Geophysical reconnaissance of Lemmon Valley, Washoe County, Nevada
Schaefer, Donald H.; Maurer, Douglas K.
1981-01-01
Rapid growth in the Lemmon Valley area, Nevada, during recent years has put increasing importance on knowledge of stored ground water for the valley. Data that would fill voids left by previous studies are depth to bedrock and depth to good-quality water beneath the two playas in the valley. Depths to bedrock calculated from a gravity survey in Lemmon Valley indicate that the western part of Lemmon Valley is considerably deeper than the eastern part. Maximum depth in the western part is about 2 ,600 feet below land surface. This depression approximately underlies the Silver Lake playa. A smaller, shallower depression with a maximum depth of about 1,500 feet below land surface exists about 2.5 miles north of the playa. The eastern area is considerably shallower. The maximum calculated depth to bedrock is about 1,000 feet below land surface, but the depth throughout most the eastern area is only about 400 feet below land surface. An electrical resistivity survey in Lemmon Valley consisting of 10 Schlumberger soundings was conducted around the playas. The maximum depth of poor-quality water (characterized by a resistivity less than 20 ohm-meters) differed considerably from place to place. Maximum depths of poor-quality water beneath the playa east of Stead varied from about 120 feet to almost 570 feet below land surface. At the Silver Lake playa, the maximum depths varied from about 40 feet in the west to 490 feet in the east. (USGS)
The maximum economic depth of groundwater abstraction for irrigation
NASA Astrophysics Data System (ADS)
Bierkens, M. F.; Van Beek, L. P.; de Graaf, I. E. M.; Gleeson, T. P.
2017-12-01
Over recent decades, groundwater has become increasingly important for agriculture. Irrigation accounts for 40% of the global food production and its importance is expected to grow further in the near future. Already, about 70% of the globally abstracted water is used for irrigation, and nearly half of that is pumped groundwater. In many irrigated areas where groundwater is the primary source of irrigation water, groundwater abstraction is larger than recharge and we see massive groundwater head decline in these areas. An important question then is: to what maximum depth can groundwater be pumped for it to be still economically recoverable? The objective of this study is therefore to create a global map of the maximum depth of economically recoverable groundwater when used for irrigation. The maximum economic depth is the maximum depth at which revenues are still larger than pumping costs or the maximum depth at which initial investments become too large compared to yearly revenues. To this end we set up a simple economic model where costs of well drilling and the energy costs of pumping, which are a function of well depth and static head depth respectively, are compared with the revenues obtained for the irrigated crops. Parameters for the cost sub-model are obtained from several US-based studies and applied to other countries based on GDP/capita as an index of labour costs. The revenue sub-model is based on gross irrigation water demand calculated with a global hydrological and water resources model, areal coverage of crop types from MIRCA2000 and FAO-based statistics on crop yield and market price. We applied our method to irrigated areas in the world overlying productive aquifers. Estimated maximum economic depths range between 50 and 500 m. Most important factors explaining the maximum economic depth are the dominant crop type in the area and whether or not initial investments in well infrastructure are limiting. In subsequent research, our estimates of maximum economic depth will be combined with estimates of groundwater depth and storage coefficients to estimate economically attainable groundwater volumes worldwide.
Experimental investigation of the Peregrine Breather of gravity waves on finite water depth
NASA Astrophysics Data System (ADS)
Dong, G.; Liao, B.; Ma, Y.; Perlin, M.
2018-06-01
A series of laboratory experiments were performed to study the Peregrine Breather (PB) evolution in a wave flume of finite depth and deep water. Experimental cases were selected with water depths k0h (k0 is the wave number and h is the water depth) varying from 3.11 to 8.17 and initial steepness k0a0 (a0 is the background wave amplitude) in the range 0.06 to 0.12, and the corresponding initial Ursell number in the range 0.03 to 0.061. Experimental results indicate that the water depth plays an important role in the formation of the extreme waves in finite depth; the maximum wave amplification of the PB packets is also strongly dependent on the initial Ursell number. For experimental cases with the initial Ursell number larger than 0.05, the maximum crest amplification can exceed three. If the initial Ursell number is nearly 0.05, a shorter propagation distance is needed for maximum amplification of the height in deeper water. A time-frequency analysis using the wavelet transform reveals that the energy of the higher harmonics is almost in-phase with the carrier wave. The contribution of the higher harmonics to the extreme wave is significant for the cases with initial Ursell number larger than 0.05 in water depth k0h < 5.0. Additionally, the experimental results are compared with computations based on both the nonlinear Schrödinger (NLS) equation and the Dysthe equation, both with a dissipation term. It is found that both models with a dissipation term can predict the maximum amplitude amplification of the primary waves. However, the Dysthe equation also can predict the group horizontal asymmetry.
Mid-depth temperature maximum in an estuarine lake
NASA Astrophysics Data System (ADS)
Stepanenko, V. M.; Repina, I. A.; Artamonov, A. Yu; Gorin, S. L.; Lykossov, V. N.; Kulyamin, D. V.
2018-03-01
The mid-depth temperature maximum (TeM) was measured in an estuarine Bol’shoi Vilyui Lake (Kamchatka peninsula, Russia) in summer 2015. We applied 1D k-ɛ model LAKE to the case, and found it successfully simulating the phenomenon. We argue that the main prerequisite for mid-depth TeM development is a salinity increase below the freshwater mixed layer, sharp enough in order to increase the temperature with depth not to cause convective mixing and double diffusion there. Given that this condition is satisfied, the TeM magnitude is controlled by physical factors which we identified as: radiation absorption below the mixed layer, mixed-layer temperature dynamics, vertical heat conduction and water-sediments heat exchange. In addition to these, we formulate the mechanism of temperature maximum ‘pumping’, resulting from the phase shift between diurnal cycles of mixed-layer depth and temperature maximum magnitude. Based on the LAKE model results we quantify the contribution of the above listed mechanisms and find their individual significance highly sensitive to water turbidity. Relying on physical mechanisms identified we define environmental conditions favouring the summertime TeM development in salinity-stratified lakes as: small-mixed layer depth (roughly, ~< 2 m), transparent water, daytime maximum of wind and cloudless weather. We exemplify the effect of mixed-layer depth on TeM by a set of selected lakes.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... ``maximum water depth'' and ``average water depth'' were rendered incorrect or impossible to read in several.... 1073; Scheerer and McDonald 2003, p. 69). The second paragraph under the heading ``Food, Water, Air...
Erosion of aluminum 6061-T6 under cavitation attack in mineral oil and water
NASA Technical Reports Server (NTRS)
Rao, B. C. S.; Buckley, D. H.
1985-01-01
Studies of the erosion of aluminum 6061-T6 under cavitation attack in distilled water, ordinary tap water and a viscous mineral oil are presented. The mean depth of penetration for the mineral oil was about 40 percent of that for water at the end of a 40 min test. The mean depth of penetration and its rate did not differ significantly for distilled and tap water. The mean depth of penetration rate for both distilled and tap water increased to a maximum and then decreased with test duration, while that for mineral oil had a maximum during the initial period. The ratio h/2a of the pit depth h to the pit diameter 2a varied from 0.04 to 0.13 in water and from 0.06 to 0.20 in mineral oil. Scanning electron microscopy indicates that the pits are initially formed over the grain boundaries and precipitates while the surface grains are deformed under cavitation attack.
Miranda, Leandro E.; Omer, A.R.; Killgore, K.J.
2017-01-01
The Mississippi Alluvial Valley includes hundreds of floodplain lakes that support unique fish assemblages and high biodiversity. Irrigation practices in the valley have lowered the water table, increasing the cost of pumping water, and necessitating the use of floodplain lakes as a source of water for irrigation. This development has prompted the need to regulate water withdrawals to protect aquatic resources, but it is unknown how much water can be withdrawn from lakes before ecological integrity is compromised. To estimate withdrawal limits, we examined descriptors of lake water quality (i.e., total nitrogen, total phosphorus, turbidity, Secchi visibility, chlorophyll-a) and fish assemblages (species richness, diversity, composition) relative to maximum depth in 59 floodplain lakes. Change-point regression analysis was applied to identify critical depths at which the relationships between depth and lake descriptors exhibited a rapid shift in slope, suggesting possible thresholds. All our water quality and fish assemblage descriptors showed rapid changes relative to depth near 1.2–2.0 m maximum depth. This threshold span may help inform regulatory decisions about water withdrawal limits. Alternatives to explain the triggers of the observed threshold span are considered.
NASA Astrophysics Data System (ADS)
Medina-Silva, Renata; de Oliveira, Rafael R.; Pivel, Maria A. G.; Borges, Luiz G. A.; Simão, Taiz L. L.; Pereira, Leandro M.; Trindade, Fernanda J.; Augustin, Adolpho H.; Valdez, Fernanda P.; Eizirik, Eduardo; Utz, Laura R. P.; Groposo, Claudia; Miller, Dennis J.; Viana, Adriano R.; Ketzer, João M. M.; Giongo, Adriana
2018-02-01
Conspicuous physicochemical vertical stratification in the deep sea is one of the main forces driving microbial diversity in the oceans. Oxygen and sunlight availability are key factors promoting microbial diversity throughout the water column. Ocean currents also play a major role in the physicochemical stratification, carrying oxygen down to deeper zones as well as moving deeper water masses up towards shallower depths. Water samples within a 50-km radius in a pockmark location of the southwestern Atlantic Ocean were collected and the prokaryotic communities from different water depths - chlorophyll maximum, oxygen minimum and deep-sea bottom (down to 1355 m) - were described. At phylum level, Proteobacteria were the most frequent in all water depths, Cyanobacteria were statistically more frequent in chlorophyll maximum zone, while Thaumarchaeota were significantly more abundant in both oxygen minimum and bottom waters. The most frequent microorganism in the chlorophyll maximum and oxygen minimum zones was a Pelagibacteraceae operational taxonomic unit (OTU). At the bottom, the most abundant genus was the archaeon Nitrosopumilus. Beta diversity analysis of the 16S rRNA gene sequencing data uncovered in this study shows high spatial heterogeneity among water zones communities. Our data brings important contribution for the characterisation of oceanic microbial diversity, as it consists of the first description of prokaryotic communities occurring in different oceanic water zones in the southwestern Atlantic Ocean.
Stability numerical analysis of soil cave in karst area to drawdown of underground water level
NASA Astrophysics Data System (ADS)
Mo, Yizheng; Xiao, Rencheng; Deng, Zongwei
2018-05-01
With the underground water level falling, the reliable estimates of the stability and deformation characteristics of soil caves in karst region area are required for analysis used for engineering design. Aimed at this goal, combined with practical engineering and field geotechnical test, detail analysis on vertical maximum displacement of top, vertical maximum displacement of surface, maximum principal stress and maximum shear stress were conducted by finite element software, with an emphasis on two varying factors: the size and the depth of soil cave. The calculations on the soil cave show that, its stability of soil cave is affected by both the size and depth, and only when extending a certain limit, the collapse occurred along with the falling of underground water; Additionally, its maximum shear stress is in arch toes, and its deformation curve trend of maximum displacement is similar to the maximum shear stress, which further verified that the collapse of soil cave was mainly due to shear-failure.
Benelli, Piero; Colasanti, Franca; Ditroilo, Massimiliano; Cuesta-Vargas, Antonio; Gatta, Giorgio; Giacomini, Francesco; Lucertini, Francesco
2014-01-01
Non-motorised underwater treadmills are commonly used in fitness activities. However, no studies have examined physiological and biomechanical responses of walking on non-motorised treadmills at different intensities and depths. Fifteen middle-aged healthy women underwent two underwater walking tests at two different depths, immersed either up to the xiphoid process (deep water) or the iliac crest (shallow water), at 100, 110, 120, 130 step-per-minute (spm). Oxygen consumption (VO2), heart rate (HR), blood lactate concentration, perceived exertion and step length were determined. Compared to deep water, walking in shallow water exhibited, at all intensities, significantly higher VO2 (+13.5%, on average) and HR (+8.1%, on average) responses. Water depth did not influence lactate concentration, whereas perceived exertion was higher in shallow compared to deep water, solely at 120 (+40%) and 130 (+39.4%) spm. Average step length was reduced as the intensity increased (from 100 to 130 spm), irrespective of water depth. Expressed as a percentage of maximum, average VO2 and HR were: 64-76% of peak VO2 and 71-90% of maximum HR, respectively at both water depths. Accordingly, this form of exercise can be included in the "vigorous" range of exercise intensity, at any of the step frequencies used in this study.
A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths
NASA Astrophysics Data System (ADS)
Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo
2017-12-01
A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.
Rock Cutting Depth Model Based on Kinetic Energy of Abrasive Waterjet
NASA Astrophysics Data System (ADS)
Oh, Tae-Min; Cho, Gye-Chun
2016-03-01
Abrasive waterjets are widely used in the fields of civil and mechanical engineering for cutting a great variety of hard materials including rocks, metals, and other materials. Cutting depth is an important index to estimate operating time and cost, but it is very difficult to predict because there are a number of influential variables (e.g., energy, geometry, material, and nozzle system parameters). In this study, the cutting depth is correlated to the maximum kinetic energy expressed in terms of energy (i.e., water pressure, water flow rate, abrasive feed rate, and traverse speed), geometry (i.e., standoff distance), material (i.e., α and β), and nozzle system parameters (i.e., nozzle size, shape, and jet diffusion level). The maximum kinetic energy cutting depth model is verified with experimental test data that are obtained using one type of hard granite specimen for various parameters. The results show a unique curve for a specific rock type in a power function between cutting depth and maximum kinetic energy. The cutting depth model developed here can be very useful for estimating the process time when cutting rock using an abrasive waterjet.
Electron fluence correction factors for various materials in clinical electron beams.
Olivares, M; DeBlois, F; Podgorsak, E B; Seuntjens, J P
2001-08-01
Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at dmax in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than +/- 1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83+/-0.01 and 1.55+/-0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1sigma level. Excluding the data for Cu, electron fluence correction factors for open electron beams are approximately proportional to the electron density of the phantom material and only weakly dependent on electron beam energy.
On the Subsurface Chlorophyll Maximum layer in the Black Sea Romanian shelf waters
NASA Astrophysics Data System (ADS)
Vasiliu, Dan; Gomoiu, Marian-Traian; Secrieru, Dan; Caraus, Ioan; Balan, Sorin
2013-04-01
By analyzing data recorded in 38 sampling stations (bottom depths between 16 and 200 m) covering the entire Romanian shelf, from the Danube's mouths to the southern part of the coast, the authors study Subsurface Chlorophyll Maximum (SCM) from May 2009 to April 2011. Chlorophyll a (Chla), seawater temperature, salinity, sigma T, dissolved oxygen, ph, beam attenuation, were measured over the water column depth with the CTD probe and averaged over 1-db intervals (about 1 m depth). Nutrients and phytoplankton qualitative and quantitative parameters were recorded from different depths according to water masses stratification (inscribed in the research protocol of the cruise). In late winter/early spring, due to strong mixing processes of water masses, SCM was not observed in the Black Sea shelf waters. In spring (May), the Danube's increased discharges, characteristic to that period, strongly affected the vertical distribution of Chla, particularly in the area of the Danube's direct influence, where Chla reached maximum in the surface layer (19.76 - 30.39 µg.l-1). In the deeper sampling stations, a relatively weak SCM (Chla within 0.77 - 1.21 µg.l-1) was observed, mainly at the lower limit of the euphotic zone (between 30 and 40 m depths). Here, the position and magnitude of SCM seemed to be controlled mainly by the light conditions; the seasonal thermocline was not well contoured yet. In the warm season, once the stratification becomes stronger, the magnitude of SCM increased (Chla varies between 1.45 - 2.12 µg.l-1). The SCM was well pronounced below the upper boundary of thermocline, at depths between 20 and 25 m, where the dissolved oxygen concentrations have also reached the highest values (>10 mg.l-1 O2), thus suggesting strong photosynthetic processes, where both nutrient and light conditions are favorable. A particular situation was found in July 2010, when abnormally high discharges from the Danube led to a well pronounced SCM (3.23 - 6.87 µg.l-1 Chla) above thermocline (within 8 - 12 m depths) in the shallow waters, the nutrients being not limitative factors. Keywords Chlorophyll a, Subsurface Chlorophyll Maximum layer, the Black Sea, the Danube
Deriving depths of deep chlorophyll maximum and water inherent optical properties: A regional model
NASA Astrophysics Data System (ADS)
Xiu, Peng; Liu, Yuguang; Li, Gang; Xu, Qing; Zong, Haibo; Rong, Zengrui; Yin, Xiaobin; Chai, Fei
2009-10-01
The Bohai Sea is a semi-enclosed inland sea with case-2 waters near the coast. A comprehensive set of optical data was collected during three cruises in June, August, and September 2005 in the Bohai Sea. The vertical profile measurements, such as chlorophyll concentration, water turbidity, downwelling irradiance, and diffuse attenuation coefficient, showed that the Bohai Sea was vertically stratified with a relative clear upper layer superimposed on a turbid lower layer. The upper layer was found to correspond to the euphotic zone and the deep chlorophyll maximum (DCM) occurs at the base of this layer. By tuning a semi-analytical model (Lee et al., 1998, 1999) for the Bohai Sea, we developed a method to derive water inherent optical properties and the depth of DCM from above-surface measurements. Assuming a 'fake' bottom in the stratified water, this new method retrieves the 'fake' bottom depth, which is highly correlated with the DCM depth. The average relative error between derived and measured values is 33.9% for phytoplankton absorption at 440 nm, 25.6% for colored detrital matter (detritus plus gelbstoff) absorption at 440 nm, and 24.2% for the DCM depth. This modified method can retrieve water inherent optical properties and monitor the depth of DCM in the Bohai Sea, and the method is also applicable to other stratified waters.
Scour at bridge sites in Delaware, Maryland, and Virginia
Hayes, Donald C.
1996-01-01
Scour data were obtained from discharge measure- ments to develop and evaluate the reliability of constriction-scour and local-scour equations for rivers in Delaware, Maryland, and Virginia. No independent constriction-scour or local-scour equations were developed from the data because no significant relation was deter-mined between measured scour and streamflow, streambed, and bridge characteristics. Two existing equations were evaluated for prediction of constriction scour and 14 existing equations were evaluated for prediction of local scour. Constriction-scour data were obtained from historical stream discharge measurements, field surveys, and bridge plans at nine bridge sites in the three-State area. Constriction scour was computed by subtracting the average-streambed elevation in the constricted reach from an uncontracted-channel reference elevation. Hydraulic conditions were estimated for the measurements with the greatest discharges by use of the Water-Surface Profile computation model. Measured and calculated constriction-scour data were used to evaluate the reliability of Laursen's clear-water constriction-scour equation and Laursen's live-bed constriction-scour equation. Laursen's clear-water constriction-scour equation underestimated 21 of 23 scour measure- ments made at three sites. A sensitivity analysis showed that the equation is extremely sensitive to estimates of the channel-bottom width. Reduction in estimates of bottom width by one-third resulted in predictions of constriction scour slightly greater than measured values for all scour measurements. Laursen's live-bed constriction- scour equation underestimated 10 of 14 scour measurements made at one site. The error between measured and predicted constriction scour was less than 1.0 ft (feet) for 12 measure-ments and less than 0.5 ft for 8 measurements. Local-scour data were obtained from stream discharge measurements, field surveys, and bridge plans at 15 bridge sites in the three-State area. The reliability of 14 local-scour equations were evaluated. From visual inspection of the plotted data, the Colorado State University, Froehlich design, Laursen, and Mississippi pier-scour equations appeared to be the best predictors of local scour. The Colorado State University equation underestimated 11 scour depths in clear-water scour conditions by a maximum of 2.4 ft, and underestimated 3 scour depth in live-bed scour conditions by a maximum of 1.3 ft. The Froehlich design equation under- estimated two scour depth in clear-water scour conditions by a maximum of 1.2 ft, and under- estimated one scour depth in live-bed scour conditions by a maximum of 0.4 ft. Laursen's equation overestimated the maximum scour depth in clear-water scour conditions by approximately one-half pier width or approximately 1.5 ft, and overestimated the maximum scour depth in live-bed scour conditions by approximately one-pier width or approximately 3 ft. The Mississippi equation underestimated six scour depths in clear-water scour conditions by a maximum of 1.2 ft, and underestimated one scour depth in live-bed scour conditions by 1.6 ft. In both clear-water and live-bed scour conditions, the upper limit for the depth of scour to pier-width ratio for all local scour measurements was 2.1. An accurate pier- approach velocity is necessary to use many local pier-scour equations for bridge design. Velocity data from all the discharge measurements reviewed for this investigation were used to develop a design curve to estimate pier-approach velocity from mean cross-sectional velocity. A least- squares regression and offset were used to envelop the velocity data.
Nearshore coastal mapping. [in Lake Michigan and Puerto Rico
NASA Technical Reports Server (NTRS)
Polcyn, F. C.; Lyzenga, D. R.
1975-01-01
Two test sites of different water quality and bottom topography were used to test for maximum water depth penetration using the Skylab S-192 MSS for measurement of nearshore coastal bathymetry. Sites under investigation lie along the Lake Michigan coastline where littoral transport acts to erode sand bluffs and endangers developments along 1,200 miles of shore, and on the west coast of Puerto Rico where unreliable shoal location and depth information constitutes a safety hazard to navigation. The S-192 and S-190A and B provide data on underwater features because of water transparency in the blue/green portion of the spectrum. Depth of 20 meters were measured with the S-192 in the Puerto Rico test site. The S-190B photography with its improved spatial resolution clearly delineates the triple sand bar topography in the Lake Michigan test site. Several processing techniques were employed to test for maximum depth measurement with least error. The results are useful for helping to determine an optimum spectral bandwidth for future space sensors that will increase depth measurements for different water attenuation conditions where a bottom reflection is detectable.
Biogeochemistry of Lakes in Western Papua, Indonesia - First Results of a Pilot Study.
NASA Astrophysics Data System (ADS)
Kallmeyer, J.; Nomosatryo, S.; Henny, C.; Kopalit, H.
2016-12-01
Despite years of exploration for mineral and hydrocarbon resources, the lakes of Western Papua have received very little attention from a limnogeologic perspective. In some cases not even the maximum water depth of the lakes is published. The only research carried out so far focused on the fish and invertebrate fauna of the lakes, because the macrofauna of Papuan Lakes is significantly different from other islands of western Indonesia. Most lakes harbor numerous endemic species. We carried out a first limnogeologic pilot campaign in spring 2016 to measure water column profiles and take short (max 80 cm long) sediment cores.Lake Sentani is seated in Mesozoic mafic bedrock and consists of four separate basins with maximum water depths of 30 to 40 m. Three basins are connected by shallow sills and one by a natural canal. Although all four basins share almost identical surface water chemistry and exhibit sub- to anoxic bottom waters, each basin has its distinct water column stratification and sediment geochemistry. Despite its coastal location and minimal elevation we could not identify an influx of seawater into the lake. Lake Ayamaru is located further inland on a densely forested karstified carbonate platform. The lake level has dropped significantly in recent years due to water loss into the karst, further reduction of open water surface is caused by massive growth of Pistia. Currently the lake has a maximum depth of around 2 m. Its sediment is mainly composed of carbonate minerals and methane saturated. Due to the carbonate bedrock the lake is highly alkaline (up to 20 meq/L) despite its very low salinity. The initial analyses show that these lakes offer unique biogeochemical conditions that require further in-depth studies.Our research will expand to lakes Anggi Giji and Anggi Gida, which are at almost 2000 m elevation. They have maximum depths of around 200 m and much colder surface waters (12-20°C) compared to the other two lakes that have about 30°C throughout the year.
NASA Astrophysics Data System (ADS)
Howe, Jacob N. W.; Huang, Kuo-Fang; Oppo, Delia W.; Chiessi, Cristiano M.; Mulitza, Stefan; Blusztajn, Jurek; Piotrowski, Alexander M.
2018-05-01
The delivery of freshwater to the North Atlantic during Heinrich Stadial 1 (HS1) is thought to have fundamentally altered the operation of Atlantic meridional overturning circulation (AMOC). Although benthic foraminiferal carbon isotope records from the mid-depth Atlantic show a pronounced excursion to lower values during HS1, whether these shifts correspond to changes in water mass proportions, advection, or shifts in the carbon cycle remains unclear. Here we present new deglacial records of authigenic neodymium isotopes - a water mass tracer that is independent of the carbon cycle - from two cores in the mid-depth South Atlantic. We find no change in neodymium isotopic composition, and thus water mass proportions, between the Last Glacial Maximum (LGM) and HS1, despite large decreases in carbon isotope values at the onset of HS1 in the same cores. We suggest that the excursions of carbon isotopes to lower values were likely caused by the accumulation of respired organic matter due to slow overturning circulation, rather than to increased southern-sourced water, as typically assumed. The finding that there was little change in water mass provenance in the mid-depth South Atlantic between the LGM and HS1, despite decreased overturning, suggests that the rate of production of mid-depth southern-sourced water mass decreased in concert with decreased production of northern-sourced intermediate water at the onset of HS1. Consequently, we propose that even drastic changes in the strength of AMOC need not cause a significant change in South Atlantic mid-depth water mass proportions.
Observations of internal waves in the Gulf of California by SEASAT SAR
NASA Technical Reports Server (NTRS)
Fu, L. L.; Holt, B.
1983-01-01
Internal waves which are among the most commonly observed oceanic phenomena in the SEASAT SAR imagery are discussed. These waves are associated with the vertical displacements of constant water density surfaces in the ocean. Their amplitudes are maximum at depths where the water density changes most rapidly usually at depths from 50 to 100 m, whereas the horizontal currents associated with these waves are maximum at the sea surface where the resulting oscillatory currents modulate the sea surface roughness and produce the signatures detected by SAR.
Observations of internal waves in the Gulf of California by SEASAT SAR
NASA Astrophysics Data System (ADS)
Fu, L. L.; Holt, B.
1983-07-01
Internal waves which are among the most commonly observed oceanic phenomena in the SEASAT SAR imagery are discussed. These waves are associated with the vertical displacements of constant water density surfaces in the ocean. Their amplitudes are maximum at depths where the water density changes most rapidly usually at depths from 50 to 100 m, whereas the horizontal currents associated with these waves are maximum at the sea surface where the resulting oscillatory currents modulate the sea surface roughness and produce the signatures detected by SAR.
Neuromuscular responses during aquatic resistance exercise with different devices and depths.
Colado, Juan C; Borreani, Sebastien; Pinto, Stephanie Santana; Tella, Victor; Martin, Fernando; Flandez, Jorge; Kruel, Luiz F
2013-12-01
Little research has been reported regarding the effects of using different devices and immersion depths during the performance of resistance exercises in a water environment. The purpose of this study was to compare muscular activation of upper extremity and core muscles during shoulder extensions performed at maximum velocity with different devices and at different depths. Volunteers (N = 24) young fit male university students performed 3 repetitions of shoulder extensions at maximum velocity using 4 different devices and at 2 different depths. The maximum amplitude of the electromyographic root mean square of the latissimus dorsi (LD), rectus abdominis, and erector lumbar spinae was recorded. Electromyographic signals were normalized to the maximum voluntary isometric contraction. No significant (p > 0.05) differences were found in the neuromuscular responses between the different devices used during the performance of shoulder extension at xiphoid process depth. Regarding the comparisons of muscle activity between the 2 depths analyzed in this study, only the LD showed a significantly (p ≤ 0.05) higher activity at the xiphoid process depth compared with that at the clavicle depth. Therefore, if maximum muscle activation of the extremities is required, the xiphoid depth is a better choice than clavicle depth, and the kind of device is not relevant. Regarding core muscles, neither the kind of device nor the immersion depth modifies muscle activation.
Wong, Florence L.; Phillips, Eleyne L.; Johnson, Samuel Y.; Sliter, Ray W.
2012-01-01
Models of the depth to the base of Last Glacial Maximum and sediment thickness over the base of Last Glacial Maximum for the eastern Santa Barbara Channel are a key part of the maps of shallow subsurface geology and structure for offshore Refugio to Hueneme Canyon, California, in the California State Waters Map Series. A satisfactory interpolation of the two datasets that accounted for regional geologic structure was developed using geographic information systems modeling and graphics software tools. Regional sediment volumes were determined from the model. Source data files suitable for geographic information systems mapping applications are provided.
NASA Astrophysics Data System (ADS)
Mugisidi, Dan; Heriyani, Okatrina
2018-02-01
Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3), chloride, sodium, sulphate, and (KMnO4). In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.
Becker, Carol J.; Smith, S. Jerrod; Greer, James R.; Smith, Kevin A.
2010-01-01
The U.S. Geological Survey well profiler was used to describe arsenic-related water quality with well depth and identify zones yielding water with high arsenic concentrations in two production wells in central and western Oklahoma that yield water from the Permian-aged Garber-Wellington and Rush Springs aquifers, respectively. In addition, well-head samples were collected from 12 production wells yielding water with historically large concentrations of arsenic (greater than 10 micrograms per liter) from the Garber-Wellington aquifer, Rush Springs aquifer, and two minor aquifers: the Arbuckle-Timbered Hills aquifer in southern Oklahoma and a Permian-aged undefined aquifer in north-central Oklahoma. Three depth-dependent samples from a production well in the Rush Springs aquifer had similar water-quality characteristics to the well-head sample and did not show any substantial changes with depth. However, slightly larger arsenic concentrations in the two deepest depth-dependent samples indicate the zones yielding noncompliant arsenic concentrations are below the shallowest sampled depth. Five depth-dependent samples from a production well in the Garber-Wellington aquifer showed increases in arsenic concentrations with depth. Well-bore travel-time information and water-quality data from depth-dependent and well-head samples showed that most arsenic contaminated water (about 63 percent) was entering the borehole from perforations adjacent to or below the shroud that overlaid the pump. Arsenic concentrations ranged from 10.4 to 124 micrograms per liter in 11 of the 12 production wells sampled at the well head, exceeding the maximum contaminant level of 10 micrograms per liter for drinking water. pH values of the 12 well-head samples ranged from 6.9 to 9. Seven production wells in the Garber-Wellington aquifer had the largest arsenic concentrations ranging from 18.5 to 124 micrograms per liter. Large arsenic concentrations (10.4-18.5) and near neutral to slightly alkaline pH values (6.9-7.4) were detected in samples from one well in the Garber-Wellington aquifer, three production wells in the Rush Springs aquifer, and one well in an undefined Permian-aged aquifer. All well-head samples were oxic and arsenate was the only species of arsenic in water from 10 of the 12 production wells sampled. Arsenite was measured above the laboratory reporting level in water from a production well in the Garber-Wellington aquifer and was the only arsenic species measured in water from the Arbuckle-Timbered Hills aquifer. Fluoride and uranium were the only trace elements, other than arsenic, that exceeded the maximum contaminant level for drinking water in well-head samples collected for the study. Uranium concentrations in four production wells in the Garber-Wellington aquifer ranged from 30.2 to 99 micrograms per liter exceeding the maximum contaminant level of 30 micrograms per liter for drinking water. Water from these four wells also had the largest arsenic concentrations measured in the study ranging from 30 to 124 micrograms
Arp, C.D.; Jones, Benjamin M.; Urban, F.E.; Grosse, G.
2011-01-01
Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35-year period. Shoreline erosion rates due to permafrost degradation ranged from L) with periods of full and nearly dry basins. Shorter-term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long-term record for only shallow lakes. Our analysis suggests that grounded-ice lakes are ice-free on average 37 days longer than floating-ice lakes resulting in a longer period of evaporative loss and more frequent negative P − EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes.
Estimating maximum depth distribution of seagrass using underwater videography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, J.G.; Wyllie-Echeverria, S.
1997-06-01
The maximum depth distribution of eelgrass (Zostera marina) beds in Willapa Bay, Washington appears to be limited by light penetration which is likely related to water turbidity. Using underwater videographic techniques we estimated that the maximum depth penetration in the less turbid outer bay was -5.85 ft (MILW) and in the more turbid inner bay was only -1.59 ft (MLLW). Eelgrass beds had well defined deepwater edges and no eelgrass was observed in the deep channels of the bay. The results from this study suggest that aerial photographs taken during low tide periods are capable of recording the majority ofmore » eelgrass beds in Willapa Bay.« less
Pifer, Ashley D; Miskin, Daniel R; Cousins, Sarah L; Fairey, Julian L
2011-07-08
Using asymmetrical flow field-flow fractionation (AF4) and fluorescence parallel factor analysis (PARAFAC), we showed physicochemical properties of chromophoric dissolved organic matter (CDOM) in the Beaver Lake Reservoir (Lowell, AR) were stratified by depth. Sampling was performed at a drinking water intake structure from May to July 2010 at three depths (3-, 10-, and 18-m) below the water surface. AF4-fractograms showed that the CDOM had diffusion coefficient peak maximums between 3.5 and 2.8 x 10⁻⁶ cm² s⁻¹, which corresponded to a molecular weight range of 680-1950 Da and a size of 1.6-2.5 nm. Fluorescence excitation-emission matrices of whole water samples and AF4-generated fractions were decomposed with a PARAFAC model into five principal components. For the whole water samples, the average total maximum fluorescence was highest for the 10-m depth samples and lowest (about 40% less) for 18-m depth samples. While humic-like fluorophores comprised the majority of the total fluorescence at each depth, a protein-like fluorophore was in the least abundance at the 10-m depth, indicating stratification of both total fluorescence and the type of fluorophores. The results present a powerful approach to investigate CDOM properties and can be extended to investigate CDOM reactivity, with particular applications in areas such as disinfection byproduct formation and control and evaluating changes in drinking water source quality driven by climate change. Copyright © 2010 Elsevier B.V. All rights reserved.
Experimental study on soluble chemical transfer to surface runoff from soil.
Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei
2016-10-01
Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.
Cavitation pitting and erosion of aluminum 6061-T6 in mineral oil water
NASA Technical Reports Server (NTRS)
Rao, B. C. S.; Buckley, D. H.
1983-01-01
Cavitation erosion studies of aluminum 6061-T6 in mineral oil and in ordinary tap water are presented. The maximum erosion rate (MDPR, or mean depth of penetration rate) in mineral oil was about four times that in water. The MDPR in mineral oil decreased continuously with time, but the MDPR in water remained approximately constant. The cavitation pits in mineral oil were of smaller diameter and depth than the pits in water. Treating the pits as spherical segments, we computed the radius r of the sphere. The logarithm of h/a, where h is the pit depth and 2a is the top width of the pit, was linear when plotted against the logarithm of 2r/h - 1.
Feeding flights of breeding double-crested cormorants at two Wisconsin colonies
Custer, T.W.; Bunck, C.
1992-01-01
Unmarked Double-crested Cormorants (Phalacrocorax auritus ) were followed by airplane from Cat Island and Spider Island, two nesting colonies in Wisconsin, to their first landing site. Cormorants flew an average of 2.0 km from Cat Island (maximum 40 km) and 2.4 km from Spider Island (maximum 12 km). The mean direction of landing sites differed seasonally for flights from Spider Island, but not from Cat Island, Cormorants generally landed in Green Bay or Lake Michigan and rarely landed in inland lakes or ponds. The most frequent water depth at landing sites for each colony was < 9.1 m. Water depths greater than or equal to 9.1 m were used less frequently than available within the maximum observed flight distance for each colony. The average flight speed for cormorants was 61 km/h.
NASA Astrophysics Data System (ADS)
Chun, C. O.; Delaney, M. L.; Zachos, J. C.
2005-12-01
Walvis Ridge transect (Ocean Drilling Program (ODP) Leg 208) provides the first high-resolution depth-transect of deep-sea sediments recovered from the south Atlantic across the P/E boundary. A geographically restricted depth transect (~ 2.2 km, water depths between 2500 and 4770 m) allows us to constrain the surface waters by assuming marine productivity conditions in the overlying water column are similar across all sites. The sediment record will reveal variations for processes that are water-depth dependent. We use the geochemical tracers; biogenic barium, phosphorus, calcium carbonate, and the redox sensitive trace elements manganese and uranium, to reconstruct nutrient burial, paleoproductivity, and bottom water redox chemistry across the Paleocene-Eocene Thermal Maximum (PETM). We calculate our concentrations on a calcium carbonate-free basis to account for dilution by non-carbonate sediments. Trace metal enrichment factors (EFs) are calculated relative to bulk crustal averages. We chose three sites from the depth transect: the shallowest (Site 1263, 2717 m water depth), an intermediate site (Site 1266, 3798 m water depth), and the deepest site (Site 1262, 4755 m water depth). We sampled each site at a sample resolution of ~ 1-2 kyr for 5 m.y. centered at 55 Ma. Uranium EFs at the shallow site exhibits values ~ 5 pre-event and drop to values near crustal averages during and after the carbon isotope excursion (CIE). No dramatic changes in U EFs across the P/E boundary are recorded at the deep and intermediate sites. Mn EFs range between 2.9 -8.6 prior to the event across all three sites, suggesting an oxygenated depositional environment. At the boundary, Mn EFs drop to crustal averages at all sites, then gradually return to pre-event values, indicating more reducing environments during the CIE, a possible explanation for the benthic extinction event (BEE) observed across this transect. Ba excess and reactive phosphorus exhibit decreased concentrations during the CIE with gradual return to pre-event values at the shallowest and deepest sites. We will compare the paleo-productivity and redox chemistry response at the Walvis Ridge sites across the PETM.
Reduced oxygenation at intermediate depths of the southwest Pacific during the last glacial maximum
NASA Astrophysics Data System (ADS)
Durand, Axel; Chase, Zanna; Noble, Taryn L.; Bostock, Helen; Jaccard, Samuel L.; Townsend, Ashley T.; Bindoff, Nathaniel L.; Neil, Helen; Jacobsen, Geraldine
2018-06-01
To investigate changes in oxygenation at intermediate depths in the southwest Pacific between the Last Glacial Maximum (LGM) and the Holocene, redox sensitive elements uranium and rhenium were measured in 12 sediment cores located on the Campbell and Challenger plateaux offshore from New Zealand. The core sites are currently bathed by Subantarctic Mode Water (SAMW), Antarctic Intermediate Water (AAIW) and Upper Circumpolar Deep Water (UCDW). The sedimentary distributions of authigenic uranium and rhenium reveal reduced oxygen content at intermediate depths (800-1500 m) during the LGM compared to the Holocene. In contrast, data from deeper waters (≥1500 m) indicate higher oxygen content during the LGM compared to the Holocene. These data, together with variations in benthic foraminiferal δ13C, are consistent with a shallower AAIW-UCDW boundary over the Campbell Plateau during the LGM. Whilst AAIW continued to bathe the intermediate depths (≤1500 m) of the Challenger Plateau during the LGM, the data suggest that the AAIW at these core sites contained less oxygen compared to the Holocene. These results are at odds with the general notion that AAIW was better oxygenated and expanded deeper during the LGM due to stronger westerlies and colder temperatures. These findings may be explained by an important change in AAIW formation and circulation.
Pressure as a limit to bloater (Coregonus hoyi) vertical migration
TeWinkel, Leslie M.; Fleischer, Guy W.
1998-01-01
Observations of bloater vertical migration showed a limit to the vertical depth changes that bloater experience. In this paper, we conducted an analysis of maximum differences in pressure encountered by bloater during vertical migration. Throughout the bottom depths studied, bloater experienced maximum reductions in swim bladder volume equal to approximately 50-60% of the volume in midwater. The analysis indicated that the limit in vertical depth change may be related to a maximum level of positive or negative buoyancy for which bloater can compensate using alternative mechanisms such as hydrodynamic lift. Bloater may be limited in the extent of migration by either their depth of neutral buoyancy or the distance above the depth of neutral buoyancy at which they can still maintain their position in the water column. Although a migration limit for the bloater population was evident, individual distances of migration varied at each site. These variations in migration distances may indicate differences in depths of neutral buoyancy within the population. However, in spite of these variations, the strong correlation between shallowest depths of migration and swim bladder volume reduction across depths provides evidence that hydrostatic pressure limits the extent of daily vertical movement in bloater.
The maximum depth of colonization (Zc) is a useful measure of seagrass growth that describes response to light attenuation in the water column. However, lack of standardization among methods for estimating Zc has limited the description of habitat requirements at spatial scales m...
NASA Astrophysics Data System (ADS)
Zhang, Zaiyong; Wang, Wenke; Wang, Zhoufeng; Chen, Li; Gong, Chengcheng
2018-03-01
The dynamic processes of ground evaporation are complex and are related to a multitude of factors such as meteorological influences, water-table depth, and materials in the unsaturated zone. To investigate ground evaporation from a homogeneous unsaturated zone, an in-situ experiment was conducted in Ordos Plateau of China. Two water-table depths were chosen to explore the water movement in the unsaturated zone and ground evaporation. Based on the experimental and calculated results, it was revealed that (1) bare ground evaporation is an atmospheric-limited stage for the case of water-table depth being close to the capillary height; (2) the bare ground evaporation is a water-storage-limited stage for the case of water-table depth being beyond the capillary height; (3) groundwater has little effect on ground-surface evaporation when the water depth is larger than the capillary height; and (4) ground evaporation is greater at nighttime than that during the daytime; and (5) a liquid-vapor interaction zone at nearly 20 cm depth is found, in which there exists a downward vapor flux on sunny days, leading to an increasing trend of soil moisture between 09:00 to 17:00; the maximum value is reached at midday. The results of this investigation are useful to further understand the dynamic processes of ground evaporation in arid areas.
NASA Astrophysics Data System (ADS)
Fabricius, K. E.; Logan, M.; Weeks, S. J.; Lewis, S. E.; Brodie, J.
2016-05-01
Water clarity is a key factor for the health of marine ecosystems. The Australian Great Barrier Reef (GBR) is located on a continental shelf, with >35 major seasonal rivers discharging into this 344,000 km2 tropical to subtropical ecosystem. This work investigates how river discharges affect water clarity in different zones along and across the GBR. For each day over 11 years (2002-2013) we calculated 'photic depth' as a proxy measure of water clarity (calibrated to be equivalent to Secchi depth), for each 1 km2 pixel from MODIS-Aqua remote sensing data. Long-term and seasonal changes in photic depth were related to the daily discharge volumes of the nearest rivers, after statistically removing the effects of waves and tides on photic depth. The relationships between photic depths and rivers differed across and along the GBR. They typically declined from the coastal to offshore zones, and were strongest in proximity to rivers in agriculturally modified catchments. In most southern inner zones, photic depth declined consistently throughout the 11-year observation period; such long-term trend was not observed offshore nor in the northern regions. Averaged across the GBR, photic depths declined to 47% of local maximum values soon after the onset of river floods, and recovery to 95% of maximum values took on average 6 months (range: 150-260 days). The river effects were strongest at latitude 14.5°-19.0°S, where river loads are high and the continental shelf is narrow. Here, even offshore zones showed a >40% seasonal decline in photic depth, and 17-24% reductions in annual mean photic depth in years with large river nutrients and sediment loads. Our methodology is based on freely available data and tools and may be applied to other shelf systems, providing valuable insights in support of ecosystem management.
Observational analysis of air-sea fluxes and sea water temperature offshore South China Sea
NASA Astrophysics Data System (ADS)
Bi, X.; Huang, J.; Gao, Z.; Liu, Y.
2017-12-01
This paper investigates the air-sea fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China Sea from January 2009 to December 2016 and sea water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the sea averages about 15 m. This study presents the in-situ measurements of continuous air-sea fluxes and SWT at different depths. Seasonal and diurnal variations in air-sea fluxes and SWT on different depths are examined. Results show that air-sea fluxes and all SWT changed seasonally; sea-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between sea surface temperature (SST) and sea temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.
Vertical amplitude phase structure of a low-frequency acoustic field in shallow water
NASA Astrophysics Data System (ADS)
Kuznetsov, G. N.; Lebedev, O. V.; Stepanov, A. N.
2016-11-01
We obtain in integral and analytic form the relations for calculating the amplitude and phase characteristics of an interference structure of orthogonal projections of the oscillation velocity vector in shallow water. For different frequencies and receiver depths, we numerically study the source depth dependences of the effective phase velocities of an equivalent plane wave, the orthogonal projections of the sound pressure phase gradient, and the projections of the oscillation velocity vector. We establish that at low frequencies in zones of interference maxima, independently of source depth, weakly varying effective phase velocity values are observed, which exceed the sound velocity in water by 5-12%. We show that the angles of arrival of the equivalent plane wave and the oscillation velocity vector in the general case differ; however, they virtually coincide in the zone of the interference maximum of the sound pressure under the condition that the horizontal projections of the oscillation velocity appreciably exceed the value of the vertical projection. We give recommendations on using the sound field characteristics in zones with maximum values for solving rangefinding and signal-detection problems.
Tollett, Roland W.; Fendick, Robert B.
2004-01-01
In 1999-2001, the U.S. Geological Survey installed and sampled 27 shallow wells in the rice-growing area in southwestern Louisiana as part of the Acadian-Pontchartrain Study Unit of the National Water-Quality Assessment Program. The purpose of this report is to describe the waulity of water from shallow wells in the rice-growing area and to relate that water quality to natural and anthropogenic activities, particularly rice agriculture. Ground-water samples were analyzed for general ground-water properties and about 150 water-quality constituents, including major inorganic ions, trace elements, nutrients, dissolved organic carbon (DOC), pesticides, radon, chloroflourocarbons, and selected stable isotopes. Dissolved solids concentrations for 17 wells exceeded the U.S. Environmental Protection Agency secondary minimum containment level of 500 milligrams per liter (mg/L) for drinking water. Concentrations for major pesticides generally were less than the maximum contaminant levels for drinking water. Two major inorganic ions, sulfate and chloride, and two trace elements, iron and manganese, had concentrations that were greater than the secondary maximum containment levels. Three nutrient concentrations were greater than 2 mg/L, a level that might indicate contamination from human activities, and one nutrient concentration (that for nitrite plus nitrite as nitrogen) was greater than the maximum contaminant level of 10 mg/L for drinking water. The median concentration for DOC was 0.5 mg/L, indicating naturally-occurring DOC conditions in the study area. Thirteen pesticides and 7 pesticide degradation products were detected in 14 of the 27 wells sampled. Bentazon, 2, 4-D, and molinate (three rice herbicides) were detected in water from four, one, and one wells, respectively, and malathion (a rice insecticide) was deteced in water fromone well. Low-level concentrations and few detections of nutrients and pesticides indicated that ground-water quality was affected slightly by anthropogenic activities. Quality-control samples, including field blanks, replicates, and spikes, indicated no bias in ground-water data from collection on analysis. Radon concentrations for 22 of the 24 wells sampled wer at or greater than the U.S. Environmental Protection Agency proposed maximum contaminant level of 300 picocuries per liter. Chlorofluorocarbon concentrations in selected wells indicated the apparent ages of the ground water varied with depth water level and ranged from about 17 to 49 years. The stable isotopes of hydrogen and oxygen in water molecules indicated the origin of ground water in the study area was rainwater that originated near the study area and that few geochemical or physical processes influenced the stable isotopic composition of the shallow ground water. The Spearman rank correlation was used to detemrine whther significant correlations existed between physical properties, selected chemical constituents, the number of pesticides detected, and the apparent age of water. The depth to ground water was positively correlated to the well depth and inversely correlated to dissolved solids and other constituents, such as radon, indicating the ground water was under unconfined or semiconfined conditions and more dilute with increasing depth. As the depth to ground water increased, the concentrations of dissolved solids and other constituents decreased, possibly because the deeper sands had a greater transmittal of ground water, which, over time, would flush out, or dilute, the concentrations of dissolved solids in the natural sediments. The apparent age of water was correlated inversely with nitrite plus nitrite concentration, indicating that as apparent age increased, the nitrite plus nitrite concentration decreased. No significant correlations existed between the number of pesticides detected and any of the physical or chemica
Euliss, Ned H.; Mushet, David M.
1996-01-01
We evaluated water-level fluctuation (maximum water depth - minimum water depth/catchment size) in 12 temporary, 12 seasonal, and 12 semipermanent wetlands equally distributed among landscapes dominated by tilled agricultural lands and landscapes dominated by grassland. Water levels fluctuated an average of 14.14 cm in wetlands within tilled agricultural landscapes, while water levels in wetlands within grassland landscapes fluctuated an average of only 4.27 cm. Tillage reduces the natural capacity of catch meets to mitigate surface flow into wetland basins during precipitation events, resulting in greater water-level fluctuations in wetlands with tilled catchments. In addition, water levels in temporary and seasonal wetlands fluctuated an average of 13.74 cm and 11.82 cm, respectively, while water levels in semipermanent wetlands fluctuated only 2.77 cm. Semipermanent wetlands receive a larger proportion of their water as input from ground water than do either temporary or seasonal wetlands. This input of water from the ground has a stabilizing effect on water-levels of semipermanent wetlands. Increases in water-level fluctuation due to tillage or due to alteration of ground-water hydrology may ultimately affect the composition of a wetland's flora and fauna. In this paper, we also describe an inexpensive device for determining absolute maximum and minimum water levels in wetlands.
Nitrate is the most common chemical contaminant found in ground water. Recent research by U.S. EPA has shown that land application of manure can cause nitrate contamination of ground water above the maximum contaminant levels (MCLs) of 10 mg NO3-N/ L at significant depths. This...
33 CFR 164.35 - Equipment: All vessels.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to alter course 90 degrees with maximum rudder angle and constant power settings, for either full and...: (i) Calm weather—wind 10 knots or less, calm sea; (ii) No current; (iii) Deep water conditions—water...: (1) Calm weather—wind 10 knots or less, calm sea; (2) No current; (3) Water depth twice the vessel's...
33 CFR 164.35 - Equipment: All vessels.
Code of Federal Regulations, 2011 CFR
2011-07-01
... to alter course 90 degrees with maximum rudder angle and constant power settings, for either full and...: (i) Calm weather—wind 10 knots or less, calm sea; (ii) No current; (iii) Deep water conditions—water...: (1) Calm weather—wind 10 knots or less, calm sea; (2) No current; (3) Water depth twice the vessel's...
Yao, Yanyan; Jiang, Tao; Zhang, Limin; Chen, Xiangyu; Gao, Zhenliang; Wang, Zhong Lin
2016-08-24
Ocean waves are one of the most promising renewable energy sources for large-scope applications due to the abundant water resources on the earth. Triboelectric nanogenerator (TENG) technology could provide a new strategy for water wave energy harvesting. In this work, we investigated the charging characteristics of utilizing a wavy-structured TENG to charge a capacitor under direct water wave impact and under enclosed ball collision, by combination of theoretical calculations and experimental studies. The analytical equations of the charging characteristics were theoretically derived for the two cases, and they were calculated for various load capacitances, cycle numbers, and structural parameters such as compression deformation depth and ball size or mass. Under the direct water wave impact, the stored energy and maximum energy storage efficiency were found to be controlled by deformation depth, while the stored energy and maximum efficiency can be optimized by the ball size under the enclosed ball collision. Finally, the theoretical results were well verified by the experimental tests. The present work could provide strategies for improving the charging performance of TENGs toward effective water wave energy harvesting and storage.
Benedict, Stephen T.; Caldwell, Andy W.; Edited by Abt, S. R. and others
1998-01-01
Clear-water contraction and abutment scour data were collected at 128 bridge sites in South Carolina. In the sandy soils of the Coastal Plain, clear-water-scour data were collected at 63 sites (scour depths ranged from 0.4 to 7.2 meters.) In the clayey soils of the Piedmont, clear-water-scour data were collected at 47 sites (scour depths ranged from 0 to 1.4 meters.) In the sandy, clayey soils of the Piedmont, clear-water-scour data were collected at 18 sites (scour depths ranged from 0.9 to 5.5 meters.) The field data are to be compiled into a data base that will include bridge age; basin, soil and hydraulic characteristics; and theoretical scour data. The data are planned to be statistically analyzed for significant relations that may help explain and (or) predict maximum scour depths at bridges in South Carolina.
NASA Astrophysics Data System (ADS)
Yin, W.; Zheng, Y. L.; Lu, H. Y.; Zhang, X. J.; Tian, Y.
2016-10-01
A water strider has a remarkable capability to stand and walk freely on water. Supporting forces of a water strider and a bionic robot have been calculated from the side view of pressed depth of legs to reconstruct the water surface dimples. However, in situ measurements of the multiple leg forces and significantly small leg/water contact dimples have not been realized yet. In this study, a shadow method was proposed to reconstruct the in situ three-dimensional topographies of leg/water contact dimples and their corresponding supporting forces. Results indicated that the supporting forces were affected by the depth, width, and length of the dimple, and that the maximum dimple depth was not proportional to the supporting forces. The shadow method also has advantages in disclosing tiny supporting force of legs in their subtle actions. These results are helpful for understanding the locomotion principles of water-walking insects and the design of biomimetic aquatic devices.
The effect of depth of step on the water performance of a flying-boat hull model
NASA Technical Reports Server (NTRS)
Bell, Joe W
1935-01-01
NACA model 11-C was tested with four different depths of step to obtain information as to the effect of the depth of step on the water performance. The depths of step were selected to cover the practicable range of depths and in each case the included angle between the forebody and afterbody keels was kept the same 6-1/2 degrees. Small depths of step were found to give lower resistance at speeds below and at the hump speed of the model and greater depths of step lower resistance at high speeds. For low resistance throughout the speed range of the model investigated the most desirable depth of step is from 2.5 to 4.0 percent of the beam. The change of the best trim angle caused by variation of the depth of step was not appreciable. Increased depth of step caused increases in the maximum positive trimming moments at all trim angles investigated.
Evidence for the existence of Persian Gulf Water and Red Sea Water in the Bay of Bengal
NASA Astrophysics Data System (ADS)
Jain, Vineet; Shankar, D.; Vinayachandran, P. N.; Kankonkar, A.; Chatterjee, Abhisek; Amol, P.; Almeida, A. M.; Michael, G. S.; Mukherjee, A.; Chatterjee, Meenakshi; Fernandes, R.; Luis, R.; Kamble, Amol; Hegde, A. K.; Chatterjee, Siddhartha; Das, Umasankar; Neema, C. P.
2017-05-01
The high-salinity water masses that originate in the North Indian Ocean are Arabian Sea High-Salinity Water (ASHSW), Persian Gulf Water (PGW), and Red Sea Water (RSW). Among them, only ASHSW has been shown to exist in the Bay of Bengal. We use CTD data from recent cruises to show that PGW and RSW also exist in the bay. The presence of RSW is marked by a deviation of the salinity vertical profile from a fitted curve at depths ranging from 500 to 1000 m; this deviation, though small (of the order of 0.005 psu and therefore comparable to the CTD accuracy of 0.003 psu), is an order of magnitude larger than the 0.0003 psu fluctuations associated with the background turbulence or instrument noise in this depth regime, allowing us to infer the existence of RSW throughout the bay. PGW is marked by the presence of a salinity maximum at 200-450 m; in the southwestern bay, PGW can be distinguished from the salinity maximum due to ASHSW because of the intervening Arabian Sea Salinity Minimum. This salinity minimum and the maximum associated with ASHSW disappear east and north of the south-central bay (85°E, 8°N) owing to mixing between the fresher surface waters that are native to the bay (Bay of Bengal Water or BBW) with the high-salinity ASHSW. Hence, ASHSW is not seen as a distinct water mass in the northern and eastern bay and the maximum salinity over most of the bay is associated with PGW. The surface water over most of the bay is therefore a mixture of ASHSW and the low-salinity BBW. As a corollary, we can also infer that the weak oxygen peak seen within the oxygen-minimum zone in the bay at a depth of 250-400 m is associated with PGW. The hydrographic data also show that these three high-salinity water masses are advected into the bay by the Summer Monsoon Current, which is seen to be a deep current extending to 1000 m. These deep currents extend into the northern bay as well, providing a mechanism for spreading ASHSW, PGW, and RSW throughout the bay.
Performance analysis of air-water quantum key distribution with an irregular sea surface
NASA Astrophysics Data System (ADS)
Xu, Hua-bin; Zhou, Yuan-yuan; Zhou, Xue-jun; Wang, Lian
2018-05-01
In the air-water quantum key distribution (QKD), the irregular sea surface has some influence on the photon polarization state. The wind is considered as the main factor causing the irregularity, so the model of irregular sea surface based on the wind speed is adopted. The relationships of the quantum bit error rate with the wind speed and the initial incident angle are simulated. Therefore, the maximum secure transmission depth of QKD is confirmed, and the limitation of the wind speed and the initial incident angle is determined. The simulation results show that when the wind speed and the initial incident angle increase, the performance of QKD will fall down. Under the intercept-resend attack condition, the maximum safe transmission depth of QKD is up to 105 m. To realize safe communications in the safe diving depth of submarines (100 m), the initial incident angle is requested to be not exceeding 26°, and with the initial incident angle increased, the limitation of wind speed is decreased.
NASA Technical Reports Server (NTRS)
Longbothum, R. L.
1975-01-01
Stratospheric and mesospheric water vapor measurements were taken using the microwave lines at 22 GHz (22.235 GHz) and 183 GHz (183.31 GHz). The resonant cross sections for both the 22 GHz and the 183 GHz lines were used to model the optical depth of atmospheric water vapor. The range of optical depths seen by a microwave radiometer through the earth's limb was determined from radiative transfer theory. Radiometer sensitivity, derived from signal theory, was compared with calculated optical depths to determine the maximum height to which water vapor can be measured using the following methods: passive emission, passive absorption, and active absorption. It was concluded that measurements using the 22 GHz line are limited to about 50 km whereas the 183 GHz line enables measurements up to and above 100 km for water vapor mixing ratios as low as 0.1 ppm under optimum conditions.
D.W. Reiser; T.C. Bjornn
1979-01-01
Habitat requirements of anadromous and some resident salmonid fishes have been described for various life stages, including upstream migration of adults, spawning, incubation, and juvenile rearing. Factors important in the migration of adults are water temperature, minimum water depth, maximum water velocity, turbidity, dissolved oxygen, and...
Effect of water availability in opening containers of breeding site on Aedes aegypti life cycle
NASA Astrophysics Data System (ADS)
Tokachil, Najir; Yusoff, Nuraini; Saaid, Alif; Appandi, Najwa; Harun, Farhana
2017-11-01
The distribution of rainfall is one of the factors which contribute to the development of Aedes aegypti life cycle. The fluctuation of rainfall might influence the acceleration of Aedes aegypti growth by providing sufficient breeding sites. In this research, the availability of water in an opening container of the breeding site is considered as a significant variable which affects the distinct stages structure in mosquito life cycle which egg, larva, pupa, and adult. A stage-structured Lefkovitch matrix model was used by considering the quantity of water contains in an opening container and life cycle of Aedes aegypti. The maximum depth of water in the container was also taken into account in order to find the time duration of mosquito life cycle to complete. We found that the maximum depth of water availability in mosquito breeding site influenced the abundance of the mosquito population. Hence, the containers are filled with sufficient water be able to stand from hot temperature for several days before drying out might continue to provide mosquito breeding site. In the future, it is recommended to consider other factors which affect the quantity of water in mosquito breeding sites such as heavy rain and wind blows.
Seasonal bathymetric distributions of 16 fishes in Lake Superior, 1958-75
Selgeby, James H.; Hoff, Michael H.
1996-01-01
The bathymetric distributions of fishes in Lake Superior, which is one of the largest and deepest lakes in the world, has not been studied on a lakewide scale. Knowledge about the bathymetric distributions will aid in designing fish sampling programs, estimating absolute abundances, and modeling energy flow in the lake. Seasonal bathymetric distributions were determined , by 10-m depth intervals, for 16 fishes collected with bottom trawls and bottom-set gill nets within the upper 150 m of Lake Superior during 1958-75. In spring trawl catches, maximum abundance occurred at these depths: 15 m for round whitefish (Prosopium cylindraceum); 25m for longnose sucker (Catostomus catostomus); 35 m for lake whitefish (Coregonus clupeaformis) and rainbow smelt (Osmerus mordax); 45 m for lake trout (Salvelinus namaycush); 65 m for pygmy whitefish (Prospoium coulteri) and bloater (Coregonus hoyi); 75 m for trout- perch (Percopsis omiscomaycus); 105 m for shortjaw cisco (Coregonus zenithicus); and 115 m for ninespine stickleback (Pungitius pungitius), burbot (Lota lota), slimy sculpin (Cottus cogantus), spoonhead sculpin (Cottus ricei), and deepwater sculpin (Myoxcephalus thompsoni). Bathymetric distributions in spring gill nets were similar to those in trawls, except that depths of maximum abundances in gill nets were shallower than those in trawls for lake trout, rainbow smelt, longnose sucker, and burbot. Lake herring (Coregonus artedi) and kiyi (Coregonus kiyi) were rarely caught in trawls, and their maximum abundances in spring gill net collections were at depths of 25 and 145 m, respectively. In summer, pygmy whitefish, shortjaw cisco, lake herring, kiyi, longnose sucker, burbot, ninespine stickleback, trout-perch, slimy sculpin, and spponhead sculpin were at shallower depths than in spring, whereas rainbow smelt were found in deeper water; there was no change for other species. In fall, shortjaw cisco was at shallower depths than in summer, whereas the remaining species were found deeper, except for lake whitefish and lake trout whose modal depths did not change. Distributions of lake trout and lake whitefish were analyzed by age group, and the young (ages 1-3) of both species were often found in shallower water than were older fish. The shallow-water species exhibited little seasonal changes in bathymetric distributions, whereas the species that inhabited the middepths of deeper water generally moved shallower as the seasons progressed. Most of the more pronounced seasaonl changes in bathymetric distribution were associated with spawning movements.
Vertical mercury distributions in the oceans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, G.A.; Fitzgerald, W.F.
1988-06-01
The vertical distribution of mercury (Hg) was determined at coastal and open ocean sites in the northwest Atlantic and Pacific Oceans. Reliable and diagnostic Hg distribution were obtained, permitting major processes governing the marine biogeochemistry of Hg to be identified. The northwest Atlantic near Bermuda showed surface water Hg concentrations near 4 pM, a maximum of 10 pM within the main thermocline, and concentrations less than or equal to surface water values below the depth of the maximum. The maximum appears to result from lateral transport of Hg enriched waters from higher latitudes. In the central North Pacific, surface watersmore » (to 940 m) were slightly elevated (1.9 {plus minus} 0.7 pM) compared to deeper waters (1.4 {plus minus} 0.4 pM), but on thermocline Hg maximum was observed. At similar depths, Hg concentrations near Bermuda were elevated compared to the central North Pacific Ocean. The authors hypothesize that the source of this Hg comes from diagenetic reactions in oxic margin sediments, releasing dissolved Hg to overlying water. Geochemical steady-state box modeling arguments predict a relatively short ({approximately}350 years) mean residence time for Hg in the oceans, demonstrating the reactive nature of Hg in seawater and precluding significant involvement in nutrient-type recycling. Mercury's distributional features and reactive nature suggest that interaction of Hg with settling particulate matter and margin sediments play important roles in regulating oceanic Hg concentrations. Oceanic Hg distributions are governed by an external cycling process, in which water column distributions reflect a rapid competition between the magnitude of the input source and the intensity of the (water column) removal process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hee Jung; Department of Biomedical Engineering, Seoul National University, Seoul; Department of Radiation Oncology, Soonchunhyang University Hospital, Seoul
2015-01-01
To investigate how accurately treatment planning systems (TPSs) account for the tongue-and-groove (TG) effect, Monte Carlo (MC) simulations and radiochromic film (RCF) measurements were performed for comparison with TPS results. Two commercial TPSs computed the TG effect for Varian Millennium 120 multileaf collimator (MLC). The TG effect on off-axis dose profile at 3 depths of solid water was estimated as the maximum depth and the full width at half maximum (FWHM) of the dose dip at an interleaf position. When compared with the off-axis dose of open field, the maximum depth of the dose dip for MC and RCF rangedmore » from 10.1% to 20.6%; the maximum depth of the dose dip gradually decreased by up to 8.7% with increasing depths of 1.5 to 10 cm and also by up to 4.1% with increasing off-axis distances of 0 to 13 cm. However, TPS results showed at most a 2.7% decrease for the same depth range and a negligible variation for the same off-axis distances. The FWHM of the dose dip was approximately 0.19 cm for MC and 0.17 cm for RCF, but 0.30 cm for Eclipse TPS and 0.45 cm for Pinnacle TPS. Accordingly, the integrated value of TG dose dip for TPS was larger than that for MC and RCF and almost invariant along the depths and off-axis distances. We concluded that the TG dependence on depth and off-axis doses shown in the MC and RCF results could not be appropriately modeled by the TPS versions in this study.« less
Optimization of Energy Consumption and Mass Transfer Parameters in a Surface Aeration Vessel.
Mohammadpour, A; AkhavanBehabadi, M A; Ebrahimzadeh, M; Raisee, M; MajdiNasab, A R; Nosrati, M; Mousavi, S M
2016-04-01
This paper reports tests on a lab-scale surface aeration vessel was equipped with a Rushton turbine to examine its performance in terms of standard aeration efficiency (SAE), mixing time, and void fraction characteristics. These characteristics were investigated by tests using variations of rotor speed, impeller immersion depth, and water level. Results showed that variation of impeller immersion depth had a greater effect on the SAE compared to variation of water level. Moreover, the SAE increased with rotor speeds up to about 150 to 200 rpm and then decreased. In addition, void fraction improved by impeller immersion depth and rotor speed enhancement; however, mixing time and power number were reduced as rotor speed increased. According to the response surface methodology statistical optimizations, optimum values for rotor speed, impeller immersion depth, and water level were 168.90 rpm, 25 mm, and 30 cm, respectively, to achieve the maximum value of SAE.
Abundance of adult saugers across the Wind River watershed, Wyoming
Amadio, C.J.; Hubert, W.A.; Johnson, K.; Oberlie, D.; Dufek, D.
2006-01-01
The abundance of adult saugers Sander canadensis was estimated over 179 km of continuous lotic habitat across a watershed on the western periphery of their natural distribution in Wyoming. Three-pass depletions with raft-mounted electrofishing gear were conducted in 283 pools and runs among 19 representative reaches totaling 51 km during the late summer and fall of 2002. From 2 to 239 saugers were estimated to occur among the 19 reaches of 1.6-3.8 km in length. The estimates were extrapolated to a total population estimate (mean ?? 95% confidence interval) of 4,115 ?? 308 adult saugers over 179 km of lotie habitat. Substantial variation in mean density (range = 1.0-32.5 fish/ha) and mean biomass (range = 0.5-16.8 kg/ha) of adult saugers in pools and runs was observed among the study reaches. Mean density and biomass were highest in river reaches with pools and runs that had maximum depths of more than 1 m, mean daily summer water temperatures exceeding 20??C, and alkalinity exceeding 130 mg/L. No saugers were captured in the 39 pools or runs with maximum water depths of 0.6 m or less. Multiple-regression analysis and the information-theoretic approach were used to identify watershed-scale and instream habitat features accounting for the variation in biomass among the 244 pools and runs across the watershed with maximum depths greater than 0.6 m. Sauger biomass was greater in pools than in runs and increased as mean daily summer water temperature, maximum depth, and mean summer alkalinity increased and as dominant substrate size decreased. This study provides an estimate of adult sauger abundance and identifies habitat features associated with variation in their density and biomass across a watershed, factors important to the management of both populations and habitat. ?? Copyright by the American Fisheries Society 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobel, P.S.
Soil conditions were evaluated over the rooting depths for Agave deserti and Ferocactus acanthodes from the northwestern Sonoran Desert. These succulents have mean root depths of only 10 cm when adults and even shallower distribution when seedlings, which often occur is association with the nurse plant Hilaria rigida, which also has shallow roots. Maximum soil temperatures in the 2 cm beneath bare ground were predicted to exceed 65 C, which is lethal to the roots of A. deserti and F. acanthodes, whereas H. rigida reduced the maximum surface temperatures by over 10 C, providing a microhabitat suitable for seedling establishment.more » Water Availability was defined as the soil-to-plant drop in water potential, for periods when the plants could take up water, integrated over time. Below 4 cm under bare ground, simulated Water Availability increased slightly with depth (to 35 cm) for a wet year, was fairly constant for an average year, and decreased for a dry year, indicating that the shallow rooting habit is more advantageous in drier years. Water uptake by H. rigida substantially reduced Water Availability for seedlings associated with this nurse plant. On the other hand, a 66-90% higher soil nitrogen level occurred under H. rigida, possibly representing its harvesting of this macronutrient from a wide ground area. Phosphorus was slightly less abundant in the soil under H. rigida compared with under bare ground, the potassium level was substantially higher, and the sodium level was substantially lower. All four elements varied greatly with depth, N and K decreasing and P and Na increasing. Based on the known growth responses of A. deserti and F. acanthodes to these four elements, growth was predicted to be higher for plants in soil from the shallower layers, most of the differences being due to nitrogen.« less
Simulation of Groundwater Mounding Beneath Hypothetical Stormwater Infiltration Basins
Carleton, Glen B.
2010-01-01
Groundwater mounding occurs beneath stormwater management structures designed to infiltrate stormwater runoff. Concentrating recharge in a small area can cause groundwater mounding that affects the basements of nearby homes and other structures. Methods for quantitatively predicting the height and extent of groundwater mounding beneath and near stormwater Finite-difference groundwater-flow simulations of infiltration from hypothetical stormwater infiltration structures (which are typically constructed as basins or dry wells) were done for 10-acre and 1-acre developments. Aquifer and stormwater-runoff characteristics in the model were changed to determine which factors are most likely to have the greatest effect on simulating the maximum height and maximum extent of groundwater mounding. Aquifer characteristics that were changed include soil permeability, aquifer thickness, and specific yield. Stormwater-runoff variables that were changed include magnitude of design storm, percentage of impervious area, infiltration-structure depth (maximum depth of standing water), and infiltration-basin shape. Values used for all variables are representative of typical physical conditions and stormwater management designs in New Jersey but do not include all possible values. Results are considered to be a representative, but not all-inclusive, subset of likely results. Maximum heights of simulated groundwater mounds beneath stormwater infiltration structures are the most sensitive to (show the greatest change with changes to) soil permeability. The maximum height of the groundwater mound is higher when values of soil permeability, aquifer thickness, or specific yield are decreased or when basin depth is increased or the basin shape is square (and values of other variables are held constant). Changing soil permeability, aquifer thickness, specific yield, infiltration-structure depth, or infiltration-structure shape does not change the volume of water infiltrated, it changes the shape or height of the groundwater mound resulting from the infiltration. An aquifer with a greater soil permeability or aquifer thickness has an increased ability to transmit water away from the source of infiltration than aquifers with lower soil permeability; therefore, the maximum height of the groundwater mound will be lower, and the areal extent of mounding will be larger. The maximum height of groundwater mounding is higher when values of design storm magnitude or percentage of impervious cover (from which runoff is captured) are increased (and other variables are held constant) because the total volume of water to be infiltrated is larger. The larger the volume of infiltrated water the higher the head required to move that water away from the source of recharge if the physical characteristics of the aquifer are unchanged. The areal extent of groundwater mounding increases when soil permeability, aquifer thickness, design-storm magnitude, or percentage of impervious cover are increased (and values of other variables are held constant). For 10-acre sites, the maximum heights of the simulated groundwater mound range from 0.1 to 18.5 feet (ft). The median of the maximum-height distribution from 576 simulations is 1.8 ft. The maximum areal extent (measured from the edge of the infiltration basins) of groundwater mounding of 0.25-ft ranges from 0 to 300 ft with a median of 51 ft for 576 simulations. Stormwater infiltration at a 1-acre development was simulated, incorporating the assumption that the hypothetical infiltration structure would be a pre-cast concrete dry well having side openings and an open bottom. The maximum heights of the simulated groundwater-mounds range from 0.01 to 14.0 ft. The median of the maximum-height distribution from 432 simulations is 1.0 ft. The maximum areal extent of groundwater mounding of 0.25-ft ranges from 0 to 100 ft with a median of 10 ft for 432 simulations. Simulated height and extent of groundwater mounding associ
NASA Astrophysics Data System (ADS)
Hernández-Bello, Jimmy; D'Souza, Derek; Rossenberg, Ivan
2002-08-01
A method to determine the electron beam energy and an electron audit based on the current IPEM electron Code of Practice has been devised. During the commissioning on the new Varian 2100CD linear accelerator in The Middlesex Hospital, two methods were devised for the determination of electron energy. The first method involves the use of a two-depth method, whereby the ratio of ionisation (presented as a percentage) measured by an ion chamber at two depths in solid water is used to compare against the baseline ionisation depth value for that energy. The second method involves the irradiation of an X-ray film in solid water to obtain a depth dose curve and, hence determine the half value depth and practical range of the electrons. The results showed that the two-depth method has a better accuracy, repeatability, reliability and consistency than the X-ray method. The results for the electron audit showed that electron absolute outputs are obtained from ionisation measurements in solid water, where the energy-range parameters such as practical range and the depth at which ionisation is 50% of that at the maximum for the depth-ionisation curve are determined.
Major-ion and selected trace-metal chemistry of the Biscayne Aquifer, Southeast Florida
Radell, M.J.; Katz, B.G.
1991-01-01
The major-ion and selected trace-metal chemistry of the Biscayne aquifer was characterized as part of the Florida Ground-Water Quality Monitoring Network Program, a multiagency cooperative effort concerned with delineating baseline water quality for major aquifer systems in the State. The Biscayne aquifer is unconfined and serves as the sole source of drinking water for more than 3 million people in southeast Florida. The Biscayne aquifer consists of highly permeable interbedded limestone and sandstone of Pleistocene and Pliocene age underlying most of Dade and Broward Counties and parts of Palm Beach and Monroe Counties. The high permeability is largely caused by extensive carbonate dissolution. Water sampled from 189 wells tapping the Biscayne aquifer was predominantly a calcium bicarbonate type with some mixed types occurring in coastal areas and near major canals. Major - ion is areally uniform throughout the aquifer. According to nonparametric statistical tests of major ions and dissolved solids, the concentrations of calcium, sodium, bicarbonate, and dissolved solids increased significantly with well depth ( 0.05 significance level ), probably a result of less circulation at depth. Potassium and nitrate concentrations decreased significantly with depth. Although the source of recharge to the aquifer varies seasonally, there was no statistical difference in the concentration of major ions in pared water samples from 27 shallow wells collected during wet and dry seasons. Median concentrations for barium, chromium, copper, lead, and manganese were below maximum or secondary maximum contaminant levels set by the US Environmental Protection Agency. The median iron concentration only slightly exceeded the secondary maximum contaminant level. The concentration of barium was significantly related (0.05 significance level) to calcium and bicarbonate concentration. No distinct areal pattern or vertical distribution of the selected trace metals was evident in water from the Biscayne aquifer. Sources for trace metals found in water from the Biscayne aquifer may include local contamination, well-construction techniques, canal - aquifer interactions, and natural occurrence in area soils and rock.
NASA Astrophysics Data System (ADS)
Pietrzak, Robert; Konefał, Adam; Sokół, Maria; Orlef, Andrzej
2016-08-01
The success of proton therapy depends strongly on the precision of treatment planning. Dose distribution in biological tissue may be obtained from Monte Carlo simulations using various scientific codes making it possible to perform very accurate calculations. However, there are many factors affecting the accuracy of modeling. One of them is a structure of objects called bins registering a dose. In this work the influence of bin structure on the dose distributions was examined. The MCNPX code calculations of Bragg curve for the 60 MeV proton beam were done in two ways: using simple logical detectors being the volumes determined in water, and using a precise model of ionization chamber used in clinical dosimetry. The results of the simulations were verified experimentally in the water phantom with Marcus ionization chamber. The average local dose difference between the measured relative doses in the water phantom and those calculated by means of the logical detectors was 1.4% at first 25 mm, whereas in the full depth range this difference was 1.6% for the maximum uncertainty in the calculations less than 2.4% and for the maximum measuring error of 1%. In case of the relative doses calculated with the use of the ionization chamber model this average difference was somewhat greater, being 2.3% at depths up to 25 mm and 2.4% in the full range of depths for the maximum uncertainty in the calculations of 3%. In the dose calculations the ionization chamber model does not offer any additional advantages over the logical detectors. The results provided by both models are similar and in good agreement with the measurements, however, the logical detector approach is a more time-effective method.
Tidal asymmetries of velocity and stratification over a bathymetric depression in a tropical inlet
NASA Astrophysics Data System (ADS)
Waterhouse, Amy F.; Valle-Levinson, Arnoldo; Morales Pérez, Rubén A.
2012-10-01
Observations of current velocity, sea surface elevation and vertical profiles of density were obtained in a tropical inlet to determine the effect of a bathymetric depression (hollow) on the tidal flows. Surveys measuring velocity profiles were conducted over a diurnal tidal cycle with mixed spring tides during dry and wet seasons. Depth-averaged tidal velocities during ebb and flood tides behaved according to Bernoulli dynamics, as expected. The dynamic balance of depth-averaged quantities in the along-channel direction was governed by along-channel advection and pressure gradients with baroclinic pressure gradients only being important during the wet season. The vertical structure of the along-channel flow during flood tides exhibited a mid-depth maximum with lateral shear enhanced during the dry season as a result of decreased vertical stratification. During ebb tides, along-channel velocities in the vicinity of the hollow were vertically sheared with a weak return flow at depth due to choking of the flow on the seaward slope of the hollow. The potential energy anomaly, a measure of the amount of energy required to fully mix the water column, showed two peaks in stratification associated with ebb tide and a third peak occurring at the beginning of flood. After the first mid-ebb peak in stratification, ebb flows were constricted on the seaward slope of the hollow resulting in a bottom return flow. The sinking of surface waters and enhanced mixing on the seaward slope of the hollow reduced the potential energy anomaly after maximum ebb. The third peak in stratification during early flood occurred as a result of denser water entering the inlet at mid-depth. This dense water mixed with ambient deep waters increasing the stratification. Lateral shear in the along-channel flow across the hollow allowed trapping of less dense water in the surface layers further increasing stratification.
Nitrate is the most common chemical contaminant found in ground water. Recent research by U.S. EPA has shown that land application of manure can cause nitrate contamination of ground water above the maximum contaminant levels (MCLs) of 10 mg NO3-N/L at significant depths. This ...
The City of Norman, Oklahoma, is one municipality affected by a change in the Environmental Protection Agency’s National Primary Drinking Water Regulation for arsenic. In 2006, the maximum contaminant level for arsenic in drinking-water was lowered from 50 to 10 micrograms per li...
[Stable Isotopes Characters of Soil Water Movement in Shijiazhuang City].
Chen, Tong-tong; Chen, Hui; Han, Lu; Xing, Xing; Fu, Yang-yang
2015-10-01
In this study, we analyzed the stable hydrogen and oxygen isotope values of precipitation, soil water, irrigation water that collected in Shijiazhuang City from April 2013 to May 2014 to investigate the changing rule of the stable isotopes in different soil profiles and the process of soil water movement according to using the isotope tracer technique. The results showed that the mean excess deuterium of the local precipitation was -6.188 5 per thousand. Those reflected that the precipitation in Shijiazhuang City mainly brought by the monsoon from the ocean surface moisture, and also to some extent by the local evaporation. Precipitation was the main source of the soil water and the irrigation water played the supplementary role. In the rainy season, precipitation was enough to supply the soil water. The stable oxygen isotopes at 10-100 cm depth decreased with the increase of depth, the maximum depth of evaporation in the rainy season reached 40 cm. The peak of stable oxygen isotopes of soil water pushed down along the profile, which was infected by the interaction of the precipitation infiltration, evaporation and the mixing water.
NASA Astrophysics Data System (ADS)
Motoyama, H.; Suzuki, T.; Fukui, K.; Ohno, H.; Hoshina, Y.; Hirabayashi, M.; Fujita, S.
2017-12-01
1. Introduction It is possible to reveal the past climate and environmental change from the ice core drilled in polar ice sheet and glaciers. The 54th Japanese Antarctic Research Expedition conducted several shallow core drillings up to 30 m depth in the inland and coastal areas of the East Antarctic ice sheet. Ice core sample was cut out at a thickness of about 5 cm in the cold room of the National Institute of Polar Research, and analyzed ion, water isotope, dust and so one. We also conducted dielectric profile measurement (DEP measurement). The age as a key layer of large-scale volcanic explosion was based on Sigl et al. (Nature Climate Change, 2014). 2. Inland ice core Ice cores were collected at the NDF site (77°47'14"S, 39°03'34"E, 3754 m.a.s.l.) and S80 site (80°00'00"S, 40°30'04"E, 3622 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. We determined the key layer with nssSO42 - peak corresponding to several large volcanic explosions. The accumulation rate was kept constant between the key layers. As a result, NDF was estimated to be around 1360 AD and S80 was estimated to be around 1400 AD in the deepest ice core. 3. Coastal ice core An ice core was collected at coastal H15 sites (69°04'10"S, 40°44'51"E, 1030 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from ice core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. Basically we decided to summer (December) and winter (June) due to the seasonal change of the water isotope (δD or δ18O). In addition to the seasonal change of isotope, confirm the following. Maximum of SO42- / Na +, which is earlier in time than the maximum of water isotope. Maximum of MSA at about the same time as the maximum of the water isotope. Na+ is maximal immediately after the local maximum of the water isotope. The deepest age was estimated to be around 1940 AD. 4. Example of results In the inland area, the annual average surface mass balance decreased from 1450 to 1850 AD, but it has increased since 1850 AD. The annual mass balance of coastal H15 is consistent with the result of snow stake measurement.
Legleiter, Carl J.; Kinzel, Paul J.; Overstreet, Brandon T.
2011-01-01
Remote sensing offers an efficient means of mapping bathymetry in river systems, but this approach has been applied primarily to clear-flowing, gravel bed streams. This study used field spectroscopy and radiative transfer modeling to assess the feasibility of spectrally based depth retrieval in a sand-bed river with a higher suspended sediment concentration (SSC) and greater water turbidity. Attenuation of light within the water column was characterized by measuring the amount of downwelling radiant energy at different depths and calculating a diffuse attenuation coefficient, Kd. Attenuation was strongest in blue and near-infrared bands due to scattering by suspended sediment and absorption by water, respectively. Even for red wavelengths with the lowest values of Kd, only a small fraction of the incident light propagated to the bed, restricting the range of depths amenable to remote sensing. Spectra recorded above the water surface were used to establish a strong, linear relationship (R2 = 0.949) between flow depth and a simple band ratio; even under moderately turbid conditions, depth remained the primary control on reflectance. Constraints on depth retrieval were examined via numerical modeling of radiative transfer within the atmosphere and water column. SSC and sensor radiometric resolution limited both the maximum detectable depth and the precision of image-derived depth estimates. Thus, although field spectra indicated that the bathymetry of turbid channels could be remotely mapped, model results implied that depth retrieval in sediment-laden rivers would be limited to shallow depths (on the order of 0.5 m) and subject to a significant degree of uncertainty.
NASA Astrophysics Data System (ADS)
Venables, Hugh J.; Meredith, Michael P.; Brearley, J. Alexander
2017-05-01
Circumpolar Deep Water (CDW) intrudes from the mid-layers of the Antarctic Circumpolar Current onto the shelf of the western Antarctic Peninsula, providing a source of heat and nutrients to the regional ocean. It is well known that CDW is modified as it flows across the shelf, but the mechanisms responsible for this are not fully known. Here, data from underwater gliders with high spatial resolution are used to demonstrate the importance of detailed bathymetry in inducing multiple local mixing events. Clear evidence for overflows is observed in the glider data as water flows along a deep channel with multiple transverse ridges. The ridges block the densest waters, with overflowing water descending several hundred metres to fill subsequent basins. This vertical flow leads to entrainment of overlying colder and fresher water in localised mixing events. Initially this process leads to an increase in bottom temperatures due to the temperature maximum waters descending to greater depths. After several ridges, however, the mixing is sufficient to remove the temperature maximum completely and the entrainment of colder thermocline waters to depth reduces the bottom temperature, to approximately the same as in the source region of Marguerite Trough. Similarly, it is shown that deep waters of Palmer Deep are warmer than at the same depth at the shelf break. The exact details of the transformations observed are heavily dependent on the local bathymetry and water column structure, but glacially-carved troughs and shallow sills are a common feature of the bathymetry of polar shelves, and these types of processes may be a factor in determining the hydrographic conditions close to the coast across a wider area.
Defining the ecologically relevant mixed-layer depth for Antarctica's coastal seas
NASA Astrophysics Data System (ADS)
Carvalho, Filipa; Kohut, Josh; Oliver, Matthew J.; Schofield, Oscar
2017-01-01
Mixed-layer depth (MLD) has been widely linked to phytoplankton dynamics in Antarctica's coastal regions; however, inconsistent definitions have made intercomparisons among region-specific studies difficult. Using a data set with over 20,000 water column profiles corresponding to 32 Slocum glider deployments in three coastal Antarctic regions (Ross Sea, Amundsen Sea, and West Antarctic Peninsula), we evaluated the relationship between MLD and phytoplankton vertical distribution. Comparisons of these MLD estimates to an applied definition of phytoplankton bloom depth, as defined by the deepest inflection point in the chlorophyll profile, show that the maximum of buoyancy frequency is a good proxy for an ecologically relevant MLD. A quality index is used to filter profiles where MLD is not determined. Despite the different regional physical settings, we found that the MLD definition based on the maximum of buoyancy frequency best describes the depth to which phytoplankton can be mixed in Antarctica's coastal seas.
Influence of seasonal climatic variability on shallow infiltration at Yucca Mountain
Hevesi, Joseph A.; Flint, Alan L.
1993-01-01
To analyze infiltration and the redistribution of moisture in alluvial deposits at Yucca Mountain, water content profiles at a 13.5 m deep borehole were measured at monthly intervals using a neutron moisture probe. Increases in water content to a maximum depth of 1.8 m in response to winter season precipitation were noted. Below a depth of 1.8 m, a gradual drying trend was indicated. A simulation study showed that, although small amounts of water may be percolating through the deep nonwetted ones of the profile, the influence of climatic variability on infiltration through thick alluvial deposits at Yucca Mountain is greatly mitigated by evapotranspiration.
Methane Emissions from Small Lakes: Dynamics and Distribution Patterns
NASA Astrophysics Data System (ADS)
Encinas Fernández, J. M.; Peeters, F.; Hofmann, H.
2014-12-01
The dynamics of dissolved methane were measured during three years in five small lakes with different surface areas and maximum water depth. We analyze and compare the horizontal and vertical distribution of dissolved methane within these lakes during different time periods: the stratified period in summer, the autumn overturn, the winter mixing period, and the period from spring to summer stratification. The horizontal distributions of dissolved methane within the lakes suggest that the relation between surface area and maximum water-depth is a key factor determining the heterogeneity of methane concentrations in the surface water. During most of the year littoral zones are the main source of the methane that is emitted to the atmosphere except for the overturn periods. The vertical distributions of temperature and dissolved oxygen within the different seasons affect the vertical distribution of dissolved methane and thus the methane budget within lakes. Anoxic conditions in the hypolimnion and the intense mixing during overturn periods are key factors for the overall annual methane emissions from lakes.
NASA Astrophysics Data System (ADS)
Dejardin, Rowan; Kender, Sev; Allen, Claire S.; Leng, Melanie J.; Swann, George E. A.; Peck, Victoria L.
2018-01-01
It is widely held that benthic foraminifera exhibit species-specific calcification depth preferences, with their tests recording sediment pore water chemistry at that depth (i.e. stable isotope and trace metal compositions). This assumed depth-habitat-specific pore water chemistry relationship has been used to reconstruct various palaeoenvironmental parameters, such as bottom water oxygenation. However, many deep-water foraminiferal studies show wide intra-species variation in sediment living depth but relatively narrow intra-species variation in stable isotope composition. To investigate this depth-habitat-stable-isotope relationship on the shelf, we analysed depth distribution and stable isotopes of living
(Rose Bengal stained) benthic foraminifera from two box cores collected on the South Georgia shelf (ranging from 250 to 300 m water depth). We provide a comprehensive taxonomic analysis of the benthic fauna, comprising 79 taxonomic groupings. The fauna shows close affinities with shelf assemblages from around Antarctica. We find live
specimens of a number of calcareous species from a range of depths in the sediment column. Stable isotope ratios (δ13C and δ18O) were measured on stained specimens of three species, Astrononion echolsi, Cassidulinoides porrectus, and Buccella sp. 1, at 1 cm depth intervals within the downcore sediment sequences. In agreement with studies in deep-water settings, we find no significant intra-species variability in either δ13Cforam or δ18Oforam with sediment living depth on the South Georgia shelf. Our findings add to the growing evidence that infaunal benthic foraminiferal species calcify at a fixed depth. Given the wide range of depths at which we find living
, infaunal
species, we speculate that they may actually calcify predominantly at the sediment-seawater interface, where carbonate ion concentration and organic carbon availability is at a maximum.
Flood damage curves for consistent global risk assessments
NASA Astrophysics Data System (ADS)
de Moel, Hans; Huizinga, Jan; Szewczyk, Wojtek
2016-04-01
Assessing potential damage of flood events is an important component in flood risk management. Determining direct flood damage is commonly done using depth-damage curves, which denote the flood damage that would occur at specific water depths per asset or land-use class. Many countries around the world have developed flood damage models using such curves which are based on analysis of past flood events and/or on expert judgement. However, such damage curves are not available for all regions, which hampers damage assessments in those regions. Moreover, due to different methodologies employed for various damage models in different countries, damage assessments cannot be directly compared with each other, obstructing also supra-national flood damage assessments. To address these problems, a globally consistent dataset of depth-damage curves has been developed. This dataset contains damage curves depicting percent of damage as a function of water depth as well as maximum damage values for a variety of assets and land use classes (i.e. residential, commercial, agriculture). Based on an extensive literature survey concave damage curves have been developed for each continent, while differentiation in flood damage between countries is established by determining maximum damage values at the country scale. These maximum damage values are based on construction cost surveys from multinational construction companies, which provide a coherent set of detailed building cost data across dozens of countries. A consistent set of maximum flood damage values for all countries was computed using statistical regressions with socio-economic World Development Indicators from the World Bank. Further, based on insights from the literature survey, guidance is also given on how the damage curves and maximum damage values can be adjusted for specific local circumstances, such as urban vs. rural locations, use of specific building material, etc. This dataset can be used for consistent supra-national scale flood damage assessments, and guide assessment in countries where no damage model is currently available.
