Output of skeletal muscle contractions. a study of isokinetic plantar flexion in athletes.
Fugl-Meyer, A R; Mild, K H; Hörnsten, J
1982-06-01
Maximum torques, total work and mean power of isokinetic plantar flexions were measured with simultaneous registrations. The integrated electromyograms (iEMG) were obtained by surface electrodes from all three heads of the m. triceps surae. The method applied offers possibilities for adequate description of dynamic muscular work which in the case of plantar flexion in trained man declines as a negative exponential function of angular motion velocity. The decline is parallel to that of maximum torques. The summed triceps surae iEMG was inversely proportional to the velocity and direct proportional to time suggesting that structural rather than neural factors determine the relationships between velocity of angular motion and maximum torque/total work of single Mmaneuvers. Moreover, the fact that maximum mean power as well as maximum electrical efficiency were reached at the functional velocity of toe-off during gait suggests an influence of pragmatic demands on plantar flexion mechanical output.
Maximum cycle work output optimization for generalized radiative law Otto cycle engines
NASA Astrophysics Data System (ADS)
Xia, Shaojun; Chen, Lingen; Sun, Fengrui
2016-11-01
An Otto cycle internal combustion engine which includes thermal and friction losses is investigated by finite-time thermodynamics, and the optimization objective is the maximum cycle work output. The thermal energy transfer from the working substance to the cylinder inner wall follows the generalized radiative law (q∝Δ (Tn)). Under the condition that all of the fuel consumption, the compression ratio and the cycle period are given, the optimal piston trajectories for both the examples with unlimited and limited accelerations on every stroke are determined, and the cycle-period distribution among all strokes is also optimized. Numerical calculation results for the case of radiative law are provided and compared with those obtained for the cases of Newtonian law and linear phenomenological law. The results indicate that the optimal piston trajectory on each stroke contains three sections, which consist of an original maximum-acceleration and a terminal maximum-deceleration parts; for the case of radiative law, optimizing the piston motion path can achieve an improvement of more than 20% in both the cycle-work output and the second-law efficiency of the Otto cycle compared with the conventional near-sinusoidal operation, and heat transfer mechanisms have both qualitative and quantitative influences on the optimal paths of piston movements.
Mellors, L J; Gibbs, C L; Barclay, C J
2001-05-01
The results of previous studies suggest that the maximum mechanical efficiency of rat papillary muscles is lower during a contraction protocol involving sinusoidal length changes than during one involving afterloaded isotonic contractions. The aim of this study was to compare directly the efficiency of isolated rat papillary muscle preparations in isotonic and sinusoidal contraction protocols. Experiments were performed in vitro (27 degrees C) using left ventricular papillary muscles from adult rats. Each preparation performed three contraction protocols: (i) low-frequency afterloaded isotonic contractions (10 twitches at 0.2 Hz), (ii) sinusoidal length change contractions with phasic stimulation (40 twitches at 2 Hz) and (iii) high-frequency afterloaded isotonic contractions (40 twitches at 2 Hz). The first two protocols resembled those used in previous studies and the third combined the characteristics of the first two. The parameters for each protocol were adjusted to those that gave maximum efficiency. For the afterloaded isotonic protocols, the afterload was set to 0.3 of the maximum developed force. The sinusoidal length change protocol incorporated a cycle amplitude of +/-5% resting length and a stimulus phase of -10 degrees. Measurements of force output, muscle length change and muscle temperature change were used to calculate the work and heat produced during and after each protocol. Net mechanical efficiency was defined as the proportion of the energy (enthalpy) liberated by the muscle that appeared as work. The efficiency in the low-frequency, isotonic contraction protocol was 21.1+/-1.4% (mean +/- s.e.m., N=6) and that in the sinusoidal protocol was 13.2+/-0.7%, consistent with previous results. This difference was not due to the higher frequency or greater number of twitches because efficiency in the high-frequency, isotonic protocol was 21.5+/-1.0%. Although these results apparently confirm that efficiency is protocol-dependent, additional experiments designed to measure work output unambiguously indicated that the method used to calculate work output in isotonic contractions overestimated actual work output. When net work output, which excludes work done by parallel elastic elements, rather than total work output was used to determine efficiency in afterloaded isotonic contractions, efficiency was similar to that for sinusoidal contractions. The maximum net mechanical efficiency of rat papillary muscles performing afterloaded isotonic or sinusoidal length change contractions was between 10 and 15%.
Design of a Collapse-Mode CMUT With an Embossed Membrane for Improving Output Pressure.
Yu, Yuanyu; Pun, Sio Hang; Mak, Peng Un; Cheng, Ching-Hsiang; Wang, Jiujiang; Mak, Pui-In; Vai, Mang I
2016-06-01
Capacitive micromachined ultrasonic transducers (CMUTs) have emerged as a competitive alternative to piezoelectric ultrasonic transducers, especially in medical ultrasound imaging and therapeutic ultrasound applications, which require high output pressure. However, as compared with piezoelectric ultrasonic transducers, the output pressure capability of CMUTs remains to be improved. In this paper, a novel structure is proposed by forming an embossed vibrating membrane on a CMUT cell operating in the collapse mode to increase the maximum output pressure. By using a beam model in undamped conditions and finite-element analysis simulations, the proposed embossed structure showed improvement on the maximum output pressure of the CMUT cell when the embossed pattern was placed on the estimated location of the peak deflection. As compared with a uniform membrane CMUT cell worked in the collapse mode, the proposed CMUT cell can yield the maximum output pressure by 51.1% and 88.1% enhancement with a single embossed pattern made of Si3N4 and nickel, respectively. The maximum output pressures were improved by 34.9% (a single Si3N4 embossed pattern) and 46.7% (a single nickel embossed pattern) with the uniform membrane when the center frequencies of both original and embossed CMUT designs were similar.
Efficiency at Maximum Power Output of a Quantum-Mechanical Brayton Cycle
NASA Astrophysics Data System (ADS)
Yuan, Yuan; He, Ji-Zhou; Gao, Yong; Wang, Jian-Hui
2014-03-01
The performance in finite time of a quantum-mechanical Brayton engine cycle is discussed, without introduction of temperature. The engine model consists of two quantum isoenergetic and two quantum isobaric processes, and works with a single particle in a harmonic trap. Directly employing the finite-time thermodynamics, the efficiency at maximum power output is determined. Extending the harmonic trap to a power-law trap, we find that the efficiency at maximum power is independent of any parameter involved in the model, but depends on the confinement of the trapping potential.
Efficiency at maximum power output of linear irreversible Carnot-like heat engines.
Wang, Yang; Tu, Z C
2012-01-01
The efficiency at maximum power output of linear irreversible Carnot-like heat engines is investigated based on the assumption that the rate of irreversible entropy production of the working substance in each "isothermal" process is a quadratic form of the heat exchange rate between the working substance and the reservoir. It is found that the maximum power output corresponds to minimizing the irreversible entropy production in two isothermal processes of the Carnot-like cycle, and that the efficiency at maximum power output has the form η(mP)=η(C)/(2-γη(C)), where η(C) is the Carnot efficiency, while γ depends on the heat transfer coefficients between the working substance and two reservoirs. The value of η(mP) is bounded between η(-)≡η(C)/2 and η(+)≡η(C)/(2-η(C)). These results are consistent with those obtained by Chen and Yan [J. Chem. Phys. 90, 3740 (1989)] based on the endoreversible assumption, those obtained by Esposito et al. [Phys. Rev. Lett. 105, 150603 (2010)] based on the low-dissipation assumption, and those obtained by Schmiedl and Seifert [Europhys. Lett. 81, 20003 (2008)] for stochastic heat engines which in fact also satisfy the low-dissipation assumption. Additionally, we find that the endoreversible assumption happens to hold for Carnot-like heat engines operating at the maximum power output based on our fundamental assumption, and that the Carnot-like heat engines that we focused on do not strictly satisfy the low-dissipation assumption, which implies that the low-dissipation assumption or our fundamental assumption is a sufficient but non-necessary condition for the validity of η(mP)=η(C)/(2-γη(C)) as well as the existence of two bounds, η(-)≡η(C)/2 and η(+)≡η(C)/(2-η(C)). © 2012 American Physical Society
Efficiency at maximum power output of linear irreversible Carnot-like heat engines
NASA Astrophysics Data System (ADS)
Wang, Yang; Tu, Z. C.
2012-01-01
The efficiency at maximum power output of linear irreversible Carnot-like heat engines is investigated based on the assumption that the rate of irreversible entropy production of the working substance in each “isothermal” process is a quadratic form of the heat exchange rate between the working substance and the reservoir. It is found that the maximum power output corresponds to minimizing the irreversible entropy production in two isothermal processes of the Carnot-like cycle, and that the efficiency at maximum power output has the form ηmP=ηC/(2-γηC), where ηC is the Carnot efficiency, while γ depends on the heat transfer coefficients between the working substance and two reservoirs. The value of ηmP is bounded between η-≡ηC/2 and η+≡ηC/(2-ηC). These results are consistent with those obtained by Chen and Yan [J. Chem. Phys.JCPSA60021-960610.1063/1.455832 90, 3740 (1989)] based on the endoreversible assumption, those obtained by Esposito [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.150603 105, 150603 (2010)] based on the low-dissipation assumption, and those obtained by Schmiedl and Seifert [Europhys. Lett.EULEEJ0295-507510.1209/0295-5075/81/20003 81, 20003 (2008)] for stochastic heat engines which in fact also satisfy the low-dissipation assumption. Additionally, we find that the endoreversible assumption happens to hold for Carnot-like heat engines operating at the maximum power output based on our fundamental assumption, and that the Carnot-like heat engines that we focused on do not strictly satisfy the low-dissipation assumption, which implies that the low-dissipation assumption or our fundamental assumption is a sufficient but non-necessary condition for the validity of ηmP=ηC/(2-γηC) as well as the existence of two bounds, η-≡ηC/2 and η+≡ηC/(2-ηC).
A Hybrid Maximum Power Point Tracking Method for Automobile Exhaust Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Quan, Rui; Zhou, Wei; Yang, Guangyou; Quan, Shuhai
2017-05-01
To make full use of the maximum output power of automobile exhaust thermoelectric generator (AETEG) based on Bi2Te3 thermoelectric modules (TEMs), taking into account the advantages and disadvantages of existing maximum power point tracking methods, and according to the output characteristics of TEMs, a hybrid maximum power point tracking method combining perturb and observe (P&O) algorithm, quadratic interpolation and constant voltage tracking method was put forward in this paper. Firstly, it searched the maximum power point with P&O algorithms and a quadratic interpolation method, then, it forced the AETEG to work at its maximum power point with constant voltage tracking. A synchronous buck converter and controller were implemented in the electric bus of the AETEG applied in a military sports utility vehicle, and the whole system was modeled and simulated with a MATLAB/Simulink environment. Simulation results demonstrate that the maximum output power of the AETEG based on the proposed hybrid method is increased by about 3.0% and 3.7% compared with that using only the P&O algorithm and the quadratic interpolation method, respectively. The shorter tracking time is only 1.4 s, which is reduced by half compared with that of the P&O algorithm and quadratic interpolation method, respectively. The experimental results demonstrate that the tracked maximum power is approximately equal to the real value using the proposed hybrid method,and it can preferentially deal with the voltage fluctuation of the AETEG with only P&O algorithm, and resolve the issue that its working point can barely be adjusted only with constant voltage tracking when the operation conditions change.
Yu, Hongpeng; Quan, Qiquan; Tian, Xinqi; Li, He
2018-01-01
A novel U-shaped piezoelectric ultrasonic motor that mainly focused on miniaturization and high power density was proposed, fabricated, and tested in this work. The longitudinal vibrations of the transducers were excited to form the elliptical movements on the driving feet. Finite element method (FEM) was used for design and analysis. The resonance frequencies of the selected vibration modes were tuned to be very close to each other with modal analysis and the movement trajectories of the driving feet were gained with transient simulation. The vibration modes and the mechanical output abilities were tested to evaluate the proposed motor further by a prototype. The maximum output speed was tested to be 416 mm/s, the maximum thrust force was 21 N, and the maximum output power was 5.453 W under frequency of 29.52 kHz and voltage of 100 Vrms. The maximum output power density of the prototype reached 7.59 W/kg, which was even greater than a previous similar motor under the exciting voltage of 200 Vrms. The proposed motor showed great potential for linear driving of large thrust force and high power density. PMID:29518963
Yu, Hongpeng; Quan, Qiquan; Tian, Xinqi; Li, He
2018-03-07
A novel U-shaped piezoelectric ultrasonic motor that mainly focused on miniaturization and high power density was proposed, fabricated, and tested in this work. The longitudinal vibrations of the transducers were excited to form the elliptical movements on the driving feet. Finite element method (FEM) was used for design and analysis. The resonance frequencies of the selected vibration modes were tuned to be very close to each other with modal analysis and the movement trajectories of the driving feet were gained with transient simulation. The vibration modes and the mechanical output abilities were tested to evaluate the proposed motor further by a prototype. The maximum output speed was tested to be 416 mm/s, the maximum thrust force was 21 N, and the maximum output power was 5.453 W under frequency of 29.52 kHz and voltage of 100 V rms . The maximum output power density of the prototype reached 7.59 W/kg, which was even greater than a previous similar motor under the exciting voltage of 200 V rms . The proposed motor showed great potential for linear driving of large thrust force and high power density.
A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film
NASA Astrophysics Data System (ADS)
Tian, Yingwei; Li, Guimiao; Yi, Zhiran; Liu, Jingquan; Yang, Bin
2018-06-01
This paper presents a high performance piezoelectric energy harvester (PEH) with a rectangular hole to work at low-frequency. This PEH used thinned bulk PZT film on flexible phosphor bronze, and its structure included piezoelectric layer, supporting layer and proof mass to reduce the resonant frequency of the device. Here, thinned bulk PZT thick film was used as piezoelectric layer due to its high piezoelectric coefficient. A Phosphor bronze was deployed as supporting layer because it had better flexibility compared to silicon and could work under high acceleration ambient with good durability. The maximum open-circuit voltage of the PEH was 15.7 V at low resonant frequency of 34.3 Hz when the input vibration acceleration was 1.5 g (g = 9.81 m/s2). Moreover, the maximum output power, the output power density and the actually current at the same acceleration were 216.66 μW, 1713.58 μW/cm3 and 170 μA, respectively, when the optimal matched resistance of 60 kΩ was connected. The fabricated PEH scavenged the vibration energy of the vacuum compression pump and generated the maximum output voltage of 1.19 V.
On the optimization of endoreversible processes
NASA Astrophysics Data System (ADS)
Pescetti, D.
2014-03-01
This paper is intended for undergraduates and specialists in thermodynamics and related areas. We consider and discuss the optimization of endoreversible thermodynamic processes under the condition of maximum work production. Explicit thermodynamic analyses of the solutions are carried out for the Novikov and Agrawal processes. It is shown that the efficiencies at maximum work production and maximum power output are not necessarily equal. They are for the Novikov process but not for the Agrawal process. The role of the constraints is put into evidence. The physical aspects are enhanced by the simplicity of the involved mathematics.
Parametric design criteria of an updated thermoradiative cell operating at optimal states
NASA Astrophysics Data System (ADS)
Zhang, Xin; Peng, Wanli; Lin, Jian; Chen, Xiaohang; Chen, Jincan
2017-11-01
An updated mode of the thermoradiative cell (TRC) with sub-band gap and non-radiative losses is proposed, which can efficiently harvest moderate-temperature heat energy and convert a part of heat into electricity. It is found that when the TRC is operated between the heat source at 800 K and the environment at 300 K , its maximum power output density and efficiency can attain 1490 W m-2 and 27.2 % , respectively. Moreover, the effects of some key parameters including the band gap and voltage output on the performance of the TRC are discussed. The optimally working regions of the power density, efficiency, band gap, and voltage output are determined. The maximum efficiency and power output density of the TRC operated at different temperatures are calculated and compared with those of thermophotovoltaic cells (TPVCs) and thermionic energy converters (TECs), and consequently, it is revealed that the maximum efficiency of the TRC operated at the moderate-temperature range is much higher than that of the TEC or the TPVC and the maximum power output density of the TRC is larger than that of the TEC but smaller than that of the TPVC. Particularly, the TRC is manufactured more easily than the near-field TPVC possessing a nanoscale vacuum gap. The results obtained will be helpful for engineers to choose the semiconductor materials, design and manufacture TRCs, and control operative conditions.
PIC simulation of the vacuum power flow for a 5 terawatt, 5 MV, 1 MA pulsed power system
NASA Astrophysics Data System (ADS)
Liu, Laqun; Zou, Wenkang; Liu, Dagang; Guo, Fan; Wang, Huihui; Chen, Lin
2018-03-01
In this paper, a 5 Terawatt, 5 MV, 1 MA pulsed power system based on vacuum magnetic insulation is simulated by the particle-in-cell (PIC) simulation method. The system consists of 50 100-kV linear transformer drive (LTD) cavities in series, using magnetically insulated induction voltage adder (MIVA) technology for pulsed power addition and transmission. The pulsed power formation and the vacuum power flow are simulated when the system works in self-limited flow and load-limited flow. When the pulsed power system isn't connected to the load, the downstream magnetically insulated transmission line (MITL) works in the self-limited flow, the maximum of output current is 1.14 MA and the amplitude of voltage is 4.63 MV. The ratio of the electron current to the total current is 67.5%, when the output current reached the peak value. When the impedance of the load is 3.0 Ω, the downstream MITL works in the self-limited flow, the maximums of output current and the amplitude of voltage are 1.28 MA and 3.96 MV, and the ratio of the electron current to the total current is 11.7% when the output current reached the peak value. In addition, when the switches are triggered in synchronism with the passage of the pulse power flow, it effectively reduces the rise time of the pulse current.
Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum
2014-12-02
Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level.
Fluid absorption solar energy receiver
NASA Technical Reports Server (NTRS)
Bair, Edward J.
1993-01-01
A conventional solar dynamic system transmits solar energy to the flowing fluid of a thermodynamic cycle through structures which contain the gas and thermal energy storage material. Such a heat transfer mechanism dictates that the structure operate at a higher temperature than the fluid. This investigation reports on a fluid absorption receiver where only a part of the solar energy is transmitted to the structure. The other part is absorbed directly by the fluid. By proportioning these two heat transfer paths the energy to the structure can preheat the fluid, while the energy absorbed directly by the fluid raises the fluid to its final working temperature. The surface temperatures need not exceed the output temperature of the fluid. This makes the output temperature of the gas the maximum temperature in the system. The gas can have local maximum temperatures higher than the output working temperature. However local high temperatures are quickly equilibrated, and since the gas does not emit radiation, local high temperatures do not result in a radiative heat loss. Thermal radiation, thermal conductivity, and heat exchange with the gas all help equilibrate the surface temperature.
NASA Astrophysics Data System (ADS)
Atli, K. C.; Karaman, I.; Noebe, R. D.; Bigelow, G.; Gaydosh, D.
2015-12-01
The work output capacity of the two-way shape memory effect (TWSME) in a Ni50.3Ti29.7Hf20 (at%) high-temperature shape memory alloy (HTSMA) was investigated and compared to that of binary Ni49.9Ti50.1 (at%). TWSME was induced through a training procedure of 100 thermomechanical cycles under different tensile stresses. It was observed that TWSME in as-extruded and trained Ni50.3Ti29.7Hf20 could produce 0.7% strain against a compressive stress of 100 MPa, corresponding to a maximum work output of 0.08 J g-1, compared to a maximum value of 0.06 J g-1 for binary NiTi. A peak aging heat treatment of 3 h at 550 °C, which previously has been shown to result in near-perfect functional stability in Ni50.3Ti29.7Hf20 during isobaric thermal cycling, did not improve the TWSME and actually resulted in a decrease in the magnitude and stability of the TWSME and its work output capacity. Nevertheless, the magnitude of TWSM behavior of Ni50.3Ti29.7Hf20, in the absence of an aging heat treatment, renders it an attractive candidate for high-temperature TWSM actuation.
NASA Astrophysics Data System (ADS)
Pohjoranta, Antti; Halinen, Matias; Pennanen, Jari; Kiviaho, Jari
2015-03-01
Generalized predictive control (GPC) is applied to control the maximum temperature in a solid oxide fuel cell (SOFC) stack and the temperature difference over the stack. GPC is a model predictive control method and the models utilized in this work are ARX-type (autoregressive with extra input), multiple input-multiple output, polynomial models that were identified from experimental data obtained from experiments with a complete SOFC system. The proposed control is evaluated by simulation with various input-output combinations, with and without constraints. A comparison with conventional proportional-integral-derivative (PID) control is also made. It is shown that if only the stack maximum temperature is controlled, a standard PID controller can be used to obtain output performance comparable to that obtained with the significantly more complex model predictive controller. However, in order to control the temperature difference over the stack, both the stack minimum and the maximum temperature need to be controlled and this cannot be done with a single PID controller. In such a case the model predictive controller provides a feasible and effective solution.
An energy harvesting type ultrasonic motor.
Wang, Guangqing; Xu, Wentan; Gao, Shuaishuai; Yang, Binqiang; Lu, Guoli
2017-03-01
An energy harvesting type ultrasonic motor is presented in this work. The novel motor not only can drive and/or position the motion mechanism, but also can harvest and convert the vibration-induced energy of the stator into electric energy to power small electronic devices. In the new motor, the stator is a sandwich structure of two PZT rings and an elastic metal body. The PZT ring bonded on the bottom surface is used to excite the stator metal body to generate a traveling wave with converse piezoelectric effect, and the other PZT ring bonded on top surface is used to harvest and convert the vibration-induced energy of the stator into electric energy with direct piezoelectric effect. Finite element method is adopted to analyze the vibration characteristics and the energetic characteristic. After the fabrication of a prototype, the mechanical output and electric energy output abilities are measured. The maximum no-load speed and maximum output torque of the prototype are 117rpm and 0.65Nm at an exciting voltage with amplitude of 134 V p-p and frequency of 40kHz, and the maximum harvesting output power of per sector area of the harvesting PZT is 327mW under an optimal equivalent load resistance of 6.9kΩ. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xing, Shaoxu; Anakok, Isil; Zuo, Lei
2017-04-01
Accidents like Fukushima Disasters push people to improve the monitoring systems for the nuclear power plants. Thus, various types of energy harvesters are designed to power these systems and the Thermoelectric Generator (TEG) energy harvester is one of them. In order to enhance the amount of harvested power and the system efficiency, the power management stage needs to be carefully designed. In this paper, a power converter with optimized Maximum Power Point Tracking (MPPT) is proposed for the TEG Energy Harvester to power the wireless sensor network in nuclear power plant. The TEG Energy Harvester is installed on the coolant pipe of the nuclear plant and harvests energy from its heat energy while the power converter with optimized MPPT can make the TEG Energy Harvester output the maximum power, quickly response to the voltage change and provide sufficient energy for wireless sensor system to monitor the operation of the nuclear power plant. Due to the special characteristics of the Single-Ended Primary Inductor Converter (SEPIC) when it is working in the Discontinuous Inductor Current Mode (DICM) and Continuous Conduction Mode (CCM), the MPPT method presented in this paper would be able to control the converter to achieve the maximum output power in any working conditions of the TEG system with a simple circuit. The optimized MPPT algorithm will significantly reduce the cost and simplify the system as well as achieve a good performance. Experiment test results have shown that, comparing to a fixed- duty-cycle SEPIC which is specifically designed for the working on the secondary coolant loop in nuclear power plant, the optimized MPPT algorithm increased the output power by 55%.
NASA Astrophysics Data System (ADS)
Dong, Yue; He, Weihua; Li, Chao; Liang, Dandan; Qu, Youpeng; Han, Xiaoyu; Feng, Yujie
2018-04-01
A novel hybrid bioelectrochemical membrane reactor with integrated microfiltration membrane as the separator between electrodes is developed for domestic wastewater treatment. After accumulation of biofilm, the organic pollutants are mainly degraded in anodic compartment, and microfiltration membrane blocks the adverse leakage of dissolved oxygen from aerated cathodic compartment. The maximum system power output is restricted by gas-water ratio following a Monod-like relationship. Within the tested gas-water ratios ranging from 0.6 to 42.9, the half-saturation constant (KQ) is 5.9 ± 0.9 with a theoretic maximum power density of 20.4 ± 1.0 W m-3. Energy balance analysis indicates an appropriate gas-water ratio regulation (from 2.3 to 28.6) for cathodic compartment is necessary to obtain positive energy output for the system. A maximum net electricity output is 9.09 × 10-3 kWh m-3 with gas-water ratio of 17.1. Notably, the system achieves the chemical oxygen demand removal of 98.3 ± 0.3%, ammonia nitrogen removal of 99.6 ± 0.1%, and total nitrogen removal of 80.0 ± 0.9%. This work verifies an effective integration of microfiltration membrane into bioelectrochemical system as separator for high-quality effluent and provides an insight into the operation and regulation of biocathode system for effective electrical energy output.
NASA Astrophysics Data System (ADS)
Iyyappan, I.; Ponmurugan, M.
2017-09-01
We study the performance of a three-terminal thermoelectric device such as heat engine and refrigerator with broken time-reversal symmetry by applying the unified trade-off figure of merit (\\dotΩ criterion) which accounts for both useful energy and losses. For the heat engine, we find that a thermoelectric device working under the maximum \\dotΩ criterion gives a significantly better performance than a device working at maximum power output. Within the framework of linear irreversible thermodynamics such a direct comparison is not possible for refrigerators, however, our study indicates that, for refrigerator, the maximum cooling load gives a better performance than the maximum \\dotΩ criterion for a larger asymmetry. Our results can be useful to choose a suitable optimization criterion for operating a real thermoelectric device with broken time-reversal symmetry.
Implementation Learning and Forgetting Curve to Scheduling in Garment Industry
NASA Astrophysics Data System (ADS)
Muhamad Badri, Huda; Deros, Baba Md; Syahri, M.; Saleh, Chairul; Fitria, Aninda
2016-02-01
The learning curve shows the relationship between time and the cumulative number of units produced which using the mathematical description on the performance of workers in performing repetitive works. The problems of this study is level differences in the labors performance before and after the break which affects the company's production scheduling. The study was conducted in the garment industry, which the aims is to predict the company production scheduling using the learning curve and forgetting curve. By implementing the learning curve and forgetting curve, this paper contributes in improving the labors performance that is in line with the increase in maximum output 3 hours productive before the break are 15 unit product with learning curve percentage in the company is 93.24%. Meanwhile, the forgetting curve improving maximum output 3 hours productive after the break are 11 unit product with the percentage of forgetting curve in the company is 92.96%. Then, the obtained 26 units product on the productive hours one working day is used as the basic for production scheduling.
Diminiode thermionic conversion with 111-iridium electrodes
NASA Technical Reports Server (NTRS)
Koeger, E. W.; Bair, V. L.; Morris, J. F.
1976-01-01
Preliminary data indicating thermionic-conversion potentialities for a 111-iridium emitter and collector spaced 0.2 mm apart are presented. These results comprise output densities of current and of power as functions of voltage for three sets of emitter, collector, and reservoir temperatures: 1553, 944, 561 K; 1605, 898, 533 K; and 1656, 1028, 586 K. For the 1605 K evaluation, estimates produced work-function values of 2.22 eV for the emitter and 1.63 eV for the collector with a 2.0-eV barrier index (collector work function plus interelectrode voltage drop) corresponding to the maximum output of 5.5 W/sq cm at 0.24 volt. The current, voltage curve for the 1656 K 111-iridium diminiode yields a 6.2 W/sq cm maximum at 0.25 volt and is comparable with the 1700 K envelope for a diode with an etched-rhenium emitter and a 0.025-mm electrode gap made by TECO and evaluated by NASA.
Hollow waveguide for giant Er:YAG laser pulses transfer
NASA Astrophysics Data System (ADS)
Nemec, Michal; Jelinkova, Helena; Koranda, Petr; Cech, Miroslav; Sulc, Jan; Miyagi, Mitsunobu; Shi, Yi-Wei; Matsuura, Yuji
2004-06-01
Short Er:YAG laser pulses were delivered by a cyclic olefin polymer coated silver hollow glass (COP/Ag) waveguide specially designed for a high power radiation. Er:YAG laser was Q-switched by an electro-optic shutter - LiNbO3 Pockels cell with Brewster angle cut input/output faces. The maximum energy output obtained from this system was 29 mJ with the length of pulse 69 ns corresponding to 420 kW output peak power. The system was working with the repetition rate of 1.5 Hz. A delivery system composed of a lens (f = 40 mm), protector and waveguide with the 700/850 μm diameter and 50 cm or 1 m length. The measured maximum delivered intensity was 86 MW/cm2 what corresponds to the transmission of 78.6 % for whole delivery system. Using of a sealed cap, this delivery system gives a possibility of the contact surgical treatment in many medicine branches, for example ophthalmology, urology or dentistry.
A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting.
Li, Xiaotian; Guo, Mingsen; Dong, Shuxiang
2011-04-01
A piezoelectric transducer for harvesting energy from ambient mechanical vibrations/strains under pressure condition was developed. The proposed transducer was made of two ring-type piezoelectric stacks, one pair of bow-shaped elastic plates, and one shaft that pre-compresses them. This transducer works in flex-compressive (F-C) mode, which is different from a conventional flex-tensional (F-T) one, to transfer a transversely applied force F into an amplified longitudinal force N pressing against the two piezo-stacks via the two bowshaped elastic plates, generating a large electric voltage output via piezoelectric effect. Our experimental results show that without an electric load, an F-C mode piezo-transducer could generate a maximum electric voltage output of up to 110 Vpp, and with an electric load of 40 κΩ, it a maximum power output of 14.6 mW under an acceleration excitation of 1 g peak-peak at the resonance frequency of 87 Hz. © 2011 IEEE
Effects of body position on exercise capacity and pulmonary vascular pressure-flow relationships.
Forton, Kevin; Motoji, Yoshiki; Deboeck, Gael; Faoro, Vitalie; Naeije, Robert
2016-11-01
There has been revival of interest in exercise testing of the pulmonary circulation for the diagnosis of pulmonary vascular disease, but there still is uncertainty about body position and the most relevant measurements. Doppler echocardiography pulmonary hemodynamic measurements were performed at progressively increased workloads in 26 healthy adult volunteers in supine, semirecumbent, and upright positions that were randomly assigned at 24-h intervals. Mean pulmonary artery pressure (mPAP) was estimated from the maximum tricuspid regurgitation jet velocity. Cardiac output was calculated from the left ventricular outflow velocity-time integral. Pulmonary vascular distensibility α-index, the percent change of vessel diameter per millimeter mercury of mPAP, was calculated from multipoint mPAP-cardiac output plots. Body position did not affect maximum oxygen uptake (Vo 2max ), maximum respiratory exchange ratio, ventilatory equivalent for carbon dioxide, or slope of mPAP-cardiac output relationships, which was on average of 1.5 ± 0.4 mmHg·l -1 ·min -1 Maximum mPAP, cardiac output, and total pulmonary vascular resistance were, respectively, 34 ± 4 mmHg, 18 ± 3 l/min, and 1.9 ± 0.3 Wood units. However, the semirecumbent position was associated with a 10% decrease in maximum workload. Furthermore, cardiac output-workload or cardiac output-Vo 2 relationships were nonlinear and variable. These results suggest that body position does not affect maximum exercise testing of the pulmonary circulation when results are expressed as mPAP-cardiac output or maximum total pulmonary vascular resistance. Maximum workload is decreased in semirecumbent compared with upright exercise. Workload or Vo 2 cannot reliably be used as surrogates for cardiac output. Copyright © 2016 the American Physiological Society.
Power performance of nonisentropic Brayton cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, C.; Kiang, R.L.
In this paper work and power optimization of a Brayton cycle are analyzed with a finite-time heat transfer analysis. This work extends the recent flurry of publications in heat engine efficiency under the maximum power condition by incorporating nonisentropic compression and expansion. As expected, these nonisentropic processes lower the power output as well as the cycle efficiency when compared with an endoreversible Brayton cycle under the same conditions.
Ye, Zhuolin; Hu, Yingying; He, Jizhou; Wang, Jianhui
2017-07-24
We study the performance of a cyclic heat engine which uses a small system with a finite number of ultracold atoms as its working substance and works between two heat reservoirs at constant temperatures T h and T c (
Design optimization of PVDF-based piezoelectric energy harvesters.
Song, Jundong; Zhao, Guanxing; Li, Bo; Wang, Jin
2017-09-01
Energy harvesting is a promising technology that powers the electronic devices via scavenging the ambient energy. Piezoelectric energy harvesters have attracted considerable interest for their high conversion efficiency and easy fabrication in minimized sensors and transducers. To improve the output capability of energy harvesters, properties of piezoelectric materials is an influential factor, but the potential of the material is less likely to be fully exploited without an optimized configuration. In this paper, an optimization strategy for PVDF-based cantilever-type energy harvesters is proposed to achieve the highest output power density with the given frequency and acceleration of the vibration source. It is shown that the maximum power output density only depends on the maximum allowable stress of the beam and the working frequency of the device, and these two factors can be obtained by adjusting the geometry of piezoelectric layers. The strategy is validated by coupled finite-element-circuit simulation and a practical device. The fabricated device within a volume of 13.1 mm 3 shows an output power of 112.8 μW which is comparable to that of the best-performing piezoceramic-based energy harvesters within the similar volume reported so far.
Application of Distributed DC/DC Electronics in Photovoltaic Systems
NASA Astrophysics Data System (ADS)
Kabala, Michael
In a typical residential, commercial or utility grade photovoltaic (PV) system, PV modules are connected in series and in parallel to form an array that is connected to a standard DC/AC inverter, which is then connected directly to the grid. This type of standard installation; however, does very little to maximize the energy output of the solar array if certain conditions exist. These conditions could include age, temperature, irradiance and other factors that can cause mismatch between PV modules in an array that severely cripple the output power of the system. Since PV modules are typically connected in series to form a string, the output of the entire string is limited by the efficiency of the weakest module. With PV module efficiencies already relatively low, it is critical to extract the maximum power out of each module in order to make solar energy an economically viable competitor to oil and gas. Module level DC/DC electronics with maximum power point (MPP) tracking solves this issue by decoupling each module from the string in order for the module to operate independently of the geometry and complexity of the surrounding system. This allows each PV module to work at its maximum power point by transferring the maximum power the module is able to deliver directly to the load by either boosting (stepping up) the voltage or bucking (stepping down) the voltage. The goal of this thesis is to discuss the development of a per-module DC/DC converter in order to maximize the energy output of a PV module and reduce the overall cost of the system by increasing the energy harvest.
Thermodynamic analysis of steam-injected advanced gas turbine cycles
NASA Astrophysics Data System (ADS)
Pandey, Devendra; Bade, Mukund H.
2017-12-01
This paper deals with thermodynamic analysis of steam-injected gas turbine (STIGT) cycle. To analyse the thermodynamic performance of steam-injected gas turbine (STIGT) cycles, a methodology based on pinch analysis is proposed. This graphical methodology is a systematic approach proposed for a selection of gas turbine with steam injection. The developed graphs are useful for selection of steam-injected gas turbine (STIGT) for optimal operation of it and helps designer to take appropriate decision. The selection of steam-injected gas turbine (STIGT) cycle can be done either at minimum steam ratio (ratio of mass flow rate of steam to air) with maximum efficiency or at maximum steam ratio with maximum net work conditions based on the objective of plants designer. Operating the steam injection based advanced gas turbine plant at minimum steam ratio improves efficiency, resulting in reduction of pollution caused by the emission of flue gases. On the other hand, operating plant at maximum steam ratio can result in maximum work output and hence higher available power.
Fiber optic microphone with large dynamic range based on bi-fiber Fabry-Perot cavity
NASA Astrophysics Data System (ADS)
Cheng, Jin; Lu, Dan-feng; Gao, Ran; Qi, Zhi-mei
2017-10-01
In this paper, we report a fiber optic microphone with a large dynamic range. The probe of microphone consists of bi-fiber Fabry-Perot cavity architecture. The wavelength of the working laser is about 1552.05nm. At this wavelength, the interference spectroscopies of these two fiber Fabry-Perot cavities have a quadrature shift. So the outputs of these two fiber Fabry-Perot sensors are orthogonal signal. By using orthogonal signal demodulation method, this microphone can output a signal of acoustic wave. Due to no relationship between output signal and the linear region on interference spectroscopy, the microphones have a large maximum acoustic pressure above 125dB.
Zhu, Yanbo; Yang, Bin; Liu, Jingquan; Wang, Xingzhao; Wang, Luxian; Chen, Xiang; Yang, Chunsheng
2016-01-01
Recently, triboelectric energy nanogenerators (TENGs) have been paid the most attention by many researchers to convert mechanical energy into electrical energy. TENGs usually have a simple structure and a high output voltage. However, their high internal resistance results in low output power. In this work, we propose a flexible triboelectric energy nanogenerator with the double-side tribological layers of polydimethlysiloxane (PDMS) and PDMS/multiwall carbon nanotube (MWCNT). MWCNTs with different concentrations have been doped into PDMS to tune the internal resistance of triboelectric nanogenerator and optimize its output power. The dimension of the fabricated prototype is ~3.6 cm3. Three-axial force sensor is used to monitor the applied vertical forces on the device under vertical contact-separation working mode. The Prototype with 10 wt% MWCNT (Prototype I) produces higher output voltage than one with 2 wt% MWCNT (Prototype II) due to its higher dielectric parameter measured by LRC impedance analyzer. The triboelectric output voltages of Prototype I and Prototype II are 30 V and 25 V under the vertical force of 3.0 N, respectively. Their maximum triboelectric output powers are ~130 μW at 6 MΩ and ~120 μW at 8.6 MΩ under vertical forces, respectively. PMID:26916819
Regularized maximum pure-state input-output fidelity of a quantum channel
NASA Astrophysics Data System (ADS)
Ernst, Moritz F.; Klesse, Rochus
2017-12-01
As a toy model for the capacity problem in quantum information theory we investigate finite and asymptotic regularizations of the maximum pure-state input-output fidelity F (N ) of a general quantum channel N . We show that the asymptotic regularization F ˜(N ) is lower bounded by the maximum output ∞ -norm ν∞(N ) of the channel. For N being a Pauli channel, we find that both quantities are equal.
NASA Astrophysics Data System (ADS)
Pan, Diankun; Ma, Benbiao; Dai, Fuhong
2017-03-01
In this work, a bi-stable vibration energy harvester is presented to scavenge energy from ambient vibrations over a wide frequency range. This bi-stable harvester consists of a bi-stable hybrid composite plate as host structure and several pieces of piezoelectric ceramics. Three linear harvesters with the same geometry were employed as the control samples to illustrate the advantages of this bi-stable harvester. The voltage-frequency responses were measured with different g-level excitations, and the output powers across various resistances were measured at different frequencies and accelerations. Unlike the linear harvesters which are effective only near their natural frequencies, the obvious nonlinearities of this bi-stable harvester broaden its working bandwidth. Additionally, the characteristics of this bi-stable host structure contribute to the output power. Under the same condition, when this bi-stable harvester is under cross-well oscillation pattern the maximum output powers are several times higher than those of the linear harvesters. The measured highest output power of this bi-stable harvester is 36.2 mW with 38 Hz frequency and 5g acceleration (g = 9.8 m s-2).
The simulation of thermal characteristics of 980 nm vertical cavity surface emitting lasers
NASA Astrophysics Data System (ADS)
Fang, Tianxiao; Cui, Bifeng; Hao, Shuai; Wang, Yang
2018-02-01
In order to design a single mode 980 nm vertical cavity surface emitting laser (VCSEL), a 2 μm output aperture is designed to guarantee the single mode output. The effects of different mesa sizes on the lattice temperature, the output power and the voltage are simulated under the condition of continuous working at room temperature, to obtain the optimum process parameters of mesa. It is obtained by results of the crosslight simulation software that the sizes of mesa radius are between 9.5 to 12.5 μm, which cannot only obtain the maximum output power, but also improve the heat dissipation of the device. Project supported by the Beijing Municipal Eduaction Commission (No. PXM2016_014204_500018) and the Construction of Scientific and Technological Innovation Service Ability in 2017 (No. PXM2017_014204_500034).
MoS2-based passively Q-switched diode-pumped Nd:YAG laser at 946 nm
NASA Astrophysics Data System (ADS)
Lin, Haifeng; Zhu, Wenzhang.; Xiong, Feibing; Cai, Lie
2017-06-01
We demonstrate a passively Q-switched Nd: YAG quasi-three-level laser operating at 946 nm using MoS2 as saturable absorber. A maximum average output power of 210 mW is achieved at an absorbed pump power of 6.67 W with a slope efficiency of about 5.8%. The shortest pulse width and maximum pulse repetition frequency are measured to be 280 ns and 609 kHz, respectively. The maximum pulse energy and maximum pulse peak power are therefore estimated to be about 0.35 μJ and 1.23 W, respectively. This work represents the first MoS2-based Q-switched laser operating at 0.9 μm spectral region.
Performance Analysis and Optimization of Concentrating Solar Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Lamba, Ravita; Manikandan, S.; Kaushik, S. C.
2018-06-01
A thermodynamic model for a concentrating solar thermoelectric generator considering the Thomson effect combined with Fourier heat conduction, Peltier, and Joule heating has been developed and optimized in MATLAB environment. The temperatures at the hot and cold junctions of the thermoelectric generator were evaluated by solving the energy balance equations at both junctions. The effects of the solar concentration ratio, input electrical current, number of thermocouples, and electrical load resistance ratio on the power output and energy and exergy efficiencies of the system were studied. Optimization studies were carried out for the STEG system, and the optimum number of thermocouples, concentration ratio, and resistance ratio determined. The results showed that the optimum values of these parameters are different for conditions of maximum power output and maximum energy and exergy efficiency. The optimum values of the concentration ratio and load resistance ratio for maximum energy efficiency of 5.85% and maximum exergy efficiency of 6.29% were found to be 180 and 1.3, respectively, with corresponding power output of 4.213 W. Furthermore, at higher concentration ratio (C = 600), the optimum number of thermocouples was found to be 101 for maximum power output of 13.75 W, maximum energy efficiency of 5.73%, and maximum exergy efficiency of 6.16%. Moreover, the optimum number of thermocouple was the same for conditions of maximum power output and energy and exergy efficiency. The results of this study may provide insight for design of actual concentrated solar thermoelectric generator systems.
Post, Richard F.
2016-02-23
A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.
Apertet, Y; Ouerdane, H; Goupil, C; Lecoeur, Ph
2012-03-01
Energy conversion efficiency at maximum output power, which embodies the essential characteristics of heat engines, is the main focus of the present work. The so-called Curzon and Ahlborn efficiency η(CA) is commonly believed to be an absolute reference for real heat engines; however, a different but general expression for the case of stochastic heat engines, η(SS), was recently found and then extended to low-dissipation engines. The discrepancy between η(CA) and η(SS) is here analyzed considering different irreversibility sources of heat engines, of both internal and external types. To this end, we choose a thermoelectric generator operating in the strong-coupling regime as a physical system to qualitatively and quantitatively study the impact of the nature of irreversibility on the efficiency at maximum output power. In the limit of pure external dissipation, we obtain η(CA), while η(SS) corresponds to the case of pure internal dissipation. A continuous transition between from one extreme to the other, which may be operated by tuning the different sources of irreversibility, also is evidenced.
Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control
NASA Astrophysics Data System (ADS)
Othman, Ahmed M.; El-arini, Mahdi M. M.; Ghitas, Ahmed; Fathy, Ahmed
2012-12-01
In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV) systems. Maximum power point tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O) algorithm and is compared to a designed fuzzy logic controller (FLC). The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.
NASA Astrophysics Data System (ADS)
Whitney, Robert S.
2015-03-01
We investigate the nonlinear scattering theory for quantum systems with strong Seebeck and Peltier effects, and consider their use as heat engines and refrigerators with finite power outputs. This paper gives detailed derivations of the results summarized in a previous paper [R. S. Whitney, Phys. Rev. Lett. 112, 130601 (2014), 10.1103/PhysRevLett.112.130601]. It shows how to use the scattering theory to find (i) the quantum thermoelectric with maximum possible power output, and (ii) the quantum thermoelectric with maximum efficiency at given power output. The latter corresponds to a minimal entropy production at that power output. These quantities are of quantum origin since they depend on system size over electronic wavelength, and so have no analog in classical thermodynamics. The maximal efficiency coincides with Carnot efficiency at zero power output, but decreases with increasing power output. This gives a fundamental lower bound on entropy production, which means that reversibility (in the thermodynamic sense) is impossible for finite power output. The suppression of efficiency by (nonlinear) phonon and photon effects is addressed in detail; when these effects are strong, maximum efficiency coincides with maximum power. Finally, we show in particular limits (typically without magnetic fields) that relaxation within the quantum system does not allow the system to exceed the bounds derived for relaxation-free systems, however, a general proof of this remains elusive.
High-power, multioutput piezoelectric transformers operating at the thickness-shear vibration mode.
Du, Jinlong; Hu, Junhui; Tseng, King Jet
2004-05-01
In this study, a piezoelectric transformer operating at the thickness shear vibration mode and with dual or triple outputs is proposed. It consists of a lead zirconate titanate (PZT) ceramic plate with a high mechanical quality factor Qm and a size of 120 x 20 x 4 mm3. The PZT ceramic plate is poled along the width direction. The electrodes of input and output parts are on the top and bottom surfaces of the ceramic plate and separated by narrow gaps. A new construction of support and lead wire connection is used for the transformer. At a temperature rise less than 20 degrees C and efficiency of 90%, the piezoelectric transformer with dual outputs has a maximum total output power of 169.8 W, with a power of 129.5 W in one output and 40.3 W in another. The one with triple outputs has a maximum total output power of 163.1 W, with a power of 36.9 W in the first output, 13.0 W in the second output and 113.2 W in the third output. The maximum efficiency of the piezoelectric transformer with dual outputs and triple outputs is 98% and 95.7%, respectively. The voltage gains of the transformers are less than one, and different outputs have different gains. Also, there is a driving frequency range in which the load resistance of one output has little effect on the voltage gain of another output.
