Science.gov

Sample records for maximum wind velocity

  1. Minimum length-maximum velocity

    NASA Astrophysics Data System (ADS)

    Panes, Boris

    2012-03-01

    We study a framework where the hypothesis of a minimum length in space-time is complemented with the notion of reference frame invariance. It turns out natural to interpret the action of the obtained reference frame transformations in the context of doubly special relativity. As a consequence of this formalism we find interesting connections between the minimum length properties and the modified velocity-energy relation for ultra-relativistic particles. For example, we can predict the ratio between the minimum lengths in space and time using the results from OPERA on superluminal neutrinos.

  2. Solar-wind velocity decreases

    NASA Astrophysics Data System (ADS)

    Geranios, A.

    1980-08-01

    A model is developed to account for the solar wind electron and proton temperature decreases observed following the passage of an interplanetary shock wave and during the velocity decrease of a solar wind stream. The equations of mass and energy conservation are solved for a fully ionized, electrically neutral plasma expanding radially and spherically symmetrically, taking into account the heat flux from the solor corona to the plasma along the open magnetic field lines, and the electron thermal conductivity. An analytical relationship between the temperature and the velocity of the solar wind plasma is obtained which is found to be in agreement with experimental measurements made by the Vela 5 and 6 and IMP 6 satellites from August 1969-May 1974. It is thus proposed that the observed low plasma temperatures are due to the fact that the temperature decrease of the expanding plasma exceeds the heat gain due to thermal conduction from the corona.

  3. Spatiotemporal Dynamics of the Wind Velocity from Minisodar Measurement Data

    NASA Astrophysics Data System (ADS)

    Simakhin, V. A.; Cherepanov, O. S.; Shamanaeva, L. G.

    2016-04-01

    The spatiotemporal dynamics of the three wind velocity components in the atmospheric boundary layer is analyzed on the basis of Doppler minisodar measurements. The data were processed and analyzed with the help of robust nonparametric methods based on the weighted maximum likelihood method and classical methods. Distribution laws were obtained for each wind velocity component. There are outliers in the distribution functions; both right and left asymmetry of the distributions are observed. For the x- and ycomponents, the width of the distribution increases as the observation altitude is increased, but the maximum of the distribution function decreases, which is in agreement with the data available in the literature. For the zcomponents the width of the distribution remains practically constant, but the value of the maximum also decreases with altitude. Analysis of the hourly semidiurnal dynamics showed that all three components have maxima in the morning and evening hours. For the y- and z-components the maxima in the evening hours are more strongly expressed than in the morning hours. For the x- and y-components the horizontal wind shear is closely tracked in the evening hours. It is shown that adaptive estimates on the efficiency significantly exceed the classical parametric estimates and allow one to analyze the spatiotemporal dynamics of the wind velocity, and reveal jets and detect wind shears.

  4. Satellite-tracked cumulus velocities. [for determining wind velocity

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.; Pearl, E. W.; Shenk, W. E.

    1973-01-01

    The research indicates that extreme caution must be exercised in converting cloud velocities into winds. The motion of fair-weather cumuli obtained by tracking their shadows over Springfield, Missouri revealed that the standard deviation in the individual cloud motion is several times the tracking error. The motion of over-ocean cumuli near Barbados clearly indicated the complicated nature of cumulus velocities. Analysis of whole-sky images obtained near Tampa, Florida failed to show significant continuity and stability of cumulus plumes, less than 0.3 mile in diameter. Cumulus turrets with 0.3 to 2 mile in size appear to be the best target to infer the mean wind within the subcloud layers. Cumulus or stratocumulus cells consisting of x number of turrets do not always move with wind. The addition and deletion of turrets belonging to a specific cell appear to be the cause of the erratic motion of a tracer cell. It may by concluded that the accuracy of wind estimates is unlikely to be better than 2m/sec unless the physical and dynamical characteristics of cumulus motion is futher investigated.

  5. Distribution of maximum velocities in avalanches near the depinning transition.

    PubMed

    LeBlanc, Michael; Angheluta, Luiza; Dahmen, Karin; Goldenfeld, Nigel

    2012-09-07

    We report exact predictions for universal scaling exponents and scaling functions associated with the distribution of the maximum collective avalanche propagation velocities v(m) in the mean field theory of the interface depinning transition. We derive the extreme value distribution P(v(m)|T) for the maximum velocities in avalanches of fixed duration T and verify the results by numerical simulation near the critical point. We find that the tail of the distribution of maximum velocity for an arbitrary avalanche duration, v(m), scales as P(v(m))~v(m)(-2) for large v(m). These results account for the observed power-law distribution of the maximum amplitudes in acoustic emission experiments of crystal plasticity and are also broadly applicable to other systems in the mean-field interface depinning universality class, ranging from magnets to earthquakes.

  6. Effects of increasing tip velocity on wind turbine rotor design.

    SciTech Connect

    Resor, Brian Ray; Maniaci, David Charles; Berg, Jonathan Charles; Richards, Phillip William

    2014-05-01

    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  7. Radionuclide counting technique for measuring wind velocity

    SciTech Connect

    Singh, J.J.; Khandelwal, G.S.

    1981-12-01

    A technique for measuring wind velocities of meteorological interest is described. It is based on inverse-square-law variation of the counting rates as the radioactive source-to-counter distance is changed by wind drag on the source ball. Results of a feasibility study using a weak bismuth 207 radiation source and three Geiger-Muller radiation counters are reported. The use of the technique is not restricted to Martian or Mars-like environments. A description of the apparatus, typical results, and frequency response characteristics are included. A discussion of a double-pendulum arrangement is presented. Measurements reported herein indicate that the proposed technique may be suitable for measuring wind speeds up to 100 m/sec, which are either steady or whose rates of fluctuation are less than 1 kHz.

  8. Design of a wind turbine-generator system considering the conformability to wind velocity fluctuations

    SciTech Connect

    Wakui, Tetsuya; Hashizume, Takumi; Outa, Eisuke

    1999-07-01

    The conformability of the rated power output of the wind turbine-generator system and of the wind turbine type to wind velocity fluctuations are investigated with a simulation model. The authors examine three types of wind turbines: the Darrieus-Savonius hybrid, the Darrieus proper and the Propeller. These systems are mainly operated at a constant tip speed ratio, which refers to a maximum power coefficient points. As a computed result of the net extracting power, the Darrieus turbine proper has little conformability to wind velocity fluctuations because of its output characteristics. As for the other turbines, large-scale systems do not always have an advantage over small-scale systems as the effect of its dynamic characteristics. Furthermore, it is confirmed that the net extracting power of the Propeller turbine, under wind direction fluctuation, is much reduced when compared with the hybrid wind turbine. Thus, the authors conclude that the appropriate rated power output of the system exists with relation to the wind turbine type for each wind condition.

  9. Maximum Velocities in Flexion and Extension Actions for Sport

    PubMed Central

    Jessop, David M.

    2016-01-01

    Abstract Speed of movement is fundamental to the outcome of many human actions. A variety of techniques can be implemented in order to maximise movement speed depending on the goal of the movement, constraints, and the time available. Knowing maximum movement velocities is therefore useful for developing movement strategies but also as input into muscle models. The aim of this study was to determine maximum flexion and extension velocities about the major joints in upper and lower limbs. Seven university to international level male competitors performed flexion/extension at each of the major joints in the upper and lower limbs under three conditions: isolated; isolated with a countermovement; involvement of proximal segments. 500 Hz planar high speed video was used to calculate velocities. The highest angular velocities in the upper and lower limb were 50.0 rad·s-1 and 28.4 rad·s-1, at the wrist and knee, respectively. As was true for most joints, these were achieved with the involvement of proximal segments, however, ANOVA analysis showed few significant differences (p<0.05) between conditions. Different segment masses, structures and locations produced differing results, in the upper and lower limbs, highlighting the requirement of segment specific strategies for maximal movements. PMID:28149339

  10. An approximate, maximum-terminal-velocity descent to a point

    NASA Astrophysics Data System (ADS)

    Eisler, G. Richard; Hull, David G.

    A neighboring extremal control problem is formulated for a hypersonic glider to execute a maximum-terminal-velocity descent to a stationary target in a vertical plane. The resulting two-part, feedback control scheme initially solves a nonlinear algebraic problem to generate a nominal trajectory to the target altitude. Secondly, quadrature about the nominal provides the lift perturbation necessary to achieve the target downrange. On-line feedback simulations are run for the proposed scheme and a form of proportional navigation and compared with an off-line parameter optimization method. The neighboring extremal terminal velocity compares very well with the parameter optimization solution and is far superior to proportional navigation. However, the update rate is degraded, though the proposed method can be executed in real time.

  11. Three dimensional winds: A maximum cross-correlation application to elastic lidar data

    SciTech Connect

    Buttler, William Tillman

    1996-05-01

    Maximum cross-correlation techniques have been used with satellite data to estimate winds and sea surface velocities for several years. Los Alamos National Laboratory (LANL) is currently using a variation of the basic maximum cross-correlation technique, coupled with a deterministic application of a vector median filter, to measure transverse winds as a function of range and altitude from incoherent elastic backscatter lidar (light detection and ranging) data taken throughout large volumes within the atmospheric boundary layer. Hourly representations of three-dimensional wind fields, derived from elastic lidar data taken during an air-quality study performed in a region of complex terrain near Sunland Park, New Mexico, are presented and compared with results from an Environmental Protection Agency (EPA) approved laser doppler velocimeter. The wind fields showed persistent large scale eddies as well as general terrain-following winds in the Rio Grande valley.

  12. Three-Dimensional Winds: a Maximum Cross-Correlation Application to Elastic LIDAR Data.

    NASA Astrophysics Data System (ADS)

    Buttler, William Tillman

    Maximum cross-correlation techniques have been used with satellite data to estimate winds and sea surface velocities for several years. Los Alamos National Laboratory (LANL) is currently using a variation of the basic maximum cross-correlation technique, coupled with a deterministic application of a vector median filter, to measure transverse winds as a function of range and altitude from incoherent elastic back-scatter lidar (light detection and ranging) data taken throughout large volumes within the atmospheric boundary layer. Hourly representations of three-dimensional wind fields, derived from elastic lidar data taken during an air-quality study performed in a region of complex terrain near Sunland Park, New Mexico, are presented and compared with results from an Environmental Protection Agency (EPA) approved laser doppler velocimeter. The wind fields showed persistent large scale eddies as well as general terrain -following winds in the Rio Grande valley.

  13. Estimating maximum global wind power availability and associated climatic consequences

    NASA Astrophysics Data System (ADS)

    Miller, Lee; Gans, Fabian; Kleidon, Axel

    2010-05-01

    Estimating maximum global wind power availability and associated climatic consequences Wind speed reflects the continuous generation of kinetic energy and its dissipation, primarily in the atmospheric boundary layer. When wind turbines extract kinetic wind energy, less kinetic energy remains in the atmosphere in the mean state. While this effect does not play a significant role for a single turbine, it becomes a critical factor for the estimation of large-scale wind power availability. This extraction of kinetic energy by turbines also competes with the natural processes of kinetic energy dissipation, thus setting fundamental limits on extractability that are not considered in previous large-scale studies [1,2,3]. Our simple momentum balance model using ECMWF climate data illustrates a fundamental limit to global wind power extractability and thereby electricity potential (93TW). This is independent of engineering advances in turbine design and wind farm layout. These results are supported by similar results using a global climate model of intermediate complexity. Varying the surface drag coefficient with different simulations allows us to directly relate changes in atmospheric and boundary layer dissipation with resulting climate indices and wind power potential. These new estimates of the maximum power generation by wind turbines are well above the currently installed capacity. Hence, present day installations are unlikely to have a global impact. However, when compared to the current human energy demand of 17TW combined with plans by the US and EU to drastically increase onshore and offshore wind turbine installations [4,5,6], understanding the climatic response and ultimate limitations of wind power as a large-scale renewable energy source is critical. [1] Archer, C., and M.Z. Jacobson, (2005) Evaluation of global wind power, J. Geophys. Res. 110:D12110. [2] Lu, X., M.B. McElroy, and J. Kiviluoma, (2009) Global potential for wind-generated electricity, Proc

  14. Radionuclide counting technique for measuring wind velocity and direction

    NASA Technical Reports Server (NTRS)

    Singh, J. J. (Inventor)

    1984-01-01

    An anemometer utilizing a radionuclide counting technique for measuring both the velocity and the direction of wind is described. A pendulum consisting of a wire and a ball with a source of radiation on the lower surface of the ball is positioned by the wind. Detectors and are located in a plane perpendicular to pendulum (no wind). The detectors are located on the circumferene of a circle and are equidistant from each other as well as the undisturbed (no wind) source ball position.

  15. Calibration of Instruments for Measuring Wind Velocity and Direction

    NASA Technical Reports Server (NTRS)

    Vogler, Raymond D.; Pilny, Miroslav J.

    1950-01-01

    Signal Corps wind equipment AN/GMQ-1 consisting of a 3-cup anemometer and wind vane was calibrated for wind velocities from 1 to 200 miles per hour. Cup-shaft failure prevented calibration at higher wind velocities. The action of the wind vane was checked and found to have very poor directional accuracy below a velocity of 8 miles per hour. After shaft failure was reported to the Signal Corps, the cup rotors were redesigned by strengthening the shafts for better operation at high velocities. The anemometer with the redesigned cup rotors was recalibrated, but cup-shaft failure occurred again at a wind velocity of approximately 220 miles per hour. In the course of this calibration two standard generators were checked for signal output variation, and a wind-speed meter was calibrated for use with each of the redesigned cup rotors. The variation of pressure coefficient with air-flow direction at four orifices on a disk-shaped pitot head was obtained for wind velocities of 37.79 53.6, and 98.9 miles per hour. A pitot-static tube mounted in the nose of a vane was calibrated up to a dynamic pressure of 155 pounds per square foot, or approximately 256 miles per hour,

  16. Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime

    SciTech Connect

    Carlin, P.W.

    1996-12-01

    Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases considered include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.

  17. Exploratory Meeting on Airborne Doppler Lidar Wind Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Fichtel, G. H. (Editor); Kaufman, J. W. (Editor); Vaughan, W. W. (Editor)

    1980-01-01

    The scientific interests and applications of the Airborne Doppler Lidar Wind Velocity Measurement System to severe storms and local weather are discussed. The main areas include convective phenomena, local circulation, atmospheric boundary layer, atmospheric dispersion, and industrial aerodynamics.

  18. Modeling velocity space-time correlations in wind farms

    NASA Astrophysics Data System (ADS)

    Lukassen, Laura J.; Stevens, Richard J. A. M.; Meneveau, Charles; Wilczek, Michael

    2016-11-01

    Turbulent fluctuations of wind velocities cause power-output fluctuations in wind farms. The statistics of velocity fluctuations can be described by velocity space-time correlations in the atmospheric boundary layer. In this context, it is important to derive simple physics-based models. The so-called Tennekes-Kraichnan random sweeping hypothesis states that small-scale velocity fluctuations are passively advected by large-scale velocity perturbations in a random fashion. In the present work, this hypothesis is used with an additional mean wind velocity to derive a model for the spatial and temporal decorrelation of velocities in wind farms. It turns out that in the framework of this model, space-time correlations are a convolution of the spatial correlation function with a temporal decorrelation kernel. In this presentation, first results on the comparison to large eddy simulations will be presented and the potential of the approach to characterize power output fluctuations of wind farms will be discussed. Acknowledgements: 'Fellowships for Young Energy Scientists' (YES!) of FOM, the US National Science Foundation Grant IIA 1243482, and support by the Max Planck Society.

  19. 14 CFR 25.237 - Wind velocities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... velocities. (a) For land planes and amphibians, the following applies: (1) A 90-degree cross component of...) Icing conditions with the landing ice accretion defined in appendix C. (b) For seaplanes and...

  20. 14 CFR 25.237 - Wind velocities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... velocities. (a) For land planes and amphibians, the following applies: (1) A 90-degree cross component of...) Icing conditions with the landing ice accretion defined in appendix C. (b) For seaplanes and...

  1. 14 CFR 25.237 - Wind velocities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... velocities. (a) For land planes and amphibians, the following applies: (1) A 90-degree cross component of...) Icing conditions with the landing ice accretion defined in appendix C. (b) For seaplanes and...

  2. 14 CFR 25.237 - Wind velocities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... velocities. (a) For land planes and amphibians, the following applies: (1) A 90-degree cross component of...) Icing conditions with the landing ice accretion defined in appendix C. (b) For seaplanes and...

  3. 14 CFR 25.237 - Wind velocities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... velocities. (a) For land planes and amphibians, the following applies: (1) A 90-degree cross component of...) Icing conditions with the landing ice accretion defined in appendix C. (b) For seaplanes and...

  4. Effect of velocity profile skewing on blood velocity and volume flow waveforms derived from maximum Doppler spectral velocity.

    PubMed

    Mynard, Jonathan P; Steinman, David A

    2013-05-01

    Given evidence that fully developed axisymmetric flow may be the exception rather than the rule, even in nominally straight arteries, maximum velocity (V(max)) can lie outside the Doppler sample volume (SV). The link between V(max) and derived quantities, such as volume flow (Q), may therefore be more complex than commonly thought. We performed idealized virtual Doppler ultrasound on data from image-based computational fluid dynamics (CFD) models of the normal human carotid artery and investigated how velocity profile skewing and choice of sample volume affected V(max) waveforms and derived Q variables, considering common assumptions about velocity profile shape (i.e., Poiseuille or Womersley). Severe velocity profile skewing caused substantial errors in V(max) waveforms when using a small, centered SV, although peak V(max) was reliably detected; errors with a long SV covering the vessel diameter were orientation dependent but lower overall. Cycle-averaged Q calculated from V(max) was typically within ±15%, although substantial skewing and use of a small SV caused 10%-25% underestimation. Peak Q derived from Womersley's theory was generally accurate to within ±10%. V(max) pulsatility and resistance indexes differed from Q-based values, although the Q-based resistance index could be predicted reliably. Skewing introduced significant error into V(max)-derived Q waveforms, particularly during mid-to-late systole. Our findings suggest that errors in the V(max) and Q waveforms related to velocity profile skewing and use of a small SV, or orientation-dependent errors for a long SV, could limit their use in wave analysis or for constructing characteristic or patient-specific flow boundary conditions for model studies.

  5. Measurement of turbulent wind velocities using a rotating boom apparatus

    SciTech Connect

    Sandborn, V.A.; Connell, J.R.

    1984-04-01

    The present report covers both the development of a rotating-boom facility and the evaluation of the spectral energy of the turbulence measured relative to the rotating boom. The rotating boom is composed of a helicopter blade driven through a pulley speed reducer by a variable speed motor. The boom is mounted on a semiportable tower that can be raised to provide various ratios of hub height to rotor diameter. The boom can be mounted to rotate in either the vertical or horizontal plane. Probes that measure the three components of turbulence can be mounted at any location along the radius of the boom. Special hot-film sensors measured two components of the turbulence at a point directly in front of the rotating blade. By using the probe rotated 90/sup 0/ about its axis, the third turbulent velocity component was measured. Evaluation of the spectral energy distributions for the three components of velocity indicates a large concentration of energy at the rotational frequency. At frequencies slightly below the rotational frequency, the spectral energy is greatly reduced over that measured for the nonrotating case measurements. Peaks in the energy at frequencies that are multiples of the rotation frequency were also observed. We conclude that the rotating boom apparatus is suitable and ready to be used in experiments for developing and testing sensors for rotational measurement of wind velocity from wind turbine rotors. It also can be used to accurately measure turbulent wind for testing theories of rotationally sampled wind velocity.

  6. Establishment of relationship between mean and maximum velocities in narrow sewers.

    PubMed

    Bonakdari, Hossein

    2012-12-30

    The maximum velocity in any channel cross section might be as important as the mean velocity. It is easier to measure the maximum velocity than the mean velocity, and many flow rate sensors measure maximum velocity and convert it to mean velocity for the evaluation of the discharge. The experimental results obtained from two actual sites and the comparison with their estimated values, are presented in this study. The plots of isovel lines of the primary velocity from each site are presented. Concerning narrow channel properties, it was observed that the maximum velocity occurred below the free surface. Several series of measurements from these sites were collected to explore the relationship between the cross-sectional mean (U(mean)) and maximum velocity (U(max) under different hydraulic conditions. Additional velocity data and measurements in flumes and rivers were also collected from work of other researchers in order to compare this relationship in different cases. It was found that the ratio of the U(mean) on U(max) in narrow channels was higher than that in rivers with a large aspect ratio (width/water height).

  7. The distribution of velocity and energy of saltating sand grains in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Zou, Xue-Yong; Wang, Zhou-Long; Hao, Qing-Zhen; Zhang, Chun-Lai; Liu, Yu-Zhang; Dong, Guang-Rong

    2001-02-01

    Sand transport by wind is a special case of two-phase flow of gas and solids, with saltating grains accounting for about 75% of the transport rate. This form of flow is not only the main external agent moulding aeolian landforms but also the motive force responsible for transport, sorting and deposition of aeolian sediments. High-speed multiflash photography is an effective method of studying the distribution of velocity and energy of saltating grains within the boundary layer of wind tunnel. The experimental wind shear velocities were set at 0.63, 0.64, 0.74 and 0.81 ms -1. The statistical study of the results showed that there is a power function relation between mean velocity and height of saltating grains. As the height is divided into 0.5-cm intervals, the sand grain velocities at various levels are consistent with the Pearson VII distribution pattern. The variations in kinetic energy and total energy of sand grains with height accord with the pulse peak modified with power term (Pulsepow) law; the maximum values occur at heights of 6 cm or so and tend to shift upward with increasing wind velocity.

  8. Modelling the maximum voluntary joint torque/angular velocity relationship in human movement.

    PubMed

    Yeadon, Maurice R; King, Mark A; Wilson, Cassie

    2006-01-01

    The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In "maximum" voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this "differential activation" in order to calculate the maximum voluntary knee extensor torque as a function of knee angular velocity. Torque data were collected on two subjects during maximal eccentric-concentric knee extensions using an isovelocity dynamometer with crank angular velocities ranging from 50 to 450 degrees s(-1). The theoretical tetanic torque/angular velocity relationship was modelled using a four parameter function comprising two rectangular hyperbolas while the activation/angular velocity relationship was modelled using a three parameter function that rose from submaximal activation for eccentric velocities to full activation for high concentric velocities. The product of these two functions gave a seven parameter function which was fitted to the joint torque/angular velocity data, giving unbiased root mean square differences of 1.9% and 3.3% of the maximum torques achieved. Differential activation accounts for the non-hyperbolic behaviour of the torque/angular velocity data for low concentric velocities. The maximum voluntary knee extensor torque that can be exerted may be modelled accurately as the product of functions defining the maximum torque and the maximum voluntary activation level. Failure to include differential activation considerations when modelling maximal movements will lead to errors in the estimation of joint torque in the eccentric phase and low velocity concentric phase.

  9. A parabolic velocity-decomposition method for wind turbines

    NASA Astrophysics Data System (ADS)

    Mittal, Anshul; Briley, W. Roger; Sreenivas, Kidambi; Taylor, Lafayette K.

    2017-02-01

    An economical parabolized Navier-Stokes approximation for steady incompressible flow is combined with a compatible wind turbine model to simulate wind turbine flows, both upstream of the turbine and in downstream wake regions. The inviscid parabolizing approximation is based on a Helmholtz decomposition of the secondary velocity vector and physical order-of-magnitude estimates, rather than an axial pressure gradient approximation. The wind turbine is modeled by distributed source-term forces incorporating time-averaged aerodynamic forces generated by a blade-element momentum turbine model. A solution algorithm is given whose dependent variables are streamwise velocity, streamwise vorticity, and pressure, with secondary velocity determined by two-dimensional scalar and vector potentials. In addition to laminar and turbulent boundary-layer test cases, solutions for a streamwise vortex-convection test problem are assessed by mesh refinement and comparison with Navier-Stokes solutions using the same grid. Computed results for a single turbine and a three-turbine array are presented using the NREL offshore 5-MW baseline wind turbine. These are also compared with an unsteady Reynolds-averaged Navier-Stokes solution computed with full rotor resolution. On balance, the agreement in turbine wake predictions for these test cases is very encouraging given the substantial differences in physical modeling fidelity and computer resources required.

  10. A radionuclide counting technique for measuring wind velocity

    NASA Astrophysics Data System (ADS)

    Singh, J. J.; Khandelwal, G. S.; Mall, G. H.

    1981-12-01

    A technique for measuring wind velocities of meteorological interest is described. It is based on inverse-square-law variation of the counting rates as the radioactive source-to-counter distance is changed by wind drag on the source ball. Results of a feasibility study using a weak bismuth 207 radiation source and three Geiger-Muller radiation counters are reported. The use of the technique is not restricted to Martian or Mars-like environments. A description of the apparatus, typical results, and frequency response characteristics are included. A discussion of a double-pendulum arrangement is presented. Measurements reported herein indicate that the proposed technique may be suitable for measuring wind speeds up to 100 m/sec, which are either steady or whose rates of fluctuation are less than 1 kHz.

  11. The Relationship Between Maximum Isometric Strength and Ball Velocity in the Tennis Serve

    PubMed Central

    Corbi, Francisco; Fuentes, Juan Pedro; Fernández-Fernández, Jaime

    2016-01-01

    Abstract The aims of this study were to analyze the relationship between maximum isometric strength levels in different upper and lower limb joints and serve velocity in competitive tennis players as well as to develop a prediction model based on this information. Twelve male competitive tennis players (mean ± SD; age: 17.2 ± 1.0 years; body height: 180.1 ± 6.2 cm; body mass: 71.9 ± 5.6 kg) were tested using maximum isometric strength levels (i.e., wrist, elbow and shoulder flexion and extension; leg and back extension; shoulder external and internal rotation). Serve velocity was measured using a radar gun. Results showed a strong positive relationship between serve velocity and shoulder internal rotation (r = 0.67; p < 0.05). Low to moderate correlations were also found between serve velocity and wrist, elbow and shoulder flexion – extension, leg and back extension and shoulder external rotation (r = 0.36 – 0.53; p = 0.377 – 0.054). Bivariate and multivariate models for predicting serve velocity were developed, with shoulder flexion and internal rotation explaining 55% of the variance in serve velocity (r = 0.74; p < 0.001). The maximum isometric strength level in shoulder internal rotation was strongly related to serve velocity, and a large part of the variability in serve velocity was explained by the maximum isometric strength levels in shoulder internal rotation and shoulder flexion. PMID:28149411

  12. The Relationship Between Maximum Isometric Strength and Ball Velocity in the Tennis Serve.

    PubMed

    Baiget, Ernest; Corbi, Francisco; Fuentes, Juan Pedro; Fernández-Fernández, Jaime

    2016-12-01

    The aims of this study were to analyze the relationship between maximum isometric strength levels in different upper and lower limb joints and serve velocity in competitive tennis players as well as to develop a prediction model based on this information. Twelve male competitive tennis players (mean ± SD; age: 17.2 ± 1.0 years; body height: 180.1 ± 6.2 cm; body mass: 71.9 ± 5.6 kg) were tested using maximum isometric strength levels (i.e., wrist, elbow and shoulder flexion and extension; leg and back extension; shoulder external and internal rotation). Serve velocity was measured using a radar gun. Results showed a strong positive relationship between serve velocity and shoulder internal rotation (r = 0.67; p < 0.05). Low to moderate correlations were also found between serve velocity and wrist, elbow and shoulder flexion - extension, leg and back extension and shoulder external rotation (r = 0.36 - 0.53; p = 0.377 - 0.054). Bivariate and multivariate models for predicting serve velocity were developed, with shoulder flexion and internal rotation explaining 55% of the variance in serve velocity (r = 0.74; p < 0.001). The maximum isometric strength level in shoulder internal rotation was strongly related to serve velocity, and a large part of the variability in serve velocity was explained by the maximum isometric strength levels in shoulder internal rotation and shoulder flexion.

  13. The stellar wind velocity field of HD 77581

    NASA Astrophysics Data System (ADS)

    Manousakis, A.; Walter, R.

    2015-12-01

    Aims: The early acceleration of stellar winds in massive stars is poorly constrained. The scattering of hard X-ray photons emitted by the pulsar in the high-mass X-ray binary Vela X-1 can be used to probe the stellar wind velocity and density profile close to the surface of its supergiant companion HD 77581. Methods: We built a high signal-to-noise and high resolution hard X-ray lightcurve of Vela X-1 measured by Swift/BAT over 300 orbital periods of the system and compared it with the predictions of a grid of hydrodynamic simulations. Results: We obtain very good agreement between observations and simulations for a narrow set of parameters, implying that the wind velocity close to the stellar surface is twice higher than usually assumed with the standard beta law. Locally a velocity gradient of β ~ 0.5 is favoured. Even if still incomplete, hydrodynamic simulations successfully reproduce several observational properties of Vela X-1.

  14. CFD wind tunnel test: Field velocity patterns of wind on a building with a refuge floor

    NASA Astrophysics Data System (ADS)

    Cheng, C. K.; Yuen, K. K.; Lam, K. M.; Lo, S. M.

    2005-10-01

    This paper reports a CFD wind tunnel study of wind patterns on a square-plan building with a refuge floor at its mid-height level. In this study, a technique of using calibrated power law equations of velocity and turbulent intensity applied as the boundary conditions in CFD wind tunnel test is being evaluated by the physical wind tunnel data obtained by the Principal Author with wind blowing perpendicularly on the building without a refuge floor. From the evaluated results, an optimised domain of flow required to produce qualitative agreement between the wind tunnel data and simulated results is proposed in this paper. Simulated results with the evaluated technique are validated by the wind tunnel data obtained by the Principal Author. The results contribute to an understanding of the fundamental behaviour of wind flow in a refuge floor when wind is blowing perpendicularly on the building. Moreover, the results reveal that the designed natural ventilation of a refuge floor may not perform desirably when the wind speed on the level is low. Under this situation, the refuge floor may become unsafe if smoke was dispersed in the leeward side of the building at a level immediately below the refuge floor.

  15. Biomechanical Insights Into Differences Between the Mid-Acceleration and Maximum Velocity Phases of Sprinting.

    PubMed

    Yu, Jiabin; Sun, Yuliang; Yang, Chen; Wang, Donghai; Yin, Keyi; Herzog, Walter; Liu, Yu

    2016-07-01

    Yu, J, Sun, Y, Yang, C, Wang, D, Yin, K, Herzog, W, and Liu, Y. Biomechanical insights into differences between the mid-acceleration and maximum velocity phases of sprinting. J Strength Cond Res 30(7): 1906-1916, 2016-Investigating the differences between distinct phases of sprint running may increase the knowledge about the specific physical abilities needed for different phases of sprinting. Differences between the mid-acceleration and maximum velocity phases of sprint running have not yet been adequately investigated. Twenty male sprinters performed maximum-effort sprint runs, and measurements were made at 12 m from start for the mid-acceleration phase and at 40 m from the start for the maximum velocity phase. Kinematic data and ground reaction forces (GRFs) were collected at a rate of 200 and 1000 Hz, respectively. Intersegmental dynamics analysis was performed to investigate the interaction of muscle torque (MUS) with other passive torques. The peak horizontal braking force was significantly lower for the acceleration compared with that for the maximal velocity phase, whereas the peak horizontal propulsive force was similar for both phases. The peak MUS at the hip and knee joints for the braking phase was significantly smaller in the acceleration phase than in the maximum velocity phase. In conclusion, compared with the maximum velocity phase, the lower horizontal braking force was the primary cause for the increase in running velocity during the mid-acceleration phase. The force produced by lower limb muscles required to counteract external torques caused by the horizontal braking force in the braking phase was smaller during the acceleration phase than the maximum velocity phase. Therefore, training aimed at reducing the horizontal braking force might be more important than increasing the force produced by the lower limb muscles for success of the mid-acceleration phase.

  16. Analysis of the velocity law in the wind of the Be star Lambda Pavonis

    NASA Technical Reports Server (NTRS)

    Chen, Haiqi; Ringuelet, Adela; Sahade, Jorge; Kondo, Yoji

    1989-01-01

    This paper reanalyzes the IUE spectra of Lambda Pavonis secured in 1982 (Sahade et al.). It is found that the profiles of the broad UV lines are either rotationally broadened or nonrotationally broadened and that the rotationally broadened profiles can be sorted out in two groups characterized by rotational velocity values of 170 km/s and of 210 km/s, respectively. From the analysis of the rotational and of the radial velocities it is possible to distinguish two regions in the extended atmosphere of the star, namely, a region which is rotating and a region which is expanding. In the rotating region, the radial velocities are about zero, and the rotational velocity increases from 170 km/s to 250 km/s. In the expanding region, the rotational energy dissipates, the wind is accelerated to a maximum of -155 km/s, and farther out it decelerates.

  17. Observations of Rapid Velocity Variations in the Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Hardwick, S. A.; Bisi, M. M.; Davies, J. A.; Breen, A. R.; Fallows, R. A.; Harrison, R. A.; Davis, C. J.

    2013-07-01

    The technique of interplanetary scintillation (IPS) is the observation of rapid fluctuations of the radio signal from an astronomical compact source as the signal passes through the ever-changing density of the solar wind. Cross-correlation of simultaneous observations of IPS from a single radio source, received at multiple sites of the European Incoherent SCATter (EISCAT) radio antenna network, is used to determine the velocity of the solar wind material passing over the lines of sight of the antennas. Calculated velocities reveal the slow solar wind to contain rapid velocity variations when viewed on a time-scale of several minutes. Solar TErrestrial RElations Observatory (STEREO) Heliospheric Imager (HI) observations of white-light intensity have been compared with EISCAT observations of IPS to identify common density structures that may relate to the rapid velocity variations in the slow solar wind. We have surveyed a one-year period, starting in April 2007, of the EISCAT IPS observing campaigns beginning shortly after the commencement of full science operations of the STEREO mission in a bid to identify common density structures in both EISCAT and STEREO HI datasets. We provide a detailed investigation and presentation of joint IPS/HI observations from two specific intervals on 23 April 2007 and 19 May 2007 for which the IPS P-Point (point of closest approach of the line of sight to the Sun) was between 72 and 87 solar radii out from the Sun's centre. During the 23 April interval, a meso-scale (of the order of 105 km or larger) transient structure was observed by HI-1A to pass over the IPS ray path near the P-Point; the observations of IPS showed a micro-scale structure (of the order of 102 km) within the meso-scale transient. Observations of IPS from the second interval, on 19 May, revealed similar micro-scale velocity changes, however, no transient structures were detected by the HIs during that period. We also pose some fundamental thoughts on the slow

  18. Electronic frequency modulation for the increase of maximum measurable velocity in a heterodyne laser interferometer

    SciTech Connect

    Choi, Hyunseung; La, Jongpil; Park, Kyihwan

    2006-10-15

    A Zeeman-type He-Ne laser is frequently used as a heterodyne laser due to the simple construction and the small loss of a light. However, the low beat frequency of the Zeeman-type laser limits the maximum measurable velocity. In this article, an electronic frequency modulation algorithm is proposed to overcome the drawback of the low velocity measurement capability by increasing the beat frequency electronically. The brief analysis, the measurement scheme of the proposed algorithm, and the experimental results are presented. It is demonstrated that the proposed algorithm is proven to enhance the maximum measurable velocity.

  19. Polar low-speed solar wind at the solar activity maximum

    NASA Astrophysics Data System (ADS)

    Ohmi, T.; Kojima, M.; Yokobe, A.; Tokumaru, M.; Fujiki, K.; Hakamada, K.

    2001-11-01

    The tomographic analysis of interplanetary scintillation (IPS) showed that low-speed winds (<= 370 kms-1) emanated out from the polar region at the last solar activity maximum. In order to investigate the origin of those low-speed winds, we compared the velocity distribution derived from the IPS tomographic analysis to the magnetic field structure derived from the potential field analysis. We found that the polar low-speed winds appeared for a short period just before and after the disappearance of polar open fields. When the polar coronal hole shrank very small before its disappearance, the coronal polar open field was encircled by large-scale closed loops and became super radially diverging field into the interplanetary space. A low-speed region appeared in this diverging polar magnetic field region. This situation is a condition very similar to the compact low-speed streams associated with equatorial active regions, which were found by Kojima et al. [1999]. After the open field regions had disappeared from the pole, the polar regions were occupied with closed loops. These closed loops were overlapped by the magnetic field which fanned out from the midlatitudes. A low-speed streamer located above these closed loops even after the polar open field had disappeared. The velocities of polar low-speed streams before polar hole disappearance were much lower than those after disappearance. This result suggests that the physical conditions to generate much lower speed streams are closely associated with large expansion from small open field regions encircled by large-scale closed loops. Finally, a reliability of the IPS measurement of polar low-speed wind was examined by simulating synthetic IPS observations in hypothetical model polar streams.

  20. Estimation of power in low velocity vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Sampath, S. S.; Shetty, Sawan; Chithirai Pon Selvan, M.

    2015-06-01

    The present work involves in the construction of a vertical axis wind turbine and the determination of power. Various different types of turbine blades are considered and the optimum blade is selected. Mechanical components of the entire setup are built to obtain maximum rotation per minute. The mechanical energy is converted into the electrical energy by coupling coaxially between the shaft and the generator. This setup produces sufficient power for consumption of household purposes which is economic and easily available.

  1. Airflow energy harvesting with high wind velocities for industrial applications

    NASA Astrophysics Data System (ADS)

    Chew, Z. J.; Tuddenham, S. B.; Zhu, M.

    2016-11-01

    An airflow energy harvester capable of harvesting energy from vortices at high speed is presented in this paper. The airflow energy harvester is implemented using a modified helical Savonius turbine and an electromagnetic generator. A power management module with maximum power point finding capability is used to manage the harvested energy and convert the low voltage magnitude from the generator to a usable level for wireless sensors. The airflow energy harvester is characterized using vortex generated by air hitting a plate in a wind tunnel. By using an aircraft environment with wind speed of 17 m/s as case study, the output power of the airflow energy harvester is measured to be 126 mW. The overall efficiency of the power management module is 45.76 to 61.2%, with maximum power point tracking efficiency of 94.21 to 99.72% for wind speed of 10 to 18 m/s, and has a quiescent current of 790 nA for the maximum power point tracking circuit.

  2. Accuracy of aircraft velocities from inertial navigation systems for application to airborne wind measurements

    NASA Technical Reports Server (NTRS)

    Rhyne, R. H.

    1980-01-01

    An experimental assessment was made of two commercially available inertial navigation systems (INS) with regard to their velocity measuring capability for use in wind, shear, and long-wavelength atmospheric turbulence research. The assessment was based on 52 sets of postflight measurements of velocity (error) during a "Schuler cycle" (84 minutes) while the INS was still operating but the airplane was motionless. Four INS units of one type and two units of another were tested over a period of 2 years after routine research flights similar to air-linetype operations of from 1 to 6 hours duration. The maximum postflight errors found for the 52 cases had a root mean square value of 2.82 m/sec with little or no correlation of error magnitude with flight duration. Using an INS for monitoring ground speed during landway in a predicted high wind shear situation could lead to landing speeds which are dangerously high or low.

  3. Maximum Velocity of a Boulder Ejected From an Impact Crater Formed on a Regolith Covered Surface

    NASA Astrophysics Data System (ADS)

    Bart, G. D.; Melosh, H. J.

    2007-12-01

    We investigate the effect of regolith depth on boulder ejection velocity. A "boulder" refers to an apparently intact rock or rock fragment lying on a planetary surface, regardless of emplacement mechanism. Boulders appear in planetary images as positive relief features --- bright, sun-facing pixels adjacent to dark, shadowed pixels. We studied 12 lunar craters in high resolution (1~m) photographs from Lunar Orbiter III and V. Local regolith depth was measured using the method of small crater morphology. Ejection velocities of boulders were calculated assuming a ballistic trajectory to the final boulder location. A plot of regolith depth/crater diameter vs. maximum boulder ejection velocity shows that craters formed in deeper regolith (with respect to crater size) eject boulders at lower velocities. When ejection velocity (EjV) is in m/s, and regolith depth (Dr) and crater diameter (Dc) are in meters, the data fit the relation Dr / Dc = 1053 × EjVmax-2.823. To explain the data, we turn to impact cratering theory. An ejected particle will follow a streamline from its place of origin to its ejection point (the Z-model), and then follow a ballistic trajectory. Material ejected along more shallow streamlines is ejected at greater velocities. If shallow regolith covers the surface, the most shallow (greatest velocity) streamlines will travel only through the regolith. Boulders, however, must be ejected from the bedrock below the regolith. Thus, the boulder ejected with the greatest velocity originates just below the regolith, along the most shallow streamline through the bedrock. If the regolith is deeper, the most shallow streamline through the bedrock will be deeper, and the maximum velocity of an ejected boulder will be lower. Hence, the regolith depth and maximum ejection velocity of a boulder are correlated: greater boulder ejection velocities correspond to thinner regolith. We observe this correlation in the data.

  4. Characteristics of wind velocity and temperature change near an escarpment-shaped road embankment.

    PubMed

    Kim, Young-Moon; You, Ki-Pyo; You, Jang-Youl

    2014-01-01

    Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

  5. Force-velocity Relationship of Muscles Performing Multi-joint Maximum Performance Tasks.

    PubMed

    Jaric, S

    2015-08-01

    Manipulation of external loads typically provides a range of force, velocity, and power data that allows for modeling muscle mechanical characteristics. While a typical force-velocity relationship obtained from either in vitro muscles or isolated muscle groups can be described by a hyperbolic equation, the present review paper reveals the evidence that the same relationship obtained from maximum-performance multi-joint movements could be approximately linear. As a consequence, this pattern also results in a relatively simple shape of the power-velocity relationship. The parameters of the linear force-velocity relationship reveal the maximum force, velocity and power. Recent studies conducted on various functional movement tasks reveal that these parameters could be reliable, on average moderately valid, and typically sensitive enough to detect differences among populations of different physical abilities. Therefore, the linear force-velocity relationship together with the associated parabolic power-velocity relationship could provide both a new and simplified approach to studies of the design and function of human muscular system and its modeling. Regarding the practical applications, the reviewed findings also suggest that the loaded multi-joint movements could be developed into relatively simple routine tests of the force-, velocity- and power-generating capacity of the neuromuscular system.

  6. Potential for coherent Doppler wind velocity lidar using neodymium lasers

    NASA Technical Reports Server (NTRS)

    Kane, T. J.; Byer, R. L.; Zhou, B.

    1984-01-01

    Existing techniques for the frequency stabilization of Nd:YAG lasers operating at 1.06 micron, and the high-gain amplification of radiation at that wavelength, make possible the construction of a coherent Doppler wind velocity lidar using Nd:YAG. Velocity accuracy and range resolution are better at 1.06 micron than at 10.6 microns at the same level of the SNR. Backscatter from the atmosphere at 1.06 micron is greater than that at 10.6 microns by about 2 orders of magnitude, but the quantum-limited noise is higher by 100 also. Near-field attenuation and turbulent effects are more severe at 1.06 micron. In some configurations and environments, the 1.06-micron wavelength may be the better choice, and there may be technological advantages favoring the use of solid-state lasers in satellite systems.

  7. Observations of the velocity distribution of solar wind ions

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Bochsler, P.; Geiss, J.; Coplan, M. A.

    1980-01-01

    Measurements made by the Isee 3 ion composition experiment have been used to determine the kinetic temperatures of 3He(++), 4He(++), 16O(6+), and 16O(7+) in the solar wind. It is found that these temperatures generally obey the relation that T(i)/m(i) equals const, but fluctuations, some of which are caused by dynamical effects in the flow, are observed. The temperature of oxygen sometimes rises above 10 K, which is very strong evidence for heating outside the collisional region of the corona. The tendency toward equal temperatures per nucleon occurs everywhere where collisions are unimportant, suggesting that the temperatures are set up close to the sun rather than elsewhere in the interplanetary medium. The velocity distribution function of helium is observed to be non-Maxwellian, with a pronounced high velocity tail.

  8. Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans

    DOE PAGES

    Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; ...

    2017-02-06

    Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved with goodmore » accuracy. However, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.« less

  9. Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans

    SciTech Connect

    Debnath, Mithu; Iungo, G. Valerio; Ashton, Ryan; Brewer, W. Alan; Choukulkar, Aditya; Delgado, Ruben; Lundquist, Julie K.; Shaw, William J.; Wilczak, James M.; Wolfe, Daniel

    2017-01-01

    Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved with good accuracy. However, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.

  10. Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans

    NASA Astrophysics Data System (ADS)

    Debnath, Mithu; Valerio Iungo, G.; Ashton, Ryan; Brewer, W. Alan; Choukulkar, Aditya; Delgado, Ruben; Lundquist, Julie K.; Shaw, William J.; Wilczak, James M.; Wolfe, Daniel

    2017-02-01

    Vertical profiles of 3-D wind velocity are retrieved from triple range-height-indicator (RHI) scans performed with multiple simultaneous scanning Doppler wind lidars. This test is part of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign carried out at the Boulder Atmospheric Observatory. The three wind velocity components are retrieved and then compared with the data acquired through various profiling wind lidars and high-frequency wind data obtained from sonic anemometers installed on a 300 m meteorological tower. The results show that the magnitude of the horizontal wind velocity and the wind direction obtained from the triple RHI scans are generally retrieved with good accuracy. However, poor accuracy is obtained for the evaluation of the vertical velocity, which is mainly due to its typically smaller magnitude and to the error propagation connected with the data retrieval procedure and accuracy in the experimental setup.

  11. The torque-velocity relationship in large human muscles: maximum voluntary versus electrically stimulated behaviour.

    PubMed

    Pain, Matthew T G; Young, Fraser; Kim, Jinwoo; Forrester, Stephanie E

    2013-02-22

    The in vivo maximum voluntary torque-velocity profile for large muscle groups differs from the in vitro tetanic profile with lower than expected eccentric torques. Using sub-maximal transcutaneous electrical stimulation has given torque-velocity profiles with an eccentric torque plateau ∼1.4 times the isometric value. This is closer to, but still less than, the in vitro tetanic profiles with plateaus between 1.5 and 1.9 times isometric. This study investigated the maximum voluntary and sub-maximum transcutaneous electrical stimulated torque-angle-angular velocity profiles for the knee extensors and flexors in a group of healthy males. Fifteen male subjects performed maximum voluntary and sub-maximum electrically stimulated (∼40% for extensors and ∼20% for flexors) eccentric and concentric knee extension and flexions on an isovelocity dynamometer at velocities ranging from ±50°s(-1) to ±400°s(-1). The ratio of peak eccentric to peak isometric torque (T(ecc)/T(0)) was compared between the maximum voluntary and electrically stimulated conditions for both extensors and flexors, and between muscle groups. Under maximum voluntary conditions the peak torque ratio, T(ecc)/T(0), remained close to 1 (0.9-1.2) while for the electrically stimulated conditions it was significantly higher (1.4-1.7; p<0.001) and within the range of tetanic values reported from in vitro studies. In all but one case there was no significant difference in ratios between the extensors and flexors. The results showed that even the largest muscle groups have an intrinsic T(ecc)/T(0) comparable with in vitro muscle tests, and it can be ascertained from appropriate in vivo testing.

  12. Inverting ion images without Abel inversion: maximum entropy reconstruction of velocity maps.

    PubMed

    Dick, Bernhard

    2014-01-14

    A new method for the reconstruction of velocity maps from ion images is presented, which is based on the maximum entropy concept. In contrast to other methods used for Abel inversion the new method never applies an inversion or smoothing to the data. Instead, it iteratively finds the map which is the most likely cause for the observed data, using the correct likelihood criterion for data sampled from a Poissonian distribution. The entropy criterion minimizes the information content in this map, which hence contains no information for which there is no evidence in the data. Two implementations are proposed, and their performance is demonstrated with simulated and experimental data: Maximum Entropy Velocity Image Reconstruction (MEVIR) obtains a two-dimensional slice through the velocity distribution and can be compared directly to Abel inversion. Maximum Entropy Velocity Legendre Reconstruction (MEVELER) finds one-dimensional distribution functions Q(l)(v) in an expansion of the velocity distribution in Legendre polynomials P((cos θ) for the angular dependence. Both MEVIR and MEVELER can be used for the analysis of ion images with intensities as low as 0.01 counts per pixel, with MEVELER performing significantly better than MEVIR for images with low intensity. Both methods perform better than pBASEX, in particular for images with less than one average count per pixel.

  13. The analysis and kinetic energy balance of an upper-level wind maximum during intense convection

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Jedlovec, G. J.

    1982-01-01

    The purpose of this paper is to analyze the formation and maintenance of the upper-level wind maximum which formed between 1800 and 2100 GMT, April 10, 1979, during the AVE-SESAME I period, when intense storms and tornadoes were experienced (the Red River Valley tornado outbreak). Radiosonde stations participating in AVE-SESAME I are plotted (centered on Oklahoma). National Meteorological Center radar summaries near the times of maximum convective activity are mapped, and height and isotach plots are given, where the formation of an upper-level wind maximum over Oklahoma is the most significant feature at 300 mb. The energy balance of the storm region is seen to change dramatically as the wind maximum forms. During much of its lifetime, the upper-level wind maximum is maintained by ageostrophic flow that produces cross-contour generation of kinetic energy and by the upward transport of midtropospheric energy. Two possible mechanisms for the ageostrophic flow are considered.

  14. Pulsar Wind Nebulae, Space Velocities and Supernova Remnant

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The original proposal for this LTSA grant was for X-ray studies of pulsars, and especially pulsar wind nebulae and what they could tell us about pulsar properties, especially their space velocities. By any metric, this program has been very successful. No fewer than 14 papers on directly related topics (and several dozen more on related topics) have been published in refereed journals with the PI as lead or co-author, all observational results that have had significant impact on the field. These include the first X-ray detection of the "Duck" pulsar, a clear demonstration that estimated pulsar ages can be off by over an order of magnitude (via observations of the young supernova remnant G11.2-0.3) and the detection of the first pulsar wind nebula around a millisecond pulsar. These publications have also resulted in 4 press releases. Moreover, they also represent the thesis work of two PhD students at MIT (Froney Crawford and Mike Pivovaroff) and one postdoctoral fellow, Bryan Gaensler, now Assistant Professor at Harvard.

  15. Velocity fields in a low-latitude coronal hole - Results from the Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Waldron, W. L.

    1987-01-01

    The Solar Maximum Mission (SMM) satellite has been used to observe Doppler signatures in C IV in a low-latitude coronal hole as it crossed the central meridian (1985 February 2-8). Scatter plots of C IV emission intensity versus velocity do not show the pronounced positive correlation which has been reported in other regions on the sun. These data suggest that the coronal hole may control the gross velocity field in the solar atmosphere at the level where C IV is formed. Some localized regions of upflow coincide with EUV bright points in the coronal hole.

  16. Effect of wind velocity on suction trap catches of some Florida mosquitoes.

    PubMed

    Bidlingmayer, W L; Day, J F; Evans, D G

    1995-09-01

    The correlations between wind velocity and suction trap catches of mosquitoes when taken at 15-min intervals during the night were studied at 2 locations. Although normal mosquito flight speeds are approximately 1 m/sec, trap catches were reduced about 50% by winds of 0.5 m/sec and 75% at 1.0 m/sec. Trap catches were inversely related to winds of all velocities and even the lightest winds reduced trap catches. No evidence was found for a threshold below which wind velocity had no effect.

  17. Sensitivity of maximum sprinting speed to characteristic parameters of the muscle force-velocity relationship.

    PubMed

    Miller, Ross H; Umberger, Brian R; Caldwell, Graham E

    2012-05-11

    An accumulation of evidence suggests that the force-velocity relationship (FVR) of skeletal muscle plays a major role in limiting maximum human sprinting speed. However, most of the theories on this limiting role have been non-specific as to how the FVR limits speed. The FVR is characterized by three parameters that each have a different effect on its shape, and could thus limit sprinting speed in different ways: the maximum shortening velocity V(max), the shape parameter A(R), and the eccentric plateau C(ecc). In this study, we sought to determine how specifically the FVR limits sprinting speed using forward dynamics simulations of human locomotion to examine the sensitivity of maximum speed to these three FVR parameters. Simulations were generated by optimizing the model's muscle excitations to maximize the average horizontal speed. The simulation's speed, temporal stride parameters, joint angles, GRF, and muscle activity in general compared well to data from human subjects sprinting at maximum effort. Simulations were then repeated with incremental and isolated adjustments in V(max), A(R), and C(ecc) across a physiological range. The range of speeds (5.22-6.91 m s⁻¹) was most sensitive when V(max) was varied, but the fastest speed of 7.17 m s⁻¹ was attained when A(R) was set to its maximum value, which corresponded to all muscles having entirely fast-twitch fibers. This result was explained by the muscle shortening velocities, which tended to be moderate and within the range where A(R) had its greatest effect on the shape of the FVR. Speed was less sensitive to adjustments in C(ecc), with a range of 6.23-6.70 m s⁻¹. Increases in speed with parameter changes were due to increases in stride length more so than stride frequency. The results suggest that the shape parameter A(R), which primarily determines the amount of muscle force that can be produced at moderate shortening velocities, plays a major role in limiting the maximum sprinting speed. Analysis

  18. A new method for determining the meridional wind velocity during an ionospheric storm

    NASA Astrophysics Data System (ADS)

    Yuan, Zhigang; Ning, Baiqi; Liu, Libo; Wan, Weixing; Zhao, Biqiang

    2003-03-01

    This paper introduces a new method for determining the meridional wind velocity during an ionospheric storm based on a sequence of Doppler ionograms. By this new method, the height- and time-dependent meridional wind velocity in the F2 layer was obtained during the magnetic substorm on April 17, 2002. The peak velocity of meridional wind at 300 km altitude is about 300 m/s, the deduced propagation velocity of traveling atmospheric disturbances (TADs) is about 520 m/s. Furthermore, not only the amplitude but also the onset time and phase velocity of the TAD-associated wind perturbation can be explained by the present theories and observations of meridional winds. This work offers a new method to investigate the propagation and morphology of meridional wind during a magnetic substorm by using Digisonde routine observations.

  19. Predicting the Maximum Dynamic Strength in Bench Press: The High Precision of the Bar Velocity Approach.

    PubMed

    Loturco, Irineu; Kobal, Ronaldo; Moraes, José E; Kitamura, Katia; Cal Abad, César C; Pereira, Lucas A; Nakamura, Fábio Y

    2017-04-01

    Loturco, I, Kobal, R, Moraes, JE, Kitamura, K, Cal Abad, CC, Pereira, LA, and Nakamura, FY. Predicting the maximum dynamic strength in bench press: the high precision of the bar velocity approach. J Strength Cond Res 31(4): 1127-1131, 2017-The aim of this study was to determine the force-velocity relationship and test the possibility of determining the 1 repetition maximum (1RM) in "free weight" and Smith machine bench presses. Thirty-six male top-level athletes from 3 different sports were submitted to a standardized 1RM bench press assessment (free weight or Smith machine, in randomized order), following standard procedures encompassing lifts performed at 40-100% of 1RM. The mean propulsive velocity (MPV) was measured in all attempts. A linear regression was performed to establish the relationships between bar velocities and 1RM percentages. The actual and predicted 1RM for each exercise were compared using a paired t-test. Although the Smith machine 1RM was higher (10% difference) than the free weight 1RM, in both cases the actual and predicted values did not differ. In addition, the linear relationship between MPV and percentage of 1RM (coefficient of determination ≥95%) allow determination of training intensity based on the bar velocity. The linear relationships between the MPVs and the relative percentages of 1RM throughout the entire range of loads enable coaches to use the MPV to accurately monitor their athletes on a daily basis and accurately determine their actual 1RM without the need to perform standard maximum dynamic strength assessments.

  20. Maximum group velocity in a one-dimensional model with a sinusoidally varying staggered potential

    NASA Astrophysics Data System (ADS)

    Nag, Tanay; Sen, Diptiman; Dutta, Amit

    2015-06-01

    We use Floquet theory to study the maximum value of the stroboscopic group velocity in a one-dimensional tight-binding model subjected to an on-site staggered potential varying sinusoidally in time. The results obtained by numerically diagonalizing the Floquet operator are analyzed using a variety of analytical schemes. In the low-frequency limit we use adiabatic theory, while in the high-frequency limit the Magnus expansion of the Floquet Hamiltonian turns out to be appropriate. When the magnitude of the staggered potential is much greater or much less than the hopping, we use degenerate Floquet perturbation theory; we find that dynamical localization occurs in the former case when the maximum group velocity vanishes. Finally, starting from an "engineered" initial state where the particles (taken to be hard-core bosons) are localized in one part of the chain, we demonstrate that the existence of a maximum stroboscopic group velocity manifests in a light-cone-like spreading of the particles in real space.

  1. The relationship between consistency of propulsive cycles and maximum angular velocity during wheelchair racing.

    PubMed

    Wang, Yong Tai; Vrongistinos, Konstantinos Dino; Xu, Dali

    2008-08-01

    The purposes of this study were to examine the consistency of wheelchair athletes' upper-limb kinematics in consecutive propulsive cycles and to investigate the relationship between the maximum angular velocities of the upper arm and forearm and the consistency of the upper-limb kinematical pattern. Eleven elite international wheelchair racers propelled their own chairs on a roller while performing maximum speeds during wheelchair propulsion. A Qualisys motion analysis system was used to film the wheelchair propulsive cycles. Six reflective markers placed on the right shoulder, elbow, wrist joints, metacarpal, wheel axis, and wheel were automatically digitized. The deviations in cycle time, upper-arm and forearm angles, and angular velocities among these propulsive cycles were analyzed. The results demonstrated that in the consecutive cycles of wheelchair propulsion the increased maximum angular velocity may lead to increased variability in the upper-limb angular kinematics. It is speculated that this increased variability may be important for the distribution of load on different upper-extremity muscles to avoid the fatigue during wheelchair racing.

  2. Simultaneous PIV and PTV measurements of wind and sand particle velocities

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Yuan; Lee, Sang Joon

    2008-08-01

    Wind-blown sand is a typical example of two-phase particle-laden flows. Owing to lack of simultaneous measured data of the wind and wind-blown sand, interactions between them have not yet been fully understood. In this study, natural sand of 100-125 μm taken from Taklimakan Desert was tested at the freestream wind speed of 8.3 m/s in an atmospheric boundary layer wind tunnel. The captured flow images containing both saltating sand and small wind tracer particles, were separated by using a digital phase mask technique. The 2-D PIV (particle imaging velocimetry) and PTV (particle tracking velocimetry) techniques were employed to extract simultaneously the wind velocity field and the velocity field of dispersed sand particles, respectively. Comparison of the mean streamwise wind velocity profile and the turbulence statistics with and without sand transportation reveal a significant influence of sand movement on the wind field, especially in the dense saltating sand layer ( y/ δ < 0.1). The ensemble-averaged streamwise velocity profile of sand particles was also evaluated to investigate the velocity lag between the sand and the wind. This study would be helpful in improving the understanding of interactions between the wind and the wind-blown sand.

  3. Loop Current variability due to wind stress and reduced sea level during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Mildner, T. C.; Eden, C.; Nuernberg, D.; Schoenfeld, J.

    2011-12-01

    One of the most prominent features of the circulation in the Gulf of Mexico is the Loop Current (LC). It is of special interest as it influences not only the climate in the Gulf of Mexico. Although causation is not well understood yet, dynamical relationships between LC retraction and extension, seasonal migrations of the Intertropical Convergence Zone (ITCZ) and the related wind stress curl over the subtropical North Atlantic, and changes in the thermohaline circulation are indicated by model simulations. A characteristic feature of the LC is the shedding of anticyclonic eddies. These eddies can have depth signatures of up to 1000 m and are of special interest as they supply heat and moisture into the western and northern Gulf. The eddies are generated aperiodically every 3 to 21 months, with an average shedding time of 9.5 months. Eddy shedding appears to be related to a suite of oceanographic forcing fields such as the Yucatan Channel throughflow, the Florida Current and North Brazil Current variability, as well as synoptic meteorological forcing variability. By combining state-of-the-art paleoceanographic and meso-scale eddy-resolving numerical modeling techniques, we examined the Loop Current dynamics and hydrographic changes in the Gulf going back in time up to ~21,000 years. To assess the impact of Last Glacial Maximum (LGM) wind stress and reduced sea level we have re-configured an existing hierarchy of models of the North Atlantic Ocean (FLAME) with a horizontal grid resolution of ca. 30 km (wind stress was taken from the PMIP-II database). The sea level was lowered compared to the CONTROL run by 110 m and 67 m. These sea level changes have been chosen according to the cold-deglacial periods Heinrich I and Younger Dryas. The result of our model simulations is a continuous increase in eddy shedding from the LGM to the Holocene. This increase is predominantly controlled by the continuous deglacial sea level rise. Changes in wind stress curl related to the

  4. Effect of wind tunnel air velocity on VOC flux rates from CAFO manure and wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind tunnels and flux chambers are often used to estimate volatile organic compound (VOC) emissions from animal feeding operations (AFOs) without regard to air velocity or sweep air flow rates. Laboratory experiments were conducted to evaluate the effect of wind tunnel air velocity on VOC emission ...

  5. Noise reduction in LOS wind velocity of Doppler lidar using discrete wavelet analysis

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Liu, Zhishen; Sun, Dapeng

    2003-12-01

    The line of sight (LOS) wind velocity can be determined from the incoherent Doppler lidar backscattering signals. Noise and interference in the measurement greatly degrade the inversion accuracy. In this paper, we apply the discrete wavelet denoising method by using biorthogonal wavelets and adopt a distancedependent thresholds algorithm to improve the accuracy of wind velocity measurement by incoherent Doppler lidar. The noisy simulation data are processed and compared with the true LOS wind velocity. The results are compared by the evaluation of both the standard deviation and correlation coefficient.The results suggest that wavelet denoising with distance-dependent thresholds can considerably reduce the noise and interfering turbulence for wind lidar measurement.

  6. Generalized multidemensional propagation velocity equations for pool-boiling superconducting windings

    SciTech Connect

    Christensen, E.H.; O'Loughlin, J.M.

    1984-09-01

    Several finite difference, finite element detailed analyses of propagation velocities in up to three dimensions in pool-boiling windings have been conducted for different electromagnetic and cryogenic environments. Likewise, a few full scale simulated winding and magnet tests have measured propagation velocities. These velocity data have been correlated in terms of winding thermophysical parameters. This analysis expresses longitudinal and transverse propagation velocities in the form of power function regression equations for a wide variety of windings and electromagnetic and thermohydraulic environments. The generalized velocity equations are considered applicable to well-ventilated, monolithic conductor windings. These design equations are used piecewise in a gross finite difference mode as functions of field to predict the rate of normal zone growth during quench conditions. A further check of the validity of these predictions is available through total predicted quench durations correlated with actual quench durations of large magnets.

