in the posterior maxilla.

    PubMed

    Desai, Shrikar R; Singh, Rika; Karthikeyan, I

    2013-09-01

    The aim of the study is to evaluate the influence implant length on stress distribution at bone implant interface in single immediately loaded implants when placed in D4 bone quality. A 2-dimensional finite element models were developed to simulate two types of implant designs, standard 3.75 mm-diameter tapered body implants of 6 and 10 mm lengths. The implants were placed in D4 bone quality with a cortical bone thickness of 0.5 mm. The implant design incorporated microthreads at the crestal part and the rest of the implant body incorporated Acme threads. The Acme thread form has a 29° thread angle with a thread height half of the pitch; the apex and valley are flat. A 100 N of force was applied vertically and in the oblique direction (at an angle of 45°) to the long axis of the implants. The respective material properties were assigned. Micro-movements and stresses at the bone implant interface were evaluated. The results of total deformation (micro-movement) and Von mises stress were found to be lower for tapered long implant (10 mm) than short implant (6 mm) while using both vertical as well as oblique loading. Short implants can be successfully placed in poor bone quality under immediate loading protocol. The novel approach of the combination of microthreads at the crestal portion and acme threads for body portion of implant fixture gave promising results.

  4. Topology optimization analysis based on the direct coupling of the boundary element method and the level set method

    NASA Astrophysics Data System (ADS)

    Vitório, Paulo Cezar; Leonel, Edson Denner

    2017-12-01

    The structural design must ensure suitable working conditions by attending for safe and economic criteria. However, the optimal solution is not easily available, because these conditions depend on the bodies' dimensions, materials strength and structural system configuration. In this regard, topology optimization aims for achieving the optimal structural geometry, i.e. the shape that leads to the minimum requirement of material, respecting constraints related to the stress state at each material point. The present study applies an evolutionary approach for determining the optimal geometry of 2D structures using the coupling of the boundary element method (BEM) and the level set method (LSM). The proposed algorithm consists of mechanical modelling, topology optimization approach and structural reconstruction. The mechanical model is composed of singular and hyper-singular BEM algebraic equations. The topology optimization is performed through the LSM. Internal and external geometries are evolved by the LS function evaluated at its zero level. The reconstruction process concerns the remeshing. Because the structural boundary moves at each iteration, the body's geometry change and, consequently, a new mesh has to be defined. The proposed algorithm, which is based on the direct coupling of such approaches, introduces internal cavities automatically during the optimization process, according to the intensity of Von Mises stress. The developed optimization model was applied in two benchmarks available in the literature. Good agreement was observed among the results, which demonstrates its efficiency and accuracy.

  5. Three-Dimensional Finite Element Analysis on Stress Distribution of Internal Implant-Abutment Engagement Features.

    PubMed

    Cho, Sung-Yong; Huh, Yun-Hyuk; Park, Chan-Jin; Cho, Lee-Ra

    To investigate the stress distribution in an implant-abutment complex with a preloaded abutment screw by comparing implant-abutment engagement features using three-dimensional finite element analysis (FEA). For FEA modeling, two implants-one with a single (S) engagement system and the other with a double (D) engagement system-were placed in the human mandibular molar region. Two types of abutments (hexagonal, conical) were connected to the implants. Different implant models (a single implant, two parallel implants, and mesial and tilted distal implants with 1-mm bone loss) were assumed. A static axial force and a 45-degree oblique force of 200 N were applied as the sum of vectors to the top of the prosthetic occlusal surface with a preload of 30 Ncm in the abutment screw. The von Mises stresses at the implant-abutment and abutment-screw interfaces were measured. In the single implant model, the S-conical abutment type exhibited broader stress distribution than the S-hexagonal abutment. In the double engagement system, the stress concentration was high in the lower contact area of the implant-abutment engagement. In the tilted implant model, the stress concentration point was different from that in the parallel implant model because of the difference in the bone level. The double engagement system demonstrated a high stress concentration at the lower contact area of the implant-abutment interface. To decrease the stress concentration, the type of engagement features of the implant-abutment connection should be carefully considered.