2012-12-01
photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase... photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase the power output of the solar array. Currently, most military... MPPT ) is an optimizing circuit that is used in conjunction with photovoltaic (PV) arrays to achieve the maximum delivery of power from the array
Using multiple linear regression model to estimate thunderstorm activity
NASA Astrophysics Data System (ADS)
Suparta, W.; Putro, W. S.
2017-03-01
This paper is aimed to develop a numerical model with the use of a nonlinear model to estimate the thunderstorm activity. Meteorological data such as Pressure (P), Temperature (T), Relative Humidity (H), cloud (C), Precipitable Water Vapor (PWV), and precipitation on a daily basis were used in the proposed method. The model was constructed with six configurations of input and one target output. The output tested in this work is the thunderstorm event when one-year data is used. Results showed that the model works well in estimating thunderstorm activities with the maximum epoch reaching 1000 iterations and the percent error was found below 50%. The model also found that the thunderstorm activities in May and October are detected higher than the other months due to the inter-monsoon season.
Dual side control for inductive power transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron
An apparatus for dual side control includes a measurement module that measures a voltage and a current of an IPT system. The voltage includes an output voltage and/or an input voltage and the current includes an output current and/or an input current. The output voltage and the output current are measured at an output of the IPT system and the input voltage and the input current measured at an input of the IPT system. The apparatus includes a max efficiency module that determines a maximum efficiency for the IPT system. The max efficiency module uses parameters of the IPT systemmore » to iterate to a maximum efficiency. The apparatus includes an adjustment module that adjusts one or more parameters in the IPT system consistent with the maximum efficiency calculated by the max efficiency module.« less
New GaN based HEMT with Si3N4 or un-doped region in the barrier for high power applications
NASA Astrophysics Data System (ADS)
Razavi, S. M.; Tahmasb Pour, S.; Najari, P.
2018-06-01
New AlGaN/GaN high electron mobility transistors (HEMTs) that their barrier layers under the gate are divided into two regions horizontally are presented in this work. Upper region is Si3N4 (SI-HEMT) or un-doped AlGaN (UN-HEMT) and lower region is AlGaN with heavier doping compared to barrier layer. Upper region in SI-HEMT and UN-HEMT reduces peak electric field in the channel and then improves breakdown voltage considerably. Lower region increases electron density in the two dimensional electron gas (2-DEG) and enhances drain current significantly. For instance, saturated drain current in SI-HEMT is about 100% larger than that in the conventional one. Moreover, the maximum breakdown voltage in the proposed structures is 65 V. This value is about 30% larger than that in the conventional transistor (50 V). Also, suggested structure reduces short channel effect such as DIBL. The maximum gm is obtained in UN-HEMT and conventional devices. Proposed structures improve breakdown voltage and saturated drain current and then enhance maximum output power density. Maximum output power density in the new structures is about 150% higher than that in the conventional.
System for memorizing maximum values
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1992-01-01
The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either linear or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.
System for memorizing maximum values
NASA Astrophysics Data System (ADS)
Bozeman, Richard J., Jr.
1992-08-01
The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either linear or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.
System for Memorizing Maximum Values
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1996-01-01
The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either liner or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.
NASA Astrophysics Data System (ADS)
Liu, Jinmei; Cui, Nuanyang; Gu, Long; Chen, Xiaobo; Bai, Suo; Zheng, Youbin; Hu, Caixia; Qin, Yong
2016-02-01
An integrated triboelectric nanogenerator (ITNG) with a three-dimensional structure benefiting sound propagation and adsorption is demonstrated to more effectively harvest sound energy with improved output performance. With different multifunctional integrated layers working harmonically, it could generate a short-circuit current up to 2.1 mA, an open-circuit voltage up to 232 V and the maximum charging rate can reach 453 μC s-1 for a 1 mF capacitor, which are 4.6 times, 2.6 times and 7.4 times the highest reported values, respectively. Further study shows that the ITNG works well under sound in a wide range of sound intensity levels (SILs) and frequencies, and its output is sensitive to the SIL and frequency of the sound, which reveals that the ITNG can act as a self-powered active sensor for real-time noise surveillance and health care. Moreover, this generator can be used to directly power the Fe(OH)3 sol electrophoresis and shows great potential as a wireless power supply in the electrochemical industry.An integrated triboelectric nanogenerator (ITNG) with a three-dimensional structure benefiting sound propagation and adsorption is demonstrated to more effectively harvest sound energy with improved output performance. With different multifunctional integrated layers working harmonically, it could generate a short-circuit current up to 2.1 mA, an open-circuit voltage up to 232 V and the maximum charging rate can reach 453 μC s-1 for a 1 mF capacitor, which are 4.6 times, 2.6 times and 7.4 times the highest reported values, respectively. Further study shows that the ITNG works well under sound in a wide range of sound intensity levels (SILs) and frequencies, and its output is sensitive to the SIL and frequency of the sound, which reveals that the ITNG can act as a self-powered active sensor for real-time noise surveillance and health care. Moreover, this generator can be used to directly power the Fe(OH)3 sol electrophoresis and shows great potential as a wireless power supply in the electrochemical industry. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09087c
NASA Astrophysics Data System (ADS)
Lau, K. Y.; Ng, E. K.; Abu Bakar, M. H.; Abas, A. F.; Alresheedi, M. T.; Yusoff, Z.; Mahdi, M. A.
2018-04-01
We demonstrate a passively mode-locked erbium-doped fiber laser in L-band wavelength region with low mode-locking threshold employing a 1425 nm pump wavelength. The mode-locking regime is generated by microfiber-based saturable absorber using carbon nanotube-polymer composite in a ring cavity. This carbon nanotube saturable absorber shows saturation intensity of 9 MW/cm2. In this work, mode-locking laser threshold is observed at 36.4 mW pump power. At the maximum pump power of 107.6 mW, we obtain pulse duration at full-width half-maximum point of 490 fs and time bandwidth product of 0.33, which corresponds to 3-dB spectral bandwidth of 5.8 nm. The pulse repetition rate remains constant throughout the experiment at 5.8 MHz due to fixed cavity length of 35.5 m. Average output power and pulse energy of 10.8 mW and 1.92 nJ are attained respectively through a 30% laser output extracted from the mode-locked cavity. This work highlights the feasibility of attaining a low threshold mode-locked laser source to be employed as seed laser in L-band wavelength region.
Sheng, Shiqi; Tu, Z C
2014-01-01
The concepts of weighted reciprocal of temperature and weighted thermal flux are proposed for a heat engine operating between two heat baths and outputting mechanical work. With the aid of these two concepts, the generalized thermodynamic fluxes and forces can be expressed in a consistent way within the framework of irreversible thermodynamics. Then the efficiency at maximum power output for a heat engine, one of key topics in finite-time thermodynamics, is investigated on the basis of a generic model under the tight-coupling condition. The corresponding results have the same forms as those of low-dissipation heat engines [ M. Esposito, R. Kawai, K. Lindenberg and C. Van den Broeck Phys. Rev. Lett. 105 150603 (2010)]. The mappings from two kinds of typical heat engines, such as the low-dissipation heat engine and the Feynman ratchet, into the present generic model are constructed. The universal efficiency at maximum power output up to the quadratic order is found to be valid for a heat engine coupled symmetrically and tightly with two baths. The concepts of weighted reciprocal of temperature and weighted thermal flux are also transplanted to the optimization of refrigerators.
Effective seat-to-head transmissibility in whole-body vibration: Effects of posture and arm position
NASA Astrophysics Data System (ADS)
Rahmatalla, Salam; DeShaw, Jonathan
2011-12-01
Seat-to-head transmissibility is a biomechanical measure that has been widely used for many decades to evaluate seat dynamics and human response to vibration. Traditionally, transmissibility has been used to correlate single-input or multiple-input with single-output motion; it has not been effectively used for multiple-input and multiple-output scenarios due to the complexity of dealing with the coupled motions caused by the cross-axis effect. This work presents a novel approach to use transmissibility effectively for single- and multiple-input and multiple-output whole-body vibrations. In this regard, the full transmissibility matrix is transformed into a single graph, such as those for single-input and single-output motions. Singular value decomposition and maximum distortion energy theory were used to achieve the latter goal. Seat-to-head transmissibility matrices for single-input/multiple-output in the fore-aft direction, single-input/multiple-output in the vertical direction, and multiple-input/multiple-output directions are investigated in this work. A total of ten subjects participated in this study. Discrete frequencies of 0.5-16 Hz were used for the fore-aft direction using supported and unsupported back postures. Random ride files from a dozer machine were used for the vertical and multiple-axis scenarios considering two arm postures: using the armrests or grasping the steering wheel. For single-input/multiple-output, the results showed that the proposed method was very effective in showing the frequencies where the transmissibility is mostly sensitive for the two sitting postures and two arm positions. For multiple-input/multiple-output, the results showed that the proposed effective transmissibility indicated higher values for the armrest-supported posture than for the steering-wheel-supported posture.
Memory-guided force control in healthy younger and older adults.
Neely, Kristina A; Samimy, Shaadee; Blouch, Samantha L; Wang, Peiyuan; Chennavasin, Amanda; Diaz, Michele T; Dennis, Nancy A
2017-08-01
Successful performance of a memory-guided motor task requires participants to store and then recall an accurate representation of the motor goal. Further, participants must monitor motor output to make adjustments in the absence of visual feedback. The goal of this study was to examine memory-guided grip force in healthy younger and older adults and compare it to performance on behavioral tasks of working memory. Previous work demonstrates that healthy adults decrease force output as a function of time when visual feedback is not available. We hypothesized that older adults would decrease force output at a faster rate than younger adults, due to age-related deficits in working memory. Two groups of participants, younger adults (YA: N = 32, mean age 21.5 years) and older adults (OA: N = 33, mean age 69.3 years), completed four 20-s trials of isometric force with their index finger and thumb, equal to 25% of their maximum voluntary contraction. In the full-vision condition, visual feedback was available for the duration of the trial. In the no vision condition, visual feedback was removed for the last 12 s of each trial. Participants were asked to maintain constant force output in the absence of visual feedback. Participants also completed tasks of word recall and recognition and visuospatial working memory. Counter to our predictions, when visual feedback was removed, younger adults decreased force at a faster rate compared to older adults and the rate of decay was not associated with behavioral performance on tests of working memory.
Method of operating a thermoelectric generator
Reynolds, Michael G; Cowgill, Joshua D
2013-11-05
A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.
Characterization of Inductive loop coupling in a Cyclotron Dee Structure
NASA Astrophysics Data System (ADS)
Carroll, Lewis
Many of today's low to medium-energy cyclotrons apply RF power to the resonator structure (the dees) by inductive loop coupling through a feed-line driven by an RF transmitter employing a triode or tetrode power tube. The transmitter's output network transforms the tube's optimum load line (typically a few thousand ohms) down to Z0, typically 50 ohms. But the load-line is not a physical resistance, so one would not expect to see 50 ohms when looking back toward the transmitter. Moreover, if both the resonator's input and the transmitter's output are matched to Z0, then the coupled or working Q of the resonator is reduced to half that of the uncoupled Q, implying that half the power is being dissipated in the transmitter's output resistance- an inefficient and expensive solution for a high power RF application. More power is available if the transmitter's reverse-impedance is not matched to Z0, but this may result in misalignment between the frequency for correct forward match at the loop, versus the frequency for maximum power in the resonator. The misalignment can be eliminated, and the working Q maximized, by choosing the appropriate length of feed-line between the non-matched transmitter output and the matched resonator's input. In addition, the transmitter's output impedance may be complex, comprising resistance plus reactance, requiring a further process and means of measuring the output impedance so that an additional compensating length of feed-line can be incorporated. But a wrong choice of overall feed-line length- even though correctly load-matched at the resonator's operating frequency- can result in a curious degenerate condition, where the resonator's working Q appears to collapse, and the potential for transmitter overload increases substantially: a condition to be avoided!
Comparison of four MPPT techniques for PV systems
NASA Astrophysics Data System (ADS)
Atik, L.; Petit, P.; Sawicki, J. P.; Ternifi, Z. T.; Bachir, G.; Aillerie, M.
2016-07-01
The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, for all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.
High-power single-stage thulium-doped superfluorescent fiber source
NASA Astrophysics Data System (ADS)
Hu, Z. Y.; Yan, P.; Liu, Q.; Ji, E. C.; Xiao, Q. R.; Gong, M. L.
2015-01-01
In this paper, we report a high-power thulium (Tm)-doped superfluorescent fiber source (SFS) in the 2-μm spectral region. The SFS is based on double angle-cleaved facet operation and uses a simple single-stage geometry. The copropagating amplified spontaneous emission (ASE) yields a maximum output of 20.7 W at a center wavelength of 1,960.7 nm, with a full width at half maximum (FWHM) of ~45 nm. The counterpropagating ASE yields a maximum output of 25.2 W at a center wavelength of 1,948.2 nm, with a FWHM of ~50 nm. The maximum combined output of the SFS is as much as 45.9 W, which corresponds to a slope efficiency of 38.9 %. In addition, a model of the ~2 μm SFS in Tm-doped silica fibers pumped at ~790 nm is developed, and the influence of fiber length and end-facet reflectivity on the ASE output performance and the parasitic lasing threshold are studied numerically.
Jet impingement heat transfer enhancement for the GPU-3 Stirling engine
NASA Technical Reports Server (NTRS)
Johnson, D. C.; Congdon, C. W.; Begg, L. L.; Britt, E. J.; Thieme, L. G.
1981-01-01
A computer model of the combustion-gas-side heat transfer was developed to predict the effects of a jet impingement system and the possible range of improvements available. Using low temperature (315 C (600 F)) pretest data in an updated model, a high temperature silicon carbide jet impingement heat transfer system was designed and fabricated. The system model predicted that at the theoretical maximum limit, jet impingement enhanced heat transfer can: (1) reduce the flame temperature by 275 C (500 F); (2) reduce the exhaust temperature by 110 C (200 F); and (3) increase the overall heat into the working fluid by 10%, all for an increase in required pumping power of less than 0.5% of the engine power output. Initial tests on the GPU-3 Stirling engine at NASA-Lewis demonstrated that the jet impingement system increased the engine output power and efficiency by 5% - 8% with no measurable increase in pumping power. The overall heat transfer coefficient was increased by 65% for the maximum power point of the tests.
Determining the accuracy of maximum likelihood parameter estimates with colored residuals
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Klein, Vladislav
1994-01-01
An important part of building high fidelity mathematical models based on measured data is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of the accuracy of parameter estimates, the estimates themselves have limited value. In this work, an expression based on theoretical analysis was developed to properly compute parameter accuracy measures for maximum likelihood estimates with colored residuals. This result is important because experience from the analysis of measured data reveals that the residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Simulated data runs were used to show that the parameter accuracy measures computed with this technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for analysis of the output residuals in the frequency domain or heuristically determined multiplication factors. The result is general, although the application studied here is maximum likelihood estimation of aerodynamic model parameters from flight test data.
Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi
NASA Technical Reports Server (NTRS)
Padula, Santo, II; Noebe, Ronald; Bigelow, Glen; Qiu, Shipeng; Vaidyanathan, Raj; Gaydosh, Darrell; Garg, Anita
2011-01-01
Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. The investigation we report here extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional changes in the work output of the material, which has a stress-free austenite finish temperature of 113 C, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted on the aforementioned alloy at various stresses from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 C. The data indicated that the amount of applied stress influenced the transformation strain, as would be expected. However, the maximum temperature reached during the thermal excursion also plays an equally significant role in determining the transformation strain, with the maximum transformation strain observed during thermal cycling to 290 C. In situ neutron diffraction at stress and temperature showed that the differences in transformation strain were mostly related to changes in martensite texture when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.
Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi
NASA Technical Reports Server (NTRS)
Padula, Santo, II; Vaidyanathan, Raj; Gaydosh, Darrell; Noebe, Ronald; Bigelow, Glen; Garg, Anita
2008-01-01
Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. This investigation extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional improvement in the work output of the material, which has a stress-free Af of 113 oC, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted in the aforementioned alloy at various stress levels from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 oC. The data indicated that the amount of applied stress influenced the transformation strain available in the system, as would be expected. However, the maximum temperature reached during the thermal excursion also plays a role in determining the transformation strain, with the maximum transformation strain being developed by thermal cycling to 290 oC. In situ, neutron diffraction showed that the differences in transformation strain were related to differences in martensite texture within the microstructure when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.
Updated Model of the Solar Energetic Proton Environment in Space
NASA Astrophysics Data System (ADS)
Jiggens, Piers; Heynderickx, Daniel; Sandberg, Ingmar; Truscott, Pete; Raukunen, Osku; Vainio, Rami
2018-05-01
The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) model provides environment specification outputs for all aspects of the Solar Energetic Particle (SEP) environment. The model is based upon a thoroughly cleaned and carefully processed data set. Herein the evolution of the solar proton model is discussed with comparisons to other models and data. This paper discusses the construction of the underlying data set, the modelling methodology, optimisation of fitted flux distributions and extrapolation of model outputs to cover a range of proton energies from 0.1 MeV to 1 GeV. The model provides outputs in terms of mission cumulative fluence, maximum event fluence and peak flux for both solar maximum and solar minimum periods. A new method for describing maximum event fluence and peak flux outputs in terms of 1-in-x-year SPEs is also described. SAPPHIRE proton model outputs are compared with previous models including CREME96, ESP-PSYCHIC and the JPL model. Low energy outputs are compared to SEP data from ACE/EPAM whilst high energy outputs are compared to a new model based on GLEs detected by Neutron Monitors (NMs).
The effect of different calculation methods of flywheel parameters on the Wingate Anaerobic Test.
Coleman, S G; Hale, T
1998-08-01
Researchers compared different methods of calculating kinetic parameters of friction-braked cycle ergometers, and the subsequent effects on calculating power outputs in the Wingate Anaerobic Test (WAnT). Three methods of determining flywheel moment of inertia and frictional torque were investigated, requiring "run-down" tests and segmental geometry. Parameters were used to calculate corrected power outputs from 10 males in a 30-s WAnT against a load related to body mass (0.075 kg.kg-1). Wingate Indices of maximum (5 s) power, work, and fatigue index were also compared. Significant differences were found between uncorrected and corrected power outputs and between correction methods (p < .05). The same finding was evident for all Wingate Indices (p < .05). Results suggest that WAnT must be corrected to give true power outputs and that choosing an appropriate correction calculation is important. Determining flywheel moment of inertia and frictional torque using unloaded run-down tests is recommended.
NASA Astrophysics Data System (ADS)
Kobayashi, Kenji; Takano, Ichiro; Sawada, Yoshio
A photovoltaic array shows relatively low output power density, and has a greatly drooping Current-Voltage (I-V) characteristic. Therefore, Maximum Power Point Tracking (MPPT) control is used to maximize the output power of the array. Many papers have been reported in relation to MPPT. However, the Current-Power (I-P) curve sometimes shows multi-local maximum points mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the I-P curve. Some papers have been also reported, trying to avoid this difficulty. However most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW. In addition, simulated experiment confirms fundament al operation of the two stage MPPT control.
Performance assessment of an irreversible nano Brayton cycle operating with Maxwell-Boltzmann gas
NASA Astrophysics Data System (ADS)
Açıkkalp, Emin; Caner, Necmettin
2015-05-01
In the last decades, nano-technology has been developed very fast. According to this, nano-cycle thermodynamics should improve with a similar rate. In this paper, a nano-scale irreversible Brayton cycle working with helium is evaluated for different thermodynamic criteria. These are maximum work output, ecological function, ecological coefficient of performance, exergetic performance criteria and energy efficiency. Thermodynamic analysis was performed for these criteria and results were submitted numerically. In addition, these criteria are compared with each other and the most convenient methods for the optimum conditions are suggested.
In-band pumped Q-switched fiber laser based on monolayer graphene
NASA Astrophysics Data System (ADS)
Wu, Hanshuo; Wu, Jian; Xiao, Hu; Leng, Jinyong; Xu, Jiangming; Zhou, Pu
2017-06-01
We propose and demonstrate an in-band pumped all-fiberized passively Q-switched laser emitting at 1080 nm. A single mode 1030 nm fiber laser is used as the pump source, while a 2D material, CVD-grown monolayer graphene, is adopted as a saturable absorber inside the ring cavity. The repetition rate of the output pulses can be varied from 12.74 to 24.6 kHz with the pulse duration around 12 µs. The maximum average output power is 34.25 mW, with the pulse energy of 1.392 µJ. This work proves the practicability of achieving passively Q-switched operation via in-band pump.
A long-term stable power supply μDMFC stack for wireless sensor node applications
NASA Astrophysics Data System (ADS)
Wu, Z. L.; Wang, X. H.; Teng, F.; Li, X. Z.; Wu, X. M.; Liu, L. T.
2013-12-01
A passive, air-breathing 4-cell micro direct methanol fuel cell (μDMFC) stack is presented featured by a fuel delivery structure for a long-term & stable power supply. The fuel is reserved in a T shape tank and diffuses through the porous diffusion layer to the catalyst at anode. The stack has a maximum power output of 110mW with 3M methanol at room temperature and output a stable power even thought 5% fuel is the remained in reservoir. Its performance decreases less than 3% for 100 hours continuous work. As such, it is believed to be more applicable for powering the wireless sensor nodes.
High-power, cladding-pumped all-fiber laser with selective transverse mode generation property.
Li, Lei; Wang, Meng; Liu, Tong; Leng, Jinyong; Zhou, Pu; Chen, Jinbao
2017-06-10
We demonstrate, to the best of our knowledge, the first cladding-pumped all-fiber oscillator configuration with selective transverse mode generation based on a mode-selective fiber Bragg grating pair. Operating in the second-order (LP 11 ) mode, maximum output power of 4.2 W is obtained with slope efficiency of about 38%. This is the highest reported output power of single higher-order transverse mode generation in an all-fiber configuration. The intensity distribution profile and spectral evolution have also been investigated in this paper. Our work suggests the potential of realizing higher power with selective transverse mode operation based on a mode-selective fiber Bragg grating pair.
Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser
NASA Astrophysics Data System (ADS)
Cornacchia, F.; Parisi, D.; Bernardini, C.; Toncelli, A.; Tonelli, M.
2004-05-01
In this work we report the spectroscopy and laser results of several Thulium doped BaY2F8 single crystals grown using the Czochralski technique. The doping concentration is between 2at.% and 18at.%. We performed room temperature laser experiments pumping the samples with a laser diode at 789 nm obtaining 61% as maximum optical-to-optical efficiency with a maximum output power of 290 mW and a minimum lasing threshold of 26 mW. The lasing wavelength changed with the dopant concentration from 1927 nm up to 2030 nm and the nature of the transition changed from purely electronic to vibronic, accordingly.
Working Characteristics of Variable Intake Valve in Compressed Air Engine
Yu, Qihui; Shi, Yan; Cai, Maolin
2014-01-01
A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536
Working characteristics of variable intake valve in compressed air engine.
Yu, Qihui; Shi, Yan; Cai, Maolin
2014-01-01
A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.
Design and optimization of a modal- independent linear ultrasonic motor.
Zhou, Shengli; Yao, Zhiyuan
2014-03-01
To simplify the design of the linear ultrasonic motor (LUSM) and improve its output performance, a method of modal decoupling for LUSMs is proposed in this paper. The specific embodiment of this method is decoupling of the traditional LUSM stator's complex vibration into two simple vibrations, with each vibration implemented by one vibrator. Because the two vibrators are designed independently, their frequencies can be tuned independently and frequency consistency is easy to achieve. Thus, the method can simplify the design of the LUSM. Based on this method, a prototype modal- independent LUSM is designed and fabricated. The motor reaches its maximum thrust force of 47 N, maximum unloaded speed of 0.43 m/s, and maximum power of 7.85 W at applied voltage of 200 Vpp. The motor's structure is then optimized by controlling the difference between the two vibrators' resonance frequencies to reach larger output speed, thrust, and power. The optimized results show that when the frequency difference is 73 Hz, the output force, speed, and power reach their maximum values. At the input voltage of 200 Vpp, the motor reaches its maximum thrust force of 64.2 N, maximum unloaded speed of 0.76 m/s, maximum power of 17.4 W, maximum thrust-weight ratio of 23.7, and maximum efficiency of 39.6%.
Optimized MPPT algorithm for boost converters taking into account the environmental variables
NASA Astrophysics Data System (ADS)
Petit, Pierre; Sawicki, Jean-Paul; Saint-Eve, Frédéric; Maufay, Fabrice; Aillerie, Michel
2016-07-01
This paper presents a study on the specific behavior of the Boost DC-DC converters generally used for powering conversion of PV panels connected to a HVDC (High Voltage Direct Current) Bus. It follows some works pointing out that converter MPPT (Maximum Power Point Tracker) is severely perturbed by output voltage variations due to physical dependency of parameters as the input voltage, the output voltage and the duty cycle of the PWM switching control of the MPPT. As a direct consequence many converters connected together on a same load perturb each other because of the output voltage variations induced by fluctuations on the HVDC bus essentially due to a not insignificant bus impedance. In this paper we show that it is possible to include an internal computed variable in charge to compensate local and external variations to take into account the environment variables.
Comparison of four MPPT techniques for PV systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atik, L., E-mail: lotfi.atik@univ-usto.dz; Ternifi, Z. T.; Université de Lorraine, LMOPS, EA 4423, 57070 Metz
2016-07-25
The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, formore » all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.« less
Power production by Olympic weightlifters.
Garhammer, J
1980-01-01
A new procedure was developed for calculating power production during Olympic lifting movements and comparisons were made with a method previously used. The power output of seven superior lifters was determined during selected phases of the snatch, clean, and jerk, from films taken at the 1975 U.S. National Championships. The values obtained depended on the following variables: vertical change in the bar's mechanical energy from the beginning of a force exertion phase until maximum vertical bar velocity was achieved; work done by the athlete in producing horizontal bar movement; and work done in raising the body's center of gravity. Results showed the expected increase in power with increased bodyweight for a given movement. Values for the jerk drive ranged from 2140 watts in the 56 kg class to 4786 watts for a 110 kg lifter. Heavier lifters exceeded published maximal estimates for human power output during brief exertions. More significant was the high degree of consistency in the rate of work done by any given lifter in movements which were very similar with respect to joint action, but competitively had very different objectives. The procedure should prove useful in detecting problems in lifting movements that result in power outputs which are low relative to those measured for biomechanically equivalent exertions.
Current responsive devices for synchronous generators
Karlicek, Robert F.
1983-01-01
A device for detecting current imbalance between phases of a polyphase alternating current generator. A detector responds to the maximum peak current in the generator, and detecting means generates an output for each phase proportional to the peak current of each phase. Comparing means generates an output when the maximum peak current exceeds the phase peak current.
Techniques for Mapping Synthetic Aperture Radar Processing Algorithms to Multi-GPU Clusters
2012-12-01
Experimental results were generated with 10 nVidia Tesla C2050 GPUs having maximum throughput of 972 Gflop /s. Our approach scales well for output...Experimental results were generated with 10 nVidia Tesla C2050 GPUs having maximum throughput of 972 Gflop /s. Our approach scales well for output
Current responsive devices for synchronous generators
Karlicek, R.F.
1983-09-27
A device for detecting current imbalance between phases of a polyphase alternating current generator. A detector responds to the maximum peak current in the generator, and detecting means generates an output for each phase proportional to the peak current of each phase. Comparing means generates an output when the maximum peak current exceeds the phase peak current. 11 figs.
Fligor, Brian J; Cox, L Clarke
2004-12-01
To measure the sound levels generated by the headphones of commercially available portable compact disc players and provide hearing healthcare providers with safety guidelines based on a theoretical noise dose model. Using a Knowles Electronics Manikin for Acoustical Research and a personal computer, output levels across volume control settings were recorded from headphones driven by a standard signal (white noise) and compared with output levels from music samples of eight different genres. Many commercially available models from different manufacturers were investigated. Several different styles of headphones (insert, supra-aural, vertical, and circumaural) were used to determine if style of headphone influenced output level. Free-field equivalent sound pressure levels measured at maximum volume control setting ranged from 91 dBA to 121 dBA. Output levels varied across manufacturers and style of headphone, although generally the smaller the headphone, the higher the sound level for a given volume control setting. Specifically, in one manufacturer, insert earphones increased output level 7-9 dB, relative to the output from stock headphones included in the purchase of the CD player. In a few headphone-CD player combinations, peak sound pressure levels exceeded 130 dB SPL. Based on measured sound pressure levels across systems and the noise dose model recommended by National Institute for Occupational Safety and Health for protecting the occupational worker, a maximum permissible noise dose would typically be reached within 1 hr of listening with the volume control set to 70% of maximum gain using supra-aural headphones. Using headphones that resulted in boosting the output level (e.g., insert earphones used in this study) would significantly decrease the maximum safe volume control setting; this effect was unpredictable from one manufacturer to another. In the interest of providing a straightforward recommendation that should protect the hearing of the majority of consumers, reasonable guidelines would include a recommendation to limit headphone use to 1 hr or less per day if using supra-aural style headphones at a gain control setting of 60% of maximum.
Enhanced performance of ZnO microballoon arrays for a triboelectric nanogenerator.
Deng, Weili; Zhang, Binbin; Jin, Long; Chen, Yueqi; Chu, Wenjun; Zhang, Haitao; Zhu, Minhao; Yang, Weiqing
2017-03-01
In recent years, triboelectric nanogenerators (TENGs), harvesting energy from the environment as a sustainable power source, have attracted great attention. Currently, many reports focus on the effect of surface modification on the electrical output performance of the TENG. In this work, we have fabricated vertically grown ZnO microballoon (ZnOMB) arrays on top of pyramid-featured PDMS patterned film, contacted with PTFE film to construct the TENG. The electrical output performances of the designed TENG are presented under external forces with different frequencies. The corresponding output open-circuit voltage with ZnOMBs could reach about 57 V the current density about 59 mA m -2 at 100 Hz, which was about 2.3 times higher than without any ZnO. The global maximum of the instantaneous peak power could reach 1.1 W m -2 when the external load resistance was about 2 MΩ. Furthermore, the electrical output of the fabricated device could light 30 commercial LED bulbs without any rectifier circuits or energy-storage elements. This clearly suggests that this kind of surface modification can dramatically enhance the output performance of the TENG. Moreover, the design of TENG demonstrated here can be applied to various energy harvesting applications.
Enhanced performance of ZnO microballoon arrays for a triboelectric nanogenerator
NASA Astrophysics Data System (ADS)
Deng, Weili; Zhang, Binbin; Jin, Long; Chen, Yueqi; Chu, Wenjun; Zhang, Haitao; Zhu, Minhao; Yang, Weiqing
2017-03-01
In recent years, triboelectric nanogenerators (TENGs), harvesting energy from the environment as a sustainable power source, have attracted great attention. Currently, many reports focus on the effect of surface modification on the electrical output performance of the TENG. In this work, we have fabricated vertically grown ZnO microballoon (ZnOMB) arrays on top of pyramid-featured PDMS patterned film, contacted with PTFE film to construct the TENG. The electrical output performances of the designed TENG are presented under external forces with different frequencies. The corresponding output open-circuit voltage with ZnOMBs could reach about 57 V the current density about 59 mA m-2 at 100 Hz, which was about 2.3 times higher than without any ZnO. The global maximum of the instantaneous peak power could reach 1.1 W m-2 when the external load resistance was about 2 MΩ. Furthermore, the electrical output of the fabricated device could light 30 commercial LED bulbs without any rectifier circuits or energy-storage elements. This clearly suggests that this kind of surface modification can dramatically enhance the output performance of the TENG. Moreover, the design of TENG demonstrated here can be applied to various energy harvesting applications.
Development of an ultrasonic linear motor with ultra-positioning capability and four driving feet.
Zhu, Cong; Chu, Xiangcheng; Yuan, Songmei; Zhong, Zuojin; Zhao, Yanqiang; Gao, Shuning
2016-12-01
This paper presents a novel linear piezoelectric motor which is suitable for rapid ultra-precision positioning. The finite element analysis (FEA) was applied for optimal design and further analysis, then experiments were conducted to investigate its performance. By changing the input signal, the proposed motor was found capable of working in the fast driving mode as well as in the precision positioning mode. When working in the fast driving mode, the motor acts as an ultrasonic motor with maximum no-load speed up to 181.2mm/s and maximum thrust of 1.7N at 200Vp-p. Also, when working in precision positioning mode, the motor can be regarded as a flexible hinge piezoelectric actuator with arbitrary motion in the range of 8μm. The measurable minimum output displacement was found to be 0.08μm, but theoretically, can be even smaller. More importantly, the motor can be quickly and accurately positioned in a large stroke. Copyright © 2016 Elsevier B.V. All rights reserved.
A CW green laser emission by self-sum-frequency-mixing in Nd:GdCOB crystal
NASA Astrophysics Data System (ADS)
Shao, Y.; Jin, H. J.; Lin, J.; Zhang, D.; Tao, Z. H.; Zhang, T. Y.; Li, Y. L.; Ruan, Q. R.
2011-10-01
A compact and efficient green laser light at 538 nm produced by self-sum-frequency-mixing of both fundamental infrared laser waves (1061 and 1091 nm) in Nd:GdCa4O(BO3)3 (Nd:GdCOB) crystal is demonstrated. With 18.2 W of diode pump power, a maximum output power of 1.73 W in the green spectral range at 538 nm has been achieved, corresponding to an optical-to-optical conversion efficiency of 9.5%; the output power stability over 30 min is better than 3%. To the best of our knowledge, this is first work on self-sum-frequency-mixing of a diode pumped Nd:GdCOB laser.
Utilization of corn cob biochar in a direct carbon fuel cell
NASA Astrophysics Data System (ADS)
Yu, Jinshuai; Zhao, Yicheng; Li, Yongdan
2014-12-01
Biochar obtained from the pyrolysis of corn cob is used as the fuel of a direct carbon fuel cell (DCFC) employing a composite electrolyte composed of a samarium doped ceria (SDC) and a eutectic carbonate phase. An anode layer made of NiO and SDC is utilized to suppress the cathode corrosion by the molten carbonate and improves the whole cell stability. The anode off-gas of the fuel cell is analyzed with a gas chromatograph. The effect of working temperature on the cell resistance and power output is examined. The maximum power output achieves 185 mW cm-2 at a current density of 340 mA cm-2 and 750 °C. An anode reaction scheme including the Boudouard reaction is proposed.
Uncooled pulsed zinc oxide semiconductor laser
NASA Astrophysics Data System (ADS)
Bogdankevich, O. V.; Darznek, S. A.; Zverev, M. M.; Kostin, N. N.; Krasavina, E. M.
1985-02-01
An optimized ZnO laser which operates at ambient temperature without cooling is reported, along with extension of the design to form a multielement high-power laser. ZnO single crystal plane-parallel wafers 0.22 mm thick, covered with total and semi-transparent coatings, were exposed to a 200 keV electron beam with a 10 nsec pulse and a current density up to 1 kA/sq cm. No damage was observed in the crystals at saturation. A 7 percent maximum efficiency at a reflection coefficient (RC) of 0.4 was associated with a maximum output of 25 kW and a light power density of 3 MW/sq cm. Cementing a ZnO wafer to a sapphire substrate, applying the same type of coatings and working with a RC of 0.6 yielded a maximum power of 300 kW/sq cm.
NASA Astrophysics Data System (ADS)
Encomendero, Jimy; Yan, Rusen; Verma, Amit; Islam, S. M.; Protasenko, Vladimir; Rouvimov, Sergei; Fay, Patrick; Jena, Debdeep; Xing, Huili Grace
2018-03-01
We report the generation of room temperature microwave oscillations from GaN/AlN resonant tunneling diodes, which exhibit record-high peak current densities. The tunneling heterostructure grown by molecular beam epitaxy on freestanding GaN substrates comprises a thin GaN quantum well embedded between two AlN tunneling barriers. The room temperature current-voltage characteristics exhibit a record-high maximum peak current density of ˜220 kA/cm2. When biased within the negative differential conductance region, microwave oscillations are measured with a fundamental frequency of ˜0.94 GHz, generating an output power of ˜3.0 μW. Both the fundamental frequency and the output power of the oscillator are limited by the external biasing circuit. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is predicted to be ˜200 GHz. This work represents a significant step towards microwave power generation enabled by resonant tunneling transport, an ultra-fast process that goes beyond the limitations of current III-Nitride high electron mobility transistors.
Ledezma, Pablo; Greenman, John; Ieropoulos, Ioannis
2012-08-01
The aim of this work is to study the relationship between growth rate and electricity production in perfusion-electrode microbial fuel cells (MFCs), across a wide range of flow rates by co-measurement of electrical output and changes in population numbers by viable counts and optical density. The experiments hereby presented demonstrate, for the first time to the authors' knowledge, that the anodic biofilm specific growth rate can be determined and controlled in common with other loose matrix perfusion systems. Feeding with nutrient-limiting conditions at a critical flow rate (50.8 mL h(-1)) resulted in the first experimental determination of maximum specific growth rate μ(max) (19.8 day(-1)) for Shewanella spp. MFC biofilms, which is considerably higher than those predicted or assumed via mathematical modelling. It is also shown that, under carbon-energy limiting conditions there is a strong direct relationship between growth rate and electrical power output, with μ(max) coinciding with maximum electrical power production. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Challa, Vinod R.; Prasad, M. G.; Fisher, Frank T.
2009-09-01
Vibration energy harvesting is being pursued as a means to power wireless sensors and ultra-low power autonomous devices. From a design standpoint, matching the electrical damping induced by the energy harvesting mechanism to the mechanical damping in the system is necessary for maximum efficiency. In this work two independent energy harvesting techniques are coupled to provide higher electrical damping within the system. Here the coupled energy harvesting device consists of a primary piezoelectric energy harvesting device to which an electromagnetic component is added to better match the total electrical damping to the mechanical damping in the system. The first coupled device has a resonance frequency of 21.6 Hz and generates a peak power output of ~332 µW, compared to 257 and 244 µW obtained from the optimized, stand-alone piezoelectric and electromagnetic energy harvesting devices, respectively, resulting in a 30% increase in power output. A theoretical model has been developed which closely agrees with the experimental results. A second coupled device, which utilizes the d33 piezoelectric mode, shows a 65% increase in power output in comparison to the corresponding stand-alone, single harvesting mode devices. This work illustrates the design considerations and limitations that one must consider to enhance device performance through the coupling of multiple harvesting mechanisms within a single energy harvesting device.
The Effect of Valve Cooling upon Maximum Permissible Engine Output as Limited by Knock
NASA Technical Reports Server (NTRS)
Munger, Maurice; Wilsted, H D; Mulcahy, B A
1942-01-01
A Wright GR-1820-G200 cylinder was tested over a wide range of fuel-air ratios at maximum permissible power output as limited by knock with three different degrees of valve cooling. The valves used were stock valves (solid inlet valve and hollow sodium-cooled exhaust valve), hollow valves with no coolant, and hollow valves with flowing water as a coolant. Curves showing the variation in maximum permissible values of inlet-air pressure, indicated mean effective pressure, cylinder charge, and indicated specific fuel consumption with change in fuel-air ratio and valve cooling are shown. The use of valves cooled by a stream of water passing through their hollow interiors permitted indicated mean effective pressures 10 percent higher than the mean effective pressures permissible with stock valves when the engine was operated with fuel-air ratios from 0.055 to 0.065. Operation of the engine with lean mixtures with uncooled hollow valves resulted in power output below the output obtained with the stock valves. The data show an increase in maximum permissible indicated mean effective pressure due to cooling the valves, which averages only 2.1 percent with fuel-air ratios from 0.075 to 0.105.
47 CFR 15.115 - TV interface devices, including cable system terminal devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... output terminal(s) of the device terminated by a resistance equal to the rated output impedance. The... ohms) matching the rated output impedance of the TV interface device, shall not exceed the following... during maximum amplitude peaks across a resistance (R in ohms) matching the rated output impedance of the...
47 CFR 15.115 - TV interface devices, including cable system terminal devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... output terminal(s) of the device terminated by a resistance equal to the rated output impedance. The... ohms) matching the rated output impedance of the TV interface device, shall not exceed the following... during maximum amplitude peaks across a resistance (R in ohms) matching the rated output impedance of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanner, Bertrand C.W.; Miller, Mark S.; Miller, Becky M.
2011-08-26
The indirect flight muscle (IFM) of insects is characterized by a near crystalline myofilament lattice structure that likely evolved to achieve high power output. In Drosophila IFM, the myosin rod binding protein flightin plays a crucial role in thick filament organization and sarcomere integrity. Here we investigate the extent to which the COOH terminus of flightin contributes to IFM structure and mechanical performance using transgenic Drosophila expressing a truncated flightin lacking the 44 COOH-terminal amino acids (fln{sup {Delta}C44}). Electron microscopy and X-ray diffraction measurements show decreased myofilament lattice order in the fln{sup {Delta}C44} line compared with control, a transgenic flightin-nullmore » rescued line (fln{sup +}). fln{sup {Delta}C44} fibers produced roughly 1/3 the oscillatory work and power of fln{sup +}, with reduced frequencies of maximum work (123 Hz vs. 154 Hz) and power (139 Hz vs. 187 Hz) output, indicating slower myosin cycling kinetics. These reductions in work and power stem from a slower rate of cross-bridge recruitment and decreased cross-bridge binding in fln{sup {Delta}C44} fibers, although the mean duration of cross-bridge attachment was not different between both lines. The decreases in lattice order and myosin kinetics resulted in fln{sup {Delta}C44} flies being unable to beat their wings. These results indicate that the COOH terminus of flightin is necessary for normal myofilament lattice organization, thereby facilitating the cross-bridge binding required to achieve high power output for flight.« less
Disordered Nd:LuYSiO5 crystal lasers operating on the 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions
NASA Astrophysics Data System (ADS)
Guan, Xiaofeng; Zhou, Zhiyong; Huang, Xiaoxu; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Xu, Jun
2017-11-01
We report on diode-pumped disordered Nd:LuYSiO5 (Nd:LYSO) crystal lasers operating on the 4F3/2 → 4I11/2 and 4F3/2 → 4I 13/2 transitions. Simultaneous laser operation at 1074 and 1078 nm is achieved with maximum output power of 4.46 W and slope efficiency of 39.6%. Single wavelength laser at 1358 nm with maximum output power of 1.15 W and slope efficiency of 11.8% is also obtained. Moreover, four single-wavelength lasers at 1058, 1107, 1330 and 1386 nm with relatively low gains are achieved with maximum output powers of 2.72, 1.22, 0.52 and 0.42 W, respectively, for the first time to our knowledge. Lasing at non-traditional emission lines was obtained by using output couplers with dielectric coatings for specific wavelength ranges.
NASA Astrophysics Data System (ADS)
Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R.; Hao, Xiaotao; Chen, Feng
2017-04-01
We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO2). The unique feature of VO2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS2) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO2 as low-cost saturable absorber for subnanosecond laser generation.
Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R; Hao, Xiaotao; Chen, Feng
2017-04-06
We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO 4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO 2 ). The unique feature of VO 2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO 4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO 2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS 2 ) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO 2 as low-cost saturable absorber for subnanosecond laser generation.
Thermoelectric properties of an interacting quantum dot based heat engine
NASA Astrophysics Data System (ADS)
Erdman, Paolo Andrea; Mazza, Francesco; Bosisio, Riccardo; Benenti, Giuliano; Fazio, Rosario; Taddei, Fabio
2017-06-01
We study the thermoelectric properties and heat-to-work conversion performance of an interacting, multilevel quantum dot (QD) weakly coupled to electronic reservoirs. We focus on the sequential tunneling regime. The dynamics of the charge in the QD is studied by means of master equations for the probabilities of occupation. From here we compute the charge and heat currents in the linear response regime. Assuming a generic multiterminal setup, and for low temperatures (quantum limit), we obtain analytical expressions for the transport coefficients which account for the interplay between interactions (charging energy) and level quantization. In the case of systems with two and three terminals we derive formulas for the power factor Q and the figure of merit Z T for a QD-based heat engine, identifying optimal working conditions which maximize output power and efficiency of heat-to-work conversion. Beyond the linear response we concentrate on the two-terminal setup. We first study the thermoelectric nonlinear coefficients assessing the consequences of large temperature and voltage biases, focusing on the breakdown of the Onsager reciprocal relation between thermopower and Peltier coefficient. We then investigate the conditions which optimize the performance of a heat engine, finding that in the quantum limit output power and efficiency at maximum power can almost be simultaneously maximized by choosing appropriate values of electrochemical potential and bias voltage. At last we study how energy level degeneracy can increase the output power.
Use of Regional Climate Model Output for Hydrologic Simulations
NASA Astrophysics Data System (ADS)
Hay, L. E.; Clark, M. P.; Wilby, R. L.; Gutowski, W. J.; Leavesley, G. H.; Pan, Z.; Arritt, R. W.; Takle, E. S.
2001-12-01
Daily precipitation and maximum and minimum temperature time series from a Regional Climate Model (RegCM2) were used as input to a distributed hydrologic model for a rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango, Colorado; East Fork of the Carson River near Gardnerville, Nevada; and Cle Elum River near Roslyn, Washington). For comparison purposes, spatially averaged daily data sets of precipitation and maximum and minimum temperature were developed from measured data. These datasets included precipitation and temperature data for all stations that are located within the area of the RegCM2 model output used for each basin, but excluded station data used to calibrate the hydrologic model. Both the RegCM2 output and station data capture the gross aspects of the seasonal cycles of precipitation and temperature. However, in all four basins, the RegCM2- and station-based simulations of runoff show little skill on a daily basis (Nash-Sutcliffe (NS) values ranging from 0.05-0.37 for RegCM2 and -0.08-0.65 for station). When the precipitation and temperature biases are corrected in the RegCM2 output and station data sets (Bias-RegCM2 and Bias-station, respectively) the accuracy of the daily runoff simulations improve dramatically for the snowmelt-dominated basins. In the rainfall-dominated basin, runoff simulations based on the Bias-RegCM2 output show no skill (NS value of 0.09) whereas Bias-All simulated runoff improves (NS value improved from -0.08 to 0.72). These results indicate that the resolution of the RegCM2 output is appropriate for basin-scale modeling, but RegCM2 model output does not contain the day-to-day variability needed for basin-scale modeling in rainfall-dominated basins. Future work is warranted to identify the causes for systematic biases in RegCM2 simulations, develop methods to remove the biases, and improve RegCM2 simulations of daily variability in local climate.