  7. Fiber type composition and maximum shortening velocity of muscles crossing the human shoulder.

    PubMed

    Srinivasan, R C; Lungren, M P; Langenderfer, J E; Hughes, R E

    2007-03-01

    A study of the fiber type composition of fourteen muscles spanning the human glenohumeral joint was carried out with the purpose of determining the contribution of fiber types to overall muscle cross-sectional area (CSA) and to estimate the maximum shortening velocity (V(max)) of those muscles. Muscle biopsies were procured from 4 male cadavers (mean age 50) within 24 hr of death, snap frozen, mounted, and transversely sectioned (10 microm). Slides were stained for myofibrillar ATPase after alkaline preincubation. Photoimages were taken of defined areas (100 fibers) using the Bioquant system, and fiber type and CSA were measured from these images. Staining for mATPase produced three different fiber types: slow-oxidative (SO), fast-oxidative-glycolytic (FOG), and fast-glycolytic (FG). On average, the muscle fiber type composition ranged from 22 to 40% of FG, from 17 to 51% of FOG, and from 23 to 56% of SO. Twelve out of the 14 muscles had average SO proportions ranging from 35 to 50%. V(max) was calculated from the fiber type contribution relative to CSA and shortening velocity values taken from the literature. The maximum velocities of shortening presented here provide a physiological basis for the development of human shoulder musculoskeletal models suitable for predicting muscle forces for functionally relevant tasks encompassing conditions of muscle shortening and lengthening.

  8. Impact of Estimating Thermal Manikin Derived Wind Velocity Coefficients on Physiological Modeling

    DTIC Science & Technology

    2014-07-01

    addressing the wind velocity effect on insulation and evaporative resistance includes conducting standardized thermal manikin testing followed by...tests (i.e., 3 for insulation and 3 for evaporative resistance). This process seeks to create a set of measures to produce the gradient effect of wind...in order to obtain associated coefficients. This report outlines mathematical methods for determining reasonable estimates of wind velocity effect on

  9. Sensitivity of estuarine turbidity maximum to settling velocity, tidal mixing, and sediment supply

    USGS Publications Warehouse

    Warner, J.C.; Sherwood, C.R.; Geyer, W.R.; ,

    2007-01-01

    Estuarine turbidity maximum, numerical modeling, settling velocity, stratification The spatial and temporal distribution of suspended material in an Estuarine Turbidity Maxima (ETM) is primarily controlled by particle settling velocity, tidal mixing, shear-stress thresholds for resuspension, and sediment supply. We vary these parameters in numerical experiments of an idealized two-dimensional (x-z) estuary to demonstrate their affects on the development and retention of particles in an ETM. Parameters varied are the settling velocity (0.01, 0.1, and 0.5 mm/s), tidal amplitude (0.4 m 12 hour tide and 0.3 to 0.6 m 14 day spring neap cycle), and sediment availability (spatial supply limited or unlimited; and temporal supply as a riverine pulse during spring vs. neap tide). Results identify that particles with a low settling velocity are advected out of the estuary and particles with a high settling velocity provide little material transport to an ETM. Particles with an intermediate settling velocity develop an ETM with the greatest amount of material retained. For an unlimited supply of sediment the ETM and limit of salt intrusion co-vary during the spring neap cycle. The ETM migrates landward of the salt intrusion during spring tides and seaward during neap tides. For limited sediment supply the ETM does not respond as an erodible pool of sediment that advects landward and seaward with the salt front. The ETM is maintained seaward of the salt intrusion and controlled by the locus of sediment convergence in the bed. For temporal variability of sediment supplied from a riverine pulse, the ETM traps more sediment if the pulse encounters the salt intrusion at neap tides than during spring tides. ?? 2007 Elsevier B.V. All rights reserved.

  10. Maximum projection and velocity estimation algorithm for small moving target detection in space surveillance

    NASA Astrophysics Data System (ADS)

    Yao, Dalei; Wen, Desheng; Xue, Jianru; Chen, Zhi; Wen, Yan; Jiang, Baotan; Ma, Junyong

    2015-10-01

    The article presents a new method to detect small moving targets in space surveillance. Image sequences are processed to detect and track targets under the assumption that the data samples are spatially registered. Maximum value projection and normalization are performed to reduce the data samples and eliminate the background clutter. Targets are then detected through connected component analysis. The velocities of the targets are estimated by centroid localization and least squares regression. The estimated velocities are utilized to track the targets. A sliding neighborhood operation is performed prior to target detection to significantly reduce the computation while preserving as much target information as possible. Actual data samples are acquired to test the proposed method. Experimental results show that the method can efficiently detect small moving targets and track their traces accurately. The centroid locating precision and tracking accuracy of the method are within a pixel.

  11. Gas transfer velocities measured at low wind speed over a lake

    USGS Publications Warehouse

    Crusius, J.; Wanninkhof, R.

    2003-01-01

    The relationship between gas transfer velocity and wind speed was evaluated at low wind speeds by quantifying the rate of evasion of the deliberate tracer, SF6, from a small oligotrophic lake. Several possible relationships between gas transfer velocity and low wind speed were evaluated by using 1-min-averaged wind speeds as a measure of the instantaneous wind speed values. Gas transfer velocities in this data set can be estimated virtually equally well by assuming any of three widely used relationships between k600 and winds referenced to 10-m height, U10: (1) a bilinear dependence with a break in the slope at ???3.7 m s-1, which resulted in the best fit; (2) a power dependence; and (3) a constant transfer velocity for U10 3.7 m s-1 which, coupled with the typical variability in instantaneous wind speeds observed in the field, leads to average transfer velocity estimates that are higher than those predicted for steady wind trends. The transfer velocities predicted by the bilinear steady wind relationship for U10 < ???3.7 m s-1 are virtually identical to the theoretical predictions for transfer across a smooth surface.

  12. Analysis of the Velocity Distribution in Partially-Filled Circular Pipe Employing the Principle of Maximum Entropy.

    PubMed

    Jiang, Yulin; Li, Bin; Chen, Jie

    2016-01-01

    The flow velocity distribution in partially-filled circular pipe was investigated in this paper. The velocity profile is different from full-filled pipe flow, since the flow is driven by gravity, not by pressure. The research findings show that the position of maximum flow is below the water surface, and varies with the water depth. In the region of near tube wall, the fluid velocity is mainly influenced by the friction of the wall and the pipe bottom slope, and the variation of velocity is similar to full-filled pipe. But near the free water surface, the velocity distribution is mainly affected by the contractive tube wall and the secondary flow, and the variation of the velocity is relatively small. Literature retrieval results show relatively less research has been shown on the practical expression to describe the velocity distribution of partially-filled circular pipe. An expression of two-dimensional (2D) velocity distribution in partially-filled circular pipe flow was derived based on the principle of maximum entropy (POME). Different entropies were compared according to fluid knowledge, and non-extensive entropy was chosen. A new cumulative distribution function (CDF) of partially-filled circular pipe velocity in terms of flow depth was hypothesized. Combined with the CDF hypothesis, the 2D velocity distribution was derived, and the position of maximum velocity distribution was analyzed. The experimental results show that the estimated velocity values based on the principle of maximum Tsallis wavelet entropy are in good agreement with measured values.

  13. Probabilistic estimates of maximum acceleration and velocity in rock in the contiguous United States

    USGS Publications Warehouse

    Algermissen, Sylvester Theodore; Perkins, D.M.; Thenhaus, P.C.; Hanson, S.L.; Bender, B.L.

    1982-01-01

    Maximum horizontal accelerations and velocities caused by earthquakes are mapped for exposure times of 10, 50 and 250 years at the 90-percent probability level of nonexceedance for the contiguous United States. In many areas these new maps differ significantly from the 1976 probabilistic acceleration map by Algermlssen and Perkins because of the increase in detail, resulting from greater emphasis on the geologic basis for seismic source zones. This new emphasis is possible because of extensive data recently acquired on Holocene and Quaternary faulting in the western United States and new interpretations of geologic structures controlling the seismicity pattern in the central and eastern United States.

  14. Thermal acclimation effects differ between voluntary, maximum, and critical swimming velocities in two cyprinid fishes.

    PubMed

    O'Steen, Shyril; Bennett, Albert F

    2003-01-01

    Temperature acclimation may be a critical component of the locomotor physiology and ecology of ectothermic animals, particularly those living in eurythermal environments. Several studies of fish report striking acclimation of biochemical and kinetic properties in isolated muscle. However, the relatively few studies of whole-animal performance report variable acclimation responses. We test the hypothesis that different types of whole-animal locomotion will respond differently to temperature acclimation, probably due to divergent physiological bases of locomotion. We studied two cyprinid fishes, tinfoil barbs (Puntius schwanenfeldii) and river barbels (Barbus barbus). Study fish were acclimated to either cold or warm temperatures for at least 6 wk and then assayed at four test temperatures for three types of swimming performance. We measured voluntary swimming velocity to estimate routine locomotor behavior, maximum fast start velocity to estimate anaerobic capacity, and critical swimming velocity to estimate primarily aerobic capacity. All three performance measures showed some acute thermal dependence, generally a positive correlation between swimming speed and test temperature. However, each performance measure responded quite differently to acclimation. Critical speeds acclimated strongly, maximum speeds not at all, and voluntary speeds uniquely in each species. Thus we conclude that long-term temperature exposure can have very different consequences for different types of locomotion, consistent with our hypothesis. The data also address previous hypotheses that predict that polyploid and eurythermal fish will have greater acclimation abilities than other fish, due to increased genetic flexibility and ecological selection, respectively. Our results conflict with these predictions. River barbels are eurythermal polyploids and tinfoil barbs stenothermal diploids, yet voluntary swimming acclimated strongly in tinfoil barbs and minimally in river barbels, and

  15. Effects of forward velocity on noise for a J85 turbojet engine with multitube suppressor from wind tunnel and flight tests

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Miles, J. H.; Sargent, N. B.

    1976-01-01

    Flight and wind tunnel noise tests were conducted using a J85 turbojet engine as a part of comprehensive programs to obtain an understanding of forward velocity effects on jet exhaust noise. Nozzle configurations of primary interest were a 104-tube suppressor with and without an acoustically-treated shroud. The installed configuration of the engine was as similar as possible in the flight and wind tunnel tests. Exact simultaneous matching of engine speed, exhaust velocity, and exhaust temperature was not possible, and the wind tunnel maximum Mach number was approximately 0.27, while the flight Mach number was approximately 0.37. The nominal jet velocity range was 450 to 640 m/sec. For both experiments, background noise limited the jet velocity range for which significant data could be obtained. In the present tests the observed directivity and forward velocity effects for the suppressor are more similar to predicted trends for internally-generated noise than unsuppressed jet noise.

  16. Dependence of velocity fluctuations on solar wind speeds: A simple analysis with IPS method

    NASA Technical Reports Server (NTRS)

    Misawa, H.; Kojima, M.

    1995-01-01

    A number of theoretical works have suggested that MHD plasma fluctuations in solar winds should play an important role particularly in the acceleration of high speed winds inside or near 0.1 AU from the sun. Since velocity fluctuations in solar winds are expected to be caused by the MHD plasma fluctuations, measurements of the velocity fluctuations give clues to reveal the acceleration process of solar winds. We made interplanetary scintillation (IPS) observations at the region out of 0.1 AU to investigate dependence of velocity fluctuations on flow speeds. For evaluating the velocity fluctuation of a flow, we selected the IPS data-set acquired at 2 separate antennas which located in the projected flow direction onto the baseline plane, and tried to compare skewness of the observed cross correlation function(CCF) with skewness of modeled CCFs in which velocity fluctuations were parametrized. The integration effect of IPS along a ray path was also taken into account in the estimation of modeled CCFs. Although this analysis method is significant to derive only parallel fluctuation components to the flow directions, preliminary analyses show following results: (1) High speed winds (Vsw greater than or equal to 500 km/s out of 0.3 AU) indicate enhancement of velocity fluctuations near 0.1 AU; and (2) Low speed winds (Vsw less than or equal to 400 Km/s out of 0.3 AU) indicate small velocity fluctuations at any distances.

  17. AMSU-A Tropical Cyclone Maximum Sustained Winds and Web Site

    NASA Technical Reports Server (NTRS)

    Spencer, Roy; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    The Advanced Microwave Sounding Unit (AMSU)-A instruments on the NOAA-15 and NOAA-16 satellites provide information on the warm cores of tropical cyclones from oxygen channel brightness temperature (Tb) measurements near 55 GHz. With appropriate assumptions, cyclone-scale Tb gradients can be directly related to middle-to-lower tropospheric height gradients. We have developed a method for diagnosis of maximum sustained winds (Vmax) from radially averaged Tb gradients in several of the AMSU channels. Calibration of the method with recon-based (or other in situ) winds results in better agreement than with Dvorak wind estimates. Gradient wind theory shows that the warm core Tb gradient signal increases non-linearly with wind speed, making microwave temperature sounders useful for diagnosing high wind speeds, but at the expense of a minimum useful detection limit of about 40 knots. It is found that accurate wind diagnoses depend upon (1) accounting for hydrometeor effects in the AMSU channels, and (2) maximizing signal-to-noise, since the 50 km resolution data cannot fully resolve the temperature gradients in the Vmax region, typically 10-20 km in scale. AMSU imagery and max diagnoses from specific hurricanes will be shown, including independent tests from the 2000 hurricane season.

  18. Density, Velocity and Ionization Structure in Accretion-disc Winds

    NASA Astrophysics Data System (ADS)

    Long, Knox

    We propose to exploit the unique capabilities of it FUSE to monitor variations in the wind-formed spectral lines of 3 luminous, low-inclination, cataclysmic variables (CVs). Our principal goal is to improve our understanding of the dynamics of accretion-disc winds. We have previously used HST to investigate substantial and rapid (sim hours to minutes) variability in our target stars, BZ Cam, RW Sex and V603 Aql, and have demonstrated that their disc-outflows are highly structured. We aim here to follow up our discoveries by securing FUSE time-series data. These observations will allow us to determine the relative roles of density and ionization state changes in the outflow and to search for spectroscopic signatures of stochastic small-scale structure and shocked gas. By monitoring the temporal behavior of blue-ward extended absorption lines with a wide range of ionization potentials and excitation energies, we will track the changing physical conditions in the outflow. A new sophisticated Monte Carlo code will be used to calculate the ionization structure of and radiative transfer through CV winds. This will allow us to establish the wind geometry, kinematics and ionization state, both in a time-averaged sense and as a function of time. Our FUSE observations will provide a legacy that will be fundamental to the development of dynamical models of accretion-disc-driven winds, permitting critical tests of recent hydrodynamic simulations of unstable, line-driven disc winds.

  19. MEASUREMENT OF MOTION CORRECTED WIND VELOCITY USING AN AEROSTAT LOFTED SONIC ANEMOMETER

    EPA Science Inventory

    An aerostat-lofted, sonic anemometer was used to determine instantaneous 3 dimensional wind velocities at altitudes relevant to fire plume dispersion modeling. An integrated GPS, inertial measurement unit, and attitude heading and reference system corrected the wind data for th...

  20. Design of a Non-scanning Lidar for Wind Velocity and Direction Measurement

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Peng, Zhangxian

    2016-06-01

    A Doppler lidar system for wind velocity and direction measurement is presented. The lidar use a wide field of view (FOV) objective lens as an optical antenna for both beam transmitting and signal receiving. By four fibers coupled on different position on the focal plane, the lidar can implement wind vector measurement without any scanning movement.

  1. Determination of maximum leaf velocity and acceleration of a dynamic multileaf collimator: implications for 4D radiotherapy.

    PubMed

    Wijesooriya, K; Bartee, C; Siebers, J V; Vedam, S S; Keall, P J

    2005-04-01

    The dynamic multileaf collimator (MLC) can be used for four-dimensional (4D), or tumor tracking radiotherapy. However, the leaf velocity and acceleration limitations become a crucial factor as the MLC leaves need to respond in near real time to the incoming respiration signal. The aims of this paper are to measure maximum leaf velocity, acceleration, and deceleration to obtain the mechanical response times for the MLC, and determine whether the MLC is suitable for 4D radiotherapy. MLC leaf sequence files, requiring the leaves to reach maximum acceleration and velocity during motion, were written. The leaf positions were recorded every 50 ms, from which the maximum leaf velocity, acceleration, and deceleration were derived. The dependence on the velocity and acceleration of the following variables were studied: leaf banks, inner and outer leaves, MLC-MLC variations, gravity, friction, and the stability of measurements over time. Measurement results show that the two leaf banks of a MLC behave similarly, while the inner and outer leaves have significantly different maximum leaf velocities. The MLC-MLC variations and the dependence of gravity on maximum leaf velocity are statistically significant. The average maximum leaf velocity at the isocenter plane of the MLC ranged from 3.3 to 3.9 cm/s. The acceleration and deceleration at the isocenter plane of the MLC ranged from 50 to 69 cm/s2 and 46 to 52 cm/s2, respectively. Interleaf friction had a negligible effect on the results, and the MLC parameters remained stable with time. Equations of motion were derived to determine the ability of the MLC response to fluoroscopymeasured diaphragm motion. Given the present MLC mechanical characteristics, 4D radiotherapy is feasible for up to 97% of respiratory motion. For the largest respiratory motion velocities observed, beam delivery should be temporarily stopped (beam hold).

  2. Determination of maximum leaf velocity and acceleration of a dynamic multileaf collimator: Implications for 4D radiotherapy

    SciTech Connect

    Wijesooriya, K.; Bartee, C.; Siebers, J.V.; Vedam, S.S.; Keall, P.J.

    2005-04-01

    The dynamic multileaf collimator (MLC) can be used for four-dimensional (4D), or tumor tracking radiotherapy. However, the leaf velocity and acceleration limitations become a crucial factor as the MLC leaves need to respond in near real time to the incoming respiration signal. The aims of this paper are to measure maximum leaf velocity, acceleration, and deceleration to obtain the mechanical response times for the MLC, and determine whether the MLC is suitable for 4D radiotherapy. MLC leaf sequence files, requiring the leaves to reach maximum acceleration and velocity during motion, were written. The leaf positions were recorded every 50 ms, from which the maximum leaf velocity, acceleration, and deceleration were derived. The dependence on the velocity and acceleration of the following variables were studied: leaf banks, inner and outer leaves, MLC-MLC variations, gravity, friction, and the stability of measurements over time. Measurement results show that the two leaf banks of a MLC behave similarly, while the inner and outer leaves have significantly different maximum leaf velocities. The MLC-MLC variations and the dependence of gravity on maximum leaf velocity are statistically significant. The average maximum leaf velocity at the isocenter plane of the MLC ranged from 3.3 to 3.9 cm/s. The acceleration and deceleration at the isocenter plane of the MLC ranged from 50 to 69 cm/s{sup 2} and 46 to 52 cm/s{sup 2}, respectively. Interleaf friction had a negligible effect on the results, and the MLC parameters remained stable with time. Equations of motion were derived to determine the ability of the MLC response to fluoroscopy-measured diaphragm motion. Given the present MLC mechanical characteristics, 4D radiotherapy is feasible for up to 97% of respiratory motion. For the largest respiratory motion velocities observed, beam delivery should be temporarily stopped (beam hold)

  3. Quasi-decadal variations in total ozone content, wind velocity, temperature, and geopotential height over the Arosa station (Switzerland)

    NASA Astrophysics Data System (ADS)

    Visheratin, K. N.

    2016-01-01

    We present the results of the analysis of the phase relationships between the quasi-decadal variations (QDVs) (in the range from 8 to 13 years) in the total ozone content (TOC) at the Arosa station for 1932-2012 and a number of meteorological parameters: monthly mean values of temperature, meridional and zonal components of wind velocity, and geopotential heights for isobaric surfaces in the layer of 10-925 hPa over the Arosa station using the Fourier methods and composite and cross-wavelet analysis. It has been shown that the phase relationships of the QDVs in the TOC and meteorological parameters with an 11-year cycle of solar activity change in time and height; starting with cycle 24 of solar activity (2008-2010), the variations in the TOC and a number of meteorological parameters occur in almost counter phase with the variations in solar activity. The periods of the maximum growth rate of the temperature at isobaric surfaces 50-100 hPa nearly correspond to the TOC's maximum periods, and the periods of the maximum temperature correspond the periods of the decrease of the peak TOC rate. The highest correlation coefficients between the meridional wind velocity and temperature are observed at 50 hPa at positive and negative delays of ~27 months. The times of the maxima (minima) of the QDVs in the meridional wind velocity nearly correspond to the periods of the maximum amplification (attenuation) rate of the temperature of the QDVs. The QDVs in the geopotential heights of isobaric surfaces fall behind the variations in the TOC by an average of 1.5 years everywhere except in the lower troposphere. In general, the periods of variations in the TOC and meteorological parameters in the range of 8-13 years are smaller than the period of variations in the level of solar activity.

  4. Density, Velocity and Ionization Structure in Accretion-Disc Winds

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Long, Knox

    2004-01-01

    This was a project to exploit the unique capabilities of FUSE to monitor variations in the wind- formed spectral lines of the luminous, low-inclination, cataclysmic variables(CV) -- RW Sex. (The original proposal contained two additional objects but these were not approved.) These observations were intended to allow us to determine the relative roles of density and ionization state changes in the outflow and to search for spectroscopic signatures of stochastic small-scale structure and shocked gas. By monitoring the temporal behavior of blue-ward extended absorption lines with a wide range of ionization potentials and excitation energies, we proposed to track the changing physical conditions in the outflow. We planned to use a new Monte Carlo code to calculate the ionization structure of and radiative transfer through the CV wind. The analysis therefore was intended to establish the wind geometry, kinematics and ionization state, both in a time-averaged sense and as a function of time.

  5. An Estimate of Solar Wind Velocity Profiles in a Coronal Hole and a Coronal Streamer Area (6-40 R(radius symbol)

    NASA Technical Reports Server (NTRS)

    Patzold, M.; Tsurutani, B. T.; Bird, M. K.

    1995-01-01

    Total electron content data obtained from the Ulysses Solar Corona Experiment (SCE) in 1991 were used to select two data sets, one associated with a coronal hole and the other with coronal streamer crossings. (This is largely equatorial data shortly after solar maximum.) The solar wind velocity profile is estimated for these areas.

  6. RW Sextantis, a disk with a hot, high-velocity wind

    NASA Technical Reports Server (NTRS)

    Greenstein, J. L.; Oke, J. B.

    1982-01-01

    The continuum spectrum of the flickering blue variable RW Sex was observed from 10,000 to 1150 A. The star is a cataclysmic variable currently stabilized at maximum, and the spectrum is dominated by an accretion disk, with flat spectrum in the ultraviolet, except at more than 5000 A, where a blackbody near 7000 K is seen. A distance of 400 pc is derived, if the latter arises from an F type main sequence star. The accretion rate required is near 10 to the -8th solar masses per year. Only weak emission is seen, except for Lyman alpha; strong, broad UV absorption lines are seen with centers displaced up to -3000 km/s, with terminal velocities up to -4500 km/s, the velocity of escape from a white dwarf. The low X-ray flux may arise from absorption within an unusually dense, hot wind from the innermost portions of the disk. The estimated mass loss rate is nearly 10 to the -12th solar masses per year.

  7. RW Sextantis, a disk with a hot, high-velocity wind

    NASA Astrophysics Data System (ADS)

    Greenstein, J. L.; Oke, J. B.

    1982-07-01

    The continuum spectrum of the flickering blue variable RW Sex was observed from 10,000 to 1150 A. The star is a cataclysmic variable currently stabilized at maximum, and the spectrum is dominated by an accretion disk, with flat spectrum in the ultraviolet, except at more than 5000 A, where a blackbody near 7000 K is seen. A distance of 400 pc is derived, if the latter arises from an F type main sequence star. The accretion rate required is near 10 to the -8th solar masses per year. Only weak emission is seen, except for Lyman alpha; strong, broad UV absorption lines are seen with centers displaced up to -3000 km/s, with terminal velocities up to -4500 km/s, the velocity of escape from a white dwarf. The low X-ray flux may arise from absorption within an unusually dense, hot wind from the innermost portions of the disk. The estimated mass loss rate is nearly 10 to the -12th solar masses per year.

  8. Maximum shortening velocity of lymphatic muscle approaches that of striated muscle.

    PubMed

    Zhang, Rongzhen; Taucer, Anne I; Gashev, Anatoliy A; Muthuchamy, Mariappan; Zawieja, David C; Davis, Michael J

    2013-11-15

    Lymphatic muscle (LM) is widely considered to be a type of vascular smooth muscle, even though LM cells uniquely express contractile proteins from both smooth muscle and cardiac muscle. We tested the hypothesis that LM exhibits an unloaded maximum shortening velocity (Vmax) intermediate between that of smooth muscle and cardiac muscle. Single lymphatic vessels were dissected from the rat mesentery, mounted in a servo-controlled wire myograph, and subjected to isotonic quick release protocols during spontaneous or agonist-evoked contractions. After maximal activation, isotonic quick releases were performed at both the peak and plateau phases of contraction. Vmax was 0.48 ± 0.04 lengths (L)/s at the peak: 2.3 times higher than that of mesenteric arteries and 11.4 times higher than mesenteric veins. In cannulated, pressurized lymphatic vessels, shortening velocity was determined from the maximal rate of constriction [rate of change in internal diameter (-dD/dt)] during spontaneous contractions at optimal preload and minimal afterload; peak -dD/dt exceeded that obtained during any of the isotonic quick release protocols (2.14 ± 0.30 L/s). Peak -dD/dt declined with pressure elevation or activation using substance P. Thus, isotonic methods yielded Vmax values for LM in the mid to high end (0.48 L/s) of those the recorded for phasic smooth muscle (0.05-0.5 L/s), whereas isobaric measurements yielded values (>2.0 L/s) that overlapped the midrange of values for cardiac muscle (0.6-3.3 L/s). Our results challenge the dogma that LM is classical vascular smooth muscle, and its unusually high Vmax is consistent with the expression of cardiac muscle contractile proteins in the lymphatic vessel wall.

  9. C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation

    PubMed Central

    Hahm, Jeong-Hoon; Kim, Sunhee; DiLoreto, Race; Shi, Cheng; Lee, Seung-Jae V.; Murphy, Coleen T.; Nam, Hong Gil

    2015-01-01

    Ageing is marked by physical decline. Caenorhabditis elegans is a valuable model for identifying genetic regulatory mechanisms of ageing and longevity. Here we report a simple method to assess C. elegans' maximum physical ability based on the worms' maximum movement velocity. We show maximum velocity declines with age, correlates well with longevity, accurately reports movement ability and, if measured in mid-adulthood, is predictive of maximal lifespan. Contrary to recent findings, we observe that maximum velocity of worm with mutations in daf-2(e1370) insulin/IGF-1 signalling scales with lifespan. Because of increased odorant receptor expression, daf-2(e1370) mutants prefer food over exploration, causing previous on-food motility assays to underestimate movement ability and, thus, worm health. Finally, a disease-burden analysis of published data reveals that the daf-2(e1370) mutation improves quality of life, and therefore combines lifespan extension with various signs of an increased healthspan. PMID:26586186

  10. Maximum Energy Extraction Control for Wind Power Generation Systems Based on the Fuzzy Controller

    NASA Astrophysics Data System (ADS)

    Kamal, Elkhatib; Aitouche, Abdel; Mohammed, Walaa; Sobaih, Abdel Azim

    2016-10-01

    This paper presents a robust controller for a variable speed wind turbine with a squirrel cage induction generator (SCIG). For variable speed wind energy conversion system, the maximum power point tracking (MPPT) is a very important requirement in order to maximize the efficiency. The system is nonlinear with parametric uncertainty and subject to large disturbances. A Takagi-Sugeno (TS) fuzzy logic is used to model the system dynamics. Based on the TS fuzzy model, a controller is developed for MPPT in the presence of disturbances and parametric uncertainties. The proposed technique ensures that the maximum power point (MPP) is determined, the generator speed is controlled and the closed loop system is stable. Robustness of the controller is tested via the variation of model's parameters. Simulation studies clearly indicate the robustness and efficiency of the proposed control scheme compared to other techniques.

  11. Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey A.; Leo, Laura S.; Sabatino, Silvana Di; Fernando, Harindra J. S.; Pardyjak, Eric R.; Fairall, Christopher W.

    2016-06-01

    Measurements of small-scale turbulence made in the atmospheric boundary layer over complex terrain during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured on four towers deployed along the east lower slope (2-4°) of Granite Mountain near Salt Lake City in Utah, USA. The multi-level (up to seven) observations made during a 30-day long MATERHORN field campaign in September-October 2012 allowed the study of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence statistics (e.g., fluxes, variances, spectra, and cospectra) and their variations in katabatic flow. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along-slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The momentum flux is directed downward (upward) whereas the along-slope heat flux is downslope (upslope) below (above) the wind maximum. This suggests that the position of the jet-speed maximum can be obtained by linear interpolation between positive and negative values of the momentum flux (or the along-slope heat flux) to derive the height where the flux becomes zero. It is shown that the standard deviations of all wind-speed components (and therefore of the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind-speed maximum. We report several cases when the destructive effect of vertical heat flux is completely cancelled by the generation of turbulence due to the along-slope heat flux. Turbulence above the wind

  12. Mechanisms of quinidine-induced depression of maximum upstroke velocity in ovine cardiac Purkinje fibers.

    PubMed

    Weld, F M; Coromilas, J; Rottman, J N; Bigger, J T

    1982-03-01

    A major advance in understanding how quinidine depresses maximum upstroke velocity (Vmax) is the Hondeghem-Katzung mathematical model which incorporates voltage-independent rate constants for binding to and unbinding from resting, open, and inactive Na channels, and a voltage shift of -40 mV for the Hodgkin-Huxley h-kinetics of quinidine-associated Na channels. Using a double microelectrode voltage clamp technique to control transmembrane voltage and apply conditioning pulses, we found that quinidine blockade increased as transmembrane voltage became more positive in the range -60 to +40 mV, and that the rate of quinidine dissociation increased as transmembrane voltage became more negative in the range -60 to -140 mV. The relationship of Vmax to transmembrane voltage obtained at drive cycles from 500 msec to 20 seconds conformed to the model modified to include voltage-dependent rate constants without the postulated -40-mV shift for quinidine-associated channels. Thus binding of quinidine to inactive Na channels and unbinding from resting channels are both voltage-dependent and can explain frequency and voltage dependent actions of quinidine on Vmax without any voltage shift for quinidine-associated channels.

  13. Evaluation of 5-cm Agent Fate Wind Tunnel Velocity Profiles

    DTIC Science & Technology

    2007-09-01

    concentration at the sessile drop in the evaporation case. Such a simulation has the advantages that the heat transfer rate (analogous to evaporation rate) can...a simple two-dimensional problem of evaporation into a laminar Couette flow was investigated 6. This represents the sessile drop condition present...agreement is in establishing a quantitative criterion. For the small sessile drops being considered here, the friction velocity, u1, is the most important

  14. Relationships among daily mean and maximum wind speeds, with application to data quality assurance

    NASA Astrophysics Data System (ADS)

    Graybeal, Daniel Y.

    2006-01-01

    A growing number of climate change and variability studies, as well as applied research toward improving engineering design climatographies, require high-quality, long-term, extreme-value climate data sets for accurate and reliable estimates and assessments. As part of a historical weather data rescue project of the US government, new data quality control procedures are being developed and applied for daily maximum wind speeds. Not only are existing quality assurance procedures mostly lacking for such data but the climatological relationships upon which such quality checks may be based are also grossly underexploited. Therefore, this study seeks to elucidate relationships among peak-gust, fastest-mile, and fastest 5-min wind speeds, utilizing the peak gust factor model but generalizing it for these and other extreme wind-speed elements. The relationship between peak-gust factor and daily mean wind speed is also adapted for quality assurance and for a wider range of climates than previously studied. Fastest-interval wind-speed factors are found to follow Gaussian, gamma, or Weibull probability distributions, included within mixed models to handle zeros. Resistant prediction interval estimates about a resistant regression were developed for quality assurance of peak-gust factor, given the daily mean wind speed. Flagging thresholds were estimated using parametric bootstrapping. Flag rates from 0.05 to 0.5% are in line with rates reported in the literature, from work with similar data sets; overall Type I and Type II error rates are in the range 0.03-0.3%. The approach outlined lends itself straightforwardly to application in data quality assurance.

  15. Effect of Wind Velocity on Flame Spread in Microgravity

    NASA Technical Reports Server (NTRS)

    Prasad, Kuldeep; Olson, Sandra L.; Nakamura, Yuji; Fujita, Osamu; Nishizawa, Katsuhiro; Ito, Kenichi; Kashiwagi, Takashi; Simons, Stephen N. (Technical Monitor)

    2002-01-01

    A three-dimensional, time-dependent model is developed describing ignition and subsequent transition to flame spread over a thermally thin cellulosic sheet heated by external radiation in a microgravity environment. A low Mach number approximation to the Navier Stokes equations with global reaction rate equations describing combustion in the gas phase and the condensed phase is numerically solved. The effects of a slow external wind (1-20 cm/s) on flame transition are studied in an atmosphere of 35% oxygen concentration. The ignition is initiated at the center part of the sample by generating a line-shape flame along the width of the sample. The calculated results are compared with data obtained in the 10s drop tower. Numerical results exhibit flame quenching at a wind speed of 1.0 cm/s, two localized flames propagating upstream along the sample edges at 1.5 cm/s, a single line-shape flame front at 5.0 cm/s, three flames structure observed at 10.0 cm/s (consisting of a single line-shape flame propagating upstream and two localized flames propagating downstream along sample edges) and followed by two line-shape flames (one propagating upstream and another propagating downstream) at 20.0 cm/s. These observations qualitatively compare with experimental data. Three-dimensional visualization of the observed flame complex, fuel concentration contours, oxygen and reaction rate isosurfaces, convective and diffusive mass flux are used to obtain a detailed understanding of the controlling mechanism, Physical arguments based on lateral diffusive flux of oxygen, fuel depletion, oxygen shadow of the flame and heat release rate are constructed to explain the various observed flame shapes.

  16. Comparison of CO2 Doppler lidar and GPS rawinsonde wind velocity measurements

    NASA Astrophysics Data System (ADS)

    Roadcap, John R.; McNicholl, Patrick J.; Teets, Edward H., Jr.; Laird, Mitchell H.

    2001-09-01

    A comparison of CO2 Doppler lidar and GPS rawinsonde measurements of horizontal wind velocity was conducted during May 2000 at Hanscom AFB, Massachusetts. Seven days of side-by-side measurements using both lidar and GPS sondes were achieved comparing wind velocity as a function of altitude up to 6 km. The horizontal wind velocity was determined by the CO2 Doppler lidar using the Velocity Azimuth Display (VAD) method. Horizontal winds were also determined simultaneously using a differential GPS-tracked rawinsonde which provides GPS position coordinates once per second. Both lidar VAD wind speed Root Mean Squared Difference (RMS) and lidar vs. GPS sonde RMS were calculated and compared as a function of altitude, time, and stability regime. On average, significant increases in both the lidar VAD RMS and lidar vs. GPS RMS were observed during unstable conditions compared to stable conditions. Analyses of lidar VAD RMS show the smallest typical values average near 0.5 m/s over a single profile.

  17. Occurrence of high-speed solar wind streams over the Grand Modern Maximum

    NASA Astrophysics Data System (ADS)

    Mursula, Kalevi; Lukianova, Renata; Holappa, Lauri

    2015-04-01

    In the declining phase of the solar cycle, when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity in the near-Earth space. Here, using a novel definition of geomagnetic activity at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculate the annually averaged solar wind speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onwards. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each solar cycle 16-23. For most cycles the HSS activity clearly maximizes during one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of solar cycle 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.

  18. Fabrication of four-path remote outdoor wind velocity measurement system and its performance evaluation

    NASA Astrophysics Data System (ADS)

    Yamada, Akira; Oba, Kensyo; Shimizu, Masato

    2017-01-01

    A method is proposed for the remote measurement of the outdoor ground-surface two-dimensional (2D) vector wind velocity field averaged over a region of 10-50 m size. To this end, four-channel (4ch) sound wave transmitters and receivers were placed at the corners of a rectangular monitoring site. From the four-path travel time data, the wind velocity and direction averaged over the region were estimated under the uniform-wind-field assumption. By this method, misestimation due to the local turbulence wind field, which is encountered in conventional in situ-type anemometers, can be avoided. To achieve a satisfying speed data collection that keeps up with the rapid changes in real wind field, coded modulation signals were transmitted and received simultaneously between all the 4ch speaker/microphone pairs. Test experiments demonstrated that time variations of vector wind velocities spatially averaged over the area were successively measured with satisfying speed and accuracy.

  19. Determination of the velocity, density, maximum flux, and enthalpy profiles for a very high temperature arc jet nozzle flow

    NASA Astrophysics Data System (ADS)

    Kopp, Robert William

    1989-06-01

    Hypervelocity flows for velocities is excess of 1.4 km/sec (Mach 5) require very high stagnation temperature to avoid liquefaction. The arc heater wind tunnel was designed to provide such flows. The electric-arc driven wind tunnel can develop stagnation temperatures up to 13,000 K which will produce hypervelocity flows up to 7 km/sec (earth orbital speed). The nature of the flow, however, is such that the high temperature source flow may cause severe gradients at the nozzle exit. In order to perform aerothermodynamic tests the characterization of the flow in the test section is required. This paper experimentally determines the stream profiles for an arcjet wind tunnel conical nozzle directly from calorimetry and pitot probe surveys.

  20. Imbalanced magnetohydrodynamic turbulence modified by velocity shear in the solar wind

    NASA Astrophysics Data System (ADS)

    Gogoberidze, G.; Voitenko, Y. M.

    2016-11-01

    We study incompressible imbalanced magnetohydrodynamic turbulence in the presence of background velocity shears. Using scaling arguments, we show that the turbulent cascade is significantly accelerated when the background velocity shear is stronger than the velocity shears in the subdominant Alfvén waves at the injection scale. The spectral transport is then controlled by the background shear rather than the turbulent shears and the Tchen spectrum with spectral index -1 is formed. This spectrum extends from the injection scale to the scale of the spectral break where the subdominant wave shear becomes equal to the background shear. The estimated spectral breaks and power spectra are in good agreement with those observed in the fast solar wind. The proposed mechanism can contribute to enhanced turbulent cascades and modified -1 spectra observed in the fast solar wind with strong velocity shears. This mechanism can also operate in many other astrophysical environments where turbulence develops on top of non-uniform plasma flows.

  1. Latitude dependence of solar wind velocity observed at not less than 1 AU

    NASA Technical Reports Server (NTRS)

    Mitchell, D. G.; Roelof, E. C.; Wolfe, J. H.

    1981-01-01

    The large-scale solar wind velocity structure in the outer heliosphere has been systematically analyzed for Carrington rotations 1587-1541 (March 1972 to April 1976). Spacecraft data were taken from Imp 7/8 at earth, Pioneer 6, 8, and 9 near 1 AU, and Pioneer 10 and 11 between 1.6 and 5 AU. Using the constant radial velocity solar wind approximation to map all of the velocity data to its high coronal emission heliolongitude, the velocity structure observed at different spacecraft was examined for latitudinal dependence and compared with coronal structure in soft X-rays and H-alpha absorption features. The constant radial velocity approximation usually remains self-consistent in decreasing or constant velocity solar wind out to 5 AU, enabling us to separate radial from latitudinal propagation effects. Several examples of sharp nonmeridional stream boundaries in interplanetary space (about 5 deg latitude in width), often directly associated with features in coronal X-rays and H-alpha were found.

  2. The validity of an assessment of maximum angular velocity of knee extension (KE) using a gyroscope.

    PubMed

    Arai, Takeshi; Obuchi, Shuichi; Shiba, Yoshitaka; Omuro, Kazuya; Inaba, Yasuko; Kojima, Motonaga

    2012-01-01

    Although it is more important to assess the muscular power of the lower extremities than the strength, no simplified method for doing so has been found. The aim of this study was to assess the validity of the assessment of the angular velocity of KE using a gyroscope. Participants included 105 community-dwelling older people (55 women, 50 men, age ± standard deviation (SD) 75±5.3). Pearson correlation coefficients and Spearman rank-correlation coefficients were used to examine the relationships between the angular velocity of KE and functional performance measurements, a self-efficacy scale and health-related quality of life (HRQOL). The data from the gyroscope were significantly correlated with some physical functions such as muscle strength (r=0.304, p<0.01), and walking velocity (r=0.543, p<0.001). In addition, the joint angular velocity was significantly correlated with self-efficacy (r=0.219-0.329, p<0.01-0.05) and HRQOL (r=0.207-0.359, p<0.01-0.05). The absolute value of the correlation coefficient of angular velocity tended to be greater than that of the muscle strength for mobility functions such as walking velocity and the timed-up-and-go (TUG) test. In conclusion, it was found that the assessment of the angular velocity of the knee joint using a gyroscope could be a feasible and meaningful measurement in the geriatrics field.

  3. Comparing Solar Wind Velocity Measurements Derived from Sun-grazing Comet Lovejoy (C/2011 W3) with Solar Wind Models

    NASA Astrophysics Data System (ADS)

    Ramanjooloo, Y.; Jones, G. H.; Coates, A. J.; Owens, M. J.; Battams, K.

    2012-12-01

    Comets' plasma (type I) tails have been studied as natural probes of the solar wind since the mid-20th century. Local solar wind conditions directly control the morphology and dynamics of a comet's plasma tail. During ideal observing geometries, the orientation and structure of the plasma tail can reveal large-scale and small-scale variations in the local solar wind structure. We present solar wind velocity measurements derived from multiple observing locations of comet Lovejoy (C/2011 W3) from the 14th - 19th December 2011 using recent images from the SECCHI and LASCO heliospheric imagers and coronagraphs aboard STEREO A and B, and SOHO. Overlapping observation sessions from the three spacecraft provided the perfect opportunity to use comet Lovejoy as a diagnostic tool to understand solar wind variability close to the Sun. Our unique analysis technique [submitted] allows us to determine the latitudinal variations of the solar wind, heliospheric current sheet sector boundaries and the boundaries of transient features as comet Lovejoy probes the Sun's atmosphere. We plan to compare our observations to results of suitable simulations of plasma conditions in the corona and inner heliosphere during the time of Lovejoy's perihelion passage.

  4. The effect of humidity on ionic wind velocity in ambient air

    NASA Astrophysics Data System (ADS)

    Chen, She; Nobelen, J. C. P. Y.; Nijdam, S.

    2016-09-01

    Due to the evolution of portable electronics and LED lightning system, advances in air cooling technologies must also keep pace. Active cooling by ionic wind, which is usually generated by corona discharge, can greatly reduce the noise and lifetime issues compared to the mechanical fans. The wind is induced when a gas discharge is formed, and neutral molecules gain their energy by the momentum transfer of ion-neutral collisions. However, there is few discussion about the effect of gas composition such as humidity on the wind generation and the physical mechanism is not clear. In the experiment, a positive 5-20 kV DC voltage is applied to the needle-cylinder electrodes with separation of 20 mm. The ionic wind velocity is measured by hot wire anemometry. As the relative humidity (RH) in the ambient air increases, the velocity is found to be severely inhibited. The current is also measured between the cylinder electrode and earth. The results show that the DC component of corona current decreases when RH increases. Since both the discharge current and the ion mobility are reduced when RH increases, their combined effects determine the ionic wind velocity. This work is supported by STW project 13651.

  5. OCCURRENCE OF HIGH-SPEED SOLAR WIND STREAMS OVER THE GRAND MODERN MAXIMUM

    SciTech Connect

    Mursula, K.; Holappa, L.; Lukianova, R.

    2015-03-01

    In the declining phase of the solar cycle (SC), when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind (SW) streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity (GA) in the near-Earth space. Here, using a novel definition of GA at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculate the annually averaged SW speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onward. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each of SCs 16-23. For most cycles the HSS activity clearly reaches a maximum in one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of SC 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.

  6. Occurrence of High-speed Solar Wind Streams over the Grand Modern Maximum

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Lukianova, R.; Holappa, L.

    2015-03-01

    In the declining phase of the solar cycle (SC), when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind (SW) streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity (GA) in the near-Earth space. Here, using a novel definition of GA at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculate the annually averaged SW speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onward. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each of SCs 16-23. For most cycles the HSS activity clearly reaches a maximum in one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of SC 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.

  7. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s-1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  8. Correlated studies at activity maximum: The Sun and the solar wind

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Galvin, A. B.

    1997-01-01

    The breadth and power of the set of solar and heliospheric observatories presently in space is unprecedented. Their observations generally began at solar minimum or in the declining phase of the past maximum, but it is anticipated that most of the instruments will be able to observe the rise to the next maximum and that the events will happen then. The second orbit of Ulysses will be especially interesting and the Yokhoh orbital decay is not projected until 2002. New spacecraft, including TRACE, HESSI, and SOLAR-B, may also become available. The current remote sensing and in situ measurements are characterized by a much stronger understanding of how the solar and interplanetary phenomena match. The novel discoveries from the current data are reviewed, and speculations are expressed on how to take advantage of the future data, emphasizing the use of heliospheric observations to help probe the connectivity of the corona/solar wind interface region. It is suggested that there now exists a possibility of understanding the heliospheric structure empirically in new ways: by using particles as tracers of the field, and by correlating multi-point measurements of structures in the solar wind with solar images.

  9. Mean Velocity, Turbulence Intensity and Turbulence Convection Velocity Measurements for a Convergent Nozzle in a Free Jet Wind Tunnel. Comprehensive Data Report

    NASA Technical Reports Server (NTRS)

    Mccolgan, C. J.; Larson, R. S.

    1977-01-01

    The effect of flight on the mean flow and turbulence properties of a 0.056m circular jet were determined in a free jet wind tunnel. The nozzle exit velocity was 122 m/sec, and the wind tunnel velocity was set at 0, 12, 37, and 61 m/sec. Measurements of flow properties including mean velocity, turbulence intensity and spectra, and eddy convection velocity were carried out using two linearized hot wire anemometers. This report contains the raw data and graphical presentations. The final technical report includes a description of the test facilities, test hardware, along with significant test results and conclusions.

  10. Atlantic Tropical Cyclone Monitoring with AMSU-A: Estimation of Maximum Sustained Wind Speeds

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Braswell, William D.

    2001-01-01

    The first Advanced Microwave Sounding Unit temperature sounder (AMSU-A) was launched on the NOAA-15 satellite on 13 May 1998. The AMSU-A's higher spatial and radiometric resolutions provide more useful information on the strength of the middle- and upper-tropospheric warm cores associated with tropical cyclones than have previous microwave temperature sounders. The gradient wind relationship suggests that the temperature gradient near the core of tropical cyclones increases nonlinearly with wind speed. The gradient wind equation is recast to include AMSU-A-derived variables, Stepwise regression is used to determine which of these variables is most closely related to maximum sustained winds (V(sub max)). The satellite variables investigated include the radially averaged gradients at two spatial resolutions of AMSU-A channels 1-10 T(sub b) data (delta(sub r)T(sub B)), the squares of these gradients, a channel-15-based scattering index (SI(sub 89)), and area-averaged T(sub B). Calculations of T(sub B) and delta(sub r)T(sub B) from mesoscale model simulations of Andrew reveal the effects of the AMSU spatial sampling on the cyclone warm core presentation. Stepwise regression of 66 AMSU-A terms against National Hurricane Center V(sub max) estimates from the 1998 and 1999 Atlantic hurricane season confirms the existence of a nonlinear relationship between wind speed and radially averaged temperature gradients near the cyclone warm core. Of six regression terms, four are dominated by temperature information, and two are interpreted as correcting for hydrometeor contamination. Jackknifed regressions were performed to estimate the algorithm performance on independent data. For the 82 cases that had in situ measurements of V(sub max), the average error standard deviation was 4.7 m/s. For 108 cases without in situ wind data, the average error standard deviation was 7.5 m/s Operational considerations, including the detection of weak cyclones and false alarm reduction, are also

  11. Atlantic Tropical Cyclone Monitoring with AMSU-A: Estimation of Maximum Sustained Wind Speeds

    NASA Technical Reports Server (NTRS)

    Spencer, Roy; Braswell, William D.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    The first Advanced Microwave Sounding Unit temperature sounder (AMSU-A) was launched on the NOAA-15 satellite on 13 May 1998. The AMSU-A's higher spatial and radiometric resolutions provide more useful information on the strength of the middle and upper tropospheric warm cores associated with tropical cyclones than have previous microwave temperature sounders. The gradient wind relationship suggests that the temperature gradient near the core of tropical cyclones increases nonlinearly with wind speed. We recast the gradient wind equation to include AMSU-A derived variables. Stepwise regression is used to determine which of these variables is most closely related to maximum sustained winds (V(sub max)). The satellite variables investigated include the radially averaged gradients at two spatial resolutions of AMSU-A channels 1 through 10 T(sub b) data (delta(sub r)T(sub b)), the squares of these gradients, a channel 15 based scattering index (SI-89), and area averaged T(sub b). Calculations of Tb and delta(sub r)T(sub b) from mesoscale model simulations of Andrew reveal the effects of the AMSU spatial sampling on the cyclone warm core presentation. Stepwise regression of 66 AMSU-A terms against National Hurricane Center (NHC) V(sub max) estimates from the 1998 and 1999 Atlantic hurricane season confirms the existence of a nonlinear relationship between wind speed and radially averaged temperature gradients near the cyclone warm core. Of six regression terms, four are dominated by temperature information, and two are interpreted as correcting for hydrometeor contamination. Jackknifed regressions were performed to estimate the algorithm performance on independent data. For the 82 cases that had in situ measurements of V(sub max), the average error standard deviation was 4.7 m/s. For 108 cases without in situ wind data, the average error standard deviation was 7.5 m/s. Operational considerations, including the detection of weak cyclones and false alarm reduction are

  12. The Evolution of the Spectrum of Velocity Fluctuations in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Roberts, Dana Aaron

    2007-01-01

    Previous studies have shown that the power spectra of the magnetic field and velocity in the solar wind do not evolve in the same way with heliocentric distance. In particular, the velocity spectrum remains flatter for a substantial distance. However, Voyager observations of the velocity spectrum have demonstrated a likely asymptotic state in which the spectrum steepens to having a spectral index of -5/3, finally matching the magnetic spectrum and the theoretical expectation of Kolmogoroff turbulence. Here we examine evidence from other spacecraft, in particular studying Ulysses spectra to determine if the Voyager result, based on a very few sufficiently complete intervals, is correct. Preliminary results confirm the -5/3 slope for velocity fluctuations at -5 AU from the Sun in the ecliptic. We will examine many intervals to develop a more general picture of the spectral evolution in various conditions, and how magnetic and velocity spectra differ in these cases.

  13. The de-correlation of westerly winds and westerly-wind stress over the Southern Ocean during the Last Glacial Maximum

    SciTech Connect

    Liu, Wei; Lu, Jian; Leung, Lai-Yung R.; Xie, Shang-Ping; Liu, Zhengyu; Zhu, Jiang

    2015-02-22

    This paper investigates the changes of the Southern Westerly Winds (SWW) and Southern Ocean (SO) upwelling between the Last Glacial Maximum (LGM) and preindustrial (PI) in the PMIP3/CMIP5 simulations, highlighting the role of the Antarctic sea ice in modulating the wind stress effect on the ocean. Particularly, a discrepancy may occur between the changes in SWW and westerly wind stress, caused primarily by an equatorward expansion of winter Antarctic sea ice that undermines the wind stress in driving the liquid ocean. Such discrepancy may reflect the LGM condition in reality, in view of that the model simulates this condition has most credible simulation of modern SWW and Antarctic sea ice. The effect of wind stress on the SO upwelling is further explored via the wind-induced Ekman pumping, which is reduced under the LGM condition in all models, in part by the sea-ice “capping” effect present in the models.

  14. The Evolution of the Spectrum of Velocity Fluctuations in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron

    2010-01-01

    Recent work has shown that at 1AU from the Sun the power spectrum of the solar wind magnetic field has the -5/3 spectral slope expected for Kolmogorov turbulence, but that the velocity has closer to a -3/2 spectrum. This paper traces the changes in solar wind velocity spectra from 0.3 to 5 AU using data from the Helios and Ulysses spacecraft to show that this is a transient stage in the evolution. The spectrum of the velocity is found to be flatter than that of the magnetic field for the higher frequencies examined for all cases until the slopes become equal (at -5/3) well past 1 AU when the wind is relatively nonAlfvenic. In some respects, in particular in the evolution of the frequency at which the spectrum changes from flatter at larger scales to a traditionally turbulent spectrum at smaller scales, the velocity field evolves more rapidly that the magnetic, and this is associated with the dominance of the magnetic energy over the kinetic at "inertial range" scales. The Alfvenicity of the fluctuations, not the speed of the flow, is shown to control the rate of the spectral evolution. This study shows that, for the solar wind ., the idea of a simple "inertial range" with uniform spectral properties is not realistic, and new phenomenologies will be needed to capture the true situation. In addition a flattening of the velocity spectrum persists at times for small scales, which may provide a clue to the nature of the small-scale interactions.

  15. On the stability of the moments of the maximum entropy wind wave spectrum

    SciTech Connect

    Pena, H.G.

    1983-03-01

    The stability of some current wind wave parameters as a function of high-frequency cut-off and degrees of freedom of the spectrum has been numerically investigated when computed in terms of the moments of the wave energy spectrum. From the Pierson-Moskovitz wave spectrum type, a sea surface profile is simulated and its wave energy spectrum is estimated by the Maximum Entropy Method (MEM). As the degrees of freedom of the MEM spectral estimation are varied, the results show a much better stability of the wave parameters as compared to the classical periodogram and correlogram spectral approaches. The stability of wave parameters as a function of high-frequency cut-off has the same result as obtained by the classical techniques.

  16. Two-dimensional airflow modeling underpredicts the wind velocity over dunes

    NASA Astrophysics Data System (ADS)

    Michelsen, Britt; Strobl, Severin; Parteli, Eric J. R.; Pöschel, Thorsten

    2015-11-01

    We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune’s symmetry axis — that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barchan dunes is insufficient for the purpose of the quantitative description of barchan dune dynamics as three-dimensional flow effects cannot be neglected.

  17. Two-dimensional airflow modeling underpredicts the wind velocity over dunes

    PubMed Central

    Michelsen, Britt; Strobl, Severin; Parteli, Eric J. R.; Pöschel, Thorsten

    2015-01-01

    We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune’s symmetry axis — that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barchan dunes is insufficient for the purpose of the quantitative description of barchan dune dynamics as three-dimensional flow effects cannot be neglected. PMID:26572966

  18. Two-dimensional airflow modeling underpredicts the wind velocity over dunes.

    PubMed

    Michelsen, Britt; Strobl, Severin; Parteli, Eric J R; Pöschel, Thorsten

    2015-11-17

    We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune's symmetry axis - that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barchan dunes is insufficient for the purpose of the quantitative description of barchan dune dynamics as three-dimensional flow effects cannot be neglected.

  19. Differences in maximum velocity of shortening along single muscle fibres of the frog.

    PubMed Central

    Edman, K A; Reggiani, C; te Kronnie, G

    1985-01-01

    The velocity of 'unloaded' shortening (V0) and the force-velocity relation were studied during fused tetani (0.5-2.0 degrees C) in short successive segments along the entire length of single fibres isolated from the tibialis anterior muscle of Rana temporaria. The segments were defined by opaque markers of hair that were placed on the fibre surface, 0.5-0.8 mm apart, from one tendon insertion to the other. The change in distance between two adjacent markers (one segment) was monitored by means of a photoelectric recording system, while the fibre was released to shorten isotonically between 2.2 and 2.0 micron sarcomere lengths. The accuracy of the V0 measurement was better than 4% in all parts of the fibre. V0 varied along the length of the fibre, each fibre having a unique velocity pattern that remained constant throughout the experiment. The difference between the highest and lowest values of V0 within the fibre varied between 11 and 45% of the fibre mean in thirty-two preparations (mean difference 23 +/- 2%, S.E. of mean). An attempt was made to relate the V0 pattern to the fibre's orientation in the body in fourteen complete experiments. The highest values of V0 were obtained near the proximal end of the fibre, and there was a clear trend for V0 to assume lower values towards the distal end. The V0 pattern along the fibre did not correlate with the segments' capacities to produce force nor with the passive viscoelastic properties of the segments. Force-velocity data obtained from individual segments provided a good fit to Hill's (1938) hyperbolic equation at loads less than 80% of the measured tetanic force. The curvature of the force-velocity relation, defined by alpha/P0 in Hill's equation (P0 being the isometric force calculated from the hyperbolic function) varied between 0.09 and 0.46 in sixteen segments of six different fibres. V0 was inversely related to alpha/P0 according to the following regression: V0 = 3.21 - 3.22. (alpha/P0), correlation coefficient

  20. Control of a wind-driven self-excited induction generator water-pumping system for maximum utilization efficiency

    SciTech Connect

    Alghuwainem, S.M.

    1998-07-01

    This paper analyzes a stand-alone water-pumping system consisting of a motor-pump set supplied by a wind-driven self-excited induction generator. In order to achieve maximum utilization efficiency, the system designer is interested in optimally matching the system components together so that maximum energy available from the wind is absorbed and utilized all the time. Unfortunately, this optimal matching is speed-dependent and hence no single matching is valid for all wind speeds. Therefore the operating point of the system must vary with wind speed. In this paper, a control strategy is formulated which properly adjust the operating point of the system to coincide with the maximum power operating condition. The self-excited induction generator (SEIG) is basically an induction machine which is driven by a prime mover such as a wind turbine while a capacitor is connected across its stator terminals. The SEIG supplies an induction motor which is coupled to a water pump. The system need not operate continuously and water can be used directly for drinking and irrigation or it can be collected in a storage tank for later use. Due to the high cost of the wind turbine and equipment, the system designer is interested in maximizing the amount of pumped water per day. This can be achieved by proper selection and matching of the system components. However, proper matching of the system components together is not sufficient to guarantee maximum utilization since matching is dependent on wind speed. Therefore, certain system components must be controlled according to wind speed, such that matching is achieved all the time. This paper presents a control strategy to control the excitation capacitance of the induction generator such that its generated terminal voltage, which is applied to the induction motor, is kept constant as the rotor speed varies with wind speed.

  1. An investigation into the contraction of the hurricane radius of maximum wind

    NASA Astrophysics Data System (ADS)

    Kieu, Chanh Q.

    2012-01-01

    The radius of the maximum tangential wind (RMW) associated with the hurricane primary circulation has been long known to undergo continuous contraction during the hurricane development. In this study, we document some characteristic behaviors of the RMW contraction in a series of ensemble real-time simulations of Hurricane Katrina (2005) and in idealized experiments using the Rotunno and Emanuel (Mon Weather Rev 137:1770-1789, 1987) axisymmetric hurricane model. Of specific interest is that the contraction appears to slow down abruptly at the middle of the hurricane intensification, and the RMW becomes nearly stationary subsequently, despite the rapidly strengthening rotational flows. A kinematic model is then presented to examine such behaviors of the RMW in which necessary conditions for the RMW to stop contracting are examined. Further use of the Emanuel's (J Atmos Sci 43:585-605, 1986) analytical hurricane theory reveals a connection between the hurricane maximum potential intensity and the hurricane eye size, an issue that has not been considered adequately in previous studies.

  2. The power associated with density fluctuations and velocity fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Intriligator, D. S.

    1974-01-01

    Direct observations from Pioneer 6 of solar-wind-proton fluctuations have been used to obtain the power spectra associated with solar-wind-proton number density and velocity fluctuations in the frequency range of 0.001 to 0.01 Hz, extending previous analyses by an order of magnitude at the higher frequencies. The slopes of the power spectra associated with the density fluctuations and the velocity fluctuations are similar and are in agreement with the shape of the power spectra found at the lower frequencies. The power spectra indicate that the power-law density spectrum observed at lower frequencies extends to at least 0.01 Hz. This smooth variation in the spectrum at these frequencies is consistent with previous extrapolations of both spacecraft and interplanetary scintillation observations.

  3. Evaporation under cavity flow: laser speckle correlation of the wind velocity above the liquid surface

    NASA Astrophysics Data System (ADS)

    Forestier, Serge; Heymes, Frédéric; Slangen, Pierre; Munier, Laurent; Lapébie, Emmanuel; Dusserre, Gilles

    2012-10-01

    One of the major accident scenarios in industrial safety deals with liquid pool evaporation consequent to a tank rupture. Numerous previous studies have been performed and several correlations are available in the literature. It appears that all of the correlations are strongly dependent on wind velocity but have nevertheless been all created under a boundary layer flow above the pool. However, industrial safety bunds do not allow such a profile because of obstacles and so cavity flows may occur. For such a configuration, is it then possible to describe the evaporation phenomena thanks to correlations in the literature? Experiments involving evaporation under this configuration have thus been performed in this work. Particular care is devoted to the wind profile measurement as the wind velocity is one of the main parameters. Digital speckle correlation insures high accuracy and good spatial resolution. We used a double pulse YAG laser (200mJ, 15Hz at 532 nm) with a high resolution double frame camera (2048 pixel x 2048 pixels, 15Hz). The experiments involve 200 liters (200L) of liquid (acetone and water) in a 58 cm diameter pool. The pool is located in the wind tunnel facility. The study presents 2 different wind velocities (2m.s-1 and 4m.s-1) and four different dike step heights (0 cm, 3 cm, 6 cm and 10 cm). Displacement vector maps are obtained after adaptative correlation and related processing. The final results are also crossed with IR measurements and open new fields of investigation that will be discussed.

  4. Monostatic Doppler lidar using an Nd:YAG laser for wind-velocity measurement

    NASA Astrophysics Data System (ADS)

    Bersenev, V. I.; Kaptsov, L. N.; Priezzhev, A. V.

    1987-10-01

    A monostatic Doppler lidar using a CW Nd:YAG laser has been developed for measurements of wind velocity. A series of atmospheric measurements using this lidar was carried out. At medium turbulence levels, the limiting lidar range is 200 m. As compared with a CO2 Doppler lidar, the Nd:YAG lidar has a better spatial resolution, is more convenient to use, and does not require a cooled photodetector.

  5. Development of tunable high pressure CO2 laser for lidar measurements of pollutants and wind velocities

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Guerra, M.; Javan, A.

    1980-01-01

    The problem of laser energy extraction at a tunable monochromatic frequency from an energetic high pressure CO2 pulsed laser plasma, for application to remote sensing of atmospheric pollutants by Differential Absorption Lidar (DIAL) and of wind velocities by Doppler Lidar, was investigated. The energy extraction principle analyzed is based on transient injection locking (TIL) at a tunable frequency. Several critical experiments for high gain power amplification by TIL are presented.

  6. Spatiotemporal Dynamics of the Variance of the Wind Velocity from Mini-Sodar Measurements

    NASA Astrophysics Data System (ADS)

    Krasnenko, N. P.; Kapegesheva, O. F.; Tarasenkov, M. V.; Shamanaeva, L. G.

    2015-12-01

    Statistical trends of the spatiotemporal dynamics of the variance of the three wind velocity components in the atmospheric boundary layer have been established from Doppler mini-sodar measurements. Over the course of a 5-day period of measurements in the autumn time frame from 12 to 16 September 2003, values of the variance of the x- and y-components of the wind velocity lay in the interval from 0.001 to 10 m2/s2, and for the z-component, from 0.001 to 1.2 m2/s2. They were observed to grow during the morning hours (around 11:00 local time) and in the evening (from 18:00 to 22:00 local time), which is explained by the onset of heating and subsequent cooling of the Earth's surface, which are accompanied by an increase in the motion of the air masses. Analysis of the obtained vertical profiles of the standard deviations of the three wind velocity components showed that growth of σ x and σ y with altitude is well described by a power-law dependence with its exponent varying from 0.22 to 1.3 as a function of the time of day while σ z varies according to a linear law. At night (from 00:00 to 5:00 local time) the variance of the z-component changes from 0.01 to 0.56 m2/s2, which is in good agreement with the data available in the literature. Fitting parameters are found and the error of the corresponding fits is estimated, which makes it possible to describe the diurnal dynamics of the wind velocity variance.