Estimation of River Bathymetry from ATI-SAR Data
NASA Astrophysics Data System (ADS)
Almeida, T. G.; Walker, D. T.; Farquharson, G.
2013-12-01
A framework for estimation of river bathymetry from surface velocity observation data is presented using variational inverse modeling applied to the 2D depth-averaged, shallow-water equations (SWEs) including bottom friction. We start with with a cost function defined by the error between observed and estimated surface velocities, and introduce the SWEs as a constraint on the velocity field. The constrained minimization problem is converted to an unconstrained minimization through the use of Lagrange multipliers, and an adjoint SWE model is developed. The adjoint model solution is used to calculate the gradient of the cost function with respect to river bathymetry. The gradient is used in a descent algorithm to determine the bathymetry that yields a surface velocity field that is a best-fit to the observational data. In applying the algorithm, the 2D depth-averaged flow is computed assuming a known, constant discharge rate and a known, uniform bottom-friction coefficient; a correlation relating surface velocity and depth-averaged velocity is also used. Observation data was collected using a dual beam squinted along-track-interferometric, synthetic-aperture radar (ATI-SAR) system, which provides two independent components of the surface velocity, oriented roughly 30 degrees fore and aft of broadside, offering high-resolution bank-to-bank velocity vector coverage of the river. Data and bathymetry estimation results are presented for two rivers, the Snohomish River near Everett, WA and the upper Sacramento River, north of Colusa, CA. The algorithm results are compared to available measured bathymetry data, with favorable results. General trends show that the water-depth estimates are most accurate in shallow regions, and performance is sensitive to the accuracy of the specified discharge rate and bottom friction coefficient. The results also indicate that, for a given reach, the estimated water depth reaches a maximum that is smaller than the true depth; this apparent maximum depth scales with the true river depth and discharge rate, so that the deepest parts of the river show the largest bathymetry errors.
The threshold of vapor channel formation in water induced by pulsed CO2 laser
NASA Astrophysics Data System (ADS)
Guo, Wenqing; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen
2012-12-01
Water plays an important role in laser ablation. There are two main interpretations of laser-water interaction: hydrokinetic effect and vapor phenomenon. The two explanations are reasonable in some way, but they can't explain the mechanism of laser-water interaction completely. In this study, the dynamic process of vapor channel formation induced by pulsed CO2 laser in static water layer was monitored by high-speed camera. The wavelength of pulsed CO2 laser is 10.64 um, and pulse repetition rate is 60 Hz. The laser power ranged from 1 to 7 W with a step of 0.5 W. The frame rate of high-speed camera used in the experiment was 80025 fps. Based on high-speed camera pictures, the dynamic process of vapor channel formation was examined, and the threshold of vapor channel formation, pulsation period, the volume, the maximum depth and corresponding width of vapor channel were determined. The results showed that the threshold of vapor channel formation was about 2.5 W. Moreover, pulsation period, the maximum depth and corresponding width of vapor channel increased with the increasing of the laser power.
Geothermal resources of the northern gulf of Mexico basin
Jones, P.H.
1970-01-01
Published geothermal gradient maps for the northern Gulf of Mexico basin indicate little or no potential for the development of geothermal resources. Results of deep drilling, from 4000 to 7000 meters or more, during the past decade however, define very sharp increases in geothermal gradient which are associated with the occurrence of abnormally high interstitial fluid pressure (geopressure). Bounded by regional growth faults along the landward margin of the Gulf Basin, the geopressured zone extends some 1300 km from the Rio Grande (at the boundary between the United States and Mexico) to the mouth of the Mississippi river. Gulfward, it extends to an unknown distance across the Continental Shelf. Within geopressured deposits, geothermal gradients range upwards to 100 ??C/km, being greatest within and immediately below the depth interval in which the maximum pressure gradient change occurs. The 120 ??C isogeotherm ranges from about 2500 to 5000 m below sea level, and conforms in a general way with depth of occurrence of the top of the geopressured zone. Measured geostatic ratios range upward to 0.97; the maximum observed temperature is 273 ??C, at a depth of 5859 m. Dehydration of montmorillonite, which comprises 60 to 80 percent of clay deposited in the northern Gulf Basin during the Neogene, occurs at depths where temperature exceeds about 80 ??C, and is generally complete at depths where temperature exceeds 120 ??C. This process converts intracrystalline and bound water to free pore water, the volume produced being roughly equivalent to half the volume of montmorillonite so altered. Produced water is fresh, and has low viscosity and density. Sand-bed aquifers of deltaic, longshore, or marine origin form excellent avenues for drainage of geopressured deposits by wells, each of which may yield 10,000 m3 or more of superheated water per day from reservoirs having pressures up to 1000 bars at depths greater than 5000 m. ?? 1971.
Abou-Taleb, W M; Hassan, M H; El Mallah, E A; Kotb, S M
2018-05-01
Photoneutron production, and the dose equivalent, in the head assembly of the 15 MV Elekta Precise medical linac; operating in the faculty of Medicine at Alexandria University were estimated with the MCNP5 code. Photoneutron spectra were calculated in air and inside a water phantom to different depths as a function of the radiation field sizes. The maximum neutron fluence is 3.346×10 -9 n/cm 2 -e for a 30×30 cm 2 field size to 2-4 cm-depth in the phantom. The dose equivalent due to fast neutron increases as the field size increases, being a maximum of 0.912 ± 0.05 mSv/Gy at depth between 2 and 4 cm in the water phantom for 40×40 cm 2 field size. Photoneutron fluence and dose equivalent are larger to 100 cm from the isocenter than to 35 cm from the treatment room wall. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lockwood, H. E.
1973-01-01
Nine film-filter combinations have been tested for effectiveness in recording water subsurface detail when exposed from an aerial platform over a typical water body. An experimental 2-layer positive color film, a 2-layer (minus blue layer) film, a normal 3-layer color film, a panchromatic black-and-white film, and an infrared film with selected filters were tested. Results have been tabulated to show the relative capability of each film-filter combination for: (1) image contrast in shallow water (0 to 5 feet); (2) image contrast at medium depth (5 to 10 feet); (3) image contrast in deep water (10 feet plus); (4) water penetration; maximum depth where detail was discriminated; (5) image color (the spectral range of the image); (6) vegetation visible above a water background; (7) specular reflections visible from the water surface; and (8) visual compatibility; ease of discriminating image detail. Recommendations for future recording over water bodies are included.
Temperature and oxygen in Missouri reservoirs
Jones, John R.; Knowlton, Matthew F.; Obrecht, Daniel V.; Graham, Jennifer L.
2011-01-01
Vertical profiles of water temperature (n = 7193) and dissolved oxygen (n = 6516) were collected from 235 Missouri reservoirs during 1989–2007; most data were collected during May–August and provide a regional summary of summer conditions. Collectively, surface water temperature ranged from a mean of ~22 C in May to 28 C in July, and individual summer maxima typically were 28–32 C. Most (~95%) reservoirs stably stratify by mid-May, but few are deep enough to have hypolimnia with near-uniform temperatures. Among stratified reservoirs, maximum effective length and maximum depth accounted for 75% of the variation in mixed depth and thermocline depth. Ephemeral, near-surface thermoclines occurred in 39% of summer profiles and were most frequent in small, turbid reservoirs. Isotherms below the mixed layer deepen during stratification, and the water column is >20 C by August in all but the deepest reservoirs. Most reservoirs showed incipient dissolved oxygen (DO) depletion by mid-May, and by August, 80% of profiles had DO minima of 50% of variation in DO below the mixed layer during summer. Warm summer temperatures and widespread low DO often limit available fish habitat in Missouri reservoirs and compress warm-water fish communities into subsurface layers that exceed their thermal preferences. This study provides a regional baseline of reservoir temperature and oxygen conditions useful for future evaluations of eutrophication and the effects of a warming climate.
Law, George S.
2002-01-01
Periodic flooding occurs at lowlands and sinkholes in and adjacent to the flood plain of the West Fork Stones River in the western part of Murfreesboro, Tennessee. Flooding in this area commonly occurs during the winter months from December through March. The maximum water level that flood waters will reach in a lowland or sinkhole is controlled by the elevation of the land surrounding the site or the overflow outlet. Maximum water levels, independent of overflow from the river, were estimated to be reached in lowlands and sinkholes in the study area every 1 to 4 years. Minor overflow from the West Fork Stones River (less than 1 foot in depth) into the study area has been estimated to occur every 10 to 20 years. Moderate overflow from the river (1 to 2 feet in depth) occurs on average every 20 to 50 years, while major river overflow (in excess of 2 feet in depth) can be expected every 50 years. Rainfall information for the area, and streamflow and water-level measurements from the West Fork Stones River, lowlands, sinkholes, caves, and wells in the study area were used to develop a flood-prone area map, independent of overflow from the river, for the study area. Water-level duration and frequency relations, independent of overflow from the river, were estimated for several lowlands, sinkholes, and wells in the study area. These relations are used to characterize flooding in lowland areas of western Murfreesboro, Rutherford County, Tennessee.
Johnson, Michael J.; Mayers, Charles J.; Andraski, Brian J.
2002-01-01
Selected micrometeorological and soil-moisture data were collected at the Amargosa Desert Research Site adjacent to a low-level radioactive waste and hazardous chemical waste facility near Beatty, Nev., 1998-2000. Data were collected in support of ongoing research studies to improve the understanding of hydrologic and contaminant-transport processes in arid environments. Micrometeorological data include precipitation, air temperature, solar radiation, net radiation, relative humidity, ambient vapor pressure, wind speed and direction, barometric pressure, soil temperature, and soil-heat flux. All micrometeorological data were collected using a 10-second sampling interval by data loggers that output daily mean, maximum, and minimum values, and hourly mean values. For precipitation, data output consisted of daily, hourly, and 5-minute totals. Soil-moisture data included periodic measurements of soil-water content at nine neutron-probe access tubes with measurable depths ranging from 5.25 to 29.75 meters. The computer data files included in this report contain the complete micrometeorological and soil-moisture data sets. The computer data consists of seven files with about 14 megabytes of information. The seven files are in tabular format: (1) one file lists daily mean, maximum, and minimum micrometeorological data and daily total precipitation; (2) three files list hourly mean micrometeorological data and hourly precipitation for each year (1998-2000); (3) one file lists 5-minute precipitation data; (4) one file lists mean soil-water content by date and depth at four experimental sites; and (5) one file lists soil-water content by date and depth for each neutron-probe access tube. This report highlights selected data contained in the computer data files using figures, tables, and brief discussions. Instrumentation used for data collection also is described. Water-content profiles are shown to demonstrate variability of water content with depth. Time-series data are plotted to illustrate temporal variations in micrometeorological and soil-water content data. Substantial precipitation at the end of an El Ni?o cycle in early 1998 resulted in measurable water penetration to a depth of 1.25 meters at one of the four experimental soil-monitoring sites.
Dwyer, Gary S.; Cronin, Thomas M.; Baker, Paul A.; Rodriguez-Lazaro, Julio
2000-01-01
We reconstructed three time series of last glacial-to-present deep-sea temperature from deep and intermediate water sediment cores from the western North Atlantic using Mg/Ca ratios of benthic ostracode shells. Although the Mg/Ca data show considerable variability (“scatter”) that is common to single-shell chemical analyses, comparisons between cores, between core top shells and modern bottom water temperatures (BWT), and comparison to other paleo-BWT proxies, among other factors, suggest that multiple-shell average Mg/Ca ratios provide reliable estimates of BWT history at these sites. The BWT records show not only glacial-to-interglacial variations but also indicate BWT changes during the deglacial and within the Holocene interglacial stage. At the deeper sites (4500- and 3400-m water depth), BWT decreased during the last glacial maximum (LGM), the late Holocene, and possibly during the Younger Dryas. Maximum deep-sea warming occurred during the latest deglacial and early Holocene, when BWT exceeded modern values by as much as 2.5°C. This warming was apparently most intense around 3000 m, the depth of the modern-day core of North Atlantic deep water (NADW). The BWT variations at the deeper water sites are consistent with changes in thermohaline circulation: warmer BWT signifies enhanced NADW influence relative to Antarctic bottom water (AABW). Thus maximum NADW production and associated heat flux likely occurred during the early Holocene and decreased abruptly around 6500 years B.P., a finding that is largely consistent with paleonutrient studies in the deep North Atlantic. BWT changes in intermediate waters (1000-m water depth) of the subtropical gyre roughly parallel the deep BWT variations including dramatic mid-Holocene cooling of around 4°C. Joint consideration of the Mg/Ca-based BWT estimates and benthic oxygen isotopes suggests that the cooling was accompanied by a decrease in salinity at this site. Subsequently, intermediate waters warmed to modern values that match those of the early Holocene maximum of ∼7°C. Intermediate water BWT changes must also be driven by changes in ocean circulation. These results thus provide independent evidence that supports the hypothesis that deep-ocean circulation is closely linked to climate change over a range of timescales regardless of the mean climate state. More generally, the results further demonstrate the potential of benthic Mg/Ca ratios as a tool for reconstructing past ocean and climate conditions.
Simulated natural hydrologic regime of an intermountain playa conservation site
Sanderson, J.S.; Kotliar, N.B.; Steingraeber, D.A.; Browne, C.
2008-01-01
An intermountain playa wetland preserve in Colorado's San Luis Valley was studied to assess how its current hydrologic function compares to its natural hydrologic regime. Current hydrologic conditions were quantified, and on-site effects of off-site water use were assessed. A water-budget model was developed to simulate an unaltered (i.e., natural) hydrologic regime, and simulated natural conditions were compared to observed conditions. From 1998-2002, observed stream inflows accounted for ??? 80% of total annual water inputs. No ground water discharged to the wetland. Evapotranspiration (ET) accounted for ??? 69% of total annual water loss. Simulated natural conditions differed substantially from current altered conditions with respect to depth, variability, and frequency of flooding. During 1998-2002, observed monthly mean surface-water depth was 65% lower than under simulated natural conditions. Observed monthly variability in water depth range from 129% greater (May) to 100% less (September and October) than simulated. As observed, the wetland dried completely (i.e., was ephemeral) in all years; as simulated, the wetland was ephemeral in two of five years. For the period 1915-2002, the simulated wetland was inundated continuously for as long as 16 years and nine months. The large differences in observed and simulated surface-water dynamics resulted from differences between altered and simulated unaltered stream inflows. The maximum and minimum annual total stream inflows observed from 1998-2005 were 3.1 ?? 106 m3 and 0 m3, respectively, versus 15.5 ?? 106 m3 and 3.2 ?? 106 m3 under simulated natural conditions from 1915-2002. The maximum simulated inflow was 484% greater than observed. These data indicate that the current hydrologic regime of this intermountain playa differs significantly from its natural hydrologic regime, which has important implications for planning and assessing conservation success. ?? 2008, The Society of Wetland Scientists.
Leaching of Clothianidin in Two Different Indian Soils: Effect of Organic Amendment.
Singh, Ningthoujam Samarendra; Mukherjee, Irani; Das, Shaon Kumar; Varghese, E
2018-04-01
Clothianidin is a widely used insecticide under Indian subtropical condition. The objective of this study was to generate residue data which aims to understand leaching potential of clothianidin [(E)-1-(2-chloro-1,3-thiazol-5-ylmethyl)-3-methyl-2- nitroguanidine] through packed soil column. The maximum amount of clothianidin was recovered at 0-5 cm soil depth in both Manipur (67.15%) and Delhi soil (52.0%) under continuous flow condition. Manipur and Delhi soil concentrated maximum residue with or without farm yard manure (FYM) in 0-20 cm soil depth. The effect of varying the amount of water enhanced the distribution of residues in the first 0-5 cm layer. Among the tested soils, residue was detected in the leachate from Delhi soil (0.04 µg/mL). Clothianidin leaching was minimized in soil of Manipur compared to Delhi after incorporation of FYM. As the volume of water increased upto 160 mL, mobility increased and residues moved to lower depth. Clothianidin did not leach out of the 25 cm long soil columns even after percolating water equivalent to 415.42 mm rainfall. Clothianidin is mobile in soil system and mobility can be reduced by organic amendment application.
Genetic Algorithm for Opto-thermal Skin Hydration Depth Profiling Measurements
NASA Astrophysics Data System (ADS)
Cui, Y.; Xiao, Perry; Imhof, R. E.
2013-09-01
Stratum corneum is the outermost skin layer, and the water content in stratum corneum plays a key role in skin cosmetic properties as well as skin barrier functions. However, to measure the water content, especially the water concentration depth profile, within stratum corneum is very difficult. Opto-thermal emission radiometry, or OTTER, is a promising technique that can be used for such measurements. In this paper, a study on stratum corneum hydration depth profiling by using a genetic algorithm (GA) is presented. The pros and cons of a GA compared against other inverse algorithms such as neural networks, maximum entropy, conjugate gradient, and singular value decomposition will be discussed first. Then, it will be shown how to use existing knowledge to optimize a GA for analyzing the opto-thermal signals. Finally, these latest GA results on hydration depth profiling of stratum corneum under different conditions, as well as on the penetration profiles of externally applied solvents, will be shown.
Legleiter, C.J.; Kinzel, P.J.; Overstreet, B.T.
2011-01-01
Remote sensing offers an efficient means of mapping bathymetry in river systems, but this approach has been applied primarily to clear-flowing, gravel bed streams. This study used field spectroscopy and radiative transfer modeling to assess the feasibility of spectrally based depth retrieval in a sand-bed river with a higher suspended sediment concentration (SSC) and greater water turbidity. Attenuation of light within the water column was characterized by measuring the amount of downwelling radiant energy at different depths and calculating a diffuse attenuation coefficient, Kd. Attenuation was strongest in blue and near-infrared bands due to scattering by suspended sediment and absorption by water, respectively. Even for red wavelengths with the lowest values of Kd, only a small fraction of the incident light propagated to the bed, restricting the range of depths amenable to remote sensing. Spectra recorded above the water surface were used to establish a strong, linear relationship (R2 = 0.949) between flow depth and a simple band ratio; even under moderately turbid conditions, depth remained the primary control on reflectance. Constraints on depth retrieval were examined via numerical modeling of radiative transfer within the atmosphere and water column. SSC and sensor radiometric resolution limited both the maximum detectable depth and the precision of image-derived depth estimates. Thus, although field spectra indicated that the bathymetry of turbid channels could be remotely mapped, model results implied that depth retrieval in sediment-laden rivers would be limited to shallow depths (on the order of 0.5 m) and subject to a significant degree of uncertainty. ?? 2011 by the American Geophysical Union.
Modeling the effects of martian surface frost on ice table depth
NASA Astrophysics Data System (ADS)
Williams, K. E.; McKay, Christopher P.; Heldmann, J. L.
2015-11-01
Ground ice has been observed in small fresh craters in the vicinity of the Viking 2 lander site (48°N, 134°E). To explain these observations, current models for ground ice invoke levels of atmospheric water of 20 precipitable micrometers - higher than observations. However, surface frost has been observed at the Viking 2 site and surface water frost and snow have been shown to have a stabilizing effect on Antarctic subsurface ice. A snow or frost cover provides a source of humidity that should reduce the water vapor gradient and hence retard the sublimation loss from subsurface ice. We have modeled this effect for the Viking 2 landing site with combined ground ice and surface frost models. Our model is driven by atmospheric output fields from the NASA Ames Mars General Circulation Model (MGCM). Our modeling results show that the inclusion of a thin seasonal frost layer, present for a duration similar to that observed by the Viking Lander 2, produces ice table depths that are significantly shallower than a model that omits surface frost. When a maximum frost albedo of 0.35 was permitted, seasonal frost is present in our model from Ls = 182° to Ls = 16°, resulting in an ice table depth of 64 cm - which is 24 cm shallower than the frost-free scenario. The computed ice table depth is only slightly sensitive to the assumed maximum frost albedo or thickness in the model.
Welding and NDT development in support of Oman-India gas pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Even, T.M.; Laing, B.; Hirsch, D.
1995-12-01
The Oman to India gas pipeline is designed for a maximum water depth of 3,500 m. For such a pipeline, resistance to hydrostatic collapse is a critical factor and dictates that very heavy wall pipe be used, preliminarily 24 inch ID x 1.625 inch wall. Because of the water depth, much of the installation will be by J-Lay which requires that the Joint be welded and inspected in a single station. This paper describes the results of welding and NDT test programs conducted to determine the minimum time to perform these operations in heavy wall pipe.
Fu, Hui; Zhong, Jiayou; Yuan, Guixiang; Guo, Chunjing; Lou, Qian; Zhang, Wei; Xu, Jun; Ni, Leyi; Xie, Ping; Cao, Te
2015-01-01
Trait-based approaches have been widely applied to investigate how community dynamics respond to environmental gradients. In this study, we applied a series of maximum entropy (maxent) models incorporating functional traits to unravel the processes governing macrophyte community structure along water depth gradient in a freshwater lake. We sampled 42 plots and 1513 individual plants, and measured 16 functional traits and abundance of 17 macrophyte species. Study results showed that maxent model can be highly robust (99.8%) in predicting the species relative abundance of macrophytes with observed community-weighted mean (CWM) traits as the constraints, while relative low (about 30%) with CWM traits fitted from water depth gradient as the constraints. The measured traits showed notably distinct importance in predicting species abundances, with lowest for perennial growth form and highest for leaf dry mass content. For tuber and leaf nitrogen content, there were significant shifts in their effects on species relative abundance from positive in shallow water to negative in deep water. This result suggests that macrophyte species with tuber organ and greater leaf nitrogen content would become more abundant in shallow water, but would become less abundant in deep water. Our study highlights how functional traits distributed across gradients provide a robust path towards predictive community ecology. PMID:26167856
Data file: the 1976 Atlantic Margin Coring (AMCOR) Project of the U.S. Geological Survey
Poppe, Lawrence J.; Poppe, Lawrence J.
1981-01-01
In 1976, the U.S. Geological Survey conducted the Atlantic Margin Coring Project (AMCOR) to obtain information on stratigraphy, hydrology and water chemistry, mineral resources other than petroleum hydrocarbons, and geotechnical engineering properties at sites widely distributed along the Continental Shelf and Slope of the Eastern United States (Hathaway and others, 1976, 1979). This program's primary purpose was to investigate a broad variety of sediment properties, many of which had not been previously studied in this region. Previous studies of sediments recovered by core drilling in this region were usually limited to one or two aspects of the sediment properties (Hathaway and others, 1979, table 2). The AMCOR program was limited by two factors: water depth and penetration depth. Because the ship selected for the program, the Glomar Conception, lacked dynamic positioning capability, its anchoring capacity determined the maximum water depth in which drilling could take place. Although it was equipped to anchor in water 450 m deep and did so successfully at one site, we attmepted no drilling in water depths greater than 300 m. Strong Gulf Stream currents at the one attempted deep (443 m) site frustrated attempts to "spud in" to begin the hole.
Simulation of Soil Frost and Thaw Fronts Dynamics with Community Land Model 4.5
NASA Astrophysics Data System (ADS)
Gao, J.; Xie, Z.
2016-12-01
Freeze-thaw processes in soils, including changes in frost and thaw fronts (FTFs) , are important physical processes. The movement of FTFs affects soil water and thermal characteristics, as well as energy and water exchanges between land surface and the atmosphere, and then the land surface hydrothermal process. In this study, a two-directional freeze and thaw algorithm for simulating FTFs is incorporated into the community land surface model CLM4.5, which is called CLM4.5-FTF. The simulated FTFs depth and soil temperature of CLM4.5-FTF compared well with the observed data both in D66 station (permafrost) and Hulugou station (seasonally frozen soil). Because the soil temperature profile within a soil layer can be estimated according to the position of FTFs, CLM4.5 performed better in soil temperature simulation. Permafrost and seasonally frozen ground conditions in China from 1980 to 2010 were simulated using the CLM4.5-FTF. Numerical experiments show that the spatial distribution of simulated maximum frost depth by CLM4.5-FTF has seasonal variation obviously. Significant positive active-layer depth trends for permafrost regions and negative maximum freezing depth trends for seasonal frozen soil regions are simulated in response to positive air temperature trends except west of Black Sea.
Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012
NASA Astrophysics Data System (ADS)
Zhong, Xinyue; Zhang, Tingjun; Kang, Shichang; Wang, Kang; Zheng, Lei; Hu, Yuantao; Wang, Huijuan
2018-01-01
Snow depth is one of the key physical parameters for understanding land surface energy balance, soil thermal regime, water cycle, and assessing water resources from local community to regional industrial water supply. Previous studies by using in situ data are mostly site specific; data from satellite remote sensing may cover a large area or global scale, but uncertainties remain large. The primary objective of this study is to investigate spatial variability and temporal change in snow depth across the Eurasian continent. Data used include long-term (1966-2012) ground-based measurements from 1814 stations. Spatially, long-term (1971-2000) mean annual snow depths of >20 cm were recorded in northeastern European Russia, the Yenisei River basin, Kamchatka Peninsula, and Sakhalin. Annual mean and maximum snow depth increased by 0.2 and 0.6 cm decade-1 from 1966 through 2012. Seasonally, monthly mean snow depth decreased in autumn and increased in winter and spring over the study period. Regionally, snow depth significantly increased in areas north of 50° N. Compared with air temperature, snowfall had greater influence on snow depth during November through March across the former Soviet Union. This study provides a baseline for snow depth climatology and changes across the Eurasian continent, which would significantly help to better understanding climate system and climate changes on regional, hemispheric, or even global scales.
NASA Astrophysics Data System (ADS)
Xie, Z.; Zeng, Y.; Liu, S.; Gao, J.; Jia, B.; Qin, P.
2017-12-01
Both anthropogenic water regulation and groundwater lateral flow essentially affect groundwater table patterns. Their relationship is close because lateral flow recharges the groundwater depletion cone, which is induced by over-exploitation. And the movement of frost and thaw fronts (FTFs) affects soil water and thermal characteristics, as well as energy and water exchanges between land surface and the atmosphere. In this study, schemes describing groundwater lateral flow, human water regulation and the changes in soil freeze-thaw fronts were developed and incorporated into the Community Land Model 4.5. Then the model was applied in Heihe River Basin(HRB), an arid and semiarid region, northwest China. High resolution ( 1 km) numerical simulations showed that groundwater lateral flow driven by changes in water heads can essentially change the groundwater table pattern with the deeper water table appearing in the hillslope regions and shallower water table appearing in valley bottom regions and plains. Over the last decade, anthropogenic groundwater exploitation deepened the water table by approximately 2 m in the middle reaches of the HRB and rapidly reduced the terrestrial water storage, while irrigation increased soil moisture by approximately 0.1 m3 m-3. The water stored in the mainstream of the Heihe River was also reduced by human surface water withdrawal. The latent heat flux was increased by 30 W m-2 over the irrigated region, with an identical decrease in sensible heat flux. The simulated groundwater lateral flow was shown to effectively recharge the groundwater depletion cone caused by over-exploitation. The offset rate is higher in plains than mountainous regions. In addition, the simulated FTFs depth compared well with the observed data both in D66 station (permafrost) and Hulugou station (seasonally frozen ground). Over the HRB, the upstream area is permafrost region with maximum thawed depth at 2.5 m and lower region is seasonal frozen ground region with maximum frozen depth at 3 m.
Scour around vertical wall abutment in cohesionless sediment bed
NASA Astrophysics Data System (ADS)
Pandey, M.; Sharma, P. K.; Ahmad, Z.
2017-12-01
At the time of floods, failure of bridges is the biggest disaster and mainly sub-structure (bridge abutments and piers) are responsible for this failure of bridges. It is very risky if these sub structures are not constructed after proper designing and analysis. Scour is a natural phenomenon in rivers or streams caused by the erosive action of the flowing water on the bed and banks. The abutment undermines due to river-bed erosion and scouring, which generally recognized as the main cause of abutment failure. Most of the previous studies conducted on scour around abutment have concerned with the prediction of the maximum scour depth (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005). Dey and Barbhuiya (2005) proposed a relationship for computing maximum scour depth near an abutment, based on laboratory experiments, for computing maximum scour depth around vertical wall abutment, which was confined to their experimental data only. However, this relationship needs to be also verified by the other researchers data in order to support the reliability to the relationship and its wider applicability. In this study, controlled experimentations have been carried out on the scour near a vertical wall abutment. The collected data in this study along with data of the previous investigators have been carried out on the scour near vertical wall abutment. The collected data in this study along with data of the previous have been used to check the validity of the existing equation (Lim, 1994; Melvill, 1992, 1997 and Dey and Barbhuiya, 2005) of maximum scour depth around the vertical wall abutment. A new relationship is proposed to estimate the maximum scour depth around vertical wall abutment, it gives better results all relationships.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Jesse D.; Chang, Grace; Jones, Craig
The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. Themore » maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.« less
NASA Astrophysics Data System (ADS)
Liu, Dongyan; Wang, Yueqi
2013-09-01
The spatial and temporal variability of sea surface chlorophyll-a (Chl-a) concentrations in the Bohai and Yellow Seas were analyzed, using satellite-derived Chl-a products from SeaWiFS and MODIS sensors over the period of September 1997-September 2011. A set of monthly and cloud-free Chl-a data was produced by the Data Interpolating Empirical Orthogonal Function (DINEOF) method. The results indicate that there are different Chl-a seasonal patterns existing in the Yangtze River mouth, coastal and offshore waters, respectively. In the Yangtze River mouth, a long-lasting Chl-a peak (May-September) is seen in summer. In coastal waters, two significant Chl-a maxima occur in winter-spring and late summer, respectively. In offshore waters, only one significant spring (March-April) Chl-a maximum is evident with a time lag of 1-3 months to coastal waters and the signal of autumn maximum is very weak. In coastal waters, wind-tide-thermohaline circulations and East Asia summer rainy monsoon may important physical factors to impact the seasonal pattern of Chl-a, but increased human activity (e.g., eutrophication, dam) could significantly enhance this process. In offshore waters, the impact on the circulation of the YSWC in winter and YSCW in summer in the central Yellow Sea could be important physical factor in explaining the variability of Chl-a in seasonal patterns. The decadal trends of Chl-a and sea surface temperature are decreasing in coastal waters, with a significantly positive correlation. In offshore waters, the decadal trends of Chl-a is increasing but a slight decreasing sea surface temperature trend is seen, and they indicate a negative correlation. The highest Chl-a values (3.0-5.0 mg m-3) and the lowest variability (STD < 0.3 mg m-3) are observed in coastal waters, in the adjacent sea area of the Yangtze River and Yellow River mouths where the water depth is less than 20 m. Compared with coastal waters and the sea adjacent to the large river mouths, the central Bohai Sea and the offshore waters of the Yellow Sea with the water depth of 20-40 m have lower Chl-a concentrations (1.5-3.5 mg m-3) but higher variability (STD = 0.4-0.6 mg m-3). In contrast to (1) and (2), the lowest Chl-a values (0.5-2.0 mg m-3, with most of values below 1 mg m-3) and the highest variability (STD > 0.8 mg m-3) occurred in the center Yellow Sea where the water depth with a range of 40-120 m. Linear statistical analysis further verifies the relationship between Chl-a and water depth (Fig. 5). Chl-a concentrations and water depths display a significant negative correlation (R = -0.87, P < 0.0001) (Fig. 5a), and there is a significant positive correlation (R = 0.69, P < 0.0001) between STD and water depths (Fig. 5b). These results indicated a significant spatial correlation between water depth and Chl-a concentrations.
Zhao, Xinfeng; Chen, Liding; Zhang, Haiping
2013-03-01
Drinking water samples (N = 228) from domestic tube wells (DTWs) and seven samples from public water supply wells (PWSWs) were collected and tested in Hailun, northeast China. The percentage of samples with nitrate and ammonia concentrations above the maximum acceptable concentration of nitrate, 10 mg N/L, and the maximum ensure concentration of ammonia, 1.5 mg/L, for the DTWs were significantly higher than for the PWSWs. Of the DTWs, an important observation was that the occurrence of groundwater nitrate contamination was directly related to well tube material with different joint pathways. Nitrate in seamless-tube wells was lower statistically significantly than those in multiple-section-tube wells (p < .001). Furthermore, well depth and hydrogeological setting might have some impacts on nitrogen contamination and the major sources of inorganic nitrogen contamination may be nitrogenous chemical fertilizer. Therefore, PWSWs built for all families are the best way to ensure the drinking water safety in villages. For DTWs it is necessary to use seamless tubes and to dig deep enough according to the depth of groundwater level. Improving the efficiency of chemical fertilizer use would also reduce the risk of groundwater contamination.
NASA Astrophysics Data System (ADS)
Tulea, C.; Caron, J.; Wahab, H.; Gehlich, N.; Hoefer, M.; Esser, D.; Jungbluth, B.; Lenenbach, A.; Noll, R.
2013-03-01
Several laser systems in the infrared wavelength range, such as Nd:YAG, Er:YAG or CO2 lasers are used for efficient ablation of bone tissue. Here the application of short pulses in coaction with a thin water film results in reduced thermal side effects. Nonetheless up to now there is no laser-process for bone cutting in a clinical environment due to lack of ablation efficiency. Investigations of laser ablation rates of bone tissue using a rinsing system and concerning bleedings have not been reported yet. In our study we investigated the ablation rates of bovine cortical bone tissue, placed 1.5 cm deep in water under laminar flow conditions, using a short pulsed (25 ps), frequency doubled (532 nm) Nd:YVO4 laser with pulse energies of 1 mJ at 20 kHz repetition rate. The enhancement of the ablation rate due to debris removal by an additional water flow from a well-directed blast pipe as well as the negative effect of the admixture of bovine serum albumin to the water were examined. Optical Coherence Tomography (OCT) was used to measure the ablated volume. An experimental study of the depth dependence of the ablation rate confirms a simplified theoretical prediction regarding Beer-Lambert law, Fresnel reflection and a Gaussian beam profile. Conducting precise incisions with widths less than 1.5 mm the maximum ablation rate was found to be 0.2 mm3/s. At depths lower than 100 μm, while the maximum depth was 3.5 mm.
A comparative study of soil water movement under different vegetation covers
NASA Astrophysics Data System (ADS)
FERNANDO, A.; Tanaka, T.
2002-05-01
Vegetation, varying widely floristically, structurally, and in spatial distribution, is a complex phenomenon, delicately adjusted within itself and to its broader environment. To investigate the soil water movement of different vegetation covers, soil physical properties, and pressure head of soil water, have been analysed in a pine forest and adjacent disturbed grassland at the Terrestrial Environmental Research Centre (ERC) of Tsukuba University, Japan. Our results of the soil physical properties showed significant differences under different vegetation. At the forest site, the total porosity was nearly constant, i.e. 81% to 84%, from the ground surface to the depth of 70 cm, and decreased uniformly with the depth to reach 63.2% at 150 cm. At the grassland site, the total porosity was about 70% near the ground surface, however, expeditiously decreased to approximately 62% between the depths of 10 and 40 cm. Below these depths the total porosity increased to a maximum of about 77% between the depths of 50 and 80 cm, then decreased again to 54.9% at 150 cm. The total pressure head indicated that the evapotranspiration zone of the pine forest was 70 cm but was 50 cm in the grassland. KEY WORDS: Natural pine forest, Disturbed grassland, Soil water movement, Soil physical properties, Evaporation effective zone.
Trimethylamine oxide accumulation as a function of depth in Hawaiian mid-water fishes
NASA Astrophysics Data System (ADS)
Bockus, Abigail B.; Seibel, Brad A.
2016-06-01
Trimethylamine oxide (TMAO) is a common osmolyte and counteracting solute. It is believed to combat the denaturation induced by hydrostatic pressure as some deep-sea animals contain higher TMAO levels than their shallow water counterparts. It has also been proposed that TMAO may accumulate passively during lipid storage resulting in a correlation between lipid content and TMAO levels in some groups. Previous research showed that lipid content decreased with depth in species of Hawaiian fishes presenting a novel test of these competing hypotheses. TMAO ranged from 20.4 to 92.8 mmol/kg. Lipid content ranged from 0.50 to 4.7% WW. After completing a comprehensive search for depths available in the literature, provided here, we analyzed TMAO and lipid as a function of average, minimum and maximum depth of occurrence for 27 species of fishes from nine orders. We found that TMAO is positively correlated with all measures of habitat depth (hydrostatic pressure) but the relationship is strongest with average depth. We further showed using phylogenetic independent contrasts that this relationship was not influenced by the evolutionary relatedness of these species. Interestingly, we found that lipid content increased with depth, in direct contrast to previous studies. TMAO is thus also positively correlated with lipid content. While we are unable to distinguish between these hypotheses, we show that TMAO is strongly correlated with depth in mid-water fishes.
MacLeod, Cecilia Louise; Barringer, T.H.; Vowinkel, E.F.; Price, C.V.
1995-01-01
A water-quality data base was developed to permit the investigation of the relation of concentrations of nitrate (as nitrogen) in ground water to well depth, well use, and land use (agricultural, residential, urban nonresidential, and undeveloped) in Franklin Township. Nitrate concentrations in water from 868 wells tended to decrease with depth. A rank-order regression model of nitrate concen- trations and land-use percentages was fitted to data from 98 shallow domestic wells. The model, which explains about 25 percent of the variance in the data, indicated that nitrate concentration increased with the percentage of developed land in a well's buffer zone. Further stratification of the data based on well use (commercial, domestic, or agricultural/irrigation) indicated that elevated nitrate concentrations were more common in water from agricultural/irrigation wells than in water from domestic or commercial wells. Concentrations of nitrate were indicative of human activities in water from about one-third of the wells sampled but exceeded the U.S. Environmental Protection Agency's maximum contaminant level of 10 milligrams per liter in water from only 1 percent of the wells. A sampling strategy in which water from wells of different depths located within areas in each of the four land-use categories is sampled yearly and analyzed for nitrate and other constituents would facilitate determination of the effects of human activities on ground-water quality.
Deterministic approach for multiple-source tsunami hazard assessment for Sines, Portugal
NASA Astrophysics Data System (ADS)
Wronna, M.; Omira, R.; Baptista, M. A.
2015-11-01
In this paper, we present a deterministic approach to tsunami hazard assessment for the city and harbour of Sines, Portugal, one of the test sites of project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe). Sines has one of the most important deep-water ports, which has oil-bearing, petrochemical, liquid-bulk, coal, and container terminals. The port and its industrial infrastructures face the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING, a Non-linear Shallow Water model wIth Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages: MLLW (mean lower low water), MSL (mean sea level), and MHHW (mean higher high water). For each scenario, the tsunami hazard is described by maximum values of wave height, flow depth, drawback, maximum inundation area and run-up. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at the Sines test site considering the single scenarios at mean sea level, the aggregate scenario, and the influence of the tide on the aggregate scenario. The results confirm the composite source of Horseshoe and Marques de Pombal faults as the worst-case scenario, with wave heights of over 10 m, which reach the coast approximately 22 min after the rupture. It dominates the aggregate scenario by about 60 % of the impact area at the test site, considering maximum wave height and maximum flow depth. The HSMPF scenario inundates a total area of 3.5 km2.
NASA Astrophysics Data System (ADS)
Conte, Maureen H.; Ralph, Nate; Ross, Edith H.
Since 1978, the Oceanic Flux Program (OFP) time-series sediment traps have measured particle fluxes in the deep Sargasso Sea near Bermuda. There is currently a 20+yr flux record at 3200-m depth, a 12+yr flux at 1500-m depth, and a 9+yr record at 500-m depth. Strong seasonality is observed in mass flux at all depths, with a flux maximum in February-March and a smaller maximum in December-January. There is also significant interannual variability in the flux, especially with respect to the presence/absence of the December-January flux maximum and in the duration of the high flux period in the spring. The flux records at the three depths are surprisingly coherent, with no statistically significant temporal lag between 500 and 3200-m fluxes at our biweekly sample resolution. Bulk compositional data indicate an extremely rapid decrease in the flux of organic constituents with depth between 500 and 1500-m, and a smaller decrease with depth between 1500 and 3200-m depth. In contrast, carbonate flux is uniform or increases slightly between 500 and 1500-m, possibly reflecting deep secondary calcification by foraminifera. The lithogenic flux increases by over 50% between 500 and 3200-m depth, indicating strong deep water scavenging/repackaging of suspended lithogenic material. Concurrent with the rapid changes in flux composition, there is a marked reduction in the heterogeneity of the sinking particle pool with depth, especially within the mesopelagic zone. By 3200-m depth, the bulk composition of the sinking particle pool is strikingly uniform, both seasonally and over variations in mass flux of more than an order of magnitude. These OFP results provide strong indirect evidence for the intensity of reprocessing of the particle pool by resident zooplankton within mesopelagic and bathypelagic waters. The rapid loss of organic components, the marked reduction in the heterogeneity of the bulk composition of the flux, and the increase in terrigenous fluxes with depth are most consistent with a model of rapid particle turnover and material scavenging from the suspended pool during new particle formation. We suggest that much of the deep mass flux is generated in situ by deep-dwelling zooplankton, and that mass flux, as well as scavenging of suspended materials from the deep water column, varies in proportion to changes in grazer activity. Labile, very rapidly sinking aggregates (e.g., salp fecal material) arriving in the bathypelagic zone within days of their upper ocean production may act to stimulate zooplankton grazing rates and increase large particle production and deep mass flux days to weeks in advance of the arrival of bulk of surface-produced material. This process could reconcile mean particle sinking rate estimates with the phase coherence observed between upper and deep ocean mass fluxes.
NASA Technical Reports Server (NTRS)
Eslinger, David L.; Iverson, Richard L.
1986-01-01
Coastal zone color scanner (CZCS) chlorophyll concentration increases in the Mid-Atlantic Bight were associated with high wind speeds in continental shelf waters during March and May 1979. Maximum spring CZCS chlorophyll concentrations occurred during April when the water column was not thermally stratified and were spatially and temporally associated with reductions in wind speed both in onshelf and in offshelf regions. Increased chlorophyll concentrations in offshelf waters were associated with high wind speeds during May when a deep chlorophyll maximum was present. Chlorophyll patchiness was observed on length scales typical of those controlled by biological processes during the April low-wind period but not during March or May when wind speeds were greater. The spring CZCS chlorophyll maximum in the southern portion of the Mid-Atlantic Bight occurred in response to a reduction in mixed layer depth caused by decreased wind speeds and not by increased water column stratification.
Sedimentation rates in the marshes of Sand Lake National Wildlife Refuge
Gleason, R.A.; Euliss, N.H.; Holmes, C.W.
2003-01-01
Impoundments located within river systems in the Northern Great Plains are vulnerable to sediment inputs because intensive agriculture in watersheds has increased soil erosion and sediments in rivers. At the request of the U.S. Fish and Wildlife Service (FWS), we evaluated the vertical accretion of sediment in the Mud Lake impoundment of Sand Lake National Wildlife Refuge (NWR), Brown County, South Dakota. The Mud Lake impoundment was created in 1936 by constructing a low-head dam across the James River. We collected sediment cores from the Mud Lake impoundment during August 2000 for determination of vertical accretion rates. Accretion rates were estimated using cesium-13 7 and lead-210 isotopic dating techniques to estimate sediment accretion over the past 100 years. Accretion rates were greatest near the dam (1.3 cm yr-1) with less accretion (0.2 cm yr-1) occurring in the upper reaches of Mud Lake. As expected, accretion was highest near the dam where water velocities and greater water depth facilitates sediment deposition. Higher rates of sedimentation (accretion> 2.0 cm year-1) occurred during the 1990s when river flows were especially high. Since 1959, sediment accretion has reduced maximum pool depth of Mud Lake near the dam by 55 cm. Assuming that sediment accretion rates remain the same in the future, we project Mud Lake will have a maximum pool depth of 77 and 51 cm by 2020 and 2040, respectively. Over this same time frame, water depths in the upper reaches of Mud Lake would be reduced to< 2 cm. Projected future loss of water depth will severely limit the ability of managers to manipulate pool levels in Mud Lake to cycle vegetation and create interspersion of cover and water to meet current wildlife habitat management objectives. As predicted for major dams constructed on rivers throughout the world, Mud Lake will have a finite life span. Our data suggests that the functional life span of Mud Lake since construction will be < 100 years. We anticipate that over the next 20 years, sediments entering Mud Lake will reduce water depths to the point that current wildlife management objectives cannot be achieved through customary water-level manipulations. Sedimentation impacts are not unique to the Sand Lake NWR. It is widely accepted that impoundments trap sediments and shallow impoundments, such as those managed by the FWS, are especially vulnerable. Given the ecological impacts associated with loss of water depths, we recommend that managers begin evaluating the long-term wildlife management goals for the refuge relative to associated costs and feasibility of options available to enhance and maximize the life span of existing impoundments, including upper watershed management.
NASA Astrophysics Data System (ADS)
Lim, H. S.; Lee, J. Y.; Yoon, H.
2016-12-01
Soil temperatures, water temperatures, and weather parameters were monitored at a variety of locations in the vicinity of King Sejong station, King George Island, Antarctica, during summer 2010-2011. Thermal characteristics of soil and water were analysed using time-series analyses, apparent thermal diffusivity (ATD), and active layer thickness. The temperatures of pond water and nearby seawater showed the distinctive diurnal variations and correlated strongly with solar radiation (r = 0.411-0.797). Soil temperature (0.1-0.3 m depth) also showed diurnal fluctuations that decreased with depth and were directly linked to air temperature (r = 0.513-0.783) rather than to solar radiation; correlation decreased with depth and the time lag in the response increased by 2-3 hours per 0.1 m of soil depth. Owing to the lack of snow cover, summertime soil temperature was not decoupled from air temperature. Estimated ATD was between 0.022 and 29.209 mm2/sec, showed temporal and spatial variations, and correlated strongly with soil moisture content. The maximum estimated active layer thickness in the study area was a 41-70 cm, which is consistent with values reported in the previous work.
Vertical distribution of a deep-water moss and associated epiphytes in Crater Lake, Oregon
McIntire, C.D.; Phinney, H.K.; Larson, Gary L.; Buktenica, M.W.
1994-01-01
A one-person submersible was used to examine the vertical distribution of the deep-water moss Drepanocladus aduncus (Hedw.) Warnst in Crater Lake (Oregon). Living specimens were found attached to sediment and rocks at depths between 25 m and 140 m. Dense beds of the moss were observed at depths between 30 m and 80 m, a region that corresponded roughly to the zone of maximum primary production by phytoplankton. The moss population supported a diverse assemblage of epiphytic algae, of which the most abundant genera included Cladophora,Oedogonium, Rhizoclonium, Tribonema, Vaucheria, and the diatoms Cocconeis, Cymbella, Epithemia, Fragilaria, Gomphonema, Melosira, Navicula, and Synedra. Chemical and physical data supported the hypothesis that the lower limit of distribution of the moss is determined by light limitation, whereas the upper limit is related to the availability of nutrients, particularly nitrate-nitrogen and trace elements. Deep-water videotapes of the moss population indicated that D. aduncus with its epiphytic algae was abundant enough in regions associated with the metalimnion and upper hypolimnion to have a potential influence on the nutrient dynamics of the Crater Lake ecosystem. Although the maximum depth at which living bryophytes occur in Crater Lake is similar to that found for Lake Tahoe, conditions in Lake Tahoe allow the growth and survival of a much more diverse assemblage of bryophytes and charophytes than is present in Crater Lake.
NASA Astrophysics Data System (ADS)
Tirta, A. P.; Saefumillah, A.; Foliatini
2017-04-01
Eutrophication is one of the environmental problems caused by the excessive nutrients in aquatic ecosystems. In most lakes, phosphate is a limiting nutrient for algae photosynthesis. Even though the concentration of phosphate from external loading into the water body has been reduced, eutrophication could still be occured due to internal mobilization of phosphate from the sediment pore water into the overlying water. Therefore, the released phosphate from sediments and their interaction in the pore water must be included in the monitoring of phosphate concentration in aquatic system. The released phosphate from sediment into pore water has been studied by DGT device with ferrihydrite as binding gel and N-N‧-methylenebisacrylamide as crosslinker. The results showed that DGT with 15% acrylamide; 0.1 % N-N‧-methylenebisacrylamide and ferrihydrite as binding gel was suitable for the measurement of the released phosphate from sediment into pore water. The result of the deployed DGT in oxic and anoxic conditions in seven days incubation showed the released phosphate process from the sediment into pore water was affected by incubation time and the existence of oxygen in the environment. The released phosphate from the sediment into pore water in anoxic condition has a higher value than oxic condition. The experimental results of the deployed DGT in natural sediment core at a depth of 1 to 15 cm from the surface of the water for 7 days showed that the sediment has a different phosphate mass profile based on depth. The concentration of phosphate tends to be increased with depth. The maximum CDGT of phosphate released in oxic and anoxic conditions at 7th day period of incubation are 29.23 μg/L at 14 cm depth and 30.19 μg/L at 8 cm depth, respectively.
Ekama, G A; Marais, P
2004-02-01
The applicability of the one-dimensional idealized flux theory (1DFT) for the design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated with the two-dimensional computational fluid dynamics model SettlerCAD using as a basis 35 full-scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25-4.1m side water depth (SWD), with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the Watts et al. (Water Res. 30(9)(1996)2112) SST, with doubled SWDs and the Darvill new (4.1m) and old (2.5m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also performed. While the design of the internal features of the SST, such as baffling, has a marked influence on the effluent SS concentration while the SST is underloaded, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST. Until more information is obtained, it would appear from the simulations that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais (Water Pollut. Control 85(1)(1986)101) remains a reasonable value to apply in the design of full-scale SSTs-for deep SSTs (4m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, this be avoided and (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the appropriate flux rating applied to the 1DFT estimate of the surface area.
Quantitative ionization chamber alignment to a water surface: Theory and simulation.
Siebers, Jeffrey V; Ververs, James D; Tessier, Frédéric
2017-07-01
To examine the response properties of cylindrical cavity ionization chambers (ICs) in the depth-ionization buildup region so as to obtain a robust chamber-signal - based method for definitive water surface identification, hence absolute ionization chamber depth localization. An analytical model with simplistic physics and geometry is developed to explore the theoretical aspects of ionization chamber response near a phantom water surface. Monte Carlo simulations with full physics and ionization chamber geometry are utilized to extend the model's findings to realistic ion chambers in realistic beams and to study the effects of IC design parameters on the entrance dose response. Design parameters studied include full and simplified IC designs with varying central electrode thickness, wall thickness, and outer chamber radius. Piecewise continuous fits to the depth-ionization signal gradient are used to quantify potential deviation of the gradient discontinuity from the chamber outer radius. Exponential, power, and hyperbolic sine functional forms are used to model the gradient for chamber depths of zero to the depth of the gradient discontinuity. The depth-ionization gradient as a function of depth is maximized and discontinuous when a submerged IC's outer radius coincides with the water surface. We term this depth the gradient chamber alignment point (gCAP). The maximum deviation between the gCAP location and the chamber outer radius is 0.13 mm for a hypothetical 4 mm thick wall, 6.45 mm outer radius chamber using the power function fit, however, the chamber outer radius is within the 95% confidence interval of the gCAP determined by this fit. gCAP dependence on the chamber wall thickness is possible, but not at a clinically relevant level. The depth-ionization gradient has a discontinuity and is maximized when the outer-radius of a submerged IC coincides with the water surface. This feature can be used to auto-align ICs to the water surface at the time of scanning and/or be applied retrospectively to scan data to quantify absolute IC depth. Utilization of the gCAP should yield accurate and reproducible depth calibration for clinical depth-ionization measurements between setups and between users. © 2017 American Association of Physicists in Medicine.
Initial experiments with gel-water: towards MRI-linac dosimetry and imaging.
Alnaghy, Sarah J; Gargett, Maegan; Liney, Gary; Petasecca, Marco; Begg, Jarrad; Espinoza, Anthony; Newall, Matthew K; Duncan, Mitchell; Holloway, Lois; Lerch, Michael L F; Lazea, Mircea; Rosenfeld, Anatoly B; Metcalfe, Peter
2016-12-01
Tracking the position of a moving radiation detector in time and space during data acquisition can replicate 4D image-guided radiotherapy (4DIGRT). Magnetic resonance imaging (MRI)-linacs need MRI-visible detectors to achieve this, however, imaging solid phantoms is an issue. Hence, gel-water, a material that provides signal for MRI-visibility, and which will in future work, replace solid water for an MRI-linac 4DIGRT quality assurance tool, is discussed. MR and CT images of gel-water were acquired for visualisation and electron density verification. Characterisation of gel-water at 0 T was compared to Gammex-RMI solid water, using MagicPlate-512 (M512) and RMI Attix chamber; this included percentage depth dose, tissue-phantom ratio (TPR 20/10 ), tissue-maximum ratio (TMR), profiles, output factors, and a gamma analysis to investigate field penumbral differences. MR images of a non-powered detector in gel-water demonstrated detector visualisation. The CT-determined gel-water electron density agreed with the calculated value of 1.01. Gel-water depth dose data demonstrated a maximum deviation of 0.7% from solid water for M512 and 2.4% for the Attix chamber, and by 2.1% for TPR 20/10 and 1.0% for TMR. FWHM and output factor differences between materials were ≤0.3 and ≤1.4%. M512 data passed gamma analysis with 100% within 2%, 2 mm tolerance for multileaf collimator defined fields. Gel-water was shown to be tissue-equivalent for dosimetry and a feasible option to replace solid water.
Vadeboncoeur, Yvonne; Peterson, Garry; Vander Zanden, M Jake; Kalff, Jacob
2008-09-01
Attached algae play a minor role in conceptual and empirical models of lake ecosystem function but paradoxically form the energetic base of food webs that support a wide variety of fishes. To explore the apparent mismatch between perceived limits on contributions of periphyton to whole-lake primary production and its importance to consumers, we modeled the contribution of periphyton to whole-ecosystem primary production across lake size, shape, and nutrient gradients. The distribution of available benthic habitat for periphyton is influenced by the ratio of mean depth to maximum depth (DR = z/ z(max)). We modeled total phytoplankton production from water-column nutrient availability, z, and light. Periphyton production was a function of light-saturated photosynthesis (BPmax) and light availability at depth. The model demonstrated that depth ratio (DR) and light attenuation strongly determined the maximum possible contribution of benthic algae to lake production, and the benthic proportion of whole-lake primary production (BPf) declined with increasing nutrients. Shallow lakes (z < or =5 m) were insensitive to DR and were dominated by either benthic or pelagic primary productivity depending on trophic status. Moderately deep oligotrophic lakes had substantial contributions by benthic primary productivity at low depth ratios and when maximum benthic photosynthesis was moderate or high. Extremely large, deep lakes always had low fractional contributions of benthic primary production. An analysis of the world's largest lakes showed that the shapes of natural lakes shift increasingly toward lower depth ratios with increasing depth, maximizing the potential importance of littoral primary production in large-lake food webs. The repeatedly demonstrated importance of periphyton to lake food webs may reflect the combination of low depth ratios and high light penetration characteristic of large, oligotrophic lakes that in turn lead to substantial contributions of periphyton to autochthonous production.
Water partitioning in the Earth's mantle
NASA Astrophysics Data System (ADS)
Inoue, Toru; Wada, Tomoyuki; Sasaki, Rumi; Yurimoto, Hisayoshi
2010-11-01
We have conducted H2O partitioning experiments between wadsleyite and ringwoodite and between ringwoodite and perovskite at 1673 K and 1873 K, respectively. These experiments were performed in order to constrain the relative distribution of H2O in the upper mantle, the mantle transition zone, and the lower mantle. We successfully synthesized coexisting mineral assemblages of wadsleyite-ringwoodite and ringwoodite-perovskite that were large enough to measure the H2O contents by secondary ion mass spectrometry (SIMS). Combining our previous H2O partitioning data (Chen et al., 2002) with the present results, the determined water partitioning between olivine, wadsleyite, ringwoodite, and perovskite under H2O-rich fluid saturated conditions are 6:30:15:1, respectively. Because the maximum H2O storage capacity in wadsleyite is ∼3.3 wt% (e.g. Inoue et al., 1995), the possible maximum H2O storage capacity in the olivine high-pressure polymorphs are as follows: ∼0.7 wt% in olivine (upper mantle just above 410 km depth), ∼3.3 wt% in wadsleyite (410-520 km depth), ∼1.7 wt% in ringwoodite (520-660 km depth), and ∼0.1 wt% in perovskite (lower mantle). If we assume ∼0.2 wt% of the H2O content in wadsleyite in the mantle transition zone estimated by recent electrical conductivity measurements (e.g. Dai and Karato, 2009), the estimated H2O contents throughout the mantle are as follows; ∼0.04 wt% in olivine (upper mantle just above 410 km depth), ∼0.2 wt% in wadsleyite (410-520 km depth), ∼0.1 wt% in ringwoodite (520-660 km depth) and ∼0.007 wt% in perovskite (lower mantle). Thus, the mantle transition zone should contain a large water reservoir in the Earth's mantle compared to the upper mantle and the lower mantle.
Eastern South Pacific water mass geometry during the last glacial-interglacial transition
NASA Astrophysics Data System (ADS)
De Pol-Holz, R.; Reyes, D.; Mohtadi, M.
2012-12-01
The eastern South Pacific is characterized today by a complex thermocline structure where large salinity and oxygen changes as a function of depth coexist. Surface waters from tropical origin float on top of subantarctic fresher water (the so-called 'shallow salinity minimum of the eastern south Pacific'), which in turn, flow above aged equatorial and deeper recently ventilated Antarctic Intermediate waters. Little is known however about the water mass geometry changes that could have occurred during the last glacial maximum boundary conditions (about 20,000 years before the present), despite this information being critical for the assessment of potential mechanisms that have been proposed as explanations for the deglacial onset of low oxygen conditions in the area and the atmospheric CO2 increase during the same time. Here we present benthic and planktonic foraminifera stable isotope and radiocarbon data from a set of sediment cores from the Chilean continental margin covering a large -yet still limited- geographical area and depth range. Sedimentations rates were relatively high (>10 cm/kyr) precluding major caveats from bioturbation in all of our archives. The distribution of δ13C of ΣCO2 shows the presence of a very depleted (δ13C < -1‰ V-PDB) water mass overlaying more recently ventilated waters at intermediate depths as indicated by thermocline foraminifer dwellers being more depleted in 13C than the benthic species. The origin of this depleted end-member is probably upwelling from the Southern Ocean as expressed by the radiocarbon content and the large reservoir effect associated with the last glacial maximum and the beginning of the deglaciation along the margin. Our data suggest that the Tropical waters that today bath the lower latitude cores was displaced by surface waters of southern origin and therefore in line with the evidence of a latitudinal shift of the frontal systems.
Lee, Tae Kyu; Sandison, George A
2003-01-21
Electron backscattering has been incorporated into the energy-dependent electron loss (EL) model and the resulting algorithm is applied to predict dose deposition in slab heterogeneous media. This algorithm utilizes a reflection coefficient from the interface that is computed on the basis of Goudsmit-Saunderson theory and an average energy for the backscattered electrons based on Everhart's theory. Predictions of dose deposition in slab heterogeneous media are compared to the Monte Carlo based dose planning method (DPM) and a numerical discrete ordinates method (DOM). The slab media studied comprised water/Pb, water/Al, water/bone, water/bone/water, and water/lung/water, and incident electron beam energies of 10 MeV and 18 MeV. The predicted dose enhancement due to backscattering is accurate to within 3% of dose maximum even for lead as the backscattering medium. Dose discrepancies at large depths beyond the interface were as high as 5% of dose maximum and we speculate that this error may be attributed to the EL model assuming a Gaussian energy distribution for the electrons at depth. The computational cost is low compared to Monte Carlo simulations making the EL model attractive as a fast dose engine for dose optimization algorithms. The predictive power of the algorithm demonstrates that the small angle scattering restriction on the EL model can be overcome while retaining dose calculation accuracy and requiring only one free variable, chi, in the algorithm to be determined in advance of calculation.
The energy-dependent electron loss model: backscattering and application to heterogeneous slab media
NASA Astrophysics Data System (ADS)
Lee, Tae Kyu; Sandison, George A.
2003-01-01
Electron backscattering has been incorporated into the energy-dependent electron loss (EL) model and the resulting algorithm is applied to predict dose deposition in slab heterogeneous media. This algorithm utilizes a reflection coefficient from the interface that is computed on the basis of Goudsmit-Saunderson theory and an average energy for the backscattered electrons based on Everhart's theory. Predictions of dose deposition in slab heterogeneous media are compared to the Monte Carlo based dose planning method (DPM) and a numerical discrete ordinates method (DOM). The slab media studied comprised water/Pb, water/Al, water/bone, water/bone/water, and water/lung/water, and incident electron beam energies of 10 MeV and 18 MeV. The predicted dose enhancement due to backscattering is accurate to within 3% of dose maximum even for lead as the backscattering medium. Dose discrepancies at large depths beyond the interface were as high as 5% of dose maximum and we speculate that this error may be attributed to the EL model assuming a Gaussian energy distribution for the electrons at depth. The computational cost is low compared to Monte Carlo simulations making the EL model attractive as a fast dose engine for dose optimization algorithms. The predictive power of the algorithm demonstrates that the small angle scattering restriction on the EL model can be overcome while retaining dose calculation accuracy and requiring only one free variable, χ, in the algorithm to be determined in advance of calculation.
Obsidian hydration profile measurements using a nuclear reaction technique
Lee, R.R.; Leich, D.A.; Tombrello, T.A.; Ericson, J.E.; Friedman, I.
1974-01-01
AMBIENT water diffuses into the exposed surfaces of obsidian, forming a hydration layer which increases in thickness with time to a maximum depth of 20-40 ??m (ref. 1), this layer being the basic foundation of obsidian dating2,3. ?? 1974 Nature Publishing Group.
Quality assurance of proton beams using a multilayer ionization chamber system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhanesar, Sandeep; Sahoo, Narayan; Kerr, Matthew
2013-09-15
Purpose: The measurement of percentage depth-dose (PDD) distributions for the quality assurance of clinical proton beams is most commonly performed with a computerized water tank dosimetry system with ionization chamber, commonly referred to as water tank. Although the accuracy and reproducibility of this method is well established, it can be time-consuming if a large number of measurements are required. In this work the authors evaluate the linearity, reproducibility, sensitivity to field size, accuracy, and time-savings of another system: the Zebra, a multilayer ionization chamber system.Methods: The Zebra, consisting of 180 parallel-plate ionization chambers with 2 mm resolution, was used tomore » measure depth-dose distributions. The measurements were performed for scattered and scanned proton pencil beams of multiple energies delivered by the Hitachi PROBEAT synchrotron-based delivery system. For scattered beams, the Zebra-measured depth-dose distributions were compared with those measured with the water tank. The principal descriptors extracted for comparisons were: range, the depth of the distal 90% dose; spread-out Bragg peak (SOBP) length, the region between the proximal 95% and distal 90% dose; and distal-dose fall off (DDF), the region between the distal 80% and 20% dose. For scanned beams, the Zebra-measured ranges were compared with those acquired using a Bragg peak chamber during commissioning.Results: The Zebra demonstrated better than 1% reproducibility and monitor unit linearity. The response of the Zebra was found to be sensitive to radiation field sizes greater than 12.5 × 12.5 cm; hence, the measurements used to determine accuracy were performed using a field size of 10 × 10 cm. For the scattered proton beams, PDD distributions showed 1.5% agreement within the SOBP, and 3.8% outside. Range values agreed within −0.1 ± 0.4 mm, with a maximum deviation of 1.2 mm. SOBP length values agreed within 0 ± 2 mm, with a maximum deviation of 6 mm. DDF values agreed within 0.3 ± 0.1 mm, with a maximum deviation of 0.6 mm. For the scanned proton pencil beams, Zebra and Bragg peak chamber range values demonstrated agreement of 0.0 ± 0.3 mm with a maximum deviation of 1.3 mm. The setup and measurement time for all Zebra measurements was 3 and 20 times less, respectively, compared to the water tank measurements.Conclusions: Our investigation shows that the Zebra can be useful not only for fast but also for accurate measurements of the depth-dose distributions of both scattered and scanned proton beams. The analysis of a large set of measurements shows that the commonly assessed beam quality parameters obtained with the Zebra are within the acceptable variations specified by the manufacturer for our delivery system.« less
NASA Astrophysics Data System (ADS)
Filipponi, Federico; Zucca, Francesco; Taramelli, Andrea; Valentini, Emiliana
2015-12-01
Monitoring sediment fluxes patterns in coastal area, like dispersion, sedimentation and resuspension processes, is a relevant topic for scientists, decision makers and natural resources management. Time series analysis of Earth Observation (EO) data may contribute to the understanding and the monitoring of processes in sedimentary depositional marine environment, especially for shallow coastal areas. This research study show the ability of optical medium resolution imagery to interpret the evolution of sediment resuspension from seafloor in coastal areas during intense wind forcings. Intense bora wind events in northern Adriatic Sea basin during winter season provoke considerable wave-generated resuspension of sediments, which cause variation in water column turbidity. Total Suspended Matter (TSM) product has been selected as proxy for qualitative and quantitative analysis of resuspended sediments. In addition, maximum signal depth (Z90_max), has been used to evaluate the evolution of sediment concentration in the water column.
Solitary wave runup and force on a vertical barrier
NASA Astrophysics Data System (ADS)
Liu, Philip L.-F.; Al-Banaa, Khaled
2004-04-01
In this paper we investigate the interaction between a solitary wave and a thin vertical barrier. A set of laboratory experiments was performed with different values of incident wave height to water depth ratio, H/h, and the draught of the barrier to water depth ratio, D/h. While wave gauges were used to measure the reflected and transmitted waves, pressure transducers were installed on both sides of the barrier, enabling the calculation of wave force. The particle image velocimetry (PIV) technique is also employed to measure the velocity field in the vicinity of the barrier. A numerical model, based on the Reynolds-averaged Navier Stokes (RANS) equations and the k - epsilon turbulence closure model, was first checked with experimental data and then employed to obtain additional results for the range of parameters where the laboratory experiments were not performed. Using both experimental data and numerical results, formulae for the maximum runup height, and the maximum wave force are derived in terms of H/h and D/h.
Water depth modifies back kinematics of horses during water treadmill exercise.
Nankervis, K J; Finney, P; Launder, L
2016-11-01
Water treadmill exercise can be incorporated into the rehabilitation programmes of horses recovering from back pathology, yet little is known about the effect of this type of exercise on thoracolumbar movement ranges. To measure the flexion-extension range of motion (FE ROM) of the thoracolumbar spine and pelvic vertical displacement during water treadmill walking at 3 water depths and compare these with the control condition. Within-subject trial using a crossover design in healthy horses. A total of 14 horses walked at 0.8 m/s on a water treadmill for 3 min at each of the following depths; hoof (control), metatarsophalangeal joint (low), tarsal joint (medium) and femoropatellar joint (high). Skin surface markers on T6, T10, T13, T18, L3, L5 and S3 were used to obtain FE ROM and the minimum and maximum angular motion pattern values (AMPmin and AMPmax) for T10, T13, T18, L3 and L5. Markers placed on left and right tuber coxae were used to obtain pelvic vertical displacement. Friedman's tests and post hoc Wilcoxon's signed ranks tests were used to determine the effects of water depth on measured variables. The FE ROM of T10 (8.4°), T13 (8.1°), T18 (6.9°) and L3 (6.4°) when walking at high depth was significantly greater than control (5.5, 5.7, 5.1 and 5.1°, respectively; P<0.008); T13 AMPmin was significantly lower in high water (-3.0°) than control (0.1°, P = 0.001) and L3 AMPmax significantly greater in high water (-1.9°) than control (-4.8°, P = 0.001). There was no significant association between pelvic vertical displacement and water depth. Walking in high water causes cranial thoracic extension and thoracolumbar flexion when compared with walking in water at hoof depth. This postural change should be considered when designing rehabilitation programmes for horses with back and/or hindlimb pathology. © 2015 EVJ Ltd.
Physical and Chemical Limnology of the Abegondo-Cecebre reservoir, A Coruña, NW Spain
NASA Astrophysics Data System (ADS)
Delgado, Jordi; Cereijo-Arango, José Luis; García-Morrondo, David; Cillero-Castro, Carmen; Muñoz-Ibáñez, Andrea; Juncosa-Rivera, Ricardo
2016-04-01
The Abegondo-Cecebre reservoir was commissioned in 1976. It has a nominal capacity of ~23 hm3 and an actual regulation capacity of 20.6 hm3 (12.9 hm3 in rainy periods, when flood control is necessary). This reservoir constitutes the only source of drinking water for the city of A Coruña and its metropolitan area (~400.000 inhabitants). The reservoir, which is two-tailed, is located downstream the Barcés and Mero rivers (~250 km2) and belongs to the so-called Galician-Coast River Basin district (16,372 km2). The increasing water demand for human consumption and industrial purposes challenges the supply capacity of the system and this is especially acute when, in hydric-stress situations, the availability of water becomes reduced and the water quality is adversely affected by a number of hypolimnetic processes (anoxia, increased metal concentration, etc.) or by episodic algal blooms. Between May 2010 and May 2012, within the context of the LIFE07 ENV/E/000826 Aqua Plann Project, an in-depth study was commissioned by the local water supply managers (EMALCSA). The study encompassed a bathymetry and colmatation characterization as well as a systematic physico-chemical survey via monthly sampling and measurement in selected stations a series of relevant limnological parameters. Surface and bottom reservoir water was sampled in seven representative locations of the system while three of them were used for depth profiling. In addition, five stations were considered for collecting the top layer of the sediments of the reservoir (~20 cm) in two surveys developed in the spring and summer of 2012. The parameters determined, complemented with meteorological information and discharge flows, included temperature, Secchi's depth transparency, PAR radiation, pH, electrical conductivity, redox, dissolved oxygen, turbidity, alkalinity, chlorophyll, phycocyanin, Na, K, Ca, Mg, F, Cl, SO4, NH4, NO3, NO2, PO4, DIC, DOC, particulated organic carbon, Fe, Mn, Al, As, Ba, Be, B, Cd, Co, Cr, Cu, Hg, Ni, Pb, Se, Zn, total P and N, BOD5, 27 plaguicides, 8 HPAs, 23 COVs, 18 PCBs, phenols, detergents, and a 4 indicators of microbial water quality. Based on the previous studies, some relevant morphometric parameters are the following: maximum length: 3627 m; maximum width: 1525 m; maximum depth: 17.2 m; mean depth: 5.9 m; catchment to lake ratio: 64. Based on the bathymetric survey, the reservoir volume lost by sedimentation in its 35 years is about 9.3%. The Abegondo-Cecebre reservoir presents a mesotrophic-eutrophic state. Thermal stratification starts in March and an annual overturn occur in November (monomictic system). Hypolimnetic oxygen depletion is nearly complete (i.e. anoxia) from the beginning of June to mid-end October. Along this period, a number of redox reactions take place in the bottom waters that tend to increase metal and NH4 concentrations, reduce NO3 (and partly SO4) and release P from the sediments.
Thermal, chemical, and optical properties of Crater Lake, Oregon
Larson, G.L.; Hoffman, R.L.; McIntire, D.C.; Buktenica, M.W.; Girdner, S.F.
2007-01-01
Crater Lake covers the floor of the Mount Mazama caldera that formed 7700 years ago. The lake has a surface area of 53 km2 and a maximum depth of 594 m. There is no outlet stream and surface inflow is limited to small streams and springs. Owing to its great volume and heat, the lake is not covered by snow and ice in winter unlike other lakes in the Cascade Range. The lake is isothermal in winter except for a slight increase in temperature in the deep lake from hyperadiabatic processes and inflow of hydrothermal fluids. During winter and spring the water column mixes to a depth of about 200-250 m from wind energy and convection. Circulation of the deep lake occurs periodically in winter and spring when cold, near-surface waters sink to the lake bottom; a process that results in the upwelling of nutrients, especially nitrate-N, into the upper strata of the lake. Thermal stratification occurs in late summer and fall. The maximum thickness of the epilimnion is about 20 m and the metalimnion extends to a depth of about 100 m. Thus, most of the lake volume is a cold hypolimnion. The year-round near-bottom temperature is about 3.5??C. Overall, hydrothermal fluids define and temporally maintain the basic water quality characteristics of the lake (e.g., pH, alkalinity and conductivity). Total phosphorus and orthophosphate-P concentrations are fairly uniform throughout the water column, where as total Kjeldahl-N and ammonia-N are highest in concentration in the upper lake. Concentrations of nitrate-N increase with depth below 200 m. No long-term changes in water quality have been detected. Secchi disk (20-cm) clarity varied seasonally and annually, but was typically highest in June and lowest in August. During the current study, August Secchi disk clarity readings averaged about 30 m. The maximum individual clarity reading was 41.5 m in June 1997. The lowest reading was 18.1 m in July 1995. From 1896 (white-dinner plate) to 2003, the average August Secchi disk reading was about 30 m. No long-term changes in the Secchi disk clarity were observed. Average turbidity of the water column (2-550 m) between June and September from 1991 to 2000 as measured by a transmissometer ranged between 88.8% and 90.7%. The depth of 1% of the incident solar radiation during thermal stratification varied annually between 80 m and 100 m. Both of these measurements provided additional evidence about the exceptional clarity of Crater Lake. ?? 2007 Springer Science+Business Media B.V.
Reconstructing the Paleo-Limnologic Evolution of Lake Bonney, Antarctica using Dissolved Noble Gases
NASA Astrophysics Data System (ADS)
Warrier, R. B.; Castro, M.; Hall, C. M.; Kenig, F. P.; Doran, P. T.
2013-12-01
The McMurdo Dry Valleys, situated on the western coast of the Ross Sea are the largest ice-free region in Antarctica. Lake Bonney (LB), located in western Taylor valley, one of the main east-west dry valleys, has two lobes, East Lake Bonney (ELB) and West Lake Bonney (WLB), which are separated by a narrow straight with a ~13 m deep sill. Because the evolution of LB is ultimately controlled by climate and because there are no reliable millennial-scale continental records of climate other than the Taylor Dome ice core in this region of Antarctica, a number of studies have reconstructed the paleolimnologic history of LB using diverse tools to try to reconstruct the history of the lake, and thus, the climate evolution in this area. However, many open questions remain with respect to the paleo-limnologic evolution of LB. To further place constraints on the evolution of LB, we analyzed 23 lake samples collected between 5 and ~40 m depth from both ELB and WLB for He and Ar concentrations as well as isotopic ratios. Preliminary results show that samples present He excesses up to two and three orders of magnitude with respect to air saturated water (ASW) in ELB and WLB, respectively. While He excesses generally increase with depth in WLB suggesting accumulation of 4He over time, a similar correlation with depth is not observed for ELB samples, indicating a more complex evolutionary history in this lobe. Measured R/Ra He isotopic ratios, where Ra is the atmospheric 3He/4He ratio, vary between 0.20-0.61 and 0.16-0.22 for ELB and WLB respectively, and indicate that observed He excesses are predominantly crustal in origin, with a small (<~5%) mantle contribution. In contrast, measured 40Ar/36Ar ratios indicate that Ar concentrations at all depths in ELB are atmospheric in origin while WLB samples below the sill indicate addition of excess 40Ar, likely of radiogenic origin. Preliminary estimates of water residence times based on measured He excesses and crustal production ratios from basement rocks point to maximum water ages of ~5 kyrs and ~500 kyrs for the deep waters of ELB and WLB, respectively. Similarly, a maximum residence time of ~500 kyrs was obtained for bottom waters of WLB assuming a crustal origin for the observed excess 40Ar. These preliminary age results are maximum estimations and assume that all He and Ar excesses are entirely of crustal origin. Our preliminary results indicate that the WLB waters have been isolated from the atmosphere for a much longer period of time than ELB waters and point to a very different evolution of both lobes. In addition, these maximum WLB ages obtained are much younger than previously thought (~1-5 Ma).
A quantitative analysis of hydraulic interaction processes in stream-aquifer systems
Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin
2016-01-01
The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources. PMID:26818442
Experiment and mathematical model for the heat transfer in water around 4 °C
NASA Astrophysics Data System (ADS)
Ogawa, Naohisa; Kaneko, Fumitoshi
2017-03-01
Water, which is the habitat for a variety of living creatures, has a maximum density at 4.0 °C. This crucial property is considered to play a very important role in the biology of a lake and also has a close relationship with the areas of environmentology and geoscience. It would be desirable for students to confirm this important property of water themselves by carrying out simple experiments. However, it is not easy to detect the maximum density at 4.0 °C because the temperature dependence of the water density is very small close to its freezing point. For example, the density of water is 0.999 975 g cm-3 at 4.0 °C and 0.999 850 g cm-3 at 0.1 °C. The aim in this manuscript is to demonstrate a simple experiment to detect 4.0 °C as the temperature of maximum density, in which the time dependence of the water temperature is measured at several different depths by chilling the water surface. This is a simple experiment that can also be performed by high school students. We also present a mathematical model that can explain the results of this experiment.
Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study
NASA Astrophysics Data System (ADS)
Morrison, J. M.; Codispoti, L. A.; Gaurin, S.; Jones, B.; Manghnani, V.; Zheng, Z.
Between September 1994 and December 1995, the US JGOFS Arabian Sea Process Experiment collected extensive, high quality hydrographic data (temperature, salinity, dissolved oxygen and nutrients) during all seasons in the northern Arabian Sea. An analysis of this unique data suite suggests the presence of many features that are described in the canonical literature, but these new data provided the following insights. Although the seasonal evolution of mixed-layer depths was in general agreement with previous descriptions, the deepest mixed-layer depths in our data occurred during the late NE Monsoon instead of the SW Monsoon. The region exhibits considerable mesoscale variability resulting in extremely variable temperature-salinity (TS) distributions in the upper 1000 db. This mesoscale variability is readily observed in satellite imaging, in the high resolution data taken by a companion ONR funded project, and in underway ADCP data. The densest water reaching the sea surface during coastal upwelling appeared to have maximum offshore depths of ˜150 m and σθ's close to the core value (˜25) for the saline Arabian Sea Water (ASW), but salinities in these upwelling waters were relatively low. The densest water found at the sea surface during late NE Monsoon conditions has σθ's>24.8 and relatively high salinities, suggesting that they are a source for the ASW salinity maximum. Persian Gulf Water (PGW) with a core σθ of 26.6 forms a widespread salinity maximum. Despite the considerable extent of this feature, Persian Gulf outflow water, with a salinity (4) of ˜39 at its source, can only be a minor contributor. Within the standard US JGOFS sampling grid, maximum salinities on this surface are ˜36.8 at stations near the Gulf, falling to values as low as ˜35.3 at the stations farthest removed from its influence. Even at our standard stations closest to the Gulf (N-1 and N-2), the high-salinity, low-nutrient Persian Gulf water has only a modest direct effect on nutrient concentrations. This PGW salinity maximum is associated with the suboxic portions of the Arabian Sea's oxygen minimum zone. The salinity maximum associated with Red Sea Water (RSW, core σθ=27.2) in the JGOFS study region is clearly evident at the southermost sampling site at 10'N (S-15). Elsewhere, this signal is weak or absent and salinity on the 27.2 σθ surface tends to increase towards the Persian Gulf, suggesting that the disappearance of this salinity maximum is due, at least in part, to the influence of the Persian Gulf outflow. Inorganic nitrogen-to-phosphate ratios were lower (frequently much lower) than the standard Redfield ratio of 15/1-16/1 (by atoms) at all times and all depths suggesting that inorganic nitrogen was more important than phosphate as a limiting nutrient for phytoplankton growth, and that the effects of denitrification dominated the effects of nitrogen fixation. The water upwelling off the Omani coast during the SW Monsoon has inorganic nitrogen to silicate ratios that were higher (˜2/1) than the ˜1/1 ratio often assumed as the ratio of uptake during diatom growth. The temporal evolution of inorganic nitrogen-to-silicate ratios suggests major alteration by diatom uptake only during the late SW Monsoon cruise (TN050) in August-September 1995. Widespread moderate surface layer nutrient concentrations occurred during the late NE Monsoon. A zone of high offshore nutrient concentrations was encountered during the SW Monsoon, but instead of being associated with offshore upwelling it may represent offshore advection from the coastal upwelling zone, the influence of an eddy, or both. Although our data do not contradict previous suggestions that the volume of subtoxic water may be reduced the SW Monsoon, they suggest a weaker re-oxygenation than indicated by some previous work. Similarly, they do not confirm results suggesting that secondary nitrite maxima may be common in waters with oxygen concentrations >5 μM.
Fujii, Koichi; Arikawa, Hiroyuki; Kanie, Takahito; Ban, Seiji
2004-06-01
In order to investigate the clinical application of paint-on resins, the effect of water absorption on toothbrush abrasion and light transmittance of ten crown resins including three paint-on resins was examined. Water absorption into each material ranged from 0.29 to 0.89 mg/cm2 after storage in distilled-water for 6 weeks and their hardnesses decreased by 3.5-22.3%. Maximum surface roughness (Rmax) of the materials stored in distilled water for 6 weeks increased with an increasing number of toothbrush abrasion cycles and ranged from 1.9 to 10.5 microm after 100,000 cycles. Also, Maximum depth and weight loss as an indicator of the amount of each material lost by abrasion showed similar behaviors similar to Rmax. These results indicated that the abrasion resistance of paint-on resins was located in the middle among all materials examined.
Koebel, Carolyn M.; Egly, Rachel M.
2016-09-27
Three different geophysical sensor types were used to characterize the underwater pressure waves and ground velocities generated by the underwater firing of seismic water guns. These studies evaluated the use of water guns as a tool to alter the movement of Asian carp. Asian carp are aquatic invasive species that threaten to move into the Great Lakes Basin from the Mississippi River Basin. Previous studies have identified a threshold of approximately 5 pounds per square inch (lb/in2) for behavioral modification and for structural limitation of a water gun barrier.Two studies were completed during August 2014 and May 2015 in a backwater pond connected to the Illinois River at a sand and gravel quarry near Morris, Illinois. The August 2014 study evaluated the performance of two 80-cubic-inch (in3) water guns. Data from the 80-in3 water guns showed that the pressure field had the highest pressures and greatest extent of the 5-lb/in2 target value at a depth of 5 feet (ft). The maximum recorded pressure was 13.7 lb/in2, approximately 25 ft from the guns. The produced pressure field took the shape of a north-south-oriented elongated sphere with the 5-lb/in2 target value extending across the entire study area at a depth of 5 ft. Ground velocities were consistent over time, at 0.0067 inches per second (in/s) in the transverse direction, 0.031 in/s in the longitudinal direction, and 0.013 in/s in the vertical direction.The May 2015 study evaluated the performance of one and two 100-in3 water guns. Data from the 100-in3 water guns, fired both individually and simultaneously, showed that the pressure field had the highest pressures and greatest extent of the 5-lb/in2 target value at a depth of 5 ft. The maximum pressure was 57.4 lb/in2, recorded at the underwater blast sensor closest to the water guns (at a horizontal distance of approximately 3 ft), as two guns fired simultaneously. Pressures and extent of the 5-lb/in2 target value decrease above and below this 5-ft depth, producing a relatively north-south-oriented pressure field shaped like an elongated sphere.
Song, Xiao Lin; Zhao, Xi Ning; Gao, Xiao Dong; Wu, Pu Te; Ma, Wen; Yao, Jie; Jiang, Xiao Li; Zhang, Wei
2017-11-01
Water scarcity is a critical factor influencing rain-fed agricultural production on the Loess Plateau, and the exploitation of rainwater is an effective avenue to alleviate water scarcity in this area. This study was conducted to investigate the spatial and temporal distribution of soil moisture in the 0-300 cm under a 21-year-old apple orchard with the rainwater collection and infiltration (RWCI) system by using a time domain reflectometer (TDR) probe on the Loess Plateau. The results showed that there was a low soil moisture zone in the 40-80 cm under the CK, and the RWCI system significantly increased soil moisture in this depth interval. Over this depth, the annual average soil moisture under RWCI 40 , RWCI 60 and RWCI 80 was 39.2%, 47.2% and 29.1% higher than that of bare slope (BS) and 75.3%, 85.4% and 62.7% higher than that of CK, respectively. The maximum infiltration depth of water under RWCI 40 , RWCI 60 and RWCI 80 was 80 cm, 120 cm and 180 cm, respectively, and the soil moisture in the 0-60, 0-100 and 0-120 cm was more affected by RWCI 40 , RWCI 60 and RWCI 80 , respectively. Over the whole growth period of apple tree, the maximum value of soil moisture content in the 0-300 cm existed in the RWCI 80 treatment, followed by the RWCI 40 and RWCI 60 treatments. Overall, the RWCI system is an effective meaning of transforming rainwater to available water resources and realizing efficient use of agricultural water on the Loess Plateau.
NASA Astrophysics Data System (ADS)
Simeonov, J.; Holland, K. T.
2015-12-01
We developed an inversion model for river bathymetry and discharge estimation based on measurements of surface currents, water surface elevation and shoreline coordinates. The model uses a simplification of the 2D depth-averaged steady shallow water equations based on a streamline following system of coordinates and assumes spatially uniform bed friction coefficient and eddy viscosity. The spatial resolution of the predicted bathymetry is related to the resolution of the surface currents measurements. The discharge is determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. The inversion model was tested using in situ and remote sensing measurements of the Kootenai River east of Bonners Ferry, ID. The measurements were obtained in August 2010 when the discharge was about 223 m3/s and the maximum river depth was about 6.5 m. Surface currents covering a 10 km reach with 8 m spatial resolution were estimated from airborne infrared video and were converted to depth-averaged currents using acoustic Doppler current profiler (ADCP) measurements along eight cross-stream transects. The streamwise profile of the water surface elevation was measured using real-time kinematic GPS from a drifting platform. The value of the friction coefficient was obtained from forward calibration simulations that minimized the difference between the predicted and measured velocity and water level along the river thalweg. The predicted along/cross-channel water depth variation was compared to the depth measured with a multibeam echo sounder. The rms error between the measured and predicted depth along the thalweg was found to be about 60cm and the estimated discharge was 5% smaller than the discharge measured by the ADCP.
Sources of Arctic Ocean upper halocline and changes in its properties
NASA Astrophysics Data System (ADS)
Anderson, L. G.; Andersson, P. S.; Bjvrk, G. M.; Jutterstrom, S.; Wahlstrom, I.
2011-12-01
The upper halocline of the Arctic Ocean has a distinct chemical signature by its high nutrient and partial pressure of carbon dioxide as well as low oxygen and pH values. This signature is formed along the bottoms of the Siberian shelf seas, primarily the Chukchi and East Siberian Seas, by a combination of mineralization of organic matter and release of the decay products to the sea ice brine enriched bottom water. In this contribution we use salinity and total alkalinity data to show that the fraction of sea ice brine in the nutrient enriched upper halocline water in the central Arctic Ocean is up to 4%. This water of low pH, and thus also low in calcium carbonate solubility, is found between about 100 and 200 m depth and is thus close to the productive surface water in a future central Arctic Ocean of less summer sea ice cover. In the East Siberian Sea the bottom waters with exceptional high nutrient concentration and low pH have typically between 5 and 10% of sea ice brine as computed form salinity and oxygen-18 vales. On the continental slope, over bottom depths of 15-200 m, the brine contribution was 6% at the nutrient maximum depth (50-100 m). At the same location as well as over deeper waters the silicate maximum was found over a wider salinity range than traditionally, in agreement with observations of Nishino et al (J. Oceanogr, Vol. 65, pp. 871 to 883, 2009) in the area of the deep Arctic Ocean east of the Chukchi Plateau. However, the water with lowest salinity (~32.5) in the silicate maximum had maximum in nitrate deficit expressed as N** (= [NO3] - 16[PO4] + 2.9) and the waters with highest salinity (~34.5) had the lowest oxygen concentration. This pattern is not obvious and point to at least two different biochemical environments within the East Siberian Sea that has not been observed before and could be a sign of a changing marine climate in the East Siberian Sea. One cause could be more open water in the summer season followed by more sea ice formation and brine production in the fall/winter. Strong signals of sea ice brine was also observed in the nutrient rich water found in the Herald Valley of the Chukchi Sea. This water is likely flowing north and has traditionally been assumed to be a significant contributor to the upper halocline in the central Arctic Ocean. A challenging question for the future is; are changing sea ice conditions and biogeochemical processes on the Siberian shelves impacting the composition of the halocline of the central Arctic Ocean. A follow up issue is then what effect this might have on the ecosystem of these waters.
Kelly, Brian P.
2002-01-01
A detailed ground-water sampling plan was developed and executed for 64 monitoring wells in the city of Independence well field to characterize ground-water quality in the 10-year zone of contribution. Samples were collected from monitoring wells, combined Independence well field pumpage, and the Missouri River at St. Joseph, Missouri, from 1998 through 2000. In 328 ground-water samples from the 64 monitoring wells and combined well field pumpage samples, specific conductance values ranged from 511 to 1,690 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.4 to 7.7, water temperature ranged from 11.3 to 23.6 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 3.3 milligrams per liter. In 12 samples from the combined well field pumpage samples, specific conductance values ranged from 558 to 856 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.9 to 7.7, water temperature ranged from 5.8 to 22.9 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 2.4 milligrams per liter. In 45 Missouri River samples, specific conductance values ranged from 531 to 830 microsiemens per centimeter at 25 degrees Celsius, pH ranged from 7.2 to 8.7, water temperature ranged from 0 to 30 degrees Celsius, and dissolved oxygen concentrations ranged from 5.0 to 17.6 milligrams per liter. The secondary maximum contaminant level for sulfate in drinking water was exceeded once in samples from two monitoring wells, the maximum contaminant level (MCL) for antimony was exceeded once in a sample from one monitoring well, and the MCL for barium was exceeded once in a sample from one monitoring well. The MCL for iron was exceeded in samples from all monitoring wells except two. The MCL for manganese was exceeded in all samples from monitoring wells and combined well field pumpage. Enzyme linked immunoassay methods indicate total benzene, toluene, ethyl benzene, and xylene (BTEX) was detected in samples from five wells. The highest total BTEX concentration was less than the MCL of toluene, ethyl benzene, or xylene but greater than the MCL for benzene. Total BTEX was not detected in samples from any well more than once. Atrazine was detected in samples from nine wells, and exceeded the MCL once in a sample from one well. Alachlor was detected in samples from 22 wells but the MCL was never exceeded in any sample. Samples from five wells analyzed for a large number of organic compounds indicate concentrations of volatile organic compounds did not exceed the MCL for drinking water. No semi-volatile organic compounds were detected; dieldrin was detected in one well sample, and no other pesticides, herbicides, polychlorinated biphenyls, or polychlorinated napthalenes were detected. Dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphorus, alachlor, and atrazine analyses were used to determine the spatial and temporal variability of agricultural chemicals in ground water. Detection frequencies for dissolved ammonia increased with well depth, decreased with depth for dissolved nitrite plus nitrate, and remained relatively constant with depth for dissolved orthophosphorus. Maximum concentrations of dissolved ammonia, dissolved nitrite plus nitrate, and dissolved orthophosphorus were largest in the shallowest wells and decreased with depth, which may indicate the land surface as the source. However, median concentrations increased with depth for dissolved ammonia, were less than the detection limit for dissolved nitrite plus nitrate, and decreased with depth for dissolved orthophosphorus. This pattern does not indicate a well-defined single source for these constituents. Dissolved orthophosphorus median concentrations were similar, but decreased slightly with depth, and may indicate the land surface as the source. Seasonal variability of dissolved ammonia, dissolved nitrite plus nitrate, a
NASA Astrophysics Data System (ADS)
Packard, T. T.; Osma, N.; Fernández-Urruzola, I.; Codispoti, L. A.; Christensen, J. P.; Gómez, M.