  6. Acromioclavicular joint dislocation: a Dog Bone button fixation alone versus Dog Bone button fixation augmented with acromioclavicular repair-a finite element analysis study.

    PubMed

    Sumanont, Sermsak; Nopamassiri, Supachoke; Boonrod, Artit; Apiwatanakul, Punyawat; Boonrod, Arunnit; Phornphutkul, Chanakarn

    2018-03-20

    Suspension suture button fixation was frequently used to treat acromioclavicular joint (ACJ) dislocation. However, there were many studies reporting about complications and residual horizontal instability after fixation. Our study compared the stability of ACJ after fixation between coracoclavicular (CC) fixation alone and CC fixation combined with ACJ repair by using finite element analysis (FEA). A finite element model was created by using CT images from the normal shoulder. The model 1 was CC fixation with suture button alone, and the model 2 was CC fixation with suture button combined with ACJ repair. Three different forces (50, 100, 200 N) applied to the model in three planes; inferior, anterior and posterior direction load to the acromion. The von Mises stress of the implants and deformation at ACJs was recorded. The ACJ repair in the model 2 could reduce the peak stress on the implant after applying the loading forces to the acromion which the ACJ repair could reduce the peak stress of the FiberWire at suture button about 90% when compared to model 1. And, the ACJ repair could reduce the deformation of the ACJ after applying the loading forces to the acromion in both vertical and horizontal planes. This FEA supports that the high-grade injuries of the ACJ should be treated with CC fixation combined with ACJ repair because this technique provides excellent stability in both vertical and horizontal planes and reduces stress to the suture button.

  7. Elastic-plastic models for multi-site damage

    NASA Technical Reports Server (NTRS)

    Actis, Ricardo L.; Szabo, Barna A.

    1994-01-01

    This paper presents recent developments in advanced analysis methods for the computation of stress site damage. The method of solution is based on the p-version of the finite element method. Its implementation was designed to permit extraction of linear stress intensity factors using a superconvergent extraction method (known as the contour integral method) and evaluation of the J-integral following an elastic-plastic analysis. Coarse meshes are adequate for obtaining accurate results supported by p-convergence data. The elastic-plastic analysis is based on the deformation theory of plasticity and the von Mises yield criterion. The model problem consists of an aluminum plate with six equally spaced holes and a crack emanating from each hole. The cracks are of different sizes. The panel is subjected to a remote tensile load. Experimental results are available for the panel. The plasticity analysis provided the same limit load as the experimentally determined load. The results of elastic-plastic analysis were compared with the results of linear elastic analysis in an effort to evaluate how plastic zone sizes influence the crack growth rates. The onset of net-section yielding was determined also. The results show that crack growth rate is accelerated by the presence of adjacent damage, and the critical crack size is shorter when the effects of plasticity are taken into consideration. This work also addresses the effects of alternative stress-strain laws: The elastic-ideally-plastic material model is compared against the Ramberg-Osgood model.

  8. Establishment of a finite element model of a neonate's skull to evaluate the stress pattern distribution resulting during nasoalveolar molding therapy of cleft lip and palate patients.

    PubMed

    Bauer, Franz X; Heinrich, Veronika; Grill, Florian D; Wölfle, Felix; Hedderich, Dennis M; Rau, Andrea; Wolff, Klaus-Dietrich; Ritschl, Lucas M; Loeffelbein, Denys J