  7. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    NASA Astrophysics Data System (ADS)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben; José Trujillo, Juan

    2016-09-01

    The wind energy community is in need of detailed full-field measurements in the wake of wind turbines. Here, three dimensional(3D) wind vector field measurements obtained in the near-wake region behind a full-scale test turbine are presented. Specifically, the wake of a NEG Nordtank turbine, installed at Risoe test field, has been measured from 0 to 2 diameters downstream. For this, three ground-based synchronised short-range WindScanners and a spinner lidar have been used. The 3D wind velocity field has been reconstructed in horizontal and vertical planes crossing the hub. The 10-min mean values of the three wind components reveal detailed information regarding the wake properties while propagating downwind over flat terrain. Furthermore, the wake centre is tracked from the measurements and its meander is investigated as function of yaw misalignment of the turbine. The centre-line wake deficit is calculated both in a Nacelle and Moving Frame of Reference. The results can be used in quantitative validation of numerical wake models.

  8. A radionuclide counting technique for measuring wind velocity. [drag force anemometers

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Khandelwal, G. S.; Mall, G. H.

    1981-01-01

    A technique for measuring wind velocities of meteorological interest is described. It is based on inverse-square-law variation of the counting rates as the radioactive source-to-counter distance is changed by wind drag on the source ball. Results of a feasibility study using a weak bismuth 207 radiation source and three Geiger-Muller radiation counters are reported. The use of the technique is not restricted to Martian or Mars-like environments. A description of the apparatus, typical results, and frequency response characteristics are included. A discussion of a double-pendulum arrangement is presented. Measurements reported herein indicate that the proposed technique may be suitable for measuring wind speeds up to 100 m/sec, which are either steady or whose rates of fluctuation are less than 1 kHz.

  9. Tracing Slow Winds from T Tauri Stars via Low Velocity Forbidden Line Emission

    NASA Astrophysics Data System (ADS)

    Simon, Molly; Pascucci, Ilaria; Edwards, Suzan; Feng, Wanda; Rigliaco, Elisabetta; Gorti, Uma; Hollenbach, David J.; Tuttle Keane, James

    2016-06-01

    Protoplanetary disks are a natural result of star formation, and they provide the material from which planets form. The evolutional and eventual dispersal of protoplanetary disks play critical roles in determining the final architecture of planetary systems. Models of protoplanetary disk evolution suggest that viscous accretion of disk gas onto the central star and photoevaporation driven by high-energy photons from the central star are the main mechanisms that drive disk dispersal. Understanding when photoevaporation begins to dominate over viscous accretion is critically important for models of planet formation and planetary migration. Using Keck/HIRES (resolution of ~ 7 km/s) we analyze three low excitation forbidden lines ([O I] 6300 Å, [O I] 5577 Å, and [S II] 6731 Å) previously determined to trace winds (including photoevaporative winds). These winds can be separated into two components, a high velocity component (HVC) with blueshifts between ~30 - 150 km/s, and a low velocity component (LVC) with blueshifts on the order of ~5 km/s (Hartigan et al. 1995). We selected a sample of 32 pre-main sequence T Tauri stars in the Taurus-Auriga star-forming region (plus TW Hya) with disks that span a range of evolutionary stages. We focus on the origin of the LVC specifically, which we are able to separate into a broad component (BC) and a narrow component (NC) due to the high resolution of our optical spectra. We focus our analysis on the [O I] 6300 Å emission feature, which is detected in 30/33 of our targets. Interestingly, we find wind diagnostics consistent with photoevaporation for only 21% of our sample. We can, however, conclude that a specific component of the LVC is tracing a magnetohydrodynamic (MHD) wind rather than a photoevaporative wind. We will present the details behind these findings and the implications they have for planet formation more generally.

  10. Effects of three types of resisted sprint training devices on the kinematics of sprinting at maximum velocity.

    PubMed

    Alcaraz, Pedro E; Palao, José M; Elvira, José L L; Linthorne, Nicholas P

    2008-05-01

    Resisted sprint running is a common training method for improving sprint-specific strength. For maximum specificity of training, the athlete's movement patterns during the training exercise should closely resemble those used when performing the sport. The purpose of this study was to compare the kinematics of sprinting at maximum velocity to the kinematics of sprinting when using three of types of resisted sprint training devices (sled, parachute, and weight belt). Eleven men and 7 women participated in the study. Flying sprints greater than 30 m were recorded by video and digitized with the use of biomechanical analysis software. The test conditions were compared using a 2-way analysis of variance with a post-hoc Tukey test of honestly significant differences. We found that the 3 types of resisted sprint training devices are appropriate devices for training the maximum velocity phase in sprinting. These devices exerted a substantial overload on the athlete, as indicated by reductions in stride length and running velocity, but induced only minor changes in the athlete's running technique. When training with resisted sprint training devices, the coach should use a high resistance so that the athlete experiences a large training stimulus, but not so high that the device induces substantial changes in sprinting technique. We recommend using a video overlay system to visually compare the movement patterns of the athlete in unloaded sprinting to sprinting with the training device. In particular, the coach should look for changes in the athlete's forward lean and changes in the angles of the support leg during the ground contact phase of the stride.

  11. The Silicon and Calcium High-velocity Features in Type Ia Supernovae from Early to Maximum Phases

    NASA Astrophysics Data System (ADS)

    Zhao, Xulin; Wang, Xiaofeng; Maeda, Keiichi; Sai, Hanna; Zhang, Tianmeng; Zhang, Jujia; Huang, Fang; Rui, Liming; Zhou, Qi; Mo, Jun

    2015-09-01

    The high-velocity features (HVFs) in optical spectra of type Ia supernovae (SNe Ia) are examined with a large sample including very early-time spectra (e.g., t < -7 days). Multiple Gaussian fits are applied to examine the HVFs and their evolutions, using constraints on expansion velocities for the same species (i.e., Si ii 5972 and Si ii 6355). We find that strong HVFs tend to appear in SNe Ia with smaller decline rates (e.g., Δm15(B) ≲ 1.4 {mag}), clarifying that the finding by Childress et al. for the Ca-HVFs in near-maximum-light spectra applies both to the Si-HVFs and Ca-HVFs in the earlier phase. The Si-HVFs seem to be more common in rapidly expanding SNe Ia, which is different from the earlier result that Ca-HVFs are associated with SNe Ia that have slower Si ii 6355 velocities at maximum light (i.e., VSimax). Moreover, SNe Ia with both stronger HVFs at early phases and larger VSimax are found to have noticeably redder B-V colors and to occur preferentially in the inner regions of their host galaxies, while those with stronger HVFs but smaller VSimax show opposite tendencies, suggesting that these two subclasses have different explosion environments and their HVFs may have different origins. We further examine the relationships between the absorption features of Si ii 6355 and Ca ii IR lines, and find that their photospheric components are well correlated in velocity and strength but that the corresponding HVFs show larger scatter. These results cannot be explained with ionization and/or thermal processes alone, and different mechanisms are required for the creation of HVF-forming regions in SNe Ia.

  12. An equatorial solar wind model with angular momentum conservation and nonradial magnetic fields and flow velocities at an inner boundary

    NASA Astrophysics Data System (ADS)

    Tasnim, S.; Cairns, Iver H.

    2016-06-01

    An analytic, self-consistent, theoretical model for the solar wind is developed that generalizes previous models to include all of the following: conservation of angular momentum, frozen-in magnetic fields, both radial (r) and azimuthal (ϕ) components of the magnetic field (Br and Bϕ) and velocity (vr and vϕ) from the inner boundary rs to 1 AU, and the detailed tracing back of observations at 1 AU to the inner boundary and all intervening (r,ϕ). The new model applies near the solar equatorial plane, assumes constant radial wind speed at each heliolongitude, and enforces corotation at the inner boundary. It is shown that the new theoretical model can be reduced to the previous models in the appropriate limits. We apply the model to two solar rotations of Wind spacecraft data, one near solar minimum (1-27 August 2010) and one near solar maximum (1-27 July 2002). The model analytically predicts the Alfvénic critical radius ra from the radial Alfvénic Mach number observed at 1 AU. Typically, the values are less than 15 solar radii, in agreement with some recent observations, and vary with longitude. Values of vϕ(r,ϕ) are predicted from the model, being always in the sense of corotation but varying in magnitude with r and ϕ. Reasonable and self-consistent results are found for Br(r,ϕ), Bϕ(r,ϕ), vϕ(r,ϕ), and n(r,ϕ) from rs to 1 AU. Both the azimuthal and radial magnetic fields at rs vary with time by more than an order of magnitude and usually |Br(rs,ϕs)|≥|Bϕ(rs,ϕs)|. Typically, though not always, magnetic contributions to the total angular momentum are small. Interestingly, however, the azimuthal flow velocities observed at 1 AU are not always in the corotation direction and usually have much larger magnitudes than predicted by the model. Conservation of angular momentum alone cannot explain these azimuthal velocities and the standard interpretation involving stream-stream interactions and dynamical behavior seems reasonable. Issues regarding the

  13. Maximum sinking velocities of suspended particulate matter in a coastal transition zone

    NASA Astrophysics Data System (ADS)

    Maerz, Joeran; Hofmeister, Richard; van der Lee, Eefke M.; Gräwe, Ulf; Riethmüller, Rolf; Wirtz, Kai W.

    2016-09-01

    Marine coastal ecosystem functioning is crucially linked to the transport and fate of suspended particulate matter (SPM). Transport of SPM is controlled by, amongst other factors, sinking velocity ws. Since the ws of cohesive SPM aggregates varies significantly with size and composition of the mineral and organic origin, ws exhibits large spatial variability along gradients of turbulence, SPM concentration (SPMC) and SPM composition. In this study, we retrieved ws for the German Bight, North Sea, by combining measured vertical turbidity profiles with simulation results for turbulent eddy diffusivity. We analyzed ws with respect to modeled prevailing dissipation rates ɛ and found that mean ws were significantly enhanced around log10(ɛ (m2 s-3)) ≈ -5.5. This ɛ region is typically found at water depths of approximately 15 to 20 m along cross-shore transects. Across this zone, SPMC declines towards the offshore waters and a change in particle composition occurs. This characterizes a transition zone with potentially enhanced vertical fluxes. Our findings contribute to the conceptual understanding of nutrient cycling in the coastal region which is as follows. Previous studies identified an estuarine circulation. Its residual landward-oriented bottom currents are loaded with SPM, particularly within the transition zone. This retains and traps fine sediments and particulate-bound nutrients in coastal waters where organic components of SPM become remineralized. Residual surface currents transport dissolved nutrients offshore, where they are again consumed by phytoplankton. Algae excrete extracellular polymeric substances which are known to mediate mineral aggregation and thus sedimentation. This probably takes place particularly in the transition zone and completes the coastal nutrient cycle. The efficiency of the transition zone for retention is thus suggested as an important mechanism that underlies the often observed nutrient gradients towards the coast.

  14. An empirical model to forecast solar wind velocity through statistical modeling

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Ridley, A. J.

    2013-12-01

    The accurate prediction of the solar wind velocity has been a major challenge in the space weather community. Previous studies proposed many empirical and semi-empirical models to forecast the solar wind velocity based on either the historical observations, e.g. the persistence model, or the instantaneous observations of the sun, e.g. the Wang-Sheeley-Arge model. In this study, we use the one-minute WIND data from January 1995 to August 2012 to investigate and compare the performances of 4 models often used in literature, here referred to as the null model, the persistence model, the one-solar-rotation-ago model, and the Wang-Sheeley-Arge model. It is found that, measured by root mean square error, the persistence model gives the most accurate predictions within two days. Beyond two days, the Wang-Sheeley-Arge model serves as the best model, though it only slightly outperforms the null model and the one-solar-rotation-ago model. Finally, we apply the least-square regression to linearly combine the null model, the persistence model, and the one-solar-rotation-ago model to propose a 'general persistence model'. By comparing its performance against the 4 aforementioned models, it is found that the accuracy of the general persistence model outperforms the other 4 models within five days. Due to its great simplicity and superb performance, we believe that the general persistence model can serve as a benchmark in the forecast of solar wind velocity and has the potential to be modified to arrive at better models.

  15. An analysis of maximum vertical gusts recorded at NASA's 150-meter ground winds tower facility at Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Alexander, M. B.

    1977-01-01

    A statistical summary is presented of vertical wind speed data recorded at NASA's 150-Meter Ground Winds Tower Facility on Merritt Island, Kennedy Space Center, Florida. One year of continuous around-the-clock vertical wind speed measurements processed by the Automatic Data Acquisition System (ADAS) is classified as a function of tower level (10, 18, 60, and 150 meters) and period of reference day, month, season: winter (October through March) and summer (April through September), and annual. Intensity, frequency, time of occurrence, prevailing conditions, etc., of the daily maximum vertical gusts (i.e., updraft and downdraft) are determined. The results are compared with the vertical gusts associated with the daily maximum horizontal gust. The intent of this summarization of vertical wind speed data is to provide a general description of wind flow in the lower 150 meters of the atmosphere for the identification of hazards involved in wind shear encounters relative to ascent and descent of the Space Shuttle and conventional aircraft.

  16. The maximum velocity of shortening during the early phases of the contraction in frog single muscle fibres.

    PubMed

    Lombardi, V; Menchetti, G

    1984-10-01

    The maximum velocity of shortening (Vmax) was determined at preset times during the development and the plateau of isometric tetani in single fibres isolated from the tibialis anterior muscle of the frog. Experiments were performed at low temperature (3.6-6 degrees C) and at about 2.25 micron sarcomere length. The controlled velocity release method was used. Vmax was measured by determining the lowest velocity of release required to keep the tension at zero. Extreme care was taken in dissection and mounting of the fibres in order to make the passive series compliance very small. The value of Vmax at the end of the latent period for the development of isometric tension (at 4.5 degrees C about 10 ms after the beginning of the stimulus volley) was already the same as later during either the tension rise or at the plateau of isometric tetani. These results show that the value of Vmax of intact fibres is independent of time and activation subsequent to the latent period, and suggest that the cycling rate of the crossbridges may thus attain its steady-state value just at the end of the isometric latent period.

  17. Anorthite sputtering by H+ and Arq+ (q = 1-9) at solar wind velocities

    DOE PAGES

    Hijazi, Hussein Dib; Bannister, Mark E.; Meyer, III, Harry M.; ...

    2014-10-16

    Here, we report sputtering measurements of anorthite-like material, taken to be representative of soils found in the lunar highlands, impacted by singly and multicharged ions representative of the solar wind. The ions investigated include protons, as well as singly and multicharged Ar ions (as proxies for the nonreactive heavy solar wind constituents), in the charge state range +1 to +9, at fixed solar wind-relevant impact velocities of 165 and 310 km/s (0.25 keV/amu and 0.5 keV/amu). A quartz microbalance approach (QCM) for determination of total sputtering yields was used. The goal of the measurements was to determine the sputtering contributionmore » of the heavy, multicharged minority solar wind constituents in comparison to that due to the dominant H+ fraction. The QCM results show a yield increase of a factor of about 80 for Ar+ versus H+ sputtering and an enhancement by a factor of 1.67 between Ar9+ and Ar+, which is a clear indication of a potential sputtering effect.« less

  18. Velocity Data in a Fully Developed Wind Turbine Array Boundary Layer

    NASA Astrophysics Data System (ADS)

    Turner, John; Wosnik, Martin

    2016-11-01

    Results are reported from an experimental study of an array of porous disks simulating offshore wind turbines. The disks mimic power extraction of similarly scaled wind turbines via drag matching, and the array consists of 19x5 disks of 0.25 m diameter. The study was conducted in the UNH Flow Physics Facility (FPF), which has test section dimensions of 6.0 m wide, 2.7 m high and 72.0 m long. The FPF can achieve a boundary layer height on the order of 1 m at the entrance of the wind turbine array which puts the model turbines in the bottom third of the boundary layer, which is typical of field application. Careful consideration was given to an expanded uncertainty analysis, to determine possible measurements in this type of flow. For a given configuration (spacing, initial conditions, etc.), the velocity levels out and the wind farm approaches fully developed behavior, even within the maintained growth of the simulated atmospheric boundary layer. Benchmark pitot tube data was acquired in vertical profiles progressing streamwise behind the centered column at every row in the array.

  19. Cluster/Peace Electrons Velocity Distribution Function: Modeling the Strahl in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris; Goldstein, Melvyn L.

    2008-01-01

    We present a study of kinetic properties of the strahl electron velocity distribution functions (VDF's) in the solar wind. These are used to investigate the pitch-angle scattering and stability of the population to interactions with electromagnetic (whistler) fluctuations. The study is based on high time resolution data from the Cluster/PEACE electron spectrometer. Our study focuses on the mechanisms that control and regulate the pitch-angle and stability of strahl electrons in the solar wind; mechanisms that are not yet well understood. Various parameters are investigated such as the electron heat-flux and temperature anisotropy. The goal is to check whether the strahl electrons are constrained by some instability (e.g., the whistler instability), or are maintained by other types of processes. The electron heat-flux and temperature anisotropy are determined by fitting the VDF's to a spectral spherical harmonic model from which the moments are derived directly from the model coefficients.

  20. Time scales for formation and spreading of velocity shells of pickup ions in the solar wind

    NASA Technical Reports Server (NTRS)

    Gaffey, J. D., Jr.; Wu, C. S.; Winske, D.

    1988-01-01

    This paper discusses the process of assimilation (pickup) by the solar wind of newly ionized atoms and molecules. Generally, the pickup process is considered to evolve in three stages: (1) the initial interaction of newly created ions with the interplanetary magnetic field to form the ring-beam distribution; (2) pitch angle scattering of the ring beam to form a hollow shell; and (3) slower velocity diffusion to form a partially filled-in shell distribution. Using numerical simulations of turbulence such as would occur naturally in the solar wind and such as would be encountered near cometary bow shocks, the processes of shell formation and evolution are studied, and the results are used to estimate the time scales for shell formation and diffusion in several situations of recent observational interest, the interstellar He data obtained by AMPTE and cometary ion pickup distributions obtained by various spacecraft at comets Giacobini-Zinner and Halley.

  1. Estimation of Venus wind velocities from high-resolution infrared spectra. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.

    1978-01-01

    Zonal velocity profiles in the Venus atmosphere above the clouds were estimated from measured asymmetries of HCl and HF infrared absorption lines in high-resolution Fourier interferometer spectra of the planet. These asymmetries are caused by both pressure-induced shifts in the positions of the hydrogen-halide lines perturbed by CO2 and Doppler shifts due to atmospheric motions. Particularly in the case of the HCl 2-0 band, the effects of the two types of line shifts can be easily isolated, making it possible to estimate a profile of average Venus equatorial zonal velocity as a function of pressure in the region roughly 60 to 70 km above the surface of the planet. The mean profiles obtained show strong vertical shear in the Venus zonal winds near the cloud-top level, and both the magnitude and direction of winds at all levels in this region appear to vary greatly with longitude relative to the sub-solar point.

  2. The role of collisions in the acceleration of the slow solar wind: origin of the helium ions at solar maximum

    NASA Astrophysics Data System (ADS)

    Sanchez-Diaz, Eduardo; Blelly, Pierre Louis; Rouillard, Alexis Paul; Lavraud, Benoit; Pinto, Rui

    2016-04-01

    At solar maximum, the slow solar wind presents an enhanced helium abundance compared to solar minimum (Aellig et al., 2001; Kasper et al., 2007, 2012). Sanchez-Diaz et al. (2016) found that the yearly average of helium abundance in the slow solar wind is very well correlated with the yearly average in the proton mass flux right above the transition region. This correlation is especially remarkable for the very slow solar wind (V<300 km/s), where the proton flux is especially high. We hypothesized that the helium abundance might be enhanced due to a non-negligible amount of Coulomb collisions between hydrogen and helium when the proton mass flux is so elevated (5 times bigger than at solar minimum and one order of magnitude bigger than in the fast solar wind). To explore the role of H to He collisions in the acceleration of He ions, we input the proton temperature and expansion factor profiles resulting from the combination of a Potential Field Source Model (PFSS) and a 1D hydrodynamic solar wind model described in Pinto et al. (2009) into a collisional two fluid model. The model assumes that there is no heating for the helium ions in the very slow solar wind. We evaluate the possible role of Coulomb collisions on the escape of He for a number of different geometries and boundary conditions.

  3. Inferring global wind energetics from a simple Earth system model based on the principle of maximum entropy production

    NASA Astrophysics Data System (ADS)

    Karkar, S.; Paillard, D.

    2015-03-01

    The question of total available wind power in the atmosphere is highly debated, as well as the effect large scale wind farms would have on the climate. Bottom-up approaches, such as those proposed by wind turbine engineers often lead to non-physical results (non-conservation of energy, mostly), while top-down approaches have proven to give physically consistent results. This paper proposes an original method for the calculation of mean annual wind energetics in the atmosphere, without resorting to heavy numerical integration of the entire dynamics. The proposed method is derived from a model based on the Maximum of Entropy Production (MEP) principle, which has proven to efficiently describe the annual mean temperature and energy fluxes, despite its simplicity. Because the atmosphere is represented with only one vertical layer and there is no vertical wind component, the model fails to represent the general circulation patterns such as cells or trade winds. However, interestingly, global energetic diagnostics are well captured by the mere combination of a simple MEP model and a flux inversion method.

  4. The research of the maximum wind speed in Tomsk and calculations of dynamic load on antenna systems

    NASA Astrophysics Data System (ADS)

    Belan, B.; Belan, S.; Romanovskiy, O.; Girshtein, A.; Yanovich, A.; Baidali, S.; Terehov, S.

    2017-01-01

    The work is concerned with calculations and analysis of the maximum wind speed in Tomsk city. The data for analysis were taken from the TOR-station located in the north-eastern part of the city. The TOR-station sensors to measure a speed and a direction of wind are installed on the 10-meter meteorological mast. Wind is measured by M-63, which uses the standard approach and the program with one-minute averaging for wind gusts recording as well. According to the measured results in the research performed, the estimation of the dynamic and wind load on different types of antenna systems was performed. The work shows the calculations of wind load on ten types of antenna systems, distinguished by their different constructions and antenna areas. For implementation of calculations, we used methods developed in the Central Research and Development Institute of Building Constructions named after V.A. Kucherenko. The research results could be used for design engineering of the static antenna systems and mobile tracking systems for the distant objects.

  5. Estimations of One Repetition Maximum and Isometric Peak Torque in Knee Extension Based on the Relationship Between Force and Velocity.

    PubMed

    Sugiura, Yoshito; Hatanaka, Yasuhiko; Arai, Tomoaki; Sakurai, Hiroaki; Kanada, Yoshikiyo

    2016-04-01

    We aimed to investigate whether a linear regression formula based on the relationship between joint torque and angular velocity measured using a high-speed video camera and image measurement software is effective for estimating 1 repetition maximum (1RM) and isometric peak torque in knee extension. Subjects comprised 20 healthy men (mean ± SD; age, 27.4 ± 4.9 years; height, 170.3 ± 4.4 cm; and body weight, 66.1 ± 10.9 kg). The exercise load ranged from 40% to 150% 1RM. Peak angular velocity (PAV) and peak torque were used to estimate 1RM and isometric peak torque. To elucidate the relationship between force and velocity in knee extension, the relationship between the relative proportion of 1RM (% 1RM) and PAV was examined using simple regression analysis. The concordance rate between the estimated value and actual measurement of 1RM and isometric peak torque was examined using intraclass correlation coefficients (ICCs). Reliability of the regression line of PAV and % 1RM was 0.95. The concordance rate between the actual measurement and estimated value of 1RM resulted in an ICC(2,1) of 0.93 and that of isometric peak torque had an ICC(2,1) of 0.87 and 0.86 for 6 and 3 levels of load, respectively. Our method for estimating 1RM was effective for decreasing the measurement time and reducing patients' burden. Additionally, isometric peak torque can be estimated using 3 levels of load, as we obtained the same results as those reported previously. We plan to expand the range of subjects and examine the generalizability of our results.

  6. Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae.

    PubMed

    Fuller, Sawyer Buckminster; Straw, Andrew D; Peek, Martin Y; Murray, Richard M; Dickinson, Michael H

    2014-04-01

    Flies and other insects use vision to regulate their groundspeed in flight, enabling them to fly in varying wind conditions. Compared with mechanosensory modalities, however, vision requires a long processing delay (~100 ms) that might introduce instability if operated at high gain. Flies also sense air motion with their antennae, but how this is used in flight control is unknown. We manipulated the antennal function of fruit flies by ablating their aristae, forcing them to rely on vision alone to regulate groundspeed. Arista-ablated flies in flight exhibited significantly greater groundspeed variability than intact flies. We then subjected them to a series of controlled impulsive wind gusts delivered by an air piston and experimentally manipulated antennae and visual feedback. The results show that an antenna-mediated response alters wing motion to cause flies to accelerate in the same direction as the gust. This response opposes flying into a headwind, but flies regularly fly upwind. To resolve this discrepancy, we obtained a dynamic model of the fly's velocity regulator by fitting parameters of candidate models to our experimental data. The model suggests that the groundspeed variability of arista-ablated flies is the result of unstable feedback oscillations caused by the delay and high gain of visual feedback. The antenna response drives active damping with a shorter delay (~20 ms) to stabilize this regulator, in exchange for increasing the effect of rapid wind disturbances. This provides insight into flies' multimodal sensory feedback architecture and constitutes a previously unknown role for the antennae.

  7. Remote Sensing Data in Wind Velocity Field Modelling: a Case Study from the Sudetes (SW Poland)

    NASA Astrophysics Data System (ADS)

    Jancewicz, Kacper

    2014-06-01

    The phenomena of wind-field deformation above complex (mountainous) terrain is a popular subject of research related to numerical modelling using GIS techniques. This type of modelling requires, as input data, information on terrain roughness and a digital terrain/elevation model. This information may be provided by remote sensing data. Consequently, its accuracy and spatial resolution may affect the results of modelling. This paper represents an attempt to conduct wind-field modelling in the area of the Śnieżnik Massif (Eastern Sudetes). The modelling process was conducted in WindStation 2.0.10 software (using the computable fluid dynamics solver Canyon). Two different elevation models were used: the Global Land Survey Digital Elevation Model (GLS DEM) and Digital Terrain Elevation Data (DTED) Level 2. The terrain roughness raster was generated on the basis of Corine Land Cover 2006 (CLC 2006) data. The output data were post-processed in ArcInfo 9.3.1 software to achieve a high-quality cartographic presentation. Experimental modelling was conducted for situations from 26 November 2011, 25 May 2012, and 26 May 2012, based on a limited number of field measurements and using parameters of the atmosphere boundary layer derived from the aerological surveys provided by the closest meteorological stations. The model was run in a 100-m and 250-m spatial resolution. In order to verify the model's performance, leave-one-out cross-validation was used. The calculated indices allowed for a comparison with results of former studies pertaining to WindStation's performance. The experiment demonstrated very subtle differences between results in using DTED or GLS DEM elevation data. Additionally, CLC 2006 roughness data provided more noticeable improvements in the model's performance, but only in the resolution corresponding to the original roughness data. The best input data configuration resulted in the following mean values of error measure: root mean squared error of velocity

  8. Vertical velocity variance in the mixed layer from radar wind profilers

    USGS Publications Warehouse

    Eng, K.; Coulter, R.L.; Brutsaert, W.

    2003-01-01

    Vertical velocity variance data were derived from remotely sensed mixed layer turbulence measurements at the Atmospheric Boundary Layer Experiments (ABLE) facility in Butler County, Kansas. These measurements and associated data were provided by a collection of instruments that included two 915 MHz wind profilers, two radio acoustic sounding systems, and two eddy correlation devices. The data from these devices were available through the Atmospheric Boundary Layer Experiment (ABLE) database operated by Argonne National Laboratory. A signal processing procedure outlined by Angevine et al. was adapted and further built upon to derive vertical velocity variance, w_pm???2, from 915 MHz wind profiler measurements in the mixed layer. The proposed procedure consisted of the application of a height-dependent signal-to-noise ratio (SNR) filter, removal of outliers plus and minus two standard deviations about the mean on the spectral width squared, and removal of the effects of beam broadening and vertical shearing of horizontal winds. The scatter associated with w_pm???2 was mainly affected by the choice of SNR filter cutoff values. Several different sets of cutoff values were considered, and the optimal one was selected which reduced the overall scatter on w_pm???2 and yet retained a sufficient number of data points to average. A similarity relationship of w_pm???2 versus height was established for the mixed layer on the basis of the available data. A strong link between the SNR and growth/decay phases of turbulence was identified. Thus, the mid to late afternoon hours, when strong surface heating occurred, were observed to produce the highest quality signals.

  9. Finding optimum airfoil shape to get maximum aerodynamic efficiency for a wind turbine

    NASA Astrophysics Data System (ADS)

    Sogukpinar, Haci; Bozkurt, Ismail

    2017-02-01

    In this study, aerodynamic performances of S-series wind turbine airfoil of S 825 are investigated to find optimum angle of attack. Aerodynamic performances calculations are carried out by utilization of a Computational Fluid Dynamics (CFD) method withstand finite capacity approximation by using Reynolds-Averaged-Navier Stokes (RANS) theorem. The lift and pressure coefficients, lift to drag ratio of airfoil S 825 are analyzed with SST turbulence model then obtained results crosscheck with wind tunnel data to verify the precision of computational Fluid Dynamics (CFD) approximation. The comparison indicates that SST turbulence model used in this study can predict aerodynamics properties of wind blade.

  10. Horizontal forward-motion velocities of terrestrial dust devils, comparison with ambient winds, and application to Mars

    NASA Astrophysics Data System (ADS)

    Balme, M. R.; Pathare, A.; Metzger, S.; Renno, N. O.; Towner, M.; Spiga, A.; Fenton, L. K.; Michaels, T. I.; Saca, F.; Elliott, H. M.

    2011-12-01

    Dust devils are convective vortices made visible by the dust and debris they entrain. They are most common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from orbiting instruments that can acquire multiple images in rapid succession (e.g. the ESA Mars Express High Resolution Stereo Camera) have allowed the translational forward motion of dust devils to be calculated: martian dust devils travel across the landscape at speeds of up to tens of metres per second. However, it is unclear how these velocities relate to the local ambient wind conditions, as on Earth only anecdotal evidence exists that ties dust devil forward motion with local wind speed. If dust devil translational velocity can be reliably correlated to local winds, observations of dust devils could provide a proxy for wind speed measurements on Mars, and hence provide an important tool for testing mesoscale climate models. Here we present results from a field study of terrestrial dust devils performed in the southwest USA that seeks to measure dust devil horizontal velocity as a function of wind speed. We acquired stereo images of several hundred active dust devils and hence produced multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils we measured were within a study area bounded by three 10m meteorology towers. Hence we were able to correlate dust devil speed and direction with the local ambient wind speed and direction. We found that instantaneous dust devil translational velocity correlated well with instantaneous local ambient wind velocity. Day-averaged dust devil translational velocity correlated very well with day-averaged (between 11am and 5pm) ambient wind velocity. We found that dust devil horizontal speed is about 1.2 times the ambient 10 m

  11. Electron Velocity Distribution Function in Magnetic Clouds in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Nieves-Chinchil, Teresa; Vinas, Adolfo F.; Bale, Stuart D.

    2006-01-01

    We present a study of the kinetic properties of the electron velocity distribution functions within magnetic clouds, since they are the dominant thermal component. The study is based on high time resolution data from the GSFC WIND/SWE electron spectrometer and the Berkeley 3DP electron plasma instruments. Recent studies on magnetic clouds have shown observational evidence of anti-correlation between the total electron density and electron temperature, which suggest a polytrope law P(sub e) = alpha(Nu(sub e) (sup gamma)) for electrons with the constant gamma approximates 0.5 < 1. This anti-correlation and small polytropic gamma-values is interpreted in the context of the presence of highly non-Maxwellian electron distributions (i.e. non-thermal) within magnetic clouds. These works suggested that the non-thermal electrons can contribute as much as 50% of the total electron pressure within magnetic clouds. We have revisited some of the magnetic cloud events previously studied and attempted to quantify the nature of the non-thermal electrons by modeling the electron velocity distribution function using a kappa distribution function to characterize the kinetic non-thermal effects. If non-thermal tail effects are the source for the anti-correlation between the moment electron temperature and density and if the kappa distribution is a reasonable representative model of non-thermal effects, then the electron velocity distribution within magnetic clouds should show indication for small K-values when gamma < 1.

  12. Kinetic Alfvén wave and ion velocity distribution functions in the solar wind

    NASA Astrophysics Data System (ADS)

    Li, X.; Lu, Q.; Chen, Y.; Li, B.; Xia, L.

    2010-12-01

    Using 1D test particle simulations, the effect of a kinetic Alfvén wave on the velocity distribution function of protons in the collisionless solar wind is investigated. We first use linear Vlasov theory to obtain the property of a kinetic Alfvén wave numerically (the wave propagates in the direction almost perpendicular to the background magnetic field). We then numerically simulate how the wave will shape the proton velocity distribution function. It is found that Landau resonance may be able to generate two components in the initially Maxwellian proton velocity distribution function: a tenuous beam component along the direction of the background magnetic field and a core component. The streaming speed of the beam relative to the core proton component is about 1.2 -- 1.3 Alfvén speed. However, no perpendicular ion heating is observed from the simulation. Reference: Li, X., Lu, Q.M., Chen, Y., Li, B., Xia, L.D., ApJ, 719, L190, 2010.

  13. The Northern Extent of the Southern Hemisphere Westerly Wind Belt since the Last Glacial Maximum Tracked via Sediment Provenance

    NASA Astrophysics Data System (ADS)

    Franzese, A. M.; Goldstein, S. L.; Hemming, S. R.

    2015-12-01

    The Southern Hemisphere Westerlies are known to be important for climate due to their effects on the global carbon cycle and on the global thermohaline circulation. Many proxy records suggest that the strength and position of the Southern Hemisphere westerly winds have changed significantly since the Last Glacial Maximum (LGM) at ~21,000 years BP. However, a recent compilation of all available evidence for Southern Hemisphere westerly wind changes during the Last Glacial Maximum (LGM) led to the conclusion that "their strength and position in colder and warmer climates relative to today remain a wide open question" (Kohfeld et al. (2013) Quaternary Science Reviews, 68). This paper finds that an equatorward displacement of the glacial winds is consistent with observations, but cannot rule out other, competing hypotheses. Using the geochemical characteristics of deep-sea sediments deposited along the Mid-Atlantic Ridge, I test the hypothesis that the LGM Southern Hemisphere Westerlies were displaced northward. In the central South Atlantic, dust can be delivered from South America via the Westerlies, or from Africa via the Trade Winds. The continental sources of South America and Africa have very different geochemical signatures, making it possible to distinguish between eolian transport via the Westerlies vs. the Trade Winds. Any northward shift in the Southern Hemisphere Westerlies would increase the northward extent of a South American provenance in sediments dominated by eolian sources. I will present geochemical provenance data (radiogenic isotope ratios; major and trace element concentrations) in a latitudinal transect of cores along the Mid-Atlantic Ridge that document whether, in fact, such a shift occurred, and put an important constraint on how far north the wind belts shifted during the LGM.

  14. Wind tunnel investigation of the effect of high relative velocities on the structural integrity of birds

    NASA Technical Reports Server (NTRS)

    Bresnahan, D. L.

    1972-01-01

    An experimental investigation was conducted in a supersonic wind tunnel to determine the effect a sudden high velocity headwind had on the physical deformation and structural breakup characteristics of birds. Several sizes of recently killed birds were dropped into the test section at free-stream Mach numbers ranging from 0.2 to 0.8 and photographed with high-speed motion-picture cameras. These conditions simulated flow conditions encountered when birds are ingested into the inlets of high speed aircraft, thereby constituting a safety hazard to the aircraft and its occupants. The investigation shows that, over the range of headwind conditions tested, the birds remained structurally intact and did not suffer any appreciable deformation or structural breakup.

  15. AXAOTHER XL -- A spreadsheet for determining doses for incidents caused by tornadoes or high-velocity straight winds

    SciTech Connect

    Simpkins, A.A.

    1996-09-01

    AXAOTHER XL is an Excel Spreadsheet used to determine dose to the maximally exposed offsite individual during high-velocity straight winds or tornado conditions. Both individual and population doses may be considered. Potential exposure pathways are inhalation and plume shine. For high-velocity straight winds the spreadsheet has the capability to determine the downwind relative air concentration, however for the tornado conditions, the user must enter the relative air concentration. Theoretical models are discussed and hand calculations are performed to ensure proper application of methodologies. A section has also been included that contains user instructions for the spreadsheet.

  16. Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae

    PubMed Central

    Fuller, Sawyer Buckminster; Straw, Andrew D.; Peek, Martin Y.; Murray, Richard M.; Dickinson, Michael H.

    2014-01-01

    Flies and other insects use vision to regulate their groundspeed in flight, enabling them to fly in varying wind conditions. Compared with mechanosensory modalities, however, vision requires a long processing delay (~100 ms) that might introduce instability if operated at high gain. Flies also sense air motion with their antennae, but how this is used in flight control is unknown. We manipulated the antennal function of fruit flies by ablating their aristae, forcing them to rely on vision alone to regulate groundspeed. Arista-ablated flies in flight exhibited significantly greater groundspeed variability than intact flies. We then subjected them to a series of controlled impulsive wind gusts delivered by an air piston and experimentally manipulated antennae and visual feedback. The results show that an antenna-mediated response alters wing motion to cause flies to accelerate in the same direction as the gust. This response opposes flying into a headwind, but flies regularly fly upwind. To resolve this discrepancy, we obtained a dynamic model of the fly’s velocity regulator by fitting parameters of candidate models to our experimental data. The model suggests that the groundspeed variability of arista-ablated flies is the result of unstable feedback oscillations caused by the delay and high gain of visual feedback. The antenna response drives active damping with a shorter delay (~20 ms) to stabilize this regulator, in exchange for increasing the effect of rapid wind disturbances. This provides insight into flies’ multimodal sensory feedback architecture and constitutes a previously unknown role for the antennae. PMID:24639532

  17. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb.

    PubMed

    Anderson, Dennis E; Madigan, Michael L; Nussbaum, Maury A

    2007-01-01

    Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques.

  18. Estimating wind velocity standard deviation values in the inertial sublayer from observations in the roughness sublayer

    NASA Astrophysics Data System (ADS)

    Falabino, Simona; Trini Castelli, Silvia

    2017-02-01

    In air quality practice, observed data are often input to air pollution models to simulate the pollutants dispersion and to estimate their concentration. When the area of interest includes urban sites, observed data collected at urban or suburban stations can be available, and it can happen to use them for estimating surface layer parameters given in input to the models. In such case, roughness sublayer quantities may enter the parameterizations of the turbulence variables as if they were representative of the inertial sublayer, possibly leading to a not appropriate application of the Monin-Obukhov similarity theory. We investigate whether it is possible to derive suitable values of the wind velocity standard deviations for the inertial sublayer using the friction velocity and stability parameter observed in the roughness sublayer, inside a similarity-like analytical function. For this purpose, an analysis of sonic anemometer data sets collected in suburban and urban sites is proposed. The values derived through this approach are compared to actual observations in the inertial sublayer. The transferability of the empirical coefficients estimated for the similarity functions between different sites, characterized by similar or different morphologies, is also addressed. The derived functions proved to be a reasonable approximation of the actual data. This method was found to be feasible and generally reliable, and can be a reference to keep using, in air pollution models, the similarity theory parameterizations when measurements are available only in the roughness sublayer.

  19. A comparison of vertical velocity variance measurements from wind profiling radars and sonic anemometers

    NASA Astrophysics Data System (ADS)

    McCaffrey, Katherine; Bianco, Laura; Johnston, Paul; Wilczak, James M.

    2017-03-01

    Observations of turbulence in the planetary boundary layer are critical for developing and evaluating boundary layer parameterizations in mesoscale numerical weather prediction models. These observations, however, are expensive and rarely profile the entire boundary layer. Using optimized configurations for 449 and 915 MHz wind profiling radars during the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA), improvements have been made to the historical methods of measuring vertical velocity variance through the time series of vertical velocity, as well as the Doppler spectral width. Using six heights of sonic anemometers mounted on a 300 m tower, correlations of up to R2 = 0. 74 are seen in measurements of the large-scale variances from the radar time series and R2 = 0. 79 in measurements of small-scale variance from radar spectral widths. The total variance, measured as the sum of the small and large scales, agrees well with sonic anemometers, with R2 = 0. 79. Correlation is higher in daytime convective boundary layers than nighttime stable conditions when turbulence levels are smaller. With the good agreement with the in situ measurements, highly resolved profiles up to 2 km can be accurately observed from the 449 MHz radar and 1 km from the 915 MHz radar. This optimized configuration will provide unique observations for the verification and improvement to boundary layer parameterizations in mesoscale models.

  20. Particle Acceleration Affected by the Evolving Velocity Structures in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Tsubouchi, K.

    2015-12-01

    It is accepted that high-energy particles are efficiently generated during their crossing of shocks in space, where the diffusive shock acceleration is the most standard process to explain the observed energy spectrum beyond the order of a gigaelectronvolt. In contrast, recent spacecraft observations have shown different characteristics in a lower energy range (a kilo- to megaelectronvolt): particles in the heliosphere have a power-law spectrum in particle speed with a spectral index of -5, which is commonly found in any solar wind conditions. This is a puzzling result that the shocks are not a necessary element responsible for accelerating particles. The alternative mechanism, a pump acceleration, is proposed where particles are accelerated in a region containing large-scale compressions and expansions (e.g., Fisk and Gloeckler, JGR 2014). In the present study, we elucidate the validity of this mechanism by performing hybrid simulations to investigate the particle, particularly pickup ions, dynamics in various situations of non-uniform velocity field, such as a simple fast/slow flow interaction, sinusoidal structures, or random profiles, and to compare the velocity spectrum of suprathermal particles in each case. We also study the scale dependence of acceleration processes by comparing the spectrum of the energetic H+, He+, and O+.

  1. Velocity distributions of cometary protons picked up by the solar wind

    SciTech Connect

    Neugebauer, M.; Lazarus, A.J.; Balsiger, H.; Fuselier, S.A.; Neubauer, F.M.; Rosenbauer, H.

    1989-05-01

    Velocity space distributions of picked up cometary protons were measured by the ion mass spectrometer on the Giotto spacecraft upstream of the Halley bow shock. Large pitch angle anisotropies were observed at all distances >1.2 x 10/sup 6/ km from the comet. As expected, pitch angle diffusion was much more rapid than energy diffusion. When the field was quasi-parallel to the solar wind velocity vector, it was possible to discern the effect of pitch angles scattering by sunward propagating, field-aligned hydromagnetic waves, but there is evidence for other scattering modes as well. For quasi-perpendicular geometries, the pitch angle distribution was very asymmetric with phase space density peaks near pitch angles of 180/sup 0/. It is suggested that the asymmetric pitch angle distribution may be caused by global rather than local wave-particle interactions. Just outside the shock, the pitch angle distribution was nearly isotropic and the radius of the pickup shell increased significantly. copyright American Geophysical Union 1989

  2. The velocity distributions of cometary protons picked up by the solar wind

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.; Lazarus, A. J.; Balsiger, H.; Fuselier, S. A.; Neubauer, F. M.

    1989-01-01

    Velocity space distributions of picked up cometary protons were measured by the ion mass spectrometer on the Giotto spacecraft upstream of the Halley bow shock. Large pitch angle anisotropies were observed at all distances greater than 1.2 x 10 to the 6th km from the comet. As expected, pitch angle diffusion was much more rapid than energy diffusion. When the field was quasi-parallel to the solar wind velocity vector, it was possible to discern the effect of pitch angle scattering by sunward propagating, field-aligned hydromagnetic waves, but there is evidence for other scattering modes as well. For quasi-perpendicular geometries, the pitch angle distribution was very asymmetric with phase space density peaks near pitch angles of 180 deg. It is suggested that the asymmetric pitch angle distribution may be caused by global rather than local wave-particle interactions. Just outside the shock, the pitch angle distribution was nearly isotropic and the radius of the pickup shell increased significantly.

  3. Thermospheric meridional winds as deduced from ionosonde chain at low and equatorial latitudes and their connection with midnight temperature maximum

    NASA Astrophysics Data System (ADS)

    Maruyama, Takashi; Saito, Susumu; Kawamura, Masabumi; Nozaki, Kenro

    2008-09-01

    Multipoint ionosonde observation was conducted in Southeast Asia to study ionosphere-thermosphere coupling. For this observation three ionosondes were installed along the magnetic meridian at 100°E (Southeast Asia Low-latitude Ionospheric Network: SEALION); two of them were at magnetic conjugate points and the third was near the magnetic equator. The F layer virtual height, h'F, was scaled from nighttime ionograms obtained from September 2004 to August 2005, close to the solar minimum. The height variations at the three locations were used to derive thermospheric winds in the magnetic meridional plane for transequatorial and convergent/divergent components (with respect to the magnetic equator). During northern winter months, a prominent 6-hr periodic variation of a transequatorial component was found. During northern summer months, a diurnal or semidiurnal variation was dominant. Convergent winds toward the magnetic equator were associated with the occurrence of the midnight temperature maximum at the latitudes between the two conjugate stations as observed by satellite instruments during the solstices. However, no clear evidence was found of abatement of the wind due to the pressure bulge associated with the midnight temperature maximum.

  4. Saharan Wind Regimes Traced by the Sr-Nd Isotopic Composition of Subtropical Atlantic Sediments: Last Glacial Maximum vs Today

    NASA Astrophysics Data System (ADS)

    Grousset, F. E.; Parra, M.; Bory, A.; Martinez, P.; Bertrand, P.; Shimmield, G.; Ellam, R. M.

    New Nd-Sr isotopic data on the <30 μm lithic particles of surface and Last Glacial Maximum sediments recovered along the African margin between the Equator and the Gibraltar Strait are presented in combination with grain-size measurements. This <30 μm size fraction allows us to eliminate any hemipelagic contribution that could occur in the coarser fractions. In the eolian fraction, both Sr and Nd isotopic tracers reveal the same major northwestern origin (Mauritania, Mali, southern Algeria and Morocco). The Archaean formations of the western Saharan shield could be the source of the very unradiogenic ratios observed here. The more southern regions (Senegal, Guinea) act only as secondary sources. A similar pattern is observed for the LGM. Lithic particles are mostly transported by both Trade and Saharan Air Layer (SAL) winds, along an approximate NE-SW axis; this main feature matches the 'southern plume', characterizing the dust transport observed during winter. No significant latitudinal shift of the belt winds is observed between the LGM and today. At the LGM, however, dust fluxes were 2-4 times higher than today, leading to a more 'Archaean-type' imprint in the deposits. We do not observe any clear relationship between the latitudinal variability of the upwelling systems identified in this region at the LGM and the location of the major wind systems. Both enhanced aridity on the continent and increased wind speed probably occurred together over western tropical Africa during the Last Glacial period.

  5. Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers

    NASA Astrophysics Data System (ADS)

    Caccia, J.; Guénard, V.; Benech, B.; Campistron, B.; Drobinski, P.

    2004-11-01

    The general purpose of this paper is to experimentally study mesoscale dynamical aspects of the Mistral in the coastal area located at the exit of the Rhône-valley. The Mistral is a northerly low-level flow blowing in southern France along the Rhône-valley axis, located between the French Alps and the Massif Central, towards the Mediterranean Sea. The experimental data are obtained by UHF wind profilers deployed during two major field campaigns, MAP (Mesoscale Alpine Program) in autumn 1999, and ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmosphériques et de Transports d'Emission) in summer 2001. Thanks to the use of the time evolution of the vertical profile of the horizontal wind vector, recent works have shown that the dynamics of the Mistral is highly dependent on the season because of the occurrence of specific synoptic patterns. In addition, during summer, thermal forcing leads to a combination of sea breeze with Mistral and weaker Mistral due to the enhanced friction while, during autumn, absence of convective turbulence leads to substantial acceleration as low-level jets are generated in the stably stratified planetary boundary layer. At the exit of the Rhône valley, the gap flow dynamics dominates, whereas at the lee of the Alps, the dynamics is driven by the relative contribution of "flow around" and "flow over" mechanisms, upstream of the Alps. This paper analyses vertical velocity and turbulence, i.e. turbulent dissipation rate, with data obtained by the same UHF wind profilers during the same Mistral events. In autumn, the motions are found to be globally and significantly subsident, which is coherent for a dry, cold and stable flow approaching the sea, and the turbulence is found to be of pure dynamical origin (wind shears and mountain/lee wave breaking), which is coherent with non-convective situations. In summer, due to the ground heating and to the interactions with thermal circulation, the vertical motions are

  6. THE LICK AGN MONITORING PROJECT: VELOCITY-DELAY MAPS FROM THE MAXIMUM-ENTROPY METHOD FOR Arp 151

    SciTech Connect

    Bentz, Misty C.; Barth, Aaron J.; Walsh, Jonelle L.; Horne, Keith; Bennert, Vardha Nicola; Treu, Tommaso; Canalizo, Gabriela; Filippenko, Alexei V.; Gates, Elinor L.; Malkan, Matthew A.; Minezaki, Takeo; Woo, Jong-Hak

    2010-09-01

    We present velocity-delay maps for optical H I, He I, and He II recombination lines in Arp 151, recovered by fitting a reverberation model to spectrophotometric monitoring data using the maximum-entropy method. H I response is detected over the range 0-15 days, with the response confined within the virial envelope. The Balmer-line maps have similar morphologies but exhibit radial stratification, with progressively longer delays for H{gamma} to H{beta} to H{alpha}. The He I and He II response is confined within 1-2 days. There is a deficit of prompt response in the Balmer-line cores but strong prompt response in the red wings. Comparison with simple models identifies two classes that reproduce these features: free-falling gas and a half-illuminated disk with a hot spot at small radius on the receding lune. Symmetrically illuminated models with gas orbiting in an inclined disk or an isotropic distribution of randomly inclined circular orbits can reproduce the virial structure but not the observed asymmetry. Radial outflows are also largely ruled out by the observed asymmetry. A warped-disk geometry provides a physically plausible mechanism for the asymmetric illumination and hot spot features. Simple estimates show that a disk in the broad-line region of Arp 151 could be unstable to warping induced by radiation pressure. Our results demonstrate the potential power of detailed modeling combined with monitoring campaigns at higher cadence to characterize the gas kinematics and physical processes that give rise to the broad emission lines in active galactic nuclei.

  7. Frequency-dependent effects of phenytoin on the maximum upstroke velocity of action potentials in guinea-pig papillary muscles.

    PubMed

    Kojima, M; Ichiyama, M; Ban, T

    1986-07-01

    Phenytoin, at 50 to 200 micrograms reduced the maximum upstroke velocity of action potentials (Vmax) with increases in frequency from 0.25 to 5 Hz and in the external potassium concentration [( K+]0) from 2.7 to 8.1 mM. The drug-induced shortening of action potential duration was evident at 0.25 to 2 Hz but little at 3 to 5 Hz. Time courses of recovery of Vmax was studied by applying premature responses between the conditioning responses at 1 Hz both in control and in drug-treated preparations. Concerning the time courses of the difference between the Vmax values before and after drug treatments at the same diastolic interval, with increases in drug concentrations the intercepts at APD90 were increased but the time constants were not changed or slightly decreased in 8.1 to 5.4 mM [K+]0, whereas they were increased in 2.7 mM [K+]0. To understand the kinetic behavior of this drug on sodium channels, rate constants for the interaction of phenytoin with three states of channels in terms of Hondeghem-Katzung model were estimated from the above experiments of Vmax. The model most consistent with the present experiments was that with an affinity for inactivated channels 20 times greater than that for resting channels and with a minor affinity for open channels. Phenytoin produced a delay in the time course of recovery of overshoot and action potential duration at 0 mV (APD0), suggesting an additional inhibition of the slow channel by this drug.

  8. Development of a Convection Risk Index to forecast severe weather, and application to predict maximum wind speeds

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. A. E.; Wanik, D. W.; Scerbo, D.; Anagnostou, E. N.

    2015-12-01

    We have developed a tool, the Convection Risk Index (CRI), to represent the severity, timing and location of convection for select geographic areas. The CRI is calculated from the Convection Risk Matrix (CRM), a tabulation of numerous meteorological parameters which are categorized into four broad factors that contribute to convection (surface and lower level moisture, atmospheric instability, vertical wind shear, and lift); each of these factors have historically been utilized by meteorologists to predict the likelihood for development of thunderstorms. The CRM ascribes a specific threshold value to each parameter in such a way that it creates a unique tool used to calculate the risk for seeing the development of thunderstorms. The parameters were combined using a weighted formula and which when calculated, yields the Convection Risk Index 1 to 4 scale, with 4 being the highest risk for seeing strong convection. In addition, we also evaluated the performance of the parameters in the CRM and CRI for predicting the maximum wind speed in areas where we calculated the CRI using nonparametric tree-based model, Bayesian additive trees (BART). The use of the CRI and the predicted wind speeds from BART can be used to better inform emergency preparedness efforts in government and industry.We have developed a tool, the Convection Risk Index (CRI), to represent the severity, timing and location of convection for select geographic areas. The CRI is calculated from the Convection Risk Matrix (CRM), a tabulation of numerous meteorological parameters which are categorized into four broad factors that contribute to convection (surface and lower level moisture, atmospheric instability, vertical wind shear, and lift); each of these factors have historically been utilized by meteorologists to predict the likelihood for development of thunderstorms. The CRM ascribes a specific threshold value to each parameter in such a way that it creates a unique tool used to calculate the risk for

  9. Effect of Wind Tunnel Air Velocity on VOC Flux from Standard Solutions and CAFO Manure/Wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers and practitioners have used wind tunnels and flux chambers to quantify the flux of volatile organic compounds (VOCs), ammonia, and hydrogen sulfide and estimate emission factors from animal feeding operations (AFOs) without accounting for effects of air velocity or sweep air flow rate. L...

  10. Wavelength dependence of coherent and incoherent satellite-based lidar measurements of wind velocity and aerosol backscatter

    NASA Technical Reports Server (NTRS)

    Kavaya, M. J.; Huffaker, R. M.

    1986-01-01

    The results are presented of a capability study of Earth orbiting lidar systems, at various wavelengths from 1.06 to 10.6 microns, for the measurement of wind velocity and aerosol backscatter, and for the detection of clouds. Both coherent and incoherent lidar systems were modeled and compared for the aerosol backscatter and cloud detection applications.

  11. PI Passivity-Based Control for Maximum Power Extraction of a Wind Energy System with Guaranteed Stability Properties

    NASA Astrophysics Data System (ADS)

    Cisneros, Rafael; Gao, Rui; Ortega, Romeo; Husain, Iqbal

    2016-10-01

    The present paper proposes a maximum power extraction control for a wind system consisting of a turbine, a permanent magnet synchronous generator, a rectifier, a load and one constant voltage source, which is used to form the DC bus. We propose a linear PI controller, based on passivity, whose stability is guaranteed under practically reasonable assumptions. PI structures are widely accepted in practice as they are easier to tune and simpler than other existing model-based methods. Real switching based simulations have been performed to assess the performance of the proposed controller.

  12. Estimations of relative effort during sit-to-stand increase when accounting for variations in maximum voluntary torque with joint angle and angular velocity.

    PubMed

    Bieryla, Kathleen A; Anderson, Dennis E; Madigan, Michael L

    2009-02-01

    The main purpose of this study was to compare three methods of determining relative effort during sit-to-stand (STS). Fourteen young (mean 19.6+/-SD 1.2 years old) and 17 older (61.7+/-5.5 years old) adults completed six STS trials at three speeds: slow, normal, and fast. Sagittal plane joint torques at the hip, knee, and ankle were calculated through inverse dynamics. Isometric and isokinetic maximum voluntary contractions (MVC) for the hip, knee, and ankle were collected and used for model parameters to predict the participant-specific maximum voluntary joint torque. Three different measures of relative effort were determined by normalizing STS joint torques to three different estimates of maximum voluntary torque. Relative effort at the hip, knee, and ankle were higher when accounting for variations in maximum voluntary torque with joint angle and angular velocity (hip=26.3+/-13.5%, knee=78.4+/-32.2%, ankle=27.9+/-14.1%) compared to methods which do not account for these variations (hip=23.5+/-11.7%, knee=51.7+/-15.0%, ankle=20.7+/-10.4%). At higher velocities, the difference in calculating relative effort with respect to isometric MVC or incorporating joint angle and angular velocity became more evident. Estimates of relative effort that account for the variations in maximum voluntary torque with joint angle and angular velocity may provide higher levels of accuracy compared to methods based on measurements of maximal isometric torques.

  13. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Krakauer, Nir Y.; Randerson, James T.; Primeau, François W.; Gruber, Nicolas; Menemenlis, Dimitris

    2006-11-01

    The air-sea gas transfer velocity is an important determinant of the exchange of gases, including CO2, between the atmosphere and ocean, but the magnitude of the transfer velocity and what factors control it remains poorly known. Here, we use oceanic and atmospheric observations of 14C and 13C to constrain the global mean gas transfer velocity as well as the exponent of its wind speed dependence, utilizing the distinct signatures left by the air-sea exchange of 14CO2 and 13CO2. While the atmosphere and ocean inventories of 14CO2 and 13CO2 constrain the mean gas transfer velocity, the latitudinal pattern in the atmospheric and oceanic 14C and 13C distributions contain information about the wind speed dependence. We computed the uptake of bomb 14C by the ocean for different transfer velocity patterns using pulse response functions from an ocean general circulation model, and evaluated the match between the predicted bomb 14C concentrations and observationally based estimates for the 1970s-1990s. Using a wind speed climatology based on satellite measurements, we solved either for the best-fit global relationship between gas exchange and mean wind speed or for the mean gas transfer velocity over each of 11 ocean regions. We also compared the predicted consequences of different gas exchange relationships on the rate of change and interhemisphere gradient of 14C in atmospheric CO2 with tree-ring and atmospheric measurements. Our results suggest that globally, the dependence of the air-sea gas transfer velocity on wind speed is close to linear, with an exponent of 0.5 +/- 0.4, and that the global mean gas transfer velocity at a Schmidt number of 660 is 20 +/- 3 cm/hr, similar to the results of previous analyses. We find that the air-sea flux of 13C estimated from atmosphere and ocean observations also suggests a lower than quadratic dependence of gas exchange on wind speed.

  14. Field measurements of horizontal forward motion velocities of terrestrial dust devils: Towards a proxy for ambient winds on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Balme, M. R.; Pathare, A.; Metzger, S. M.; Towner, M. C.; Lewis, S. R.; Spiga, A.; Fenton, L. K.; Renno, N. O.; Elliott, H. M.; Saca, F. A.; Michaels, T. I.; Russell, P.; Verdasca, J.

    2012-11-01

    Dust devils - convective vortices made visible by the dust and debris they entrain - are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites. We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a 100 active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements. Daily (10:00-16:00 local time) and 2-h averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-min smoothing window applied to

  15. Statistical mapping of ULF Pc3 velocity fluctuations in the Earth's dayside magnetosheath as a function of solar wind conditions

    NASA Astrophysics Data System (ADS)

    Dimmock, A. P.; Nykyri, K.; Osmane, A.; Pulkkinen, T. I.

    2016-07-01

    In this paper, we present the results of a statistical study of Pc3 velocity fluctuations in the Earth's dayside magnetosheath. There exists a notable dawn-dusk asymmetry, such that velocity fluctuations generally exhibit enhanced spectral power in the magnetosheath downstream of the quasi-parallel shock. The fluctuations in the central magnetosheath and close to bow shock tend to dampen with increasing tail-ward distance while the opposite trend is observed close to the magnetopause. This strongly suggests that velocity shear driven processes such as the Kelvin-Helmholtz instability drive Pc3 flow variations close to the magnetopause as the velocity shear increases with increasing tail-ward distance. We also show strong evidence that Pc3 velocity fluctuations are significantly enhanced during intervals of faster solar wind speeds. We see negligible differences between data collected during northward and southward IMF orientations, but in general, a dawn-favoured asymmetry persists.

  16. Effect of maximum torque according to the permanent magnet configuration of a brushless dc motor with concentrated winding

    NASA Astrophysics Data System (ADS)

    Lee, Kab-Jae; Kim, Sol; Lee, Ju; Oh, Jae-Eung

    2003-05-01

    A brushless dc (BLDC) motor, which has a permanent magnet (PM) component, is a potential candidate for hybrid or electric vehicle applications. Minimizing the BLDC motor size is an important requirement for application. This requirement is usually satisfied by adopting a high performance permanent magnet or improved winding methods. The PM configuration is also a critical point in design. This article presents the effect of the PM configuration on motor performance, especially the maximum torque. Four representative BLDC motor types are analytically investigated under the condition that the volume of the PM and magnetic material is constant. An embedded interior permanent magnet motor has the best torque performance the maximum torque of which is more than 1.5 times larger than that of the surface mounted permanent magnet motor. The performance of back electromotive force, instantaneous torques is also investigated.

  17. Covariance statistics of turbulence velocity components for wind-energy-conversion system design-homogeneous, isotropic case

    SciTech Connect

    Fichtl, G.H.

    1983-09-01

    When designing a wind energy converison system (WECS), it may be necessary to take into account the distribution of wind across the disc of rotation. The specific engineering applications include structural strength, fatigue, and control. This wind distribution consists of two parts, namely that associated with the mean wind profile and that associated with the turbulence velocity fluctuation field. The work reported herein is aimed at the latter, namely the distribution of turbulence velocity fluctuations across the WECS disk of rotation. A theory is developed for the two-time covariance matrix for turbulence velocity vector components for wind energy conversion system (WECS) design. The theory is developed for homogeneous and iotropic turbulance with the assumption that Taylor's hypothesis is valid. The Eulerian turbulence velocity vector field is expanded about the hub of the WECS. Formulae are developed for the turbulence velocity vector component covariance matrix following the WECS blade elements. It is shown that upon specification of the turbulence energy spectrum function and the WECS rotation rate, the two-point, two-time covariance matrix of the turbulent flow relative to the WECS bladed elements is determined. This covariance matrix is represented as the sum of nonstationary and stationary contributions. Generalized power spectral methods are used to obtain two-point, double frequency power spectral density functions for the turbulent flow following the blade elements. The Dryden turbulence model is used to demonstrate the theory. A discussion of linear system response analysis is provided to show how the double frequency turbulence spectra might be used to calculate response spectra of a WECS to turbulent flow. Finally the spectrum of the component of turbulence normal to the WECS disc of rotation, following the blade elements, is compared with experimental results.