2014-11-01
Oceanic depth profiles of plankton respiration are described by a power function, RCO2 = (RCO2)0(z/z0)b similar to the vertical carbon flux profile. Furthermore, because both ocean processes are closely related, conceptually and mathematically, each can be calculated from the other. The exponent (b), always negative, defines the maximum curvature of the respiration depth-profile and controls the carbon flux. When b is large, the C flux (FC) from the epipelagic ocean is low and the nutrient retention efficiency (NRE) is high allowing these waters to maintain high productivity. The opposite occurs when b is small. This means that the attenuation of respiration in ocean water columns is critical in understanding and predicting both vertical FC as well as the capacity of epipelagic ecosystems to retain their nutrients. The NRE is a new metric defined as the ratio of nutrient regeneration in a seawater layer to the nutrients introduced into that layer via FC. A depth-profile of FC is the integral of water column respiration. This relationship facilitates calculating ocean sections of FC from water column respiration. In a FC section across the Peru upwelling system we found a FC maximum extending down to 400 m, 50 km off the Peru coast. Finally, coupling respiratory electron transport system activity to heterotrophic oxidative phosphorylation promoted the calculation of an ocean section of heterotrophic energy production (HEP). It ranged from 250 to 500 J d-1 m-3 in the euphotic zone, to less than 5 J d-1 m-3 below 200 m on this ocean section.
NASA Astrophysics Data System (ADS)
Yusof, M. F. Mohd; Abdullah, R.; Tajuddin, A. A.; Hashim, R.; Bauk, S.
2016-01-01
A set of tannin-based Rhizophora spp. particleboard phantoms with dimension of 30 cm x 30 cm was fabricated at target density of 1.0 g/cm3. The mass attenuation coefficient of the phantom was measured using 60Co gamma source. The phantoms were scanned using Computed Tomography (CT) scanner and the percentage depth dose (PDD) of the phantom was calculated using treatment planning system (TPS) at 6 MV and 10 MV x-ray and compared to that in solid water phantoms. The result showed that the mass attenuation coefficient of tannin-based Rhizohora spp. phantoms was near to the value of water with χ2 value of 1.2. The measured PDD also showed good agreement with solid water phantom at both 6 MV and 10 MV x-ray with percentage deviation below 8% at depth beyond the maximum dose, Zmax.
Dynamic Behaviour and Seismic Response of Ground Supported Cylindrical Water Tanks
NASA Astrophysics Data System (ADS)
Asha, Joseph; Glory, Joseph
2018-05-01
Liquid storage tank such as in water distribution systems, petroleum plants etc., constitute a vital component of life line systems. Reducing earthquake effects on liquid storage tanks, to minimize the environmental and economic impact of these effects, have always been an important engineering concern. In this paper, the dynamic behavior of cylindrical ground supported concrete water tanks with different aspect ratios is investigated using finite element software ANSYS. The natural frequencies and modal responses are obtained for impulsive and convective modes of vibration. The natural frequency of vibration of the tank is observed to be the lowest at maximum water depth. The fundamental impulsive frequency increases as water level reduces and for water level less than 1/3 of tank height, there is significantly no change in impulsive frequency. The effect of wall flexibility on dynamic behavior of the tank is investigated by performing the modal analysis of flexible and rigid tanks. For a partially filled tank, the results of the present study are of significant relevance. The response of the tank to the transient loading as horizontal ground motion of El Centro earthquake is studied for various water heights. As the height of water on the tank increases, the ultimate maximum seismic response parameters are also observed to be increased. The location of maximum hoop stress varies in accordance with the variations in input ground motion and water fill condition whereas shear and bending moment are maximum at the base.
NASA Astrophysics Data System (ADS)
Lehrter, J. C.; Fung, M.
2017-12-01
Nutrients loads delivered by the Mississippi River to the Louisiana continental shelf (LCS) stimulate phytoplankton production of organic matter and coupled community respiration. These processes ultimately consume oxygen in bottom waters and promote the development of hypoxia and anoxia on the LCS. Several recent studies have emphasized the importance of nearshore (<15 m depth) phytoplankton production and respiration as a principal driver of heterotrophy and oxygen concentration patterns across this shelf. However, no studies to date have measured these nearshore rates. Other studies have invoked a more classical pattern of surface water primary production fueling water-column and bottom water respiration directly beneath through vertical deposition of organic matter. Yet, patterns of heterotrophy that have been observed across most of the LCS do not seem to support this hypothesis. In this study, we investigated these two different ideas by measuring primary production and respiration rates in distinct water masses at stations spanning salinity and depth gradients on the LCS in spring and summer of 2017. Over the course of this study, we have consistently observed highest primary production and respiration rates in nearshore waters of the Louisiana Coastal Current. This narrow band of low salinity water deriving from the Mississippi and Atchafalaya rivers exhibits maximum production rates exceeding 200 mmol C m-3 d-1 and maximum P/R > 10. Other water masses investigated, which included: surface water at offshore locations (> 15 m depth), sub-surface chlorophylla maxima, mid-water O2 minima and maxima, and bottom water, had average production and respiration rates that were 4-10 fold lower than in the nearshore zone and P/R < 1. These results and a scaling analysis demonstrate the potential for organic matter subsidies from the Louisiana Coastal Current to fuel respiration across the wider shelf and downcoast of the river inputs. Further, the results support recent physical and modeling analyses indicating that mid-water O2 minima and maxima observed on the LCS are primarily derived from lateral advection as opposed to developing in place as a result of excess primary production, sinking, and respiration.
NASA Technical Reports Server (NTRS)
Comstock, Robert L.; Bills, Bruce G.
2004-01-01
Salt flats are aptly named: they are composed largely of salt, and are maintained as nearly equipotential surfaces via frequent flooding. The salar de Uyuni, on the Altiplano in southwestern Bolivia, is the largest salt flat on Earth, with an area of 9,800 sq km. Except for a few bedrock islands, it has less than 40 cm of relief. The upper-most salt unit averages 5 m thick and contains 50 cu km of nearly pure halite. It includes most of the salt that was in solution in paleolake Minchin, which attained a maximum area of 60,000 sq km and a maximum depth of 150 m, roughly 15 kyr ago. Despite approx. 10 m of differential isostatic rebound since deposition, the salar surface has been actively maintained as an extraordinarily flat and smooth surface by annual flooding during the rainy season. We have used the strong optical absorption properties of water in the visible band to map spatial variations in water depth during a time when the salar was flooded. As water depth increases, the initially pure white surface appears both darker and bluer. We utilized MISR images taken during the interval from April to November 2001. The red and infra-red bands (672 and 867 nm wavelength) were most useful since the water depth is small and the absorption at those wavelengths is quite strong. Nadir pointed MISR images have 275 m spatial resolution. To aid in our evaluation of water depth variations over the saiar surface, we utilized two sources of direct topographic measurements: several ICESAT altimetry tracks cross the area, and a 40x50 km GPS grid was surveyed to calibrate ICESAT. A difficulty in using these data types is that both give salt surface elevations relative to the ellipsoid, whereas the water surface will, in the absence of wind or tidal disturbances, follow an equipotential surface. Geoid height is not known to the required accuracy of a few cm in the central Andes. As a result, before comparing optical absorption from MISR to salt surface topography from GPS or ICESAT, we removed the longest wavelengths from both.
Green-Naghdi dynamics of surface wind waves in finite depth
NASA Astrophysics Data System (ADS)
Manna, M. A.; Latifi, A.; Kraenkel, R. A.
2018-04-01
The Miles’ quasi laminar theory of waves generation by wind in finite depth h is presented. In this context, the fully nonlinear Green-Naghdi model equation is derived for the first time. This model equation is obtained by the non perturbative Green-Naghdi approach, coupling a nonlinear evolution of water waves with the atmospheric dynamics which works as in the classic Miles’ theory. A depth-dependent and wind-dependent wave growth γ is drawn from the dispersion relation of the coupled Green-Naghdi model with the atmospheric dynamics. Different values of the dimensionless water depth parameter δ = gh/U 1, with g the gravity and U 1 a characteristic wind velocity, produce two families of growth rate γ in function of the dimensionless theoretical wave-age c 0: a family of γ with h constant and U 1 variable and another family of γ with U 1 constant and h variable. The allowed minimum and maximum values of γ in this model are exhibited.
Reutter, David C.; Dunn, David D.
2000-01-01
Ground-water samples were collected from wells in the outcrops of the Trinity, Carrizo-Wilcox, and Gulf Coast aquifers during February-August 1994 to determine the quality of ground water in the three major aquifers in the Trinity River Basin study unit, Texas. These samples were collected and analyzed for selected properties, nutrients, major inorganic constituents, trace elements, pesticides, dissolved organic carbon, total phenols, methylene blue active substances, and volatile organic compounds as part of the U.S. Geological Survey National Water-Quality Assessment Program. Quality-control practices included the collection and analysis of blank, duplicate, and spiked samples. Samples were collected from 12 shallow wells (150 feet or less) and from 12 deep wells (greater than 150 feet) in the Trinity aquifer, 11 shallow wells and 12 deep wells in the Carrizo-Wilcox aquifer, and 14 shallow wells and 10 deep wells in the Gulf Coast aquifer. The three aquifers had similar water chemistries-calcium was the dominant cation and bicarbonate the dominant anion. Statistical tests relating well depths to concentrations of nutrients and major inorganic constituents indicated correlations between well depth and concentrations of ammonia nitrogen, nitrite plus nitrate nitrogen, bicarbonate, sodium, and dissolved solids in the Carrizo-Wilcox aquifer and between well depth and concentrations of sulfate in the Gulf Coast aquifer. The tests indicated no significant correlations for the Trinity aquifer. Concentrations of dissolved solids were larger than the secondary maximum contaminant level of 500 milligrams per liter established for drinking water by the U.S. Environmental Protection Agency in 12 wells in the Trinity aquifer, 4 wells in the Carrizo-Wilcox aquifer, and 6 wells in the Gulf Coast aquifer. Iron concentrations were larger than the secondary maximum contaminant level of 300 micrograms per liter in at least 3 samples from each aquifer, and manganese concentrations were larger than the secondary maximum contaminant level of 50 micrograms per liter in at least 2 samples from each aquifer. The pesticides atrazine, deethylatrazine, and pp'-DDE were detected in at least one sample from each aquifer. Diazinon was detected in 11 Trinity aquifer samples and 4 Carrizo-Wilcox aquifer samples. Each aquifer had one detection of a volatile organic compound-benzene in the Trinity aquifer, trichlorofluoromethane in the Carrizo-Wilcox aquifer, and trichloromethane in the Gulf Coast aquifer.
Methven, David A.; Piatt, John F.
1991-01-01
The seasonal abundance and vertical distribution of capelin in relation to water temperature have been investigated by conducting repeated hydroacoustic surveys at a coastal site off eastern Newfoundland. Water temperatures were warmer in 1983 than in 1984 as indicated by the earlier appearance and greater depth of the seasonal thermocline. Correspondingly, schools of capelin appeared earlier, were more abundant, and extended deeper in the water column in 1983 than in 1984. Most capelin were found between the surface and the 5°C isotherm. In both years, initial peaks of capelin abundance occurred when nearshore water temperatures increased from about 0-1°C to above 6°C and, at or near, periods of maximum tidal oscillation. Short-term variations in the depth of the 5°C isotherm were related to nearshore wind-induced upwelling events. Annual variations corresponded to the volume of cold (>0°C) water and sea-ice transported south by the Labrador Current.
Small lakes show muted climate change signal in deepwater temperatures
Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.; Hanson, Paul C.
2015-01-01
Water temperature observations were collected from 142 lakes across Wisconsin, USA, to examine variation in temperature of lakes exposed to similar regional climate. Whole lake water temperatures increased across the state from 1990 to 2012, with an average trend of 0.042°C yr−1 ± 0.01°C yr−1. In large (>0.5 km2) lakes, the positive temperature trend was similar across all depths. In small lakes (<0.5 km2), the warming trend was restricted to shallow waters, with no significant temperature trend observed in water >0.5 times the maximum lake depth. The differing response of small versus large lakes is potentially a result of wind-sheltering reducing turbulent mixing magnitude in small lakes. These results demonstrate that small lakes respond differently to climate change than large lakes, suggesting that current predictions of impacts to lakes from climate change may require modification.
Water Raman normalization of airborne laser fluorosensor measurements - A computer model study
NASA Technical Reports Server (NTRS)
Poole, L. R.; Esaias, W. E.
1982-01-01
The technique for normalizing airborne lidar measurements of chlorophyll fluoresence by the water Raman scattering signal is investigated for laser-excitation wavelengths of 480 and 532 nm using a semianalytic Monte Carlo methodology (SALMON). The signal-integration depth for chlorophyll fluorescence Z(90,F), is found to be insensitive to excitation wavelength and ranges from a maximum of 4.5 m in clearest waters to less than 1 m at a chlorophyll concentration of 20 microgram/liter. For excitation at 532 nm, the signal-integration depth for Raman scattering, Z(90,R), is comparable to Z(90,F). For excitation at 480 nm, Z(90,R) is four times as large as Z(90,F) in clearest waters but nearly equivalent at chlorophyll concentrations greater than 2-3 microgram/liter. Absolute signal levels are stronger with excitation at 480 nm than with excitation at 532 nm, but this advantage must be weighed against potential ambiguities resulting from different integration depths for the fluorescence and Raman scattering signals in clearer waters. To the precision of the simulations, Raman normalization produces effectively linear response to chlorophyll concentration for both excitation wavelengths.
Ocean Cooling Pattern at the Last Glacial Maximum
Zhuang, Kelin; Giardino, John R.
2012-01-01
Ocean temperature and ocean heat content change are analyzed based on four PMIP3 model results at the Last Glacial Maximum relative to the prehistorical run. Ocean cooling mostly occurs in the upper 1000 m depth and varies spatially in the tropical and temperate zones. The Atlantic Ocean experiences greater cooling than the rest of the ocean basins. Ocean cooling is closely related to the weakening of meridional overturning circulation and enhanced intrusion of Antarctic Bottom Water into the North Atlantic.
NASA Astrophysics Data System (ADS)
Packard, T. T.; Osma, N.; Fernández-Urruzola, I.; Codispoti, L. A.; Christensen, J. P.; Gómez, M.
2016-02-01
Oceanic depth profiles of seawater respiration (R) and vertical carbon flux are described by similar power functions and because they are conceptually and mathematically related, they can be calculated from one another. The maximum curvature of the respiration depth profile controls carbon flux. When the curvature is sharp, the carbon flux (FC) from the epipelagic ocean is low and the nutrient retention efficiency (NRE) is high allowing these waters to maintain high productivity. When the curvature is weak, NRE is low, seawater becomes nutrient impoverished, and productivity is reduced. This means that the attenuation of respiration in ocean water columns is critical in understanding and predicting vertical FC, the capacity of epipelagic ecosystems to retain their nutrients, and primary productivity. The new metric, NRE, is the ratio of nutrient regeneration in a seawater layer to the nutrients introduced into it. In other words, NRE = R/FC. A depth profile of FC is the integral of water column R. This relationship facilitates calculating ocean sections of FC. In a FC section across the Peru upwelling system we found a carbon flux maximum extending down to 400 m, 50 km off the Peru coast. Along this same section, by coupling respiratory electron transport system activity to heterotrophic oxidative phosphorylation, we calculated an ocean section of heterotrophic energy production (HEP). In the euphotic zone, HEP ranged from 250 to 500 J d-1 m-3. Below 200m, HEP dropped to less than 5 J d-1 m-3.
Dissolved gases in hydrothermal (phreatic) and geyser eruptions at Yellowstone National Park, USA
Hurwitz, Shaul; Clor, Laura; McCleskey, R. Blaine; Nordstrom, D. Kirk; Hunt, Andrew G.; Evans, William C.
2016-01-01
Multiphase and multicomponent fluid flow in the shallow continental crust plays a significant role in a variety of processes over a broad range of temperatures and pressures. The presence of dissolved gases in aqueous fluids reduces the liquid stability field toward lower temperatures and enhances the explosivity potential with respect to pure water. Therefore, in areas where magma is actively degassing into a hydrothermal system, gas-rich aqueous fluids can exert a major control on geothermal energy production, can be propellants in hazardous hydrothermal (phreatic) eruptions, and can modulate the dynamics of geyser eruptions. We collected pressurized samples of thermal water that preserved dissolved gases in conjunction with precise temperature measurements with depth in research well Y-7 (maximum depth of 70.1 m; casing to 31 m) and five thermal pools (maximum depth of 11.3 m) in the Upper Geyser Basin of Yellowstone National Park, USA. Based on the dissolved gas concentrations, we demonstrate that CO2 mainly derived from magma and N2 from air-saturated meteoric water reduce the near-surface saturation temperature, consistent with some previous observations in geyser conduits. Thermodynamic calculations suggest that the dissolved CO2 and N2 modulate the dynamics of geyser eruptions and are likely triggers of hydrothermal eruptions when recharged into shallow reservoirs at high concentrations. Therefore, monitoring changes in gas emission rate and composition in areas with neutral and alkaline chlorine thermal features could provide important information on the natural resources (geysers) and hazards (eruptions) in these areas.
Gravity survey and depth to bedrock in Carson Valley, Nevada-California
Maurer, D.K.
1985-01-01
Gravity data were obtained from 460 stations in Carson Valley, Nevada and California. The data have been interpreted to obtain a map of approximate depth to bedrock for use in a ground-water model of the valley. This map delineates the shape of the alluvium-filled basin and shows that the maximum depth to bedrock exceeds 5,000 feet, on the west side of the valley. A north-south trending offset in the bedrock surface shows that the Carson-Valley/Pine-Nut-Mountain block has not been tilted to the west as a simple unit, but is comprised of several smaller blocks. (USGS)
NASA Astrophysics Data System (ADS)
Knoblauch, S.
2009-04-01
Both the potential water consumption of plants and their ability to withdraw soil water are necessary in order to estimate actual evapotranspiration and to predict irrigation timing and amount. In relating to root water uptake the threshold value at which plants reducing evapotranspiration is an important parameter. Since transpiration is linearly correlated to dry matter production, under the condition that the AET/PET-Quotient is smaller than 1.0 (de Wit 1958, Tanner & Sinclair 1983), the dry matter production begins to decline too. Plants respond to drought with biochemical, physiological and morphological modifications in order to avoid damages, for instance by increasing the root water uptake. The objective of the study is to determine threshold values of soil water content and pressure head respectively for different field and vegetable plants with lysimeter measurements and to derive so called reduction functions. Both parameter, potenzial water demand in several growth stages and threshold value of soil water content or pressure head can be determined with weighable field lysimeter. The threshold value is reached, when the evapotranspiration under natural rainfall condition (AET) drop clearly (0.8 PET) below the value under well watered condition (PET). Basis for the presented results is the lysimeter plant Buttelstedt of the Thuringian State Institute of Agriculture. It consist of two lysimeter cellars, each with two weighable monolithic lysimeters. The lysimeter are 2.5 m deep with a surface area of 2 m2 to allow a non-restrictive root growth and to arrange a representative number of plants. The weighing accuracy amounts to 0.05 mm. The percolating water is collected by ceramic suction cups with suction up to 0.3 MPa at a depth of 2.3 m. The soil water content is measured by using neutron probe. One of the two lysimeter cellars represents the will irrigated, the other one the non irrigated and/or reduced irrigated part of field. The soil is a Haplic Phaeozem with silt-loamy texture developed from loess (water content at wilting point amounts between 0.167 and 0.270 cm3/cm3 and at field capacity (0.03 MPa) between 0.286 and 0.342 cm3/cm3). The mean annual temperature is 8.2°C and the mean annual precipitation is 550 mm. Results are as follows: Winter wheat begins to reduce evapotranspiration when the water content in the root zone to a depth of 2.0 m is smaller than 25 % of the available water holding capacity (AWC). That is equal to an amount of soil water of 171 mm. The threshold value of potatoes is 40 % of the AWC to a rooting depth of 0.6 m (49 mm soil water amount). The corresponding value for cabbage is 40 % of the AWC relating to a rooting depth of 1.2 m, for cauli flower 60 % of the AWC relating to a depth of 1.0 m and for onion 80 % of the AWC to a rooting depth of 0.3 m (90, 50 and 5 mm soil water amount). Nevertheless onion attain a maximum rooting depth of 0.9 m. The maximum rooting depths of winter wheat, potatoes, cabbage and cawli flower are 2.0, 1.0, 1.5 und 1.5 m. The date on which the threshold is reached is different, for winter wheat and cabbage just before harvest and for onion in a few days after 8-leaf-stage. However, it is assumed that these values are also the influence of weather reflect, particulary with regard to the transpiration demand of the atmosphere and the amount of rain fall during earlier growth stages which can prefer the development of adaptation mechanism. Although there are great differences between the plant species concerning root water uptake to avoid a decline of biomass production due to drought.
Seasonally frozen layer in natural and drained peatlands at the South of West Siberia, Russia
NASA Astrophysics Data System (ADS)
Dyukarev, Egor; Kiselev, Maxim; Voropay, Nadezhda; Preis, Yulia
2017-04-01
The temperature regime of soils in natural and drained peatlands at Bakchar bog located in the South Taiga zone of West Siberia is studied. Soil temperature for depths up to 320 cm was registered using autonomous temperature profile recorder during the period from August 2010 to September 2016. Maximal and minimal temperatures were registered at surface in July and February, consequently. Extreme soil temperatures at 320 cm depth shifts to December (maximum) and July (minimum) reducing absolute values. Annual peat soil temperature amplitude decrease with depth from 21,8 °C on surface to 1,1 °C at 320 cm. The analysis of daily, month and annual mean data of temperature in peat soil has shown that seasonally frozen layer was registered up to 20-60 cm depth. The duration of seasonally freeze layer existence varies from 130 to 180 days. Drained peatlands with the lowest water table have highest freeze depth. Soil at water-logged sedge-sphagnum fen in winter is warmer than soil in ryam ecosystem and mineral soil at upland. Maximal freezing depth in peatlands is up to 3 times lower than at drain areas.
Shallow-Water Nitrox Diving, the NASA Experience
NASA Technical Reports Server (NTRS)
Fitzpatrick, Daniel T.
2009-01-01
NASA s Neutral Buoyancy Laboratory (NBL) contains a 6.2 million gallon, 12-meter deep pool where astronauts prepare for space missions involving space walks (extravehicular activity EVA). Training is conducted in a space suit (extravehicular mobility unit EMU) pressurized to 4.0 - 4.3 PSI for up to 6.5 hours while breathing a 46% NITROX mix. Since the facility opened in 1997, over 30,000 hours of suited training has been completed with no occurrence of decompression sickness (DCS) or oxygen toxicity. This study examines the last 5 years of astronaut suited training runs. All suited runs are computer monitored and data is recorded in the Environmental Control System (ECS) database. Astronaut training runs from 2004 - 2008 were reviewed and specific data including total run time, maximum depth and average depth were analyzed. One hundred twenty seven astronauts and cosmonauts completed 2,231 training runs totaling 12,880 exposure hours. Data was available for 96% of the runs. It was revealed that the suit configuration produces a maximum equivalent air depth of 7 meters, essentially eliminating the risk of DCS. Based on average run depth and time, approximately 17% of the training runs exceeded the NOAA oxygen maximum single exposure limits, with no resulting oxygen toxicity. The NBL suited training protocols are safe and time tested. Consideration should be given to reevaluate the NOAA oxygen exposure limits for PO2 levels at or below 1 ATA.
Oremland, R.S.; Des Marais, D.J.
1983-01-01
Distribution and isotopic composition (??13C) of low molecular weight hydrocarbon gases were studied in Big Soda Lake (depth = 64 m), an alkaline, meromictic lake with permanently anoxic bottom waters. Methane increased with depth in the anoxic mixolimnion (depth = 20-35 m), reached uniform concentrations (55 ??M/l) in the monimolimnion (35-64 m) and again increased with depth in monimolimnion bottom sediments (>400 ??M/kg below 1 m sub-bottom depth). The ??13C[CH4] values in bottom sediment below 1 m sub-bottom depth (<-70 per mil) increased with vertical distance up the core (??13C[CH4] = -55 per mil at sediment surface). Monimolimnion ??13C[CH4] values (-55 to -61 per mil) were greater than most ??13C[CH4] values found in the anoxic mixolimnion (92% of samples had ??13C[CH4] values between -20 and -48 per mil). No significant concentrations of ethylene or propylene were found in the lake. However ethane, propane, isobutane and n-butane concentrations all increased with water column depth, with respective maximum concentrations of 260, 80, 23 and 22 nM/l encountered between 50-60 m depth. Concentrations of ethane, propane and butanes decreased with depth in the bottom sediments. Ratios of CH4 [C2H6 + C3H8] were high (250-620) in the anoxic mixolimnion, decreased to ~161 in the monimolimnion and increased with depth in the sediment to values as high as 1736. We concluded that methane has a biogenic origin in both the sediments and the anoxic water column and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in ??13C[CH4] and CH4 (C2H6 + C3H8) with depth in the water column and sediments are probably caused by bacteria] processes. These might include anaerobic methane oxidation and different rates of methanogenesis and C2 to C4 alkane production by microorganisms. ?? 1983.
In modern linacs monitor units should be defined in water at 10 cm depth rather than at dmax.
Van den Heuvel, Frank; Wu, Qiuwen; Cai, Jing
2018-05-28
Thanks to the widely adopted guidelines such as AAPM TG-51 1 and IAEA TRS-398 2 , linac calibration has become more consistent and accurate around the globe than previously. Modern linac photon beams are often calibrated in water at 10 cm depth, and configured such that 1 monitor unit (MU) corresponds to 1 cGy at the depth of maximum dose, (d max) . However, such configuration is not without limitations. Some think it is unnecessarily complex and prone to errors, and believe that defining MU at 10 cm is more appropriate. Others think that change of MU definition can cause confusion and possibly serious consequences without any real benefit. This is the premise debated in this month's Point/Counterpoint. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aab, A.; Abreu, P.; Aglietta, M.
We present a new method for probing the hadronic interaction models at ultra-high energy and extracting details about mass composition. This is done using the time profiles of the signals recorded with the water-Cherenkov detectors of the Pierre Auger Observatory. The profiles arise from a mix of the muon and electromagnetic components of air-showers. Using the risetimes of the recorded signals we define a new parameter, which we use to compare our observations with predictions from simulations. We find, firstly, inconsistencies between our data and predictions over a greater energy range and with substantially more events than in previous studies.more » Secondly, by calibrating the new parameter with fluorescence measurements from observations made at the Auger Observatory, we can infer the depth of shower maximum for a sample of over 81,000 events extending from 0.3 EeV to over 100 EeV. Above 30 EeV, the sample is nearly fourteen times larger than currently available from fluorescence measurements and extending the covered energy range by half a decade. The energy dependence of the average depth of shower maximum is compared to simulations and interpreted in terms of the mean of the logarithmic mass. Here, we find good agreement with previous work and extend the measurement of the mean depth of shower maximum to greater energies than before, reducing significantly the statistical uncertainty associated with the inferences about mass composition.« less
Aab, A.; Abreu, P.; Aglietta, M.; ...
2017-12-08
We present a new method for probing the hadronic interaction models at ultra-high energy and extracting details about mass composition. This is done using the time profiles of the signals recorded with the water-Cherenkov detectors of the Pierre Auger Observatory. The profiles arise from a mix of the muon and electromagnetic components of air-showers. Using the risetimes of the recorded signals we define a new parameter, which we use to compare our observations with predictions from simulations. We find, firstly, inconsistencies between our data and predictions over a greater energy range and with substantially more events than in previous studies.more » Secondly, by calibrating the new parameter with fluorescence measurements from observations made at the Auger Observatory, we can infer the depth of shower maximum for a sample of over 81,000 events extending from 0.3 EeV to over 100 EeV. Above 30 EeV, the sample is nearly fourteen times larger than currently available from fluorescence measurements and extending the covered energy range by half a decade. The energy dependence of the average depth of shower maximum is compared to simulations and interpreted in terms of the mean of the logarithmic mass. Here, we find good agreement with previous work and extend the measurement of the mean depth of shower maximum to greater energies than before, reducing significantly the statistical uncertainty associated with the inferences about mass composition.« less
Monitoring climate signal transfer into the varved lake sediments of Lake Czechowskie, Poland
NASA Astrophysics Data System (ADS)
Groß-Schmölders, Miriam; Ott, Florian; Brykała, Dariusz; Gierszewski, Piotr; Kaszubski, Michał; Kienel, Ulrike; Brauer, Achim
2015-04-01
In 2012 we started a monitoring program at Lake Czechowskie, Poland, because the lake comprises a long Holocene time series of calcite varves until recent times. The aim of the program is to understand how environmental and climatic conditions influence the hydrological conditions and, ultimately, the sediment deposition processes of the lake. Lake Czechowskie is located in the north of Poland in the Pomeranian Lake District and is part of the national park Tuchola Forest. The landscape and the lake is formed by the glacier retreat after the last glaciation (Weichselian). Lake Czechowskie is a typical hardwater lake and has a length of 1.4 km, an average width of 600 m and a lake surface area of ca 4 km. The maximum depth of 32 m is reached in a rather small hollow in the eastern part of the lake. Two different types of sediment traps provide sediment samples with monthly resolution from different water depths (12m, 26m). In addition, hydrological data including water temperature in different depths, water inflow, throughflow and outflow and the depth of visibility are measured. These data allow to describe strength and duration of lake mixing in spring and autumn and its influence on sedimentation. The sediment samples were analyzed with respect to their dry weight (used to calculate mean daily sediment flux), their inorganic and organic carbon contents, the stable C- and O-isotopes of organic matter and calcite as well as N-isotopes of organic matter. For selected samples dominant diatom taxa are determined. Our first results demonstrate the strong influence of the long winter with ice cover until April in 2013 on the sedimentation. A rapid warming in only 9 days starting on April 9th from -0,3 C° to 15,2 C° resulted in fast ice break-up and a short but intensive lake mixing. In consequence of this short mixing period a strong algal bloom especially of Fragilaria and Crysophycea commenced in April and had its maximum in May. This bloom further induced biogenic calcite precipitation in May leading to the monthly maximum in calcite deposition of 1.18 [g/m2d] (66.31
Anomalous δ13C in POC at the chemoautotrophy maximum in the Cariaco Basin
NASA Astrophysics Data System (ADS)
Scranton, M. I.; Taylor, G. T.; Thunell, R.; Tappa, E.; benitez-Nelson, C. R.; Muller-Karger, F. E.; Lorenzoni, L.; Astor, Y. M.
2016-02-01
The Cariaco Basin is the world's largest truly marine, permanently anoxic basin and is located on the continental shelf of Venezuela which experiences strong seasonal upwelling. The CARIACO program has been studying the hydrography, biogeochemistry and properties of sinking flux of the Cariaco Basin since 1995. One of the major puzzles of CARIACO has been the nature of the chemoautotrophic maximum which is seen at depths just below the appearance of hydrogen sulfide ( 250-300 m). The identity and sources of oxidants and reductants to this active microbial community, and the identity of the chemoautotrophic organisms themselves, are still only partially known. Below about 50m (the euphotic zone), δ13C values of suspended particulates range from -23 to -26‰, typical of marine phytoplankton. However we have observed both enrichments (values of up to -16‰) and depletions (values of -28‰) near the redox interface. We had expected to see isotopically light POC in the chemoautotrophy maximum, since DIC δ13C should decrease with depth as organic carbon is remineralized. However both positive and negative isotopic excursions in POC occur at depths where dark carbon fixation is at a maximum, and at or near the transition from micro-oxic to sulfidic water. We postulate that this signal may help to define carbon fixation pathways (and dominant chemoautotrophic populations) in the oxic/sulfidic transition region.
NASA Astrophysics Data System (ADS)
Tamaki, Akio; Mandal, Sumit; Agata, Yoshihiro; Aoki, Ikumi; Suzuki, Toshikazu; Kanehara, Hisao; Aoshima, Takashi; Fukuda, Yasushi; Tsukamoto, Hideshi; Yanagi, Tetsuo
2010-01-01
The position of meroplanktonic larvae in the water column with depth-dependent current velocities determines horizontal transport trajectories. For those larvae occurring in inner shelf waters, little is known about how combined diel and tidally-synchronized vertical migration patterns shift ontogenetically. The vertical migration of larvae of Nihonotrypaea harmandi (Decapoda: Thalassinidea: Callianassidae) was investigated in mesotidal, inner shelf waters of western Kyushu, Japan in July-August 2006. The larval sampling at seven depth layers down to 60 m was conducted every 3 h for 36 h in a 68.5-m deep area 10 km off a major coastal adult habitat. Within a 61-65-m deep area 5-7.5 km off the adult habitat, water temperature, salinity, chlorophyll a concentration, and photon flux density were measured, and water currents there were characterized from harmonic analysis of current meter data collected in 2008. The water column was stratified, with pycnocline, chlorophyll a concentration maximum, and 2% of photon flux density at 2 m, recorded at around 22-24 m. The stratified residual currents were detected in their north component, directed offshore and onshore in the upper and lower mixed layers, respectively. More than 87% of larvae occurred between 20 m and 60 m, producing a net onshore transport of approximately 1.3 km d -1. At the sunset flooding tide, all zoeal-stage larvae ascended, which could further promote retention (1.4-km potential onshore transport in 3 h). The actual onshore transport of larvae was detected by observing their occurrence pattern in a shallow embayment area with the adult habitat for 24 h in October 1994. However, ontogenetic differences in the vertical migration pattern in inner shelf waters were also apparent, with the maximum mean positions of zoeae deepening with increasing stages. Zoeae I and II performed a reverse diel migration, with their minimum and maximum depths being reached around noon and midnight, respectively. Zoeae IV and V descended continuously. Zoeae III had behaviors that were intermediate to those of the earlier- and later-stage zoeae. Postlarvae underwent a normal diel migration (nocturnal ascent) regardless of tides, with the deepest position (below 60 m and/or on the bottom) during the day. These findings give a new perspective towards how complex vertical migration patterns in meroplanktonic larvae enable their retention in inner shelf waters before the final entry of postlarvae into their natal populations.
Multidecadal warming of Antarctic waters.
Schmidtko, Sunke; Heywood, Karen J; Thompson, Andrew F; Aoki, Shigeru
2014-12-05
Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of long-term large-scale trends in temperature, salinity, and core depth over the Antarctic continental shelf and slope. Warming at the seabed in the Bellingshausen and Amundsen seas is linked to increased heat content and to a shoaling of the mid-depth temperature maximum over the continental slope, allowing warmer, saltier water greater access to the shelf in recent years. Regions of ASBW warming are those exhibiting increased ice shelf melt. Copyright © 2014, American Association for the Advancement of Science.
A quantitative analysis of hydraulic interaction processes in stream-aquifer systems
Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; ...
2016-01-28
The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equalmore » to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. In conclusion, this study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.« less
Why do magmas stall? Insights from petrologic and geodetic data
NASA Astrophysics Data System (ADS)
Zimmer, M. M.; Plank, T.; Freymueller, J.; Hauri, E. H.; Larsen, J. F.; Nye, C. J.
2007-12-01
Magmas stall at various depths in the crust due to their internal properties (magma viscosity, buoyancy) and external crustal controls (local stress regime, wallrock strength). Annen et al. (JPet 2006) propose a petrological model in which buoyant magma ascends through the crust until the depth of water saturation, after which it crystallizes catastrophically and stalls due to the large increase in magma viscosity. Magmas may erupt from this storage region, or viscous death may result in pluton formation. In order to test this model, and constrain magma storage depths, we combine petrological and geodetic data for several active volcanoes along the Aleutian-Alaska arc. We analyzed glassy, primarily olivine-hosted melt inclusions by SIMS in tephra samples for their pre-eruptive volatile contents, which can be related to the depth of entrapment via pressure-dependent H2O-CO2 solubility models (e.g., VolatileCalc). Melt inclusions are not in equilibrium with pure water vapor (all will contain S and C species), but >50% of the inclusion population are in equilibrium with a vapor containing >85% H2O. Geodetic data (InSAR, GPS) record surface deformation related to volcano inflation/deflation, and can be inverted to solve for the depths of volume change (magma storage) in the crust. In the Aleutians, we find that the maximum melt inclusion trapping depths and geodetic depths correlate, suggesting both techniques record crustal magma storage and crystallization. Melt inclusions from the 1997 Okmok eruption are trapped at ≤3 km; deformation during the eruption and subsequent inflation occurred at 3±0.5 km (Miyagi et al., EPSL 2004; Lu & Masterlark, JGR 2005). At Akutan, melt inclusions and GPS data indicate magma storage at ~5-7 km. Inclusions from flank cones of Makushin yield depths of 7 km, similar to inflation observed beneath the main edifice (6.8 km, Lu et al., JGR 2002). Pleistocene inclusions from Augustine volcano indicate magma storage at 10-18 km, in accord with a deep magma source proposed for the 2006 eruption. Melt inclusions from Shishaldin are trapped at depths up to 4 km, coincident with the base of the conduit (Vergnoille & Caplan Auerbach, BVolc 2006). Other volcanoes record similar depths of melt inclusion entrapment and deformation, including Mt. St. Helens, Irazú, Soufriere Hills, Vesuvius, and Etna. Clearly, crystallization will occur where magmas stall, cool, and degas, so it may not be surprising that the depths of deformation correlate with the depths of melt inclusion entrapment. But the question of why magmas stall at various depths remains. In the Aleutians, maximum H2O contents of melt inclusions (from 2 wt% at Shishaldin to 7 wt% at Augustine) negatively correlate with measures of the degree of mantle melting (Ti6.0 and Y6.0), which is expected if water drives mantle melting beneath arcs (e.g. Kelley et al. JGR 2006; Portnyagin et al EPSL 2007). Thus, if magmas stall near the depths where they reach H2O-saturation, as predicted by Annen et al. and observed here, then magma chamber and pluton depths may ultimately be controlled by the primary magmatic water contents set in the mantle.
Blanchet, Marie-Anne; Lydersen, Christian; Ims, Rolf A.; Kovacs, Kit M.
2015-01-01
The harbour seal (Phoca vitulina) population in Svalbard marks the northernmost limit of the species’ range. This small population experiences environmental extremes in sea and air temperatures, sea ice cover and also in light regime for this normally temperate species. This study deployed Conductivity Temperature Depth Satellite Relay Data Loggers (CTD-SRDLs) on 30 adult and juvenile harbour seals in 2009 and 2010 to study their foraging behaviour across multiple seasons. A total of 189,104 dives and 16,640 CTD casts (mean depth 72 m ± 59) were recorded. Individuals dove to a mean depth of 41 m ± 24 with a maximum dive depth range of 24 – 403 m. Dives lasted on average 204 sec ± 120 with maximum durations ranging between 240 – 2,220 sec. Average daily depth and duration of dives, number of dives, time spent diving and dive time/surface time were influenced by date, while sex, age, sea-ice concentration and their interactions were not particularly influential. Dives were deeper (~150 m), longer (~480 sec), less numerous (~250 dives/day) and more pelagic during the winter/early spring compared to the fall and animals spent proportionally less time at the bottom of their dives during the winter. Influxes of warm saline water, corresponding to Atlantic Water characteristics, were observed intermittently at depths ~100 m during both winters in this study. The seasonal changes in diving behaviour were linked to average weekly wind stresses from the north or north-east, which induced upwelling events onto the shelf through offshore Ekman transport. During these events the shelf became flooded with AW from the West Spitsbergen Current, which presumably brought Atlantic fish species close to shore and within the seals’ foraging depth-range. Predicted increased in the influx of AW in this region are likely going to favour the growth and geographic expansion of this harbour seal population in the future. PMID:26196289
NASA Astrophysics Data System (ADS)
Vaillancourt, R. D.; Lance, V. P.; Hargreaves, B. R.; Marra, J. F.
2016-02-01
We report a general increase in the dominance of eukaryotes phytoplankton between the surface and the deep chlorophyll maximum (DCM) depths in the western North Atlantic Ocean along a transect between Bermuda (BATS) and the New England continental shelf sea during the summer 2007 & 2008. At each of 40 stations HPLC pigment concentrations were determined from 6 -10 depths from the surface to near or below the base of the euphotic zone. The community composition was determined using CHEMTAX (Mackey et al. 1996) using marker pigment ratios for varying light regimes published in Higgins et al (2011) and from our own monocultures. Cluster analysis was used to partition the dataset into five distinct regional groups to reduce the pigment ratio variability in CHEMTAX runs. Within each regional group the data were again clustered depth-wise into five to seven overlapping optical depth (OD) bins, and each OD bin was analyzed using a pigment ratio matrix ideal for that light depth range. This analysis revealed the likely presence of nine pigment classes: pelagophytes, diatoms, dinoflagellates, Synechococcus sp., Prochlorococcs sp., cryptophytes, chlorophytes, prasinophytes, and haptophytes. Partial verification of CHEMTAX results was obtained using flow cytometry cell counts coincident with samples from the BATS stations that show reasonable (according to published values) Chl a/cell values for surface and deep populations. At most locations and depths, the eukaryote haptophyte group dominated the phytoplankton biomass. In the upper optical depth the proportion of phytoplankton biomass contributed by prokaryotes was 39 (± 23)%. Deeper, between OD 1 and 2, this proportion decreased to 33 (± 17)%, between ODs 2 and 4.6 to 25 (± 15)%, and below OD 4.6, to 21 (± 17)%. Some geographic variation was observed, with the trend most pronounced in oligotrophic ocean waters and weaker in continental shelf waters.
Bohidar, R N; Sullivan, J P; Hermance, J F
2001-01-01
In view of the increasing demand on ground water supplies in the northeastern United States, it is imperative to develop appropriate methods to geophysically characterize the most widely used sources of ground water in the region: shallow unconfined aquifers consisting of well-sorted, stratified glacial deposits laid down in bedrock valleys and channels. The gravity method, despite its proven value in delineating buried bedrock valleys elsewhere, is seldom used by geophysical contractors in this region. To demonstrate the method's effectiveness for evaluating such aquifers, a pilot study was undertaken in the Palmer River Basin in southeastern Massachusetts. Because bedrock is so shallow beneath this aquifer (maximum depth is 30 m), the depth-integrated mass deficiency of the overlying unconsolidated material was small, so that the observed gravity anomaly was on the order of 1 milligal (mGal) or less. Thus data uncertainties were significant. Moreover, unlike previous gravity studies elsewhere, we had no a priori information on the density of the sediment. Under such circumstances, it is essential to include model constraints and weighted least-squares in the inversion procedure. Among the model constraints were water table configuration, bedrock outcrops, and depth to bedrock from five water wells. Our procedure allowed us to delineate depth to bedrock along a 3.5 km profile with a confidence interval of 1.8 m at a nominal depth of 17 m. Moreover, we obtained a porosity estimate in the range of 39% to 44%. Thus the gravity method, with appropriate refinements, is an effective tool for the reconnaissance of shallow unconfined aquifers.
Distribution and life strategies of two bacterial populations in a eutrophic lake
Weinbauer; Hofle
1998-10-01
Monoclonal antibodies and epifluorescence microscopy were used to determine the depth distribution of two indigenous bacterial populations in the stratified Lake Plusssee and characterize their life strategies. Populations of Comamonas acidovorans PX54 showed a depth distribution with maximum abundances in the oxic epilimnion, whereas Aeromonas hydrophila PU7718 showed a depth distribution with maximum abundances in the anoxic thermocline layer (metalimnion), i. e., in the water layer with the highest microbial activity. Resistance of PX54 to protist grazing and high metabolic versatility and growth rate of PU7718 were the most important life strategy traits for explaining the depth distribution of the two bacterial populations. Maximum abundance of PX54 was 16,000 cells per ml, and maximum abundance of PU7718 was 20,000 cells per ml. Determination of bacterial productivity in dilution cultures with different-size fractions of dissolved organic matter (DOM) from lake water indicates that low-molecular-weight (LMW) DOM is less bioreactive than total DOM (TDOM). The abundance and growth rate of PU7718 were highest in the TDOM fractions, whereas those of PX54 were highest in the LMW DOM fraction, demonstrating that PX54 can grow well on the less bioreactive DOM fraction. We estimated that 13 to 24% of the entire bacterial community and 14% of PU7718 were removed by viral lysis, whereas no significant effect of viral lysis on PX54 could be detected. Growth rates of PX54 (0.11 to 0.13 h-1) were higher than those of the entire bacterial community (0.04 to 0.08 h-1) but lower than those of PU7718 (0.26 to 0.31 h-1). In undiluted cultures, the growth rates were significantly lower, pointing to density effects such as resource limitation or antibiosis, and the effects were stronger for PU7718 and the entire bacterial community than for PX54. Life strategy characterizations based on data from literature and this study revealed that the fast-growing and metabolically versatile A. hydrophila PU7718 is an r-strategist or opportunistic population in Lake Plusssee, whereas the grazing-resistant C. acidovorans PX54 is rather a K-strategist or equilibrium population.
Code of Federal Regulations, 2014 CFR
2014-07-01
... port of final cargo discharge. Breadth or B means the maximum molded breadth of a vessel in meters... lightweight displacement and the total displacement of a vessel measured in water of specific gravity 1.025 at... of each is more than 1/15 of the total depth of the tank. Length or L means the distance in meters...
Code of Federal Regulations, 2013 CFR
2013-07-01
... port of final cargo discharge. Breadth or B means the maximum molded breadth of a vessel in meters... lightweight displacement and the total displacement of a vessel measured in water of specific gravity 1.025 at... of each is more than 1/15 of the total depth of the tank. Length or L means the distance in meters...
Code of Federal Regulations, 2012 CFR
2012-07-01
... port of final cargo discharge. Breadth or B means the maximum molded breadth of a vessel in meters... lightweight displacement and the total displacement of a vessel measured in water of specific gravity 1.025 at... of each is more than 1/15 of the total depth of the tank. Length or L means the distance in meters...
NASA Astrophysics Data System (ADS)
Kutser, Tiit; Vahtmäe, Ele; Martin, Georg
2006-04-01
One of the objectives of monitoring benthic algal cover is to observe short- and long-term changes in species distribution and structure of coastal benthic habitats as indicators of ecological state. Mapping benthic algal cover with conventional methods (diving) provides great accuracy and high resolution, yet is very expensive and is limited by the time and manpower necessary. We measured reflectance spectra of three indicator species for the Baltic Sea: Cladophora glomerata (green macroalgae), Furcellaria lumbricalis (red macroalgae), and Fucus vesiculosus (brown macroalgae) and used a bio-optical model in an attempt to estimate whether these algae are separable from each other and sandy bottom or deep water by means of satellite remote sensing. Our modelling results indicate that to some extent it is possible to map the studied species with multispectral satellite sensors in turbid waters. However, the depths where the macroalgae can be detected are often shallower than the maximum depths where the studied species usually grow. In waters deeper than just a few meters, the differences between the studied bottom types are seen only in band 2 (green) of the multispectral sensors under investigation. It means that multispectral sensors are capable of detecting difference in brightness only in one band which is insufficient for recognition of different bottom types in waters where no or few in situ data are available. Configuration of MERIS spectral bands allows the recognition of red, green and brown macroalgae based on their spectral signatures provided the algal belts are wider than MERIS spatial resolution. Commercial stock of F. lumbricalis in West-Estonian Archipelago covers area where MERIS 300 m spatial resolution is adequate. However, strong attenuation of light in the water column and signal to noise ratio of the sensor do not allow mapping of Furcellaria down to maximum depths where it occurs.
Amadio, C.J.; Hubert, W.A.; Johnson, Kevin; Oberlie, D.; Dufek, D.
2005-01-01
Factors affecting the occurrence of saugers Sander canadensis were studied throughout the Wind River basin, a high-elevation watershed (> 1,440 m above mean sea level) on the western periphery of the species' natural distribution in central Wyoming. Adult saugers appeared to have a contiguous distribution over 170 km of streams among four rivers in the watershed. The upstream boundaries of sauger distribution were influenced by summer water temperatures and channel slopes in two rivers and by water diversion dams that created barriers to upstream movement in the other two rivers. Models that included summer water temperature, maximum water depth, habitat type (pool or run), dominant substrate, and alkalinity accounted for the variation in sauger occurrence across the watershed within the areas of sauger distribution. Water temperature was the most important basin-scale habitat feature associated with sauger occurrence, and maximum depth was the most important site-specific habitat feature. Saugers were found in a larger proportion of pools than runs in all segments of the watershed and occurred almost exclusively in pools in upstream segments of the watershed. Suitable summer water temperatures and deep, low-velocity habitat were available to support saugers over a large portion of the Wind River watershed. Future management of saugers in the Wind River watershed, as well as in other small river systems within the species' native range, should involve (1) preserving natural fluvial processes to maintain the summer water temperatures and physical habitat features needed by saugers and (2) assuring that barriers to movement do not reduce upstream boundaries of populations.
NASA Astrophysics Data System (ADS)
Packard, T. T.; Osma, N.; Fernández-Urruzola, I.; Codispoti, L. A.; Christensen, J. P.; Gómez, M.
2015-05-01
Oceanic depth profiles of plankton respiration are described by a power function, RCO2 = (RCO2)0 (z/z
Nonlinear dead water resistance at subcritical speed
NASA Astrophysics Data System (ADS)
Grue, John
2015-08-01
The dead water resistance F 1 = /1 2 C d w ρ S U 2 (ρ fluid density, U ship speed, S wetted body surface, Cdw resistance coefficient) on a ship moving at subcritical speed along the upper layer of a two-layer fluid is calculated by a strongly nonlinear method assuming potential flow in each layer. The ship dimensions correspond to those of the Polar ship Fram. The ship draught, b0, is varied in the range 0.25h0-0.9h0 (h0 the upper layer depth). The calculations show that Cdw/(b0/h0)2 depends on the Froude number only, in the range close to critical speed, Fr = U/c0 ˜ 0.875-1.125 (c0 the linear internal long wave speed), irrespective of the ship draught. The function Cdw/(b0/h0)2 attains a maximum at subcritical Froude number depending on the draught. Maximum Cdw/(b0/h0)2 becomes 0.15 for Fr = 0.76, b0/h0 = 0.9, and 0.16 for Fr = 0.74, b0/h0 = 1, where the latter extrapolated value of the dead water resistance coefficient is about 60 times higher than the frictional drag coefficient and relevant for the historical dead water observations. The nonlinear Cdw significantly exceeds linear theory (Fr < 0.85). The ship generated waves have a wave height comparable to the upper layer depth. Calculations of three-dimensional wave patterns at critical speed compare well to available laboratory experiments. Upstream solitary waves are generated in a wave tank of finite width, when the layer depths differ, causing an oscillation of the force. In a wide ocean, a very wide wave system develops at critical speed. The force approaches a constant value for increasing time.
Hydrogeologic monitoring at the Faultless site, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thordarson, W.
The Faultless event was the detonation of an intermediate-yield nuclear device on January 19, 1968, at a depth of 975 meters below the surface of Hot Creek Valley, Nevada. This report presents details of the hydrogeology and radiochemical monitoring, primarily for the reentry hole UC-1-P-2SR; data from test holes HTH-1, HTH-2, UCE-18, instrument holes UC-1-I-1 and UC-1-I-2, and the abandoned reentry hole UC-1-P-1S are included. The reentry hole UC-1-P-2SR was drilled to a total depth of 1097 meters. The hole penetrated valley-fill sediments above the Tubble Chimney, as well as valley-fill and Tertiary tuffaceous sediments within the rubble chimney andmore » rubble-filled cavity. Monitoring of the water level in the reentry hole indicated that, from 1970-1974, the water level was approximately 694.9 meters in depth below land surface. From 1974 to the present (1983), the water level rose slowly to a depth of 335.1 meters below land surface as the rubble chimney became filled with water. In 1976, the water-level in test hole HTH-1 returned to a depth 6.7 meters above the pre-event water level, and the water level in test hole HTH-2 returned to a depth 2.7 meters above the pre-event water level. Ground water sampled from reentry hole UC-1-P-2SR is a predominantly sodium bicarbonate type containing some sulfate and minor chloride, similar to water from test hole HTH-1. Tritium concentrations fluctuated from a maximum value of 9.2 x 10/sup 8/ picocuries per liter in 1976, decreasing to 10/sup 5/ picocuries per liter in 1977, followed by a gradual increase to values of 10/sup 7/ picocuries per liter from 1980 to 1982. After 1971, gross-beta concentration ranged between 1.2 and 130 picocuries per liter, but generally was less than 10 picocuries per liter. Gross-alpha concentration generally was less than 10 micrograms per liter from 1975 to 1982. 15 refs., 11 figs., 13 tabs.« less
NASA Astrophysics Data System (ADS)
Riedel, M.; Wallmann, K.; Berndt, C.; Pape, T.; Freudenthal, T.; Bergenthal, M.; Bünz, S.; Bohrmann, G.
2018-04-01
During expedition MARIA S. MERIAN MSM57/2 to the Svalbard margin offshore Prins Karls Forland, the seafloor drill rig MARUM-MeBo70 was used to assess the landward termination of the gas hydrate system in water depths between 340 and 446 m. The study region shows abundant seafloor gas vents, clustered at a water depth of ˜400 m. The sedimentary environment within the upper 100 m below seafloor (mbsf) is dominated by ice-berg scours and glacial unconformities. Sediments cored included glacial diamictons and sheet-sands interbedded with mud. Seismic data show a bottom simulating reflector terminating ˜30 km seaward in ˜760 m water depth before it reaches the theoretical limit of the gas hydrate stability zone (GHSZ) at the drilling transect. We present results of the first in situ temperature measurements conducted with MeBo70 down to 28 mbsf. The data yield temperature gradients between ˜38°C km-1 at the deepest site (446 m) and ˜41°C km-1 at a shallower drill site (390 m). These data constrain combined with in situ pore-fluid data, sediment porosities, and thermal conductivities the dynamic evolution of the GHSZ during the past 70 years for which bottom water temperature records exist. Gas hydrate is not stable in the sediments at sites shallower than 390 m water depth at the time of acquisition (August 2016). Only at the drill site in 446 m water depth, favorable gas hydrate stability conditions are met (maximum vertical extent of ˜60 mbsf); however, coring did not encounter any gas hydrates.
Vertical Movement Patterns and Ontogenetic Niche Expansion in the Tiger Shark, Galeocerdo cuvier
Afonso, André S.; Hazin, Fábio H. V.
2015-01-01
Sharks are top predators in many marine ecosystems and can impact community dynamics, yet many shark populations are undergoing severe declines primarily due to overfishing. Obtaining species-specific knowledge on shark spatial ecology is important to implement adequate management strategies for the effective conservation of these taxa. This is particularly relevant concerning highly-mobile species that use wide home ranges comprising coastal and oceanic habitats, such as tiger sharks, Galeocerdo cuvier. We deployed satellite tags in 20 juvenile tiger sharks off northeastern Brazil to assess the effect of intrinsic and extrinsic factors on depth and temperature usage. Sharks were tracked for a total of 1184 d and used waters up to 1112 m in depth. The minimum temperature recorded equaled 4°C. All sharks had a clear preference for surface (< 5 m) waters but variability in depth usage was observed as some sharks used mostly shallow (< 60 m) waters whereas others made frequent incursions into greater depths. A diel behavioral shift was detected, with sharks spending considerably more time in surface (< 10 m) waters during the night. Moreover, a clear ontogenetic expansion in the vertical range of tiger shark habitat was observed, with generalized linear models estimating a ~4-fold increase in maximum diving depth from 150- to 300-cm size-classes. The time spent in the upper 5 m of the water column did not vary ontogenetically but shark size was the most important factor explaining the utilization of deeper water layers. Young-of-the-year tiger sharks seem to associate with shallow, neritic habitats but they progressively move into deeper oceanic habitats as they grow larger. Such an early plasticity in habitat use could endow tiger sharks with access to previously unavailable prey, thus contributing to a wider ecological niche. PMID:25629732
Overview of the limnology of crater lake
Larson, G.L.
1996-01-01
Crater Lake occupies the collapsed caldera of volcanic Mount Mazama in Crater Lake National Park, Oregon. It is the deepest lake (589 m) in the United States and the 7th deepest lake in the world. The water column mixes to a depth of about 200 m in winter and spring from wind energy and cooling. The deep lake is mixed in winter and early spring each year when relatively cold water near the surface sinks and exchanges positions with water in the deep basins of the lake. The lake becomes thermally stratified in summer and early fall. The metalimnion extends to a depth of about 100 m; thus most of the water column is a cold hypolimnion. Secchi disk clarity measurements typically are in the upper-20-m range to the low-30-m range in summer and early fall. Concentrations of nutrients are low, although conductivity is relatively high owing to the inflow of hydrothermal fluids. Total chlorophyll is low in concentration, but typically maximal at a depth of 120 m during periods of thermal stratification. Primary production also is low, with the maximum levels occurring between the depth of 40 and 80 m. Phytoplankton taxa are spatially segregated from each other within the water column to a depth of 200 m in summer and early fall. The same generalization applies to the Zooplankton taxa. Water level, clarity, concentrations of total chlorophyll, primary production, and abundances of zooplankton and introduced kokanee salmon exhibit long-term fluctuations. Based primarily on a recent 10-year study of the lake, the lake is considered to be pristine, except for the consequences of fish introductions. ?? 1996 by the Northwest Scientific Association. All rights reserved.
Overview of the limnology of Crater Lake
Larson, Gary L.
1996-01-01
Crater Lake occupies the collapsed caldera of volcanic Mount Mazama in Crater Lake National Park, Oregon. It is the deepest lake (589 m) in the United States and the 7th deepest lake in the world. The water column mixes to a depth of about 200 m in winter and spring from wind energy and cooling. The deep lake is mixed in winter and early spring each year when relatively cold water near the surface sinks and exchanges positions with water in the deep basins of the lake. The lake becomes thermally stratified in summer and early fall. The metalimnion extends to a depth of about 100 m; thus most of the water column is a cold hypolimnion. Secchi disk clarity measurements typically are in the upper-20-m range to the low-30-m range in summer and early fall. Concentrations of nutrients are low, although conductivity is relatively high owing to the inflow of hydrothermal fluids. Total chlorophyll is low in concentration, but typically maximal at a depth of 120 m during periods of thermal stratification. Primary production also is low, with the maximum levels occurring between the depth of 40 and 80 m. Phytoplankton taxa are spatially segregated from each other within the water column to a depth of 200 m in summer and early fall. The same generalization applies to the zooplankton taxa. Water level, clarity, concentrations of total chlorophyll, primary production, and abundances of zooplankton and introduced kokanee salmon exhibit long-term fluctuations. Based primarily on a recent 10-year study of the lake, the lake is considered to be pristine, except for the consequences of fish introductions.
Vertical movement patterns and ontogenetic niche expansion in the tiger shark, Galeocerdo cuvier.
Afonso, André S; Hazin, Fábio H V
2015-01-01
Sharks are top predators in many marine ecosystems and can impact community dynamics, yet many shark populations are undergoing severe declines primarily due to overfishing. Obtaining species-specific knowledge on shark spatial ecology is important to implement adequate management strategies for the effective conservation of these taxa. This is particularly relevant concerning highly-mobile species that use wide home ranges comprising coastal and oceanic habitats, such as tiger sharks, Galeocerdo cuvier. We deployed satellite tags in 20 juvenile tiger sharks off northeastern Brazil to assess the effect of intrinsic and extrinsic factors on depth and temperature usage. Sharks were tracked for a total of 1184 d and used waters up to 1112 m in depth. The minimum temperature recorded equaled 4°C. All sharks had a clear preference for surface (< 5 m) waters but variability in depth usage was observed as some sharks used mostly shallow (< 60 m) waters whereas others made frequent incursions into greater depths. A diel behavioral shift was detected, with sharks spending considerably more time in surface (< 10 m) waters during the night. Moreover, a clear ontogenetic expansion in the vertical range of tiger shark habitat was observed, with generalized linear models estimating a ~4-fold increase in maximum diving depth from 150- to 300-cm size-classes. The time spent in the upper 5 m of the water column did not vary ontogenetically but shark size was the most important factor explaining the utilization of deeper water layers. Young-of-the-year tiger sharks seem to associate with shallow, neritic habitats but they progressively move into deeper oceanic habitats as they grow larger. Such an early plasticity in habitat use could endow tiger sharks with access to previously unavailable prey, thus contributing to a wider ecological niche.
Is Centrophorus squamosus a highly migratory deep-water shark?
NASA Astrophysics Data System (ADS)
Rodríguez-Cabello, Cristina; Sánchez, Francisco
2014-10-01
Deep-water sharks are considered highly vulnerable species due to their life characteristics and very low recovery capacity against overfishing. However, there is still limited information on the ecology or population connectivity of these species. The aim of this study was to investigate if the species Centrophorus squamosus could make long displacements and thus confirm the existence of connectivity between different deep-water areas. In addition, the study was the first attempt to use tagging techniques on deep-water sharks, since it has never been undertaken before. Five C. squamosus were tagged with satellite tags (PAT) in the El Cachucho Marine Protected Area (Le Danois Bank) located in waters of the North of Spain, Cantabrian Sea (NE Atlantic). Data from four of these tags were recovered. One of the sharks travelled approximately 287 nm toward the north east (French continental shelf) hypothetically following the continental slope at a mean depth of 901±109 m for 45 days. Two other sharks spent almost 4 months traveling, in which time they moved 143 and 168 nm, respectively, to the west (Galician coast). Finally, another leafscale gulper shark travelled to the NW (Porcupine Bank) during a period of 3 months at a mean depth of 940±132 m. Depth and temperature preferences for all the sharks are discussed. Minimum and maximum depths recorded were 496 and 1848 m, respectively. The temperature range was between 6.2 and 11.4 °C, but the mean temperature was approximately 9.9±0.7 °C. The sharks made large vertical displacements throughout the water column with a mean daily depth range of 345±27 m. These preliminary results support the suggestion of a whole population in the NE Atlantic and confirm the capacity of this species to travel long distances.
Water quality in Gaines Creek and Gaines Creek arm of Eufaula Lake, Oklahoma
Kurklin, J.K.
1990-01-01
Based on samples collected from May 1978 to May 1980 and analyzed for major anions, nitrogen, trace elements, phytoplankton, and bacteria, the water in Gaines Creek and the Gaines Creek arm of Eufaula Lake was similar with respect to suitability for municipal use. Water from Gaines Creek had a pH range of 5.7 to 7.6 and a maximum specific conductance of 97 microsiemens per centimeter at 25o Celsius, whereas water from the Gaines Creek arm of Eufaula Lake had a pH range of 6.0 to 9.2 and a maximum specific conductance of 260 microsiemens per centimeter at 25o Celsius. Dissolved oxygen, pH, temperature, and specific conductance values for the lake varied with depth. With the exceptions of cadmium, iron, lead, and manganese, trace-element determinations of samples were within recommended national primary and secondary drinking-water standards. When compared to the National Academy of Sciences water-quality criteria, phytoplankton and bacteria counts exceeded recommendations; however, water from either Gaines Creek or Eufaula Lake could be treated similarly and used as a municipal water supply.
Borchert, William B.
1987-01-01
This map describes the southeastern part of the Sweetwater River basin; the major aquifer consists of the upper part of the White River formations, all of Tertiary age, and to a small extent, the alluvium of the Quaternary age along the Sweetwater River. The saturated thickness of the aquifer in most of the area, but not including the alluvium ranges from 500 to 3000 ft. The maximum saturated thickness of the alluvium penetrated by test holes was 63 ft. The water-table contours and depths to water are based primarily on groundwater-level measurements made during 1982 in 104 wells, most of which are located south of the Sweetwater River. Land-surface altitudes of springs and water-surface altitudes along the Sweetwater River and perennial reaches of creeks flowing northward from the Green and Ferris Mountains also were used as control for mapping the water table. The perennial reaches shown on the map are assumed hydraulically connected with the water table. They were identified from streamflow gain-and-loss measurements made during April and May 1982. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Umling, Natalie E.; Thunell, Robert C.
2018-06-01
A growing body of evidence suggests that respired carbon was stored in mid-depth waters (∼1-3 km) during the last glacial maximum (LGM) and released to the atmosphere from upwelling regions during deglaciation. Decreased ventilation, enhanced productivity, and enhanced carbonate dissolution are among the mechanisms that have been cited as possible drivers of glacial CO2 drawdown. However, the relative importance of each of these mechanisms is poorly understood. New approaches to quantitatively constrain bottom water carbonate chemistry and oxygenation provide methods for estimating historic changes in respired carbon storage. While increased CO2 drawdown during the LGM should have resulted in decreased oxygenation and a shift in dissolved inorganic carbon (DIC) speciation towards lower carbonate ion concentrations, this is complicated by the interplay of carbonate compensation, export productivity, and circulation. To disentangle these processes, we use a multiproxy approach that includes boron to calcium (B/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentrations ([CO32-]) and the uranium to calcium (U/Ca) ratio of foraminiferal coatings in combination with benthic foraminiferal carbon isotopes to reconstruct changes in bottom water oxygen concentrations ([O2]) and organic carbon export. Our records indicate that LGM [CO32-] and [O2] was reduced at mid water depths of the eastern equatorial Pacific (EEP), consistent with increased respired carbon storage. Furthermore, our results suggest enhanced mixing of lower Circumpolar Deep Water (LCDW) to EEP mid water depths and provide evidence for the importance of circulation for oceanic-atmospheric CO2 exchange.
Campbell, T.R.
1996-01-01
A number of potentially hazardous chemicals were used at an asphalt plant on the Fort Bragg U.S. Army Reservation near Fayetteville, North Carolina. This plant was demolished in the late 1960's. Samples collected from soil, ground water, surface water, and streambed sediment were tested for the presence of contaminants. The sediment immediately underlying the demolished asphalt plant site consists mainly of sands, silts, and clayey sands with interbedded clay occurring at various depths. About 12 inches of rainfall per year infiltrate the unconfined surficial aquifer. The water table in this area is about 233 to 243 feet above sea level. Local ground water moves laterally, mainly towards the north- to-northwest at a rate of about 35 feet per year. where it discharges to Tank Creek, Little River, or one of their tributaries. A series of confining clays separate the surficial aquifer from the underlying upper Cape Fear aquifer. These clays help retard vertical migration of constituents dissolved in ground water. The saprolite-bedrock aquifer lies below the upper Cape Fear aquifer. In general ground water in the seven monitoring wells screened in the upper and lower part of the surficial aquifer did not contain detectable concentrations of chemicals related to past asphalt-plant activities. A small number of chemicals that were assumed to be unrelated to the asphalt plant were present in some of the study area monitoring wells. Ground water in four wells contained concentrations of organochlorine pesticides. Of these pesticides, concentrations of gamma-benzene hexachloride (lindane) (maximum of 0.76 micrograms per liter) exceeded the U.S. Environmental Protection Agency maximum contaminant level of 0.2 micrograms per liter in two wells. In addition, one well contained a trichloroethane concentration (7.7 micrograms per liter) that is assumed to be unrelated to demolished asphalt-plant operations, but exceeded the U.S. Environmental Protection Agency maximum contaminant level of 5.0 micrograms per liter. One well contained a fluoride concentration of 5.2 milligrams per liter that exceeded the U.S. Environmental Protection Agency maximum contaminant level of 4.0 milligrams per liter. Total and dissolved metals concentrations were generally typical of background levels. Some of the wells contained elevated levels of chloride (maximum of 749 milligrams per liter), specific conductance (maximum of 2,780 microsiemens per centimeter at 25 degrees Celsius), and dissolved solids (maximum of 1,520 milligrams per liter). Twelve of twenty-two soil samples that were collected at various depths at monitoring-well locations did not contain volatile organic compounds or polynuclear aromatic hydrocarbons. The remaining ten soil samples contained very low concentrations of polynuclear aromatic hydrocarbons and (or) analytical laboratory-related volatile organic compounds. The maximum concentrations were for fluoranthene and pyrene, at 780 and 750 micrograms per kilogram, respectively. In general, the polynuclear aromatic hydrocarbon concentrations were in sediment near the land surface. Streambed sediment from an unnamed, eastern tributary to Tank Creek in the eastern part of the site contained a small number of organochlorine pesticide compounds (a maximum of 1,400 milligrams per kilogram of 4,4'-DDD) and total petroleum hydrocarbons (113 milligrams per kilogram). Concentrations of metals and other inorganic constituents were generally typical of background concentrations. Surface water in this tributary did not contain elevated concentrations of anthropogenic chemicals.
NASA Astrophysics Data System (ADS)
Cochachin, Alejo; Huggel, Christian; Salazar, Cesar; Haeberli, Wilfried; Frey, Holger
2015-04-01
Over timescales of hundreds to thousands of years ice masses in mountains produced erosion in bedrock and subglacial sediment, including the formation of overdeepenings and large moraine dams that now serve as basins for glacial lakes. Satellite based studies found a total of 8355 glacial lakes in Peru, whereof 830 lakes were observed in the Cordillera Blanca. Some of them have caused major disasters due to glacial lake outburst floods in the past decades. On the other hand, in view of shrinking glaciers, changing water resources, and formation of new lakes, glacial lakes could have a function as water reservoirs in the future. Here we present unprecedented bathymetric studies of 124 glacial lakes in the Cordillera Blanca, Huallanca, Huayhuash and Raura in the regions of Ancash, Huanuco and Lima. Measurements were carried out using a boat equipped with GPS, a total station and an echo sounder to measure the depth of the lakes. Autocad Civil 3D Land and ArcGIS were used to process the data and generate digital topographies of the lake bathymetries, and analyze parameters such as lake area, length and width, and depth and volume. Based on that, we calculated empirical equations for mean depth as related to (1) area, (2) maximum length, and (3) maximum width. We then applied these three equations to all 830 glacial lakes of the Cordillera Blanca to estimate their volumes. Eventually we used three relations from the literature to assess the peak discharge of potential lake outburst floods, based on lake volumes, resulting in 3 x 3 peak discharge estimates. In terms of lake topography and geomorphology results indicate that the maximum depth is located in the center part for bedrock lakes, and in the back part for lakes in moraine material. Best correlations are found for mean depth and maximum width, however, all three empirical relations show a large spread, reflecting the wide range of natural lake bathymetries. Volumes of the 124 lakes with bathymetries amount to 0.9 km3 while the volume of all glacial lakes of the Cordillera Blanca ranges between 1.15 and 1.29 km3. The small difference in volume of the large lake sample as compared to the smaller sample of bathymetrically surveyed lakes is due to the large size of the measured lakes. The different distributions for lake volume and peak discharge indicate the range of variability in such estimates, and provides valuable first-order information for management and adaptation efforts in the field of water resources and flood prevention.
Lakes and lake-like waters of the Hawaiian Archipelago
Maciolek, J.A.
1982-01-01
This summary of Hawaiian lacustrine limnology is based on 12 years of field and literature surveys of archipelagic inland waters. Lakes here are distinguished from other standing waters by limits on surface oceanic area (> 0.1 ha) and depth (> 2 m), and by the absence of flatural surface oceanic connection. A variety of extinct and existing water bodies, sometimes referred to as lakes, are noted. Six lakes are described. Five of them are in crater basins, 3 are freshwater, and 2 are elevated (highest = 3969 m). The scarcity of elevated lakes results from general permeability of the substrata. Among the 6 lakes, surface areas range from 0.22 to 88 ha and maximum depths from 3 to 248 m. Naturally occurring aquatic biota generally is low in species diversity except for phytoplankton; fishes and submersed vascular plants are absent. Two lowland lakes, freshwater Green (Wai a Pele) and saline Kauhak6, are described for the first time. Profundal Kauhak6, 248 m deep, has a surface area of only 0.35 ha, which results in an extraordinary relative depth of 370%. It is permanently stratified, a condition apparently due primarily to the unique morphometry of its basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusof, M. F. Mohd, E-mail: mfahmi@usm.my; School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan; Abdullah, R.
A set of tannin-based Rhizophora spp. particleboard phantoms with dimension of 30 cm x 30 cm was fabricated at target density of 1.0 g/cm{sup 3}. The mass attenuation coefficient of the phantom was measured using {sup 60}Co gamma source. The phantoms were scanned using Computed Tomography (CT) scanner and the percentage depth dose (PDD) of the phantom was calculated using treatment planning system (TPS) at 6 MV and 10 MV x-ray and compared to that in solid water phantoms. The result showed that the mass attenuation coefficient of tannin-based Rhizohora spp. phantoms was near to the value of water with χ{sup 2} valuemore » of 1.2. The measured PDD also showed good agreement with solid water phantom at both 6 MV and 10 MV x-ray with percentage deviation below 8% at depth beyond the maximum dose, Z{sub max}.« less
Boros, Emil; Katalin, V-Balogh; Vörös, Lajos; Horváth, Zsófia
2017-01-01
Soda lakes and pans represent saline ecosystems with unique chemical composition, occurring on all continents. The purpose of this study was to identify and characterise the main environmental gradients and trophic state that prevail in the soda pans (n=84) of the Carpathian Basin in Central Europe. Underwater light conditions, dissolved organic matter, phosphorus and chlorophyll a were investigated in 84 pans during 2009-2010. Besides, water temperature was measured hourly with an automatic sensor throughout one year in a selected pan. The pans were very shallow (median depth: 15 cm), and their extremely high turbidity (Secchi depth median: 3 cm, min: 0.5 cm) was caused by high concentrations of inorganic suspended solids (median: 0.4 g L -1 , max: 16 g L -1 ), which was the dominant (>50%) contributing factor to the vertical attenuation coefficient in 67 pans (80%). All pans were polyhumic (median DOC: 47 mg L -1 ), and total phosphorus concentration was also extremely high (median: 2 mg L -1 , max: 32 mg L -1 ). The daily water temperature maximum (44 °C) and fluctuation maximum (28 °C) were extremely high during summertime. The combination of environmental boundaries: shallowness, daily water temperature fluctuation, intermittent hydroperiod, high turbidity, polyhumic organic carbon concentration, high alkalinity and hypertrophy represent a unique extreme aquatic ecosystem.
Izbicki, J.A.; Radyk, J.; Michel, R.L.
2000-01-01
Previous studies indicated that small amounts of recharge occur as infiltration of intermittent streamflow in washes in the upper Mojave River basin, in the western Mojave Desert, near Victorville, California. These washes flow only a few days each year after large storms. To reach the water table, water must pass through an unsaturated zone that is more than 130 m thick. Results of this study, done in 1994-1998, showy that infiltration to depths below the root zone did not occur at control sites away from the wash. At these sites, volumetric water contents were as low as 0.01 and water potentials (measured as the combination of solute and matric potentials using a water activity meter) were as negative as -14,000 kPa. Water-vapor movement was controlled by highly negative solute potentials associated with the accumulation of soluble salts in the unsaturated zone. Highly negative matric potentials above and below the zone of maximum solute accumulation result from movement of water vapor toward the highly negative solute potentials at that depth. The ??18O and ??D (delta oxygen-18 and delta deuterium) isotopic composition of water in coarse-grained deposits plots along a Rayleigh distillation line consistent with removal of water in coarse-grained layers by vapor transport. Beneath Oro Grande Wash, water moved to depths below the root zone and, presumably, to the water table about 130 m below land surface. Underneath Oro Grande Wash, volumetric water contents were as high as 0.27 and water potentials (measured as matric potential using tensiometers) were between -1.8 and -50 kPa. On the basis of tritium data, water requires at least 180-260 years to infiltrate to the water table. Clay layers impede the downward movement of water. Seasonal changes in water vapor composition underneath the wash are consistent with the rapid infiltration of a small quantity of water to great depths and subsequent equilibration of vapor with water in the surrounding material. It may be possible to supplement natural recharge from the wash with imported water. Recharge to the wash may be advantageous because the unsaturated zone is not as dry as most areas in the desert and concentrations of soluble salts are generally lower underneath the wash.Previous studies indicated that small amounts of recharge occur as infiltration of intermittent streamflow in washes in the upper Mojave River basin, in the western Mojave Desert, near Victorville, California. These washes flow only a few days each year after large storms. To reach the water table, water must pass through an unsaturated zone that is more than 130 m thick. Results of this study, done in 1994-1998, show that infiltration to depths below the root zone did not occur at control sites away from the wash. At these sites, volumetric water contents were as low as 0.01 and water potentials (measured as the combination of solute and matric potentials using a water activity meter) were as negative as -14,000 kPa. Water-vapor movement was controlled by highly negative solute potentials associated with the accumulation of soluble salts in the unsaturated zone. Highly negative matric potentials above and below the zone of maximum solute accumulation result from movement of water vapor toward the highly negative solute potentials at that depth. The ??18O and ??D (delta oxygen-18 and delta deuterium) isotopic composition of water in coarse-grained deposits plots along a Rayleigh distillation line consistent with removal of water in coarse-grained layers by vapor transport. Beneath Oro Grande Wash, water moved to depths below the root zone and, presumably, to the water table about 130 m below land surface. Underneath Oro Grande Wash, volumetric water contents were as high as 0.27 and water potentials (measured as matric potential using tensiometers) were between -1.8 and -50 kPa. On the basis of tritium data, water requires at least 180-260 years to infiltrate to the water table. Clay layers impede the downwa
Vianna, Gabriel M. S.; Meekan, Mark G.; Meeuwig, Jessica J.; Speed, Conrad W.
2013-01-01
We used acoustic telemetry to describe the patterns of vertical movement, site fidelity and residency of grey reef sharks (Carcharhinus amblyrhynchos) on the outer slope of coral reefs in Palau, Micronesia, over a period of two years and nine months. We tagged 39 sharks (mostly adult females) of which 31 were detected regularly throughout the study. Sharks displayed strong inter-annual residency with greater attendance at monitored sites during summer than winter months. More individuals were detected during the day than at night. Mean depths of tagged sharks increased from 35 m in winter to 60 m in spring following an increase in water temperature at 60 m, with maximum mean depths attained when water temperatures at 60 m stabilised around 29°C. Sharks descended to greater depths and used a wider range of depths around the time of the full moon. There were also crepuscular cycles in mean depth, with sharks moving into shallower waters at dawn and dusk each day. We suggest that daily, lunar and seasonal cycles in vertical movement and residency are strategies for optimising both energetic budgets and foraging behaviour. Cyclical patterns of movement in response to environmental variables might affect the susceptibility of reef sharks to fishing, a consideration that should be taken into account in the implementation of conservation strategies. PMID:23593193
Vianna, Gabriel M S; Meekan, Mark G; Meeuwig, Jessica J; Speed, Conrad W
2013-01-01
We used acoustic telemetry to describe the patterns of vertical movement, site fidelity and residency of grey reef sharks (Carcharhinus amblyrhynchos) on the outer slope of coral reefs in Palau, Micronesia, over a period of two years and nine months. We tagged 39 sharks (mostly adult females) of which 31 were detected regularly throughout the study. Sharks displayed strong inter-annual residency with greater attendance at monitored sites during summer than winter months. More individuals were detected during the day than at night. Mean depths of tagged sharks increased from 35 m in winter to 60 m in spring following an increase in water temperature at 60 m, with maximum mean depths attained when water temperatures at 60 m stabilised around 29°C. Sharks descended to greater depths and used a wider range of depths around the time of the full moon. There were also crepuscular cycles in mean depth, with sharks moving into shallower waters at dawn and dusk each day. We suggest that daily, lunar and seasonal cycles in vertical movement and residency are strategies for optimising both energetic budgets and foraging behaviour. Cyclical patterns of movement in response to environmental variables might affect the susceptibility of reef sharks to fishing, a consideration that should be taken into account in the implementation of conservation strategies.
NASA Astrophysics Data System (ADS)
Buongiorno Nardelli, B.; Guinehut, S.; Verbrugge, N.; Cotroneo, Y.; Zambianchi, E.; Iudicone, D.
2017-12-01
The depth of the upper ocean mixed layer provides fundamental information on the amount of seawater that directly interacts with the atmosphere. Its space-time variability modulates water mass formation and carbon sequestration processes related to both the physical and biological pumps. These processes are particularly relevant in the Southern Ocean, where surface mixed-layer depth estimates are generally obtained either as climatological fields derived from in situ observations or through numerical simulations. Here we demonstrate that weekly observation-based reconstructions can be used to describe the variations of the mixed-layer depth in the upper ocean over a range of space and time scales. We compare and validate four different products obtained by combining satellite measurements of the sea surface temperature, salinity, and dynamic topography and in situ Argo profiles. We also compute an ensemble mean and use the corresponding spread to estimate mixed-layer depth uncertainties and to identify the more reliable products. The analysis points out the advantage of synergistic approaches that include in input the sea surface salinity observations obtained through a multivariate optimal interpolation. Corresponding data allow to assess mixed-layer depth seasonal and interannual variability. Specifically, the maximum correlations between mixed-layer anomalies and the Southern Annular Mode are found at different time lags, related to distinct summer/winter responses in the Antarctic Intermediate Water and Sub-Antarctic Mode Waters main formation areas.
Vertical migration and nighttime distribution of adult bloaters in Lake Michigan
TeWinkel, Leslie M.; Fleischer, Guy W.
1999-01-01
The vertical migration and nighttime vertical distribution of adult bloaters Coregonus hoyi were investigated during late summer in Lake Michigan using acoustics simultaneously with either midwater or bottom trawling. Bloaters remained on or near bottom during the day. At night, bloaters were distributed throughout 30-65 m of water, depending on bottom depth. Shallowest depths of migration were not related to water temperature or incident light. Maximum distances of migration increased with increasing bottom depth. Nighttime midwater densities ranged from 0.00 to 6.61 fish/1,000 mA? and decreased with increasing bottom depth. Comparisons of length distributions showed that migrating and nonmigrating bloaters did not differ in size. However, at most sites, daytime bottom catches collected a greater proportion of larger individuals compared with nighttime midwater or bottom catches. Mean target strengths by 5-m strata indicated that migrating bloaters did not stratify by size in the water column at night. Overall, patterns in frequency of empty stomachs and mean digestive state of prey indicated that a portion of the bloater population fed in the water column at night. Bloater diet composition indicated both midwater feeding and bottom feeding. In sum, although a portion of the bloater population fed in the water column at night, bloaters were not limited to feeding at this time. This research confirmed that bloaters are opportunistic feeders and did not fully support the previously proposed hypothesis that bloater vertical migration is driven by the vertically migrating macroinvertebrate the opossom shrimp Mysis relicta.
Buckwalter, T.F.; Squillace, P.J.
1995-01-01
Hydrologic data were evaluated from four areas of western Pennsylvania to estimate the minimum depth of well surface casing needed to prevent contamination of most of the fresh ground-water resources by oil and gas wells. The areas are representative of the different types of oil and gas activities and of the ground-water hydrology of most sections of the Appalachian Plateaus Physiographic Province in western Pennsylvania. Approximate delineation of the base of the fresh ground-water system was attempted by interpreting the following hydrologic data: (1) reports of freshwater and saltwater in oil and gas well-completion reports, (2) water well-completion reports, (3) geophysical logs, and (4) chemical analyses of well water. Because of the poor quality and scarcity of ground-water data, the altitude of the base of the fresh ground-water system in the four study areas cannot be accurately delineated. Consequently, minimum surface-casing depths for oil and gas wells cannot be estimated with confidence. Conscientious and reliable reporting of freshwater and saltwater during drilling of oil and gas wells would expand the existing data base. Reporting of field specific conductance of ground water would greatly enhance the value of the reports of ground water in oil and gas well-completion records. Water-bearing zones in bedrock are controlled mostly by the presence of secondary openings. The vertical and horizontal discontinuity of secondary openings may be responsible, in part, for large differences in altitudes of freshwater zones noted on completion records of adjacent oil and gas wells. In upland and hilltop topographies, maximum depths of fresh ground water are reported from several hundred feet below land surface to slightly more than 1,000 feet, but the few deep reports are not substantiated by results of laboratory analyses of dissolved-solids concentrations. Past and present drillers for shallow oil and gas wells commonly install surface casing to below the base of readily observed fresh ground water. Casing depths are selected generally to maximize drilling efficiency and to stop freshwater from entering the well and subsequently interfering with hydrocarbon recovery. The depths of surface casing generally are not selected with ground-water protection in mind. However, on the basis of existing hydrologic data, most freshwater aquifers generally are protected with current casing depths. Minimum surface-casing depths for deep gas wells are prescribed by Pennsylvania Department of Environmental Resources regulations and appear to be adequate to prevent ground-water contamination, in most respects, for the only study area with deep gas fields examined in Crawford County.
Lahar hazard zones for eruption-generated lahars in the Lassen Volcanic Center, California
Robinson, Joel E.; Clynne, Michael A.
2012-01-01
Lahar deposits are found in drainages that head on or near Lassen Peak in northern California, demonstrating that these valleys are susceptible to future lahars. In general, lahars are uncommon in the Lassen region. Lassen Peak's lack of large perennial snowfields and glaciers limits its potential for lahar development, with the winter snowpack being the largest source of water for lahar generation. The most extensive lahar deposits are related to the May 1915 eruption of Lassen Peak, and evidence for pre-1915 lahars is sparse and spatially limited. The May 1915 eruption of Lassen Peak was a small-volume eruption that generated a snow and hot-rock avalanche, a pyroclastic flow, and two large and four smaller lahars. The two large lahars were generated on May 19 and 22 and inundated sections of Lost and Hat Creeks. We use 80 years of snow depth measurements from Lassen Peak to calculate average and maximum liquid water depths, 2.02 meters (m) and 3.90 m respectively, for the month of May as estimates of the 1915 lahars. These depths are multiplied by the areal extents of the eruptive deposits to calculate a water volume range, 7.05-13.6x106 cubic meters (m3). We assume the lahars were a 50/50 mix of water and sediment and double the water volumes to provide an estimate of the 1915 lahars, 13.2-19.8x106 m3. We use a representative volume of 15x106 m3 in the software program LAHARZ to calculate cross-sectional and planimetric areas for the 1915 lahars. The resultant lahar inundation zone reasonably portrays both of the May 1915 lahars. We use this same technique to calculate the potential for future lahars in basins that head on or near Lassen Peak. LAHARZ assumes that the total lahar volume does not change after leaving the potential energy, H/L, cone (the height of the edifice, H, down to the approximate break in slope at its base, L); therefore, all water available to initiate a lahar is contained inside this cone. Because snow is the primary source of water for lahar generation, we assume that the maximum historical water equivalent, 3.90 m, covers the entire basin area inside the H/L cone. The product of planimetric area of each basin inside the H/L and the maximum historical water equivalent yields the maximum water volume available to generate a lahar. We then double the water volumes to approximate maximum lahar volumes. The maximum lahar volumes and an understanding of the statistical uncertainties inherent to the LAHARZ calculations guided our selection of six hypothetical volumes, 1, 3, 10, 30, 60, and 90x106 m3, to delineate concentric lahar inundation zones. The lahar inundation zones extend, in general, tens of kilometers away from Lassen Peak. The small, more-frequent lahar inundation zones (1 and 3x106 m3) are, on average, 10 km long. The exceptions are the zones in Warner Creek and Mill Creek, which extend much further. All but one of the small, more-frequent lahar inundation zones reach outside of the Lassen Volcanic National Park boundary, and the zone in Mill Creek extends well past the park boundary. All of the medium, moderately frequent lahar inundation zones (10 and 30x106 m3) extend past the park boundary and could potentially impact the communities of Viola and Old Station and State Highways 36 and 44, both north and west of Lassen Peak. The approximately 27-km-long on average, large, less-frequent lahar inundation zones (60 and 90x106 m3) represent worst-case lahar scenarios that are unlikely to occur. Flood hazards continue downstream from the toes of the lahars, potentially affecting communities in the Sacramento River Valley.
Stochastic sediment property inversion in Shallow Water 06.
Michalopoulou, Zoi-Heleni
2017-11-01
Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.
Kotzerka, J.; Hatch, Shyla A.; Garthe, S.
2011-01-01
The Pelagic Cormorant (Phalacrocorax pelagicus) is the most widespread cormorant in the North Pacific, but little is known about its foraging and diving behavior. However, knowledge of seabirds' foraging behavior is important to understanding their function in the marine environment. In 2006, using GPS dataloggers, we studied the foraging behavior of 14 male Pelagic Cormorants rearing chicks on Middleton Island, Alaska. For foraging, the birds had high fidelity to a small area 8 km north of the colony. Within that area, the cormorants' diving activity was of two distinct kinds-near-surface dives (1-6 m) and benthic dives (28-33 m). Individuals were consistent in the depths of their dives, either mostly shallow or mostly deep. Few showed no depth preference. Dive duration, time at maximum depth, and pauses at the water surface between consecutive dives were shorter for shallow dives than for deep dives. The cormorants made dives of both types throughout the day, but the frequency of deep dives increased toward evening. Maximum foraging range was 9 km; maximum total distance traveled per trip was 43.4 km. Trip durations ranged from 0.3 to 7.7 hr. Maximum depth of a dive was 42.2 m, and duration of dives ranged from 4 to 120 sec. We found that Pelagic Cormorants at Middleton Island were faithful to one particular foraging area and individuals dived in distinct patterns. Distinct, specialized foraging behavior may be advantageous in reducing intra- and interspecific competition but may also render the species vulnerable to changing environmental conditions. Copyright ?? The Cooper Ornithological Society 2011.