    2018-04-01

    Nasoalveolar Molding (NAM) is associated with ambivalent acceptance regarding effectiveness and unknown long-term results. Our purpose was to analyze the stress distribution patterns within the viscero- and neurocranium of neonates during the first phase of NAM therapy. A finite element (FE) model of a healthy four-week-old neonate was generated, derived from a computed tomography scan allowing the implementation of a bone-density-dependent material model. The influence of dental germs with variable material properties, the cleft width and area of expected force application were analyzed in a worst-case scenario. The resulting stress distribution patterns for each situation were analyzed using the software Ansys APDL. The established FE model was verified with a convergence analysis. Overall, stress patterns at the age of four weeks showed von Mises stress values below 60.000 Pa in the viscero- and neurocranium. The influences of the allocation of material properties for the dental germs, the area of force application, and the cleft width were negligible. A workflow to simulate the stress distribution and deformation in neonates attributable to various areas of force application has been established. Further analyses of the skulls of younger and older neonates are needed to describe the stress distribution patterns during NAM therapy. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  9. A double commutant theorem for Murray–von Neumann algebras

    PubMed Central

    Liu, Zhe

    2012-01-01

    Murray–von Neumann algebras are algebras of operators affiliated with finite von Neumann algebras. In this article, we study commutativity and affiliation of self-adjoint operators (possibly unbounded). We show that a maximal abelian self-adjoint subalgebra of the Murray–von Neumann algebra associated with a finite von Neumann algebra is the Murray–von Neumann algebra , where is a maximal abelian self-adjoint subalgebra of and, in addition, is . We also prove that the Murray–von Neumann algebra with the center of is the center of the Murray–von Neumann algebra . Von Neumann’s celebrated double commutant theorem characterizes von Neumann algebras as those for which , where , the commutant of , is the set of bounded operators on the Hilbert space that commute with all operators in . At the end of this article, we present a double commutant theorem for Murray–von Neumann algebras. PMID:22543165

  10. A generic readout system for astrophysical detectors

    NASA Astrophysics Data System (ADS)

    Doumayrou, E.; Lortholary, M.

    2012-09-01

    We have developed a generic digital platform to fulfill the needs for the development of new detectors in astrophysics, which is used in lab, for ground-based telescopes instruments and also in prototype versions for space instruments development. This system is based on hardware FPGA electronic board (called MISE) together with software on a PC computer (called BEAR). The MISE board generates the fast clocking which reads the detectors thanks to a programmable digital sequencer and performs data acquisition, buffering of digitalized pixels outputs and interfaces with others boards. The data are then sent to the PC via a SpaceWire or Usb link. The BEAR software sets the MISE board up, makes data acquisition and enables the visualization, processing and the storage of data in line. These software tools are made of C++ and Labview (NI) on a Linux OS. MISE and BEAR make a generic acquisition architecture, on which dedicated analog boards are plugged, so that to accommodate with detectors specificity: number of pixels, the readout channels and frequency, analog bias and clock interfaces. We have used this concept to build a camera for the P-ARTEMIS project including a 256 pixels sub-millimeter bolometer detector at 10Kpixel/s (SPIE 7741-12 (2010)). For the EUCLID project, a lab camera is now working for the test of CCDs 4Mpixels at 4*200Kpixel/s. Another is working for the testing of new near infrared detectors (NIR LFSA for the ESA TRP program) 110Kpixels at 2*100Kpixels/s. Other projects are in progress for the space missions PLATO and SPICA.

  11. Von Hippel-Lindau Disease

    MedlinePlus

    What is Von Hippel-Lindau disease (VHL)? Von Hippel-Lindau disease (VHL) is a rare disease that causes tumors and cysts to grow in your body. They ... can become cancerous. What causes Von Hippel-Lindau disease (VHL)? Von Hippel-Lindau disease (VHL) is a ...

  12. PT2385 for the Treatment of Von Hippel-Lindau Disease-Associated Clear Cell Renal Cell Carcinoma

    ClinicalTrials.gov

    2017-08-23

    VHL Gene Mutation; VHL; VHL Syndrome; VHL Gene Inactivation; Von Hippel; Von Hippel-Lindau Disease; Von Hippel's Disease; Von Hippel-Lindau Syndrome, Modifiers of; Clear Cell Renal Cell Carcinoma; Clear Cell RCC; ccRCC

  13. Block entropy and quantum phase transition in the anisotropic Kondo necklace model

    NASA Astrophysics Data System (ADS)

    Mendoza-Arenas, J. J.; Franco, R.; Silva-Valencia, J.