  18. The Evolution of the Spectrum of Solar Wind Velocity Fluctuations from 0.3 to 5 AU

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron

    2011-01-01

    Recent work has shown that at 1 AU from the Sun the power spectrum of the solar wind magnetic field has the -5/3 spectral slope expected for Kolmogorov turbulence, but that the velocity has closer to a -3/2 spectrum. This paper traces the changes in solar wind velocity spectra from 0.3 to 5 AU using data from the Helios and Ulysses spacecraft to show that this is a transient stage in solar-wind evolution. The spectrum of the velocity is found to be flatter than that of the magnetic field for the higher frequencies examined for all cases until the slopes become equal (at -5/3) well past 1 AU when the wind is relatively nonAlfvenic. In some respects, in particular in the evolution of the frequency at which the spectrum changes from flatter at larger scales to a "turbulent" spectrum at smaller scales, the velocity field evolves more rapidly than the magnetic, and this is associated with the dominance of the magnetic energy over the kinetic at "inertial range" scales. The speed of the flow is argued to be largely unrelated to the spectral slopes, consistent with previous work, whereas high Alfvenicity appears to slow the spectral evolution, as expected from theory. This study shows that, for the solar wind, the idea of a simple "inertial range" with uniform spectral properties is not realistic, and new phenomenologies will be needed to capture the true situation. It is also noted that a flattening of the velocity spectrum often occurs at small scales.

  19. Calibration of the maximum carboxylation velocity (vcmax) for the Caatinga for use in dynamic global vegetation models (DGVMs)

    NASA Astrophysics Data System (ADS)

    Rezende, L. C.; Arenque, B.; von Randow, C.; Moura, M. S.; Aidar, S. D.; Buckeridge, M. S.; Menezes, R.; Souza, L. S.; Ometto, J. P.

    2013-12-01

    The Caatinga biome in the semi-arid region of northeastern Brazil is extremely important due to its biodiversity and endemism. This biome, which is under high anthropogenic influences, presents high levels of environmental degradation, land use being among the main causes of such degradation. The simulations of land cover and the vegetation dynamic under different climate scenarios are important features for prediction of environmental risks and determination of sustainable pathways for the planet in the future. Modeling of the vegetation can be performed by use of dynamic global vegetation models (DGVMs). The DGVMs simulate the surface processes (e.g. transfer of energy, water, CO2 and momentum); plant physiology (e.g. photosynthesis, stomatal conductance) phenology; gross and net primary productivity, respiration, plant species classified by functional traits; competition for light, water and nutrients, soil characteristics and processes (e.g. nutrients, heterotrophic respiration). Currently, most of the parameters used in DGVMs are static pre-defined values, and the lack of observational information to aid choosing the most adequate values for these parameters is particularly critical for the semi-arid regions in the world. Through historical meteorological data and measurements of carbon assimilation we aim to calibrate the maximum carboxylation velocity (Vcmax), for the native species Poincianella microphylla, abundant in the Caatinga region. The field data (collected at Lat: 90 2' S, Lon: 40019' W) displayed two contrasting meteorological conditions, with precipitations of 16 mm and 104 mm prior to the sampling campaigns (April 9-13, 2012 and February 4-8, 2013; respectively). Calibration (obtaining values of Vcmax more suitable for vegetation of Caatinga) has been performed through an algorithm of pattern recognition: Classification And Regression Tree (CART) and calculation of the vapor pressure deficit (VPD), which was used as attribute for discrimination

  20. Spatial structures of CO2, H2O, temperature and vertical wind velocity observed by aircraft

    NASA Astrophysics Data System (ADS)

    Selbach, Christoph; Schween, Jan; Crewell, Susanne; Geiss, Heiner; Neininger, Bruno

    2010-05-01

    During the FLUXPAT campaigns in 2008 and 2009 the MetAir Dimona research aricraft performed several fligths above a patchy, agricultural dominated landscape near Juelich/Germany. The measurements are aimed to capture the variability of water vapor and CO2 and derive turbulent fluxes in the atmospheric boundary layer close to the ground. Flights took place at two main levels around 150 m and 250 m above ground. Agriculture in this region is dominated by two different crops: sugar beet and wheat. Flights were scheduled in April and August as at these times of the year strong contrasts can be found between different fields. In April sugar beet is usually just seeded whereas wheat already forms a closed canopy. In August wheat unlike sugar beat is already harvested. We analyse the correlation lengths (L*) of CO2, H2O, temperature and vertical wind velocity on flight legs. L* is the median of the power spectrum i.e. 50 percent of the variance is in structures larger than L*. For the different quantities L* shows different behaviours during the day and between different flight levels. The structure lengthscales of CO2 have a large dependency on daytime and strongly decrease during noon and afternoon. We will present some approaches to explain this behaviour.

  1. Simultaneous measurements of air-sea gas transfer velocity and near surface turbulence at low to moderate winds (Invited)

    NASA Astrophysics Data System (ADS)

    Wang, B.; Liao, Q.; Fillingham, J. H.; Bootsma, H. A.

    2013-12-01

    Parameterization of air-sea gas transfer velocity was routinely made with wind speed. Near surface turbulent dissipation rate has been shown to have better correlation with the gas transfer velocity in a variety of aquatic environments (i.e., the small eddy model) while wind speed is low to moderate. Wind speed model may underestimate gas transfer velocity at low to moderate winds when the near surface turbulence is produced by other environmental forcing. We performed a series of field experiments to measure the CO2 transfer velocity, and the statistics of turbulence immediately below the air-water interface using a novel floating PIV and chamber system. The small eddy model was evaluated and the model coefficient was found to be a non-constant, and it varies with the local turbulent level (figure 1). Measure results also suggested an appropriate scaling of the vertical dissipation profile immediately below the interface under non-breaking conditions, which can be parameterized by the wind shear, wave height and wave age (figure 2). Figure 1. Relation between the coefficient of the small eddy model and dissipation rate. The data also include Chu & Jirka (2003) and Vachon et al. (2010). The solid regression line: α = 0.188log(ɛ)+1.158 Figure 2. Non-dimensional dissipation profiles. Symbols: measured data with the floating PIV. Solid line: regression of measured data with a -0.79 decaying rate. Dash line with -2 slope: Terray et al. (1996) relation. Dash line with two layer structure: Siddiqui & Loewen (2007) relation.

  2. Diode laser lidar wind velocity sensor using a liquid-crystal retarder for non-mechanical beam-steering.

    PubMed

    Rodrigo, Peter John; Iversen, Theis F Q; Hu, Qi; Pedersen, Christian

    2014-11-03

    We extend the functionality of a low-cost CW diode laser coherent lidar from radial wind speed (scalar) sensing to wind velocity (vector) measurements. Both speed and horizontal direction of the wind at ~80 m remote distance are derived from two successive radial speed estimates by alternately steering the lidar probe beam in two different lines-of-sight (LOS) with a 60° angular separation. Dual-LOS beam-steering is implemented optically with no moving parts by means of a controllable liquid-crystal retarder (LCR). The LCR switches the polarization between two orthogonal linear states of the lidar beam so it either transmits through or reflects off a polarization splitter. The room-temperature switching time between the two LOS is measured to be in the order of 100 μs in one switch direction but 16 ms in the opposite transition. Radial wind speed measurement (at 33 Hz rate) while the lidar beam is repeatedly steered from one LOS to the other every half a second is experimentally demonstrated - resulting in 1 Hz rate estimates of wind velocity magnitude and direction at better than 0.1 m/s and 1° resolution, respectively.

  3. Influence of the tilting reflection mirror on the temperature and wind velocity retrieved by a polarizing atmospheric Michelson interferometer.

    PubMed

    Zhang, Chunmin; Li, Ying

    2012-09-20

    The principles of a polarizing atmospheric Michelson interferometer are outlined. The tilt of its reflection mirror results in deflection of the reflected beam and affects the intensities of the observed inteferogram. This effect is systematically analyzed. Both rectangular and circular apertures are considered. The theoretical expression of the modulation depth and phase of the interferogram are derived. These parameters vary with the inclination angle of the mirror and the distance between the deflection center and the optical axis and significantly influence the retrieved temperature and wind speed. If the wind and temperature errors are required to be less than 3 m/s and 5 K, the deflection angle must be less than 0.5°. The errors are also dependent on the shape of aperture. If the reflection mirror is deflected in one direction, the temperature error is smaller for a circular aperture (1.3 K) than for a rectangular one (2.6 K), but the wind velocity errors are almost the same (less than 3 m/s). If the deflection center and incident light beam are coincident, the temperature errors are 3 × 10(-4) K and 0.45 K for circular and rectangular apertures, respectively. The wind velocity errors are 1.2 × 10(-3) m/s and 0.06 m/s. Both are small. The result would be helpful for theoretical research and development of the static polarization wind imaging interferometer.

  4. VLTI-AMBER Velocity-Resolved Aperture-Synthesis Imaging of Eta Carinae with a Spectral Resolution of 12 000: Studies of the Primary Star Wind and Innermost Wind-Wind Collision Zone

    NASA Technical Reports Server (NTRS)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; Gull, T.; Heininger, M.; Hillier, D. J.; Hummel, C. A.; Kraus, S.; Madura, T.; Mehner, A.; Merand, A.; Millour, F.; Moffat, A. F. J.; Ohnaka, K.; Patru, F.; Petrov, R. G.; Rengaswamy, S.; Richardson, N. D.; Rivinius, T.; Schoeller, M.; Teodoro, M.; Wittkowski, M.

    2016-01-01

    The mass loss from massive stars is not understood well. Eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of Car's primary star wind and wind-wind collision zone with a high spatial resolution of approx.6 mas (approx.14 au) and high spectral resolution of R = 12 000. Methods. Observations of Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 di erent spectral channels distributed across the Br(gamma) 2.166 micron emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is 126. The fan-shaped structure extends approximately 8.0 mas (approx.18:8 au) to the southeast and 5.8 mas (approx.13:6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  5. VLTI-AMBER velocity-resolved aperture-synthesis imaging of η Carinae with a spectral resolution of 12 000. Studies of the primary star wind and innermost wind-wind collision zone

    NASA Astrophysics Data System (ADS)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; Gull, T.; Heininger, M.; Hillier, D. J.; Hummel, C. A.; Kraus, S.; Madura, T.; Mehner, A.; Mérand, A.; Millour, F.; Moffat, A. F. J.; Ohnaka, K.; Patru, F.; Petrov, R. G.; Rengaswamy, S.; Richardson, N. D.; Rivinius, T.; Schöller, M.; Teodoro, M.; Wittkowski, M.

    2016-10-01

    Context. The mass loss from massive stars is not understood well. η Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims: We want to investigate the structure and kinematics of η Car's primary star wind and wind-wind collision zone with a high spatial resolution of ~6 mas (~14 au) and high spectral resolution of R = 12 000. Methods: Observations of η Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results: We present velocity-resolved aperture-synthesis images reconstructed in more than 100 different spectral channels distributed across the Brγ 2.166 μm emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to - 376 km s-1 measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of - 277 km s-1, the position angle of the symmetry axis of the fan is ~126°. The fan-shaped structure extends approximately 8.0 mas (~18.8 au) to the southeast and 5.8 mas (~13.6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  6. A New Technique using Electron Velocity Data from the Four Cluster Spacecraft to Explore Magnetofluid Turbulence in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.; Gurgiolo, C.; Fazakerley, A.; Lahiff, A.

    2008-01-01

    It is now possible in certain circumstances to use velocity moments computed from the Plasma Electron and Current Experiment (PEACE) on the four Cluster spacecraft to determine a number of turbulence properties of the solar wind, including direct measurements of the vorticity and compressibility. Assuming that the four spacecraft are not co-planar and that there is only a linear variation of the plasma variables across the volume defined by the four satellites, one can estimate the curl of the fluid velocity, i.e., the vorticity. From the vorticity it is possible to explore directly intermittent regions in the solar wind where dissipation is likely to be enhanced. In addition, one can estimate directly the Taylor microscale.

  7. Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere

    NASA Astrophysics Data System (ADS)

    Chunchuzov, I.; Kulichkov, S.; Perepelkin, V.; Popov, O.; Firstov, P.; Assink, J. D.; Marchetti, E.

    2015-09-01

    The wind velocity structure in the upper stratosphere, mesosphere, and lower thermosphere (MLT) is studied with the recently developed method of infrasound probing of the atmosphere. The method is based on the effect of infrasound scattering from highly anisotropic wind velocity and temperature inhomogeneities in the middle and upper atmosphere. The scattered infrasound field propagates in the acoustic shadow zones, where it is detected by microbarometers. The vertical profiles of the wind velocity fluctuations in the upper stratosphere (30-52 km) and MLT (90-140 km) are retrieved from the waveforms and travel times of the infrasound signals generated by explosive sources such as volcanoes and surface explosions. The fine-scale wind-layered structure in these layers was poorly observed until present time by other remote sensing methods, including radars and satellites. It is found that the MLT atmospheric layer (90-102 km) can contain extremely high vertical gradients of the wind velocity, up to 10 m/s per 100 m. The effect of a fine-scale wind velocity structure on the waveforms of infrasound signals is studied. The vertical wave number spectra of the retrieved wind velocity fluctuations are obtained for the upper stratosphere. Despite the difference in the locations of the explosive sources all the obtained spectra show the existence of high vertical wave number spectral tail with a -3 power law decay. The obtained spectral characteristics of the wind fluctuations are necessary for improvement of gravity wave drag parameterizations for numerical weather forecast.

  8. A statistical study on the occurrence of discrete frequencies in the high velocity solar wind and in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Di Matteo, Simone; Villante, Umberto

    2016-04-01

    The possible occurrence of oscillations at discrete frequencies in the solar wind and their possible correspondence with magnetospheric field oscillations represent an interesting aspect of the solar wind/magnetopheric research. We analyze a large set of high velocity streams following interplanetary shocks in order to ascertain the possible occurrence of preferential sets of discrete frequencies in the oscillations of the solar wind pressure in such structures. We evaluate, for each event, the power spectrum of the dynamic pressure by means of two methods (Welch and multitaper windowing) and accept the common spectral peaks that also pass a harmonic F-test at the 95% confidence level. We compare these frequencies with those detected at geosynchronous orbit in the magnetospheric field components soon after the manifestation of the corresponding Sudden Impulses.

  9. Critical wind velocity for arresting upwind gas and smoke dispersion induced by near-wall fire in a road tunnel.

    PubMed

    Hu, L H; Peng, W; Huo, R

    2008-01-15

    In case of a tunnel fire, toxic gas and smoke particles released are the most fatal contaminations. It is important to supply fresh air from the upwind side to provide a clean and safe environment upstream from the fire source for people evacuation. Thus, the critical longitudinal wind velocity for arresting fire induced upwind gas and smoke dispersion is a key criteria for tunnel safety design. Former studies and thus, the models built for estimating the critical wind velocity are all arbitrarily assuming that the fire takes place at the centre of the tunnel. However, in many real cases in road tunnels, the fire originates near the sidewall. The critical velocity of a near-wall fire should be different with that of a free-standing central fire due to their different plume entrainment process. Theoretical analysis and CFD simulation were performed in this paper to estimate the critical velocity for the fire near the sidewall. Results showed that when fire originates near the sidewall, it needs larger critical velocity to arrest the upwind gas and smoke dispersion than when fire at the centre. The ratio of critical velocity of a near-wall fire to that of a central fire was ideally estimated to be 1.26 by theoretical analysis. Results by CFD modelling showed that the ratio decreased with the increase of the fire size till near to unity. The ratio by CFD modelling was about 1.18 for a 500kW small fire, being near to and a bit lower than the theoretically estimated value of 1.26. However, the former models, including those of Thomas (1958, 1968), Dangizer and Kenndey (1982), Oka and Atkinson (1995), Wu and Barker (2000) and Kunsch (1999, 2002), underestimated the critical velocity needed for a fire near the tunnel sidewall.

  10. Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving

    NASA Astrophysics Data System (ADS)

    Bristow, W. A.; Amata, E.; Spaleta, J.; Marcucci, M. F.

    2015-06-01

    Convection observations from the Southern Hemisphere Super Dual Auroral Radar Network are presented and examined for their relationship to solar wind and interplanetary magnetic field (IMF) conditions, restricted to periods of steady IMF. Analysis is concentrated on two specific regions, the central polar cap and the dayside throat region. An example time series is discussed in detail with specific examples of apparent direct control of the convection velocity by the solar wind driver. Closer examination, however, shows that there is variability in the flows that cannot be explained by the driving. Scatterplots and histograms of observations from all periods in the year 2013 that met the selection criteria are given and their dependence on solar wind driving is examined. It is found that on average the flow velocity depends on the square root of the rate of flux entry to the polar cap. It is also found that there is a large level of variability that is not strongly related to the solar wind driving.

  11. Maximum wind radius estimated by the 50 kt radius: improvement of storm surge forecasting over the western North Pacific

    NASA Astrophysics Data System (ADS)

    Takagi, Hiroshi; Wu, Wenjie

    2016-03-01

    Even though the maximum wind radius (Rmax) is an important parameter in determining the intensity and size of tropical cyclones, it has been overlooked in previous storm surge studies. This study reviews the existing estimation methods for Rmax based on central pressure or maximum wind speed. These over- or underestimate Rmax because of substantial variations in the data, although an average radius can be estimated with moderate accuracy. As an alternative, we propose an Rmax estimation method based on the radius of the 50 kt wind (R50). Data obtained by a meteorological station network in the Japanese archipelago during the passage of strong typhoons, together with the JMA typhoon best track data for 1990-2013, enabled us to derive the following simple equation, Rmax = 0.23 R50. Application to a recent strong typhoon, the 2015 Typhoon Goni, confirms that the equation provides a good estimation of Rmax, particularly when the central pressure became considerably low. Although this new method substantially improves the estimation of Rmax compared to the existing models, estimation errors are unavoidable because of fundamental uncertainties regarding the typhoon's structure or insufficient number of available typhoon data. In fact, a numerical simulation for the 2013 Typhoon Haiyan as well as 2015 Typhoon Goni demonstrates a substantial difference in the storm surge height for different Rmax. Therefore, the variability of Rmax should be taken into account in storm surge simulations (e.g., Rmax = 0.15 R50-0.35 R50), independently of the model used, to minimize the risk of over- or underestimating storm surges. The proposed method is expected to increase the predictability of major storm surges and to contribute to disaster risk management, particularly in the western North Pacific, including countries such as Japan, China, Taiwan, the Philippines, and Vietnam.

  12. Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5: VERTICAL VELOCITY GOAMAZON2014/5

    SciTech Connect

    Giangrande, Scott E.; Toto, Tami; Jensen, Michael P.; Bartholomew, Mary Jane; Feng, Zhe; Protat, Alain; Williams, Christopher R.; Machado, Luiz

    2016-11-15

    A radar wind profiler data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, and mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. During this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.

  13. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary

    NASA Astrophysics Data System (ADS)

    Ho, David T.; Coffineau, Nathalie; Hickman, Benjamin; Chow, Nicholas; Koffman, Tobias; Schlosser, Peter

    2016-04-01

    Knowledge of air-water gas transfer velocities and water residence times is necessary to study the fate of mangrove derived carbon exported into surrounding estuaries and ultimately to determine carbon balances in mangrove ecosystems. For the first time, the 3He/SF6 dual tracer technique, which has been proven to be a powerful tool to determine gas transfer velocities in the ocean, is applied to Shark River, an estuary situated in the largest contiguous mangrove forest in North America. The mean gas transfer velocity was 3.3 ± 0.2 cm h-1 during the experiment, with a water residence time of 16.5 ± 2.0 days. We propose a gas exchange parameterization that takes into account the major sources of turbulence in the estuary (i.e., bottom generated shear and wind stress).

  14. Solar Wind Heating as Revealed from the Variation of 3D Ion Velocity Distributions across the Magnetic Reconnection Exhaust Region

    NASA Astrophysics Data System (ADS)

    He, J.

    2015-12-01

    Magnetic reconnection within current sheet has been regarded as one of the crucial dissipation and heating processes of coherent structures in the solar wind turbulence. Counter-streaming of ions is an important phenomenon in the reconnection exhaust region ranged from the ion diffusion region to the extended outflow region. It has been suggested by theoretical and numerical models that the ions are going to be picked up by the ejecting magnetic field and show larger T_perpendicular than T_parallel, if the guide field is strong enough (in other word, the shear angle is relatively low). The pick-up behavior seems to favor the heating of heavy ions with high mass-to-charge ratio, since the high M/Q ions have larger gyro-period/transit-time and tend to be non-adiabatic more easily. The above statements from theoretical models have not been thoroughly testified in the solar wind observations, though the changes in total temperature and 1D reduced velocity distribution function had been studied. Until now, it remains unclear about the difference of full 3D velocity distribution for the proton and helium ions between the upstream and the exhaust regions. Here, we will analyze the plasma measurement data from WIND/3DP to explore and compare the parallel and perpendicular heating effect of different species of ions. As a preliminary result, the proton is found to show bi-directional streams in its velocity distribution in some reconnection exhaust regions. The thermalization of the counter-streaming protons will be presented. The relation between proton T_parallel/T_perpendicular and guide field strength (or shear angle) will be studied. The velocity distributions of helium ions will be illustrated, which shows the difference of heating effect between different M/Q ratios.

  15. Retrieval of the Near-Surface Wind Velocity and Direction: Scat-3 Orbit-Borne Scatterometer

    NASA Astrophysics Data System (ADS)

    Karaev, V. Yu.; Panfilova, M. A.; Titchenko, Yu. A.; Meshkov, E. M.; Balandina, G. N.; Kuznetsov, Yu. V.; Shlaferov, A. L.

    2016-09-01

    The new concept proposed during the development of the first Russian orbit-borne scatterometer SCAT-3 requires an additional study for estimating its efficiency and comparison with the current scatterometer concepts. Using the fan antenna pattern (with angular dimensions 1° × 6°), we have reduced the antenna rotation speed by about a factor of three compared with the prototype (the "SeaWinds" scatterometer) and measured the backscattering cross section for each wind cell at the horizontal and vertical polarizations. The numerical model of the scatterometer was developed with allowance for the technical characteristics of the radar, orbital parameters, and observation scheme. The scatterometer operation is simulated with the subsequent swath formation and partitioning into the wind cells. It is shown that using the fan pattern in the scatterometer, one can improve the accuracy of the wind-direction r5etrieval in a wind cell due to employing the radiometric resolution in the processing algorithm. The main error in determining the wind direction is related to the ambiguity ±180°, which is caused by the type of the azimuthal dependence of the backscattering cross section. With the help of the two-dimensional median filtering, we can significantly reduce the wind-direction retrieval error. This error can probably be smaller than that for the current scatterometers.

  16. Limits imposed by solenoid damage on the maximum velocity achieved by an electromagnetic coilgun: A computational study

    NASA Astrophysics Data System (ADS)

    Madhavan, S.; Sijoy, C. D.; Pahari, S.; Chaturvedi, S.

    2012-06-01

    CAD has set up an electromagnetic acceleration and impact facility for studies of material fracture and deformation at high strain rates. The target is to reach projectile velocities of 200-500 m/s. The mechanical strength of the solenoid coil and potting material is an important factor affecting coil survival during experiments. We have performed a computational study, using the materials and coil and circuit parameters typically used in experiments, and found the operating limits up to which the coil can survive without breaking.

  17. Probability distributions of bed load particle velocities, accelerations, hop distances, and travel times informed by Jaynes's principle of maximum entropy

    NASA Astrophysics Data System (ADS)

    Furbish, David Jon; Schmeeckle, Mark W.; Schumer, Rina; Fathel, Siobhan L.

    2016-07-01

    We describe the most likely forms of the probability distributions of bed load particle velocities, accelerations, hop distances, and travel times, in a manner that formally appeals to inferential statistics while honoring mechanical and kinematic constraints imposed by equilibrium transport conditions. The analysis is based on E. Jaynes's elaboration of the implications of the similarity between the Gibbs entropy in statistical mechanics and the Shannon entropy in information theory. By maximizing the information entropy of a distribution subject to known constraints on its moments, our choice of the form of the distribution is unbiased. The analysis suggests that particle velocities and travel times are exponentially distributed and that particle accelerations follow a Laplace distribution with zero mean. Particle hop distances, viewed alone, ought to be distributed exponentially. However, the covariance between hop distances and travel times precludes this result. Instead, the covariance structure suggests that hop distances follow a Weibull distribution. These distributions are consistent with high-resolution measurements obtained from high-speed imaging of bed load particle motions. The analysis brings us closer to choosing distributions based on our mechanical insight.

  18. Probability distributions of bed load particle velocities, accelerations, hop distances, and travel times informed by Jaynes's principle of maximum entropy

    USGS Publications Warehouse

    Furbish, David J.; Schmeeckle, Mark; Schumer, Rina; Fathel, Siobhan L.

    2016-01-01

    We describe the most likely forms of the probability distributions of bed load particle velocities, accelerations, hop distances, and travel times, in a manner that formally appeals to inferential statistics while honoring mechanical and kinematic constraints imposed by equilibrium transport conditions. The analysis is based on E. Jaynes's elaboration of the implications of the similarity between the Gibbs entropy in statistical mechanics and the Shannon entropy in information theory. By maximizing the information entropy of a distribution subject to known constraints on its moments, our choice of the form of the distribution is unbiased. The analysis suggests that particle velocities and travel times are exponentially distributed and that particle accelerations follow a Laplace distribution with zero mean. Particle hop distances, viewed alone, ought to be distributed exponentially. However, the covariance between hop distances and travel times precludes this result. Instead, the covariance structure suggests that hop distances follow a Weibull distribution. These distributions are consistent with high-resolution measurements obtained from high-speed imaging of bed load particle motions. The analysis brings us closer to choosing distributions based on our mechanical insight.

  19. Effects of errors in velocity tilt on maximum longitudinal compression during neutralized drift compression of intense beam pulses: I. general description

    SciTech Connect

    Kaganovich, Igor D.; Massidda, Scottt; Startsev, Edward A.; Davidson, Ronald C.; Vay, Jean-Luc; Friedman, Alex

    2012-06-21

    Neutralized drift compression offers an effective means for particle beam pulse compression and current amplification. In neutralized drift compression, a linear longitudinal velocity tilt (head-to-tail gradient) is applied to the non-relativistic beam pulse, so that the beam pulse compresses as it drifts in the focusing section. The beam current can increase by more than a factor of 100 in the longitudinal direction. We have performed an analytical study of how errors in the velocity tilt acquired by the beam in the induction bunching module limit the maximum longitudinal compression. It is found that the compression ratio is determined by the relative errors in the velocity tilt. That is, one-percent errors may limit the compression to a factor of one hundred. However, a part of the beam pulse where the errors are small may compress to much higher values, which are determined by the initial thermal spread of the beam pulse. It is also shown that sharp jumps in the compressed current density profile can be produced due to overlaying of different parts of the pulse near the focal plane. Examples of slowly varying and rapidly varying errors compared to the beam pulse duration are studied. For beam velocity errors given by a cubic function, the compression ratio can be described analytically. In this limit, a significant portion of the beam pulse is located in the broad wings of the pulse and is poorly compressed. The central part of the compressed pulse is determined by the thermal spread. The scaling law for maximum compression ratio is derived. In addition to a smooth variation in the velocity tilt, fast-changing errors during the pulse may appear in the induction bunching module if the voltage pulse is formed by several pulsed elements. Different parts of the pulse compress nearly simultaneously at the target and the compressed profile may have many peaks. The maximum compression is a function of both thermal spread and the velocity errors. The effects of the

  20. Maximum drift velocity of electrons in selectively doped InAlAs/InGaAs/InAlAs heterostructures with InAs inserts

    SciTech Connect

    Silenas, A.; Pozela, Yu. Pozela, K.; Juciene, V.; Vasil'evskii, I. S.; Galiev, G. B.; Pushkarev, S. S.; Klimov, E. A.

    2013-03-15

    The dependence of the electron mobility and drift velocity on the growth conditions, thickness, and doping of an InAs insert placed at the center of the quantum well in a selectively doped InAlAs/InGaAs/InAlAs heterostructure has been investigated. Record enhancement of the maximum drift velocity to (2-4) Multiplication-Sign 10{sup 7} cm/s in an electric field of 5 Multiplication-Sign 10{sup 3} V/cm has been obtained in a 17-nm-wide quantum well with an undoped 4-nm-thick InAs insert. In the structures with additional doping of the InAs insert, which facilitates an increase in the density of electrons in the quantum well to 4.0 Multiplication-Sign 10{sup 12} cm{sup -2}, the maximum drift velocity is as high as 2 Multiplication-Sign 10{sup 7} cm/s in an electric field of 7 Multiplication-Sign 10{sup 3} V/cm.

  1. Influence of the Metal Volume Fraction on the maximum deflection and impact load of GLARE plates subjected to low velocity impact

    NASA Astrophysics Data System (ADS)

    Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.

    2016-11-01

    Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.

  2. Wind-wave-induced velocity in ATI SAR ocean surface currents: First experimental evidence from an airborne campaign

    NASA Astrophysics Data System (ADS)

    Martin, Adrien C. H.; Gommenginger, Christine; Marquez, Jose; Doody, Sam; Navarro, Victor; Buck, Christopher

    2016-03-01

    Conventional and along-track interferometric (ATI) Synthetic Aperture Radar (SAR) senses the motion of the ocean surface by measuring the Doppler shift of reflected signals. Measurements are affected by a Wind-wave-induced Artifact Surface Velocity (WASV) which was modeled theoretically in past studies and has been estimated empirically only once before with Envisat ASAR by Mouche et al. (2012). An airborne campaign in the tidally dominated Irish Sea served to evaluate this effect and the current retrieval capabilities of a dual-beam SAR interferometer known as Wavemill. A comprehensive collection of Wavemill airborne data acquired in a star pattern over a well-instrumented validation site made it possible for the first time to estimate the magnitude of the WASV, and its dependence on azimuth and incidence angle from data alone. In light wind (5.5 m/s) and moderate current (0.7 m/s) conditions, the wind-wave-induced contribution to the measured ocean surface motion reaches up to 1.6 m/s upwind, with a well-defined second-order harmonic dependence on direction to the wind. The magnitude of the WASV is found to be larger at lower incidence angles. The airborne WASV results show excellent consistency with the empirical WASV estimated from Envisat ASAR. These results confirm that SAR and ATI surface velocity estimates are strongly affected by WASV and that the WASV can be well characterized with knowledge of the wind knowledge and of the geometry. These airborne results provide the first independent validation of Mouche et al. (2012) and confirm that the empirical model they propose provides the means to correct airborne and spaceborne SAR and ATI SAR data for WASV to obtain accurate ocean surface current measurements. After removing the WASV, the airborne Wavemill-retrieved currents show very good agreement against ADCP measurements with a root-mean-square error (RMSE) typically around 0.1 m/s in velocity and 10° in direction.

  3. Effects of the canopy created velocity inflection in the wake development in a large wind turbine array

    NASA Astrophysics Data System (ADS)

    Agafonova, Oxana; Avramenko, Anna; Chaudhari, Ashvinkumar; Hellsten, Antti

    2016-09-01

    Large Eddy Simulations (LES) are carried out using OpenFOAM to investigate the canopy created velocity inflection in the wake development of a large wind turbine array. Simulations are performed for two cases with and without forest separately. Results of the simulations are further compared to clearly show the changes in the wake and turbulence structure due to the forest. Moreover, the actual mechanical shaft power produced by a single turbine in the array is calculated for both cases. Aerodynamic efficiency and power losses due to the forest are discussed as well.

  4. Competing mechanisms of plasma transport in inhomogeneous configurations with velocity shear: the solar-wind interaction with earth's magnetosphere.

    PubMed

    Faganello, M; Califano, F; Pegoraro, F

    2008-01-11

    Two-dimensional simulations of the Kelvin-Helmholtz instability in an inhomogeneous compressible plasma with a density gradient show that, in a transverse magnetic field configuration, the vortex pairing process and the Rayleigh-Taylor secondary instability compete during the nonlinear evolution of the vortices. Two different regimes exist depending on the value of the density jump across the velocity shear layer. These regimes have different physical signatures that can be crucial for the interpretation of satellite data of the interaction of the solar wind with the magnetospheric plasma.

  5. High-velocity, multistage, nozzled, ion driven wind generator and method of operation of the same adaptable to mesoscale realization

    NASA Technical Reports Server (NTRS)

    Dunn-Rankin, Derek (Inventor); Rickard, Matthew J. A. (Inventor)

    2011-01-01

    Gas flows of modest velocities are generated when an organized ion flux in an electric field initiates an ion-driven wind of neutral molecules. When a needle in ambient air is electrically charged to a potential sufficient to produce a corona discharge near its tip, such a gas flow can be utilized downstream of a ring-shaped or other permeable earthed electrode. In view of the potential practical applications of such devices, as they represent blowers with no moving parts, a methodology for increasing their flow velocities includes exploitation of the divergence of electric field lines, avoidance of regions of high curvature on the second electrode, control of atmospheric humidity, and the use of linear arrays of stages, terminating in a converging nozzle. The design becomes particularly advantageous when implemented in mesoscale domains.

  6. New measurements of vertical thermal structure and wind velocities in the Venusian mesosphere

    NASA Astrophysics Data System (ADS)

    Widemann, T.; Sandor, B. J.; Clancy, R. T.; Lellouch, E.

    2009-04-01

    The Venus mesosphere is a highly variable transition region, in latitude, local time and over short time scales, between the zonal circulation of the lower atmosphere and the diurnal, sub-solar to anti-solar circulation in the upper atmosphere. In the framework of European Space Agency's second campaign of ground-based observations (Feb 8-22, 2009) in support of the Venus-Express mission, we coordinated new observations sampling a large range of altitudes in the Venus mesosphere on Feb. 7-8 and Feb. 14-15 : (1) James Clerk Maxwell Submillimeter Telescope (JCMT) submillimeter lines observations of mesospheric CO spectral lines measurements of temperature, CO mixing ratio and winds over the 95-115 km altitude range (Clancy et al., 2008), while SO2, SO and HDO observations were also probed in the 70-100 km range ; (2) Canada-France-Hawaii Telescope (CFHT) optical spectropolarimeter ESPaDOnS observations of visible Solar Fraunhofer lines measuring the winds at cloud tops near 70 km and visible CO2 lines 1-2 scale heights above (Widemann et al., 2007, 2008). Synchronization of wind measurements helps characterize possible correlation patterns between wind variations in the lower and middle mesosphere over a day time scale. Preliminary results will be presented at the meeting. Clancy, R.T., Sandor, B.J., and Moriarty-Schieven, G.H. 2008, Planet. Space Sci. 56, 1320-1334. Widemann, T., Lellouch, E., and Campargue, A. 2007, New Wind Measurements in Venus' Lower Mesosphere From Visible Spectroscopy, Planet. Space Sci. 55, 1741-1756 Widemann, T., Lellouch, E., Donati, J.-F., 2008, Venus Doppler winds at Cloud Tops Observed with ESPaDOnS at CFHT, Planet. Space Sci. 56, 1320-133 --

  7. Seasonal solar wind speeds for the last 100 years: Unique coronal hole structures during the peak and demise of the Grand Modern Maximum

    NASA Astrophysics Data System (ADS)

    Mursula, K.; Holappa, L.; Lukianova, R.

    2017-01-01

    Solar coronal holes are sources of high-speed solar wind streams, which cause persistent geomagnetic activity especially at high latitudes. Here we estimate seasonal solar wind speeds at 1 AU for the last 100 years using high-latitude geomagnetic measurements and show that they give information on the long-term evolution of important structures of the solar large-scale magnetic field, such as persistent coronal holes. We find that the centennial evolution of solar wind speed at 1 AU is different for equinoxes and solstices, reflecting differences in the evolution of polar coronal hole extensions and isolated low-latitude coronal holes. Equinoctial solar wind speeds had their centennial maximum in 1952, during the declining phase of solar cycle 18, verifying that polar coronal holes had exceptionally persistent extensions just before the peak of the Grand Modern Maximum of solar activity. On the other hand, solstice speeds had their centennial maximum during the declining phase of solar cycle 23 due to large low-latitude coronal holes. A similar configuration of seasonal speeds as in cycle 23 was not found earlier, not even during the less active cycles of early 20th century. Therefore, the exceptional occurrence of persistent, isolated low-latitude coronal holes in cycle 23 is not related to the absolute level of sunspot activity but, most likely, to the demise of the Grand Modern Maximum.

  8. Blowing in the Wind: I. Velocities of Chondrule-sized Particles in a Turbulent Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hogan, Robert C.; Fonda, Mark (Technical Monitor)

    2003-01-01

    Small but macroscopic particles - chondrules, higher temperature mineral inclusions, metal grains, and their like - dominate the fabric of primitive meteorites. The properties of these constituents, and their relationship to the fine dust grains which surround them, suggest that they led an extended existence in a gaseous protoplanetary nebula prior to their incorporation into their parent primitive bodies. In this paper we explore in some detail the velocities acquired by such particles in a turbulent nebula. We treat velocities in inertial space (relevant to diffusion), velocities relative to the gas and entrained microscopic dust (relevant to accretion of dust rims), and velocities relative to each other (relevant to collisions). We extend previous work by presenting explicit, closed-form solutions for the magnitude and size dependence of these velocities in this important particle size regime, and compare these expressions with new numerical calculations. The magnitude and size dependence of these velocities have immediate applications to chondrule and CAI rimming by fine dust, and to their diffusion in the nebula, which we explore separately.

  9. THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA

    SciTech Connect

    Che, H.; Goldstein, M. L.

    2014-11-10

    The formation of the observed core-halo feature in the solar wind electron velocity distribution function is a long-time puzzle. In this Letter, based on the current knowledge of nanoflares, we show that the nanoflare-accelerated electron beams are likely to trigger a strong electron two-stream instability that generates kinetic Alfvén wave and whistler wave turbulence, as we demonstrated in a previous paper. We further show that the core-halo feature produced during the origin of kinetic turbulence is likely to originate in the inner corona and can be preserved as the solar wind escapes to space along open field lines. We formulate a set of equations to describe the heating processes observed in the simulation and show that the core-halo temperature ratio of the solar wind is insensitive to the initial conditions in the corona and is related to the core-halo density ratio of the solar wind and to the quasi-saturation property of the two-stream instability at the time when the exponential decay ends. This relation can be extended to the more general core-halo-strahl feature in the solar wind. The temperature ratio between the core and hot components is nearly independent of the heliospheric distance to the Sun. We show that the core-halo relative drift previously reported is a relic of the fully saturated two-stream instability. Our theoretical results are consistent with the observations while new tests for this model are provided.

  10. High velocity wind tunnels : their application to ballistics, aerodynamics, and aeronautics

    NASA Technical Reports Server (NTRS)

    Huguenard, E

    1925-01-01

    The object of this article is to set forth the particular properties of swiftly-moving air, how these affect the installation of a wind tunnel, the experimental results already obtained, the possible applications of such a tunnel, and what can be easily accomplished at the present time.

  11. Differential Velocity between Solar Wind Protons and Alpha Particles in Pressure Balance Structures

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Steinberg, John T.; Sakurai, Takashi

    2004-01-01

    Pressure balance structures (PBSs) are a common high-plasma beta feature in high-latitude, high-speed solar wind. They have been proposed as remnants of coronal plumes. If true, they should reflect the observation that plumes are rooted in unipolar magnetic flux concentrations in the photosphere and are heated as oppositely directed flux is advected into and reconnects with the flux concentration. A minimum variance analysis (MVA) of magnetic discontinuities in PBSs showed there is a larger proportion of tangential discontinuities than in the surrounding high-speed wind, supporting the hypothesis that plasmoids or extended current sheets are formed during reconnection at the base of plumes. To further evaluate the character of magnetic field discontinuities in PBSs, differential streaming between alpha particles and protons is analyzed here for the same sample of PBSs used in the MVA. Alpha particles in high-speed wind generally have a higher radial flow speed than protons. However, if the magnetic field is folded back on itself, as in a large-amplitude Alfven wave, alpha particles will locally have a radial flow speed less than protons. This characteristic is used here to distinguish between folded back magnetic fields (which would contain rotational discontinuities) and tangential discontinuities using Ulysses high-latitude, high-speed solar wind data. The analysis indicates that almost all reversals in the radial magnetic field in PBSs are folded back field lines. This is found to also be true outside PBSs, supporting existing results for typical high-speed, high-latitude wind. There remains a small number of cases that appear not to be folds in the magnetic field and which may be flux tubes with both ends rooted in the Sun. The distinct difference in MVA results inside and outside PBSs remains unexplained.

  12. Survey of the spectral properties of turbulence in the solar wind, the magnetospheres of Venus and Earth, at solar minimum and maximum

    NASA Astrophysics Data System (ADS)

    Echim, Marius M.

    2014-05-01

    In the framework of the European FP7 project STORM ("Solar system plasma Turbulence: Observations, inteRmittency and Multifractals") we analyze the properties of turbulence in various regions of the solar system, for the minimum and respectively maximum of the solar activity. The main scientific objective of STORM is to advance the understanding of the turbulent energy transfer, intermittency and multifractals in space plasmas. Specific analysis methods are applied on magnetic field and plasma data provided by Ulysses, Venus Express and Cluster, as well as other solar system missions (e.g. Giotto, Cassini). In this paper we provide an overview of the spectral properties of turbulence derived from Power Spectral Densities (PSD) computed in the solar wind (from Ulysses, Cluster, Venus Express) and at the interface of planetary magnetospheres with the solar wind (from Venus Express, Cluster). Ulysses provides data in the solar wind between 1992 and 2008, out of the ecliptic, at radial distances ranging between 1.3 and 5.4 AU. We selected only those Ulysses data that satisfy a consolidated set of selection criteria able to identify "pure" fast and slow wind. We analyzed Venus Express data close to the orbital apogee, in the solar wind, at 0.72 AU, and in the Venus magnetosheath. We investigated Cluster data in the solar wind (for time intervals not affected by planetary ions effects), the magnetosheath and few crossings of other key magnetospheric regions (cusp, plasma sheet). We organize our PSD results in three solar wind data bases (one for the solar maximum, 1999-2001, two for the solar minimum, 1997-1998 and respectively, 2007-2008), and two planetary databases (one for the solar maximum, 2000-2001, that includes PSD obtained in the terrestrial magnetosphere, and one for the solar minimum, 2007-2008, that includes PSD obtained in the terrestrial and Venus magnetospheres and magnetosheaths). In addition to investigating the properties of turbulence for the minimum

  13. Wind motor applications for transportation

    SciTech Connect

    Lysenko, G.P.; Grigoriev, B.V.; Karpin, K.B.

    1996-12-31

    Motion equation for a vehicle equipped with a wind motor allows, taking into account the drag coefficients, to determine the optimal wind drag velocity in the wind motor`s plane, and hence, obtain all the necessary data for the wind wheel blades geometrical parameters definition. This optimal drag velocity significantly differs from the flow drag velocity which determines the maximum wind motor power. Solution of the motion equation with low drag coefficients indicates that the vehicle speed against the wind may be twice as the wind speed. One of possible transportation wind motor applications is its use on various ships. A ship with such a wind motor may be substantially easier to steer, and if certain devices are available, may proceed in autonomous control mode. Besides, it is capable of moving within narrow fairways. The cruise speed of a sailing boat and wind-motored ship were compared provided that the wind velocity direction changes along a harmonic law with regard to the motion direction. Mean dimensionless speed of the wind-motored ship appears to be by 20--25% higher than that of a sailing boat. There was analyzed a possibility of using the wind motors on planet rovers in Mars or Venus atmospheric conditions. A Mars rover power and motor system has been assessed for the power level of 3 kW.

  14. Optimum onset period for training based on maximum peak velocity of height by wavelet interpolation method in Japanese high school athletes.

    PubMed

    Fujii, Katsunori; Demura, Shinichi; Matsuzawa, Jinzaburou

    2005-01-01

    The Wavelet Interpolation Method (WIM) was applied to the longitudinal records of individuals' heights and weights from 6 to 17 years of age (1983 to 1994) in an athlete group (male: 45, female: 50) and a control group (male: 85, female: 85). The criterion of maturity was derived from age at Maximum Peak Velocity (MPV) of height in the control group. Ages at MPV of height and weight were compared between the athletes and control subjects. The WIM was also applied to mean heights from 6.5 to 17.5 years of all the subjects classified by maturation rate in order to derive a model of growth velocity types. Among the athletes, the males were early-maturing and the females tended to be late-maturing. The difference between the ages at MPV of height and weight in males and females was less in the athletes group than in the control group. For the growth velocity model, in the athlete group, three types could be confirmed among the males, and five among the females. By making use of the type models, it was possible to clarify the spans of adolescence as classified by maturation rates, and it was concluded that the period following the age at MPV seems appropriate for the introduction of regular athletic training for each level of maturity.

  15. Lidar measurement of wind velocity turbulence spectra encountered by a rotating turbine blade

    SciTech Connect

    Hardesty, R.M.; Korrell, J.A.; Hall, F.F. Jr.

    1982-01-01

    A homodyne CO/sub 2/ lidar system beam was conically scanned around a horizontal axis to measure the wind speed and turbulence characteristics encountered by a rotating turbine blade. Turbulence spectra obtained from the scanning lidar differed considerably from those calculated from fixed-point anemometer measurements, showing a redistribution of energy from lower to higher frequencies. The differences appeared more pronounced during periods when the atmosphere was stable.

  16. A Method for the Instantaneous Determination of the Velocity and Direction of the Wind

    NASA Technical Reports Server (NTRS)

    Huguenard, E; Magnan, A; Planiol, A

    1924-01-01

    The laboratory instruments, which we often constructed with makeshift means, gave encouraging results and showed that they could satisfactorily meet the required conditions. By limiting ourselves to the employment of hot wires of 0.05 mm (0.002 in.) diameter, we obtained instruments which faithfully followed all the wind fluctuations of over 0.1 second and even much more rapid variations without any very great error.

  17. Measuring air-sea gas-exchange velocities in a large-scale annular wind-wave tank

    NASA Astrophysics Data System (ADS)

    Mesarchaki, E.; Kräuter, C.; Krall, K. E.; Bopp, M.; Helleis, F.; Williams, J.; Jähne, B.

    2015-01-01

    In this study we present gas-exchange measurements conducted in a large-scale wind-wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were examined under various turbulent (u10 = 0.73 to 13.2 m s-1) conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100) surface states. This paper details the complete methodology, experimental procedure and instrumentation used to derive the total transfer velocity for all examined tracers. The results presented here demonstrate the efficacy of the proposed method, and the derived gas-exchange velocities are shown to be comparable to previous investigations. The gas transfer behaviour is exemplified by contrasting two species at the two solubility extremes, namely nitrous oxide (N2O) and methanol (CH3OH). Interestingly, a strong transfer velocity reduction (up to a factor of 3) was observed for the relatively insoluble N2O under a surfactant covered water surface. In contrast, the surfactant effect for CH3OH, the high solubility tracer, was significantly weaker.

  18. Comparative Solar Wind Properties at 9AU between the maximum and late declining phases of the Solar Cycle and possible implications for the magnetospheric dynamics of Saturn

    NASA Astrophysics Data System (ADS)

    Went, D. R.; Jackman, C. M.; Forsyth, R. J.; Dougherty, M. K.; Crary, F. J.

    2009-04-01

    We compare and contrast the general plasma and magnetic field properties of the solar wind upstream of Saturn (8.5-9.5 AU) at solar maximum (Pioneer-11 encounter) and the late-declining (Cassini approach) phase of the solar cycle. In both cases we find a highly structured solar wind dominated by co-rotating interaction regions (CIRs), merged interaction regions (MIRs) and Interplanetary Coronal Mass Ejections (ICMEs) that temporarily disrupt an otherwise clear two sector interplanetary magnetic field structure. Solar rotations generally contain two CIR compressions with embedded crossings of the heliospheric current sheet. There is no conclusive evidence for (persistent) departures from the Parker Spiral IMF model in this region of the heliosphere at either phase of the solar cycle, consistent with previous analyses (Thomas and Smith 1980, Jackman et al. 2008). However it is clear that average plasma properties vary significantly between the maximum and late declining phases of the cycle and there are a number of small but notable deviations. In particular, the average dynamic pressure of the solar wind varies by a factor of roughly two between solar maximum and solar minimum with potentially important consequences for the dynamics of Saturn's magnetosphere. These consequences should become apparent as Cassini enters its extended Equinox Mission which should encompass the rising phase and eventually maximum of Solar Cycle 24. They will be discussed and predictions will be made for future Cassini observations.

  19. An atlas of monthly mean distributions of SSMI surface wind speed, AVHRR/2 sea surface temperature, AMI surface wind velocity, TOPEX/POSEIDON sea surface height, and ECMWF surface wind velocity during 1993

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.

    1995-01-01

    The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.

  20. Tsallis Distribution Functions in the Solar Wind: Magnetic Field and Velocity Observations

    SciTech Connect

    Burlaga, Leonard F.; Vinas, Adolfo F.

    2007-12-06

    The distributions the fluctuations of magnetic field strengths B(t) observed on a scale of a year in the heliosphere between 1 AU and 90 AU are approximately lognormal. The PDFs of the corresponding increments of B(t) are Tsallis distributions on scales from 1 hr--128 days between 1 and 90 AU. A deterministic MHD model predicts these results. The model predicts that small chaotic structures merge to form large structures. There is a 'phase transition' near {approx}40 AU at which the there is a change from growth to decay. Between R{approx}40 and 85 AU the solar wind is in a quasi-equilibrium state described by a 'q-triplet'.

  1. Estimation of neutral wind velocity in the ionospheric heights by HF-Doppler technique

    NASA Technical Reports Server (NTRS)

    Kitamura, T.; Takefu, M.; Hiroshige, N.

    1985-01-01

    Three net stations located about 100 kilometers apart were set up around the station of the standard frequency and time signals (JJY) in central Japan and measurements of atmospheric gravity waves in the ionospheric heights (F-region, 200 to 400 km) were made by means of the HF-Doppler technique during the period of February 1983 to December 1983. The frequencies of the signals received are 5.0, 8.0 and 10.0 MHz, but only the 8.0 MHz signals are used for the present study, because no ambiguities due to the interference among other stations such as BPM, BSF, etc. exist by the use of 8.0 MHz. Two main results concerning the horizontal phase velocity of the atmospheric gravity waves with periods of 40 to 70 min may be summarized as follows: (1) the value of the phase velocity ranges from 50 m/s to 300 m/s; (2) the direction of the gravity wave propagation shows a definite seasonal variation. The prevailing direction of the gravity waves in winter is from north to south, which is consistent with the results obtained from other investigations. On the other hand, the two directions, from northeast to southwest and from southeast to northeast, dominate in summer.

  2. On the lack of any statistically significant effect of Mercury on the solar wind velocity near the orbit of the Earth

    NASA Astrophysics Data System (ADS)

    Veselovsky, I. S.; Shugay, Yu. S.

    2016-11-01

    The notion that Mercury modulates considerably the solar wind velocity at the orbit of the Earth (Nikulin, 2014) is erroneous. It is not grounded in experimental data. Quantitative estimates also suggest that this effect should be negligible at such large distances from a planet that small. The assertion that this effect may be used in practice to improve the accuracy of prediction of the solar wind velocity (Nikulin, 2014) is unfounded as well: no credible observational and theoretical evidence in favor of it has been offered.

  3. Characteristics of the interplanetary shocks formed by a sudden increase in the velocity of the solar wind from a coronal hole

    NASA Technical Reports Server (NTRS)

    Bravo, S.

    1995-01-01

    Coronal holes are the sources of the solar wind and, according to recent YOKOH observations, may undergo rapid changes which are associated with manifestations of explosive solar activity. Rapid changes in a hole's structure will produce rapid changes in the characteristics of the wind emerging from it and, in the particular c se of a sudden increase in wind velocity, this may lead to the formation of an interplanetary shock. We discuss the characteristics of shocks formed in such a way and compare them with interplanetary observations.

  4. On the prediction of threshold friction velocity of wind erosion using soil reflectance spectroscopy

    USGS Publications Warehouse

    Li, Junran; Flagg, Cody B.; Okin, Gregory S.; Painter, Thomas H.; Dintwe, Kebonye; Belnap, Jayne

    2015-01-01

    Current approaches to estimate threshold friction velocity (TFV) of soil particle movement, including both experimental and empirical methods, suffer from various disadvantages, and they are particularly not effective to estimate TFVs at regional to global scales. Reflectance spectroscopy has been widely used to obtain TFV-related soil properties (e.g., moisture, texture, crust, etc.), however, no studies have attempted to directly relate soil TFV to their spectral reflectance. The objective of this study was to investigate the relationship between soil TFV and soil reflectance in the visible and near infrared (VIS–NIR, 350–2500 nm) spectral region, and to identify the best range of wavelengths or combinations of wavelengths to predict TFV. Threshold friction velocity of 31 soils, along with their reflectance spectra and texture were measured in the Mojave Desert, California and Moab, Utah. A correlation analysis between TFV and soil reflectance identified a number of isolated, narrow spectral domains that largely fell into two spectral regions, the VIS area (400–700 nm) and the short-wavelength infrared (SWIR) area (1100–2500 nm). A partial least squares regression analysis (PLSR) confirmed the significant bands that were identified by correlation analysis. The PLSR further identified the strong relationship between the first-difference transformation and TFV at several narrow regions around 1400, 1900, and 2200 nm. The use of PLSR allowed us to identify a total of 17 key wavelengths in the investigated spectrum range, which may be used as the optimal spectral settings for estimating TFV in the laboratory and field, or mapping of TFV using airborne/satellite sensors.

  5. Investigations of the air flow velocity field structure above the wavy surface under severe wind conditions by particle image velosimetry technique.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Ermakova, Olga

    2013-04-01

    Preliminary experiments devoted to measuring characteristics of the air flow above the waved water surface for the wide range of wind speeds were performed with the application of modified Particle Image Velosimetry (PIV) technique. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 °, cross section of air channel 0.4×0.4 m) for four different axial wind speeds: 8.7, 13.5, 19 and 24 m/s, corresponding to the equivalent 10-m wind speeds 15, 20, 30 40 m/s correspondingly. Intensive wave breaking with forming foam crest and droplets generations was occurred for two last wind conditions. The modified PIV-method based on the use of continuous-wave (CW) laser illumination of the airflow seeded by tiny particles and with highspeed video. Spherical 20 μm polyamide particles with density 1.02 g/sm3 and inertial time 7•10-3 s were used for seeding airflow with special injecting device. Green (532 nm) CW laser with 4 Wt output power was used as a source for light sheet. High speed digital camera Videosprint was used for taking visualized air flow images with the frame rate 2000 Hz s and exposure time 10 ms Combination including iteration Canny method [1] for obtaining curvilinear surface from the images in the laser sheet view and contact measurements of surface elevation by wire wave gauge installed near the border of working area for the surface wave profile was used. Then velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved by averaging over obtained ensembles of wind velocity field realizations and over a wave period even for the cases of intensive wave breaking and droplets generation. To verify the PIV method additional measurements of mean velocity profiles over were carried out by the contact method using the Pitot tube. In the area of overlap, wind velocity profiles measured by

  6. Traveling solar-wind bulk-velocity fluctuations and their effects on electron heating in the heliosphere

    NASA Astrophysics Data System (ADS)

    Fahr, Hans J.; Chashei, Igor V.; Verscharen, Daniel

    2014-11-01

    Ambient plasma electrons undergo strong heating in regions associated with compressive bulk-velocity jumps ΔU that travel through the interplanetary solar wind. The heating is generated by their specific interactions with the jump-inherent electric fields. After this energy gain is thermalized by the shock passage through the operation of the Buneman instability, strong electron heating occurs that substantially influences the radial electron temperature profile. We previously studied the resulting electron temperature assuming that the amplitude of the traveling velocity jump remains constant with increasing solar distance. Now we aim at a more consistent view, describing the change in jump amplitude with distance that is caused by the heated electrons. We describe the reduction of the jump amplitude as a result of the energy expended by the traveling jump structure. We consider three effects: energy loss due to heating of electrons, energy loss due to work done against the pressure gradient of the pick-up ions, and an energy gain due to nonlinear jump steepening. Taking these effects into account, we show that the decrease in jump amplitude with solar distance is more pronounced when the initial jump amplitude is higher in the inner solar system. Independent of the initial jump amplitude, it eventually decreases with increasing distance to a value of about ΔU/U ≃ 0.1 at the position of the heliospheric termination shock, where ΔU is the jump amplitude, and U is the average solar-wind bulk velocity.The electron temperature, on the other hand, is strongly correlated with the initial jump amplitude and leads to electron temperatures between 6000 K and 20 000 K at distances beyond 50 AU. We compare our results with in situ measurements of the electron-core temperature from the Ulysses spacecraft in the plane of the ecliptic for 1.5 AU ≤ r ≤ 5 AU, where r is the distance from the Sun. Our results agree very well with these observations, which corroborates our

  7. Effects of forward velocity on noise for a J85 turbojet engine with multitube suppressor from wind tunnel and flight tests

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Miles, J. H.; Sargent, N. B.

    1976-01-01

    Flight tests and wind tunnel noise tests using a J85 engine with some representative jet exhaust noise suppressors are reported. Capabilities and limitations of the two types of experimental methods are evaluated with emphasis on investigation of forward velocity effects. The suppressor arrangement was a 104-elliptical-tube nozzle configuration, with or without an acoustically lined shroud. The suppressor noise levels are found not reduced as much by forward velocity as expected for unsuppressed jets. The directivity and forward velocity effects appear more similar to predicted trends for internally generated noise than for unsuppressed jet noise.

  8. The effect of wind velocity, air temperature and humidity on NH 3 and SO 2 transfer into bean leaves ( phaseolus vulgaris L.)

    NASA Astrophysics Data System (ADS)

    van Hove, L. W. A.; Vredenberg, W. J.; Adema, E. H.

    The influence of wind velocity, air temperature and vapour pressure deficit of the air (VPD) on NH 3 and SO 2 transfer into bean leaves ( Phaseolus vulgaris L.) was examined using a leaf chamber. The measurements suggested a transition in the properties of the leaf boundary layer at a wind velocity of 0.3-0.4 ms -1 which corresponds to a Recrit value of about 2000. At higher wind velocities the leaf boundary layer resistance ( rb) was 1.5-2 times lower than can be calculated from the theory. Nevertheless, the assessed relationships between rb and wind velocity appeared to be similar to the theoretical derived relationship for rb. The NH 3 flux and in particular the SO 2 flux into the leaf strongly increased at a VPD decline. The increase of the NH 3 flux could be attributed to an increase of the stomatal conductance ( gs). However, the increase of the SO 2 flux could only partly be explained by an increase of gs. An apparent additional uptake was also observed for the NH 3 uptake at a low temperature and VPD. The SO 2 flux was also influenced by air temperature which could be explained by a temperature effect on gs. The results suggest that calculation of the NH 3 and SO 2 flux using data of gs gives a serious understimation of the real flux of these gases into leaves at a low temperature and VPD.

  9. Monte Carlo studies of ocean wind vector measurements by SCATT: Objective criteria and maximum likelihood estimates for removal of aliases, and effects of cell size on accuracy of vector winds

    NASA Technical Reports Server (NTRS)

    Pierson, W. J.

    1982-01-01

    The scatterometer on the National Oceanic Satellite System (NOSS) is studied by means of Monte Carlo techniques so as to determine the effect of two additional antennas for alias (or ambiguity) removal by means of an objective criteria technique and a normalized maximum likelihood estimator. Cells nominally 10 km by 10 km, 10 km by 50 km, and 50 km by 50 km are simulated for winds of 4, 8, 12 and 24 m/s and incidence angles of 29, 39, 47, and 53.5 deg for 15 deg changes in direction. The normalized maximum likelihood estimate (MLE) is correct a large part of the time, but the objective criterion technique is recommended as a reserve, and more quickly computed, procedure. Both methods for alias removal depend on the differences in the present model function at upwind and downwind. For 10 km by 10 km cells, it is found that the MLE method introduces a correlation between wind speed errors and aspect angle (wind direction) errors that can be as high as 0.8 or 0.9 and that the wind direction errors are unacceptably large, compared to those obtained for the SASS for similar assumptions.

  10. Simulation comparison of a decoupled longitudinal control system and a velocity vector control wheel steering system during landings in wind shear

    NASA Technical Reports Server (NTRS)

    Kimball, G., Jr.

    1980-01-01

    A simulator comparison of the velocity vector control wheel steering (VCWS) system and a decoupled longitudinal control system is presented. The piloting task was to use the electronic attitude direction indicator (EADI) to capture and maintain a 3 degree glide slope in the presence of wind shear and to complete the landing using the perspective runway included on the EADI. The decoupled control system used constant prefilter and feedback gains to provide steady state decoupling of flight path angle, pitch angle, and forward velocity. The decoupled control system improved the pilots' ability to control airspeed and flight path angle during the final stages of an approach made in severe wind shear. The system also improved their ability to complete safe landings. The pilots preferred the decoupled control system in severe winds and, on a pilot rating scale, rated the approach and landing task with the decoupled control system as much as 3 to 4 increments better than use of the VCWS system.

  11. Wind-tunnel and Flight Investigations of the Use of Leading-Edge Area Suction for the Purpose of Increasing the Maximum Lift Coefficient of a 35 Degree Swept-Wing Airplane

    NASA Technical Reports Server (NTRS)

    Holzhauser, Curt A; Bray, Richard S

    1956-01-01

    An investigation was undertaken to determine the increase in maximum lift coefficient that could be obtained by applying area suction near the leading edge of a wing. This investigation was performed first with a 35 degree swept-wing model in the wind tunnel, and then with an operational 35 degree swept-wing airplane which was modified in accord with the wind-tunnel results. The wind-tunnel and flight tests indicated that the maximum lift coefficient was increased more than 50 percent by the use of area suction. Good agreement was obtained in the comparison of the wind-tunnel results with those measured in flight.

  12. Crustal seismicity and the earthquake catalog maximum moment magnitudes (Mcmax) in stable continental regions (SCRs): correlation with the seismic velocity of the lithosphere

    USGS Publications Warehouse

    Mooney, Walter D.; Ritsema, Jeroen; Hwang, Yong Keun

    2012-01-01

    A joint analysis of global seismicity and seismic tomography indicates that the seismic potential of continental intraplate regions is correlated with the seismic properties of the lithosphere. Archean and Early Proterozoic cratons with cold, stable continental lithospheric roots have fewer crustal earthquakes and a lower maximum earthquake catalog moment magnitude (Mcmax). The geographic distribution of thick lithospheric roots is inferred from the global seismic model S40RTS that displays shear-velocity perturbations (δVS) relative to the Preliminary Reference Earth Model (PREM). We compare δVS at a depth of 175 km with the locations and moment magnitudes (Mw) of intraplate earthquakes in the crust (Schulte and Mooney, 2005). Many intraplate earthquakes concentrate around the pronounced lateral gradients in lithospheric thickness that surround the cratons and few earthquakes occur within cratonic interiors. Globally, 27% of stable continental lithosphere is underlain by δVS≥3.0%, yet only 6.5% of crustal earthquakes with Mw>4.5 occur above these regions with thick lithosphere. No earthquakes in our catalog with Mw>6 have occurred above mantle lithosphere with δVS>3.5%, although such lithosphere comprises 19% of stable continental regions. Thus, for cratonic interiors with seismically determined thick lithosphere (1) there is a significant decrease in the number of crustal earthquakes, and (2) the maximum moment magnitude found in the earthquake catalog is Mcmax=6.0. We attribute these observations to higher lithospheric strength beneath cratonic interiors due to lower temperatures and dehydration in both the lower crust and the highly depleted lithospheric root.