Pigments, size and distribution of Synechococcus spp. in the Black Sea
NASA Astrophysics Data System (ADS)
Uysal, Zahit
2000-03-01
Pigments, size and distribution of Phycoerythrin-containing unicellular cyanobacteria Synechococcus spp. within the euphotic zone were studied for the first time in April-May 1994 in the western and southwestern Black Sea by epifluorescence microscopy and flow-cytometry. Synechococcus was present in varying quantities at every station and depth studied. Surface spatial distribution of Synechococcus revealed that cells were much more abundant in offshore waters than near coastal regions under the direct influence of the Danube river. Minimum and maximum cell concentrations ranged between 9×10 2 and 1.45×10 5 cells/ml at the surface, between 2×10 3 and 1.23×10 5 cells/ml at the chlorophyll sub-maximum layer, and between 1.3×10 2 and 3.5×10 2 at the nitrite maximum layer. Cells at the chlorophyll sub-maximum layer (based on in-situ fluorometer readings) fluoresce brighter and longer than the ones at the surface and lower depths. Spectral properties of chromophore pigment types of total 64 clonal isolates from different depths down to the lower layer of the euphotic zone (˜60 m) in the southern Black Sea coast revealed that all have type 2 phycoerythrobilin in common, lacking in phycourobilin. In vivo fluorescence emission maxima for the phycoerythrobilin were about the same (˜578 nm) for all isolates. All isolates examined showed in vivo absorption maxima at between 435 and 442 nm and at about 681 nm due to chlorophyll- a. Based on the flow cytometer mean forward light scatter data for size distribution, it could be concluded that cells at the surface mixed layer (0-10 m) were larger in cell size than the cells at lower depths (20-60 m).
Biosonar, diving and movements of two tagged white-beaked dolphin in Icelandic waters
NASA Astrophysics Data System (ADS)
Rasmussen, M. H.; Akamatsu, T.; Teilmann, J.; Vikingsson, G.; Miller, L. A.
2013-04-01
For the first time bio-logging tags were attached to free-ranging white-beaked dolphins, Lagenorhynchus albirostris. A satellite tag was attached to one animal while an acoustic A-tag, a time-depth recorder and a VHF transmitter complex was attached to a second dolphin with a suction cup. The satellite tag transmitted for 201 day, during which time the dolphin stayed in the coastal waters of western Iceland. The acoustic tag complex was on the second animal for 13 h and 40 min and provided the first insight into the echolocation behaviour of a free-ranging white-beaked dolphin. The tag registered 162 dives. The dolphin dove to a maximum depth of 45 m, which is about the depth of the bay in which the dolphin was swimming. Two basic types of dives were identified; U-shaped and V-shaped dives. The dolphin used more time in U-shaped dives, more clicks and sonar signals with shorter click intervals compared to those it used in V-shaped dives. The dolphin was in acoustic contact with other dolphins about five hours after it was released and stayed with these for the rest of the tagging time. Possible foraging attempts were found based on the reduction of click intervals from about 100 ms to 2-3 ms, which suggests a prey capture attempt. We found 19 punitive prey capture attempts and of these 53% occurred at the maximum dive depth. This suggests that more than half of the possible prey capture events occurred at or near the sea bed.
Zopfi, J; Kjaer, T; Nielsen, L P; Jørgensen, B B
2001-12-01
Microsensors, including a recently developed NO3(-) biosensor, were applied to measure O(2) and NO3(-) profiles in marine sediments from the upwelling area off central Chile and to investigate the influence of Thioploca spp. on the sedimentary nitrogen metabolism. The studies were performed in undisturbed sediment cores incubated in a small laboratory flume to simulate the environmental conditions of low O(2), high NO3(-), and bottom water current. On addition of NO3(-) and NO2(-), Thioploca spp. exhibited positive chemotaxis and stretched out of the sediment into the flume water. In a core densely populated with Thioploca, the penetration depth of NO3(-) was only 0.5 mm and a sharp maximum of NO3(-) uptake was observed 0.5 mm above the sediment surface. In sediments with only few Thioploca spp., NO3(-) was detectable down to a depth of 2 mm and the maximum consumption rates were observed within the sediment. No chemotaxis toward nitrous oxide (N2O) was observed, which is consistent with the observation that Thioploca does not denitrify but reduces intracellular NO3(-) to NH(4)(+). Measurements of the intracellular NO3(-) and S(0) pools in Thioploca filaments from various depths in the sediment gave insights into possible differences in the migration behavior between the different species. Living filaments containing significant amounts of intracellular NO3(-) were found to a depth of at least 13 cm, providing final proof for the vertical shuttling of Thioploca spp. and nitrate transport into the sediment.
NASA Astrophysics Data System (ADS)
Ikehara, K.
2017-12-01
Fine-grained turbidite has been used for subaqueous paleoseismology, and has been recognized from shallow- to deep-water environments around the Japanese islands. Stratigraphic occurrence of fine-grained turbidites in the deepest Beppu Bay, south Japan, with its water depth of 75 m suggest clear influence of sea-level changes. Turbidite frequency was high during the post glacial sea-level rising and last 2.7 ka, and was low during the Holocene maximum sea-level highstand (5.3-2.7 ka). Retreat and progress of coastal delta front of the nearby river might affect the sediment supply to the deepest basin. On the other hand, fine-grained turbidites found in the forearc basins ( 3500 and 4500 m in water depths) and trench floor ( 6000 m in water depth) along the southern Ryukyu arc have no clear relation with sea-level changes. Sediment and bathymetric characteristics suggest that origin of these fine-grained turbidites is Taiwan. Remarkable tectonic uplift of Taiwanese coast with small mountainous rivers and narrow shelf may produce the continuous supply of fine-grained turbidites in this area. The Japan Trench floor composes of a series of small basins reflecting subducting horst-graben structure of the Pacific Plate. Each small basin acts as a natural sediment trap receiving the earthquake-induced turbidity currents. Thick fine-grained turbidites are also occurred in the small basins in the Japan Trench floor ( 7500 m in water depth). These are most likely induced by huge earthquakes along the Japan Trench. Thus, their stratigraphic occurrences might have close relation with recurrence of huge earthquakes in the past.
Sharma, Sapna; Gray, Derek K; Read, Jordan S; O’Reilly, Catherine M; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E; Hook, Simon; Lenters, John D; Livingstone, David M; McIntyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest’eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H
2015-01-01
Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues. PMID:25977814
Sharma, Sapna; Gray, Derek K; Read, Jordan S; O'Reilly, Catherine M; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E; Hook, Simon; Lenters, John D; Livingstone, David M; McIntyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest'eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H
2015-01-01
Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985-2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.
Sharma, Sapna; Gray, Derek; Read, Jordan S.; O'Reilly, Catherine; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie; Hook, Simon; Lenters, John; Livingstone, David M.; McIntyre, Peter B.; Adrian, Rita; Allan, Mathew; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John E.; Baron, Jill S.; Brookes, Justin D; Chen, Yuwei; Daly, Robert; Ewing, Kye; de Eyto, Elvira; Dokulil, Martin; Hamilton, David B.; Havens, Karl; Haydon, Shane; Hetzenaeur, Harald; Heneberry, Jocelyn; Hetherington, Amy; Higgins, Scott; Hixson, Eric; Izmest'eva, Lyubov; Jones, Benjamin M.; Kangur, Kulli; Kasprzak, Peter; Kraemer, Benjamin; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Dörthe Müller-Navarra,; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Pius Niederhauser,; North, Ryan P.; Andrew Paterson,; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars G.; Rusak, James A.; Salmaso, Nico; Samal, Nihar R.; Daniel E. Schindler,; Geoffrey Schladow,; Schmidt, Silke R.; Tracey Schultz,; Silow, Eugene A.; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A.; Craig E. Williamson,; Kara H. Woo,
2015-01-01
Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.
Brown, Alastair; Thatje, Sven
2014-05-01
Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity-depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity-depth pattern over time. Thermal effects on metabolic-rate-dependent mutation and on generation times have been proposed to drive differences in speciation rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow-water taxa invading the deep sea, may invoke a stress-evolution mechanism by increasing mutagenic activity in germ cells, by inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity, or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress-evolution response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could contribute to the unimodal diversity-depth pattern. © 2013 Natural Environment Research Council. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
Brown, Alastair; Thatje, Sven
2014-01-01
Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity–depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity–depth pattern over time. Thermal effects on metabolic-rate-dependent mutation and on generation times have been proposed to drive differences in speciation rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow-water taxa invading the deep sea, may invoke a stress–evolution mechanism by increasing mutagenic activity in germ cells, by inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity, or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress–evolution response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could contribute to the unimodal diversity–depth pattern. PMID:24118851
Xue, Jingyuan; Huo, Zailin; Wang, Fengxin; Kang, Shaozhong; Huang, Guanhua
2018-04-01
Water scarcity and salt stress are two main limitations for agricultural production. Groundwater evapotranspiration (ET g ) with upward salt movement plays an important role in crop water use and water productivity in arid regions, and it can compensate the impact of deficit irrigation on crop production. Thus, comprehensive impacts of shallow groundwater and deficit irrigation on crop water use results in an improvement of irrigation water productivity (IWP). However, it is difficult to quantify the effects of groundwater and deficit irrigation on IWP. In this study, we built an IWP evaluation model coupled with a water and salt balance model and a crop yield estimation model. As a valuable tool of IWP simulation, the calibrated model was used to investigate the coupling response of sunflower IWP to irrigation water depths (IWDs), groundwater table depth (GTDs) and groundwater salinities (GSs). A total of 210 scenarios were run in which five irrigation water depths (IWDs) and seven groundwater table depths (GTDs) and six groundwater salinities (GSs) were used. Results indicate that increasing GS clearly increases the negative effect on a crop's actual evapotranspiration (ET a ) as salt accumulation in root zone. When GS is low (0.5-1g/L), increasing GTD produces more positive effect than negative effect. In regard to relatively high GS (2-5g/L), the negative effect of shallow-saline groundwater reaches a maximum at 2m GTD. Additionally, the salt concentration in the root zone maximizes its value at 2.0m GTD. In most cases, increasing GTD and GS reduces the benefits of irrigation water and IWP. The IWP increases with decreasing irrigation water. Overall, in arid regions, capillary rise of shallow groundwater can compensate for the lack of irrigation water and improve IWP. By improving irrigation schedules and taking advantages of shallow saline groundwater, we can obtain higher IWP. Copyright © 2017 Elsevier B.V. All rights reserved.
Hodges, Arthur L.
1982-01-01
Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)
Tollett, Roland W.; Fendick, Robert B.; Simmons, Lane B.
2003-01-01
In 2000-2001, water-quality data were collected from 60 randomly selected domestic wells in the Acadian-Pontchartrain Study Unit, as part of the National Water-Quality Assessment Program. The data were collected from wells screened in shallow sands (less than 350 feet below land surface) in two major aquifer systems--the Chicot aquifer system in southwestern Louisiana and the Chicot equivalent aquifer system in southeastern Louisiana and southwestern Mississippi. The Chicot equivalent aquifer system is part of the Southern Hills regional aquifer system, and both the Chicot aquifer system and the Southern Hills regional aquifer systems are designated as sole-source aquifers by the U.S. Environmental Protection Agency (USEPA). The well depths ranged from 40 to 340 feet below land surface with a median depth of 120 feet. The ground-water-quality data included 5 physiochemical properties, dissolved solids, 9 major inorganic ions, 24 trace elements, 6 nutrients, dissolved organic carbon, 109 pesticides and degradation products, and 85 volatile organic compounds (VOC's); and a subset of the wells were sampled for radon, chlorofluorocarbons, and stable isotopes. Water from 35 of the 60 domestic wells sampled had pH values less than the USEPA Seconday Maximum Contaminant Level (SMCL) range of 6.5 to 8.5 standard units. Specific conductance ranged from 17 to 1,420 microsiemens per centimeter at 25 degrees Celsius. Dissolved-solids concentrations in water from two wells exceeded the SMCL of 500 mg/L (milligrams per liter); the maximum concentration was 858 mg/L. Sodium and calcium were the dominant cations, and bicarbonate and chloride were the dominant anions. One chloride concentration (264 mg/L) exceeded the SMCL of 250 mg/L. One arsenic concentration (55.3 micrograms per liter) exceeded the USEPA Maximum Contaminant Level (MCL) of 10 micrograms per liter. Iron concentrations in water from 22 wells exceeded the SMCL of 300 micrograms per liter; the maximum concentration was 8,670 micrograms per liter. Manganese concentrations in water from 26 wells exceeded the SMCL of 50 micrograms per liter; the maximum concentration was 481 micrograms per liter. Health Advisories have been established for six of the trace elements analyzed; no concentrations were greater than these nonenforceable standards. Radon concentrations in water from 9 of 50 wells sampled were greater thanthe proposed USEPA MCL of 300 picocuries per liter. Concentrations of ammonia, ammonia plus organic nitrogen, and nitrite plus nitrate in water from four wells were greater than 2 mg/L, a level that might indicate anthropogenic influences. The median dissolved organic carbon concentration was an estimated 0.30 mg/L, which indicated naturally occurring dissolved organic carbon conditions in the study area. Eight pesticides and two degradation products were detected in water from five wells. Twenty-four VOC's were detected in water from 44 wells. All concentrations of pesticides and VOC's were less than USEPA drinking-water standards. Quality-control samples, which included field-blank samples, replicates, and field and laboratory spikes, indicated no bias in ground-water data from collection procedures or analyses. VAriance between the environmental sampls and he corresponding replicate samples was typically less than 5 percent, indicating and acceptable degree of laboratory precision and data collection reproducibility. The Mann-Whitney rank-sum test was used to compare depth to top of screen and selected physicochemical properties and chemical constituents between six groups of wells. Values for selected physicochemical and chemical constituents were typically greater in wells located in the Chicot aquifer system than in the Chicot equivalent aquifer system. Values for specific conductance, pH, calcium, sodium, bicarbonate, chloride, dis
NASA Astrophysics Data System (ADS)
Weston, Keith; Jickells, Timothy D.; Carson, Damien S.; Clarke, Andrew; Meredith, Michael P.; Brandon, Mark A.; Wallace, Margaret I.; Ussher, Simon J.; Hendry, Katharine R.
2013-05-01
A study was carried out to assess primary production and associated export flux in the coastal waters of the western Antarctic Peninsula at an oceanographic time-series site. New, i.e., exportable, primary production in the upper water-column was estimated in two ways; by nutrient deficit measurements, and by primary production rate measurements using separate 14C-labelled radioisotope and 15N-labelled stable isotope uptake incubations. The resulting average annual exportable primary production estimates at the time-series site from nutrient deficit and primary production rates were 13 and 16 mol C m-2, respectively. Regenerated primary production was measured using 15N-labelled ammonium and urea uptake, and was low throughout the sampling period. The exportable primary production measurements were compared with sediment trap flux measurements from 2 locations; the time-series site and at a site 40 km away in deeper water. Results showed ˜1% of the upper mixed layer exportable primary production was exported to traps at 200 m depth at the time-series site (total water column depth 520 m). The maximum particle flux rate to sediment traps at the deeper offshore site (total water column depth 820 m) was lower than the flux at the coastal time-series site. Flux of particulate organic carbon was similar throughout the spring-summer high flux period for both sites. Remineralisation of particulate organic matter predominantly occurred in the upper water-column (<200 m depth), with minimal remineralisation below 200 m, at both sites. This highly productive region on the Western Antarctic Peninsula is therefore best characterised as 'high recycling, low export'.
Lourenço, A; Wellock, N; Thomas, R; Homer, M; Bouchard, H; Kanai, T; MacDougall, N; Royle, G; Palmans, H
2016-11-07
Water-equivalent plastics are frequently used in dosimetry for experimental simplicity. This work evaluates the water-equivalence of novel water-equivalent plastics specifically designed for light-ion beams, as well as commercially available plastics in a clinical high-energy carbon-ion beam. A plastic- to-water conversion factor [Formula: see text] was established to derive absorbed dose to water in a water phantom from ionization chamber readings performed in a plastic phantom. Three trial plastic materials with varying atomic compositions were produced and experimentally characterized in a high-energy carbon-ion beam. Measurements were performed with a Roos ionization chamber, using a broad un-modulated beam of 11 × 11 cm 2 , to measure the plastic-to-water conversion factor for the novel materials. The experimental results were compared with Monte Carlo simulations. Commercially available plastics were also simulated for comparison with the plastics tested experimentally, with particular attention to the influence of nuclear interaction cross sections. The measured [Formula: see text] correction increased gradually from 0% at the surface to 0.7% at a depth near the Bragg peak for one of the plastics prepared in this work, while for the other two plastics a maximum correction of 0.8%-1.3% was found. Average differences between experimental and numerical simulations were 0.2%. Monte Carlo results showed that for polyethylene, polystyrene, Rando phantom soft tissue and A-150, the correction increased from 0% to 2.5%-4.0% with depth, while for PMMA it increased to 2%. Water-equivalent plastics such as, Plastic Water, RMI-457, Gammex 457-CTG, WT1 and Virtual Water, gave similar results where maximum corrections were of the order of 2%. Considering the results from Monte Carlo simulations, one of the novel plastics was found to be superior in comparison with the plastic materials currently used in dosimetry, demonstrating that it is feasible to tailor plastic materials to be water-equivalent for carbon ions specifically.
Awan, Tahir Hussain; Chauhan, Bhagirath Singh; Cruz, Pompe C. Sta.
2014-01-01
Urena lobata is becoming a noxious and invasive weed in rangelands, pastures, and undisturbed areas in the Philippines. This study determined the effects of seed scarification, light, salt and water stress, amount of rice residue, and seed burial depth on seed germination and emergence of U. lobata; and evaluated the weed's response to post-emergence herbicides. Germination was stimulated by both mechanical and chemical seed scarifications. The combination of the two scarification methods provided maximum (99%) seed germination. Germination was slightly stimulated when seeds were placed in light (65%) compared with when seeds were kept in the dark (46%). Sodium chloride concentrations ranging from 0 to 200 mM and osmotic potential ranging from 0 to −1.6 MPa affected the germination of U. lobata seeds significantly. The osmotic potential required for 50% inhibition of the maximum germination was −0.1 MPa; however, some seeds germinated at −0.8 MPa, but none germinated at −1.6 MPa. Seedling emergence and biomass increased with increase in rice residue amount up to 4 t ha−1, but declined beyond this amount. Soil surface placement of weed seeds resulted in the highest seedling emergence (84%), which declined with increase in burial depth. The burial depth required for 50% inhibition of maximum emergence was 2 cm; emergence was greatly reduced (93%) at burial depth of 4 cm or more. Weed seedling biomass also decreased with increase in burial depth. Bispyribac-sodium, a commonly used herbicide in rice, sprayed at the 4-leaf stage of the weed, provided 100% control, which did not differ much with 2,4-D (98%), glyphosate (97%), and thiobencarb + 2,4-D (98%). These herbicides reduced shoot and root biomass by 99–100%. PMID:24658143
Effects of cloud size and cloud particles on satellite-observed reflected brightness
NASA Technical Reports Server (NTRS)
Reynolds, D. W.; Mckee, T. B.; Danielson, K. S.
1978-01-01
Satellite observations allowed obtaining data on the visible brightness of cumulus clouds over South Park, Colorado, while aircraft observations were made in cloud to obtain the drop size distributions and liquid water content of the cloud. Attention is focused on evaluating the relationship between cloud brightness, horizontal dimension, and internal microphysical structure. A Monte Carlo cloud model for finite clouds was run using different distributions of drop sizes and numbers, while varying the cloud depth and width to determine how theory would predict what the satellite would view from its given location in space. Comparison of these results to the satellite observed reflectances is presented. Theoretical results are found to be in good agreement with observations. For clouds of optical thickness between 20 and 60, monitoring cloud brightness changes in clouds of uniform depth and variable width gives adequate information about a cloud's liquid water content. A cloud having a 10:1 width to depth ratio is almost reaching its maximum brightness for a specified optical thickness.
NASA Astrophysics Data System (ADS)
Blume, T.; Heidbuechel, I.; Hassler, S. K.; Simard, S.; Guntner, A.; Stewart, R. D.; Weiler, M.
2015-12-01
We hypothesize that there is a shift in controls on landscape scale soil moisture patterns when plants become active during the growing season. Especially during the summer soil moisture patterns are not only controlled by soils, topography and related abiotic site characteristics but also by root water uptake. Root water uptake influences soil moisture patterns both in the lateral and vertical direction. Plant water uptake from different soil depths is estimated based on diurnal fluctuations in soil moisture content and was investigated with a unique setup of 46 field sites in Luxemburg and 15 field sites in Germany. These sites cover a range of geologies, soils, topographic positions and types of vegetation. Vegetation types include pasture, pine forest (young and old) and different deciduous forest stands. Available data at all sites includes information at high temporal resolution from 3-5 soil moisture and soil temperature profiles, matrix potential, piezometers and sapflow sensors as well as standard climate data. At sites with access to a stream, discharge or water level is also recorded. The analysis of soil moisture patterns over time indicates a shift in regime depending on season. Depth profiles of root water uptake show strong differences between different forest stands, with maximum depths ranging between 50 and 200 cm. Temporal dynamics of signal strength within the profile furthermore suggest a locally shifting spatial distribution of root water uptake depending on water availability. We will investigate temporal thresholds (under which conditions spatial patterns of root water uptake become most distinct) as well as landscape controls on soil moisture and root water uptake dynamics.
NASA Astrophysics Data System (ADS)
Wilkinson, A.; Guala, M.; Hondzo, M.
2017-12-01
Harmful Algal Blooms (HAB) are made up of potentially toxic freshwater microorganisms called cyanobacteria, because of this they are a ecological and public health hazard. The occurrences of toxic HAB are unpredictable and highly spatially and temporary variable in freshwater ecosystems. To study the abiotic drivers for toxic HAB, a floating research station has been deployed in a hyper-eutrophic lake in Madison Lake, Minnesota, from June-October 2016. This research station provides full depth water quality (hourly) and meteorological monitoring (5 minutes). Water quality monitoring is performed by an autonomously traversed water quality sonde that provides chemical, physical and biological measurements; including phycocyanin, a photosynthetic pigment distinct to cyanobacteria. A bloom of cyanobacteria recorded in the epiliminion in mid-July was driven by prolonged strong thermal stratification in the water column, high surface water temperatures and high phosphate concentrations in the epiliminion. The high biovolume (BV) persisted until late September and was sustained below the surface after stratification weakened, when the thermocline did not confine cyanobacteria-rich layers any more, and cyanobacteria vertical heterogeneities decayed in the water column. High correlations among BV stratification, surface water temperature, and stratification stability informed the development of a quantitative relationship to determine how BV heterogeneities vary with thermal structure in the water column. The BV heterogeneity decreased with thermal stratification stability and surface water temperature, and the dynamic lake stability described by the Lake Number. Finally the location of maximum BV accumulation showed diurnal patterns ie. BV peaks were observed at 1 m depth during the day and deeper layers during the night, which followed patterns in light penetration and thermocline depth. These findings capture cyanobacteria vertical and temporal heterogeneities on a on full depth, seasonal scale and quantify BV distribution throughout the water column under different stratification conditions, which can be important for mitigating risks of contamination of drinking water and recreational exposure.
Izbicki, John A.; Stamos, Christina L.; Metzger, Loren F.; Halford, Keith J.; Kulp, Thomas R.; Bennett, George L.
2008-01-01
Between 1974 and 2001 water from as many as one-third of wells in the Eastern San Joaquin Ground Water Subbasin, about 80 miles east of San Francisco, had arsenic concentrations greater than the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) for arsenic of 10 micrograms per liter (ug/L). Water from some wells had arsenic concentrations greater than 60 ug/L. The sources of arsenic in the study area include (1) weathering of arsenic bearing minerals, (2) desorption of arsenic associated with iron and manganese oxide coatings on the surfaces of mineral grains at pH's greater than 7.6, and (3) release of arsenic through reductive dissolution of iron and manganese oxide coatings in the absence of oxygen. Reductive dissolution is responsible for arsenic concentrations greater than the MCL. The distribution of arsenic varied areally and with depth. Concentrations were lower near ground-water recharge areas along the foothills of the Sierra Nevada; whereas, concentrations were higher in deeper wells at the downgradient end of long flow paths near the margin of the San Joaquin Delta (fig. 1). Management opportunities to control high arsenic concentrations are present because water from the surface discharge of wells is a mixture of water from the different depths penetrated by wells. On the basis of well-bore flow and depth-dependent water-quality data collected as part of this study, the screened interval of a public-supply well having arsenic concentrations that occasionally exceed the MCL was modified to reduce arsenic concentrations in the surface discharge of the well. Arsenic concentrations from the modified well were about 7 ug/L. Simulations of ground-water flow to the well showed that although upward movement of high-arsenic water from depth within the aquifer occurred, arsenic concentrations from the well are expected to remain below the MCL.
NASA Astrophysics Data System (ADS)
Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid
2016-04-01
In Tunisia the amount of water for irrigated agriculture is higher than about 80% of the total resource.The increasing population and the rising food demand, associated to the negative effects of climate change,make it crucial to adopt strategies aiming to improve water use efficiency (WUE). Moreover, the absence of an effective public policy for water management amplifies the imbalance between water supply and its demand. Despite improved irrigation technologies can enhance the efficiency of water distribution systems, to achieve environmental goals it is also necessaryto identify on-farm management strategies accounting for actual crop water requirement. The main objective of the paper was to assess the effects of different on-farm managementstrategies (irrigation scheduling and planting date) on yield and water use efficiency of Potato crop (Solanumtuberosum L.) irrigated with a subsurface drip system, under the semi-arid climate of central Tunisia. Experiments were carried out during three growing seasons (2012, 2014 and 2015) at the High Agronomic Institute of ChottMariem in Sousse, by considering different planting dates and irrigation depths, the latter scheduled according to the climate observed during the season. All the considered treatments received the same pesticide and fertilizer management. Experiments evidenced that the climatic variability characterizing the examined seasons (photoperiod, solar radiation and average temperature) affects considerably the crop phenological stages, and the late sowing shortens the crop cycle.It has also been demonstrated that Leaf Area Index (LAI) and crop yield resulted relatively higher for those treatments receiving larger amounts of seasonal water. Crop yield varied between 16.3 t/ha and 39.1 t/ha, with a trend linearly related to the ratio between the seasonal amount of water supplied (Irrigation, I and Precipitation, P) and the maximum crop evapotranspiration (ETm). The maximum crop yield was in particular obtained for a value of this ratio equal to 1.45. Moreover, when increasing the seasonal pluviometric deficit (P-ETm) and therefore the irrigation depth (I), standard deviations of crop yield tended to decrease, as a consequence ofthe more uniform soil water content in the root zone. In terms of agronomic water use efficiency (AWUE),differences among the investigated treatments varied in a quite narrow range,due to thecombined effects of seasonal precipitation and atmospheric water demand on irrigation depths and crop yield.On the other hand, when considering irrigation water use efficiency (IWUE), more relevant differences between treatments were observed,being the higher values of IWUEgenerally associated to the lower irrigation depths. However, to define the best irrigation management strategy it is necessary, from one side, to consider the availability of water and from the other, to perform aneconomic analysis accounting for the cost of water and the related benefits achievable by the farmer.
Bathymetric and hydraulic survey of the Matanuska River near Circle View Estates, Alaska
Conaway, Jeffrey S.
2008-01-01
An acoustic Doppler current profiler interfaced with a differentially corrected global positioning system was used to map bathymetry and multi-dimensional velocities on the Matanuska River near Circle View Estates, Alaska. Data were collected along four spur dikes and a bend in the river during a period of active bank erosion. These data were collected as part of a larger investigation into channel processes being conducted to aid land managers with development of a long-term management plan for land near the river. The banks and streambed are composed of readily erodible material and the braided channels frequently scour and migrate. Lateral channel migration has resulted in the periodic loss of properties and structures along the river for decades.For most of the survey, discharge of the Matanuska River was less than the 25th percentile of long-term streamflow. Despite this relatively low flow, measured water velocities were as high as 15 feet per second. The survey required a unique deployment of the acoustic Doppler current profiler in a tethered boat that was towed by a small inflatable raft. Data were collected along cross sections and longitudinal profiles. The bathymetric and velocity data document river conditions before the installation of an additional spur dike in 2006 and during a period of bank erosion. Data were collected along 1,700 feet of river in front of the spur dikes and along 1,500 feet of an eroding bank.Data collected at the nose of spur dikes 2, 3, and 4 were selected to quantify the flow hydraulics at the locations subject to the highest velocities. The measured velocities and flow depths were greatest at the nose of the downstream-most spur dike. The maximum point velocity at the spur dike nose was 13.3 feet per second and the maximum depth-averaged velocity was 11.6 feet per second. The maximum measured depth was 12.0 feet at the nose of spur dike 4 and velocities greater than 10 feet per second were measured to a depth of 10 feet.Data collected along an eroding bank provided details of the spatial distribution and variability in magnitude of velocities and flow depths while erosion was taking place. Erosion was concentrated in an area just downstream of the apex of a river bend. Measured velocities and flow depths were greater in the apex of the bend than in the area of maximum bank erosion. The maximum measured velocity was 12.9 feet per second at the apex and 11.2 feet per second in front of the eroding bank. The maximum measured depth was 10.2 feet at the apex and 5.2 feet in front of the eroding bank.
Contribution to a bio-optical model for remote sensing of Lena River water
NASA Astrophysics Data System (ADS)
Örek, H.; Doerffer, R.; Röttgers, R.; Boersma, M.; Wiltshire, K. H.
2013-11-01
Bio-optical measurements and sampling were carried out in the delta of the Lena River (northern Siberia, Russia) between 26 June and 4 July 2011. The aim of this study was to determine the inherent optical properties of the Lena water, i.e., absorption, attenuation, and scattering coefficients, during the period of maximum runoff. This aimed to contribute to the development of a bio-optical model for use as the basis for optical remote sensing of coastal water of the Arctic. In this context the absorption by CDOM (colored dissolved organic matter) and particles, and the concentrations of total suspended matter, phytoplankton-pigments, and carbon were measured. CDOM was found to be the most dominant parameter affecting the optical properties of the river, with an absorption coefficient of 4.5-5 m-1 at 442 nm, which was almost four times higher than total particle absorption values at visible wavelength range. The wavelenght-dependence of absorption of the different water constituents was chracterized by determining the semi logarithmic spectral slope. Mean CDOM, and detritus slopes were 0.0149 nm-1(standard deviation (stdev) = 0.0003, n = 18), and 0.0057 nm-1 (stdev = 0.0017, n = 19), respectively, values which are typical for water bodies with high concentrations of dissolved and particulate carbon. Mean chlorophyll a and total suspended matter were 1.8 mg m-3 (stdev = 0.734 n = 18) and 31.9 g m-3 (stdev = 19.94, n = 27), respectively. DOC (dissolved organic carbon) was in the range 8-10 g m-3 and the total particulate carbon (PC) in the range 0.25-1.5 g m-3. The light penetration depth (Secchi disc depth) was in the range 30-90 cm and was highly correlated with the suspended matter concentration. The period of maximum river runoff in June was chosen to obtain bio-optical data when maximum water constituents are transported into the Laptev Sea. However, we are aware that more data from other seasons and other years need to be collected to establish a general bio-optical model of the Lena water and conclusively characterize the light climate with respect to primary production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalaryd, Mårten, E-mail: Marten.Dalaryd@med.lu.se; Knöös, Tommy; Ceberg, Crister
Purpose: There are currently several commercially available radiotherapy treatment units without a flattening filter in the beam line. Unflattened photon beams have an energy and lateral fluence distribution that is different from conventional beams and, thus, their attenuation properties differ. As a consequence, for flattening filter free (FFF) beams, the relationship between the beam-quality specifier TPR{sub 20,10} and the Spencer–Attix restricted water-to-air mass collision stopping-power ratios, (L{sup -}/ρ){sub air}{sup water}, may have to be refined in order to be used with equivalent accuracy as for beams with a flattening filter. The purpose of this work was twofold. First, to studymore » the relationship between TPR{sub 20,10} and (L{sup -}/ρ){sub air}{sup water} for FFF beams, where the flattening filter has been replaced by a metal plate as in most clinical FFF beams. Second, to investigate the potential of increasing the accuracy in determining (L{sup -}/ρ){sub air}{sup water} by adding another beam-quality metric, TPR{sub 10,5}. The relationship between (L{sup -}/ρ){sub air}{sup water} and %dd(10){sub x} for beams with and without a flattening filter was also included in this study. Methods: A total of 24 realistic photon beams (10 with and 14 without a flattening filter) from three different treatment units have been used to calculate (L{sup -}/ρ){sub air}{sup water}, TPR{sub 20,10}, and TPR{sub 10,5} using the EGSnrc Monte Carlo package. The relationship between (L{sup -}/ρ){sub air}{sup water} and the dual beam-quality specifier TPR{sub 20,10} and TPR{sub 10,5} was described by a simple bilinear equation. The relationship between the photon beam-quality specifier %dd(10){sub x} used in the AAPM’s TG-51 dosimetry protocol and (L{sup -}/ρ){sub air}{sup water} was also investigated for the beams used in this study, by calculating the photon component of the percentage depth dose at 10 cm depth with SSD 100 cm. Results: The calculated (L{sup -}/ρ){sub air}{sup water} for beams without a flattening filter was 0.3% lower, on average, than for beams with a flattening filter and comparable TPR{sub 20,10}. Using the relationship in IAEA, TRS-398 resulted in a root mean square deviation (RMSD) of 0.0028 with a maximum deviation of 0.0043 (0.39%) from Monte Carlo calculated values. For all beams in this study, the RMSD between the proposed model and the Monte Carlo calculated values was 0.0006 with a maximum deviation of 0.0013 (0.1%). Using an earlier proposed relationship [Xiong and Rogers, Med. Phys. 35, 2104–2109 (2008)] between %dd(10){sub x} and (L{sup -}/ρ){sub air}{sup water} gave a RMSD of 0.0018 with a maximum deviation of 0.0029 (0.26%) for all beams in this study (compared to RMSD 0.0015 and a maximum deviation of 0.0048 (0.47%) for the relationship used in AAPM TG-51 published by Almond et al. [Med. Phys. 26, 1847–1870 (1999)]). Conclusions: Using TPR{sub 20,10} as a beam-quality specifier, for the flattening filter free beams used in this study, gave a maximum difference of 0.39% between (L{sup -}/ρ){sub air}{sup water} predicted using IAEA TRS-398 and Monte Carlo calculations. An additional parameter for determining (L{sup -}/ρ){sub air}{sup water} has been presented. This parameter is easy to measure; it requires only an additional dose measurement at 5 cm depth with SSD 95 cm, and provides information for accurate determination of the (L{sup -}/ρ){sub air}{sup water} ratio for beams both with and without a flattening filter at the investigated energies.« less
NASA Astrophysics Data System (ADS)
Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric
2012-02-01
SummaryTwo physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32 m diameter by 0.99 m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed. Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1 cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9 cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6 cm of water and 55.9 cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix lags behind maximum solar radiation by approximately 2 h. A slightly longer temperature lag was observed between the maximum solar radiation and maximum water temperature both with and without soil.
Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric
2012-01-01
Two physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32. m diameter by 0.99. m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed.Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1. cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9. cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6. cm of water and 55.9. cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix lags behind maximum solar radiation by approximately 2. h. A slightly longer temperature lag was observed between the maximum solar radiation and maximum water temperature both with and without soil. ?? 2012 Elsevier B.V.
Arsenic in ground water in selected parts of southwestern Ohio, 2002-03
Thomas, Mary Ann; Schumann, Thomas L.; Pletsch, Bruce A.
2005-01-01
Arsenic concentrations were measured in 57 domestic wells in Preble, Miami, and Shelby Counties, in southwestern Ohio. The median arsenic concentration was 7.1 ?g/L (micrograms per liter), and the maximum was 67.6 ?g/L. Thirty-seven percent of samples had arsenic concentrations greater than the U.S. Environmental Protection Agency drinking-water standard of 10 ?g/L. Elevated arsenic concentrations (>10 ?g/L) were detected over the entire range of depths sampled (42 to 221 feet) and in each of three aquifer types, Silurian carbonate bedrock, glacial buried-valley deposits, and glacial till with interbedded sand and gravel. One factor common in all samples with elevated arsenic concentrations was that iron concentrations were greater than 1,000 ?g/L. The observed correlations of arsenic with iron and alkalinity are consistent with the hypothesis that arsenic was released from iron oxides under reducing conditions (by reductive dissolution or reductive desorption). Comparisons among the three aquifer types revealed some differences in arsenic occurrence. For buried-valley deposits, the median arsenic concentration was 4.6 ?g/L, and the maximum was 67.6 ?g/L. There was no correlation between arsenic concentrations and depth; the highest concentrations were at intermediate depths (about 100 feet). Half of the buried-valley samples were estimated to be methanic. Most of the samples with elevated arsenic concentrations also had elevated concentrations of dissolved organic carbon and ammonia. For carbonate bedrock, the median arsenic concentration was 8.0 ?g/L, and the maximum was 30.7 ?g/L. Arsenic concentrations increased with depth. Elevated arsenic concentrations were detected in iron- or sulfate-reducing samples. Arsenic was significantly correled with molybdenum, strontium, fluoride, and silica, which are components of naturally ocurring minerals. For glacial till with interbedded sand and gravel, half of the samples had elevated arsenic concentrations. The median was 11.4 ?g/L, and the maximum was 27.6 ?g/L. At shallow depths (<100 feet), this aquifer type had higher arsenic and iron concentrations than carbonate bedrock. It is not known whether these observed differences among aquifer types are related to variations in (1) arsenic content of the aquifer material, (2) organic carbon content of the aquifer material, (3) mechanisms of arsenic mobilization (or uptake), or (4) rates of arsenic mobilization (or uptake). A followup study that includes solid-phase analyses and geochemical modeling was begun in 2004 in northwestern Preble County.
Solar heating of a stratified ocean in the presence of a static ice cover
NASA Astrophysics Data System (ADS)
Perovich, Donald K.; Maykut, Gary A.
1990-10-01
Conductivity, temperature, and depth measurements were carried out in an isolated transverse lead in static, shorefast ice in Mould Bay, Prince Patrick Island, Northwest Territories, during a 3-week period at the height of the melt season. Currents beneath the ice appeared to be weak and largely tidal in nature. Initially, the water was vertically uniform and at the salinity-determined freezing point down to a depth of at least 20 m. By the end of the experiment the water column consisted of three distinct layers: a well-mixed, nearly fresh surface meltwater layer; a very stable half-meter-thick halocline centered somewhat below the bottom of the ice; and a thermally stratified layer of constant salinity extending down to at least 25 m. The halocline was characterized by a temperature maximum that was about 2°C warmer than the surrounding water. This temperature maximum in the pycnocline effectively trapped shortwave energy absorbed in the lower layer and prevented it from melting the overlying ice. Theoretical calculations demonstrate that the thermal structure observed beneath the pycnocline was controlled by the input of shortwave radiation and that vertical heat transport was largely the result of diffusive processes. The presence of leads drastically increases the amount of energy stored in the water. In regions where leads are common, it is likely that this energy will significantly accelerate the decay and removal of the ice once it becomes mobile and once the pycnocline is erased.
Morphometry and mixing regime of a tropical lake: Lake Nova (Southeastern Brazil).
Gonçalves, Monica A; Garcia, Fábio C; Barroso, Gilberto F
2016-09-01
Lake Nova (15.5 km2) is the second largest lake in the Lower Doce River Valley (Southeastern Brazil). A better understanding of ecosystem structure and functioning requires knowledge about lake morphometry, given that lake basin form influences water column stratification. The present study aims to contribute to the understanding of relationship between morphometry and mixing patterns of deep tropical lakes in Brazil. Water column profiles of temperature and dissolved oxygen were taken on four sampling sites along the lake major axis during 2011, 2012 and 2013. The bathymetric survey was carried out in July 2011, along 131.7 km of hydrographic tracks yield 51,692 depth points. Morphometric features of lake size and form factors describe the relative deep subrectangular elongated basin with maximum length of 15.7 km, shoreline development index 5.0, volume of 0.23 km3, volume development of 1.3, and maximum, mean and relative depths of 33.9 m, 14.7 m and 0.7 %, respectively. The deep basin induces a monomictic pattern, with thermal stratification during the wet/warm season associated with anoxic bottom waters (1/3 of lake volume), and mixing during dry and cool season. Based on in situ measurements of tributary river discharges, theoretical retention time (RT) has been estimated in 13.4 years. The morphometry of Lake Nova promote long water RT and the warm monomictic mixing pattern, which is in accordance to the deep tropical lakes in Brazil.
Wake wash waves produced by High Speed Crafts:measurements vs prediction
NASA Astrophysics Data System (ADS)
Benassai, Guido
2010-05-01
The subject of this study refers to the wake wash waves generated by High Speed Crafts observed at some distance away (typically one or multiple of ship lengths) from the line of travel of the vessel. The ratio of the vessel speed divided by the maximum wave celerity in shallow water (depth-based Froude number) or to the square root of the gravity by the vessel length (length-based Froude number) is often used to classify the wash. In fact the wash waves produced by vessels that travel at sub-critical Froude numbers are different in patterns (and hence applicable theory) from that produced by vessels which operate at the critical Froude number of 1 or at supercritical Froude numbers. High Speed Crafts generally operate at Fr>1, even if in some cases for safety of navigation they operate at Fr<1. In the study supercritical speed conditions were considered. The predicted wake wash was a result of a desk-top study and relied on the subject matter presented in numerous technical papers and publications, while the measured wake wash is a result of the first field measurements of wake wash produced by HSC operating in the Bay of Naples. The measurements were operated by a pressure gauge in three critical points where the distance from the coastline was less than 700m. These measurements were taken in shallow water (depth ranging from 4 to 5 meters) in calm weather conditions. The output of the tests were wave-elevation time histories upon which the maximum wave height Hm from the wave record was extracted. The wave height reported was therefore the highest wave, peak to through, which occurred in a wave train. The wave period is defined as double the related half period for the defined maximum wave height. For each wake wash measurement the vessel route was monitored aboard the crossing HSC and exact speed, distance and water obtained depth was determined. The obtained values of the wake wash were compared with predictions of wake wash obtained by similar vessels in analogous speed and depth conditions. Finally some comments and conclusions were given about the accordance between the measurements and the predictions of wake wash waves.
Bridge-scour analysis using the water surface profile (WSPRO) model
Mueller, David S.; ,
1993-01-01
A program was developed to extract hydraulic information required for bridge-scour computations, from the Water-Surface Profile computation model (WSPRO). The program is written in compiled BASIC and is menu driven. Using only ground points, the program can compute average ground elevation, cross-sectional area below a specified datum, or create a Drawing Exchange Format (DXF) fie of cross section. Using both ground points ad hydraulic information form the equal-conveyance tubes computed by WSPRO, the program can compute hydraulic parameters at a user-specified station or in a user-specified subsection of the cross section. The program can identify the maximum velocity in a cross section and the velocity and depth at a user-specified station. The program also can identify the maximum velocity in the cross section and the average velocity, average depth, average ground elevation, width perpendicular to the flow, cross-sectional area of flow, and discharge in a subsection of the cross section. This program does not include any help or suggestions as to what data should be extracted; therefore, the used must understand the scour equations and associated variables to the able to extract the proper information from the WSPRO output.
Starfish (Asteroidea, Echinodermata) from the Faroe Islands; spatial distribution and abundance
NASA Astrophysics Data System (ADS)
Ringvold, H.; Andersen, T.
2016-01-01
"Marine benthic fauna of the Faroe Islands" (BIOFAR) is a large programme with a focus on collecting invertebrate fauna from the Faroes (62°N and 7°W). Cruises were undertaken from 1987 to 1990, and starfish (Asteroidea, Echinodermata) collected during this time were analysed. Asteroidea were sampled at ~50% of all BIOFAR stations. A Detritus sledge and a Triangular dredge proved to be the most efficient equipment, collecting over 60% of the specimens. In total 2473 specimens were collected from 20 to 1500 m depth, including 41 species from 17 families and 31 genera. Henricia pertusa (O. F. Müller, 1776) group, Pontaster tenuispinus (Düben & Koren, 1846), and Leptychaster arcticus (M. Sars, 1851) showed highest relative abundance. Maximum species diversity was found at 500-700 m depth, which coincides with the transition zone of water masses (North Icelandic Winter Water and Arctic Intermediate Water (NI/AI)) at approximately 400-600 m depth. 63% of the species were recorded at an average-weighted depth above 600 m. Two different ordination methods (detrended correspondence analysis (DCA) and nonmetric multidimensional scaling (NMDS)) gave highly consistent representations of the community structure gradients. The first ordination axis scores did not show significant relationships with any environmental variable. Biological covariates like the presence of Lophelia corals were not significantly related to ordination scores on any axis. The second ordination axis scores were significantly correlated with depth. Temperature and salinity were highly correlated (r=0.90), and both negatively correlated with depth (r=-0.69 and r=-0.57, respectively).
Stopping-power ratios for clinical electron beams from a scatter-foil linear accelerator.
Kapur, A; Ma, C M
1999-09-01
Restricted mass collision stopping-power ratios for electron beams from a scatter-foil medical linear accelerator (Varian Clinac 2100C) were calculated for various combinations of beams, phantoms and detector materials using the Monte Carlo method. The beams were of nominal energy 6, 12 or 20 MeV, with square dimensions 1 x 1 cm2 to 10 x 10 cm2. They were incident at nominal SSDs of 100 or 120 cm and inclined at 90 degrees or 30 degrees to the surface of homogeneous water phantoms or water phantoms interspersed with layered lung or bone-like materials. The broad beam water-to-air stopping-power ratios were within 1.3% of the AAPM TG21 protocol values and consistent with the results of Ding et al to within 0.2%. On the central axis the stopping-power ratio variations for narrow beams compared with normally incident broad beams were 0.1% or less for water-to-LiF-100, graphite, ferrous sulfate dosimeter solution, polystyrene and PMMA, 0.5% for water-to-silicon and 1% for water-to-air and water-to-photographic-film materials. The transverse variations of the stopping-power ratios were up to 4% for water-to-silicon, 7% for water-to-photographic-film materials and 10% for water-to-air in the penumbral regions (where the dose was 10% of the global dose maximum) at shallow depths compared with the values at the same depths on the central axis. In the inhomogeneous phantoms studied, the stopping-power ratio correction factors varied more significantly for air, followed by photographic materials and silicon, at various depths on the central axis in the heterogeneous regions. For the simple layered phantoms studied, the estimation of the stopping-power ratio correction factors based on the relative electron-density derived effective depth approach yielded results that were within 0.5% of the Monte Carlo derived values for all the detector materials studied.
Valley fill in the Roswell-Artesia area, New Mexico
Lyford, Forest P.
1973-01-01
Drill samples from 225 water and oil wells in an area 70 miles long and 20 miles wide in the Roswell-Artesia area, southeastern New Mexico were examined. A thickness map and a saturated thickness map of the valley-fill sediments were constructed. Maximum depth of valley fill is about 300 feet in large closed depressions near Roswell, Hagerman, and Artesia. The depressions were formed by the solution of carbonates and evaporites that underlie the fill. Maximum saturated thickness is about 250 feet in depressions near Hagerman and Artesia and about 300 feet in a depression near Roswell.
Runoff Response at Three Spatial Scale from a Burned Watershed
NASA Astrophysics Data System (ADS)
Moody, J. A.; Kinner, D. A.
2007-12-01
The hypothesis that the magnitude and timing of runoff from burned watersheds are functions of the properties of flow paths at multiple scales was investigated at three nested spatial scales within an area burned by the 2005 Harvard Fire near Burbank, California. Water depths were measured using pressure sensors: at the outlet of a subwatershed (10000 m2); in 3-inch Parshall flumes near the outlets of three mini-watersheds (820-1780 m2) within the subwatershed; and by 12 overland-flow detectors in 6 micro-watersheds (~11-15 m2) within one of the mini-watersheds. Rainfall intensities were measured using recording raingages deployed around the perimeter of the mini-watersheds and at the subwatershed outlet. Time-to-concentration, TC, and lag time, TL, were computed for the 15 largest of 30 rainstorms (maximum 30- minute intensities were 3.3-13.0 mm/h) between December 2005 and April 2006. TC , elapsed time from the beginning of the rain until the first increase in water depth, averaged 1.0 hours at the micro-scale, 1.7 hours at the mini-scale, and 1.5 hours at the subwatershed scale. TL is the lag time that produced the maximum cross- correlation coefficient between the time series of rainfall intensities and the series of water depths. TL averaged 0.15 hours at the micro-scale, 0.35 hours at the mini-scale, and 0.39 hours at the subwatershed scale. The coefficient was >0.50 for 43% (N=168) of the measurements at the micro-scale, for 61% (N=54) at the mini- scale, and for 67% (N=6) at the subwatershed scale indicating the runoff response lagged but was often well correlated with the time-varying rainfall intensity.
Tracer signals of the intermediate layer of the Arabian Sea
NASA Astrophysics Data System (ADS)
Rhein, Monika; Stramma, Lothar; Plähn, Olaf
In 1995, hydrographic and chlorofluorocarbon (CFCs, components F11, F12) measurements were carried out in the Gulf of Aden, in the Gulf of Oman, and in the Arabian Sea. In the Gulf of Oman, the F12 concentrations in the Persian Gulf outflow (PGW) at about 300m depth were significantly higher than in ambient surface water with saturations reaching 270%. These high values could not be caused by air-sea gas exchange. The outflow was probably contaminated with oil, and the lipophilic character of the CFCs could then lead to the observed supersaturations. The intermediate F12 maximum decreased rapidly further east and south. At the Strait of Bab el Mandeb in the Gulf of Aden, the Red Sea outflow (RSW) was saturated with F12 to about 65% at 400m depth, and decreased to 50% while descending to 800m depth. The low saturation is not surprising, because the outflow contains deep and intermediate water masses from the Red Sea which were isolated from the surface for some time. The tracer contributions to the Arabian Sea for Indian Central Water (ICW) and PGW are about equal, while below 500m depth the RSW contribution greatly exceeds ICW. Modeling the CFC budget of the Arabian Sea, the inflow of ICW north of 12°N is estimated to be 1-6 Sv, depending mainly on the strength of the flow of Red Sea Water into the Arabian Sea.
The role of internal waves in larval fish interactions with potential predators and prey
NASA Astrophysics Data System (ADS)
Greer, Adam T.; Cowen, Robert K.; Guigand, Cedric M.; Hare, Jonathan A.; Tang, Dorothy
2014-09-01
Tidally driven internal wave packets in coastal environments have the potential to influence patchiness of larval fishes, prey, and gelatinous predators. We used the In Situ Ichthyoplankton Imaging System (ISIIS) to synoptically sample larval fishes, copepods, and planktonic predators (ctenophores, hydromedusae, chaetognaths, and polychaetes) across these predictable features in the summer near Stellwagen Bank, Massachusetts, USA. Full water column profiles and fixed depth transects (∼10 m depth) were used to quantify vertical and horizontal components of the fish and invertebrate distributions during stable and vertically mixed conditions associated with tidally generated internal waves. Larval fishes, consisting mostly of Urophycis spp., Merluccius bilinearis, and Labridae, were concentrated near the surface, with larger sizes generally occupying greater depths. During stable water column conditions, copepods formed a near surface thin layer several meters above the chlorophyll-a maximum that was absent when internal waves were propagating. In contrast, ctenophores and other predators were much more abundant at depth, but concentrations near 10 m increased immediately after the internal hydraulic jump mixed the water column. During the propagation of internal waves, the fine-scale abundance of larval fishes was more correlated with the abundance of gelatinous predators and less correlated with copepods compared to the stable conditions. Vertical oscillations caused by the internal hydraulic jump can disperse patches of zooplankton and force surface dwelling larval fishes into deeper water where probability of predator contact is increased, creating conditions potentially less favorable for larval fish growth and survival on short time scales.
Impacts of sewage of a pulp and paper industry on the sediments of Vigozero water basin
NASA Astrophysics Data System (ADS)
Natalia, Belkina
2010-05-01
The studies of sediments of Vigozero reservoir with 1969 for 2009 are presented. Vigozero water basin belongs to pool of the White Sea. It's watershed area is 16 800 km2, water surface area is 1140 km2, volume of lake - 6,46 km3, average depth - 6,2 m, the maximum depth - 23 m, the water residence time -1,14 years. Northern part of Vigozero reservoir tests influence of sewage of Segeja pulp and paper mill, operating since 1938. Zones of pollution of a bottom are allocated: 1- solid waste; 2 - active silt, lignin, cellulose; 3 - transformed suspended solids. Distribution and stratification of deposits, their physical and chemical parameters is investigated. It is shown, that change of a chemical compound of sediments is connected with volume and qualitative of sewage. The tendency to the extension of polluted zones and to spreading of organic pollution all the bottom is considered. Maximum settling velocity was fixed in 1980 -1985. Accumulation of the organic compounds in sediments at that time resulted in the development of high internal loading. Change of an ecological situation in Vigozero water basin, connected with falling volumes of manufacture last 20 years, has affected sediment genesis processes, therefore the concentrations of organic substances and biogenic elements have decreased in a superficial layer of sediments, concentration of iron has increased. Now, transformation of the organic substances, which have been saved up earlier, demands significant amounts of oxygen. Variability of pH and Eh of sediments indicates unstable oxidation-reduction conditions. Ore formations on a redox-barrier interfere with transport of substances from deposits in water. The work was supported in part by Russian Foundation for Basic Research (grant № 08-05-98811).
Bottom-water observations in the Vema fracture zone
NASA Astrophysics Data System (ADS)
Eittreim, Stephen L.; Biscaye, Pierre E.; Jacobs, Stanley S.
1983-03-01
The Vema fracture zone trough, at 11°N between 41° and 45°E, is open to the west at the 5000-m level but is silled at the 4650-m level on the east where it intersects the axis of the Mid-Atlantic Ridge. The trough is filled with Antarctic Bottom Water (AABW) with a potential temperature of 1.32°C and salinity of 34.82 ppt. The bottom water is thermally well mixed in a nearly homogeneous layer about 700 m thick. The great thickness of this bottom layer, as compared with the bottom-water structure of the western Atlantic basin, may result from enhanced mixing induced by topographic constriction at the west end of the fracture zone trough. A benthic thermocline, with potential temperature gradients of about 1.2 mdeg m-1, is associated with an abrupt increase in turbidity with depth at about 1200 m above bottom. A transitional layer of more moderate temperature gradients, about 0.4 mdeg m-1, lies between the benthic thermocline above and the AABW below. The AABW layer whose depth-averaged suspended paniculate concentrations range from 8 to 19 μg L-1, is consistently higher in turbidity than the overlying waters. At the eastern end of the trough, 140 m below sill depth, very low northeastward current velocities, with maximums of 3 cm s-1, were recorded for an 11-day period.
Boros, Emil; Katalin, V.-Balogh; Vörös, Lajos; Horváth, Zsófia
2017-01-01
Soda lakes and pans represent saline ecosystems with unique chemical composition, occurring on all continents. The purpose of this study was to identify and characterise the main environmental gradients and trophic state that prevail in the soda pans (n=84) of the Carpathian Basin in Central Europe. Underwater light conditions, dissolved organic matter, phosphorus and chlorophyll a were investigated in 84 pans during 2009–2010. Besides, water temperature was measured hourly with an automatic sensor throughout one year in a selected pan. The pans were very shallow (median depth: 15 cm), and their extremely high turbidity (Secchi depth median: 3 cm, min: 0.5 cm) was caused by high concentrations of inorganic suspended solids (median: 0.4 g L–1, max: 16 g L–1), which was the dominant (>50%) contributing factor to the vertical attenuation coefficient in 67 pans (80%). All pans were polyhumic (median DOC: 47 mg L–1), and total phosphorus concentration was also extremely high (median: 2 mg L–1, max: 32 mg L–1). The daily water temperature maximum (44 °C) and fluctuation maximum (28 °C) were extremely high during summertime. The combination of environmental boundaries: shallowness, daily water temperature fluctuation, intermittent hydroperiod, high turbidity, polyhumic organic carbon concentration, high alkalinity and hypertrophy represent a unique extreme aquatic ecosystem. PMID:28572691
Ground-water levels in Huron County, Michigan, 2002-03
Weaver, T.L.; Blumer, S.P.; Crowley, S.L.
2008-01-01
In 1990, the U.S. Geological Survey (USGS) completed a study of the hydrogeology of Huron County, Michigan (Sweat, 1991). In 1993, Huron County and the USGS entered into a continuing agreement to collect water-level altitudes (hereafter referred to as water levels) at selected wells throughout Huron County. As part of the agreement, USGS has operated four continuous water-level recorders, installed from 1988 to 1991 on wells in Bingham, Fairhaven, Grant, and Lake Townships (fig. 1) and summarized the data collected in an annual or bi-annual report. The agreement was altered in 2003, and beginning January 1, 2004, only the wells in Fairhaven and Lake Townships will have continuous water-level recorders, while the wells in Grant and Bingham Townships will revert to quarterly measurement status. USGS has also provided training for County or Huron Conservation District personnel to measure the water level, on a quarterly basis, in 23 wells. USGS personnel regularly accompany County or Huron Conservation District personnel to provide a quality assurance/quality control check of all measurements being made. Water-level data collected from the 23 quarterly-measured wells is also summarized in the annual or bi-annual report. In 1998, the USGS also completed a temporal and spatial analysis of the monitoring well network in Huron County (Holtschlag and Sweat, 1998).The altitude of Lake Huron and precipitation are good indicators of general climatic conditions and, therefore, provide an environmental context for groundwater levels in Huron County. Figure 2 shows the mean-monthly water-level altitude of Lake Huron, averaged from measurements made by the U.S. Army Corps of Engineers at sites near Essexville and Harbor Beach, and monthly precipitation measured in Bad Axe (National Oceanic and Atmospheric Administration [NOAA], 2002-04; Danny Costello, NOAA hydrologist, written commun., 2003-04). In March 2003, a new low-water level for the period of this study was measured in Lake Huron (National Oceanic and Atmospheric Administration, 2003; 2004). The net decline in the water level of Lake Huron from January 1, 2002 to December 31, 2003 was about 0.3 ft. Annual precipitation in 2002 was about 0.3 inches above normal, with much of it occurring during summer months. The provisional precipitation total for 2003 is about an inch below normal (NOAA, 2003, 2004; Danny Costello, NOAA hydrologist, written commun., 2003, 2004).Four wells equipped with continuous-data recorders are completed in the glacial, Saginaw, and Marshall aquifers. Water levels in three of the four wells equipped with continuous-data recorders experienced a net decline over the period from January 2002 to December 2003, while the level in well H9r, completed in the Saginaw aquifer in Fairhaven Township adjacent to Saginaw Bay (Lake Huron), rose about 1.3 ft over the same period. Interestingly, the water level in Saginaw Bay declined about 0.3 ft over the same period. A period-ofrecord maximum depth to water was recorded in September 2003 in well H25Ar, completed in the Marshall aquifer in Lake Township. Hydrographs showing altitude of the water surface are presented for each of four wells equipped with continuous-data recorders.Twenty three wells were measured on a quarterly basis in 2002-03. These wells are completed in the Saginaw and Marshall aquifers, and Coldwater confining unit. Although each quarterly measurement only provides a “snapshot” water level, the data adequately define the “generalized” water-level trend in the aquifer near the well. The water level in one quarterly-measured well completed in the Saginaw aquifer near Saginaw Bay, had a net rise for the period from January 2002 to December 2003, while levels in the other 22 quarterly-measured wells declined about 0.5 to 2.0 ft during the same period. A period-of-record minimum depth to water (high) was measured in 2002 in two quarterly-measured wells completed in the Saginaw aquifer, although the level in one of those wells had a net decline over the period from January 2002 through December 2003. Conversely, period-of-record maximum depths to water (low) were measured in 2002 in one well completed in the Saginaw aquifer and two wells completed in the Marshall aquifer; and in 2003, in 6 of 16 wells completed in the Marshall aquifer. Near period-ofrecord maximum depths to water were measured in 2003 in two additional wells completed in the Marshall aquifer. No period-of-record minimum or maximum depths to water were measured in 2002-03 in wells completed in the Coldwater confining unit. Hydrographs showing water levels measured in each well are presented for the 23 wells measured on a quarterly basis.Water-level trends measured in 2002-03 in other wells in Lower Michigan have similarities to those measured in Huron County wells. Several external factors appear to influence water-level trends including proximity to nearby production wells, amount and timing of precipitation events, evapotranspiration and type of prevalent ground cover, proximity of aquifer to the surface, and hydraulic characteristics of overlying geologic materials.
Haro, Alexander J.; Chelminski, Michael; Dudley, Robert W.
2015-01-01
We developed two-dimensional computational fluid hydraulics-habitat suitability index (CFD-HSI) models to identify and qualitatively assess potential zones of shallow water depth and high water velocity that may present passage challenges for five major anadromous fish species in a 2.63-km reach of the main stem Penobscot River, Maine, as a result of a dam removal downstream of the reach. Suitability parameters were based on distribution of fish lengths and body depths and transformed to cruising, maximum sustained and sprint swimming speeds. Zones of potential depth and velocity challenges were calculated based on the hydraulic models; ability of fish to pass a challenge zone was based on the percent of river channel that the contiguous zone spanned and its maximum along-current length. Three river flows (low: 99.1 m3 sec-1; normal: 344.9 m3 sec-1; and high: 792.9 m3 sec-1) were modelled to simulate existing hydraulic conditions and hydraulic conditions simulating removal of a dam at the downstream boundary of the reach. Potential depth challenge zones were nonexistent for all low-flow simulations of existing conditions for deeper-bodied fishes. Increasing flows for existing conditions and removal of the dam under all flow conditions increased the number and size of potential velocity challenge zones, with the effects of zones being more pronounced for smaller species. The two-dimensional CFD-HSI model has utility in demonstrating gross effects of flow and hydraulic alteration, but may not be as precise a predictive tool as a three-dimensional model. Passability of the potential challenge zones cannot be precisely quantified for two-dimensional or three-dimensional models due to untested assumptions and incomplete data on fish swimming performance and behaviours.
NASA Astrophysics Data System (ADS)
Schaffer-Smith, D.; Swenson, J. J.; Reiter, M. E.; Isola, J. E.
2017-12-01
Over 50% of western hemisphere shorebird species are in decline due to ongoing habitat loss and habitat degradation. Wetland dependent shorebirds prefer shallowly flooded habitats (water depth <5cm), yet most wetlands are not managed to optimize shallow areas. In-situ water depth measurements and microtopography data coupled with satellite image analysis can assist in understanding habitat suitability patterns at broad spatial scales. We generated detailed bathymetry, and estimated spatial daily water depths, the proportion of wetland area providing flooded habitat within the optimal depth range, and the volume of water present in 23 managed wetlands in the Sacramento Valley of California, a globally important shorebird stopover site. Using 30 years of satellite imagery, we estimated suitable habitat extent across the landscape under a range of climate conditions. While spring shorebird abundance has historically peaked in early April, we found that maximum optimal habitat extent occurred after mid-April. More than 50% of monitored wetlands provided limited optimal habitat (<5% of total wetland extent) during the peak of migration between mid-March and mid-April. Furthermore, the duration of suitable habitat presence was fleeting; only 4 wetlands provided at least 10 consecutive days with >5% optimal habitat during the peak of migration. Wetlands with a higher percent clay content and lower topographic variability were more likely to provide a greater extent and duration of suitable habitat. We estimated that even in a relatively wet El-Nino year as little as 0.01%, to 10.72% of managed herbaceous wetlands in the Sacramento Valley provided optimal habitat for shorebirds at the peak of migration in early April. In an extreme drought year, optimal habitat decreased by 80% compared to a wet year Changes in the timing of wetland irrigation and drawdown schedules and the design of future wetland restoration projects could increase the extent and duration of optimal flooded habitat for migratory shorebirds, without significant increases in overall water use requirements.
Water resources of the Bighorn basin, northwestern Wyoming
Lowry, Marlin E.; Lowham, H.W.; Lines, Gregory C.
1976-01-01
This 2-sheet map report includes the part of the Bighorn Basin and adjacent mountains in northwestern Wyoming. Water-bearing properties of the geologic units are summarized. The hydrogeologic map illustrates the distribution of wells in the different units and gives basic data on the yields of wells, depth of wells, depth to water, and dissolved solids and conductance of the water. Aquifers capable of yielding more than 1,000 gpm (gallons per minute) underlie the area everywhere, except in the mountains on the periphery of the basin. In 1970, approximately 29,500 of the 40,475 people living in the Bighorn Basin were served by municipal water supplies. The municipal supply for about 6,300 of these people was from ground water. The natural flows of streams in the Bighorn Basin differ greatly due to a wide range in the meteorologic, topographic, and geologic conditions of the basin. The station locations and the average discharge per square mile are shown on the map and give an indication of the geographic variation of basin yields. The maximum instantaneous discharge that has occurred at each station during its period of record is shown. Most of the runoff in the basin is from snowmelt in the mountains. (Woodard-USGS)
Inoue, Mutsuo; Morokado, Toshiki; Fujimoto, Ken; Miki, Shizuho; Kofuji, Hisaki; Isoda, Yutaka; Nagao, Seiya
2018-04-30
We examined the vertical 134 Cs and 137 Cs concentration profiles in the southwestern Okhotsk Sea in 2011, 2013, and 2017. In June 2011, atmospheric deposition-derived 134 Cs from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) was detected at depths of 0-200 m (0.06-0.6 mBq/L). In July 2013, 134 Cs detected at depths of 100-200 m (∼0.05 mBq/L) was ascribed to the transport of low-level 134 Cs-contaminated water and/or the convection of radioactive depositions (<0.03 mBq/L at depths of 0-50 m). In July 2017, 134 Cs was detected in water samples at depths above 300 m (0.03-0.05 mBq/L), and the inventory, decay-corrected to the FDNPP accident date, exhibited its maximum value (85 Bq/m 2 ) during this period. Combining temperature-salinity data with the concentrations of global fallout-derived 137 Cs led to a plausible explanation for this observation, which is a consequence of re-entry of FDNPP-derived radiocesium through the Kuril Strait from the northwestern North Pacific Ocean to the Okhotsk Sea and subsequent mixing with the south Okhotsk subsurface layer until 2017. Copyright © 2018 Elsevier Ltd. All rights reserved.
Seals map bathymetry of the Antarctic continental shelf
NASA Astrophysics Data System (ADS)
Padman, Laurie; Costa, Daniel P.; Bolmer, S. Thompson; Goebel, Michael E.; Huckstadt, Luis A.; Jenkins, Adrian; McDonald, Birgitte I.; Shoosmith, Deborah R.
2010-11-01
We demonstrate the first use of marine mammal dive-depth data to improve maps of bathymetry in poorly sampled regions of the continental shelf. A group of 57 instrumented elephant seals made on the order of 2 × 105 dives over and near the continental shelf on the western side of the Antarctic Peninsula during five seasons, 2005-2009. Maximum dive depth exceeded 2000 m. For dives made near existing ship tracks with measured water depths H<700 m, ˜30% of dive depths were to the seabed, consistent with expected benthic foraging behavior. By identifying the deepest of multiple dives within small areas as a dive to the seabed, we have developed a map of seal-derived bathymetry. Our map fills in several regions for which trackline data are sparse, significantly improving delineation of troughs crossing the continental shelf of the southern Bellingshausen Sea.
Subduction zone seismicity and the thermo-mechanical evolution of downgoing lithosphere
NASA Astrophysics Data System (ADS)
Wortel, M. J. R.; Vlaar, N. J.
1988-09-01
In this paper we discuss characteristic features of subduction zone seismicity at depths between about 100 km and 700 km, with emphasis on the role of temperature and rheology in controlling the deformation of, and the seismic energy release in downgoing lithosphere. This is done in two steps. After a brief review of earlier developments, we first show that the depth distribution of hypocentres at depths between 100 km and 700 km in subducted lithosphere can be explained by a model in which seismic activity is confined to those parts of the slab which have temperatures below a depth-dependent critical value T cr. Second, the variation of seismic energy release (frequency of events, magnitude) with depth is addressed by inferring a rheological evolution from the slab's thermal evolution and by combining this with models for the system of forces acting on the subducting lithosphere. It is found that considerable stress concentration occurs in a reheating slab in the depth range of 400 to 650 700 km: the slab weakens, but the stress level strongly increases. On the basis of this stress concentration a model is formulated for earthquake generation within subducting slabs. The model predicts a maximum depth of seismic activity in the depth range of 635 to 760 km and, for deep earthquake zones, a relative maximum in seismic energy release near the maximum depth of earthquakes. From our modelling it follows that, whereas such a maximum is indeed likely to develop in deep earthquake zones, zones with a maximum depth around 300 km (such as the Aleutians) are expected to exhibit a smooth decay in seismic energy release with depth. This is in excellent agreement with observational data. In conclusion, the incoroporation of both depth-dependent forces and depth-dependent rheology provides new insight into the generation of intermediate and deep earthquakes and into the variation of seismic activity with depth. Our results imply that no barrier to slab penetration at a depth of 650 700 km is required to explain the maximum depth of seismic activity and the pattern of seismic energy release in deep earthquake zones.
Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica
NASA Astrophysics Data System (ADS)
De Carlo, Eric Heinen; Green, William J.
2002-04-01
We present data on the composition of water from Lake Vanda, Antarctica. Vanda and other lakes in the McMurdo Dry Valleys of Antarctica are characterized by closed basins, permanent ice covers, and deep saline waters. The meromictic lakes provide model systems for the study of trace metal cycling owing to their pristine nature and the relative simplicity of their biogeochemical systems. Lake Vanda, in the Wright Valley, is supplied by a single input, the Onyx River, and has no output. Water input to the lake is balanced by sublimation of the nearly permanent ice cap that is broken only near the shoreline during the austral summer. The water column is characterized by an inverse thermal stratification of anoxic warm hypersaline water underlying cold oxic freshwater. Water collected under trace-element clean conditions was analyzed for its dissolved and total rare earth element (REE) concentrations by inductively coupled plasma mass spectrometry. Depth profiles are characterized by low dissolved REE concentrations (La, Ce, <15 pM) in surface waters that increase slightly (La, 70 pM; Ce, 20 pM) with increasing depth to ∼55 m, the limit of the fresh oxic waters. Below this depth, a sharp increase in the concentrations of strictly trivalent REE (e.g., La, 5 nM) is observed, and a submaximum in redox sensitive Ce (2.6 nM) is found at 60- to 62-m depth. At a slightly deeper depth, a sharper Ce maximum is observed with concentrations exceeding 11 nM at a 67-m depth, immediately above the anoxic zone. The aquatic concentrations of REE reported here are ∼50-fold higher than previously reported for marine oxic/anoxic boundaries and are, to our knowledge, the highest ever observed at natural oxic/anoxic interfaces. REE maxima occur within stable and warm saline waters. All REE concentrations decrease sharply in the sulfidic bottom waters. The redox-cline in Lake Vanda is dominated by diffusional processes and vertical transport of dissolved species driven by concentration gradients. Furthermore, because the ultraoligotrophic nature of the lake limits the potential for organic phases to act as metal carriers, metal oxide coatings and sulfide phases appear to largely govern the distribution of trace elements. We discuss REE cycling in relation to the roles of redox reactions and competitive scavenging onto Mn- and Fe-oxides coatings on clay sized particles in the upper oxic water column and their release by reductive dissolution near the anoxic/oxic interface.
Heat transfer from Atlantic waters to sea ice in the Arctic Ocean: Evidence from dissolved argon
NASA Astrophysics Data System (ADS)
Moore, R. M.; Spitzer, W.
1990-11-01
In an attempt to determine whether the temperature and salinity properties of Arctic Ocean waters above the Atlantic water temperature maximum are the result of heat transfer to sea-ice, dissolved Ar has been measured as a temperature tracer. Consistent with such a hypothesis, it is found that there is a transition from supersaturation of Ar in the upper waters to undersaturation below a depth of 275m. Using the known dependence of the solubility of Ar on T and S, and assuming that the water was originally equilibrated with the atmosphere at 760mm Hg, it has been calculated that ca. 0.6° C of cooling can be attributed to transfer of heat to sea-ice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyewale, S; Pokharel, S; Rana, S
Purpose: To compare the percentage depth dose (PDD) computational accuracy of Adaptive Convolution (AC) and Collapsed Cone Convolution (CCC) algorithms in the presence of air gaps. Methods: A 30×30×30 cm{sup 3} solid water phantom with two 5cm air gaps was scanned with a CT simulator unit and exported into the Phillips Pinnacle™ treatment planning system. PDDs were computed using the AC and CCC algorithms. Photon energy of 6 MV was used with field sizes of 3×3 cm{sup 2}, 5×5 cm{sup 2}, 10×10 cm{sup 2}, 15×15 cm{sup 2}, and 20×20 cm{sup 2}. Ionization chamber readings were taken at different depths inmore » water for all the field sizes. The percentage differences in the PDDs were computed with normalization to the depth of maximum dose (dmax). The calculated PDDs were then compared with measured PDDs. Results: In the first buildup region, both algorithms overpredicted the dose for all field sizes and under-predicted for all other subsequent buildup regions. After dmax in the three water media, AC under-predicted the dose for field sizes 3×3 and 5×5 cm{sup 2} and overpredicted for larger field sizes, whereas CCC under-predicted for all field sizes. Upon traversing the first air gap, AC showed maximum differences of –3.9%, −1.4%, 2.0%, 2.5%, 2.9% and CCC had maximum differences of −3.9%, −3.0%,–3.1%, −2.7%, −1.8% for field sizes 3×3, 5×5, 10×10, 15×15, and 20×20 cm{sup 2} respectively. Conclusion: The effect of air gaps causes a significant difference in the PDDs computed by both the AC and CCC algorithms in secondary build-up regions. AC computed larger values for the PDDs except at smaller field sizes. For CCC, the size of the errors in prediction of the PDDs has an inverse relationship with respect to field size. These effects should be considered in treatment planning where significant air gaps are encountered.« less
Holdo, Ricardo M
2013-01-01
The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1) we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2) subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes) can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future models.
Holdo, Ricardo M.
2013-01-01
The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1) we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2) subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes) can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future models. PMID:23950900
Fan, Cheng-Wei; Kao, Shuh-Ji
2008-04-15
The seasonal concentrations of dissolved oxygen in a subtropical deep reservoir were studied over a period of one year. The study site was the Feitsui Reservoir in Taiwan. It is a dam-constructed reservoir with a surface area of 10.24 km(2) and a mean depth of 39.6 m, with a maximum depth of 113.5 m near the dam. It was found that certain weather and climate events, such as typhoons in summer and autumn, as well as cold fronts in winter, can deliver oxygen-rich water, and consequently have strong impacts on the dissolved oxygen level. The typhoon turbidity currents and winter density currents played important roles in supplying oxygen to the middle and bottom water, respectively. The whole process can be understood by the hydrodynamics driven by weather and climate events. This work provides the primary results of dissolved oxygen in a subtropical deep reservoir, and the knowledge is useful in understanding water quality in subtropical regions.
Chlorophyll maxima in mountain ponds and lakes, Mount Rainier National Park, Washington State, USA
Larson, Gary L.
2000-01-01
Hypolimnetic chlorophyll maxima are common in clear lakes and often occur at depths with between 1 and 0.1% of the surface incident light. Little is known, however, about the concentrations of chlorophyll in thermally unstratified mountain ponds and how these concentrations compare to epilimnetic and hypolimnetic concentrations in mountain lakes. The objectives of this study were to document the concentrations of chlorophyll in thermally unstratified ponds and stratified lakes in Mount Rainier National Park (MORA) and to compare the results with concentrations and distributions of chlorophyll in clear-deep lakes in the Oregon Cascade Range and the Sierra Nevada Range. Thirty-two ponds (<2.5 m deep) and 14 lakes(>9.9 m deep) were sampled primarily during the summers of 1992 to 1996 at MORA. Water samples from near the surface (0.1–0.5 m) of ponds and near the surface and near the bottom of lakes were collected over the deepest part of each system. One exception, Mowich Lake, was sampled at seven depths between the surface and 50 m (Z=58.6 m). Chlorophyll concentrations were low in all systems, but higher in ponds (average 1.8 μg·L−1) than in lakes. Chlorophyll concentrations were higher in hypolimnetic lake samples (average 0.7 μg·L−1) than in epilimnetic lake samples (average 0.2 μg·L−1). Elevated concentrations of chlorophyll in mountain ponds, relative to those in hypolimnetic lake samples, may have been influenced by increased nutrient availability from interactions at the mud-water interface and, in this park, defecation by elk that used many of the ponds as wallows. Mowich Lake showed a chlorophyll maximum (~1.5 μg·L−1) near the lake bottom. Based on Secchi disk clarity readings, the depth of 1.0% incident surface solar radiation was greater than the maximum depths of the ponds and lakes. Comparative data from other clear-deep lakes in the Oregon Cascade Range and Sierra Nevada Range suggested that deep-chlorophyll maxima (~1.5 μg·L−1) occurred at <1.0% and > 0.1% of the incident surface solar radiation, and that the typical maximum depths ranged between 75 and 140 m during thermal stratification.
Observed and Predicted Pier Scour in Maine
Hodgkins, Glenn A.; Lombard, Pamela J.
2002-01-01
Pier-scour and related data were collected and analyzed for nine high river flows at eight bridges across Maine from 1997 through 2001. Six bridges had multiple piers. Fifteen of 23 piers where data were measured during a high flow had observed maximum scour depths ranging from 0.5 feet (ft) to 12.0 ft. No pier scour was observed at the remaining eight piers. The maximum predicted pier-scour depths associated with the 23 piers were computed using the equations in the Federal Highway Administration's Hydraulic Engineering Circular number 18 (HEC-18), with data collected for this study. The predicted HEC-18 maximum pier-scour depths were compared to the observed maximum pier-scour depths. The HEC-18 pier-scour equations are intended to be envelope equations, ideally never underpredicting scour depths and not appreciably overpredicting them. The HEC-18 pier-scour equations performed well for rivers in Maine. Twenty-two out of 23 pier-scour depths were overpredicted by 0.7 ft to 18.3 ft. One pier-scour depth was underpredicted by 4.5 ft. For one pier at each of two bridges, large amounts of debris lodged on the piers after high-flow measurements were made at those sites. The scour associated with the debris increased the maximum pier-scour depths by about 5 ft in each case.
Study of dilution, height, and lateral spread of vertical dense jets in marine shallow water.
Ahmad, Nadeem; Suzuki, Takayuki
2016-01-01
This study provides information for the design of sea outfalls to dispose of brine from desalination plants into shallow lagoons of the sea. The behavior of vertical dense jets was studied experimentally by discharging cold saline water vertically upward into a tank filled with hot freshwater under stagnant ambient conditions. The minimum return point dilution, μmin, was determined using thermocouples, and the maximum height, Z(m), and the lateral spread, R(sp), of the fountains were determined by observing shadowgraph pictures. The flow was turbulent and the densimetric Froude number Fr(0) varied from 9 to 18.8. Three mixing regimes were identified: deep, intermediate, and impinging mixing regimes. In the intermediate mixing regime, μ(min) and Z(m) were analyzed and compared with the results of deep water studies. The μ(min) and Z(m) values of fountains at an intermediate water depth were found to be higher than those of fountains at deep water depths. In the impinging regime, μ(min) decreases rapidly when a fountain starts to continuously impinge on the water surface, showing a noticeable disturbance in the water surface. Therefore, a good rule of thumb is to reduce the flow through multiport diffusers from desalination plants when the noticeable disturbance is observed from the top water surface.
Perchlorate in Turfgrass Systems, Suffolk County, Long Island, NY
NASA Astrophysics Data System (ADS)
Munster, J. E.; Hanson, G. N.; Jackson, W. A.
2007-12-01
Perchlorate concentrations in precipitation, grass clippings, and soil water were analyzed at nine turfgrass sites in Suffolk County, NY. The samples were collected monthly between June, 2006 and January, 2007. The soil water was collected from suction lysimeters at 100 cm depth. Four of these sites were treated with chemical fertilizer, three with organic fertilizer and two were not fertilized. Concentrations of ClO4 in grass clippings and soil water, at the sites treated with chemical fertilizer or not treated with fertilizer, are found to increase when spikes of ClO4 concentrations in precipitation are observed. We believe that the spikes in perchlorate in precipitation collected shortly after the Fourth of July are due to firework displays. The concentration of ClO4 in soil water are 1 to 3 times higher than the maximum perchlorate concentrations in precipitation, with maximum soil water concentrations ranging from 0.5 to 3.0 ppb. At the sites treated with organic fertilizer, grass clippings and soil water ClO4 concentrations increase after the fertilizer application in May. The organic fertilizer that was applied has nine mg ClO4 per kg (9,000 ppb). Soil water concentrations at the sites treated with organic fertilizer increase 100 to 300 times the maximum ClO4 concentration observed in precipitation, with maximum soil water concentrations ranging from 120 to 625 ppb. The increase in ClO4 concentrations in the soil water cannot be explained by evaporation alone since the Cl to ClO4 ratios decrease in the soil water relative to precipitation. This decrease in the Cl to ClO4 ratio suggests another source of perchlorate besides precipitation. We postulate that this additional source is associated with the decomposition of mulched grass left after mowing. Grass takes only a few weeks to decompose after mulching, thus providing a continuous source of perchlorate throughout the mowing season. The Cl to ClO4 ratio of the grass is unknown.
In Situ Mo Isotope Fractionation in the Water Columns of Euxinic Basins
NASA Astrophysics Data System (ADS)
Neubert, N.; Nägler, T. F.; Böttcher, M. E.
2007-12-01
The present study investigates for the first time the overall process of molybdenum (Mo) scavenging in modern euxinic systems using Mo concentration and stable isotope measurements. We analyzed samples from three different sites: The Black Sea, the largest permanently euxinic basin, and two anoxic basins of the Baltic Sea, the Gotland Deep and the Landsort Deep which have maximum water depths of 247 m and 459 m, respectively. Water column profiles, as well as surface sediment samples, were recovered from different water depths. Mo is a redox-sensitive trace metal which is soluble as the molybdate oxyanion in oxic seawater with a residence time of about 800 ka. The isotope signature of Mo is a relatively new proxy used to reconstruct the paleo-redox conditions of the Earth's atmosphere and the oceanic system. The Mo isotope composition in seawater is homogeneous (Siebert et al. 2003). Scavenging of Mo under euxinic conditions is related to the amount of free sulfide in the water column. Near total removal of Mo from the water column is reached at aquatic sulfide concentration of c. 11 μM (Erickson and Helz 2000). In the Black Sea this corresponds to a water depth of about 400 m. Sediment samples of the Black Sea from more then 400 m water depth show seawater isotopic composition, in line with the assumption of bulk Mo removal. However, shallower sediments deposited under lower aquatic sulfide concentrations show significant Mo isotope fractionation. The Baltic Sea oceanographic conditions, including temporary bottom water oxygenation due to sporadic North Sea water inflows, are more complex than in the Black Sea. The aquatic sulfide concentration in the water column is less than 5 μM in the two anoxic troughs. As expected from this lower sulfidity, the surface sediments show Mo fractionation similar to the oxic to slightly euxinic sediments of the Black Sea. Our new results on the Mo isotopic composition in euxinic water columns clearly indicate in situ fractionation of Mo isotopes. All euxinic water samples from the three settings are shifted towards heavier Mo isotope signatures, thus complementing the lighter values in the surface sediments (Nagler et al. 2005).
Using tsunami deposits to determine the maximum depth of benthic burrowing
Shirai, Kotaro; Murakami-Sugihara, Naoko
2017-01-01
The maximum depth of sediment biomixing is directly related to the vertical extent of post-depositional environmental alteration in the sediment; consequently, it is important to determine the maximum burrowing depth. This study examined the maximum depth of bioturbation in a natural marine environment in Funakoshi Bay, northeastern Japan, using observations of bioturbation structures developed in an event layer (tsunami deposits of the 2011 Tohoku-Oki earthquake) and measurements of the radioactive cesium concentrations in this layer. The observations revealed that the depth of bioturbation (i.e., the thickness of the biomixing layer) ranged between 11 and 22 cm, and varied among the sampling sites. In contrast, the radioactive cesium concentrations showed that the processing of radioactive cesium in coastal environments may include other pathways in addition to bioturbation. The data also revealed the nature of the bioturbation by the heart urchin Echinocardium cordatum (Echinoidea: Loveniidae), which is one of the important ecosystem engineers in seafloor environments. The maximum burrowing depth of E. cordatum in Funakoshi Bay was 22 cm from the seafloor surface. PMID:28854254
Using tsunami deposits to determine the maximum depth of benthic burrowing.
Seike, Koji; Shirai, Kotaro; Murakami-Sugihara, Naoko
2017-01-01
The maximum depth of sediment biomixing is directly related to the vertical extent of post-depositional environmental alteration in the sediment; consequently, it is important to determine the maximum burrowing depth. This study examined the maximum depth of bioturbation in a natural marine environment in Funakoshi Bay, northeastern Japan, using observations of bioturbation structures developed in an event layer (tsunami deposits of the 2011 Tohoku-Oki earthquake) and measurements of the radioactive cesium concentrations in this layer. The observations revealed that the depth of bioturbation (i.e., the thickness of the biomixing layer) ranged between 11 and 22 cm, and varied among the sampling sites. In contrast, the radioactive cesium concentrations showed that the processing of radioactive cesium in coastal environments may include other pathways in addition to bioturbation. The data also revealed the nature of the bioturbation by the heart urchin Echinocardium cordatum (Echinoidea: Loveniidae), which is one of the important ecosystem engineers in seafloor environments. The maximum burrowing depth of E. cordatum in Funakoshi Bay was 22 cm from the seafloor surface.
Non-Rayleigh control of upper-ocean Cd isotope fractionation in the western South Atlantic
NASA Astrophysics Data System (ADS)
Xie, Ruifang C.; Galer, Stephen J. G.; Abouchami, Wafa; Rijkenberg, Micha J. A.; de Baar, Hein J. W.; De Jong, Jeroen; Andreae, Meinrat O.
2017-08-01
We present seawater Cd isotopic compositions in five depth profiles and a continuous surface water transect, from 50°S to the Equator, in the western South Atlantic, sampled during GEOTRACES cruise 74JC057 (GA02 section, Leg 3), and investigate the mechanisms governing Cd isotope cycling in the upper and deep ocean. The depth profiles generally display high ε 112 / 110Cd at the surface and decrease with increasing depth toward values typical of Antarctic Bottom Water (AABW). However, at stations north of the Subantarctic Front, the decrease in ε 112 / 110Cd is interrupted by a shift to values intermediate between those of surface and bottom waters, which occurs at depths occupied by North Atlantic Deep Water (NADW). This pattern is associated with variations in Cd concentration from low surface values to a maximum at mid-depths and is attributed to preferential utilization of light Cd by phytoplankton in the surface ocean. Our new results show that in this region Cd-deficient waters do not display the extreme, highly fractionated ε 112 / 110Cd reported in some earlier studies from other oceanic regions. Instead, in the surface and subsurface southwest (SW) Atlantic, when [Cd] drops below 0.1 nmol kg-1, ε 112 / 110Cd are relatively homogeneous and cluster around a value of +3.7, in agreement with the mean value of 3.8 ± 3.3 (2SD, n = 164) obtained from a statistical evaluation of the global ocean Cd isotope dataset. We suggest that Cd-deficient surface waters may acquire their Cd isotope signature via sorption of Cd onto organic ligands, colloids or bacterial/picoplankton extracellular functional groups. Alternatively, we show that an open system, steady-state model is in good accord with the observed Cd isotope systematics in the upper ocean north of the Southern Ocean. The distribution of ε 112 / 110Cd in intermediate and deep waters is consistent with the water mass distribution, with the north-south variations reflecting changes in the mixing proportion of NADW and either AABW or AAIW depending on the depth. Overall, the SW Atlantic Cd isotope dataset demonstrates that the large-scale ocean circulation exerts the primary control on ε 112 / 110Cd cycling in the global deep ocean.
Entrainment and mixing of shelf/slope waters in the near-surface Gulf Stream
NASA Astrophysics Data System (ADS)
Lillibridge, J. L., III; Hitchcock, G.; Rossby, T.; Lessard, E.; Mork, M.; Golmen, L.
1990-08-01
An interdisciplinary study of the entrainment of shelf and slope waters in the Gulf Stream front was undertaken in October 1985 northeast of Cape Hatteras. Fifteen hydrographic transects of the Gulf Stream front and of the shelf water intrusion known as Ford water were completed in 2 1/2 days with a towed undulating profiler, the SeaSoar, equipped with a conductivity-temperature-depth probe and a fluorometer. Upstream sections within 50 km of the shelf break show entrainment of surface and subsurface waters along the northern edge of the high-velocity Gulf Stream. The low-salinity core, first observed at 70 m, is subducted to >100 m. The subsurface Ford water is also at a maximum in chlorophyll, fluorescence, and dissolved oxygen and contains a distinct diatom assemblage of nearshore species. Productivity rates in the Ford water may be equivalent to those in slope waters. Expendable current profilers yield an estimated transport for subsurface shelf waters of 1 to 5×105 m3 s-1 and indicate that vertical shear at the depth of maximum static stability is typically 2×10-2 s-1. A bulk Richardson number is estimated over vertical scales of several meters by combining SeaSoar density profiles with velocity shear from concurrent expendable current profiler deployments. The minimum values are generally >1, and only infrequently are they at or below the 0.25 threshold for shear instability. The presence of double-diffusive processes around the low-salinity core of Ford water is indicated by elevated conductivity Cox numbers. The stability parameter "Turner angle" shows that low-salinity Ford water and its associated T-S property front are sites of double-diffusive mixing, given general agreement between the distributions of Turner angle and Cox number. We conclude that double-diffusive processes are more important than shear flow instability in governing cross-isopycnal mixing. However, downstream transit times are so swift that no measurable change or decay occurs in the Ford water. This explains the occurrence of distinct shelf water phytoplankton species within the low-salinity waters downstream of Cape Hatteras.