    2010-06-01

    We study the von Neumann block entropy in the Kondo necklace model for different anisotropies η in the XY interaction between conduction spins using the density matrix renormalization group method. It was found that the block entropy presents a maximum for each η considered, and, comparing it with the results of the quantum criticality of the model based on the behavior of the energy gap, we observe that the maximum block entropy occurs at the quantum critical point between an antiferromagnetic and a Kondo singlet state, so this measure of entanglement is useful for giving information about where a quantum phase transition occurs in this model. We observe that the block entropy also presents a maximum at the quantum critical points that are obtained when an anisotropy Δ is included in the Kondo exchange between localized and conduction spins; when Δ diminishes for a fixed value of η, the critical point increases, favoring the antiferromagnetic phase.

  14. Statistics of some atmospheric turbulence records relevant to aircraft response calculations

    NASA Technical Reports Server (NTRS)

    Mark, W. D.; Fischer, R. W.

    1981-01-01

    Methods for characterizing atmospheric turbulence are described. The methods illustrated include maximum likelihood estimation of the integral scale and intensity of records obeying the von Karman transverse power spectral form, constrained least-squares estimation of the parameters of a parametric representation of autocorrelation functions, estimation of the power spectra density of the instantaneous variance of a record with temporally fluctuating variance, and estimation of the probability density functions of various turbulence components. Descriptions of the computer programs used in the computations are given, and a full listing of these programs is included.

  15. Community perceptions on diarrheal diseases: a case study in swampy lowland area of south Sumatra, Indonesia. The Diarrheal Diseases Research and Training Study Group.

    PubMed

    Ismail, R; Aulia, H; Susanto, T A; Roisuddin; Hamzah, M

    1991-01-01

    Four investigators conducted participative observation at 4 hamlets, representing 4 typical topography in the area, wet or dry near the river and wet or dry far from the river, in District Rambutan, South Sumatera Province, Indonesia from July 1988 up until February 1989 to study the community perception and practices on diarrheal diseases (DD). The observation was supported by focus group discussions and informal interviews. It was found that the causes of DD can be grouped into: dirty water; wrong (cold, hot, sting) food; part of the growth process; physical condition (extreme heat, cold wind and inner abnormality, inner heat, muscle strain), and supernatural. The type of DD can be grouped into: mild without vomiting named ngadi, negenteng-ngentengi, nambah kepacakan, etc which was linked to the growth process; more severe diarrhea, might be with fever (mising-mising, murus, mencret, etc); more severe diarrhea with severe vomiting (muntager, kolera); bloody/mucoid stool (disentri, mising tai angin, mising umbal). The community had also the concept of prolonged diarrhea named as menerus (literally meaning prolonged) Muntaber was more associated with bad water while the prolonged one was more associated with inner abnormality. The danger of diarrhea perceived was susut = shrinkage, lisut = emaciation. Pale and red hair with lisut were recognized as the dangers of prolonged diarrhea. The community did not associate these conditions with fluid loss. The management started by self medication using tapel (pasta of herb applied) to the stomach), decoct (daun jambu, akar teratai etc), solid oral preparation (cassava with raw sugar, rast rice, etc).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. OpT2mise: a randomized controlled trial to compare insulin pump therapy with multiple daily injections in the treatment of type 2 diabetes-research design and methods.