Backward pumping kilowatt Yb3+-doped double-clad fiber laser
NASA Astrophysics Data System (ADS)
Han, Z. H.; Lin, X. C.; Hou, W.; Yu, H. J.; Zhou, S. Z.; Li, J. M.
2011-09-01
A ytterbium-doped double-clad fiber laser generating up to 1026 W of continuous-wave output power at 1085 nm with a slope efficiency of 74% by single-ended backward pumping configuration is reported. The core diameter was 20 μm with a low numerical aperture of 0.06, and a good beam quality (BPP < 1.8 mm mrad) is achieved without special mode selection methods. No undesirable roll-over was observed in output power with increasing pump power, and the maximum output power was limited by the available pump power. The instability of maximum output power was better than ±0.6%. Different pumping configurations were also compared in experiment, which shows good agreements with theoretical analyses.
Improved Drain Current Saturation and Voltage Gain in Graphene-on-Silicon Field Effect Transistors.
Song, Seung Min; Bong, Jae Hoon; Hwang, Wan Sik; Cho, Byung Jin
2016-05-04
Graphene devices for radio frequency (RF) applications are of great interest due to their excellent carrier mobility and saturation velocity. However, the insufficient current saturation in graphene field effect transistors (FETs) is a barrier preventing enhancements of the maximum oscillation frequency and voltage gain, both of which should be improved for RF transistors. Achieving a high output resistance is therefore a crucial step for graphene to be utilized in RF applications. In the present study, we report high output resistances and voltage gains in graphene-on-silicon (GoS) FETs. This is achieved by utilizing bare silicon as a supporting substrate without an insulating layer under the graphene. The GoSFETs exhibit a maximum output resistance of 2.5 MΩ∙μm, maximum intrinsic voltage gain of 28 dB, and maximum voltage gain of 9 dB. This method opens a new route to overcome the limitations of conventional graphene-on-insulator (GoI) FETs and subsequently brings graphene electronics closer to practical usage.
Baumeister, Sebastian E; Leitzmann, Michael F; Bahls, Martin; Dörr, Marcus; Schmid, Daniela; Schomerus, Georg; Appel, Katja; Markus, Marcello R P; Völzke, Henry; Gläser, Sven; Grabe, Hans-Jörgen
2017-01-01
Physical activity and cardiorespiratory fitness may help prevent depression and anxiety. Previous studies have been limited by error-prone measurements. We examined whether self-reported physical activity domains and peak exercise capacity (peakVO₂) are associated with incident and recurrent major depressive disorder (MDD), depressive symptoms, and anxiety disorders. This was a prospective population-based study of 1,080 adult men and women (25-83 years) with a median follow-up of 4.5 years and measures of physical activity during leisure time, sports, and work (Baecke questionnaire); a measure of depressive symptoms (Beck Depression Inventory II); symptom-limited cycle ergometer testing (peakVO₂, oxygen uptake at anaerobic threshold [VO₂@AT], maximum power output at peak exertion); and a structured psychiatric interview (Munich Composite International Diagnostic Interview). Baseline data were collected between 2002 and 2006, and follow-up data, between 2007 and 2010. After adjustment for age, sex, education, smoking, alcohol consumption, and waist circumference, the relative risks for incident MDD per standard deviation (SD) increase in leisure-time physical activity, physical activity during sport, physical activity at work, peakVO₂, VO₂@AT, and maximum power output were 1.002 (95% confidence interval, 0.90 to 1.12), 1.02 (0.90 to 1.15), 0.94 (0.80 to 1.10), 0.71 (0.52 to 0.98), 0.83 (0.66 to 1.04), and 0.71 (0.52 to 0.96), respectively. PeakVO₂, VO₂@AT, and maximum power output were associated with recurrent MDD, depressive symptoms, and anxiety. PeakVO₂ was more strongly related to the co-occurrence of MDD and anxiety (adjusted odds ratio [OR] = 0.45 [0.24 to 0.84]) than depression or anxiety alone (OR = 0.71 [0.53 to 0.94]). Greater cardiorespiratory fitness but not domain-specific physical activity was associated with a lower incidence of MDD and clinical anxiety. © Copyright 2017 Physicians Postgraduate Press, Inc.
Review on the conversion of thermoacoustic power into electricity.
Timmer, Michael A G; de Blok, Kees; van der Meer, Theo H
2018-02-01
Thermoacoustic engines convert heat energy into high amplitude acoustic waves and subsequently into electric power. This article provides a review of the four main methods to convert the (thermo)acoustic power into electricity. First, loudspeakers and linear alternators are discussed in a section on electromagnetic devices. This is followed by sections on piezoelectric transducers, magnetohydrodynamic generators, and bidirectional turbines. Each segment provides a literature review of the given technology for the field of thermoacoustics, focusing on possible configurations, operating characteristics, output performance, and analytical and numerical methods to study the devices. This information is used as an input to discuss the performance and feasibility of each method, and to identify challenges that should be overcome for a more successful implementation in thermoacoustic engines. The work is concluded by a comparison of the four technologies, concentrating on the possible areas of application, the conversion efficiency, maximum electrical power output and more generally the suggested focus for future work in the field.
Silicone-Based Triboelectric Nanogenerator for Water Wave Energy Harvesting.
Xiao, Tian Xiao; Jiang, Tao; Zhu, Jian Xiong; Liang, Xi; Xu, Liang; Shao, Jia Jia; Zhang, Chun Lei; Wang, Jie; Wang, Zhong Lin
2018-01-31
Triboelectric nanogenerator (TENG) has been proven to be efficient for harvesting water wave energy, which is one of the most promising renewable energy sources. In this work, a TENG with a silicone rubber/carbon black composite electrode was designed for converting the water wave energy into electricity. The silicone-based electrode with a soft texture provides a better contact with the dielectric film. Furthermore, a spring structure is introduced to transform low-frequency water wave motions into high-frequency vibrations. They together improve the output performance and efficiency of TENG. The output performances of TENGs are further enhanced by optimizing the triboelectric material pair and tribo-surface area. A spring-assisted TENG device with the segmented silicone rubber-based electrode structure was sealed into a waterproof box, which delivers a maximum power density of 2.40 W m -3 , as triggered by the water waves. The present work provides a new strategy for fabricating high-performance TENG devices by coupling flexible electrodes and spring structure for harvesting water wave energy.
McGowan, C.P.; Neptune, R.R.; Herzog, W.
2009-01-01
History dependent effects on muscle force development following active changes in length have been measured in a number of experimental studies. However, few muscle models have included these properties or examined their impact on force and power output in dynamic cyclic movements. The goal of this study was to develop and validate a modified Hill-type muscle model that includes shortening induced force depression and assess its influence on locomotor performance. The magnitude of force depression was defined by empirical relationships based on muscle mechanical work. To validate the model, simulations incorporating force depression were developed to emulate single muscle in situ and whole muscle group leg extension experiments. There was excellent agreement between simulation and experimental values, with in situ force patterns closely matching the experimental data (average RMS error < 1.5 N) and force depression in the simulated leg extension exercise being similar in magnitude to experimental values (6.0% vs 6.5%, respectively). To examine the influence of force depression on locomotor performance, simulations of maximum power pedaling with and without force depression were generated. Force depression decreased maximum crank power by 20% – 40%, depending on the relationship between force depression and muscle work used. These results indicate that force depression has the potential to substantially influence muscle power output in dynamic cyclic movements. However, to fully understand the impact of this phenomenon on human movement, more research is needed to characterize the relationship between force depression and mechanical work in large muscles with different morphologies. PMID:19879585
Automotive Stirling Engine Development Program Mod I Stirling engine development
NASA Technical Reports Server (NTRS)
Simetkosky, M. A.
1983-01-01
The development of the Mod I 4-cylinder automotive Stirling engine is discussed and illustrated with drawings, block diagrams, photographs, and graphs and tables of preliminary test data. The engine and its drive, cold-engine, hot-engine, external-heat, air/fuel, power-control, electronic-control, and auxiliary systems are characterized. Performance results from a total of 1900 h of tests on 4 prototype engines include average maximum efficiency (at 2000 rpm) 34.5 percent and maximum output power 54.4 kW. The modifications introduced in an upgraded version of the Mod I are explained; this engine has maximum efficiency 40.4 percent and maximum power output 69.2 kW.
Diode-end-pumped Ho, Pr:LiLuF4 bulk laser at 2.95 μm.
Nie, Hongkun; Zhang, Peixiong; Zhang, Baitao; Yang, Kejian; Zhang, Lianhan; Li, Tao; Zhang, Shuaiyi; Xu, Jianqiu; Hang, Yin; He, Jingliang
2017-02-15
A diode-end-pumped continuous-wave (CW) and passively Q-switched Ho, Pr:LiLuF4 (Ho, Pr:LLF) laser operation at 2.95 μm was demonstrated for the first time, to the best of our knowledge. The maximum CW output power was 172 mW. By using a monolayer graphene as the saturable absorber, the passively Q-switched operation was realized, in which regimes with the highest output power, the shortest pulse duration, and the maximum repetition rate were determined to be 88 mW, 937.5 ns, and 55.7 kHz, respectively. The laser beam quality factor M2 at the maximum CW output power were measured to be Mx2=1.48 and My2=1.47.
Implementation of Maximum Power Point Tracking (MPPT) Solar Charge Controller using Arduino
NASA Astrophysics Data System (ADS)
Abdelilah, B.; Mouna, A.; KouiderM’Sirdi, N.; El Hossain, A.
2018-05-01
the platform Arduino with a number of sensors standard can be used as components of an electronic system for acquiring measures and controls. This paper presents the design of a low-cost and effective solar charge controller. This system includes several elements such as the solar panel converter DC/DC, battery, circuit MPPT using Microcontroller, sensors, and the MPPT algorithm. The MPPT (Maximum Power Point Tracker) algorithm has been implemented using an Arduino Nano with the preferred program. The voltage and current of the Panel are taken where the program implemented will work and using this algorithm that MPP will be reached. This paper provides details on the solar charge control device at the maximum power point. The results include the change of the duty cycle with the change in load and thus mean the variation of the buck converter output voltage and current controlled by the MPPT algorithm.
2.4 μm diode-pumped Dy2+:CaF2 laser
NASA Astrophysics Data System (ADS)
Švejkar, Richard; Papashvili, Alexander G.; Šulc, Jan; Němec, Michal; Jelínková, Helena; Doroshenko, Maxim E.; Batygov, Sergei H.; Osiko, Vyacheslav V.
2018-01-01
In this work, a cryogenic cooled, longitudinal diode-pumped Dy2+ :CaF2 laser was investigated for the first time. The temperature dependence of the spectroscopy and the laser properties of Dy2+ :CaF2 are presented. The tested Dy2+ :CaF2 crystal was a longitudinal pump in a near-IR region (926 nm) by laser diode radiation. The maximal mean output power and slope efficiency at 78 K during the pulse regime of the laser were 57.5 mW and 7%, respectively. Furthermore, the CW regime was successfully tested and a maximum output power of 0.37 W was obtained for the absorbed pumping power 5.7 W. The emission laser wavelength was 2367 nm.
NASA Astrophysics Data System (ADS)
Karstedt, Jörg; Ogrzewalla, Jürgen; Severin, Christopher; Pischinger, Stefan
In this work, the concept development, system layout, component simulation and the overall DOE system optimization of a HT-PEM fuel cell APU with a net electric power output of 4.5 kW and an onboard methane fuel processor are presented. A highly integrated system layout has been developed that enables fast startup within 7.5 min, a closed system water balance and high fuel processor efficiencies of up to 85% due to the recuperation of the anode offgas burner heat. The integration of the system battery into the load management enhances the transient electric performance and the maximum electric power output of the APU system. Simulation models of the carbon monoxide influence on HT-PEM cell voltage, the concentration and temperature profiles within the autothermal reformer (ATR) and the CO conversion rates within the watergas shift stages (WGSs) have been developed. They enable the optimization of the CO concentration in the anode gas of the fuel cell in order to achieve maximum system efficiencies and an optimized dimensioning of the ATR and WGS reactors. Furthermore a DOE optimization of the global system parameters cathode stoichiometry, anode stoichiometry, air/fuel ratio and steam/carbon ratio of the fuel processing system has been performed in order to achieve maximum system efficiencies for all system operating points under given boundary conditions.
Design of DSP-based high-power digital solar array simulator
NASA Astrophysics Data System (ADS)
Zhang, Yang; Liu, Zhilong; Tong, Weichao; Feng, Jian; Ji, Yibo
2013-12-01
To satisfy rigid performance specifications, a feedback control was presented for zoom optical lens plants. With the increasing of global energy consumption, research of the photovoltaic(PV) systems get more and more attention. Research of the digital high-power solar array simulator provides technical support for high-power grid-connected PV systems research.This paper introduces a design scheme of the high-power digital solar array simulator based on TMS320F28335. A DC-DC full-bridge topology was used in the system's main circuit. The switching frequency of IGBT is 25kHz.Maximum output voltage is 900V. Maximum output current is 20A. Simulator can be pre-stored solar panel IV curves.The curve is composed of 128 discrete points .When the system was running, the main circuit voltage and current values was feedback to the DSP by the voltage and current sensors in real-time. Through incremental PI,DSP control the simulator in the closed-loop control system. Experimental data show that Simulator output voltage and current follow a preset solar panels IV curve. In connection with the formation of high-power inverter, the system becomes gridconnected PV system. The inverter can find the simulator's maximum power point and the output power can be stabilized at the maximum power point (MPP).
Sugisaki, Norihide; Okada, Junichi; Kanehisa, Hiroaki
2013-01-01
The present study aimed to quantify the intensity of lower extremity plyometric exercises by determining joint mechanical output. Ten men (age, 27.3 ± 4.1 years; height, 173.6 ± 5.4 cm; weight, 69.4 ± 6.0 kg; 1-repetition maximum [1RM] load in back squat 118.5 ± 12.0 kg) performed the following seven plyometric exercises: two-foot ankle hop, repeated squat jump, double-leg hop, depth jumps from 30 and 60 cm, and single-leg and double-leg tuck jumps. Mechanical output variables (torque, angular impulse, power, and work) at the lower limb joints were determined using inverse-dynamics analysis. For all measured variables, ANOVA revealed significant main effects of exercise type for all joints (P < 0.05) along with significant interactions between joint and exercise (P < 0.01), indicating that the influence of exercise type on mechanical output varied among joints. Paired comparisons revealed that there were marked differences in mechanical output at the ankle and hip joints; most of the variables at the ankle joint were greatest for two-foot ankle hop and tuck jumps, while most hip joint variables were greatest for repeated squat jump or double-leg hop. The present results indicate the necessity for determining mechanical output for each joint when evaluating the intensity of plyometric exercises.
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Kaemming, Thomas A.
2012-01-01
A methodology is described whereby the work extracted by a turbine exposed to the fundamentally nonuniform flowfield from a representative pressure gain combustor (PGC) may be assessed. The method uses an idealized constant volume cycle, often referred to as an Atkinson or Humphrey cycle, to model the PGC. Output from this model is used as input to a scalable turbine efficiency function (i.e., a map), which in turn allows for the calculation of useful work throughout the cycle. Integration over the entire cycle yields mass-averaged work extraction. The unsteady turbine work extraction is compared to steady work extraction calculations based on various averaging techniques for characterizing the combustor exit pressure and temperature. It is found that averages associated with momentum flux (as opposed to entropy or kinetic energy) provide the best match. This result suggests that momentum-based averaging is the most appropriate figure-of-merit to use as a PGC performance metric. Using the mass-averaged work extraction methodology, it is also found that the design turbine pressure ratio for maximum work extraction is significantly higher than that for a turbine fed by a constant pressure combustor with similar inlet conditions and equivalence ratio. Limited results are presented whereby the constant volume cycle is replaced by output from a detonation-based PGC simulation. The results in terms of averaging techniques and design pressure ratio are similar.
A Regional Analysis of Non-Methane Hydrocarbons And Meteorology of The Rural Southeast United States
1996-01-01
Zt is an ARIMA time series. This is a typical regression model , except that it allows for autocorrelation in the error term Z. In this work, an ARMA...data=folder; var residual; run; II Statistical output of 1992 regression model on 1993 ozone data ARIMA Procedure Maximum Likelihood Estimation Approx...at each of the sites, and to show the effect of synoptic meteorology on high ozone by examining NOAA daily weather maps and climatic data
General Performance Calculations for Gas Turbine Engines
1946-08-01
by - D. H. Mailing on. B.So. June, 1946. In this monograph an attempt in made to summarise the theoretical work carried out during the past few...Engines 1.0 nBBPDPCTION ir’-> During the war years the gas turbine may be said to have come into its own, both as an engine already accepted and...The closer this second pressure ratio is to 1 the lower is the mnxlnwm output and also the pressure ratio r.t which that maximum occurs. Tho
NASA Technical Reports Server (NTRS)
Frederick, Martin E. (Inventor); Jermakian, Joel (Inventor)
1991-01-01
A method and an apparatus is provided for efficiently controlling the power output of a solar cell array string or a plurality of solar cell array strings to achieve a maximum amount of output power from the strings under varying conditions of use. Maximum power output from a solar array string is achieved through control of a pulse width modulated DC/DC buck converter which transfers power from a solar array to a load or battery bus. The input voltage from the solar array to the converter is controlled by a pulse width modulation duty cycle, which in turn is controlled by a differential signal controller. By periodically adjusting the control voltage up or down by a small amount and comparing the power on the load or bus with that generated at different voltage values a maximum power output voltage may be obtained. The system is totally modular and additional solar array strings may be added to the system simply by adding converter boards to the system and changing some constants in the controller's control routines.
Detonation wave compression in gas turbines
NASA Technical Reports Server (NTRS)
Wortman, A.
1986-01-01
A study was made of the concept of augmenting the performance of low pressure ratio gas turbines by detonation wave compression of part of the flow. The concept exploits the constant volume heat release of detonation waves to increase the efficiency of the Brayton cycle. In the models studied, a fraction of the compressor output was channeled into detonation ducts where it was processed by transient transverse detonation waves. Gas dynamic studies determined the maximum cycling frequency of detonation ducts, proved that upstream propagation of pressure pulses represented no problems and determined the variations of detonation duct output with time. Mixing and wave compression were used to recombine the combustor and detonation duct flows and a concept for a spiral collector to further smooth the pressure and temperature pulses was presented as an optional component. The best performance was obtained with a single firing of the ducts so that the flow could be re-established before the next detonation was initiated. At the optimum conditions of maximum frequency of the detonation ducts, the gas turbine efficiency was found to be 45 percent while that of a corresponding pressure ratio 5 conventional gas turbine was only 26%. Comparable improvements in specific fuel consumption data were found for gas turbines operating as jet engines, turbofans, and shaft output machines. Direct use of the detonation duct output for jet propulsion proved unsatisfactory. Careful analysis of the models of the fluid flow phenomena led to the conclusion that even more elaborate calculations would not diminish the uncertainties in the analysis of the system. Feasibility of the concept to work as an engine now requires validation in an engineering laboratory experiment.
NASA Astrophysics Data System (ADS)
Ozaki, Toshihiro; Hirose, Tetsuya; Asano, Hiroki; Kuroki, Nobutaka; Numa, Masahiro
2017-04-01
In this paper, we present a 151 nA quiescent and 6.8 mA maximum-output-current low-dropout (LDO) linear regulator for micropower battery management. The LDO regulator employs self-biasing and multiple-stacked cascode techniques to achieve efficient, accurate, and high-voltage-input-tolerant operation. Measurement results demonstrated that the proposed LDO regulator operates with an ultralow quiescent current of 151 nA. The maximum output currents with a 4.16 V output were 1.0 and 6.8 mA when the input voltages were 4.25 and 5.0 V, respectively.
First-order irreversible thermodynamic approach to a simple energy converter
NASA Astrophysics Data System (ADS)
Arias-Hernandez, L. A.; Angulo-Brown, F.; Paez-Hernandez, R. T.
2008-01-01
Several authors have shown that dissipative thermal cycle models based on finite-time thermodynamics exhibit loop-shaped curves of power output versus efficiency, such as it occurs with actual dissipative thermal engines. Within the context of first-order irreversible thermodynamics (FOIT), in this work we show that for an energy converter consisting of two coupled fluxes it is also possible to find loop-shaped curves of both power output and the so-called ecological function versus efficiency. In a previous work Stucki [J. W. Stucki, Eur. J. Biochem. 109, 269 (1980)] used a FOIT approach to describe the modes of thermodynamic performance of oxidative phosphorylation involved in adenosine triphosphate (ATP) synthesis within mithochondrias. In that work the author did not use the mentioned loop-shaped curves and he proposed that oxidative phosphorylation operates in a steady state at both minimum entropy production and maximum efficiency simultaneously, by means of a conductance matching condition between extreme states of zero and infinite conductances, respectively. In the present work we show that all Stucki’s results about the oxidative phosphorylation energetics can be obtained without the so-called conductance matching condition. On the other hand, we also show that the minimum entropy production state implies both null power output and efficiency and therefore this state is not fulfilled by the oxidative phosphorylation performance. Our results suggest that actual efficiency values of oxidative phosphorylation performance are better described by a mode of operation consisting of the simultaneous maximization of both the so-called ecological function and the efficiency.
NASA Astrophysics Data System (ADS)
Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd
2018-04-01
The magnetism attraction between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator is often known as cogging. Cogging requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator to see its performance characteristic. In the maximum power point tracking test, the fabricated ironless coreless electricity generator was tested by applying the load on the ironless coreless electricity generator optimization to maximize the power generated, voltage and the current produced by the ironless coreless electricity generator when the rotational speed of the rotor increased throughout the test. The rotational torque and power output are measured, and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 200VAC at rotational speed of 318 RPM. Torque required to rotate the generator was at 10.8Nm. The generator had working efficiency of 77.73% and the power generated was at 280W.
Harne, Ryan L
2012-07-01
Conversion of ambient vibrational energy into electric power has been the impetus of much modern research. The traditional analysis has focused on absolute electrical power output from the harvesting devices and efficiency defined as the convertibility of an infinite resource of vibration excitation into power. This perspective has limited extensibility when applying resonant harvesters to host resonant structures when the inertial influence of the harvester is more significant. Instead, this work pursues a fundamental understanding of the coupled dynamics of a main mass-spring-damper system to which an electromagnetic or piezoelectric mass-spring-damper is attached. The governing equations are derived, a metric of efficiency is presented, and analysis is undertaken. It is found that electromagnetic energy harvesting efficiency and maximum power output is limited by the strength of the coupling such that no split system resonances are induced for a given mass ratio. For piezoelectric harvesters, only the coupling strength and certain design requirements dictate maximum power and efficiency achievable. Since the harvesting circuitry must "follow" the split resonances as the piezoelectric harvesters become more massive, the optimum design of piezoelectric harvesters appears to be more involved than for electromagnetic devices.
Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.
Wang, Rui; Wang, Jianhui; He, Jizhou; Ma, Yongli
2012-08-01
We generalize the quantum heat engine (QHE) model which was first proposed by Bender et al. [J. Phys. A 33, 4427 (2000)] to the case in which an ideal Fermi gas with an arbitrary number N of particles in a box trap is used as the working substance. Besides two quantum adiabatic processes, the engine model contains two isoenergetic processes, during which the particles are coupled to energy baths at a high constant energy E(h) and a low constant energy E(c), respectively. Directly employing the finite-time thermodynamics, we find that the power output is enhanced by increasing particle number N (or decreasing minimum trap size L(A)) for given L(A) (or N), without reduction in the efficiency. By use of global optimization, the efficiency at possible maximum power output (EPMP) is found to be universal and independent of any parameter contained in the engine model. For an engine model with any particle-number N, the efficiency at maximum power output (EMP) can be determined under the condition that it should be closest to the EPMP. Moreover, we extend the heat engine to a more general multilevel engine model with an arbitrary 1D power-law potential. Comparison between our engine model and the Carnot cycle shows that, under the same conditions, the efficiency η = 1 - E(c)/E(h) of the engine cycle is bounded from above the Carnot value η(c) =1 - T(c)/T(h).
30 CFR 7.66 - Output energy test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Multiple-Shot Blasting Units § 7.66 Output energy... load between 3 ohms and the maximum blasting circuit resistance. (3) One ohm. (b) Acceptable...
30 CFR 7.66 - Output energy test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Multiple-Shot Blasting Units § 7.66 Output energy... load between 3 ohms and the maximum blasting circuit resistance. (3) One ohm. (b) Acceptable...
30 CFR 7.66 - Output energy test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Multiple-Shot Blasting Units § 7.66 Output energy... load between 3 ohms and the maximum blasting circuit resistance. (3) One ohm. (b) Acceptable...
30 CFR 7.66 - Output energy test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Multiple-Shot Blasting Units § 7.66 Output energy... load between 3 ohms and the maximum blasting circuit resistance. (3) One ohm. (b) Acceptable...
30 CFR 7.66 - Output energy test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Multiple-Shot Blasting Units § 7.66 Output energy... load between 3 ohms and the maximum blasting circuit resistance. (3) One ohm. (b) Acceptable...
Improved Drain Current Saturation and Voltage Gain in Graphene–on–Silicon Field Effect Transistors
Song, Seung Min; Bong, Jae Hoon; Hwang, Wan Sik; Cho, Byung Jin
2016-01-01
Graphene devices for radio frequency (RF) applications are of great interest due to their excellent carrier mobility and saturation velocity. However, the insufficient current saturation in graphene field effect transistors (FETs) is a barrier preventing enhancements of the maximum oscillation frequency and voltage gain, both of which should be improved for RF transistors. Achieving a high output resistance is therefore a crucial step for graphene to be utilized in RF applications. In the present study, we report high output resistances and voltage gains in graphene-on-silicon (GoS) FETs. This is achieved by utilizing bare silicon as a supporting substrate without an insulating layer under the graphene. The GoSFETs exhibit a maximum output resistance of 2.5 MΩ∙μm, maximum intrinsic voltage gain of 28 dB, and maximum voltage gain of 9 dB. This method opens a new route to overcome the limitations of conventional graphene-on-insulator (GoI) FETs and subsequently brings graphene electronics closer to practical usage. PMID:27142861
Hu, Youfan; Yang, Jin; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin
2014-07-22
The recently introduced triboelectric nanogenerator (TENG) and the traditional electromagnetic induction generator (EMIG) are coherently integrated in one structure for energy harvesting and vibration sensing/isolation. The suspended structure is based on two oppositely oriented magnets that are enclosed by hollow cubes surrounded with coils, which oscillates in response to external disturbance and harvests mechanical energy simultaneously from triboelectrification and electromagnetic induction. It extends the previous definition of hybrid cell to harvest the same type of energy with multiple approaches. Both the sliding-mode TENG and contact-mode TENG can be achieved in the same structure. In order to make the TENG and EMIG work together, transformers are used to match the output impedance between these two power sources with very different characteristics. The maximum output power of 7.7 and 1.9 mW on the same load of 5 kΩ was obtained for the TENG and EMIG, respectively, after impedance matching. Benefiting from the rational design, the output signal from the TENG and the EMIG are in phase. They can be added up directly to get an output voltage of 4.6 V and an output current of 2.2 mA in parallel connection. A power management circuit was connected to the hybrid cell, and a regulated voltage of 3.3 V with constant current was achieved. For the first time, a logic operation was carried out on a half-adder circuit by using the hybrid cell working as both the power source and the input digit signals. We also demonstrated that the hybrid cell can serve as a vibration isolator. Further applications as vibration dampers, triggers, and sensors are all promising.
Power amplification in an isolated muscle–tendon unit is load dependent
Sawicki, Gregory S.; Sheppard, Peter; Roberts, Thomas J.
2015-01-01
ABSTRACT During rapid movements, tendons can act like springs, temporarily storing work done by muscles and then releasing it to power body movements. For some activities, such as frog jumping, energy is released from tendon much more rapidly than it is stored, thus amplifying muscle power output. The period during which energy is loaded into a tendon by muscle work may be aided by a catch mechanism that restricts motion, but theoretical studies indicate that power can be amplified in a muscle–tendon load system even in the absence of a catch. To explore the limits of power amplification with and without a catch, we studied the bullfrog plantaris muscle–tendon during in vitro contractions. A novel servomotor controller allowed us to measure muscle–tendon unit (MTU) mechanical behavior during contractions against a variety of simulated inertial-gravitational loads, ranging from zero to 1× the peak isometric force of the muscle. Power output of the MTU system was load dependent and power amplification occurred only at intermediate loads, reaching ∼1.3× the peak isotonic power output of the muscle. With a simulated anatomical catch mechanism in place, the highest power amplification occurred at the lowest loads, with a maximum amplification of more than 4× peak isotonic muscle power. At higher loads, the benefits of a catch for MTU performance diminished sharply, suggesting that power amplification >2.5× may come at the expense of net mechanical work delivered to the load. PMID:26449973
NASA Astrophysics Data System (ADS)
Feidt, Michel; Costea, Monica
2018-04-01
Many works have been devoted to finite time thermodynamics since the Curzon and Ahlborn [1] contribution, which is generally considered as its origin. Nevertheless, previous works in this domain have been revealed [2], [3], and recently, results of the attempt to correlate Finite Time Thermodynamics with Linear Irreversible Thermodynamics according to Onsager's theory were reported [4]. The aim of the present paper is to extend and improve the approach relative to thermodynamic optimization of generic objective functions of a Carnot engine with linear response regime presented in [4]. The case study of the Carnot engine is revisited within the steady state hypothesis, when non-adiabaticity of the system is considered, and heat loss is accounted for by an overall heat leak between the engine heat reservoirs. The optimization is focused on the main objective functions connected to engineering conditions, namely maximum efficiency or power output, except the one relative to entropy that is more fundamental. Results given in reference [4] relative to the maximum power output and minimum entropy production as objective function are reconsidered and clarified, and the change from finite time to finite physical dimension was shown to be done by the heat flow rate at the source. Our modeling has led to new results of the Carnot engine optimization and proved that the primary interest for an engineer is mainly connected to what we called Finite Physical Dimensions Optimal Thermodynamics.
Nie, Weijie; Li, Rang; Cheng, Chen; Chen, Yanxue; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R.; Hao, Xiaotao; Chen, Feng
2017-01-01
We report on room-temperature subnanosecond waveguide laser operation at 1064 nm in a Nd:YVO4 crystal waveguide through Q-switching of phase-change nanomaterial vanadium dioxide (VO2). The unique feature of VO2 nanomaterial from the insulating to metallic phases offers low-saturation-intensity nonlinear absorptions of light for subnanosecond pulse generation. The low-loss waveguide is fabricated by using the femtosecond laser writing with depressed cladding geometry. Under optical pump at 808 nm, efficient pulsed laser has been achieved in the Nd:YVO4 waveguide, reaching minimum pulse duration of 690 ps and maximum output average power of 66.7 mW. To compare the Q-switched laser performances by VO2 saturable absorber with those based on two-dimensional materials, the 1064-nm laser pulses have been realized in the same waveguide platform with either graphene or transition metal dichalcogenide (in this work, WS2) coated mirror. The results on 2D material Q-switched waveguide lasers have shown that the shortest pulses are with 22-ns duration, whilst the maximum output average powers reach ~161.9 mW. This work shows the obvious difference on the lasing properties based on phase-change material and 2D materials, and suggests potential applications of VO2 as low-cost saturable absorber for subnanosecond laser generation. PMID:28383017
High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.
Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan
2012-04-01
We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.
Miyaguchi, Kazuyoshi; Demura, Shinichi
2006-05-01
The purpose of this study was to examine the output properties of muscle power by the dominant upper limb using SSC, and the relationships between the power output by SSC and a one-repetition maximum bench press (1 RM BP) used as a strength indicator of the upper body. Sixteen male athletes (21.4+/-0.9 yr) participated in this study. They pulled a load of 40% of maximum voluntary contraction (MVC) at a stretch by elbow flexion of the dominant upper limb in the following three preliminary conditions: static relaxed muscle state (SR condition), isometric muscle contraction state (ISO condition), and using SSC (SSC condition). The velocity with a wire load via a pulley during elbow flexion was measured accurately using a power instrument with a rotary encoder, and the muscle power curve was drawn from the product of the velocity and load. Significant differences were found among all evaluation parameters of muscle power exerted from the above three conditions and the parameters regarding early power output during concentric contraction were larger in the SSC condition than the SR and ISO conditions. The parameters on initial muscle contraction velocity when only using SSC significantly correlated with 1 RM BP (r=0.60-0.62). The use of SSC before powerful elbow flexion may contribute largely to early explosive power output during concentric contraction. Bench press capacity relates to a development of the above early power output when using SSC.
Study the Output Characteristics of a 90 kJ Filippove-Type Plasma Focus
NASA Astrophysics Data System (ADS)
Sadat Kiai, S. M.; Talaei, A.; Adlparvar, S.; Zirak, A.; Elahi, M.; Safarian, A.; Farhangi, S.; Alhooie, S.; Dabirzadeh, A. A.; Khalaj, M. M.; Mahlooji, M. S.; Talaei, M.; KaKaei, S.; Sheibani, S.; Kashani, A.; Zahedi, F.
2010-08-01
The output characteristics of a Filippove-Type plasma focus "Dena" (288 μF, 25 kV, 90 kJ) is numerically investigated by considering the voltage, current, current derivative, and maximum current as a function of capacitor bank energy in the constant Argon gas pressure and compared to the experiment. It is shown that increase on the bank energy leads to the increment on the maximum current and decrement on the pinch time.
Liu, Jun; Guo, Ting; Wang, Dong; Ying, Hanjie
2015-01-01
A Clostridium beijerinckii mutant M13 was derived from C. beijerinckii NCIMB 8052 by atmospheric pressure glow discharge. C. beijerinckii M13 generated a maximum output power density of 79.2 mW m(-2) and a maximum output voltage of 230 mV in a microbial fuel cell containing 1 g glucose l(-1) as carbon source and 0.15 g methyl viologen l(-1) as an electron carrier.
Dynamic impedance compensation for wireless power transfer using conjugate power
NASA Astrophysics Data System (ADS)
Liu, Suqi; Tan, Jianping; Wen, Xue
2018-02-01
Wireless power transfer (WPT) via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a challenge to achieve the maximum output power and transmission efficiency in a fixed-frequency mode. In this study, dynamic impedance compensation for WPT was presented by utilizing the compensator within a virtual three-coil WPT system. First, the circuit model was established and transfer characteristics of a system were studied by utilizing circuit theories. Second, the power superposition of the WPT system was carefully researched. When a pair of compensating coils was inserted into the transmitter loop, the conjugate power of the compensator loop was created via magnetic coupling of the two compensating coils that insert into the transmitter loop. The mechanism for dynamic impedance compensation for wireless power transfer was then provided by investigating a virtual three-coil WPT system. Finally, the experimental circuit of a virtual three-coil WPT system was designed, and experimental results are consistent with the theoretical analysis, which achieves the maximum output power and transmission efficiency.
LD-pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser operating at 1166 and 1176 nm
NASA Astrophysics Data System (ADS)
Sun, Xinzhi; Zhang, Xihe; Li, Shutao; Dong, Yuan
2017-12-01
A laser diode pumped actively Q-switched c-cut Nd:GdVO4 self-Raman laser is experimentally investigated. Simultaneous pulse outputs at 1166 nm and 1176 nm corresponding to the Raman shifts of 807 and 882 cm-1 are acquired. At the pulse repetition frequency (PRF) of 20 kHz, the maximum output power is 103 mW at 1166 nm with the incident pump power of 2.31 W, while 1176 nm output power reaches 530 mW with the incident pump power of 4.11 W. The maximum output power of Raman laser is 570 mW with the incident pump power of 4.11 W and the PRF of 30 kHz. With the incident pump power of 3.67 W and the PRF of 30 kHz, the highest diode-to-Stokes optical conversion efficiency of 14.9% is obtained with the corresponding average output power of 547 mW.
Vrijheid, M; Mann, S; Vecchia, P; Wiart, J; Taki, M; Ardoino, L; Armstrong, B K; Auvinen, A; Bédard, D; Berg-Beckhoff, G; Brown, J; Chetrit, A; Collatz-Christensen, H; Combalot, E; Cook, A; Deltour, I; Feychting, M; Giles, G G; Hepworth, S J; Hours, M; Iavarone, I; Johansen, C; Krewski, D; Kurttio, P; Lagorio, S; Lönn, S; McBride, M; Montestrucq, L; Parslow, R C; Sadetzki, S; Schüz, J; Tynes, T; Woodward, A; Cardis, E
2009-10-01
The output power of a mobile phone is directly related to its radiofrequency (RF) electromagnetic field strength, and may theoretically vary substantially in different networks and phone use circumstances due to power control technologies. To improve indices of RF exposure for epidemiological studies, we assessed determinants of mobile phone output power in a multinational study. More than 500 volunteers in 12 countries used Global System for Mobile communications software-modified phones (GSM SMPs) for approximately 1 month each. The SMPs recorded date, time, and duration of each call, and the frequency band and output power at fixed sampling intervals throughout each call. Questionnaires provided information on the typical circumstances of an individual's phone use. Linear regression models were used to analyse the influence of possible explanatory variables on the average output power and the percentage call time at maximum power for each call. Measurements of over 60,000 phone calls showed that the average output power was approximately 50% of the maximum, and that output power varied by a factor of up to 2 to 3 between study centres and network operators. Maximum power was used during a considerable proportion of call time (39% on average). Output power decreased with increasing call duration, but showed little variation in relation to reported frequency of use while in a moving vehicle or inside buildings. Higher output powers for rural compared with urban use of the SMP were observed principally in Sweden where the study covered very sparsely populated areas. Average power levels are substantially higher than the minimum levels theoretically achievable in GSM networks. Exposure indices could be improved by accounting for average power levels of different telecommunications systems. There appears to be little value in gathering information on circumstances of phone use other than use in very sparsely populated regions.
Bombesin and G-17 dose responses in duodenal ulcer and controls.
Hirschowitz, B I; Tim, L O; Helman, C A; Molina, E
1985-11-01
Gastric acid and pepsin secretion and serum gastrin concentrations were measured in nine patients with uncomplicated duodenal ulcer (DU) and 10 normal controls in the fasting state and in response to graded doses of bombesin, a tetradecapeptide gastrin releaser, and, for reference, synthetic gastrin G-17. Serum gastrin with bombesin stimulation was significantly greater in duodenal ulcer (maximum 467 pg/ml) than in controls (153 pg/ml), while in seven of the DU group tested gastrin levels after a meal were not different from that seen in five of the normal controls. Gastric acid concentrations and outputs were greater in duodenal ulcer with both stimuli. Secretory responses were then related to serum gastrin levels; despite increasing gastrin levels with bombesin stimulation, peak outputs achieved with bombesin were only 50% of G-17 maximum in normals and up to 90% of maximum in duodenal ulcer. Up to the point of peak response to bombesin, acid and pepsin outputs were the same with exogenous and endogenous gastrin, ie, bombesin acted only via G-17. Furthermore, in direct comparison of duodenal ulcer and normals with G-17 infusion, acid and pepsin outputs related to serum gastrin were congruent up to 75% of duodenal ulcer maximum, at which point normals reached their maximum level. These data have shown that duodenal ulcer patients are not more sensitive to either exogenous or endogenous gastrin; we have also shown regulatory defects in duodenal ulcer patients not previously described: an exaggerated release of gastrin with bombesin stimulation, and a defective inhibition of acid and pepsin secretion with higher doses of bombesin.
Ultimate high power operation of 9xx-nm single emitter broad stripe laser diodes
NASA Astrophysics Data System (ADS)
Kaifuchi, Yoshikazu; Yamagata, Yuji; Nogawa, Ryozaburo; Morohashi, Rintaro; Yamada, Yumi; Yamaguchi, Masayuki
2017-02-01
Design optimization of single emitter broad stripe 9xx-nm laser diodes was studied to achieve ultimate high power and high efficiency operation for a use in fiber laser pumping and other industrial applications. We tuned laser vertical layer design and stripe width in terms of optical confinement as well as electrical resistance. As a result, newly designed LDs with 4mm-long cavity and 220 μm-wide stripe successfully demonstrate maximum CW output power as high as 33 W and high efficiency operation of more than 60 % PCE even at 27 W output power. In pulse measurement, the maximum output of 68 W was obtained.
Biffi, Mauro; Bertini, Matteo; Saporito, Davide; Belotti, Giuseppina; Quartieri, Fabio; Piancastelli, Maurizio; Pucci, Angelo; Boggian, Giulio; Mazzocca, Gian Franco; Giorgi, Davide; Diotallevi, Paolo; Diemberger, Igor; Martignani, Cristian; Pancaldi, Stefano; Ziacchi, Matteo; Marcantoni, Lina; Toselli, Tiziano; Attala, Simone; Iori, Matteo; Bottoni, Nicola; Argnani, Selina; Tomasi, Corrado; Sassone, Biagio; Boriani, Giuseppe
2016-10-01
We investigated the applicability of the Ventricular Capture Control (VCC) and Atrial Capture Control (ACC) algorithms for automatic management of cardiac stimulation featured by Biotronik pacemakers in a broad, unselected population of pacemaker recipients. Ventricular Capture Control and Atrial Capture Control were programmed to work at a maximum adapted output voltage as 4.8 V in consecutive recipients of Biotronik pacemakers. Ambulatory threshold measurements were made 1 and 12 months after pacemaker implant/replacement in all possible pacing/sensing configurations, and were compared with manual measurements. Among 542 patients aged 80 (73-85) years, 382 had a pacemaker implant and 160 a pacemaker replacement. Ventricular Capture Control could work at long term in 97% of patients irrespectively of pacing indication, lead type, and lead service life, performance being superior with discordant pacing/sensing configurations. Atrial Capture Control could work in 93% of patients at 4.8 V maximum adapted voltage and at any pulse width, regardless of pacing indication, lead type, and service life. At 12-month follow-up, a ventricular threshold increase ≥1.5 V had occurred in 4.4% of patients uneventfully owing to VCC functioning. Projected pacemaker longevity at 1 month was strongly correlated with the 12-month estimate, and exceeded 13 years in >60% of patients. These algorithms for automatic management of pacing output ensure patient safety in the event of a huge increase of pacing threshold, while enabling maximization of battery longevity. Their applicability is quite broad in an unselected pacemaker population irrespectively of lead choice and service of life. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Soft-output decoding algorithms in iterative decoding of turbo codes
NASA Technical Reports Server (NTRS)
Benedetto, S.; Montorsi, G.; Divsalar, D.; Pollara, F.
1996-01-01
In this article, we present two versions of a simplified maximum a posteriori decoding algorithm. The algorithms work in a sliding window form, like the Viterbi algorithm, and can thus be used to decode continuously transmitted sequences obtained by parallel concatenated codes, without requiring code trellis termination. A heuristic explanation is also given of how to embed the maximum a posteriori algorithms into the iterative decoding of parallel concatenated codes (turbo codes). The performances of the two algorithms are compared on the basis of a powerful rate 1/3 parallel concatenated code. Basic circuits to implement the simplified a posteriori decoding algorithm using lookup tables, and two further approximations (linear and threshold), with a very small penalty, to eliminate the need for lookup tables are proposed.
Fabrication and characterization of a piezoelectric energy harvester with clamped-clamped beams
NASA Astrophysics Data System (ADS)
Cui, Yan; Yu, Menglin; Gao, Shiqiao; Kong, Xiangxin; Gu, Wang; Zhang, Ran; Liu, Bowen
2018-05-01
This work presents a piezoelectric energy harvester with clamped-clamped beams, and it is fabricated with MEMS process. When excited by sinusoidal vibration, the energy harvester has a sharp jumping down phenomenon and the measured frequency responses of the clamped-clamped beams structure show a larger bandwidth which is about 56Hz, more efficient than that with cantilever beams. When the exciting acceleration ac is 12m/s2, the energy harvester achieves to a maximum open-circuit voltage of 94mV on one beam. The load voltage is proportional to the load resistance, and it increased with the increase of load resistance. Connected four beams in series, the output power reaches the maximum value of 730 nW and the optimal load is 15KΩ to one beam.
Realization of Minimum and Maximum Gate Function in Ta2O5-based Memristive Devices
NASA Astrophysics Data System (ADS)
Breuer, Thomas; Nielen, Lutz; Roesgen, Bernd; Waser, Rainer; Rana, Vikas; Linn, Eike
2016-04-01
Redox-based resistive switching devices (ReRAM) are considered key enablers for future non-volatile memory and logic applications. Functionally enhanced ReRAM devices could enable new hardware concepts, e.g. logic-in-memory or neuromorphic applications. In this work, we demonstrate the implementation of ReRAM-based fuzzy logic gates using Ta2O5 devices to enable analogous Minimum and Maximum operations. The realized gates consist of two anti-serially connected ReRAM cells offering two inputs and one output. The cells offer an endurance up to 106 cycles. By means of exemplary input signals, each gate functionality is verified and signal constraints are highlighted. This realization could improve the efficiency of analogous processing tasks such as sorting networks in the future.
Available pressure amplitude of linear compressor based on phasor triangle model
NASA Astrophysics Data System (ADS)
Duan, C. X.; Jiang, X.; Zhi, X. Q.; You, X. K.; Qiu, L. M.
2017-12-01
The linear compressor for cryocoolers possess the advantages of long-life operation, high efficiency, low vibration and compact structure. It is significant to study the match mechanisms between the compressor and the cold finger, which determines the working efficiency of the cryocooler. However, the output characteristics of linear compressor are complicated since it is affected by many interacting parameters. The existing matching methods are simplified and mainly focus on the compressor efficiency and output acoustic power, while neglecting the important output parameter of pressure amplitude. In this study, a phasor triangle model basing on analyzing the forces of the piston is proposed. It can be used to predict not only the output acoustic power, the efficiency, but also the pressure amplitude of the linear compressor. Calculated results agree well with the measurement results of the experiment. By this phasor triangle model, the theoretical maximum output pressure amplitude of the linear compressor can be calculated simply based on a known charging pressure and operating frequency. Compared with the mechanical and electrical model of the linear compressor, the new model can provide an intuitionistic understanding on the match mechanism with faster computational process. The model can also explain the experimental phenomenon of the proportional relationship between the output pressure amplitude and the piston displacement in experiments. By further model analysis, such phenomenon is confirmed as an expression of the unmatched design of the compressor. The phasor triangle model may provide an alternative method for the compressor design and matching with the cold finger.