  13. Spatiotemporal patterns in methane flux and gas transfer velocity at low wind speeds: Implications for upscaling studies on small lakes

    NASA Astrophysics Data System (ADS)

    Schilder, J.; Bastviken, D.; Hardenbroek, M.; Heiri, O.

    2016-06-01

    Lakes contribute significantly to the global natural emissions of methane (CH4) and carbon dioxide. However, to accurately incorporate them into the continental carbon balance more detailed surveys of lacustrine greenhouse gas emissions are needed, especially in respect to spatiotemporal variability and to how this affects the upscaling of results. We investigated CH4 flux from a small, wind-shielded lake during 10 field trips over a 14 month period. We show that floating chambers may be used to calibrate the relationship between gas transfer velocity (k) and wind speed at 10 m height (U10) to the local system, in order to obtain more accurate estimates of diffusive CH4 flux than by applying general models predicting k based on U10. We confirm earlier studies indicating strong within-lake spatial variation in this relationship and in ebullitive CH4 flux within the lake basin. However, in contrast to the pattern reported in other studies, ebullitive CH4 flux was highest in the central parts of the lake. Our results indicate positive relationships between k and U10 at very low U10 (0-3 m s-1), which disagrees with earlier suggestions that this relationship may be negligible at low U10 values. We estimate annually averaged open water CH4 emission from Lake Gerzensee to be 3.6-5.8 mmol m-2 d-1. Our data suggest that estimates of greenhouse gas emissions from aquatic systems to the atmosphere based on the upscaling of short-term and small-scale measurements can be improved if both spatial and temporal variabilities of emissions are taken into account.

  14. RETRACTED: The influence of sand diameter and wind velocity on sand particle lift-off and incident angles in the windblown sand flux

    NASA Astrophysics Data System (ADS)

    Bo, Tian-Li; Zheng, Xiao-Jing; Duan, Shao-Zhen; Liang, Yi-Rui

    2013-05-01

    This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of the Editors-in-Chief. This article also contains significant similarity with parts of text, written by the same author(s), that have appeared in Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, The influence of wind velocity and sand grain diameter on the falling velocities of sand particles, Powder Technology, Volume 241, June 2013, Pages 158-165. Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, Analysis of sand particles' lift-off and incident velocities in wind-blown sand flux, Acta Mechanica Sinica, April 2013, Volume 29, Issue 2, pp 158-165. Tian-Li Bo, Xiao-Jing Zheng, Shao-Zhen Duan, Yi-Rui Liang, Influence of sand grain diameter and wind velocity on lift-off velocities of sand particles, The European Physical Journal E, May 2013, 36:50. Tian-Li Bo, Shao-Zhen Duan, Xiao-Jing Zheng, Yi-Rui Liang, The influence of sand bed temperature on lift-off and falling parameters in windblown sand flux, Geomorphology, Volume 204, 1 January 2014, Pages 477-484. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  15. VELOCITY-SHEAR-INDUCED MODE COUPLING IN THE SOLAR ATMOSPHERE AND SOLAR WIND: IMPLICATIONS FOR PLASMA HEATING AND MHD TURBULENCE

    SciTech Connect

    Hollweg, Joseph V.; Chandran, Benjamin D. G.; Kaghashvili, Edisher Kh. E-mail: ekaghash@aer.com

    2013-06-01

    We analytically consider how velocity shear in the corona and solar wind can cause an initial Alfven wave to drive up other propagating signals. The process is similar to the familiar coupling into other modes induced by non-WKB refraction in an inhomogeneous plasma, except here the refraction is a consequence of velocity shear. We limit our discussion to a low-beta plasma, and ignore couplings into signals resembling the slow mode. If the initial Alfven wave is propagating nearly parallel to the background magnetic field, then the induced signals are mainly a forward-going (i.e., propagating in the same sense as the original Alfven wave) fast mode, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; both signals are compressive and subject to damping by the Landau resonance. For an initial Alfven wave propagating obliquely with respect to the magnetic field, the induced signals are mainly forward- and backward-going fast modes, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; these signals are all compressive and subject to damping by the Landau resonance. A backward-going Alfven wave, thought to be important in the development of MHD turbulence, is also produced, but it is very weak. However, we suggest that for oblique propagation of the initial Alfven wave the induced fast-polarized signal propagating like a forward-going Alfven wave may interact coherently with the initial Alfven wave and distort it at a strong-turbulence-like rate.

  16. Calibration of the maximum carboxylation velocity (Vcmax) using data mining techniques and ecophysiological data from the Brazilian semiarid region, for use in Dynamic Global Vegetation Models.

    PubMed

    Rezende, L F C; Arenque-Musa, B C; Moura, M S B; Aidar, S T; Von Randow, C; Menezes, R S C; Ometto, J P B H

    2016-06-01

    The semiarid region of northeastern Brazil, the Caatinga, is extremely important due to its biodiversity and endemism. Measurements of plant physiology are crucial to the calibration of Dynamic Global Vegetation Models (DGVMs) that are currently used to simulate the responses of vegetation in face of global changes. In a field work realized in an area of preserved Caatinga forest located in Petrolina, Pernambuco, measurements of carbon assimilation (in response to light and CO2) were performed on 11 individuals of Poincianella microphylla, a native species that is abundant in this region. These data were used to calibrate the maximum carboxylation velocity (Vcmax) used in the INLAND model. The calibration techniques used were Multiple Linear Regression (MLR), and data mining techniques as the Classification And Regression Tree (CART) and K-MEANS. The results were compared to the UNCALIBRATED model. It was found that simulated Gross Primary Productivity (GPP) reached 72% of observed GPP when using the calibrated Vcmax values, whereas the UNCALIBRATED approach accounted for 42% of observed GPP. Thus, this work shows the benefits of calibrating DGVMs using field ecophysiological measurements, especially in areas where field data is scarce or non-existent, such as in the Caatinga.

  17. Contributions of the secondary jet to the maximum tangential velocity and to the collection efficiency of the fixed guide vane type axial flow cyclone dust collector

    NASA Astrophysics Data System (ADS)

    Ogawa, Akira; Anzou, Hideki; Yamamoto, So; Shimagaki, Mituru

    2015-11-01

    In order to control the maximum tangential velocity Vθm(m/s) of the turbulent rotational air flow and the collection efficiency ηc (%) using the fly ash of the mean diameter XR50=5.57 µm, two secondary jet nozzles were installed to the body of the axial flow cyclone dust collector with the body diameter D1=99mm. Then in order to estimate Vθm (m/s), the conservation theory of the angular momentum flux with Ogawa combined vortex model was applied. The comparisons of the estimated results of Vθm(m/s) with the measured results by the cylindrical Pitot-tube were shown in good agreement. And also the estimated collection efficiencies ηcth (%) basing upon the cut-size Xc (µm) which was calculated by using the estimated Vθ m(m/s) and also the particle size distribution R(Xp) were shown a little higher values than the experimental results due to the re-entrainment of the collected dust. The best method for adjustment of ηc (%) related to the contribution of the secondary jet flow is principally to apply the centrifugal effect Φc (1). Above stated results are described in detail.

  18. The effect of the time interval used to calculate mean wind velocity on the calculated drift potential, relative drift potential, and resultant drift direction for sands from three deserts in northern China

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengcai; Dong, Zhibao; Zhao, Aiguo

    2016-01-01

    Wind is the power behind many erosion processes and is responsible for many of the characteristics of arid zone geomorphology. Wind velocity is a key factor in determining the potential sand transport, but the nature of the wind velocity data can strongly affect assessments of the risk of blowing sand. In this study, we obtained real-time wind velocity data in a region of the Tengger Desert with shifting sands, in the Badain Jaran Desert, and in the Madoi desertification land, with the data obtained at 1-min intervals, and used the data to determine the influence of how the wind velocity was calculated (mean versus mid-point values and the averaging time used to calculate these values) on sand drift potential. In the three regions, for both the mean and the mid-point wind velocities, the estimated drift potential decreased with increasing averaging time. The relationships between velocities calculated using the different averaging time intervals and the value calculated using a 1-min interval could be expressed as linear functions. The drift potential calculated using the mid-point wind velocity was larger than that calculated using the mean wind velocity.

  19. Solar-wind velocity measurements from near-Sun comets C/2011 W3 (Lovejoy), C/2011 L4 (Pan-STARRS), and C/2012 S1 (ISON)

    NASA Astrophysics Data System (ADS)

    Ramanjooloo, Y.; Jones, G. H.; Coates, A.; Owens, M. J.; Battams, K.

    2014-07-01

    Since the mid-20th century, comets' plasma (type I) tails have been studied as natural probes of the solar wind [1]. Comets have induced magnetotails, formed through the draping of the heliospheric magnetic field by the velocity shear in the mass-loaded solar wind. These can be easily observed remotely as the comets' plasma tails, which generally point away from the Sun. Local solar-wind conditions directly influence the morphology and dynamics of a comet's plasma tail. During ideal observing geometries, the orientation and structure of the plasma tail can reveal large-scale and small-scale variations in the local solar-wind structure. These variations can be manifested as tail condensations, kinks, and disconnection events. Over 50 % of observed catalogued comets are sungrazing comets [2], fragments of three different parent comets. Since 2011, two bright new comets, C/2011 W3 [3] (from hereon comet Lovejoy) and C/2012 S1 [4] (hereon comet ISON) have experienced extreme solar-wind conditions and insolation of their nucleus during their perihelion passages, approaching to within 8.3×10^5 km (1.19 solar radii) and 1.9×10^6 km (2.79 solar radii) of the solar centre. They each displayed a prominent plasma tail, proving to be exceptions amongst the observed group of sungrazing comets. These bright sungrazers provide unprecedented access to study the solar wind in the heretofore unprobed innermost region of the solar corona. The closest spacecraft in-situ sampling of the solar wind by the Helios probes reached 0.29 au. For this study, we define a sungrazing comet as one with its perihelion within the solar Roche limit (3.70 solar radii). We also extend this study to include C/2011 L4 [5] (comet Pan-STARRS), a comet with a much further perihelion distance of 0.302 au. The technique employed in this study was first established by analysing geocentric amateur observations of comets C/2001 Q4 (NEAT) and C/2004 Q2 (Machholz) [7]. These amateur images, obtained with modern

  20. WINDII observations of thermospheric O(1D) nightglow emission rates, temperature, and wind: 1. The northern hemisphere midnight temperature maximum and the wave 4

    NASA Astrophysics Data System (ADS)

    Shepherd, M. G.

    2016-11-01

    The midnight temperature maximum (MTM) is a large-scale neutral temperature anomaly with a wide-ranging effect on the nighttime thermospheric dynamics at low latitudes. The focus of the current study is an investigation of the extent of the MTM to northern midlatitudes (20°N-40°N), employing multiyear observations of O(1D) airglow volume emission rates (VERs), Doppler temperatures (DoT), and neutral winds over the altitude range of 190-300 km by the Wind Imaging Interferometer (WINDII) experiment on board the Upper Atmosphere Research Satellite. The MTM dependence on longitude, season, local time, and altitude was examined. Midnight maxima were observed both in the O(1D) VER and DoT with peaks at 24 local time (LT) during winter solstice, 22 LT for fall equinox, and 2 LT for spring equinox. The peak in the DoTs was marked with strong southward meridional winds (e.g., 100-150 m s-1). Latitude/longitude maps of the VER and DoT revealed wave 4 signatures most persistently seen around local midnight, with very little variation in phase, while the amplitude of the individual peaks varied with time. The observed perturbations in the O(1D) VER and temperature were out of phase with respect to longitude. Two of the peaks at 100°E and 260°E-300°E were almost stationary, while the other two peaks varied in strength over the period of observation. A common feature was that one of the wave 4 peaks was always over the American sector; it was constant with local time, and the meridional wind was southward only over the same region.

  1. EnKF OSSE Experiments Assessing the Impact of HIRAD Wind Speed and HIWRAP Radial Velocity Data on Analysis of Hurricane Karl (2010)

    NASA Technical Reports Server (NTRS)

    Albers, Cerese; Sippel, Jason A.; Braun, Scott A.; Miller, Timothy

    2012-01-01

    Previous studies (e.g., Zhang et al. 2009, Weng et al. 2011) have shown that radial velocity data from airborne and ground-based radars can be assimilated into ensemble Kalman filter (EnKF) systems to produce accurate analyses of tropical cyclone vortices, which can reduce forecast intensity error. Recently, wind speed data from SFMR technology has also been assimilated into the same types of systems and has been shown to improve the forecast intensity of mature tropical cyclones. Two instruments that measure these properties were present during the NASA Genesis and Rapid Intensification Processes (GRIP) field experiment in 2010 which sampled Hurricane Karl, and will next be co-located on the same aircraft for the subsequent NASA HS3 experiment. The High Altitude Wind and Rain Profiling Radar (HIWRAP) is a conically scanning Doppler radar mounted upon NASAs Global Hawk unmanned aerial vehicle, and the usefulness of its radial velocity data for assimilation has not been previously examined. Since the radar scans from above with a fairly large fixed elevation angle, it observes a large component of the vertical wind, which could degrade EnKF analyses compared to analyses with data taken from lesser elevation angles. The NASA Hurricane Imaging Radiometer (HIRAD) is a passive microwave radiometer similar to SFMR, and measures emissivity and retrieves hurricane surface wind speeds and rain rates over a much wider swath. Thus, this study examines the impact of assimilating simulated HIWRAP radial velocity data into an EnKF system, simulated HIRAD wind speed, and HIWRAP+HIRAD with the Weather Research and Forecasting (WRF) model and compares the results to no data assimilation and also to the Truth from which the data was simulated for both instruments.

  2. Solar Wind Halo Formation by the Scattering of the Strahl via Direct Cluster/PEACE Observations of the 3D Velocity Distribution Function

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Gurgiolo, Chris A.; Nieves-Chinchilla, Teresa; Goldstein, Melvyn L.

    2010-01-01

    It has been suggested by a number of authors that the solar wind electron halo can be formed by the scattering of the strahl. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions) a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a very limited energy range. When the magnetic field is well off the nominal solar wind flow direction such filaments are inconsistent with any local forces and are probably the result of strong scattering. Furthermore, observations indicates that the strahl component is frequently and significantly anisotropic (Tper/Tpal approx.2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.

  3. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    NASA Astrophysics Data System (ADS)

    van Dooren, M. F.; Kühn, M.; PetroviĆ, V.; Bottasso, C. L.; Campagnolo, F.; Sjöholm, M.; Angelou, N.; Mikkelsen, T.; Croce, A.; Zasso, A.

    2016-09-01

    This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dual- Lidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due to moving blades. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning, and the fact that remote sensing techniques do not disturb the flow while measuring. The research campaign revealed a high potential for using short-range WindScanner Lidar for accurately measuring small scale flow structures in a wind tunnel.

  4. Constant wind regimes during the Last Glacial Maximum and early Holocene: evidence from Little Llangothlin Lagoon, New England Tablelands, eastern Australia

    NASA Astrophysics Data System (ADS)

    Shulmeister, James; Kemp, Justine; Fitzsimmons, Kathryn E.; Gontz, Allen

    2016-07-01

    Here we present the results of a multi-proxy investigation - integrating geomorphology, ground-penetrating radar, and luminescence dating - of a high-elevation lunette and beach berm in northern New South Wales, eastern Australia. The lunette occurs on the eastern shore of Little Llangothlin Lagoon and provides evidence for a lake high stand combined with persistent westerly winds at the Last Glacial Maximum (LGM - centring on 21.5 ka) and during the early Holocene (ca. 9 and 6 ka). The reconstructed atmospheric circulation is similar to the present-day conditions, and we infer no significant changes in circulation at those times, as compared to the present day. Our results suggest that the Southern Hemisphere westerlies were minimally displaced in this sector of Australasia during the latter part of the last ice age. Our observations also support evidence for a more positive water balance at the LGM and early Holocene in this part of the Australian sub-tropics.

  5. Maximum rates of sustained metabolic rate in cold-exposed Djungarian hamsters (Phodopus sungorus): the second wind.

    PubMed

    Ruf, Thomas; Grafl, Beatrice

    2010-10-01

    Djungarian hamsters (Phodopus sungorus) tolerate short-term exposure to ambient temperatures (T(a)s) down to -70°C, but surprisingly, previously appeared to reach maximum sustainable metabolic rate (SusMR) when kept at T(a)s as high as ≥-2°C. We hypothesized that SusMR in Djungarian hamsters may be affected by the degree of prior cold acclimation and temporal patterns of T(a) changes experienced by the animals, as average T(a) declines. After cold-acclimation at +5°C for 6 weeks, hamsters reached rates of SusMR that were 35% higher than previously determined and were able to maintain positive energy balances down to T(a) -9°C. SusMR was unaffected, however, by whether mean cold load was constant or caused by T(a)s cycling between +3°C and as low as -25°C, at hourly intervals. At mean T (a)s between +3 and -3°C hamsters significantly reduced body mass and energy expenditure, but were able to maintain stable body mass at lower T (a)s (-5 to -9°C). These results indicate that prior cold-acclimation profoundly affects SusMR in hamsters and that body mass regulation may play an integral part in maintaining positive energy balance during cold exposure. Because the degree of instantaneous cold load had no effect on SusMR, we hypothesize that limits to energy turnover in Djungarian hamsters are not determined by the capacity to withstand extreme temperatures (i.e., peripheral limits) but are due to central limitation of energy intake.

  6. Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?

    PubMed

    Reynolds, Andy M; Reynolds, Don R; Smith, Alan D; Chapman, Jason W

    2010-12-29

    Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction.

  7. The effect of the nonlinear velocity and history dependencies of the aerodynamic force on the dynamic response of a rotating wind turbine blade

    NASA Astrophysics Data System (ADS)

    van der Male, Pim; van Dalen, Karel N.; Metrikine, Andrei V.

    2016-11-01

    Existing models for the analysis of offshore wind turbines account for the aerodynamic action on the turbine rotor in detail, requiring a high computational price. When considering the foundation of an offshore wind turbine, however, a reduced rotor model may be sufficient. To define such a model, the significance of the nonlinear velocity and history dependency of the aerodynamic force on a rotating blade should be known. Aerodynamic interaction renders the dynamics of a rotating blade in an ambient wind field nonlinear in terms of the dependency on the wind velocity relative to the structural motion. Moreover, the development in time of the aerodynamic force does not follow the flow velocity instantaneously, implying a history dependency. In addition, both the non-uniform blade geometry and the aerodynamic interaction couple the blade motions in and out of the rotational plane. Therefore, this study presents the Euler-Bernoulli formulation of a twisted rotating blade connected to a rigid hub, excited by either instantaneous or history-dependent aerodynamic forces. On this basis, the importance of the history dependency is determined. Moreover, to assess the nonlinear contributions, both models are linearized. The structural response is computed for a stand-still and a rotating blade, based on the NREL 5-MW turbine. To this end, the model is reduced on the basis of its first three free-vibration mode shapes. Blade tip response predictions, computed from turbulent excitation, correctly account for both modal and directional couplings, and the added damping resulting from the dependency of the aerodynamic force on the structural motion. Considering the deflection of the blade tip, the history-dependent and the instantaneous force models perform equally well, providing a basis for the potential use of the instantaneous model for the rotor reduction. The linearized instantaneous model provides similar results for the rotating blade, indicating its potential

  8. Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: principle of operation and performance assessment

    NASA Astrophysics Data System (ADS)

    Bruneau, Didier; Pelon, Jacques

    2003-02-01

    The development of remote-sensing instruments that can be used to monitor several parameters at the same time is important for the study of complex processes such as those that control climate and environment. In this paper the performance of a new concept of lidar receiver that allows for the direct measurement of aerosol and cloud optical properties simultaneously with wind velocity is investigated. This receiver uses a Mach-Zehnder interferometer. Two different configurations, either with four photometric output channels or with fringe imaging on a multichannel detector, are studied. Analytical expressions of the statistical errors are given under the assumption of Gaussian signal spectra. It is shown that similar accuracies can be achieved for both configurations. Performance modeling of the retrieval of semitransparent cloud optical scattering properties and wind velocity was done at different operation wavelengths for a Nd:YAG laser source. Results for such a lidar system onboard an aircraft flying at an altitude of 12 km show that for semitransparent clouds the best results were obtained at 355 nm, with relative standard deviations of 0.5% and 5% for the backscatter and extinction coefficients, respectively, together with a velocity accuracy of 0.2 ms-1. The accuracy of optical properties retrieved for boundary layer aerosols are comparable, whereas the velocity accuracy is decreased to 1 ms-1. Finally, an extrapolation to a large 355-nm spaceborne lidar shows accuracies in the range from 2.5% to 5% for the backscatter coefficient and from 10% to 15% for the extinction coefficient together with a vertical wind speed accuracy of better than 0.5 ms-1 for semitransparent clouds and boundary layer, with a vertical resolution of 500 m and a 100 shot averaging.

  9. WIND VELOCITIES AND SAND FLUXES IN MESQUITE DUNE-LANDS IN THE NORTHERN CHIHUAHUAN DESERT: A COMPARISON BETWEEN FIELD MEASUREMENTS AND THE QUIC (QUICK URBAN AND INDUSTRIAL COMPLEX) MODEL

    EPA Science Inventory

    The poster shows comparisons of wind velocities and sand fluxes between field measurements and a computer model, called QUIC (Quick Urban & Industrial Complex). The comparisons were made for a small desert region in New Mexico.

  10. Introduction to Voigt's wind power plant. [energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Tompkin, J.

    1973-01-01

    The design and operation of a 100 kilowatt wind driven generator are reported. Its high speed three-bladed turbine operates at a height of 50 meters. Blades are rigidly connected to the hub and turbine revolutions change linearly with wind velocity, maintaining a constant speed ratio of blade tip velocity to wind velocity over the full predetermined wind range. Three generators installed in the gondola generate either dc or ac current. Based on local wind conditions, the device has a maximum output of 720 kilowatts at a wind velocity of 16 meters per second. Total electrical capacity is 750 kilowatts, and power output per year is 2,135,000 kilowatt/hours.

  11. Anorthite sputtering by H+ and Arq+ (q = 1-9) at solar wind velocities

    SciTech Connect

    Hijazi, Hussein Dib; Bannister, Mark E.; Meyer, III, Harry M.; Rouleau, Christopher M.; Barghouty, A. F.; Rickman, D. L.; Meyer, Fred W.

    2014-10-16

    Here, we report sputtering measurements of anorthite-like material, taken to be representative of soils found in the lunar highlands, impacted by singly and multicharged ions representative of the solar wind. The ions investigated include protons, as well as singly and multicharged Ar ions (as proxies for the nonreactive heavy solar wind constituents), in the charge state range +1 to +9, at fixed solar wind-relevant impact velocities of 165 and 310 km/s (0.25 keV/amu and 0.5 keV/amu). A quartz microbalance approach (QCM) for determination of total sputtering yields was used. The goal of the measurements was to determine the sputtering contribution of the heavy, multicharged minority solar wind constituents in comparison to that due to the dominant H+ fraction. The QCM results show a yield increase of a factor of about 80 for Ar+ versus H+ sputtering and an enhancement by a factor of 1.67 between Ar9+ and Ar+, which is a clear indication of a potential sputtering effect.

  12. MACS, An Instrument and a Methodology for Simultaneous and Global Measurements of the Coronal Electron Temperature and the Solar Wind Velocity on the Solar Corona

    NASA Technical Reports Server (NTRS)

    Reginald, Nelson L.

    2000-01-01

    In Cram's theory for the formation of the K-coronal spectrum he observed the existence of temperature sensitive anti-nodes, which were separated by temperature insensitive nodes, at certain wave-lengths in the K-coronal spectrum. Cram also showed these properties were remarkably independent of altitude above the solar limb. In this thesis Cram's theory has been extended to incorporate the role of the solar wind in the formation of the K-corona, and we have identified both temperature and wind sensitive intensity ratios. The instrument, MACS, for Multi Aperture Coronal Spectrometer, a fiber optic based spectrograph, was designed for global and simultaneous measurements of the thermal electron temperature and the solar wind velocity in the solar corona. The first ever experiment of this nature was conducted in conjunction with the total solar eclipse of 11 August 1999 in Elazig, Turkey. Here twenty fiber optic tips were positioned in the focal plane of the telescope to observe simultaneously at many different latitudes and two different radial distances in the solar corona. The other ends were vertically stacked and placed at the primary focus of the spectrograph. By isolating the K-coronal spectrum from each fiber the temperature and the wind sensitive intensity ratios were calculated.

  13. A theory of local and global processes which affect solar wind electrons. 1: The origin of typical 1 AU velocity distribution functions: Steady state theory

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.

    1978-01-01

    A detailed first principle kinetic theory for electrons which is neither a classical fluid treatment nor an exospheric calculation is presented. This theory illustrates the global and local properties of the solar wind expansion that shape the observed features of the electron distribution function, such as its bifurcation, its skewness and the differential temperatures of the thermal and suprathermal subpopulations. Coulomb collisions are substantial mediators of the interplanetary electron velocity distribution function and they place a zone for a bifurcation of the electron distribution function deep in the corona. The local cause and effect precept which permeates the physics of denser media is modified for electrons in the solar wind. The local form of transport laws and equations of state which apply to collision dominated plasmas are replaced with global relations that explicitly depend on the relative position of the observer to the boundaries of the system.

  14. A theory of local and global processes which affect solar wind electrons. I - The origin of typical 1 AU velocity distribution functions - Steady state theory

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.; Olbert, S.

    1979-01-01

    A kinetic theory for the velocity distribution of solar wind electrons which illustrates the global and local properties of the solar wind expansion is proposed. By means of the Boltzmann equation with the Krook collision operator accounting for Coulomb collisions, it is found that Coulomb collisions determine the population and shape of the electron distribution function in both the thermal and suprathermal energy regimes. For suprathermal electrons, the cumulative effects of Coulomb interactions are shown to take place on the scale of the heliosphere itself, whereas the Coulomb interactions of thermal electrons occur on a local scale near the point of observation (1 AU). The bifurcation of the electron distribution between thermal and suprathermal electrons is localized to the deep solar corona (1 to 10 solar radii).

  15. MACS, An Instrument, and a Methodology for Simulations and Global Measurements of the Coronal Electron Temperature and the Solar Wind Velocity on the Solar Corona

    NASA Technical Reports Server (NTRS)

    Reginald, Nelson L.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    The determination of the radial and latitudinal temperature and wind profiles of the solar corona is of great importance in understanding the coronal heating mechanism and the dynamics of coronal expansion. Cram presented the theory for the formation of the K-coronal spectrum and identified two important observations. He observed the existence of temperature sensitive anti-nodes at certain wavelengths in the theoretical K-coronal spectra. The anti-nodes are separated by temperature-insensitive nodes. Remarkably, Cram showed that the wavelengths of the nodes and anti-nodes are almost independent of altitude above the solar limb. Because of these features, Cram suggested that the intensity ratios at two anti-nodes could be used as a diagnostic of the electron temperature in the K-corona. Based on this temperature diagnostic technique prescribed by Cram a slit-based spectroscopic study was performed by Ichimoto et al. on the solar corona in conjunction with the total solar eclipse of 3 Nov 1994 in Putre, Chile to determine the temperature profile of the solar corona. In this thesis Cram's theory has been extended to incorporate the role of the solar wind in the formation of the K-corona, and we have identified both temperature and wind sensitive intensity ratios. The instrument, MACS, for Multi Aperture Coronal Spectrometer, a fiber optic based spectrograph, was designed for global and simultaneous measurement of the thermal electron temperature and the solar wind velocity in the solar corona. The first ever experiment of this nature was conducted in conjunction with the total solar eclipse of 11 Aug 1999 in Elazig, Turkey. In this instrument one end of each of twenty fiber optic tips were positioned in the focal plane of the telescope in such a way that we could observe conditions simultaneously at many different latitudes and two different radial distances in the solar corona. The other ends of the fibers were vertically aligned and placed at the primary focus of

  16. MACS, an instrument, and a methodology for simultaneous and global measurements of the coronal electron temperature and the solar wind velocity on the solar corona

    NASA Astrophysics Data System (ADS)

    Reginald, Nelson Leslie

    2001-06-01

    The determination of the radial and latitudinal temperature and wind profiles of the solar corona is of great importance in understanding the coronal heating mechanism and the dynamics of coronal expansion. Cram (1976) presented the theory for the formation of the K- coronal spectrum and identified two important observations. He observed the existence of temperature sensitive anti-nodes at certain wavelengths in the theoretical K-coronal spectra. The anti-nodes are separated by temperature-insensitive nodes. Remarkably, Cram showed that the wavelengths of the nodes and anti- nodes are almost independent of altitude above the solar limb. Because of these features, Cram suggested that the intensity ratios at two anti-nodes could be used as a diagnostic of the electron temperature in the K-corona. Based on this temperature diagnostic technique prescribed by Cram a slit-based spectroscopic study was performed by Ichimoto et.al (1996) on the solar corona in conjunction with the total solar eclipse of 3 November 1994 in Putre, Chile to determine the temperature profile of the solar corona. In this thesis Cram's theory has been extended to incorporate the role of the solar wind in the formation of the K-corona, and we have identified both temperature and wind sensitive intensity ratios. The instrument, MACS, for Multi Aperture Coronal Spectrometer, a fiber optic based spectrograph, was designed for global and simultaneous measurement of the thermal electron temperature and the solar wind velocity in the solar corona. The first ever experiment of this nature was conducted in conjunction with the total solar eclipse of 11 August 1999 in Elazig, Turkey. In this instrument one end of each of twenty fiber optic tips were positioned in the focal plane of the telescope in such a way that we could observe conditions simultaneously at many different latitudes and two different radial distances in the solar corona. The other ends of the fibers were vertically aligned and placed at

  17. Sea ice led to poleward-shifted winds at the Last Glacial Maximum: the influence of state dependency on CMIP5 and PMIP3 models

    NASA Astrophysics Data System (ADS)

    Sime, Louise C.; Hodgson, Dominic; Bracegirdle, Thomas J.; Allen, Claire; Perren, Bianca; Roberts, Stephen; de Boer, Agatha M.

    2016-12-01

    Latitudinal shifts in the Southern Ocean westerly wind jet could drive changes in the glacial to interglacial ocean CO2 inventory. However, whilst CMIP5 model results feature consistent future-warming jet shifts, there is considerable disagreement in deglacial-warming jet shifts. We find here that the dependence of pre-industrial (PI) to Last Glacial Maximum (LGM) jet shifts on PI jet position, or state dependency, explains less of the shifts in jet simulated by the models for the LGM compared with future-warming scenarios. State dependence is also weaker for intensity changes, compared to latitudinal shifts in the jet. Winter sea ice was considerably more extensive during the LGM. Changes in surface heat fluxes, due to this sea ice change, probably had a large impact on the jet. Models that both simulate realistically large expansions in sea ice and feature PI jets which are south of 50° S show an increase in wind speed around 55° S and can show a poleward shift in the jet between the PI and the LGM. However, models with the PI jet positioned equatorwards of around 47° S do not show this response: the sea ice edge is too far from the jet for it to respond. In models with accurately positioned PI jets, a +1° difference in the latitude of the sea ice edge tends to be associated with a -0.85° shift in the 850 hPa jet. However, it seems that around 5° of expansion of LGM sea ice is necessary to hold the jet in its PI position. Since the Gersonde et al. (2005) data support an expansion of more than 5°, this result suggests that a slight poleward shift and intensification was the most likely jet change between the PI and the LGM. Without the effect of sea ice, models simulate poleward-shifted westerlies in warming climates and equatorward-shifted westerlies in colder climates. However, the feedback of sea ice counters and reverses the equatorward trend in cooler climates so that the LGM winds were more likely to have also been shifted slightly poleward.

  18. Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5

    DOE PAGES

    Giangrande, Scott E.; Toto, Tami; Jensen, Michael P.; ...

    2016-10-21

    A radar wind profiler (RWP) data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction,more » and mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. Lastly, during this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.« less

  19. Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5

    SciTech Connect

    Giangrande, Scott E.; Toto, Tami; Jensen, Michael P.; Bartholomew, Mary Jane; Feng, Zhe; Protat, Alain; Williams, Christopher R.; Schumacher, Courtney; Machado, Luiz

    2016-10-21

    A radar wind profiler (RWP) data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, and mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. Lastly, during this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.

  20. Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5

    NASA Astrophysics Data System (ADS)

    Giangrande, Scott E.; Toto, Tami; Jensen, Michael P.; Bartholomew, Mary Jane; Feng, Zhe; Protat, Alain; Williams, Christopher R.; Schumacher, Courtney; Machado, Luiz

    2016-11-01

    A radar wind profiler data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, and mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. During this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities.

  1. Wind sensor

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Laue, E. G. (Inventor)

    1976-01-01

    An apparatus is described for sensing the temperature, velocity, and direction of the wind, including four temperature-dependent crystal oscillators spaced about an axis, a heater centered on the axis, and a screen through which the wind blows to pass over the crystals. In one method of operation, the frequency of the oscillators is taken when the heater is not energized, to obtain the temperature of the wind, and the frequencies of the oscillators are taken after the heater is energized to determine the direction and velocity of the wind. When the heater is energized, the wind causes the downwind crystals to achieve a higher temperature than the upwind crystals, and with the magnitude of the difference indicating the velocity of the wind.

  2. Forward velocity effects on fan noise and the suppression characteristics of advanced inlets as measured in the NASA Ames 40 by 80 foot wind tunnel: Acoustic data report

    NASA Technical Reports Server (NTRS)

    Moore, M. T.

    1981-01-01

    Forward velocity effects on the forward radiated fan noise and on the suppression characteristics of three advanced inlets relative to a baseline cylindrical inlet were measured in a wind tunnel. A modified JT15D turbofan engine in a quiet nacelle was the source of fan noise; the advanced inlets were a CTOL hybrid inlet, an STOL hybrid inlet, and a treated deflector inlet. Also measured were the static to flight effects on the baseline inlet noise and the effects on the fan noise of canting the baseline inlet 4 deg downward to simulate typical wing mounted turbofan engines. The 1/3 octave band noise data from these tests are given along with selected plots of 1/3 octave band spectra and directivity and full scale PNL directivities. The test facilities and data reduction techniques used are also described.

  3. Application of US upper wind data in one design of tethered wind energy systems

    SciTech Connect

    O'Doherty, R.J.; Roberts, B.W.

    1982-02-01

    The upper atmospheric wind resource for the continental United States, Hawaii, and Alaska is assessed. The raw data were obtained from the National Center for Atmospheric Research, Boulder, Colo. The probability distributions of velocity are presented for 54 sites, and detailed calm wind analyses have been undertaken for five of these locations. On the average, the wind lulls about one day per week for a period in excess of about 30 hours. It is shown that the average power density of this wind resource can be as high as 16 kW/m/sup 2/ at northeastern US sites. This power density is at a maximum around the 300-mb pressure level.

  4. Solar Wind Halo Formation by the Scattering of the Strahl: Direct Cluster/PEACE Observations of the 3D Velocity Distribution Function

    NASA Astrophysics Data System (ADS)

    Vinas, A. F.; Gurgiolo, C. A.; Nieves-Chinchilla, T.; Wendel, D. E.; Goldstein, M. L.; Fazakerley, A. N.

    2010-12-01

    The current hypothesis of the formation of the solar wind halo electrons is that they are produced from scattering of the strahl. This hypothesis is strengthened by direct observations of the strahl electrons being scattered into the halo in an isolated event. On frequent occasions we have observed in electron angular skymaps (Phi/Theta-plots) of the electron 3D velocity distribution functions, a bursty-filament of particles connecting the strahl to the solar wind core-halo. These are seen over a limited energy range. The observation implies that the formation of the halo is not a continuous process but occurs in bursts in regions where conditions for wave growth providing the scattering are optimum. Sometimes, observations indicates that the strahl component is anisotropic (Tper/Tpal ~ 2). This provides a possible free energy source for the excitation of whistler waves as a possible scattering mechanism, however this condition is not always observed. The empirical observational evidence between the halo and the strahl suggests that the strahl population may be, at least in part, the source of the halo component.

  5. VisibleWind: wind profile measurements at low altitude

    NASA Astrophysics Data System (ADS)

    Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell

    2009-09-01

    VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other

  6. Cross-bridge attachment during high-speed active shortening of skinned fibers of the rabbit psoas muscle: implications for cross-bridge action during maximum velocity of filament sliding.

    PubMed

    Stehle, R; Brenner, B

    2000-03-01

    To characterize the kinetics of cross-bridge attachment to actin during unloaded contraction (maximum velocity of filament sliding), ramp-shaped stretches with different stretch-velocities (2-40,000 nm per half-sarcomere per s) were applied to actively contracting skinned fibers of the rabbit psoas muscle. Apparent fiber stiffness observed during such stretches was plotted versus the speed of the imposed stretch (stiffness-speed relation) to derive the rate constants for cross-bridge dissociation from actin. The stiffness-speed relation obtained for unloaded shortening conditions was shifted by about two orders of magnitude to faster stretch velocities compared to isometric conditions and was almost identical to the stiffness-speed relation observed in the presence of MgATPgammaS at high Ca(2+) concentrations, i.e., under conditions where cross-bridges are weakly attached to the fully Ca(2+) activated thin filaments. These data together with several control experiments suggest that, in contrast to previous assumptions, most of the fiber stiffness observed during high-speed shortening results from weak cross-bridge attachment to actin. The fraction of strongly attached cross-bridges during unloaded shortening appears to be as low as some 1-5% of the fraction present during isometric contraction. This is about an order of magnitude less than previous estimates in which contribution of weak cross-bridge attachment to observed fiber stiffness was not considered. Our findings imply that 1) the interaction distance of strongly attached cross-bridges during high-speed shortening is well within the range consistent with conventional cross-bridge models, i.e., that no repetitive power strokes need to be assumed, and 2) that a significant part of the negative forces that limit the maximum speed of filament sliding might originate from weak cross-bridge interactions with actin.

  7. Three-dimensional elastic lidar winds

    SciTech Connect

    Buttler, W.T.

    1996-07-01

    Maximum cross-correlation techniques have been used with satellite data to estimate winds and sea surface velocities for several years. Los Alamos National Laboratory (LANL) is currently using a variation of the basic maximum cross-correlation technique, coupled with a deterministic application of a vector median filter, to measure transverse winds as a function of range and altitude from incoherent elastic backscatter lidar data taken throughout large volumes within the atmospheric boundary layer. Hourly representations of three- dimensional wind fields, derived from elastic lidar data taken during an air-quality study performed in a region of complex terrain near Sunland Park, New Mexico, are presented and compared with results from an Environmental Protection Agency (EPA) approved laser doppler velocimeter. The wind fields showed persistent large scale eddies as well as general terrain following winds in the Rio Grande valley.

  8. Raindrop size distribution and vertical velocity characteristics in the rainband of Hurricane Bolaven (2012) observed by a 1290 MHz wind profiler

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Kyun; Lee, Dong-In

    2017-03-01

    Microphysics and vertical velocity characteristics between weak and strong rainband regions of Hurricane Bolaven were investigated primarily from 1290 MHz (UHF) wind profiler measurements on 27-28 August 2012. With a focus on regions with radar reflectivities greater than 30 dBZ below a melting level, raindrop size distributions (DSDs) and related rain parameters retrieved from profiler Doppler spectra were examined. Temporal variations in vertical structure and bright band from a widespread stratiform to a relatively narrow, intense rainband were examined as the rainbands move over the land in the southern coast of Korea. Based on vertical characteristics in radar reflectivity, Doppler velocity, and vertical air motion (w) profiles, the rainbands were classified into a stratiform (S) region with a strong bright band and mixed stratiform-convective (S-C) region with a weak or non-existent bright band. The retrieved w fields showed that updrafts were dominant in the mixed S-C region and downdrafts in the S region. More broad histograms in both radar reflectivity (Z) and mass-weighted mean diameter (Dm) were found in the S period. Compared to the Z distribution, rain rate (R) was more widely distributed in the mixed S-C region than in the S region. This is largely because R values were more variable in association with stronger updrafts in this region since they depend on fall velocities of raindrops. Higher R and smaller Dm mean values were analyzed within relatively strong updrafts in the mixed S-C period compared to those in the S period. Even when the w correction is applied, the mean Dm was still slightly smaller in the mixed S-C region, indicating that there is a relatively larger number of small drops than those in the S region.

  9. Long-term Variation of Temperatures and Wind Velocities from Earth based Doppler-wind and Temperature Measurements in Venus Upper Atmosphere between 1990 and 2013 using the Infrared Heterodyne Spectrometer THIS

    NASA Astrophysics Data System (ADS)

    Sornig, Manuela; Stangier, Tobias; Krause, Pia; Wischnewski, Caro; Kostiuk, Ted; Livengood, Tim

    2014-05-01

    Dynamics of the Venusian atmospheric transition zone between the sub-solar to anti-solar (SS-AS) flow dominated region above 120km and the superrotation dominated region below 90 km is not yet fully understood. Temperatures in the same region are not very well constrained and we lack in a comprehensive understanding of this atmospheric region. Therefore direct measurements of these parameters on various time scales and on different locations on the planet are essential for validation of global circulation models and a comprehensive understanding of the atmosphere. Such observations can be provided by the infrared heterodyne spectrometers THIS (University of Cologne) and HIPWAC (NASA GSFC). Operating around 10μm both instruments fully resolve CO2 non-LTE emission lines for Doppler-wind and temperature retrievals at an pressure level of 1μbar (~110 km). In addition to this "one-altitude" information the broader CO2 absorption lines can be used to gain information about the temperature profile lower down in the atmosphere (~60-90 km). Long term variability in Doppler-wind velocities and temperature at ~110km from campaigns between 1990 to 2013 will be presented. A report about local wave activities will be included. In addition recently retrieved temperature profiles from 60 to 90 km will be shown.

  10. The Shaping of Planetary Nebulae: Asymmetry in the External Wind

    NASA Astrophysics Data System (ADS)

    Dwarkadas, Vikram V.; Chevalier, Roger A.; Blondin, John M.

    1996-02-01

    We have modeled planetary nebulae (PNs) in the context of the interacting stellar winds model. If the two interacting winds have constant properties, the velocity of the PN shell tends toward a constant with time and the shape becomes self-similar. Additionally, if the velocity of the fast wind is much higher than the expansion velocity of the shell, the interior of the hot shocked bubble becomes isobaric. Using semi-analytical methods, complemented by hydrodynamic simulations, we have calculated the shapes of PNs in the self-similar stage. An asymmetric density profile is assumed for the slow outer wind. The asymmetry is modeled using different functions, which depend on the degree of asymmetry and the steepness of the density profile in the angular direction. We include the effects of the ambient wind velocity, which has not received much attention since the work of Kahn & West (1985). The fact that typical PN velocities (10-40 km s-1) are only marginally greater than typical red giant wind velocities (5-20 km s-1) indicates that this is an important parameter. The morphological appearance is a consequence of the density contrast, steepness of the density profile and velocity of the ambient medium; classification of PNs purely on the basis of the first two factors may be misleading. Moderate values of the density contrast result in a cusp at the equator. A higher density contrast coupled with a low velocity for the external medium gives rise to extremely bipolar nebulae. For large density contrasts and a significant value of the slow wind velocity, the surface density maximum of the shell shifts away from the equator, giving rise to peanut-shaped structures with pronounced equatorial bulges. If the external wind velocity is small compared to the expansion velocity of the nebula, the PNs tend to be more bipolar, even with a moderate density contrast. If the PN velocity is close to that of the external wind, the shape is relatively spherical. However, a velocity

  11. Dry deposition velocities

    SciTech Connect

    Sehmel, G.A.

    1984-03-01

    Dry deposition velocities are very difficult to predict accurately. In this article, reported values of dry deposition velocities are summarized. This summary includes values from the literature on field measurements of gas and particle dry deposition velocities, and the uncertainties inherent in extrapolating field results to predict dry deposition velocities are discussed. A new method is described for predicting dry deposition velocity using a least-squares correlation of surface mass transfer resistances evaluated in wind tunnel experiments. 14 references, 4 figures, 1 table.

  12. Design and experimental verification of a novel Mie Doppler wind lidar based on all-fiber Mach-Zehnder frequency discriminator

    NASA Astrophysics Data System (ADS)

    Wang, Li; Gao, Fei; Wang, Jun; Yan, Qing; Chang, Bo; Hua, Dengxin

    2017-04-01

    Spaceborne Doppler wind lidar is currently one of the hot spots on the lidar technology. The all-fiber Mach-Zehnder interferometer (FMZI) as a frequency discriminator of Doppler wind lidar is proposed for profiling the atmospheric wind velocity. The frequency discriminator system parameters are optimized, and the retrieval method of wind velocity based on FMZI is deduced. The arm length difference of FMZI for the aerosol backscattering signal is optimized to be 74.8 cm at the laser wavelength of 532 nm. The maximum system sensitivity for wind profiling can reach up to 2.62%/(m/s), and the dynamic range of wind velocity is ±18.2 m/s. The system simulation shows that the detection range is up to 6.7 km for 1 m/s wind velocity error at a wind velocity of 15 m/s with laser energy of 250 mJ and telescope diameter of 406 mm. A rotating disc experimental system is designed to simulate the atmospheric wind field for verifying the feasibility of the system, and the results show that there is good agreement between the retrieved wind velocity and simulated wind velocity. The simulation and experimental test results show that FMZI is feasible as a frequency discriminator and can be suitable for direct Mie Doppler lidar, especially for satellite-based platform lidar due to its desirable characteristics, including its small volume, light weight, good stability and compact structure.

  13. Adjustment of mean velocity and turbulence due to a finite-size wind farm in a neutral ABL - A LES study

    NASA Astrophysics Data System (ADS)

    Sharma, Varun; Parlange, Marc B.; Calaf, Marc

    2015-11-01

    Large-eddy simulation (LES) has become a well-established tool to simulate and understand the interaction between wind farms and the atmospheric boundary layer (ABL). A popular simulation technique considers wind turbines as actuator disks and simulates `infinite' wind farms due to periodic boundary conditions in the horizontal directions. These simulations have indicated the presence of a fully developed internal boundary layer (IBL) due to `wind farm roughness', which has been shown to have important implications, especially in stratified flow conditions. However, the relationship between the length of the wind farm and the resulting IBL vis-à-vis the asymptotic IBL and its relevance in real-world wind farms is not well understood at present. To address this issue, simulations of wind farms with different horizontal extents are performed in a neutral ABL using an extremely elongated computational domain. Results focus on identifying length scales defining the adjustment of the ABL to a new equilibrium within the wind farm and comparing it to the infinite wind farm case. Furthermore, analyses shall be extended upstream as well as downstream of the wind farm to determine the `impact' region and the `exit' region of the wind farm.

  14. Full-scale-wind-tunnel Tests of a 35 Degree Sweptback Wing Airplane with High-velocity Blowing over the Training-edge Flaps

    NASA Technical Reports Server (NTRS)

    Kelley, Mark W; Tolhurst, William H JR

    1955-01-01

    A wind-tunnel investigation was made to determine the effects of ejecting high-velocity air near the leading edge of plain trailing-edge flaps on a 35 degree sweptback wing. The tests were made with flap deflections from 45 degrees to 85 degrees and with pressure ratios across the flap nozzles from sub-critical up to 2.9. A limited study of the effects of nozzle location and configuration on the efficiency of the flap was made. Measurements of the lift, drag, and pitching moment were made for Reynolds numbers from 5.8 to 10.1x10(6). Measurements were also made of the weight rate of flow, pressure, and temperature of the air supplied to the flap nozzles.The results show that blowing on the deflected flap produced large flap lift increments. The amount of air required to prevent flow separation on the flap was significantly less than that estimated from published two-dimensional data. When the amount of air ejected over the flap was just sufficient to prevent flow separation, the lift increment obtained agreed well with linear inviscid fluid theory up to flap deflections of 60 degrees. The flap lift increment at 85 degrees flap deflection was about 80 percent of that predicted theoretically.With larger amounts of air blown over the flap, these lift increments could be significantly increased. It was found that the performance of the flap was relatively insensitive to the location of the flap nozzle, to spacers in the nozzle, and to flow disturbances such as those caused by leading-edge slats or discontinuities on the wing or flap surfaces. Analysis of the results indicated that installation of this system on an F-86 airplane is feasible.

  15. A Monte Carlo comparison of the recovery of winds near upwind and downwind from the SASS-1 model function by means of the sum of squares algorithm and a maximum likelihood estimator

    NASA Technical Reports Server (NTRS)

    Pierson, W. J., Jr.

    1984-01-01

    Backscatter measurements at upwind and crosswind are simulated for five incidence angles by means of the SASS-1 model function. The effects of communication noise and attitude errors are simulated by Monte Carlo methods, and the winds are recovered by both the Sum of Square (SOS) algorithm and a Maximum Likelihood Estimater (MLE). The SOS algorithm is shown to fail for light enough winds at all incidence angles and to fail to show areas of calm because backscatter estimates that were negative or that produced incorrect values of K sub p greater than one were discarded. The MLE performs well for all input backscatter estimates and returns calm when both are negative. The use of the SOS algorithm is shown to have introduced errors in the SASS-1 model function that, in part, cancel out the errors that result from using it, but that also cause disagreement with other data sources such as the AAFE circle flight data at light winds. Implications for future scatterometer systems are given.

  16. Wind loads on flat plate photovoltaic array fields. Phase III, final report

    SciTech Connect

    Miller, R.D.; Zimmerman, D.K.

    1981-04-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads.

  17. Mirror mode waves in Venus's magnetosheath: solar minimum vs. solar maximum

    NASA Astrophysics Data System (ADS)

    Volwerk, Martin; Schmid, Daniel; Tsurutani, Bruce T.; Delva, Magda; Plaschke, Ferdinand; Narita, Yasuhito; Zhang, Tielong; Glassmeier, Karl-Heinz

    2016-11-01

    The observational rate of mirror mode waves in Venus's magnetosheath for solar maximum conditions is studied and compared with previous results for solar minimum conditions. It is found that the number of mirror mode events is approximately 14 % higher for solar maximum than for solar minimum. A possible cause is the increase in solar UV radiation, ionizing more neutrals from Venus's exosphere and the outward displacement of the bow shock during solar maximum. Also, the solar wind properties (speed, density) differ for solar minimum and maximum. The maximum observational rate, however, over Venus's magnetosheath remains almost the same, with only differences in the distribution along the flow line. This may be caused by the interplay of a decreasing solar wind density and a slightly higher solar wind velocity for this solar maximum. The distribution of strengths of the mirror mode waves is shown to be exponentially falling off, with (almost) the same coefficient for solar maximum and minimum. The plasma conditions in Venus's magnetosheath are different for solar minimum as compared to solar maximum. For solar minimum, mirror mode waves are created directly behind where the bow shock will decay, whereas for solar maximum all created mirror modes can grow.

  18. The Relevance of Surface Roughness Data Qualities in Diagnostic Modeling of Wind Velocity in Complex Terrain: A Case Study from the Śnieżnik Massif (SW Poland)

    NASA Astrophysics Data System (ADS)

    Jancewicz, Kacper; Szymanowski, Mariusz

    2016-04-01

    Numerical modeling of wind velocity above complex terrain has become a subject of numerous contemporary studies. Regardless of the methodical approach (dynamic or diagnostic), it can be observed that information about surface roughness is indispensable to achieve realistic results. In this context, the current state of GIS and remote sensing development allows access to a number of datasets providing information about various properties of land coverage in a broad spectrum of spatial resolution. Hence, the quality of roughness information may vary depending on the properties of primary land coverage data. As a consequence, the results of the wind velocity modeling are affected by the accuracy and spatial resolution of roughness data. This paper describes further attempts to model wind velocity using the following sources of roughness information: LiDAR data (Digital Surface Model and Digital Terrain Model), database of topographical objects (BDOT10k) and both raster and vector versions of Corine Land Cover 2006 (CLC). The modeling was conducted in WindStation 4.0.2 software which is based on the computational fluid dynamics (CFD) diagnostic solver Canyon. Presented experiment concerns three episodes of relatively strong and constant synoptic forcing: 26 November 2011, 25 May 2012 and 26 May 2012. The modeling was performed in the spatial resolution of 50 and 100 m. Input anemological data were collected during field measurements while the atmosphere boundary layer parameters were derived from the meteorological stations closest to the study area. The model's performance was verified using leave-one-out cross-validation and calculation of error indices such as bias error, root mean square error and index of wind speed. Thus, it was possible to compare results of using roughness datasets of different type and resolution. The study demonstrates that the use of LiDAR-based roughness data may result in an improvement of the model's performance in 100 and 50 m resolution

  19. The Relevance of Surface Roughness Data Qualities in Diagnostic Modeling of Wind Velocity in Complex Terrain: A Case Study from the Śnieżnik Massif (SW Poland)

    NASA Astrophysics Data System (ADS)

    Jancewicz, Kacper; Szymanowski, Mariusz

    2017-02-01

    Numerical modeling of wind velocity above complex terrain has become a subject of numerous contemporary studies. Regardless of the methodical approach (dynamic or diagnostic), it can be observed that information about surface roughness is indispensable to achieve realistic results. In this context, the current state of GIS and remote sensing development allows access to a number of datasets providing information about various properties of land coverage in a broad spectrum of spatial resolution. Hence, the quality of roughness information may vary depending on the properties of primary land coverage data. As a consequence, the results of the wind velocity modeling are affected by the accuracy and spatial resolution of roughness data. This paper describes further attempts to model wind velocity using the following sources of roughness information: LiDAR data (Digital Surface Model and Digital Terrain Model), database of topographical objects (BDOT10k) and both raster and vector versions of Corine Land Cover 2006 (CLC). The modeling was conducted in WindStation 4.0.2 software which is based on the computational fluid dynamics (CFD) diagnostic solver Canyon. Presented experiment concerns three episodes of relatively strong and constant synoptic forcing: 26 November 2011, 25 May 2012 and 26 May 2012. The modeling was performed in the spatial resolution of 50 and 100 m. Input anemological data were collected during field measurements while the atmosphere boundary layer parameters were derived from the meteorological stations closest to the study area. The model's performance was verified using leave-one-out cross-validation and calculation of error indices such as bias error, root mean square error and index of wind speed. Thus, it was possible to compare results of using roughness datasets of different type and resolution. The study demonstrates that the use of LiDAR-based roughness data may result in an improvement of the model's performance in 100 and 50 m resolution

  20. Calculation of wind speeds required to damage or destroy buildings

    NASA Astrophysics Data System (ADS)

    Liu, Henry

    Determination of wind speeds required to damage or destroy a building is important not only for the improvement of building design and construction but also for the estimation of wind speeds in tornadoes and other damaging storms. For instance, since 1973 the U.S. National Weather Service has been using the well-known Fujita scale (F scale) to estimate the maximum wind speeds of tornadoes [Fujita, 1981]. The F scale classifies tornadoes into 13 numbers, F-0 through F-12. The wind speed (maximum gust speed) associated with each F number is given in Table 1. Note that F-6 through F-12 are for wind speeds between 319 mi/hr (mph) and the sonic velocity (approximately 760 mph; 1 mph = 1.6 km/kr). However, since no tornadoes have been classified to exceed F-5, the F-6 through F-12 categories have no practical meaning [Fujita, 1981].

  1. PULSED ALFVEN WAVES IN THE SOLAR WIND

    SciTech Connect

    Gosling, J. T.; Tian, H.; Phan, T. D.

    2011-08-20

    Using 3 s plasma and magnetic field data from the Wind spacecraft located in the solar wind well upstream from Earth, we report observations of isolated, pulse-like Alfvenic disturbances in the solar wind. These isolated events are characterized by roughly plane-polarized rotations in the solar wind magnetic field and velocity vectors away from the directions of the underlying field and velocity and then back again. They pass over Wind on timescales ranging from seconds to several minutes. These isolated, pulsed Alfven waves are pervasive; we have identified 175 such events over the full range of solar wind speeds (320-550 km s{sup -1}) observed in a randomly chosen 10 day interval. The large majority of these events are propagating away from the Sun in the solar wind rest frame. Maximum field rotations in the interval studied ranged from 6 Degree-Sign to 109 Degree-Sign . Similar to most Alfvenic fluctuations in the solar wind at 1 AU, the observed changes in velocity are typically less than that predicted for pure Alfven waves (Alfvenicity ranged from 0.28 to 0.93). Most of the events are associated with small enhancements or depressions in magnetic field strength and small changes in proton number density and/or temperature. The pulse-like and roughly symmetric nature of the magnetic field and velocity rotations in these events suggests that these Alfvenic disturbances are not evolving when observed. They thus appear to be, and probably are, solitary waves. It is presently uncertain how these waves originate, although they may evolve out of Alfvenic turbulence.

  2. Assessing the vegetation canopy influences on wind flow using wind tunnel experiments with artificial plants

    NASA Astrophysics Data System (ADS)

    Hong, Youngjoo; Kim, Dongyeob; Im, Sangjun

    2016-04-01

    Wind erosion causes serious problems and considerable threat in most regions of the world. Vegetation on the ground has an important role in controlling wind erosion by covering soil surface and absorbing wind momentum. A set of wind tunnel experiments was performed to quantitatively examine the effect of canopy structure on wind movement. Artificial plastic vegetations with different porosity and canopy shape were introduced as the model canopy. Normalized roughness length ( Z 0/ H) and shear velocity ratio ( R) were analyzed as a function of roughness density ( λ). Experiments showed that Z 0/ H increases and R decreases as λ reaches a maximum value, λ max, while the values of Z 0/ H and R showed little change with λ value beyond as λ max.

  3. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  4. Wind loads on flat plate photovoltaic array fields

    NASA Technical Reports Server (NTRS)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.

  5. Fluid Dynamic Aspects of Wind Energy Conversion

    DTIC Science & Technology

    1979-07-01

    under way. Although the more complicated computer codes give a better prediction of the induced velocities in the plane of rota- tion of the rotor, , t ... t time (s) t profile thickness (m) T integration time for determination of average (s) U wind velocity or undisturbed velocity (m/s) 0 average wind...velocity, depending on integration time T (m/s) u = U - 0 = wind velocity fluctuation (m/s) UI,U. average wind velocity in wind velocity class i or j

  6. Fuzzy Regulator Design for Wind Turbine Yaw Control

    PubMed Central

    Koulouras, Grigorios

    2014-01-01

    This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness. PMID:24693237

  7. Fuzzy regulator design for wind turbine yaw control.

    PubMed

    Theodoropoulos, Stefanos; Kandris, Dionisis; Samarakou, Maria; Koulouras, Grigorios

    2014-01-01

    This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness.

  8. Maximum Jailbreak

    NASA Astrophysics Data System (ADS)

    Singleton, B.

    First formulated one hundred and fifty years ago by the heretical scholar Nikolai Federov, the doctrine of cosmism begins with an absolute refusal to treat the most basic factors conditioning life on Earth ­ gravity and death ­ as necessary constraints on action. As manifest through the intoxicated cheers of its early advocates that humans should storm the heavens and conquer death, cosmism's foundational gesture was to conceive of the earth as a trap. Its duty was therefore to understand the duty of philosophy, economics and design to be the creation of means to escape it. This could be regarded as a jailbreak at the maximum possible scale, a heist in which the human species could steal itself from the vault of the Earth. After several decades of relative disinterest new space ventures are inspiring scientific, technological and popular imaginations, this essay explores what kind of cosmism might be constructed today. In this paper cosmism's position as a means of escape is both reviewed and evaluated by reflecting on the potential of technology that actually can help us achieve its aims and also through the lens and state-ofthe-art philosophy of accelerationism, which seeks to outrun modern tropes by intensifying them.

  9. Estimated Drag Coefficients and Wind Structure of Hurricane Frances

    NASA Astrophysics Data System (ADS)

    Zedler, S. E.; Niiler, P. P.; Stammer, D.; Terrill, E.

    2006-12-01

    As part of the Coupled Boundary Layers Air Sea Transfer (CBLAST) experiment, an array of drifters and floats was deployed from an aircraft just ahead of Hurricane Frances during it's passage to the northwest side of the Caribbean Island chain in August, 2004. The ocean and surface air conditions prior to, during, and after Hurricane Frances were documented by multiple sensors. Two independent estimates of the surface wind field suggest different storm structures. NOAA H*WINDS, an objectively analyzed product using a combination of data collected at the reconnaissance flight level, GPS profilers (dropwindsondes), satellites, and other data, suggest a 40km radius of maximum wind. A product based on the radial momentum equation balance using \\ital{in-situ} surface pressure data and wind direction measurements from the CBLAST drifter array suggests that the radius of maximum winds was 15km. We used a regional version of the MITGCM model with closed boundaries and realistic temperature and salinity fields which was forced with these wind field products to determine which wind field leads to circulation and SST structures that are most consistent with observed sea surface temperature fields and float profile data. Best estimates of the surface wind structure are then used to estimate the appropriate drag coefficient corresponding to the maximum velocity. Our results are compared with those obtained previously.

  10. Development of thermal image velocimetry techniques to measure the water surface velocity

    NASA Astrophysics Data System (ADS)

    Saket, A.; Peirson, W. L.; Banner, M. L.; Barthelemy, X.

    2016-05-01

    Particle image velocimetry (PIV) is a state-of-the-art non-intrusive technique for velocity and fluid flow measurements. Due to ongoing improvements in image hardware and processing techniques, the diversity of applications of the PIV method continues to increase. This study presents an accurate thermal image velocimetry (TIV) technique using a CO2 laser source to measure the surface wave particle velocity using infrared imagery. Experiments were carried out in a 2-D wind wave flume with glass side walls for deep-water monochromatic and group waves. It was shown that the TIV technique is robust for both unforced and wind-forced group wave studies. Surface wave particles attain their highest velocity at the group crest maximum and slow down thereafter. As previously observed, each wave crest slows down as it approaches its crest maximum but this study demonstrates that the minimum crest speed coincides with maximum water velocity at the wave crest. Present results indicate that breaking is initiated once the water surface particle velocity at the wave crest exceeds a set proportion of the velocity of the slowing crest as it passes through the maximum of a wave group.

  11. Experimental Study on the Velocity and Efficiency Characteristics of a Serial Staged Needle Array-Mesh Type EHD Gas Pump

    NASA Astrophysics Data System (ADS)

    Qiu, Wei; Xia, Lingzhi; Yang, Lanjun; Zhang, Qiaogen; Xiao, Lei; Chen, Li

    2011-12-01

    The ionic wind has good application prospects in the fields of air flow control and heat transfer enhancement. The key for successful applications is how to improve the velocity and how to increase the active area of the ionic wind. This paper designed a needle array-mesh type electrohydrodynamic (EHD) gas pump. The use of needle array electrode where corona discharge started simultaneously could enlarge the active area. The velocity of the ionic wind could increase by placing several single-stage ionic wind generators in series appropriately, called as serial staged generator. The maximum average flow velocity of 16.1 m/s and volumetric flow of 303.5 L/min were achieved at the outlet of a 25-stage gas pump and the conversion efficiency was approximately 2.2%.