    PubMed

    Aronson, Ronnie; Cohen, Ohad; Conget, Ignacio; Runzis, Sarah; Castaneda, Javier; de Portu, Simona; Lee, Scott; Reznik, Yves

    2014-07-01

    In insulin-requiring type 2 diabetes patients, current insulin therapy approaches such as basal-alone or basal-bolus multiple daily injections (MDI) have not consistently provided achievement of optimal glycemic control. Previous studies have suggested a potential benefit of continuous subcutaneous insulin infusion (CSII) in these patients. The OpT2mise study is a multicenter, randomized, trial comparing CSII with MDI in a large cohort of subjects with evidence of persistent hyperglycemia despite previous MDI therapy. Subjects were enrolled into a run-in period for optimization of their MDI insulin regimen. Subjects showing persistent hyperglycemia (glycated hemoglobin [HbA1c] ≥8% and ≤12%) were then randomly assigned to CSII or continuing an MDI regimen for a 6-month phase followed by a single crossover of the MDI arm, switching to CSII. The primary end point is the between-group difference in mean change in HbA1c from baseline to 6 months. Secondary end points include change in mean 24-h glucose values, area under the curve and time spent in hypoglycemia and hyperglycemia, measures of glycemic excursions, change in postprandial hyperglycemia, and evaluation of treatment satisfaction. Safety end points include hypoglycemia, hospital admissions, and emergency room visits. When subject enrollment was completed in May 2013, 495 subjects had been enrolled in the study. The study completion for the primary end point is expected in January 2014. OpT2mise will represent the largest studied homogeneous cohort of type 2 diabetes patients with persistent hyperglycemia despite optimized MDI therapy. OpT2mise will help define the role of CSII in insulin intensification and define its safety, rate of hypoglycemia, patient adherence, and patient satisfaction.

  17. Pregnancy and delivery in women with von Willebrand's disease and different von Willebrand factor mutations.

    PubMed

    Castaman, Giancarlo; Tosetto, Alberto; Rodeghiero, Francesco

    2010-06-01

    Pregnancy in von Willebrand's disease may carry a significant risk of bleeding. Information on changes in factor VIII and von Willebrand factor and pregnancy outcome in relation to von Willebrand factor gene mutations are very scanty. We examined biological response to desmopressin, changes in factor VIII and von Willebrand factor and pregnancy outcome in a cohort of 23 women with von Willebrand's disease characterized at molecular level and prospectively followed during 2000-2007. Thirty-one pregnancies occurred during the study period. Remarkably, similar changes of factor VIII and von Willebrand factor were observed after desmopressin and during pregnancy in nine women with R854Q, R1374H, V1665E, V1822G and C2362F mutations. Women with von Willebrand's disease and R1205H and C1130F mutations (17 pregnancies in 12 women) had only a slight increase of factor VIII and von Willebrand factor during pregnancy while their response to desmopressin was marked but short-lived. For these women, two to three desmopressin administrations within the first 48 hours were sufficient to successfully manage vaginal delivery. Two women with recessive von Willebrand's disease due to compound heterozygosity for different gene mutations had a spontaneous, major increase in factor VIII while von Willebrand factor remained severely reduced. Desmopressin increased factor VIII and was clinically useful in the first case, while a factor VIII/von Willebrand factor concentrate was required in the second patient not responsive to the compound. Factor VIII/von Willebrand factor concentrate was also required for two women with type 2 A von Willebrand's disease with V1665E mutations who had no von Willebrand factor activity change during pregnancy. In one of them, delayed bleeding occurred 15 days later requiring treatment with Factor VIII/von Willebrand factor concentrate. No miscarriages or stillbirths occurred. Close follow-up and detailed guidelines for the management of parturition have produced a very low rate of immediate and late bleeding complications in this setting. Desmopressin was effective and safe in preventing significant bleeding at delivery in most of these patients.