NASA Astrophysics Data System (ADS)
Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan
2015-11-01
To optimize wind farm layouts for a maximum power output and wind turbine lifetime, mean power output measurements in wind tunnel studies are not sufficient. Instead, detailed temporal information about the power output and unsteady loading from every single wind turbine in the wind farm is needed. A very small porous disc model with a realistic thrust coefficient of 0.75 - 0.85, was designed. The model is instrumented with a strain gage, allowing measurements of the thrust force, incoming velocity and power output with a frequency response up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow. Thanks to its small size and compact instrumentation, the model allows wind tunnel studies of large wind turbine arrays with detailed temporal information from every wind turbine. Translating to field conditions with a length-scale ratio of 1:3,000 the frequencies studied from the data reach from 10-4 Hz up to about 6 .10-2 Hz. The model's capabilities are demonstrated with a large wind farm measurement consisting of close to 100 instrumented models. A high correlation is found between the power outputs of stream wise aligned wind turbines, which is in good agreement with results from prior LES simulations. Work supported by ERC (ActiveWindFarms, grant no. 306471) and by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project).
SEE Transient Response of Crane Interpoint Single Output Point of Load DC-DC Converters
NASA Technical Reports Server (NTRS)
Sanders, Anthony B.; Chen, Dakai; Kim, Hak S.; Phan, Anthony M.
2011-01-01
This study was undertaken to determine the single event effect and transient susceptibility of the Crane Interpoint Maximum Flexible Power (MFP) Single Output Point of Load DC/DC Converters for transient interruptions in the output signal and for destructive and non destructive events induced by exposing it to a heavy ion beam..
Cladding-pumped 70-kW-peak-power 2-ns-pulse Er-doped fiber amplifier
NASA Astrophysics Data System (ADS)
Khudyakov, M. M.; Bubnov, M. M.; Senatorov, A. K.; Lipatov, D. S.; Guryanov, A. N.; Rybaltovsky, A. A.; Butov, O. V.; Kotov, L. V.; Likhachev, M. E.
2018-02-01
An all-fiber pulsed erbium laser with pulse width of 2.4 ns working in a MOPA configuration has been created. Cladding pumped double clad erbium doped large mode area fiber was used in the final stage amplifier. Peculiarity of the current work is utilization of custom-made multimode diode wavelength stabilized at 981+/-0.5 nm - wavelength of maximum absorption by Er ions. It allowed us to shorten Er-doped fiber down to 1.7 m and keep a reasonably high pump-to signal conversion efficiency of 8.4%. The record output peak power for all-fiber amplifiers of 84 kW was achieved within 1555.9+/-0.15 nm spectral range.
NASA Astrophysics Data System (ADS)
Ahmed Darwish, Zeki; Sopian, K.; Kazem, Hussein A.; Alghoul, M. A.; Alawadhi, Hussain
2017-11-01
This paper presents a study of titanium oxide TiO2 as one of the components of dust pollution affecting the PV performance. This pollutant can be found in various quantities in different locations around the world. The production of energy by different types of photovoltaic systems is very sensitive and depends on various environmental factors. Dust is one of the main contributing factors, yet the type of the dust is often neglected when studying the behaviour of the solar panel. In this experimental work we have studied the performance of the monocrystalline solar module as affected by the density of TiO2. The reduction of the PV module power caused by titanium dioxide under various mass densities was investigated. The results showed that the TiO2 has a significant effect on the PV output power. The dust density varied between 0-125 g.m-2. The corresponding reduction of the PV output power increased from 0 to 86.7%. This is based on various influencing parameters such as: short circuit current (Isc), maximum current (Im), open circuit voltage (Voc), maximum voltage (Vm), maximum power (Pm) and efficiency (E). Two functions are proposed as a mathematical model in order to explain this behaviour, namely the exponential and Fourier functions. The coefficients of all general models are valid for this type of dust with a density value ranging from 0-125 g.m-2.
Fire Resistant Fuel for Military Compression Ignition Engines
2013-12-04
Turbo Diesel Maximum Power Output Figure 5. 6.5L Turbo Diesel Maximum Torque Output 40 60 80 100 120 140 160 180 1000 1200 1400 1600 1800 2000 2200...H2O & 250ppm) JP8-FRF AMA (5% H2O & 250ppm) UNCLASSIFIED 9 UNCLASSIFIED Figure 6. 6.5L Turbo Diesel Brake Specific Fuel Consumption From...mid-1980s, fire-resistant diesel fuel that self extinguished when ignited by an explosive projectile was developed. Chemically, this fire resistant
Liu, Jinmei; Cui, Nuanyang; Gu, Long; Chen, Xiaobo; Bai, Suo; Zheng, Youbin; Hu, Caixia; Qin, Yong
2016-03-07
An integrated triboelectric nanogenerator (ITNG) with a three-dimensional structure benefiting sound propagation and adsorption is demonstrated to more effectively harvest sound energy with improved output performance. With different multifunctional integrated layers working harmonically, it could generate a short-circuit current up to 2.1 mA, an open-circuit voltage up to 232 V and the maximum charging rate can reach 453 μC s(-1) for a 1 mF capacitor, which are 4.6 times, 2.6 times and 7.4 times the highest reported values, respectively. Further study shows that the ITNG works well under sound in a wide range of sound intensity levels (SILs) and frequencies, and its output is sensitive to the SIL and frequency of the sound, which reveals that the ITNG can act as a self-powered active sensor for real-time noise surveillance and health care. Moreover, this generator can be used to directly power the Fe(OH)3 sol electrophoresis and shows great potential as a wireless power supply in the electrochemical industry.
Hu, Youfan; Yang, Jin; Jing, Qingshen; Niu, Simiao; Wu, Wenzhuo; Wang, Zhong Lin
2013-11-26
An unstable mechanical structure that can self-balance when perturbed is a superior choice for vibration energy harvesting and vibration detection. In this work, a suspended 3D spiral structure is integrated with a triboelectric nanogenerator (TENG) for energy harvesting and sensor applications. The newly designed vertical contact-separation mode TENG has a wide working bandwidth of 30 Hz in low-frequency range with a maximum output power density of 2.76 W/m(2) on a load of 6 MΩ. The position of an in-plane vibration source was identified by placing TENGs at multiple positions as multichannel, self-powered active sensors, and the location of the vibration source was determined with an error less than 6%. The magnitude of the vibration is also measured by the output voltage and current signal of the TENG. By integrating the TENG inside a buoy ball, wave energy harvesting at water surface has been demonstrated and used for lighting illumination light, which shows great potential applications in marine science and environmental/infrastructure monitoring.
Hypochlorhydria and hypergastrinaemia in rheumatoid arthritis.
de Witte, T J; Geerdink, P J; Lamers, C B; Boerbooms, A M; van der Korst, J K
1979-01-01
In order to evaluate the incidence and aetiology of hypergastrinaemia 53 patients with seropositive rheumatoid arthritis were examined for gastric acid secretion, fasting serum gastrin concentration, circulating parietal cell antibodies, and some parameters of the activity of inflammation of rheumatoid arthritis. The basal and maximum acid output was found to be subnormal in this group (P less than 0.01), and in 11 of these patients (23%) the fasting serum gastrin levels were raised (P less than 0.05). This hypergastrinaemia correlated strongly with maximum acid output. Only in cases of achlorhydria or hypochlorhydria (maximum acid output less than 2 mmol/l) was the serum gastrin level markedly raised. Two out of 5 patients with achlorhydria were found to have circulating parietal cell antibodies, and 1 had decreased absorption of vitamin B12. No relationship was found between serum gastrin and duration or activity of rheumatoid arthritis; nor was there a relationship between basal serum gastrin and the various antirheumatic drugs administered. PMID:434940
Determination of Strength Exercise Intensities Based on the Load-Power-Velocity Relationship
Jandačka, Daniel; Beremlijski, Petr
2011-01-01
The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s−1) to maximal velocity (m•s−1). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function. PMID:23486484
Determination of strength exercise intensities based on the load-power-velocity relationship.
Jandačka, Daniel; Beremlijski, Petr
2011-06-01
The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s(-1)) to maximal velocity (m•s(-1)). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function.
40 CFR Appendix A to Subpart E of... - Tables
Code of Federal Regulations, 2010 CFR
2010-07-01
... torque output N · m Power output kW Air inlet temperature °C Air humidity mg/kg Coolant temperature... rated speed Engine torque as a percentage of maximum torque at rated speed Mode weighting factor 1 100...
Louhevaara, V; Ilmarinen, R; Griefahn, B; Künemund, C; Mäkinen, H
1995-01-01
Every fire fighter needs to wear fire-protective clothing and a self-contained breathing apparatus (SCBA) several times a year while carrying out various fire-fighting and rescue operations in hazardous work environments. The aim of the present study was to quantify the effects of a multilayer turnout suit designed to fulfil European standard EN 469 used over standardized (Nordic) clothing and with SCBA (total mass 25.9 kg) on maximal physical work performance, and to evaluate the relationship between individual characteristics and power output with the fire-protective clothing system and SCBA. The subjects were 12 healthy firemen aged 26-46 years. The range of their body mass, body fat and maximal oxygen consumption was 69-101 kg, 10-20% and 2.70-5.86 l.min-1, respectively. The maximal tests without (control) and with the fire-protective clothing system and SCBA were carried out on a treadmill in a thermoneutral environment. When compared to the control test, the decrease in the maximal power output in terms of maximal working time and walking speed averaged 25% (P < 0.001) varying from 18% to 34% with the fire-protective clothing system and SCBA. At maximum, no significant differences were found in pulmonary ventilation, absolute oxygen consumption, the respiratory exchange ratio, heart rate, systolic blood pressure, the rate-pressure product, mechanical efficiency, and the rating of perceived exertion between the tests with and without the fire-protective clothing system and SCBA. The reduction of the power output was related to the extra mass of the fire protective clothing and SCBA.(ABSTRACT TRUNCATED AT 250 WORDS)
Single-mode oscillation of a diode-pumped Nd:YAG microchip laser at 1835 nm
NASA Astrophysics Data System (ADS)
Lan, Jinglong; Cui, Qin; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping
2016-10-01
Single-mode oscillation of a diode-pumped conventional Nd:YAG laser at 1835 nm is demonstrated, for the first time to our knowledge, in the form of microchip configuration. The achieved maximum output power reaches 189 mW with slope efficiency of about 5.5% with respect to absorbed pump power. The laser spectra are measured with linewidth less than 0.08 nm indicating a single longitudinal mode. The output laser beam is also measured to be near diffraction-limited with M2 factors of about 1.2 and 1.5 in x and y directions. Using a mechanical chopper with 50% duty cycle, the maximum output power is improved to 253 mW with slope efficiency of about 9.7%.
NASA Astrophysics Data System (ADS)
Liu, Lianxi; Pang, Yanbo; Yuan, Wenzhi; Zhu, Zhangming; Yang, Yintang
2018-04-01
The key to self-powered technique is initiative to harvest energy from the surrounding environment. Harvesting energy from an ambient vibration source utilizing piezoelectrics emerged as a popular method. Efficient interface circuits become the main limitations of existing energy harvesting techniques. In this paper, an interface circuit for piezoelectric energy harvesting is presented. An active full bridge rectifier is adopted to improve the power efficiency by reducing the conduction loss on the rectifying path. A parallel synchronized switch harvesting on inductor (P-SSHI) technique is used to improve the power extraction capability from piezoelectric harvester, thereby trying to reach the theoretical maximum output power. An intermittent power management unit (IPMU) and an output capacitor-less low drop regulator (LDO) are also introduced. Active diodes (AD) instead of traditional passive ones are used to reduce the voltage loss over the rectifier, which results in a good power efficiency. The IPMU with hysteresis comparator ensures the interface circuit has a large transient output power by limiting the output voltage ranges from 2.2 to 2 V. The design is fabricated in a SMIC 0.18 μm CMOS technology. Simulation results show that the flipping efficiency of the P-SSHI circuit is over 80% with an off-chip inductor value of 820 μH. The output power the proposed rectifier can obtain is 44.4 μW, which is 6.7× improvement compared to the maximum output power of a traditional rectifier. Both the active diodes and the P-SSHI help to improve the output power of the proposed rectifier. LDO outputs a voltage of 1.8 V with the maximum 90% power efficiency. The proposed P-SSHI rectifier interface circuit can be self-powered without the need for additional power supply. Project supported by the National Natural Science Foundation of China (Nos. 61574103, U1709218) and the Key Research and Development Program of Shaanxi Province (No. 2017ZDXM-GY-006).
Effects of vest loading on sprint kinetics and kinematics.
Cross, Matt R; Brughelli, Matt E; Cronin, John B
2014-07-01
The effects of vest loading on sprint kinetics and kinematics during the acceleration and maximum velocity phases of sprinting are relatively unknown. A repeated measures analysis of variance with post hoc contrasts was used to determine whether performing 6-second maximal exertion sprints on a nonmotorized force treadmill, under 2 weighted vest loading conditions (9 and 18 kg) and an unloaded baseline condition, affected the sprint mechanics of 13 males from varying sporting backgrounds. Neither vest load promoted significant change in peak vertical ground reaction force (GRF-z) outputs compared with baseline during acceleration, and only 18-kg loading increased GRF-z at the maximum velocity (8.8%; effect size [ES] = 0.70). The mean GRF-z significantly increased with 18-kg loading during acceleration and maximum velocity (11.8-12.4%; ES = 1.17-1.33). Horizontal force output was unaffected, although horizontal power was decreased with the 18-kg vest during maximum velocity (-14.3%; ES = -0.48). Kinematic analysis revealed decreasing velocity (-3.6 to -5.6%; ES = -0.38 to -0.61), decreasing step length (-4.2%; ES = -0.33 to -0.34), increasing contact time (5.9-10.0%; ES = 1.01-1.71), and decreasing flight time (-17.4 to -26.7%; ES = -0.89 to -1.50) with increased loading. As a vertical vector-training stimulus, it seems that vest loading decreases flight time, which in turn reduces GRF-z. Furthermore, it seems that heavier loads than that are traditionally recommended are needed to promote increases in the GRF-z output during maximum velocity sprinting. Finally, vest loading offers little as a horizontal vector-training stimulus and actually compromises horizontal power output.
Sum frequency mixing of copper vapor laser output in KDP and beta-BBO
NASA Astrophysics Data System (ADS)
Coutts, D. W.; Ainsworth, M. D.; Piper, J. A.
1989-09-01
Generation at 271 nm by frequency summing the two copper vapor laser (CVL) output wavelengths (at 511 and 578 nm) in beta-BBO and KDP is reported. A maximum sum frequency output of 100 mW was obtained for 6.8 W total pump power from a CVL operating with a fully unstable (M = 16) confocal cavity.
Nonlinear vibration analysis of the high-efficiency compressive-mode piezoelectric energy harvester
NASA Astrophysics Data System (ADS)
Yang, Zhengbao; Zu, Jean
2015-04-01
Power source is critical to achieve independent and autonomous operations of electronic mobile devices. The vibration-based energy harvesting is extensively studied recently, and recognized as a promising technology to realize inexhaustible power supply for small-scale electronics. Among various approaches, the piezoelectric energy harvesting has gained the most attention due to its high conversion efficiency and simple configurations. However, most of piezoelectric energy harvesters (PEHs) to date are based on bending-beam structures and can only generate limited power with a narrow working bandwidth. The insufficient electric output has greatly impeded their practical applications. In this paper, we present an innovative lead zirconate titanate (PZT) energy harvester, named high-efficiency compressive-mode piezoelectric energy harvester (HC-PEH), to enhance the performance of energy harvesters. A theoretical model was developed analytically, and solved numerically to study the nonlinear characteristics of the HC-PEH. The results estimated by the developed model agree well with the experimental data from the fabricated prototype. The HC-PEH shows strong nonlinear responses, favorable working bandwidth and superior power output. Under a weak excitation of 0.3 g (g = 9.8 m/s2), a maximum power output 30 mW is generated at 22 Hz, which is about ten times better than current energy harvesters. The HC-PEH demonstrates the capability of generating enough power for most of wireless sensors.
An optimal design of magnetostrictive material (MsM) based energy harvester
NASA Astrophysics Data System (ADS)
Hu, Jingzhen; Yuan, Fuh-Gwo; Xu, Fujun; Huang, Alex Q.
2010-04-01
In this study, an optimal vibration-based energy harvesting system using magnetostrictive material (MsM) has been designed to power the Wireless Intelligent Sensor Platform (WISP), developed at North Carolina State University. A linear MsM energy harvesting device has been modeled and optimized to maximize the power output. The effects of number of MsM layers and glue layers, and load matching on the output power of the MsM energy harvester have been analyzed. From the measurement, the open circuit voltage can reach 1.5 V when the MsM cantilever beam operates at the 2nd natural frequency 324 Hz. The AC output power is 0.97 mW, giving power density 279 μW/cm3. Since the MsM device has low open circuit output voltage characteristics, a full-wave quadrupler has been designed to boost the rectified output voltage. To deliver the maximum output power to the load, a complex conjugate impedance matching between the load and the MsM device has been implemented using a discontinuous conduction mode (DCM) buck-boost converter. The maximum output power after the voltage quadrupler is now 705 μW and power density reduces to 202.4 μW/cm3, which is comparable to the piezoelectric energy harvesters given in the literature. The output power delivered to a lithium rechargeable battery is around 630 μW, independent of the load resistance.
Properties and Potential of Two (ni,pt)ti Alloys for Use as High-temperature Actuator Materials
NASA Technical Reports Server (NTRS)
Noebe, Ronald; Gaydosh, Darrell; Padula, Santo, II.; Garg, Anita; Biles, Tiffany; Nathal, Michael
2005-01-01
The microstructure, transformation temperatures, basic tensile properties, shape memory behavior, and work output for two (Ni,Ti)Pt high-temperature shape memory alloys have been characterized. One was a Ni30Pt20Ti50 alloy (referred to as 20Pt) with transformation temperatures above 230 C and the other was a Ni20Pt30Ti50 alloy (30Pt) with transformation temperatures about 530 C. Both materials displayed shape memory behavior and were capable of 100% (no-load) strain recovery for strain levels up to their fracture limit (3-4%) when deformed at room temperature. For the 20Pt alloy, the tensile strength, modulus, and ductility dramatically increased when the material was tested just about the austenite finish (A(sub f)) temperature. For the 30Pt alloy, a similar change in yield behavior at temperatures above the A(sub f) was not observed. In this case the strength of the austentite phase was at best comparable and generally much weaker than the martensite phase. A ductility minimum was also observed just below the A(sub s) temperature in this alloy. As a result of these differences in tensile behavior, the two alloys performed completely different when thermally cycled under constant load. The 20Pt alloy behaved similar to conventional binary NiTi alloys with work output due to the martensite-to-austenite transformation initially increasing with applied stress. The maximum work output measured in the 20Pt alloy was nearly 9 J/cu cm and was limited by the tensile ductility of the material. In contrast, the martensite-to-austenite transformation in the 30Pt alloy was not capable of performing work against any bias load. The reason for this behavior was traced back to its basic mechanical properties, where the yield strength of the austenite phase was similar to or lower than that of the martensite phase, depending on temperature. Hence, the recovery or transformation strain for the 30Pt alloy under load was essentially zero, resulting in zero work output.
Rackow, E C; Mecher, C; Astiz, M E; Griffel, M; Falk, J L; Weil, M H
1989-05-01
Twenty consecutive patients with severe sepsis were randomized to fluid challenge with 5% albumin or 10% low MW hydroxyethyl starch (pentastarch) solutions. Fluid challenge was administered iv as 250 ml of test colloid every 15 min until the pulmonary artery wedge pressure (WP) was greater than or equal to 15 mm Hg or a maximum dose of 2000 ml was infused. Hemodynamic, respiratory, and coagulation profiles were measured before and after fluid infusion. The amount of colloid required to achieve a WP of 15 mm Hg was comparable between groups. Both colloid infusions resulted in similar increases in cardiac output, stroke output, and stroke work. The effect of fluid infusion with pentastarch on coagulation was not significantly different from albumin, although pentastarch was associated with a 45% decrease in factor VIII:c. We conclude that pentastarch is equivalent to albumin for fluid resuscitation of patients with severe sepsis.
Flexible wearable sensor nodes with solar energy harvesting.
Taiyang Wu; Arefin, Md Shamsul; Redoute, Jean-Michel; Yuce, Mehmet Rasit
2017-07-01
Wearable sensor nodes have gained a lot of attention during the past few years as they can monitor and record people's physical parameters in real time. Wearable sensor nodes can promote healthy lifestyles and prevent the occurrence of potential illness or injuries. This paper presents a flexible wearable sensor system powered by an efficient solar energy harvesting technique. It can measure the subject's heartbeats using a photoplethysmography (PPG) sensor and perform activity monitoring using an accelerometer. The solar energy harvester adopts an output current based maximum power point tracking (MPPT) algorithm, which controls the solar panel to operate within its high output power range. The power consumption of the flexible sensor nodes has been investigated under different operation conditions. Experimental results demonstrate that wearable sensor nodes can work for more than 12 hours when they are powered by the solar energy harvester for 3 hours in the bright sunlight.
Akkuş, Hasan
2012-04-01
The objectives of this study were to determine the mechanical work, the power output, and the angular kinematics of the lower limb and the linear kinematics of the barbell during the first and second pulls in the snatch lift event of the 2010 Women's World Weightlifting Championship, an Olympic qualifying competition, and to compare the snatch performances of the women weightlifters to those reported in the literature. The heaviest successful snatch lifts of 7 female weightlifters who won gold medals were analyzed. The snatch lifts were recorded using 2 Super-Video Home System cameras (50 fields·s), and points on the body and the barbell were manually digitized using the Ariel Performance Analysis System. The results revealed that the duration of the first pull was significantly greater than the duration of the transition phase, the second pull, and the turnover under the barbell (p < 0.05). The maximum extension velocities of the lower limb in the second pull were significantly greater than the maximum extension velocities in the first pull. The fastest extensions were observed at the knee joint during the first pull and at the hip joint during the second pull (p < 0.05). The barbell trajectories for the heaviest snatch lifts of these elite female weightlifters were similar to those of men. The maximum vertical velocity of the barbell was greater during the second pull than in the first pull (p < 0.05). The mechanical work performed in the first pull was greater than the second pull, and the power output during the second pull was greater than that of the first pull (p < 0.05). Although the magnitudes of the barbell's linear kinematics, the angular kinematics of the lower limb, and other energy characteristics did not exactly reflect those reported in the literature, the snatch lift patterns of the elite women weightlifters were similar to those of male weightlifters.
Eddy Current Method for Fatigue Testing
NASA Technical Reports Server (NTRS)
Simpson, John W. (Inventor); Fulton, James P. (Inventor); Wincheski, Russell A. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor); Nath, Shridhar C. (Inventor)
1997-01-01
Flux-focusing electromagnetic sensor using a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks and material loss in high conductivity material. A ferrous shield isolates a high-turn pick-up coil from an excitation coil. Use of the magnetic shield produces a null voltage output across the receiving coil in presence of an unflawed sample. Redistribution of the current flow in the sample caused by the presence of flaws. eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. Maximum sensor output is obtained when positioned symmetrically above the crack. By obtaining position of maximum sensor output, it is possible to track the fault and locate the area surrounding its tip. Accuracy of tip location is enhanced by two unique features of the sensor; a very high signal-to-noise ratio of the probe's output resulting in an extremely smooth signal peak across the fault, and a rapidly decaying sensor output outside a small area surrounding the crack tip enabling the search region to be clearly defined. Under low frequency operation, material thinning due to corrosion causes incomplete shielding of the pick-up coil. Low frequency output voltage of the probe is therefore a direct indicator of thickness of the test sample. Fatigue testing a conductive material is accomplished by applying load to the material, applying current to the sensor, scanning the material with the sensor, monitoring the sensor output signal, adjusting material load based on the sensor output signal of the sensor, and adjusting position of the sensor based on its output signal.
Flow Control in Wells Turbines for Harnessing Maximum Wave Power.
Lekube, Jon; Garrido, Aitor J; Garrido, Izaskun; Otaola, Erlantz; Maseda, Javier
2018-02-10
Oceans, and particularly waves, offer a huge potential for energy harnessing all over the world. Nevertheless, the performance of current energy converters does not yet allow us to use the wave energy efficiently. However, new control techniques can improve the efficiency of energy converters. In this sense, the plant sensors play a key role within the control scheme, as necessary tools for parameter measuring and monitoring that are then used as control input variables to the feedback loop. Therefore, the aim of this work is to manage the rotational speed control loop in order to optimize the output power. With the help of outward looking sensors, a Maximum Power Point Tracking (MPPT) technique is employed to maximize the system efficiency. Then, the control decisions are based on the pressure drop measured by pressure sensors located along the turbine. A complete wave-to-wire model is developed so as to validate the performance of the proposed control method. For this purpose, a novel sensor-based flow controller is implemented based on the different measured signals. Thus, the performance of the proposed controller has been analyzed and compared with a case of uncontrolled plant. The simulations demonstrate that the flow control-based MPPT strategy is able to increase the output power, and they confirm both the viability and goodness.
Flow Control in Wells Turbines for Harnessing Maximum Wave Power
Garrido, Aitor J.; Garrido, Izaskun; Otaola, Erlantz; Maseda, Javier
2018-01-01
Oceans, and particularly waves, offer a huge potential for energy harnessing all over the world. Nevertheless, the performance of current energy converters does not yet allow us to use the wave energy efficiently. However, new control techniques can improve the efficiency of energy converters. In this sense, the plant sensors play a key role within the control scheme, as necessary tools for parameter measuring and monitoring that are then used as control input variables to the feedback loop. Therefore, the aim of this work is to manage the rotational speed control loop in order to optimize the output power. With the help of outward looking sensors, a Maximum Power Point Tracking (MPPT) technique is employed to maximize the system efficiency. Then, the control decisions are based on the pressure drop measured by pressure sensors located along the turbine. A complete wave-to-wire model is developed so as to validate the performance of the proposed control method. For this purpose, a novel sensor-based flow controller is implemented based on the different measured signals. Thus, the performance of the proposed controller has been analyzed and compared with a case of uncontrolled plant. The simulations demonstrate that the flow control-based MPPT strategy is able to increase the output power, and they confirm both the viability and goodness. PMID:29439408
Case Study: Composite Material Yoke Versus Wooden Yoke for Bullocks' Comfort.
Tyagi, Ram Kumar; Singh, Achhaibar
2018-01-01
This article addresses the designing of a yoke used to get work output (plowing) from bullocks. The yoke profile was designed in compliance with the profile of the bullock's body for maximum contact area. Unlike the crude, wooden yoke used in rural India, where modern tilling equipment like a tractor is not affordable, the present yoke was smooth, free from sharp edges, and light in weight. A field study was carried out with bullocks using composite and wooden yokes. The fatigue of bullocks was measured in terms of respiration rate and heart rate. Data revealed that bullocks had less fatigue with composite material yoke than with the wooden yoke. The experimental investigation also showed that at a 30º angle of pull, bullocks feel maximum comfort when they are used for plowing purposes.
Combined 1.06- and 1.32-um Nd:YAG laser in the treatment of rectosigmoideal tumors
NASA Astrophysics Data System (ADS)
Horak, Ladislav; Fanta, J.; Marek, Jan
1993-07-01
Since January 1988 we have been using the combined Nd:YAG laser Medicalas. The laser operates on the wavelength of 1.06 micrometers with maximum output power of 100 W, and a wavelength of 1.32 micrometers with maximum output power of 30 W. Introduction of the laser into clinical practice was preceded by experimental operation, where we verified the interaction of laser emittance on both wavelengths with the tissues of colon, stomach, esophagus, and open surgery of the abdominal and thoracic cavities.
650-nm-band high-power and highly reliable laser diodes with a window-mirror structure
NASA Astrophysics Data System (ADS)
Shima, Akihiro; Hironaka, Misao; Ono, Ken-ichi; Takemi, Masayoshi; Sakamoto, Yoshifumi; Kunitsugu, Yasuhiro; Yamashita, Koji
1998-05-01
An active layer structure with 658 nm-emission at 25 degrees Celsius has been optimized in order to reduce the operating current of the laser diodes (LD) under high temperature condition. For improvement of the maximum output power and the reliability limited by mirror degradation, we have applied a zinc-diffused-type window-mirror structure which prevents the optical absorption at the mirror facet. As a result, the CW output power of 50 mW is obtained even at 80 degrees Celsius for a 650 micrometer-long window-mirror LD. In addition, the maximum light output power over 150 mW at 25 degrees Celsius has been realized without any optical mirror damage. In the aging tests, the LDs have been operating for over 2,500 - 5,000 hours under the CW condition of 30 - 50 mW at 60 degrees Celsius. The window-mirror structure also enables reliable 60 degree Celsius, 30 mW, CW operation of the LDs with 651 nm- emission at 25 degrees Celsius. Moreover, the maximum output power of around 100 mW even at 80 degrees Celsius and reliable 2,000-hour operation at 60 degrees Celsius, 70 mW have been realized for the first time by 659 nm LDs with a long cavity length of 900 micrometers.
The role of the extrinsic thoracic limb muscles in equine locomotion.
Payne, R C; Veenman, P; Wilson, A M
2005-02-01
Muscles have two major roles in locomotion: to generate force and to absorb/generate power (do work). Economical force generation is achieved by short-fibred pennate muscle while the maximum power output of a muscle is architecture independent. In this study we tested the hypothesis that there is an anatomical and structural separation between the force-generating anti-gravity muscles and the propulsive (limb/trunk moving) muscles of the equine forelimb. Muscle mass and fascicle length measurements were made on the thoracic limb extrinsic muscles of six fresh horse cadavers. Physiological cross-sectional area and maximum isometric force were then estimated. Maximum power was estimated from muscle volume and published contraction velocity data. The majority of extrinsic forelimb muscles were large with long fascicles arranged in parallel to the long axis of the muscle. Muscles arranged in this way are optimised for doing work. The architecture of serratus ventralis thoracis (SVT) was unique. It had short (48 +/- 17 mm) fascicles, arranged at about 45 degrees to the long axis of the muscle, which would suggest a force-generating, anti-gravity role. The muscle belly of SVT was sandwiched between two broad, thick sheets of aponeurosis. Hence, SVT could make a significant contribution to the overall elastic properties of the thoracic limb.
The role of the extrinsic thoracic limb muscles in equine locomotion.
Payne, R C; Veenman, P; Wilson, A M
2004-12-01
Muscles have two major roles in locomotion: to generate force and to absorb/generate power (do work). Economical force generation is achieved by short-fibred pennate muscle while the maximum power output of a muscle is architecture independent. In this study we tested the hypothesis that there is an anatomical and structural separation between the force-generating anti-gravity muscles and the propulsive (limb/trunk moving) muscles of the equine forelimb. Muscle mass and fascicle length measurements were made on the thoracic limb extrinsic muscles of six fresh horse cadavers. Physiological cross-sectional area and maximum isometric force were then estimated. Maximum power was estimated from muscle volume and published contraction velocity data. The majority of extrinsic forelimb muscles were large with long fascicles arranged in parallel to the long axis of the muscle. Muscles arranged in this way are optimised for doing work. The architecture of serratus ventralis thoracis (SVT) was unique. It had short (48 +/- 17 mm) fascicles, arranged at about 45 degrees to the long axis of the muscle, which would suggest a force-generating, anti-gravity role. The muscle belly of SVT was sandwiched between two broad, thick sheets of aponeurosis. Hence, SVT could make a significant contribution to the overall elastic properties of the thoracic limb.
The role of the extrinsic thoracic limb muscles in equine locomotion
Payne, RC; Veenman, P; Wilson, AM
2005-01-01
Muscles have two major roles in locomotion: to generate force and to absorb/generate power (do work). Economical force generation is achieved by short-fibred pennate muscle while the maximum power output of a muscle is architecture independent. In this study we tested the hypothesis that there is an anatomical and structural separation between the force-generating anti-gravity muscles and the propulsive (limb/trunk moving) muscles of the equine forelimb. Muscle mass and fascicle length measurements were made on the thoracic limb extrinsic muscles of six fresh horse cadavers. Physiological cross-sectional area and maximum isometric force were then estimated. Maximum power was estimated from muscle volume and published contraction velocity data. The majority of extrinsic forelimb muscles were large with long fascicles arranged in parallel to the long axis of the muscle. Muscles arranged in this way are optimised for doing work. The architecture of serratus ventralis thoracis (SVT) was unique. It had short (48 ± 17 mm) fascicles, arranged at about 45° to the long axis of the muscle, which would suggest a force-generating, anti-gravity role. The muscle belly of SVT was sandwiched between two broad, thick sheets of aponeurosis. Hence, SVT could make a significant contribution to the overall elastic properties of the thoracic limb. PMID:15730484
The role of the extrinsic thoracic limb muscles in equine locomotion
Payne, R C; Veenman, P; Wilson, A M
2004-01-01
Muscles have two major roles in locomotion: to generate force and to absorb/generate power (do work). Economical force generation is achieved by short-fibred pennate muscle while the maximum power output of a muscle is architecture independent. In this study we tested the hypothesis that there is an anatomical and structural separation between the force-generating anti-gravity muscles and the propulsive (limb/trunk moving) muscles of the equine forelimb. Muscle mass and fascicle length measurements were made on the thoracic limb extrinsic muscles of six fresh horse cadavers. Physiological cross-sectional area and maximum isometric force were then estimated. Maximum power was estimated from muscle volume and published contraction velocity data. The majority of extrinsic forelimb muscles were large with long fascicles arranged in parallel to the long axis of the muscle. Muscles arranged in this way are optimised for doing work. The architecture of serratus ventralis thoracis (SVT) was unique. It had short (48 ± 17 mm) fascicles, arranged at about 45° to the long axis of the muscle, which would suggest a force-generating, anti-gravity role. The muscle belly of SVT was sandwiched between two broad, thick sheets of aponeurosis. Hence, SVT could make a significant contribution to the overall elastic properties of the thoracic limb. PMID:15610395
Assessment of the Uniqueness of Wind Tunnel Strain-Gage Balance Load Predictions
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2016-01-01
A new test was developed to assess the uniqueness of wind tunnel strain-gage balance load predictions that are obtained from regression models of calibration data. The test helps balance users to gain confidence in load predictions of non-traditional balance designs. It also makes it possible to better evaluate load predictions of traditional balances that are not used as originally intended. The test works for both the Iterative and Non-Iterative Methods that are used in the aerospace testing community for the prediction of balance loads. It is based on the hypothesis that the total number of independently applied balance load components must always match the total number of independently measured bridge outputs or bridge output combinations. This hypothesis is supported by a control volume analysis of the inputs and outputs of a strain-gage balance. It is concluded from the control volume analysis that the loads and bridge outputs of a balance calibration data set must separately be tested for linear independence because it cannot always be guaranteed that a linearly independent load component set will result in linearly independent bridge output measurements. Simple linear math models for the loads and bridge outputs in combination with the variance inflation factor are used to test for linear independence. A highly unique and reversible mapping between the applied load component set and the measured bridge output set is guaranteed to exist if the maximum variance inflation factor of both sets is less than the literature recommended threshold of five. Data from the calibration of a six{component force balance is used to illustrate the application of the new test to real-world data.
NASA Astrophysics Data System (ADS)
Leyva, R.; Artillan, P.; Cabal, C.; Estibals, B.; Alonso, C.
2011-04-01
The article studies the dynamic performance of a family of maximum power point tracking circuits used for photovoltaic generation. It revisits the sinusoidal extremum seeking control (ESC) technique which can be considered as a particular subgroup of the Perturb and Observe algorithms. The sinusoidal ESC technique consists of adding a small sinusoidal disturbance to the input and processing the perturbed output to drive the operating point at its maximum. The output processing involves a synchronous multiplication and a filtering stage. The filter instance determines the dynamic performance of the MPPT based on sinusoidal ESC principle. The approach uses the well-known root-locus method to give insight about damping degree and settlement time of maximum-seeking waveforms. This article shows the transient waveforms in three different filter instances to illustrate the approach. Finally, an experimental prototype corroborates the dynamic analysis.
A fiber-laser-pumped four-wavelength continuous-wave mid-infrared optical parametric oscillator
NASA Astrophysics Data System (ADS)
Wang, Peng; Shang, Yaping; Li, Xiao; Xu, Xiaojun
2017-10-01
In this paper, a four-wavelength continuous-wave mid-infrared optical parametric oscillator was demonstrated for the first time. The pump source was a home-built linearly polarized Yb-doped fiber laser and the maximum output power was 72.5 W. The pump source had three central wavelengths locating at 1060 nm, 1065 nm and 1080 nm. Four idler emissions with different wavelengths were generated which were 3132 nm, 3171 nm, 3310 nm and 3349 nm under the maximum pump power. The maximum idler output reached 8.7 W, indicating a 15% pump-to-idler slope efficiency. The signal wave generated in the experiment had two wavelengths which were 1595 nm and 1603 nm under the maximum pump power. It was analyzed that four nonlinear progresses occurred in the experiment, two of them being optical parametric oscillation and the rest two being intracavity difference frequency generation.
Fresiello, Libera; Rademakers, Frank; Claus, Piet; Ferrari, Gianfranco; Di Molfetta, Arianna; Meyns, Bart
2017-01-01
Patients with a Ventricular Assist Device (VAD) are hemodynamically stable but show an impaired exercise capacity. Aim of this work is to identify and to describe the limiting factors of exercise physiology with a VAD. We searched for data concerning exercise in heart failure condition and after VAD implantation from the literature. Data were analyzed by using a cardiorespiratory simulator that worked as a collector of inputs coming from different papers. As a preliminary step the simulator was used to reproduce the evolution of hemodynamics from rest to peak exercise (ergometer cycling) in heart failure condition. Results evidence an increase of cardiac output of +2.8 l/min and a heart rate increase to 67% of the expected value. Then, we simulated the effect of a continuous-flow VAD at both rest and exercise. Total cardiac output increases of +3.0 l/min (+0.9 l/min due to the VAD and +2.1 l/min to the native ventricle). Since the left ventricle works in a non-linear portion of the diastolic stiffness line, we observed a consistent increase of pulmonary capillary wedge pressure (from 14 to 20 mmHg) for a relatively small increase of end-diastolic volume (from 182 to 189 cm3). We finally increased VAD speed during exercise to the maximum possible value and we observed a reduction of wedge pressure (-4.5 mmHg), a slight improvement of cardiac output (8.0 l/min) and a complete unloading of the native ventricle. The VAD can assure a proper hemodynamics at rest, but provides an insufficient unloading of the left ventricle and does not prevent wedge pressure from rising during exercise. Neither the VAD provides major benefits during exercise in terms of total cardiac output, which increases to a similar extend to an unassisted heart failure condition. VAD speed modulation can contribute to better unload the ventricle but the maximal flow reachable with the current devices is below the cardiac output observed in a healthy heart.
High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.
Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan
2016-05-15
A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.
Closed Loop solar array-ion thruster system with power control circuitry
NASA Technical Reports Server (NTRS)
Gruber, R. P. (Inventor)
1979-01-01
A power control circuit connected between a solar array and an ion thruster receives voltage and current signals from the solar array. The control circuit multiplies the voltage and current signals together to produce a power signal which is differentiated with respect to time. The differentiator output is detected by a zero crossing detector and, after suitable shaping, the detector output is phase compared with a clock in a phase demodulator. An integrator receives no output from the phase demodulator when the operating point is at the maximum power but is driven toward the maximum power point for non-optimum operation. A ramp generator provides minor variations in the beam current reference signal produced by the integrator in order to obtain the first derivative of power.
Nd3+-doped soft glass double-clad fibers with a hexagonal inner cladding
NASA Astrophysics Data System (ADS)
Wang, Longfei; He, Dongbing; Hu, Lili; Chen, Danping
2015-04-01
The stack-and-draw technique was used to fabricate Nd3+-doped silicate and phosphate glass double-clad step-index fibers with a non-circular inner cladding. For the silicate fiber, a maximum output power of 7.7 W was obtained from a 94 cm fiber. An output power of 1.25 W was also realized with a short length fiber of 8 cm, confirming the application potential of this fiber in single frequency lasers and pulsed amplifiers where an efficient rare-earth-doped fiber with short length is desirable. For the phosphate fiber, a maximum output power of 2.78 W was obtained from a single-mode fiber with a core diameter of up to 35 μm.
Data collection system for a wide range of gas-discharge proportional neutron counters
NASA Astrophysics Data System (ADS)
Oskomov, V.; Sedov, A.; Saduyev, N.; Kalikulov, O.; Kenzhina, I.; Tautaev, E.; Mukhamejanov, Y.; Dyachkov, V.; Utey, Sh
2017-12-01
This article describes the development and creation of a universal system of data collection to measure the intensity of pulsed signals. As a result of careful analysis of time conditions and operating conditions of software and hardware complex circuit solutions were selected that meet the required specifications: frequency response is optimized in order to obtain the maximum ratio signal/noise; methods and modes of operation of the microcontroller were worked out to implement the objectives of continuous measurement of signal amplitude at the output of amplifier and send the data to a computer; function of control of high voltage source was implemented. The preliminary program has been developed for microcontroller in its simplest form, which works on a particular algorithm.
A Modular PV System Using Chain-Link-Type Multilevel Converter
NASA Astrophysics Data System (ADS)
Hatano, Nobuhiko; Ise, Toshifumi
This paper presents a modular photovoltaic system (MPVS) that uses a chain-link-type multilevel converter (CLMC). In large-scale PV generating systems, the DC power supply is generally composed of a large number of PV panels. Hence, losses are caused by differences in the maximum power point at each PV panel. An MPVS has been proposed to address the above mentioned problem. It helps improve the photoelectric conversion efficiency by applying maximum power point tracking (MPPT) control to each group of PV panels. In addition, if a CLMC is used in an MPVS, a high voltage can be output from the AC side and transmission losses can be decreased. However, with this circuit configuration, the current output from the AC side may be unbalanced. Therefore, we propose a method to output balanced current from the AC side, even if the output of the DC power supply is unbalanced. The validity of the proposed method is examined by digital simulation.
Development of 600 kV triple resonance pulse transformer.
Li, Mingjia; Zhang, Faqiang; Liang, Chuan; Xu, Zhou
2015-06-01
In this paper, a triple-resonance pulse transformer based on an air-core transformer is introduced. The voltage across the high-voltage winding of the air-core transformer is significantly less than the output voltage; instead, the full output voltage appears across the tuning inductor. The maximum ratio of peak load voltage to peak transformer voltage is 2.77 in theory. By analyzing pulse transformer's lossless circuit, the analytical expression for the output voltage and the characteristic equation of the triple-resonance circuit are presented. Design method for the triple-resonance pulse transformer (iterated simulation method) is presented, and a triple-resonance pulse transformer is developed based on the existing air-core transformer. The experimental results indicate that the maximum ratio of peak voltage across the load to peak voltage across the high-voltage winding of the air-core transformer is approximately 2.0 and the peak output voltage of the triple-resonance pulse transformer is approximately 600 kV.
Flux focusing eddy current probe
NASA Technical Reports Server (NTRS)
Simpson, John W. (Inventor); Clendenin, C. Gerald (Inventor); Fulton, James P. (Inventor); Wincheski, Russell A. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor); Nath, Shridhar C. (Inventor)
1997-01-01
A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks and material loss in high conductivity material. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil. The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. The maximum sensor output is obtained when positioned symmetrically above the crack. Hence, by obtaining the position of the maximum sensor output, it is possible to track the fault and locate the area surrounding its tip. The accuracy of tip location is enhanced by two unique features of the sensor; a very high signal-to-noise ratio of the probe's output which results in an extremely smooth signal peak across the fault, and a rapidly decaying sensor output outside a small area surrounding the crack tip which enables the region for searching to be clearly defined. Under low frequency operation, material thinning due to corrosion damage causes an incomplete shielding of the pick-up coil. The low frequency output voltage of the probe is therefore a direct indicator of the thickness of the test sample.
NASA Astrophysics Data System (ADS)
Alaraj, Muhannad; Radenkovic, Miloje; Park, Jae-Do
2017-02-01
Microbial fuel cells (MFCs) are renewable and sustainable energy sources that can be used for various applications. The MFC output power depends on its biochemical conditions as well as the terminal operating points in terms of output voltage and current. There exists one operating point that gives the maximum possible power from the MFC, maximum power point (MPP), for a given operating condition. However, this MPP may vary and needs to be tracked in order to maintain the maximum power extraction from the MFC. Furthermore, MFC reactors often develop voltage overshoots that cause drastic drops in the terminal voltage, current, and the output power. When the voltage overshoot happens, an additional control measure is necessary as conventional MPPT algorithms will fail because of the change in the voltage-current relationship. In this paper, the extremum seeking (ES) algorithm was used to track the varying MPP and a voltage overshoot avoidance (VOA) algorithm is developed to manage the voltage overshoot conditions. The proposed ES-MPPT with VOA algorithm was able to extract 197.2 mJ during 10-min operation avoiding voltage overshoot, while the ES MPPT-only scheme stopped harvesting after only 18.75 mJ because of the voltage overshoot happened at 0.4 min.
Natural Resource Information System. Volume 2: System operating procedures and instructions
NASA Technical Reports Server (NTRS)
1972-01-01
A total computer software system description is provided for the prototype Natural Resource Information System designed to store, process, and display data of maximum usefulness to land management decision making. Program modules are described, as are the computer file design, file updating methods, digitizing process, and paper tape conversion to magnetic tape. Operating instructions for the system, data output, printed output, and graphic output are also discussed.