Experimental investigation of 150-KG-scale corium melt jet quenching in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magallon, D.; Hohmann, H.
This paper compares and discusses the results of two large scale FARO quenching tests known as L-11 and L-14, which involved, respectively, 151 kg of W% 76.7 UO{sub 2} + 19.2 ZrO{sub 2} + 4.1 Zr and 125 kg of W% 80 UO{sub 2} + 20 ZrO{sub 2} melts poured into 600-kg, 2-m-depth water at saturation at 5.0 MPa. The results are further compared with those of two previous tests performed using a pure oxidic melt, respectively 18 and 44 kg of W% 80 UO{sub 2} + 20 ZrO{sub 2} melt quenched in 1-m-depth water at saturation at 5.0 MPa.more » In all the tests, significant breakup and quenching took place during the melt fall through the water. No steam explosion occurred. In the tests performed with a pure oxide UO{sub 2}-ZrO{sub 2} melt, part of the corium (from 1/6 to 1/3) did not breakup and reached the bottom plate still molten whatever the water depth was. Test L-11 data suggest that full oxidation and complete breakup of the melt occurred during the melt fall through the water. A proportion of 64% of the total energy content of the melt was released to the water during this phase ({approximately}1.5 s), against 44% for L-14. The maximum temperature increase of the bottom plate was 330 K (L-14). The mean particle size of the debris ranged between 2.5 and 4.8mm.« less
NASA Astrophysics Data System (ADS)
Gonsior, M.; Timko, S.; Conte, M. H.; Schmitt-Kopplin, P.
2016-02-01
Ten liter water samples were collected at the Bermuda Atlantic Time Series Station (BATS) at 200 m intervals down to a maximum depth of 4530 m and solid-phase extracted. The methanol extracts were dried and re-dissolved in pure water and then used to determine the time-resolved photo-degradation of marine dissolved organic matter to be able to determine kinetic data. Excitation Emission Matrix (EEM) fluorescence spectra were recorded every 20 minutes using a custom-built flow-through photo-degradation system during 20 h of solar simulated light exposure. The resulting EEM spectra were modeled using Parallel Factor Analysis (PARAFAC) and results revealed reproducible and significant changes in the photo-degradation of marine FDOM originating from different depths. A five component model was fitted and the terrestrial-like components showed the expected high photo-reactivity, but surprisingly, the traditional marine-like peak showed slight photo-production in the surface layer, which might be the reason for its prevalence in the open ocean. Surface ocean waters were depleted in the highly photo-degradable components while protein-like fluorescent components were enriched, which was in agreement with previous studies. Ultrahigh resolution mass spectrometry confirmed unique aliphatic molecular ions in the Surface Ocean and hydrogen-deficient molecules at depth. Multivariate statistical analyses revealed strong correlations between unsaturated/aromatic molecular ions and depth, where aliphatic molecular ions were more prevalent in the Surface Ocean and aromatic molecular ions at depth. Strong correlations were also found between hydrogen-deficient molecular ions and the humic-like fluorescent components. The rapid photo-degradation of the deep-sea FDOM and the surface oceans relative depletion of aromatic molecular ions suggested that deep-ocean FDOM may be too photochemically labile to survive meridional overturning circulation.
Regulation of water flux through tropical forest canopy trees: do universal rules apply?
Meinzer, F C; Goldstein, G; Andrade, J L
2001-01-01
Tropical moist forests are notable for their richness in tree species. The presence of such a diverse tree flora presents potential problems for scaling up estimates of water use from individual trees to entire stands and for drawing generalizations about physiological regulation of water use in tropical trees. We measured sapwood area or sap flow, or both, in 27 co-occurring canopy species in a Panamanian forest to determine the extent to which relationships between tree size, sapwood area and sap flow were species-specific, or whether they were constrained by universal functional relationships between tree size, conducting xylem area, and water use. For the 24 species in which active xylem area was estimated over a range of size classes, diameter at breast height (DBH) accounted for 98% of the variation in sapwood area and 67% of the variation in sapwood depth when data for all species were combined. The DBH alone also accounted for > or = 90% of the variation in both maximum and total daily sap flux density in the outermost 2 cm of sapwood for all species taken together. Maximum sap flux density measured near the base of the tree occurred at about 1,400 h in the largest trees and 1,130 h in the smallest trees studied, and DBH accounted for 93% of the variation in the time of day at which maximum sap flow occurred. The shared relationship between tree size and time of maximum sap flow at the base of the tree suggests that a common relationship between diurnal stem water storage capacity and tree size existed. These results are consistent with a recent hypothesis that allometric scaling of plant vascular systems, and therefore water use, is universal.
Alagar, Ananda Giri Babu; Mani, Ganesh Kadirampatti; Karunakaran, Kaviarasu
2016-01-08
Small fields smaller than 4 × 4 cm2 are used in stereotactic and conformal treatments where heterogeneity is normally present. Since dose calculation accuracy in both small fields and heterogeneity often involves more discrepancy, algorithms used by treatment planning systems (TPS) should be evaluated for achieving better treatment results. This report aims at evaluating accuracy of four model-based algorithms, X-ray Voxel Monte Carlo (XVMC) from Monaco, Superposition (SP) from CMS-Xio, AcurosXB (AXB) and analytical anisotropic algorithm (AAA) from Eclipse are tested against the measurement. Measurements are done using Exradin W1 plastic scintillator in Solid Water phantom with heterogeneities like air, lung, bone, and aluminum, irradiated with 6 and 15 MV photons of square field size ranging from 1 to 4 cm2. Each heterogeneity is introduced individually at two different depths from depth-of-dose maximum (Dmax), one setup being nearer and another farther from the Dmax. The central axis percentage depth-dose (CADD) curve for each setup is measured separately and compared with the TPS algorithm calculated for the same setup. The percentage normalized root mean squared deviation (%NRMSD) is calculated, which represents the whole CADD curve's deviation against the measured. It is found that for air and lung heterogeneity, for both 6 and 15 MV, all algorithms show maximum deviation for field size 1 × 1 cm2 and gradually reduce when field size increases, except for AAA. For aluminum and bone, all algorithms' deviations are less for 15 MV irrespective of setup. In all heterogeneity setups, 1 × 1 cm2 field showed maximum deviation, except in 6MV bone setup. All algorithms in the study, irrespective of energy and field size, when any heterogeneity is nearer to Dmax, the dose deviation is higher compared to the same heterogeneity far from the Dmax. Also, all algorithms show maximum deviation in lower-density materials compared to high-density materials.
SWEAT: Snow Water Equivalent with AlTimetry
NASA Astrophysics Data System (ADS)
Agten, Dries; Benninga, Harm-Jan; Diaz Schümmer, Carlos; Donnerer, Julia; Fischer, Georg; Henriksen, Marie; Hippert Ferrer, Alexandre; Jamali, Maryam; Marinaci, Stefano; Mould, Toby JD; Phelan, Liam; Rosker, Stephanie; Schrenker, Caroline; Schulze, Kerstin; Emanuel Telo Bordalo Monteiro, Jorge
2017-04-01
To study how the water cycle changes over time, satellite and airborne remote sensing missions are typically employed. Over the last 40 years of satellite missions, the measurement of true water inventories stored in sea and land ice within the cryosphere have been significantly hindered by uncertainties introduced by snow cover. Being able to determine the thickness of this snow cover would act to reduce such error, improving current estimations of hydrological and climate models, Earth's energy balance (albedo) calculations and flood predictions. Therefore, the target of the SWEAT (Snow Water Equivalent with AlTimetry) mission is to directly measure the surface Snow Water Equivalent (SWE) on sea and land ice within the polar regions above 60°and below -60° latitude. There are no other satellite missions currently capable of directly measuring SWE. In order to achieve this, the proposed mission will implement a novel combination of Ka- and Ku-band radioaltimeters (active microwave sensors), capable of penetrating into the snow microstructure. The Ka-band altimeter (λ ≈ 0.8 cm) provides a low maximum snow pack penetration depth of up to 20 cm for dry snow at 37 GHz, since the volume scattering of snow dominates over the scattering caused by the underlying ice surface. In contrast, the Ku-band altimeter (λ ≈ 2 cm) provides a high maximum snowpack penetration depth of up to 15 m in high latitudes regions with dry snow, as volume scattering is decreased by a factor of 55. The combined difference in Ka- and Ku-band signal penetration results will provide more accurate and direct determination of SWE. Therefore, the SWEAT mission aims to improve estimations of global SWE interpreted from passive microwave products, and improve the reliability of numerical snow and climate models.
NASA Astrophysics Data System (ADS)
Xie, Ruifang C.; Marcantonio, Franco; Schmidt, Matthew W.
2014-09-01
Decades of paleoceanographic studies have reconstructed a well-resolved water mass structure for the deep Atlantic Ocean during the Last Glacial Maximum (LGM). However, the variability of intermediate water circulation in the tropics over the LGM and deglacial abrupt climate events is still largely debated. This study aims to reconstruct intermediate northern- and southern-sourced water circulation in the tropical North Atlantic during the past 22 kyr and attempts to confine the boundary between Antarctic Intermediate Water (AAIW) and northern-sourced intermediate water (i.e., upper North Atlantic Deep Water (NADW) or Glacial North Atlantic Intermediate Water) in the past. High-resolution Nd isotopic compositions of fish debris and acid-reductive leachate of bulk sediment in core VM12-107 (1079 m depth) from the Southern Caribbean are not in agreement. We suggest that the leachate method does not reliably extract the Nd isotopic compositions of seawater at this location, and that it needs to be tested in more detail in various oceanic settings. The fish debris εNd values display a general decrease from the early deglaciation to the end of the Younger Dryas, followed by a greater drop toward less radiogenic values into the early Holocene. We propose a potentially more radiogenic glacial northern endmember water mass and interpret this pattern as recording a recovery of the upper NADW during the last deglaciation. Comparing our new fish debris Nd isotope data to authigenic Nd isotope studies in the Florida Straits (546 and 751 m depth), we propose that both glacial and deglacial AAIW do not penetrate beyond the lower depth limit of modern AAIW in the tropical Atlantic.
Source/process apportionment of major and trace elements in sinking particles in the Sargasso sea
NASA Astrophysics Data System (ADS)
Huang, S.; Conte, M. H.
2009-01-01
Elemental composition of the particle flux at the Oceanic Flux Program (OFP) time-series site off Bermuda was measured from January 2002 to March 2005. Eighteen elements (Mg, Al, Si, P, Ca, Sc, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Cd, Ba and Pb) in sediment trap material from 500, 1500 and 3200 m depths were quantified using fusion-HR-ICPMS. Positive Matrix Factorization (PMF) was used to elucidate sources, elemental associations and processes that affect geochemical behavior in the water column. Results provide evidence for intense elemental cycling between the sinking flux material and the dissolved and suspended pools within mesopelagic and bathypelagic waters. Biological processing and remineralization rapidly deplete the sinking flux material in organic matter and associated elements (N, P, Cd, Zn) between 500 and 1500 m depth. Suspended particle aggregation, authigenic mineral precipitation, and chemical scavenging enriches the flux material in lithogenic minerals, barite and redox sensitive elements (Mn, Co, V, Fe). A large increase in the flux of lithogenic elements is observed with depth and confirms that the northeast Sargasso is a significant sink for advected continental materials, likely supplied via Gulf Stream circulation. PMF resolved major sources that contribute to sinking flux at all depths (carbonate, high-Mg carbonate, opal, organic matter, lithogenic material, and barite) as well as additional depth-specific elemental associations that contribute about half of the compositional variability in the flux. PMF solutions indicate close geochemical associations of barite-opal, Cd-P, Zn-Co, Zn-Pb and redox sensitive elements in the sinking flux material at 500 m depth. Major reorganizations of element associations occur as labile carrier phases break down and elements redistribute among new carrier phases deeper in the water column. Factor scores show strong covariation and similar temporal phasing among the three trap depths and indicate a tight coupling in particle flux compositional variability throughout the water column. Seasonality in flux composition is primarily driven by dilution of the lithogenic component with freshly-produced biogenic material during the late winter primary production maximum. Temporal trends in scores reveal subtle non-seasonal changes in flux composition occurring on month long timescales. This non-seasonal variability may be driven by changes in the biogeochemical properties of intermediate water masses that pass through the region and which affect rates of chemical scavenging and/or aggregation within the water column.
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Harpold, A. A.; Gochis, D. J.; Reed, D.; Brooks, P. D.
2010-12-01
Seasonal snowcover is a primary source of water to urban and agricultural regions in the western United States, where Mountain Pine Beetle (MPB) has caused rapid and extensive changes to vegetation in montane forests. Levels of MPB infestation in these seasonally snow-covered systems are unprecedented, and it is unknown how this will affect water yield, especially in changing climate conditions. To address this unknown we ask: How does snow accumulation and ablation vary across forest with differing levels of impact? Our study areas in the Rocky Mountains of CO and WY are similar in latitude, elevation and forest structure before infestation, but they vary in the intensity and timing of beetle infestation and tree mortality. We present a record for winter 2010 that includes continuous snow depth as well as stand-scale snow surveys at maximum accumulation. Additional measurements include snowfall, net radiation, temperature and wind speed as well as characterization of forest structure by leaf area index. In a stand uninfested by MPB, maximum snow depth was fairly uniform under canopy (mean = 86 cm, coefficient of variation = 0.021), while canopy gaps showed greater and more variable depth (mean = 117 cm, CV = 0.111). This is consistent with several studies demonstrating that snowfall into canopy gaps depends upon gap size, orientation, wind speed and storm size. In a stand impacted in 2007, snow depth under canopy was less uniform, and there were smaller differences in both mean depth and variability between canopy (mean = 93 cm, CV = 0.072) and gaps (mean = 97 cm, CV = 0.070), consistent with decreased canopy density. In a more recently infested (2009) stand with an intermediate level of MPB impact, mean snow depths were similar between canopy (96 cm, CV = 0.016) and gaps (95 cm, CV = 0.185) but gaps showed much greater variability, suggesting controls similar to those in effect in the uninfested stand. We further use these data to model snow accumulation and ablation as a function of vegetation, topography and fine-scale climate variability, with preliminary results presented at the meeting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puckett, T.M.
1991-05-01
The presence of abundant and diverse sighted ostracodes in chalk and marl of the Demopolis Chalk (Campanian and Maastrichtian) in Alabama and Mississippi strongly suggests that the Late Cretaceous sea floor was within the photic zone. The maximum depth of deposition is calculated from an equation based on eye morphology and efficiency and estimates of the vertical light attenuation. In this equation, K, the vertical light attenuation coefficient, is the most critical variable because it is the divisor for the rest of the equation. Rates of accumulation of coccoliths during the Cretaceous are estimated and are on the same ordermore » as those in modern areas of high phytoplankton production, suggesting similar pigment and coccolith concentrations in the water column. Values of K are known for a wide range of water masses and pigment concentrations, including areas of high phytoplankton production; thus light attenuation through the Cretaceous seas can be estimated reliably. Waters in which attenuation is due only to biogenic matter-conditions that result in deposition of relatively pure chalk-have values of K ranging between 0.2 and 0.3. Waters rich in phytoplankton and mud-conditions that result in deposition of marl-have K values as great as 0.5. Substituting these values for K results in depth range of 65 to 90 m for deposition of chalk and depth of 35 m for deposition of marl. These depth values suggest that deposition of many Cretaceous chalks and marls around the world were deposited under relatively shallow conditions.« less
Gibs, Jacob; Brown, G. Allan; Turner, Kenneth S.; MacLeod, Cecilia L.; Jelinski, James; Koehnlein, Susan A.
1993-01-01
Because a water sample collected from a well is an integration of water from different depths along the well screen, measured concentrations can be biased if analyte concentrations are not uniform along the length of the well screen. The resulting concentration in the sample, therefore, is a function of variations in well-screen inflow rate and analyte concentration with depth. A multiport sampler with seven short screened intervals was designed and used to investigate small-scale vertical variations in water chemistry and aquifer hydraulic conductivity in ground water contaminated by leaded gasoline at Galloway Township, Atlantic County, New Jersey. The multiport samplers were used to collect independent samples from seven intervals within the screened zone that were flow-rate weighted and integrated to simulate a 5-foot-long, 2.375-inch- outside-diameter conventional wire-wound screen. The integration of the results of analyses of samples collected from two multiport samplers showed that a conventional 5-foot-long well screen would integrate contaminant concentrations over its length and resulted in an apparent contaminant concentration that was a little as 28 percent of the maximum concentration observed in the multiport sampler.
Observed drag coefficients in high winds in the near offshore of the South China Sea
Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; ...
2015-07-14
This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a heightmore » of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.« less
Observed drag coefficients in high winds in the near offshore of the South China Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu
This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a heightmore » of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.« less
Diversity of the benthic macrofauna off northern Namibia from the shelf to the deep sea
NASA Astrophysics Data System (ADS)
Eisenbarth, Simone; Zettler, Michael L.
2016-03-01
In late summer 2011, shortly after an upwelling event, 17 stations ranging from 30 to 2513 m water depth have been sampled at 20° south in the northern part of the Benguela Current Large Marine Ecosystem (BCLME) for the investigation of the benthic macrofauna. Sediments of this area are dominated by silt. At the time of sampling, oxygen conditions on the shelf were poor (between 0.42 and 0.68 ml l- 1) but not hypoxic. Below 400 m, however, concentrations rose steadily up to 5.28 ml l- 1. Macrozoobenthic communities along this depth gradient are described, revealing among others the community structure for the continental margin area and the deep sea off northern Namibia for the first time. Cluster analysis revealed 5 different communities along the depth gradient with three shelf communities, one continental margin community and one deep-sea community. All in all, 314 different taxa were found with polychaetes being the most abundant group. Diversity index (Shannon) was lowest for the shallow water community with 2.21 and highest for the deep-sea community with 4.79, showing a clear trend with increasing water depth. Species richness, however, reached its maximum with 187 taxa along the continental margin between 400 and 1300 m water depth. Dominant species for each community are named with the two Cumacea, Iphinoeafricana and Upselaspis caparti, being characteristic for the shallow water community. On the shelf, we found surprisingly high biomass values (23-123 g m- 2), mainly caused by polychaetes, the bivalve Sinupharus galatheae and the gastropod Nassarius vinctus. In terms of composition, the remaining communities were dominated by polychaetes with members of the Paraonidae dominating along the continental margin where we also found surprisingly high abundances of the bivalves Pecten sp. and Dosinia sp. Spionid polychaetes and some representatives of the genus Paraonis were the most common organisms for the deep-sea community.
Bolduc, F.; Afton, A.D.
2004-01-01
We studied relationships among sediment variables (carbon content, C:N, hardness, oxygen penetration, silt-clay fraction), hydrologic variables (dissolved oxygen, salinity, temperature, transparency, water depth), sizes and biomass of common invertebrate classes, and densities of 15 common waterbird species in ponds of impounded freshwater, oligohaline, mesohaline, and unimpounded mesohaline marshes during winters 1997-98 to 1999-2000 on Rockefeller State Wildlife Refuge, Louisiana, USA. Canonical correspondence analysis and forward selection was used to analyze the above variables. Water depth and oxygen penetration were the variables that best segregated habitat characteristics that resulted in maximum densities of common waterbird species. Most common waterbird species were associated with specific marsh types, except Green-winged Teal (Anas crecca) and Northern Shoveler (Anas clypeata). We concluded that hydrologic manipulation of marsh ponds is the best way to manage habitats for these birds, if the hydrology can be controlled adequately.
Plans for a sensitivity analysis of bridge-scour computations
Dunn, David D.; Smith, Peter N.
1993-01-01
Plans for an analysis of the sensitivity of Level 2 bridge-scour computations are described. Cross-section data from 15 bridge sites in Texas are modified to reflect four levels of field effort ranging from no field surveys to complete surveys. Data from United States Geological Survey (USGS) topographic maps will be used to supplement incomplete field surveys. The cross sections are used to compute the water-surface profile through each bridge for several T-year recurrence-interval design discharges. The effect of determining the downstream energy grade-line slope from topographic maps is investigated by systematically varying the starting slope of each profile. The water-surface profile analyses are then used to compute potential scour resulting from each of the design discharges. The planned results will be presented in the form of exceedance-probability versus scour-depth plots with the maximum and minimum scour depths at each T-year discharge presented as error bars.
Basic studies on laser-assisted phacoemulsification using diode-pumped Er:YAG laser
NASA Astrophysics Data System (ADS)
Hausladen, Florian; Wurm, Holger; Stock, Karl
2016-03-01
The aim of this study was to determine the potential of a novel diode-pumped Er:YAG laser for phacoemulsification in basic experimental investigations. An appropriate experimental setup was created, including a translation stage for sample movement, a sample holder, a water spray for sample humidification and a surgical microscope with a CCD camera for video documentation. The analysis of the laser cuts and histological sections was done by light microscopy. As samples porcine eye lenses hardened by formalin were used. In ablation experiments with different spot diameters and radiant powers and a constant repetition rate νr = 200 Hz the maximum ablation depths of (4.346 +/- 0.044) mm have reached at (Ø = 480 μm, Φ = 24.15 W) with a maximum extend of thermal damage of (0.165 +/- 0.030) mm. The average ablation efficiency is 0.241 mm3/J. With a spot diameter of 308 μm the maximum ablation depth is (4.238 +/- 0.040) mm at 24.65 W with a mean ablation efficiency of 0.293 mm3/J. The extend of the thermally damaged region is (0.171 +/- 0.024) mm at this laser power. Using a sapphire cylinder with a diameter of 412 μm (length 38.5 mm) in direct tissue contact with water spray for sample humidification the ablation depth reaches (1.017 +/- 0.074) mm at 4.93 W and (1.840 +/- 0.092) mm at 9.87 W with a mean efficiency of 0.261 mm3/J. A thermal damage zone of (0.064 +/-0.024) mm at 9.87 W was measured. Additionally, at this high power, a progressive contamination and destruction of the cylinder end facet was observed. In conclusion, the investigations show that the diode-pumped Er:YAG laser has considerable potential for cataract surgery.
Feeding flights of breeding double-crested cormorants at two Wisconsin colonies
Custer, T.W.; Bunck, C.
1992-01-01
Unmarked Double-crested Cormorants (Phalacrocorax auritus) (n = 523) were followed by airplane from Cat Island and Spider Island, two nesting colonies in Wisconsin, to their first landing site. Cormorants flew an average of 2.0 km from Cat Island (maximum 40 km) and 2.4 km from Spider Island (maximum12 km). The mean direction of landing sites differed seasonally for fights from Spider Island, but not from Cat Island. Cormorants generally landed in Green Bay or Lake Michigan (>99%) and rarely landed in inland lakes or ponds. The most frequent (> 80%) water depth at landing sites for each colony was 9.l m were used less frequently than available within the maximum observed flight distance for each colony. The average flight speed for cormorants was 61 km/h.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerrito, E.; Ciprigno, M.
1996-12-31
Aquila oil field is located in 850 meters of water in the middle of the Otranto Channel, in the Mediterranean Sea, at about 45 km from the shore and is subject to both difficult sea and weather conditions. The many difficulties, mainly due to the very high water depth, imposed the use of advanced technology, that could be obtained only through the direct association of contractor companies, leaders in their own field. Such a solution safeguards the technological reliability and allows the maximum control of time and cost. The selection of an FPSO (Floating, Production, Storage and Offloading) comes frommore » a feasibility study indicating this solution as the only one, allowing the economical exploitation of the Aquila field. This paper deals with a series of technical solutions and contractual agreements with a Joint-Venture embracing two leading world contractors for developing, manufacturing and installing the FPSO {open_quotes}Agip Firenze{close_quotes}, permanently anchored at a world record 850 m water depth. The system includes flowlines and control lines. The ship, has been especially redesigned and purchased by contractors. They will use the vessel to manage the field development. Agip will provide the subsea production system: christmas tree and control system with artificial lift. The Aquila field development project aims to identify an economically viable, low risk method of producing hydrocarbons from a deep water location where previously the reserves were technologically and economically out of range.« less
Vortex formation with a snapping shrimp claw.
Hess, David; Brücker, Christoph; Hegner, Franziska; Balmert, Alexander; Bleckmann, Horst
2013-01-01
Snapping shrimp use one oversized claw to generate a cavitating high speed water jet for hunting, defence and communication. This work is an experimental investigation about the jet generation. Snapping shrimp (Alpheus-bellulus) were investigated by using an enlarged transparent model reproducing the closure of the snapper claw. Flow inside the model was studied using both High-Speed Particle Image Velocimetry (HS-PIV) and flow visualization. During claw closure a channel-like cavity was formed between the plunger and the socket featuring a nozzle-type contour at the orifice. Closing the mechanism led to the formation of a leading vortex ring with a dimensionless formation number of approximate ΔT*≈4. This indicates that the claw might work at maximum efficiency, i.e. maximum vortex strength was achieved by a minimum of fluid volume ejected. The subsequent vortex cavitation with the formation of an axial reentrant jet is a reasonable explanation for the large penetration depth of the water jet. That snapping shrimp can reach with their claw-induced flow. Within such a cavitation process, an axial reentrant jet is generated in the hollow cylindrical core of the cavitated vortex that pushes the front further downstream and whose length can exceed the initial jet penetration depth by several times.
Mendoza, Wilson G; Riemer, Daniel D; Zika, Rod G
2013-05-01
We evaluated the use of excitation and emission matrix (EEM) fluorescence and parallel factorial analysis (PARAFAC) modeling techniques for monitoring crude oil components in the water column. Four of the seven derived PARAFAC loadings were associated with the Macondo crude oil components. The other three components were associated with the dispersant, an unresolved component and colored dissolved organic matter (CDOM). The fluorescence of the associated benzene and naphthalene-like components of crude oil exhibited a maximum at ∼1200 m. The maximum fluorescence of the component associated with the dispersant (i.e., Corexit EC9500A) was observed at the same depth. The plume observed at this depth was attributed to the dispersed crude oil from the Deepwater Horizon oil spill. Results demonstrate the application of EEM and PARAFAC to simultaneously monitor selected PAH, dispersant-containing and humic-like fluorescence components in the oil spill region in the Gulf of Mexico.
Katiyar, Shashwat; Singh, Dharam
2014-05-01
An investigation was carried out to ascertain the effect of arsenic in the blocks of Ballia district in Uttar Pradesh in the upper and middle Ganga plain, India. Analysis of 100 drinking water samples revealed that arsenic concentration was below 10 μg l⁻¹ in 60% samples, 10-50 μg l⁻¹ in 6%, 100 μg l⁻¹ in 24% and 200 μg l⁻¹ in 10% samples, respectively. The arsenic concentration in drinking water ranged from 12.8 to 132.2 μg l⁻¹. The depth of source of drinking water (10-60 m) was also found with a mean of 36.12 ± 13.61 μg l⁻¹ arsenic concentration. Observations revealed that at depth ranging from 10 to 20 m, the mean level of arsenic concentration was 17.398 ± 21.796 μg l⁻¹, while at 21 to 40 m depth As level was 39.685 ± 40.832 μg l⁻¹ and at 41 to 60 m As level was 46.89 ± 52.80 μg l⁻¹, respectively. These observations revealed a significant positive correlation (r = 0.716, t = 4.215, P < 0.05) between depth and arsenic concentration in drinking water. The age of water sources were ranged from zero to 30 years. The study indicates that the older sources of drinking water showed higher chance of contamination. Results showed that group 21-30 years having maximum arsenic concentration with mean value of 52.57 ± 53.79 μg l⁻¹. Correlation analysis also showed a significant positive correlation (r = 0.801, t = 5.66, P < 0.05) between age of drinking water sources and their respective arsenic concentration (μg l⁻¹). Arsenic concentration in blood with mean value 0.226 ± 0.177 μg dl⁻¹ significantly increased as compared to control. The blood arsenic content correlated significantly (r = 0.6823, t = 3.93, P < 0.05) with drinking water arsenic level and exposure time (r = 0.545, t = 3.101 & *P < 0.05) for populations residing in Ballia districts. Observations and correlation analysis revealed that individuals having depth of drinking water sources 20-30 m were less affected with arsenic exposure.
NASA Astrophysics Data System (ADS)
Lourenço, A.; Wellock, N.; Thomas, R.; Homer, M.; Bouchard, H.; Kanai, T.; MacDougall, N.; Royle, G.; Palmans, H.
2016-11-01
Water-equivalent plastics are frequently used in dosimetry for experimental simplicity. This work evaluates the water-equivalence of novel water-equivalent plastics specifically designed for light-ion beams, as well as commercially available plastics in a clinical high-energy carbon-ion beam. A plastic- to-water conversion factor {{H}\\text{pl,w}} was established to derive absorbed dose to water in a water phantom from ionization chamber readings performed in a plastic phantom. Three trial plastic materials with varying atomic compositions were produced and experimentally characterized in a high-energy carbon-ion beam. Measurements were performed with a Roos ionization chamber, using a broad un-modulated beam of 11 × 11 cm2, to measure the plastic-to-water conversion factor for the novel materials. The experimental results were compared with Monte Carlo simulations. Commercially available plastics were also simulated for comparison with the plastics tested experimentally, with particular attention to the influence of nuclear interaction cross sections. The measured H\\text{pl,w}\\exp correction increased gradually from 0% at the surface to 0.7% at a depth near the Bragg peak for one of the plastics prepared in this work, while for the other two plastics a maximum correction of 0.8%-1.3% was found. Average differences between experimental and numerical simulations were 0.2%. Monte Carlo results showed that for polyethylene, polystyrene, Rando phantom soft tissue and A-150, the correction increased from 0% to 2.5%-4.0% with depth, while for PMMA it increased to 2%. Water-equivalent plastics such as, Plastic Water, RMI-457, Gammex 457-CTG, WT1 and Virtual Water, gave similar results where maximum corrections were of the order of 2%. Considering the results from Monte Carlo simulations, one of the novel plastics was found to be superior in comparison with the plastic materials currently used in dosimetry, demonstrating that it is feasible to tailor plastic materials to be water-equivalent for carbon ions specifically.
Baez-Cazull, S.; McGuire, J.T.; Cozzarelli, I.M.; Raymond, A.; Welsh, L.
2007-01-01
Steep biogeochemical gradients were measured at mixing interfaces in a wetland-aquifer system impacted by landfill leachate in Norman, Oklahoma. The system lies within a reworked alluvial plain and is characterized by layered low hydraulic conductivity wetland sediments interbedded with sandy aquifer material. Using cm-scale passive diffusion samplers, "peepers", water samples were collected in a depth profile to span interfaces between surface water and a sequence of deeper sedimentary layers. Geochemical indicators including electron acceptors, low-molecular-weight organic acids, base cations, and NH4+ were analyzed by capillary electrophoresis (CE) and field techniques to maximize the small sample volumes available from the centimeter-scale peepers. Steep concentration gradients of biogeochemical indicators were observed at various interfaces including those created at sedimentary boundaries and boundaries created by heterogeneities in organic C and available electron acceptors. At the sediment-water interface, chemical profiles with depth suggest that SO42 - and Fe reduction dominate driven by inputs of organic C from the wetland and availability of electron acceptors. Deeper in the sediments (not associated with a lithologic boundary), a steep gradient of organic acids (acetate maximum 8.8 mM) and NH4+ (maximum 36 mM) is observed due to a localized source of organic matter coupled with the lack of electron acceptor inputs. These findings highlight the importance of quantifying the redox reactions occurring in small interface zones and assessing their role on biogeochemical cycling at the system scale. ?? 2007 Elsevier Ltd. All rights reserved.
Observation of Snow cover glide on Sub-Alpine Coniferous Forests in Mount Zao, Northeastern Japan
NASA Astrophysics Data System (ADS)
Sasaki, A.; Suzuki, K.
2017-12-01
This is the study to clarify the snow cover glide behavior in the sub-alpine coniferous forests on Mount Zao, Northeastern Japan, in the winter of 2014-2015. We installed the glide-meter which is sled type, and measured the glide motion on the slope of Abies mariesii forest and its surrounding slope. In addition, we observed the air temperature, snow depth, density of snow, and snow temperature to discuss relationship between weather conditions and glide occurrence. The snow cover of the 2014-15 winter started on November 13th and disappeared on April 21st. The maximum snow depth was 242 cm thick, it was recorded at February 1st. The snow cover glide in the surrounding slope was occurred first at February 10th, although maximum snow depth recorded on February 1st. The glide motion in the surrounding slope is continuing and its velocity was 0.4 cm per day. The glide in the surrounding slope stopped at March 16th. The cumulative amount of the glide was 21.1 cm. The snow cover glide in the A. mariesii forest was even later occurred first at February 21st. The glide motion of it was intermittent and extremely small. On sub-alpine zone of Mount Zao, snow cover glide intensity is estimated to be 289 kg/m2 on March when snow water equivalent is maximum. At same period, maximum snow cover glide intensity is estimated to be about 1000 kg/m2 at very steep slopes where the slope angle is about 35 degree. Although potential of snow cover glide is enough high, the snow cover glide is suppressed by stem of A. mariesii trees, in the sub-alpine coniferous forest.
Sayer, Martin Dj; Akroyd, Jim; Williams, Guy D
2008-06-01
Wreck diving at Bikini Atoll consists of a relatively standard series of decompression dives with maximum depths in the region of 45-55 metres' sea water (msw). In a typical week of diving at Bikini, divers can perform up to 12 decompression dives to these depths over seven days; on five of those days, divers can perform two decompression dives per day. All the dives employ multi-level, staged decompression schedules using air and surface-supplied nitrox containing 80% oxygen. Bikini is serviced by a single diving operator and so a relatively precise record exists both of the actual number of dives undertaken and of the decompression illness incidents both for customer divers and the dive guides. The dive guides follow exactly the dive profiles and decompression schedules of the customers. Each dive guide will perform nearly 400 decompression dives a year, with maximum depths mostly around 50 msw, compared with an average of 10 (maximum of 12) undertaken typically by each customer diver in a week. The incidence of decompression illness for the customer population (presumed in the absence of medical records) is over ten times higher than that for the dive guides. The physiological reasons for such a marked difference are discussed in terms of customer demographics and dive-guide acclimatization to repetitive decompression stress. The rates of decompression illness for a range of diving populations are reviewed.
Marine-target craters on Mars? An assessment study
Ormo, J.; Dohm, J.M.; Ferris, J.C.; Lepinette, A.; Fairen, A.G.
2004-01-01
Observations of impact craters on Earth show that a water column at the target strongly influences lithology and morphology of the resultant crater. The degree of influence varies with the target water depth and impactor diameter. Morphological features detectable in satellite imagery include a concentric shape with an inner crater inset within a shallower outer crater, which is cut by gullies excavated by the resurge of water. In this study, we show that if oceans, large seas, and lakes existed on Mars for periods of time, marine-target craters must have formed. We make an assessment of the minimum and maximum amounts of such craters based on published data on water depths, extent, and duration of putative oceans within "contacts 1 and 2," cratering rate during the different oceanic phases, and computer modeling of minimum impactor diameters required to form long-lasting craters in the seafloor of the oceans. We also discuss the influence of erosion and sedimentation on the preservation and exposure of the craters. For an ocean within the smaller "contact 2" with a duration of 100,000 yr and the low present crater formation rate, only ???1-2 detectable marine-target craters would have formed. In a maximum estimate with a duration of 0.8 Gyr, as many as 1400 craters may have formed. An ocean within the larger "contact 1-Meridiani," with a duration of 100,000 yr, would not have received any seafloor craters despite the higher crater formation rate estimated before 3.5 Gyr. On the other hand, with a maximum duration of 0.8 Gyr, about 160 seafloor craters may have formed. However, terrestrial examples show that most marine-target craters may be covered by thick sediments. Ground penetrating radar surveys planned for the ESA Mars Express and NASA 2005 missions may reveal buried craters, though it is uncertain if the resolution will allow the detection of diagnostic features of marine-target craters. The implications regarding the discovery of marine-target craters on Mars is not without significance, as such discoveries would help address the ongoing debate of whether large water bodies occupied the northern plains of Mars and would help constrain future paleoclimatic reconstructions. ?? Meteoritical Society, 2004.
Preliminary appraisal of the hydrology of the Blocker area, Pittsburg County, Oklahoma
Marcher, Melvin V.; Bergman, D.L.; Stoner, J.D.; Blumer, S.P.
1981-01-01
Bedrock in the Blocker area of southeastern Oklahoma consists principally of shale, siltstone, and sandstone of the Boggy and Savanna Formations of Pennsylvanian age. These rocks have been folded to form the Panther Mountain syncline on the south and the Kinta anticline on the north. Alluvium along streams is less than 15 feet thick and consists mainly of sandy silt. Water in bedrock is under artesian conditions. Well depths range from 11 to 213 feet and average 75 feet. In 86% of the wells measured, the water level was less than 30 feet below the land surface. Because the rocks have minimal permeability, well yields probably are less than 5 gallons per minute. Ground water is commonly a mixed cation bicarbonate type with dissolved solids ranging from about 300 to 2,000 milligrams per liter. No relationship between water chemistry and well depth or geographic distribution is apparent. Streams in the area are ephemeral and there are extended periods of no flow. Blue Creek was dry 30% of the time during 1976-80 and had flows of less than 0.1 cubic foot per second for at least 80 consecutive days. Stream water is generally a mixed cation sulfate type. The maximum dissolved-solids concentration determined in stream water was 3670 milligrams per liter. Maximum suspended sediment discharge, in tons per day, was about 235 for Blue Creek, 40 for Blue Creek tributary, and 630 for Mathuldy Creek. Silt-clay particles (diameters less than 0.062 millimeter) are the dominant sediment size. Surface mining for coal undoubtedly will have some effect on the environment. The most likely deleterious effects are increased sediment loads in streams and increased mineralization of stream waters. However, these effects should be of only limited extent and duration if appropriate mining and reclamation practices are followed. (USGS)
Transient electromagnetic sounding for groundwater
Fitterman, David V.; Stewart, Mark T.
1986-01-01
The feasibility of using the transient electromagnetic sounding (TS or TDEM) method for groundwater exploration can be studied by means of numerical models. As examples of its applicability to groundwater exploration, we study four groundwater exploration problems: (1) mapping of alluvial fill and gravel zones over bedrock; (2) mapping of sand and gravel lenses in till; (3) detection of salt or brackish water interfaces in freshwater aquifers; and (4) determination of hydrostratigraphy. These groundwater problems require determination of the depth to bedrock; location of resistive, high‐porosity zones associated with fresh water; determination of formation resistivity to assess water quality; and determination of lithology and geometry, respectively. The TS method is best suited for locating conductive targets, and has very good vertical resolution. Unlike other sounding techniques where the receiver‐transmitter array must be expanded to sound more deeply, the depth of investigation for the TS method is a function of the length of time the transient is recorded. Present equipment limitations require that exploration targets with resistivities of 50 Ω ⋅ m or more be at least 50 m deep to determine their resistivity. The maximum depth of exploration is controlled by the geoelectrical section and background electromagnetic (EM) noise. For a particular exploration problem, numerical studies are recommended to determine if the target is detectable.
Norazlimi, Nor Atiqah; Ramli, Rosli
2015-01-01
A study was conducted to investigate the relationship between the physical morphology of shorebirds and water birds (i.e., Lesser adjutant (Leptoptilos javanicus), Common redshank (Tringa totanus), Whimbrel (Numenius phaeopus), and Little heron (Butorides striata)) and their foraging behavior in the mudflats area of Selangor, Peninsular Malaysia, from August 2013 to July 2014 by using direct observation techniques (using binoculars and a video recorder). The actively foraging bird species were watched, and their foraging activities were recorded for at least 30 seconds for up to a maximum of five minutes. A Spearman Rank Correlation highlighted a significant relationship between bill size and foraging time (R = 0.443, p < 0.05), bill size and prey size (R = −0.052, p < 0.05), bill size and probing depth (R = 0.42, p = 0.003), and leg length and water/mud depth (R = 0.706, p < 0.005). A Kruskal-Wallis Analysis showed a significant difference between average estimates of real probing depth of the birds (mm) and species (H = 15.96, p = 0.0012). Three foraging techniques were recorded: pause-travel, visual-feeding, and tactile-hunting. Thus, morphological characteristics of bird do influence their foraging behavior and strategies used when foraging. PMID:26345324
Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah
Magirl, Christopher S.; Gartner, Jeffrey W.; Smart, Graeme M.; Webb, Robert H.
2009-01-01
Rapids are an integral part of bedrock‐controlled rivers, influencing aquatic ecology, geomorphology, and recreational value. Flow measurements in rapids and high‐gradient rivers are uncommon because of technical difficulties associated with positioning and operating sufficiently robust instruments. In the current study, detailed velocity, water surface, and bathymetric data were collected within rapids on the Colorado River in eastern Utah. With the water surface survey, it was found that shoreline‐based water surface surveys may misrepresent the water surface slope along the centerline of a rapid. Flow velocities were measured with an ADCP and an electronic pitot‐static tube. Integrating multiple measurements, the ADCP returned velocity data from the entire water column, even in sections of high water velocity. The maximum mean velocity measured with the ADCP was 3.7 m/s. The pitot‐static tube, while capable of only point measurements, quantified velocity 0.39 m below the surface. The maximum mean velocity measured with the pitot tube was 5.2 m/s, with instantaneous velocities up to 6.5 m/s. Analysis of the data showed that flow was subcritical throughout all measured rapids with a maximum measured Froude number of 0.7 in the largest measured rapids. Froude numbers were highest at the entrance of a given rapid, then decreased below the first breaking waves. In the absence of detailed bathymetric and velocity data, the Froude number in the fastest‐flowing section of a rapid was estimated from near‐surface velocity and depth soundings alone.
Slack, L.J.
1987-01-01
Lake Tuscaloosa, created in 1969 by the impoundment of North River, provides the primary water supply for Tuscaloosa, Alabama , and surrounding areas. This report describes the percent contribution of major tributaries to the mean inflow to the lake; water quality; and changes in water quality in the lake and selected tributaries. During base flow, about 60% of the total flow into Lake Tuscaloosa is contributed by Binion and Carroll Creeks, which drain only 22% of the Lake Tuscaloosa basin. Binion and Carroll Creek basins are underlain primarily by sand and gravel deposits of the Coker Formation. Mean inflow to the lake was 1,150 cu ft/sec during 1983, a wet year, and 450 cu ft/sec during 1985, a relatively dry year. More than 80% of the total inflow during both years was contributed by North River and Binion, Cripple, and Carroll Creeks. About 59% was contributed by North River during those years. Except for pH, sulfate, and dissolved and total recoverable iron and manganese, the water quality of the tributaries is generally within drinking water limits and acceptable for most uses. The water quality of Lake Tuscaloosa is generally within drinking water limits and acceptable for most uses. The maximum and median concentrations of sulfate increased every year at the dam from 1979 to 1985 (7.2 to 18 mg/L and 6.2 to 14 mg/L, respectively). The dissolved solids concentrations for water at the dam have varied (1979-86) from 27 to 43 mg/L; the sulfate, 5.2 to 18 mg/L; and the dissolved iron, 10 to 250 micrograms/L--all within the recommended drinking water limits. However, concentrations of dissolved manganese and total recoverable iron and manganese at the dam commonly exceeded the recommended drinking water limits. In November 1985, after the summer warmup and increase in biological activity, the water quality at five depth profiles sites on Lake Tuscaloosa was acceptable for most uses, generally. However, a dissolved oxygen concentration of 1 mg/L or less was observed within 5 to 10 ft of the bottom for several depth profiles. At depths > 35 to 40 ft (out of a total depth of about 50 to 100 ft) the dissolved oxygen concentration was < 5 mg/L at several sites. By mid-January 1986, the temperature and dissolved oxygen depth profiles were virtually constant from top to bottom of the lake at all five sites; this indicated that lake turnover was complete. However, significant variation existed in pH depth profiles. (Author 's abstract)
Kendy, Eloise; Tresch, R.E.
1996-01-01
This report combines a literature review with new information to provide summaries of the geography, geology, and hydrology of each of 32 intermontane basins in western Montana. The summary of each intermontane basin includes concise descriptions of topography, areal extent, altitude, climate, 1990 population, land and water use, geology, surface water, aquifer hydraulic characteristics, ground-water flow, and ground-water quality. If present, geothermal features are described. Average annual and monthly temperature and precipitation are reported from one National Weather Service station in each basin. Streamflow data, including the drainage area, period of record, and average, minimum, and maximum historical streamflow, are reported for all active and discontinued USGS streamflow-gaging stations in each basin. Monitoring-well data, including the well depth, aquifer, period of record, and minimum and maximum historical water levels, are reported for all long-term USGS monitoring wells in each basin. Brief descriptions of geologic, geophysical, and potentiometric- surface maps available for each basin also are included. The summary for each basin also includes a bibliography of hydrogeologic literature. When used alone or in conjunction with regional RASA reports, this report provides a practical starting point for site-specific hydrogeologic investigations.
Modeling the Thickness of Perennial Ice Covers on Stratified Lakes of the Taylor Valley, Antarctica
NASA Technical Reports Server (NTRS)
Obryk, M. K.; Doran, P. T.; Hicks, J. A.; McKay, C. P.; Priscu, J. C.
2016-01-01
A one-dimensional ice cover model was developed to predict and constrain drivers of long term ice thickness trends in chemically stratified lakes of Taylor Valley, Antarctica. The model is driven by surface radiative heat fluxes and heat fluxes from the underlying water column. The model successfully reproduced 16 years (between 1996 and 2012) of ice thickness changes for west lobe of Lake Bonney (average ice thickness = 3.53 m; RMSE = 0.09 m, n = 118) and Lake Fryxell (average ice thickness = 4.22 m; RMSE = 0.21 m, n = 128). Long-term ice thickness trends require coupling with the thermal structure of the water column. The heat stored within the temperature maximum of lakes exceeding a liquid water column depth of 20 m can either impede or facilitate ice thickness change depending on the predominant climatic trend (temperature cooling or warming). As such, shallow (< 20 m deep water columns) perennially ice-covered lakes without deep temperature maxima are more sensitive indicators of climate change. The long-term ice thickness trends are a result of surface energy flux and heat flux from the deep temperature maximum in the water column, the latter of which results from absorbed solar radiation.
Fraunhofer line-dept sensing applied to water
NASA Technical Reports Server (NTRS)
Stoertz, G. E.
1969-01-01
An experimental Fraunhofer line discriminator is basically an airborne fluorometer, capable of quantitatively measuring the concentration of fluorescent substances dissolved in water. It must be calibrated against standards and supplemented by ground-truth data on turbidity and on approximate vertical distribution of the fluorescent substance. Quantitative use requires that it be known in advance what substance is the source of the luminescence emission; qualitative sensing, or detection of luminescence is also possible. The two approaches are fundamentally different, having different purposes, different applications, and different instruments. When used for sensing of Rhodamine WT dye in coastal waters and estuaries, the FLD is sensing in the spectral region permitting nearly maximum depth of light penetration.
Extreme Marine Warming Across Tropical Australia During Austral Summer 2015-2016
NASA Astrophysics Data System (ADS)
Benthuysen, Jessica A.; Oliver, Eric C. J.; Feng, Ming; Marshall, Andrew G.
2018-02-01
During austral summer 2015-2016, prolonged extreme ocean warming events, known as marine heatwaves (MHWs), occurred in the waters around tropical Australia. MHWs arose first in the southeast tropical Indian Ocean in November 2015, emerging progressively east until March 2016, when all waters from the North West Shelf to the Coral Sea were affected. The MHW maximum intensity tended to occur in March, coinciding with the timing of the maximum sea surface temperature (SST). Large areas were in a MHW state for 3-4 months continuously with maximum intensities over 2°C. In 2016, the Indonesian-Australian Basin and areas including the Timor Sea and Kimberley shelf experienced the longest and most intense MHW from remotely sensed SST dating back to 1982. In situ temperature data from temperature loggers at coastal sites revealed a consistent picture, with MHWs appearing from west to east and peaking in March 2016. Temperature data from moorings, an Argo float, and Slocum gliders showed the extent of warming with depth. The events occurred during a strong El Niño and weakened monsoon activity, enhanced by the extended suppressed phase of the Madden-Julian Oscillation. Reduced cloud cover in January and February 2016 led to positive air-sea heat flux anomalies into the ocean, predominantly due to the shortwave radiation contribution with a smaller additional contribution from the latent heat flux anomalies. A data-assimilating ocean model showed regional changes in the upper ocean circulation and a change in summer surface mixed layer depths and barrier layer thicknesses consistent with past El Niño events.
NASA Astrophysics Data System (ADS)
Chung, Y.
1987-09-01
Dissolved 210Pb profiles are presented for 13 GEOSECS stations in the western Indian Ocean. In surface water away from high southern latitudes, 210Pb is in excess over 226Ra due to the atmospheric fallout from decay of 222Rn. Except in the Circumpolar region, the dissolved 210Pb profiles display a gentle mid-depth maximum similar to the corresponding 226Ra profiles. The 210Pb/ 226Ra activity ratio ranges from 1.6 in the surface water east of Madagascar to 0.4 or less in the bottom water of all the basins. The lowest ratio observed was 0.1 in the Gulf of Aden very close to the continental land mass. A ratio of 0.6 divides the western Indian Ocean horizontally into two portions, with the contour at shallower depth in the north than in the south. The deep water disequilibrium is thus more extensive north of Madagascar than south of it. It appears that locality and bottom topography play a strong role in controlling the distributions of 210Pb and 226Ra as well as their extent of disequilibrium in the water column. The mean residence time for Pb with respect to particulate and boundary scavenging in the deep water ranges from about 15 to 75 years.
Navigation by light polarization in clear and turbid waters
Lerner, Amit; Sabbah, Shai; Erlick, Carynelisa; Shashar, Nadav
2011-01-01
Certain terrestrial animals use sky polarization for navigation. Certain aquatic species have also been shown to orient according to a polarization stimulus, but the correlation between underwater polarization and Sun position and hence the ability to use underwater polarization as a compass for navigation is still under debate. To examine this issue, we use theoretical equations for per cent polarization and electric vector (e-vector) orientation that account for the position of the Sun, refraction at the air–water interface and Rayleigh single scattering. The polarization patterns predicted by these theoretical equations are compared with measurements conducted in clear and semi-turbid coastal sea waters at 2 m and 5 m depth over sea floors of 6 m and 28 m depth. We find that the per cent polarization is correlated with the Sun's elevation only in clear waters. We furthermore find that the maximum value of the e-vector orientation angle equals the angle of refraction only in clear waters, in the horizontal viewing direction, over the deeper sea floor. We conclude that navigation by use of underwater polarization is possible under restricted conditions, i.e. in clear waters, primarily near the horizontal viewing direction, and in locations where the sea floor has limited effects on the light's polarization. PMID:21282170
NASA Astrophysics Data System (ADS)
Rosales Lagarde, Laura; Boston, Penelope J.; Campbell, Andrew R.; Hose, Louise D.; Axen, Gary; Stafford, Kevin W.
2014-09-01
Conspicuous sulfide-rich karst springs flow from Cretaceous carbonates in northern Sierra de Chiapas, Mexico. This is a geologically complex, tropical karst area. The physical, geologic, hydrologic and chemical attributes of these springs were determined and integrated into a conceptual hydrogeologic model. A meteoric source and a recharge elevation below 1,500 m are estimated from the spring-water isotopic signature regardless of their chemical composition. Brackish spring water flows at a maximum depth of 2,000 m, as inferred from similar chemical attributes to the produced water from a nearby oil well. Oil reservoirs may be found at depths below 2,000 m. Three subsurface environments or aquifers are identified based on the B, Li+, K+ and SiO2 concentrations, spring water temperatures, and CO2 pressures. There is mixing between these aquifers. The aquifer designated Local is shallow and contains potable water vulnerable to pollution. The aquifer named Northern receives some brackish produced water. The composition of the Southern aquifer is influenced by halite dissolution enhanced at fault detachment surfaces. Epigenic speleogenesis is associated with the Local springs. In contrast, hypogenic speleogenesis is associated with the brackish sulfidic springs from the Northern and the Southern environments.
Impact of climate changes during the last 5 million years on groundwater in basement aquifers.
Aquilina, Luc; Vergnaud-Ayraud, Virginie; Les Landes, Antoine Armandine; Pauwels, Hélène; Davy, Philippe; Pételet-Giraud, Emmanuelle; Labasque, Thierry; Roques, Clément; Chatton, Eliot; Bour, Olivier; Ben Maamar, Sarah; Dufresne, Alexis; Khaska, Mahmoud; Le Gal La Salle, Corinne; Barbecot, Florent
2015-09-22
Climate change is thought to have major effects on groundwater resources. There is however a limited knowledge of the impacts of past climate changes such as warm or glacial periods on groundwater although marine or glacial fluids may have circulated in basements during these periods. Geochemical investigations of groundwater at shallow depth (80-400 m) in the Armorican basement (western France) revealed three major phases of evolution: (1) Mio-Pliocene transgressions led to marine water introduction in the whole rock porosity through density and then diffusion processes, (2) intensive and rapid recharge after the glacial maximum down to several hundred meters depths, (3) a present-day regime of groundwater circulation limited to shallow depth. This work identifies important constraints regarding the mechanisms responsible for both marine and glacial fluid migrations and their preservation within a basement. It defines the first clear time scales of these processes and thus provides a unique case for understanding the effects of climate changes on hydrogeology in basements. It reveals that glacial water is supplied in significant amounts to deep aquifers even in permafrosted zones. It also emphasizes the vulnerability of modern groundwater hydrosystems to climate change as groundwater active aquifers is restricted to shallow depths.
Acoustic tracking of sperm whales in the Gulf of Alaska using a two-element vertical array and tags.
Mathias, Delphine; Thode, Aaron M; Straley, Jan; Andrews, Russel D
2013-09-01
Between 15 and 17 August 2010, a simple two-element vertical array was deployed off the continental slope of Southeast Alaska in 1200 m water depth. The array was attached to a vertical buoy line used to mark each end of a longline fishing set, at 300 m depth, close to the sound-speed minimum of the deep-water profile. The buoy line also served as a depredation decoy, attracting seven sperm whales to the area. One animal was tagged with both a LIMPET dive depth-transmitting satellite and bioacoustic "B-probe" tag. Both tag datasets were used as an independent check of various passive acoustic schemes for tracking the whale in depth and range, which exploited the elevation angles and relative arrival times of multiple ray paths recorded on the array. Analytical tracking formulas were viable up to 2 km range, but only numerical propagation models yielded accurate locations up to at least 35 km range at Beaufort sea state 3. Neither localization approach required knowledge of the local bottom bathymetry. The tracking system was successfully used to estimate the source level of an individual sperm whale's "clicks" and "creaks" and predict the maximum detection range of the signals as a function of sea state.
Oxygen intrusion into anoxic fjords leads to increased methylmercury availability
NASA Astrophysics Data System (ADS)
Veiteberg Braaten, Hans Fredrik; Pakhomova, Svetlana; Yakushev, Evgeniy
2013-04-01
Mercury (Hg) appears in the oxic surface waters of the oceans at low levels (sub ng/L). Because inorganic Hg can be methylated into the toxic and bioaccumulative specie methylmercury (MeHg) levels can be high at the top of the marine food chain. Even though marine sea food is considered the main risk driver for MeHg exposure to people most research up to date has focused on Hg methylation processes in freshwater systems. This study identifies the mechanisms driving formation of MeHg during oxygen depletion in fjords, and shows how MeHg is made available in the surface water during oxygen intrusion. Studies of the biogeochemical structure in the water column of the Norwegian fjord Hunnbunn were performed in 2009, 2011 and 2012. In autumn of 2011 mixing flushing events were observed and lead to both positive and negative effects on the ecosystem state in the fjord. The oxygenated water intrusions lead to a decrease of the deep layer concentrations of hydrogen sulfide (H2S), ammonia and phosphate. On the other hand the intrusion also raised the H2S boundary from 8 m to a shallower depth of just 4 m. Following the intrusion was also observed an increase at shallower depths of nutrients combined with a decrease of pH. Before flushing events were observed concentrations of total Hg (TotHg) increased from 1.3 - 1.7 ng/L in the surface layer of the fjord to concentrations ranging from 5.2 ng/L to 6.4 ng/L in the anoxic zone. MeHg increased regularly from 0.04 ng/L in the surface water to a maximum concentration of 5.2 ng/L in the deeper layers. This corresponds to an amount of TotHg present as MeHg ranging from 2.1 % to 99 %. The higher concentrations of MeHg in the deeper layer corresponds to an area where no oxygen is present and concentrations of H2S exceeds 500 µM, suggesting a production of MeHg in the anoxic area as a result of sulphate reducing bacteria activity. After flushing the concentrations of TotHg showed a similar pattern ranging from 0.6 ng/L in the surface layer to 6.5 ng/L at maximum depth (10 m). However, the pattern of MeHg concentrations in the water column changed with relatively high concentrations present already at 4.5 m depth (2.2 ng/L). The environmental consequence of this oxygen intrusion is the appearance in shallower water of toxic MeHg formed in the anoxic layer. As a result of this, MeHg can possibly undergo transport from the anoxic fjord to the surrounding areas.
A Cross-Shore Model of Barrier Island Migration over a Compressible Substrate
2010-01-01
possibly become submerged (e.g., Penland and Boyd, 1981; Leather - man et al., 1982; McBride et al., 1995). Penland and Boyd (1981) defined three stages of...tð Þ + d tð Þð Þ2 " #1=2 for 1 30 ≤ tan β tð Þ≤ 1 5 ð11Þ in which ρ is the density of water, and the maximum dimensionless depth-integrated wave
Forest - water dynamics in a Mediterranean mountain environment.
NASA Astrophysics Data System (ADS)
Eliades, Marinos; Bruggeman, Adriana; Lange, Manfred; Camera, Corrado; Christou, Andreas
2015-04-01
In semi-arid Mediterranean mountain environments, the soil layer is very shallow or even absent due to the steep slopes. Soil moisture in these environments is limited, but still vegetation thrives. There is limited knowledge about where the vegetation extracts the water from, how much water it uses, and how it interacts with other processes in the hydrological cycle. The main objective of this study is to quantify the water balance components of a Pinus brutia forest at tree level, by measuring the tree transpiration and the redistribution of the water from trees to the soil and the bedrock fractures. The study area is located on a forested hill slope on the outside edge of Peristerona watershed in Cyprus. The site was mapped with the use of a total station and a differentially-corrected GPS, in order to create a high resolution DEM and soil depth map of the area. Soil depth was measured at a 1-m grid around the trees. Biometric measurements were taken from a total of 45 trees. Four trees were selected for monitoring. Six sap flow sensors are installed in the selected trees for measuring transpiration and reverse flows. Two trees have two sensors each to assess the variability. Four volumetric soil moisture sensors are installed around each tree at distances 1 m and 2 m away from the tree trunk. An additional fifth soil moisture sensor is installed in soil depths exceeding 20-cm depth. Four throughfall rain gauges were installed randomly around each tree to compute interception losses. Stemflow is measured by connecting an opened surface plastic tube collar at 1.6 m height around each tree trunk. The trunk surface gaps were filled with silicon glue in order to avoid any stemflow losses. The plastic collar is connected to a sealed surface rain gauge. A weather station monitors all meteorological variables on an hourly basis. Results showed a maximum sap flow volume of 77.9 L/d, from November to January. The sensors also measured a maximum negative flow of 7.9 L/d, indicating reverse flow. Soil moisture ranged between 10 to 37 % at all sensors. Soil moisture contents showed an increase over 100% after rainfall events, but decreased quickly. Also individual sensor peak values were recorded when rainfall was not occurring, indicating soil moisture increase as a result of reverse flow. Interception losses revealed values, ranging from 10% to 50 % of the total rainfall. Stem flow was recorded after intense rain fall events. To our knowledge, this is the first water use quantification study for Pinus brutia trees. The negative sap flow implies that these trees have the ability to harvest water from the air moisture and redistribute it in the ground. Perhaps part of the intercepted water is captured by the tree and thus contributing to the negative sap flow. All the variables will be monitored for two more years to quantify the role of the trees in the water balance of the area.
Quaternary paleoceanography of the deep Arctic Ocean based on quantitative analysis of Ostracoda
Cronin, T. M.; Holtz, T.R.; Whatley, R.C.
1994-01-01
Ostracodes were studied from deep Arctic Ocean cores obtained during the Arctic 91 expedition of the Polarstern to the Nansen, Amundsen and Makarov Basins, the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau, in order to investigate their distribution in Arctic Ocean deep water (AODW) and apply these data to paleoceanographic reconstruction of bottom water masses during the Quaternary. Analyses of coretop assemblages from Arctic 91 boxcores indicate the following: ostracodes are common at all depths between 1000 and 4500 m, and species distribution is strongly influenced by water mass characteristics and bathymetry; quantitative analyses comparing Eurasian and Canada Basin assemblages indicate that distinct assemblages inhabit regions east and west of the Lomonosov Ridge, a barrier especially important to species living in lower AODW; deep Eurasian Basin assemblages are more similar to those living in Greenland Sea deep water (GSDW) than those in Canada Basin deep water; two upper AODW assemblages were recognized throughout the Arctic Ocean, one living between 1000 and 1500 m, and the other, having high species diversity, at 1500-3000 m. Downcore quantitative analyses of species' abundances and the squared chord distance coefficient of similarity reveals a distinct series of abundance peaks in key indicator taxa interpreted to signify the following late Quaternary deep water history of the Eurasian Basin. During the Last Glacial Maximum (LGM), a GSDW/AODW assemblage, characteristic of cold, well oxygenated deep water > 3000 m today, inhabited the Lomonosov Ridge to depths as shallow as 1000 m, perhaps indicating the influence of GSDW at mid-depths in the central Arctic Ocean. During Termination 1, a period of high organic productivity associated with a strong inflowing warm North Atlantic layer occurred. During the mid-Holocene, several key faunal events indicate a period of warming and/or enhanced flow between the Canada and Eurasian Basins. A long-term record of ostracode assemblages from kastenlot core PS2200-5 (1073 m water depth) from the Morris Jesup Rise indicates a quasi-cyclic pattern of water mass changes during the last 300 kyr. Interglacial ostracode assemblages corresponding to oxygen isotope stages 1, 5, and 7 indicate rapid changes in dissolved oxygen and productivity during glacial-interglacial transitions. ?? 1994.
C. David, McIntire; Larson, Gary L.; Truitt, Robert E.
2007-01-01
Taxonomic composition and production dynamics of phytoplankton assemblages in Crater Lake, Oregon, were examined during time periods between 1984 and 2000. The objectives of the study were (1) to investigate spatial and temporal patterns in species composition, chlorophyll concentration, and primary productivity relative to seasonal patterns of water circulation; (2) to explore relationships between water column chemistry and the taxonomic composition of the phytoplankton; and (3) to determine effects of primary and secondary consumers on the phytoplankton assemblage. An analysis of 690 samples obtained on 50 sampling dates from 14 depths in the water column found a total of 163 phytoplankton taxa, 134 of which were identified to genus and 101 were identified to the species or variety level of classification. Dominant species by density or biovolume included Nitzschia gracilis, Stephanodiscus hantzschii, Ankistrodesmus spiralis, Mougeotia parvula, Dinobryon sertularia, Tribonema affine, Aphanocapsa delicatissima, Synechocystis sp., Gymnodinium inversum, and Peridinium inconspicuum. When the lake was thermally stratified in late summer, some of these species exhibited a stratified vertical distribution in the water column. A cluster analysis of these data also revealed a vertical stratification of the flora from the middle of the summer through the early fall. Multivariate test statistics indicated that there was a significant relationship between the species composition of the phytoplankton and a corresponding set of chemical variables measured for samples from the water column. In this case, concentrations of total phosphorus, ammonia, total Kjeldahl nitrogen, and alkalinity were associated with interannual changes in the flora; whereas pH and concentrations of dissolved oxygen, orthophosphate, nitrate, and silicon were more closely related to spatial variation and thermal stratification. The maximum chlorophyll concentration when the lake was thermally stratified in August and September was usually between depths of 100 m and 120 m. In comparison, the depth of maximum primary production ranged from 60 m to 80 m at this time of year. Regression analysis detected a weak negative relationship between chlorophyll concentration and Secchi disk depth, a measure of lake transparency. However, interannual changes in chlorophyll concentration and the species composition of the phytoplankton could not be explained by the removal of the septic field near Rim Village or by patterns of upwelling from the deep lake. An alternative trophic hypothesis proposes that the productivity of Crater Lake is controlled primarily by long-term patterns of climatic change that regulate the supply of allochthonous nutrients.
Locomotion on the water surface: hydrodynamic constraints on rowing velocity require a gait change
Suter; Wildman
1999-10-01
Fishing spiders, Dolomedes triton (Araneae, Pisauridae), propel themselves across the water surface using two gaits: they row with four legs at sustained velocities below 0.2 m s(-)(1) and they gallop with six legs at sustained velocities above 0.3 m s(-)(1). Because, during rowing, most of the horizontal thrust is provided by the drag of the leg and its associated dimple as both move across the water surface, the integrity of the dimple is crucial. We used a balance, incorporating a biaxial clinometer as the transducer, to measure the horizontal thrust forces on a leg segment subjected to water moving past it in non-turbulent flow. Changes in the horizontal forces reflected changes in the status of the dimple and showed that a stable dimple could exist only under conditions that combined low flow velocity, shallow leg-segment depth and a long perimeter of the interface between the leg segment and the water. Once the dimple disintegrated, leaving the leg segment submerged, less drag was generated. Therefore, the disintegration of the dimple imposes a limit on the efficacy of rowing with four legs. The limited degrees of freedom in the leg joints (the patellar joints move freely in the vertical plane but allow only limited flexion in other planes) impose a further constraint on rowing by restricting the maximum leg-tip velocity (to approximately 33 % of that attained by the same legs during galloping). This confines leg-tip velocities to a range at which maintenance of the dimple is particularly important. The weight of the spider also imposes constraints on the efficacy of rowing: because the drag encountered by the leg-cum-dimple is proportional to the depth of the dimple and because dimple depth is proportional to the supported weight, only spiders with a mass exceeding 0.48 g can have access to the full range of hydrodynamically possible dimple depths during rowing. Finally, the maximum velocity attainable during rowing is constrained by the substantial drag experienced by the spider during the glide interval between power strokes, drag that is negligible for a galloping spider because, for most of each inter-stroke interval, the spider is airborne. We conclude that both hydrodynamic and anatomical constraints confine rowing spiders to sustained velocities lower than 0.3 m s(-)(1), and that galloping allows spiders to move considerably faster because galloping is free of these constraints.
Leslie A. Viereck; Nancy R. Werdin-Pfisterer; Phyllis C. Adams; Kenji Yoshikawa
2008-01-01
Maximum thaw depths were measured annually in an unburned stand, a heavily burned stand, and a fireline in and adjacent to the 1971 Wickersham fire. Maximum thaw in the unburned black spruce stand ranged from 36 to 52 cm. In the burned stand, thaw increased each year to a maximum depth of 302 cm in 1995. In 1996, the entire layer of seasonal frost remained, creating a...
NASA Astrophysics Data System (ADS)
Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.; Kostka, Joel E.; Hanson, Paul; Chanton, Jeffrey P.
2018-02-01
We characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone ( 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputs from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table, redox oscillation, and pore water advection.
NASA Astrophysics Data System (ADS)
Hoffmann, S. S.; Dalsing, R.; McManus, J. F.
2016-12-01
Dynamical sedimentary proxies for deep ocean circulation, such as mean sortable silt size and 231Pa/230Th, allow the reconstruction of past changes in deep water circulation speed and ocean basin ventilation. This provides an important addition to traditional methods of deep water circulation reconstruction such as mapping water mass geometry through foraminiferal carbon isotopic records. We have produced records of mean sortable silt size from three intermediate-depth sediment core sites in the Labrador Sea, taken from the continental slope and Orphan Knoll east of Newfoundland, to reconstruct changes in intermediate depth water circulation including Glacial North Atlantic Intermediate Water and Labrador Sea Water. Radiocarbon dating indicates that the cores span the Holocene, deglaciation and LGM. Increases in mean sortable silt size appear to coincide with Heinrich Event 1, the Older Dryas, Younger Dryas, and mid-late Holocene, which could suggest increased bottom current speeds at these times. However, ice-rafted debris contributes to marine sediments in this region, and mean sortable silt size at times of major IRD input such as Heinrich Event 1 may therefore reflect multiple influences. We will use inverse modeling techniques to determine likely end members contributing to the sortable silt fraction and to correct for the effect of IRD on sortable silt size, allowing a better understanding of the influence of current speed on these samples. We combine these sortable silt measurements with the sedimentary geochemical proxy 231Pa/230Th, which has been used to reconstruct changes in North Atlantic meridional overturning circulation. New 231Pa/230Th data from cores KN158-4-27/28, which provided our best-resolved sortable silt record, will allow us to compare results from the two dynamical proxies to better understand both the behavior of these proxies in the Labrador Sea, and the history of intermediate-depth circulation and ventilation in the Labrador Sea during major abrupt climate events and transitions.
Estimation of Uncertainties in Stage-Discharge Curve for an Experimental Himalayan Watershed
NASA Astrophysics Data System (ADS)
Kumar, V.; Sen, S.
2016-12-01
Various water resource projects developed on rivers originating from the Himalayan region, the "Water Tower of Asia", plays an important role on downstream development. Flow measurements at the desired river site are very critical for river engineers and hydrologists for water resources planning and management, flood forecasting, reservoir operation and flood inundation studies. However, an accurate discharge assessment of these mountainous rivers is costly, tedious and frequently dangerous to operators during flood events. Currently, in India, discharge estimation is linked to stage-discharge relationship known as rating curve. This relationship would be affected by a high degree of uncertainty. Estimating the uncertainty of rating curve remains a relevant challenge because it is not easy to parameterize. Main source of rating curve uncertainty are errors because of incorrect discharge measurement, variation in hydraulic conditions and depth measurement. In this study our objective is to obtain best parameters of rating curve that fit the limited record of observations and to estimate uncertainties at different depth obtained from rating curve. The rating curve parameters of standard power law are estimated for three different streams of Aglar watershed located in lesser Himalayas by maximum-likelihood estimator. Quantification of uncertainties in the developed rating curves is obtained from the estimate of variances and covariances of the rating curve parameters. Results showed that the uncertainties varied with catchment behavior with error varies between 0.006-1.831 m3/s. Discharge uncertainty in the Aglar watershed streams significantly depend on the extent of extrapolation outside the range of observed water levels. Extrapolation analysis confirmed that more than 15% for maximum discharges and 5% for minimum discharges are not strongly recommended for these mountainous gauging sites.
Asymmetric Signature of Glacial Antarctic Intermediate Water in the Central South Pacific
NASA Astrophysics Data System (ADS)
Tapia, R.; Nuernberg, D.; Ho, S. L.; Lamy, F.; Ullermann, J.; Gersonde, R.; Tiedemann, R.
2017-12-01
Southern Ocean Intermediate Waters (SOIWs) play a key role in modulating the global climate on glacial-interglacial time scales as they connect the Southern Ocean and the tropics. Despite their importance, the past evolution of the SOIWs in the central South Pacific is largely unknown due to a dearth of sedimentary archives. Here we compare Mg/Ca-temperature, stable carbon and oxygen isotope records from surface-dwelling (G. bulloides) and deep-dwelling (G. inflata) planktic foraminifera at site PS75/059-2 (54°12.9' S, 125°25.53' W; recovery 13.98 m; 3.613 m water depth), located north of the modern Subantarctic Front. Our study focuses on the temperature and salinity variability controlled by SOIWs, which were subducted at the Subantarctic Front during the Last Glacial Maximum (LGM; 29-17ka BP) and the Penultimate Glacial Maximum (PGM; 180-150ka BP). During both glacial periods conditions at the subsurface ocean were colder and fresher relative to the Holocene (<10ka) suggesting an enhanced presence of SOIWs. In spite of the comparable subsurface cooling during both glacial, the subsurface ocean during the PGM was saltier and 0.35‰ more depleted in δ13C in comparison to the LGM. Interestingly, the mean δ13C value of the PGM is comparable to the Carbon Isotope Minimum Events, which might suggests a larger contribution of "old" low δ13C deep waters to the study site during the PGM. A Latitudinal comparison of subsurface proxies suggests glacial asymmetries in the advection of SOIWs into the central Pacific, plausibly related to glacial changes in the convection depth of SOIWs at the South Antarctic Front area rather than changes in production of the SOIWs.
NASA Astrophysics Data System (ADS)
Gassmann, Ewa
Two distinctive features of underwater light field in the upper ocean were examined: the wave-induced high-frequency light fluctuations within the near-surface layer under sunny skies, and the asymmetry of horizontal radiance within the photic layer of the ocean. To characterize the spatiotemporal statistical properties of the wave-induced light fluctuations, measurements of downward plane irradiance were made with novel instrumentation within the top 10 m layer of the ocean at depths as shallow as 10 cm under sunny skies, different solar zenith angles, and weak to moderate wind speeds. It was found that the maximum intensity of light fluctuations occurs at depths as shallow as 20 cm under the most favorable conditions for wave focusing, which correspond to high sun in a clear sky with weak wind. The strong frequency dependence of light fluctuations at shallow near-surface depths indicates dominant frequency range of 1 -- 3 Hz under favorable conditions that shifts toward lower frequencies with increasing depth. The light fluctuations were found to be spatially correlated over horizontal distances varying from few up to 10 -- 20 cm at temporal scales of 0.3 -- 1 sec (at the dominant frequency of 1 -- 3 Hz). The distance of correlation showed a tendency to increase with increasing depth, solar zenith angle, and wind speed. The observed variations in spatiotemporal statistical properties of underwater light fluctuations with depth and environmental conditions are driven largely by weakening of sunlight focusing which is associated with light scattering within the water column, in the atmosphere and at the air-sea interface. To investigate the underwater horizontal radiance field, measurements of horizontal spectral radiance in two opposite directions (solar and anti-solar azimuths) within the solar principal plane were made within the photic layer of the open ocean. The ratio of these two horizontal radiances represents the asymmetry of horizontal radiance field. In addition to measurements, the radiative transfer simulations were also conducted to examine variations in the asymmetry of horizontal radiance at different light wavelengths as a function of solar zenith angle at different depths within the water column down to 200 m. It was demonstrated that the asymmetry of horizontal radiance increases with increasing solar zenith angle, reaching a maximum at angles of 60° -- 80° under clear skies at shallow depths (1 -- 10 m). At larger depths the maximum of asymmetry occurs at smaller solar zenith angles. The asymmetry was also found to increase with increasing light wavelength. The results from radiative transfer simulations provided evidence that variations in the asymmetry with solar zenith angle are driven largely by the diffuseness of light incident upon the sea surface and the geometry of illumination of the sea surface, both associated with changing position of the sun. In addition to contributions to the field of ocean optics, the findings of this dissertation have relevance for oceanic animal camouflage and vision as well as photosynthesis and other photochemical processes.
Groundwater levels in the Kabul Basin, Afghanistan, 2004-2013
Taher, Mohammad R.; Chornack, Michael P.; Mack, Thomas J.
2014-01-01
The Afghanistan Geological Survey, with technical assistance from the U.S. Geological Survey, established a network of wells to measure and monitor groundwater levels to assess seasonal, areal, and potentially climatic variations in groundwater characteristics in the Kabul Basin, Afghanistan, the most populous region in the country. Groundwater levels were monitored in 71 wells in the Kabul Basin, Afghanistan, starting as early as July 2004 and continuing to the present (2013). The monitoring network is made up exclusively of existing production wells; therefore, both static and dynamic water levels were recorded. Seventy wells are in unconsolidated sediments, and one well is in bedrock. Water levels were measured periodically, generally monthly, using electric tape water-level meters. Water levels in well 64 on the grounds of the Afghanistan Geological Survey building were measured more frequently. This report provides a 10-year compilation of groundwater levels in the Kabul Basin prepared in cooperation with the Afghanistan Geological Survey. Depths to water below land surface range from a minimum of 1.47 meters (m) in the Shomali subbasin to a maximum of 73.34 m in the Central Kabul subbasin. The Logar subbasin had the smallest range in depth to water below land surface (1.5 to 12.4 m), whereas the Central Kabul subbasin had the largest range (2.64 to 73.34 m). Seasonal water-level fluctuations can be estimated from the hydrographs in this report for wells that have depth-to-water measurements collected under static conditions. The seasonal water-level fluctuations range from less than 1 m to a little more than 7 m during the monitoring period. In general, the hydrographs for the Deh Sabz, Logar, Paghman and Upper Kabul, and Shomali subbasins show relatively little change in the water-level trend during the period of record, whereas hydrographs for the Central Kabul subbasin show water level decreases of several meters to about 25 m.
Ramírez-Macías, Dení; Queiroz, Nuno; Pierce, Simon J; Humphries, Nicolas E; Sims, David W; Brunnschweiler, Juerg M
2017-01-01
Eight whale sharks tagged with pop-up satellite archival tags off the Gulf of California, Mexico, were tracked for periods of 14-134 days. Five of these sharks were adults, with four females visually assessed to be pregnant. At least for the periods they were tracked, juveniles remained in the Gulf of California while adults moved offshore into the eastern Pacific Ocean. We propose that parturition occurs in these offshore waters. Excluding two juveniles that remained in the shallow tagging area for the duration of tracking, all sharks spent 65 ± 20.7% (SD) of their time near the surface, even over deep water, often in association with frontal zones characterized by cool-water upwelling. While these six sharks all made dives into the meso- or bathypelagic zones, with two sharks reaching the maximum depth recordable by the tags (1285.8 m), time spent at these depths represented a small proportion of the overall tracks. Most deep dives (72.7%) took place during the day, particularly during the early morning and late afternoon. Pronounced habitat differences by ontogenetic stage suggest that adult whale sharks are less likely to frequent coastal waters after the onset of maturity.
Schaefer, Donald H.; Welch, Alan H.; Mauzer, Douglas K.
1983-01-01
Studies of the geothermal potential of the western arm of the Black Rock Desert in northwestern Nevada included a compilation of existing geologic data on a detailed map, a temperature survey at 1-meter depth, a thermal-scanner survey, and gravity and seismic surveys to determine basin geometry. The temperature survey showed the effects of heating at shallow depths due to rising geothermal fluids near the known hot spring areas. Lower temperatures were noted in areas of probable near-surface ground-water movement. The thermal-scanner survey verified the known geothermal areas and showed relatively high-temperature areas of standing water and ground-water discharge. The upland areas of the desert were found to be distinctly warmer than the playa area, probably due to low thermal diffusivity resulting from low moisture content. The surface geophysical surveys indicated that the maximum thickness of valley-fill deposits in the desert is about 3,200 meters. Gravity data further showed that changes in the trend of the desert axis occurred near thermal areas. (USGS)
Nitrogen isotopic composition of nitrate in the South China Sea: A clue to the origin of nitrogen
NASA Astrophysics Data System (ADS)
Yang, Z.; Chen, J.; Chen, M.; Ran, L.; Li, H.; Zhu, Y.; Wang, C.; Ji, Z.; Zhang, J.; Zhang, D.
2016-02-01
Nitrogen isotopic composition of water column nitrate was measured in the South China Sea to clarify the sources of nitrogen. The δ15NNO3 value in deep water (5.4±0.2‰) was higher than the average deep oceanic δ15NNO3 ( 5‰), and a weak δ15NNO3 maximum (5.9±0.2‰) was observed at 500 m depth, matching the salinity minimum. These indicated the intrusion of the North Pacific Water which carried nitrate with a high δ15NNO3 and showed a similar δ15NNO3 distribution profile with the South China Sea. The high N* (1.74±0.23 μmol/L) combined with the low δ15NNO3 (4.7±0.2‰) at 100 m depth indicated that N2 fixation (and possibly Atmospheric Deposition) introduces new N to the surface ocean. The distribution of δ15N values of nitrate, sinking particles and surface sediment suggest that laterally-advected sediments may be a source of nitrogen to the deep ocean.
Adams, Ryan F.; Koebel, Carolyn M.; Morrow, William S.
2018-02-13
Multiple geophysical sensors were used to characterize the underwater pressure field and ground vibrations of a seismic water gun and its suitability to deter the movement of Asian carps (particularly the silver [Hypophthalmichthys molitrix] and bighead [Hypophthalmichthys nobilis] carps) while ensuring the integrity of surrounding structures. The sensors used to collect this information were blast-rated hydrophones, surface- and borehole-mounted geophones, and fixed accelerometers.Results from two separate studies are discussed in this report. The Brandon Road study took place in May 2014, in the Des Plaines River, in a concrete-walled channel downstream of the Brandon Road Lock and Dam near Joliet, Illinois. The Lemont study took place in June 2014, in a segment of the dolomite setblock-lined Chicago Sanitary and Ship Canal near Lemont, Illinois.Two criteria were evaluated to assess the potential deterrence to carp migration, and to minimize the expected effect on nearby structures from discharge of the seismic water gun. The first criterion was a 5-pound-per-square-inch (lb/in2) limit for dynamic underwater pressure variations. The second criterion was a maximum velocity and acceleration disturbance of 0.75 inch per second (in/s) for sensitive machinery (such as the lock gates and pumps) and 2.0 in/s adjacent to canal walls, respectively. The criteria were based on previous studies of fish responses to dynamic pressure variations, and effects of vibrations on the structural integrity of concrete walls.The Brandon Road study evaluated the magnitude and extent of the pressure field created by two water gun configurations in the concrete-walled channel downstream of the lock where channel depths ranged from 11 to 14 feet (ft). Data from a single 80-cubic-inch (in³) water gun set at 6 ft below water surface (bws) produced a roughly cylindrical 5-lb/in2 pressure field 20 ft in radius, oriented vertically, with the radius decreasing to less than 15 ft at the water surface. A combination of two 80-in3 water guns set at 6 and 8 ft, respectively, produced a similarly shaped 5 lb/in2 pressure field 30 ft in radius. Neither of the water gun configurations exceeded the given threshold of 5 lb/in2 above the static pressure along the walls of the canal at the 700 lb/in2 water gun input pressure. Velocity and acceleration data were collected simultaneously with the underwater pressure data to understand the response of adjacent canal walls to the water gun firings. Maximum velocity and acceleration were 0.239 in/s and 0.0188 feet per second squared (ft/s2), respectively.The Lemont study replicated and expanded upon work done in 2011. The pressure field created by the water gun was evaluated in a deeper environment (about 25 ft of water depth) than that of the Brandon Road study. To replicate the 2011 study, data were collected with the same water gun placements and input pressure, but static underwater pressure monitoring was added. Two 80-in3 water guns were suspended below a platform at depths of 4 and 14 ft bws. Pressure was lower when the gun suspended at 4 ft bws was fired as compared to firing the single gun suspended at 14 ft bws. Firing both guns simultaneously produced similar pressures to the single gun suspended at 14 ft bws. Data were collected to assess the pressure field produced by two 80-in3 water guns separated by 80 ft and suspended at a depth of 14 ft bws. The spatial extent of the 5-lb/in2 threshold varied substantially with gun input air pressure. Firing the water gun with an air pressure of 2,000 lb/in2 generated a pressure field greater than the threshold at all but one location in the measured region. Additionally, the water gun with an air pressure of 1,000 lb/in2 did not reach the threshold anywhere in the measured region. Maximum velocity and acceleration were 0.304 in/s and 0.015 ft/s2, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Araki, F; Ohno, T
Purpose: To develop new ionization chamber dosimetry of absorbed dose to water in diagnostic kV x-ray beams, by using a beam quality conversion factor, kQ, for Co-60 to kV x-ray and an ionization conversion factor for a water-substitute plastic phantom. Methods: kQ was calculated for aluminum half value-layers (Al-HVLs) of 1.5 mm to 8 mm which were generated by kV x-ray beams of 50 to 120 kVp. Twenty-two energy spectra for ten effective energies (Eeff) were calculated by a SpecCalc program. Depth doses in water were calculated at 5 × 5 to 30 × 30 cm{sup 2} fields. Output factorsmore » were also obtained from the dose ratio for a 10 × 10 cm{sup 2} field. kQ was obtained for a PTW30013 Former ion chamber. In addition, an ionization conversion factor of the PWDT phantom to water was calculated. All calculations were performed with EGSnrc/cavity code and egs-chamber codes. Results: The x-ray beam energies for 1.5 mm to 8 mm Al-HVLs ranged in Eeff of 25.7 to 54.3 keV. kQ for 1.5 mm to 8 mm Al-HVLs were 0.831 to 0.897, at 1 and 2 cm depths for a 10 × 10 cm2 field. Similarly, output factors for 5 × 5 to 30 × 30 cm{sup 2} fields were 0.937 to 1.033 for 25.7 keV and 0.857 to 1.168 for 54.3 keV. The depth dose in a PWDT phantom decreased up to 5% compared to that in water at depth of ten percent of maximum dose for 1.5 mm Al-HVL. The ionization ratios of water/PWDT phantoms for the PTW30013 chamber were 1.012 to 1.007 for 1.5 mm to 8 mm Al-HVLs at 1 cm depth. Conclusion: It became possible to directly measure the absorbed dose to water with the ionization chamber in diagnostic kV x-ray beams, by using kQ and the PWDT phantom.« less
NASA Astrophysics Data System (ADS)
Sutton, T. T.; Porteiro, F. M.; Heino, M.; Byrkjedal, I.; Langhelle, G.; Anderson, C. I. H.; Horne, J.; Søiland, H.; Falkenhaug, T.; Godø, O. R.; Bergstad, O. A.
2008-01-01
The assemblage structure and vertical distribution of deep-pelagic fishes relative to a mid-ocean ridge system are described from an acoustic and discrete-depth trawling survey conducted as part of the international Census of Marine Life field project MAR-ECO < http://www.mar-eco.no>. The 36-station, zig-zag survey along the northern Mid-Atlantic Ridge (MAR; Iceland to the Azores) covered the full depth range (0 to >3000 m), from the surface to near the bottom, using a combination of gear types to gain a more comprehensive understanding of the pelagic fauna. Abundance per volume of deep-pelagic fishes was highest in the epipelagic zone and within the benthic boundary layer (BBL; 0-200 m above the seafloor). Minimum fish abundance occurred at depths below 2300 m but above the BBL. Biomass per volume of deep-pelagic fishes over the MAR reached a maximum within the BBL, revealing a previously unknown topographic association of a bathypelagic fish assemblage with a mid-ocean ridge system. With the exception of the BBL, biomass per volume reached a water column maximum in the bathypelagic zone between 1500 and 2300 m. This stands in stark contrast to the general "open-ocean" paradigm that biomass decreases exponentially from the surface downwards. As much of the summit of the MAR extends into this depth layer, a likely explanation for this mid-water maximum is ridge association. Multivariate statistical analyses suggest that the dominant component of deep-pelagic fish biomass over the northern MAR was a wide-ranging bathypelagic assemblage that was remarkably consistent along the length of the ridge from Iceland to the Azores. Integrating these results with those of previous studies in oceanic ecosystems, there appears to be adequate evidence to conclude that special hydrodynamic and biotic features of mid-ocean ridge systems cause changes in the ecological structure of deep-pelagic fish assemblages relative to those at the same depths over abyssal plains. Lacking terrigenous input of allochthonous organic carbon, increased demersal fish diversity and biomass over the MAR relative to the abyssal plains may be maintained by increased bathypelagic food resources. The aggregation of bathypelagic fishes with MAR topographic features was primarily a large adult phenomenon. Considering the immense areal extent of mid-ocean ridge systems globally, this strategy may have significant trophic transfer and reproductive benefits for deep-pelagic fish populations.
Rickert, David A.; Leopold, Luna Bergere
1972-01-01
Fremont Lake, at an altitude of 2,261 m, has an area of 20.61 km2 and a volume of 1.69 km3. The maximum depth is 185 m, which makes it the seventh deepest natural lake in the conterminous United States. Theoretical renewal time is 11.1 years. Temperature data for 1971 indicate that vernal circulation extended to a depth of less than 90 m. The summer heat income was 19,450 cal/cm2. The dissolved-oxygen curve is orthograde, with a slight metalimnetic maximum, and a tendency toward decreasing concentrations at depth. At 180 m, oxygen was at 80 percent of saturation in late July 1970. The lake has a remarkably low dissolved-solids content of 12.8 mg/l, making it one of the most dilute medium-sized lakes in the world. Detailed chemical data are given for the water column at three sites in the lake and for the influent and effluent streams. Net plankton included representatives of seven genera of phytoplankters and three genera of zooplankters. A reconnaissance indicated substantially no bacteriological contamination in the lake, but there was an appreciable amount in two minor streams in the vicinity of a summer-home colony.
A new statistical model to find bedrock, a prequel to geochemical mass balance
NASA Astrophysics Data System (ADS)
Fisher, B.; Rendahl, A. K.; Aufdenkampe, A. K.; Yoo, K.
2016-12-01
We present a new statistical model to assess weathering trends in deep weathering profiles. The Weathering Trends (WT) model is presented as an extension of the geochemical mass balance model (Brimhall & Dietrich, 1987), and is available as an open-source R library on GitHub (https://github.com/AaronRendahl/WeatheringTrends). WT uses element concentration data to determine the depth to fresh bedrock by assessing the maximum extent of weathering for all elements and the model applies confidence intervals on the depth to bedrock. WT models near-surface features and the shape of the weathering profile using a log transformation of data to capture the magnitude of changes that are relevant to geochemical kinetics and thermodynamics. The WT model offers a new, enhanced opportunity to characterize and understand biogeochemical weathering in heterogeneous rock types. We apply the model to two 21-meter drill cores in the Laurels Schist bedrock in the Christina River Basin Critical Zone Observatory in the Pennsylvania Piedmont. The Laurels Schist had inconclusive weathering indicators prior to development and application of WT model. The model differentiated between rock variability and weathering to delineate the maximum extent of weathering at 12.3 (CI 95% [9.2, 21.3]) meters in Ridge Well 1 and 7.2 (CI 95% [4.3, 13.0]) meters in Interfluve Well 2. The modeled extent to weathering is decoupled from the water table at the ridge, but coincides with the water table at the interfluve. These depths were applied as the parent material for the geochemical mass balance for the Laurels Schist. We test statistical approaches to assess the variability and correlation of immobile elements to facilitate the selection of the best immobile element for use in both models. We apply the model to other published data where the geochemical mass balance was applied, to demonstrate how the WT model provides additional information about weathering depth and weathering trends.