  18. A finite element investigation of upper cervical instrumentation.

    PubMed

    Puttlitz, C M; Goel, V K; Traynelis, V C; Clark, C R

    2001-11-15

    The finite element technique was used to predict changes in biomechanics that accompany the application of a novel instrumentation system designed for use in the upper cervical spine. To determine alterations in joint loading, kinematics, and instrumentation stresses in the craniovertebral junction after application of a novel instrumentation system. Specifically, this design was used to assess the changes in these parameters brought about by two different cervical anchor types: C2 pedicle versus C2-C1 transarticular screws, and unilateral versus bilateral instrumentation. Arthrodesis procedures can be difficult to obtain in the highly mobile craniovertebral junction. Solid fusion is most likely achieved when motion is eliminated. Biomechanical studies have shown that C1-C2 transarticular screws provide good stability in craniovertebral constructs; however, implantation of these screws is accompanied by risk of vertebral artery injury. A novel instrumentation system that can be used with transarticular screws or with C2 pedicle screws has been developed. This design also allows for unilateral or bilateral implantation. However, the authors are unaware of any reports to date on the changes in joint loading or instrumentation stresses that are associated with the choice of C2 anchor or unilateral/bilateral use. A ligamentous, nonlinear, sliding contact, three-dimensional finite element model of the C0-C1-C2 complex and a novel instrumentation system was developed. Validation of the model has been previously reported. Finite element models representing combinations of cervical anchor type (C1-C2 transarticular screws vs. C2 pedicle screws) and unilateral versus bilateral instrumentation were evaluated. All models were subjected to compression with pure moments in either flexion, extension, or lateral bending. Kinematic reductions with respect to the intact (uninjured and without instrumentation) case caused by instrumentation use were reported. Changes in loading profiles through the right and left C0-C1 and C1-C2 facets, transverse ligament-dens, and dens-anterior ring of C1 articulations were calculated by the finite element model. Maximum von Mises stresses within the instrumentation were predicted for each model variant and loading scenario. Bilateral instrumentation provided greater motion reductions than the unilateral instrumentation. When used bilaterally, C2 pedicle screws approximate the kinematic reductions and instrumentation stresses (except in lateral bending) that are seen with C1-C2 transarticular screws. The finite element model predicted that the maximum stress was always in the region in which the plate transformed into the rod. To the best of the authors' knowledge, this is the first report of predicting changes in loading in the upper cervical spine caused by instrumentation. The most significant conclusion that can be drawn from the finite element model predictions is that C2 pedicle screw fixation provides the same relative stability and instrumentation stresses as C1-C2 transarticular screw use. C2 pedicle screws can be a good alternative to C2-C1 transarticular screws when bilateral instrumentation is applied.

  19. A novel approach to fitting the von Bertalanffy relationship to a mixed stock of Atlantic sturgeon harvested off the New Jersey Coast

    USGS Publications Warehouse

    Johnson, James H.; McKenna, James E.; Dropkin, David S.; Andrews, William D.

    2005-01-01

    We examined the growth characteristics of 303 Atlantic sturgeon, Acipenser oxyrinchus, caught in the commercial fishery off the New Jersey coast from 1992 to 1994 (fork length range: 93–219 cm). Sections taken from the leading pectoral fin ray were used to age each sturgeon. Ages ranged from 5–26 years. Von Bertalanffy growth models for males and females fit well, but test statistics (t-test, maximum likelihood) failed to reject the null hypothesis that growth was not significantly different between sexes. Consequently, all data were pooled and the combined data gave L∞ and K estimates of 174.2 cm and 0.144, respectively. Our growth data do not fit the pattern of slower growth and increased size in more northernly latitudes for Atlantic sturgeon observed in other work. Lack of uniformity of our growth data may be due to (1) the sturgeon fishery harvesting multiple stocks having different growth rates, and (2) size limits for the commercial fishery having created a bias in estimating growth parameters.

  20. Determining Fleet Size for a Modernized Canadian Maritime Patrol Aircraft

    DTIC Science & Technology

    2014-02-01

    nécessiteraient une mise à jour si on devait retarder l’acquisition des CMA, comme on l’annonçait en février 2014. Importance pour la défense et la sécurité...on procède à la mise à jour du CP-140, cette étude conclue qu’il en faudra au moins 14 pour satisfaire aux critères de surveillance énoncés. C’est...RDDC-2014-R2 February 2014 c© Her Majesty the Queen in Right of Canada (Department of National Defence), 2014 c© Sa Majesté la Reine en droit du Canada

Top