Maté-Muñoz, José Luis; Lougedo, Juan H; Garnacho-Castaño, Manuel V; Veiga-Herreros, Pablo; Lozano-Estevan, María Del Carmen; García-Fernández, Pablo; de Jesús, Fernando; Guodemar-Pérez, Jesús; San Juan, Alejandro F; Domínguez, Raúl
2018-01-01
β-Alanine (BA) is a non-essential amino acid that has been shown to enhance exercise performance. The purpose of this investigation was to determine if BA supplementation improved the adaptive response to five weeks of a resistance training program. Thirty healthy, strength-trained individuals were randomly assigned to the experimental groups placebo (PLA) or BA. Over 5 weeks of strength training, subjects in BA took 6.4 g/day of BA as 8 × 800 mg doses each at least 1.5 h apart. The training program consisted of 3 sessions per week in which three different leg exercises were conducted as a circuit (back squat, barbell step ups and loaded jumping lunges). The program started with 3 sets of 40 s of work per exercise and rest periods between sets of 120 s in the first week. This training volume was then gradually built up to 5 sets of 20 s work/60 s rest in the fifth week. The work load during the program was set by one of the authors according to the individual's perceived effort the previous week. The variables measured were average velocity, peak velocity, average power, peak power, and load in kg in a back squat, incremental load, one-repetition maximum (1RM) test. In addition, during the rest period, jump ability (jump height and power) was assessed on a force platform. To compare data, a general linear model with repeated measures two-way analysis of variance was used. Significantly greater training improvements were observed in the BA group versus PLA group ( p = 0.045) in the variables average power at 1RM (BA: 42.65%, 95% CI, 432.33, 522.52 VS. PLA: 21.07%, 95% CI, 384.77, 482.19) and average power at maximum power output ( p = 0.037) (BA: 20.17%, 95% CI, 637.82, 751.90 VS. PLA; 10.74%, 95% CI, 628.31, 751.53). The pre- to post training average power gain produced at 1RM in BA could be explained by a greater maximal strength gain, or load lifted at 1RM ( p = 0.014) (24 kg, 95% CI, 19.45, 28.41 VS. 16 kg, 95% CI, 10.58, 20.25) and in the number of sets executed ( p = 0.025) in the incremental load test (BA: 2.79 sets, 95% CI, 2.08, 3.49 VS. PLA: 1.58 sets, 95% CI, 0.82, 2.34). β-Alanine supplementation was effective at increasing power output when lifting loads equivalent to the individual's maximal strength or when working at maximum power output. The improvement observed at 1RM was explained by a greater load lifted, or strength gain, in response to training in the participants who took this supplement.
Siaw, Fei-Lu; Chong, Kok-Keong
2013-01-01
This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.
A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System
Siaw, Fei-Lu
2013-01-01
This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%. PMID:24453823
High-power, highly stable KrF laser with a 4-kHz pulse repetition rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borisov, V M; El'tsov, A V; Khristoforov, O B
2015-08-31
An electric-discharge KrF laser (248 nm) with an average output power of 300 W is developed and studied. A number of new design features are related to the use of a laser chamber based on an Al{sub 2}O{sub 3} ceramic tube. A high power and pulse repetition rate are achieved by using a volume discharge with lateral preionisation by the UV radiation of a creeping discharge in the form of a homogeneous plasma sheet on the surface of a plane sapphire plate. Various generators for pumping the laser are studied. The maximum laser efficiency is 3.1%, the maximum laser energymore » is 160 mJ pulse{sup -1}, and the pulse duration at half maximum is 7.5 ns. In the case of long-term operation at a pulse repetition rate of 4 kHz and an output power of 300 W, high stability of laser output energy (σ ≤ 0.7%) is achieved using an all-solid-state pump system. (lasers)« less
Simulation study on the maximum continuous working condition of a power plant boiler
NASA Astrophysics Data System (ADS)
Wang, Ning; Han, Jiting; Sun, Haitian; Cheng, Jiwei; Jing, Ying'ai; Li, Wenbo
2018-05-01
First of all, the boiler is briefly introduced to determine the mathematical model and the boundary conditions, then the boiler under the BMCR condition numerical simulation study, and then the BMCR operating temperature field analysis. According to the boiler actual test results and the hot BMCR condition boiler output test results, the simulation results are verified. The main conclusions are as follows: the position and size of the inscribed circle in the furnace and the furnace temperature distribution and test results under different elevation are compared and verified; Accuracy of numerical simulation results.
Mechanical model for filament buckling and growth by phase ordering.
Rey, Alejandro D; Abukhdeir, Nasser M
2008-02-05
A mechanical model of open filament shape and growth driven by phase ordering is formulated. For a given phase-ordering driving force, the model output is the filament shape evolution and the filament end-point kinematics. The linearized model for the slope of the filament is the Cahn-Hilliard model of spinodal decomposition, where the buckling corresponds to concentration fluctuations. Two modes are predicted: (i) sequential growth and buckling and (ii) simultaneous buckling and growth. The relation among the maximum buckling rate, filament tension, and matrix viscosity is given. These results contribute to ongoing work in smectic A filament buckling.
Cooper, James A.
1986-01-01
A logic circuit is used to enhance redundant switch reliability. Two or more switches are monitored for logical high or low output. The output for the logic circuit produces a redundant and failsafe representation of the switch outputs. When both switch outputs are high, the output is high. Similarly, when both switch outputs are low, the logic circuit's output is low. When the output states of the two switches do not agree, the circuit resolves the conflict by memorizing the last output state which both switches were simultaneously in and produces the logical complement of this output state. Thus, the logic circuit of the present invention allows the redundant switches to be treated as if they were in parallel when the switches are open and as if they were in series when the switches are closed. A failsafe system having maximum reliability is thereby produced.
Electronic logic for enhanced switch reliability
Cooper, J.A.
1984-01-20
A logic circuit is used to enhance redundant switch reliability. Two or more switches are monitored for logical high or low output. The output for the logic circuit produces a redundant and fail-safe representation of the switch outputs. When both switch outputs are high, the output is high. Similarly, when both switch outputs are low, the logic circuit's output is low. When the output states of the two switches do not agree, the circuit resolves the conflict by memorizing the last output state which both switches were simultaneously in and produces the logical complement of this output state. Thus, the logic circuit of the present invention allows the redundant switches to be treated as if they were in parallel when the switches are open and as if they were in series when the switches are closed. A failsafe system having maximum reliability is thereby produced.
26 CFR 1.141-7 - Special rules for output facilities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... nameplate capacity or the equivalent (or where there is no nameplate capacity or the equivalent, its maximum capacity), which is not reduced for reserves, maintenance or other unutilized capacity. (ii) Transmission and other output facilities—(A) In general. For transmission, distribution, cogeneration, and other...
26 CFR 1.141-7 - Special rules for output facilities.
Code of Federal Regulations, 2012 CFR
2012-04-01
... nameplate capacity or the equivalent (or where there is no nameplate capacity or the equivalent, its maximum capacity), which is not reduced for reserves, maintenance or other unutilized capacity. (ii) Transmission and other output facilities—(A) In general. For transmission, distribution, cogeneration, and other...
26 CFR 1.141-7 - Special rules for output facilities.
Code of Federal Regulations, 2013 CFR
2013-04-01
... nameplate capacity or the equivalent (or where there is no nameplate capacity or the equivalent, its maximum capacity), which is not reduced for reserves, maintenance or other unutilized capacity. (ii) Transmission and other output facilities—(A) In general. For transmission, distribution, cogeneration, and other...
26 CFR 1.141-7 - Special rules for output facilities.
Code of Federal Regulations, 2014 CFR
2014-04-01
... nameplate capacity or the equivalent (or where there is no nameplate capacity or the equivalent, its maximum capacity), which is not reduced for reserves, maintenance or other unutilized capacity. (ii) Transmission and other output facilities—(A) In general. For transmission, distribution, cogeneration, and other...
26 CFR 1.141-7 - Special rules for output facilities.
Code of Federal Regulations, 2011 CFR
2011-04-01
... nameplate capacity or the equivalent (or where there is no nameplate capacity or the equivalent, its maximum capacity), which is not reduced for reserves, maintenance or other unutilized capacity. (ii) Transmission and other output facilities—(A) In general. For transmission, distribution, cogeneration, and other...
Use of regional climate model output for hydrologic simulations
Hay, L.E.; Clark, M.P.; Wilby, R.L.; Gutowski, W.J.; Leavesley, G.H.; Pan, Z.; Arritt, R.W.; Takle, E.S.
2002-01-01
Daily precipitation and maximum and minimum temperature time series from a regional climate model (RegCM2) configured using the continental United States as a domain and run on a 52-km (approximately) spatial resolution were used as input to a distributed hydrologic model for one rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango. Colorado; east fork of the Carson River near Gardnerville, Nevada: and Cle Elum River near Roslyn, Washington). For comparison purposes, spatially averaged daily datasets of precipitation and maximum and minimum temperature were developed from measured data for each basin. These datasets included precipitation and temperature data for all stations (hereafter, All-Sta) located within the area of the RegCM2 output used for each basin, but excluded station data used to calibrate the hydrologic model. Both the RegCM2 output and All-Sta data capture the gross aspects of the seasonal cycles of precipitation and temperature. However, in all four basins, the RegCM2- and All-Sta-based simulations of runoff show little skill on a daily basis [Nash-Sutcliffe (NS) values range from 0.05 to 0.37 for RegCM2 and -0.08 to 0.65 for All-Sta]. When the precipitation and temperature biases are corrected in the RegCM2 output and All-Sta data (Bias-RegCM2 and Bias-All, respectively) the accuracy of the daily runoff simulations improve dramatically for the snowmelt-dominated basins (NS values range from 0.41 to 0.66 for RegCM2 and 0.60 to 0.76 for All-Sta). In the rainfall-dominated basin, runoff simulations based on the Bias-RegCM2 output show no skill (NS value of 0.09) whereas Bias-All simulated runoff improves (NS value improved from - 0.08 to 0.72). These results indicate that measured data at the coarse resolution of the RegCM2 output can be made appropriate for basin-scale modeling through bias correction (essentially a magnitude correction). However, RegCM2 output, even when bias corrected, does not contain the day-to-day variability present in the All-Sta dataset that is necessary for basin-scale modeling. Future work is warranted to identify the causes for systematic biases in RegCM2 simulations, develop methods to remove the biases, and improve RegCM2 simulations of daily variability in local climate.
Examining impulse-variability in overarm throwing.
Urbin, M A; Stodden, David; Boros, Rhonda; Shannon, David
2012-01-01
The purpose of this study was to examine variability in overarm throwing velocity and spatial output error at various percentages of maximum to test the prediction of an inverted-U function as predicted by impulse-variability theory and a speed-accuracy trade-off as predicted by Fitts' Law Thirty subjects (16 skilled, 14 unskilled) were instructed to throw a tennis ball at seven percentages of their maximum velocity (40-100%) in random order (9 trials per condition) at a target 30 feet away. Throwing velocity was measured with a radar gun and interpreted as an index of overall systemic power output. Within-subject throwing velocity variability was examined using within-subjects repeated-measures ANOVAs (7 repeated conditions) with built-in polynomial contrasts. Spatial error was analyzed using mixed model regression. Results indicated a quadratic fit with variability in throwing velocity increasing from 40% up to 60%, where it peaked, and then decreasing at each subsequent interval to maximum (p < .001, η2 = .555). There was no linear relationship between speed and accuracy. Overall, these data support the notion of an inverted-U function in overarm throwing velocity variability as both skilled and unskilled subjects approach maximum effort. However, these data do not support the notion of a speed-accuracy trade-off. The consistent demonstration of an inverted-U function associated with systemic power output variability indicates an enhanced capability to regulate aspects of force production and relative timing between segments as individuals approach maximum effort, even in a complex ballistic skill.
Fabrication of thermoelectric modules with Mg2Si and SrRuO3 by the spark plasma sintering method
NASA Astrophysics Data System (ADS)
Nishio, Keishi; Sawada, Yukie; Arai, Koya; Sakamoto, Tatsuya; Kogo, Yasuo; Iida, Tsutomu
2012-06-01
Thermoelectric (TE) modules with a π structure were fabricated by the spark plasma sintering method. The modules were composed of SrRuO3 for the p-type semiconductor, Mg2Si for the n-type semiconductor, and Ni for the electrodes. The SrRuO3 powder was synthesized using the metal-citric-acid complex decomposition method. Mg2Si bulk prepared by meltquenching was ground into powder and sieved to a particle size of 75 μm or less. To obtain the sintered body of SrRuO3, the powder was sintered using spark plasma sintering (SPS). For SPS, the precursor powder was placed in a graphite die and kept at that temperature under a uni-axial pressure of 50 MPa and in vacuum conditions (less than 7 Pa). After sintering by SPS, the ceramic sample was annealed at 1573K in air because the SrRuO3 was slightly reduced during the SPS process in the graphite die. These TE sintered bodies were cut and polished. The dimensions of the samples used for fabrication of the p-type parts of the TE modules were 4.50×9.50×7.45 mm3 and those for the n-type parts were 5.50×11.45×7.45 mm3. Pressed Ni powder was put between these TE materials and the Ni electrodes in order to connect them together, and electrical power was passed through the electrodes from the SPS equipment. The output power under temperature differences ΔT ranging from 100 to 500 K was measured. The open-circuit voltage, maximum output current and maximum output power increased with increasing temperature difference ΔT. The open-circuit voltage of the single module was 91.0 mV, and the maximum output current and maximum output power were 5000 mA and 110 mW at ΔT=500 K, respectively.
NASA Astrophysics Data System (ADS)
Chalise, Santosh
Although solar photovoltaic (PV) systems have remained the fastest growing renewable power generating technology, variability as well as uncertainty in the output of PV plants is a significant issue. This rapid increase in PV grid-connected generation presents not only progress in clean energy but also challenges in integration with traditional electric power grids which were designed for transmission and distribution of power from central stations. Unlike conventional electric generators, PV panels do not have rotating parts and thus have no inertia. This potentially causes a problem when the solar irradiance incident upon a PV plant changes suddenly, for example, when scattered clouds pass quickly overhead. The output power of the PV plant may fluctuate nearly as rapidly as the incident irradiance. These rapid power output fluctuations may then cause voltage fluctuations, frequency fluctuations, and power quality issues. These power quality issues are more severe with increasing PV plant power output. This limits the maximum power output allowed from interconnected PV plants. Voltage regulation of a distribution system, a focus of this research, is a prime limiting factor in PV penetration levels. The IEEE 13-node test feeder, modeled and tested in the MATLAB/Simulink environment, was used as an example distribution feeder to analyze the maximum acceptable penetration of a PV plant. The effect of the PV plant's location was investigated, along with the addition of a VAR compensating device (a D-STATCOM in this case). The results were used to develop simple guidelines for determining an initial estimate of the maximum PV penetration level on a distribution feeder. For example, when no compensating devices are added to the system, a higher level of PV penetration is generally achieved by installing the PV plant close to the substation. The opposite is true when a VAR compensator is installed with the PV plant. In these cases, PV penetration levels over 50% may be safely achieved.
Diode-pumped continuous-wave and passively Q-switched Nd:GdLuAG laser at 1443.9 nm
NASA Astrophysics Data System (ADS)
Wu, Qianwen; Liu, Zhaojun; Zhang, Sasa; Cong, Zhenghua; Guan, Chen; Xue, Feng; Chen, Hui; Huang, Qingjie; Xu, Xiaodong; Xu, Jun; Qin, Zengguang
2017-12-01
We investigated the 1443.9 nm laser characteristics of Nd:GdLuAG crystal. Diode-end-pumping configuration was employed under both continuous-wave (CW) and passively Q-switched operations. For CW operation, the maximum average output power was 1.36 W with a slope efficiency of 15%. By using a V3+:YAG crystal as the saturable absorber, we obtained the maximum average output power of 164 mW under Q-switched operation. The corresponding pulse energy was 29.3 μJ and pulse duration was 59 ns.
A seesaw-type approach for enhancing nonlinear energy harvesting
NASA Astrophysics Data System (ADS)
Deng, Huaxia; Wang, Zhemin; Du, Yu; Zhang, Jin; Ma, Mengchao; Zhong, Xiang
2018-05-01
Harvesting sustainable mechanical energy is the ultimate objective of nonlinear energy harvesters. However, overcoming potential barriers, especially without the use of extra excitations, poses a great challenge for the development of nonlinear generators. In contrast to the existing methods, which typically modify the barrier height or utilize additional excitations, this letter proposes a seesaw-type approach to facilitate escape from potential wells by transfer of internal energy, even under low-intensity excitation. This approach is adopted in the design of a seesaw-type nonlinear piezoelectric energy harvester and the energy transfer process is analyzed by deriving expressions for the energy to reveal the working mechanism. Comparison experiments demonstrate that this approach improves energy harvesting in terms of an increase in the working frequency bandwidth by a factor of 60.14 and an increase in the maximum output voltage by a factor of 5.1. Moreover, the output power is increased by a factor of 51.3, which indicates that this approach significantly improves energy collection efficiency. This seesaw-type approach provides a welcome boost to the development of renewable energy collection methods by improving the efficiency of harvesting of low-intensity ambient mechanical energy.
Photocurrent Measurement of PC and PV HgCdTe Detectors
Eppeldauer, George P.; Martin, Robert J.
2001-01-01
Novel preamplifiers for working standard photoconductive (PC) and photovoltaic (PV) HgCdTe detectors have been developed to maintain the spectral responsivity scale of the National Institute of Standards and Technology (NIST) in the wavelength range of 5 μm to 20 μm. The linear PC mode preamplifier does not need any compensating source to zero the effect of the detector bias current for the preamplifier output. The impedance multiplication concept with a positive feedback buffer amplifier was analyzed and utilized in a bootstrap PV transimpedance amplifier to measure photocurrent of a 200 Ω shunt resistance photodiode with a maximum signal gain of 108 V/A. In spite of the high performance lock-in used as a second-stage signal-amplifier, the signal-to-noise ratio had to be optimized for the output of the photocurrent preamplifiers. Noise and drift were equalized for the output of the PV mode preamplifier. The signal gain errors were calculated to determine the signal frequency range where photocurrent-to-voltage conversion can be performed with very low uncertainties. For the design of both PC and PV detector preamplifiers, the most important gain equations are described. Measurement results on signal ranges and noise performance are discussed. PMID:27500036
Photocurrent Measurement of PC and PV HgCdTe Detectors.
Eppeldauer, G P; Martin, R J
2001-01-01
Novel preamplifiers for working standard photoconductive (PC) and photovoltaic (PV) HgCdTe detectors have been developed to maintain the spectral responsivity scale of the National Institute of Standards and Technology (NIST) in the wavelength range of 5 μm to 20 μm. The linear PC mode preamplifier does not need any compensating source to zero the effect of the detector bias current for the preamplifier output. The impedance multiplication concept with a positive feedback buffer amplifier was analyzed and utilized in a bootstrap PV transimpedance amplifier to measure photocurrent of a 200 Ω shunt resistance photodiode with a maximum signal gain of 10(8) V/A. In spite of the high performance lock-in used as a second-stage signal-amplifier, the signal-to-noise ratio had to be optimized for the output of the photocurrent preamplifiers. Noise and drift were equalized for the output of the PV mode preamplifier. The signal gain errors were calculated to determine the signal frequency range where photocurrent-to-voltage conversion can be performed with very low uncertainties. For the design of both PC and PV detector preamplifiers, the most important gain equations are described. Measurement results on signal ranges and noise performance are discussed.
Xu, Yu-Shang; Zheng, Tao; Yong, Xiao-Yu; Zhai, Dan-Dan; Si, Rong-Wei; Li, Bing; Yu, Yang-Yang; Yong, Yang-Chun
2016-07-01
Although microbial fuel cells (MFCs) is considered as one of the most promising technology for renewable energy harvesting, low power output still accounts one of the bottlenecks and limits its further development. In this work, it is found that Cu(2+) (0.1μgL(-1)-0.1mgL(-1)) or Cd(2+) (0.1μgL(-1)-1mgL(-1)) significantly improve the electricity generation in MFCs. The maximum power output achieved with trace level of Cu(2+) (∼6nM) or Cd(2+) (∼5nM) is 1.3 times and 1.6 times higher than that of the control, respectively. Further analysis verifies that addition of Cu(2+) or Cd(2+) effectively improves riboflavin production and bacteria attachment on the electrode, which enhances bacterial extracellular electron transfer (EET) in MFCs. These results unveil the mechanism for power output enhancement by Cu(2+) or Cd(2+) addition, and suggest that metal ion addition should be a promising strategy to enhance EET as well as power generation of MFCs. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Zhi; Wang, Yi; Xu, Bin; Cheng, Yongjie; Xu, Huiying; Cai, Zhiping
2015-12-01
We report on diode-end-pumped a-cut Nd:YLF laser on F→I transition. In a free-running regime, using an output coupler with a radius of curvature of 1000 mm, we obtain dual-wavelength laser operation at both π-polarized 1047 nm and σ-polarized 1053 nm with maximum output power of about 1.25 W and the highest slope efficiency of about 50.9% at pump power of 5.77 W at room temperature, for the first time to our knowledge. Furthermore, using a 0.1-mm glass plate as a wavelength selector, a dual-wavelength laser at 1047 and 1072 nm can also be yielded with the maximum output power of 0.34 W, which has not been reported before.
Haggett, Stephanie; Krakowski, Michel; Montrosset, Ivo; Cataluna, Maria Ana
2014-09-22
A high-power tunable external cavity laser configuration with a tapered quantum-dot semiconductor optical amplifier at its core is presented, enabling a record output power for a broadly tunable semiconductor laser source in the 1.2 - 1.3 µm spectral region. Two distinct optical amplifiers are investigated, using either chirped or unchirped quantum-dot structures, and their merits are compared, considering the combination of tunability and high output power generation. At 1230 nm, the chirped quantum-dot laser achieved a maximum power of 0.62 W and demonstrated nearly 100-nm tunability. The unchirped laser enabled a tunability range of 32 nm and at 1254 nm generated a maximum power of 0.97 W, representing a 22-fold increase in output power compared with similar narrow-ridge external-cavity lasers at the same current density.
Ignitor with stable low-energy thermite igniting system
Kelly, Michael D.; Munger, Alan C.
1991-02-05
A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.
Continuous-wave laser operation at 743 and 753 nm based on a diode-pumped c-cut Pr:YAlO3 crystal
NASA Astrophysics Data System (ADS)
Lin, Xiuji; Huang, Xiaoxu; Liu, Bin; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Li, Dongzhen; Liu, Jian; Xu, Jun
2018-02-01
We report on blue-diode-pumped continuous-wave Pr:YAlO3 (YAP) crystal lasers. Using a b-cut sample, a maximum output power of 181 mW is achieved at ∼747 nm with slope efficiency of 12.7% with respect to the absorbed power. Using a c-cut sample, a dual-wavelength laser at ∼743 and ∼753 nm is obtained with a total maximum output power of 72 mW by using the blue diode pumping, for the first time to our knowledge. These laser emissions are all linearly polarized and M2 factors of these output laser beams are also measured. YAP is experimentally verified to be one of effective oxide hosts for Pr-doped visible laser operation besides its fluoride counterparts.
Optimal system sizing in grid-connected photovoltaic applications
NASA Astrophysics Data System (ADS)
Simoens, H. M.; Baert, D. H.; de Mey, G.
A costs/benefits analysis for optimizing the combination of photovoltaic (PV) panels, batteries and an inverter for grid interconnected systems at a 500 W/day Belgian residence is presented. It is assumed that some power purchases from the grid will always be necessary, and that excess PV power can be fed into the grid. A minimal value for the cost divided by the performance is defined for economic optimization. Shortages and excesses are calculated for PV panels of 0.5-10 kWp output, with consideration given to the advantages of a battery back-up. The minimal economic value is found to increase with the magnitude of PV output, and an inverter should never be rated at more than half the array maximum output. A maximum panel size for the Belgian residence is projected to be 6 kWp.
40 CFR 63.11583 - What are my monitoring requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... applicable, and the following: (1) Locate the pressure sensor(s) in, or as close as possible to, a position... comparing the sensor output to redundant sensor output. (4) Conduct calibration checks any time the sensor exceeds the manufacturer's specified maximum operating pressure range or install a new pressure sensor. (5...
High Power Microwave (HPM) and Ionizing Radiation Effects on CMOS Devices
2010-03-01
24 xviii Symbol Page VIH minimum input voltage for proper high voltage output...38 VOH output voltage corresponding to VIH ...design. The high level at the input, VIH , along with VDD, define the maximum permitted “Logic 1” region, which allows for proper state change for a
47 CFR 15.709 - General technical requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... between the transmitter and the antenna. If transmitting antennas of directional gain greater than 6 dBi... gain of the antenna exceeds 6 dBi. (2) For personal/portable TVBDs, the maximum conducted output power... conducted output power shall not exceed 40 milliwatts. If transmitting antennas of directional gain greater...
Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling.
Yan, H; Guo, Hao
2012-01-01
We study a thermal engine model for which Newton's cooling law is obeyed during heat transfer processes. The thermal efficiency and its bounds at maximum output power are derived and discussed. This model, though quite simple, can be applied not only to Carnot engines but also to four other types of engines. For the long thermal contact time limit, new bounds, tighter than what were known before, are obtained. In this case, this model can simulate Otto, Joule-Brayton, Diesel, and Atkinson engines. While in the short contact time limit, which corresponds to the Carnot cycle, the same efficiency bounds as that from Esposito et al. [Phys. Rev. Lett. 105, 150603 (2010)] are derived. In both cases, the thermal efficiency decreases as the ratio between the heat capacities of the working medium during heating and cooling stages increases. This might provide instructions for designing real engines. © 2012 American Physical Society
An innovative miniature microbial fuel cell fabricated using photolithography.
Chen, You-Peng; Zhao, Yue; Qiu, Ke-Qiang; Chu, Jian; Lu, Rui; Sun, Min; Liu, Xian-Wei; Sheng, Guo-Ping; Yu, Han-Qing; Chen, Jie; Li, Wen-Jie; Liu, Gang; Tian, Yang-Chao; Xiong, Ying
2011-02-15
Recently microbial fuel cells (MFCs) have attracted increasing interests in both environmental and energy fields. Among the various MFC configurations, miniature microbial fuel cell (mini-MFC) has a great potential for the application in medical, communication and other areas because of its miniature volume and high output power density. In this work, a 25-μL single-chamber mini-MFC was fabricated using the photolithography technique. The plate-shaped gold anodic electrode in the mini-MFC showed a higher electrochemical activity than the stripe-shaped one. A biofilm of Shewanella oneidensis MR-1 was formed on the surface of gold electrode in this micro-liter-scale MFCs. As a result, a maximum power density of 29 mW/m(2) and a maximum current density of 2148 mA/m(2) were achieved by this single-chamber mini-MFC. Copyright © 2010 Elsevier B.V. All rights reserved.
Le, Nhan; Song, ShaoZhen; Nabi, Ghulam; Wang, Ruikang; Huang, Zhihong
2016-09-01
Phase-sensitive optical coherence tomography (PhS-OCT) is proposed, as a new high intensity focused ultrasound (HIFU) imaging guidance to detect and track HIFU focus inside 1% agar samples in this work. The experiments studied the effect of varying HIFU power on the induction of shear wave, which can be implemented as a new technique to monitor focused ultrasound surgery (FUS). A miniature HIFU transducer (1.02 MHz, 20 mm aperture diameter, 15 mm radius of curvature) was produced in-house, pressure-field mapped, and calibrated. The transducer was then embedded inside a 1% agar phantom, which was placed under PhS-OCT for observation, under various HIFU power settings (acoustic power, and number of cycles per pulse). Shear wave was induced on the sample surface by HIFU and was captured in full under PhS-OCT. The lowest HIFU acoustic power output for the detection of shear wave was found to be 0.36 W (1.02 MHz, 100 cycles/pulse), or with the number of cycles/pulse as low as 20 (1.02 MHz, 0.98 W acoustic power output). A linear relationship between acoustic power output and the maximum shear wave displacement was found in the first study. The second study explores a non-linear correlation between the (HIFU) numbers of cycles per pulse, and the maximum shear wave displacement. PhS-OCT demonstrates excellent tracking and detection of HIFU-induced shear wave. The results could benefit other imaging techniques in tracking and guiding HIFU focus. Further studies will explore the relationship between the physical transducer characteristics and the HIFU-induced shear wave.
Optimizing Ti:Sapphire laser for quantitative biomedical imaging
NASA Astrophysics Data System (ADS)
James, Jeemol; Thomsen, Hanna; Hanstorp, Dag; Alemán Hérnandez, Felipe Ademir; Rothe, Sebastian; Enger, Jonas; Ericson, Marica B.
2018-02-01
Ti:Sapphire lasers are powerful tools in the field of scientific research and industry for a wide range of applications such as spectroscopic studies and microscopic imaging where tunable near-infrared light is required. To push the limits of the applicability of Ti:Sapphire lasers, fundamental understanding of the construction and operation is required. This paper presents two projects, (i) dealing with the building and characterization of custom built tunable narrow linewidth Ti:Sapphire laser for fundamental spectroscopy studies; and the second project (ii) the implementation of a fs-pulsed commercial Ti:Sapphire laser in an experimental multiphoton microscopy platform. For the narrow linewidth laser, a gold-plated diffraction grating with a Littrow geometry was implemented for highresolution wavelength selection. We demonstrate that the laser is tunable between 700 to 950 nm, operating in a pulsed mode with a repetition rate of 1 kHz and maximum average output power around 350 mW. The output linewidth was reduced from 6 GHz to 1.5 GHz by inserting an additional 6 mm thick etalon. The bandwidth was measured by means of a scanning Fabry Perot interferometer. Future work will focus on using a fs-pulsed commercial Ti:Sapphire laser (Tsunami, Spectra physics), operating at 80 MHz and maximum average output power around 1 W, for implementation in an experimental multiphoton microscopy set up dedicated for biomedical applications. Special focus will be on controlling pulse duration and dispersion in the optical components and biological tissue using pulse compression. Furthermore, time correlated analysis of the biological samples will be performed with the help of time correlated single photon counting module (SPCM, Becker&Hickl) which will give a novel dimension in quantitative biomedical imaging.
Spline-based high-accuracy piecewise-polynomial phase-to-sinusoid amplitude converters.
Petrinović, Davor; Brezović, Marko
2011-04-01
We propose a method for direct digital frequency synthesis (DDS) using a cubic spline piecewise-polynomial model for a phase-to-sinusoid amplitude converter (PSAC). This method offers maximum smoothness of the output signal. Closed-form expressions for the cubic polynomial coefficients are derived in the spectral domain and the performance analysis of the model is given in the time and frequency domains. We derive the closed-form performance bounds of such DDS using conventional metrics: rms and maximum absolute errors (MAE) and maximum spurious free dynamic range (SFDR) measured in the discrete time domain. The main advantages of the proposed PSAC are its simplicity, analytical tractability, and inherent numerical stability for high table resolutions. Detailed guidelines for a fixed-point implementation are given, based on the algebraic analysis of all quantization effects. The results are verified on 81 PSAC configurations with the output resolutions from 5 to 41 bits by using a bit-exact simulation. The VHDL implementation of a high-accuracy DDS based on the proposed PSAC with 28-bit input phase word and 32-bit output value achieves SFDR of its digital output signal between 180 and 207 dB, with a signal-to-noise ratio of 192 dB. Its implementation requires only one 18 kB block RAM and three 18-bit embedded multipliers in a typical field-programmable gate array (FPGA) device. © 2011 IEEE
Design and fabrication of six-volt vertically-stacked GaAs photovoltaic power converter
Zhao, Yongming; Sun, Yurun; He, Yang; Yu, Shuzhen; Dong, Jianrong
2016-01-01
A six-volt vertically-stacked, high current GaAs photovoltaic power converter (PPC) has been designed and fabricated to produce output power over 1 W under monochromatic illumination. An N++-GaAs/P++-AlGaAs tunnel junctions (TJs) structure has been used for connecting each sub-cell in this vertically-stacked PPC device. The thickness of the each GaAs sub-cell has been derived based on the calculation of absorption depth of photons with a wavelength of 808 nm using absorption coefficient obtained from ellipsometry measurements. The devices were characterized under non-uniform CW laser illumination at 808 nm with incident power up to 4.1 W. A maximum conversion efficiency of 50.2% was achieved at 0.3 W under non-uniform (coupled in optical fiber) monochromatic illumination, dropping to 42.5% at 4.1 W. The operating voltage at the maximum power point is 5.5–6.0 V, depending on the incident laser power, and an output electrical power output of 1.3 W can be extracted at a laser power of 2.9 W and the maximum electrical power output amounts to 1.72 W. The external quantum efficiency (EQE) measurement indicates that the performance of PPC can be further improved by refining the design of the thickness of sub-cells and improving TJs. PMID:27901079
Mao, Longfei; Verwoerd, Wynand S
2013-10-01
Synechocystis sp. PCC 6803 has been considered as a promising biocatalyst for electricity generation in recent microbial fuel cell research. However, the innate maximum current production potential and underlying metabolic pathways supporting the high current output are still unknown. This is mainly due to the fact that the high-current production cell phenotype results from the interaction among hundreds of reactions in the metabolism and it is impossible for reductionist methods to characterize the pathway selection in such a metabolic state. In this study, we employed computational metabolic techniques, flux balance analysis, and flux variability analysis, to exploit the maximum current outputs of Synechocystis sp. PCC 6803, in five electron transfer cases, namely, ferredoxin- and plastoquinol-dependent electron transfers under photoautotrophic cultivation, and NADH-dependent mediated electron transfer under photoautotrophic, heterotrophic, and mixotrophic conditions. In these five modes, the maximum current outputs were computed as 0.198, 0.7918, 0.198, 0.4652, and 0.4424 A gDW⁻¹, respectively. Comparison of the five operational modes suggests that plastoquinol-/c-type cytochrome-targeted electricity generation had an advantage of liberating the highest current output achievable for Synechocystis sp. PCC 6803. On the other hand, the analysis indicates that the currency metabolite, NADH-, dependent electricity generation can rely on a number of reactions from different pathways, and is thus more robust against environmental perturbations.
NASA Astrophysics Data System (ADS)
Hau, S.; Bruch, D.; Rizzello, G.; Motzki, P.; Seelecke, S.
2018-07-01
There are two major categories of dielectric elastomer actuators (DEAs), which differ from the way in which the actuation is exploited: stack DEAs, using the thickness compression, and membrane DEAs, which exploit the expansion in area. In this work we focus on a specific type of membrane DEAs, i.e., silicone-based strip-in-plane (SIP) DEAs with screen printed electrodes. The performance of such actuators strongly depends on their geometry and on the adopted mechanical biasing system. Typically, the biasing is based on elastomer pre-stretch or on dead loads, which results in relatively low actuation strain. Biasing systems characterized by a negative rate spring have proven to significantly increase the performance of circular out-of-plane DEAs. However, this kind of biasing has never been systematically applied to silicone SIP DEAs. In this work, the biasing design based on negative rate springs is extended to strip DEAs as well, allowing to improve speed, strain, and force of the resulting actuator. At first, the DEAs are characterized under electrical and mechanical loading. Afterwards, two actuator systems are studied and compared in terms of actuation strain, force output, and actuation speed. In a first design stage, the DEA is coupled with a linear spring. Subsequently, the membrane is loaded with a combination of linear and nonlinear spring (working in a negative stiffness region). The resulting stroke output of the second systems is more than 9 times higher in comparison to the first one. An actuation strain of up to 45% (11.2 millimeter) and a force output of 0.38 Newton are measured. A maximum speed of 0.29 m s‑1 is achieved, which is about 60 times faster than the one typically measured for similar systems based on VHB.
Disc piezoelectric ceramic transformers.
Erhart, Jirií; Půlpán, Petr; Doleček, Roman; Psota, Pavel; Lédl, Vít
2013-08-01
In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power.
Power output and carrier dynamics studies of perovskite solar cells under working conditions.
Yu, Man; Wang, Hao-Yi; Hao, Ming-Yang; Qin, Yujun; Fu, Li-Min; Zhang, Jian-Ping; Ai, Xi-Cheng
2017-08-02
Perovskite solar cells have emerged as promising photovoltaic systems with superb power conversion efficiency. For the practical application of perovskite devices, the greatest concerns are the power output density and the related dynamics under working conditions. In this study, the working conditions of planar and mesoscopic perovskite solar cells are simulated and the power output density evolutions with the working voltage are highlighted. The planar device exhibits higher capability of outputting power than the mesoscopic one. The transient photoelectric conversion dynamics are investigated under the open circuit, short circuit and working conditions. It is found that the power output and dynamic processes are correlated intrinsically, which suggests that the power output is the competitive result of the charge carrier recombination and transport. The present work offers a unique view to elucidating the relationship between the power output and the charge carrier dynamics for perovskite solar cells in a comprehensive manner, which would be beneficial to their future practical applications.
Flux-focusing eddy current probe and method for flaw detection
NASA Technical Reports Server (NTRS)
Simpson, John W. (Inventor); Clendenin, C. Gerald (Inventor)
1993-01-01
A flux-focusing electromagnetic sensor which uses a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks and material loss in high conductivity material is presented. The unique feature of the device is the ferrous shield isolating a high-turn pick-up coil from an excitation coil. The use of the magnetic shield is shown to produce a null voltage output across the receiving coil in the presence of an unflawed sample. A redistribution of the current flow in the sample caused by the presence of flaws, however, eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. The maximum sensor output is obtained when positioned symmetrically above the crack. Hence, by obtaining the position of the maximum sensor output, it is possible to track the fault and locate the area surrounding its tip. The accuracy of tip location is enhanced by two unique features of the sensor; a very high signal-to-noise ratio of the probe's output which results in an extremely smooth signal peak across the fault, and a rapidly decaying sensor output outside a small area surrounding the crack tip which enables the region for searching to be clearly defined. Under low frequency operation, material thinning due to corrosion damage causes an incomplete shielding of the pick-up coil. The low frequency output voltage of the probe is therefore a direct indicator of the thickness of the test sample.
Xie, Binghan; Gong, Weijia; Ding, An; Yu, Huarong; Qu, Fangshu; Tang, Xiaobin; Yan, Zhongsen; Li, Guibai; Liang, Heng
2017-10-01
Microbial fuel cell (MFC) is a sustainable technology to treat cattle manure slurry (CMS) for converting chemical energy to bioelectricity. In this work, two types of allochthonous inoculum including activated sludge (AS) and domestic sewage (DS) were added into the MFC systems to enhance anode biofilm formation and electricity generation. Results indicated that MFCs (AS + CMS) obtained the maximum electricity output with voltage approaching 577 ± 7 mV (~ 196 h), followed by MFCs (DS + CMS) (520 ± 21 mV, ~ 236 h) and then MFCs with autochthonous inoculum (429 ± 62 mV, ~ 263.5 h). Though the raw cattle manure slurry (RCMS) could facilitate electricity production in MFCs, the addition of allochthonous inoculum (AS/DS) significantly reduced the startup time and enhanced the output voltage. Moreover, the maximum power (1.259 ± 0.015 W/m 2 ) and the highest COD removal (84.72 ± 0.48%) were obtained in MFCs (AS + CMS). With regard to microbial community, Illumina HiSeq of the 16S rRNA gene was employed in this work and the exoelectrogens (Geobacter and Shewanella) were identified as the dominant members on all anode biofilms in MFCs. For anode microbial diversity, the MFCs (AS + CMS) outperformed MFCs (DS + CMS) and MFCs (RCMS), allowing the occurrence of the fermentative (e.g., Bacteroides) and nitrogen fixation bacteria (e.g., Azoarcus and Sterolibacterium) which enabled the efficient degradation of the slurry. This study provided a feasible strategy to analyze the anode biofilm formation by adding allochthonous inoculum and some implications for quick startup of MFC reactors for CMS treatment.
NASA Astrophysics Data System (ADS)
Ma, Zheshu; Wu, Jieer
2011-08-01
Indirectly or externally fired gas turbines (IFGT or EFGT) are interesting technologies under development for small and medium scale combined heat and power (CHP) supplies in combination with micro gas turbine technologies. The emphasis is primarily on the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass even "dirty" fuel by employing a high temperature heat exchanger (HTHE) to avoid the combustion gases passing through the turbine. In this paper, finite time thermodynamics is employed in the performance analysis of a class of irreversible closed IFGT cycles coupled to variable temperature heat reservoirs. Based on the derived analytical formulae for the dimensionless power output and efficiency, the efficiency optimization is performed in two aspects. The first is to search the optimum heat conductance distribution corresponding to the efficiency optimization among the hot- and cold-side of the heat reservoirs and the high temperature heat exchangers for a fixed total heat exchanger inventory. The second is to search the optimum thermal capacitance rate matching corresponding to the maximum efficiency between the working fluid and the high-temperature heat reservoir for a fixed ratio of the thermal capacitance rates of the two heat reservoirs. The influences of some design parameters on the optimum heat conductance distribution, the optimum thermal capacitance rate matching and the maximum power output, which include the inlet temperature ratio of the two heat reservoirs, the efficiencies of the compressor and the gas turbine, and the total pressure recovery coefficient, are provided by numerical examples. The power plant configuration under optimized operation condition leads to a smaller size, including the compressor, turbine, two heat reservoirs and the HTHE.
Modeling and reconfiguration of solar photovoltaic arrays under non-uniform shadow conditions
NASA Astrophysics Data System (ADS)
Nguyen, Dung Duc
Mass production and use of electricity generated from solar energy has become very common recently because of the environmental threats arising from the production of electricity from fossil fuels and nuclear power. The obvious benefits of solar energy are clean energy production and infinite supply of daylight. The main disadvantage is the high cost. In these photovoltaic systems, semiconductor materials convert the solar light into electrical energy. Current versus voltage characteristics of the solar cells are nonlinear, thus leading to technical control challenges. In the first order approximation, output power of a solar array is proportional to the irradiance of sunlight. However, in many applications, such as solar power plants, building integrated photovoltaic or solar tents, the solar photovoltaic arrays might be illuminated non-uniformly. The cause of non-uniform illumination may be the shadow of clouds, the trees, booms, neighbor's houses, or the shadow of one solar array on the other, etc. This further leads to nonlinearities in characteristics. Because of the nature of the electrical characteristics of solar cells, the maximum power losses are not proportional to the shadow, but magnify nonlinearly [1]. Further, shadows of solar PV array can cause other undesired effects: (1) The power actually generated from the solar PV array is much less than designed. At some systems, the annual losses because of the shadow effects can be reached 10%. Thus, the probability for "loss of load" increases [2]. (2) The local hot spot in the shaded part of the solar PV array can damage the solar cells. The shaded solar cells may be work on the negative voltage region and become a resistive load and absorb power. Bypass diodes are sometimes connected parallel to solar cells to protect them from damage. However, in most cases, just one diode is connected in parallel to group of solar cells [3], and this hidden the potential power output of the array. This proposed research will focus on the development of an adaptable solar array that is able to optimize power output, reconfigure itself when solar cells are damaged and create controllable output voltages and currents. This study will be a technological advancement over the existing technology of solar PV. Presently solar arrays are fixed arrays that require external device to control their output. In this research, the solar array will be able to self-reconfigure, leading to the following advantages: (1) Higher efficiency because no external devices are used. (2) Can reach maximum possible output power that is much higher than the maximum power of fixed solar arrays by arranging the solar cells in optimized connections. (3) Elimination of the hot spot effects. The proposed research has the following goals: First, to create a modeling and computing algorithm, which is able to simulate and analyze the effects of non-uniform changing shadows on the output power of solar PV arrays. Our model will be able to determine the power losses in each solar cell and the collective hot spots of an array. Second, to propose new methods, which are able to predict the performance of solar PV arrays under shadow conditions for long term (days, months, years). Finally, to develop adaptive reconfiguration algorithms to reconfigure connections within solar PV arrays in real time, under shadow conditions, in order to optimize output power.
Bombelli, Paolo; Iyer, Durgaprasad Madras Rajaraman; Covshoff, Sarah; McCormick, Alistair J; Yunus, Kamran; Hibberd, Julian M; Fisher, Adrian C; Howe, Christopher J
2013-01-01
Vascular plant bio-photovoltaics (VP-BPV) is a recently developed technology that uses higher plants to harvest solar energy and the metabolic activity of heterotrophic microorganisms in the plant rhizosphere to generate electrical power. In the present study, electrical output and maximum power output variations were investigated in a novel VP-BPV configuration using the crop plant rice (Oryza sativa L.) or an associated weed, Echinochloa glabrescens (Munro ex Hook. f.). In order to compare directly the physiological performances of these two species in VP-BPV systems, plants were grown in the same soil and glasshouse conditions, while the bio-electrochemical systems were operated in the absence of additional energy inputs (e.g. bias potential, injection of organic substrate and/or bacterial pre-inoculum). Diurnal oscillations were clearly observed in the electrical outputs of VP-BPV systems containing the two species over an 8-day growth period. During this 8-day period, O. sativa generated charge ∼6 times faster than E. glabrescens. This greater electrogenic activity generated a total charge accumulation of 6.75 ± 0.87 Coulombs for O. sativa compared to 1.12 ± 0.16 for E. glabrescens. The average power output observed over a period of about 30 days for O. sativa was significantly higher (0.980 ± 0.059 GJ ha(-1) year(-1)) than for E. glabrescens (0.088 ± 0.008 GJ ha(-1) year(-1)). This work indicates that electrical power can be generated in both VP-BPV systems (O. sativa and E. glabrescens) when bacterial populations are self-forming. Possible reasons for the differences in power outputs between the two plant species are discussed.
Solar maximum: Solar array degradation
NASA Technical Reports Server (NTRS)
Miller, T.
1985-01-01
The 5-year in-orbit power degradation of the silicon solar array aboard the Solar Maximum Satellite was evaluated. This was the first spacecraft to use Teflon R FEP as a coverglass adhesive, thus avoiding the necessity of an ultraviolet filter. The peak power tracking mode of the power regulator unit was employed to ensure consistent maximum power comparisons. Telemetry was normalized to account for the effects of illumination intensity, charged particle irradiation dosage, and solar array temperature. Reference conditions of 1.0 solar constant at air mass zero and 301 K (28 C) were used as a basis for normalization. Beginning-of-life array power was 2230 watts. Currently, the array output is 1830 watts. This corresponds to a 16 percent loss in array performance over 5 years. Comparison of Solar Maximum Telemetry and predicted power levels indicate that array output is 2 percent less than predictions based on an annual 1.0 MeV equivalent election fluence of 2.34 x ten to the 13th power square centimeters space environment.