NASA Astrophysics Data System (ADS)
McChesney, C. L.; Ford, H. L.; McManus, J. F.
2016-12-01
The Eastern Equatorial Pacific (EEP) is an important region of study due to its dynamic nature and role in El Niño-Southern Oscillation (ENSO), which is the biggest source of global interannual variability. The EEP is characterized by cool sea surface temperatures that are tightly coupled to a shallow thermocline. Variability in the depth of the EEP thermocline is important in initiating and propagating El Niño events. Here, we investigate changes in thermocline depth during the Last Glacial Maximum (LGM) to gain insight into how conditions within the EEP changed in the context of different boundary conditions (e.g., low CO2, greater ice volume). Using the stable oxygen isotope values of planktonic foraminifera from a range of calcification depths in the water column, we show that the thermocline was deep during the LGM relative to the Holocene at Ocean Drilling Program Site 849 (0°N, 110°W, 3839 m water depth). In comparison to previous studies that have been done in the region, site 849 has the smallest change of δ18O surface values, indicating less glacial cooling. However, site 849 displays even less apparent cooling in subsurface isotopic values, with a difference of -0.39 ‰ when comparing the LGM to the Holocene, suggesting little temperature change. The δ18O values of site 849 during the LGM had a smaller range between subsurface and surface foraminifera of 1.64‰ compared to the Holocene range of 2.11‰. This difference indicates that the thermocline was deeper in the equatorial cold tongue during the LGM. A deep thermocline may have inhibited some of the thermocline related feedbacks in ENSO variability and led to reduced ENSO during the LGM. Future Mg/Ca data will be incorporated to verify temperature.
Hydro and morphodynamic simulations for probabilistic estimates of munitions mobility
NASA Astrophysics Data System (ADS)
Palmsten, M.; Penko, A.
2017-12-01
Probabilistic estimates of waves, currents, and sediment transport at underwater munitions remediation sites are necessary to constrain probabilistic predictions of munitions exposure, burial, and migration. To address this need, we produced ensemble simulations of hydrodynamic flow and morphologic change with Delft3D, a coupled system of wave, circulation, and sediment transport models. We have set up the Delft3D model simulations at the Army Corps of Engineers Field Research Facility (FRF) in Duck, NC, USA. The FRF is the prototype site for the near-field munitions mobility model, which integrates far-field and near-field field munitions mobility simulations. An extensive array of in-situ and remotely sensed oceanographic, bathymetric, and meteorological data are available at the FRF, as well as existing observations of munitions mobility for model testing. Here, we present results of ensemble Delft3D hydro- and morphodynamic simulations at Duck. A nested Delft3D simulation runs an outer grid that extends 12-km in the along-shore and 3.7-km in the cross-shore with 50-m resolution and a maximum depth of approximately 17-m. The inner nested grid extends 3.2-km in the along-shore and 1.2-km in the cross-shore with 5-m resolution and a maximum depth of approximately 11-m. The inner nested grid initial model bathymetry is defined as the most recent survey or remotely sensed estimate of water depth. Delft3D-WAVE and FLOW is driven with spectral wave measurements from a Waverider buoy in 17-m depth located on the offshore boundary of the outer grid. The spectral wave output and the water levels from the outer grid are used to define the boundary conditions for the inner nested high-resolution grid, in which the coupled Delft3D WAVE-FLOW-MORPHOLOGY model is run. The ensemble results are compared to the wave, current, and bathymetry observations collected at the FRF.
The Response of a Branch of Puget Sound, Washington to the 2014 North Pacific Warm Anomaly
NASA Astrophysics Data System (ADS)
Mickett, J.; Newton, J.; Devol, A.; Krembs, C.; Ruef, W.
2016-02-01
The flow of the unprecedentedly-warm upper-ocean North Pacific "Blob" water into Puget Sound, Washington, caused local extreme water property anomalies that extended from the arrival of the water inshore in the fall of 2014 through 2015. Here we report on moored and seaplane observations from Hood Canal, a branch of Puget Sound, where temperature was more than 2σ above climatology for much of the year with maximum temperature anomalies at depth and at the surface +2.5 °C and +7 °C respectively. The low density of the oceanic warm "Blob" water resulted in weak deep water flushing in Hood Canal in the fall of 2014, which combined with a lack of wintertime flushing to result in anomalously-low dissolved oxygen (DO) concentrations at depth. Late-summer 2015 DO values were the lowest in a decade of mooring observations and more than 2σ below climatology. The anomalously low density of the deep basin water allowed a very early onset of the annually-occurring, late-summer intrusion, which first entered Hood Canal at the end of July compared to the usual arrival in early to mid-September. In late August this intrusion conspired with an early fall storm to lift the very low DO deep water to surface at the south end of Hood Canal, causing a significant fish kill event.
Estimating cross-slope exchange from drifter tracks and from glider sections
NASA Astrophysics Data System (ADS)
Huthnance, John M.
2017-04-01
In areas of complex topography, it can be difficult to define "along-slope" or "cross-slope" direction, yet transport estimates are sensitive to these definitions, especially as along-slope flow is favoured by geostrophy. However, if drifter positions and hence underlying water depths are recorded regularly, we know where and when depth contours are crossed by the drifters, and hence by the water assuming that the drifters follow the water. An approach is discussed for deriving statistics of contour-crossing speed, via depth changes experienced by the drifters and an effective slope. The transport equation for (e.g.) salinity S can be reduced to an explicit equation for effective diffusivity K if we assume steady along-slope flow with known total transport Q, a salinity maximum at its "core" and effective diffusion to less saline waters to either side. Salinity gradients along the flow and to either side are needed to calculate K. Gliders provide a means of measuring salinity gradients in this context. Measurements at the continental shelf edge south-west of England and west of Scotland illustrate the calculation. Both approaches give overall rather than process-related estimates. There is limited scope for process discrimination according to (i) how often drifter locations are recorded and (ii) the time-intervals into which estimates are "binned". (i) Frequent recording may record more crossings owing to processes of short time scale, albeit these are less significant for slowly-evolving water contents. (ii) Sufficient samples for statistically significant estimates of exchange entail "bins" spanning some weeks or months for typically-limited numbers of drifters or gliders.
NASA Astrophysics Data System (ADS)
Beff, L.; Descamps, C.; Dufey, J.; Bielders, C.
2009-04-01
Under the arid climatic conditions of the Drâa valley in southern Morocco, irrigation is essential for crop production. Two sources of water are available to farmers: (1) moderate salinity water from the Oued Drâa (classified as C3-S1 in the USDA irrigation water classification diagram) which is available only a few times per year following discrete releases from the Mansour Eddahbi dam, and (2) high salinity water from wells (C4-S2). Soil salinization is frequently observed, principally on plots irrigated with well water. As Oued water is available in insufficient amounts, strategies must be devised to use well and Oued water judiciously, without inducing severe salinization. The salinization risk under wheat production was evaluated using the HP1 program (Jacques and Šimůnek, 2005) for different combinations of the two main water sources, different irrigation frequencies and irrigation volumes. The soil was a sandy clay loam (topsoil) to sandy loam (40 cm depth). Soil hydrodynamic properties were derived from in situ measurements and lab measurements on undisturbed soil samples. The HP1 model was parameterized for wheat growth and 12 scenarios were run for 10 year periods using local climatic data. Water quality was measured or estimated on the basis of water samples in wells and various Oueds, and the soil chemical properties were determined. Depending on the scenario, soil salinity in the mean root zone increased from less than 1 meq/100g of soil to more than 5 meq/100g of soil over a ten year period. Salt accumulation was more pronounced at 45 cm soil depth, which is half of the maximum rooting depth, and when well water was preferentially used. Maximum crop yield (water transpired / potential water transpired) was achieved for five scenarios but this implied the use of well water to satisfy the crop water requirements. The usual Drâa Valley irrigation scenario, with five, 84 mm dam water applications per year, lead to a 25% yield loss. Adding the amount of well water needed to satisfy the crop water requirements as well as the leaching requirement had the lowest impact on soil salinization but resulted in a very low water use efficiency of 0.2 (water transpired / water added). This demonstrates the importance of using larger amounts of water than plant water requirements in this region in order to leach out salt of the root zone. However, in arid region, water is often limited and thus farmers can not afford to waste it. In that case, it is necessary to find a compromise between salinization, sodification and saving water. References: Jacques D., Šimůnek J. (2005). User Manual of the Multicomponent Variably-Saturated Flow and Transport Model HP1. Waste and Disposal Department, Mol, Belgium. USDA, United States Department of Agriculture (1969). Diagnosis and Improvement of Saline and Alkali Soils. United States Salinity Laboratory Staff, Agriculture Handbook No. 60, 160p.
NASA Astrophysics Data System (ADS)
Fernex, François E.; Braconnot, Jean-Claude; Dallot, Serge; Boisson, Michel
1996-09-01
Observations were made near Cap Ferrat (Station B, about 80 m in water depth) France, in the water column and in the sediment, in order to evaluate to what extent variations in the ammonia and nitrate concentrations of the sediments are related to plankton population abundance and composition. Nitrate, nitrite, ammonia and chlorophyll awere measured several times during 1987 to 1989, at two depths (1 and 40 m). Copepods and salps in the upper 75 m of the water column were counted several times a week from 1987 to 1990. Ammonia and nitrate concentrations and ammonification rate were determined in the underlying sediments. During Spring 1987, phytoplankton biomass showed a maximum at the end of March; copepod populations increased regularly till the end of April, and salps increased from this time to the end of May. These populations were not so well developed during Spring 1988 and 1989. During the blooms, salp were mainly represented by Thalia democratica. The biomass of phytoplankton and zooplankton was low in summer. The sequence suggests that the copepod decline was related to reduced food levels after the phytoplankton decline. Salp population growth was not at the expense of phytoplankton and it can be assumed that the salp fed on other material. In 1987 and 1988, maximum organic nitrogen concentration in the bottom sediment and maximum ammonification rate directly followed the salp spring bloom. In 1987, the highest ammonification rate measured in the surficial sediment (0-2 cm) reached 0·05 μ M cm 3day -1(in June). In 1990, the rate exceeded 0·1 μM cm -3 day -1during an important salp bloom. Therefore, it seems that the sinking of salp fecal pellets plays an important part in the transfer of organic matter to the bottom, and microbial activity in the surficial sediment leads to mineralization of a great part of the organic nitrogen quickly after its deposition.
Sources of High-Chloride Water to Wells, Eastern San Joaquin Ground-Water Subbasin, California
Izbicki, John A.; Metzger, Loren F.; McPherson, Kelly R.; Everett, Rhett; Bennett, George L.
2006-01-01
As a result of pumping and subsequent declines in water levels, chloride concentrations have increased in water from wells in the Eastern San Joaquin Ground-Water Subbasin, about 80 miles east of San Francisco (Montgomery Watson, Inc., 2000). Water from a number of public-supply, agricultural, and domestic wells in the western part of the subbasin adjacent to the San Joaquin Delta exceeds the U.S. Environmental Protection Agency Secondary Maximum Contaminant Level (SMCL) for chloride of 250 milligrams per liter (mg/L) (fig. 1) (link to animation showing chloride concentrations in water from wells, 1984 to 2004). Some of these wells have been removed from service. High-chloride water from delta surface water, delta sediments, saline aquifers that underlie freshwater aquifers, and irrigation return are possible sources of high-chloride water to wells (fig. 2). It is possible that different sources contribute high-chloride water to wells in different parts of the subbasin or even to different depths within the same well.
Charland, Paule M.; Chetty, Indrin J.; Yokoyama, Shigeru; Fraass, Benedick A.
2003-01-01
In this study, a dosimetric evaluation of the new Kodak extended dose range (EDR) film versus ionization measurements has been conducted in homogeneous solid water and water‐lung equivalent layered heterogeneous phantoms for a relevant range of field sizes (up to a field size of 25×25 cm2 and a depth of 15 cm) for 6 and 15 MV photon beams from a linear accelerator. The optical density of EDR film was found to be linear up to about 350 cGy and over‐responded for larger fields and depths (5% for 25×25 cm2 at depth of 15 cm compared to a 10×10 cm2, 5 cm depth reference value). Central axis depth dose measurements in solid water with the film in a perpendicular orientation were within 2% of the Wellhöfer IC‐10 measurements for the smaller field sizes. A maximum discrepancy of 8.4% and 3.9% was found for the 25×25 cm2 field at 15 cm depth for 6 and 15 MV photons, respectively (with curve normalization at a depth of 5 cm). Compared to IC‐10 measurements, film measured central axis depth dose inside the lung slab showed a slight over‐response (at most 2%). At a depth of 15 cm in the lung phantom the over‐response was found to be 7.4% and 3.7% for the 25×25 cm2 field for 6 and 15 MV photons, respectively. When results were presented as correction factors, the discrepancy between the IC‐10 and the EDR was greatest for the lowest energy and the largest field size. The effect of the finite size of the ion chamber was most evident at smaller field sizes where profile differences versus film were observed in the penumbral region. These differences were reduced at larger field sizes and in situations where lateral electron transport resulted in a lateral spread of the beam, such as inside lung material. Film profiles across a lung tumor geometry phantom agreed with the IC‐10 chamber within the experimental uncertainties. From this investigation EDR film appears to be a useful medium for relative dosimetry in higher dose ranges in both water and lung equivalent material for moderate field sizes and depths. © 2003 American College of Medical Physics. PACS number(s): 87.53.Dq, 87.66.Cd, 87.66.Jj, 87.66.Xa PMID:12540816
Hydrologic reconnaissance of the Noatak River basin, Alaska, 1978
Childers, Joseph M.; Kernodle, Donald R.
1981-01-01
Hydrologic data were collected in 1978 described water resources of the Noatak River basin, Alaska. Streamflow varies seasonally. No flow was observed from the upper part of the basin in late winter (April). In the lower part of the basin springs support perennial flow in the Kugururok River and downstream along the Noatak. The discharge of the Noatak was 150 cubic feet per second in April 1978. During the summer, rainstorms are common, and runoff produces high flow. During August 1978, flow was normal in the basin; unit runoff averaged about 1 cubic foot per second per square mile. The Noatak is a gravel-bed stream of moderate slope. It drops about 1,800 feet in elevation from a point near the head waters to the mouth, a distance of 400 miles. Streambed material in most places is gravel, cobbles, and boulders, maximum riffle depths and pool widths increase in a downstream direction. Stream velocity in August 1978 increased from about 1 foot per second in the upper basin to about 4 feet per second in the lower reaches. High-water marks of the maximum evident flood were found at elevations from bankfull to 5 feet above bankfull. Maximum evident flood unit runoff rates were estimated to be less than 50 cubic feet per second per square mile. Scars produced by ice jams were seldom seen above bankfull. Bank erosion appears to be most active in the lowlands. Water in the Noatak River basin is virtually unaffected by man 's activity. Water quality varies with location, weather, season, and source; the water is normally clear, cool, and hard. During late winter sea water intrudes into the Lower Noatak Canyon. Benthic invertebrate community composition and variability suggest the river 's undiminished natural quality. (USGS)
NASA Technical Reports Server (NTRS)
Talay, T. A.
1975-01-01
Wave-induced mass-transport current theories with both zero and nonzero net mass (or volume) transport of the water column are reviewed. A relationship based on the Longuet-Higgens theory is derived for wave-induced, nonzero mass-transport currents in intermediate water depths for a viscous fluid. The relationship is in a form useful for experimental applications; therefore, some design criteria for experimental wave-tank tests are also presented. Sample parametric cases for typical wave-tank conditions and a typical ocean swell were assessed by using the relation in conjunction with an equation developed by Unluata and Mei for the maximum wave-induced volume transport. Calculations indicate that substantial changes in the wave-induced mass-transport current profiles may exist dependent upon the assumed net volume transport. A maximum volume transport, corresponding to an infinite channel or idealized ocean condition, produces the largest wave-induced mass-transport currents. These calculations suggest that wave-induced mass-transport currents may have considerable effects on pollution and suspended-sediments transport as well as buoy drift, the surface and midlayer water-column currents caused by waves increasing with increasing net volume transports. Some of these effects are discussed.
Fleischer, Guy W.; TeWinkel, Leslie M.
1998-01-01
Acoustic studies in Lake Michigan found that bloaters (Coregonus hoyi) were less reflective per size than the other major pelagic species. This difference in in situ acoustic backscattering could indicate that the deep-water bloaters have compressed swimbladders for much of their vertical range with related implications on buoyancy. To test this hypothesis, the buoyancy characteristics of bloaters were determined with fish placed in a cage that was lowered to bottom and monitored with an underwater camera. We found bloaters were positively buoyant near surface, neutrally buoyant at intermediate strata, and negatively buoyant near bottom. This pattern was consistent for the range of depths bloaters occur. The depth of neutral buoyancy (near the 50-n strata) corresponds with the maximum extent of vertical migration for bloaters observed in acoustic surveys. Fish below this depth would be negatively buoyant which supports our contention that bloaters deeper in the water column have compressed swimbladders. Understanding the buoyancy characteristics of pelagic fishes will help to predict the effects of vertical migration on target strength measurement and confirms the use of acoustics as a tool to identify and quantify the ecological phenomenon of vertical migration.
Habitat use by a freshwater dolphin in the low-water season
Braulik, Gill T.; Reichert, Albert P.; Ehsan, Tahir; Khan, Samiullah; Northridge, Simon P.; Alexander, Jason S.; Garstang, Richard
2012-01-01
1. Many river dolphin populations are most vulnerable during the low-water season when habitat is limited. Indus River dolphin habitat selection in the dry season was investigated using Generalized Linear Models of dolphin distribution and abundance in relation to physical features of river geomorphology and channel geometry in cross-section. 2. Dolphins selected locations in the river with significantly greater mean depth, maximum depth, cross-sectional area, and hydraulic radius, and significantly narrower river width and a lower degree of braiding than areas where dolphins were absent. They were also recorded with higher frequency at river constrictions and at confluences. 3. Channel cross-sectional area was the most important factor affecting dolphin presence and abundance, with the area of water below 1 m in depth exerting the greatest influence. Indus dolphins avoided channels with small cross-sectional area (2), presumably owing to the risk of entrapment and reduced foraging opportunities. 4. Channel geometry had a greater ability to explain dolphin distribution than river geomorphology; however, both analyses indicated similar types of habitat selection. The dolphin–habitat relationships identified in the river geomorphology analysis were scale-dependent, indicating that dolphin distribution is driven by the occurrence of discrete small-scale features, such as confluences and constrictions, as well as by broader-scale habitat complexes. 5. There are numerous plans to impound or extract more water from the Indus River system. If low-water season flows are allowed to decrease further, the amount of deeper habitat will decline, there may be insufficient patches of suitable habitat to support the dolphin population through the low-water season, and dolphins may become isolated within deeper river sections, unable or unwilling to traverse through shallows between favourable patches of habitat.
Observations and a model of undertow over the inner continental shelf
Lentz, Steven J.; Fewings, Melanie; Howd, Peter; Fredericks, Janet; Hathaway, Kent
2008-01-01
Onshore volume transport (Stokes drift) due to surface gravity waves propagating toward the beach can result in a compensating Eulerian offshore flow in the surf zone referred to as undertow. Observed offshore flows indicate that wave-driven undertow extends well offshore of the surf zone, over the inner shelves of Martha’s Vineyard, Massachusetts, and North Carolina. Theoretical estimates of the wave-driven offshore transport from linear wave theory and observed wave characteristics account for 50% or more of the observed offshore transport variance in water depths between 5 and 12 m, and reproduce the observed dependence on wave height and water depth.During weak winds, wave-driven cross-shelf velocity profiles over the inner shelf have maximum offshore flow (1–6 cm s−1) and vertical shear near the surface and weak flow and shear in the lower half of the water column. The observed offshore flow profiles do not resemble the parabolic profiles with maximum flow at middepth observed within the surf zone. Instead, the vertical structure is similar to the Stokes drift velocity profile but with the opposite direction. This vertical structure is consistent with a dynamical balance between the Coriolis force associated with the offshore flow and an along-shelf “Hasselmann wave stress” due to the influence of the earth’s rotation on surface gravity waves. The close agreement between the observed and modeled profiles provides compelling evidence for the importance of the Hasselmann wave stress in forcing oceanic flows. Summer profiles are more vertically sheared than either winter profiles or model profiles, for reasons that remain unclear.
NASA Astrophysics Data System (ADS)
Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan
2017-07-01
Soil temperature (T s) and its thermal regime are the most important factors in plant growth, biological activities, and water movement in soil. Due to scarcity of the T s data, estimation of soil temperature is an important issue in different fields of sciences. The main objective of the present study is to investigate the accuracy of multivariate adaptive regression splines (MARS) and support vector machine (SVM) methods for estimating the T s. For this aim, the monthly mean data of the T s (at depths of 5, 10, 50, and 100 cm) and meteorological parameters of 30 synoptic stations in Iran were utilized. To develop the MARS and SVM models, various combinations of minimum, maximum, and mean air temperatures (T min, T max, T); actual and maximum possible sunshine duration; sunshine duration ratio (n, N, n/N); actual, net, and extraterrestrial solar radiation data (R s, R n, R a); precipitation (P); relative humidity (RH); wind speed at 2 m height (u 2); and water vapor pressure (Vp) were used as input variables. Three error statistics including root-mean-square-error (RMSE), mean absolute error (MAE), and determination coefficient (R 2) were used to check the performance of MARS and SVM models. The results indicated that the MARS was superior to the SVM at different depths. In the test and validation phases, the most accurate estimations for the MARS were obtained at the depth of 10 cm for T max, T min, T inputs (RMSE = 0.71 °C, MAE = 0.54 °C, and R 2 = 0.995) and for RH, V p, P, and u 2 inputs (RMSE = 0.80 °C, MAE = 0.61 °C, and R 2 = 0.996), respectively.
NASA Astrophysics Data System (ADS)
Taran, Y.; Jácome Paz, M. P.; Inguaggiato, S.; Collard, N.
2015-12-01
During 2013-2015, four CO2 flux surveys were performed in the El Chichon crater both, from the lake surface and from the soil of the crater. The chemistry of the lake water, as well as its physical parameters (surface area, depth, temperature) were also determined. The CO2 flux in 2014-2015 compared to the 2007-2008 data (Mazot et al., 2011, BV, 73: 423-441) increased almost one order of magnitude (from ~ 140 ton d-1 in 2008 to ~ 840 ton d-1 in 2014). During the last two years the lake became the largest for the whole time of observations with the maximum surface area more than 18 ha covering completely the NE fumarolic field and all thermal springs feeding the lake with mineralized water. Despite the maximum volume of the lake it was characterized in 2015 by the highest since 2007 chloride content (~2500 ppm) and temperature (34°C). A large degassing spot in the middle of the lake for the first time was observed in April 2015 with more than 10,000 g m-2 d-1 of the CO2 flux. These observations evidence that the volcano-hydrothermal system of El Chichon volcano came into a new stage of activity associated most probably with changes in the magmatic activity at depth.
Monitoring the Thermal Regime at Hot Creek and Vicinity, Long Valley Caldera, Eastern California
NASA Astrophysics Data System (ADS)
Clor, L. E.; Hurwitz, S.; Howle, J.
2015-12-01
Hot Creek Gorge contains the most obvious surface expression of the hydrothermal system in Long Valley Caldera, California, discharging 200-300 L/s of thermal water according to USGS measurements made since 1988. Formerly, Hot Creek was a popular public swimming area, but it was closed in 2006 due to unpredictable temperature fluctuations and sporadic geysering of thermal water within the creek (Farrar et al. USGS Fact Sheet2007-3045). The USGS has monitored the thermal regime in the area since the mid-1980s, including a long-term series of studies 0.6 km away at well CH-10b. Temperature measurements in the ~100 m deep well, which have been performed on an intermittent basis since it was drilled in 1983, reveal a complex temperature profile. Temperatures increase with depth to a maximum at about 45 meters below the ground surface, and then decrease steadily to the bottom of the well. The depth of the temperature maximum in the well (~45 m) corresponds to an elevation of ~2,120 m, roughly equivalent to the elevation of Hot Creek, and appears to sample the same hydrothermal flow system that supplies thermal features at the surface in the gorge. Starting in the early 1990s, the maximum temperature in CH-10b rose from 93.4°C to its peak in 2007 at 101.0°C. A cooling trend was observed beginning in 2009 and continues to present (99.3°C in June 2015). As the input into CH-10b is at the elevation of the creek, it exhibits the potential for response to thermal events at Hot Creek, and could provide a useful tool for monitoring future hazards. On short timescales, CH-10b also responds to large global earthquakes, greater than ~M7. These responses are captured with continuously logged high-frequency data (5s), and are usually characterized by a co-seismic water level drop of up to ten centimeters. Water levels tend to recover to pre-earthquake levels within a few hours to days.
NASA Technical Reports Server (NTRS)
Jeffries, Martin; Morris, Kim; Liston, Glen
1996-01-01
Images taken by the ERS-1 synthetic aperture radar (SAR) were used to identify and to differentiate between the lakes that freeze completely to the bottom and those that do not, on the North Slope, in northwestern Alaska. The ice thickness at the time each lake froze completely is determined with numerical ice growth model that gives a maximum simulated thickness of 2.2 m. A method combining the ERS-1 SAR images and numerical ice growth model was used to determine the ice growth and the water availability in these regions.
NASA Astrophysics Data System (ADS)
Herguera, J. C.; Herbert, T.; Kashgarian, M.; Charles, C.
2010-05-01
Intermediate ocean circulation changes during the last Glacial Maximum (LGM) in the North Pacific have been linked with Northern Hemisphere climate through air-sea interactions, although the extent and the source of the variability of the processes forcing these changes are still not well resolved. The ventilated volumes and ages in the upper wind driven layer are related to the wind stress curl and surface buoyancy fluxes at mid to high latitudes in the North Pacific. In contrast, the deeper thermohaline layers are more effectively ventilated by direct atmosphere-sea exchange during convective formation of Subantarctic Mode Waters (SAMW) and Antarctic Intermediate Waters (AAIW) in the Southern Ocean, the precursors of Pacific Intermediate Waters (PIW) in the North Pacific. Results reported here show a fundamental change in the carbon isotopic gradient between intermediate and deep waters during the LGM in the eastern North Pacific indicating a deepening of nutrient and carbon rich waters. These observations suggest changes in the source and nature of intermediate waters of Southern Ocean origin that feed PIW and enhanced ventilation processes in the North Pacific, further affecting paleoproductivity and export patters in this basin. Furthermore, oxygen isotopic results indicate these changes may have been accomplished in part by changes in circulation affecting the intermediate depths during the LGM.
Manning, Andrew H.; Caine, Jonathan S.
2007-01-01
Bedrock groundwater in alpine watersheds is poorly understood, mainly because of a scarcity of wells in alpine settings. Groundwater noble gas, age, and temperature data were collected from springs and wells with depths of 3–342 m in Handcart Gulch, an alpine watershed in Colorado. Temperature profiles indicate active groundwater circulation to a maximum depth (aquifer thickness) of about 200 m, or about 150 m below the water table. Dissolved noble gas data show unusually high excess air concentrations (>0.02 cm3 STP/g, ΔNe > 170%) in the bedrock, consistent with unusually large seasonal water table fluctuations (up to 50 m) observed in the upper part of the watershed. Apparent 3H/3He ages are positively correlated with sample depth and excess air concentrations. Integrated samples were collected from artesian bedrock wells near the trunk stream and are assumed to approximate flow‐weighted samples reflecting bedrock aquifer mean residence times. Exponential mean ages for these integrated samples are remarkably consistent along the stream, four of five being from 8 to 11 years. The tracer data in combination with other hydrologic and geologic data support a relatively simple conceptual model of groundwater flow in the watershed in which (1) permeability is primarily a function of depth; (2) water table fluctuations increase with distance from the stream; and (3) recharge, aquifer thickness, and porosity are relatively uniform throughout the watershed in spite of the geological complexity of the Proterozoic crystalline rocks that underlie it.
Intensity of Cold Water and its effects on marine culturing farms along the southeast coast of Korea
NASA Astrophysics Data System (ADS)
Lee, Yong-Hwa; Shim, JeongHee; Choi, Yang-Ho; Kim, Sang-Woo; Shim, Jeong-Min
2017-04-01
To understand the characteristics and strength of the cold water that has caused damage to marine-culturing farms around Guryongpo, in the southeast coast of Korea, surface and water column temperatures were collected from temperature loggers deployed at a sea squirt farm during August-November 2007 and from a Real-time Information System for aquaculture environments operated by NIFS during July-August 2015 and 2016. During the study period, surface temperature at Guryongpo decreased sharply when south/southwestern winds prevailed (the 18-26th of August and 20-22nd of September 2007 and the 13-15th of July 2015) as a result of upwelling. However, the deep-water (20-30m) temperature increased during periods of strong north/northeasterly winds (the 5-7th and 16-18th of September 2007) as a result of downwelling. Among the cold water events that occurred at Guryongpo, the mass death of cultured fish followed strong cold water events (surface temperatures below 10℃) that were caused by more than two days of successive south/southeastern winds with maximum speeds higher than 5 m/s. A Cold Water Index (CWI) was defined and calculated using maximum wind speed and direction as measured daily at Pohang Meteorological Observatory. When the average CWI over two days (CWI2d) was higher than 100, mass fish mortality occurred. The four-day average CWI (CWI4d) showed a high negative correlation with surface temperature from July-August in the Guryongpo area (R2 = 0.5), suggesting that CWI is a good index for predicting strong cold water events and massive mortality. In October 2007, the sea temperature at a depth of 30 m showed a high fluctuation that ranged from 7-23℃, with frequency and spectrum coinciding with tidal levels at Ulsan, affected by the North Korean Cold Current. If temperature variations at the depth of fish cages also regularly fluctuate within this range, damage may be caused to the fish industry along the southeast coast of Korea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Maso, L; Lawless, M; Culberson, W
Purpose: To characterize the energy dependence for TLD-100 microcubes in water at kilovoltage energies. Methods: TLD-100 microcubes with dimensions of (1 × 1 × 1) mm{sup 3} were irradiated with kilovoltage x-rays in a custom-built thin-window liquid water phantom. The TLD-100 microcubes were held in Virtual Water™ probes and aligned at a 2 cm depth in water. Irradiations were performed using the M-series x-ray beams of energies ranging from 50-250 kVp and normalized to a {sup 60}Co beam located at the UWADCL. Simulations using the EGSnrc Monte Carlo Code System were performed to model the x-ray beams, the {sup 60}Comore » beam, the water phantom and the dosimeters in the phantom. The egs-chamber user code was used to tally the dose to the TLDs and the dose to water. The measurements and calculations were used to determine the intrinsic energy dependence, absorbed-dose energy dependence, and absorbed-dose sensitivity. These values were compared to TLD-100 chips with dimensions of (3.2 × 0.9 × 0.9) mm{sup 3}. Results: The measured TLD-100 microcube response per dose to water among all investigated x-ray energies had a maximum percent difference of 61% relative to {sup 60}Co. The simulated ratio of dose to water to the dose to TLD had a maximum percent difference of 29% relative to {sup 60}Co. The ratio of dose to TLD to the TLD output had a maximum percent difference of 13% relative to {sup 60}Co. The maximum percent difference for the absorbed-dose sensitivity was 15% more than the used value of 1.41. Conclusion: These results confirm that differences in beam quality have a significant effect on TLD response when irradiated in water. These results also indicated a difference in TLD-100 response between microcube and chip geometries. The intrinsic energy dependence and the absorbed-dose energy dependence deviated up to 10% between TLD-100 microcubes and chips.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y; Ghaly, M; Souri, S
Purpose: The current standard in dose calculation for intraoperative radiotherapy (IORT) using the ZEISS Intrabeam 50 kV x-ray system is based on depth dose measurements in water and no heterogeneous tissue effect has been taken into account. We propose an algorithm for pre-treatment planning including inhomogeneity correction based on data of depth dose measurements in various tissue phantoms for kV x-rays. Methods: Direct depth dose measurements were made in air, water, inner bone and cortical bone phantoms for the Intrabeam 50 kV x-rays with a needle applicator. The data were modelled by a function of power law combining exponential withmore » different parameters. Those phantom slabs used in the measurements were scanned to obtain CT numbers. The x-ray beam initiated from the source isocenter is ray-traced through tissues. The corresponding doses will be deposited/assigned at different depths. On the boundary of tissue/organ changes, the x-ray beam will be re-traced in new tissue/organ starting at an equivalent depth with the same dose. In principle, a volumetric dose distribution can be generated if enough directional beams are traced. In practice, a several typical rays traced may be adequate in providing estimates of maximum dose to the organ at risk and minimum dose in the target volume. Results: Depth dose measurements and modeling are shown in Figure 1. The dose versus CT number is shown in Figure 2. A computer program has been written for Kypho-IORT planning using those data. A direct measurement through 2 mm solid water, 2 mm inner bone, and 1 mm solid water yields a dose rate of 7.7 Gy/min. Our calculation shows 8.1±0.4 Gy/min, consistent with the measurement within 5%. Conclusion: The proposed method can be used to more accurately calculate the dose by taking into account the heterogeneous effect. The further validation includes comparison with Monte Carlo simulation.« less
NASA Technical Reports Server (NTRS)
Moore, D. G. (Principal Investigator); Heilman, J. L.
1980-01-01
The author has identified the following significant results. Day thermal data were analyzed to assess depth to groundwater in the test site. HCMM apparent temperature was corrected for atmospheric effects using lake temperature of the Oahe Reservoir in central South Dakota. Soil surface temperatures were estimated using an equation developed for ground studies. A significant relationship was found between surface soil temperature and depth to groundwater, as well as between the surface soil-maximum air temperature differential and soil water content (% of field capacity) in the 0 cm and 4 cm layer of the profile. Land use for the data points consisted of row crops, small grains, stubble, and pasture.
Schumacher, E L; Owens, B D; Uyeno, T A; Clark, A J; Reece, J S
2017-08-01
This study tests for interspecific evidence of Heincke's law among hagfishes and advances the field of research on body size and depth of occurrence in fishes by including a phylogenetic correction and by examining depth in four ways: maximum depth, minimum depth, mean depth of recorded specimens and the average of maximum and minimum depths of occurrence. Results yield no evidence for Heincke's law in hagfishes, no phylogenetic signal for the depth at which species occur, but moderate to weak phylogenetic signal for body size, suggesting that phylogeny may play a role in determining body size in this group. © 2017 The Fisheries Society of the British Isles.
Leaching of pesticides from biobeds: effect of biobed depth and water loading.
Fogg, Paul; Boxall, Alistair B A; Walker, Allan; Jukes, Andrew
2004-10-06
Pesticides may be released to farmyard surfaces as a result of spillages, leakages, and the decontamination of tractors and sprayers. Biobeds can be used to intercept and treat contaminated runoff, thus minimizing losses to the environment. Previous studies using lined and unlined biobeds showed that water management was the limiting factor for both systems. While lined biobeds effectively retained pesticides, the system rapidly became water logged and degradation was slow. Studies using unlined biobeds showed that >99% of the applied pesticides were removed by the system, with a significant proportion degraded within 9 months. However, peak concentrations of certain pesticides (Koc < 125) were unacceptable to the regulatory authorities. These experiments were designed to optimize the design and management of unlined biobeds. Experiments performed to investigate the relationship between biobed depth and water loading showed that biobeds need to have a minimum depth of 1-1.5 m. The surface area dimension of the biobed depends on the water loading, which is controlled by the nature and frequency of pesticide handling activities on the farm. Leaching losses of all but the most mobile (Koc < 15) pesticides were <0.32% of the applied dose from 1.5 m deep biobeds subject to a water loading of 1175 L m(-2). These were reduced to <0.06% when a water loading of 688 L m(-2) was applied and down to <0.0001% for a water loading of 202 L m(-2). On the basis of these data, a 1.5 m deep biobed, subject to a maximum water loading of 1121 L m(-2) and with a surface area of 40 m(2) should be able to treat < or =44000 L of pesticide waste and washings such that the average concentration of all pesticides, other than those classified as very mobile, does not exceed 5 microg L(-1). This level of treatment can be improved by further reduction in the hydraulic loading.
Determination of the maximum-depth to potential field sources by a maximum structural index method
NASA Astrophysics Data System (ADS)
Fedi, M.; Florio, G.
2013-01-01
A simple and fast determination of the limiting depth to the sources may represent a significant help to the data interpretation. To this end we explore the possibility of determining those source parameters shared by all the classes of models fitting the data. One approach is to determine the maximum depth-to-source compatible with the measured data, by using for example the well-known Bott-Smith rules. These rules involve only the knowledge of the field and its horizontal gradient maxima, and are independent from the density contrast. Thanks to the direct relationship between structural index and depth to sources we work out a simple and fast strategy to obtain the maximum depth by using the semi-automated methods, such as Euler deconvolution or depth-from-extreme-points method (DEXP). The proposed method consists in estimating the maximum depth as the one obtained for the highest allowable value of the structural index (Nmax). Nmax may be easily determined, since it depends only on the dimensionality of the problem (2D/3D) and on the nature of the analyzed field (e.g., gravity field or magnetic field). We tested our approach on synthetic models against the results obtained by the classical Bott-Smith formulas and the results are in fact very similar, confirming the validity of this method. However, while Bott-Smith formulas are restricted to the gravity field only, our method is applicable also to the magnetic field and to any derivative of the gravity and magnetic field. Our method yields a useful criterion to assess the source model based on the (∂f/∂x)max/fmax ratio. The usefulness of the method in real cases is demonstrated for a salt wall in the Mississippi basin, where the estimation of the maximum depth agrees with the seismic information.
Oliva, Maria Guadalupe; Lugo, Alfonso; Alcocer, Javier; Cantoral-Uriza, Enrique A
2008-01-01
Background Cyclotella choctawhatcheeana Prasad 1990 is a small centric diatom found in the plankton of water bodies with a wide range of salt concentrations. This paper describes the morphological features of the valve of C. choctawhatcheeana, from Alchichica lake, a hyposaline lake located in Central Mexico, and provides information about their ecology with respect to water chemistry and distribution in the water column along the annual cycle. Alchichica, and their neighbor lake Atexcac, are the only Mexican water bodies where C. choctawhatcheeana has been registered. Results Morphological differences were found with respect to the original description. The valves of C. choctawhatcheeana from Alchichica exceeded the diameter (5–12 μm) given for the type material (3.0–9.5 μm), and it does not forms or seldom forms short chains (2–3 cells) in contrast of up to 20 cell chains. Other difference was the presence of irregularly distributed small silica granules around the margin of the external view of the valve, meanwhile in Prasad's diagnosis a ring of siliceous granules is present near the valve margin; all other features were within the range of variation of the species. Maximum densities (up to 3877 cells ml-1) of C. choctawhatcheeana were found in Alchichica lake from June to October, along the stratificated period of the lake. Low densities (48 cells ml-1) when the water column was mixed, in January and February. C. choctawhatcheeana of Lake Alchichica was found in an ample depth range from 20 m down to 50 m. Conductivity (K25) ranged between 13.3 and 14.5 mS cm-1 and the pH between 8.8 and 10.0. Water temperature fluctuated between 14.5 and 20°C. Dissolved oxygen ranged from anoxic (non detectable) up to saturation (7 mg l-1). Conclusion The morphology of C. choctawhatcheeana from Alchichica corresponded to the original description, with exception of some secondary traits. C. choctawhatcheeana can grow in several different environmental conditions. It can use nutrients along the water column during the mixing period in the lake. But when nutrients are scarce, C. choctawhatcheeana, can be located in very high densities, into a well defined depth layer of the lake, being an important contributor to the depth chlorophyll maximum (DCM). The species seems to be a small size but significant component of the phytoplankton in the saline Mexican lake Alchichica. PMID:19063747
Sample, Bradley E; Lowe, John; Seeley, Paul; Markin, Melanie; McCarthy, Chris; Hansen, Jim; Aly, Alaa H
2015-01-01
Soil invertebrates, mammals, and plants penetrate and exploit the surface soil layer (i.e., the biologically active zone) to varying depths. As the US Department of Energy remediates radioactive and hazardous wastes in soil at the Hanford Site, a site-specific definition of the biologically active zone is needed to identify the depth to which remedial actions should be taken to protect the environment and avoid excessive cleanup expenditures. This definition may then be considered in developing a point of compliance for remediation in accordance with existing regulations. Under the State of Washington Model Toxic Control Act (MTCA), the standard point of compliance for soil cleanup levels with unrestricted land use is 457 cm (15 ft) below ground surface. When institutional controls are required to control excavations to protect people, MTCA allows a conditional point of compliance to protect biological resources based on the depth of the biologically active zone. This study was undertaken to identify and bound the biologically active zone based on ecological resources present at the Hanford Site. Primary data were identified describing the depths to which ants, mammals, and plants may exploit the surface soil column at the Hanford Site and other comparable locations. The maximum depth observed for harvester ants (Pogonomyrmex spp.) was 270 cm (8.9 ft), with only trivial excavation below 244 cm (8 ft). Badgers (Taxidea taxus) are the deepest burrowing mammal at the Hanford Site, with maximum burrow depths of 230 cm (7.6 ft); all other mammals did not burrow below 122 cm (4 ft). Shrubs are the deepest rooting plants with rooting depths to 300 cm (9.8 ft) for antelope bitterbrush (Purshia tridentata). The 2 most abundant shrub species did not have roots deeper than 250 cm (8.2 ft). The deepest rooted forb had a maximum root depth of 240 cm (7.9 ft). All other forbs and grasses had rooting depths of 200 cm (6.6 ft) or less. These data indicate that the biologically active soil zone in the Hanford Central Plateau does not exceed 300 cm (9.8 ft), the maximum rooting depth for the deepest rooting plant. The maximum depth at which most other plant and animal species occur is substantially shallower. Spatial distribution and density of burrows and roots over depths were also evaluated. Although maximum excavation by harvester ants is 270 cm (8.9 ft), trivial volume of soil is excavated below 150 cm (∼5 ft). Maximum rooting depths for all grasses, forbs, and the most abundant and deepest rooting shrubs are 300 cm (9.8 ft) or less. Most root biomass (>50-80%) is concentrated in the top 100 cm (3.3 ft), whereas at the maximum depth (9.8 ft), only trace root biomass is present. Available data suggest a limited likelihood for significant transport of contaminants to the surface by plants at or below 244 cm (8 ft), and suggest that virtually all plants or animal species occurring on the Central Plateau have a negligible likelihood for transporting soil contaminants to the surface from depths at or below 305 cm (10 ft). © 2014 SETAC.
NASA Astrophysics Data System (ADS)
Ishiwa, T.; Yokoyama, Y.; McHugh, C.; Reuning, L.; Gallagher, S. J.
2017-12-01
The transition from cold to warm conditions during the last deglaciation influenced climate variability in the Indian Ocean and Pacific as a result of submerge of continental shelf and variations in the Indonesian Throughflow and Australian Monsoon. The shallow continental shelf (< 200 m water depth) developed along the northwestern Australian margin is influenced by the Australian Monsoon and Leeuwin Current (one of branch of the Indonesian Throughflow). The International Ocean Discovery Program Expedition 356 Indonesian Throughflow drilled in the northwestern Australian shallow continental shelf and recovered an interval from the Last Glacial Maximum to Holocene in Site U1461. Radiocarbon dating on macrofossils, foraminifera, and bulk organic matter provided a precise age-depth model, leading to high-resolved paleoclimate reconstruction. X-ray elemental analysis results are interpreted as an indicator of sedimentary environmental changes. The upper 20-m part of Site U1461 apparently records the climate transition from the LGM to Holocene in the northwestern Australia, which could be associated with sea-level change, Leeuwin Current activity, and the Australian Monsoon.
Variability in benthic exchange rate, depth, and residence time beneath a shallow coastal estuary
NASA Astrophysics Data System (ADS)
Russoniello, C. J.; Michael, H. A.; Heiss, J.
2017-12-01
Hydrodynamically-driven exchange of water between the water column and shallow seabed aquifer, benthic exchange, is a significant and dynamic component of coastal and estuarine fluid budgets, but wave-induced benthic exchange has not been measured in the field. Mixing between surface water and groundwater solutes promotes ecologically important chemical reactions, so quantifying benthic exchange rates, depths, and residence times, constrains estimates of coastal chemical cycling. In this study, we present the first field-based direct measurements of wave-induced exchange and compare it to exchange induced by the other primary drivers of exchange - tides, and currents. We deployed instruments in a shallow estuary to measure benthic exchange and temporal variability over an 11-day period. Differential pressure sensors recorded pressure gradients across the seabed, and up-and down-looking ADCPs recorded currents and pressures from which wave parameters, surface-water currents, and water depth were determined. Wave-induced exchange was calculated directly from 1) differential pressure measurements, and indirectly with an analytical solution based on wave parameters from 2) ADCP and 3) weather station data. Groundwater flow models were used to assess the effects of aquifer properties on benthic exchange depth and residence time. Benthic exchange driven by tidal pumping or current-bedform interaction was calculated from tidal stage variation and from ADCP-measured currents at the bed, respectively. Waves were the primary benthic exchange driver (average = 20.0 cm/d, maximum = 92.3 cm/d) during the measurement period. Benthic exchange due to tides (average = 3.7 cm/d) and current-bedform interaction (average = 6.5x10-2 cm/d) was much lower. Wave-induced exchange calculated from pressure measurements and ADCP-measured wave parameters matched well, but wind-based rates underestimated wave energy and exchange. Groundwater models showed that residence time and depth increased in high-permeability, incompressible aquifers, and exchange rates increased in low-permeability, compressible aquifers. These findings support and extend the utility of existing wave-induced exchange solutions and will help managers assess the importance of benthic exchange on coastal chemical cycling.
Oblique drop impact onto a deep liquid pool
NASA Astrophysics Data System (ADS)
Gielen, Marise V.; Sleutel, Pascal; Benschop, Jos; Riepen, Michel; Voronina, Victoria; Visser, Claas Willem; Lohse, Detlef; Snoeijer, Jacco H.; Versluis, Michel; Gelderblom, Hanneke
2017-08-01
Oblique impact of drops onto a solid or liquid surface is frequently observed in nature. Most studies on drop impact and splashing, however, focus on perpendicular impact. Here we study oblique impact of 100 μ m drops onto a deep liquid pool, where we quantify the splashing threshold, maximum cavity dimensions and cavity collapse by high-speed imaging above and below the water surface. Gravity can be neglected in these experiments. Three different impact regimes are identified: smooth deposition onto the pool, splashing in the direction of impact only, and splashing in all directions. We provide scaling arguments that delineate these regimes by accounting for the drop impact angle and Weber number. The angle of the axis of the cavity created below the water surface follows the impact angle of the drop irrespectively of the Weber number, while the cavity depth and its displacement with respect to the impact position do depend on the Weber number. Weber number dependency of both the cavity depth and displacement is modeled using an energy argument.
Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate
Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovksy, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.
2016-01-01
Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.
Glock, Nicolaas; Erdem, Zeynep; Wallmann, Klaus; Somes, Christopher J; Liebetrau, Volker; Schönfeld, Joachim; Gorb, Stanislav; Eisenhauer, Anton
2018-03-23
Anthropogenic impacts are perturbing the global nitrogen cycle via warming effects and pollutant sources such as chemical fertilizers and burning of fossil fuels. Understanding controls on past nitrogen inventories might improve predictions for future global biogeochemical cycling. Here we show the quantitative reconstruction of deglacial bottom water nitrate concentrations from intermediate depths of the Peruvian upwelling region, using foraminiferal pore density. Deglacial nitrate concentrations correlate strongly with downcore δ 13 C, consistent with modern water column observations in the intermediate Pacific, facilitating the use of δ 13 C records as a paleo-nitrate-proxy at intermediate depths and suggesting that the carbon and nitrogen cycles were closely coupled throughout the last deglaciation in the Peruvian upwelling region. Combining the pore density and intermediate Pacific δ 13 C records shows an elevated nitrate inventory of >10% during the Last Glacial Maximum relative to the Holocene, consistent with a δ 13 C-based and δ 15 N-based 3D ocean biogeochemical model and previous box modeling studies.
Habitat heterogeneity of hadal trenches: Considerations and implications for future studies
NASA Astrophysics Data System (ADS)
Stewart, Heather A.; Jamieson, Alan J.
2018-02-01
The hadal zone largely comprises a series of subduction trenches that do not form part of the continental shelf-slope rise to abyssal plain continuum. Instead they form geographically isolated clusters of deep-sea (6000-11,000 m water depth) environments. There is a growing realization in hadal science that ecological patterns and processes are not driven solely by responses to hydrostatic pressure, with comparable levels of habitat heterogeneity as observed in other marine biozones. Furthermore, this heterogeneity can be expressed at multiple scales from inter-trench levels (degrees of geographical isolation, and biochemical province), to intra-trench levels (variation between trench flanks and axis), topographical features within the trench interior (sedimentary basins, ridges, escarpments, 'deeps', seamounts) to the substrate of the trench floor (seabed-sediment composition, mass movement deposits, bedrock outcrop). Using best available bathymetry data combined with the largest lander-derived imaging dataset that spans the full depth range of three hadal trenches (including adjacent slopes); the Mariana, Kermadec and New Hebrides trenches, the topographic variability, fine-scale habitat heterogeneity and distribution of seabed sediments of these three trenches have been assessed for the first time. As well as serving as the first descriptive study of habitat heterogeneity at hadal depths, this study also provides guidance for future hadal sampling campaigns taking into account geographic isolation, total trench particulate organic matter flux, maximum water depth and area.
NASA Astrophysics Data System (ADS)
Xing, Xuguang; Ma, Xiaoyi
2018-06-01
The maximum upward flux ( E max) is a control condition for the development of groundwater evaporation models, which can be predicted through the Gardner model. A high-precision E max prediction helps to improve irrigation practice. When using the Gardner model, it has widely been accepted to ignore parameter b (a soil-water constant) for model simplification. However, this may affect the prediction accuracy; therefore, how parameter b affects E max requires detailed investigation. An indoor one-dimensional soil-column evaporation experiment was conducted to observe E max in the presence of a water table of depth 50 cm. The study consisted of 13 treatments based on four solutes and three concentrations in groundwater: KCl, NaCl, CaCl2, and MgCl2, with concentrations of 5, 30, and 100 g/L (salty groundwater); distilled water was used as a control treatment. Results indicated that for the experimental homogeneous loam, the average E max for the treatments supplied by salty groundwater was larger than that supplied by distilled water. Furthermore, during the prediction of the Gardner-model-based E max, ignoring b and including b always led to an overestimate and underestimate, respectively, compared to the observed E max. However, the maximum upward flux calculated including b (i.e. E bmax) had higher accuracy than that ignoring b for E max prediction. Moreover, the impact of ignoring b on E max gradually weakened with increasing b value. This research helps to reveal the groundwater evaporation mechanism.
Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul
2016-09-29
The Everglades Depth Estimation Network (EDEN), with over 240 real-time gaging stations, provides hydrologic data for freshwater and tidal areas of the Everglades. These data are used to generate daily water-level and water-depth maps of the Everglades that are used to assess biotic responses to hydrologic change resulting from the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. The generation of EDEN daily water-level and water-depth maps is dependent on high quality real-time data from water-level stations. Real-time data are automatically checked for outliers by assigning minimum and maximum thresholds for each station. Small errors in the real-time data, such as gradual drift of malfunctioning pressure transducers, are more difficult to immediately identify with visual inspection of time-series plots and may only be identified during on-site inspections of the stations. Correcting these small errors in the data often is time consuming and water-level data may not be finalized for several months. To provide daily water-level and water-depth maps on a near real-time basis, EDEN needed an automated process to identify errors in water-level data and to provide estimates for missing or erroneous water-level data.The Automated Data Assurance and Management (ADAM) software uses inferential sensor technology often used in industrial applications. Rather than installing a redundant sensor to measure a process, such as an additional water-level station, inferential sensors, or virtual sensors, were developed for each station that make accurate estimates of the process measured by the hard sensor (water-level gaging station). The inferential sensors in the ADAM software are empirical models that use inputs from one or more proximal stations. The advantage of ADAM is that it provides a redundant signal to the sensor in the field without the environmental threats associated with field conditions at stations (flood or hurricane, for example). In the event that a station does malfunction, ADAM provides an accurate estimate for the period of missing data. The ADAM software also is used in the quality assurance and quality control of the data. The virtual signals are compared to the real-time data, and if the difference between the two signals exceeds a certain tolerance, corrective action to the data and (or) the gaging station can be taken. The ADAM software is automated so that, each morning, the real-time EDEN data are compared to the inferential sensor signals and digital reports highlighting potential erroneous real-time data are generated for appropriate support personnel. The development and application of inferential sensors is easily transferable to other real-time hydrologic monitoring networks.
Aerobic methane production in surface waters of the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Finke, N.; Crespo-Medina, M.; Schweers, J.; Joye, S. B.
2011-12-01
Near surface water of the global oceans often show elevated methane concentrations compared to the water column below with concentrations in supersaturation in regard to the atmosphere (Lamontagne et al. 1973), resulting in a source of this potent greenhouse gas to the atmosphere. The mechanisms leading to methane supersaturation in surface waters remains unclear. Incubations with Trichodesmium-containing Pacific surface water suggested methylphosphonate as potential methane precursor under phosphate limiting conditions (Karl et al. 2008), whereas in phosphate rich Arctic surface waters, DMSP addition stimulated methane production (Damm et al. 2010). Surface waters of the Gulf of Mexico typically exhibit a methane maximum that is conincident with the deep chlorophyll maximum, below the depths where Trichodesmium is abundant. Addition of methylphosphonate, dimethylsulfoniopropionate (DMSP) or methane thiol (MeSH), the proposed methane precursor in DMSP conversion to methane, to oxic sea water did not affect methane production within the chlorophyll maximum at most stations, whereas methyl phosphonate addition stimulated methane production in the surface water and proposed deep Trichodesmium horizon. Pre-filtration of the water through a 10 μm sieve, which eliminated Trichodesmium, or through a 1.2 μm filter, which eliminated additional cyanobacteria such as Synechococcus, did not reduce methane production. Under dark oxic and dark anoxic conditions, however, methane production was reduced 5 and 7-20 fold, respectively, indicating that anerobic methane production in anoxic microniches is not responsible for the methane production. The reduction of methane production under dark conditions suggests that methane production is, in some yet unrecognized way, linked to phototrophic metabolism. Cyanobacteria are likely not responsible for the observed aerobic methane production in the surface waters of the Gulf of Mexico and while methylphosphonate is a potential precursor in the surface waters, the precursor and methanism of methane production within the coincident deep chlorophyll/methane maximum remains unknown. Lamontagne R, Swinnert J, Linnenbo V, Smith WD (1973) Methane concentrations in various marine environments. Journal of Geophysical Research 78, 5317-5324 Karl DM et al. (2008) Aerobic production of methane in the sea. Nature Geosciences 1, 473-478 Damm E et al. (2010) Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences 7, 1099-1108
NASA Astrophysics Data System (ADS)
Schwarz, C.; Cox, T.; van Engeland, T.; van Oevelen, D.; van Belzen, J.; van de Koppel, J.; Soetaert, K.; Bouma, T. J.; Meire, P.; Temmerman, S.
2017-10-01
A short-term intensive measurement campaign focused on flow, turbulence, suspended particle concentration, floc dynamics and settling velocities were carried out in a brackish intertidal creek draining into the main channel of the Scheldt estuary. We compare in situ estimates of settling velocities between a laser diffraction (LISST) and an acoustic Doppler technique (ADV) at 20 and 40 cm above bottom (cmab). The temporal variation in settling velocity estimated were compared over one tidal cycle, with a maximum flood velocity of 0.46 m s-1, a maximum horizontal ebb velocity of 0.35 m s-1 and a maximum water depth at high water slack of 2.41 m. Results suggest that flocculation processes play an important role in controlling sediment transport processes in the measured intertidal creek. During high-water slack, particles flocculated to sizes up to 190 μm, whereas at maximum flood and maximum ebb tidal stage floc sizes only reached up to 55 μm and 71 μm respectively. These large differences indicate that flocculation processes are mainly governed by turbulence-induced shear rate. In this study, we specifically recognize the importance of along-channel gradients that places constraints on the application of the acoustic Doppler technique due to conflicts with the underlying assumptions. Along-channel gradients were assessed by additional measurements at a second location and scaling arguments which could be used as an indication whether the Reynolds-flux method is applicable. We further show the potential impact of along-channel advection of flocs out of equilibrium with local hydrodynamics influencing overall floc sizes.
Subsurface damage distribution in the lapping process.
Wang, Zhuo; Wu, Yulie; Dai, Yifan; Li, Shengyi
2008-04-01
To systematically investigate the influence of lapping parameters on subsurface damage (SSD) depth and characterize the damage feature comprehensively, maximum depth and distribution of SSD generated in the optical lapping process were measured with the magnetorheological finishing wedge technique. Then, an interaction of adjacent indentations was applied to interpret the generation of maximum depth of SSD. Eventually, the lapping procedure based on the influence of lapping parameters on the material removal rate and SSD depth was proposed to improve the lapping efficiency.
Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.; ...
2018-01-29
Here, we characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputsmore » from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Lastly, our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table, redox oscillation, and pore water advection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.
Here, we characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputsmore » from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Lastly, our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table, redox oscillation, and pore water advection.« less
Nutrient Dynamics in the Northern South China Sea Shelf-sea (NoSoCS)
NASA Astrophysics Data System (ADS)
Wong, G. T.; Guo, X.
2011-12-01
The Northern South China Sea Shelf-sea (NoSoCS) is situated in the sub-tropics along the southern Chinese coast between the southern end of the Taiwan Strait and the Hainan Island. Samples were collected in four cross-shelf transects in summer, 2010 and two cross-shelf transects in winter, 2011 in this Shelf-sea. The shelf may be sub-divided into the inner shelf (<40 m, low water temperature, high chlorophyll concentration), the middle shelf (50-80 m), and the outer shelf (90-120 m, high water temperature, low nutrient and chlorophyll concentrations). The mixed layer depth and the top of the nutricline depth (at ~30 m in the summer and ~70 m in the winter) were shallower than the shelf break depth (~120 m) in both seasons. The relatively nutrient-rich upper nutricline water (>1 μM in NO3- and >0.1 μM in soluble reactive phosphate) stretched across the shelf at least to the middle shelf. Thus, vertical mixing, even to relatively shallow depths, on the shelf may supply nutrients to and play a critical role in determining the primary production in the mixed layer. At least three such processes were observed. Through the year, internal waves of various strengths generated at the Luzon Strait propagated westward along the bottom of the mixed layer and dissipated along the middle and outer shelf. The effects of these waves were especially conspicuous north of the Dongsha Atoll and their action enhances vertical mixing. In the summer, upwelling occurred in the inner/middle shelf off Dongshan in response to the along shore southwest monsoon and the topographic forcing by the ridge extending offshore from Dongshan to the Taiwan Bank. In the winter, surface cooling and the strong northeast monsoon led to complete overturn in the shelf. The maximum density, reaching 24.6, in the surface waters was found offshore in the inner and middle shelf. This density was equivalent to the density of the water at >100 m offshore. As a result, this dense water also appeared as a layer of bottom water that extended across the shelf to the shelf edge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.
This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrallymore » buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.« less
Distribution of benthic foraminifers (>125 um) in the surface sediments of the Arctic Ocean
Osterman, Lisa E.; Poore, Richard Z.; Foley, Kevin M.
1999-01-01
Census data on benthic foraminifers (>125 ?m) in surface sediment samples from 49 box cores are used to define four depth-controlled biofacies, which will aid in the paleoceanographic reconstruction of the Arctic Ocean. The shelf biofacies contains a mix of shallow-water calcareous and agglutinated species from the continental shelves of the Beaufort and Chukchi Seas and reflects the variable sedimentologic and oceanic conditions of the Arctic shelves. The intermediate-depth calcareous biofacies, found between 500 and 1,100 meters water depth (mwd), contains abundant Cassidulina teretis , presumably indicating the influence of Atlantic-derived water at this depth. In water depths between 1,100 and 3,500 m, a deepwater calcareous biofacies contains abundant Oridorsalis umbonatus . Below 3,500 mwd, the deepwater mixed calcareous/agglutinated biofacies of the Canada, Makarov, and Eurasian Basins reflects a combination of low productivity, dissolution, and sediment transport. Two other benthic foraminiferal species show specific environmental preferences. Fontbotia wuellerstorfi has a depth distribution between 900 and 3,500 mwd, but maximum abundance occurs in the region of the Mendeleyev Ridge. The elevated abundance of F. wuellerstorfi may be related to increased food supply carried by a branch of Atlantic water that crosses the Lomonosov Ridge near the Russian Continental Shelf. Triloculina frigida is recognized to be a species preferring lower slope sediments commonly disturbed by turbidites and bottom currents. INTRODUCTION At present, our understanding of the Arctic Ocean lags behind our understanding of other oceans, and fundamental questions still exist about its role in and response to global climate change. The Arctic Ocean is particularly sensitive to climatic fluctuations because small changes in the amounts of sea-ice cover can alter global albedo and thermohaline circulation (Aagaard and Carmack, 1994). Numerous questions still exist regarding the nature and timing of paleoclimatic events in the Arctic Ocean. In order to attempt to answer some of these questions, baseline studies are imperative. This report discusses the distribution of benthic foraminifers in surface sediment samples from 49 box cores (figs. 1 and 2, table 1) collected by the U.S. Geological Survey (USGS) with the assistance of the U.S. Coast Guard (USCG). A modern data set of benthic foraminiferal distribution is necessary for interpreting the paleoclimatic and oceanographic history of the Arctic Ocean.
NASA Astrophysics Data System (ADS)
Barbieri, C.; Mancin, N.
2003-04-01
The Tertiary evolution of the Venetian area (NE Italy) led to the superposition of three overlapping foreland systems, different in both age and polarity, as a consequence of the main orogenic phases of the Dinarides, to the North-East, the Southern Alps, to the North, and the Apennines, to the South-West, respectively. Aim of this work is to quantify the flexural effect produced by the Southalpine main orogenic phases (Serravallian-Early Pliocene) in the Venetian foredeep, and particularly to evaluate the importance of constrained initial water depth for evaluating correctly the contribution to flexure of the surface loads. To this end, a 2-D flexural modelling has been applied along a N-S trending industrial seismic line (courtesy of ENI-AGIP) extended from the Northern Alps to the Adriatic sea. Once interpreted and depth migrated, the geometries of the sedimentary bodies have been studied and the base of the foredeep wedge, Serravallian-Tortonian in age, related to the Southern Alps load, has been recognized. Water depth variations during Miocene time have been constrained on three wells located along this section. According to bathymetric reconstructions, based on the quantitative study of foraminiferal assemblages, an overall neritic environment (0--200m), developed during Langhian time, was followed by a fast deepening to bathyal conditions (200--600m) to the North, toward the Southern Alps, during Serravallian-Tortonian time, whereas neritic conditions still persisted to the South. According to these constraints, a best fit model was obtained for an Effective Elastic Thickness value of about 20 Km and a belt topography equal to the present day one. The extremely good fit of the model to realty highlights that, in the studied region, flexure related to the Southern Alps is fully due to surface loads (topographic load and initial water depth), and no subloads are requested to improve the fit, unlike a previous proposed model. Such a difference can be due to both the better constraining of the bathymetric parameter and the improvement of geophysical and geological data. A test was also performed to evaluate the actual influence of the bathymetric parameter on flexural response of the crust by modelling a condition with maximum, minimum and zero initial water depth respectively. Results show that this parameter can contribute up to 50% to the total flexure in the studied region.
Applications of flood depth from rapid post-event footprint generation
NASA Astrophysics Data System (ADS)
Booth, Naomi; Millinship, Ian
2015-04-01
Immediately following large flood events, an indication of the area flooded (i.e. the flood footprint) can be extremely useful for evaluating potential impacts on exposed property and infrastructure. Specifically, such information can help insurance companies estimate overall potential losses, deploy claims adjusters and ultimately assists the timely payment of due compensation to the public. Developing these datasets from remotely sensed products seems like an obvious choice. However, there are a number of important drawbacks which limit their utility in the context of flood risk studies. For example, external agencies have no control over the region that is surveyed, the time at which it is surveyed (which is important as the maximum extent would ideally be captured), and how freely accessible the outputs are. Moreover, the spatial resolution of these datasets can be low, and considerable uncertainties in the flood extents exist where dry surfaces give similar return signals to water. Most importantly of all, flood depths are required to estimate potential damages, but generally cannot be estimated from satellite imagery alone. In response to these problems, we have developed an alternative methodology for developing high-resolution footprints of maximum flood extent which do contain depth information. For a particular event, once reports of heavy rainfall are received, we begin monitoring real-time flow data and extracting peak values across affected areas. Next, using statistical extreme value analyses of historic flow records at the same measured locations, the return periods of the maximum event flow at each gauged location are estimated. These return periods are then interpolated along each river and matched to JBA's high-resolution hazard maps, which already exist for a series of design return periods. The extent and depth of flooding associated with the event flow is extracted from the hazard maps to create a flood footprint. Georeferenced ground, aerial and satellite images are used to establish defence integrity, highlight breach locations and validate our footprint. We have implemented this method to create seven flood footprints, including river flooding in central Europe and coastal flooding associated with Storm Xaver in the UK (both in 2013). The inclusion of depth information allows damages to be simulated and compared to actual damage and resultant loss which become available after the event. In this way, we can evaluate depth-damage functions used in catastrophe models and reduce their associated uncertainty. In further studies, the depth data could be used at an individual property level to calibrate property type specific depth-damage functions.
Engle, Mark A.; Reyes, Francisco R.; Varonka, Matthew S.; Orem, William H.; Lin, Ma; Ianno, Adam J.; Westphal, Tiffani M.; Xu, Pei; Carroll, Kenneth C.
2016-01-01
Despite being one of the most important oil producing provinces in the United States, information on basinal hydrogeology and fluid flow in the Permian Basin of Texas and New Mexico is lacking. The source and geochemistry of brines from the basin were investigated (Ordovician- to Guadalupian-age reservoirs) by combining previously published data from conventional reservoirs with geochemical results for 39 new produced water samples, with a focus on those from shales. Salinity of the Ca–Cl-type brines in the basin generally increases with depth reaching a maximum in Devonian (median = 154 g/L) reservoirs, followed by decreases in salinity in the Silurian (median = 77 g/L) and Ordovician (median = 70 g/L) reservoirs. Isotopic data for B, O, H, and Sr and ion chemistry indicate three major types of water. Lower salinity fluids (<70 g/L) of meteoric origin in the middle and upper Permian hydrocarbon reservoirs (1.2–2.5 km depth; Guadalupian and Leonardian age) likely represent meteoric waters that infiltrated through and dissolved halite and anhydrite in the overlying evaporite layer. Saline (>100 g/L), isotopically heavy (O and H) water in Leonardian [Permian] to Pennsylvanian reservoirs (2–3.2 km depth) is evaporated, Late Permian seawater. Water from the Permian Wolfcamp and Pennsylvanian “Cline” shales, which are isotopically similar but lower in salinity and enriched in alkalis, appear to have developed their composition due to post-illitization diffusion into the shales. Samples from the “Cline” shale are further enriched with NH4, Br, I and isotopically light B, sourced from the breakdown of marine kerogen in the unit. Lower salinity waters (<100 g/L) in Devonian and deeper reservoirs (>3 km depth), which plot near the modern local meteoric water line, are distinct from the water in overlying reservoirs. We propose that these deep meteoric waters are part of a newly identified hydrogeologic unit: the Deep Basin Meteoric Aquifer System. Chemical, isotopic, and pressure data suggest that despite over-pressuring in the Wolfcamp shale, there is little potential for vertical fluid migration to the surface environment via natural conduits.
Subsurface chlorophyll maximum layers: enduring enigma or mystery solved?
Cullen, John J
2015-01-01
The phenomenon of subsurface chlorophyll maximum layers (SCMLs) is not a unique ecological response to environmental conditions; rather, a broad range of interacting processes can contribute to the formation of persistent layers of elevated chlorophyll a concentration (Chl) that are nearly ubiquitous in stratified surface waters. Mechanisms that contribute to the formation and maintenance of the SCMLs include a local maximum in phytoplankton growth rate near the nutricline, photoacclimation of pigment content that leads to elevated Chl relative to phytoplankton biomass at depth, and a range of physiologically influenced swimming behaviors in motile phytoplankton and buoyancy control in diatoms and cyanobacteria that can lead to aggregations of phytoplankton in layers, subject to grazing and physical control. A postulated typical stable water structure characterizes consistent patterns in vertical profiles of Chl, phytoplankton biomass, nutrients, and light across a trophic gradient structured by the vertical flux of nutrients and characterized by the average daily irradiance at the nutricline. Hypothetical predictions can be tested using a nascent biogeochemical global ocean observing system. Partial results to date are generally consistent with predictions based on current knowledge, which has strong roots in research from the twentieth century.
NASA Astrophysics Data System (ADS)
Meledin, V.; Anikin, Yu.; Bakakin, G.; Glavniy, V.; Dvoinishnikov, S.; Kulikov, D.; Naumov, I.; Okulov, V.; Pavlov, V.; Rakhmanov, V.; Sadbakov, O.; Mostovskiy, N.; Ilyin, S.
2006-05-01
For hydrodynamic examinations of the turbid three-phase streams with air bubbles and with a depth more than 500 mm for the first time it is developed 2D Laser Doppler Semiconductor Anemometer LADO5-LMZ. Anemometer signal processor base on <
Prudic, David E.; Striegl, Robert G.; Healy, Richard W.; Michel, Robert L.; Haas, Herbert; Morganwalp, David W.; Buxton, Herbert T.
1999-01-01
Tritium concentrations have been determined yearly since April 1994 from water-vapor samples collected at test hole UZB-2. The hole was drilled about 100 m (meters) south of the southwest corner of a commercial burial site for low-level radioactive wastes in September 1993. UZB-2 is equipped with ten 2.5-cm (centimeters) diameter air ports permanently installed in the unsaturated zone between the depths of 5.5 and 108.8 m below land surface. Depth to ground water is about 110 m. Additional sampling ports were driven by hand to depths of 0.5, 1.0 and 1.5 m in May 1997. Initial samples of water vapor collected in April 1994 showed elevated tritium concentrations of more than 100 TU (tritium units) from all 10 air ports, with a maximum concentration of 762±10 TU from an air port at a depth of 24.1 m. Subsequent tritium concentrations increased in all air ports, although tritium concentrations at depths of less than 34.1 m have remained relatively constant since July 1995. The largest observed increase in tritium has been at a depth of 47.9 m. There, tritium concentration has increased from 198±5 TU in April 1994 to 2,570±30 TU in June 1998. Large increases also have been measured in samples collected from air ports at depths of 106.4 and 108.8 m, just above the water table.During September and October 1998, carbon dioxide samples were collected from all ten air ports in UZB-2 and at a depth of 1.5 m, and analyzed for radioactive carbon-14 (14C). 14C concentrations are highest in air ports at depths less than 6 m where they exceed 2,000 pmc (percent modern carbon). Concentrations decrease rapidly in air ports at depth and are about 20 pmc below 94.2 m. However, at 47.9 meters, the 14C concentration is 205±1 pmc, which is 2 to 4 times higher than concentrations in air ports immediately above and below. This depth corresponds to the largest tritium increase in UZB-2. Concentrations of both tritium and 14C are greater than what could be expected from atmospheric fallout. The distribution of tritium and 14C likely represent a complex pattern of lateral and vertical transport through the unsaturated zone from buried wastes to UZB-2.
Investigation of pier scour in coarse-bed streams in Montana, 2001 through 2007
Holnbeck, Stephen R.
2011-01-01
A primary goal of ongoing field research of bridge scour is improvement of scour-prediction equations so that pier-scour depth is predicted accurately-an important element of hydraulic analysis and design of highway bridges that cross streams, rivers, and other waterways. Scour depth for piers in streambeds with a mixture of sand, gravel, cobbles, and boulders (coarse-bed streams, which are common in Montana) generally is less than the scour depth in finer-grained (sandy) streambeds under similar conditions. That difference is attributed to an armor layer of coarser material. Pier-scour data from the U.S. Geological Survey were used in this study to develop a bed-material correction factor, which was incorporated into the Federal Highway Administration's recommended equation for computing pier scour. This report describes results of a study of pier scour in coarse-bed streams at 59 bridge sites during 2001-2007 in the mountain and foothill regions of western Montana. Respective drainage areas ranged from about 3 square miles (mi2) to almost 20,000 mi2. Data collected and analyzed for this study included 103 pier-scour measurements; the report further describes data collection, shows expansion of the national coarse pier-scour database, discusses use of the new data in evaluation of relative accuracy of various predictive equations, and demonstrates how differences in size and gradation between surface bed material and shallow-subsurface bed material might relate to pier scour. Nearly all measurements were made under clear-water conditions with no incoming sediment supply to the bridge opening. Half of the measurements showed approach velocities that equaled or surpassed the critical velocity for incipient motion of bed material, possibly indicating that measurements were made very near the threshold between clear-water and live-bed scour, where maximum scour was shown in laboratory studies. Data collected in this study were compared to selected pier-scour data from the nationwide Bridge Scour Data Management System (BSDMS), to show the effect of bed-material size and gradation on scour depth. Unsteady field flow conditions and armoring by coarser material reduced scour relative to the clear-water/sandy-bed laboratory results at steady flow. The new correction factor and the standard scour equation produced the most accurate estimates of scour depth in armored, coarse-bed conditions. Maximum relative scour occurred at similar velocity across variations in bed material and gradation. Pier scour decreased with increased variation in particle size and gradation.
Rees, Terry F.; Bright, Daniel J.; Fay, Ronald G.; Christensen, Allen H.; Anders, Robert; Baharie, Brian S.; Land, Michael T.
1995-01-01
The U.S. Geological Survey, in cooperation with the Eastern Municipal Water District, the Metropolitan Water District of Southern California, and the Orange County Water District, has completed a detailed study of the Hemet groundwater basin. The quantity of ground water stored in the basin in August 1992 is estimated to be 327,000 acre-feet. Dissolved-solids concentration ranged from 380 to 700 mg/L (milligrams per liter), except in small areas where the concentration exceeded 1,000 mg/L. Nitrate concentrations exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) of 10 mg/L nitrate (as nitrogen) in the southeastern part of the basin, in the Domenigoni Valley area, and beneath a dairy in the Diamond Valley area. Seven sites representing selected land uses-- residential, turf grass irrigated with reclaimed water, citrus grove, irrigated farm, poultry farm, and dairy (two sites)--were selected for detailed study of nitrogen geochemistry in the unsaturated zone. For all land uses, nitrate was the dominant nitrogen species in the unsaturated zone.Although nitrate was seasonally present in the shallow unsaturated zone beneath the residential site, it was absent at moderate depths, suggesting negligible migration of nitrate from the surface at this time. Microbial denitrification probably is occurring in the shallow unsaturated zone. High nitrate concentrations in the deep unsaturated zone (greater than 100 ft) suggest either significantly higher nitrate loading at some time in the past, or lateral movement of nitrate at depth. Nitrate also is seasonally present in the shallow unsaturated zone beneath the reclaimed-water site, and (in contrast with the residential site), nitrate is perennially present in the deeper unsaturated zone. Microbial denitrification in the unsaturated zone and in the capillary fringe above the water table decreases the concentrations of nitrate in pore water to below the MCL before reaching the water table.Pore water in the unsaturated zone beneath the citrus grove site contains very high concentrations of nitrate. Even though there are zones of microbial denitrification, nitrate seems to be migrating downward to the water table. The presence of a shallow perched-water zone beneath the irrigated-farm site prevents the vertical movement of nitrate from the surface to the regional water table. Above the perched zone, nitrate concentrations in the unsaturated zone are variable, ranging from below the MCL to four times the MCL. Periodically, nitrate is flushed from the shallow unsaturated zone to the perched-water zone. The unsaturated zone pore-moisture quality could not be adequately addressed because of the very dry conditions in the unsaturated zone beneath the poultry-farm site. Surficial clay deposits prevent water from percolating downward.At the two dairy sites, nitrate loading in pore water at the surface was very high, as great as 7,000 mg/L. Microbial denitrification in the unsaturated zone causes such concentrations to decrease rapidly with depth. At a depth of 20 ft, nitrate concentration was less than 100 mg/L. In areas where the depth to water is less than 20 ft, nitrate loading to ground water can be very high, whereas in areas where depth to water is greater than 100 ft, most of the nitrate is microbially removed before reaching the water table.
Tracing the source of deep water in the Arctic Ocean with 17Oexcess of dissolved O2
NASA Astrophysics Data System (ADS)
Smethie, W. M., Jr.; Luz, B.; Barkan, E.; Broecker, W. S.
2014-12-01
The 17Oexcess of dissolved O2 (17Δ) in the ocean is a unique property which is useful for telling apart O2 produced by marine photosynthesis (bio-O2) from atmospheric O2. Unlike O2 concentration, 17Δ is not affected by respiration and thus behaves conservatively in the deep sea. In general, 17Δ in the oceanic mixed layer is low due to the dominance of air-sea gas exchange. In contrast, in the Arctic mixed-layer 17Δ is higher because sufficient light penetrates through the sea-ice cover and drives photosynthesis, but air-sea gas exchange is retarded by sea ice cover. We have preliminary 17Δ data from depth profiles in the Eurasian and Makarov basins. In both, the fraction of bio-O2 is about 20 % in the surface mixed layer. However, the vertical distribution beneath the mixed layer at the two stations is substantially different. In the Makarov Basin there is a layer of Pacific Water centered at about 100 m, which enters the Arctic Ocean through Bering Strait and is modified as it flows across the wide Chukchi and Siberian shelves. It has a strong maximum in 17Δ, equivalent to ~30% bio-O2. 17Δ then decreases through the underlying halocline to a minimum between 500 and 700 m, which lies within the Barents Sea Branch of Atlantic Water (BSBW) indicating ~15% bio-O2. At the Eurasian Basin station, 17Δ decreases from the mixed layer through the halocline reaching a minimum at the temperature maximum of Atlantic Water. This temperature maximum marks the core of the Fram Strait Branch of Atlantic Water (FSBW). 17Δ then increases to a maximum indicating ~20% bio-O2 between 500 and 700 m. The BSBW is produced as Atlantic Water flows through the shallow Barents Sea becoming denser than FSBW and enters the Eurasian Basin through the Santa Anna Trough beneath the FSBW. Our 17Δ measurements suggest that waters of Pacific and Atlantic origin that transit across the wide Arctic continental shelves acquire a high 17Δ signal indicative of photosynthesis in ice covered water.
Green, Rebecca E.; Bower, Amy S.; Lugo-Fernández, Alexis
2014-01-01
Profiling floats equipped with bio-optical sensors well complement ship-based and satellite ocean color measurements by providing highly-resolved time-series data on the vertical structure of biogeochemical processes in oceanic waters. This is the first study to employ an autonomous profiling (APEX) float in the Gulf of Mexico for measuring spatiotemporal variability in bio-optics and hydrography. During the 17-month deployment (July 2011 to December 2012), the float mission collected profiles of temperature, salinity, chlorophyll fluorescence, particulate backscattering (bbp), and colored dissolved organic matter (CDOM) fluorescence from the ocean surface to a depth of 1,500 m. Biogeochemical variability was characterized by distinct depth trends and local “hot spots”, including impacts from mesoscale processes associated with each of the water masses sampled, from ambient deep waters over the Florida Plain, into the Loop Current, up the Florida Canyon, and eventually into the Florida Straits. A deep chlorophyll maximum (DCM) occurred between 30 and 120 m, with the DCM depth significantly related to the unique density layer ρ = 1023.6 (R2 = 0.62). Particulate backscattering, bbp, demonstrated multiple peaks throughout the water column, including from phytoplankton, deep scattering layers, and resuspension. The bio-optical relationship developed between bbp and chlorophyll (R2 = 0.49) was compared to a global relationship and could significantly improve regional ocean-color algorithms. Photooxidation and autochthonous production contributed to CDOM distributions in the upper water column, whereas in deep water, CDOM behaved as a semi-conservative tracer of water masses, demonstrating a tight relationship with density (R2 = 0.87). In the wake of the Deepwater Horizon oil spill, this research lends support to the use of autonomous drifting profilers as a powerful tool for consideration in the design of an expanded and integrated observing network for the Gulf of Mexico. PMID:24992646
NASA Astrophysics Data System (ADS)
Zuecco, Giulia; Penna, Daniele; van Meerveld, Ilja; Borga, Marco
2017-04-01
Understanding of runoff generation mechanisms and storage dynamics is needed for sustainable management of water resources, particularly in catchments characterized by marked seasonality in rainfall. However, temporal and spatial variability of hydrological processes can hinder a detailed comprehension of catchment functioning. In this study, we use hydrometric data and stable isotope data from a 2-ha forested catchment in the Italian pre-Alps to i) identify seasonal changes in runoff generation, ii) determine the factors that affect the hysteretic relations between streamflow and soil moisture and between streamflow and shallow groundwater, and iii) estimate the fraction of young water in stream water and shallow groundwater. Streamflow, soil moisture and groundwater levels were measured continuously between August 2012 and December 2015. Soil moisture was measured at 0-30 cm depth by four time domain reflectometers installed at different locations along a riparian-hillslope transect. Depth to water table was measured in two piezometers installed at a depth of 2.0 and 1.8 m in the riparian zone. Water samples for isotopic analysis were taken monthly from bulk precipitation and approximately biweekly from stream water and groundwater. The relations between streamflow (independent variable), soil moisture and depth to water table (dependent variables) were analyzed by computing a hysteresis index that provides information on the direction, the extent and the shape of the loops for 103 rainfall-runoff events. The temporal variability of the hysteresis index was related to event characteristics (mean and maximum rainfall intensity, rainfall amount and total stormflow) and antecedent soil moisture conditions. We observed threshold-like relations between stormflow and the sum of rainfall and the antecedent soil moisture index and an exponential relation between the change in groundwater level and stormflow. Clockwise hysteretic relations were common between streamflow and riparian soil moisture, suggesting quick contributions from shallow soil layers in the riparian zone to streamflow. The relations between streamflow and hillslope soil moisture and between streamflow and depth to water table in the riparian zone varied seasonally, with clockwise loops being typical for large rainfall events in autumn and anti-clockwise hysteresis being more common in spring and summer. This indicates that hillslope soil water and riparian groundwater dynamics and their contribution to stormflow varied seasonally and depended on event size and antecedent moisture conditions. There was a marked seasonal variability in the isotopic composition of precipitation but a much more damped variability in the isotopic signature of stream water and groundwater. A sine curve was fitted to the seasonal variation in isotopic composition of weighted precipitation, stream water and groundwater to estimate the fraction of young water in stream water and groundwater. The fraction of young water in streamflow was about 14% when considering baseflow conditions only (23% using the entire isotopic dataset). This was similar to the fraction of young water in riparian groundwater. Keywords: runoff generation; hysteresis; isotopes; young water fraction; forested catchment.
NASA Astrophysics Data System (ADS)
Lee, H.; Yuan, T.; Jung, H. C.; Aierken, A.; Beighley, E.; Alsdorf, D. E.; Tshimanga, R.; Kim, D.
2017-12-01
Floodplains delay the transport of water, dissolved matter and sediments by storing water during flood peak seasons. Estimation of water storage over the floodplains is essential to understand the water balances in the fluvial systems and the role of floodplains in nutrient and sediment transport. However, spatio-temporal variations of water storages over floodplains are not well known due to their remoteness, vastness, and high temporal variability. In this study, we propose a new method to estimate absolute water storages over the floodplains by establishing relations between water depths (d) and water volumes (V) using 2-D water depth maps from the integration of Interferometric Synthetic Aperture Radar (InSAR) and altimetry measurements. We applied this method over the Congo River floodplains and modeled the d-V relation using a power function (note that d-V indicates relation between d and V, not d minus V), which revealed the cross-section geometry of the floodplains as a convex curve. Then, we combined this relation and Envisat altimetry measurements to construct time series of floodplain's absolute water storages from 2002 to 2011. Its mean annual amplitude over the floodplains ( 7,777 km2) is 3.860.59 km3 with peaks in December, which lags behind total water storage (TWS) changes from the Gravity Recovery and Climate Experiment (GRACE) and precipitation changes from Tropical Rainfall Measuring Mission (TRMM) by about one month. The results also exhibit inter-annual variability, with maximum water volume to be 5.9 +- 0.72 km3 in the wet year of 2002 and minimum volume to be 2.01 +- 0.63 km3 in the dry year of 2005. The inter-annual variation of water storages can be explained by the changes of precipitation from TRMM.
NASA Astrophysics Data System (ADS)
I.; | J., Möller; | T., Mantilla-Contreras; | A., Spencer; Hayes
2011-05-01
This paper investigates the hydro-morphological controls on incident wind-generated waves at, and the transformation of such waves within, two Phragmites australis reed beds in the southern Baltic Sea. Meteorological conditions in combination with geomorphological controls result, over short (<2 km) distances, in significant differences in water level and wave climate to which fringing reed beds are exposed. Significant wave height attenuation reached a maximum of 2.6% m -1 and 11.8% m -1 at the transition from open water into the reed vegetation at the sheltered and exposed sites respectively. Wave attenuation through the emergent reed vegetation was significantly lower in greater water depths, suggesting (1) a reduced influence of bed friction by small shoots/roots and/or (2) drag reduction due to flexing of plants when the wave motion is impacting stems at a greater height above the bed. For a given water depth, wave dissipation increased with increasing incident wave height, however, suggesting that, despite their ability to flex, reed stems may be rigid enough to cause increased drag under greater wave forcing. The higher frequency part of the wave spectrum (>0.5 Hz) was preferentially reduced at the reed margin, confirming the theoretical wave frequency dependence of bottom friction. The possibility of physiological adaptation (differences in reed stem diameter) to water depth and wave exposure differences is discussed. The results have implications for the possible impact of environmental changes, both acute (e.g. storm surges) or chronic (e.g. sea level rise) in character, and for the appropriate management of reed bed sites and delivery of ecological goods and services.
Comparison of observed and predicted abutment scour at selected bridges in Maine.
DOT National Transportation Integrated Search
2008-01-01
Maximum abutment-scour depths predicted with five different methods were compared to : maximum abutment-scour depths observed at 100 abutments at 50 bridge sites in Maine with a : median bridge age of 66 years. Prediction methods included the Froehli...
Clarke, John S.; Cherry, Gregory C.; Gonthier, Gerard
2011-01-01
Test drilling, field investigations, and digital modeling were completed at Fort Stewart, GA, during 2009?2010, to assess the geologic, hydraulic, and water-quality characteristics of the Floridan aquifer system and evaluate the effect of Lower Floridan aquifer (LFA) pumping on the Upper Floridan aquifer (UFA). This work was performed pursuant to the Georgia Environmental Protection Division interim permitting strategy for new wells completed in the LFA that requires simulation to (1) quantify pumping-induced aquifer leakage from the UFA to LFA, and (2) identify the equivalent rate of UFA pumping that would produce the same maximum drawdown in the UFA that anticipated pumping from LFA well would induce. Field investigation activities included (1) constructing a 1,300-foot (ft) test boring and well completed in the LFA (well 33P028), (2) constructing an observation well in the UFA (well 33P029), (3) collecting drill cuttings and borehole geophysical logs, (4) collecting core samples for analysis of vertical hydraulic conductivity and porosity, (5) conducting flowmeter and packer tests in the open borehole within the UFA and LFA, (6) collecting depth-integrated water samples to assess basic ionic chemistry of various water-bearing zones, and (7) conducting aquifer tests in new LFA and UFA wells to determine hydraulic properties and assess interaquifer leakage. Using data collected at the site and in nearby areas, model simulation was used to assess the effects of LFA pumping on the UFA. Borehole-geophysical and flowmeter data indicate the LFA at Fort Stewart consists of limestone and dolomitic limestone between depths of 912 and 1,250 ft. Flowmeter data indicate the presence of three permeable zones at depth intervals of 912-947, 1,090-1,139, and 1,211?1,250 ft. LFA well 33P028 received 50 percent of the pumped volume from the uppermost permeable zone, and about 18 and 32 percent of the pumped volume from the middle and lowest permeable zones, respectively. Chemical constituent concentrations increased with depth, and water from all permeable zones contained sulfate at concentrations that exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level of 250 milligrams per liter. A 72-hour aquifer test pumped LFA well 33P028 at 740 gallons per minute (gal/min), producing about 39 ft of drawdown in the pumped well and about 0.4 foot in nearby UFA well 33P029. Simulation using the U.S. Geological Survey finite-difference code MODFLOW was used to determine long-term, steady-state flow in the Floridan aquifer system, assuming the LFA well was pumped continuously at a rate of 740 gal/min. Simulated steady-state drawdown in the LFA was identical to that observed in pumped LFA well 33P028 at the end of the 72-hour test, with values larger than 1 ft extending 4.4 square miles symmetrically around the pumped well. Simulated steady-state drawdown in the UFA resulting from pumping in LFA well 33P028 exceeded 1 ft within a 1.4-square-mile circular area, and maximum drawdown in the UFA was 1.1 ft. Leakage from the UFA through the Lower Floridan confining unit contributed about 98 percent of the water to the well; lateral flow from specified-head model boundaries contributed about 2 percent. About 80 percent of the water supplied to LFA well 33P028 originated from within 1 mile of the well, and 49 percent was derived from within 0.5 mile of the well. Vertical hydraulic gradients and vertical leakage are progressively higher near the LFA pumped well which results in a correspondingly higher contribution of water from the UFA to the pumped well at distances closer to the pumped well. Simulated pumping-induced interaquifer leakage from the UFA to the LFA totaled 725 gal/min (1.04 million gallons per day), whereas simulated pumping at 205 gal/min (0.3 million gallons per day) from UFA well 33P029 produced the equivalent maximum drawdown as pumping LFA well 33P028 at 740 gal/min during the aquifer test. This equivalent pumpin
Multi-scale responses of scattering layers to environmental variability in Monterey Bay, California
NASA Astrophysics Data System (ADS)
Urmy, Samuel S.; Horne, John K.