  12. Wind turbine wake properties from Doppler lidar measurements

    NASA Astrophysics Data System (ADS)

    Pichugina, Y.; Banta, R. M.; Brewer, A.; Lundquist, J. K.

    2012-12-01

    Wake properties were estimated from the High-Resolution Doppler Lidar (HRDL) measurements during the Turbine Wake and Inflow Characterization Study (TWICS) in the spring of 2011. Velocity deficit, wake downwind extent, and wake meandering were obtained by detailed analysis of both lidar vertical-slice scans, performed straddling along the lidar-turbine centerline, and lidar conical scans, performed in narrow, nearly horizontal sectors that include the wind turbine inflow, and its wake at four levels. Simultaneous measurements of inflow and turbine outflow were corrected by terrain and wind direction to obtain mean wake properties. It has been found out that an operating wind turbine generates a wake with the maximum velocity deficit varying from 20% to 70% extending up to 10 rotor diameters downstream of the turbine, depending on the wind strength and atmospheric turbulence. Details including images and animations of the wake behavior will be presented.

  13. Numerical simulations of flow fields through conventionally controlled wind turbines & wind farms

    NASA Astrophysics Data System (ADS)

    Emre Yilmaz, Ali; Meyers, Johan

    2014-06-01

    In the current study, an Actuator-Line Model (ALM) is implemented in our in-house pseudo-spectral LES solver SP-WIND, including a turbine controller. Below rated wind speed, turbines are controlled by a standard-torque-controller aiming at maximum power extraction from the wind. Above rated wind speed, the extracted power is limited by a blade pitch controller which is based on a proportional-integral type control algorithm. This model is used to perform a series of single turbine and wind farm simulations using the NREL 5MW turbine. First of all, we focus on below-rated wind speed, and investigate the effect of the farm layout on the controller calibration curves. These calibration curves are expressed in terms of nondimensional torque and rotational speed, using the mean turbine-disk velocity as reference. We show that this normalization leads to calibration curves that are independent of wind speed, but the calibration curves do depend on the farm layout, in particular for tightly spaced farms. Compared to turbines in a lone-standing set-up, turbines in a farm experience a different wind distribution over the rotor due to the farm boundary-layer interaction. We demonstrate this for fully developed wind-farm boundary layers with aligned turbine arrangements at different spacings (5D, 7D, 9D). Further we also compare calibration curves obtained from full farm simulations with calibration curves that can be obtained at a much lower cost using a minimal flow unit.

  14. Effects of atmospheric stability on the evolution of wind turbine wakes: Volumetric LiDAR scans

    NASA Astrophysics Data System (ADS)

    Valerio Iungo, Giacomo; Porté-Agel, Fernando

    2014-05-01

    Aerodynamic optimization of wind farm layout is a fundamental task to reduce wake effects on downstream wind turbines, thus to maximize wind power harvesting. However, downstream evolution and recovery of wind turbine wakes are strongly affected by the characteristics of the incoming atmospheric boundary layer (ABL) flow, like the vertical profiles of the mean wind velocity and the turbulence intensity, which are in turn affected by the ABL stability regime. Therefore, the characterization of the variability of wind turbine wakes under different ABL stability regimes becomes fundamental to better predict wind power harvesting and improve wind farm efficiency. To this aim, wind velocity measurements of the wake produced by a 2 MW Enercon E-70 wind turbine were performed with three scanning Doppler wind Light Detection and Ranging (LiDAR) instruments. One LiDAR was typically devoted to the characterization of the incoming wind, in particular wind velocity, shear and turbulence intensity at the height of the rotor disc. The other two LiDARs performed scans in order to characterize the wake velocity field produced by the tested wind turbine. The main challenge in performing field measurements of wind turbine wakes is represented by the varying wind conditions, and by the consequent adjustments of the turbine yaw angle needed to maximize power production. Consequently, taking into account possible variations of the relative position between LiDAR measurement volume and wake location, different LiDAR measurement procedures were carried out in order to perform 2-D and 3-D characterizations of the mean wake velocity field. However, larger measurement volumes and higher spatial resolution require longer sampling periods; thus, to investigate wake turbulence tests were also performed by staring the LiDAR laser beam over fixed directions and with the maximum sampling frequency. Furthermore, volumetric scans of the wind turbine wake were performed under different wind

  15. Wind tunnel measurements of the power output variability and unsteady loading in a micro wind farm model

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2015-11-01

    To optimize wind farm layouts for a maximum power output and wind turbine lifetime, mean power output measurements in wind tunnel studies are not sufficient. Instead, detailed temporal information about the power output and unsteady loading from every single wind turbine in the wind farm is needed. A very small porous disc model with a realistic thrust coefficient of 0.75 - 0.85, was designed. The model is instrumented with a strain gage, allowing measurements of the thrust force, incoming velocity and power output with a frequency response up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow. Thanks to its small size and compact instrumentation, the model allows wind tunnel studies of large wind turbine arrays with detailed temporal information from every wind turbine. Translating to field conditions with a length-scale ratio of 1:3,000 the frequencies studied from the data reach from 10-4 Hz up to about 6 .10-2 Hz. The model's capabilities are demonstrated with a large wind farm measurement consisting of close to 100 instrumented models. A high correlation is found between the power outputs of stream wise aligned wind turbines, which is in good agreement with results from prior LES simulations. Work supported by ERC (ActiveWindFarms, grant no. 306471) and by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project).

  16. Power augmentation of a horizontal axis wind turbine using a Mie type tip vane: Velocity distribution around the tip of a HAWT blade with and without a Mie type tip vane

    SciTech Connect

    Shimizu, Y.; Imamura, H.; Matsumura, S.; Maeda, T.; Bussel, G.J.W. van

    1995-11-01

    Power augmentation and velocity measurements in the wake of a HAWT blade with Mie type tip vane (a tip device on the main blade) are presented. The maximum C{sub p} with a Mie type tip vane is found to be 15% larger than that without the Mie type tip vane. Power augmentation caused by the Mie type tip vane is mainly due to the reduction of tip vortex and the diffusing effect by the Mie type tip vane. The effects of a Mie type tip vane are quantitatively verified by the velocity distributions around the tip of the main blade. The velocity distribution was measured by three-dimensional hot wire probes, which measured the axial, radial, and tangential velocity components. The circulation distributions along the main blade with a Mie type tip vane and without a Mie type tip vane were obtained from the measured velocity distributions. A strong reduction of bound vorticity is found for the main blade tip without the Mie type tip vane, whereas the bound vorticity persists on the main blade tip with the Mie type tip vane.

  17. Wind turbine apparatus

    SciTech Connect

    Storm, J.

    1985-10-08

    Wind turbine apparatus includes a plurality of sail elements secured to a circular frame rotatable in response to wind reacting with the sail elements and a control system for the sail elements includes a weight having cables extending from the weight to the sail elements. Movement of the weight in response to wind velocity results in a change in the sail elements exposed to the wind.

  18. Wind speeds in two tornadic storms and a tornado, deduced from Doppler Spectra

    SciTech Connect

    Zrnic, D.; Istok, M.

    1980-12-01

    Doppler spectra of a tornado were collected with a radar having a large unambiguous velocity range, +- 91 m s/sup -1/. Thus for the first time a presentation of nonaliased spectra was possible, showing direct measurement of radial velocities. By fitting the tornado model spectrum to data, the radius of maximum winds and tornado center location are deduced. Tornado spectral signature is defined as a double peak, symmetric with respect to the mean wind spectrum. Histograms of maximum measured wind speeds (from spectrum skirts) for two tornadic storms are obtained, and the histograms of velocity difference (between the left and right spectrum skirt) suggest that smaller scale turbulence (<500 m) is principally responsible for spectrum broadness.

  19. Upstream proton cyclotron waves at Venus near solar maximum

    NASA Astrophysics Data System (ADS)

    Delva, M.; Bertucci, C.; Volwerk, M.; Lundin, R.; Mazelle, C.; Romanelli, N.

    2015-01-01

    magnetometer data of Venus Express are analyzed for the occurrence of waves at the proton cyclotron frequency in the spacecraft frame in the upstream region of Venus, for conditions of rising solar activity. The data of two Venus years up to the time of highest sunspot number so far (1 Mar 2011 to 31 May 2012) are studied to reveal the properties of the waves and the interplanetary magnetic field (IMF) conditions under which they are observed. In general, waves generated by newborn protons from exospheric hydrogen are observed under quasi- (anti)parallel conditions of the IMF and the solar wind velocity, as is expected from theoretical models. The present study near solar maximum finds significantly more waves than a previous study for solar minimum, with an asymmetry in the wave occurrence, i.e., mainly under antiparallel conditions. The plasma data from the Analyzer of Space Plasmas and Energetic Atoms instrument aboard Venus Express enable analysis of the background solar wind conditions. The prevalence of waves for IMF in direction toward the Sun is related to the stronger southward tilt of the heliospheric current sheet for the rising phase of Solar Cycle 24, i.e., the "bashful ballerina" is responsible for asymmetric background solar wind conditions. The increase of the number of wave occurrences may be explained by a significant increase in the relative density of planetary protons with respect to the solar wind background. An exceptionally low solar wind proton density is observed during the rising phase of Solar Cycle 24. At the same time, higher EUV increases the ionization in the Venus exosphere, resulting in higher supply of energy from a higher number of newborn protons to the wave. We conclude that in addition to quasi- (anti)parallel conditions of the IMF and the solar wind velocity direction, the higher relative density of Venus exospheric protons with respect to the background solar wind proton density is the key parameter for the higher number of

  20. Energy from the Wind

    ERIC Educational Resources Information Center

    Pelka, David G.; And Others

    1978-01-01

    The large-scale generation of electrical power by wind turbine fields is discussed. It is shown that the maximum power that can be extracted by a wind turbine is 16/27 of the power available in the wind. (BB)

  1. An Evaluation of Wind Turbine Technology at Peterson Air Force Base

    DTIC Science & Technology

    2005-03-01

    gearbox /bearings efficiency - 14 - The average velocity of wind affects wind turbine performance and increases with altitude. Average wind velocity...electricity cannot be generated and if its velocity is too high, then the turbines can sustain damage from the extreme wind conditions . Generally, wind ...AN EVALUATION OF WIND TURBINE TECHNOLOGY

  2. Leakage diffusion of underwater crude oil in wind fields.

    PubMed

    Chen, Liqiong; Liu, Qi; Li, Yunyun; Lu, Rui; Wu, Shijuan; Li, Xin; Hou, Tao

    2016-01-01

    Leakage of underwater crude oil pipes causes severe pollution to soil and water, and results in great economic loss. To predict the diffusion area of spilled oil before it reaches the water's surface and to reduce the time required for emergency response, numerical simulations were conducted on underwater spilled oil diffusion of bare crude oil pipes using FLUENT software. The influences of water-surface wind speed, leakage hole diameter, water velocity, and initial leakage velocity on oil diffusion were analyzed. The results revealed the following: (1) with wind blowing on the surface of the water, the vertical displacement of spilled oil jet-flow was affected by the combined action of water flow and wind, making it difficult for a high-speed jet-flow to form. A horizontal oil flow mostly moved in the direction of the bottom water, and frontier oil droplets dispersed quickly; (2) during the diffusion of spilled oil in water, the maximum horizontal displacement mostly increased linearly, while the maximum vertical displacement initially increased quickly and then slowed; (3) the greater the initial velocity and leakage hole diameter, the higher the oil jet-flow and the wider the diffusion area; the higher the water flow rate and water-surface wind speed, the smaller the vertical displacement of spilled oil. The existence of water-surface wind had no obvious influence on the horizontal displacement of underwater spilled oil.

  3. Wind turbine means

    SciTech Connect

    Kennon, W.A.

    1980-12-02

    A turbine wheel is described which includes a housing for enclosing the electrical generating apparatus, and track structure which engages and rotatably drives the generator or the like, i.e., through suitable coupling structure. Shroud structure is disposed in an operable exterior proximity with the turbine wheel for varying the effectiveness of the wind as it is acting upon the turbine wheel, i.e., in infinite variable stages commensurate with changing velocity of the wind. The speed of the turbine wheel is automatically controlled so as to remain substantially constant throughout a wide variance of normal wind velocity and irrespective of the direction of the wind.

  4. Characteristics of the disastrous wind-sand environment along railways in the Gobi area of Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Cheng, Jian-jun; Jiang, Fu-qiang; Xue, Chun-xiao; Xin, Guo-wei; Li, Kai-chong; Yang, Yin-hai

    2015-02-01

    Based on detailed long-term data of wind regimes collected from typical ventilation sites along the railways in the Gobi area of Xinjiang, this study systematically analyzes the characteristics of the disastrous wind-sand environment along the railways by combining gradient sand sampling data collected by a wind-drift sand monitoring system and site survey data. Wind direction and speed rose diagrams revealed the prevailing wind direction in each wind area along the railways, and this is the wind direction from which the maximum frequency of sandstorms occurred. Drift potential characteristic parameters (RDP, RDD) and the direction variability (RDP/DP) showed that each wind area along the Gobi railway featured a long wind period, with strong power in a single wind direction. The special geological environment of the Gobi determines the wind-drift sand that features gravel of large grain size and unsaturation, which are different from the wind-drift sand in deserts. With increasing wind velocity, the density of the wind-drift sand increased steadily; however, at a certain critical value, the density surged. This study on the wind-sand environment of the Gobi has significance for railway safety. The critical value of wind velocity corresponded to an abrupt increase in the wind-drift sand density and should be taken into account during the planning process of railway safety passage, since this will lead to a decrease in frontal visual distance, and an associated decrease in safety. Additionally, the specific features of wind-drift sand activities, such as the abruptness and higher than usual sand height, should be considered during the process of designing sand-damage-control engineering measures.

  5. Efficient Low-Speed Flight in a Wind Field

    NASA Technical Reports Server (NTRS)

    Feldman, Michael A.

    1996-01-01

    A new software tool was needed for flight planning of a high altitude, low speed unmanned aerial vehicle which would be flying in winds close to the actual airspeed of the vehicle. An energy modeled NLP (non-linear programming) formulation was used to obtain results for a variety of missions and wind profiles. The energy constraint derived included terms due to the wind field and the performance index was a weighted combination of the amount of fuel used and the final time. With no emphasis on time and with no winds the vehicle was found to fly at maximum lift to drag velocity, V(sub md). When flying in tail winds the velocity was less than V(sub md), while flying in head winds the velocity was higher than V(sub md). A family of solutions was found with varying times of flight and varying fuel amounts consumed which will aid the operator in choosing a flight plan depending on a desired landing time. At certain parts of the flight, the turning terms in the energy constraint equation were found to be significant. An analysis of a simpler vertical plane cruise optimal control problem was used to explain some of the characteristics of the vertical plane NLP results.

  6. Wind turbine

    DOEpatents

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  7. 33 CFR 156.320 - Maximum operating conditions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the following conditions exist: (1) The wind velocity is 56 km/hr (30 knots) or more; or (2) The... shall be drained when— (1) The wind velocity exceeds 82 km/hr (44 knots); or (2) Wave heights exceed...

  8. 33 CFR 156.320 - Maximum operating conditions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the following conditions exist: (1) The wind velocity is 56 km/hr (30 knots) or more; or (2) The... shall be drained when— (1) The wind velocity exceeds 82 km/hr (44 knots); or (2) Wave heights exceed...

  9. 33 CFR 156.320 - Maximum operating conditions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of the following conditions exist: (1) The wind velocity is 56 km/hr (30 knots) or more; or (2) The... shall be drained when— (1) The wind velocity exceeds 82 km/hr (44 knots); or (2) Wave heights exceed...

  10. 33 CFR 156.320 - Maximum operating conditions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the following conditions exist: (1) The wind velocity is 56 km/hr (30 knots) or more; or (2) The... shall be drained when— (1) The wind velocity exceeds 82 km/hr (44 knots); or (2) Wave heights exceed...

  11. 33 CFR 156.320 - Maximum operating conditions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of the following conditions exist: (1) The wind velocity is 56 km/hr (30 knots) or more; or (2) The... shall be drained when— (1) The wind velocity exceeds 82 km/hr (44 knots); or (2) Wave heights exceed...

  12. Wind velocity measurement accuracy with highly stable 12 mJ/pulse high repetition rate CO2 laser master oscillator power amplifier

    NASA Technical Reports Server (NTRS)

    Bilbro, James W.; Johnson, Steven C.; Rothermel, Jeffry

    1987-01-01

    A coherent CO2 lidar operating in a master oscillator power amplifier configuration (MOPA) is described for both ground-based and airborne operation. Representative data taken from measurements against stationary targets in both the ground-based and airborne configurations are shown for the evaluation of the frequency stability of the system. Examples of data are also given which show the results of anomalous system operation. Overall results demonstrate that velocity measurements can be performed consistently to an accuracy of + or - 0.5 m/s and in some cases + or - 0.1 m/s.

  13. Wind tunnel simulation of a wind turbine wake in neutral, stable and unstable wind flow

    NASA Astrophysics Data System (ADS)

    Hancock, P. E.; Zhang, S.; Pascheke, F.; Hayden, P.

    2014-12-01

    Measurements of mean velocity, Reynolds stresses, temperature and heat flux have been made in the wake of a model wind turbine in the EnFlo meteorology wind tunnel, for three atmospheric boundary layer states: the base-line neutral case, stable and unstable. The full-to-model scale is approximately 300:1. Primary instrumentation is two-component LDA combine with cold-wire thermometry to measure heat flux. In terms of surface conditions, the stratified cases are weak, but there is a strong 'imposed' condition in the stable case. The measurements were made between 0.5D and 10D, where D is the turbine disk diameter. In the stable case the velocity deficit decreases more slowly; more quickly in the unstable case. Heights at which quantities are maximum or minimum are greater in the unstable case and smaller in the stable case. In the stable case the wake height is suppressed but the width is increased, while in the unstable case the height is increased and the width (at hub height) reaches a maximum and then decreases. The turbulence in the wake behaves in a complex way. Further work needs to be done, to cover stronger levels of surface condition, requiring more extensive measurements to properly capture the wake development.

  14. Terminal velocity of wind, mass loss, and absorption lines of the central star of the planetary nebula 75 + 35. 1 deg

    SciTech Connect

    Feibelman, W.A.; Bruhweiler, F.C. Catholic Univ. of America, Washington, DC )

    1989-12-01

    The high-galactic latitude planetary nebula 75 + 35.1 deg was observed in the high-dispersion mode of the International Ultraviolet Explorer (IUE) satellite in the wavelength range 1150-1950 A. The N V resonance doublet at 1240 A and O V subordinate line at 1371 A exhibit strong stellar P Cygni profiles with absorption extending to -2150 km/s and -1000 km/s, respectively. Application of the first moment method implies a mass-loss rate of M = (1-3) x 10 to the -8th solar mass/yr. The high ionization of the wind lines and the presence of strong Fe VI and Fe V lines in the stellar photosphere support that this object is quite hot. A Teff of 75,000 + or - 10,000 K was adopted, although Tc = 94,000 K was found previously from low-resolution IUE data. 18 refs.

  15. Terminal velocity of wind, mass loss, and absorption lines of the central star of the planetary nebula 75 + 35.1 deg

    NASA Technical Reports Server (NTRS)

    Feibelman, Walter A.; Bruhweiler, Frederick C.

    1989-01-01

    The high-galactic latitude planetary nebula 75 + 35.1 deg was observed in the high-dispersion mode of the International Ultraviolet Explorer (IUE) satellite in the wavelength range 1150-1950 A. The N V resonance doublet at 1240 A and O V subordinate line at 1371 A exhibit strong stellar P Cygni profiles with absorption extending to -2150 km/s and -1000 km/s, respectively. Application of the first moment method implies a mass-loss rate of M = (1-3) x 10 to the -8th solar mass/yr. The high ionization of the wind lines and the presence of strong Fe VI and Fe V lines in the stellar photosphere support that this object is quite hot. A Teff of 75,000 + or - 10,000 K was adopted, although Tc = 94,000 K was found previously from low-resolution IUE data.

  16. Oblique, Stratified Winds about a Shelter Fence. Part I: Measurements.

    NASA Astrophysics Data System (ADS)

    Wilson, John D.

    2004-08-01

    Wind statistics were measured using cup and sonic anemometers, placed upwind and downwind from a porous plastic windbreak fence (height h = 1.25 m, length Y = 114 m, resistance coefficient kr0 = 2.4, and porosity p = 0.45) standing on otherwise uniform land (short grass with roughness length z0 1.9 cm). Intercomparison with collocated two-dimensional sonic anemometers suggested that, except in strongly stratified winds, cup anemometers (distance constant 1.5 m), subjected to a uniform overspeeding correction (here 10%), provide a reasonably accurate transect of the mean wind across the disturbed flow region. The measurements, binned with respect to mean wind direction and stratification, establish that the resistance coefficient of a windbreak of this type implies the maximum (or “potential”) mean wind reduction, a potential that is realized in neutral, perpendicular flow and for which a semiempirical formula is derived. Obliquity of the approaching wind reduces actual shelter effectiveness below the potential value, as was already known. However, a systematic influence of stratification could only be discriminated in winds that were not too far (say, within about ±30°) from perpendicular, under which conditions both stable and unstable stratification reduced shelter effectiveness. The “quiet zone,” in which velocity standard deviations (σu, σ) are reduced relative to the approach flow, was found to extend farther downwind for the normal velocity component (u) than for the parallel component ().


  17. An estimate of solar wind velocity profiles in an coronal hole and a coronal streamer area (6-40 solar radius)

    NASA Technical Reports Server (NTRS)

    Paetzold, M.; Tsurutani, B. T.; Bird, M. K.

    1995-01-01

    Using the total electron content data obtained by the Ulysses Solar Corona Experiment during the superior solar conjunction in summer 1991, we selected two data sets, one associated with a coronal hole and the other one with coronal streamer crossings. By doing this data splitting, we find two entirely different density profiles varying as r(exp -2.7) and r(exp -2.3) for the coronal hole and coronal streamers, respectively. Assuming mass flux conservation from the inner corona to one AU, an estimate for the velocity profiles or acceleration in these two different regions can be determined. The more negative exponent of the coronal hole density profile indicates a more extended heating and acceleration region or more flaring, or both. Various possible explanations will be discussed.

  18. Characterization of Wind Meandering in Low-Wind-Speed Conditions

    NASA Astrophysics Data System (ADS)

    Mortarini, Luca; Stefanello, Michel; Degrazia, Gervasio; Roberti, Debora; Trini Castelli, Silvia; Anfossi, Domenico

    2016-10-01

    Investigation of low-wind cases observed during the Urban Turbulent Project campaign (Torino, Italy) and at the Santa Maria meteorological station (Santa Maria, Brazil) provides insight into the wind-meandering phenomenon, i.e. large, non-turbulent oscillations of horizontal wind speed and temperature. Meandering and non-meandering cases are identified through analysis of the Eulerian autocorrelation functions of the horizontal wind-velocity components and temperature. When all three autocorrelation functions oscillate, meandering is present. As with weak turbulence, meandering shows no dependence on stability but is influenced by presence of buildings and depends on wind speed. We show that, while the standard deviation of the horizontal velocity is always large in low-wind conditions, the standard deviation of the vertical velocity shows very different behaviour in meandering and non-meandering conditions. In particular, the value of the ratio of the standard deviations of the vertical and horizontal velocities typifies the meandering condition.

  19. Determining Diffuser Augmented Wind Turbine performance using a combined CFD/BEM method

    NASA Astrophysics Data System (ADS)

    Kesby, JE; Bradney, D. R.; Clausen, PD

    2016-09-01

    The optimisation of a Diffuser Augmented Wind Turbine has traditionally focused on maximising its power output. Optimising the design of the blade and the shape of the diffuser for maximum turbine power over a range of wind velocities is a complex process, as each will influence the others flow regime. In this paper we propose a method that combines the predictions of flow through a diffuser, using computational fluid dynamics, and the flow from a turbine blade using a modified blade element theory to predict the power output of a diffuser augmented wind turbine. Good agreement was found between the predictions from this new method and experimental data from the literature.

  20. From Dust Devil to Sustainable Swirling Wind Energy

    PubMed Central

    Zhang, Mingxu; Luo, Xilian; Li, Tianyu; Zhang, Liyuan; Meng, Xiangzhao; Kase, Kiwamu; Wada, Satoshi; Yu, Chuck Wah; Gu, Zhaolin

    2015-01-01

    Dust devils are common but meteorologically unique phenomena on Earth and on Mars. The phenomenon produces a vertical vortex motion in the atmosphere boundary layer and often occurs in hot desert regions, especially in the afternoons from late spring to early summer. Dust devils usually contain abundant wind energy, for example, a maximum swirling wind velocity of up to 25 m/s, with a 15 m/s maximum vertical velocity and 5 m/s maximum near-surface horizontal velocity can be formed. The occurrences of dust devils cannot be used for energy generation because these are generally random and short-lived. Here, a concept of sustained dust-devil-like whirlwind is proposed for the energy generation. A prototype of a circular shed with pre-rotation vanes has been devised to generate the whirlwind flow by heating the air inflow into the circular shed. The pre-rotation vanes can provide the air inflow with angular momentum. The results of numerical simulations and experiment illustrate a promising potential of the circular shed for generating swirling wind energy via the collection of low-temperature solar energy. PMID:25662574

  1. From dust devil to sustainable swirling wind energy.

    PubMed

    Zhang, Mingxu; Luo, Xilian; Li, Tianyu; Zhang, Liyuan; Meng, Xiangzhao; Kase, Kiwamu; Wada, Satoshi; Yu, Chuck Wah; Gu, Zhaolin

    2015-02-09

    Dust devils are common but meteorologically unique phenomena on Earth and on Mars. The phenomenon produces a vertical vortex motion in the atmosphere boundary layer and often occurs in hot desert regions, especially in the afternoons from late spring to early summer. Dust devils usually contain abundant wind energy, for example, a maximum swirling wind velocity of up to 25 m/s, with a 15 m/s maximum vertical velocity and 5 m/s maximum near-surface horizontal velocity can be formed. The occurrences of dust devils cannot be used for energy generation because these are generally random and short-lived. Here, a concept of sustained dust-devil-like whirlwind is proposed for the energy generation. A prototype of a circular shed with pre-rotation vanes has been devised to generate the whirlwind flow by heating the air inflow into the circular shed. The pre-rotation vanes can provide the air inflow with angular momentum. The results of numerical simulations and experiment illustrate a promising potential of the circular shed for generating swirling wind energy via the collection of low-temperature solar energy.

  2. The very slow solar wind in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Sanchez-Diaz, E.; Segura, K.; Rouillard, A.; Lavraud, B.; Tao, C.; Blelly, P. L.

    2015-12-01

    Measurements near 1AU of the bulk and compositional properties of the interplanetary plasma point to the existence of two solar winds that can be classified by their speeds, V, the fast (V>400 km s-1) and slow winds (V<400 km s-1). The slow solar wind is seldom observed slower than 300 km s-1 at 1 AU. We show that, closer to the Sun, there is a big amount of solar wind slower than 300 km s-1, hereafter very slow solar wind (VSSW). It is mostly detected inside 0.7 AU by the HELIOS spacecraft during solar maximum (1979-1980). The closer to the Sun the slower it can be observed, reaching velocities of 200 kms-1 near 0.3 AU. This very slow wind usually contains the very dense heliospheric plasma sheet as well as the heliospheric current sheet. The very low speeds disappear by 1AU likely due to the interaction with the faster plasma. Solar Probe Plus will measure in-situ how low in the inner Heliosphere this interaction starts and whether even lower velocities are observed inside 0.3 AU. The VSSW has higher density and lower temperature than regular slow solar wind, qualitatively extending the known scaling laws for the solar wind over 300 km s-1(Lopez & Freeman, 1986) (Hundhausen, Bame, Asbridge, & Sydoriak, 1970). Like the rest of the slow solar wind, the helium abundance of the VSSW increase with solar activity, approaching to the fast wind composition at solar maximum. Combining a Potential Field Source Surface (PFSS) to a ballistic backmapping, we relate the ins-situ measurements to the solar surface. We compute the proton density flux just above the photosphere and find much higher fluxes in the VSSW than in the faster winds at solar maximum. Based on this, we propose a likely mechanism for the solar cycle variability of the helium abundance of the VSSW and slow solar wind, which will be tested by combining Solar Orbiter and Solar Probe Plus measurements of the VSSW with high resolution and high cadence Carrington maps. This work was funded by the EU FP7 HELCATS

  3. CAT LIDAR wind shear studies

    NASA Technical Reports Server (NTRS)

    Goff, R. W.

    1978-01-01

    The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.

  4. Wind profiler signal detection improvements

    NASA Technical Reports Server (NTRS)

    Hart, G. F.; Divis, Dale H.

    1992-01-01

    Research is described on potential improvements to the software used with the NASA 49.25 MHz wind profiler located at Kennedy Space Center. In particular, the analysis and results are provided of a study to (1) identify preferred mathematical techniques for the detection of atmospheric signals that provide wind velocities which are obscured by natural and man-made sources, and (2) to analyze one or more preferred techniques to demonstrate proof of the capability to improve the detection of wind velocities.

  5. Analysis of change in the wind speed ratio according to apartment layout and solutions.

    PubMed

    Hyung, Won-gil; Kim, Young-Moon; You, Ki-Pyo

    2014-01-01

    Apartment complexes in various forms are built in downtown areas. The arrangement of an apartment complex has great influence on the wind flow inside it. There are issues of residents' walking due to gust occurrence within apartment complexes, problems with pollutant emission due to airflow congestion, and heat island and cool island phenomena in apartment complexes. Currently, the forms of internal arrangements of apartment complexes are divided into the flat type and the tower type. In the present study, a wind tunnel experiment and computational fluid dynamics (CFD) simulation were performed with respect to internal wind flows in different apartment arrangement forms. Findings of the wind tunnel experiment showed that the internal form and arrangement of an apartment complex had significant influence on its internal airflow. The wind velocity of the buildings increased by 80% at maximum due to the proximity effects between the buildings. The CFD simulation for relaxing such wind flows indicated that the wind velocity reduced by 40% or more at maximum when the paths between the lateral sides of the buildings were extended.

  6. AGN Obscuration Through Dusty Infrared Dominated Flows. 1; Radiation-Hydrodynamics Solution for the Wind

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Bisnovatyi-Kogan. G. S.; Kallman, T.

    2011-01-01

    We construct a radiation-hydrodynamics model for the obscuring toroidal structure in active galactic nuclei. In this model the obscuration is produced at parsec scale by a dense, dusty wind which is supported by infrared radiation pressure on dust grains. To find the distribution of radiation pressure, we numerically solve the 2D radiation transfer problem in a flux limited diffusion approximation. We iteratively couple the solution with calculations of stationary 1D models for the wind, and obtain the z-component of the velocity. Our results demonstrate that for AGN luminosities greater than 0.1 L(sub edd) external illumination can support a geometrically thick obscuration via outflows driven by infrared radiation pressure. The terminal velocity of marginally Compton-thin models (0.2 < tau(sub T) < 0.6), is comparable to or greater than the escape velocity. In Compton thick models the maximum value of the vertical component of the velocity is lower than the escape velocity, suggesting that a significant part of our torus is in the form of failed wind. The results demonstrate that obscuration via normal or failed infrared-driven winds is a viable option for the AGN torus problem and AGN unification models. Such winds can also provide an important channel for AGN feedback.

  7. Solar wind eddies and the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Mccomas, D. J.; Bame, S. J.; Goldstein, B. E.

    1995-01-01

    Ulysses has collected data between 1 and 5 AU during, and just following solar maximum, when the heliospheric current sheet (HCS) can be thought of as reaching its maximum tilt and being subject to the maximum amount of turbulence in the solar wind. The Ulysses solar wind plasma instrument measures the vector velocity and can be used to estimate the flow speed and direction in turbulent 'eddies' in the solar wind that are a fraction of an astronomical unit in size and last (have either a turnover or dynamical interaction time of) several hours to more than a day. Here, in a simple exercise, these solar wind eddies at the HCS are characterized using Ulysses data. This character is then used to define a model flow field with eddies that is imposed on an ideal HCS to estimate how the HCS will be deformed by the flow. This model inherently results in the complexity of the HCS increasing with heliocentric distance, but the result is a measure of the degree to which the observed change in complexity is a measure of the importance of solar wind flows in deforming the HCS. By comparison with randomly selected intervals not located on the HCS, it appears that eddies on the HCS are similar to those elsewhere at this time during the solar cycle, as is the resultant deformation of the interplanetary magnetic field (IMF). The IMF deformation is analogous to what is often termed the 'random walk' of interplanetary magnetic field lines.

  8. Optimization of Wind Turbine Airfoils/Blades and Wind Farm Layouts

    NASA Astrophysics Data System (ADS)

    Chen, Xiaomin

    by the turbine can be significantly increased. Parametric studies are also conducted by varying the turbine diameter. In addition, a simplified dynamic inflow model is integrated into the BEM theory. It is shown that the improved BEM theory has superior performance in capturing the instantaneous behavior of wind turbines due to the existence of wind turbine wake or temporal variations in wind velocity. The dissertation also considers the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal --Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally position the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed. Finally, some preliminary investigation of shape optimization of 3D wind turbine blades at low Reynolds numbers is conducted. The optimization employs a 3D straight untapered wind turbine blade with cross section of NACA 0012 airfoils as the geometry of baseline blade. The optimization objective is to achieve maximum Cl/Cd as well as maximum Cl. The multi-objective genetic algorithm is employed together with the commercially available software FLUENT for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a one-equation Sparlart-Allmaras turbulence model. The results show excellent performance of the optimized wind turbine blade and indicate the feasibility of optimization on real wind turbine blades with more complex shapes in the future. (Abstract shortened by UMI.)

  9. Wind Measurements from Arc Scans with Doppler Wind Lidar

    DOE PAGES

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; ...

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of itsmore » high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.« less

  10. Wind Measurements from Arc Scans with Doppler Wind Lidar

    SciTech Connect

    Wang, H.; Barthelmie, R. J.; Clifton, Andy; Pryor, S. C.

    2015-11-25

    When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of its high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.

  11. Aeolian processes on Mars - Erosive velocities, settling velocities, and yellow clouds.

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.

    1972-01-01

    Extremely high atmospheric wind velocities are needed to erode particulate matter on Mars. Settling velocities are roughly equivalent to terrestrial settling velocities for clay to fine sand-size particles; suspension transport may be dominant for fine particles on Mars. Yellow clouds suggest that required threshold erosion velocities are reached and that a great deal of fine-grained material is carried in suspension. Yellow cloud origins are concentrated over the southern latitudes and areas of major topographic relief. The cloud distribution pattern suggests that high threshold velocities are attained by transient atmospheric disturbances such as slope winds and dust devils.-

  12. A Comparison of the Propagated Solar Wind with Near-Earth Solar Wind Observations

    NASA Astrophysics Data System (ADS)

    Hsu, T. S.

    2015-12-01

    Magneotospheric dynamics are primarily controlled by the solar wind and its interplanetary magnetic field (IMF). Majority of the magnetospheric studies relied on observation of the solar wind frequently taken as far away as the L1 Lagrange point approximately 230 RE upstream. The quality of the empirical or theoretical modeling depends on how accurately the solar wind observation at L1 can be propagated to the magnetosphere and drives the magnetospheric dynamics. It has been more than two decades that researchers seek to determine the structures and evolution of the solar wind observationally in order to characterize the propagated solar wind parcels that interact with the Earth. Russell et al. [1980] used solar wind data at the Earth and L1 without considering the type of solar wind structures and found that the Bz correlations varied from 0.0 to 1.0. Although the most probable correlation was 0.85, half of the time the correlation was less than 0.5. The scale of IMF correlations was reexamined by Collier et al. [1998] using data from Wind and IMP 8. It should be noted that Collier et al. [1998] examined data during solar minimum and Russell et al. [1980] examined data during solar maximum. The scales of solar wind plasma and magnetic field were further examined by Richardson and Paularena [2001]. The found that the transverse scale for a decrease in density correlation by 0.1 is 120 Re and for velocity about 70 Re. In contrast the transverse scales for the components of the IMF are about 50 Re. Using ISEE 2 and IMP8 from 1978 to 1985, Hsu and McPherron [2009] found that a small transvers IMF structure of about 15 Re can occur only about 5%~13% . Most of the recent studies examining Sun-Earth coupling using OMNI solar data which is propagated to the Earth-Sun line by a method based upon minimum variance analysis [Weimer et al., 2003; Bargatze et al., 2005]. The important question of how often a near-earth IMF structure is absent from the propagated solar wind and

  13. The impact of T-TREC-retrieved wind and radial velocity data assimilation using EnKF and effects of assimilation window on the analysis and prediction of Typhoon Jangmi (2008)

    NASA Astrophysics Data System (ADS)

    Wang, Mingjun; Xue, Ming; Zhao, Kun

    2016-01-01

    This study examines the relative impact of assimilating T-TREC-retrieved winds (VTREC) versus radial velocity (Vr) on the analysis and forecast of Typhoon Jangmi (2008) using an ensemble Kalman filter (EnKF). The VTREC and Vr data at 30 min intervals are assimilated into the ARPS model at 3 km grid spacing over four different assimilation windows that cover, respectively, 0000-0200, 0200-0400, 0400-0600, and 0000-0600 UTC, 28 September 2008. The assimilation of VTREC data produces better analyses of the typhoon structure and intensity than the assimilation of Vr data during the earlier assimilation windows, but during the later assimilation windows when the coverage of Vr data on the typhoon from four Doppler radars is much improved, the assimilation of Vr outperforms VTREC data. The combination of VTREC and Vr data, either by assimilating both VTREC and Vr data in all cycles or by assimilating VTREC in the first cycle and Vr in the remaining cycles (labeled VTFVR), further improves the analyses of the typhoon structure and intensity compared to assimilating VTREC or Vr data alone. Quantitative verifications of 24 h forecasts of the typhoon show that the VTFVR assimilation experiments produces forecasts that best match the best track data and also have the highest precipitation prediction skills. The track forecast errors in experiment that assimilate VTREC data through the later cycles are the largest. The behaviors are discussed based on the coverage, information content, and accuracy of the various forms of data.

  14. The sun and heliosphere at solar maximum

    NASA Technical Reports Server (NTRS)

    Smith, E. J.; Marsden, R. G.; Balogh, A.; Gloeckler, G.; Geiss, J.; McComas, D. J.; McKibben, R. B.; MacDowall, R. J.; Lanzerotti, L. J.; Krupp, N.; Krueger, H.; Landgraf, M.

    2003-01-01

    Recent Ulysses observations from the Sun's equator to the poles reveal fundamental properties of the three-dimensional heliosphere at the maximum in solar activity. The heliospheric magnetic field originates from a magnetic dipole oriented nearly perpendicular to, instead of nearly parallel to, the Sun'rotation axis. Magnetic fields, solar wind, and energetic charged particles from low-latitude sources reach all latitudes, including the polar caps. The very fast high-latitude wind and polar coronal holes disappear and reappear together. Solar wind speed continues to be inversely correlated with coronal temperature. The cosmic ray flux is reduced symmetrically at all latitudes.

  15. Interferometric phase velocity measurements

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Labelle, J.; Kelley, M. C.; Cahill, L. J., Jr.; Moore, T.; Arnoldy, R.

    1984-01-01

    Phase velocities of plasma waves near the lower hybrid frequency were measured with an interferometer composed of two spatially separated electron-density probes. The plasma waves were produced in the F-region ionosphere by an argon ion beam. By calculating the normalized cross spectrum of the plasma waves a coherency of .98 was estimated along with a maximum phase difference of pi/3 radians between the two probes. This implies that the wavelength was 6 meters compared to an O(+) gyroradius of 3.8 meters, and that the phase velocity was 45 km/sec compared to an ion-beam velocity of 12.4 km/sec. These numbers compare favorably with recent predictions of a nonresonant mode produced by a dense ion beam.

  16. Impact of wind on the dynamics of explosive volcanic plumes inferred from analog experiments

    NASA Astrophysics Data System (ADS)

    Carazzo, G.; Girault, F.; Aubry, T. J.; Bouquerel, H.; Kaminski, E. C.

    2014-12-01

    Volcanic plumes produced by explosive eruptions commonly interact with atmospheric wind causing plume bending and a reduction of its maximum height. Strength of the wind field and intensity of the eruption control the behavior of the column in the atmosphere, which may form either a strong plume that is little affected by the presence of wind or a weak plume that is bent-over in the wind field. To better understand the transition between weak and strong plumes, we present a series of new laboratory reproducing a buoyant jet rising in a stratified environment with a uniform cross-flow. The experiments consist in injecting downward fresh water in a tank containing an aqueous NaCl solution with linear density stratification. The jet source is towed at a constant speed through the stationary fluid in order to produce a cross-flow. We show that depending on the environmental and source conditions, the buoyant jet may form either a strong, distorted, or weak plume. The transition from one dynamical regime to another is governed by the strength of the horizontal wind velocity compared to the vertical buoyant rise of the plume. A review of field data on historical eruptions confirms that the experimentally-determined transition curves capture the behavior of volcanic columns. We quantify the impact of wind on the maximum height reached by the column, and we propose a universal scaling relationship to link the mass discharge rate feeding an eruption to its observed maximum height in the presence of wind.

  17. Unsteady Flow in Different Atmospheric Boundary Layer Regimes and Its Impact on Wind-Turbine Performance

    NASA Astrophysics Data System (ADS)

    Gohari, Iman; Korobenko, Artem; Yan, Jinhui; Bazilevs, Yuri; Sarkar, Sutanu

    2016-11-01

    Wind is a renewable energy resource that offers several advantages including low pollutant emission and inexpensive construction. Wind turbines operate in conditions dictated by the Atmospheric Boundary Layer (ABL) and that motivates the study of coupling ABL simulations with wind turbine dynamics. The ABL simulations can be used for realistic modeling of the environment which, with the use of fluid-structure interaction, can give realistic predictions of extracted power, rotor loading, and blade structural response. The ABL simulations provide inflow boundary conditions to the wind-turbine simulator which uses arbitrary Lagrangian-Eulerian variational multiscale formulation. In the present work, ABL simulations are performed to examine two different scenarios: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the wind turbine experiences maximum mean shear; (2) A shallow ABL with the surface cooling-rate of -1 K/hr, in which the wind turbine experiences maximum mean velocity at the low-level-jet nose height. We will discuss differences in the unsteady flow between the two different ABL conditions and their impact on the performance of the wind turbine cluster in the coupled ABL-wind turbine simulations.

  18. Wind Tunnel Analysis of the Detachment Bubble on Bolund Island

    NASA Astrophysics Data System (ADS)

    Yeow, T. S.; Cuerva, A.; Conan, B.; J, Pérez-Álvarez

    2014-12-01

    The flow topology on two scaled models (1:230 and 1:115) of the Bolund Island is analysed in two wind tunnels, focusing on the characteristics of the detachment pattern when the wind blows from 270° wind direction and the atmospheric condition is neutral. Since the experiments are designed as the simplest possible reference cases, no additional roughness is added neither to the models surface nor to the wind tunnel floor. Pressure measurements on the surface of the 1:230 scale model are used to estimate the horizontal extension of the intermittent recirculation region, by applying the diagnostic means based in exploring the pressure statistics, proposed in the literature for characterising bubbles on canonical obstacles. The analysis is done for a range of Reynolds numbers based on the mean undisturbed wind speed, U∞ and the maximum height of the island, h[5.1×104,8.5×104]. An isoheight mapping of the velocity field is obtained using 3D hotwire (3D HW). The velocity field in a vertical plane is determined using 3D HW and 2D particle image velocimetry (PIV) on the 1:115 scale model in order to reproduce and complete already existing results in the literature.

  19. LIDAR wind speed measurements at a Taiwan onshore wind park

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Lin, Ta-Hui; Hsuan, Chung-Yao; Li, Yu-Cheng; Yang, Ya-Fei; Tai, Tzy-Hwan; Huang, Chien-Cheng

    2016-04-01

    Measurements of wind speed and wind direction were carried out using a Leosphere Windcube LIDAR system at a Taiwan onshore wind park. The Lidar shot a total of five laser beams to the atmosphere to collect the light-of-sight (LOS) velocity. Four beams were sent successively in four cardinal directions along a 28° scanning cone angle, followed by a fifth, vertical beam. An unchangeable sampling rate of approximately 1.2 Hz was set in the LIDAR system to collect the LOS velocity. The supervisory control and data acquisition (SCADA) data from two GE 1.5 MW wind turbines near the LIDAR deployment site were acquired for the whole measuring period from February 4 to February 16 of 2015. The SCADA data include the blade angular velocity, the wind velocity measured at hub height from an anemometer mounted on the nacelle, the wind turbine yaw angle, and power production; each parameter was recorded as averages over 1-min periods. The data analysis involving the LIDAR measurements and the SCADA data were performed to obtain the turbulent flow statistics. The results show that the turbine power production has significant dependence to the wind speed, wind direction, turbulence intensity and wind shear.

  20. Wind Power Generation Design Considerations.

    DTIC Science & Technology

    1984-12-01

    sites. have low starting torques, operate at high tip-to- wind speeds, and generate high power output per turbine weight. 5 The Savonius rotor operates...DISTRIBUTION 4 I o ....................................... . . . e . * * TABLES Number Page I Wind Turbine Characteristics II 0- 2 Maximum Economic Life II 3...Ratio of Blade Tip Speed to Wind Speed 10 4 Interference with Microwave and TV Reception by Wind Turbines 13 5 Typical Flow Patterns Over Two

  1. Magnetically driven jets and winds: Exact solutions

    NASA Technical Reports Server (NTRS)

    Contopoulos, J.; Lovelace, R. V. E.

    1994-01-01

    We present a general class of self-similar solutions of the full set of MHD equations that include matter flow, electromagnetic fields, pressure, and gravity. The solutions represent axisymmetric, time-independent, nonrelativistic, ideal, magnetohydrodynamic, collimated outflows (jet and winds) from magnetized accretion disks around compact objects. The magnetic field extracts angular momentum from the disk, accelerates the outflows perpedicular to the disk, and provides collimation at large distances. The terminal outflow velocities are of the order of or greater than the rotational velocity of the disk at the base of the flow. When a nonzero electric current flows along the jet, the outflow radius oscillates with axial distance, whereas when the total electric current is zero (with the return current flowing across the jet's cross section), the outflow radius increase to a maximum and then decreases. The method can also be applied to relativistic outflows.

  2. Winds over saltcedar

    USGS Publications Warehouse

    Van Hylckama, T. E. A.

    1970-01-01

    An analysis of hourly wind speeds above and within a stand of saltcedar near Buckeye, Arizona, reveals that in 90% of all observed cases, the wind profiles above the stand can be represented by the simple logarithmic equation: uz = u* k 1n ( z z0) where uz is the velocity at height z. The roughness length (z0), (disregarding zero displacement), varies with a stability ratio similar to Richardson's number. The friction velocity, u*, depends on the wind speeds above the vegetation. Von Karman's constant, k, equals 0.41. Within the thickets there is considerable turbulence, and irregular wind inversions occur during daylight hours. The results are important for estimating water losses by evapotranspiration by either the energy-budget or the mass-transfer formulae. ?? 1970.

  3. Coronal Holes and Solar Wind High-Speed Streams: I. Forecasting the Solar Wind Parameters

    NASA Astrophysics Data System (ADS)

    Vršnak, Bojan; Temmer, Manuela; Veronig, Astrid M.

    2007-02-01

    We analyze the relationship between the coronal hole (CH) area/position and physical characteristics of the associated corotating high-speed stream (HSS) in the solar wind at 1 AU. For the analysis we utilize the data in the period DOY 25 125 of 2005, characterized by a very low coronal mass ejection (CME) activity. Distinct correlations between the daily averaged CH parameters and the solar wind characteristics are found, which allows us to forecast the solar wind velocity v, proton temperature T, proton density n, and magnetic field strength B, several days in advance in periods of low CME activity. The forecast is based on monitoring fractional areas A, covered by CHs in the meridional slices embracing the central meridian distance ranges [-40°,-20°], [-10°,10°], and [20°,40°]. On average, the peaks in the daily values of n, B, T, and v appear delayed by 1, 2, 3, and 4 days, respectively, after the area A attains its maximum in the central-meridian slice. The peak values of the solar wind parameters are correlated to the peak values of A, which provides also forecasting of the peak values of n, B, T, and v. The most accurate prediction can be obtained for the solar wind velocity, for which the average relative difference between the calculated and the observed peak values amounts to overline{\\vertδ\\vert}≈10 %. The forecast reliability is somewhat lower in the case of T, B, and n ( overline{\\vertδ\\vert}≈20 , 30, and 40%, respectively). The space weather implications are discussed, including the perspectives for advancing the real-time calculation of the Sun Earth transit times of coronal mass ejections and interplanetary shocks, by including more realistic real-time estimates of the solar wind characteristics.

  4. On optimal velocity during cycling.

    PubMed

    Maroński, R

    1994-02-01

    This paper focuses on the solution of two problems related to cycling. One is to determine the velocity as a function of distance which minimizes the cyclist's energy expenditure in covering a given distance in a set time. The other is to determine the velocity as a function of the distance which minimizes time for fixed energy expenditure. To solve these problems, an equation of motion for the cyclist riding over arbitrary terrain is written using Newton's second law. This equation is used to evaluate either energy expenditure or time, and the minimization problems are solved using an optimal control formulation in conjunction with the method of Miele [Optimization Techniques with Applications to Aerospace Systems, pp. 69-98 (1962) Academic Press, New York]. Solutions to both optimal control problems are the same. The solutions are illustrated through two examples. In one example where the relative wind velocity is zero, the optimal cruising velocity is constant regardless of terrain. In the second, where the relative wind velocity fluctuates, the optimal cruising velocity varies.

  5. Wind Speed Estimation and Wake model Re-calibration for Downregulated Offshore Wind Farms

    NASA Astrophysics Data System (ADS)

    Göçmen Bozkurt, Tuhfe; Giebel, Gregor; Kjølstad Poulsen, Niels; Réthoré, Pierre-Elouan; Mirzaei, Mahmood

    2014-05-01

    In recent years, the wind farm sizes have increased tremendously and with increasing installed capacity, the wind farms are requested to downregulate from their maximum possible power more frequently, especially in the offshore environment. Determination of the possible (or available) power is crucial not only because the reserve power has considerable market value but also for wind farm developers to be properly compensated for the loss during downregulation. While the available power calculation is straightforward for a single turbine, it gets rather complicated for the whole wind farm due to the change in the wake characteristics. In fact, the wake losses generated by the upstream turbine(s) decrease during downregulation and the downstream turbines therefore see more wind compared to the normal operation case. Currently, the Transmission System Operators (TSOs) have no real way to determine exactly the available power of a whole wind farm which is downregulated. Therefore, the PossPOW project aims to develop a verified and internationally accepted way to determine the possible power of a down-regulated offshore wind farm. The first phase of the project is to estimate the rotor effective wind speed. Since the nacelle anemometers are not readily available and are known to have reliability issues, the proposed method is to use power, pitch angle and rotational speed as inputs and combine it with a generic Cp model to estimate the wind speed. The performance of the model has been evaluated for both normal operation and downregulation periods using two different case studies: Horns Rev-I wind farm and NREL 5MW single turbine. During downregulation, the wake losses are not as severe and the velocity deficits at the downstream turbines are smaller as if also the wake is "downregulated". On the other hand, in order to calculate the available power, the wakes that would have been produced normally (if the turbines were not curtailed) are of importance, not the

  6. Prediction of solar energetic particle event histories using real-time particle and solar wind measurements

    NASA Technical Reports Server (NTRS)

    Roelof, E. C.; Gold, R. E.

    1978-01-01

    The comparatively well-ordered magnetic structure in the solar corona during the decline of Solar Cycle 20 revealed a characteristic dependence of solar energetic particle injection upon heliographic longitude. When analyzed using solar wind mapping of the large scale interplanetary magnetic field line connection from the corona to the Earth, particle fluxes display an approximately exponential dependence on heliographic longitude. Since variations in the solar wind velocity (and hence the coronal connection longitude) can severely distort the simple coronal injection profile, the use of real-time solar wind velocity measurements can be of great aid in predicting the decay of solar particle events. Although such exponential injection profiles are commonplace during 1973-1975, they have also been identified earlier in Solar Cycle 20, and hence this structure may be present during the rise and maximum of the cycle, but somewhat obscured by greater temporal variations in particle injection.

  7. Pickup Ion Velocity Distributions at Titan: Effects of Spatial Gradients

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Sittler, E. C.

    2004-01-01

    The principle source of pickup ions at Titan is its neutral exosphere, extending well above the ionopause into the magnetosphere of Saturn or the solar wind, depending on the moon's orbital position. Thermal and nonthermal processes in the thermosphere generate the distribution of neutral atoms and molecules in the exosphere. The combination of these processes and the range of mass numbers, 1 to over 28, contribute to an exospheric source structure that produces pickup ions with gyroradii that are much larger or smaller than the corresponding scale heights of their neutral sources. The resulting phase space distributions are dependent on the spatial structure of the exosphere as well as that of the magnetic field and background plasma. When the pickup ion gyroradius is less than the source gas scale height, the pickup ion velocity distribution is characterized by a sharp cutoff near the maximum speed, which is twice that of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. This was the case for pickup H(sup +) ions identified during the Voyager 1 flyby. In contrast, as the gyroradius becomes much larger than the scale height, the peak of the velocity distribution in the source region recedes from the maximum speed. Iri addition, the amplitude of the distribution near the maximum speed decreases. These more beam like distributions of heavy ions were not observed from Voyager 1 , but should be observable by more sensitive instruments on future spacecraft, including Cassini. The finite gyroradius effects in the pickup ion velocity distributions are studied by including in the analysis the possible range of spatial structures in the neutral exosphere and background plasma.

  8. On the Effect of Offshore Wind Parks on Ocean Dynamics

    NASA Astrophysics Data System (ADS)

    Ludewig, E.; Pohlmann, T.

    2012-12-01

    Nowadays renewable energy resources play a key role in the energy supply discussion and especially an increasingly interest in wind energy induces intensified installations of wind parks. At this offshore wind energy gains in popularity in the course of higher and more consistent energy availability than over land. For example Germany's government adopted a national interurban offshore wind energy program comprising the construction of hundreds of wind turbines within Germany's Exclusive Economic Zone to ensure up to 50% of Germany's renewable energy supply. The large number of installation in coastal regions asks for analyzing the impact of offshore wind parks (OWPs) on the atmosphere and the ocean. As known from literature such wind parks excite also-called wake-effect and such an influence on the wind field in turn affects ocean circulation. To cover OWP's impact on ocean dynamics we evaluate model simulations using the Hamburg Shelf-Ocean-Model (HAMSOM). All simulations were driven with a wind forcing produced by the Mesoscale Atmosphere Model of the Hamburg University (METRAS) which has implemented wind turbines. Wind forcing data were generated in collaboration with and by courtesy of the Meteorological Institute of the University of Hamburg, Department Technical Meteorology, Numeric Modeling-METRAS. To evaluate dynamical changes forced by the OWP's wind wake-effect we did a sensitivity study with a theoretical setup of a virtual ocean of 60m depth with a flat bottom and a temperature and salinity stratification according to common North Sea's conditions. Here our results show that already a small OWP of 12 wind turbines, placed in an area of 4 km^2, lead to a complex change in ocean dynamics. Due to the wake-effect zones of upwelling and downwelling are formed within a minute after turning-on wind turbines. The evolving vertical cells have a size of around 15x15 kilometers with a vertical velocity in order of 10^-2 mm/sec influencing the dynamic of an area

  9. Wind turbine wake characterization using long-range Doppler lidar

    NASA Astrophysics Data System (ADS)

    Aitken, M.; Lundquist, J. K.; Hestmark, K.; Banta, R. M.; Pichugina, Y.; Brewer, A.

    2012-12-01

    Wind turbines extract energy from the freestream flow, resulting in a waked region behind the rotor which is characterized by reduced wind speed and increased turbulence. The velocity deficit in the wake diminishes with distance, as faster-moving air outside is gradually entrained. In a concentrated group of turbines, then, downwind machines experience very different inflow conditions compared to those in the front row. As utility-scale turbines rarely exist in isolation, detailed knowledge of the mean flow and turbulence structure inside wakes is needed to correctly model both power production and turbine loading at modern wind farms. To this end, the Turbine Wake and Inflow Characterization Study (TWICS) was conducted in the spring of 2011 to determine the reduction in wind speeds downstream from a multi-MW turbine located at the National Renewable Energy Laboratory's National Wind Technology Center (NWTC) near Boulder, Colorado. Full-scale measurements of wake dynamics are hardly practical or even possible with conventional sensors, such as cup anemometers mounted on meteorological (met) masts. Accordingly, the High Resolution Doppler Lidar (HRDL) developed by the National Oceanic and Atmospheric Administration's Earth System Research Laboratory was employed to investigate the formation and propagation of wakes under varying levels of ambient wind speed, shear, atmospheric stability, and turbulence. HRDL remotely senses line-of-sight wind velocities and has been used in several previous studies of boundary layer aerodynamics. With a fully steerable beam and a maximum range up to about 5 km, depending on atmospheric conditions, HRDL performed a comprehensive survey of the wind flow in front of and behind the turbine to study the shape, meandering, and attenuation of wakes. Due in large part to limited experimental data availability, wind farm wake modeling is still subject to an unacceptable amount of uncertainty, particularly in complex terrain. Here, analytical

  10. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    NASA Astrophysics Data System (ADS)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    coast of Borkum, Germany, and consists of twelve 5-Megawatt wind power turbines. The retrieved results are validated by comparing with QuikSCAT measurements, the results of the German Weather Service (DWD) atmospheric model and in-situ measurements of wind speed and wind direction, obtained from the research platform FiNO1, installed 400 m west of Alpha Ventus. 4. Conclusion In the presented case study we quantify the wake characteristics of wake length, wake width, maximum velocity de?cit, wake merging and wake meandering. We show that SAR has the capability to map the sea surface two-dimensionally in high spatial resolution which provides a unique opportunity to observe spatial characteristics of offshore wind turbine wakes. The SAR derived information can support offshore wind farming with respect to optimal siting and design and help to estimate their effects on the environment.

  11. VARIABLE WINDS AND DUST FORMATION IN R CORONAE BOREALIS STARS

    SciTech Connect

    Clayton, Geoffrey C.; Zhang Wanshu; Geballe, T. R. E-mail: wzhan21@lsu.edu

    2013-08-01

    We have observed P-Cygni and asymmetric, blue-shifted absorption profiles in the He I {lambda}10830 lines of 12 R Coronae Borealis stars over short (1 month) and long (3 yr) timescales to look for variations linked to their dust-formation episodes. In almost all cases, the strengths and terminal velocities of the line vary significantly and are correlated with dust formation events. Strong absorption features with blue-shifted velocities {approx}400 km s{sup -1} appear during declines in visible brightness and persist for about 100 days after recovery to maximum brightness. Small residual winds of somewhat lower velocity are present outside of the decline and recovery periods. The correlations support models in which recently formed dust near the star is propelled outward at high speed by radiation pressure and drags the gas along with it.

  12. Longitudinal Variation and Waves in Jupiter's South Equatorial Wind Jet

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Choi, David; Rogers, John H.; Gierasch, Peter J.; Allison, Michael D.; Adamoli, Gianluigi; Mettig, Hans-Joerg

    2012-01-01

    A detailed study of the chevron-shaped dark spots on the strong southern equatorial wind jet near 7.5 S planetographic latitude shows variations in velocity with longitude and time. The presence of the large anticyclonic South Equatorial Disturbance (SED) has a profound effect on the chevron velocity, causing slower velocities to its east and accelerations over distance from the disturbance. The chevrons move with velocities near the maximum wind jet velocity of approx 140 m/s, as deduced by the history of velocities at this latitude and the magnitude of the symmetric wind jet near 7 N latitude. Their repetitive nature is consistent with a gravity-inertia wave (n = 75 to 100) with phase speed up to 25 m/s, relative to the local flow, but the identity of this wave mode is not well constrained. However, for the first time, high spatial resolution movies from Cassini images show that the chevrons oscillate in latitude with a 6.7 +/- 0.7-day period. This oscillating motion has a wavelength of approx 20 and a speed of 101 +/- 3 m/s, following a pattern similar to that seen in the Rossby wave plumes of the North Equatorial Zone, and possibly reinforced by it. All dates show chevron latitude variability, but it is unclear if this larger wave is present during other epochs, as there are no other suitable time series movies that fully delineate it. In the presence of mUltiple wave modes, the difference in dominant cloud appearance between 7 deg N and 7.5 deg S is likely due to the presence of the Great Red Spot, either through changes in stratification and stability or by acting as a wave boundary.

  13. Water Velocity and Suspended Solids Measurements by In-situ Instruments in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Gartner, Jeffrey W.; Wellman, Roy E.; Wood, Tamara M.; Cheng, Ralph T.

    2007-01-01

    The U. S. Geological Survey conducted hydrodynamic measurements in Upper Klamath Lake during four summer seasons (approximately mid-June to mid-September) during 2003 to 2006. Measurements included water current profiles made by acoustic Doppler current profilers at a number of fixed locations in the lake during all four years as well as from a moving boat during 2005 and 2006. Measurements of size distribution of suspended material were made at four locations in the lake during 2004-2006. Raw (unfiltered) data are presented as time series of measurements. In addition, water-velocity data have been filtered to remove wind-induced variations with periods less than thirty hours from the measurements. Bar graphs of horizontal and vertical water speed and acoustic backscatter have been generated to discern diurnal variations, especially as they relate to wind patterns over the lake. Mean speeds of the horizontal currents in the lake range between about 3.5 to 15 cm/s with the higher speeds at the deep locations in the trench on the west side of the lake. Current directions generally conform to the lake's bathymetry contours and the water circulation pattern is usually in a clockwise direction around the lake as established by the prevailing north to northwesterly surface winds in the region. Diurnal patterns in horizontal currents probably relate to diurnal wind patterns with minimum wind speeds near noon and maximum wind speeds near 2100. Diurnal variations in vertical velocities do not appear to be related to wind patterns; they do appear to be related to expected patterns of vertical migration of Aphanizomenon flos aquae, (AFA) the predominant species of blue-green algae in the lake. Similarly, diurnal variations in acoustic backscatter, especially near the lake's surface, are probably related to the vertical migration of AFA.

  14. Industry guidelines for the calibration of maximum anemometers

    SciTech Connect

    Bailey, B.H.

    1996-12-31

    The purpose of this paper is to report on a framework of guidelines for the calibration of the Maximum Type 40 anemometer. This anemometer model is the wind speed sensor of choice in the majority of wind resource assessment programs in the U.S. These guidelines were established by the Utility Wind Resource Assessment Program. In addition to providing guidelines for anemometers, the appropriate use of non-calibrated anemometers is also discussed. 14 refs., 1 tab.

  15. Tropical F region winds from O I 1356-A and forbidden O I 6300-A emissions. II - Analysis of OGO 4 data

    NASA Technical Reports Server (NTRS)

    Bittencourt, J. A.; Tinsley, B. A.; Hicks, G. T.; Reed, E. I.