Potential role of motion for enhancing maximum output energy of triboelectric nanogenerator
NASA Astrophysics Data System (ADS)
Byun, Kyung-Eun; Lee, Min-Hyun; Cho, Yeonchoo; Nam, Seung-Geol; Shin, Hyeon-Jin; Park, Seongjun
2017-07-01
Although triboelectric nanogenerator (TENG) has been explored as one of the possible candidates for the auxiliary power source of portable and wearable devices, the output energy of a TENG is still insufficient to charge the devices with daily motion. Moreover, the fundamental aspects of the maximum possible energy of a TENG related with human motion are not understood systematically. Here, we confirmed the possibility of charging commercialized portable and wearable devices such as smart phones and smart watches by utilizing the mechanical energy generated by human motion. We confirmed by theoretical extraction that the maximum possible energy is related with specific form factors of a TENG. Furthermore, we experimentally demonstrated the effect of human motion in an aspect of the kinetic energy and impulse using varying velocity and elasticity, and clarified how to improve the maximum possible energy of a TENG. This study gives insight into design of a TENG to obtain a large amount of energy in a limited space.
Spiking Neural P Systems With Rules on Synapses Working in Maximum Spiking Strategy.
Tao Song; Linqiang Pan
2015-06-01
Spiking neural P systems (called SN P systems for short) are a class of parallel and distributed neural-like computation models inspired by the way the neurons process information and communicate with each other by means of impulses or spikes. In this work, we introduce a new variant of SN P systems, called SN P systems with rules on synapses working in maximum spiking strategy, and investigate the computation power of the systems as both number and vector generators. Specifically, we prove that i) if no limit is imposed on the number of spikes in any neuron during any computation, such systems can generate the sets of Turing computable natural numbers and the sets of vectors of positive integers computed by k-output register machine; ii) if an upper bound is imposed on the number of spikes in each neuron during any computation, such systems can characterize semi-linear sets of natural numbers as number generating devices; as vector generating devices, such systems can only characterize the family of sets of vectors computed by sequential monotonic counter machine, which is strictly included in family of semi-linear sets of vectors. This gives a positive answer to the problem formulated in Song et al., Theor. Comput. Sci., vol. 529, pp. 82-95, 2014.
THz polariton laser using an intracavity Mg:LiNbO3 crystal with protective Teflon coating.
Ortega, Tiago A; Pask, Helen M; Spence, David J; Lee, Andrew J
2017-02-20
An enhancement in the performance of a THz polariton laser based on an intracavity magnesium-doped lithium niobate crystal (Mg:LiNbO3) in surface-emitted (SE) configuration is demonstrated resulting from the deposition of a protective Teflon coating on the total internal reflection surface of the crystal. In this cavity geometry the resonating fields undergo total internal reflection (TIR) inside the lithium niobate, and laser damage to that surface can be a limiting factor in performance. The protective layer prevents laser damage to the crystal surface, enabling higher pump power, yielding higher THz output power and wider frequency tuning range. With the unprotected crystal, narrow-band THz output tunable from 1.50 to 2.81 THz was produced, with maximum average output power of 20.1 µW at 1.76 THz for 4 W diode pump power (limited by laser damage to the crystal). With the Teflon coating, no laser damage to the crystal was observed, and the system produced narrow-band THz output tunable from 1.46 to 3.84 THz, with maximum average output power of 56.8 µW at 1.76 THz for 6.5 W diode pump power. This is the highest average output power and the highest diode-to-terahertz conversion efficiency ever reported for an intracavity terahertz polariton laser.
Influence of temperature on muscle recruitment and muscle function in vivo.
Rome, L C
1990-08-01
Temperature has a large influence on the maximum velocity of shortening (Vmax) and maximum power output of muscle (Q10 = 1.5-3). In some animals, maximum performance and maximum sustainable performance show large temperature sensitivities, because these parameters are dependent solely on mechanical power output of the muscles. The mechanics of locomotion (sarcomere length excursions and muscle-shortening velocities, V) at a given speed, however, are precisely the same at all temperatures. Animals compensate for the diminished power output of their muscles at low temperatures by compressing their recruitment order into a narrower range of locomotor speeds, that is, recruiting more muscle fibers and faster fiber types at a given speed. By examining V/Vmax, I calculate that fish at 10 degrees C must recruit 1.53-fold greater fiber cross section than at 20 degrees C. V/Vmax also appears to be an important design constraint in muscle. It sets the lowest V and the highest V over which a muscle can be used effectively. Because the Vmax of carp slow red muscle has a Q10 of 1.6 between 10 and 20 degrees C, the slow aerobic fibers can be used over a 1.6-fold greater range of swim speeds at the warmer temperature. In some species of fish, Vmax can be increased during thermal acclimation, enabling animals to swim at higher speeds.
NASA Astrophysics Data System (ADS)
Li, Z. P.; Duan, Y. M.; Wu, K. R.; Zhang, G.; Zhu, H. Y.; Wang, X. L.; Chen, Y. H.; Xue, Z. Q.; Lin, Q.; Song, G. C.; Su, H.
2013-05-01
We report a continuous-wave (CW), intra-cavity singly resonant optical parametric oscillator (OPO), based on periodically poled MgO:LiNbO3 pumped by a diode-end-pumped CW Nd:YVO4 laser, and calculate the gain of optical parametric amplification as a function of pump beam waist (at 1064 nm) in the singly resonant OPO (SRO) cavity, to balance the mode-matching and the intensity for the higher gain of a signal wave in the operation of the SRO. In order to achieve maximum gain, we use a convex lens to limit the 1064 nm beam waist. In the experiment, a tunable signal output from 1492 to 1614 nm and an idler output from 3122 to 3709 nm are obtained. For an 808 nm pump power of 11.5 W, a maximum signal output power of up to 2.48 W at 1586 nm and an idler output power of 1.1 W at 3232 nm are achieved with a total optical-to-optical conversion efficiency of 31%.
NASA Astrophysics Data System (ADS)
Yang, H.; Fu, X.-W.; Jia, Z.-T.; He, J.-L.; Yang, X.-Q.; Zhang, B.-T.; Wang, R.-H.; Liu, X.-M.; Hou, J.; Lou, F.; Wang, Z.-W.; Yang, Y.
2012-10-01
The performance of diode-pumped continuous-wave (CW) and passively Q-switched (PQS) Nd:(LaxGd1-x)3Ga5O12 lasers at 1062 nm were demonstrated for the first time to our knowledge. The highest CW output power of 9.9 W was obtained, corresponding to an optical-to-optical efficiency of 42.9%. For the passive Q-switching operation, when the output coupler of Toc = 27% was adopted, the maximum output power of 3.97 W was obtained by a Cr4+:YAG saturable absorber with the initial transmission of T0 = 89.9%.While at T0 = 81.4% and Toc = 27%, the output power of 2.83 W, with pulse width of 7.4 ns and the repetition rate of 13.87 kHz, was obtained, corresponding to the maximum peak power of 27.6 kW and single pulse energy of 0.2 mJ, respectively.
Power and efficiency of insect flight muscle.
Ellington, C P
1985-03-01
The efficiency and mechanical power output of insect flight muscle have been estimated from a study of hovering flight. The maximum power output, calculated from the muscle properties, is adequate for the aerodynamic power requirements. However, the power output is insufficient to oscillate the wing mass as well unless there is good elastic storage of the inertial energy, and this is consistent with reports of elastic components in the flight system. A comparison of the mechanical power output with the metabolic power input to the flight muscles suggests that the muscle efficiency is quite low: less than 10%.
NASA Astrophysics Data System (ADS)
Fuh, Yiin-Kuen; Li, Shan-Chien; Chen, Chun-Yu
2017-07-01
In this paper, we demonstrate a hybrid generator, derived from the concurrent adoption of piezoelectric and triboelectric mechanisms in one press-and-release cycle, called a Hybridized Self-Powered sensor (HSPS). A new integration of print circuit board (PCB) technology-based piezoelectric generator (PG) concurrently adopted the direct-write, near-field electrospun polyvinylidene fluoride (PVDF) nano/micro-fibers as piezoelectric source materials. On the other hand, triboelectric nanogenerators have the advantages of a high output performance with a simple structure which is also concurrently combined with the PG. The working mechanism of the HSPS includes the PCB-based substrate mounted with parallel aligned piezoelectric PVDF fibers in planar configuration which first bended and generated the electric potential via the effect of piezoelectricity. In what follows, the deformation of a cylindrical rolled-up piezoelectric structure is exercised, and finally, the triboelectric contact of Cu and PTFE layers is physically rubbed against each other with a separation to induce the triboelectric potential. This hybridized generator with a double domed shape design simultaneously combines piezoelectric output and triboelectric output and offers a built-in spacer with automatically spring back capability, which produces a peak output voltage of 100 V, a current of 4 μA, and a maximum power output of 450 nW. A self-powered smart window system was experimentally driven through finger-induced strain of HSPS, showing the optical properties with reversibly tunable transmittances. This research is a substantial advancement in the field of piezoelectric PVDF fibers integration toward the practical application of the whole self-powered system.
Gajewski, Jan; Michalski, Radosław; Buśko, Krzysztof; Mazur-Różycka, Joanna; Staniak, Zbigniew
2018-01-01
The aim of this study was to identify the determinants of peak power achieved during vertical jumps in order to clarify relationship between the height of jump and the ability to exert maximum power. One hundred young (16.8±1.8 years) sportsmen participated in the study (body height 1.861 ± 0.109 m, body weight 80.3 ± 9.2 kg). Each participant performed three jump tests: countermovement jump (CMJ), akimbo countermovement jump (ACMJ), and spike jump (SPJ). A force plate was used to measure ground reaction force and to determine peak power output. The following explanatory variables were included in the model: jump height, body mass, and the lowering of the centre of mass before launch (countermovement depth). A model was created using multiple regression analysis and allometric scaling. The model was used to calculate the expected power value for each participant, which correlated strongly with real values. The value of the coefficient of determination R2 equalled 0.89, 0.90 and 0.98, respectively, for the CMJ, ACMJ, and SPJ jumps. The countermovement depth proved to be a variable strongly affecting the maximum power of jump. If the countermovement depth remains constant, the relative peak power is a simple function of jump height. The results suggest that the jump height of an individual is an exact indicator of their ability to produce maximum power. The presented model has a potential to be utilized under field condition for estimating the maximum power output of vertical jumps.
Non-synchronous control of self-oscillating resonant converters
Glaser, John Stanley; Zane, Regan Andrew
2002-01-01
A self-oscillating switching power converter has a controllable reactance including an active device connected to a reactive element, wherein the effective reactance of the reactance and the active device is controlled such that the control waveform for the active device is binary digital and is not synchronized with the switching converter output frequency. The active device is turned completely on and off at a frequency that is substantially greater than the maximum frequency imposed on the output terminals of the active device. The effect is to vary the average resistance across the active device output terminals, and thus the effective output reactance, thereby providing converter output control, while maintaining the response speed of the converter.
Modeling of a resonant heat engine
NASA Astrophysics Data System (ADS)
Preetham, B. S.; Anderson, M.; Richards, C.
2012-12-01
A resonant heat engine in which the piston assembly is replaced by a sealed elastic cavity is modeled and analyzed. A nondimensional lumped-parameter model is derived and used to investigate the factors that control the performance of the engine. The thermal efficiency predicted by the model agrees with that predicted from the relation for the Otto cycle based on compression ratio. The predictions show that for a fixed mechanical load, increasing the heat input results in increased efficiency. The output power and power density are shown to depend on the loading for a given heat input. The loading condition for maximum output power is different from that required for maximum power density.
Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm
NASA Astrophysics Data System (ADS)
Guan, Chen; Liu, Zhaojun; Cong, Zhenhua; Liu, Yang; Xu, Xiaodong; Xu, Jun; Huang, Qingjie; Rao, Han; Chen, Xia; Zhang, Yanmin; Wu, Qianwen; Bai, Fen; Zhang, Sasa
2017-02-01
A diode-end-pumped passively Q-switched Nd:LuAG laser at 1442.6 nm was demonstrated with a V3+:YAG crystal as the saturable absorber. Under continuous-wave (CW) operation, the maximum output power of 1.83 W was obtained with an absorbed pumping power of 11.1 W. The corresponding optical-to-optical conversion efficiency was 16.5%. Under Q-switched operation, the maximum average output power of 424 mW was obtained at the same pumping power. The pulse duration and pulse repetition rate were 72 ns and 17.4 kHz, respectively.
High-power single-pass pumped diamond Raman oscillator
NASA Astrophysics Data System (ADS)
Heinzig, Matthias; Walbaum, Till; Williams, Robert J.; Kitzler, Ondrej; Mildren, Richard P.; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas
2018-02-01
We present our recent advances on power scaling of a high-power single-pass pumped CVD-diamond Raman oscillator at 1.2 μm. The single pass scheme reduced feedback to the high gain fiber amplifier, which pumps the oscillator. The Yb-doped multi-stage fiber amplifier itself enables up to 1 kW output power at a narrow linewidth of 0.16 nm. We operate this laser in quasi-cw mode at 10% duty cycle and on-time (pulse) duration of 10 ms. With a maximum conversion efficiency of 39%, a maximum steady-state output power of 380 W and diffraction limited beam quality was achieved.
Diode pumped CW and passively Q-switched Nd:LGGG laser at 1062 nm
NASA Astrophysics Data System (ADS)
Yang, H.; Jia, Z. T.; Zhang, B. T.; He, J. L.; Liu, S. D.; Yang, Y.; Tao, X. T.
2012-05-01
We report a Nd:LGGG laser at 1062 nm in the operations of the continuous-wave (CW) and passively Q-switching. The maximum CW output power of 5.62 W was obtained, corresponding to an optical-to-optical conversion efficiency of 49.0% and slope efficiency of 55.9%. By using Cr4+:YAG with initial transmission of 94% as the saturable absorber, for the first time, we got the maximum passively Q-switched output power of 1.21 W, accompanied with a highest pulse repetition rate of 27.1 kHz and a shortest pulse width of 9.1 ns.
[Diuretics and their potential effect on breath-alcohol concentration--a case report].
Schmitt, Georg; Skopp, Gisela
2015-01-01
Many objections were raised to breath-alcohol analysis upon its introduction in the field of traffic law enforcement in Germany, but in the meantime this issue has become less relevant in forensic routine work. In the present case, the defending lawyer claimed that the ethanol concentration in the blood and hence in the breath of his client, which was 0.35 mg/l according to the Dräger Alcotest 7110® Evidential and thus above the legal limit of 0.25 mg/l, had been changed by diuretics taken 4 hours before the breath alcohol test, viz. 10 mg of torasemide, a loop diuretic, and 50 mg of spironolactone, a competitive aldosterone antagonist. According to the literature, the maximum urinary output in healthy subjects within the first 4 hours after 10 mg torasemide was 1450 ml. In patients suffering from heart failure, the urinary volume was reduced by a factor of 2.5-3; after chronic intake of torasemide, water loss did not differ from placebo. Spironolactone, which acts on the distal tubule, has little effect on urinary output. In a publication, the loss of water in excess within 24 hours was 90 ml. Co-administration of 100 mg spironolactone and 20 mg furosemide, which roughly compares to 10 mg torasemide, resulted in a mean urinary volume of 1566 ml within the first 4 hours. In terms of the reported case and provided that no compensatory fluid had been taken, a purely theoretical maximum shift of 0.007 mg/ may occur in the breath-alcohol concentration due to the smaller distribution volume even considering maximum urinary excretion values. On the other hand, already mild levels of dehydration may be associated with negative symptoms affecting driving ability.
Physiological effects of hydrogen sulfide inhalation during exercise in healthy men.
Bhambhani, Y; Singh, M
1991-11-01
Occupational exposure to hydrogen sulfide (H2S) is prevalent in a variety of industries. H2S when inhaled 1) is oxidized into a sulfate or a thiosulfate by oxygen bound to hemoglobin and 2) suppresses aerobic metabolism by inhibiting cytochrome oxidase (c and aa3) activity in the electron transport chain. The purpose of this study was to examine the acute effects of oral inhalation of H2S on the physiological responses during graded cycle exercise performed to exhaustion in healthy male subjects. Sixteen volunteers were randomly exposed to 0 (control), 0.5, 2.0, and 5.0 ppm H2S on four separate occasions. Compared with the control values, the results indicated that the heart rate and expired ventilation were unaffected as a result of the H2S exposures during submaximal and maximal exercise. The oxygen uptake had a tendency to increase, whereas carbon dioxide output had a tendency to decrease as a result of the H2S exposures, but only the 5.0 ppm exposure resulted in a significantly higher maximum oxygen uptake. Blood lactate concentrations increased significantly during submaximal and maximal exercise as a result of the 5.0 ppm exposure. Despite these large increases in lactate concentration, the maximal power output of the subjects was not significantly altered as a result of the 5.0 ppm H2S exposure. It was concluded that healthy young male subjects could safely exercise at their maximum metabolic rates while breathing 5.0 ppm H2S without experiencing a significant reduction in their maximum physical work capacity during short-term incremental exercise.
Relationship between sprint times and the strength/power outputs of a machine squat jump.
Harris, Nigel K; Cronin, John B; Hopkins, Will G; Hansen, Keir T
2008-05-01
Strength testing is often used with team-sport athletes, but some measures of strength may have limited prognostic/diagnostic value in terms of the physical demands of the sport. The purpose of this study was to investigate relationships between sprint ability and the kinetic and kinematic outputs of a machine squat jump. Thirty elite level rugby union and league athletes with an extensive resistance-training background performed bilateral concentric-only machine squat jumps across loads of 20% to 90% 1 repetition maximum (1RM), and sprints over 10 meters and 30 or 40 meters. The magnitudes of the relationships were interpreted using Pearson correlation coefficients, which had uncertainty (90% confidence limits) of approximately +/-0.3. Correlations of 10-meter sprint time with kinetic and kinematic variables (force, velocity, power, and impulse) were generally positive and of moderate to strong magnitude (r = 0.32-0.53). The only negative correlations observed were for work, although the magnitude was small (r = -0.18 to -0.26). The correlations for 30- or 40-meter sprint times were similar to those for 10-meter times, although the correlation with work was positive and moderate (r = 0.35-0.40). Correlations of 10-meter time with kinetic variables expressed relative to body mass were generally positive and of trivial to small magnitude (r = 0.01-0.29), with the exceptions of work (r = -0.31 to -0.34), and impulse (r = -0.34 to -0.39). Similar correlations were observed for 30- and 40-meter times with kinetic measures expressed relative to body mass. Although correlations do not imply cause and effect, the preoccupation with maximizing power output in this particular resistance exercise to improve sprint ability appears problematic. Work and impulse are potentially important strength qualities to develop in the pursuit of improved sprinting performance.
Determination of the maximum operating range of hydrodynamic stress in mammalian cell culture.
Neunstoecklin, Benjamin; Stettler, Matthieu; Solacroup, Thomas; Broly, Hervé; Morbidelli, Massimo; Soos, Miroslav
2015-01-20
Application of quality by design (QbD) requires identification of the maximum operating range for parameters affecting the cell culture process. These include hydrodynamic stress, mass transfer or gradients in dissolved oxygen and pH. Since most of these are affected by the impeller design and speed, the main goal of this work was to identify a maximum operating range for hydrodynamic stress, where no variation of cell growth, productivity and product quality can be ensured. Two scale-down models were developed operating under laminar and turbulent condition, generating repetitive oscillating hydrodynamic stress with maximum stress values ranging from 0.4 to 420Pa, to compare the effect of the different flow regimes on the cells behavior. Two manufacturing cell lines (CHO and Sp2/0) used for the synthesis of therapeutic proteins were employed in this study. For both cell lines multiple process outputs were used to determine the threshold values of hydrodynamic stress, such as cell growth, morphology, metabolism and productivity. They were found to be different in between the cell lines with values equal to 32.4±4.4Pa and 25.2±2.4Pa for CHO and Sp2/0, respectively. Below the measured thresholds both cell lines do not show any appreciable effect of the hydrodynamic stress on any critical quality attribute, while above, cells responded negatively to the elevated stress. To confirm the applicability of the proposed method, the obtained results were compared with data generated from classical small-scale reactors with a working volume of 3L. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmad, H.; Samion, M. Z.; Sharbirin, A. S.; Norizan, S. F.; Aidit, S. N.; Ismail, M. F.
2018-05-01
Graphene, a 2D material, has been used for generation of pulse lasers due to the presence of its various fascinating optical properties compared to other materials. Hence in this paper, we report the first demonstration of a thulium doped fiber laser with a wavelength-tunable, passive Q-switched output using a graphene-polyvinyl-alcohol composite film for operation in the 2.0 µm region. The proposed laser has a wavelength-tunable output spanning from 1932.0 nm to 1946.0 nm, giving a total tuning range of 14.0 nm. The generated pulse has a maximum repetition rate and average output power of 36.29 kHz and 0.394 mW at the maximum pump power of 130.87 mW, as well as a pulse width of 6.8 µs at this pump power. The generated pulses have a stable output, having a signal-to-noise ratio of 31.75 dB, and the laser output is stable when tested over a period of 60 min. The proposed laser would have multiple applications for operation near the 2.0 micron region, especially for bio-medical applications and range-finding.
Huang, Jianhua; Chen, Yujin; Lin, Yanfu; Gong, Xinghong; Luo, Zundu; Huang, Yidong
2018-04-15
An Er:Yb:Lu 2 Si 2 O 7 microchip laser was constructed by placing a 1.2 mm thick, Y-cut Er:Yb:Lu 2 Si 2 O 7 microchip between two 1.2 mm thick sapphire crystals, in which input and output mirrors were directly deposited onto one face of each crystal. End-pumped by a continuous-wave 975.4 nm diode laser, a 1564 nm multi-longitudinal-mode laser with a maximum output power of 940 mW and slope efficiency of 20% was realized at an absorbed pump power of 5.5 W when the transmission of output mirror was 2.2%. When the transmission of the output mirror was increased to 6%, a 1537 nm single-longitudinal-mode laser with a maximum output power of 440 mW and slope efficiency of 12% was realized at an absorbed pump power of 4.3 W. The results indicate that the Er:Yb:Lu 2 Si 2 O 7 crystal is a promising microchip gain medium to realize a single-longitudinal-mode laser.
Phase-locked, high power, mid-infrared quantum cascade laser arrays
NASA Astrophysics Data System (ADS)
Zhou, W.; Slivken, S.; Razeghi, M.
2018-04-01
We demonstrate phase-locked, high power quantum cascade laser arrays, which are combined using a monolithic, tree array multimode interferometer, with emission wavelengths around 4.8 μm. A maximum output power of 15 W was achieved from an eight-element laser array, which has only a slightly higher threshold current density and a similar slope efficiency compared to a Fabry-Perot laser of the same length. Calculated multimode interferometer splitting loss is on the order of 0.27 dB for the in-phase supermode. In-phase supermode operation with nearly ideal behavior is demonstrated over the working current range of the array.
Testing Saliency Parameters for Automatic Target Recognition
NASA Technical Reports Server (NTRS)
Pandya, Sagar
2012-01-01
A bottom-up visual attention model (the saliency model) is tested to enhance the performance of Automated Target Recognition (ATR). JPL has developed an ATR system that identifies regions of interest (ROI) using a trained OT-MACH filter, and then classifies potential targets as true- or false-positives using machine-learning techniques. In this project, saliency is used as a pre-processing step to reduce the space for performing OT-MACH filtering. Saliency parameters, such as output level and orientation weight, are tuned to detect known target features. Preliminary results are promising and future work entails a rigrous and parameter-based search to gain maximum insight about this method.
A developmental perspective on high power laser facility technology for ICF
NASA Astrophysics Data System (ADS)
Zhu, Jianqiang; Sun, Mingying; Liu, Chong; Guo, Yajing; Yang, Lin; Yang, Pengqian; Zhang, Yanli; Wang, Bingyan; Liu, Cheng; Li, Yangshuai; Ren, Zhiyuan; Liu, Dean; Liu, Zhigang; Jiao, Zhaoyang; Ren, Lei; Zhang, Guowen; Fan, Quantang; Feng, Tao; Lin, Zunqi
2018-02-01
The latest progress on high power laser facilities in NLHPLP was reported. Based on a high power laser prototype, damage behavior of 3ω optics was experimentally tested, and the key influencing factors contributed to laser-induced damage in optics were deeply analyzed. The latest experimental results of advanced precision measurement for optical quality applied in the high power laser facility were introduced. At last, based on the accumulated works of 3ω elements damage behavior status in our laboratory, beam expanding scheme was presented to increase the total maximum output 3ω energy properly and decrease the laser induced damage risking of ω optics simultaneously.
A dual-end-pumped Ho:YAG laser with a high energy output
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, X M; Cui, Zh; Dai, T Y
2015-08-31
We report a high energy output from a Ho:YAG oscillator resonantly double-end pumped by Tm:YLF lasers at room temperature. The maximum pulse energy of 52.5 mJ was achieved at a pulse repetition rate of 100Hz and a pulse duration of 35.2 ns, corresponding to a peak power of approximately 1.5 MW. The output wavelength was 2090.7 nm with beam quality factor M{sup 2} ∼ 1.2. (lasers)
Work and power fluctuations in a critical heat engine.
Holubec, Viktor; Ryabov, Artem
2017-09-01
We investigate fluctuations of output work for a class of Stirling heat engines with working fluid composed of interacting units and compare these fluctuations to an average work output. In particular, we focus on engine performance close to a critical point where Carnot's efficiency may be attained at a finite power as reported by M. Campisi and R. Fazio [Nat. Commun. 7, 11895 (2016)2041-172310.1038/ncomms11895]. We show that the variance of work output per cycle scales with the same critical exponent as the heat capacity of the working fluid. As a consequence, the relative work fluctuation diverges unless the output work obeys a rather strict scaling condition, which would be very hard to fulfill in practice. Even under this condition, the fluctuations of work and power do not vanish in the infinite system size limit. Large fluctuations of output work thus constitute inseparable and dominant element in performance of the macroscopic heat engines close to a critical point.
Work and power fluctuations in a critical heat engine
NASA Astrophysics Data System (ADS)
Holubec, Viktor; Ryabov, Artem
2017-09-01
We investigate fluctuations of output work for a class of Stirling heat engines with working fluid composed of interacting units and compare these fluctuations to an average work output. In particular, we focus on engine performance close to a critical point where Carnot's efficiency may be attained at a finite power as reported by M. Campisi and R. Fazio [Nat. Commun. 7, 11895 (2016), 10.1038/ncomms11895]. We show that the variance of work output per cycle scales with the same critical exponent as the heat capacity of the working fluid. As a consequence, the relative work fluctuation diverges unless the output work obeys a rather strict scaling condition, which would be very hard to fulfill in practice. Even under this condition, the fluctuations of work and power do not vanish in the infinite system size limit. Large fluctuations of output work thus constitute inseparable and dominant element in performance of the macroscopic heat engines close to a critical point.
NASA Astrophysics Data System (ADS)
di Liberto, Francesco; Pastore, Raffaele; Peruggi, Fulvio
2011-05-01
When some entropy is transferred, by means of a reversible engine, from a hot heat source to a colder one, the maximum efficiency occurs, i.e. the maximum available work is obtained. Similarly, a reversible heat pumps transfer entropy from a cold heat source to a hotter one with the minimum expense of energy. In contrast, if we are faced with non-reversible devices, there is some lost work for heat engines, and some extra work for heat pumps. These quantities are both related to entropy production. The lost work, i.e. ? , is also called 'degraded energy' or 'energy unavailable to do work'. The extra work, i.e. ? , is the excess of work performed on the system in the irreversible process with respect to the reversible one (or the excess of heat given to the hotter source in the irreversible process). Both quantities are analysed in detail and are evaluated for a complex process, i.e. the stepwise circular cycle, which is similar to the stepwise Carnot cycle. The stepwise circular cycle is a cycle performed by means of N small weights, dw, which are first added and then removed from the piston of the vessel containing the gas or vice versa. The work performed by the gas can be found as the increase of the potential energy of the dw's. Each single dw is identified and its increase, i.e. its increase in potential energy, evaluated. In such a way it is found how the energy output of the cycle is distributed among the dw's. The size of the dw's affects entropy production and therefore the lost and extra work. The distribution of increases depends on the chosen removal process.
Hsu, Hsiu-Yun; Kuo, Li-Chieh; Chiu, Haw-Yen; Jou, I-Ming; Su, Fong-Chin
2009-11-01
Patients with median nerve compression at the carpal tunnel often have poor sensory afferents. Without adequate sensory modulation control, these patients frequently exhibit clumsy performance and excessive force output in the affected hand. We analyzed precision grip function after the sensory recovery of patients with carpal tunnel syndrome (CTS) who underwent carpal tunnel release (CTR). Thirteen CTS patients were evaluated using a custom-designed pinch device and conventional sensory tools before and after CTR to measure sensibility, maximum pinch strength, and anticipated pinch force adjustments to movement-induced load fluctuations in a pinch-holding-up activity. Based on these tests, five force-related parameters and sensory measurements were used to determine improvements in pinch performance after sensory recovery. The force ratio between the exerted pinch force and maximum load force of the lifting object was used to determine pinch force coordination and to prove that CTR enabled precision motor output. The magnitude of peak pinch force indicated an economic force output during manipulations following CTR. The peak pinch force, force ratio, and percentage of maximum pinch force also demonstrated a moderate correlation with the Semmes-Weinstein test. Analysis of these tests revealed that improved sensory function helped restore patients' performance in precise pinch force control evaluations. These results suggest that sensory information plays an important role in adjusting balanced force output in dexterous manipulation. (c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Exploiting the Maximum Entropy Principle to Increase Retrieval Effectiveness.
ERIC Educational Resources Information Center
Cooper, William S.
1983-01-01
Presents information retrieval design approach in which queries of computer-based system consist of sets of terms, either unweighted or weighted with subjective term precision estimates, and retrieval outputs ranked by probability of usefulness estimated by "maximum entropy principle." Boolean and weighted request systems are discussed.…
Jones, Andrew M; Vanhatalo, Anni
2017-03-01
The curvilinear relationship between power output and the time for which it can be sustained is a fundamental and well-known feature of high-intensity exercise performance. This relationship 'levels off' at a 'critical power' (CP) that separates power outputs that can be sustained with stable values of, for example, muscle phosphocreatine, blood lactate, and pulmonary oxygen uptake ([Formula: see text]), from power outputs where these variables change continuously with time until their respective minimum and maximum values are reached and exercise intolerance occurs. The amount of work that can be done during exercise above CP (the so-called W') is constant but may be utilized at different rates depending on the proximity of the exercise power output to CP. Traditionally, this two-parameter CP model has been employed to provide insights into physiological responses, fatigue mechanisms, and performance capacity during continuous constant power output exercise in discrete exercise intensity domains. However, many team sports (e.g., basketball, football, hockey, rugby) involve frequent changes in exercise intensity and, even in endurance sports (e.g., cycling, running), intensity may vary considerably with environmental/course conditions and pacing strategy. In recent years, the appeal of the CP concept has been broadened through its application to intermittent high-intensity exercise. With the assumptions that W' is utilized during work intervals above CP and reconstituted during recovery intervals below CP, it can be shown that performance during intermittent exercise is related to four factors: the intensity and duration of the work intervals and the intensity and duration of the recovery intervals. However, while the utilization of W' may be assumed to be linear, studies indicate that the reconstitution of W' may be curvilinear with kinetics that are highly variable between individuals. This has led to the development of a new CP model for intermittent exercise in which the balance of W' remaining ([Formula: see text]) may be calculated with greater accuracy. Field trials of athletes performing stochastic exercise indicate that this [Formula: see text] model can accurately predict the time at which W' tends to zero and exhaustion is imminent. The [Formula: see text] model potentially has important applications in the real-time monitoring of athlete fatigue progression in endurance and team sports, which may inform tactics and influence pacing strategy.
Johnstone, C.W.
1959-09-29
A pulse-height discriminator for generating an output pulse when the accepted input pulse is approximately at its maximum value is described. A gating tube and a negative bias generator responsive to the derivative of the input pulse and means for impressing the output of the bias generator to at least one control electrode of the gating tube are included.
Detection of vehicle parts based on Faster R-CNN and relative position information
NASA Astrophysics Data System (ADS)
Zhang, Mingwen; Sang, Nong; Chen, Youbin; Gao, Changxin; Wang, Yongzhong
2018-03-01
Detection and recognition of vehicles are two essential tasks in intelligent transportation system (ITS). Currently, a prevalent method is to detect vehicle body, logo or license plate at first, and then recognize them. So the detection task is the most basic, but also the most important work. Besides the logo and license plate, some other parts, such as vehicle face, lamp, windshield and rearview mirror, are also key parts which can reflect the characteristics of vehicle and be used to improve the accuracy of recognition task. In this paper, the detection of vehicle parts is studied, and the work is novel. We choose Faster R-CNN as the basic algorithm, and take the local area of an image where vehicle body locates as input, then can get multiple bounding boxes with their own scores. If the box with maximum score is chosen as final result directly, it is often not the best one, especially for small objects. This paper presents a method which corrects original score with relative position information between two parts. Then we choose the box with maximum comprehensive score as the final result. Compared with original output strategy, the proposed method performs better.
Efficiency at maximum power output of quantum heat engines under finite-time operation.
Wang, Jianhui; He, Jizhou; Wu, Zhaoqi
2012-03-01
We study the efficiency at maximum power, η(m), of irreversible quantum Carnot engines (QCEs) that perform finite-time cycles between a hot and a cold reservoir at temperatures T(h) and T(c), respectively. For QCEs in the reversible limit (long cycle period, zero dissipation), η(m) becomes identical to the Carnot efficiency η(C)=1-T(c)/T(h). For QCE cycles in which nonadiabatic dissipation and the time spent on two adiabats are included, the efficiency η(m) at maximum power output is bounded from above by η(C)/(2-η(C)) and from below by η(C)/2. In the case of symmetric dissipation, the Curzon-Ahlborn efficiency η(CA)=1-√(T(c)/T(h)) is recovered under the condition that the time allocation between the adiabats and the contact time with the reservoir satisfy a certain relation.
[Electricity generation using high concentration terephthalic acid solution by microbial fuel cell].
Ye, Ye-Jie; Song, Tian-Shun; Xu, Yuan; Chen, Ying-Wen; Zhu, She-Min; Shen, Shu-Bao
2009-04-15
The high concentration terephthalic acid (TA) solution as the substrate of microbial fuel cell (MFC) was studied to generate electricity. The open circuit voltage was 0.54 V after inoculating for 210 h with anaerobic activated sludge, which proved that TA can be the substrate of microbial fuel cell to generate electricity. The influence of pH and substrate concentration on generating electricity was studied deeply. The voltage output of external resistance (R = 1,000 Omega) was the highest when pH was 8.0. It increased as the substrate concentration increasing and tended towards a maximum value. The maximum voltage output Umax was 0.5 V and Ks was 785.2 mg/L by Monod equation regression. When the substrate concentration (according to COD) was 4000 mg/L, the maximum power density was 96.3 mW/m2, coulomb efficiency was 2.66% and COD removal rate was 80.3%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffey, R.B.; Rohatgi, U.S.
Maximum power limits for hypothetical designs of natural circulation plants can be described analytically. The thermal hydraulic design parameters are those which limit the flow, being the elevations, flow areas, and loss coefficients. WE have found some simple ``design`` equations for natural circulation flow to power ratio, and for the stability limit. The analysis of historical and available data for maximum capacity factor estimation shows 80% to be reasonable and achievable. The least cost is obtained by optimizing both hypothetical plant performance for a given output,a nd the plant layout and design. There is also scope to increase output andmore » reduce cost by considering design variations of primary and secondary pressure, and by optimizing component elevations and loss coefficients. The design limits for each are set by stability and maximum flow considerations, which deserve close and careful evaluation.« less
Photovoltaic array: Power conditioner interface characteristics
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.
1982-01-01
The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.
Liu, Hongliang; Tan, Yang; Vázquez de Aldana, Javier R; Chen, Feng
2014-08-01
We report on the fabrication of depressed cladding waveguides in Nd:GdVO(4) laser crystal by using femtosecond laser inscription. The cross section of the structure is a circular shape with a diameter of 150 μm. Under the optical pump at 808 nm, the continuous wave (cw) as well as pulsed (Q-switched by graphene saturable absorber) waveguide lasing at 1064 nm has been realized, supporting guidance of both TE and TM polarizations. The maximum output power of 0.57 W was obtained in the cw regime, while the maximum pulse energy of the pulsed laser emissions was up to 19 nJ (corresponding to a maximum average output power of 0.33 W, at a resonant frequency of 18 MHz). The slope efficiencies achieved for the cw and pulsed Nd:GdVO(4) waveguide lasers were as high as 68% and 52%, respectively.
Combinatorial Algorithms for Portfolio Optimization Problems - Case of Risk Moderate Investor
NASA Astrophysics Data System (ADS)
Juarna, A.
2017-03-01
Portfolio optimization problem is a problem of finding optimal combination of n stocks from N ≥ n available stocks that gives maximal aggregate return and minimal aggregate risk. In this paper given N = 43 from the IDX (Indonesia Stock Exchange) group of the 45 most-traded stocks, known as the LQ45, with p = 24 data of monthly returns for each stock, spanned over interval 2013-2014. This problem actually is a combinatorial one where its algorithm is constructed based on two considerations: risk moderate type of investor and maximum allowed correlation coefficient between every two eligible stocks. The main outputs resulted from implementation of the algorithms is a multiple curve of three portfolio’s attributes, e.g. the size, the ratio of return to risk, and the percentage of negative correlation coefficient for every two chosen stocks, as function of maximum allowed correlation coefficient between each two stocks. The output curve shows that the portfolio contains three stocks with ratio of return to risk at 14.57 if the maximum allowed correlation coefficient between every two eligible stocks is negative and contains 19 stocks with maximum allowed correlation coefficient 0.17 to get maximum ratio of return to risk at 25.48.
Advanced Power Conditioning System
NASA Technical Reports Server (NTRS)
Johnson, N. L.
1971-01-01
The second portion of the advanced power conditioning system development program is reported. Five 100-watt parallel power stages with majority-vote-logic feedback-regulator were breadboarded and tested to the design goals. The input voltage range was 22.1 to 57.4 volts at loads from zero to 500 watts. The maximum input ripple current was 200 mA pk-pk (not including spikes) at 511 watts load; the output voltage was 56V dc with a maximum change of 0.89 volts for all variations of line, load, and temperature; the maximum output ripple was 320 mV pk-pk at 512 watts load (dependent on filter capacitance value); the maximum efficiency was 93.9% at 212 watts and 50V dc input; the minimum efficiency was 87.2% at 80-watt load and 50V dc input; the efficiency was above 90% from 102 watts to 372 watts; the maximum excursion for an 80-watt load change was 2.1 volts with a recovery time of 7 milliseconds; and the unit performed within regulation limits from -20 C to +85 C. During the test sequence, margin tests and failure mode tests were run with no resulting degradation in performance.
Ortega, Tiago A; Pask, Helen M; Spence, David J; Lee, Andrew J
2016-05-16
A high power, frequency-tunable THz source based on intracavity stimulated polariton scattering (SPS) in RbTiOPO4 (RTP) is demonstrated for the first time. Frequency tunable THz output was obtained from 3.10 to 4.15 THz, with a gap at 3.17 to 3.49 THz, arising from the 104 cm-1 A1 mode in RTP. A maximum average output power of 16.2 µW was detected at 3.8 THz. This is the highest average output power ever reported for an intracavity polariton laser.
Non-linear control of the output stage of a solar microinverter
NASA Astrophysics Data System (ADS)
Lopez-Santos, Oswaldo; Garcia, Germain; Martinez-Salamero, Luis; Avila-Martinez, Juan C.; Seguier, Lionel
2017-01-01
This paper presents a proposal to control the output stage of a two-stage solar microinverter to inject real power into the grid. The input stage of the microinverter is used to extract the maximum available power of a photovoltaic module enforcing a power source behavior in the DC-link to feed the output stage. The work here reported is devoted to control a grid-connected power source inverter with a high power quality level at the grid side ensuring the power balance of the microinverter regulating the voltage of the DC-link. The proposed control is composed of a sinusoidal current reference generator and a cascade type controller composed by a current tracking loop and a voltage regulation loop. The current reference is obtained using a synchronized generator based on phase locked loop (PLL) which gives the shape, the frequency and phase of the current signal. The amplitude of the reference is obtained from a simple controller regulating the DC-link voltage. The tracking of the current reference is accomplished by means of a first-order sliding mode control law. The solution takes advantage of the rapidity and inherent robustness of the sliding mode current controller allowing a robust behavior in the regulation of the DC-link using a simple linear controller. The analytical expression to determine the power quality indicators of the micro-inverter's output is theoretically solved giving expressions relating the converter parameters. The theoretical approach is validated using simulation and experimental results.
Structural parameter study on polymer-based ultrasonic motor
NASA Astrophysics Data System (ADS)
Wu, Jiang; Mizuno, Yosuke; Nakamura, Kentaro
2017-11-01
Our previous study has shown that traveling-wave rotary ultrasonic motors using polymer-based vibrators can work in the same way as conventional motors with metal-based vibrators. It is feasible to enhance the performance, particularly output torques, of polymer-based motors by adjusting several key dimensions of their vibrators. In this study, poly phenylene sulfide, a functional polymer exhibiting low attenuation at ultrasonic frequency, is selected as the vibrating body, which is activated with a piezoelectric ceramic element bonded on its back surface. The optimal thicknesses of the polymer-based motors are higher than those of metal-based motors. When the same voltages were applied, the maximum torques and output powers available with the polymer-based motors were lower than the values of the metal-based motors with the same structures. The reasons for the lower torque were explained on the basis of vibration modes. First, the force factors of the polymer-based vibrators are lower than those of metal-based vibrators owing to the great difference in the mechanical constants between polymers and piezoelectric ceramics. Subsequently, though the force factors of polymer-based vibrators can be slightly enhanced by increasing their thicknesses, the unavoidable radial vibrations become higher and cause undesirable friction loss, which reduces the output torques. Though the polymer-based motors have rotation speeds comparable to those of metal-based motors, their output power are lower due to the low electromechanical coupling factors of the polymer-based vibrators.
Skimming Digits: Neuromorphic Classification of Spike-Encoded Images
Cohen, Gregory K.; Orchard, Garrick; Leng, Sio-Hoi; Tapson, Jonathan; Benosman, Ryad B.; van Schaik, André
2016-01-01
The growing demands placed upon the field of computer vision have renewed the focus on alternative visual scene representations and processing paradigms. Silicon retinea provide an alternative means of imaging the visual environment, and produce frame-free spatio-temporal data. This paper presents an investigation into event-based digit classification using N-MNIST, a neuromorphic dataset created with a silicon retina, and the Synaptic Kernel Inverse Method (SKIM), a learning method based on principles of dendritic computation. As this work represents the first large-scale and multi-class classification task performed using the SKIM network, it explores different training patterns and output determination methods necessary to extend the original SKIM method to support multi-class problems. Making use of SKIM networks applied to real-world datasets, implementing the largest hidden layer sizes and simultaneously training the largest number of output neurons, the classification system achieved a best-case accuracy of 92.87% for a network containing 10,000 hidden layer neurons. These results represent the highest accuracies achieved against the dataset to date and serve to validate the application of the SKIM method to event-based visual classification tasks. Additionally, the study found that using a square pulse as the supervisory training signal produced the highest accuracy for most output determination methods, but the results also demonstrate that an exponential pattern is better suited to hardware implementations as it makes use of the simplest output determination method based on the maximum value. PMID:27199646
Method for the measurement of media player use
NASA Astrophysics Data System (ADS)
Webb, Graham
There has been ongoing concern that prolonged use of MP3 players can lead to noise-induced hearing loss. Acoustic exposure is the product of intensity and duration of exposure. Previous work has utilised measurements of maximum headphone output and output during listening tests to determine acoustic intensity; whilst duration of use is currently assessed with questionnaires and interviews. The subjective nature of these latter methods has led to a wide variation in figures for device use, restricting the scope of media player risk assessment. A need was therefore identified for an improved method of acquiring data of users' listening habits. This need was addressed with the design of a new data-logging device that discretely measures voltage output from the media player, whilst in use. A calibration method is proposed to implement the headphone transfer function into the data-logger, to relate output voltage to exposed pressure. It is proposed that the headphone transfer function is measured using an acoustic manikin, representative of the population of interest. The real ear measurement is put forward as an appropriate tool for validating results gained using this approach. A data-logger was designed and a proof of concept has been demonstrated in a software program written for this purpose. The proposed method has the advantages that an objective measurement can be made of the user's natural listening habits, over a long period of time, with a resolution comparable to personal acoustic dosimetry. A number of practical steps are required to further this work before data can be collected. A software graphic equaliser was used to implement the transfer function, but the chosen filter topology gave an unsatisfactory response, an investigation is required for further work. The device requires migration to hardware and the experimental calibration and validation of the system are also required. The worldwide population of MP3 player users is in the region of hundreds of millions of people. The relationship between user and device is becoming closer and portable music technology is becoming ubiquitous, permitting extended listening durations. There is therefore a strong need to continue this field of research, to increase understanding of the risks of this aspect of recreational noise.