2016-07-01
A 38 kHz upward-facing echosounder was deployed on the seafloor at a depth of 875 m in Monterey Bay, CA, USA (36° 42.748‧N, 122° 11.214‧W) from 27 February 2009 to 18 August 2010. This 18-month record of acoustic backscatter was compared to oceanographic time series from a nearby data buoy to investigate the responses of animals in sound-scattering layers to oceanic variability at seasonal and sub-seasonal time scales. Pelagic animals, as measured by acoustic backscatter, moved higher in the water column and decreased in abundance during spring upwelling, attributed to avoidance of a shoaling oxycline and advection offshore. Seasonal changes were most evident in a non-migrating scattering layer near 500 m depth that disappeared in spring and reappeared in summer, building to a seasonal maximum in fall. At sub-seasonal time scales, similar responses were observed after individual upwelling events, though they were much weaker than the seasonal relationship. Correlations of acoustic backscatter with oceanographic variability also differed with depth. Backscatter in the upper water column decreased immediately following upwelling, then increased approximately 20 days later. Similar correlations existed deeper in the water column, but at increasing lags, suggesting that near-surface productivity propagated down the water column at 10-15 m d-1, consistent with sinking speeds of marine snow measured in Monterey Bay. Sub-seasonal variability in backscatter was best correlated with sea-surface height, suggesting that passive physical transport was most important at these time scales.
Innovations in Sampling Pore Fluids From Deep-Sea Hydrate Sites
NASA Astrophysics Data System (ADS)
Lapham, L. L.; Chanton, J. P.; Martens, C. S.; Schaefer, H.; Chapman, N. R.; Pohlman, J. W.
2003-12-01
We have developed a sea-floor probe capable of collecting and returning undecompressed pore water samples at in situ pressures for determination of dissolved gas concentrations and isotopic values in deep-sea sediments. In the summer of 2003, we tested this instrument in sediments containing gas hydrates off Vancouver Island, Cascadia Margin from ROPOS (a remotely operated vehicle) and in the Gulf of Mexico from Johnson-Sea-Link I (a manned submersible). Sediment push cores were collected alongside the probe to compare methane concentrations and stable carbon isotope compositions in decompressed samples vs. in situ samples obtained by probe. When sufficient gas was available, ethane and propane concentrations and isotopes were also compared. Preliminary data show maximum concentrations of dissolved methane to be 5mM at the Cascadia Margin Fish Boat site (850m water depth) and 12mM in the Gulf of Mexico Bush Hill hydrate site (550m water depth). Methane concentrations were, on average, five times as high in probe samples as in the cores. Carbon isotopic values show a thermogenic input and oxidative effects approaching the sediment-water interface at both sites. This novel data set will provide information that is critical to the understanding of the in situ processes and environmental conditions controlling gas hydrate occurrences in sediments.
Long-Term Hydrologic Impacts of Controlled Drainage Using DRAINMOD
NASA Astrophysics Data System (ADS)
Saadat, S.; Bowling, L. C.; Frankenberger, J.
2017-12-01
Controlled drainage is a management strategy designed to mitigate water quality issues caused by subsurface drainage but it may increase surface ponding and runoff. To improve controlled drainage system management, a long-term and broader study is needed that goes beyond the experimental studies. Therefore, the goal of this study was to parametrize the DRAINMOD field-scale, hydrologic model for the Davis Purdue Agricultural Center located in Eastern Indiana and to predict the subsurface drain flow and surface runoff and ponding at this research site. The Green-Ampt equation was used to characterize the infiltration, and digital elevation models (DEMs) were used to estimate the maximum depressional storage as the surface ponding parameter inputs to DRAINMOD. Hydraulic conductivity was estimated using the Hooghoudt equation and the measured drain flow and water table depths. Other model inputs were either estimated or taken from the measurements. The DRAINMOD model was calibrated and validated by comparing model predictions of subsurface drainage and water table depths with field observations from 2012 to 2016. Simulations based on the DRAINMOD model can increase understanding of the environmental and hydrological effects over a broader temporal and spatial scale than is possible using field-scale data and this is useful for developing management recommendations for water resources at field and watershed scales.
Pierce, Simon J.; Humphries, Nicolas E.; Sims, David W.
2017-01-01
Eight whale sharks tagged with pop-up satellite archival tags off the Gulf of California, Mexico, were tracked for periods of 14–134 days. Five of these sharks were adults, with four females visually assessed to be pregnant. At least for the periods they were tracked, juveniles remained in the Gulf of California while adults moved offshore into the eastern Pacific Ocean. We propose that parturition occurs in these offshore waters. Excluding two juveniles that remained in the shallow tagging area for the duration of tracking, all sharks spent 65 ± 20.7% (SD) of their time near the surface, even over deep water, often in association with frontal zones characterized by cool-water upwelling. While these six sharks all made dives into the meso- or bathypelagic zones, with two sharks reaching the maximum depth recordable by the tags (1285.8 m), time spent at these depths represented a small proportion of the overall tracks. Most deep dives (72.7%) took place during the day, particularly during the early morning and late afternoon. Pronounced habitat differences by ontogenetic stage suggest that adult whale sharks are less likely to frequent coastal waters after the onset of maturity. PMID:28484673
Sampling strategies to improve passive optical remote sensing of river bathymetry
Legleiter, Carl; Overstreet, Brandon; Kinzel, Paul J.
2018-01-01
Passive optical remote sensing of river bathymetry involves establishing a relation between depth and reflectance that can be applied throughout an image to produce a depth map. Building upon the Optimal Band Ratio Analysis (OBRA) framework, we introduce sampling strategies for constructing calibration data sets that lead to strong relationships between an image-derived quantity and depth across a range of depths. Progressively excluding observations that exceed a series of cutoff depths from the calibration process improved the accuracy of depth estimates and allowed the maximum detectable depth ($d_{max}$) to be inferred directly from an image. Depth retrieval in two distinct rivers also was enhanced by a stratified version of OBRA that partitions field measurements into a series of depth bins to avoid biases associated with under-representation of shallow areas in typical field data sets. In the shallower, clearer of the two rivers, including the deepest field observations in the calibration data set did not compromise depth retrieval accuracy, suggesting that $d_{max}$ was not exceeded and the reach could be mapped without gaps. Conversely, in the deeper and more turbid stream, progressive truncation of input depths yielded a plausible estimate of $d_{max}$ consistent with theoretical calculations based on field measurements of light attenuation by the water column. This result implied that the entire channel, including pools, could not be mapped remotely. However, truncation improved the accuracy of depth estimates in areas shallower than $d_{max}$, which comprise the majority of the channel and are of primary interest for many habitat-oriented applications.
Summary of extensometric measurements in El Paso, Texas
Heywood, Charles E.
2003-01-01
Two counter-weighted-pipe borehole extensometers were installed on the left bank of the Rio Grande between El Paso, Texas, and Ciudad Juarez, Chihuahua, Mexico, in 1992. A shallow extensometer measures vertical compaction in the 6- to 100-meter aquifer-system depth interval. A deep extensometer measures vertical compaction in the 6- to 305-meter aquifer-system depth interval. Both extensometers are referenced to the same surface datum, which allows time-series differencing to determine vertical compaction in the depth interval between 100 and 305 meters. From April 2, 1993, through June 13, 2002, 1.6 centimeters of compaction occurred in the 6-to 305-m depth interval. Until February 1999, most aquifer-system compaction occurred in the deeper aquifer-system interval between 100 and 305 meters, from which ground water was extracted. After that time, compaction in the shallow interval from 6 to 100 meters was predominant and attained a maximum of 7.6 millimeters by June 13, 2002. Minor residual compaction is expected to continue; continued maintenance of the El Paso extensometers would document this process.
Savage, W.Z.; Morin, R.H.
2002-01-01
We have applied a previously developed analytical stress model to interpret subsurface stress conditions inferred from acoustic televiewer logs obtained in two municipal water wells located in a valley in the southern Davis Mountains near Alpine, Texas. The appearance of stress-induced breakouts with orientations that shift by 90?? at two different depths in one of the wells is explained by results from exact solutions for the effects of valleys on gravity and tectonically induced subsurface stresses. The theoretical results demonstrate that above a reference depth termed the hinge point, a location that is dependent on Poisson's ratio, valley shape, and magnitude of the maximum horizontal tectonic stress normal to the long axis of the valley, horizontal stresses parallel to the valley axis are greater than those normal to it. At depths below this hinge point the situation reverses and horizontal stresses normal to the valley axis are greater than those parallel to it. Application of the theoretical model at Alpine is accommodated by the fact that nearby earthquake focal mechanisms establish an extensional stress regime with the regional maximum horizontal principal stress aligned perpendicular to the valley axis. We conclude that the localized stress field associated with a valley setting can be highly variable and that breakouts need to be examined in this context when estimating the orientations and magnitudes of regional principal stresses.
NASA Astrophysics Data System (ADS)
van der Ent, R.; Van Beek, R.; Sutanudjaja, E.; Wang-Erlandsson, L.; Hessels, T.; Bastiaanssen, W.; Bierkens, M. F.
2017-12-01
The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. Root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.
NASA Astrophysics Data System (ADS)
van der Ent, Ruud; van Beek, Rens; Sutanudjaja, Edwin; Wang-Erlandsson, Lan; Hessels, Tim; Bastiaanssen, Wim; Bierkens, Marc
2017-04-01
The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. For root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.
Comparison of the 1D flux theory with a 2D hydrodynamic secondary settling tank model.
Ekama, G A; Marais, P
2004-01-01
The applicability of the 1D idealized flux theory (1DFT) for design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated from the 2D hydrodynamic model SettlerCAD using as a basis 35 full scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25 to 4.1 m side water depth, with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the sloping bottom shallow (1.5-2.5 m SWD) Dutch SSTs tested by STOWa and the Watts et al. SST, all with doubled SWDs, and the Darvill new (4.1 m) and old (2.5 m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also done. While the design of the internal features of the SST, such as baffling, have a marked influence on the effluent SS concentration for underloaded SSTs, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST, In the meantime until more information is obtained, it would appear that from the simulations so far that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais remains a reasonable value to apply in the design of full scale SSTs--for deep SSTs (4 m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5 m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, that this be avoided and that (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the appropriate flux rating is applied to the 1DFT estimate of the surface area.
Josberger, E.G.; Gloersen, P.; Chang, A.; Rango, A.
1996-01-01
Understanding the passive microwave emissions of a snowpack, as observed by satellite sensors, requires knowledge of the snowpack properties: water equivalent, grain size, density, and stratigraphy. For the snowpack in the Upper Colorado River Basin, measurements of snow depth and water equivalent are routinely available from the U.S. Department of Agriculture, but extremely limited information is available for the other properties. To provide this information, a field program from 1984 to 1995 obtained profiles of snowpack grain size, density, and temperature near the time of maximum snow accumulation, at sites distributed across the basin. A synoptic basin-wide sampling program in 1985 showed that the snowpack exhibits consistent properties across large regions. Typically, the snowpack in the Wyoming region contains large amounts of depth hoar, with grain sizes up to 5 mm, while the snowpack in Colorado and Utah is dominated by rounded snow grains less than 2 mm in diameter. In the Wyoming region, large depth hoar crystals in shallow snowpacks yield the lowest emissivities or coldest brightness temperatures observed across the entire basin. Yearly differences in the average grain sizes result primarily from variations in the relative amount of depth hoar within the snowpack. The average grain size for the Colorado and Utah regions shows much less variation than do the grain sizes from the Wyoming region. Furthermore, the greatest amounts of depth hoar occur in the Wyoming region during 1987 and 1992, years with strong El Nin??o Southern Oscillation, but the Colorado and Utah regions do not show this behavior.
Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, J. LaRue; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.
2002-01-01
Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation component of 0.5 foot, is estimated to be about 6,000 acre-feet. Annual subsurface outflow from Oasis Valley into the Amargosa Desert is estimated to be between 30 and 130 acre-feet. Estimates of total annual ground-water withdrawal from Oasis Valley by municipal and non-municipal users in 1996 and 1999 are 440 acre-feet and 210 acre-feet, respectively. Based on these values, natural annual ground-water discharge from Oasis Valley is about 6,100 acre-feet. Total annual discharge was 6,500 acre-ft in 1996 and 6,300 acre-ft in 1999. This quantity of natural ground-water discharge from Oasis Valley exceeds the previous estimate made in 1962 by a factor of about 2.5. Water levels were measured in Oasis Valley to gain additional insight into the ET process. In shallow wells, water levels showed annual fluctuations as large as 7 feet and daily fluctuations as large as 0.2 foot. These fluctuations may be attributed to water loss associated with evapotranspiration. In shallow wells affected by ET, annual minimum depths to water generally occurred in winter or early spring shortly after daily ET reached minimum rates. Annual maximum depths to water generally occurred in late summer or fall shortly after daily ET reached maximum rates. The magnitude of daily water-level fluctuations generally increased as ET increased and decreased as depth to water increased.
High aeration rate enhances flow stratification in full-scale oxidation ditch.
Diamantis, Vasileios; Papaspyrou, Ioannis; Melidis, Parasxos; Aivasidis, Alexander
2010-02-01
Aerated channel reactors with a uniform field of aeration may display flow stratification and short-circuit phenomena in wastewater treatment systems. In this study, we present data suggesting that flow stratification is closely related to the aeration rate and the arrangement of aerators. A full-scale oxidation ditch, with a total volume of 6,500 m(3) and a membrane-diffused aerated zone of 60 x 7 x 5 m (length-width-depth), was selected for water velocity measurements. Two profiles of the oxidation ditch were studied in detail: the first one was at the end of the aerated zone and the second one at the end of the anoxic zone. The results of this work demonstrate that the horizontal water velocity at the end of the aerated zone displayed significant stratification, with maximum velocity near the water surface (0.5-0.7 m/s) and almost zero velocity at a depth of 2.5 m. At the end of the anoxic zone, water velocity was uniform and equal to 0.27-0.31 m/s. Increasing the aeration rate from 1,800 to 4,300 m(3)/h, almost 90% of the water flow was found to discharge through the upper-half of the channel reactor profile. Different options to mitigate flow stratification of the oxidation ditch are discussed in this paper.
Palla, A; Gnecco, I; La Barbera, P
2017-04-15
In the framework of storm water management, Domestic Rainwater Harvesting (DRWH) systems are recently recognized as source control solutions according to LID principles. In order to assess the impact of these systems in storm water runoff control, a simple methodological approach is proposed. The hydrologic-hydraulic modelling is undertaken using EPA SWMM; the DRWH is implemented in the model by using a storage unit linked to the building water supply system and to the drainage network. The proposed methodology has been implemented for a residential urban block located in Genoa (Italy). Continuous simulations are performed by using the high-resolution rainfall data series for the ''do nothing'' and DRWH scenarios. The latter includes the installation of a DRWH system for each building of the urban block. Referring to the test site, the peak and volume reduction rate evaluated for the 2125 rainfall events are respectively equal to 33 and 26 percent, on average (with maximum values of 65 percent for peak and 51 percent for volume). In general, the adopted methodology indicates that the hydrologic performance of the storm water drainage network equipped with DRWH systems is noticeable even for the design storm event (T = 10 years) and the rainfall depth seems to affect the hydrologic performance at least when the total depth exceeds 20 mm. Copyright © 2017 Elsevier Ltd. All rights reserved.
CO2, CH4, and DOC Flux During Long Term Thaw of High Arctic Tundra
NASA Astrophysics Data System (ADS)
Stackhouse, B. T.; Vishnivetskaya, T. A.; Layton, A.; Bennett, P.; Mykytczuk, N.; Lau, C. M.; Whyte, L.; Onstott, T. C.
2013-12-01
Arctic regions are expected to experience temperature increases of >4° C by the end of this century. This warming is projected to cause a drastic reduction in the extent of permafrost at high northern latitudes, affecting an estimated 1000 Pg of SOC in the top 3 m. Determining the effects of this temperature change on CO2 and CH4 emissions is critical for defining source constraints to global climate models. To investigate this problem, 18 cores of 1 m length were collected in late spring 2011 before the thawing of the seasonal active layer from an ice-wedge polygon near the McGill Arctic Research Station (MARS) on Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45). Cores were collected from acidic soil (pH 5.5) with low SOC (~1%), summertime active layer depth between 40-70 cm (2010-2013), and sparse vegetation consisting primarily of small shrubs and sedges. Cores were progressively thawed from the surface over the course of 14 weeks to a final temperature of 4.5° C and held at that temperature for 15 months under the following conditions: in situ water saturation conditions versus fully water saturated conditions using artificial rain fall, surface light versus no surface light, cores from the polygon edge, and control cores with a permafrost table maintained at 70 cm depth. Core headspaces were measured weekly for CO2, CH4, H2, CO, and O2 flux during the 18 month thaw experiment. After ~20 weeks of thawing maximum, CO2 flux for the polygon edge and dark treatment cores were 3.0×0.7 and 1.7×0.4 mmol CO2 m-2 hr-1, respectively. The CO2 flux for the control, saturated, and in situ saturation cores reached maximums of 0.6×0.2, 0.9×0.5, and 0.9×0.1 mmol CO2 m-2 hr-1, respectively. Field measurements of CO2 flux from an adjacent polygon during the mid-summer of 2011 to 2013 ranged from 0.3 to 3.7 mmol CO2 m-2 hr-1. Cores from all treatments except water saturated were found to consistently oxidize CH4 at ~atmospheric concentrations (2 ppmv) with a maximum rate of -196×12 (dark) nmol CH4 m-2 hr-1. Saturated cores occasionally acted as slight CH4 sources (17×17 nmol CH4 m-2 hr-1) but were generally found to still behave as CH4 sinks (maximum rate -93×56 nmol CH4 m-2 hr-1). Dissolved CH4 in the permafrost pore water immediately upon thaw was ~0.5 μM in all treatments, and remained at this concentration in the saturated cores. In in situ water saturation treatments, however, pore water CH4 concentrations decreased from 0.6×0.3 μM to 0.2×0.1 μM over the course of three weeks without release into the core headspace. This is likely due to aerobic methanotrophy, as the concentration of genomic sequences associated with methanotrophic bacteria was found to be 30 times greater in the upper 60 cm than in the permafrost. Sustained concentrations of CH4 in the deeper portion of saturated cores indicated that methanogenesis is occurring at depths near and below the permafrost table. Measurements of in situ DOC were 0.22×0.05 mmol L-1, whereas core DOC values increased to a maximum of >1.7 mmol L-1 (primarily acetate) during the course of the thawing experiment. These findings indicate that in a warming Arctic, even under various hydrological regimes, these soil types will be able to act as a sink of atmospheric CH4, a moderate source of CO2 and a potential source for DOC.
NASA Astrophysics Data System (ADS)
van Hal, Ralf; van Kooten, Tobias; Rijnsdorp, Adriaan D.
2016-01-01
Changes in spatial distribution in several fish species have been related to recent increase in global temperature. In the North Sea, both a poleward shift and a shift to deeper water have been observed. Here, we study the underlying mechanism of these shifts in a comparative study of the changes in distribution of two boreal flatfish species (plaice Pleuronectes platessa and dab Limanda limanda) and three Lusitanian flatfish species (sole Solea solea, solenette Buglossidium luteum, and scaldfish Arnoglossus laterna) as recorded in annual bottom trawl surveys carried out in the North Sea in late summer since 1985. The distribution is analysed in relation to the bottom temperature at the time of the survey as well as to the seasonal maximum bottom temperature earlier in the year. It is shown that the boreal species plaice and dab moved to deeper water and maintained the seasonal maximum temperature that they experienced in earlier periods, while the Lusitanian species sole, solenette, and scaldfish experienced an increase in the seasonal maximum temperature that they experienced while maintaining their depth distribution. This overall response varied between length classes, reflecting a preference for higher temperature of the smaller length classes. The results lend support to the hypothesis that the fish displayed a direct response to the maximum temperature that occurred during the growth season before the time of sampling.
Evaluation of unsaturated-zone solute-transport models for studies of agricultural chemicals
Nolan, Bernard T.; Bayless, E. Randall; Green, Christopher T.; Garg, Sheena; Voss, Frank D.; Lampe, David C.; Barbash, Jack E.; Capel, Paul D.; Bekins, Barbara A.
2005-01-01
Of the models tested, RZWQM, HYDRUS2D, VS2DT, GLEAMS and PRZM had graphical user interfaces. Extensive documentation was available for RZWQM, HYDRUS2D, and VS2DT. RZWQM can explicitly simulate water and solute flux in macropores, and both HYDRUS2D and VS2DT can simulate water and solute flux in two dimensions. The version of RZWQM tested had a maximum simulation depth of 3 meters. The complex models simulate the formation, transport, and fate of degradates of up to three to five compounds including the parent, with the exception of VS2DT, which simulates the transport and fate of a single compound.
Water vapor in the Martian atmosphere by SPICAM IR/Mars-Express
NASA Astrophysics Data System (ADS)
Trokhimovskiy, Alexander; Fedorova, Anna; Korablev, Oleg; Bertaux, Jean-Loup; Villard, Eric; Rodin, Alexander V.
Introduction SPICAM experiment along with PFS and OMEGA spectrometers on Mars Express has a capability to sound the water vapor in the atmosphere. The results of H2O measurements have been intensively published during last years [1-6]. Here we present the new analysis of SPICAM IR water vapor measurements, covering two Martian years. The near-IR channel of SPICAM experiment on Mars Express spacecraft is a 800-g acousto-optic tunable filter (AOTF)-based spectrometer operating in the spectral range of 1-1.7 m with resolving power of 2000 [7, 8]. The nadir measurements of H2O in the 1.37-m spectral band is one of the main objectives of the experiment. Data treatment As compared with previous analysis of water vapor presented in [4] we used the spectroscopic database HITRAN2004 [9] instead of HITRAN 2000 and the most recent measurements of the water line-width broadening in CO2 atmosphere. Latest version HITRAN2008 doesn't have any meaningful changes in water vapour lines, which are used for retrievment. Martian Climate Database V4.2 [10] was adopted for modelling of synthetic spectra and a scenario based on TES MY24 was used. The spare model of SPICAM IR instrument was recalibrated in June 2007 in Reims, to analyze specifically the sensitivity to the H2O vapor band. According to laboratory measurements, a leakage from the AOTF is responsible up to 5 Radiative transfer modelling and results Sensitivity of retrieval to aerosol scattering and different vertical distributions of aerosol and water vapor was analyzed for H2O absorption band at 1.38 m and 2.56 m for different dust particles. Dependences of equivalent width of the H2O band on the water vapor abundance and aerosol optical depth for different vertical distribution of water vapor and aerosol optical depth are obtained. A number of orbits processed with "honest" aerosol account, in some cases difference to clear atmosphere approach is meaningful. Open questions for further processing are great demand in computer resources and uncertainty about Martian atmosphere octal depths. Right now we are using data from SPICAM UV channel and PFS instrument onboard Mars Express. Calculations of Martian atmospheric dust optical for different particle models properties are done as well to shift data from one wavelength to another For today SPICAM data from January 2004 to January 2010, i.e. three Martian years, is fully processed in aspect of water vapor retrievment in the assumption of clear atmosphere. The seasonal trend of water vapor obtained by SPICAM IR is consistent with TES results and disagrees with MAWD South pole maximum measurements. The maximum abundance is 50-55 pr. m at the North pole (during MY28 data are missing) and 13-16 pr.m at the South pole. The northern tropical maximum amounts to 11-14 pr m. The seasonal trend of water vapor obtained by SPICAM IR is consistent for MY27 with TES results [11]. The South Pole maximum for MY28 agrees well with the MAWD South Pole measurements in 1977 [12]. It assumes the same dust conditions and global dust storm happened at MY28 Ls 270 like during the MAWD observations. The maximum near 30-60S at Ls 260 relates to Hellas observations. Recent observations of water vapour distribution during the same period by CRISM spectrometer onboard Mars Reconnaissance Orbiter support these results [6] References [1] Fouchet, T., (2007), Icarus 190, 32-49. [2] Melchiorri, R. (2007), PSS 55, 333-342. [3] Encrenaz, Th. (2005), AA 441, L9-L12. [4] Fedorova, A. et al. (2006), JGR 111, DOI:10.1029/2006JE002695. [5] R. Melchiorri. et al. (2009), Icarus, Volume 201, Issue 1, May 2009, Pages 102-112. [6] Smith, M. et al. (2009), JGR 114, , DOI:10.1029/2008JE003288, 2009 [7] Bertaux, J.-L. et al. (2006), JGR 111, DOI:10.1029/2006JE002690. [8] Korablev, O. et al. (2006), JGR 111, DOI:10.1029/2006JE002696. [9] Rothman, L.S. et al. (2005), JQSRT, 96, 139-204. [10] Forget, F. et al. (2007), LPICo1353.3098F. [11] Smith, M., (2004), Icarus 167, 148-165. [12] Jakosky, B. M., and C. B. Farmer, (1982), J. Geophys. Res., 87, B4, 2999-3019
NASA Astrophysics Data System (ADS)
Pimenov, Nikolay; Kanapatskiy, Timur; Sivkov, Vadim; Toshchakov, Stepan; Korzhenkov, Aleksei; Ulyanova, Marina
2016-04-01
Comparison of the biogeochemical and microbial features was done for the gas-bearing and background sediments as well as near-bottom water of the Gdansk Deep, The Baltic Sea. Data were received in October, 2015 during 64th cruise of the R/V Akademik Mstislav Keldysh. Gas-bearing sediments were sampled within the known pockmark (Gas-Point, depth 94 m). Background sediments area (BG-Point, depth 86 m) was located several km off the pockmark area. The sulphate concentration in the pore water of the surface sediment layer (0-5 cm) of Gas-Point was 9,7 mmol/l, and sharply decreased with depth (did not exceed 1 mmol/l deeper than 50 cm). The sulphate concentration decrease at BG-Point also took place but was not so considerable. Sulphate concentration decrease is typical for the organic rich sediments of the high productive areas, both as for the methane seep areas. Fast sulphate depletion occurs due to active processes of its microbial reduction by consortium of the sulphate-reduction bacteria, which may use low-molecular organic compounds or hydrogen, formed at the different stages of the organic matter destruction; as well as within the process of the anaerobic methane oxidation by consortium of the methane-trophic archaea and sulphate-reduction bacteria. Together with sulphate concentration decrease the methane content increase, typical for the marine sediments, occurred. At the Gas-Point the methane concentration varied within 10 μmol/dm3 in the surface layer till its maximum at sediment horizon of 65 cm (5 mmol/dm3), and decreased to 1.5 mmol/dm3 at depth of 300 cm. The BG-Point maximum values were defined at sediment horizon 6 cm (2,6 μmol/dm3). Methane sulfate transition zone at the Gas-Point sediments was at 25-35 cm depth; whereas it was not defined at the BG-Point mud. High methane concentration in the gas-bearing sediments results in the formation of the methane seep from the sediments to the near-bottom water. So the Gas-Point near-bottom waters were characterized by high methane concentration (0.36-0.50 μmol/l) even in the water 2-5 m above the bottom (0.08-0.28 μmol/l), whereas at the BG-Point sediments methane concentration in the near-bottom water was 0.06-0.08 μmol/l. In order to get insights into the structure of microbial community responsible for realization of these redox processes we performed microbial community profiling using high-throughput 16S amplicon sequencing. DNA was extracted from sediments and water column in pockmark and background zones. NGS libraries were prepared with fusion primers for V4 variable region (Caporaso et al., 2012) and sequenced on the MiSeq system. Results well correlated with new data obtained from the analysis of the intensity of microbial processes. The study was financed by the Russian Scientific Fund (grant 14-37-00047). Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012 Aug;6(8):1621-4
NASA Astrophysics Data System (ADS)
Celussi, Mauro; Del Negro, Paola
2012-12-01
The degradation of organic matter along the water column is mediated by enzymes released into the environment by planktonic organisms. Variations in enzymes profiles (types and levels of activity) reflect the trophic status of the environment and could be caused by shifts in the dominant species or in the level of enzyme expression by the same species in response to changes in the spectrum of organic substrates. To explore this issue, we examined the maximum rates of hydrolysis of 6 different enzymes (protease, α-glucosidase, β-glucosidase, β-galactosidase, alkaline phosphatase and lipase) along the water column (4 depths) at a coastal station in the Gulf of Trieste (northern Adriatic Sea), from 2000 to 2005. Most of the studied enzymes exhibited a pronounced seasonal variability with winter minima and maxima from April to October. During summer, alkaline phosphatase, lipase and protease reached the highest activities, while polysaccharide degradation prevailed in spring and autumn, associated to phytoplankton blooms. Phosphatase/protease activities ratio was generally low, indicating that microbial communities were rarely P-limited, possibly because of the use of organic P sources. A pronounced interannual variability of degradation patterns was found, with maximum rates of protease being the highest in most of the samples, followed by the alkaline phosphatase's ones. Water column features greatly affected hydrolysis rates, being degradation of linear polysaccharides, lipids, phosphorilated compounds and polypeptides significantly different at different depths during stratified condition. Mixing processes affected especially α-glucosidase activity, possibly as a consequence of resuspension of organic matter from the seabed. Large-impact phenomena such as the 2003 heat wave and mucilage influenced the degradation of specific substrates. Mucilage enhanced lipase, phosphatase and protease, whereas a pronounced inhibition characterised phosphatase and protease during summer 2003.
Rain‐induced subsurface airflow and Lisse effect
Guo, Haipeng; Jiao, Jiu J.; Weeks, Edwin P.
2008-01-01
Water‐level increase after rainfall is usually indicative of rainfall recharge to groundwater. This, however, may not be true if the Lisse effect occurs. This effect represents the water‐level increase in a well driven by airflow induced by an advancing wetting front during highly intensive rains. The rainwater, which may behave like a low‐permeability lid, seals the ground surface so that the air pressure beneath the wetting front is increased because of air compression due to downward movement of the wetting front. A rapid and substantial rise of the water level in the well screened below water table, which bears no relationship to groundwater recharge, can be induced when various factors such as soil properties and the rain‐runoff condition combine favorably. A transient, three‐dimensional and variably saturated flow model was employed to study the air and groundwater flows in the soil under rain conditions. The objectives of this paper are two‐fold: to evaluate the reliability of the theory of the Lisse effect presented by Weeks to predict its magnitude in modeled situations that mimic the physical complexity of real aquifers, and to conduct parametric studies on the sensitivity of the water‐level rise in the well to soil properties and the rain event. The simulation results reveal that the magnitude of the Lisse effect increases with the ponding depth. Soil permeability plays a key role in generating the Lisse effect. The water‐level rise in the well is delayed relative to the air‐pressure rise in the unsaturated zone when the soil permeability is low, and the maximum water‐level rise is less than the maximum air pressure induced by rain infiltration. The simulation also explores the sensitivity of the Lisse effect to the van Genuchten parameters and the water table depth.
Observations of seasonal exchange in the Celtic Sea slope region from underwater gilders
NASA Astrophysics Data System (ADS)
Porter, Marie; Inall, Mark; Smeed, David; Palmer, Matthew; Dumont, Estelle; Aleynik, Dmitry
2015-04-01
Between June 2012 and January 2013, four underwater gliders, profiling to a maximum depth of 1000m, occupied a transect between 47.6°N, 10.3°W and 48.4°N, 9.3°W, perpendicular to the Celtic Sea continental slope. Due to the significant and well-documented internal tide activity in this region and the relatively slow through-water speed of gliders it is first demonstrated that the chosen sampling methodology minimised aliasing of the internal tide. Gliders were flown along a repeat transect and care was taken to ensure that each location was sampled at a different phase of the tide on repeat occupations. Through monthly averaging of the transect data, the effects of the internal tide are minimised and the lower frequency processes made visible. In this presentation we highlight the importance of the lower frequency variability in contributing to cross-slope exchange. Analysis of monthly averaged glider transect data suggests two distinct regimes; 1) Summer, June - October, when the surface water was temperature stratified and, 2) Winter, from October to January, when the seasonal thermocline was mixed down to below the depth of the shelf break (200 m). During the stratified summer months a well-defined shelf break salinity front limits the exchange of water between the ocean and the shelf, preventing the spread of the more saline, sub-surface ocean water (centred at ~150m) onto the shelf. Nevertheless, some cross-slope flow is identified during these months: an intermediate depth salinity minimum (centred at ~600m) is observed to upwell (from 600m to 200-300m) up the slope, sometimes continuing onto the shelf. As the stratification is eroded during the winter months, subsurface upwelling switches to downwelling, and the intermediate depth salinity minimum (~600m) retreats away from the slope region removing it as a potential source of oceanic water on the shelf. Downwelling near to the slope does however allow for an intrusion of the shallower high salinity water onto the shelf reducing the control of the shelf break salinity front, although it has not been ascertained whether this extends further onto the shelf than the shelf break region.
NASA Astrophysics Data System (ADS)
Maycas, Encarna Ribera; Bourdillon, André; Macquart-Moulin, Claude; Passelaigue, Françoise; Patriti, Gilbert
1999-10-01
The bathymetric distribution, abundance and diel vertical migrations (DVM) of zooplankton were investigated along the axis of the Cap-Ferret Canyon (Bay of Biscay, French Atlantic coast) by a consecutive series of synchronous net hauls that sampled the whole water column (0-2000 m in depth) during a diel cycle. The distribution of appendicularians (maximum 189 individuals m -3), cladocerans (maximum 287 individuals m -3), copepods (copepods<4 mm, maximum 773 individuals m -3, copepods>4 mm, maximum 13 individuals m -3), ostracods (maximum 8 individuals m -3), siphonophores (maximum >2 individuals m -3) and peracarids (maximum >600 individuals 1000 m -3) were analysed and represented by isoline diagrams. The biomass of total zooplankton (maximum 18419 μg C m -3, 3780 μg N m -3) and large copepods (>4 mm maximum 2256 μg C m -3, 425 μg N m -3) also were determined. Vertical migration was absent or affected only the epipelagic zone for appendicularians, cladocerans, small copepods and siphonophores. Average amplitude of vertical migration was about 400-500 m for ostracods, some hyperiids and mysids, and large copepods, which were often present in the epipelagic, mesopelagic, and bathypelagic zones. Large copepods can constitute more than 80% of the biomass corresponding to total zooplankton. They may play an important role in the active vertical transfer of carbon and nitrogen.
Hata, Kenji; Kawakami, Kazuto; Kachi, Naoki
2016-03-01
The control of dominant, non-native trees can alter the water balance of soils in forest ecosystems via hydrological processes, which results in changes in soil water environments. To test this idea, we evaluated the effects of the mortality of an invasive tree, Casuarina equisetifolia Forst., on the water content of surface soils on the Ogasawara Islands, subtropical islands in the northwestern Pacific Ocean, using a manipulative herbicide experiment. Temporal changes in volumetric water content of surface soils at 6 cm depth at sites where all trees of C. equisetifolia were killed by herbicide were compared with those of adjacent control sites before and after their mortality with consideration of the amount of precipitation. In addition, the rate of decrease in the soil water content during dry periods and the rate of increase in the soil water content during rainfall periods were compared between herbicide and control sites. Soil water content at sites treated with herbicide was significantly higher after treatment than soil water content at control sites during the same period. Differences between initial and minimum values of soil water content at the herbicide sites during the drying events were significantly lower than the corresponding differences in the control quadrats. During rainfall periods, both initial and maximum values of soil water contents in the herbicided quadrats were higher, and differences between the maximum and initial values did not differ between the herbicided and control quadrats. Our results indicated that the mortality of non-native trees from forest ecosystems increased water content of surface soils, due primarily to a slower rate of decrease in soil water content during dry periods. Copyright © 2015 Elsevier B.V. All rights reserved.
Geology and ground-water resources of the Deer Lodge Valley, Montana
Konizeski, Richard L.; McMurtrey, R.G.; Brietkrietz, Alex
1968-01-01
The Deer Lodge Valley is a basin trending north-south within Powell, Deer Lodge, and Silver Bow Counties in west-central Montana, near the center of the Northern Rocky Mountains physiographic province. It trends northward between a group of relatively low, rounded mountains to the east and the higher, more rugged Flint Creek Range to the west. The Clark Fork and its tributaries drain the valley in a northerly direction. The climate is semiarid and is characterized by long cold winters and short cool summers. Agriculture and ore refining are the principal industries. Both are dependent on large amounts of water. The principal topographic features are a broad lowland, the Clark Fork flood plain, bordered by low fringing terraces that are in turn bordered by broad, high terraces, which slope gently upward to the mountains. The high terraces have been mostly obscured in the south end of the valley by erosion and by recent deposition of great coalescent fans radiating outward frown the mouths of various tributary canyons. The mountains east of the Deer Lodge Valley are formed mostly of Cretaceous sedimentary and volcanic rocks and a great core of Upper Cretaceous to lower Tertiary granitic rocks; those west of the valley are formed of Precambrian to Cretaceous sedimentary rocks and a core of lower Tertiary granitic rocks. Field relationships, gravimetric data, and seismic data indicate that the valley is a deep graben, which formed in early Tertiary time after emplacement of the Boulder and Philipsburg batholiths. During the Tertiary Period the valley was partly filled to a maximum depth of more than 5,500 feet with erosional detritus that came from the surrounding mountains and was interbedded with minor amounts of volcanic ejecta. This material accumulated in a great variety of local environments. Consequently the resultant deposits are of extremely variable lithology in lateral and vertical sequence. The deposits grade from unconsolidated to well-cemented and from clay to boulder-sized aggregates. Throughout most of the area the strata dip gently towards the valley axis, but along the western margins of the valley they dip steeply into the mountains. In late Pliocene or early Pleistocene the Tertiary strata were eroded to a nearly regular valley divide surface. In the western part of the valley the erosion surface was thinly mantled by glacial debris from the Flint Creek Range. Still later, probably during several interglacial intervals, the Clark Fork and its tributaries entrenched themselves in the Tertiary strata to an average depth of about 150 feet. The resultant erosional features were further modified by Wisconsin to Recent glaciofluvial deposition. Three east-west cross .sections and a corrected gravity map were drawn for the valley. They indicate a maximum depth of fill of more than 5,500 feet in the southern part. Depths decrease to the north to approximately 2,300 feet near the town of Deer Lodge. The principal source of ground water in the Deer Lodge Valley is the upper few hundred feet of unconsolidated valley fill. Most of the wells tapping these deposits range in depth from a few feet to 250 feet. Water levels range from somewhat above land surface (in flowing wells) to about 150 feet below. Yields of the wells range from a few gallons per minute to 1,000 gallons per minute. Generally, wells having the highest yields are on the flood plain of the Clark Fork or the coalescent fans of Warm Springs and Mill Creeks. Discharge of ground water by seepage into streams, by evapotranspiration, and by pumping from wells causes a gradual lowering of the water table. Each spring and early summer, seepage of water from irrigation and streams and infiltration of water from snowmelt and precipitation replenish the ground-water reservoir. Seasonal fluctuation of the water table generally is less than 10 feet. The small yearly water table fluctuation indicates that recharge about balances discharge from th
NASA Astrophysics Data System (ADS)
Gao, Wei; Wang, Zhenyan; Zhang, Kainan
2017-11-01
Based on the conductivity, temperature and depth (CTD) data collected at 93 hydrographic stations during a marine cruise and on contemporary satellite altimeter observations, a series of eddies have been observed passing over the stratified upper water of the Parece Vela Basin. The results from hydrographic measurements and in situ chlorophyll fluorescence measurements have revealed that these eddies exerted significant controlling effects on the thermohaline structure and chlorophyll distribution, especially on the prevalent subsurface chlorophyll maximum layer (SCML). Based on these observations and particulate beam attenuation coefficient (cp) data, the in situ phytoplankton bloom around the pycnocline can be largely attributable to the formation of a well-developed SCML in the studied system. The uplift of the cold subsurface water within the cyclone, shoaling the pycnocline to a shallower layer, resulted in a low-temperature anomaly and different salinity anomalies at different depths. This uplift in the cyclone further caused the SCML to appear at a shallower depth with a higher in situ chlorophyll concentration than that in the normal domain. Conversely, the sinking of the warm surface water to the subsurface layer within the anticyclone depressed the pycnocline to a deeper layer and generated a high-temperature anomaly and opposite salinity anomalies compared with the cyclone. The sinking of the pycnocline within the anticyclone considerably influenced the characteristics of the SCML, which had a deeper depth and a lower in situ chlorophyll concentration than that of the normal sea. This study contributes rare quasi-synchronous CTD observations capturing mesoscale eddies and provides valuable descriptions of the variations in the SCML under the influence of mesoscale eddies based on in situ optical measurements from the seldom-discussed western North Pacific.
Goff, F.; Goff, S.J.; Kelkar, S.; Shevenell, L.; Truesdell, A.H.; Musgrave, J.; Rufenacht, H.; Flores, W.
1991-01-01
Results of drilling, logging, and testing of three exploration core holes, combined with results of geologic and hydrogeochemical investigations, have been used to present a reservoir model of the Platanares geothermal system, Honduras. Geothermal fluids circulate at depths ??? 1.5 km in a region of active tectonism devoid of Quaternary volcanism. Large, artesian water entries of 160 to 165??C geothermal fluid in two core holes at 625 to 644 m and 460 to 635 m depth have maximum flow rates of roughly 355 and 560 l/min, respectively, which are equivalent to power outputs of about 3.1 and 5.1 MW(thermal). Dilute, alkali-chloride reservoir fluids (TDS ??? 1200 mg/kg) are produced from fractured Miocene andesite and Cretaceous to Eocene redbeds that are hydrothermally altered. Fracture permeabillity in producing horizons is locally greater than 1500 and bulk porosity is ??? 6%. A simple, fracture-dominated, volume-impedance model assuming turbulent flow indicates that the calculated reservoir storage capacity of each flowing hole is approximately 9.7 ?? 106 l/(kg cm-2), Tritium data indicate a mean residence time of 450 yr for water in the reservoir. Multiplying the natural fluid discharge rate by the mean residence time gives an estimated water volume of the Platanares system of ??? 0.78 km3. Downward continuation of a 139??C/km "conductive" gradient at a depth of 400 m in a third core hole implies that the depth to a 225??C source reservoir (predicted from chemical geothermometers) is at least 1.5 km. Uranium-thorium disequilibrium ages on calcite veins at the surface and in the core holes indicate that the present Platanares hydrothermal system has been active for the last 0.25 m.y. ?? 1991.
Calculating maximum frost depths at Mn/ROAD : winters 1993-94, 1994-95 and 1995-96
DOT National Transportation Integrated Search
1997-03-01
This effort involved calculating maximum frost penetration depths for each of the 40 test cells at Mn/ROAD, the Minnesota Department of Transportation's pavement testing facility, for the 1993-94, 1994-95, and 1995-96 winters. The report compares res...
Maximum rooting depth of vegetation types at the global scale.
Canadell, J; Jackson, R B; Ehleringer, J B; Mooney, H A; Sala, O E; Schulze, E-D
1996-12-01
The depth at which plants are able to grow roots has important implications for the whole ecosystem hydrological balance, as well as for carbon and nutrient cycling. Here we summarize what we know about the maximum rooting depth of species belonging to the major terrestrial biomes. We found 290 observations of maximum rooting depth in the literature which covered 253 woody and herbaceous species. Maximum rooting depth ranged from 0.3 m for some tundra species to 68 m for Boscia albitrunca in the central Kalahari; 194 species had roots at least 2 m deep, 50 species had roots at a depth of 5 m or more, and 22 species had roots as deep as 10 m or more. The average for the globe was 4.6±0.5 m. Maximum rooting depth by biome was 2.0±0.3 m for boreal forest. 2.1±0.2 m for cropland, 9.5±2.4 m for desert, 5.2±0.8 m for sclerophyllous shrubland and forest, 3.9±0.4 m for temperate coniferous forest, 2.9±0.2 m for temperate deciduous forest, 2.6±0.2 m for temperate grassland, 3.7±0.5 m for tropical deciduous forest, 7.3±2.8 m for tropical evergreen forest, 15.0±5.4 m for tropical grassland/savanna, and 0.5±0.1 m for tundra. Grouping all the species across biomes (except croplands) by three basic functional groups: trees, shrubs, and herbaceous plants, the maximum rooting depth was 7.0±1.2 m for trees, 5.1±0.8 m for shrubs, and 2.6±0.1 m for herbaceous plants. These data show that deep root habits are quite common in woody and herbaceous species across most of the terrestrial biomes, far deeper than the traditional view has held up to now. This finding has important implications for a better understanding of ecosystem function and its application in developing ecosystem models.
Dynamic Response and Residual Helmet Liner Crush Using Cadaver Heads and Standard Headforms.
Bonin, S J; Luck, J F; Bass, C R; Gardiner, J C; Onar-Thomas, A; Asfour, S S; Siegmund, G P
2017-03-01
Biomechanical headforms are used for helmet certification testing and reconstructing helmeted head impacts; however, their biofidelity and direct applicability to human head and helmet responses remain unclear. Dynamic responses of cadaver heads and three headforms and residual foam liner deformations were compared during motorcycle helmet impacts. Instrumented, helmeted heads/headforms were dropped onto the forehead region against an instrumented flat anvil at 75, 150, and 195 J. Helmets were CT scanned to quantify maximum liner crush depth and crush volume. General linear models were used to quantify the effect of head type and impact energy on linear acceleration, head injury criterion (HIC), force, maximum liner crush depth, and liner crush volume and regression models were used to quantify the relationship between acceleration and both maximum crush depth and crush volume. The cadaver heads generated larger peak accelerations than all three headforms, larger HICs than the International Organization for Standardization (ISO), larger forces than the Hybrid III and ISO, larger maximum crush depth than the ISO, and larger crush volumes than the DOT. These significant differences between the cadaver heads and headforms need to be accounted for when attempting to estimate an impact exposure using a helmet's residual crush depth or volume.
Self-Trail, Jean; Robinson, Marci M.; Bralower, Timothy J.; Sessa, Jocelyn A.; Hajek, Elizabeth A.; Kump, Lee R.; Trampush, Sheila M.; Willard, Debra A.; Edwards, Lucy E.; Powars, David S.; Wandless, Gregory A.
2017-01-01
The Paleocene-Eocene Thermal Maximum (PETM) was an interval of extreme warmth that caused disruption of marine and terrestrial ecosystems on a global scale. Here we examine the sediments, flora, and fauna from an expanded section at Mattawoman Creek-Billingsley Road (MCBR) in Maryland and explore the impact of warming at a nearshore shallow marine (30–100 m water depth) site in the Salisbury Embayment. Observations indicate that at the onset of the PETM, the site abruptly shifted from an open marine to prodelta setting with increased terrestrial and fresh water input. Changes in microfossil biota suggest stratification of the water column and low-oxygen bottom water conditions in the earliest Eocene. Formation of authigenic carbonate through microbial diagenesis produced an unusually large bulk carbon isotope shift, while the magnitude of the corresponding signal from benthic foraminifera is similar to that at other marine sites. This proves that the landward increase in the magnitude of the carbon isotope excursion measured in bulk sediment is not due to a near instantaneous release of 12C-enriched CO2. We conclude that the MCBR site records nearshore marine response to global climate change that can be used as an analog for modern coastal response to global warming.
NASA Astrophysics Data System (ADS)
Self-Trail, Jean M.; Robinson, Marci M.; Bralower, Timothy J.; Sessa, Jocelyn A.; Hajek, Elizabeth A.; Kump, Lee R.; Trampush, Sheila M.; Willard, Debra A.; Edwards, Lucy E.; Powars, David S.; Wandless, Gregory A.
2017-07-01
The Paleocene-Eocene Thermal Maximum (PETM) was an interval of extreme warmth that caused disruption of marine and terrestrial ecosystems on a global scale. Here we examine the sediments, flora, and fauna from an expanded section at Mattawoman Creek-Billingsley Road (MCBR) in Maryland and explore the impact of warming at a nearshore shallow marine (30-100 m water depth) site in the Salisbury Embayment. Observations indicate that at the onset of the PETM, the site abruptly shifted from an open marine to prodelta setting with increased terrestrial and fresh water input. Changes in microfossil biota suggest stratification of the water column and low-oxygen bottom water conditions in the earliest Eocene. Formation of authigenic carbonate through microbial diagenesis produced an unusually large bulk carbon isotope shift, while the magnitude of the corresponding signal from benthic foraminifera is similar to that at other marine sites. This proves that the landward increase in the magnitude of the carbon isotope excursion measured in bulk sediment is not due to a near instantaneous release of 12C-enriched CO2. We conclude that the MCBR site records nearshore marine response to global climate change that can be used as an analog for modern coastal response to global warming.
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Catalani, F.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos, A.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili, M.; Jurysek, J.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Keilhauer, B.; Kemmerich, N.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; Lago, B. L.; LaHurd, D.; Lang, R. G.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado, A.; Lorek, R.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K.-D.; Michal, S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pekala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schröder, S.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Smith, B.; Snow, G. R.; Sommers, P.; Sonntag, S.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, R. A.; Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Wileman, C.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger Collaboration
2017-12-01
We present a new method for probing the hadronic interaction models at ultrahigh energy and extracting details about mass composition. This is done using the time profiles of the signals recorded with the water-Cherenkov detectors of the Pierre Auger Observatory. The profiles arise from a mix of the muon and electromagnetic components of air showers. Using the risetimes of the recorded signals, we define a new parameter, which we use to compare our observations with predictions from simulations. We find, first, inconsistencies between our data and predictions over a greater energy range and with substantially more events than in previous studies. Second, by calibrating the new parameter with fluorescence measurements from observations made at the Auger Observatory, we can infer the depth of shower maximum Xmax for a sample of over 81,000 events extending from 0.3 to over 100 EeV. Above 30 EeV, the sample is nearly 14 times larger than what is currently available from fluorescence measurements and extending the covered energy range by half a decade. The energy dependence of ⟨Xmax⟩ is compared to simulations and interpreted in terms of the mean of the logarithmic mass. We find good agreement with previous work and extend the measurement of the mean depth of shower maximum to greater energies than before, reducing significantly the statistical uncertainty associated with the inferences about mass composition.
Evidence for a mixed mass composition at the 'ankle' in the cosmic-ray spectrum
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lautridou, P.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollant, R.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yelos, D.; Younk, P.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger Collaboration
2016-11-01
We report a first measurement for ultrahigh energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the 'ankle' at lg (E /eV) = 18.5- 19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavored as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.
Boss, E.S.; Collier, R.; Larson, G.; Fennel, K.; Pegau, W.S.
2007-01-01
Spectral inherent optical properties (IOPs) have been measured at Crater Lake, OR, an extremely clear sub-alpine lake. Indeed Pure water IOPs are major contributors to the total IOPs, and thus to the color of the lake. Variations in the spatial distribution of IOPs were observed in June and September 2001, and reflect biogeochemical processes in the lake. Absorption by colored dissolved organic material increases with depth and between June and September in the upper 300 m. This pattern is consistent with a net release of dissolved organic materials from primary and secondary production through the summer and its photo-oxidation near the surface. Waters fed by a tributary near the lake's rim exhibited low levels of absorption by dissolved organic materials. Scattering is mostly dominated by organic particulate material, though inorganic material is found to enter the lake from the rim following a rain storm. Several similarities to oceanic oligotrophic regions are observed: (a) The Beam attenuation correlates well with particulate organic material (POM) and the relationship is similar to that observed in the open ocean. (b) The specific absorption of colored dissolved organic material has a value similar to that of open ocean humic material. (c) The distribution of chlorophyll with depth does not follow the distribution of particulate organic material due to photo-acclimation resulting in a subsurface pigment maximum located about 50 m below the POM maximum. ?? 2007 Springer Science+Business Media B.V.
Evidence for a mixed mass composition at the ‘ankle’ in the cosmic-ray spectrum
Aab, Alexander
2016-09-28
Here, we report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' atmore » $$\\lg(E/{\\rm eV})=18.5-19.0$$ differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass $A > 4$. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.« less
NASA Astrophysics Data System (ADS)
Almogi-Labin, A.; Hemleben, Ch.; Deuser, W. G.
1988-03-01
A 4-year series of sediment trap samples from a depth of 3.2 km in the Sargasso Sea (32°05'N, 64°15'W) has revealed seasonal variations in the flux of euthecosomatous pteropods. Total pteropod flux is related to seasonal variations of the total particulate and organic carbon flux with a lag of 1-1.5 months. High flux of pteropods (>200 specimens m -2 day -1) occurs in late winter to mid-summer. Shells of individual pteropod species arrive in deep water in a seasonal succession similar to that in the living assemblage. Peak fluxes of Styliola subula, Clio pyramidata and Limacina bulimoides were recorded from February to May. Limacina inflata, Limacina lesueuri and Cuvierina columnella entered the trap in maximum numbers from April to mid-August. Creseis virgula conica and C. acicula were most abundant from June to late August. The latter two are non-migrating, epipelagic pteropods and comprise <10% of the assemblage. Diel migrators dominate the pteropod assemblage (92%). During the summer months they appear to migrate at greater depth, without reaching the surface water. Although many young are produced, only a small fraction, about 4% in the case of L. inflata and L. bulimoides, survives and reaches maturity. Adult shell size of L. inflata and L. bulimoides varies seasonally, reaching maximum size during spring, probably in response to increasing food availability.
NASA Astrophysics Data System (ADS)
Molodtsov, S.; Anis, A.; Marinov, I.; Cabre, A.
2016-12-01
Contemporary changes in the climate system due to anthropogenic activity have already resulted in unprecedented melting rates of the polar ice caps. This in turn may have a significant impact on the thermohaline circulation in the future. The freshening of the surface waters increases stable stratification in regions of deep water formation, eventually triggering a weakening and, ultimately, may bring to a cessation of deep convection in these regions. Here we present comparatively an analysis of the response of deep convective processes in the North Atlantic (NA) and Southern Ocean (SO) to anthropogenic forcing using output from the latest generation of Earth System Models (ESM), part of the CMIP5 intercomparison. Our findings indicate an attenuation of deep convection by the end of the 21st century from ESM simulations under representative concentration pathways (RCP) 8.5 scenario when compared to the years under historical scenario in both NA and SO. The average depth of the mixed layer in the regions studied during March/September, the months with maximum mixed layer depths in the NA/SO, respectively, was found to decrease dramatically by the end of the 21st century. Furthermore, the increase in stratification and decrease in mixed layer depths, resulting in the decay of deep convection, leads to accumulation of excess heat, previously released during the convection events, in the ocean interior in both regions.
NASA Astrophysics Data System (ADS)
Zhao, Erni; Xu, Lirong; Wang, Rongzhen
2018-01-01
Unreasonable application of irrigation and fertilizer will cause the waste of water and nitrogen and environmental pollution. In this paper, a series of soil-pit experiments were carried out to study the distribution and leaching loss of nitrogen in winter wheat’s soil. The results showed that NO3 - concentration at 20-80cm depth mainly responded to fertilizer application at the beginning of field experiment, but the amount of irrigation became the dominant factor with the growth of winter wheat. It is noteworthy that the distribution of NO3 - was mainly affected by the amount of fertilizer applied at the depth of 120-160cm in the whole period of growth of winter wheat. The accumulation position of NH4 + was deepened as the amount of irrigation increased, however, the maximum aggregation depth of ammonium nitrogen was no more than 80cm owing to its poor migration. It can be concluded that the influence of irrigation amount on the concentration of NH4 + in soil solution was more obvious than that of fertilizer. Compared with fertilizer, the amount of irrigation played a leading role in the utilization ratio of nitrogen and the yield of winter wheat. In summary, the best water and fertilizer treatment occurred in No.3 soil-pit, which meant that the middle amount of water and fertilizer could get higher wheat yield and less nitrogen leaching losses in the study area.
The Influence of Tree Species on Subsurface Stormflow at the Hillslope Scale
NASA Astrophysics Data System (ADS)
Jost, G.; Weiler, M.
2006-12-01
This study investigates the effect of Norway spruce (Picea abies (L.) Karst) and European beech (Fagus sylvatica L.), two very common tree species in Central Europe, on soil water storage and runoff response to precipitation. We postulate that on the same type of soil, spruce with its shallow rooting system leads to different soil water storage and runoff responses than the deep rooting beech. To test this hypothesis, we chose a beech and a spruce stand with comparable soil type, a stagnic cambisol with a stagnic layer in about 50 cm soil depth. In each of the two stands we sprinkled a hillslope of 6 m by 10 m with intensities of 100 mm/h and 60 mm/h for one hour each. Surface and shallow interflow as well as interflow in different soil depths was collected by inserted sheet metals and gutters in 10 cm, 30 cm and 60 cm soil depth. Soil water storage responses were measured by 48 multiplexed TDR sensors at each hillslope. TDR wave-guides (20 cm long) were installed in a 45° angle in 10 cm, 30 cm, 50 cm and 70 cm soil depth. Volumetric water content was measured in 6 minute intervals. Sprinkling experiments show that even at intensities of 100 mm/h all the applied water infiltrates, independent of the vegetation cover. The deeper soil horizons respond immediately to the applied precipitation. This vertical water flux response is larger under beech. Under spruce most of the water transport happens in the topsoil layers (upper 40 cm), whereas under beech the entire soil profile down to 80 cm soil depth reacts to sprinkling. Under spruce at intensities of 100 mm/h the whole pore space is almost filled. The larger pores in the topsoil under beech stemming from higher biogenic activity and in the subsoil from more intense rooting are still far from reaching their maximum capacity. High antecedent soil water content (around field capacity) still doesn't cause infiltration excess overland flow but the time that it takes for the soil water storage to drain to its initial value is less than one hour. The hillslope at the spruce stand produces between 23% and 28% runoff. However, the beech hillslope produces roughly twice as much. These experiments show that the interactions between tree species and soil in the vadose zone lead to different pore systems and thus different responses to subsurface stormflow. Beech with its deeper rooting systems and its higher biogenic activity (lower C/N ratio) creates a very effective preferential flow path system that leads to greater amounts of subsurface stormflow. Under high antecedent soil water storage, saturation excess overland flow is more likely to occur in soils under spruce with its smaller preferential flow system.
The geology and ground water resources of Calcasieu Parish, Louisiana
Harder, Alfred H.
1960-01-01
Large quantities of fresh ground water are available in Calcasieu Parish. Fresh water is present in sand of Recent, Pleistocene, Pliocene, and Miocene ages, although locally only small supplies for rural or stock use can be obtained from the shallow sand lenses of Recent and Pleistocene ages. The principal fresh-water-bearing sands are the '200-foot,' '500-foot,' and '700-foot' sands of the Chicot aquifer of Pleistocene age, from which 105 million gallons is pumped daily. A yield of as much as 4,500 gpm (gallons per minute) has been obtained from a single well. The sands are typical of the Chicot aquifer throughout southwestern Louisiana in that generally they grade from fine sand at the top to coarse sand and gravel at the base of the aquifer. The coefficient of permeability of the principal sands in Calcasieu Parish ranges from 660 to about 2,000 gpd (gallons per day) per square foot and averages 1,200 gpd per square foot. The permeability of the sands generally varies with textural changes. The maximum depth of occurrence of fresh ground water in Calcasieu Parish ranges from about 700 feet to 2,500 feet below mean sea level; locally, however, where the sands overlie structures associated with oil fields, the maximum depth is less than 300 feet. Pumping has caused water levels to decline, at varying rates, in all the sands. In the '200-foot' sand they are declining at a rate of about 2 feet per year. In the industrial district of Calcasieu Parish, levels in the '500-foot' sand are declining at a rate of about 5 feet per year, and in the '700-foot' sand at a rate of about 3.5 feet per year. Salt-water contamination is accompanying the water-level decline in the '700-foot' sand in the central part of the parish. Quality-of-water data indicate that water from wells screened in the Chicot aquifer generally is suitable for some uses without treatment but would require treatment to be satisfactory for other uses. The temperature of the water ranges from 70? to 79?F. The lenticular sands of Pliocene and Miocene ages have not been used as a source of fresh ground water in Calcasieu Parish; however, north of the Houston River these formations contain fresh water, and the water contained in these formations in other parts of southwestern Louisiana is known to be soft and suitable for most purposes.
NASA Technical Reports Server (NTRS)
Morris, W. D.; Witte, W. G.; Whitlock, C. H.
1980-01-01
Remote sensing of water quality is dicussed. Remote sensing penetration depth is a function both of water type and wavelength. Results of three tests to help demonstrate the magnitude of this dependence are presented. The water depth to which the remote-sensor data was valid was always less than that of the Secchi disk depth, although not always the same fraction of that depth. The penetration depths were wavelength dependent and showed the greatest variation for the water type with largest Secchi depth. The presence of a reflective plate, simulating a reflective subsurface, increased the apparent depth of light penetration from that calculated for water of infinite depth.
Baldys, Stanley; Haynie, Monti M.; Beussink, Amy M.
2014-01-01
In cooperation with the North Plains Groundwater Conservation District (NPGCD), the U.S. Geological Survey collected and analyzed water-quality samples at 30 groundwater monitor wells in the NPGCD in the Texas Panhandle. All of the wells were completed in the Ogallala Formation of the central High Plains aquifer. Samples from each well were collected during February–March 2012 and in March 2013. Depth to groundwater in feet below land surface was measured at each well before sampling to determine the water-quality sampling depths. Water-quality samples were analyzed for physical properties, major ions, nutrients, and trace metals, and 6 of the 30 samples were analyzed for pesticides. There was a strong relation between specific conductance and dissolved solids as evidenced by a coefficient of determination (R2) value of 0.98. The dissolved-solids concentration in water from five wells exceeded the secondary drinking-water standard of 500 milligrams per liter set by the U.S. Environmental Protection Agency. Water from 3 of these 5 wells was near the north central part of the NPGCD. Nitrate values exceeded the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter in 2 of the 30 wells. A sodium-adsorption ratio of 23.4 was measured in the sample collected from well Da-3589 in Dallam County, with the next largest sodium-adsorption ratio measured in the sample collected from well Da-3588 (12.5), also in Dallum County. The sodium-adsorption ratios measured in all other samples were less than 10. The groundwater was generally a mixed cation-bicarbonate plus carbonate type. Twenty-three trace elements were analyzed, and no concentrations exceeded the secondary drinking-water standard or maximum contaminant level set by the U.S. Environmental Protection Agency for water supplies. In 2012, 6 of the 30 wells were sampled for commonly used pesticides. Atrazine and its degradate 2-Chloro-4-isopropylamino-6-amino-s-triazine were detected in two samples. Tebuthiuron was detected in one sample at a detection level below the reporting level but above the long-term method detection level. There were no detections of the glyphosate, aminomethylphosphonic acid (AMPA), or glufosinate.
Did Antarctic Intermediate Water in the Southeast Pacific expanded vertically or only deepened?
NASA Astrophysics Data System (ADS)
Martinez-Mendez, G.; Lamy, F.; Mohtadi, M.; Hebbeln, D.
2017-12-01
Paleoceanographic and modelling studies have demonstrated in the last few years that deep waters are not the single protagonists in the global circulation scheme. Intermediate waters also play various and important roles. Particularly, the Antarctic Intermediate Water (AAIW) is key for the ventilation of mid-depths and thermocline levels, with its influence being noticeable till the eastern equatorial Pacific; it is involved in rapid reorganizations of the Global Circulation and also, most plausibly, in trapping and releasing atmospheric CO2 on glacial-interglacial time scales. In recent years, several records about the past variability of the AAIW have been published while they all lay at the lower edges of the influence of this water mass and, hence, mostly only conclusions about the AAIW variability at its deep boundary could be drawn. Here we present a novel record covering several glacial-interglacial cycles from the upper levels of this water mass. Site GeoB15020 was drilled with the MARUM Sea floor drill rig (MeBo) off Chile (27.29°S; 71.05°W) at 550 m water depth (core length: 78 meters composite depth). We will present δ18O, δ13C downcore records and Mg/Ca-derived ambient temperature from peak interglacial and peak glacial periods. The records will be compared with published results from Site GeoB15016 (Martínez-Méndez et al., 2013), which lays at nearly the same position but at 956 m water depth, i.e. both cores bound the main tongue of AAIW today. The results of GeoB15016 had shown increase presence of the AAIW at the site, but it was not possible to relate unequivocally this increased presence to a deepening of the core of the AAIW or to an increase in production. Results from GeoB15020 will allow answering that dichotomy. In addition, actual changes in the intrinsic characteristics of the AAIW are poorly constrained. Therefore, we will additionally present high resolution (multi-decadal time scales) δ18O, δ13C and Sortable Silt records from core GeoB3359-3 (35.23°S; 72.81°W, 678 m, 380 cm core length) to investigate fluctuations within the core of AAIW from the Last Glacial Maximum to the present and relate those to the changes observed downstream.
Shizuma, Kiyoshi; Fujikawa, Yoko; Kurihara, Momo; Sakurai, Yushi
2018-03-01
The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident on March 11, 2011, caused severe radioactive contamination in Fukushima Prefecture. In order to clarify the safety of drinking water, we have conducted radiocesium monitoring of public tap water and groundwater in Minami-Soma City, which is 10-40 km north of the nuclear power plant. The source of tap water for Minami-Soma City is groundwater, which is treated by rapid filtration before distribution in two of the three treatment plants. The tap water was collected from six stations during 2012-2016 and groundwater was collected from 11 stations with wells between 5 and 100 m deep during 2014-2016. Radiocesium contamination of groundwater has been considered unlikely in Japan because of the small vertical migration velocity of radiocesium in Japanese soil. However, radiocesium was detected in public tap water after 2012, and the maximum 137 Cs concentration of 292 mBq L -1 was observed in 2013. In all the well water, radiocesium was detected between 2014 and 2015, at concentrations similar to those observed in tap water in the same period. In tap water and groundwater, radiocesium was decreased to below the detection limit in 2016 except for four stations. Radiocesium concentration in shallow water reached a maximum between 2013 and 2015, 2-4 years after the FDNPP accident, and then decreased. The results are interpreted that dissolved 137 Cs migrated in the soil and reached aquifers of various depth. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rare earth elements in pore waters from Cabo Friós western boundary upwelling system
NASA Astrophysics Data System (ADS)
Smoak, J. M.; Silva-Filho, E. V.; Rousseau, T.; Albuquerque, A. L.; Caldeira, P. P.; Moreira, M.
2015-12-01
Rare earth elements (REE) are a group of reactive trace elements in aqueous media, they have a coherent chemical behavior with however a subtle and gradual shift in physicochemical properties allowing their use as tracers of sources and processes. Uncertainties on their oceanic inputs and outputs still remains [Arsouze et al., 2009; Siddall et al., 2008; Tachikawa et al., 2003]. The water-sediment interface were early on identified as a relevant REE source due to the high distribution coefficient between sediments and pore waters [Elderfield and Sholkovitz, 1987] and substantially higher concentration then the water column [Abbott et al., 2015; Haley et al., 2004; Sholkovitz et al., 1989; Soyol-Erdene and Huh, 2013]. Here we present a cross shelf transect of 4 short pore waters REE profiles on a 680 km2 mud bank located in the region of Cabo Frio, Brazil. This study reveals similar trends at the four sites: a REE production zone reflected by a maximum in concentration at the top of the sediment evolving with depth toward a REE consumption zone reflected by a minimum in REE concentrations. PAAS normalized patterns shows 1) a progressive depletion in LREE with depth with HREE/LREE ratios comprised between 1.1 and 1.6 in the 2 first centimeters evolving gradually to ratios comprised between 2.8 and 4.7 above 7 cm 2) A sharp gradient in negative Ce anomaly with Ce/Ce* values reaching 0.3. With maximum Nd concentrations comprised between 780 and 1200 pmol.kg and considering that seawater Nd concentrations of Brazilian shelf bottom waters are comprised between 24 and 50 pmol.Kg-1 we apply the Fick´s First Law of diffusion and estimate that 340 +/- 90 nmol. m-2 Y-1 of Nd is released in the Cabo frio´s mudbank. This flux is in the same order of magnitude of recent estimates by [Abbott et al., 2015] in the slope of Oregon´s margin. Unraveling processes responsible for the REE production zone will help to refine the global REE fluxes estimates.
Factors governing water condensation in the Martian atmosphere
NASA Technical Reports Server (NTRS)
Colburn, David S.; Pollack, J. B.; Haberle, Robert M.
1988-01-01
Modeling results are presented suggesting a diurnal condensation cycle at high altitudes at some seasons and latitudes. In a previous paper, the use of atmospheric optical depth measurements at the Viking lander site to show diurnal variability of water condensation at different seasons of the Mars year was described. Factors influencing the amount of condensation include latitude, season, atmospheric dust content and water vapor content at the observation site. A one-dimensional radiative-convective model is used herein based on the diabatic heating routines under development for the Mars General Circulation Model. The model predicts atmospheric temperature profiles at any latitude, season, time of day and dust load. From these profiles and an estimate of the water vapor, one can estimate the maximum occurring at an early morning hour (AM) and the minimum in the late afternoon (PM). Measured variations in the atmospheric optical density between AM and PM measurements were interpreted as differences in AM and PM condensation.
Baohong, Chen; Muchtar, Muswerry; Tingting, Fu; Hongzhe, Chen; Jigang, Wang; Kaiwen, Zhou; Jianguo, Du; Hui, Lin; Bin, Chen
2016-03-15
The concentrations of nutrients (NO2-N, NO3-N, NH4-N, PO4-P, and SiO3-Si) and their ratios in the Lembeh Strait were estimated in April 2013, off the northeastern coast of Sulawesi in Indonesia. The concentrations of dissolved inorganic nitrogen (DIN) (NO2-N+NO3-N+NH4-N) and PO4-P were low, with a maximum of 0.181 and 0.007 mg/L, respectively. P was found to be the limiting factor controlling phytoplankton growth overall. According to a potential eutrophication assessment model, both the surface water and the water at a depth of 15m were classified as water 1 (poor nutrition). This study provides baseline information including chemical datasets for future pollution monitoring and management programs in this area. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Glushkov, A. V.; Efimov, N. N.; Makarov, I. T.; Pravdin, M. I.; Dedenko, L. G.
1985-01-01
The extensive air shower (EAS) development model independent method of the determination of a maximum depth of shower (X sub m) is considered. X sub m values obtained on various EAS parameters are in a good agreement.
NASA Astrophysics Data System (ADS)
Tessonnier, T.; Mairani, A.; Brons, S.; Sala, P.; Cerutti, F.; Ferrari, A.; Haberer, T.; Debus, J.; Parodi, K.
2017-08-01
In the field of particle therapy helium ion beams could offer an alternative for radiotherapy treatments, owing to their interesting physical and biological properties intermediate between protons and carbon ions. We present in this work the comparisons and validations of the Monte Carlo FLUKA code against in-depth dosimetric measurements acquired at the Heidelberg Ion Beam Therapy Center (HIT). Depth dose distributions in water with and without ripple filter, lateral profiles at different depths in water and a spread-out Bragg peak were investigated. After experimentally-driven tuning of the less known initial beam characteristics in vacuum (beam lateral size and momentum spread) and simulation parameters (water ionization potential), comparisons of depth dose distributions were performed between simulations and measurements, which showed overall good agreement with range differences below 0.1 mm and dose-weighted average dose-differences below 2.3% throughout the entire energy range. Comparisons of lateral dose profiles showed differences in full-width-half-maximum lower than 0.7 mm. Measurements of the spread-out Bragg peak indicated differences with simulations below 1% in the high dose regions and 3% in all other regions, with a range difference less than 0.5 mm. Despite the promising results, some discrepancies between simulations and measurements were observed, particularly at high energies. These differences were attributed to an underestimation of dose contributions from secondary particles at large angles, as seen in a triple Gaussian parametrization of the lateral profiles along the depth. However, the results allowed us to validate FLUKA simulations against measurements, confirming its suitability for 4He ion beam modeling in preparation of clinical establishment at HIT. Future activities building on this work will include treatment plan comparisons using validated biological models between proton and helium ions, either within a Monte Carlo treatment planning engine based on the same FLUKA code, or an independent analytical planning system fed with a validated database of inputs calculated with FLUKA.
Tessonnier, T; Mairani, A; Brons, S; Sala, P; Cerutti, F; Ferrari, A; Haberer, T; Debus, J; Parodi, K
2017-08-01
In the field of particle therapy helium ion beams could offer an alternative for radiotherapy treatments, owing to their interesting physical and biological properties intermediate between protons and carbon ions. We present in this work the comparisons and validations of the Monte Carlo FLUKA code against in-depth dosimetric measurements acquired at the Heidelberg Ion Beam Therapy Center (HIT). Depth dose distributions in water with and without ripple filter, lateral profiles at different depths in water and a spread-out Bragg peak were investigated. After experimentally-driven tuning of the less known initial beam characteristics in vacuum (beam lateral size and momentum spread) and simulation parameters (water ionization potential), comparisons of depth dose distributions were performed between simulations and measurements, which showed overall good agreement with range differences below 0.1 mm and dose-weighted average dose-differences below 2.3% throughout the entire energy range. Comparisons of lateral dose profiles showed differences in full-width-half-maximum lower than 0.7 mm. Measurements of the spread-out Bragg peak indicated differences with simulations below 1% in the high dose regions and 3% in all other regions, with a range difference less than 0.5 mm. Despite the promising results, some discrepancies between simulations and measurements were observed, particularly at high energies. These differences were attributed to an underestimation of dose contributions from secondary particles at large angles, as seen in a triple Gaussian parametrization of the lateral profiles along the depth. However, the results allowed us to validate FLUKA simulations against measurements, confirming its suitability for 4 He ion beam modeling in preparation of clinical establishment at HIT. Future activities building on this work will include treatment plan comparisons using validated biological models between proton and helium ions, either within a Monte Carlo treatment planning engine based on the same FLUKA code, or an independent analytical planning system fed with a validated database of inputs calculated with FLUKA.
Oceanographic structure drives the assembly processes of microbial eukaryotic communities.
Monier, Adam; Comte, Jérôme; Babin, Marcel; Forest, Alexandre; Matsuoka, Atsushi; Lovejoy, Connie
2015-03-17
Arctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance-decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community.
NASA Astrophysics Data System (ADS)
Bayat, A.; Masoumi, A.; Khalesifard, H. R.
2010-06-01
We are reporting the results of ground-based spectroradiometric measurements on aerosols and water vapor in the atmosphere of Zanjan for the period of October 2006 to September 2008 using a Cimel CE318-2 sun-photometer. Zanjan is a city in Northwest Iran, located at 36.70° N, 48.51° E, and at an altitude of 1800 above m.s.l. The spectral aerosol optical depth, Ångström exponent, and columnar water vapor have been calculated using the data recorded by the sunphotometer through direct-beam irradiance measurements of sunlight (sun mode). The average values of aerosol optical depth at 440 nm, columnar water vapor, and the Ångström exponent, α, during the mentioned period are measured as, 0.27±0.16, 0.53±0.37 cm and 0.75±0.46, respectively. The maximum (minimum) value of the aerosol optical depth was recorded in May 2007 (January 2007), and that of columnar water vapor, in July 2007 (January 2008). Using the least-squares method, the Ångström exponent was calculated in the spectral interval 440-870 nm along with the coefficients of a second order polynomial fit (α1 and α2) to the log-log plot of aerosol optical depth versus the wavelength. The coefficient α2 shows that most of the aerosols in the Zanjan area have dimensions larger than 1 μm. The values calculated for α2-α1 indicate that 70% of the aerosols are in the coarse-mode (>1 μm) and 30% of them are in the fine-mode (<1 μm). Comparison of α2-α1 for the atmosphere over Zanjan with other regions indicates dust and anthropogenic aerosols are the most dominant aerosols in the region.
NASA Astrophysics Data System (ADS)
Hernández J., P.; Befani M., R.; Boschetti N., G.; Quintero C., E.; Díaz E., L.; Lado, M.; Paz-González, A.
2015-04-01
The Avellaneda District, located in northeastern of Santa Fe Province, Argentina, has an average annual rainfall of 1250 mm per year, but with a high variability in their seasonal distribution. Generally, the occurrence of precipitation in winter is low, while summer droughts are frequent. The yearly hydrological cycle shows a water deficit, given that the annual potential evapotranspiration is estimated at 1330 mm. Field crops such as soybean, corn, sunflower and cotton, which are affected by water stress during their critical growth periods, are dominant in this area. Therefore, a supplemental irrigation project has been developed in order to identify workable solutions. This project pumps water from Paraná River to provide a water supply to the target area under irrigation. A pressurized irrigation system operating on demand provides water to a network of channels, which in turn deliver water to farms. The scheduled surface of irrigation is 8800 hectares. The maximum flow rate was designed to be 8.25 m3/second. The soils have been classified as Aquic Argiudolls in areas of very gentle slopes, and Vertic Argiudolls in flat and concave reliefs; neither salinity nor excess sodium affect the soils of the study are. The objective of this study was to provide a quantitative data set to manage the irrigation project, through the determination of available water (AW), easily available water (EAw) and optimal water range (or interval) of the soil horizons. The study has been conducted in a text area of 1500 hectares in surface. Five soil profiles were sampled to determine physical properties (structure stability, effective root depth, infiltration, bulk density, penetration resistance and water holding capacity), chemical properties (pH, cation exchange capacity, base saturation, salinity, and sodium content ) and morphological characteristics of the successive horizons. Also several environmental characteristics were evaluated, including: climate, topographic conditions, relief, general and slope position, erosion, natural vegetation and agricultural crops. Indeed the computed available water (AW) content and easily available water (EAw) content values depended on bulk density, field capacity and permanent wilting point, but also they were affected by the soil penetration resistance measured to a depth of 80 cm; this parameter limits the extent of the soil volume explored by plant roots and therefore EAw content. Moreover, soil penetration resistance enables to take into account the concept of optimal water interval, which indicates how soil compaction limits the levels of easily available water that really can be extracted by the crop. The estimated values of EAw water ranged from 74 to 133 mm for the profiles studies. When including the concept of mechanical resistance to penetration to obtain the value of the optimal water interval, the above values decreased, ranging between 34 and 57 mm; this was mainly explained on the basis of the true depth of exploration by plant roots of the soil profiles. Based on the recorded values of the soil mechanical resistance to penetration, it was concluded that sunflower and corn crops will be mostly affected on their growth and root development. Subsequently, and for a maximum consumptive use of 10 mm/day, the commonly used irrigation interval of 13 days, should decrease to 6 days, if the new methodology is used i.e. if the limitations of soil depth exploration by crop roots are taken into account. This result is consistent with those from current practices under non irrigated conditions, where it has been shown that crop yields are affected by water shortage provided that an important precipitation doesn't occur among such interval.
Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.
2018-01-31
The purpose of the prediction grids for selected redox constituents—dissolved oxygen and dissolved manganese—are intended to provide an understanding of groundwater-quality conditions at the domestic and public-supply drinking water depths. The chemical quality of groundwater and the fate of many contaminants is influenced by redox processes in all aquifers, and understanding the redox conditions horizontally and vertically is critical in evaluating groundwater quality. The redox condition of groundwater—whether oxic (oxygen present) or anoxic (oxygen absent)—strongly influences the oxidation state of a chemical in groundwater. The anoxic dissolved oxygen thresholds of <0.5 milligram per liter (mg/L), <1.0 mg/L, and <2.0 mg/L were selected to apply broadly to regional groundwater-quality investigations. Although the presence of dissolved manganese in groundwater indicates strongly reducing (anoxic) groundwater conditions, it is also considered a “nuisance” constituent in drinking water, making drinking water undesirable with respect to taste, staining, or scaling. Three dissolved manganese thresholds, <50 micrograms per liter (µg/L), <150 µg/L, and <300 µg/L, were selected to create predicted probabilities of exceedances in depth zones used by domestic and public-supply water wells. The 50 µg/L event threshold represents the secondary maximum contaminant level (SMCL) benchmark for manganese (U.S. Environmental Protection Agency, 2017; California Division of Drinking Water, 2014), whereas the 300 µg/L event threshold represents the U.S. Geological Survey (USGS) health-based screening level (HBSL) benchmark, used to put measured concentrations of drinking-water contaminants into a human-health context (Toccalino and others, 2014). The 150 µg/L event threshold represents one-half the USGS HBSL. The resultant dissolved oxygen and dissolved manganese prediction grids may be of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions. Prediction grids for selected redox constituents and thresholds were created by the USGS National Water-Quality Assessment (NAWQA) modeling and mapping team.
Bailey, D M; Collins, M A; Gordon, J D M; Zuur, A F; Priede, I G
2009-06-07
A severe scarcity of life history and population data for deep-water fishes is a major impediment to successful fisheries management. Long-term data for non-target species and those living deeper than the fishing grounds are particularly rare. We analysed a unique dataset of scientific trawls made from 1977 to 1989 and from 1997 to 2002, at depths from 800 to 4800 m. Over this time, overall fish abundance fell significantly at all depths from 800 to 2500 m, considerably deeper than the maximum depth of commercial fishing (approx. 1600 m). Changes in abundance were significantly larger in species whose ranges fell at least partly within fished depths and did not appear to be consistent with any natural factors such as changes in fluxes from the surface or the abundance of potential prey. If the observed decreases in abundance are due to fishing, then its effects now extend into the lower bathyal zone, resulting in declines in areas that have been previously thought to be unaffected. A possible mechanism is impacts on the shallow parts of the ranges of fish species, resulting in declines in abundance in the lower parts of their ranges. This unexpected phenomenon has important consequences for fisheries and marine reserve management, as this would indicate that the impacts of fisheries can be transmitted into deep offshore areas that are neither routinely monitored nor considered as part of the managed fishery areas.
NASA Astrophysics Data System (ADS)
Andres, M.; Toole, J. M.; Torres, D. J.; Smethie, W. M., Jr.; Joyce, T. M.; Curry, R. G.
2016-02-01
Shipboard velocity and property data from 18 transects across the North Atlantic Deep Western Boundary Current (DWBC) near 40˚N are analyzed to study the evolution of the Denmark Strait Overflow Water (DSOW) component of the DWBC and its mixing with the interior. The transects were made between 1994 and 2014 and lie along Line W, which reaches from the continental shelf south of New England to Bermuda. Measurements comprise velocity from lowered acoustic Doppler current profilers (LADCPs), CTD profiles, and trace gas chlorofluorocarbon (CFC) concentrations from bottle samples at discrete depths at 26 regular stations or a subset of these stations. In each transect, DSOW exhibits a distinct CFC concentration maximum in the abyssal ocean (> 3000 m depth) along the sloped western boundary. Sea surface height (SSH) maps from satellite altimetry indicate that quasi-stationary meander troughs of the Gulf Stream path in the upper ocean were present at Line W during 5 of the 18 sections. For these 5 sections, the LADCP velocity sections suggest the upper ocean trough is accompanied by a large cyclone in the deep ocean in the DSOW density layer. The occurrence of deep cyclones in conjunction with Gulf Stream troughs as inferred from the LADCP sections along Line W is consistent with previous observations (from 1988 to 1990) in the region from a moored array in the Synoptic Ocean Prediction (SYNOP) experiment. The SYNOP array suggested deep cyclones are present here about 35% of the time. The composite velocity section produced from the 5 Line W transects sampling through a Gulf Stream trough suggests that a typical cyclone reaches swirl speeds of greater than 30 cm/s at 3400 m depth and has a radius (distance between the center and the maximum velocity) of 75 km. The tracer data suggest that these cyclones affect not only the deep velocity structure along Line W, but also provide a mechanism for water exchange between the DWBC and the interior.
Rotzoll, Kolja
2010-01-01
Water-resource managers in Hawai`i rely heavily on salinity profiles from deep monitor wells to estimate the thickness of freshwater and the depth to the midpoint of the transition zone between freshwater and saltwater in freshwater-lens systems. The deep monitor wells are typically open boreholes below the water table and extend hundreds of feet below sea level. Because of possible borehole-flow effects, there is concern that salinity profiles measured in these wells may not accurately reflect the salinity distribution in the aquifer and consequently lead to misinterpretations that adversely affect water-resource management. Steplike changes in salinity or temperature with depth in measured profiles from nonpumped deep monitor wells may be indicative of water moving within the well, and such changes are evident to some extent in all available profiles. The maximum vertical step length, or displacement, in measured profiles ranges from 7 to 644 feet. Vertical steps longer than 70 feet exceed the typical thickness of massive lava flows; they therefore cannot be attributed entirely to geologic structure and may be indicative of borehole flow. The longest vertical steps occur in monitor wells located in southern O'ahu, coinciding with the most heavily developed part of the aquifer. Although regional groundwater withdrawals have caused a thinning of the freshwater lens over the past several decades, the measured midpoint of the transition zone in most deep monitor wells has shown only inconsequential depth displacement in direct response to short-term variations in withdrawals from nearby production wells. For profiles from some deep monitor wells, however, the depth of the measured top of the transition zone, indicated by a specific-conductance value of 1,000 microsiemens per centimeter, has risen several hundred feet in response to withdrawals from nearby production wells. For these deep monitor wells, monitoring the apparent top of the transition zone may not provide an accurate indication of water quality in the adjacent aquifer. Hence, the measured midpoint in boreholes is a better proxy for freshwater-lens thickness. Brackish water transported upward in a deep monitor well can exit the borehole in the upper, freshwater part of the aquifer and affect the water quality in nearby production wells. Piezometers installed at different depths will provide the best information on aquifer salinity because they are unaffected by borehole flow. Despite the effects of borehole flow, monitoring the midpoint in deep monitor wells is still useful to identify long-term trends in the movement of the transition zone.
Jäger, Christoph G; Borchardt, Dietrich
2018-04-07
In riverine ecosystems primary production is principally possible in two habitats: in the benthic layer by sessile algae and in the surface water by planktonic algae being transported downstream. The relevance of these two habitats generally changes along the rivers' continuum. However, analyses of the interaction of algae in these two habitats and their controlling factors in riverine ecosystems are, so far, very rare. We use a simplified advection-diffusion model system combined with ecological process kinetics to analyse the interaction of benthic and planktonic algae and nutrients along idealised streams and rivers at regional to large scales. Because many of the underlying processes affecting algal dynamics are influenced by depth, we focus particularly on the impact of river depth on this interaction. At constant environmental conditions all state variables approach stable spatial equilibria along the river, independent of the boundary conditions at the upstream end. Because our model is very robust against changes of turbulent diffusion and stream velocity, these spatial equilibria can be analysed by a simplified ordinary differential equation (ode) version of our model. This model variant reveals that at shallower river depths, phytoplankton can exist only when it is subsidised by detaching benthic algae, and in turn, at deeper river depths, benthic algae can exist only in low biomasses which are subsidised by sinking planktonic algae. We generalise the spatial dynamics of the model system using different conditions at the upstream end of the model, which mimic various natural or anthropogenic factors (pristine source, dam, inflow of a waste water treatment plant, and dilution from e.g. a tributary) and analyse how these scenarios influence different aspects of the longitudinal spatial dynamics of the full spatial model: the relation of spatial equilibrium to spatial maximum, the distance to the spatial maximum, and the response length. Generally, our results imply that shallow systems recover within significantly shorter distances from spatially distinct disturbances when compared to deep systems, independent of the type of disturbance. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bacterial and primary production in the Greenland Sea
NASA Astrophysics Data System (ADS)
Børsheim, Knut Yngve
2017-12-01
Bacterial production rates were measured in water profiles collected in the Greenland Sea and adjacent areas. Hydrography and nutrients throughout the water column were measured along 75°N from 12°W to 10°E at 20 km distance intervals. Net primary production rates from satellite sensed data were compared with literature values from 14C incubations and used for regional and seasonal comparisons. Maximum bacterial production rates were associated with the region close to the edge of the East Greenland current, and the rates decreased gradually towards the center of the Greenland Sea central gyre. Integrated over the upper 20 m the maximum bacterial production rate was 17.9 mmol C m- 2 day- 1, and east of the center of the gyre the average integrated rate was 4.6 mmol C m- 2 day- 1. It is hypothesized that high bacterial production rates in the western Greenland Sea were sustained by organic material carried from the Arctic Ocean by the East Greenland Current. The depth profiles of nitrate and phosphate were very similar both sides of the Arctic front, with 2% higher values between 500 m and 2000 m in the Arctic domain, and a N/P ratio of 13.6. The N/Si ratio varied by depth and region, with increasing silicate depletion from 1500 m depth to the surface. The rate of depletion from 1500 m depth to surface in the Atlantic domain was twice as high as in the Arctic domain. Net primary production rates in the area between the edge of the East Greenland current and the center of the Greenland Sea gyre was 96 mmol C m- 2 day- 1 at the time of the expedition in 2006, and 78 mmol C m- 2 day- 1 east of the center including the Atlantic domain. Annual net primary production estimated from satellite data in the Greenland Sea increased substantially in the period between 2003 and 2016, and the rate of increase was lowest close to the East Greenland Current.