    1976-01-01

    The OGO 4 tropical nightglow data on the O I 1356-A and forbidden O I 6300-A emissions during several months in the fall of 1967 are analyzed in conjunction with theoretical models. From the latitudinal asymmetry present in the tropical emissions the neutral wind velocities in the magnetic meridian at the time of the observations are found to reach 150 m/s near 2000 LT in the Pacific sector and 110 m/s in the Indian sector. The longitudinal dependence of the emissions indicates a strong zonal component (referred to geographic coordinates) and allows the resolution of the inferred wind velocities into geographic zonal and meridional wind components. The geographic zonal component reaches a maximum velocity of 260 m/s near 2200 LT.

  16. Maximum Power Training and Plyometrics for Cross-Country Running.

    ERIC Educational Resources Information Center

    Ebben, William P.

    2001-01-01

    Provides a rationale for maximum power training and plyometrics as conditioning strategies for cross-country runners, examining: an evaluation of training methods (strength training and maximum power training and plyometrics); biomechanic and velocity specificity (role in preventing injury); and practical application of maximum power training and…

  17. Wind Simulation

    SciTech Connect

    Walker, Howard Andrew

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  18. Wind field model-based estimation of Seasat scatterometer winds

    NASA Technical Reports Server (NTRS)

    Long, David G.

    1993-01-01

    A model-based approach to estimating near-surface wind fields over the ocean from Seasat scatterometer (SASS) measurements is presented. The approach is a direct assimilation technique in which wind field model parameters are estimated directly from the scatterometer measurements of the radar backscatter of the ocean's surface using maximum likelihood principles. The wind field estimate is then computed from the estimated model parameters. The wind field model used in this approach is based on geostrophic approximation and on simplistic assumptions about the wind field vorticity and divergence but includes ageostrophic winds. Nine days of SASS data were processed to obtain unique wind estimates. Comparisons in performance to the traditional two-step (point-wise wind retrieval followed by ambiguity removal) wind estimate method and the model-based method are provided using both simulated radar backscatter measurements and actual SASS measurements. In the latter case the results are compared to wind fields determined using subjective ambiguity removal. While the traditional approach results in missing measurements and reduced effective swath width due to fore/aft beam cell coregistration problems, the model-based approach uses all available measurements to increase the effective swath width and to reduce data gaps. The results reveal that the model-based wind estimates have accuracy comparable to traditionally estimated winds with less 'noise' in the directional estimates, particularly at low wind speeds.

  19. Performance test of a low cost roof-mounted wind turbine

    NASA Astrophysics Data System (ADS)

    Figueroa-Espinoza, Bernardo; Quintal, Roberto; Gou, Clément; Aguilar, Alicia

    2013-11-01

    A low cost wind turbine was implemented based on the ideas put forward by Hugh Piggot in his book ``A wind turbine recipe book,'' where such device is developed using materials and manufacturing processes available (as much as possible) in developing countries or isolated communities. The wind turbine is to be mounted on a two stories building roof in a coastal zone of Mexico. The velocity profiles and turbulence intensities for typical wind conditions on top of the building roof were analyzed using numerical simulations (RANS) in order to locate the turbine hub above any recirculation and near the maximum average speed. The coefficient of performance is going to be evaluated experimentally by measuring the electrical power generation and wind characteristics that drive the wind turbine on the field. These experimental results will be applied on the improvement of the wind turbine design, as well as the validation of a numerical simulation model that couples the wind characteristics obtained through CFD with the Blade Element Method (BEM) and an electro-mechanical model of the turbine-shaft-generator ensemble. Special thanks to the Coordinación de Investigación Científica of the Universidad Michoacana de San Nicolás de Hidalgo for their support.

  20. Exploration of Solar Wind Acceleration Region Using Interplanetary Scintillation of Water Vapor Maser Source and Quasars

    NASA Technical Reports Server (NTRS)

    Tokumaru, Munetoshi; Yamauchi, Yohei; Kondo, Tetsuro

    2001-01-01

    Single-station observations of interplanetary scintillation (IPS) at three microwave frequencies; 2 GHz, 8 GHz and 22 GHz have been carried out between 1989 and 1998 using a large (34 m farad) radio telescope at the Kashima Space Research Center of the Communications Research Laboratory. The aim of these observations is to explore the near-sun solar wind, which is the key region for the study of the solar wind acceleration mechanism. Strong quasars; 3C279 and 3C273B were used for Kashima IPS observations at 2 GHz and 8 GHz, and a water vapor maser source, IRC20431 was used for the IPS observations at 22 GHz. Solar wind velocities derived from Kashima IPS data suggest that the solar wind acceleration takes place at radial distances between 10 and 30 solar radii (R(sub s)) from the sun. Properties of the turbulence spectrum (e.g. anisotropy, spectral index, inner scale) inferred from Kashima data are found to change systematically in the solar wind acceleration region. While the solar wind in the maximum phase appears to be dominated by the slow wind, fast and rarefied winds associated with coronal holes are found to develop significantly at high latitudes as the solar activity declines. Nevertheless, Kashima data suggests that the location of the acceleration region is stable throughout the solar cycle.

  1. Wind farm array wake losses

    SciTech Connect

    Baker, R.W.; McCarthy, E.F.

    1997-12-31

    A wind turbine wake study was conducted in the summer of 1987 at an Altamont Pass wind electric generating facility. The wind speed deficits, turbulence, and power deficits from an array consisting of several rows of wind turbines is discussed. A total of nine different test configurations were evaluated for a downwind spacing ranging from 7 rotor diameters (RD) to 34 RD and a cross wind spacing of 1.3 RD and 2.7 RD. Wake power deficits of 15% were measured at 16 RD and power losses of a few percent were even measurable at 27 RD for the closer cross wind spacing. For several rows of turbines separated by 7-9 RD the wake zones overlapped and formed compound wakes with higher velocity deficits. The wind speed and direction turbulence in the wake was much higher than the ambient turbulence. The results from this study are compared to the findings from other similar field measurements.

  2. Maximum thrust mode evaluation

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Nobbs, Steven G.

    1995-01-01

    Measured reductions in acceleration times which resulted from the application of the F-15 performance seeking control (PSC) maximum thrust mode during the dual-engine test phase is presented as a function of power setting and flight condition. Data were collected at altitudes of 30,000 and 45,000 feet at military and maximum afterburning power settings. The time savings for the supersonic acceleration is less than at subsonic Mach numbers because of the increased modeling and control complexity. In addition, the propulsion system was designed to be optimized at the mid supersonic Mach number range. Recall that even though the engine is at maximum afterburner, PSC does not trim the afterburner for the maximum thrust mode. Subsonically at military power, time to accelerate from Mach 0.6 to 0.95 was cut by between 6 and 8 percent with a single engine application of PSC, and over 14 percent when both engines were optimized. At maximum afterburner, the level of thrust increases were similar in magnitude to the military power results, but because of higher thrust levels at maximum afterburner and higher aircraft drag at supersonic Mach numbers the percentage thrust increase and time to accelerate was less than for the supersonic accelerations. Savings in time to accelerate supersonically at maximum afterburner ranged from 4 to 7 percent. In general, the maximum thrust mode has performed well, demonstrating significant thrust increases at military and maximum afterburner power. Increases of up to 15 percent at typical combat-type flight conditions were identified. Thrust increases of this magnitude could be useful in a combat situation.

  3. The F2 wind tunnel at Fauga-Mauzac

    NASA Technical Reports Server (NTRS)

    Afchain, D.; Broussaud, P.; Frugier, M.; Rancarani, G.

    1984-01-01

    Details on the French subsonic wind-tunnel F2 that becomes operational on July 1983 are presented. Some of the requirements were: (1) installation of models on any wall of the facility, (2) good observation points due to transparent walls, (3) smooth flow, (4) a laser velocimeter, and (5) easy access and handling. The characteristics include a nonpressurized return circuit, dimensions of 5 x 1.4 x 1.8 m, maximum velocity of 100 m/s and a variable speed fan of 683 kW.

  4. Quality, precision and accuracy of the maximum No. 40 anemometer

    SciTech Connect

    Obermeir, J.; Blittersdorf, D.

    1996-12-31

    This paper synthesizes available calibration data for the Maximum No. 40 anemometer. Despite its long history in the wind industry, controversy surrounds the choice of transfer function for this anemometer. Many users are unaware that recent changes in default transfer functions in data loggers are producing output wind speed differences as large as 7.6%. Comparison of two calibration methods used for large samples of Maximum No. 40 anemometers shows a consistent difference of 4.6% in output speeds. This difference is significantly larger than estimated uncertainty levels. Testing, initially performed to investigate related issues, reveals that Gill and Maximum cup anemometers change their calibration transfer functions significantly when calibrated in the open atmosphere compared with calibration in a laminar wind tunnel. This indicates that atmospheric turbulence changes the calibration transfer function of cup anemometers. These results call into question the suitability of standard wind tunnel calibration testing for cup anemometers. 6 refs., 10 figs., 4 tabs.

  5. Determination of the Brunt-Vaisala frequency from vertical velocity spectra

    NASA Technical Reports Server (NTRS)

    Rottger, J.

    1986-01-01

    Recent work on the spectra of vertical velocity oscillations due to gravity waves in the troposphere, stratosphere and the mesosphere has revealed a typical feature which we call the Brunt-Vaisala cutoff. Several observers noticed a spectral peak near the Brunt-Vaisala frequency. This peak often is characterized by a very steep slope at the high frequency part, but a fairly shallow slope towards lower frequencies. Some example spectra of stratosphere observations are given. This distinct spectral shape (most clear at the upper height 22.5 km) can be explained by the fact that the vertical velocity amplitudes of atmospheric gravity waves increase with frequency up to their natural cutoff at the Brunt-Vaisala frequency. The measurement of the frequency of the peak in a vertical velocity spectrum was found to yield most directly the Brunt-Vaisala-frequency profile. Knowing the Brunt-Vaisala frequency profile, one can deduce the potential temperature profile, if one has a calibration temperature at one height. However, even the uncalibrated profile will be quite useful, e.g., to determine fronts (defined by temperature inversions) and the tropopause height. This method fails for superadiabatic lapse rates when the Brunt-Viasala frequency is imaginary. The application of this method will also be difficult when the wind velocity is too high, causing the Doppler effect to smear out the total spectrum and blur the Brunt-Vaisala cutoff. A similar deficiency will also appear if the gravity-wave distribution has a maximum in wind direction.

  6. Application of a method for the automatic detection and Ground-Based Velocity Track Display (GBVTD) analysis of a tornado crossing the Hong Kong International Airport

    NASA Astrophysics Data System (ADS)

    Chan, P. W.; Wurman, J.; Shun, C. M.; Robinson, P.; Kosiba, K.

    2012-03-01

    A weak tornado with a maximum Doppler velocity shear of about 40 m s - 1 moved across the Hong Kong International Airport (HKIA) during the evening of 20 May 2002. The tornado caused damage equivalent to F0 on the Fujita Scale, based on a damage survey. The Doppler velocity data from the Hong Kong Terminal Doppler Weather Radar (TDWR) are studied using the Ground-Based Velocity Track Display (GBVTD) method of single Doppler analysis. The GBVTD analysis is able to clearly depict the development and decay of the tornado though it appears to underestimate its magnitude. In the pre-tornadic state, the wind field is characterized by inflow toward the center near the ground and upward motion near the center. When the tornado attains its maximum strength, an eye-like structure with a downdraft appears to form in the center. Several minutes later the tornado begins to decay and outflow dominates at low levels. Assuming cyclostrophic balance, the pressure drop 200 m from the center of the tornado at its maximum strength is calculated to be about 6 hPa. To estimate the maximum ground-relative wind speed of the tornado, the TDWR's Doppler velocities are adjusted for the ratio of the sample-volume size of the radar and the radius of the tornado, resulting in a peak wind speed of 28 m s - 1 , consistent with the readings from a nearby ground-based anemometers and the F0 damage observed. An automatic tornado detection algorithm based on Doppler velocity difference (delta-V) and temporal and spatial continuity is applied to this event. The locations and the core flow radii of the tornado as determined by the automatic method and by subjective analysis agree closely.

  7. Meaningful wind chill indicators derived from heat transfer principles.

    PubMed

    Brauner, N; Shacham, M

    1995-08-01

    The wind chill index (WCI) and the more widely used wind chill equivalent temperature represent an attempt to combine several weather-related variables (temperature, wind velocity and solar radiation) into a single index which can indicate human comfort. Since its introduction in 1945, the WCI has been criticized mainly on the ground that the underlying model does not comply with modern heat transfer theory. In spite of that, the WCI, "calibrated" to human comfort, has proven to be successful in predicting discomfort and tolerance of man to the cold. Nevertheless, neither the WCI nor the wind chill equivalent temperature can be actually measured and, therefore, without the additional 'calibration' they are meaningless. In this study we have shown that the WCI represents the instantaneous rate of heat loss from bare skin at the moment of exposure to the cold, and as such, it correlates reasonably well with measurable variables that represent a feeling of cold. Two new wind chill indicators have been introduced: exposed skin temperature and maximum exposure time. These indicators yield more information than the WCI provides, are measurable, have physical meaning and are based on established heat transfer principles.

  8. Meaningful wind chill indicators derived from heat transfer principles

    NASA Astrophysics Data System (ADS)

    Brauner, Neima; Shacham, M.

    1995-03-01

    The wind chill index (WCI) and the more widely used wind chill equivalent temperature represent an attempt to combine several weather-related variables (temperature, wind velocity and solar radiation) into a single index which can indicate human comfort. Since its introduction in 1945, the WCI has been criticized mainly on the ground that the underlying model does not comply with modern heat transfer theory. In spite of that, the WCI, “calibrated” to human comfort, has proven to be successful in predicting discomfort and tolerance of man to the cold. Nevertheless, neither the WCI nor the wind chill equivalent temperature can be actually measured and, therefore, without the additional ‘calibration’ they are meaningless. In this study we have shown that the WCI represents the instantaneous rate of heat loss from bare skin at the moment of exposure to the cold, and as such, it correlates reasonably well with measurable variables that represent a feeling of cold. Two new wind chill indicators have been introduced: exposed skin temperature and maximum exposure time. These indicators yield more information than the WCI provides, are measurable, have physical meaning and are based on established heat transfer principles.

  9. Erosion: Wind

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion refers to the detachment, transport and deposition of sediment by wind. It is a dynamic, physical process where loose, dry, bare soils are transported by strong winds. Wind erosion is a soil degrading process that affects over 500 million ha of land worldwide and creates between 500 an...

  10. Meteorology (Wind)

    Atmospheric Science Data Center

    2014-09-25

    Wind speed at 50 m (m/s) The average and percent difference minimum and ... are given.   Percent of time for ranges of wind speed at 50 m (percent) Percentage [frequency] of time that wind ... be adjusted to heights from 10 to 300 meters using the Gipe power law. Wind speeds may be adjusted for different terrain by selecting from ...

  11. Long term variability of B supergiant winds

    NASA Technical Reports Server (NTRS)

    Massa, Derck L.

    1995-01-01

    The object of this observing proposal was to sample wind variability in B supergiants on a daily basis over a period of several days in order to determine the time scale with which density variability occurs in their winds. Three stars were selected for this project: 69 Cyg (B0 Ib), HD 164402 (B0 Ib), and HD 47240 (B1 Ib). Three grey scale representations of the Si IV lambda lambda 1400 doublet in each star are attached. In these figures, time (in days) increases upward, and the wavelength (in terms of velocity relative to the rest wavelength of the violet component of the doublet) is the abscissa. The spectra are normalized by a minimum absorption (maximum flux) template, so that all changes appear as absorptions. As a result of these observations, we can now state with some certainty that typical B supergiants develop significant wind inhomogeneities with recurrence times of a few days, and that some of these events show signs of strong temporal coherence.

  12. Wind noise under a pine tree canopy.

    PubMed

    Raspet, Richard; Webster, Jeremy

    2015-02-01

    It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.

  13. Wind and turbine characteristics needed for integration of wind turbine arrays into a utility system

    NASA Technical Reports Server (NTRS)

    Park, G. L.

    1982-01-01

    Wind data and wind turbine generator (WTG) performance characteristics are often available in a form inconvenient for use by utility planners and engineers. The steps used by utility planners are summarized and the type of wind and WTG data needed for integration of WTG arrays suggested. These included long term yearly velocity averages for preliminary site feasibility, hourly velocities on a 'wind season' basis for more detailed economic analysis and for reliability studies, worst-case velocity profiles for gusts, and various minute-to-hourly velocity profiles for estimating the effect of longer-term wind fluctuations on utility operations. wind turbine data needed includes electrical properties of the generator, startup and shutdown characteristics, protection characteristics, pitch control response and control strategy, and electro-mechanical model for stability analysis.

  14. Detection of Solar Wind Disturbances: Mexican Array Radio Telescope IPS Observations at 140 MHz

    NASA Astrophysics Data System (ADS)

    Romero-Hernandez, E.; Gonzalez-Esparza, J. A.; Aguilar-Rodriguez, E.; Ontiveros-Hernandez, V.; Villanueva-Hernandez, P.

    2015-09-01

    The interplanetary scintillation (IPS) technique is a remote-sensing method for monitoring solar-wind perturbations. The Mexican Array Radio Telescope (MEXART) is a single-station instrument operating at 140 MHz, fully dedicated to performing solar-wind studies employing the IPS technique. We report MEXART solar-wind measurements (scintillation indices and solar-wind velocities) using data obtained during the 2013 and 2014 campaigns. These solar-wind measurements were calculated employing a new methodology based on the wavelet transform (WT) function. We report the variation of the scintillation indices versus the heliocentric distance for two IPS sources (3C48 and 3C147). We found different average conditions of the solar-wind density fluctuations in 2013 and 2014. We used the fittings of the radial dependence of the scintillation index to calculate g-indices. Based on the g-index value, we identified 17 events that could be associated with strong compression regions in the solar wind. We present the first ICME identifications in our data. We associated 14 IPS events with preceding CME counterparts by employing white-light observations from the Large Angle and Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) spacecraft. We found that most of the IPS events, detected during the solar maximum of Cycle 24 were associated with complex CME events. For the IPS events associated with single CME counterparts, we found a deceleration tendency of the CMEs as they propagate in the interplanetary medium. These results show that the instrument detects solar-wind disturbances, and the WT methodology provides solar-wind information with good accuracy. The MEXART observations will complement solar-wind IPS studies using other frequencies, and the tracking of solar-wind disturbances by other stations located at different longitudes.

  15. Observations of sunspot umbral velocity oscillations.

    NASA Technical Reports Server (NTRS)

    Bhatnagar, A.; Livingston, W. C.; Harvey, J. W.

    1972-01-01

    Review of sunspot umbral velocity measurements obtained free from any cross talk introduced by photospheric and penumbral scattered light by using lines formed only in the sunspot umbrae and showing no Zeeman effect. The maximum peak-to-peak amplitude of the umbral oscillatory velocity component is found to be of the order of 0.5 km per sec.

  16. Wind Variability in BZ Camelopardalis

    NASA Astrophysics Data System (ADS)

    Honeycutt, R. K.; Kafka, S.; Robertson, J. W.

    2013-02-01

    Sequences of spectra of the nova-like cataclysmic variable (CV) BZ Cam were acquired on nine nights in 2005-2006 in order to study the time development of episodes of wind activity known to occur frequently in this star. We confirm the results of Ringwald & Naylor that the P-Cygni absorption components of the lines mostly evolve from higher expansion velocity to lower velocity as an episode progresses. We also commonly find blueshifted emission components in the Hα line profile, whose velocities and durations strongly suggest that they are also due to the wind. Curiously, Ringwald & Naylor reported common occurrences of redshifted Hα emission components in their BZ Cam spectra. We have attributed these emission components in Hα to occasions when gas concentrations in the bipolar wind (both front side and back side) become manifested as emission lines as they move beyond the disk's outer edge. We also suggest, based on changes in the P-Cygni profiles during an episode, that the progression from larger to smaller expansion velocities is due to the higher velocity portions of a wind concentration moving beyond the edge of the continuum light of the disk first, leaving a net redward shift of the remaining absorption profile. We derive a new orbital ephemeris for BZ Cam, using the radial velocity of the core of the He I λ5876 line, finding P = 0.15353(4). Using this period, the wind episodes in BZ Cam are found to be concentrated near the inferior conjunction of the emission line source. This result helps confirm that the winds in nova-like CVs are often phase dependent, in spite of the puzzling implication that such winds lack axisymmetry. We argue that the radiation-driven wind in BZ Cam receives an initial boost by acting on gas that has been lifted above the disk by the interaction of the accretion stream with the disk, thereby imposing flickering timescales onto the wind events, as well as leading to an orbital modulation of the wind due to the non

  17. WIND VARIABILITY IN BZ CAMELOPARDALIS

    SciTech Connect

    Honeycutt, R. K.; Kafka, S.; Robertson, J. W. E-mail: skafka@dtm.ciw.edu

    2013-02-01

    Sequences of spectra of the nova-like cataclysmic variable (CV) BZ Cam were acquired on nine nights in 2005-2006 in order to study the time development of episodes of wind activity known to occur frequently in this star. We confirm the results of Ringwald and Naylor that the P-Cygni absorption components of the lines mostly evolve from higher expansion velocity to lower velocity as an episode progresses. We also commonly find blueshifted emission components in the H{alpha} line profile, whose velocities and durations strongly suggest that they are also due to the wind. Curiously, Ringwald and Naylor reported common occurrences of redshifted H{alpha} emission components in their BZ Cam spectra. We have attributed these emission components in H{alpha} to occasions when gas concentrations in the bipolar wind (both front side and back side) become manifested as emission lines as they move beyond the disk's outer edge. We also suggest, based on changes in the P-Cygni profiles during an episode, that the progression from larger to smaller expansion velocities is due to the higher velocity portions of a wind concentration moving beyond the edge of the continuum light of the disk first, leaving a net redward shift of the remaining absorption profile. We derive a new orbital ephemeris for BZ Cam, using the radial velocity of the core of the He I {lambda}5876 line, finding P = 0.15353(4). Using this period, the wind episodes in BZ Cam are found to be concentrated near the inferior conjunction of the emission line source. This result helps confirm that the winds in nova-like CVs are often phase dependent, in spite of the puzzling implication that such winds lack axisymmetry. We argue that the radiation-driven wind in BZ Cam receives an initial boost by acting on gas that has been lifted above the disk by the interaction of the accretion stream with the disk, thereby imposing flickering timescales onto the wind events, as well as leading to an orbital modulation of the wind

  18. Wind-driven coastal upwelling and westward circulation in the Yucatan shelf

    NASA Astrophysics Data System (ADS)

    Ruiz-Castillo, Eugenio; Gomez-Valdes, Jose; Sheinbaum, Julio; Rioja-Nieto, Rodolfo

    2016-04-01

    The wind-driven circulation and wind-induced coastal upwelling in a large shelf sea with a zonally oriented coast are examined. The Yucatan shelf is located to the north of the Yucatan peninsula in the eastern Gulf of Mexico. This area is a tropical shallow body of water with a smooth sloping bottom and is one of the largest shelves in the world. This study describes the wind-driven circulation and wind-induced coastal upwelling in the Yucatan shelf, which is forced by easterly winds throughout the year. Data obtained from hydrographic surveys, acoustic current profilers and environmental satellites are used in the analysis. Hydrographic data was analyzed and geostrophic currents were calculated in each survey. In addition an analytical model was applied to reproduce the currents. The results of a general circulation model were used with an empirical orthogonal function analysis to study the variability of the currents. The study area is divided in two regions: from the 40 m to the 200 m isobaths (outer shelf) and from the coast to the 40 m isobath (inner shelf). At the outer shelf, observations revealed upwelling events throughout the year, and a westward current with velocities of approximately 0.2 m s-1 was calculated from the numerical model output and hydrographic data. In addition, the theory developed by Pedlosky (2007) for a stratified fluid along a sloping bottom adequately explains the current's primary characteristics. The momentum of the current comes from the wind, and the stratification is an important factor in its dynamics. At the inner shelf, observations and numerical model output show a wind-driven westward current with maximum velocities of 0.20 m s-1. The momentum balance in this region is between local acceleration and friction. A cold-water band is developed during the period of maximum upwelling.

  19. Instrumentation in wind tunnels

    NASA Technical Reports Server (NTRS)

    Takashima, K.

    1986-01-01

    Requirements in designing instrumentation systems and measurements of various physical quantities in wind tunnels are surveyed. Emphasis is given to sensors used for measuring pressure, temperature, and angle, and the measurements of air turbulence and boundary layers. Instrumentation in wind tunnels require accuracy, fast response, diversity and operational simplicity. Measurements of force, pressure, attitude angle, free flow, pressure distribution, and temperature are illustrated by a table, and a block diagram. The LDV (laser Doppler velocimeter) method for measuring air turbulence and flow velocity and measurement of skin friction and flow fields using laser holograms are discussed. The future potential of these techniques is studied.

  20. The University of Tokyo Atacama Observatory 6.5m Telescope: enclosure design and wind analysis

    NASA Astrophysics Data System (ADS)

    Konishi, Masahiro; Sako, Shigeyuki; Uchida, Takanori; Araya, Ryou; Kim, Koui; Yoshii, Yuzuru; Doi, Mamoru; Kohno, Kotaro; Miyata, Takashi; Motohara, Kentaro; Tanaka, Masuo; Minezaki, Takeo; Morokuma, Tomoki; Tamura, Yoichi; Tanabé, Toshihiko; Kato, Natsuko; Kamizuka, Takafumi; Takahashi, Hidenori; Aoki, Tsutomu; Soyano, Takao; Tarusawa, Ken'ichi

    2016-07-01

    We present results on the computational fluid dynamics (CFD) numerical simulations as well as the wind tunnel experiments for the observation facilities of the University of Tokyo Atacama Observatory 6.5m Telescope being constructed at the summit of Co. Chajnantor in northern Chile. Main purpose of this study starting with the baseline design reported in 2014 is to analyze topographic effect on the wind behavior, and to evaluate the wind pressure, the air turbulence, and the air change (ventilation) efficiency in the enclosure. The wind velocity is found to be accelerated by a factor of 1.2 to reach the summit (78 m sec-1 expected at a maximum), and the resulting wind pressure (3,750 N m-2) is used for the framework design of the facilities. The CFD data reveals that the open space below the floor of the facilities works efficiently to drift away the air turbulence near the ground level which could significantly affect the dome seeing. From comparisons of the wind velocity field obtained from the CFD simulation for three configurations of the ventilation windows, we find that the windows at a level of the telescope secondary mirror have less efficiency of the air change than those at lower levels. Considering the construction and maintenance costs, and operation procedures, we finally decide to allocate 13 windows at a level of the observing floor, 12 at a level of the primary mirror, and 2 at the level of the secondary mirror. The opening area by those windows accounts for about 14% of the total interior surface of the enclosure. Typical air change rate of 20-30 per hour is expected at the wind velocity of 1 m sec-1.

  1. Application of Wind Fetch and Wave Models for Habitat Rehabilitation and Enhancement Projects

    USGS Publications Warehouse

    Rohweder, Jason J.; Rogala, James T.; Johnson, Barry L.; Anderson, Dennis; Clark, Steve; Chamberlin, Ferris; Runyon, Kip

    2008-01-01

    Models based upon coastal engineering equations have been developed to quantify wind fetch length and several physical wave characteristics including significant height, length, peak period, maximum orbital velocity, and shear stress. These models, developed using Environmental Systems Research Institute's ArcGIS 9.2 Geographic Information System platform, were used to quantify differences in proposed island construction designs for three Habitat Rehabilitation and Enhancement Projects (HREPs) in the U.S. Army Corps of Engineers St. Paul District (Capoli Slough and Harpers Slough) and St. Louis District (Swan Lake). Weighted wind fetch was calculated using land cover data supplied by the Long Term Resource Monitoring Program (LTRMP) for each island design scenario for all three HREPs. Figures and graphs were created to depict the results of this analysis. The difference in weighted wind fetch from existing conditions to each potential future island design was calculated for Capoli and Harpers Slough HREPs. A simplistic method for calculating sediment suspension probability was also applied to the HREPs in the St. Paul District. This analysis involved determining the percentage of days that maximum orbital wave velocity calculated over the growing seasons of 2002-2007 exceeded a threshold value taken from the literature where fine unconsolidated sediments may become suspended. This analysis also evaluated the difference in sediment suspension probability from existing conditions to the potential island designs. Bathymetric data used in the analysis were collected from the LTRMP and wind direction and magnitude data were collected from the National Oceanic and Atmospheric Administration, National Climatic Data Center.

  2. Kinetic and Potential Sputtering of Lunar Regolith: Contribution of Solar-Wind Heavy Ions

    NASA Technical Reports Server (NTRS)

    Meyer, F. W.; Harris, P. R.; Meyer, H. M., III; Hijiazi, H.; Barghouty, A. F.

    2013-01-01

    Sputtering of lunar regolith by protons as well as solar-wind heavy ions is considered. From preliminary measurements of H+, Ar+1, Ar+6 and Ar+9 ion sputtering of JSC-1A AGGL lunar regolith simulant at solar wind velocities, and TRIM simulations of kinetic sputtering yields, the relative contributions of kinetic and potential sputtering contributions are estimated. An 80-fold enhancement of oxygen sputtering by Ar+ over same-velocity H+, and an additional x2 increase for Ar+9 over same-velocity Ar+ was measured. This enhancement persisted to the maximum fluences investigated is approximately 1016/cm (exp2). Modeling studies including the enhanced oxygen ejection by potential sputtering due to the minority heavy ion multicharged ion solar wind component, and the kinetic sputtering contribution of all solar wind constituents, as determined from TRIM sputtering simulations, indicate an overall 35% reduction of near-surface oxygen abundance. XPS analyses of simulant samples exposed to singly and multicharged Ar ions show the characteristic signature of reduced (metallic) Fe, consistent with the preferential ejection of oxygen atoms that can occur in potential sputtering of some metal oxides.

  3. Wind information display system user's manual

    NASA Technical Reports Server (NTRS)

    Roe, J.; Smith, G.

    1977-01-01

    The Wind Information Display System (WINDS) provides flexible control through system-user interaction for collecting wind shear data, processing this data in real time, displaying the processed data, storing raw data on magnetic tapes, and post-processing raw data. The data are received from two asynchronous laser Doppler velocimeters (LDV's) and include position, velocity and intensity information. The raw data is written onto magnetic tape for permanent storage and is also processed in real time to depict wind velocities in a given spacial region.

  4. Maximum Likelihood Fusion Model

    DTIC Science & Technology

    2014-08-09

    data fusion, hypothesis testing,maximum likelihood estimation, mobile robot navigation REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT...61 vi 9 Bibliography 62 vii 10 LIST OF FIGURES 1.1 Illustration of mobile robotic agents. Land rovers such as (left) Pioneer robots ...simultaneous localization and mapping 1 15 Figure 1.1: Illustration of mobile robotic agents. Land rovers such as (left) Pioneer robots , (center) Segways

  5. Aeolian transport of biota with dust: A wind tunnel experiment

    NASA Astrophysics Data System (ADS)

    Rivas, J. A., Jr.; Gill, T. E.; Van Pelt, R. S.; Walsh, E.

    2015-12-01

    Ephemeral wetlands are ideal sources for dust emission, as well as repositories for dormant stages of aquatic invertebrates. An important component of invertebrate dispersal and colonization to new areas is the ability to be entrained into the atmosphere. Aquatic invertebrate eggs fall within the size of dust and sand grains (30-600μm), are less dense and aerodynamically shaped. We have shown previously that aquatic invertebrates can be dispersed long distances in dust storms but the extent of transport of taxa based on diapausing egg size/morphology has not been investigated. Here, we control the wind erosion process in a wind tunnel to test entrainment of diapausing stages of brine shrimp, clam shrimp, tadpole shrimp, fairy shrimp, Daphnia, and the rotifers Brachionus plicatilis and B. calyciflorus into the air by saltation. Diapausing eggs were mixed with sterilized wind-erodible soil. The soil/egg mixture was moistened with distilled water and air dried to form a crust. Dust was generated in a wind tunnel by releasing sand grains that act as saltator material similar to wind-entrained natural sands. Maximum wind velocity was 10m/s and entrained particles were sampled through an isokinetic horizontal intake opening. Aeolian sediment was collected from three points in the system; transfer section for coarse sediment, the pan subtending a settling chamber for finer saltation-sized sediment, and two paper filters for suspension-sized sediment. Samples were then passed through 250 and 350 μm sieves to remove abrader sand and rehydrated with various sterile media depending on the type of organism. We retrieved viable brine, fairy, and tadpole shrimp, ostracods, Daphnia, and diapausing eggs of the rotifers after hydration. This experiment demonstrates that resting stages of many invertebrates can be wind-eroded due to size and egg morphology and remain viable under controlled conditions mimicking dust emission.

  6. The Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Sutton, C.

    1980-07-01

    The objectives, instruments, operation and spacecraft design for the Solar Maximum Mission are discussed. The satellite, first in a series of Multi-Mission Modular Spacecraft, was launched on February 14, 1980, to take advantage of the current maximum in the solar activity cycle to study solar flares at wavelengths from the visible to the gamma-ray. The satellite carries six instruments for the simultaneous study of solar flares, namely the coronagraph/polarimeter, X-ray polychromator, ultraviolet spectrometer and polarimeter, hard X-ray imaging spectrometer, hard X-ray burst spectrometer and gamma-ray spectrometer, and an active cavity radiometer for the accurate determination of the solar constant. In contrast to most satellite operations, Solar Maximum Mission investigators work together for the duration of the flight, comparing data obtained by the various instruments and planning observing programs daily on the basis of flare predictions and indicators. Thus far into the mission, over 50 data sets on reasonably large flares have been obtained, and important observations of coronal transients, magnetic fields in the transition region, flare time spectra, and material emitting X-rays between flares have been obtained.

  7. Wind height distribution influence on offshore wind farm feasibility study

    NASA Astrophysics Data System (ADS)

    Benassai, Guido; Della Morte, Renata; Matarazzo, Antonio; Cozzolino, Luca

    2015-04-01

    The economic feasibility of offshore wind power utilization depends on the favourable wind conditions offshore as compared to sites on land. The higher wind speeds have to compensate the additional cost of offshore developments. However, not only the mean wind speed is different, but the whole flow regime, as can be seen in the vertical wind speed profile. The commonly used models to describe this profile have been developed mainly for land sites, so they have to be verified on the basis of field data. Monin-Obukhov theory is often used for the description of the wind speed profile at a different height with respect to a measurement height. Starting from the former, , the profile is predicted using two parameters, Obukhov length and sea surface roughness. For situations with near-neutral and stable atmospheric stratification and long (>30km) fetch, the wind speed increase with height is larger than what is predicted from Monin-Obukhov theory. It is also found that this deviation occurs at wind speeds important for wind power utilization, mainly at 5-9 ms-1. In the present study the influence of these aspects on the potential site productivity of an offshore wind farm were investigated, namely the deviation from the theory of Monin-Obukhov due to atmospheric stability and the influence of the fetch length on the Charnock model. Both these physical effects were discussed and examined in view of a feasibility study of a site for offshore wind farm in Southern Italy. Available data consisted of time histories of wind speeds and directions collected by National Tidegauge Network (Rete Mareografica Nazionale) at the height of 10m a.s.l. in ports. The theory of Monin-Obukhov was used to extrapolate the data to the height of the wind blades, while the Charnock model was used to extend the wind speed on the sea surface from the friction velocity on the ground. The models described were used to perform calculations for a feasibility study of an offshore wind farm in Southern

  8. Equatorial thermospheric wind changes during the solar cycle - Measurements at Arequipa, Peru, from 1983 to 1990

    NASA Technical Reports Server (NTRS)

    Biondi, M. A.; Meriwether, J. W., Jr.; Fejer, B. G.; Gonzalez, S. A.; Hallenbeck, D. C.

    1991-01-01

    Near-equatorial thermospheric wind velocities at Arequipa, Peru, are determined over about two-thirds of a solar cycle using Fabry-Perot interferometer measurements of Doppler shifts in the nightglow 630-nm emission line. Mean monthly nocturnal variations in the meridional and zonal wind components are calculated from the nightly data to remove short-term (day-to-day) variability as well as any additional changes introduced by the progression of the solar cycle. For most of the years, at the winter solstice, there is a weak (more than 100 m/s) transequatorial flow from the summer to the winter hemisphere in the early and the late night, with essentially zero velocities in between. At the equinoxes, an early-night poleward (southward) flow at solar minimum (1986) is replaced by an equatorward (northward) flow at solar maximum (1989-1990).

  9. Coronal temperatures, heating, and energy flow in a polar region of the sun at solar maximum

    NASA Technical Reports Server (NTRS)

    Withbroe, G. L.; Kohl, J. L.; Weiser, H.; Munro, R. H.

    1985-01-01

    The profiles of resonantly scattered Lyman-alpha coronal radiation have been used to determine the hydrogen kinetic temperature from 1.5 to 4 solar radius from the center of the polar region of the corona observed in 1980 at solar maximum. Hydrogen temperatures derived from the line profiles were found to decrease with height from 1.2 million K at r = 1.5 solar radii to 600,000 K at r = 4 solar radius. Comparison of the measured kinetic temperatures with predictions from a semiempirical two-fluid model showed evidence of a small amount of heating or a nonthermal contribution to the motions of coronal protons between 1.5 and 4 solar radius. The widths of the profiles confirmed an upper limit of 110 + or - 15 km/s on the rms magnitude of the line-of-sight component of velocities between 1.5 and 4 solar radius. Density measurements obtained in situ in the solar wind in the ecliptic were used to locate the sources of low speed and high-speed winds in the polar region. An eclipse photograph of the corona at solar maximum is provided.

  10. Coronal temperatures, heating, and energy flow in a polar region of the sun at solar maximum

    SciTech Connect

    Withbroe, G.L.; Kohl, J.L.; Weiser, H.; Munro, R.H.

    1985-10-01

    The profiles of resonantly scattered Lyman-alpha coronal radiation have been used to determine the hydrogen kinetic temperature from 1.5 to 4 solar radius from the center of the polar region of the corona observed in 1980 at solar maximum. Hydrogen temperatures derived from the line profiles were found to decrease with height from 1.2 million K at r = 1.5 solar radii to 600,000 K at r = 4 solar radius. Comparison of the measured kinetic temperatures with predictions from a semiempirical two-fluid model showed evidence of a small amount of heating or a nonthermal contribution to the motions of coronal protons between 1.5 and 4 solar radius. The widths of the profiles confirmed an upper limit of 110 + or - 15 km/s on the rms magnitude of the line-of-sight component of velocities between 1.5 and 4 solar radius. Density measurements obtained in situ in the solar wind in the ecliptic were used to locate the sources of low speed and high-speed winds in the polar region. An eclipse photograph of the corona at solar maximum is provided. 31 references.

  11. Longitudinal and Seasonal Variations in Nighttime Plasma Temperatures in the Equatorial Topside Ionosphere During Solar Maximum

    NASA Technical Reports Server (NTRS)

    Venkatraman, Sarita; Heelis, Rod

    1999-01-01

    Latitude profiles of the ion and electron temperatures and total ion concentration across the equatorial region near 800 km altitude are routinely obtained from Defense Meteorological Satellite Program (DMSP) spacecraft. We have examined these profiles at 2100 hours local time to discover the influences of field-aligned plasma transport induced by F region neutral winds. Such dependencies are readily seen by contrasting observations at different seasons and different longitudes distinguished by different magnetic declinations. These data show strong evidence for adiabatic heating produced by interhemispheric plasma transport. This heating manifests itself as a local temperature maximum that appears in the winter hemisphere during the solstices and is generally absent during equinox. A longitudinal variation in the appearance of this maximum is consistent with the roles of meridional and zonal winds in modulating the field-aligned plasma velocities. The data also show a local temperature minimum near the dip equator. However, it is not so easy to attribute this minimum to adiabatic cooling since transport of plasma from below and the latitude variation in the flux tube content may also produce such a minimum.

  12. Quasar Winds Near the Peak in Galaxy Merger Rate

    NASA Astrophysics Data System (ADS)

    Chartas, George; Brandt, Niel; Saez, Cristian; Giustini, Margherita; Garmire, Gordon

    We present results from recent XMM-Newton, Chandra and Suzaku monitoring observations of the BAL quasar APM 08279+5255. We present constraints on the kinematic and photoion-ization properties of the wind in this z=3.91 quasar and find that it is capable of playing an important role in controlling the evolution of the host galaxy and central black hole close to the peak in galaxy merger rate. We place constraints of the X-ray emission region of APM08279 and find it to be comparable to its ISCO radius. The X-ray emission size of APM08279 is consistent with sizes derived from our analysis of microlensing lightcurves of several gravitationally lensed quasars. A possible trend found between the X-ray photon index and the maximum outflow veloc-ity points towards a plausible mechanism that may explain the acceleration of the wind in APM08279. We also present prospects for future advances in our understanding of the role of quasar winds in galaxy feedback with the International X-ray Observatory.

  13. Design and Characterization of the UTIAS Anechoic Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Chow, Derrick H. F.

    The anechoic open-jet wind tunnel facility at the University of Toronto Institute for Aerospace Studies was updated and characterized to meet the needs of current and future aeroacoustic experiments. The wind tunnel inlet was resurfaced and flow-conditioning screens were redesigned to improve the freestream turbulence intensity to below 0.4% in the test section. The circular nozzle was replaced with a square secondary contraction that increased the maximum test section velocity to 75 m/s and improved flow uniformity to over 99% across a usable cross-sectional area of 500 mm x 500 mm. Acoustic baffles were installed in front of the wind tunnel inlet and foam wedges were installed in the anechoic chamber. The overall background sound pressure levels in the chamber were improved by 8-18 db over the range of operational freestream velocities. The anechoic chamber cut-off frequency is 170 Hz and the reverberation time for a 60 dB sound power decay is 0.032 s.

  14. Impact of wind on ambient noise recorded by seismic array in northern Poland

    NASA Astrophysics Data System (ADS)

    Lepore, Simone; Markowicz, Krzysztof; Grad, Marek

    2016-06-01

    Seismic interferometry and beam-forming techniques were applied to the ambient noise recorded during January 2014 at the `13 BB star' array composed of thirteen seismic stations located in northern Poland. The circular and symmetric geometry of the array allowed the evaluation of the azimuths of noise sources and the velocities of recovered surface waves with a good reliability. After having pre-processed the raw records of the ambient noise in time- and frequency-domain, we studied the associated power spectral density to identify the frequency bands suitable for the recovery of the surface waves. Then the cross-correlation was performed between all the station pairs of the array to retrieve the Green's function, from which the velocity range of the surface waves can be determined. Making use of that analysis, the direction of the noise wavefield was linked to the maximum amplitude of the beam-power, estimated by the mixing in the frequency-domain of all the corresponding noise records. The results were related day by day to the mean wind velocity around Europe at 10 m above ground level obtained from global surveys carried out during the same month. Significant correlation between the direction of maximum beam-power associated to the ambient noise recorded at `13 BB star' and the average wind velocity was found.

  15. A model for the maximum credible hourly impact on any ground receptor from point sources with momentumdominated plume rise.

    PubMed

    Economopoulos, A P

    1992-05-01

    A pollutant dispersion model is developed, allowing rapid evaluation of the maximum credible one-hour-average concentration on any given ground-level receptor, along with the corresponding critical meteorological conditions (wind speed and stability class) for stacks with momentum-dominated plume rise in urban or rural areas under buoyancy or no buoyancy induced dispersion. Site-specific meteorological data are not required, as the computed concentrations are maximized against all credible combinations of wind speed, stability class, and mixing height.The analysis is based on the dispersion relations of Pasquill-Gifford and Briggs for rural and urban settings respectively, the buoyancy induced dispersion correlation of Pasquill, the wind profile exponent values suggested by Irwin, the momentum plume rise relations of Briggs, as well as the Benkley and Schulman's model for the minimum mixing heights.The model is particularly suited for air pollution management studies, as it allows fast screening of the maximum impact on any selected receptor and evaluation of the ways to have this impact reduced. Also, for regulatory purposes, as it allows accurate setting of minimum stack height requirements as function of the exit gas volume and velocity, the pollutant emission rates and their hourly concentration standards, as well as the source location relative to sensitive receptors.

  16. Wind abrasion on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1991-01-01

    Aeolian activity was predicted for Mars from earth based observations of changing surface patterns that were interpreted as dust storms. Mariner 9 images showed conclusive evidence for aeolian processes in the form of active dust storms and various aeolian landforms including dunes and yardangs. Windspeeds to initiate particle movement are an order of magnitude higher on Mars than on Earth because of the low atmospheric density on Mars. In order to determine rates of abrasion by wind blown particles, knowledge of three factors is required: (1) particle parameters such as numbers and velocities of windblown grains as functions of windspeeds at various heights above the surface; (2) the susceptibility to abrasion of various rocks and minerals; and (3) wind frequencies and speeds. For estimates appropriate to Mars, data for the first two parameters can be determined through lab and wind tunnel tests; data for the last two factors are available directly from the Viking Lander meteorology experiments for the two landing sites.

  17. Design of a nonlinear backstepping control strategy of grid interconnected wind power system based PMSG

    NASA Astrophysics Data System (ADS)

    Errami, Y.; Obbadi, A.; Sahnoun, S.; Benhmida, M.; Ouassaid, M.; Maaroufi, M.

    2016-07-01

    This paper presents nonlinear backstepping control for Wind Power Generation System (WPGS) based Permanent Magnet Synchronous Generator (PMSG) and connected to utility grid. The block diagram of the WPGS with PMSG and the grid side back-to-back converter is established with the dq frame of axes. This control scheme emphasises the regulation of the dc-link voltage and the control of the power factor at changing wind speed. Besides, in the proposed control strategy of WPGS, Maximum Power Point Tracking (MPPT) technique and pitch control are provided. The stability of the regulators is assured by employing Lyapunov analysis. The proposed control strategy for the system has been validated by MATLAB simulations under varying wind velocity and the grid fault condition. In addition, a comparison of simulation results based on the proposed Backstepping strategy and conventional Vector Control is provided.

  18. Influence of vertical shear of basic tangential wind on the development and maintenance of typhoon

    NASA Astrophysics Data System (ADS)

    Tao, Jianjun; Wang, Fang; Li, Chaokui; Hu, Xianghui

    2013-04-01

    By using a linear symmetric Conditional Instability of Second Kind (CISK) model containing basic flow, we study the interactions between basic flow and mesoscale disturbances in typhoon. The result shows that in the early stage of typhoon formation, the combined action of vertical shear of basic flow at low level and CISK impels the disturbances to grow rapidly and to move toward the center of typhoon. The development of disturbances, likewise, influences on typhoon's development and structure. Analysis of the mesoscale disturbances' development and propagation indicates that the maximum wind region moves toward the center, wind velocity increases, and circulation features of an eye appear. Similarly, when a typhoon decays, the increase of low-level vertical wind shear facilitates the development of mesoscale disturbances. In turn, these mesoscale disturbances will provide typhoon with energy and make the typhoon intensify again. Therefore, it can be said that typhoon has the renewable or self-repair function.

  19. The Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Chipman, E. G.

    1981-03-01

    The Solar Maximum Mission spacecraft, launched on 1980 February 14, carries seven instruments for the study of solar flares and other aspects of solar activity. These instruments observe in spectral ranges from gamma-rays through the visible, using imaging, spectroscopy, and high-time-resolution light curves to study flare phenomena. In addition, one instrument incorporates an active cavity radiometer for accurate measurement of the total solar radiant output. This paper reviews some of the most important current observational and theoretical questions of solar flare physics and indicates the ways in which the experiments on SMM will be able to attack these questions. The SMM observing program is described.

  20. On Maximum FODO Acceptance

    SciTech Connect

    Batygin, Yuri Konstantinovich

    2014-12-24

    This note illustrates maximum acceptance of FODO quadrupole focusing channel. Acceptance is the largest Floquet ellipse of a matched beam: A = $\\frac{a^2}{β}$$_{max}$ where a is the aperture of the channel and βmax is the largest value of beta-function in the channel. If aperture of the channel is restricted by a circle of radius a, the s-s acceptance is available for particles oscillating at median plane, y=0. Particles outside median plane will occupy smaller phase space area. In x-y plane, cross section of the accepted beam has a shape of ellipse with truncated boundaries.

  1. Winds from T Tauri stars. II - Balmer line profiles for inner disk winds

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee; Hewett, Robert

    1992-01-01

    Results are presented of calculations of Balmer emission line profiles using escape probability methods for T Tauri wind models with nonspherically symmetric geometry. The wind is assumed to originate in the inner regions of an accretion disk surrounding the T Tauri star, and flows outward in a 'cone' geometry. Two types of wind models are considered, both with monotonically increasing expansion velocities as a function of radial distance. For flows with large turbulent velocities, such as the HF Alfven wave-driven wind models, the effect of cone geometry is to increase the blue wing emission, and to move the absorption reversal close to line center. Line profiles for a wind model rotating with the same angular velocity as the inner disk are also calculated. The Balmer lines of this model are significantly broader than observed in most objects, suggesting that the observed emission lines do not arise in a region rotating at Keplerian velocity.

  2. The last glacial maximum

    USGS Publications Warehouse

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  3. The maximum oxygen intake*

    PubMed Central

    Shephard, Roy J.; Allen, C.; Benade, A. J. S.; Davies, C. T. M.; di Prampero, P. E.; Hedman, R.; Merriman, J. E.; Myhre, K.; Simmons, R.

    1968-01-01

    Lack of cardiorespiratory fitness may well contribute to the increasing prevalence of degenerative cardiovascular disease throughout the world. As a first step towards co-ordinated and internationally comparable investigation of this problem, methods of measuring the reference standard of cardiorespiratory fitness—the maximum oxygen intake, (V̇o2)max—were compared by an international working party that met in Toronto in the summer of 1967. Repeated testing of 24 subjects showed that the (V̇o2)max was greatest on the treadmill, 3.4% smaller in a stepping test, and 6.6% smaller during use of a bicycle ergometer. There were also parallel differences in cardiac stroke volume. Uphill treadmill running was recommended for the laboratory measurement of (V̇o2)max, and stepping or bicycle exercise for field studies. A discontinuous series of maximum tests caused some improvement in the fitness of subjects, and a “continuous” test (with small increases in load at 2-min intervals) was preferred. PMID:5303329

  4. A Windmill's Theoretical Maximum Extraction of Power from the Wind.

    ERIC Educational Resources Information Center

    Inglis, David Rittenhouse

    1979-01-01

    Explains that the efficiency and the useful power available from a windmill turbine, of a laminar-flow model, will vary due to rotational kinetic energy of the downwind stream and turbulent mixing from outside the boundaries of the idealized stream. (GA)

  5. Effects of Zonal Wind on Stratospheric Ozone Variations over Nigeria

    NASA Astrophysics Data System (ADS)

    Chidinma Okoro, Eucharia,

    2016-07-01

    The effects of zonal wind on stratospheric ozone variation over Nigeria have been studied. The areas covered in this study include; Maiduguri, Ikeja, Port-Harcourt, Calabar, Makurdi, Ilorin, Akure, Yola, Minna, Jos, Kano and Enugu in Nigeria, from 1986 to 2008. Zonal wind was computed from the iso-velocity map employing MATLAB software. The mean monthly variations of AAM and LOD at pressure levels of 20, 30 and 50 mb in the atmosphere depict a trend of maximum amplitude between April and September, and minimum amplitude between December and March. The trend observed in seasonal variation of O3 column data in the low latitude had maximum amount from May through August and minimum values from December through February. The mean monthly maximum O3 concentrations was found to be 284.70 Du (Kano) occurring in May 1989 while, an average monthly minimum O3 concentration was found to be 235.60 Du (Port-Harcourt and Calabar) occurring in January 1998. It has been established in this study that, the variation in atmospheric angular momentum (AAM) caused by variation of the universal time or length of day (LOD) transfer ozone (O3) by means of zonal wind from the upper troposphere to the lower stratosphere in the stations understudy. The strong effect of the pressure levels of the atmosphere on O3 variation could be attributed to its effect on the AAM and LOD. Variation in the LOD is significant in the tropics, suggesting that, the effects of the extra-tropical suction pump (ETSP) action is not the only driver responsible for O3 transportation from the tropics to extra-tropical zones. Consequently, these findings lead to a deduction that weather pattern alteration observed due to these changes could lead to climate change. Keywords: ozone variations; dynamical processes; harmattan wind; ETSP; and climatic variability

  6. RAWS: The spaceborne radar wind sounder

    NASA Technical Reports Server (NTRS)

    Moore, Richard K.

    1991-01-01

    The concept of the Radar Wind Sounder (RAWS) is discussed. The goals of the RAWS is to estimate the following three qualities: the echo power, to determine rain rate and surface wind velocity; the mean Doppler frequency, to determine the wind velocity in hydrometers; and the spread of the Doppler frequency, to determine the turbulent spread of the wind velocity. Researchers made significant progress during the first year. The feasibility of the concept seems certain. Studies indicate that a reasonably sized system can measure in the presence of ice clouds and dense water clouds. No sensitivity problems exist in rainy environments. More research is needed on the application of the radar to the measurement of rain rates and winds at the sea surface.

  7. RAWS: The spaceborne radar wind sounder

    NASA Astrophysics Data System (ADS)

    Moore, Richard K.

    1991-09-01

    The concept of the Radar Wind Sounder (RAWS) is discussed. The goals of the RAWS is to estimate the following three qualities: the echo power, to determine rain rate and surface wind velocity; the mean Doppler frequency, to determine the wind velocity in hydrometers; and the spread of the Doppler frequency, to determine the turbulent spread of the wind velocity. Researchers made significant progress during the first year. The feasibility of the concept seems certain. Studies indicate that a reasonably sized system can measure in the presence of ice clouds and dense water clouds. No sensitivity problems exist in rainy environments. More research is needed on the application of the radar to the measurement of rain rates and winds at the sea surface.

  8. Stellar winds driven by Alfven waves

    NASA Technical Reports Server (NTRS)

    Belcher, J. W.; Olbert, S.

    1973-01-01

    Models of stellar winds were considered in which the dynamic expansion of a corona is driven by Alfven waves propagating outward along radial magnetic field lines. In the presence of Alfven waves, a coronal expansion can exist for a broad range of reference conditions which would, in the absence of waves, lead to static configurations. Wind models in which the acceleration mechanism is due to Alfven waves alone and exhibit lower mass fluxes and higher energies per particle are compared to wind models in which the acceleration is due to thermal processes. For example, winds driven by Alfven waves exhibit streaming velocities at infinity which may vary between the escape velocity at the coronal base and the geometrical mean of the escape velocity and the speed of light. Upper and lower limits were derived for the allowed energy fluxes and mass fluxes associated with these winds.

  9. Note on one-fluid modeling of low-frequency Alfvénic fluctuations in a solar wind plasma with multi-ion components

    SciTech Connect

    Nariyuki, Y.; Umeda, T.; Suzuki, T. K.; Hada, T.

    2015-12-15

    A simple point of view that non-zero Alfvén ratio (residual energy) appears as a consequence of one-fluid modeling of uni-directional Alfvén waves in a solar wind plasma is presented. Since relative speeds among ions are incorporated into the one-fluid model as a pressure anisotropy, the Alfvén ratio can be finite due to the decrease in the phase velocity. It is shown that a proton beam component typically found in the solar wind plasma can contribute to generating non-zero Alfvén ratio observed in the solar wind plasma. Local equilibrium velocity distribution functions of each ion component are also discussed by using maximum entropy principle.

  10. The Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Simnett, G. M.

    The scientific goals, instrumentation and operation, and results from the Solar Maximum Mission are described. The spacecraft was launched to observe the peak of the solar cycle and the impulsive phase of large flares. Instrumentation included a gamma ray spectrometer, X ray burst spectrometer, imaging spectrometer, and polychromator, a UV spectrometer and polarimeter, a coronagraph/polarimeter, and an active cavity radiometer for measurements at wavelengths ranging from the Hα line at 6563 A up to the gamma ray region of the spectrum. Command programs were prepared one day in advance by each team for its instrument, and limited readjustment was available in real-time. The spacecraft was equipped to, and did, point the instruments at one region for an expected flare build-up, and maintain that heading for an extended period of time through the appearance, development, and demise of the flare.

  11. Local wavefield velocity imaging for damage evaluation

    NASA Astrophysics Data System (ADS)

    Chia, Chen Ciang; Gan, Chia Sheng; Mustapha, F.

    2017-02-01

    Ultrasonic Propagation Imaging or Acoustic Wavefield Imaging has been widely used to evaluate structural damages and internal features. Inspecting complete wavefield time history for damage identification is tedious and error-prone. A more effective way is by extracting damage-related information into a single image. A wavefield velocity imaging method that maps the local estimates of group or phase velocity is proposed. Actual velocity values rather than arbitrarily-scaled intensities are mapped, enabling damage sizing without the need of supervised training or inspecting wavefield propagation video. Performance of the proposed method was tested by inspecting a 100 mm by 100 mm area of a 2 mm thick stainless steel specimen. Local phase velocity maps of A0 mode showed a half-thickness hole of 2 mm diameter as significant change in local phase velocity from the nominal 2 m/ms. Full width at half maximum of relevant velocity profiles proved the accuracy and consistency of the damage sizing.

  12. Understanding the Balance of Dayside and Nightside Reconnection Contributions to the Cross Polar Cap Potential During Solar Wind Disturbances

    DTIC Science & Technology

    2014-05-15

    reconnection is expected to occur. OpenGGCM uses solar wind conditions from ACE, WIND, or Geotail spacecraft as input, and provides number density, velocity...coordinates), solar wind plasma speed, number density, and dynamic pressure observed by the WIND spacecraft . The solar wind data were time- shifted to account...The WIND spacecraft measurements of solar wind conditions (a-d) and the OpenGGCM-CTIM results (e- h) on April 30, 1998. The WIND data are time

  13. Principal wind turbines for a conditional portfolio approach to wind farms

    NASA Astrophysics Data System (ADS)

    Lopes, Vitor V.; Scholz, Teresa; Raischel, Frank; Lind, Pedro G.

    2014-06-01

    We introduce a measure for estimating the best risk-return relation of power production in wind farms within a given time-lag, conditioned to the velocity field. The velocity field is represented by a scalar that weighs the influence of the velocity at each wind turbine at present and previous time-steps for the present "state" of the wind field. The scalar measure introduced is a linear combination of the few turbines, that most influence the overall power production. This quantity is then used as the condition for computing a conditional expected return and corresponding risk associated to the future total power output.

  14. Threshold friction velocity of soils within the Columbia Plateau

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion only occurs when the friction velocity exceeds the threshold friction velocity (TFV) of the surface. The TFV of loessial soils commonly found across the Columbia Plateau region of the U.S. Pacific Northwest is virtually unknown even though these soils are highly erodible and a source of...

  15. On the correlation between interplanetary nano dust particles and solar wind properties from STEREO/SWAVES

    NASA Astrophysics Data System (ADS)

    Issautier, K.; LE CHAT, G.; Meyer-Vernet, N.; Belheouane, S.; Zaslavsky, A.; Zouganelis, I.; Mann, I.; Maksimovic, M.

    2012-12-01

    Dust particles provide an important fraction of the matter composing the interplanetary medium, their mass density at 1 AU being comparable to the one of the solar wind. Among them, dusts of nanometer size-scale can be detected using radio and plasma waves instruments because they move at roughly the solar wind speed. The high velocity impact of a dust particle generates a small crater on the spacecraft: the dust particle and the crater material are vaporized. This produces a plasma cloud whose associated electrical charge induces an electric pulse measured with radio and plasma instruments. Since their first detection in the interplanetary medium (Meyer-Vernet et al. 2009), nanodusts have been routinely measured using STEREO/WAVES instrument (Zaslavsky et al. 2012) We present the nanodust properties during the 2007-2012 period on STEREO. Since the maximum size of the plasma cloud is larger for smaller local solar wind density, we expect to observe an anticorrelation between the detected voltage amplitude and the ambient solar wind density, as suggested recently by Le Chat et al. (2012). Moreover, the variations in solar wind speed and magnetic field are expected to affect the nano dust dynamics. Using STEREO/WAVES/Low Frequency Receiver (LFR) data, we study correlations of in situ solar wind properties and detection of nanodust impacts as well as some possible effects of Coronal Mass Ejections (CME) on nanodusts acceleration.

  16. Surface wind characteristics of some Aleutian Islands. [for selection of windpowered machine sites

    NASA Technical Reports Server (NTRS)

    Wentink, T., Jr.

    1973-01-01

    The wind power potential of Alaska is assessed in order to determine promising windpower sites for construction of wind machines and for shipment of wind derived energy. Analyses of near surface wind data from promising Aleutian sites accessible by ocean transport indicate probable velocity regimes and also present deficiencies in available data. It is shown that winds for some degree of power generation are available 77 percent of the time in the Aleutians with peak velocities depending on location.

  17. Economic considerations of utilizing small wind generators

    NASA Technical Reports Server (NTRS)

    Dodge, R.

    1973-01-01

    The economic feasibility of small wind generators is compared to that of solar cells, primary batteries, thermoelectric generators, and engine generators. It is shown that small wind generator plants offer an attractive alternative to primary battery systems and constantly running engines to generate power in remote areas. The limitation is an annual average wind velocity of at least 9 to 10 mph. Presently available units are most useful in the average load range of 10 to 1000 watts.

  18. Generalized Maximum Entropy

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Stutz, John

    2005-01-01

    A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].

  19. A correlative study of simultaneously measured He(++) fluxes in the solar wind and in the magnetosphere utilizing Imp-1 and 1971-089A satellite data

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.

    1975-01-01

    Simultaneously measured He(++) fluxes in the solar wind and in the magnetosphere were studied using data from the plasma spectrometer on the Imp I satellite and the energetic ion mass spectrometer on the low altitude polar orbiting satellite 1971-89A. A detailed comparison of the He(++) energy spectra measured simultaneously in the solar wind and in the low altitude dayside polar cusp on March 7, 1972 was made. The energy-per-unit-charge range of the energetic ion mass spectrometer on board the polar orbiting satellite was 700 eV to 12 keV. Within this range there was a clear maximum in the He(++) energy spectrum at approximately 1.5 keV/nucleon. There was not a clearly defined maximum in the H(+) spectrum, but the data were consistent with a peak between 0.7 and 1.0 keV/nucleon. Both spectra could be reasonably well fit with a convecting Maxwellian plus a high energy tail; however, the mean velocity for He(++) distribution was significantly greater than that for the H(+) distribution. The simultaneous solar wind measurements showed the mean velocities for both ion species to be approximately 600 km/sec. The discrepancies between the relative velocity distributions in the low altitude cusp and those in the solar wind are consistent with a potential difference of approximately 1.4 kV along their flow direction between the two points of observation.

  20. Observed drag coefficients in high winds in the near offshore of the South China Sea

    DOE PAGES

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; ...