NASA Astrophysics Data System (ADS)
Lai, Meihui; Cheng, Lu; Xi, Yi; Wu, Yinghui; Hu, Chengguo; Guo, Hengyu; Du, Bolun; Liu, Guanlin; Liu, Qipeng; Liu, Ruchuan
2018-01-01
Increasing the triboelectric charge density on the friction layer of polydimethylsiloxane (PDMS) is a basic approach towards improving the output performance of a triboelectric nanogenerator (TENG). Most previous work focuses on the surface structure or dielectric properties, nonetheless, a few studies have focused on electronegative modification. NaNbO3-PDMS TENG (N-TENG) devices are fabricated by dispersing cubic NaNbO3, which is a lead-free piezoelectric material with molecular oxygen dangling bonds on the surface of the crystal, into the PDMS at different mass ratios. When the mass ratio is 7 wt%, the maximum output performance of the N-TENG is obtained. The open-circuit voltage is 550 V, the short-circuit current is 16 µA, and the effective power densities reach up to 5.5 W m-2 at a load resistance of ~100 MΩ. The N-TENG has been used to assemble self-powered electronic watches and illuminate commercial light-emitting diodes, respectively. Its fundamental mechanism has also been discussed in detail from the perspective of dielectric modulation and electronegative modification. This N-TENG technology is revealed to be a splendid candidate for application in large-scale device fabrication, flexible sensors and biological devices thanks to its easy fabrication process, low consumption, high output power density and biocompatibility.
Characterization of a 3D optrode array for infrared neural stimulation
Abaya, T.V.F.; Diwekar, M.; Blair, S.; Tathireddy, P.; Rieth, L.; Clark, G.A.; Solzbacher, F.
2012-01-01
This paper characterizes the Utah Slant Optrode Array (USOA) as a means to deliver infrared light deep into tissue. An undoped crystalline silicon (100) substrate was used to fabricate 10 × 10 arrays of optrodes with rows of varying lengths from 0.5 mm to 1.5 mm on a 400-μm pitch. Light delivery from optical fibers and loss mechanisms through these Si optrodes were characterized, with the primary loss mechanisms being Fresnel reflection, coupling, radiation losses from the tapered shank and total internal reflection in the tips. Transmission at the optrode tips with different optical fiber core diameters and light in-coupling interfaces was investigated. At λ = 1.55μm, the highest optrode transmittance of 34.7%, relative to the optical fiber output power, was obtained with a 50-μm multi-mode fiber butt-coupled to the optrode through an intervening medium of index n = 1.66. Maximum power is directed into the optrodes when using fibers with core diameters of 200 μm or less. In addition, the output power varied with the optrode length/taper such that longer and less tapered optrodes exhibited higher light transmission efficiency. Output beam profiles and potential impacts on physiological tests were also examined. Future work is expected to improve USOA efficiency to greater than 64%. PMID:23024914
Characterization of a 3D optrode array for infrared neural stimulation.
Abaya, T V F; Diwekar, M; Blair, S; Tathireddy, P; Rieth, L; Clark, G A; Solzbacher, F
2012-09-01
This paper characterizes the Utah Slant Optrode Array (USOA) as a means to deliver infrared light deep into tissue. An undoped crystalline silicon (100) substrate was used to fabricate 10 × 10 arrays of optrodes with rows of varying lengths from 0.5 mm to 1.5 mm on a 400-μm pitch. Light delivery from optical fibers and loss mechanisms through these Si optrodes were characterized, with the primary loss mechanisms being Fresnel reflection, coupling, radiation losses from the tapered shank and total internal reflection in the tips. Transmission at the optrode tips with different optical fiber core diameters and light in-coupling interfaces was investigated. At λ = 1.55μm, the highest optrode transmittance of 34.7%, relative to the optical fiber output power, was obtained with a 50-μm multi-mode fiber butt-coupled to the optrode through an intervening medium of index n = 1.66. Maximum power is directed into the optrodes when using fibers with core diameters of 200 μm or less. In addition, the output power varied with the optrode length/taper such that longer and less tapered optrodes exhibited higher light transmission efficiency. Output beam profiles and potential impacts on physiological tests were also examined. Future work is expected to improve USOA efficiency to greater than 64%.
Lightweight Battery Charge Regulator Used to Track Solar Array Peak Power
NASA Technical Reports Server (NTRS)
Soeder, James F.; Button, Robert M.
1999-01-01
A battery charge regulator based on the series-connected boost regulator (SCBR) technology has been developed for high-voltage spacecraft applications. The SCBR regulates the solar array power during insolation to prevent battery overcharge or undercharge conditions. It can also be used to provide regulated battery output voltage to spacecraft loads if necessary. This technology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. The high-voltage SCBR shown in the photograph has demonstrated power densities of over 1000 watts per kilogram (W/kg). Using four 150-W dc-dc converter modules, it can process 2500 W of power at 120 Vdc with a minimum input voltage of 90 Vdc. Efficiency of the SCBR was 94 to 98 percent over the entire operational range. Internally, the unit is made of two separate SCBR s, each with its own analog control circuitry, to demonstrate the modularity of the technology. The analog controllers regulate the output current and incorporate the output voltage limit with active current sharing between the two units. They also include voltage and current telemetry, on/off control, and baseplate temperature sensors. For peak power tracking, the SCBR was connected to a LabView-based data acquisition system for telemetry and control. A digital control algorithm for tracking the peak power point of a solar array was developed using the principle of matching the source impedance with the load impedance for maximum energy transfer. The algorithm was successfully demonstrated in a simulated spacecraft electrical system at the Boeing PhantomWorks High Voltage Test Facility in Seattle, Washington. The system consists of a 42-string, high-voltage solar array simulator, a 77-cell, 80-ampere-hour (A-hr) nickel-hydrogen battery, and a constant power-load module. The SCBR and the LabView control algorithm successfully tracked the solar array peak power point through various load transients, including sunlight discharge transients when the total load exceeded the maximum solar array output power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-11-30
The PeakWorks software is designed to assist in the quantitative analysis of atom probe tomography (APT) generated mass spectra. Specifically, through an interactive user interface, mass peaks can be identified automatically (defined by a threshold) and/or identified manually. The software then provides a means to assign specific elemental isotopes (including more than one) to each peak. The software also provides a means for the user to choose background subtraction of each peak based on background fitting functions, the choice of which is left to the users discretion. Peak ranging (the mass range over which peaks are integrated) is also automatedmore » allowing the user to chose a quantitative range (e.g. full-widthhalf- maximum). The software then integrates all identified peaks, providing a background-subtracted composition, which also includes the deconvolution of peaks (i.e. those peaks that happen to have overlapping isotopic masses). The software is also able to output a 'range file' that can be used in other software packages, such as within IVAS. A range file lists the peak identities, the mass range of each identified peak, and a color code for the peak. The software is also able to generate 'dummy' peak ranges within an outputted range file that can be used within IVAS to provide a means for background subtracted proximity histogram analysis.« less
NASA Astrophysics Data System (ADS)
Qian, Feng; Zhou, Wanlu; Kaluvan, Suresh; Zhang, Haifeng; Zuo, Lei
2018-04-01
Vibration energy harvesting has been extensively studied in recent years to explore a continuous power source for sensor networks and low-power electronics. Torsional vibration widely exists in mechanical engineering; however, it has not yet been well exploited for energy harvesting. This paper presents a theoretical model and an experimental validation of a torsional vibration energy harvesting system comprised of a shaft and a shear mode piezoelectric transducer. The piezoelectric transducer position on the surface of the shaft is parameterized by two variables that are optimized to obtain the maximum power output. The piezoelectric transducer can work in d 15 mode (pure shear mode), coupled mode of d 31 and d 33, and coupled mode of d 33, d 31 and d 15, respectively, when attached at different angles. Approximate expressions of voltage and power are derived from the theoretical model, which gave predictions in good agreement with analytical solutions. Physical interpretations on the implicit relationship between the power output and the position parameters of the piezoelectric transducer is given based on the derived approximate expression. The optimal position and angle of the piezoelectric transducer is determined, in which case, the transducer works in the coupled mode of d 15, d 31 and d 33.
Evaluation of a ducted-fan power plant designed for high output and good cruise fuel economy
NASA Technical Reports Server (NTRS)
Behun, M; Rom, F E; Hensley, R V
1950-01-01
Theoretical analysis of performance of a ducted-fan power plant designed both for high-output, high-altitude operation at low supersonic Mach numbers and for good fuel economy at lower fight speeds is presented. Performance of ducted fan is compared with performance (with and without tail-pipe burner) of two hypothetical turbojet engines. At maximum power, the ducted fan has propulsive thrust per unit of frontal area between thrusts obtained by turbojet engines with and without tail-pipe burners. At cruise, the ducted fan obtains lowest thrust specific fuel consumption. For equal maximum thrusts, the ducted fan obtains cruising flight duration and range appreciably greater than turbojet engines.
Highly efficient continuous-wave Nd:YAG ceramic lasers at 946 nm
NASA Astrophysics Data System (ADS)
Zhu, H. Y.; Xu, C. W.; Zhang, J.; Tang, D. Y.; Luo, D. W.; Duan, Y. M.
2013-07-01
Highly efficient CW operation of diode-end-pumped Nd:YAG ceramic lasers at 946 nm is experimentally demonstrated. When a 5 mm long in-house fabricated Nd:YAG ceramic was used as the gain medium, a maximum output power of 10.5 W was obtained under an incident pump power of 35 W, corresponding to an optical conversion efficiency of 30%, while, when a 3 mm long ceramic sample was used, a maximum output power of 8.7 W was generated with a slope efficiency of 65% with respect to the absorbed pump power. Both the optical conversion efficiency and slope efficiency are the highest results reported so far for the diode-pumped 946 nm lasers.
NASA Technical Reports Server (NTRS)
Stysley, Paul; Coyle, Barry; Clarke, Greg; Poulios, Demetrios; Kay, Richard
2015-01-01
The Global Ecosystems Dynamics Investigation (GEDI) is a planned mission sending a LIDAR instrument to the International Space Station that will employ three NASA laser transmitters. This instrument will produce parallel tracks on the Earth's surface that will provide global 3D vegetation canopy measurements. To meet the mission goals a total of 5 High Output Maximum Efficiency Resonator lasers will to be built (1 ETU + 3 Flight + 1 spare) in-house at NASA-GSFC. This presentation will summarize the HOMER design, the testing the design has completed in the past, and the plans to successfully build the units needed for the GEDI mission.
Floating-point system quantization errors in digital control systems
NASA Technical Reports Server (NTRS)
Phillips, C. L.
1973-01-01
The results are reported of research into the effects on system operation of signal quantization in a digital control system. The investigation considered digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. An error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum system quantization errors (either maximum of rms errors), and the maximum and rms errors that appear in the system output for a given bit configuration. The program can be integrated into existing digital simulations of a system.
A frequency doubled pressure-tunable oscillator-amplifier dye laser system
NASA Technical Reports Server (NTRS)
Moriarty, A.; Heaps, W.; Davis, D. D.
1976-01-01
A tunable high-repetition-rate oscillator-amplifier dye-laser system is reported. The dye laser described was longitudinally pumped with the second harmonic of a Nd-YAG laser operating at 10 Hz. Using three Faraday-Perot etalons and pressure tuning, a maximum fundamental output power of the order of 6 MW with a corresponding spectral width of less than 0.003 nm at 564 nm was obtained. The fundamental at 564 nm was frequency doubled to give a maximum power level of 0.6 MW of second-harmonic output power with a spectral width less than 0.0015 nm at 282 nm. Frequency stability could be maintained to within approximately 15% of the line-width.
Farahmand, Sina; Maghami, Mohammad Hossein; Sodagar, Amir M
2012-01-01
This paper reports on the design of a programmable, high output impedance, large voltage compliance microstimulator for low-voltage biomedical applications. A 6-bit binary-weighted digital to analog converter (DAC) is used to generate biphasic stimulus current pulses. A compact current mirror with large output voltage compliance and high output resistance conveys the current pulses to the target tissue. Designed and simulated in a standard 0.18µm CMOS process, the microstimulator circuit is capable of delivering a maximum stimulation current of 160µA to a 10-kΩ resistive load. Operated at a 1.8-V supply voltage, the output stage exhibits a voltage compliance of 1.69V and output resistance of 160MΩ at full scale stimulus current. Layout of the core microelectrode circuit measures 25.5µm×31.5µm.
47 CFR 90.1215 - Power limits.
Code of Federal Regulations, 2011 CFR
2011-10-01
...Bm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the maximum... the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point and point-to... directional gain up to 26 dBi without any corresponding reduction in the maximum conducted output power or...
47 CFR 90.1215 - Power limits.
Code of Federal Regulations, 2014 CFR
2014-10-01
...Bm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the maximum... the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point and point-to... directional gain up to 26 dBi without any corresponding reduction in the maximum conducted output power or...
47 CFR 90.1215 - Power limits.
Code of Federal Regulations, 2013 CFR
2013-10-01
...Bm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the maximum... the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point and point-to... directional gain up to 26 dBi without any corresponding reduction in the maximum conducted output power or...
47 CFR 90.1215 - Power limits.
Code of Federal Regulations, 2012 CFR
2012-10-01
...Bm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the maximum... the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point and point-to... directional gain up to 26 dBi without any corresponding reduction in the maximum conducted output power or...
NASA Astrophysics Data System (ADS)
Altin, Necmi
2018-05-01
An interval type-2 fuzzy logic controller-based maximum power point tracking algorithm and direct current-direct current (DC-DC) converter topology are proposed for photovoltaic (PV) systems. The proposed maximum power point tracking algorithm is designed based on an interval type-2 fuzzy logic controller that has an ability to handle uncertainties. The change in PV power and the change in PV voltage are determined as inputs of the proposed controller, while the change in duty cycle is determined as the output of the controller. Seven interval type-2 fuzzy sets are determined and used as membership functions for input and output variables. The quadratic boost converter provides high voltage step-up ability without any reduction in performance and stability of the system. The performance of the proposed system is validated through MATLAB/Simulink simulations. It is seen that the proposed system provides high maximum power point tracking speed and accuracy even for fast changing atmospheric conditions and high voltage step-up requirements.
47 CFR 95.135 - Maximum authorized transmitting power.
Code of Federal Regulations, 2010 CFR
2010-10-01
... transmitting power. (a) No station may transmit with more than 50 watts output power. (b) [Reserved] (c) A small control station at a point north of Line A or east of Line C must transmit with no more than 5 watts ERP. (d) A fixed station must transmit with no more than 15 watts output power. (e) A small base...
Fusion of Hard and Soft Information in Nonparametric Density Estimation
2015-06-10
and stochastic optimization models, in analysis of simulation output, and when instantiating probability models. We adopt a constrained maximum...particular, density estimation is needed for generation of input densities to simulation and stochastic optimization models, in analysis of simulation output...an essential step in simulation analysis and stochastic optimization is the generation of probability densities for input random variables; see for
Q-switched all-fiber laser with short pulse duration based on tungsten diselenide
NASA Astrophysics Data System (ADS)
Li, Wenyi; OuYang, Yuyi; Ma, Guoli; Liu, Mengli; Liu, Wenjun
2018-05-01
Fiber lasers are widely used in industrial processing, sensing, medical and communications applications due to their simple structure, good stability and low cost. With the rapid development of fiber lasers and the sustained improvement of industrial laser quality requirements, researchers in ultrafast optics focus on how to get laser pulses with high output power and narrow pulse duration. Q-switched technology is one of the most effective techniques to generate ultrashort pulses. In this paper, a tungsten diselenide saturable absorber with 16.82% modulation depth is prepared by chemical vapor deposition. Experimental results show that when the pump power changes from 115.7 mW to 630 mW, the all-fiber laser can achieve a stable Q-switched pulse output. The repetition rate of the output pulse varies from 80.32 kHz to 204.2 kHz, the pulse duration is 581 ns, the maximum output power is 17.1 mW and the maximum pulse energy is 83.7 nJ. Results in this paper show that tungsten diselenide can be applied to ultrafast optics, which is a kind of saturable absorption material with excellent properties.
Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin
2016-01-01
We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893
Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin
2016-07-15
We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.
40 CFR 1065.210 - Work input and output sensors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Work input and output sensors. 1065... Ambient Conditions § 1065.210 Work input and output sensors. (a) Application. Use instruments as specified... sensors, transducers, and meters that meet the specifications in Table 1 of § 1065.205. Note that your...
40 CFR 1065.210 - Work input and output sensors.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Work input and output sensors. 1065... Ambient Conditions § 1065.210 Work input and output sensors. (a) Application. Use instruments as specified... sensors, transducers, and meters that meet the specifications in Table 1 of § 1065.205. Note that your...
40 CFR 1065.210 - Work input and output sensors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Work input and output sensors. 1065... Ambient Conditions § 1065.210 Work input and output sensors. (a) Application. Use instruments as specified... sensors, transducers, and meters that meet the specifications in Table 1 of § 1065.205. Note that your...
Predicting Power Output of Upper Body using the OMNI-RES Scale.
Bautista, Iker J; Chirosa, Ignacio J; Tamayo, Ignacio Martín; González, Andrés; Robinson, Joseph E; Chirosa, Luis J; Robertson, Robert J
2014-12-09
The main aim of this study was to determine the optimal training zone for maximum power output. This was to be achieved through estimating mean bar velocity of the concentric phase of a bench press using a prediction equation. The values for the prediction equation would be obtained using OMNI-RES scale values of different loads of the bench press exercise. Sixty males (age 23.61 2.81 year; body height 176.29 6.73 cm; body mass 73.28 4.75 kg) voluntarily participated in the study and were tested using an incremental protocol on a Smith machine to determine one repetition maximum (1RM) in the bench press exercise. A linear regression analysis produced a strong correlation (r = -0.94) between rating of perceived exertion (RPE) and mean bar velocity (Velmean). The Pearson correlation analysis between real power output (PotReal) and estimated power (PotEst) showed a strong correlation coefficient of r = 0.77, significant at a level of p = 0.01. Therefore, the OMNI-RES scale can be used to predict Velmean in the bench press exercise to control the intensity of the exercise. The positive relationship between PotReal and PotEst allowed for the identification of a maximum power-training zone.
Predicting Power Output of Upper Body using the OMNI-RES Scale
Bautista, Iker J.; Chirosa, Ignacio J.; Tamayo, Ignacio Martín; González, Andrés; Robinson, Joseph E.; Chirosa, Luis J.; Robertson, Robert J.
2014-01-01
The main aim of this study was to determine the optimal training zone for maximum power output. This was to be achieved through estimating mean bar velocity of the concentric phase of a bench press using a prediction equation. The values for the prediction equation would be obtained using OMNI–RES scale values of different loads of the bench press exercise. Sixty males (age 23.61 2.81 year; body height 176.29 6.73 cm; body mass 73.28 4.75 kg) voluntarily participated in the study and were tested using an incremental protocol on a Smith machine to determine one repetition maximum (1RM) in the bench press exercise. A linear regression analysis produced a strong correlation (r = −0.94) between rating of perceived exertion (RPE) and mean bar velocity (Velmean). The Pearson correlation analysis between real power output (PotReal) and estimated power (PotEst) showed a strong correlation coefficient of r = 0.77, significant at a level of p = 0.01. Therefore, the OMNI–RES scale can be used to predict Velmean in the bench press exercise to control the intensity of the exercise. The positive relationship between PotReal and PotEst allowed for the identification of a maximum power-training zone. PMID:25713677
Selective effects of weight and inertia on maximum lifting.
Leontijevic, B; Pazin, N; Kukolj, M; Ugarkovic, D; Jaric, S
2013-03-01
A novel loading method (loading ranged from 20% to 80% of 1RM) was applied to explore the selective effects of externally added simulated weight (exerted by stretched rubber bands pulling downward), weight+inertia (external weights added), and inertia (covariation of the weights and the rubber bands pulling upward) on maximum bench press throws. 14 skilled participants revealed a load associated decrease in peak velocity that was the least associated with an increase in weight (42%) and the most associated with weight+inertia (66%). However, the peak lifting force increased markedly with an increase in both weight (151%) and weight+inertia (160%), but not with inertia (13%). As a consequence, the peak power output increased most with weight (59%), weight+inertia revealed a maximum at intermediate loads (23%), while inertia was associated with a gradual decrease in the peak power output (42%). The obtained findings could be of importance for our understanding of mechanical properties of human muscular system when acting against different types of external resistance. Regarding the possible application in standard athletic training and rehabilitation procedures, the results speak in favor of applying extended elastic bands which provide higher movement velocity and muscle power output than the usually applied weights. © Georg Thieme Verlag KG Stuttgart · New York.
Large-mode-area single-mode-output Neodymium-doped silicate glass all-solid photonic crystal fiber
Li, Wentao; Chen, Danping; Qinling, Zhou; Hu, Lili
2015-01-01
We have demonstrated a 45 μm core diameter Neodymium-doped all-solid silicate glass photonic crystal fiber laser with a single mode laser output. The structure parameters and modes information of the fiber are both demonstrated by theoretical calculations using Finite Difference Time Domain (FDTD) method and experimental measurements. Maximum 0.8 W output power limited by launched pump power has been generated in 1064 nm with laser beam quality factor M2 1.18. PMID:26205850
W5″ Test: A simple method for measuring mean power output in the bench press exercise.
Tous-Fajardo, Julio; Moras, Gerard; Rodríguez-Jiménez, Sergio; Gonzalo-Skok, Oliver; Busquets, Albert; Mujika, Iñigo
2016-11-01
The aims of the present study were to assess the validity and reliability of a novel simple test [Five Seconds Power Test (W5″ Test)] for estimating the mean power output during the bench press exercise at different loads, and its sensitivity to detect training-induced changes. Thirty trained young men completed as many repetitions as possible in a time of ≈5 s at 25%, 45%, 65% and 85% of one-repetition maximum (1RM) in two test sessions separated by four days. The number of repetitions, linear displacement of the bar and time needed to complete the test were recorded by two independent testers, and a linear encoder was used as the criterion measure. For each load, the mean power output was calculated in the W5″ Test as mechanical work per time unit and compared with that obtained from the linear encoder. Subsequently, 20 additional subjects (10 training group vs. 10 control group) were assessed before and after completing a seven-week training programme designed to improve maximal power. Results showed that both assessment methods correlated highly in estimating mean power output at different loads (r range: 0.86-0.94; p < .01) and detecting training-induced changes (R(2): 0.78). Good to excellent intra-tester (intraclass correlation coefficient (ICC) range: 0.81-0.97) and excellent inter-tester (ICC range: 0.96-0.99; coefficient of variation range: 2.4-4.1%) reliability was found for all loads. The W5″ Test was shown to be a valid, reliable and sensitive method for measuring mean power output during the bench press exercise in subjects who have previous resistance training experience.
Evaluation of Fairchild's Gate Drive Optocoupler, Type FOD3150, Under Wide Temperature Operation
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Adhad; Panko, Scott
2010-01-01
An optocoupler is a semiconductor device that is used to transfer a signal between different parts of a circuit that need to be electrically isolated from one another - for example, where a high voltage is to be switched with a low voltage control signal. Optocouplers often can be used in place of relays. These optocouplers utilize an infrared LED (light emitting diode) and a photodetector such as a silicon controlled rectifier or photosensitive silicon diode for the transfer of the electronic signal between components of a circuit by means of a short optical transmission channel. For maximum coupling, the wave-length responses of the LED and the detector should be very similar. In switch-mode power supply applications, optocouplers offer advantages over transformers by virtue of simpler circuit design, reduced weight, and DC coupling capability. The effects of extreme temperature exposure and thermal cycling on the performance of a commercial-off-the-shelf (COTS) optocoupler, Fairchild FOD3150, were evaluated in this work. This 1.0 A output current, high noise immunity gate drive optocoupler utilizes an aluminum gallium arsenide (AlGaAs) LED, is capable of driving most 800V/20A IGBT/MOSFETs, and is suited for fast switching in motor control inverter applications and high performance power systems. Some of the specifications of the isolator chip are listed. The device was evaluated in terms of output response, output rise (t(sub r)) and fall times (t(sub f)), and propagation delays (using a 50% level between input and output during low to high (t(sub PLH)) and high to low (t(sub PLH)) transitions). The output supply current was also obtained. These parameters were recorded at various test temperatures between -190 C and +110 C.
Fuzzy logic control of stand-alone photovoltaic system with battery storage
NASA Astrophysics Data System (ADS)
Lalouni, S.; Rekioua, D.; Rekioua, T.; Matagne, E.
Photovoltaic energy has nowadays an increased importance in electrical power applications, since it is considered as an essentially inexhaustible and broadly available energy resource. However, the output power provided via the photovoltaic conversion process depends on solar irradiation and temperature. Therefore, to maximize the efficiency of the photovoltaic energy system, it is necessary to track the maximum power point of the PV array. The present paper proposes a maximum power point tracker (MPPT) method, based on fuzzy logic controller (FLC), applied to a stand-alone photovoltaic system. It uses a sampling measure of the PV array power and voltage then determines an optimal increment required to have the optimal operating voltage which permits maximum power tracking. This method carries high accuracy around the optimum point when compared to the conventional one. The stand-alone photovoltaic system used in this paper includes two bi-directional DC/DC converters and a lead-acid battery bank to overcome the scare periods. One converter works as an MPP tracker, while the other regulates the batteries state of charge and compensates the power deficit to provide a continuous delivery of energy to the load. The Obtained simulation results show the effectiveness of the proposed fuzzy logic controller.
Ring design of the Prague synchrotron for cancer therapy
NASA Astrophysics Data System (ADS)
Molodozhentsev, A.; Makoveev, V.; Minashkin, V.; Shevtsov, V.; Sidorov, G.; Prokesh, K.; Sedlak, J.; Kuzmiak, M.
1998-04-01
The paper presents main elements of a dedicated proton synchrotron for hadron therapy. The beam parameters for active scanning of tumours are discussed. The output energy of the beam should be variable in the range 60-220 MeV. The average current of the proton beam is equal to 10 nA. The repetition rate of the accelerator is chosen of 1 Hz to get a spill time for slow extraction of about 500 ms. The timing cycle of the accelerator including the quasi-adiabatic capture process and acceleration is described. The RF gymnastics is utilized to prepare the unbunched beam for slow extraction. The magnetic elements of the ring, compact RF and VCO systems are presented in the paper. The maximum magnet field of the dipole magnet should be 1.2 T and the maximum magnetic field on the pole of the quadrupole lenses should be less than 1 T. The resonator should work on the first harmonic with a frequency from 1.298 MHz till 4.804 MHz. The length of the resonator should be less than 1 m. The maximum voltage on the accelerator gap should be about 2 kV.
NASA Astrophysics Data System (ADS)
Inoshita, Kensuke; Hama, Yoshimitsu; Kishikawa, Hiroki; Goto, Nobuo
2016-12-01
In photonic label routers, various optical signal processing functions are required; these include optical label extraction, recognition of the label, optical switching and buffering controlled by signals based on the label information and network routing tables, and label rewriting. Among these functions, we focus on photonic label recognition. We have proposed two kinds of optical waveguide circuits to recognize 16 quadrature amplitude modulation codes, i.e., recognition from the minimum output port and from the maximum output port. The recognition function was theoretically analyzed and numerically simulated by finite-difference beam-propagation method. We discuss noise tolerance in the circuit and show numerically simulated results to evaluate bit-error-rate (BER) characteristics against optical signal-to-noise ratio (OSNR). The OSNR required to obtain a BER less than 1.0×10-3 for the symbol rate of 2.5 GBaud was 14.5 and 27.0 dB for recognition from the minimum and maximum output, respectively.
Ke, Lei; Yan, Guozheng; Wang, Yongbing; Wang, Zhiwu; Liu, Dasheng
2015-03-01
The aim of this study was to optimize an intelligent artificial anal sphincter system (AASS) II for patients with severe fecal incontinence. Redesigning and integrating a pressure sensor into the sphincter prosthesis allows us to reduce the sensor volume and makes it suitable for a chronic, ambulatory application. Furthermore, a close-loop frequency control method was designed for the transcutaneous energy transfer system. Finally, a longer working time of the implanted device was obtained by the low-power design of the hardware and software. The new model was implanted in 2 dogs and studied for periods of up to 5 weeks. The output voltage induced on the load of 30 Ω, for a variation range in k of 0.12 ~ 0.42, was maintained at approximately 6.8 V with a frequency control range of the 270 ~ 320 kHz. The minimum and maximum output voltages of the pressure sensor were found to be 1.7 V and 2.34 V, respectively, which corresponded to a pressure range of 90 ~ 120 kPa with maximum change rate of approximately 3.7% caused by the temperature variations. Moreover, compared with AASS I, the low-power design resulting in 94% reduction in power consumption. The efficacy of the device in achieving continence and sensing the need to defecate was assessed in an animal model. The technical concept and the design of the AASS II turned out to be capable of fulfilling the medical requirements.
The design of high dynamic range ROIC for IRFPAs
NASA Astrophysics Data System (ADS)
Jiang, Dazhao; Liang, Qinghua; Zhang, Qiwen; Chen, Honglei; Ding, Ruijun
2015-10-01
The charge packet readout integrated circuit (ROIC) technology for the IRFPAs is introduced, which can realize that every pixel achieves a very high capacity of the electrons storage, and it also improves the performance of the SNR and reduces the saturation possibility of the pixels. The ROIC for the LWIR requires ability that obtaining high capacity for storing electrons. For the conventional ROIC, the maximum charge capacity is determined by the integration capacitance and the operating voltage, it can achieve a high charge capacity through increasing the area of the integration capacitor or raising the operating voltage. And this paper would introduce a digital method of ROIC that can achieve a very high charge capacity. The circuit architecture of this approach includes the following parts, a preamplifier, a comparator, a counter, and memory arrays. And the maximum charge capacity of the pixel is determined by the counter bits. This new method can achieve a high charge capacity more than 1Ge- every pixel and output the digital signal directly, while that of conventional ROIC is less than 50Me- and output the analog signal from the pixel. In this new circuit, the comparator is a important module, as the integration voltage value need compare with threshold voltage through the comparator all the time during the integration period, and we will discuss the influence of the comparator. This work design the circuit with the CSMC 0.35um CMOS technology, and the simulation use the spectre model.
Evaluation of handle design characteristics in a maximum screwdriving torque task.
Kong, Y-K; Lowe, B D; Lee, S-J; Krieg, E F
2007-09-01
The purpose of this study was to evaluate the effects of screwdriver handle shape, surface material and workpiece orientation on torque performance, finger force distribution and muscle activity in a maximum screwdriving torque task. Twelve male subjects performed maximum screw-tightening exertions using screwdriver handles with three longitudinal shapes (circular, hexagonal and triangular), four lateral shapes (cylindrical, double frustum, cone and reversed double frustum) and two surfaces (rubber and plastic). The average finger force contributions to the total hand force were 28.1%, 39.3%, 26.5% and 6.2%, in order from index to little fingers; the average phalangeal segment force contributions were 47.3%, 14.0%, 20.5% and 18.1% for distal, middle, proximal and metacarpal phalanges, respectively. The plastic surface handles were associated with 15% less torque output (4.86 Nm) than the rubber coated handles (5.73 Nm). In general, the vertical workpiece orientation was associated with higher torque output (5.9 Nm) than the horizontal orientation (4.69 Nm). Analysis of handle shapes indicates that screwdrivers designed with a circular or hexagonal cross-sectional shape result in greater torque outputs (5.49 Nm, 5.57 Nm), with less total finger force (95 N, 105 N). In terms of lateral shape, reversed double frustum handles were associated with less torque output (5.23 Nm) than the double frustum (5.44 Nm) and cone (5.37 Nm) handles. Screwdriver handles designed with combinations of circular or hexagonal cross-sectional shapes with double frustum and cone lateral shapes were optimal in this study.
Simulation and Experimental Study of Bipolar Plate on the Performance PEM Fuel cell
NASA Astrophysics Data System (ADS)
Chinnasa, Pornchai; Khamsuk, Pattama; Seechalee, Sarunya; Swatsitang, Ekaphan
2017-09-01
This research is a simulated and experimental study on effects of bipolar electrodes of a PEM fuel cell on its power conversion efficiency. The PEM fuel cell structure consists of bipolar electrodes, proton exchange membrane with catalysts, flow channels of gases. This research used fuel cell of 49 cm2 in active area as a research sample and the Comsol 4.4 was employed to simulate flow channels which are serpentine pattern for anode and parallel pattern for cathode. The parameters used were calculated effects of such parameters using Comsol 4.4. After the calculation has been completed, the prototype of the PEM fuel cell were fabricated using graphite plate as electrodes which had the channel height of 0.20 cm, proton exchange membrane using carbon-platinum catalyst. Finally, further it was found that the effect of temperature on the power conversion efficiency is not severely. And for anode, the concentration of hydrogen gas was reduced 64 wt% due to the reaction whereas in parallel channel of cathode the oxygen concentration was reduced by only 6 wt% from 23 wt% at the entrance to 17 wt% at the end. The maximum power output of the prototype operated under such condition was 0.28 W/cm2 calculated from maximum power output voltage (Vmp) of 0.70 V and maximum power output current density of 0.42 A/cm2 which was in good agreement with that simulated using Comsol 4.4 which revealed the power output of 0.29 W/cm2.
Grid-connected wind and photovoltaic system
NASA Astrophysics Data System (ADS)
Devabakthuni, Sindhuja
The objective of this thesis is to design a grid connected wind and photovoltaic system. A new model of converter control was designed which maintains the voltage of the bus to grid as constant when combined system of solar and wind is connected to AC bus. The model is designed to track maximum power at each point irrespective of changes in irradiance, temperature and wind speed which affects the power supplied to grid. Solar power from the sun is not constant as it is affected by changes in irradiances and temperature. Even the wind power is affected by wind speed. A MPPT controller was designed for both systems. A boost converter is designed which uses the pulses from MPPT controller to boost the output. Wind system consists of wind turbine block from the MATLAB with a pitch angle controller to maintain optimum pitch angle. The output from wind turbine is connected to a permanent magnet synchronous generator. The unregulated DC output from the photovoltaic system is directly given to boost converter. The AC output from the wind system is given to an uncontrolled rectifier to get a unregulated DC output. The unregulated DC output goes to the boost converter. A voltage source inverter was designed which converts the rectified DC output from the boost converter to AC power. The inverter is designed to maintain constant AC bus voltage irrespective of the disturbances in the power supply. Photovoltaic and wind systems are individually designed for 5KW each in MATLAB-Simulink environment. In this thesis, the models were subjected to changes in irradiance, temperature and wind speed and the results were interpreted. The model was successful in tracking maximum at every instant and the AC bus voltage was maintained constant throughout the simulation.
NASA Astrophysics Data System (ADS)
Kuo, Chun-Liang; Lin, Shun-Chiu; Wu, Wen-Jong
2016-10-01
This paper presents the development of a bimorph microelectromechanical system (MEMS) generator for vibration energy harvesting. The bimorph generator is in cantilever beam structure formed by laminating two lead zirconate titanate thick-film layers on both sides of a stainless steel substrate. Aiming to scavenge vibration energy efficiently from the environment and transform into useful electrical energy, the two piezoelectric layers on the device can be poled for serial and parallel connections to enhance the output voltage or output current respectively. In addition, a tungsten proof mass is bonded at the tip of the device to adjust the resonance frequency. The experimental result shows superior performance the generator. At the 0.5 g base excitation acceleration level, the devices pooled for serial connection and the device poled for parallel connection possess an open-circuit output voltage of 11.6 VP-P and 20.1 VP-P, respectively. The device poled for parallel connection reaches a maximum power output of 423 μW and an output voltage of 15.2 VP-P at an excitation frequency of 143.4 Hz and an externally applied based excitation acceleration of 1.5 g, whereas the device poled serial connection achieves a maximum power output of 413 μW and an output voltage of 33.0 VP-P at an excitation frequency of 140.8 Hz and an externally applied base excitation acceleration of 1.5 g. To demonstrate the feasibility of the MEMS generator for real applications, we finished the demonstration of a self-powered Bluetooth low energy wireless temperature sensor sending readings to a smartphone with only the power from the MEMS generator harvesting from vibration.
A low noise and high precision linear power supply with thermal foldback protection.
Carniti, P; Cassina, L; Gotti, C; Maino, M; Pessina, G
2016-05-01
A low noise and high precision linear power supply was designed for use in rare event search experiments with macrobolometers. The circuit accepts at the input a "noisy" dual supply voltage up to ±15 V and gives at the output precise, low noise, and stable voltages that can be set between ±3.75 V and ±12.5 V in eight 1.25 V steps. Particular care in circuit design, component selection, and proper filtering results in a noise spectral density of 50nV/Hz at 1 Hz and 20nV/Hz white when the output is set to ±5 V. This corresponds to 125 nV RMS (0.8 μV peak to peak) between 0.1 Hz and 10 Hz, and 240 nV RMS (1.6 μV peak to peak) between 0.1 Hz and 100 Hz. The power supply rejection ratio (PSRR) of the circuit is 100 dB at low frequency, and larger than 40 dB up to high frequency, thanks to a proper compensation design. Calibration allows to reach a precision in the absolute value of the output voltage of ±70 ppm, or ±350 μV at ±5 V, and to reduce thermal drifts below ±1 ppm/(∘)C in the expected operating range. The maximum peak output current is about 6 A from each output. An original foldback protection scheme was developed that dynamically limits the maximum output current to keep the temperature of the output transistors within their safe operating range. An add-on card based on an ARM Cortex-M3 microcontroller is devoted to the monitoring and control of all circuit functionalities and provides remote communication via CAN bus.
Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors
NASA Technical Reports Server (NTRS)
Erkmen, Baris I.; Moision, Bruce E.
2010-01-01
Many optical imaging, ranging, and communications systems rely on the estimation of the arrival time of an optical pulse. Recently, such systems have been increasingly employing photon-counting photodetector technology, which changes the statistics of the observed photocurrent. This requires time-of-arrival estimators to be developed and their performances characterized. The statistics of the output of an ideal photodetector, which are well modeled as a Poisson point process, were considered. An analytical model was developed for the mean-square error of the maximum likelihood (ML) estimator, demonstrating two phenomena that cause deviations from the minimum achievable error at low signal power. An approximation was derived to the threshold at which the ML estimator essentially fails to provide better than a random guess of the pulse arrival time. Comparing the analytic model performance predictions to those obtained via simulations, it was verified that the model accurately predicts the ML performance over all regimes considered. There is little prior art that attempts to understand the fundamental limitations to time-of-arrival estimation from Poisson statistics. This work establishes both a simple mathematical description of the error behavior, and the associated physical processes that yield this behavior. Previous work on mean-square error characterization for ML estimators has predominantly focused on additive Gaussian noise. This work demonstrates that the discrete nature of the Poisson noise process leads to a distinctly different error behavior.
NASA Astrophysics Data System (ADS)
Guo, Pengfei; Shen, Xia; Zhang, Baolong; Sun, Haibin; Zou, Zhijun; Yang, Wenchao; Gong, Ke; Luo, Yongsong
2018-05-01
A simple two-step CVD method is developed to realize the growth of high-quality tin-catalyzed CdSSe alloy nanowires. Microstructural characterizations demonstrate that these wires are high-quality crystalline nanostructures. Local photoluminescence investigation of these nanostructures shows a typical band edge emission at 656 nm with a full-width at half-maximum of 22.3 nm. Optical waveguide measurement along an individual nanowire indicates that the output signal of the guided light has a rapid linear decrease accompanied with maximum red-shift about 109 meV after the transmission of 102 μm. This obvious red-shift is caused by the intensive band-tail absorption during the optical transmission process. Moreover, optically pumped nanolasers are successfully realized at room temperature based on these unique wires, further demonstrating the achievement of stimulated emission from spontaneous emission, promoted by the pump power intensity. This work may find a simple route to the manufacture of superior nanowires for applications in waveguide and integrated photonic devices.
Guo, Pengfei; Shen, Xia; Zhang, Baolong; Sun, Haibin; Zou, Zhijun; Yang, Wenchao; Gong, Ke; Luo, Yongsong
2018-05-04
A simple two-step CVD method is developed to realize the growth of high-quality tin-catalyzed CdSSe alloy nanowires. Microstructural characterizations demonstrate that these wires are high-quality crystalline nanostructures. Local photoluminescence investigation of these nanostructures shows a typical band edge emission at 656 nm with a full-width at half-maximum of 22.3 nm. Optical waveguide measurement along an individual nanowire indicates that the output signal of the guided light has a rapid linear decrease accompanied with maximum red-shift about 109 meV after the transmission of 102 μm. This obvious red-shift is caused by the intensive band-tail absorption during the optical transmission process. Moreover, optically pumped nanolasers are successfully realized at room temperature based on these unique wires, further demonstrating the achievement of stimulated emission from spontaneous emission, promoted by the pump power intensity. This work may find a simple route to the manufacture of superior nanowires for applications in waveguide and integrated photonic devices.
Voltage oriented control of self-excited induction generator for wind energy system with MPPT
NASA Astrophysics Data System (ADS)
Amieur, Toufik; Taibi, Djamel; Amieur, Oualid
2018-05-01
This paper presents the study and simulation of the self-excited induction generator in the wind power production in isolated sites. With this intention, a model of the wind turbine was established. Extremum-seeking control algorithm method by using Maximum Power Point Tracking (MPPT) is proposed control solution aims at driving the average position of the operating point near to optimality. The reference of turbine rotor speed is adjusted such that the turbine operates around maximum power for the current wind speed value. After a brief review of the concepts of converting wind energy into electrical energy. The proposed modeling tools were developed to study the performance of standalone induction generators connected to capacitor bank. The purpose of this technique is to maintain a constant voltage at the output of the rectifier whatever the loads and speeds. The system studied in this work is developed and tested in MATLAB/Simulink environment. Simulation results validate the performance and effectiveness of the proposed control methods.
Using a Commercial Ethernet PHY Device in a Radiation Environment
NASA Technical Reports Server (NTRS)
Parks, Jeremy; Arani, Michael; Arroyo, Roberto
2014-01-01
This work involved placing a commercial Ethernet PHY on its own power boundary, with limited current supply, and providing detection methods to determine when the device is not operating and when it needs either a reset or power-cycle. The device must be radiation-tested and free of destructive latchup errors. The commercial Ethernet PHY's own power boundary must be supplied by a current-limited power regulator that must have an enable (for power cycling), and its maximum power output must not exceed the PHY's input requirements, thus preventing damage to the device. A regulator with configurable output limits and short-circuit protection (such as the RHFL4913, rad hard positive voltage regulator family) is ideal. This will prevent a catastrophic failure due to radiation (such as a short between the commercial device's power and ground) from taking down the board's main power. Logic provided on the board will detect errors in the PHY. An FPGA (field-programmable gate array) with embedded Ethernet MAC (Media Access Control) will work well. The error detection includes monitoring the PHY's interrupt line, and the status of the Ethernet's switched power. When the PHY is determined to be non-functional, the logic device resets the PHY, which will often clear radiation induced errors. If this doesn't work, the logic device power-cycles the FPGA by toggling the regulator's enable input. This should clear almost all radiation induced errors provided the device is not latched up.
Widman, Lana M; McDonald, Craig M; Abresch, R Ted
2006-01-01
To determine whether a new upper extremity exercise device integrated with a video game (GameCycle) requires sufficient metabolic demand and effort to induce an aerobic training effect and to explore the feasibility of using this system as an exercise modality in an exercise intervention. Pre-post intervention. University-based research facility. SUBJECT POPULATION: A referred sample of 8 adolescent subjects with spina bifida (4 girls, 15.5 +/- 0.6 years; 4 boys, 17.5 +/- 0.9 years) was recruited to participate in the project. All subjects had some level of mobility impairment that did not allow them to participate in mainstream sports available to their nondisabled peers. Five subjects used a wheelchair full time, one used a wheelchair occasionally, but walked with forearm crutches, and 2 were fully ambulatory, but had impaired gait. Peak oxygen uptake, maximum work output, aerobic endurance, peak heart rate, rating of perceived exertion, and user satisfaction. Six of the 8 subjects were able to reach a Vo2 of at least 50% of their Vo2 reserve while using the GameCycle. Seven of the 8 subjects reached a heart rate of at least 50% of their heart rate reserve. One subject did not reach either 50% of Vo2 reserve or 50% of heart rate reserve. Seven of the 8 subjects increased their maximum work capability after training with the GameCycle at least 3 times per week for 16 weeks. The data suggest that the GameCycle seems to be adequate as an exercise device to improve oxygen uptake and maximum work capability in adolescents with lower extremity disability caused by spinal cord dysfunction. The subjects in this study reported that the video game component was enjoyable and provided a motivation to exercise.
NASA Technical Reports Server (NTRS)
White, P. R.; Scott, D. R. (Inventor)
1981-01-01
A solar tracker for a solar collector is described in detail. The collector is angularly oriented by a motor wherein the outputs of two side-by-side photodetectors are discriminated as to three ranges: a first corresponding to a low light or darkness condition; a second corresponding to light intensity lying in an intermediate range; and a third corresponding to light above an intermediate range, direct sunlight. The first output drives the motor to a selected maximum easterly angular position; the second enables the motor to be driven westerly at the Earth rotational rate; and the third output, the separate outputs of the two photodetectors, differentially controls the direction of rotation of the motor to effect actual tracking of the Sun.
Fabrication and testing of unileg oxide thermoelectric device
NASA Astrophysics Data System (ADS)
Sharma, Jyothi; Purohit, R. D.; Prakash, Deep; Sinha, P. K.
2017-05-01
A prototype of oxide thermoelectric unileg device was fabricated. This device was based on only n-legs made of La doped calcium manganate. The powder was synthesized, characterised and consolidated in rectangular thermoelements. A 3×3 device was fabricated by fitting 9 rectangular bars in alumina housing and connected by silver strips. The device has been tested under large temperature difference (ΔT=480°C) using an indegenous system. An open circuit voltage of 468 mV was obtained for a nine leg `unileg' device. The device exhibits a internal resistance of ˜1Ω. The maximum power output for this nine leg device reached upto 50 mW in these working condition.
Ma, Wei Ji; Shen, Shan; Dziugaite, Gintare; van den Berg, Ronald
2015-01-01
In tasks such as visual search and change detection, a key question is how observers integrate noisy measurements from multiple locations to make a decision. Decision rules proposed to model this process haven fallen into two categories: Bayes-optimal (ideal observer) rules and ad-hoc rules. Among the latter, the maximum-of-outputs (max) rule has been most prominent. Reviewing recent work and performing new model comparisons across a range of paradigms, we find that in all cases except for one, the optimal rule describes human data as well as or better than every max rule either previously proposed or newly introduced here. This casts doubt on the utility of the max rule for understanding perceptual decision-making. PMID:25584425
Research on Integrated Control of Microgrid Operation Mode
NASA Astrophysics Data System (ADS)
Cheng, ZhiPing; Gao, JinFeng; Li, HangYu
2018-03-01
The mode switching control of microgrid is the focus of its system control. According to the characteristics of different control, an integrated control system is put forward according to the detecting voltage and frequency deviation after switching of microgrid operating mode. This control system employs master-slave and peer-to-peer control. Wind turbine and photovoltaic(PV) adopt P/Q control, so the maximum power output can be achieved. The energy storage will work under the droop control if the system is grid-connected. When the system is off-grid, whether to employ droop control or P/f control is determined by system status. The simulation has been done and the system performance can meet the requirement.