NASA Astrophysics Data System (ADS)
Aoyama, Michio; Hamajima, Yasunori; Inomata, Yayoi; Kumamoto, Yuichiro; Oka, Eitarou; Tsubono, Takaki; Tsumune, Daisuke
2017-04-01
134Cs and 137Cs, hereafter radiocaesium, were released to the North Pacific Ocean by two major pathways, direct discharge and atmospheric deposition released from the TEPCO Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident in 2011. Activities of radiocaesium released from FNPP1 accident were measured as vertical profiles at 11 stations in 2011, at 14 stations in 2012, at 13 station in 2015 and at 6 stations in 2016 in the North Pacific Ocean to study transport processes in the ocean interior of the North Pacific Ocean. The major pathway from surface to ocean interior after injected in the ocean surface can be considered subduction of central mode water (CMW) and subduction of subduction of subtropical mode water (STMW) at potential densities of 26.1-26.3 for CMW and 25.1-25.3 for STMW, respectively. In June 2012 at 34°N-39°N along 165°E corresponding to the formation region of central mode water (CMW) located north of the Kuroshio Extension, 134Cs activity showed a maximum at around potential density= 26.3 kg m-3. 134Cs activity was higher in CMW than in any of the surrounding waters, including STMW. These observations also indicate that the most effective pathway by which FNPP1-derived radiocaesium is introduced into the ocean interior on a 1-year time scale is CMW formation and subduction. In June-July 2015 at 36 deg. N-44 deg. N along 165 deg. E and June 2016 at 38-40N, 165-170 deg. E, there are only very week signal of subduction of Fukushima derived radiocaesium at in the CMW formation region, which means that subducted radiocaesium might have moved eastward from this region. In June 2012, 134Cs activity reached a maximum of 6.12 ± 0.50 Bq m-3 at a 151-m depth (potential density, 25.3 kg m-3) at 29 deg. N, 165 deg. E. This subsurface maximum, which was also observed along 149°E, might reflect the southward transport of FNPP1-derived radiocaesium in association with the formation and subduction of subtropical mode water (STMW) from the region south of the Kuroshio Extension. In June 2015, FNPP1 derived radiocaesium spread over the entire subtropical gyre between 20 deg. N to 32 deg. N along 165 deg. E. In the south of Kuroshio Extension at 30 deg. N to 32 deg. N, 144 deg. E to 147 deg. E, 134Cs activity showed maximum at STMW, of which depth is around 400 meters, in 2014, 2015 and 2016. 134Cs activity , of which activities were decay corrected to March 2011, at 400 meters depth at this region were almost stable during these three years and the activities were 3.60 ± 0.80 Bq m-3 in June 2014, 3.65 ± 0.89 Bq m-3 in October 2015, 3.82 ± 0.85Bq m-3 in June 2016, respectively. This might indicate that FNPP1 derived radiocaesium subducted into ocean interior due to STMW formation are already recirculated to south of Kuroshio Extension in the subtropical gyre.
NASA Astrophysics Data System (ADS)
Marsac, K.; Navarre-Sitchler, A.
2017-12-01
Oil and gas company water usage is currently an area of concern in the water stressed western United States. 87% of recent wells in the Permian Basin are located in areas of high or extreme water stress. Using recycled produced water or groundwater that does not meet the USDW drinking water standards for oil and gas purposes could assist in relieving both water stress and tension between oil and gas companies and the public. However, non-USDW drinking water (TDS over 10,000 ppm) has the potential to react with formation water causing mineral precipitation, reducing the permeability of the producing formation. To evaluate the potential of non-potable water usage in the Permian Basin, available groundwater chemistry data was compiled into a database. Data was collected from the NETL-run NATCARB database, the USGS Produced Water and NWIS Databases, and the Texas Water Development Board. The created database went through a system of quality assurance and control for pH, TDS, depth and charge balance. Data was used to generate a set of waters representative of Permian Basin groundwater based on TDS, Ca/Mg ratio and Cl/SO4 ratio. Low, medium and high values of these three characteristics; representing the 25th, 50th and 75th percentile respectively; were used to create a matrix of 27 waters. Low TDS is 64,660 ppm, medium TDS is 98,486 ppm, and high TDS is 157,317 ppm. Ca/Mg ratios range from 1.98 to 7.26, and Cl/SO4 ratios range from 32.96 to 62.34. Results from mixing and titration models between these 27 waters and average Permian Basin water using Geochemist's Workbench show a maximum total precipitation of 1.815 cm3 in 1 L of water. In term of porosity, this represents a maximum porosity decrease due to mineral precipitation of 0.18%. This maximum precipitation scenario resulted from mixing average water with high TDS, high Ca/Mg ratio and low Cl/SO4 ratio water. We further investigate the impact of mineral precipitation on porosity and permeability using reactive transport modeling. A cylindrical, homogeneous PFLOTRAN reactive-transport model simulates the injection of high-TDS, high Ca/Mg, low Cl/SO4 water into the pay formation and the possible effects of precipitation over the lifetime of a well.
Influence of water depth on energy expenditure during aquatic walking in people post stroke.
Lim, Hyosok; Azurdia, Daniel; Jeng, Brenda; Jung, Taeyou
2018-05-11
This study aimed to investigate the metabolic cost during aquatic walking at various depths in people post stroke. The secondary purpose was to examine the differences in metabolic cost between aquatic walking and land walking among individuals post stroke. A cross-sectional research design is used. Twelve participants post stroke (aged 55.5 ± 13.3 years) completed 6 min of walking in 4 different conditions: chest-depth, waist-depth, and thigh-depth water, and land. Data were collected on 4 separate visits with at least 48 hr in between. On the first visit, all participants were asked to walk in chest-depth water at their fastest speed. The walking speed was used as a reference speed, which was applied to the remaining 3 walking conditions. The order of remaining walking conditions was randomized. Energy expenditure (EE), oxygen consumption (VO 2 ), and minute ventilation (V E ) were measured with a telemetric metabolic system. Our findings showed statistically significant differences in EE, VO 2 , and V E among the 4 different walking conditions: chest-depth, waist-depth, and thigh-depth water, and land (all p < .05). The participants demonstrated reduction in all variables as the water depth increased from thigh depth to chest depth. Significantly higher values in EE and VO 2 were found when the water depth increased from waist depth to chest depth. However, no significant difference was found in all variables between thigh-depth and waist-depth walking. Only thigh-depth walking revealed significant differences when compared with land walking in all variables. People post stroke consume less energy in chest-depth water, which may allow them to perform prolonged duration of training. Thigh-depth water demonstrated greater EE compared with other water depths; thus, it can be recommended for time-efficient cardiovascular exercise. Waist-depth water showed similar EE to land walking, which may have been contributed by the countervailing effects of buoyancy and water resistance. Copyright © 2018 John Wiley & Sons, Ltd.
Using the nutrient ratio NO/PO as a tracer of continental shelf waters in the central Arctic Ocean
NASA Astrophysics Data System (ADS)
Wilson, Cara; Wallace, Douglas W. R.
1990-12-01
Historical nitrate, phosphate, and dissolved oxygen data from the central Arctic Ocean are examined with particular emphasis on the conservative parameters NO (9 * NO3 + O2) and PO (135 * PO4 + O2). The NO/PO ratio is shown to increase with depth in the Canada Basin, being ˜0.78 in Surface and Upper Halocline Waters and ˜1.0 in the Atlantic Layer and Deep Waters. Lower Halocline Water is marked by NO and PO minima and intermediate NO/PO. NO/PO ratios from the Arctic shelf seas are examined to determine possible source regions for the various water masses. The NO/PO ratio of Canada Basin Deep Water implies an upper bound of ˜11% shelf water contribution to this water mass. A slight oxygen maximum core in the Lower Halocline Water is identified at a salinity of S = 34.5 in the vicinity of the Alpha Ridge. This core appears to be diminished by diapycnal mixing and does not extend into the Beaufort Gyre.
Debris flow-induced topographic changes: effects of recurrent debris flow initiation.
Chen, Chien-Yuan; Wang, Qun
2017-08-12
Chushui Creek in Shengmu Village, Nantou County, Taiwan, was analyzed for recurrent debris flow using numerical modeling and geographic information system (GIS) spatial analysis. The two-dimensional water flood and mudflow simulation program FLO-2D were used to simulate debris flow induced by rainfall during typhoon Herb in 1996 and Mindulle in 2004. Changes in topographic characteristics after the debris flows were simulated for the initiation of hydrological characteristics, magnitude, and affected area. Changes in topographic characteristics included those in elevation, slope, aspect, stream power index (SPI), topographic wetness index (TWI), and hypsometric curve integral (HI), all of which were analyzed using GIS spatial analysis. The results show that the SPI and peak discharge in the basin increased after a recurrence of debris flow. The TWI was higher in 2003 than in 2004 and indicated higher potential of landslide initiation when the slope of the basin was steeper. The HI revealed that the basin was in its mature stage and was shifting toward the old stage. Numerical simulation demonstrated that the parameters' mean depth, maximum depth, affected area, mean flow rate, maximum flow rate, and peak flow discharge were increased after recurrent debris flow, and peak discharge occurred quickly.
NASA Astrophysics Data System (ADS)
Blake, Sarah; Henry, Tiernan; Muller, Mark R.; Jones, Alan G.; Moore, John Paul; Murray, John; Campanyà, Joan; Vozár, Jan; Walsh, John; Rath, Volker
2016-04-01
A hydrogeological conceptual model of the sources, circulation pathways and temporal variations of two low-enthalpy thermal springs is derived from a multi-disciplinary approach. The springs are situated in the Carboniferous limestones of the Dublin Basin, in east-central Ireland. Kilbrook spring (Co. Kildare) has the highest recorded temperatures for any thermal spring in Ireland (maximum of 25.0 °C), and St. Gorman's Well (Co. Meath) has a complex and variable temperature profile (maximum of 21.8 °C). These temperatures are elevated with respect to average Irish groundwater temperatures (9.5 - 10.5 °C), and represent a geothermal energy potential, which is currently under evaluation. A multi-disciplinary investigation based upon audio-magnetotelluric (AMT) surveys, time-lapse temperature and chemistry measurements, and hydrochemical analysis, has been undertaken with the aims of investigating the provenance of the thermal groundwater and characterising the geological structures facilitating groundwater circulation in the bedrock. The hydrochemical analysis indicates that the thermal waters flow within the limestones of the Dublin Basin, and there is evidence that Kilbrook spring receives a contribution from deep-basinal fluids. The time-lapse temperature, electrical conductivity and water level records for St. Gorman's Well indicate a strongly non-linear response to recharge inputs to the system, suggestive of fluid flow in karst conduits. The 3-D electrical resistivity models of the subsurface revealed two types of geological structure beneath the springs; (1) Carboniferous normal faults, and (2) Cenozoic strike-slip faults. These structures are dissolutionally enhanced, particularly where they intersect. The karstification of these structures, which extend to depths of at least 500 m, has provided conduits that facilitate the operation of a relatively deep hydrothermal circulation pattern (likely estimated depths between 240 and 1,000 m) within the Dublin Basin. The results of this study support a hypothesis that the thermal maximum and simultaneous increased discharge observed each winter at both springs is the result of rapid infiltration, heating and re-circulation of meteoric waters within a structurally- and recharge-controlled hydrothermal circulation system.
Chatelain, Mathieu; Guizien, Katell
2010-03-01
A one-dimensional vertical unsteady numerical model for diffusion-consumption of dissolved oxygen (DO) above and below the sediment-water interface was developed to investigate DO profile dynamics under wind waves and sea swell (high-frequency oscillatory flows with periods ranging from 2 to 30s). We tested a new approach to modelling DO profiles that coupled an oscillatory turbulent bottom boundary layer model with a Michaelis-Menten based consumption model. The flow regime controls both the mean value and the fluctuations of the oxygen mass transfer efficiency during a wave cycle, as expressed by the non-dimensional Sherwood number defined with the maximum shear velocity (Sh). The Sherwood number was found to be non-dependent on the sediment biogeochemical activity (mu). In the laminar regime, both cycle-averaged and variance of the Sherwood number are very low (Sh <0.05, VAR(Sh)<0.1%). In the turbulent regime, the cycle-averaged Sherwood number is larger (Sh approximately 0.2). The Sherwood number also has intra-wave cycle fluctuations that increase with the wave Reynolds number (VAR(Sh) up to 30%). Our computations show that DO mass transfer efficiency under high-frequency oscillatory flows in the turbulent regime are water-side controlled by: (a) the diffusion time across the diffusive boundary layer and (b) diffusive boundary layer dynamics during a wave cycle. As a result of these two processes, when the wave period decreases, the Sh minimum increases and the Sh maximum decreases. Sh values vary little, ranging from 0.17 to 0.23. For periods up to 30s, oxygen penetration depth into the sediment did not show any intra-wave fluctuations. Values for the laminar regime are small (
NASA Astrophysics Data System (ADS)
Tsompanoglou, K.; Anagnostou, Ch.; Krasakopoulou, E.; Pagou, K.; Karageorgis, A. P.; Pavlidou, A.; Albanakis, K.; Tsirambides, A.
2017-07-01
The distribution and the chemical composition of Suspended Particulate Matter (SPM), in the northern Thermaikos Gulf, were studied during an annual experiment, carried out from June 2004 to June 2005. Water samples were collected at three depths (1 m below surface, 10 m depth, and 2 m above bottom) and filtered to obtain SPM, particulate organic carbon (POC), total particulate nitrogen (PNtot) and particulate phosphorus (PP) concentrations. SPM and POC concentrations exhibited strong spatial and temporal variations, related to the different environmental characteristics in the study area such as river network, biological productivity, anthropogenic interferences, wind regime, and resuspension of the bottom sediments. The highest SPM concentrations were recorded at the surface (mean = 1.45 ± 0.75 mg/l, maximum value = 11.60 mg/l) and close to the bottom (mean = 1.49 ± 0.67 mg/l, maximum value = 11.72 mg/l), creating surface and bottom nepheloid layers (SNL and BNL), respectively. The maximum values were recorded close to the river mouths; the rivers are identified as the major sources of SPM. The Axios and Aliakmon rivers supplied the gulf with particulate matter, during the entire sampling period. Chemical analysis has revealed the significant correlation among the elements Al, Si, Fe, Ti, K, V, Mg and Ba suggesting the presence of terrigenous aluminosilicate minerals. Silica and Ca have terrigenous origin, but also come from autochthonous biogenic fraction. Chromium, Ni and Co, are of natural origin and derived from mafic and ultramafic rocks of the Axios and Aliakmon watersheds. Copper and Zn are correlated with each other and their distributions follow that of POC; these two metals are derived from partially treated domestic and industrial effluents. The vertical distribution of organic matter implies increased primary production within the upper layer of the water column. Phosphorus is present mainly in an organic form. During the sampling period, the water column was well-oxygenated. Early diagenesis only affected the concentrations of Mn and to a lesser extent Fe in the recently deposited seabed sediment.
Suriyapee, S; Pitaxtarnin, N; Oonsiri, S; Jumpangern, C; Israngkul Na Ayuthaya, I
2008-01-01
Purpose: To investigate the optimal sensitometric curves of extended dose range (EDR2) radiographic film in terms of depth, field size, dose range and processing conditions for dynamic intensity modulated radiation therapy (IMRT) dosimetry verification with 6 MV X-ray beams. Materials and methods: A Varian Clinac 23 EX linear accelerator with 6 MV X-ray beam was used to study the response of Kodak EDR2 film. Measurements were performed at depths of 5, 10 and 15 cm in MedTec virtual water phantom and with field sizes of 2x2, 3x3, 10x10 and 15x15 cm2. Doses ranging from 20 to 450 cGy were used. The film was developed with the Kodak RP X-OMAT Model M6B automatic film processor. Film response was measured with the Vidar model VXR-16 scanner. Sensitometric curves were applied to the dose profiles measured with film at 5 cm in the virtual water phantom with field sizes of 2x2 and 10x10 cm2 and compared with ion chamber data. Scanditronix/Wellhofer OmniProTM IMRT software was used for the evaluation of the IMRT plan calculated by Eclipse treatment planning. Results: Investigation of the reproducibility and accuracy of the film responses, which depend mainly on the film processor, was carried out by irradiating one film nine times with doses of 20 to 450 cGy. A maximum standard deviation of 4.9% was found which decreased to 1.9% for doses between 20 and 200 cGy. The sensitometric curves for various field sizes at fixed depth showed a maximum difference of 4.2% between 2x2 and 15x15 cm2 at 5 cm depth with a dose of 450 cGy. The shallow depth tended to show a greater effect of field size responses than the deeper depths. The sensitometric curves for various depths at fixed field size showed slightly different film responses; the difference due to depth was within 1.8% for all field sizes studied. Both field size and depth effect were reduced when the doses were lower than 450 cGy. The difference was within 2.5% in the dose range from 20 to 300 cGy for all field sizes and depths studied. Dose profiles measured with EDR2 film were consistent with those measured with an ion chamber. The optimal sensitometric curve was acquired by irradiating film at a depth of 5 cm with doses ranging from 20 to 450 cGy with a 3×3 cm2 multileaf collimator. The optimal sensitometric curve allowed accurate determination of the absolute dose distribution. In almost 200 cases of dynamic IMRT plan verification with EDR2 film, the difference between measured and calculated dose was generally less than 3% and with 3 mm distance to agreement when using gamma value verification. Conclusion: EDR2 film can be used for accurate verification of composite isodose distributions of dynamic IMRT when the optimal sensitometric curve has been established. PMID:21614315
Suriyapee, S; Pitaxtarnin, N; Oonsiri, S; Jumpangern, C; Israngkul Na Ayuthaya, I
2008-01-01
To investigate the optimal sensitometric curves of extended dose range (EDR2) radiographic film in terms of depth, field size, dose range and processing conditions for dynamic intensity modulated radiation therapy (IMRT) dosimetry verification with 6 MV X-ray beams. A Varian Clinac 23 EX linear accelerator with 6 MV X-ray beam was used to study the response of Kodak EDR2 film. Measurements were performed at depths of 5, 10 and 15 cm in MedTec virtual water phantom and with field sizes of 2x2, 3x3, 10x10 and 15x15 cm(2). Doses ranging from 20 to 450 cGy were used. The film was developed with the Kodak RP X-OMAT Model M6B automatic film processor. Film response was measured with the Vidar model VXR-16 scanner. Sensitometric curves were applied to the dose profiles measured with film at 5 cm in the virtual water phantom with field sizes of 2x2 and 10x10 cm(2) and compared with ion chamber data. Scanditronix/Wellhofer OmniPro(TM) IMRT software was used for the evaluation of the IMRT plan calculated by Eclipse treatment planning. Investigation of the reproducibility and accuracy of the film responses, which depend mainly on the film processor, was carried out by irradiating one film nine times with doses of 20 to 450 cGy. A maximum standard deviation of 4.9% was found which decreased to 1.9% for doses between 20 and 200 cGy. The sensitometric curves for various field sizes at fixed depth showed a maximum difference of 4.2% between 2x2 and 15x15 cm(2) at 5 cm depth with a dose of 450 cGy. The shallow depth tended to show a greater effect of field size responses than the deeper depths. The sensitometric curves for various depths at fixed field size showed slightly different film responses; the difference due to depth was within 1.8% for all field sizes studied. Both field size and depth effect were reduced when the doses were lower than 450 cGy. The difference was within 2.5% in the dose range from 20 to 300 cGy for all field sizes and depths studied. Dose profiles measured with EDR2 film were consistent with those measured with an ion chamber. The optimal sensitometric curve was acquired by irradiating film at a depth of 5 cm with doses ranging from 20 to 450 cGy with a 3×3 cm(2) multileaf collimator. The optimal sensitometric curve allowed accurate determination of the absolute dose distribution. In almost 200 cases of dynamic IMRT plan verification with EDR2 film, the difference between measured and calculated dose was generally less than 3% and with 3 mm distance to agreement when using gamma value verification. EDR2 film can be used for accurate verification of composite isodose distributions of dynamic IMRT when the optimal sensitometric curve has been established.
Transpiration of Eucalyptus woodlands across a natural gradient of depth-to-groundwater.
Zolfaghar, Sepideh; Villalobos-Vega, Randol; Zeppel, Melanie; Cleverly, James; Rumman, Rizwana; Hingee, Matthew; Boulain, Nicolas; Li, Zheng; Eamus, Derek
2017-07-01
Water resources and their management present social, economic and environmental challenges, with demand for human consumptive, industrial and environmental uses increasing globally. However, environmental water requirements, that is, the allocation of water to the maintenance of ecosystem health, are often neglected or poorly quantified. Further, transpiration by trees is commonly a major determinant of the hydrological balance of woodlands but recognition of the role of groundwater in hydrological balances of woodlands remains inadequate, particularly in mesic climates. In this study, we measured rates of tree water-use and sapwood 13C isotopic ratio in a mesic, temperate Eucalypt woodland along a naturally occurring gradient of depth-to-groundwater (DGW), to examine daily, seasonal and annual patterns of transpiration. We found that: (i) the maximum rate of stand transpiration was observed at the second shallowest site (4.3 m) rather than the shallowest (2.4 m); (ii) as DGW increased from 4.3 to 37.5 m, stand transpiration declined; (iii) the smallest rate of stand transpiration was observed at the deepest (37.5 m) site; (iv) intrinsic water-use efficiency was smallest at the two intermediate DGW sites as reflected in the Δ13C of the most recently formed sapwood and largest at the deepest and shallowest DGW sites, reflecting the imposition of flooding at the shallowest site and the inaccessibility of groundwater at the deepest site; and (v) there was no evidence of convergence in rates of water-use for co-occurring species at any site. We conclude that even in mesic environments groundwater can be utilized by trees. We further conclude that these forests are facultatively groundwater-dependent when groundwater depth is <9 m and suggest that during drier-than-average years the contribution of groundwater to stand transpiration is likely to increase significantly at the three shallowest DGW sites. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hemispherical Field-of-View Above-Water Surface Imager for Submarines
NASA Technical Reports Server (NTRS)
Hemmati, Hamid; Kovalik, Joseph M.; Farr, William H.; Dannecker, John D.
2012-01-01
A document discusses solutions to the problem of submarines having to rise above water to detect airplanes in the general vicinity. Two solutions are provided, in which a sensor is located just under the water surface, and at a few to tens of meter depth under the water surface. The first option is a Fish Eye Lens (FEL) digital-camera combination, situated just under the water surface that will have near-full- hemisphere (360 azimuth and 90 elevation) field of view for detecting objects on the water surface. This sensor can provide a three-dimensional picture of the airspace both in the marine and in the land environment. The FEL is coupled to a camera and can continuously look at the entire sky above it. The camera can have an Active Pixel Sensor (APS) focal plane array that allows logic circuitry to be built directly in the sensor. The logic circuitry allows data processing to occur on the sensor head without the need for any other external electronics. In the second option, a single-photon sensitive (photon counting) detector-array is used at depth, without the need for any optics in front of it, since at this location, optical signals are scattered and arrive at a wide (tens of degrees) range of angles. Beam scattering through clouds and seawater effectively negates optical imaging at depths below a few meters under cloudy or turbulent conditions. Under those conditions, maximum collection efficiency can be achieved by using a non-imaging photon-counting detector behind narrowband filters. In either case, signals from these sensors may be fused and correlated or decorrelated with other sensor data to get an accurate picture of the object(s) above the submarine. These devices can complement traditional submarine periscopes that have a limited field of view in the elevation direction. Also, these techniques circumvent the need for exposing the entire submarine or its periscopes to the outside environment.
Characterizing Groundwater Sources of Organic Matter to Arctic Coastal Waters
NASA Astrophysics Data System (ADS)
Connolly, C. T.; Spencer, R. G.; Cardenas, M. B.; Bennett, P. C.; McNichol, A. P.; McClelland, J. W.
2016-12-01
The Arctic is projected to transition from a runoff-dominated system to a groundwater-dominated system as permafrost thaws due to climate change. This fundamental shift in hydrology is expected to increase groundwater flow to Arctic coastal waters, which may be a significant source of dissolved organic matter (DOM) to these waters—even under present conditions—that has been largely overlooked. Here we quantify and elucidate sources of groundwater DOM inputs to lagoons along the eastern Alaskan Beaufort Sea coast using an approach that combines concentration measurements and radiocarbon dating of groundwater, soil profiles, and soil leachable dissolved organic carbon (DOC). Samples were collected in late summer, when soil thaw depths (active layer) were near their maximum extent. As anticipated, the radiocarbon age of bulk soil organic matter increased with depth (modern - 6,100 yBP), while the amount of extractable DOC decreased with depth within the active layer. However, amounts of extractable DOC increased dramatically in thawed permafrost samples collected directly below the actively layer. Concentrations of DOM in groundwater (ranging from 902 to 5,118 μmolL-1 DOC) are one to two orders of magnitude higher than those measured in lagoons and nearby river water. In contrast, the 14C-DOC ages of groundwater (1,400 ± 718 s.d. yBP), lagoon water (1,750 yBP), and river water (1,610 yBP) are comparable. Together these results suggest that: (1) groundwater provides a highly concentrated input of old DOC to Arctic coastal waters; (2) groundwater DOM is likely sourced from organic matter spanning the entire soil profile; and (3) the DOM in rivers along the eastern Alaskan Beaufort Sea coast during late summer is strongly influenced by groundwater sources, but is much lower in concentration due to photo-mineralization and/or biological consumption. These results are key for assessing how changes in land-ocean export of organic matter as permafrost thaws will change into the future with clear ramifications for Arctic coastal environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.
We characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and EEM-PARAFAC components within the peat column. In particular the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputs from surface vegetation. The intermediate-depthmore » zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds (PAC) that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate-depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table and redox oscillation and porewater advection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickling, S; El Naqa, I
Purpose: Previous work has demonstrated the detectability of acoustic waves induced following the irradiation of high density metals with radiotherapy linac photon beams. This work demonstrates the ability to experimentally detect such acoustic signals following both photon and electron irradiation in a more radiotherapy relevant material. The relationship between induced acoustic signal properties in water and the deposited dose distribution is explored, and the feasibility of exploiting such signals for radiotherapy dosimetry is demonstrated. Methods: Acoustic waves were experimentally induced in a water tank via the thermoacoustic effect following a single pulse of photon or electron irradiation produced by amore » clinical linac. An immersion ultrasound transducer was used to detect these acoustic waves in water and signals were read out on an oscilloscope. Results: Peaks and troughs in the detected acoustic signals were found to correspond to the location of gradients in the deposited dose distribution following both photon and electron irradiation. Signal amplitude was linearly related to the dose per pulse deposited by photon or electron beams at the depth of detection. Flattening filter free beams induced large acoustic signals, and signal amplitude decreased with depth after the depth of maximum dose. Varying the field size resulted in a temporal shift of the acoustic signal peaks and a change in the detected signal frequency. Conclusion: Acoustic waves can be detected in a water tank following irradiation by linac photon and electron beams with basic electronics, and have characteristics related to the deposited dose distribution. The physical location of dose gradients and the amount of dose deposited can be inferred from the location and magnitude of acoustic signal peaks. Thus, the detection of induced acoustic waves could be applied to photon and electron water tank and in vivo dosimetry. This work was supported in part by CIHR grants MOP-114910 and MOP-136774. S.H. acknowledges support by the NSERC CREATE Medical Physics Research Training Network grant 432290.« less
Jagwani, Devaanshi; Kulkarni, Atul; Shukla, Parth; Ramteke, Dilip S; Juneja, Harjeet D
2011-11-01
As a consequence of offshore drilling, used Water Based Drilling Muds (WBMs) are typically disposed off, by discharging into the sea; such a disposal does not fully eliminate the environmental hazards. Hence, in this study, 2, 3, 4 and 5 ringed polycyclic aromatic hydrocarbons (PAHs i.e. naphthalene, fluorene, phenanthrene, fluoranthene, chrysene and benzo (a) pyrene) were determined from the WBMs and associated drill cuttings obtained from varying depths(viz. 150, 300 and 600 m) from three offshore wells present in East coast of India. In both WBMs and drill cuttings, concentration of naphthalene was maximum i.e. 81.59 ± 2.73 and 39.87 ± 2.40 mg/kg respectively, while benzo (a) pyrene was minimum i.e. 0.19 ± 0.07 and 0.12 ± 0.03 mg/kg respectively. The WBMs contained significantly (p < 0.05) higher PAH concentration than drill cuttings. The individual PAH concentration significantly (p < 0.01) increased with increasing depth in each well.
Step-off, vertical electromagnetic responses of a deep resistivity layer buried in marine sediments
NASA Astrophysics Data System (ADS)
Jang, Hangilro; Jang, Hannuree; Lee, Ki Ha; Kim, Hee Joon
2013-04-01
A frequency-domain, marine controlled-source electromagnetic (CSEM) method has been applied successfully in deep water areas for detecting hydrocarbon (HC) reservoirs. However, a typical technique with horizontal transmitters and receivers requires large source-receiver separations with respect to the target depth. A time-domain EM system with vertical transmitters and receivers can be an alternative because vertical electric fields are sensitive to deep resistive layers. In this paper, a time-domain modelling code, with multiple source and receiver dipoles that are finite in length, has been written to investigate transient EM problems. With the use of this code, we calculate step-off responses for one-dimensional HC reservoir models. Although the vertical electric field has much smaller amplitude of signal than the horizontal field, vertical currents resulting from a vertical transmitter are sensitive to resistive layers. The modelling shows a significant difference between step-off responses of HC- and water-filled reservoirs, and the contrast can be recognized at late times at relatively short offsets. A maximum contrast occurs at more than 4 s, being delayed with the depth of the HC layer.
de la Torre, M L; Grande, J A; Aroba, J; Andujar, J M
2005-11-01
A high level of price support has favoured intensive agriculture and an increasing use of fertilisers and pesticides. This has resulted in the pollution of water and soils and damage to certain eco-systems. The target relationship that must be established between agriculture and environment can be called "sustainable agriculture". In this work we aim at relating strawberry total yield with nitrate concentration in water at different soil depths. To achieve this objective, we have used the Predictive Fuzzy Rules Generator (PreFuRGe) tool, based on fuzzy logic and data mining, by means of which the dose that allows a balance between yield and environmental damage minimization can be determined. This determination is quite simple and is done directly from the obtained charts. This technique can be used in other types of crops permitting one to determine in a precise way at which depth the appropriate dose of nitrate fertilizer must be correctly applied, on the one hand providing the maximum yield but, on the other hand, with the minimum loss of nitrates that leachate through the saturated zone polluting aquifers.
NASA Astrophysics Data System (ADS)
Ardizzone, G. D.; Belluscio, A.; Gravina, M. F.; Somaschini, A.
1996-12-01
A Mytilus galloprovincialispopulation, settled on a new artificial habitat at 12 m depth in the Central Tyrrhenian Sea, was investigated for 10 years. The new substratum, located at a depth lower than the preferential range of the species, was colonized temporarily by mussels which reached very high densities and dominated the benthic community from their colonization until the third year. The length-frequency distribution analysis showed a progressively complex population structure with up to three cohorts. The yearly recruitments were observed once a year in spring. The growth curve provided a maximum length higher than that reported for shallow waters. Nevertheless, the gregarious habits of mussels and the reduced water movement caused edaphic modifications of the substratum, which was covered progressively by sediments and biodeposits (pseudofaeces). Consequently, the population structure was affected by a reduction of the newly recruited cohorts, and mussels disappeared after 5 years of colonization. This may be explained by the reduction in the substratum available for the first settlement (hydroid covering), as well as by the modification of the surface required for final settlement.
Maize and soybean root front velocity and maximum depth in the Iowa, USA
USDA-ARS?s Scientific Manuscript database
Quantitative measurements of root traits can improve our understanding of how crops respond to soil-weather conditions. However, such data are rare. Our objective was to quantify maximum root depth and root front velocity (RFV) for corn and soybean crops across a range of growing conditions in the M...
Bathymetric mapping of shallow water surrounding Dongsha Island using QuickBird image
NASA Astrophysics Data System (ADS)
Li, Dongling; Zhang, Huaguo; Lou, Xiulin
2018-03-01
This article presents an experiment of water depth inversion using the band ratio method in Dongsha Island shallow water. The remote sensing data is from QuickBird satellite on April 19, 2004. The bathymetry result shows an extensive agreement with the charted depths. 129 points from the chart depth data were chosen to evaluate the accuracy of the inversion depth. The results show that when the water depth is less than 20m, the inversion depth is accord with the chart, while the water depth is more than 20m, the inversion depth is still among 15- 25m. Therefore, the remote sensing methods can only be effective with the inversion of 20m in Dongsha Island shallow water, rather than in deep water area. The total of 109 depth points less than 20m were used to evaluate the accuracy, the root mean square error is 2.2m.
Marzinelli, Ezequiel M; Williams, Stefan B; Babcock, Russell C; Barrett, Neville S; Johnson, Craig R; Jordan, Alan; Kendrick, Gary A; Pizarro, Oscar R; Smale, Dan A; Steinberg, Peter D
2015-01-01
Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia's Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10-100 m to 100-1,000 km) and depths (15-60 m) across several regions ca 2-6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40-50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, J; Grigor, G
This study investigated dosimetric impact due to the bone backscatter in orthovoltage radiotherapy. Monte Carlo simulations were used to calculate depth doses and photon fluence spectra using the EGSnrc-based code. Inhomogeneous bone phantom containing a thin water layer (1–3 mm) on top of a bone (1 cm) to mimic the treatment sites of forehead, chest wall and kneecap was irradiated by the 220 kVp photon beam produced by the Gulmay D3225 x-ray machine. Percentage depth doses and photon energy spectra were determined using Monte Carlo simulations. Results of percentage depth doses showed that the maximum bone dose was about 210–230%more » larger than the surface dose in the phantoms with different water thicknesses. Surface dose was found to be increased from 2.3 to 3.5%, when the distance between the phantom surface and bone was increased from 1 to 3 mm. This increase of surface dose on top of a bone was due to the increase of photon fluence intensity, resulting from the bone backscatter in the energy range of 30 – 120 keV, when the water thickness was increased. This was also supported by the increase of the intensity of the photon energy spectral curves at the phantom and bone surface as the water thickness was increased. It is concluded that if the bone inhomogeneity during the dose prescription in the sites of forehead, chest wall and kneecap with soft tissue thickness = 1–3 mm is not considered, there would be an uncertainty in the dose delivery.« less
Non-isothermal processes during the drying of bare soil: Model Development and Validation
NASA Astrophysics Data System (ADS)
Sleep, B.; Talebi, A.; O'Carrol, D. M.
2017-12-01
Several coupled liquid water, water vapor, and heat transfer models have been developed either to study non-isothermal processes in the subsurface immediately below the ground surface, or to predict the evaporative flux from the ground surface. Equilibrium phase change between water and gas phases is typically assumed in these models. Recently, a few studies have questioned this assumption and proposed a coupled model considering kinetic phase change. However, none of these models were validated against real field data. In this study, a non-isothermal coupled model incorporating kinetic phase change was developed and examined against the measured data from a green roof test module. The model also incorporated a new surface boundary condition for water vapor transport at the ground surface. The measured field data included soil moisture content and temperature at different depths up to the depth of 15 cm below the ground surface. Lysimeter data were collected to determine the evaporation rates. Short and long wave radiation, wind velocity, air ambient temperature and relative humidity were measured and used as model input. Field data were collected for a period of three months during the warm seasons in south eastern Canada. The model was calibrated using one drying period and then several other drying periods were simulated. In general, the model underestimated the evaporation rates in the early stage of the drying period, however, the cumulative evaporation was in good agreement with the field data. The model predicted the trends in temperature and moisture content at the different depths in the green roof module. The simulated temperature was lower than the measured temperature for most of the simulation time with the maximum difference of 5 ° C. The simulated moisture content changes had the same temporal trend as the lysimeter data for the events simulated.
Wasson, R.J.; Smith, G.I.; Agrawal, D.P.
1984-01-01
Variations in clastic sediment texture, mineralogy of both evaporites formed at the surface and precipitates formed below the lake floor, and the relative chemical activities of the major dissolved components of the chemical precipitates, have allowed reconstruction of the history of salinity and water-level changes in Didwana Lake, Thar Desert, India. Hypersaline conditions prevailed at about the Last Glacial Maximum, with little evidence of clastic sediments entering the lake. Between ca. 13,000 and 6000 B.P. the lake level fluctuated widely, the lake alternately hypersaline and fresh, and clastic sediments were delivered to the lake at a low rate. Deep-water conditions occurred ca. 6000 B.P. and clastic influx increased abruptly. The water level dropped towards 4000 B.P. when the lake dried briefly. Since 4000 B.P. the lake has been ephemeral with a lowered rate of sedimentation and mildly saline conditions rather like those of today. This sequence of changes documented in the lake parallels changes in vegetation recorded in published pollen diagrams from both the Thar and the Arabian Sea. Correlation of the various lines of evidence suggests that the climate of the Last Glacial Maximum at Didwana was dry and windy with a weak monsson circulation. The monsson was re-established between ca. 13,000 and a little before 6000 B.P., and, when winter rainfall increased ca. 6000 B.P., the lake filled to its maximum depth. ?? 1984.
Szabo, Zoltan; Keller, Elizabeth A.; Defawe, Rose M.
2006-01-01
Pore water was extracted from clay-silt core samples collected from a borehole at Ocean View, west of Sea Isle City, in northeastern Cape May County, New Jersey. The borehole intersects the lower Miocene Kirkwood Formation, which includes a thick sand and gravel unit between two clay-silt units. The sand and gravel unit forms a major confined aquifer in the region, known as the Atlantic City 800-foot sand, the major source of potable water along the Atlantic Coast of southern New Jersey. The pore water from the core is of interest because the borehole intersects the aquifer in an area where the ground water is sodium-rich and sulfidic. Locally in the aquifer in central and southern Cape May County, sodium concentrations are near the New Jersey secondary drinking-water standard of 50 mg/L (milligrams per liter), and typically are greater than 30 mg/L, but chloride and sulfate do not approach their respective secondary drinking-water standards except in southernmost Cape May County. Pore waters from the confining units are suspected to be a source of sodium, sulfur, and chloride to the aquifer. Constituent concentrations in filtered pore-water samples were determined using the inductively coupled plasma-mass spectrometry analytical technique to facilitate the determination of low-level concentrations of many trace constituents. Calcium-sodium-sulfate-bicarbonate, calcium-chloride-sulfate, calcium-sulfate, and sodium-sulfate-chloride-bicarbonate type waters characterize samples from the deepest part of the confining unit directly overlying the aquifer (termed the 'lower' confining unit). A sodium-chloride-sulfate type water is dominant in the composite confining unit below the aquifer. Sodium, chloride, and sulfate became increasingly dominant with depth. Pore water from the deepest sample recovered (1,390 ft (feet) below land surface) was brackish, with concentrations of sodium, chloride, and sulfate of 5,930, 8,400, and 5,070 mg/L, respectively. Pore-water samples from 900 ft or less below land surface, although mineralized, were fresh, not brackish. Sodium concentrations ranged from 51.3 to 513 mg/L, with the maximum concentration found at 882 ft below land surface in the composite confining unit below the aquifer. Chloride concentrations ranged from 46.4 to 757 mg/L, with the maximum concentration found at 596 ft below land surface in the 'lower' confining unit, and were higher than those in pore water from the same units at Atlantic City, N.J. Concentrations of chloride in the composite confining unit below the aquifer were consistently greater than 250 mg/L, indicating that the confining unit can be a source of chloride at depth. Of the major anions, sulfate was the constituent whose concentration varied most, ranging from 42 to 799 mg/L. The maximum concentration was found at 406 ft below land surface, in the upper part of the confining unit overlying the aquifer and the Rio Grande water-bearing zone (termed the 'upper' confining unit). Sulfide was not detected in any pore-water sample despite the presence of abundant quantities of sulfate and sulfide in the aquifer. The absence of sulfide in the pore waters is consistent with the hypothesis that sulfate is reduced in the aquifer. The presence of arsenic, at concentrations ranging from 0.0062 to 0.0374 mg/L, is consistent with the absence of sulfide and the possible presence of iron in the pore water.
German, E.R.; Taylor, G.F.
1995-01-01
Although Duval County, Florida, has ample ground-water resources for public supply, the potential exists for a problem with excessive disinfectant by-products. These disinfectant by-products result from the treatment of raw water containing low concentrations of bromide and naturally occurring organic compounds. Because of this potential problem, the relation of bromide concentrations to aquifer tapped, well location and depth, and chemical characteristics of water in the Floridan aquifer system underlying Duval County were studied to determine if these relations could be applied to delineate water with low-bromide concentrations for future supplies. In 1992, water samples from 106 wells that tap the Floridan aquifer system were analyzed for bromide and major dissolved constituents. A comparison of bromide concentrations from the 1992 sampling with data from earlier studies (1979-80) indicates that higher bromide concentrations were detected during the earlier studies. The difference between the old and new data is probably because of a change in analytical methodology in the analysis of samples. Bromide concentrations exceeded the detection limit (0.10 milligrams per liter) in water from 28 of the 106 wells (26 percent) sampled in 1992. The maximum concentration was 0.56 milligrams per liter. There were no relations between bromide and major dissolved constituents, well depth, or aquifer tapped that would be useful for determining bromide concentrations. Areal patterns of bromide occurrence are not clearly defined, but areas with relatively high bromide concentrations tend to be located in a triangular area near the community of Sunbeam, Florida, and along the St. Johns River throughout Duval County.
Brand, Andreas; Lacy, Jessica R.; Hsu, Kevin; Hoover, Daniel; Gladding, Steve; Stacey, Mark T.
2010-01-01
We investigated the driving forces of sediment dynamics at the shoals in South San Francisco Bay. Two stations were deployed along a line perpendicular to a 14 m deep channel, 1000 and 2000 m from the middle of the channel. Station depths were 2.59 and 2.19 m below mean lower low water, respectively. We used acoustic Doppler velocimeters for the simultaneous determination of current velocities, turbulence, sediment concentration and fluxes. Maximum current shear velocities were 0.015 m s−1 at the station further from the channel (closer to the shore) and 0.02 m s−1 at the station closer to the channel. Peak wave-induced shear velocities exceeded 0.015 m s−1 at both stations. Maximum sediment concentrations were around 30 g m−3 during calm periods (root mean square wave height −3 and sediment fluxes were 5 times higher than in calm conditions (0.02 g m−2 s−1 versus >0.10 g m−2 s−1) at the station further from the channel 0.36 m above the bed. Closer to the channel, sediment concentrations and vertical fluxes due to wind wave resuspension were persistently lower (maximum concentrations around 50 g m−3 and maximum fluxes around 0.04 g m−2 s−1). Most resuspension events occurred during flood tides that followed wave events during low water. Although wave motions are able to resuspend sediment into the wave boundary layer at low tide, the observed large increases in sediment fluxes are due to the nonlinear interaction of wind waves and the tidal currents.
Soil Respiration Controls Ionic Nutrient Concentration In Percolating Water In Rice Fields
NASA Astrophysics Data System (ADS)
Kimura, M.
2004-12-01
Soil water in the plow layer in rice fields contains various kinds of cations and anions, and they are lost from the plow layer by water percolation. Some portions of CO2 produced by respirations of rice roots and soil microorganisms are also leached by water percolation to the subsoil layer as HCO3-. As the electrical neutrality of inorganic substances in percolating water is maintained when they are assumed to be in the form of simple cations and anions, soil respiration accelerates the leaching of ionic nutrients from the plow layer by water percolation. The proportion of inorganic carbon (Σ CO2) originated from photosynthates in the total Σ CO2 in soil solution in the plow layer was from 28 to 36 % in the rice straw amended soil and from 16 to 31 % in the soil without rice straw amendment in a soil pot experiment with rice plant after the maximum tillering stage. Most of Σ CO2 in percolating water from the plow layer accumulates in the subsoil layer. Periodical measurement of Σ CO2 in percolating water at 13 and 40 cm soil depths indicated that 10 % of total soil organic C in the plow layer was leached down from the plow layer (13 cm), and that about 90 % of it was retained in the subsoil layer to the depth of 40 cm. Water soluble organic materials are also leached from the plow layer by water percolation, and the leaching is accelerated by soil reduction. Soil reduction decreased the content of organic materials that were bound with ferric iron in soil (extractable by 0.1M Na4P2O7 + NaBH4) and increased the content of organic materials that were extractable by the neutral chelating solution (0.1M Na4P2O7). In addition, water percolation transformed the latter organic materials to those that were extractable by water and a neutral salt. Considerable portions of organic materials in percolating water are adsorbed in the subsoil layer, and then partially decomposed and polymerized to specific soil organic materials in the subsoil. Organic materials that were leached from the plow layer by percolating water amounted to 170 kgC ha-1 in a Japanese rice field, among which 120 kgC of organic materials were adsorbed in the subsoil layer between 13 and 40 cm depth.
Pope, L.M.; Arruda, J.A.; Fromm, C.H.
1988-01-01
The formation of carcinogenic trihalomethanes during the treatment of public surface water supplies has become a potentially serious problem. The U. S. Geological Survey, in cooperation with the Kansas Department of Health and Environment , investigated the potential for trihalomethane formation in water from 15 small, public water supply lakes in eastern Kansas from April 1984 through April 1986 in order to define the principal factors that affect or control the potential for trihalomethane formation during the water treatment process. Relations of mean concentrations of trihalomethane-formation potential to selected water quality and lake and watershed physical characteristics were investigated using correlation and regression analysis. Statistically significant, direct relations were developed between trihalomethanes produced in unfiltered and filtered lake water and mean concentrations of total and dissolved organic carbon. Correlation coefficients for these relations ranged from 0.86 to 0.93. Mean values of maximum depth of lake were shown to have statistically significant inverse relations to mean concentrations of trihalomethane-formation potential and total and dissolved organic carbon. Correlation coefficients for these relations ranged from -0.76 to -0.81. (USGS)
NASA Astrophysics Data System (ADS)
Ono, T.; Takahashi, T.
2017-12-01
Non-structural mitigation measures such as flood hazard map based on estimated inundation area have been more important because heavy rains exceeding the design rainfall frequently occur in recent years. However, conventional method may lead to an underestimation of the area because assumed locations of dike breach in river flood analysis are limited to the cases exceeding the high-water level. The objective of this study is to consider the uncertainty of estimated inundation area with difference of the location of dike breach in river flood analysis. This study proposed multiple flood scenarios which can set automatically multiple locations of dike breach in river flood analysis. The major premise of adopting this method is not to be able to predict the location of dike breach correctly. The proposed method utilized interval of dike breach which is distance of dike breaches placed next to each other. That is, multiple locations of dike breach were set every interval of dike breach. The 2D shallow water equations was adopted as the governing equation of river flood analysis, and the leap-frog scheme with staggered grid was used. The river flood analysis was verified by applying for the 2015 Kinugawa river flooding, and the proposed multiple flood scenarios was applied for the Akutagawa river in Takatsuki city. As the result of computation in the Akutagawa river, a comparison with each computed maximum inundation depth of dike breaches placed next to each other proved that the proposed method enabled to prevent underestimation of estimated inundation area. Further, the analyses on spatial distribution of inundation class and maximum inundation depth in each of the measurement points also proved that the optimum interval of dike breach which can evaluate the maximum inundation area using the minimum assumed locations of dike breach. In brief, this study found the optimum interval of dike breach in the Akutagawa river, which enabled estimated maximum inundation area to predict efficiently and accurately. The river flood analysis by using this proposed method will contribute to mitigate flood disaster by improving the accuracy of estimated inundation area.
Jellyfish Lake, Palau: Regeneration of C, N, Si, and P in anoxic marine lake sediments
Lyons, W.B.; Lent, R.M.; Burnett, W.C.; Chin, P.; Landing, W.M.; Orem, W.H.; McArthur, J.M.
1996-01-01
Sediment cores from Jellyfish Lake were processed under an inert atmosphere and the pore waters extracted and analyzed for the following parameters: pH, titration alkalinity (TA), Cl-, H4SiO4, PO43-, NH4+, Ca2-, Mg2+, SO42-, and H2S. Additionally, in one set of pore-water samples (core 10), the ??13C of the ??CO2 was also determined. The TA, H4SiO4, PO43-, NH4+, and H2S increased with depth in the pore waters above anoxic bottom-water values. H2S values increased to 3.8 ??M. In one case, both H4SiO4 and PO43- concentrations increased to a maximum value and then decreased with depth, suggesting removal into solid phases. The H4SiO4 concentrations are equal to or greater than pore-water values observed in sediments underlying upwelling areas. PO43- concentrations are, in general, lower than pore-water values from terrigenous nearshore areas but higher than nearshore carbonate pore-water values from Florida Bay or Bermuda. The Ca2+, Cl-, and Mg2+: Cl- ratios show slight decreases in the top 15-20 cm, suggesting that authigenic carbonate may be forming. This suggestion is supported by the fact that the pore waters are saturated with respect to CaCO3 due to the very high TAs. The ??13C measurements of the pore-water ??CO2 are from a shorter core. These measurements reach their most negative concentration at 72 cm and then become slightly heavier. This change is accompanied by a decrease in TA, suggesting the onset of methanogenesis at this location in this core.
Mathematical analysis of a sharp-diffuse interfaces model for seawater intrusion
NASA Astrophysics Data System (ADS)
Choquet, C.; Diédhiou, M. M.; Rosier, C.
2015-10-01
We consider a new model mixing sharp and diffuse interface approaches for seawater intrusion phenomena in free aquifers. More precisely, a phase field model is introduced in the boundary conditions on the virtual sharp interfaces. We thus include in the model the existence of diffuse transition zones but we preserve the simplified structure allowing front tracking. The three-dimensional problem then reduces to a two-dimensional model involving a strongly coupled system of partial differential equations of parabolic type describing the evolution of the depths of the two free surfaces, that is the interface between salt- and freshwater and the water table. We prove the existence of a weak solution for the model completed with initial and boundary conditions. We also prove that the depths of the two interfaces satisfy a coupled maximum principle.
Lapham, W.W.; Tadayon, Saeid
1996-01-01
The occurrence of volatile organic compounds (VOCs) in water is of national concern because of their relatively high aqueous solubility, mobility, and persistence, because many are known or suspected carcinogens, because of their widespread use, and because they have been found in drinking-water supplies. Because of this national concern, VOCs were selected for National investigation (hereafter termed "National Synthesis") by the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program in 1994. The broad goals of this National Synthesis are to: (1) describe current water- quality conditions with respect to VOCs; (2) define trends, or lack of trends, in VOCs in surface and ground water; and (3) identify, describe, and explain causal relations among the occurrence and distribution of VOCs in surface water and ground water, and natural and human factors. The National Synthesis of VOCs in ground water has three objectives: (1) to describe their occurrence, status, and distribution; (2) to determine relations among VOCs in shallow ground water and natural and human factors; and (3) to determine, compare, and contrast the occurrence, transformation, transport, and fate of selected VOCs in the hydrologic cycle for several regionally or nationally important aquifer systems. The description of VOC occurrence, status, and distribution in ground water focuses on major aquifers of the United States. Occurrence describes the presence or absence of VOCs, their frequency of occurrence, and their ranges of concentrations. Status compares the concentrations of VOCs detected in relation to water-quality regulations or advisories, such as Maximum Contaminant Levels, Proposed Maximum Contaminant Levels, Maximum Contaminant Level Goals, and Health Advisories. Distribution describes the variability of VOCs in ground water, areally and by depth. This report describes the study design for conducting such an assessment. The assessment focuses on aquifers, or parts of aquifers, that are currently used or have the potential to be used as sources of water supplies, using data collected as part of local, State, and Federal ground-water monitoring programs since 1985. Assessment by aquifer and comparison of results among aquifers will be completed for those aquifers for which adequate spatial or depth-related data are available. Assessment of VOCs in aquifers also will be completed at regional and national scales. A set of criteria for well-network design, well construction, sample-collection methods, and methods of laboratory analysis must be met before VOC data are used for assessment. An appropriate well-network design will provide a generally unbiased, random, equal-area distribution of sampling sites throughout the aquifer, or part of the aquifer, of interest. Well-construction information must be sufficient to ensure that the hydrogeologic unit (or units) represented by the water level measured and the hydrologic unit (or units) contributing water to the well are known. In addition, the well construction and pumping equipment in the well need to be of a type that are not likely to affect concentrations of VOCs in the water sample. VOC data will be considered suitable for use in the occurrence assessment if nationally accepted methods for collection and analysis were used and if the quantitation level for VOC analytes was less than about 5 micrograms per liter; laboratory analysis was done by a laboratory certified by the U.S. Environ- mental Protection Agency; and the sample was collected from untreated (raw) water at or near the well head before being held in a pressure tank or holding tank.
Bolduc, F.; Afton, A.D.
2008-01-01
Wetland use by waterbirds is highly dependent on water depth, and depth requirements generally vary among species. Furthermore, water depth within wetlands often varies greatly over time due to unpredictable hydrological events, making comparisons of waterbird abundance among wetlands difficult as effects of habitat variables and water depth are confounded. Species-specific relationships between bird abundance and water depth necessarily are non-linear; thus, we developed a methodology to correct waterbird abundance for variation in water depth, based on the non-parametric regression of these two variables. Accordingly, we used the difference between observed and predicted abundances from non-parametric regression (analogous to parametric residuals) as an estimate of bird abundance at equivalent water depths. We scaled this difference to levels of observed and predicted abundances using the formula: ((observed - predicted abundance)/(observed + predicted abundance)) ?? 100. This estimate also corresponds to the observed:predicted abundance ratio, which allows easy interpretation of results. We illustrated this methodology using two hypothetical species that differed in water depth and wetland preferences. Comparisons of wetlands, using both observed and relative corrected abundances, indicated that relative corrected abundance adequately separates the effect of water depth from the effect of wetlands. ?? 2008 Elsevier B.V.
Search for the appearance of atmospheric tau neutrinos in Super-Kamiokande
NASA Astrophysics Data System (ADS)
Li, Zepeng; Super-Kamiokande Collaboration
2016-03-01
Super-K is a 50 kiloton Water Cherenkov detector with 22.5 kiloton of fiducial volume located at a depth of 2700 meters water equivalent. The large target mass in the fiducial volume offers an opportunity to search for rare tau neutrino appearance from oscillations of atmospheric neutrinos. Events after reduction are classified by a particle identification, based on a neural network (Multilayer Perceptrons), that is optimized to distinguish tau leptons produced by charged-current tau neutrino interactions from electron and muon neutrino interactions in the detector. Super-K atmospheric neutrino data are fit with an unbinned maximum likelihood method to search for tau neutrino appearance. The talk presented results with data taken between 1996 and 2014, comprising 4582 days of live time.
Numerical studies on groundwater-grassland relations in an inland arid region in China
NASA Astrophysics Data System (ADS)
Wang, J. R.; Hu, L. T.; Sun, K. N.; Liu, X. M.
2017-08-01
In this study, a 2-D numerical model was developed to assess the impacts of groundwater on grassland ecology in the Hulun Lake Basin. An extreme dry climate scenario and water resource management scenario and their interactions in the Hulun Lake Basin were designed, and their influence on groundwater was evaluated. The results show that the grassland ecology is heavily dependent on groundwater, and a distribution of groundwater with a depth of 8 m correlates well with the distribution of grassland. Under the water resource management scenario, the groundwater level will increase to a maximum value of 2.5 m after 15 years around Hulun Lake. The groundwater level will decrease dramatically under the extreme dry climate scenario, thus affecting the environment.
Langohr, G Daniel G; Willing, Ryan; Medley, John B; Athwal, George S; Johnson, James A
2016-04-01
Implant design parameters can be changed during reverse shoulder arthroplasty (RSA) to improve range of motion and stability; however, little is known regarding their impact on articular contact mechanics. The purpose of this finite element study was to investigate RSA contact mechanics during abduction for different neck-shaft angles, glenosphere sizes, and polyethylene cup depths. Finite element RSA models with varying neck-shaft angles (155°, 145°, 135°), sizes (38 mm, 42 mm), and cup depths (deep, normal, shallow) were loaded with 400 N at physiological abduction angles. The contact area and maximum contact stress were computed. The contact patch and the location of maximum contact stress were typically located inferomedially in the polyethylene cup. On average for all abduction angles investigated, reducing the neck-shaft angle reduced the contact area by 29% for 155° to 145° and by 59% for 155° to 135° and increased maximum contact stress by 71% for 155° to 145° and by 286% for 155° to 135°. Increasing the glenosphere size increased the contact area by 12% but only decreased maximum contact stress by 2%. Decreasing the cup depth reduced the contact area by 40% and increased maximum contact stress by 81%, whereas increasing the depth produced the opposite effect (+52% and -36%, respectively). The location of the contact patch and maximum contact stress in this study matches the area of damage seen frequently on clinical retrievals. This finding suggests that damage to the inferior cup due to notching may be potentiated by contact stresses. Increasing the glenosphere diameter improved the joint contact area and did not affect maximum contact stress. However, although reducing the neck-shaft angle and cup depth can improve range of motion, our study shows that this also has some negative effects on RSA contact mechanics, particularly when combined. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Multiport well design for sampling of ground water at closely spaced vertical intervals
Delin, G.N.; Landon, M.K.
1996-01-01
Detailed vertical sampling is useful in aquifers where vertical mixing is limited and steep vertical gradients in chemical concentrations are expected. Samples can be collected at closely spaced vertical intervals from nested wells with short screened intervals. However, this approach may not be appropriate in all situations. An easy-to-construct and easy-to-install multiport sampling well to collect ground-water samples from closely spaced vertical intervals was developed and tested. The multiport sampling well was designed to sample ground water from surficial sand-and-gravel aquifers. The device consists of multiple stainless-steel tubes within a polyvinyl chloride (PVC) protective casing. The tubes protrude through the wall of the PVC casing at the desired sampling depths. A peristaltic pump is used to collect ground-water samples from the sampling ports. The difference in hydraulic head between any two sampling ports can be measured with a vacuum pump and a modified manometer. The usefulness and versatility of this multiport well design was demonstrated at an agricultural research site near Princeton, Minnesota where sampling ports were installed to a maximum depth of about 12 m below land surface. Tracer experiments were conducted using potassium bromide to document the degree to which short-circuiting occurred between sampling ports. Samples were successfully collected for analysis of major cations and anions, nutrients, selected herbicides, isotopes, dissolved gases, and chlorofluorcarbon concentrations.
Souza, Christiane S de; Luz, Joana A G; Mafalda, Paulo O
2014-09-01
Relationship between spatial distribution of chaetognaths and hydrographic conditions around seamounts and islands off Northeastern Brazil were analyzed from 133 oceanographic stations during the months of January - April of 1997 and April - July of 1998. Oblique zooplankton tows, using 50 cm diameter Bongo nets with 500µm mesh with a flowmeter to determine the filtered volume, were carried out to a maximum of 200m depth. The Superficial Equatorial Water, which had a salinity > 36 PSU and temperature > 20°C, occupied the top 80 to 200m depth. Below this water mass was the South Atlantic Central Water with salinity ranging from 34.5 to 36 PSU and temperature from 6 to 20°C. The community of chaetognaths showed six species: Pterosagitta draco, Flaccisagitta enflata, Flaccisagitta hexaptera, Pseudosagitta lyra, Serratosagitta serratodentata, and Sagitta helenae. Of these species, F. enflata was the most abundant (32.05% in 1997 and 42.18% in 1998) and the most frequent (87.88% in 1997 and 95% in 1998) during both periods. A mesopelagic specie was identified (P. lyra). This specie was more abundant in 1997 (3.42%), when the upwelling was more intense. P. lyra occurred in 22% of the samples during 1997. The abundance of F. enflata, an epiplanktonic species, increased, associated with greater water-column stability.
The statistical characteristics of rain-generated stalks on water surface
NASA Astrophysics Data System (ADS)
Liu, Xinan; Liu, Ren; Duncan, James H.
2017-11-01
Laboratory measurements of the stalks generated by the impact of raindrops are performed in a 1.22-m-by-1.22-m water pool with a water depth of 0.3 m. Simulated raindrops are generated by an array of 22-gauge hypodermic needles that are attached to the bottom of an open-surface rain tank. The raindrop diameter is about 2.6 mm and the height of the rain tank above the water surface of the pool is varied from 1 m to 4.5 m to provide different impact velocities. A number of parameters, including the diameter, height and initial upward velocity of the center jets (stalks) are measured with a cinematic laser-induced- fluorescence technique. It is found that the maximum potential energy of the stalk and the joint distribution of stalk height and diameter are strongly correlated to the impact velocities of raindrops. Comparisons between the rain experiments and single drop impacts on a quiescent water surface are also shown.
Dissolved lead in the deep Southeast Pacific Ocean: results of the 2013 US GEOTRACES cruise
NASA Astrophysics Data System (ADS)
Boyle, E. A.; Lee, J. M.; Zhang, J.; Echegoyen, Y.
2014-12-01
Lead (Pb) in the modern ocean is dominated by anthropogenic Pb, which has been evidenced by highly elevated seawater Pb concentrations and Pb stable isotope ratios (204Pb, 206Pb, 207Pb, and 208Pb) altered from pre-anthropogenic values. A number of studies have shown the human impact on oceanic Pb in many parts of the world ocean, but little Pb data has been available for the Southeast Pacific Ocean. In this presentation, we will show the dissolved Pb (<0.2µm) results from the US GEOTRACES cruise in October - December 2013, which sailed from Manta, Ecuador, to Tahiti along around 12 degrees south. Dissolved Pb concentrations from all 36 surface stations and deep (>1000m) Pb profiles from 18 stations will be presented, and the results will be also compared to our unpublished data from the BiG RAPA cruise in 2010, whose cruise track from Arica, Peru, to Easter Island is slightly south of the US GEOTRACES cruise. The BiG RAPA data showed that dissolved Pb concentrations of the southeast Pacific Ocean are relatively low, varying in the range of 8-20 pmol/kg at the surface with a slight maximum (14-22 pmol/kg) at around 400m depth, and 2-10 pmol/kg in deep waters below 1000m depth. The Pb concentrations were found to be higher at a marginal station off Peru, reaching 45 pmol/kg at the surface and 65 pmol/kg in the subsurface maximum at 150m depth, and varying between 17 and 23 pmol/kg in deep waters. Our dataset, along with the results from the BiG RAPA cruise, will provide the first overview on the dissolved Pb distribution of the southeast Pacific Ocean, which will further our understanding on the human impact on the global ocean.
Cohen, Jonathan H; Berge, Jørgen; Moline, Mark A; Sørensen, Asgeir J; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E; Leu, Eva S; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir
2015-01-01
The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1-1.5 x 10-5 μmol photons m-2 s-1 (400-700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20-30m depth during the Arctic polar night.
Cohen, Jonathan H.; Berge, Jørgen; Moline, Mark A.; Sørensen, Asgeir J.; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E.; Leu, Eva S.; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir
2015-01-01
The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1–1.5 x 10-5 μmol photons m-2 s-1 (400–700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20–30m depth during the Arctic polar night. PMID:26039111
Sarder, Pinaki; Yazdanfar, Siavash; Akers, Walter J.; Tang, Rui; Sudlow, Gail P.; Egbulefu, Christopher
2013-01-01
Abstract. The era of molecular medicine has ushered in the development of microscopic methods that can report molecular processes in thick tissues with high spatial resolution. A commonality in deep-tissue microscopy is the use of near-infrared (NIR) lasers with single- or multiphoton excitations. However, the relationship between different NIR excitation microscopic techniques and the imaging depths in tissue has not been established. We compared such depth limits for three NIR excitation techniques: NIR single-photon confocal microscopy (NIR SPCM), NIR multiphoton excitation with visible detection (NIR/VIS MPM), and all-NIR multiphoton excitation with NIR detection (NIR/NIR MPM). Homologous cyanine dyes provided the fluorescence. Intact kidneys were harvested after administration of kidney-clearing cyanine dyes in mice. NIR SPCM and NIR/VIS MPM achieved similar maximum imaging depth of ∼100 μm. The NIR/NIR MPM enabled greater than fivefold imaging depth (>500 μm) using the harvested kidneys. Although the NIR/NIR MPM used 1550-nm excitation where water absorption is relatively high, cell viability and histology studies demonstrate that the laser did not induce photothermal damage at the low laser powers used for the kidney imaging. This study provides guidance on the imaging depth capabilities of NIR excitation-based microscopic techniques and reveals the potential to multiplex information using these platforms. PMID:24150231
NASA Astrophysics Data System (ADS)
März, Christian; Mix, Alan C.; McClymont, Erin; Nakamura, Atsunori; Berbel, Glaucia; Gulick, Sean; Jaeger, John; Schneider (LeVay), Leah
2014-05-01
Pore waters of marine sediments usually have salinities and chlorinities similar to the overlying sea water, ranging around 34-35 psu (Practical Salinity Units) and around 550 mM Cl-, respectively. This is because these parameters are conservative in the sense that they do not significantly participate in biogeochemical cycles. However, pore water studies carried out in the frame of the International Ocean Discovery Program (IODP) and its predecessors have shown that salinities and chlorinities of marine pore waters can substantially deviate from the modern bottom water composition in a number of environmental settings, and various processes have been suggested to explain these phenomena. Also during the recent IODP Expedition 341 that drilled five sites in the Gulf of Alaska (Northeast Pacific Ocean) from the deep Surveyor Fan across the continental slope to the glaciomarine shelf deposits, several occurrences of pore waters with salinities and chlorinities significantly different from respective bottom waters were encountered during shipboard analyses. At the pelagic Sites U1417 and U1418 (~4,200 and ~3,700 m water depth, respectively), salinity and chlorinity maxima occur around 20-50 m sediment depth, but values gradually decrease with increasing drilling depths (down to 30 psu in ~600 m sediment depth). While the pore water freshening at depth is most likely an effect of clay mineral dehydration due to increasing burial depth, the shallow salinity and chlorinity maxima are interpreted as relicts of more saline bottom waters that existed in the North Pacific during the Last Glacial Maximum (Adkins et al., 2002). In contrast, the glaciomarine slope and shelf deposits at Site U1419 to U1421 (~200 to 1,000 m water depth) are characterised by unexpectedly low salinitiy and chlorinity values (as low as 16 psu and 295 mM Cl-, respectively) already in very shallow sediment depths (~10 m), and their records do not show systematic trends with sediment depth. Freshening of pore waters in continental margin settings has been reported in association with dissociating gas hydrate deposits (Hesse, 2003), but neither seismic profiles nor sediment records showed any indications for the presence of gas hydrates at the Gulf of Alaska sites. An alternative and intriguing explanation for these almost brackish waters in the glaciomarine shelf and slope deposits is the presence of glacial meltwater that could either be "fossil" (stored in the glaciomarine sediments since the last glacial termination) or "recent" (i.e., actively flowing from currently melting glaciers of the St. Elias Mountain Range along permeable layers within the shelf deposits). As these relatively fresh waters are found at three distinct drill sites, it can be assumed that they are distributed all along the Gulf of Alaska shelf and slope, and similar findings have been reported at other glaciated continental margins, e.g., off East Greenland (DeFoor et al., 2011) and Antarctica (Mann and Gieskes, 1975; Chambers, 1991; Lu et al., 2010). While a recent review has highlighted the importance of fresh and brackish water reservoirs in continental shelf deposits worldwide (Post et al., 2013), we suggest that climatic and depositional processes affecting glaciated continental margins (e.g., the release of huge amounts of fresh water from ice sheets and glaciers during glacial terminations, and the rapid deposition of unconsolidated sediments on the adjacent shelf) are particularly favourable for the storage and/or flow of meltwater below the present sea floor. Adkins JF, McIntyre K, Schrag DP (2002) The salinity, temperature, and d18O of the glacial deep ocean. Science 298, 1769-1773. Chambers SR (1991) Solute distributions and stable isotope chemistry of interstitial waters from Prydz Bay, Antarctica. Proceedings of the Ocean Drilling Program 119, 375-392. DeFoor W, Person M, Larsen HC, Lizarralde D, Cohen D, Dugam B (2011) Ice sheet-derived submarine groundwater discharge on Greenland's continental shelf. Water Resources Research 47, W07549. Hesse R (2003) Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: What have we learned in the past decade? Earth-Science Reviews 61, 149-179. Lu Z, Rickaby REM, Wellner J, Georg B, Charnley N, Anderson JB, Hensen C (2010) Pore fluid modeling approach to identify recent meltwater signals on the West Antarctic Peninsula. Geochemistry, Geophysics, Geosystems 11, doi: 10.1029/2009GC002949. Mann R, Gieskes JM (1975) Interstitial water studies, Leg 28. Deep Sea Drilling Project Initial Reports 28, 805-814. Post VEA, Groen J, Kooi H, Person M, Ge S, Edmunds M (2013) Offshore fresh groundwater reserves as a global phenomenon. Nature 504, 71-78.
NASA Astrophysics Data System (ADS)
Harbitz, C. B.; Glimsdal, S.; Løvholt, F.; Orefice, S.; Romano, F.; Brizuela, B.; Lorito, S.; Hoechner, A.; Babeyko, A. Y.
2016-12-01
The standard way of estimating tsunami inundation is by applying numerical depth-averaged shallow-water run-up models. However, for a regional Probabilistic Tsunami Hazard Assessment (PTHA), applying such inundation models may be too time-consuming. A faster, yet less accurate procedure, is to relate the near-shore surface elevations at offshore points to maximum shoreline water levels by using a set of amplification factors based on the characteristics of the incident wave and the bathymetric slope. The surface elevation at the shoreline then acts as a rough approximation for the maximum inundation height or run-up height along the shoreline. An amplification-factor procedure based on a limited set of idealized broken shoreline segments has previously been applied to estimate the maximum inundation heights globally. Here, we present a study where this technique is developed further, by taking into account the local bathymetric profiles. We extract a large number of local bathymetric transects over a significant part of the North East Atlantic, the Mediterranean and connected seas (NEAM) region. For each bathymetric transect, we compute the wave amplification from an offshore control point to points close to the shoreline using a linear shallow-water model for waves of different period and polarity with a sinusoidal pulse wave as input. The amplification factors are then tabulated. We present maximum water levels from the amplification factor method, and compare these with results from conventional inundation models. Finally, we demonstrate how the amplification factor method can be convolved with PTHA results to provide regional tsunami hazard maps. This work has been supported by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE), and the TSUMAPS-NEAM Project (http://www.tsumapsneam.eu/), co-financed by the European Union Civil Protection Mechanism, Agreement Number: ECHO/SUB/2015/718568/PREV26.
NASA Astrophysics Data System (ADS)
Glimsdal, Sylfest; Løvholt, Finn; Bonnevie Harbitz, Carl; Orefice, Simone; Romano, Fabrizio; Brizuela, Beatriz; Lorito, Stefano; Hoechner, Andreas; Babeyko, Andrey
2017-04-01
The standard way of estimating tsunami inundation is by applying numerical depth-averaged shallow-water run-up models. However, for a regional Probabilistic Tsunami Hazard Assessment (PTHA), applying such inundation models may be too time-consuming. A faster, yet less accurate procedure, is to relate the near-shore surface elevations at offshore points to maximum shoreline water levels by using a set of amplification factors based on the characteristics of the incident wave and the bathymetric slope. The surface elevation at the shoreline then acts as a rough approximation for the maximum inundation height or run-up height along the shoreline. An amplification-factor procedure based on a limited set of idealized broken shoreline segments has previously been applied to estimate the maximum inundation heights globally. Here, we present a study where this technique is developed further, by taking into account the local bathymetric profiles. We extract a large number of local bathymetric transects over a significant part of the North East Atlantic, the Mediterranean and connected seas (NEAM region). For each bathymetric transect, we compute the wave amplification from an offshore control point to points close to the shoreline using a linear shallow-water model for waves of different period and polarity with a sinusoidal pulse wave as input. The amplification factors are then tabulated. We present maximum water levels from the amplification factor method, and compare these with results from conventional inundation models. Finally, we demonstrate how the amplification factor method can be convolved with PTHA results to provide regional tsunami hazard maps. This work has been supported by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 603839 (Project ASTARTE), and the TSUMAPS-NEAM Project (http://www.tsumapsneam.eu/), co-financed by the European Union Civil Protection Mechanism, Agreement Number: ECHO/SUB/2015/718568/PREV26.
Hydrology of Lake Tohopekaliga, Osceola County, Florida
Phelps, G.G.
1982-01-01
Lake Tohopekaliga, one of the major lakes in central Florida, provides flood control in the upper Kissimmee River basin, recreation for fishermen and boaters, water for live-stock, esthetic surroundings for homesites, and serves as a receiving body for treated effluent from municipal sewage treatment plants. The purpose of this map report is to provide a general reconnaissance of the lake, based primarily on existing geologic , hydrologic and water-quality data. The lake has a surface area of about 30 square miles and a mean depth of about 5 feet. Maximum depth measured was about 13 feet. Inflow to the lake comes from Shingle Creek and St. Cloud canal and outflow is through the South-port canal. Regulation of lake levels for flood control began in the early 1960 's and has resulted in a decrease in the range of lake stage of about 3 feet. Concentrations of pesticide residues in lake bottom sediments do not appear to have increased from 1972 to 1980. The lake has abundant aquatic vegetation, the amount and extent of which varies with fluctuating water levels. Water-quality data collected between 1954-77 are summarized in the report and additional data collected in 1980 are also shown. The range of plant nutrient concentrations measured in May 1980 are: Total organic nitrogen 0.71-2.2 milligrams per liter. Most water-quality parameters vary from one area of the lake to another because of restricted areal circulation due to the shape of the lake. (USGS)
Compact water depth sensor with LPFG using the photoelastic effect and heat-shrinkable tube
NASA Astrophysics Data System (ADS)
Takama, Shinya; Kudomi, Takamasa; Ohashi, Masaharu; Miyoshi, Yuji
2011-12-01
We propose a compact water depth sensor with a long period fiber grating (LPFG) using a heat-shrinkable tube. The pressure property of the LPFG is investigated experimentally to confirm the feasibility of the water depth sensor. Moreover, the water depth in the 2m long water-filled pipe is successfully estimated by the proposed water sensors.
Optimum soil frost depth to alleviate climate change effects in cold region agriculture
NASA Astrophysics Data System (ADS)
Yanai, Yosuke; Iwata, Yukiyoshi; Hirota, Tomoyoshi
2017-03-01
On-farm soil frost control has been used for the management of volunteer potatoes (Solanum tuberosum L.), a serious weed problem caused by climate change, in northern Japan. Deep soil frost penetration is necessary for the effective eradication of unharvested small potato tubers; however, this process can delay soil thaw and increase soil wetting in spring, thereby delaying agricultural activity initiation and increasing nitrous oxide emissions from soil. Conversely, shallow soil frost development helps over-wintering of unharvested potato tubers and nitrate leaching from surface soil owing to the periodic infiltration of snowmelt water. In this study, we synthesised on-farm snow cover manipulation experiments to determine the optimum soil frost depth that can eradicate unharvested potato tubers without affecting agricultural activity initiation while minimising N pollution from agricultural soil. The optimum soil frost depth was estimated to be 0.28-0.33 m on the basis of the annual maximum soil frost depth. Soil frost control is a promising practice to alleviate climate change effects on agriculture in cold regions, which was initiated by local farmers and further promoted by national and local research institutes.
Upper Ocean Profiles Measurements with ASIP
NASA Astrophysics Data System (ADS)
Ward, B.; Callaghan, A. H.; Fristedt, T.; Vialard, J.; Cuypers, Y.; Weller, R. A.; Grosch, C. E.
2009-04-01
This presentation describes results from the Air-Sea Interaction Profiler (ASIP), an autonomous profiling instrument for upper ocean measurements. The measurements from ASIP are well suited to enhancing research on air-sea interfacial and near surface processes. Autonomous profiling is accomplished with a thruster, which submerges ASIP to a programmed depth. Once this depth is reached the positively buoyant instrument will ascend to the surface acquiring data. ASIP can profile from a maximum depth of 100 m to the surface, allowing both mixed layer and near-surface measurements to be conducted. The sensor payload on ASIP include microstructure sensors (two shear probes and a thermistor); a slow response accurate thermometer; a pair of conductivity sensors; pressure for a record of depth; PAR for measurements of light absorption in the water column. Other non-environmental sensors are acceleration, rate, and heading for determination of vehicle motion. Power is provided with rechargable lithium-ion batteries, supplying 1000 Whr, allowing approximately 300 profiles. ASIP also contains an iridium/GPS system, which allows realtime reporting of its position. ASIP was deployed extensively during the Cirene Indian Ocean campaign and our results focus on the data from the temperature, salinity, light, and shear sensors.
Optimum soil frost depth to alleviate climate change effects in cold region agriculture.
Yanai, Yosuke; Iwata, Yukiyoshi; Hirota, Tomoyoshi
2017-03-21
On-farm soil frost control has been used for the management of volunteer potatoes (Solanum tuberosum L.), a serious weed problem caused by climate change, in northern Japan. Deep soil frost penetration is necessary for the effective eradication of unharvested small potato tubers; however, this process can delay soil thaw and increase soil wetting in spring, thereby delaying agricultural activity initiation and increasing nitrous oxide emissions from soil. Conversely, shallow soil frost development helps over-wintering of unharvested potato tubers and nitrate leaching from surface soil owing to the periodic infiltration of snowmelt water. In this study, we synthesised on-farm snow cover manipulation experiments to determine the optimum soil frost depth that can eradicate unharvested potato tubers without affecting agricultural activity initiation while minimising N pollution from agricultural soil. The optimum soil frost depth was estimated to be 0.28-0.33 m on the basis of the annual maximum soil frost depth. Soil frost control is a promising practice to alleviate climate change effects on agriculture in cold regions, which was initiated by local farmers and further promoted by national and local research institutes.
Slagle, Steven E.; Lewis, Barney D.; Lee, Roger W.
1985-01-01
The shallow ground-water system in the northern Powder River Basin consists of Upper Cretaceous to Holocene aquifers overlying the Bearpaw Shale--namely, the Fox Hills Sandstone; Hell Creek, Fort Union, and Wasatch Formations; terrace deposits; and alluvium. Ground-water flow above the Bearpaw Shale can be divided into two general flow patterns. An upper flow pattern occurs in aquifers at depths of less than about 200 feet and occurs primarily as localized flow controlled by the surface topography. A lower flow pattern occurs in aquifers at depths from about 200 to 1,200 feet and exhibits a more regional flow, which is generally northward toward the Yellowstone River with significant flow toward the Powder and Tongue Rivers. The chemical quality of water in the shallow ground-water system in the study area varies widely, and most of the ground water does not meet standards for dissolved constituents in public drinking water established by the U.S. Environmental Protection Agency. Water from depths less than 200 feet generally is a sodium sulfate type having an average dissolved-solids concentration of 2,100 milligrams per liter. Sodium bicarbonate water having an average dissolved-solids concentration of 1,400 milligrams per liter is typical from aquifers in the shallow ground-water system at depths between 200 and 1,200 feet. Effects of surface coal mining on the water resources in the northern Powder River Basin are dependent on the stratigraphic location of the mine cut. Where the cut lies above the water-yielding zone, the effects will be minimal. Where the mine cut intersects a water-ielding zone, effects on water levels and flow patterns can be significant locally, but water levels and flow patterns will return to approximate premining conditions after mining ceases. Ground water in and near active and former mines may become more mineralized, owing to the placement of spoil material from the reducing zone in the unsaturated zone where the minerals are subject to oxidation. Regional effects probably will be small because of the limited areal extent of ground-water flow systems where mining is feasible. Results of digital models are presented to illustrate the effects of varying hydraulic properties on water-level changes resulting from mine dewatering. The model simulations were designed to depict maximum-drawdown situations. One simulation indicates that after 20 years of continuous dewatering of an infinite, homogeneous, isotropic aquifer that is 10 feet thick and has an initial potentiometric surface 10 feet above the top of the aquifer, water-level declines greater than 1 foot would generally be limited to within 7.5 miles of the center of the mine excavation; declines greater than 2 feet to within about 6 miles; declines greater than 5 feet to within about 3.7 miles; declines greater than 10 feet to within about 1.7 miles; and declines greater than 15 feet to within 1.2 miles.
NASA Astrophysics Data System (ADS)
Wei, R.; Abouchami, W.; Zahn, R.; Masque, P.
2016-01-01
We report down-core sedimentary Nd isotope (εNd) records from two South Atlantic sediment cores, MD02-2594 and GeoB3603-2, located on the western South African continental margin. The core sites are positioned downstream of the present-day flow path of North Atlantic Deep Water (NADW) and close to the Southern Ocean, which makes them suitable for reconstructing past variability in NADW circulation over the last glacial cycle. The Fe-Mn leachates εNd records show a coherent decreasing trend from glacial radiogenic values towards less radiogenic values during the Holocene. This trend is confirmed by εNd in fish debris and mixed planktonic foraminifera, albeit with an offset during the Holocene to lower values relative to the leachates, matching the present-day composition of NADW in the Cape Basin. We interpret the εNd changes as reflecting the glacial shoaling of Southern Ocean waters to shallower depths combined with the admixing of southward flowing Northern Component Water (NCW). A compilation of Atlantic εNd records reveals increasing radiogenic isotope signatures towards the south and with increasing depth. This signal is most prominent during the Last Glacial Maximum (LGM) and of similar amplitude across the Atlantic basin, suggesting continuous deep water production in the North Atlantic and export to the South Atlantic and the Southern Ocean. The amplitude of the εNd change from the LGM to Holocene is largest in the southernmost cores, implying a greater sensitivity to the deglacial strengthening of NADW at these sites. This signal impacted most prominently the South Atlantic deep and bottom water layers that were particularly deprived of NCW during the LGM. The εNd variations correlate with changes in 231Pa/230Th ratios and benthic δ13C across the deglacial transition. Together with the contrasting 231Pa/230Th: εNd pattern of the North and South Atlantic, this indicates a progressive reorganization of the AMOC to full strength during the Holocene.
Lapham, Wayne W.
1989-01-01
The use of temperature profiles beneath streams to determine rates of vertical ground-water flow and effective vertical hydraulic conductivity of sediments was evaluated at three field sites by use of a model that numerically solves the partial differential equation governing simultaneous vertical flow of fluid and heat in the Earth. The field sites are located in Hardwick and New Braintree, Mass., and in Dover, N.J. In New England, stream temperature varies from about 0 to 25 ?C (degrees Celsius) during the year. This stream-temperature fluctuation causes ground-water temperatures beneath streams to fluctuate by more than 0.1 ?C during a year to a depth of about 35 ft (feet) in fine-grained sediments and to a depth of about 50 ft in coarse-grained sediments, if ground-water velocity is 0 ft/d (foot per day). Upward flow decreases the depth affected by stream-temperature fluctuation, and downward flow increases the depth. At the site in Hardwick, Mass., ground-water flow was upward at a rate of less than 0.01 ft/d. The maximum effective vertical hydraulic conductivity of the sediments underlying this site is 0.1 ft/d. Ground-water velocities determined at three locations at the site in New Braintree, Mass., where ground water discharges naturally from the underlying aquifer to the Ware River, ranged from 0.10 to 0.20 ft/d upward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.4 to 17.1 ft/d. Ground-water velocities determined at three locations at the Dover, N.J., site, where infiltration from the Rockaway River into the underlying sediments occurs because of pumping, were 1.5 ft/d downward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.2 to 2.5 ft/d. Independent estimates of velocity at two of the three sites are in general agreement with the velocities determined using temperature profiles. The estimates of velocities and conductivities derived from the temperature measurements generally fall within the ranges of expected rates of flow in, and conductivities of, the sediments encountered at the test sites. Application of the method at the three test sites demonstrates the feasibility of using the method to determine the rate of ground-water flow between a stream and underlying sediments and the effective vertical hydraulic conductivity of the sediments.
Analysis and design of trial well mooring in deepwater of the South China Sea
NASA Astrophysics Data System (ADS)
Guo, Yongfeng; Ji, Shaojun; Tang, Changquan; Li, Jiansong; Zhong, Huiquan; Ian, Ong Chin Yam
2012-06-01
Mooring systems play an important role for semi-submersible rigs that drill in deepwater. A detailed analysis was carried out on the mooring of a semi-submersible rig that conducted a trial well drilling at a deepwater location in the South China Sea in 2009. The rig was 30 years old and had a shallow platform with a designed maximum operating water depth of 457 m. Following the mooring analysis, a mooring design was given that requires upgrading of the rig's original mooring system. The upgrade included several innovations, such as installing eight larger anchors, i.e. replacing the original anchors and inserting an additional 600 m of steel wires with the existing chains. All this was done to enhance the mooring capability of the rig in order for the rig to be held in position to conduct drilling at a water depth of 476 m. The overall duration of the drilling was 50 days and the upgraded mooring system proved to be efficient in achieving the goal of keeping the rig stationary while it was drilling the trial well in the South China Sea. This successful campaign demonstrates that an older semi-submersible rig can take on drilling in deep water after careful design and proper upgrading and modification to the original mooring system.
Zhang, Wenrui; Yan, Danhua; Appavoo, Kannatassen; ...
2017-04-18
Semiconductor photoelectrodes for photoelectrochemical (PEC) water splitting require efficient carrier generation, separation, and transport at and beyond the space charge region (SCR) formed at the aqueous interface. The trade-off between photon collection and minority carrier delivery governs the photoelectrode design and implies maximum water splitting efficiency at an electrode thickness equivalent to the light absorption depth. Here, using planar ZnO thin films as a model system, we identify the photocarriers beyond the SCR as another significant source to substantially enhance the PEC performance. The high-quality ZnO films synthesized by pulsed laser deposition feature very few deep trap states and supportmore » a long photocarrier lifetime. Combined with photoelectrochemical characterization, ultrafast spectroscopy, and numerical calculations, it is revealed that engineering the exciton concentration gradient by film thickness facilitates the inward diffusion of photocarriers from the neighboring illuminated region to the SCR and, therefore, achieves a record high quantum efficiency over 80% at a thickness far beyond its light absorption depth and the SCR width. Furthermore, these results elucidate the important role of the photocarriers beyond SCR for the PEC process and provide new insight into exploring the full potential for efficient photoelectrode materials with large exciton diffusivity.« less
NASA Astrophysics Data System (ADS)
Bill, M.; Conrad, M. E.; Kolding, S.; Williams, K. H.; Tokunaga, T. K.
2014-12-01
Nitrous oxide (N2O) concentrations and isotope ratios of 15N to 14N of N2O in the vadose zone mainly depend on atmospheric deposition, symbiotic or non-symbiotic N2 fixation, and nitrification/denitrification processes in underlying groundwater. In an effort to quantify N2O seasonal variations, cycling and N budgets in an alluvial aquifer in western Colorado (Rifle, CO), the concentrations and nitrogen stable isotopes of N2O within the pore space of partially saturated sediments have been monitored over the 2013-2014 years. Vertically resolved profiles spanning from 0m to 3m depth were sampled at 0.5m increments at a periodicity of one month. At each of the profile locations, N2O concentrations decreased from 3m depth to the surface. The maximum concentrations were observed at the interface between the unsaturated zone and groundwater, with minimum values observed in the near surface samples. The d15N values tend to increase from the unsaturated zone/groundwater interface to the surface. Both variation of N2O concentrations and d15N values suggest that denitrification is the main contribution to N2O production and both parameters exhibited a strong seasonal variation. The maximum concentrations (~10ppmv) were observed at the beginning of summer, during the annual maximum in water table elevation. The minimum N2O concentrations were observed in the period from January to May and coincided with low water table elevations. Additionally, nitrogen concentrations and d15N values of the shallowest sediments within the vertical profiles do not show variation, suggesting that the main source of N2O is associated with groundwater denitrification, with the shallower, partially saturated sediments acting as a sink for N2O.
NASA Astrophysics Data System (ADS)
Zhuang, X. W.; Li, Y. P.; Nie, S.; Fan, Y. R.; Huang, G. H.
2018-01-01
An integrated simulation-optimization (ISO) approach is developed for assessing climate change impacts on water resources. In the ISO, uncertainties presented as both interval numbers and probability distributions can be reflected. Moreover, ISO permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised water-allocation targets are violated. A snowmelt-precipitation-driven watershed (Kaidu watershed) in northwest China is selected as the study case for demonstrating the applicability of the proposed method. Results of meteorological projections disclose that the incremental trend of temperature (e.g., minimum and maximum values) and precipitation exist. Results also reveal that (i) the system uncertainties would significantly affect water resources allocation pattern (including target and shortage); (ii) water shortage would be enhanced from 2016 to 2070; and (iii) the more the inflow amount decreases, the higher estimated water shortage rates are. The ISO method is useful for evaluating climate change impacts within a watershed system with complicated uncertainties and helping identify appropriate water resources management strategies hedging against drought.
Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile.
Parris, Darren J; Ganesh, Sangita; Edgcomb, Virginia P; DeLong, Edward F; Stewart, Frank J
2014-01-01
Molecular surveys are revealing diverse eukaryotic assemblages in oxygen-limited ocean waters. These communities may play pivotal ecological roles through autotrophy, feeding, and a wide range of symbiotic associations with prokaryotes. We used 18S rRNA gene sequencing to provide the first snapshot of pelagic microeukaryotic community structure in two cellular size fractions (0.2-1.6 μm, >1.6 μm) from seven depths through the anoxic oxygen minimum zone (OMZ) off northern Chile. Sequencing of >154,000 amplicons revealed contrasting patterns of phylogenetic diversity across size fractions and depths. Protist and total eukaryote diversity in the >1.6 μm fraction peaked at the chlorophyll maximum in the upper photic zone before declining by ~50% in the OMZ. In contrast, diversity in the 0.2-1.6 μm fraction, though also elevated in the upper photic zone, increased four-fold from the lower oxycline to a maximum at the anoxic OMZ core. Dinoflagellates of the Dinophyceae and endosymbiotic Syndiniales clades dominated the protist assemblage at all depths (~40-70% of sequences). Other protist groups varied with depth, with the anoxic zone community of the larger size fraction enriched in euglenozoan flagellates and acantharean radiolarians (up to 18 and 40% of all sequences, respectively). The OMZ 0.2-1.6 μm fraction was dominated (11-99%) by Syndiniales, which exhibited depth-specific variation in composition and total richness despite uniform oxygen conditions. Metazoan sequences, though confined primarily to the 1.6 μm fraction above the OMZ, were also detected within the anoxic zone where groups such as copepods increased in abundance relative to the oxycline and upper OMZ. These data, compared to those from other low-oxygen sites, reveal variation in OMZ microeukaryote composition, helping to identify clades with potential adaptations to oxygen-depletion.
NASA Astrophysics Data System (ADS)
Dong, Shenfu; Goni, Gustavo; Volkov, Denis; Lumpkin, Rick; Foltz, Gregory
2017-04-01
Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific Ocean with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of the differences. Measurements from these drifters indicate that, on average, water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths often occur when surface winds are weak. In addition to the expected surface freshening and cooling during rainfall events, surface salinification occurs under weak wind conditions when there is strong surface warming that enhances evaporation and upper ocean stratification. Further examination of the drifter measurements demonstrate that (i) the amount of surface freshening and vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 4 m/s. Its phase is consistent with diurnal changes in surface temperature-induced evaporation. Below a wind speed of 6 m/s, the amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. Wind speed also affects the phasing of the diurnal cycle of T5m with the time of maximum T5m increasing gradually with decreasing wind speed. Wind speed does not affect the phasing of the diurnal cycle of T0.2m. At 0.2 m and 5 m, the diurnal cycle of temperature also depends on surface solar radiation, with the amplitude and time of diurnal maximum increasing as solar radiation increases.