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a heightmore » of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.« less

  1. Observed drag coefficients in high winds in the near offshore of the South China Sea

    NASA Astrophysics Data System (ADS)

    Bi, Xueyan; Gao, Zhiqiu; Liu, Yangang; Liu, Feng; Song, Qingtao; Huang, Jian; Huang, Huijun; Mao, Weikang; Liu, Chunxia

    2015-07-01

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a height of 10 m is about 32 m s-1. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5-10 m s-1, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s-1. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18-27 m s-1. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s-1. Above this, the difference in the 10 m drag coefficients of the two towers disappears.

  2. Impacts of winds on volcanic plumes - Do crossflows challenge the Morton, Turner and Taylor entrainment assumptions?

    NASA Astrophysics Data System (ADS)

    Aubry, T. J.; Jellinek, M.; Carazzo, G.

    2014-12-01

    Volcanic plumes rising into Earth's atmosphere are influenced strongly by tropospheric and stratospheric winds. In the absence of wind effects, Morton, Taylor and Turner (MTT, 1956) used a similarity theory to show that the maximum height for these flows is governed mostly by the atmospheric stratification and the buoyancy flux at the vent. Crucially, in developing this theory MTT introduced the "entrainment hypothesis" in which the rate of entrainment of atmospheric air by the large eddies forming at the edge of the plume is proportional to some bulk velocity. In the presence of wind a key question is whether the additional stirring deforms eddies sufficiently to alter their mixing properties. In particular, under what conditions will wind effects enhance or reduce entrainment? Can these effects be captured in a modified form of the MTT similarity theory or is a new theory required? We use an extensive set of experiments on wind-forced turbulent plumes in order to overcome the restricted dynamical conditions explored in previous experimental studies. We introduce a new regime parameter allowing to quantitatively separate three distinct plume regimes. Remarkably, we show that for reasonable conditions on Earth, the major effects of wind can still be captured by a modified scaling law derived from the self-similar theory of MTT, with an entrainment rate including the contributions of wind. However, analysis of the turbulence motions in our experiments shows that even weak winds introduce large asymmetries in the structure of entraining eddies. Our successful application of a mean entrainment rate at the plume edge and a modified MTT similarity theory is, thus, surprising. Does this apparent contradiction simply reveal the way turbulent instabilities driven by wind manifest themselves?

  3. Observed drag coefficients in high winds in the near offshore of the South China Sea

    SciTech Connect

    Bi, Xueyan; Liu, Yangan; Gao, Zhiqiu; Liu, Feng; Song, Qingtao; Huang, Jian; Huang, Huijun; Mao, Weikang; Liu, Chunxia

    2015-07-14

    This paper investigates the relationships between friction velocity, 10 m drag coefficient, and 10 m wind speed using data collected at two offshore observation towers (one over the sea and the other on an island) from seven typhoon episodes in the South China Sea from 2008 to 2014. The two towers were placed in areas with different water depths along a shore-normal line. The depth of water at the tower over the sea averages about 15 m, and the depth of water near the island is about 10 m. The observed maximum 10 min average wind speed at a height of 10 m is about 32 m s⁻¹. Momentum fluxes derived from three methods (eddy covariance, inertial dissipation, and flux profile) are compared. The momentum fluxes derived from the flux profile method are larger (smaller) over the sea (on the island) than those from the other two methods. The relationship between the 10 m drag coefficient and the 10 m wind speed is examined by use of the data obtained by the eddy covariance method. The drag coefficient first decreases with increasing 10 m wind speed when the wind speeds are 5–10 m s⁻¹, then increases and reaches a peak value of 0.002 around a wind speed of 18 m s⁻¹. The drag coefficient decreases with increasing 10 m wind speed when 10 m wind speeds are 18–27 m s⁻¹. A comparison of the measurements from the two towers shows that the 10 m drag coefficient from the tower in 10 m water depth is about 40% larger than that from the tower in 15 m water depth when the 10 m wind speed is less than 10 m s⁻¹. Above this, the difference in the 10 m drag coefficients of the two towers disappears.

  4. Pitch-controlled variable-speed wind turbine generation

    SciTech Connect

    Muljadi, E.; Butterfield, C.P.

    2000-03-01

    Wind energy is a viable option to complement other types of pollution-free generation. In the early development of wind energy, the majority of wind turbines were operated at constant speed. Recently, the number of variable-speed wind turbines installed in wind farms has increased and more wind turbine manufacturers are making variable-speed wind turbines. This paper covers the operation of variable-speed wind turbines with pitch control. The system the authors considered is controlled to generate maximum energy while minimizing loads. The maximization of energy was only carried out on a static basis and only drive train loads were considered as a constraint. In medium wind speeds, the generator and power converter control the wind turbine to capture maximum energy from the wind. In the high wind speed region, the wind turbine is controlled to maintain the aerodynamic power produced by the wind turbine. Two methods to adjust the aerodynamic power were investigated: pitch control and generator load control, both of which are employed to control the operation of the wind turbine. The analysis and simulation shows that the wind turbine can be operated at its optimum energy capture while minimizing the load on the wind turbine for a wide range of wind speeds.

  5. Calculations of the cosmic ray modulation in interplanetary space taking into account the possible dependence of the transport travel for the scattering of the particles and of the velocity of the solar winds on the angles they make with the helioequator plane: The case of isotropic diffusion

    NASA Technical Reports Server (NTRS)

    Dorman, L. I.; Kobilinski, Z.

    1975-01-01

    The modulation of galactic cosmic rays is studied by the magnetic heterogeneities stream on the assumption that the diffusion coefficient is reduced whereas the solar wind velocity is increased with the growth of the angle between the sun's rotation axis and the direction of solar plasma motion. The stationary plane problem of isotropic diffusion is solved as it applies to two cases: (1) with due account of particle retardation by the antiphermium mechanism; and (2) without an account of the above mechanism. This problem is solved by the grid method in the polar coordinate system. The results of the calculations are followed by a discussion of the method of solution and of the errors.

  6. Airfoils for wind turbine

    DOEpatents

    Tangler, James L.; Somers, Dan M.

    1996-01-01

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  7. Airfoils for wind turbine

    DOEpatents

    Tangler, J.L.; Somers, D.M.

    1996-10-08

    Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

  8. Electronic excitation and charge transfer processes in collisions of H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +} ions with carbon monoxide at typical solar-wind velocities

    SciTech Connect

    Werbowy, S.; Pranszke, B.

    2014-01-10

    Luminescence in the 200-580 nm spectral region was observed in the collisions of H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +} with CO in the 50-1000 eV projectile energy range. Using computer simulations, we have identified emission of the following products in the observed spectra: the CO{sup +}(A-X) comet-tail system, CO{sup +}(B-X) first negative system, CO{sup +}(B-A) Baldet-Johnson system, and CO(b-a) third positive system. Also, an emission from atomic hydrogen (H{sub β} line at 486nm) has been observed. From the analysis of the experimental spectra, we have determined the absolute emission cross-sections for the formation of the observed products. Computer simulations gave the excited-product population distributions over vibrational and rotational energy levels. The vibrational level distribution from the CO{sup +}(A-X) comet-tail system is compared with the data for CO excited by 100 eV electrons and extreme ultraviolet radiation (XUV) photons. We have used these data to analyze the excitation conditions in the comet Humason (1961e). From the vibrational population distributions observed in the comet, we found that this distribution can be reproduced if electrons produce 25%, protons 70%, and XUV photons produce 5% of the emitting molecules. We find that the ratio of the CO{sup +}(B-X) emission to the sum of two main emissions (CO{sup +}(A-X)+CO{sup +}(B-X)) is velocity dependent and does not depend on the projectile ion type. For small velocities (below 100 km s{sup –1}) the ratio is about 5%, while for higher velocities it increases to 30%. For these data, we have found an empirical formula that satisfactorily describes the experimental data: R = R {sub max}(1 – v {sub th}/v), (where R {sub max} = 33%, v {sub th} = 87 km s{sup –1}). This could be used to infer the velocity of ions producing the observed emission of CO{sup +} products.

  9. Wind Energy

    SciTech Connect

    Ganley, Jason; Zhang, Jie; Hodge, Bri-Mathias

    2016-03-15

    Wind energy is a variable and uncertain renewable resource that has long been used to produce mechanical work, and has developed into a large producer of global electricity needs. As renewable sources of energy and feedstocks become more important globally to produce sustainable products, many different processes have started adopting wind power as an energy source. Many times this is through a conversion to hydrogen through electrolysis that allows for a more continuous process input. Other important pathways include methanol and ammonia. As the demand for sustainable products and production pathways increases, and wind power capital costs decrease, the role of wind power in chemical and energy production seems poised to increase significantly.

  10. Mesosphere and lower thermosphere neutral winds observations using rocket-released chemical trails at Poker Flat, Alaska

    NASA Astrophysics Data System (ADS)

    Zhan, Tianyu

    Sounding rocket campaigns ARIA I through ARIA IV, CODA 2, HEX 1, JOULE 1 and JOULE 2 all carried out at Poker Flat Research Range at Alaska, covering the geomagnetic condition from quiet to highly disturbed. Trimethyl aluminum (TMA) were released during the rocket flights to study the mesosphere and lower thermosphere neutral wind at high-latitude region. The results of horizontal neutral wind profiles are presented. The comparison shows that under disturbed condition the wind velocity is stronger and the jet feature at the bottom side of wind maximum with unstable wind shear is lifted to a higher altitude. Under the quiet condition, the dominance forcing acting on the neutral atmosphere is the upward propagating tides below 120 km and the Lorentz force and viscosity in the region above 120 km. While under the disturbed condition, the tidal force is disrupted by Hall drag in the region of 105--125 km and the wind profile is a result of complex interplay of tidal force, Lorentz force and Joule heating. Modeling works have also been presented. The comparisons are poor for the global general circulation models and are better for localized non-hydrostatic models. It is also concluded that a detailed high-resolution time-history of auroral forcing and the upward propagating tidal forcing are both important for theoretical model to predict the small scale features of the horizontal neutral wind in the auroral E region and lower F region.

  11. Long-term variations of the solar wind parameters and their geoeffciency

    NASA Astrophysics Data System (ADS)

    Makarova, Liudmila; Shirochkov, Alexander

    One of the contradictory problems of the contemporary state of the solar-terrestrial physics is impact of the solar activity of different kinds on the near-Earth space. For a long time solar activity having cyclical variations of sunspots and solar flares were considered as a main factor in the study of the solar - terrestrial links. State of the solar wind, which depends on the processes occurring in the Sun, is an important indicator of the solar - terrestrial links. Right now geoeffeciency of the solar wind influence on the processes in the near-Earth space is commonly accepted fact. In this paper we study the long-term variations in the solar wind parameters using satellite data from 1966 to 2013. So, sporadic variability associated with casual short-term disturbances in the solar wind were excluded from consideration. We analyzed annual values of such parameters as the solar wind interplanetary field full magnetic vector (B), speed (V) and density (n), as well as its dynamic pressure (nV2). It was confirmed that in the long term variations of the total magnetic field vector B coincides with cyclic variability of the number of sunspots. The long-term variations in the solar wind velocity clearly demonstrated maximum at decreasing phase of solar activity cycle. Solar wind density values were minimal at the maxima of solar activity cycles and they increased in the decay phase of the cyclic activity. These results were mentioned in the previous literature. The new fact was that the density of the solar wind has increased from cycle to cycle from 1966 to 1993, and it began to decrease values after 1996. Dynamic pressure of the solar wind from 1966 to 1993 increased in proportion to the density of the solar wind. It was also found that since 1998 the dynamic pressure is determined of the total magnetic field vector IMF and the solar wind velocity. Analysis of long-term variations of ionospheric parameters at F region showed a high correlation with the values of

  12. Geoeffectiveness of Extreme Solar Winds

    NASA Astrophysics Data System (ADS)

    Alleyne, H.; Nanan, B.; Walker, S.; Reme, H.; Lucek, E.; Andre, M.; Cornilleau-Wehrlin, N.; Fazakerley, A.; Decreau, P.; McCrea, I.; Zhang, S.; van Eyken, A.

    2006-12-01

    The geoeffectiveness of the extreme solar winds that flowed pass the Earth on 24 October 2003, 07 November 2004 and 09 November 2004 are presented using Cluster (FGM, CIS, PEACE, STAFF and EFW) and ground- based (EISCAT radars at 69.6N, 19.2E and IMAGE magnetometer network at 68-79N)observations. The Cluster observations suggest that magnetic reconnection need not be the main process for solar wind entry into the magnetosphere during extreme solar winds. The ion velocity in the magnetosheath-cusp region remains strongly anti-sunward and poleward and ion density remains high irrespective of IMF Bz is negative or positive. The ion velocity components are also found to agree with the ExB velocities. The ground-based observations indicate that the extreme solar winds directly affect the high latitude ionosphere. The solar wind plasma is found to enter the ionosphere through an afternoon cusp that descends to low latitudes during negative IMF Bz period when a westward electrojet is also found to ascend to high latitudes.

  13. Coastal Ohio Wind Project

    SciTech Connect

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and

  14. Velocity correlations in simulations and observations

    NASA Astrophysics Data System (ADS)

    Wang, Yuyu; Rooney, Christopher; Feldman, Hume; Watkins, Richard

    2017-01-01

    We present an analysis of the two-point cosmic velocity correlation function. We calculate the correlations of the Cosmicflows catalogues and estimate the errors using the Millennium N-body simulations. We estimate the correlation coherence length, and combine the velocity correlation function expectations from linear theory to constrain the cosmological parameters Γ and β. Using the maximum likelihood method, we find a value of Γ = 0 .195-0 . 045 + 0 . 08 (95% CL) that is consistent with the Planck results.

  15. Flatback airfoil wind tunnel experiment.

    SciTech Connect

    Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-04-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  16. Multifractal properties of solar wind turbulence: theory and observations.

    NASA Astrophysics Data System (ADS)

    Milovanov, A. V.; Avanov, L. A.; Zastenker, G. N.; Zelenyj, L. M.

    1996-10-01

    A fractal model of the solar wind is presented. This model treats fluctuations of the solar wind velocity from the viewpoint of nonlinear processes originating in the convective region and photosphere of the Sun. The multifractal structure of proton velocity fluctuations in a region of heliocentric distances from 0.2 to 0.8 AU is a result of these processes. Continuous measurements of solar wind velocity aboard the ISEE-3 spacecraft during one month were used to compare the theoretical and experimental results. It is shown that fluctuations of proton velocity have a multifractal structure in a frequency range of 10-5 - 10-3Hz.

  17. Production velocity of sea spray droplets

    NASA Astrophysics Data System (ADS)

    Andreas, Edgar L.; Jones, Kathleen F.; Fairall, Christopher W.

    2010-12-01

    The sea spray generation function dF/dr0 predicts the rate at which droplets of initial radius r0 are produced at the sea surface. Because this function is not readily measurable in the marine environment, however, it is often inferred from measurements of the near-surface droplet concentration, C(r0), through an assumed velocity scale, the effective spray production velocity. This paper proceeds in reverse, though: It uses a reliable estimate of dF/dr0 and 13 sets of measurements of C(r0) over the ocean to calculate the implied effective production velocity, Veff, for droplets with initial radii r0 from 5 to 300 μm. It then compares these Veff values with four candidate expressions for this production velocity: the dry-deposition velocity, VDh; the mean wind speed at the significant wave amplitude (A1/3), ? the standard deviation in vertical droplet velocity, σwd; and laboratory measurements of the ejection velocity of jet droplets, Vej. The velocity scales ? and Vej agree best with the implied Veff values for 20 ≤ r0 ≤ 300 μm. The deposition velocity, VDh, which is the velocity most commonly used in this application, agrees worst with the Veff values. For droplets with r0 less than about 20 μm, the analysis also rejects the main hypothesis: that dF/dr0 and C(r0) can be related through a velocity scale. These smaller droplets simply have residence times that are too long for spray concentrations to be in local equilibrium with the spray production rate.

  18. Improving the Accuracy of Wind Turbine Power Curve Validation by the Rotor Equivalent Wind Speed Concept

    NASA Astrophysics Data System (ADS)

    Scheurich, Frank; Enevoldsen, Peder B.; Paulsen, Henrik N.; Dickow, Kristoffer K.; Fiedel, Moritz; Loeven, Alex; Antoniou, Ioannis

    2016-09-01

    The measurement of the wind speed at hub height is part of the current IEC standard procedure for the power curve validation of wind turbines. The inherent assumption is thereby made that this measured hub height wind speed sufficiently represents the wind speed across the entire rotor area. It is very questionable, however, whether the hub height wind speed (HHWS) method is appropriate for rotor sizes of commercial state-of-the-art wind turbines. The rotor equivalent wind speed (REWS) concept, in which the wind velocities are measured at several different heights across the rotor area, is deemed to be better suited to represent the wind speed in power curve measurements and thus results in more accurate predictions of the annual energy production (AEP) of the turbine. The present paper compares the estimated AEP, based on HHWS power curves, of two different commercial wind turbines to the AEP that is based on REWS power curves. The REWS was determined by LiDAR measurements of the wind velocities at ten different heights across the rotor area. It is shown that a REWS power curve can, depending on the wind shear profile, result in higher, equal or lower AEP estimations compared to the AEP predicted by a HHWS power curve.

  19. Three-Dimensional Venturi Sensor for Measuring Extreme Winds

    NASA Technical Reports Server (NTRS)

    Zysko, Jan A.; Perotti, Jose M.; Amis, Christopher; Randazzo, John; Blalock, Norman; Eckhoff, Anthony

    2003-01-01

    A three-dimensional (3D) Venturi sensor is being developed as a compact, rugged means of measuring wind vectors having magnitudes of as much as 300 mph (134 m/s). This sensor also incorporates auxiliary sensors for measuring temperature from -40 to +120 F (-40 to +49 C), relative humidity from 0 to 100 percent, and atmospheric pressure from 846 to 1,084 millibar (85 to 108 kPa). Conventional cup-and-vane anemometers are highly susceptible to damage by both high wind forces and debris, due to their moving parts and large profiles. In addition, they exhibit slow recovery times contributing to an inaccurately high average-speed reading. Ultrasonic and hot-wire anemometers overcome some of the disadvantages of the cup and-vane anemometers, but they have other disadvantageous features, including limited dynamic range and susceptibility to errors caused by external acoustic noise and rain. In contrast, the novel 3D Venturi sensor is less vulnerable to wind damage because of its smaller profile and ruggedness. Since the sensor has no moving parts, it provides increased reliability and lower maintenance costs. It has faster response and recovery times to changing wind conditions than traditional systems. In addition, it offers wide dynamic range and is expected to be relatively insensitive to rain and acoustic energy. The Venturi effect in this sensor is achieved by the mirrored double-inflection curve, which is then rotated 360 to create the desired detection surfaces. The curve is optimized to provide a good balance of pressure difference between sensor ports and overall maximum fluid velocity while in the shape. Four posts are used to separate the two shapes, and their size and location were chosen to minimize effects on the pressure measurements. The 3D Venturi sensor has smart software algorithms to map the wind pressure exerted on the surfaces of the design. Using Bernoulli's equation, the speed of the wind is calculated from the differences among the pressure

  20. Studying Wake Deflection of Wind Turbines in Yaw using Drag Disk Experiments and Actuator Disk Modeling in LES

    NASA Astrophysics Data System (ADS)

    Howland, Michael; Bossuyt, Juliaan; Meyers, Johan; Meneveau, Charles

    2015-11-01

    Recently, there has been a push towards the optimization in the power output of entire large wind farms through the control of individual turbines, as opposed to operating each turbine in a maximum power point tracking manner. In this vane, the wake deflection by wind turbines in yawed conditions has generated considerable interest in recent years. In order to effectively study the wake deflection according to classical actuator disk momentum theory, a 3D printed drag disk model with a coefficient of thrust of approximately 0.75 - 0.85 and a diameter of 3 cm is used, studied under uniform inflow in a wind tunnel with test section of 1 m by 1.3 m, operating with a negligible inlet turbulence level at an inflow velocity of 10 m/s. Mean velocity profile measurements are performed using Pitot probes. Different yaw angles are considered, including 10, 20, and 30 degrees. We confirm earlier results that (e.g.) a 30 degree yaw angle deflects the center of the wake around 1/2 of a rotor diameter when it impinges on a downstream turbine. Detailed comparisons between the experiments and Large Eddy Simulations using actuator disk model for the wind turbines are carried out in order to help validate the CFD model. Work supported by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project) and by ERC (ActiveWindFarms, grant no. 306471).

  1. Sea surface velocities from visible and infrared multispectral atmospheric mapping sensor imagery

    NASA Technical Reports Server (NTRS)

    Pope, P. A.; Emery, W. J.; Radebaugh, M.

    1992-01-01

    High resolution (100 m), sequential Multispectral Atmospheric Mapping Sensor (MAMS) images were used in a study to calculate advective surface velocities using the Maximum Cross Correlation (MCC) technique. Radiance and brightness temperature gradient magnitude images were formed from visible (0.48 microns) and infrared (11.12 microns) image pairs, respectively, of Chandeleur Sound, which is a shallow body of water northeast of the Mississippi delta, at 145546 GMT and 170701 GMT on 30 Mar. 1989. The gradient magnitude images enhanced the surface water feature boundaries, and a lower cutoff on the gradient magnitudes calculated allowed the undesirable sunglare and backscatter gradients in the visible images, and the water vapor absorption gradients in the infrared images, to be reduced in strength. Requiring high (greater than 0.4) maximum cross correlation coefficients and spatial coherence of the vector field aided in the selection of an optimal template size of 10 x 10 pixels (first image) and search limit of 20 pixels (second image) to use in the MCC technique. Use of these optimum input parameters to the MCC algorithm, and high correlation and spatial coherence filtering of the resulting velocity field from the MCC calculation yielded a clustered velocity distribution over the visible and infrared gradient images. The velocity field calculated from the visible gradient image pair agreed well with a subjective analysis of the motion, but the velocity field from the infrared gradient image pair did not. This was attributed to the changing shapes of the gradient features, their nonuniqueness, and large displacements relative to the mean distance between them. These problems implied a lower repeat time for the imagery was needed in order to improve the velocity field derived from gradient imagery. Suggestions are given for optimizing the repeat time of sequential imagery when using the MCC method for motion studies. Applying the MCC method to the infrared

  2. Wind energy.

    PubMed

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented.

  3. The causes of geomagnetic storms during solar maximum

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Gonzalez, Walter D.

    1994-01-01

    One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. In investigating the causes of geomagnetic storms occurring during solar maximum, the following topics are discussed: solar phenomena; types of solar wind; magnetic reconnection and magnetic storms; an interplanetary example; and future space physics missions.

  4. Light ion velocities in the polar ionosphere

    NASA Technical Reports Server (NTRS)

    Murphy, J. A.; Heelis, R. A.

    1981-01-01

    High-speed flow of light ions along magnetic field lines is not simply a consequence of those field lines having an open topology. It is pointed out that the magnitude of the H(+) flow velocity in the polar wind is not predicted by theoretical models, but rather is imposed as a boundary condition. Thermal diffusion, the electron temperature profile, and a diverging magnetic field can be shown to have important effects on the H(+) flow velocity, which need not be supersonic even when the pressure at large distances from the earth is low.

  5. Cluster observations on linear magnetic decreases in the solar wind at 1 AU

    NASA Astrophysics Data System (ADS)

    Xiao, T.; Shi, Q.; Tian, A.; Fu, S.; Pu, Z.; Zong, Q.; Sun, W.; Lucek, E. A.; Reme, H.

    2013-12-01

    Magnetic decreases (MDs) are structures observed in interplanetary space with significant decreases in the magnetic field magnitude, of which the events with no or little change in the field direction are linear magnetic decreases (LMDs). Xiao et al., (2010) have reported that the geometrical shape of LMDs observed in the solar wind at 1 AU was consistent with rotational ellipsoid, and the occurrence rate was about 3.7 LMDs/d. It was found that not only the occurrence rate but also the geometrical shape of LMDs had no significant change from 0.72 AU to 1 AU in comparison with Zhang et al., (2008)'s results, which may infer that most of LMDs observed at 1 AU were formed and fully developed before 0.72 AU. Recently, we have focused on the magnetic field and plasma (e.g. ion density and velocity) characteristics of those LMD structures observed during the period of 2001 to 2009. Compared with the average solar wind condition, it is shown that the LMDs prefer to be observed in the region with relatively lower magnetic field magnitude, higher ion density, larger plasma β (ratio of the thermal pressure to the magnetic pressure) and slower solar wind velocity. We also investigated the LMDs which located in the interplanetary coronal mass ejections (ICME) or the sheath of the ICME. It is found that the events related to ICMEs could account for more than 20% of LMDs during solar maximum. Therefore, the ICME should be an important source of the LMDs during the solar maximum. However, other mechanisms during the solar minimum may be more important, because the occurrence rate of LMDs during the solar minimum is higher than that of the solar maximum. We also calculate the propagation speed of the structures in the solar wind frame to infer the generation mechanism of these structures.

  6. Prediction of fragment velocities and trajectories

    NASA Technical Reports Server (NTRS)

    Kulesz, J. J.; Vargas, L. M.; Moseley, P. K.

    1979-01-01

    Analytical techniques are described which predict: (1) the velocities of two unequal fragments from bursting cylindrical pressure vessels; (2) the velocity and range of portions of vessels containing a fluid which, when the vessel ruptures, causes the fragment to accelerate as the fluid changes from the liquid to the gaseous phase; and (3) the ranges of fragments subjected to drag and lift forces during flight. Numerous computer runs were made with various initial conditions in an effort to generalize the results for maximum range in plots of dimensionless range versus dimensionless velocity.

  7. A laser velocimeter for remote wind sensing.

    NASA Technical Reports Server (NTRS)

    Lawrence, T. R.; Wilson, D. J.; Craven, C. E.; Jones, I. P.; Huffaker, R. M.; Thomson, J. A. L.

    1972-01-01

    A CW carbon dioxide laser Doppler radar has been developed and applied to remote measurement of atmospheric wind velocity and turbulence. The carbon dioxide laser illuminates residual particulate matter in the atmosphere. Radiation scattered by these particles is homodyned with a local oscillator to provide the Doppler signal. The performance of the instrument is verified by comparison of wind velocity data recorded simultaneously by the laser Doppler system and a cup-anemometer wind-vane system. All data comparisons indicate very close agreement of the two systems. Data inconsistencies are within the accuracy limitations of the conventional anemometer system. The range of the laser Doppler system during these tests was confined to approximately 30 m. Laser Doppler wind velocity data were observed at ranges exceeding 300 m; however, no conventional anemometer was set up at these ranges for data comparisons.

  8. The Average Velocity in a Queue

    ERIC Educational Resources Information Center

    Frette, Vidar

    2009-01-01

    A number of cars drive along a narrow road that does not allow overtaking. Each driver has a certain maximum speed at which he or she will drive if alone on the road. As a result of slower cars ahead, many cars are forced to drive at speeds lower than their maximum ones. The average velocity in the queue offers a non-trivial example of a mean…

  9. Sensitivity of Southern Ocean circulation to wind stress changes: Role of relative wind stress

    NASA Astrophysics Data System (ADS)

    Munday, D. R.; Zhai, X.

    2015-11-01

    The influence of different wind stress bulk formulae on the response of the Southern Ocean circulation to wind stress changes is investigated using an idealised channel model. Surface/mixed layer properties are found to be sensitive to the use of the relative wind stress formulation, where the wind stress depends on the difference between the ocean and atmosphere velocities. Previous work has highlighted the surface eddy damping effect of this formulation, which we find leads to increased circumpolar transport. Nevertheless the transport due to thermal wind shear does lose sensitivity to wind stress changes at sufficiently high wind stress. In contrast, the sensitivity of the meridional overturning circulation is broadly the same regardless of the bulk formula used due to the adiabatic nature of the relative wind stress damping. This is a consequence of the steepening of isopycnals offsetting the reduction in eddy diffusivity in their contribution to the eddy bolus overturning, as predicted using a residual mean framework.

  10. A comparison of winds from the STRATAN data assimilation system to balanced wind estimates

    NASA Technical Reports Server (NTRS)

    Coy, Lawrence; Rood, Richard B.; Newman, Paul A.

    1994-01-01

    Winds derived from a stratospheric and tropospheric data assimilation system (STRATAN) are compared with balance winds derived from National Meteorological Center/Climate Analysis Center (NMC/CAC) heights. At middle latitudes in the lower stratosphere, the results show that STRATAN winds are comparable to the balance winds. In addition STRATAN winds provide useful horizontal divergence analyses, and hence, vertical velocity fields. More generally, the STRATAN winds are useful in a more extended domain than the balanced winds. In particular, they are useful in the Tropics and the upper stratosphere where the balanced winds fail. The assimilation also captures the quasi-biennial oscillation, but does not do a good job of representing tropical waves.

  11. Sea surface wind stress in stratified atmospheric flow

    SciTech Connect

    Myrhaug, D.; Slaattelid, O.H.

    1996-12-31

    The paper presents the wind shear stress on the sea surface as well as the velocity profile in stably stratified atmospheric boundary layer flow over wind waves by using similarity theory. For a given geostrophic velocity, Coriolis parameter, spectral peak period and stratification parameter the sea surface shear stress is determined. Further, the direction of the sea surface shear stress and the velocity profile are given. Parameterizations of the results are also presented. Finally, the engineering relevance of the results is discussed.

  12. Highly Alfvenic Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Roberts, D. Aaron

    2010-01-01

    It is commonly thought that fast solar wind tends to be highly Alfvenic, with strong correlations between velocity and magnetic fluctuations, but examples have been known for over 20 years in which slow wind is both Alfvenic and has many other properties more typically expected of fast solar wind. This paper will present a search for examples of such flows from more recent data, and will begin to characterize the general characteristics of them. A very preliminary search suggests that such intervals are more common in the rising phase of the solar cycle. These intervals are important for providing constraints on models of solar wind acceleration, and in particular the role waves might or might not play in that process.

  13. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  14. VELOCITY INDICATOR FOR EXTRUSION PRESS

    DOEpatents

    Digney, F.J. Jr.; Bevilacqua, F.

    1959-04-01

    An indicator is presented for measuring the lowspeed velocity of an object in one direction where the object returns in the opposite direction at a high speed. The indicator comprises a drum having its axis of rotation transverse to the linear movement of the object and a tape wound upon the drum with its free end extending therefrom and adapted to be connected to the object. A constant torque is applied to the drum in a direction to wind the tape on the drum. The speed of the tape in the unwinding direction is indicated on a tachometer which is coupled through a shaft and clutch means to the drum only when the tape is unwinding.

  15. Wake effects between two neighbouring wind farms

    NASA Astrophysics Data System (ADS)

    Gayle Nygaard, Nicolai; Damgaard Hansen, Sidse

    2016-09-01

    We address the issue of wake effects between two neighbouring offshore wind farms by analysing simultaneous production data from Rodsand II and Nysted. The upstream wind farm is found to not just perturb the flow in its wake, but also to cause speed-ups at the positions of some downstream turbines. We use the data to perform a validation of a simple wake model for flow cases corresponding to wind directions of maximum internal and external wake effects.

  16. Wind Resource Assessment in Complex Terrain with a High-Resolution Numerical Weather Prediction Model

    NASA Astrophysics Data System (ADS)

    Gruber, Karin; Serafin, Stefano; Grubišić, Vanda; Dorninger, Manfred; Zauner, Rudolf; Fink, Martin

    2014-05-01

    A crucial step in planning new wind farms is the estimation of the amount of wind energy that can be harvested in possible target sites. Wind resource assessment traditionally entails deployment of masts equipped for wind speed measurements at several heights for a reasonably long period of time. Simplified linear models of atmospheric flow are then used for a spatial extrapolation of point measurements to a wide area. While linear models have been successfully applied in the wind resource assessment in plains and offshore, their reliability in complex terrain is generally poor. This represents a major limitation to wind resource assessment in Austria, where high-altitude locations are being considered for new plant sites, given the higher frequency of sustained winds at such sites. The limitations of linear models stem from two key assumptions in their formulation, the neutral stratification and attached boundary-layer flow, both of which often break down in complex terrain. Consequently, an accurate modeling of near-surface flow over mountains requires the adoption of a NWP model with high horizontal and vertical resolution. This study explores the wind potential of a site in Styria in the North-Eastern Alps. The WRF model is used for simulations with a maximum horizontal resolution of 800 m. Three nested computational domains are defined, with the innermost one encompassing a stretch of the relatively broad Enns Valley, flanked by the main crest of the Alps in the south and the Nördliche Kalkalpen of similar height in the north. In addition to the simulation results, we use data from fourteen 10-m wind measurement sites (of which 7 are located within valleys and 5 near mountain tops) and from 2 masts with anemometers at several heights (at hillside locations) in an area of 1600 km2 around the target site. The potential for wind energy production is assessed using the mean wind speed and turbulence intensity at hub height. The capacity factor is also evaluated

  17. Estimating Variances of Horizontal Wind Fluctuations in Stable Conditions

    NASA Astrophysics Data System (ADS)

    Luhar, Ashok K.

    2010-05-01

    Information concerning the average wind speed and the variances of lateral and longitudinal wind velocity fluctuations is required by dispersion models to characterise turbulence in the atmospheric boundary layer. When the winds are weak, the scalar average wind speed and the vector average wind speed need to be clearly distinguished and both lateral and longitudinal wind velocity fluctuations assume equal importance in dispersion calculations. We examine commonly-used methods of estimating these variances from wind-speed and wind-direction statistics measured separately, for example, by a cup anemometer and a wind vane, and evaluate the implied relationship between the scalar and vector wind speeds, using measurements taken under low-wind stable conditions. We highlight several inconsistencies inherent in the existing formulations and show that the widely-used assumption that the lateral velocity variance is equal to the longitudinal velocity variance is not necessarily true. We derive improved relations for the two variances, and although data under stable stratification are considered for comparison, our analysis is applicable more generally.

  18. Stellar Winds

    NASA Astrophysics Data System (ADS)

    Owocki, Stan

    A "stellar wind" is the continuous, supersonic outflow of matter from the surface layers of a star. Our sun has a solar wind, driven by the gas-pressure expansion of the hot (T > 106 K) solar corona. It can be studied through direct in situ measurement by interplanetary spacecraft; but analogous coronal winds in more distant solar-type stars are so tenuous and transparent that that they are difficult to detect directly. Many more luminous stars have winds that are dense enough to be opaque at certain wavelengths of the star's radiation, making it possible to study their wind outflows remotely through careful interpretation of the observed stellar spectra. Red giant stars show slow, dense winds that may be driven by the pressure from magnetohydrodyanmic waves. As stars with initial mass up to 8 M ⊙ evolve toward the Asymptotic Giant Branch (AGB), a combination of stellar pulsations and radiative scattering off dust can culminate in "superwinds" that strip away the entire stellar envelope, leaving behind a hot white dwarf stellar core with less than the Chandrasekhar mass of ˜ ​​ 1. 4M ⊙. The winds of hot, luminous, massive stars are driven by line-scattering of stellar radiation, but such massive stars can also exhibit superwind episodes, either as Red Supergiants or Luminous Blue Variable stars. The combined wind and superwind mass loss can strip the star's hydrogen envelope, leaving behind a Wolf-Rayet star composed of the products of earlier nuclear burning via the CNO cycle. In addition to such direct effects on a star's own evolution, stellar winds can be a substantial source of mass, momentum, and energy to the interstellar medium, blowing open large cavities or "bubbles" in this ISM, seeding it with nuclear processed material, and even helping trigger the formation of new stars, and influencing their eventual fate as white dwarves or core-collapse supernovae. This chapter reviews the properties of such stellar winds, with an emphasis on the various

  19. The Electromagnetic Impact of Wind Turbines

    DTIC Science & Technology

    2015-07-06

    Applied Project 4. TITLE AND SUBTITLE THE ELECTROMAGNETIC IMPACT OF WIND TURBINES 5. FUNDING NUMBERS 6. AUTHOR(S) Gregory Sasarita and Charles R...DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) The objective of this project was to investigate the impact that a wind turbine can have on

  20. Maximum mass limit of neutron stars in scalar-tensor gravity

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Kokkotas, Kostas D.

    2017-02-01

    The maximum mass limits of neutron stars in scalar-tensor gravity is discussed and compared with the limits set by general relativity. The limit is parametrized with respect to the combination of the nuclear saturation parameters and the maximum sound velocity in the core. It is shown that, for smaller values of the sound velocity in the core, the maximum mass limit of the scalarized neutron stars is larger than that in general relativity. However, for stiff equations of state with sound velocity higher than 79% of the velocity of light, the maximum mass limit in general relativity is larger than that in scalar-tensor gravity. The results suggest that future observations of massive neutron stars may constrain the maximum sound velocity as well as the coupling parameter in scalar-tensor gravity.

  1. "SPURS" in the North Atlantic Salinity Maximum

    NASA Astrophysics Data System (ADS)

    Schmitt, Raymond

    2014-05-01

    The North Atlantic Salinity Maximum is the world's saltiest open ocean salinity maximum and was the focus of the recent Salinity Processes Upper-ocean Regional Study (SPURS) program. SPURS was a joint venture between US, French, Irish, and Spanish investigators. Three US and two EU cruises were involved from August, 1012 - October, 2013 as well as surface moorings, glider, drifter and float deployments. Shipboard operations included underway meteorological and oceanic data, hydrographic surveys and turbulence profiling. The goal is to improve our understanding of how the salinity maximum is maintained and how it may be changing. It is formed by an excess of evaporation over precipitation and the wind-driven convergence of the subtropical gyre. Such salty areas are getting saltier with global warming (a record high SSS was observed in SPURS) and it is imperative to determine the relative roles of surface water fluxes and oceanic processes in such trends. The combination of accurate surface flux estimates with new assessments of vertical and horizontal mixing in the ocean will help elucidate the utility of ocean salinity in quantifying the changing global water cycle.

  2. Drag force in wind tunnels: A new method

    NASA Astrophysics Data System (ADS)

    Souza, P. V. S.; Girardi, D.; de Oliveira, P. M. C.

    2017-02-01

    A rigid object of general shape is fixed inside a wind tunnel. The drag force exerted on it by the wind is determined by a new method based on simple basic Physics concepts, provided one has a solver, any solver, for the corresponding dynamic Navier-Stokes equation which determines the wind velocity field around the object. The method is completely general, but here we apply it to the traditional problem of a long cylinder perpendicular to the wind.

  3. Kinematics and aerodynamics of the velocity vector roll

    NASA Technical Reports Server (NTRS)

    Durham, Wayne C.; Lutze, Frederick H.; Mason, W.

    1993-01-01

    The velocity vector roll is an angular rotation of an aircraft about its instantaneous velocity vector, constrained to be performed at constant angle-of-attack (AOA), no sideslip, and constant velocity. Consideration of the aerodynamic force equations leads to requirements for body-axis yawing and pitching rotations that satisfy these constraints. Here, the body axis rotations, and the constraints, are used in the moment equations to determine the aerodynamic moments required to perform the velocity vector roll. For representative tactical aircraft, the conditions for maximum pitching moment are a function of orientation, occurring at about 90 deg of bank in a level trajectory. Maximum required pitching moment occurs at peak roll rate, and is achieved at AOA above 45 deg. The conditions for maximum rolling moment depend on the value of the roll mode time constant. For a small time constant (fast response) the maximum rolling moment occurs at maximum roll acceleration and zero AOA, largely independent of aircraft orientation; for a large time constant, maximum required rolling moment occurs at maximum roll rate, at maximum AOA, and at 180 deg of bank in level flight. Maximum yawing moment occurs at maximum roll acceleration, maximum AOA, and is largely independent of airplane orientation.

  4. Initial drop size and velocity distributions for airblast coaxial atomizers

    NASA Technical Reports Server (NTRS)

    Eroglu, H.; Chigier, N.

    1991-01-01

    Phase Doppler measurements were used to determine initial drop size and velocity distributions after a complete disintegration of coaxial liquid jets. The Sauter mean diameter (SMD) distribution was found to be strongly affected by the structure and behavior of the preceding liquid intact jet. The axial measurement stations were determined from the photographs of the coaxial liquid jet at very short distances (1-2 mm) downstream of the observed break-up locations. Minimum droplet mean velocities were found at the center, and maximum velocities were near the spray boundary. Size-velocity correlations show that the velocity of larger drops did not change with drop size. Drop rms velocity distributions have double peaks whose radial positions coincide with the maximum mean velocity gradients.

  5. Flow separation on wind turbines blades

    NASA Astrophysics Data System (ADS)

    Corten, G. P.

    2001-01-01

    separation line, which causes the terms with the chord-wise speed or accelerations to disappear. The conclusion is that the chord-wise pressure gradient balances the Coriolis force. By doing so we obtain a simple set of equations that can be solved analytically. Subsequently, our model predicts that the convective term with the radial velocity (vrvr/r) is dominant in the equation for the r-direction, precisely the term that was neglected in Snel's analysis. 3. Multiple Power Levels Several large commercial wind turbines demonstrate drops in maximum power levels up to 45%, under apparently equal conditions. Earlier studies attempting to explain this effect by technical malfunctioning, aerodynamic instabilities and blade contamination effects estimated with computational fluid dynamics, have not yet yielded a plausible result. We formulated many hypotheses, three of which were useful. By taking stall flag measurements and making two other crucial experiments, we could confirm one of those three hypotheses: the insect hypothesis. Insects only fly in low wind, impacting upon the blades at specific locations. In these conditions, the insectual remains are located at positions where roughness has little influence on the profile performance, so that the power is not affected. In high winds however, the flow around the blades has changed. As a result, the positions at which the insects have impacted at low winds are very sensitive to contamination. So the contamination level changes at low wind when insects fly and this level determines the power in high winds when insects do not fly. As a consequence we get discrete power levels in high winds. The other two hypotheses, which did not cause the multiple power levels for the case we studied, gave rise to two new insights. First, we expect the power to depend on the wind direction at sites where the shape of the terrain concentrates the wind. In this case the power level of all turbine types, including pitch regulated ones, will be

  6. Simulating Galactic Winds on Supercomputers

    NASA Astrophysics Data System (ADS)

    Schneider, Evan

    2017-01-01

    Galactic winds are a ubiquitous feature of rapidly star-forming galaxies. Observations of nearby galaxies have shown that winds are complex, multiphase phenomena, comprised of outflowing gas at a large range of densities, temperatures, and velocities. Describing how starburst-driven outflows originate, evolve, and affect the circumgalactic medium and gas supply of galaxies is an important challenge for theories of galaxy evolution. In this talk, I will discuss how we are using a new hydrodynamics code, Cholla, to improve our understanding of galactic winds. Cholla is a massively parallel, GPU-based code that takes advantage of specialized hardware on the newest generation of supercomputers. With Cholla, we can perform large, three-dimensional simulations of multiphase outflows, allowing us to track the coupling of mass and momentum between gas phases across hundreds of parsecs at sub-parsec resolution. The results of our recent simulations demonstrate that the evolution of cool gas in galactic winds is highly dependent on the initial structure of embedded clouds. In particular, we find that turbulent density structures lead to more efficient mass transfer from cool to hot phases of the wind. I will discuss the implications of our results both for the incorporation of winds into cosmological simulations, and for interpretations of observed multiphase winds and the circumgalatic medium of nearby galaxies.

  7. Constraints on galactic wind models

    NASA Astrophysics Data System (ADS)

    Meiksin, Avery

    2016-09-01

    Observational implications are derived for two standard models of supernovae-driven galactic winds: a freely expanding steady-state wind and a wind sourced by a self-similarly expanding superbubble including thermal heat conduction. It is shown that, for the steady-state wind, matching the measured correlation between the soft X-ray luminosity and star formation rate of starburst galaxies is equivalent to producing a scaled wind mass-loading factor relative to the star formation rate of 0.5-3, in agreement with the amount inferred from metal absorption line measurements. The match requires the asymptotic wind velocity v∞ to scale with the star formation rate dot{M}_{ast } (in M⊙ yr-1) approximately as v_∞ ≃ (700-1000) {{km s^{-1}}} {dot{M}_{ast }}^{1/6}. The implied mass injection rate is close to the amount naturally provided by thermal evaporation from the wall of a superbubble in a galactic disc, suggesting that thermal evaporation may be a major source of mass loading. The predicted mass-loading factors from thermal evaporation within the galactic disc alone, however, are somewhat smaller, 0.2-2, so that a further contribution from cloud ablation or evaporation within the wind may be required. Both models may account for the 1.4 GHz luminosity of unresolved radio sources within starburst galaxies for plausible parameters describing the distribution of relativistic electrons. Further observational tests to distinguish the models are suggested.

  8. Experimental study of improved HAWT performance in simulated natural wind by an active controlled multi-fan wind tunnel

    NASA Astrophysics Data System (ADS)

    Toshimitsu, Kazuhiko; Narihara, Takahiko; Kikugawa, Hironori; Akiyoshi, Arata; Kawazu, Yuuya

    2017-04-01

    The effects of turbulent intensity and vortex scale of simulated natural wind on performance of a horizontal axis wind turbine (HAWT) are mainly investigated in this paper. In particular, the unsteadiness and turbulence of wind in Japan are stronger than ones in Europe and North America in general. Hence, Japanese engineers should take account of the velocity unsteadiness of natural wind at installed open-air location to design a higher performance wind turbine. Using the originally designed five wind turbines on the basis of NACA and MEL blades, the dependencies of the wind frequency and vortex scale of the simulated natural wind are presented. As the results, the power coefficient of the newly designed MEL3-type rotor in the simulated natural wind is 130% larger than one in steady wind.

  9. Wind profiling for a coherent wind Doppler lidar by an auto-adaptive background subtraction approach.

    PubMed

    Wu, Yanwei; Guo, Pan; Chen, Siying; Chen, He; Zhang, Yinchao

    2017-04-01

    Auto-adaptive background subtraction (AABS) is proposed as a denoising method for data processing of the coherent Doppler lidar (CDL). The method is proposed specifically for a low-signal-to-noise-ratio regime, in which the drifting power spectral density of CDL data occurs. Unlike the periodogram maximum (PM) and adaptive iteratively reweighted penalized least squares (airPLS), the proposed method presents reliable peaks and is thus advantageous in identifying peak locations. According to the analysis results of simulated and actually measured data, the proposed method outperforms the airPLS method and the PM algorithm in the furthest detectable range. The proposed method improves the detection range approximately up to 16.7% and 40% when compared to the airPLS method and the PM method, respectively. It also has smaller mean wind velocity and standard error values than the airPLS and PM methods. The AABS approach improves the quality of Doppler shift estimates and can be applied to obtain the whole wind profiling by the CDL.

  10. The Wind-Wind Collision Region of the Wolf-Rayet Binary V444 Cygni: How Much Optical Line Emission Does It Produce?

    NASA Astrophysics Data System (ADS)

    Flores, Aaron; Auer, Lawrence H.; Koenigsberger, Gloria; Cardona, Octavio

    2001-12-01

    We model the emission-line profile variations that are expected to be produced by physical and wind eclipses in the Wolf-Rayet (W-R+O) binary system V444 Cyg. A comparison of the theoretical profiles with the He II 4686 Å line observed in V444 Cyg allows us to isolate the effects that are likely to be due to the wind-wind collision region in this particular line. We estimate that the wind-wind collision region contributes no more than ~12% of the equivalent width of the emission line, with smaller values during elongations, when part of the shock cone is being eclipsed by the O star. The upper limit implies a maximum contribution from the wind-wind collision region of ~1×1035 ergs s-1 to the total luminosity of He II 4686 Å line. Using the analytical solution of Cantó et al., we find that the bulk of this emission arises along the shock cone walls where the flow velocity is ~800 km s-1, at a distance of ~8 Rsolar from the O star's surface, and at θ=65°-75° from the line joining the centers of the two stars, with origin in the O star. The derived surface density of this region is σ=0.22 g cm-2, which, together with the He II 4686 Å luminosity, indicates that the thickness of the shock lies in the range 2-10×1010 cm and the total density is 1-6×1012 cm-3.

  11. Upper Arctic Ocean velocity structure from in-situ observations

    NASA Astrophysics Data System (ADS)

    Recinos, Beatriz; Rabe, Benjamin; Schauer, Ursula

    2016-04-01

    The gross circulation of the upper and intermediate layers of the Arctic Ocean has been inferred from water mass properties: the mixed layer, containing fresh water from the shelf seas, travels from Siberia towards the Atlantic sector, and the saline and warm layer of Atlantic origin below, follows cyclonic pathways along topographic features. Direct observations of the flow below the sea ice are, however, sparse and difficult to obtain. This research presents the analysis of a unique time series/section of in situ velocity measurements obtained by a drifting ice-tethered platform in the Transpolar Drift near the North Pole. Two instruments were used to obtain in situ measurements of velocity, temperature, salinity and pressure: an Ice-tethered Acoustic Current profiler (ITAC) and an Ice-tethered Profiler (ITP). Both systems were deployed in the Amundsen basin, during the Arctic Ocean expedition ARK XXII/2 of the German Research Vessel Polarstern in September 2007. The systems transmitted profile data from the 14th of September to the 29th of November 2007 and covered a maximum depth range of 23 to 400 m. The results are compared to observations by a shipboard Acoustic Doppler Current Profiler (ADCP) from the 2011 Polarstern expedition ARK-XXVI/3, and wind and ice concentration from satellite reanalysis products. The data set allows an overview of the upper and intermediate circulation along the Lomonosov Ridge. Near-surface velocity and ice drift obtained by the ITAC unit are consistent with the Transpolar Drift Current. Ekman transports calculated from the observed ice drift and assumed ice-ocean drag behaviour suggest that Ekman dynamics influenced velocities at depths greater than the Ekman layer. Direct velocity observations in combination with water mass analyses from the temperature and salinity data, suggest the existence of a current along the Eurasian side of the Lomonosov Ridge within the warm Atlantic layer below the cold halocline. At those depths

  12. The Winds of B Supergiants

    NASA Technical Reports Server (NTRS)

    Massa, Derck; West, D. (Technical Monitor)

    2002-01-01

    We present the most suitable data sets available in the International Ultraviolet Explorer (IUE) archive for the study of time-dependent stellar winds in early B supergiants. The UV line profile variability in 11 B0 to B3 stars is analyzed, compared and discussed, based on 16 separate data sets comprising over 600 homogeneously reduced high-resolution spectrograms. The targets include 'normal' stars with moderate rotation rates and examples of rapid rotators. A gallery of grey-scale images (dynamic spectra) is presented, which demonstrates the richness and range of wind variability and highlights different structures in the winds of these stars. This work emphasizes the suitability of B supergiants for wind studies, under-pinned by the fact that they exhibit unsaturated wind lines for a wide range of ionization. The wind activity of B supergiants is substantial and has highly varied characteristics. The variability evident in individual stars is classified and described in terms of discrete absorption components, spontaneous absorption, bowed structures, recurrence, and ionization variability and stratification. Similar structures can occur in stars of different fundamental parameters but also different structures may occur in the same star at a given epoch. We discuss the physical phenomena that may be associated with the spectral signatures, and highlight the challenges that these phenomena present to theoretical studies of time-dependent outflows in massive stars. In addition, SEI line-synthesis modelling of the UV wind lines is used to provide further information about the state of the winds in our program stars. Typically the range, implied by the line profile variability, in the product of mass-loss rate and ion fraction (M qi) is a factor of approximately 1.5, when integrated between 0.2 and 0.9 v infinity; it it can however be several times larger over localized velocity regions. At a given effective temperature the mean relative ion ratios can differ by a

  13. The Winds of B Supergiants

    NASA Technical Reports Server (NTRS)

    Massa, D.; Oliversen, R. (Technical Monitor)

    2002-01-01

    We present the most suitable data sets available in the International Ultraviolet Explorer (IUE) archive for the study of time-dependent stellar winds in early B supergiants. The UV line profile variability in 11 B0 to B3 stars is analyzed, compared and discussed, based on 16 separate data sets comprising over 600 homogeneously reduced high-resolution spectrograms. The targets include 'normal' stars with moderate rotation rates and examples of rapid rotators. A gallery of grey-scale images (dynamic spectra) is presented, which demonstrates the richness and range of wind variability and highlights different structures in the winds of these stars. This work emphasises the suitability of B supergiants for wind studies, under-pinned by the fact that they exhibit unsaturated wind lines for a wide range of ionization. The wind activity of B supergiants is substantial and has highly varied characteristics. The variability evident in individual stars is classified and described in terms of discrete absorption components, spontaneous absorption, bowed structures, recurrence, and ionization variability and stratification. Similar structures can occur in stars of different fundamental parameters, but also different structures may occur in the same star at a given epoch. We discuss the physical phenomena that may be associated with the spectral signatures, and highlight the challenges that these phenomena present to theoretical studies of time-dependent outflows in massive stars. In addition, SEI line-synthesis modelling of the UV wind lines is used to provide further information about the state of the winds in our program stars. Typically the range, implied by the line profile variability, in the product of mass-loss rate and ion fraction (M (dot) q(sub i)) is a factor of approximately 1.5, when integrated between 0.2 and 0.9 v infinity; it can however be several times larger over localized velocity regions. At a given effective temperature the mean relative ion ratios can

  14. Wind loading on solar collectors

    NASA Astrophysics Data System (ADS)

    Bhaduri, S.; Murphy, L. M.

    1985-06-01

    The present design methodology for the determination of wind loading on the various solar collectors were reviewed and assessed. The total force coefficients of flat plates of aspect ratios 1.0 and 3.0, respectively, at various angles of attack obtained by using the guidelines of the ANSI A58.1-1982, were compared with those obtained by using the methodology of the ASCE Task Committee, 1961, and the experimental results of the full-scale test of heliostats by Peglow. The turbulent energy spectra, currently employed in the building code, are compared with those of Kaimal et al., Lumley, and Ponofsky for wind velocities of 20.0 m/s and 40.24 m/s at an elevation of 9.15 m. The longitudinal spectra of the building code overestimates the Kaimal spectra in the frequency range of 0.007 Hz to 0.08 Hz and underestimates beyond the frequency of 0.08 Hz. The peak angles of attack, on the heliostat, stowed in horizontal position, due to turbulent vertical and lateral components of wind velocity, were estimated by using Daniel's methodology for three wind velocities and compared with the value suggested by the code. The experimental results of a simple test in the laboratory indicate the feasibility of decreasing the drag forces of the flat plate by reducing the solidity ratio.

  15. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ...-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains Wind Power, LLC v. Xcel...

  16. Fiber Optic Velocity Interferometry

    SciTech Connect

    Neyer, Barry T.

    1988-04-01

    This paper explores the use of a new velocity measurement technique that has several advantages over existing techniques. It uses an optical fiber to carry coherent light to and from a moving target. A Fabry-Perot interferometer, formed by a gradient index lens and the moving target, produces fringes with a frequency proportional to the target velocity. This technique can measure velocities up to 10 km/s, is accurate, portable, and completely noninvasive.

  17. Angular velocity discrimination

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  18. Simulating the environment around planet-hosting stars. II. Stellar winds and inner astrospheres

    NASA Astrophysics Data System (ADS)

    Alvarado-Gómez, J. D.; Hussain, G. A. J.; Cohen, O.; Drake, J. J.; Garraffo, C.; Grunhut, J.; Gombosi, T. I.

    2016-10-01

    We present the results of a comprehensive numerical simulation of the environment around three exoplanet-host stars (HD 1237, HD 22049, and HD 147513). Our simulations consider one of the latest models currently used for space weather studies in the Heliosphere, with turbulent Alfvén wave dissipation as the source of coronal heating and stellar wind acceleration. Large-scale magnetic field maps, recovered with two implementations of the tomographic technique of Zeeman-Doppler imaging, serve to drive steady-state solutions in each system. This paper contains the description of the stellar wind and inner astrosphere, while the coronal structure was discussed in a previous paper. The analysis includes the magneto-hydrodynamical properties of the stellar wind, the associated mass and angular momentum loss rates, as well as the topology of the astrospheric current sheet in each system. A systematic comparison among the considered cases is performed, including two reference solar simulations covering activity minimum and maximum. For HD 1237, we investigate the interactions between the structure of the developed stellar wind, and a possible magnetosphere around the Jupiter-mass planet in this system. We find that the process of particle injection into the planetary atmosphere is dominated by the density distribution rather than the velocity profile of the stellar wind. In this context, we predict a maximum exoplanetary radio emission of 12 mJy at 40 MHz in this system, assuming the crossing of a high-density streamer during periastron passage. Furthermore, in combination with the analysis performed in the first paper of this study, we obtain for the first time a fully simulated mass loss-activity relation. This relation is compared and discussed in the context of the previously proposed observational counterpart, derived from astrospheric detections. Finally, we provide a characterisation of the global 3D properties of the stellar wind of these systems, at the inner

  19. Assessing the Impacts of Low Level Jets' Negative Wind Shear over Wind Turbines

    NASA Astrophysics Data System (ADS)

    Gutierrez, Walter; Ruiz-Columbie, Arquimedes; Tutkun, Murat; Castillo, Luciano

    2016-11-01

    Nocturnal Low Level Jets (LLJs) are defined as relative maxima in the vertical profile of the horizontal wind speed at the top of the stable boundary layer. Such peaks constitute major power resources, since they are observed at altitudes within the heights of commercial-size wind turbines. However, a wind speed maximum implies a transition from a positive wind shear below the maximum height to a negative one above. The effect that such transition inflicts on wind turbines has not been thoroughly studied. Here we focused on the impacts that the LLJ negative wind shears have over commercial size wind turbines. Using actual atmospheric LLJ data of high frequency as input for the NREL aeroelastic simulator FAST, different scenarios were created varying the LLJ maximum height with respect to the wind turbine hub height. We found only slight changes in the deflection and load averages for those scenarios, whereas the corresponding variances appear to decrease when a larger portion of the wind turbine sweeping area is affected by the negative shear. The exception was observed in the junction between the tower top and the nacelle, where a deflection maximum was detected that might reveal a critical structural point. The authors gratefully acknowledge the following Grants for this research: NSFCBET #1157246, NSFCMMI #1100948, NSFOISE1243482.

  20. Spall velocity measurements from laboratory impact craters

    NASA Technical Reports Server (NTRS)

    Polanskey, Carol A.; Ahrens, Thomas J.

    1986-01-01

    Spall velocities were measured for a series of impacts into San Marcos gabbro. Impact velocities ranged from 1 to 6.5 km/sec. Projectiles varied in material and size with a maximum mass of 4g for a lead bullet to a minimum of 0.04 g for an aluminum sphere. The spall velocities were calculated both from measurements taken from films of the events and from estimates based on range measurements of the spall fragments. The maximum spall velocity observed was 27 m/sec, or 0.5 percent of the impact velocity. The measured spall velocities were within the range predicted by the Melosh (1984) spallation model for the given experimental parameters. The compatability between the Melosh model for large planetary impacts and the results of these small scale experiments is considered in detail. The targets were also bisected to observe the internal fractures. A series of fractures were observed whose location coincided with the boundary of the theoretical near surface zone predicted by Melosh. Above this boundary the target material should receive reduced levels of compressive stress as compared to the more highly shocked region below.

  1. Spall velocity measurements from laboratory impact craters

    NASA Astrophysics Data System (ADS)

    Polanskey, Carol A.; Ahrens, Thomas J.

    Spall velocities were measured for a series of impacts into San Marcos gabbro. Impact velocities ranged from 1 to 6.5 km/sec. Projectiles varied in material and size with a maximum mass of 4g for a lead bullet to a minimum of 0.04 g for an aluminum sphere. The spall velocities were calculated both from measurements taken from films of the events and from estimates based on range measurements of the spall fragments. The maximum spall velocity observed was 27 m/sec, or 0.5 percent of the impact velocity. The measured spall velocities were within the range predicted by the Melosh (1984) spallation model for the given experimental parameters. The compatability between the Melosh model for large planetary impacts and the results of these small scale experiments is considered in detail. The targets were also bisected to observe the internal fractures. A series of fractures were observed whose location coincided with the boundary of the theoretical near surface zone predicted by Melosh. Above this boundary the target material should receive reduced levels of compressive stress as compared to the more highly shocked region below.

  2. Variations of Strahl Properties with Fast and Slow Solar Wind

    NASA Technical Reports Server (NTRS)

    Figueroa-Vinas, Adolfo; Goldstein, Melvyn L.; Gurgiolo, Chris

    2008-01-01

    The interplanetary solar wind electron velocity distribution function generally shows three different populations. Two of the components, the core and halo, have been the most intensively analyzed and modeled populations using different theoretical models. The third component, the strahl, is usually seen at higher energies, is confined in pitch-angle, is highly field-aligned and skew. This population has been more difficult to identify and to model in the solar wind. In this work we make use of the high angular, energy and time resolution and three-dimensional data of the Cluster/PEACE electron spectrometer to identify and analyze this component in the ambient solar wind during high and slow speed solar wind. The moment density and fluid velocity have been computed by a semi-numerical integration method. The variations of solar wind density and drift velocity with the general build solar wind speed could provide some insight into the source, origin, and evolution of the strahl.

  3. How to hit home runs: Optimum baseball bat swing parameters for maximum range trajectories

    NASA Astrophysics Data System (ADS)

    Sawicki, Gregory S.; Hubbard, Mont; Stronge, William J.

    2003-11-01

    Improved models for the pitch, batting, and post-impact flight phases of a baseball are used in an optimal control context to find bat swing parameters that produce maximum range. The improved batted flight model incorporates experimental lift and drag profiles (including the drag crisis). An improved model for bat-ball impact includes the dependence of the coefficient of restitution on the approach relative velocity and the dependence of the incoming pitched ball angle on speed. The undercut distance and bat swing angle are chosen to maximize the range of the batted ball. The sensitivity of the maximum range is calculated for all model parameters including bat and ball speed, bat and ball spin, and wind speed. Post-impact conditions are found to be independent of the ball-bat coefficient of friction. The lift is enhanced by backspin produced by undercutting the ball during batting. An optimally hit curve ball will travel farther than an optimally hit fastball or knuckleball due to increased lift during flight.

  4. Improved Determination of the Location of the Temperature Maximum in the Corona

    NASA Astrophysics Data System (ADS)

    Lemaire, J. F.; Stegen, K.

    2016-12-01

    The most used method to calculate the coronal electron temperature [Te (r)] from a coronal density distribution [ne (r)] is the scale-height method (SHM). We introduce a novel method that is a generalization of a method introduced by Alfvén ( Ark. Mat. Astron. Fys. 27, 1, 1941) to calculate Te(r) for a corona in hydrostatic equilibrium: the "HST" method. All of the methods discussed here require given electron-density distributions [ne (r)] which can be derived from white-light (WL) eclipse observations. The new "DYN" method determines the unique solution of Te(r) for which Te(r → ∞) → 0 when the solar corona expands radially as realized in hydrodynamical solar-wind models. The applications of the SHM method and DYN method give comparable distributions for Te(r). Both have a maximum [T_{max}] whose value ranges between 1 - 3 MK. However, the peak of temperature is located at a different altitude in both cases. Close to the Sun where the expansion velocity is subsonic (r < 1.3 R_{⊙}) the DYN method gives the same results as the HST method. The effects of the other free parameters on the DYN temperature distribution are presented in the last part of this study. Our DYN method is a new tool to evaluate the range of altitudes where the heating rate is maximum in the solar corona when the electron-density distribution is obtained from WL coronal observations.

  5. Developm