Anvari, Akbar; Poirier, Yannick; Sawant, Amit
2018-04-28
Although small animal image-guided radiotherapy (SA-IGRT) systems are used increasingly in preclinical research, tools for performing routine quality assurance (QA) have not been optimized and are not readily available. Robust, efficient, and reliable QA tools are needed to ensure the accuracy and reproducibility of SA-IGRT systems. Several investigators have reported custom-made phantoms and protocols for SA-IGRT systems QA. These are typically time and resource intensive and are therefore not well suited to the preclinical radiotherapy environment, in which physics support is limited and routine QA is performed by technical staff. We investigated the use of the inbuilt electronic portal imaging device (EPID) to develop and validate routine QA tests and procedures. In this work, we focus on the Xstrahl Small Animal Radiation Research Platform (SARRP) EPID. However, the methodology and tests developed here are applicable to any SA-IGRT system that incorporates an EPID. We performed a comprehensive characterization of the dosimetric properties of the camera-based EPID at kilovoltage energies over a 11-month period, including detector warm-up time, radiation dose history effect, stability and short- and long-term reproducibility, gantry angle dependency, output factor, and linearity of the EPID response. We developed a test to measure the constancy of beam quality in terms of half-value layer and tube peak potential using the EPID. We verified the SARRP daily output and beam profile constancy using the imager. We investigated the use of the imager to monitor beam-targeting accuracy at various gantry and couch angles. The EPID response was stable and reproducible, exhibiting maximum variations of ≤0.3% and ≤1.9% for short and long terms, respectively. The detector showed no dependence on response at different gantry angles, with a maximum variation ≤0.5%. We found close agreement in output factor measurement between the portal imager and reference dosimeters, with maximum differences ≤3% for ionization chamber and ≤1.7% for Gafchromic EBT3 dosimetry film, respectively. We have shown that the EPID response is linear with tube current (mA) for the entire range of tube kilovoltage peak. Notably, a close relationship was seen between the detector response vs mA slope, and the kilovoltage peak, allowing an independent verification of kilovoltage peak stability based solely on EPID response. In addition to dosimetry tests, according to the beam-targeting measurement using portal images, maximum displacement of the central axis of the x-ray beam (due to sag) was 0.76 ± 0.09 mm at gantry 135°/couch 0° and 0.89 ± 0.06 mm at gantry 0°/couch -135°. We performed the first comprehensive analysis on the dosimetric properties of an EPID operating at kilovoltage x-ray energies. We characterized the detector performance over a 11-month period. Our results indicate that the imager is a stable and convenient tool for SARRP routine QA tests. We then developed EPID-based tests to perform routine SA-IGRT systems QA tasks, such as verifying constancy of beam quality, energy, output, and profile measurements, relative output factors, and beam targeting. © 2018 American Association of Physicists in Medicine.
Tracking the global maximum power point of PV arrays under partial shading conditions
NASA Astrophysics Data System (ADS)
Fennich, Meryem
This thesis presents the theoretical and simulation studies of the global maximum power point tracking (MPPT) for photovoltaic systems under partial shading. The main goal is to track the maximum power point of the photovoltaic module so that the maximum possible power can be extracted from the photovoltaic panels. When several panels are connected in series with some of them shaded partially either due to clouds or shadows from neighboring buildings, several local maxima appear in the power vs. voltage curve. A power increment based MPPT algorithm is effective in identifying the global maximum from the several local maxima. Several existing MPPT algorithms are explored and the state-of-the-art power increment method is simulated and tested for various partial shading conditions. The current-voltage and power-voltage characteristics of the PV model are studied under different partial shading conditions, along with five different cases demonstrating how the MPPT algorithm performs when shading switches from one state to another. Each case is supplemented with simulation results. The method of tracking the Global MPP is based on controlling the DC-DC converter connected to the output of the PV array. A complete system simulation including the PV array, the direct current to direct current (DC-DC) converter and the MPPT is presented and tested using MATLAB software. The simulation results show that the MPPT algorithm works very well with the buck converter, while the boost converter needs further changes and implementation.
Diode-pumped quasi-three-level CW Nd:CLNGG and Nd:CNGG lasers.
He, Kunna; Wei, Zhiyi; Li, Dehua; Zhang, Zhiguo; Zhang, Huaijin; Wang, Jiyang; Gao, Chunqing
2009-10-12
We have demonstrated what is to our knowledge the first quasi-three-level CW Nd:CLNGG laser with simple linear resonator. When the pump power was 18.2 W, a maximum output power of 1.63 W was obtained at the dual-wavelength of 935 nm and 928 nm. The optical-to-optical conversion efficiency was 9.0% and the slope efficiency was 11.5%. Lasing characteristics of a quasi-three-level CW Nd:CNGG laser were also investigated. A maximum output power of 1.87 W was obtained at the single-wavelength of 935 nm with 15.2 W pump power, corresponding to an optical-to-optical conversion efficiency of 12.3% and a slope efficiency of 15.6%.
Moya-Ramón, M.; Hernández-Davó, J. L.; Fernandez-Fernandez, J.; Sabido, R.
2017-01-01
Background It has been suggested that strength training effects (i.e. neural or structural) vary, depending on the total repetitions performed and velocity loss in each training set. Purpose The aim of this study is to compare the effects of two training programmes (i.e. one with loads that maximise power output and individualised repetitions, and the other following traditional power training). Methods Twenty-five males were divided into three groups (optimum power [OP = 10], traditional training [TT = 9] and control group [CG = 6]). The training load used for OP was individualised using loads that maximised power output (41.7% ± 5.8 of one repetition maximum [1RM]) and repetitions at maximum power (4 to 9 repetitions, or ‘reps’). Volume (sets x repetitions) was the same for both experimental groups, while intensity for TT was that needed to perform only 50% of the maximum number of possible repetitions (i.e. 61.1%–66.6% of 1RM). The training programme ran over 11 weeks (2 sessions per week; 4–5 sets per session; 3-minute rests between sets), with pre-, intermediate and post-tests which included: anthropometry, 1RM, peak power output (PPO) with 30%, 40% and 50% of 1RM in the bench press throw, and salivary testosterone (ST) and cortisol (SC) concentrations. Rate of perceived exertion (RPE) and power output were recorded in all sessions. Results Following the intermediate test, PPO was increased in the OP group for each load (10.9%–13.2%). Following the post-test, both experimental groups had increased 1RM (11.8%–13.8%) and PPO for each load (14.1%–19.6%). Significant decreases in PPO were found for the TT group during all sets (4.9%–15.4%), along with significantly higher RPE (37%). Conclusion OP appears to be a more efficient method of training, with less neuromuscular fatigue and lower RPE. PMID:29053725
A Four-Feet Walking-Type Rotary Piezoelectric Actuator with Minute Step Motion.
Liu, Yingxiang; Wang, Yun; Liu, Junkao; Xu, Dongmei; Li, Kai; Shan, Xiaobiao; Deng, Jie
2018-05-08
A four-feet walking-type rotary piezoelectric actuator with minute step motion was proposed. The proposed actuator used the rectangular motions of four driving feet to push the rotor step-by-step; this operating principle was different with the previous non-resonant actuators using direct-driving, inertial-driving, and inchworm-type mechanisms. The mechanism of the proposed actuator was discussed in detail. Transient analyses were accomplished by ANSYS software to simulate the motion trajectory of the driving foot and to find the response characteristics. A prototype was manufactured to verify the mechanism and to test the mechanical characteristics. A minimum resolution of 0.095 μrad and a maximum torque of 49 N·mm were achieved by the prototype, and the output speed was varied by changing the driving voltage and working frequency. This work provides a new mechanism for the design of a rotary piezoelectric actuator with minute step motion.
NASA Astrophysics Data System (ADS)
Lin, Zhiming; Yang, Jin; Zhao, Jiangxin; Zhao, Nian; Liu, Jun; Wen, Yumei; Li, Ping
2016-07-01
In this work, we present a multimodal wideband vibration energy harvester designed to scavenge energy from ambient vibrations over a wide frequency range. The harvester consists of a folded cantilever, three magnetoelectric (ME) transducers, and two magnetic circuits. The folded cantilever enables multi-resonant response formed by bending of each stage, and the nonlinear magnetic forces acting on the folded cantilever beam allow further broadening of the frequency response. We also investigate the effects of the position of the ME transducer on the electrical output in order to achieve optimal performance. The experimental results show that the vibration energy harvester exhibited three resonance peaks in a range of 5 Hz to 30 Hz, a wider working bandwidth of 10.1 Hz, and a maximum average power value of 31.58 μW at an acceleration of 0.6 g (with g = 9.8 m/s2).
NASA Astrophysics Data System (ADS)
Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.
2017-05-01
The discontinuous temperament of the solar power forces to consider about the energy storage. This work is to analyze the tank, amount of energy stored and its storage time. The thermal and flow analysis has been done by ANSYS with different set temperature values. The experimentation is done for various encapsulating materials with different phase change material (PCM). Findings: The results obtained from experimental work are compared with ANSYS output. The competence of the TES is calculated and further improvements are made to enhance its performance. During charging process the temperature distribution from heat transfer fluid (HTF) to PCM is maximum in copper encapsulations followed by aluminium encapsulations and brass encapsulations. The comparison shows only when the electrical power as an input source. The efficient way of captivating solar energy could be a better replacement for electrical input.
A Four-Feet Walking-Type Rotary Piezoelectric Actuator with Minute Step Motion
Wang, Yun; Liu, Junkao; Xu, Dongmei; Li, Kai; Shan, Xiaobiao; Deng, Jie
2018-01-01
A four-feet walking-type rotary piezoelectric actuator with minute step motion was proposed. The proposed actuator used the rectangular motions of four driving feet to push the rotor step-by-step; this operating principle was different with the previous non-resonant actuators using direct-driving, inertial-driving, and inchworm-type mechanisms. The mechanism of the proposed actuator was discussed in detail. Transient analyses were accomplished by ANSYS software to simulate the motion trajectory of the driving foot and to find the response characteristics. A prototype was manufactured to verify the mechanism and to test the mechanical characteristics. A minimum resolution of 0.095 μrad and a maximum torque of 49 N·mm were achieved by the prototype, and the output speed was varied by changing the driving voltage and working frequency. This work provides a new mechanism for the design of a rotary piezoelectric actuator with minute step motion. PMID:29738495
Influence of resonator length on catastrophic optical damage in high-power AlGaInP broad-area lasers
NASA Astrophysics Data System (ADS)
Bou Sanayeh, Marwan
2017-05-01
The increasing importance of extracting high optical power out of semiconductor lasers motivated several studies in catastrophic optical damage (COD) level improvement. In this study, the influence of the resonator length in high-power broad-area (BA) AlGaInP lasers on COD is presented. For the analyses, several 638 nm AlGaInP 60 μm BA lasers from the same wafer were used. Resonator lengths of 900, 1200, 1500, and 1800 μm were compared. In order to independently examine the effect of the resonator length on the maximum power reached by the lasers before COD (PCOD), the lasers used are uncoated and unmounted, and PCOD under pulsed mode was determined. It was found that higher output powers and eventually higher PCOD can be achieved using longer resonators; however, it was also found that this is mainly useful when working at high output powers far away from the laser threshold, since the threshold current and slope efficiency worsen when the resonator length increases.
NASA Astrophysics Data System (ADS)
Jayalakshmi, N. S.; Gaonkar, D. N.
2016-08-01
The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.
Uno, Kazuyuki; Akitsu, Tetsuya; Nakamura, Kenshi; Jitsuno, Takahisa
2013-04-01
We developed a modified driver circuit composed of a capacitance and a spark gap, called a direct-drive circuit, for a longitudinally excited gas laser. The direct-drive circuit uses a large discharge impedance caused by a long discharge length of the longitudinal excitation scheme and eliminates the buffer capacitance used in the traditional capacitor-transfer circuit. We compared the direct-drive circuit and the capacitor-transfer circuit in a longitudinally excited N2 laser (wavelength: 337 nm). Producing high output energy with the capacitor-transfer circuit requires a large storage capacitance and a discharge tube with optimum dimensions (an inner diameter of 4 mm and a length of 10 cm in this work); in contrast, the direct-drive circuit requires a high breakdown voltage, achieved with a small storage capacitance and a large discharge tube. Additionally, for the same input energy of 792 mJ, the maximum output energy of the capacitor-transfer circuit was 174.2 μJ, and that of the direct-drive circuit was 344.7 μJ.
Monolithic fiber laser oscillator with record high power
NASA Astrophysics Data System (ADS)
Yang, Baolai; Shi, Chen; Zhang, Hanwei; Ye, Qing; Pi, Haoyang; Tao, Rumao; Wang, Xiaolin; Ma, Pengfei; Leng, Jinyong; Chen, Zilun; Zhou, Pu; Xu, Xiaojun; Chen, Jinbao; Liu, Zejin
2018-07-01
With an increasing output power, the power scaling of monolithic fiber laser oscillators faces the severe limitations of stimulated Raman scattering (SRS) and the transverse mode instability (TMI) effect. In this work, we report a high power monolithic fiber laser oscillator with a maximum output power of 5.2 kW, which is realized with a trade-off design between the SRS and TMI. The monolithic fiber laser oscillator is constructed with ytterbium-doped fiber with a core/inner cladding diameter of 25/400 µm and corresponding home-made FBG. High-power 915 nm laser diodes are employed as a pump source and are distributed in a bidirectional-pump configuration. By optimizing the bidirectional pump proportion, the monolithic fiber laser oscillator is scaled up to 5.2 kW with a slope efficiency of ~63%. Operating at 5.2 kW, the intensity of the Raman stokes light is ~22 dB below the signal laser and the beam quality (M2-factor) is ~2.2. To the best of our knowledge, this is a record high power for monolithic fiber laser oscillators.
NASA Astrophysics Data System (ADS)
Chen, Feifei; Wang, Lijuan; Wang, Xinle; Cheng, Xiufeng; Yu, Fapeng; Wang, Zhengping; Zhao, Xian
2017-11-01
The self-frequency-doubling crystal is an important kind of multi-functional crystal materials. In this work, Nd3+ doped Sr3TaGa3Si2O14 (Nd:STGS) single crystals were successfully grown by using Czochralski pulling method, in addition, the nonlinear and laser-frequency-doubling properties of Nd:STGS crystals were studied. The continuous-wave laser at 1064 nm was demonstrated along different physical axes, where the maximum output power was obtained to be 295 mW for the Z-cut samples, much higher than the Y-cut (242 mW) and X-cut (217 mW) samples. Based on the measured refractive indexes, the phase matching directions were discussed and determined for type I (42.5°, 30°) and type II (69.5°, 0°) crystal cuts. As expected, self-frequency-doubling green laser at 529 nm was achieved with output powers being around 16 mW and 12 mW for type I and type II configurations, respectively.
Dual-wavelength mid-infrared CW and Q-switched laser in diode end-pumped Tm,Ho:GdYTaO4 crystal
NASA Astrophysics Data System (ADS)
Wang, Beibei; Gao, Congcong; Dou, Renqin; Nie, Hongkun; Sun, Guihua; Liu, Wenpeng; Yu, Haijuan; Wang, Guoju; Zhang, Qingli; Lin, Xuechun; He, Jingliang; Wang, Wenjun; Zhang, Bingyuan
2018-02-01
Dual-wavelength continuous-wave and Q-switched lasers are demonstrated in a Tm,Ho:GdYTaO4 crystal under 790 nm laser diode end pumping for the first time to the best of our knowledge. The laser operates with a dual wavelength at 1949.677 nm and 2070 nm for continuous-wave with a spacing of about 120 nm. The maximum output power is 0.332 W with a pump power of 3 W. By using graphene as the saturable absorber, a passively Q-switched operation is performed with a dual-wavelength at 1950.323 nm and 2068.064 nm with a wavelength interval of about 118 nm. The maximum average output power of the Q-switched laser goes up to 200 mW with a minimum pulse duration of 1.2 µs and a maximum repetition rate of 34.72 kHz.
NASA Astrophysics Data System (ADS)
Yang, Xiao-tao; Zhang, Peng; Xie, Wen-qiang; Li, Lin-jun
2018-01-01
A double Q-switch (DQS) Ho:Sc2SiO5 laser modulated by a acousto-optic modulators (AOM) combined with a Cr2+:ZnSe saturable absorber (SA) was reported for the first time. The actively Q-switch (AQS) and passively Q-switch (PQS) were also studied. For the DQS mode, a maximum average output power of 2.49 W under the incident pump power of 12.5 W was obtained, corresponding to a slope efficiency of 24%. The characteristics of the DQS Ho:SSO laser versus different repetition frequencies (RF) of the AOM were researched. The maximum single-pulse energy of the DQS Ho:SSO laser was calculated to 1.98 mJ. The maximum peak power of the DQS Ho:SSO laser was 49.5 kW. The output beam quality factor M2 of DQS Ho:SSO laser was measured to be 1.15 with the highest peak power by knife-edge method at different positions.
Parameter Optimization and Operating Strategy of a TEG System for Railway Vehicles
NASA Astrophysics Data System (ADS)
Heghmanns, A.; Wilbrecht, S.; Beitelschmidt, M.; Geradts, K.
2016-03-01
A thermoelectric generator (TEG) system demonstrator for diesel electric locomotives with the objective of reducing the mechanical load on the thermoelectric modules (TEM) is developed and constructed to validate a one-dimensional thermo-fluid flow simulation model. The model is in good agreement with the measurements and basis for the optimization of the TEG's geometry by a genetic multi objective algorithm. The best solution has a maximum power output of approx. 2.7 kW and does not exceed the maximum back pressure of the diesel engine nor the maximum TEM hot side temperature. To maximize the reduction of the fuel consumption, an operating strategy regarding the system power output for the TEG system is developed. Finally, the potential consumption reduction in passenger and freight traffic operating modes is estimated under realistic driving conditions by means of a power train and lateral dynamics model. The fuel savings are between 0.5% and 0.7%, depending on the driving style.
Thermodynamics fundamentals of energy conversion
NASA Astrophysics Data System (ADS)
Dan, Nicolae
The work reported in the chapters 1-5 focuses on the fundamentals of heat transfer, fluid dynamics, thermodynamics and electrical phenomena related to the conversion of one form of energy to another. Chapter 6 is a re-examination of the fundamental heat transfer problem of how to connect a finite-size heat generating volume to a concentrated sink. Chapter 1 extends to electrical machines the combined thermodynamics and heat transfer optimization approach that has been developed for heat engines. The conversion efficiency at maximum power is 1/2. When, as in specific applications, the operating temperature of windings must not exceed a specified level, the power output is lower and efficiency higher. Chapter 2 addresses the fundamental problem of determining the optimal history (regime of operation) of a battery so that the work output is maximum. Chapters 3 and 4 report the energy conversion aspects of an expanding mixture of hot particles, steam and liquid water. At the elemental level, steam annuli develop around the spherical drops as time increases. At the mixture level, the density decreases while the pressure and velocity increases. Chapter 4 describes numerically, based on the finite element method, the time evolution of the expanding mixture of hot spherical particles, steam and water. The fluid particles are moved in time in a Lagrangian manner to simulate the change of the domain configuration. Chapter 5 describes the process of thermal interaction between the molten material and water. In the second part of the chapter the model accounts for the irreversibility due to the flow of the mixture through the cracks of the mixing vessel. The approach presented in this chapter is based on exergy analysis and represents a departure from the line of inquiry that was followed in chapters 3-4. Chapter 6 shows that the geometry of the heat flow path between a volume and one point can be optimized in two fundamentally different ways. In the "growth" method the structure is optimized starting from the smallest volume element of fixed size. In "design" method the overall volume is fixed, and the designer works "inward" by increasing the internal complexity of the paths for heat flow.
Maximum Acceleration Recording Circuit
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1995-01-01
Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.
Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415 nm.
Lee, Hee Chul; Byeon, Sung Ug; Lukashev, Alexei
2012-04-01
We describe the output performance of the 1415 nm emission in Nd:YAG in a plane-concave cavity under traditional pumping into the 4F5/2 level (808 nm) and direct in-band pumping into the 4F3/2 level (885 nm). An end-pumped Nd:YAG laser yielded maximum cw output power of 6.3 W and 4.2 W at 885 nm and 808 nm laser diode (LD) pumping, respectively. To the best of our knowledge, this is the highest output power of a LD-pumped 1415 nm laser.
A radiatively pumped CW CO2 laser
NASA Technical Reports Server (NTRS)
Insuik, R. J.; Christiansen, W. H.
1984-01-01
A proof of principle experiment to demonstrate the physics of a radiatively pumped laser has been carried out. For the first time, a blackbody cavity has optically pumped a CW CO2 laser. Results are presented from a series of experiments using mixtures of CO2, He, and Ar in which maximum output power was obtained with a 20 percent CO2-15 percent He-65 percent Ar mixture. The dependence of the output power on the blackbody temperature and the cooling gas flow rate is also discussed. By appropriately varying these parameters, continuous output powers of 8-10 mW have been achieved.
Nonlinear distortion analysis for single heterojunction GaAs HEMT with frequency and temperature
NASA Astrophysics Data System (ADS)
Alim, Mohammad A.; Ali, Mayahsa M.; Rezazadeh, Ali A.
2018-07-01
Nonlinearity analysis using two-tone intermodulation distortion (IMD) technique for 0.5 μm gate-length AlGaAs/GaAs based high electron mobility transistor have been investigated based on biasing conditions, input power, frequency and temperature. The outcomes indicate a significant modification on the output IMD power and as well as the minimum distortion level. The input IMD power effects the output current and subsequently the threshold voltage reduces, resulting to an increment in the output IMD power. Both frequency and temperature reduces the magnitude of the output IMDs. In addition, the threshold voltage response with temperature alters the notch point of the nonlinear output IMD’s accordingly. The aforementioned investigation will help the circuit designers to evaluate the best biasing option in terms of minimum distortion, maximum gain for future design optimizations.
48 CFR 42.1106 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... that information essential to Government needs and shall take maximum advantage of data output... contractor's report-preparation system or by individual review of each report. (c) The contract...
Thin disk laser with unstable resonator and reduced output coupler
NASA Astrophysics Data System (ADS)
Gavili, Anwar; Shayganmanesh, Mahdi
2018-05-01
In this paper, feasibility of using unstable resonator with reduced output coupling in a thin disk laser is studied theoretically. Unstable resonator is modeled by wave-optics using Collins integral and iterative method. An Yb:YAG crystal with 250 micron thickness is considered as a quasi-three level active medium and modeled by solving rate equations of energy levels populations. The amplification of laser beam in the active medium is calculated based on the Beer-Lambert law and Rigrod method. Using generalized beam parameters method, laser beam parameters like, width, divergence, M2 factor, output power as well as near and far-field beam profiles are calculated for unstable resonator. It is demonstrated that for thin disk laser (with single disk) in spite of the low thickness of the disk which leads to low gain factor, it is possible to use unstable resonator (with reduced output coupling) and achieve good output power with appropriate beam quality. Also, the behavior of output power and beam quality versus equivalent Fresnel number is investigated and optimized value of output coupling for maximum output power is achieved.
Experiments and theory for a Tm:Ho:YAG laser end pumped by a Cr:GSAG laser
NASA Technical Reports Server (NTRS)
Kim, Kyong H.; Choi, Young S.; Hess, Robert V.; Blair, Clayton H.; Brockman, Philip; Barnes, Norman P.
1991-01-01
A Cr:GSAG-laser-pumped Tm:Ho:YAG laser has been fabricated and tested. A maximum output energy of 14 mJ with a slope efficiency of 33.6 percent was obtained using a 98-percent reflective output coupler. A comprehensive rate equation model has been developed to describe laser performance. Details of the experimental measurements and model are presented.
A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.
Yu, Hua; Yue, Qiuqin; Zhou, Jielin; Wang, Wei
2014-05-19
To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT) for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si) solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%.
A pulser-sustainer carbon monoxide electric-discharge supersonic laser
NASA Technical Reports Server (NTRS)
Monson, D. J.; Srinivasan, G.
1977-01-01
Operation of a CW CO electric-discharge supersonic laser with a pulser-sustainer discharge is described. High-power operation as well as independent control over electron energy and density are demonstrated. Maximum input power achieved to date is 100 kW. The maximum output power is 6 kW or 10% of the sustainer positive-column power. Much improved performance appears possible.
Ryu, Sangjin; Matsudaira, Paul
2010-06-02
Contraction of Vorticella convallaria, a sessile ciliated protozoan, is completed within a few milliseconds and results in a retraction of its cell body toward the substratum by coiling its stalk. Previous studies have modeled the cell body as a sphere and assumed a drag force that satisfies Stokes' law. However, the contraction-induced flow of the medium is transient and bounded by the substrate, and the maximum Reynolds number is larger than unity. Thus, calculations of contractile force from the drag force are incomplete. In this study, we analyzed fluid flow during contraction by the particle tracking velocimetry and computational fluid dynamics simulations to estimate the contractile force. Particle paths show that the induced flow is limited by the substrate. Simulation-based force estimates suggest that the combined effect of the flow unsteadiness, the finite Reynolds number, and the substrate comprises 35% of the total force. The work done in the early stage of contraction and the maximum power output are similar regardless of the medium viscosity. These results suggest that, during the initial development of force, V. convallaria uses a common mechanism for performing mechanical work irrespective of viscous loading conditions. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Design of activated carbon/activated carbon asymmetric capacitors
NASA Astrophysics Data System (ADS)
Piñeiro-Prado, Isabel; Salinas-Torres, David; Ruiz Rosas, Ramiro; Morallon, Emilia; Cazorla-Amoros, Diego
2016-03-01
Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed. In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.
NASA Astrophysics Data System (ADS)
Yang, Xiao-tao; Xie, Wen-qiang; Liu, Long; Li, Lin-jun
2017-08-01
A compact intra-cavity pumped low-threshold passively Q-switched (PQS) Ho:Sc2SiO5 (Ho:SSO) laser is reported for the first time. The Tm:YAlO3 (Tm:YAP) crystal and the Ho:SSO crystal are placed in the same laser cavity. A laser diode with a central wavelength of 793 nm is used to realize the output of the Ho:SSO laser. Both the continuous wave (CW) and PQS operation are investigated. A Cr2+:ZnSe is used as the saturable absorber in the PQS Ho:SSO laser. For the CW mode, the laser threshold is only 750 mW, which is 980 mW in the PQS mode. A maximum pulse energy of 699 µJ is primarily obtained, corresponding to the pulse width of 96 ns. The maximum repetition frequency is 1.46 kHz. The maximum pulse peak power can be calculated to be 7.28 kW. The beam quality factor M 2 is calculated to be 1.4 with the maximum output power.
Honda, Atsushi; Nakamura, Yuji; Ohara, Hiroshi; Cao, Xin; Nomura, Hiroaki; Katagi, Jun; Wada, Takeshi; Izumi-Nakaseko, Hiroko; Ando, Kentaro; Sugiyama, Atsushi
2016-03-15
Cardiac effects of a prostagrandin EP4-receptor agonist ONO-AE1-329 were assessed in the halothane-anesthetized dogs under the monitoring of left ventricular pressure-volume relationship, which were compared with those of clinically recommended doses of dopamine, dobutamine and milrinone (n=4-5 for each treatment). ONO-AE1-329 was intravenously administered in doses of 0.3, 1 and 3 ng/kg/min for 10 min with a pause of 20 min. Dopamine in a dose of 3 µg/kg/min for 10 min, dobutamine in a dose of 1 µg/kg/min for 10 min and milrinone in a dose of 5 µg/kg/min for 10 min followed by 0.5 µg/kg/min for 10 min were intravenously administered. Low dose of ONO-AE1-329 increased the stroke volume. Middle dose of ONO-AE1-329 increased the cardiac output, left ventricular end-diastolic volume, ejection fraction, maximum upstroke/downstroke velocities of the left ventricular pressure and external work, but decreased the end-systolic pressure and internal work besides the change by the low dose. High dose of ONO-AE1-329 increased the heart rate and maximum elastance, but decreased the end-systolic volume besides the changes by the middle dose. Dopamine, dobutamine and milrinone exerted essentially similar cardiac effects to ONO-AE1-329, but they did not significantly change the end-diastolic volume, end-systolic volume, stroke volume, ejection fraction, end-systolic pressure, maximum elastance, external work or internal work. Thus, EP4-receptor stimulation by ONO-AE1-329 may have potential to better promote the passive ventricular filling than the conventional cardiotonic drugs, which could become a candidate of novel therapeutic strategy for the treatment of heart failure with preserved ejection fraction. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng
2017-02-01
Stack connection (i.e., in series or parallel) of microbial fuel cell (MFC) is an efficient way to boost the power output for practical application. However, there is little information available on short-term changes in stack connection and its effect on the electricity generation and microbial community. In this study, a self-stacked submersible microbial fuel cell (SSMFC) powered by glycerol was tested to elucidate this important issue. In series connection, the maximum voltage output reached to 1.15 V, while maximum current density was 5.73 mA in parallel. In both connections, the maximum power density increased with the initial glycerol concentration. However, the glycerol degradation was even faster in parallel connection. When the SSMFC was shifted from series to parallel connection, the reactor reached to a stable power output without any lag phase. Meanwhile, the anodic microbial community compositions were nearly stable. Comparatively, after changing parallel to series connection, there was a lag period for the system to get stable again and the microbial community compositions became greatly different. This study is the first attempt to elucidate the influence of short-term changes in connection on the performance of MFC stack, and could provide insight to the practical utilization of MFC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Xiaoxu; Lan, Jinglong; Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping; Xu, Xiaodong; Zhang, Jian; Xu, Jun
2016-04-10
We report a diode-pumped continuous-wave simultaneous dual-wavelength Nd:LSO laser at 1059 and 1067 nm. By employing a specially coated output coupler with relatively high transmissions at high-gain emission lines of 1075 and 1079 nm, the two low-gain emission lines, 1059 and 1067 nm, can be achieved, for the first time to our knowledge, with maximum output power of 1.27 W and slope efficiency of about 29.2%. The output power is only limited by the available pump power. Output beam quality is also measured to be about 1.19 and 1.21 of the beam propagation factors in the x and y directions, respectively.
On the efficiency of FES cycling: a framework and systematic review.
Hunt, K J; Fang, J; Saengsuwan, J; Grob, M; Laubacher, M
2012-01-01
Research and development in the art of cycling using functional electrical stimulation (FES) of the paralysed leg muscles has been going on for around thirty years. A range of physiological benefits has been observed in clinical studies but an outstanding problem with FES-cycling is that efficiency and power output are very low. The present work had the following aims: (i) to provide a tutorial introduction to a novel framework and methods of estimation of metabolic efficiency using example data sets, and to propose benchmark measures for evaluating FES-cycling performance; (ii) to systematically review the literature pertaining specifically to the metabolic efficiency of FES-cycling, to analyse the observations and possible explanations for the low efficiency, and to pose hypotheses for future studies which aim to improve performance. We recommend the following as benchmark measures for assessment of the performance of FES-cycling: (i) total work efficiency, delta efficiency and stimulation cost; (ii) we recommend, further, that these benchmark measures be complemented by mechanical measures of maximum power output, sustainable steady-state power output and endurance. Performance assessments should be carried out at a well-defined operating point, i.e. under conditions of well controlled work rate and cadence, because these variables have a strong effect on energy expenditure. Future work should focus on the two main factors which affect FES-cycling performance, namely: (i) unfavourable biomechanics, i.e. crude recruitment of muscle groups, non-optimal timing of muscle activation, and lack of synergistic and antagonistic joint control; (ii) non-physiological recruitment of muscle fibres, i.e. mixed recruitment of fibres of different type and deterministic constant-frequency stimulation. We hypothesise that the following areas may bring better FES-cycling performance: (i) study of alternative stimulation strategies for muscle activation including irregular stimulation patterns (e.g. doublets, triplets, stochastic patterns) and variable frequency stimulation trains, where it appears that increasing frequency over time may be profitable; (ii) study of better timing parameters for the stimulated muscle groups, and addition of more muscle groups: this path may be approached using EMG studies and constrained numerical optimisation employing dynamic models; (iii) development of optimal stimulation protocols for muscle reconditioning and FES-cycle training.
Assessing the efficiency of hospital pharmacy services in Thai public district hospitals.
Rattanachotphanit, Thananan; Limwattananon, Chulaporn; Limwattananon, Supon; Johns, Jeff R; Schommer, Jon C; Brown, Lawrence M
2008-07-01
The purpose of this study was to assess the efficiency of hospital pharmacy services and to determine the environmental factors affecting pharmacy service efficiency. The technical efficiency of a hospital pharmacy was assessed to evaluate the hospital's ability to use pharmacy manpower in order to produce the maximum output of the pharmacy service. Data Envelopment Analysis (DEA) was used as an efficiency measurement. The two labor inputs were pharmacists and support personnel and the ten outputs were from four pharmacy activities: drug dispensing, drug purchasing and inventory control, patient-oriented activities, and health consumer protection services. This was used to estimate technical efficiency. A Tobit regression model was used to determine the effect of the hospital size, location, input mix of pharmacy staff, working experience of pharmacists at the study hospitals, and use of technology on the pharmacy service efficiency. Data for pharmacy service input and output quantities were obtained from 155 respondents. Nineteen percent were found to have full efficiency with a technical efficiency score of 1.00. Thirty-six percent had a technical efficiency score of 0.80 or above and 27% had a low technical efficiency score (< 0.60). The average TE score increased in respect to the hospital size (0.60, 0.71, 0.75, and 0.83 in 10, 30, 60, and 90-120 bed hospitals, respectively). Hospital size and geographic location were significantly associated with pharmacy service efficiency.
NASA Astrophysics Data System (ADS)
Xia, Xiaona; Liu, Guanlin; Chen, Lin; Li, Wenlong; Xi, Yi; Shi, Haofei; Hu, Chenguo
2015-11-01
An easily foldable and portable triboelectric-electromagnetic generator (TEMG) based on two polymer/Al layers and one copper coil has been designed to harvest ambient mechanical energy, where the copper coil is used both as a spring to achieve contact and separation of triboelectric layers and as a circuit to collect electromagnetic-induced electricity. The output performance of the TEMG is approximately reproducible after being folded many times. The working mechanism is discussed. The output performance of individual triboelectric generator (TEG) and electromagnetic generator (EMG) are systematically investigated. The maximum output current, voltage, and power are obtained to be 32.2 μA, 500 V, and 2 mW for the TEG, and 4.04 mA, 30 mV, and 15.8 μW for the EMG, respectively. The TEG with a higher internal resistance can be used as a current source, while the EMG with a lower resistance can be used as a voltage source. It can be used as a mobile light source via integrating the TEMG in clothes or bags, and as a self-powered gas flow sensor for detecting respiratory rate, which has a potential application in medical diagnoses. The simple structure and easy portability of the TEMG could be used widely in daily life to harvest ambient energy for electronic devices.
Xia, Xiaona; Liu, Guanlin; Chen, Lin; Li, Wenlong; Xi, Yi; Shi, Haofei; Hu, Chenguo
2015-11-27
An easily foldable and portable triboelectric-electromagnetic generator (TEMG) based on two polymer/Al layers and one copper coil has been designed to harvest ambient mechanical energy, where the copper coil is used both as a spring to achieve contact and separation of triboelectric layers and as a circuit to collect electromagnetic-induced electricity. The output performance of the TEMG is approximately reproducible after being folded many times. The working mechanism is discussed. The output performance of individual triboelectric generator (TEG) and electromagnetic generator (EMG) are systematically investigated. The maximum output current, voltage, and power are obtained to be 32.2 μA, 500 V, and 2 mW for the TEG, and 4.04 mA, 30 mV, and 15.8 μW for the EMG, respectively. The TEG with a higher internal resistance can be used as a current source, while the EMG with a lower resistance can be used as a voltage source. It can be used as a mobile light source via integrating the TEMG in clothes or bags, and as a self-powered gas flow sensor for detecting respiratory rate, which has a potential application in medical diagnoses. The simple structure and easy portability of the TEMG could be used widely in daily life to harvest ambient energy for electronic devices.
Hay, L.E.; Clark, M.P.
2003-01-01
This paper examines the hydrologic model performance in three snowmelt-dominated basins in the western United States to dynamically- and statistically downscaled output from the National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP). Runoff produced using a distributed hydrologic model is compared using daily precipitation and maximum and minimum temperature timeseries derived from the following sources: (1) NCEP output (horizontal grid spacing of approximately 210 km); (2) dynamically downscaled (DDS) NCEP output using a Regional Climate Model (RegCM2, horizontal grid spacing of approximately 52 km); (3) statistically downscaled (SDS) NCEP output; (4) spatially averaged measured data used to calibrate the hydrologic model (Best-Sta) and (5) spatially averaged measured data derived from stations located within the area of the RegCM2 model output used for each basin, but excluding Best-Sta set (All-Sta). In all three basins the SDS-based simulations of daily runoff were as good as runoff produced using the Best-Sta timeseries. The NCEP, DDS, and All-Sta timeseries were able to capture the gross aspects of the seasonal cycles of precipitation and temperature. However, in all three basins, the NCEP-, DDS-, and All-Sta-based simulations of runoff showed little skill on a daily basis. When the precipitation and temperature biases were corrected in the NCEP, DDS, and All-Sta timeseries, the accuracy of the daily runoff simulations improved dramatically, but, with the exception of the bias-corrected All-Sta data set, these simulations were never as accurate as the SDS-based simulations. This need for a bias correction may be somewhat troubling, but in the case of the large station-timeseries (All-Sta), the bias correction did indeed 'correct' for the change in scale. It is unknown if bias corrections to model output will be valid in a future climate. Future work is warranted to identify the causes for (and removal of) systematic biases in DDS simulations, and improve DDS simulations of daily variability in local climate. Until then, SDS based simulations of runoff appear to be the safer downscaling choice.
NASA Astrophysics Data System (ADS)
Lattuca, A.; Mazza, G.; Aglieri Rinella, G.; Cavicchioli, C.; Chanlek, N.; Collu, A.; Degerli, Y.; Dorokhov, A.; Flouzat, C.; Gajanana, D.; Gao, C.; Guilloux, F.; Hillemanns, H.; Hristozkov, S.; Junique, A.; Keil, M.; Kim, D.; Kofarago, M.; Kugathasan, T.; Kwon, Y.; Mager, M.; Sielewicz, K. Marek; Marin Tobon, C. Augusto; Marras, D.; Martinengo, P.; Mugnier, H.; Musa, L.; Pham, T. Hung; Puggioni, C.; Reidt, F.; Riedler, P.; Rousset, J.; Siddhanta, S.; Snoeys, W.; Song, M.; Usai, G.; Van Hoorne, J. Willem; Yang, P.
2016-01-01
This work presents the 600 MHz clock multiplier PLL and the pseudo-LVDS driver which are two essential components of the Data Transmission Unit (DTU), a fast serial link for the 1.2 Gb/s data transmission of the ALICE inner detector front-end chip (ALPIDE). The PLL multiplies the 40 MHz input clock in order to obtain the 600 MHz and the 200 MHz clock for a fast serializer which works in Double Data Rate mode. The outputs of the serializer feed the pseudo-LVDS driver inputs which transmits the data from the pixel chip to the patch panel with a limited number of signal lines. The driver drives a 5.3 m-6.5 m long differential transmission line by steering a maximum of 5 mA of current at the target speed. To overcome bandwidth limitations coming from the long cables the pre-emphasis can be applied to the output. Currents for the main and pre-emphasis driver can individually be adjusted using on-chip digital-to-analog converters. The circuits will be integrated in the pixel chip and are designed in the same 0.18 μm CMOS technology and will operate from the same 1.8 V supply. Design and test results of both circuits are presented.
Changes in Extreme Events: from GCM Output to Social, Economic and Ecological Impacts
NASA Astrophysics Data System (ADS)
Tebaldi, C.; Meehl, G. A.
2006-12-01
Extreme events can deeply affect social and natural systems. The current generation of global climate model is producing information that can be directly used to characterize future changes in extreme events, and through a further step their impacts, despite their still relatively coarse resolution. It is important to define extreme indicators consistently with what we expect GCM to be able to represent reliably. We use two examples from our work, heat waves and frost days, that well describe different aspects of the analysis of extremes from GCM output. Frost days are "mild extremes" and their definition and computation is straightforward. GCMs can represent them accurately and display a strong consistent signal of change. The impacts of these changes will be extremely relevant for ecosystems and agriculture. Heat waves do not have a standard definition. On the basis of historical episodes we isolate characteristics that were responsible for the worst effects on human health, for example, and analyze these characteristics in model simulations, validating the model's historical simulations. The changes in these characteristics can then be easily translated in expected differential impacts on public health. Work in progress goes in the direction of better characterization of "heat waves" taking into account jointly a set of variables like maximum and minimum temperatures and humidity, better addressing the biological vulnerabilities of the populations at risk.
Design and analysis of an unconventional permanent magnet linear machine for energy harvesting
NASA Astrophysics Data System (ADS)
Zeng, Peng
This Ph.D. dissertation proposes an unconventional high power density linear electromagnetic kinetic energy harvester, and a high-performance two-stage interface power electronics to maintain maximum power abstraction from the energy source and charge the Li-ion battery load with constant current. The proposed machine architecture is composed of a double-sided flat type silicon steel stator with winding slots, a permanent magnet mover, coil windings, a linear motion guide and an adjustable spring bearing. The unconventional design of the machine is that NdFeB magnet bars in the mover are placed with magnetic fields in horizontal direction instead of vertical direction and the same magnetic poles are facing each other. The derived magnetic equivalent circuit model proves the average air-gap flux density of the novel topology is as high as 0.73 T with 17.7% improvement over that of the conventional topology at the given geometric dimensions of the proof-of-concept machine. Subsequently, the improved output voltage and power are achieved. The dynamic model of the linear generator is also developed, and the analytical equations of output maximum power are derived for the case of driving vibration with amplitude that is equal, smaller and larger than the relative displacement between the mover and the stator of the machine respectively. Furthermore, the finite element analysis (FEA) model has been simulated to prove the derived analytical results and the improved power generation capability. Also, an optimization framework is explored to extend to the multi-Degree-of-Freedom (n-DOF) vibration based linear energy harvesting devices. Moreover, a boost-buck cascaded switch mode converter with current controller is designed to extract the maximum power from the harvester and charge the Li-ion battery with trickle current. Meanwhile, a maximum power point tracking (MPPT) algorithm is proposed and optimized for low frequency driving vibrations. Finally, a proof-of-concept unconventional permanent magnet (PM) linear generator is prototyped and tested to verify the simulation results of the FEA model. For the coil windings of 33, 66 and 165 turns, the output power of the machine is tested to have the output power of 65.6 mW, 189.1 mW, and 497.7 mW respectively with the maximum power density of 2.486 mW/cm3.
Haseli, Y
2016-05-01
The objective of this study is to investigate the thermal efficiency and power production of typical models of endoreversible heat engines at the regime of minimum entropy generation rate. The study considers the Curzon-Ahlborn engine, the Novikov's engine, and the Carnot vapor cycle. The operational regimes at maximum thermal efficiency, maximum power output and minimum entropy production rate are compared for each of these engines. The results reveal that in an endoreversible heat engine, a reduction in entropy production corresponds to an increase in thermal efficiency. The three criteria of minimum entropy production, the maximum thermal efficiency, and the maximum power may become equivalent at the condition of fixed heat input.
Energy harvesting influences electrochemical performance of microbial fuel cells
NASA Astrophysics Data System (ADS)
Lobo, Fernanda Leite; Wang, Xin; Ren, Zhiyong Jason
2017-07-01
Microbial fuel cells (MFCs) can be effective power sources for remote sensing, wastewater treatment and environmental remediation, but their performance needs significant improvement. This study systematically analyzes how active harvesting using electrical circuits increased MFC system outputs as compared to passive resistors not only in the traditional maximal power point (MPP) but also in other desired operating points such as the maximum current point (MCP) and the maximum voltage point (MVP). Results show that active harvesting in MPP increased power output by 81-375% and active harvesting in MCP increased Coulombic efficiency by 207-805% compared with resisters operated at the same points. The cyclic voltammograms revealed redox potential shifts and supported the performance data. The findings demonstrate that active harvesting is a very effective approach to improve MFC performance across different operating points.
Fujita, Kazuue; Yamanishi, Masamichi; Furuta, Shinichi; Tanaka, Kazunori; Edamura, Tadataka; Kubis, Tillmann; Klimeck, Gerhard
2012-08-27
Device-performances of 3.7 THz indirect-pumping quantum-cascade lasers are demonstrated in an InGaAs/InAlAs material system grown by metal-organic vapor-phase epitaxy. The lasers show a low threshold-current-density of ~420 A/cm2 and a peak output power of ~8 mW at 7 K, no sign of parasitic currents with recourse to well-designed coupled-well injectors in the indirect pump scheme, and a maximum operating temperature of Tmax ~100 K. The observed roll-over of output intensities in current ranges below maximum currents and limitation of Tmax are discussed with a model for electron-gas heating in injectors. Possible ways toward elevation of Tmax are suggested.
NASA Astrophysics Data System (ADS)
Li, Na; Zhang, Yu; Wen, Shuang; Li, Lei-lei; Li, Jian
2018-01-01
Noise is a problem that communication channels cannot avoid. It is, thus, beneficial to analyze the security of MDI-QKD in noisy environment. An analysis model for collective-rotation noise is introduced, and the information theory methods are used to analyze the security of the protocol. The maximum amount of information that Eve can eavesdrop is 50%, and the eavesdropping can always be detected if the noise level ɛ ≤ 0.68. Therefore, MDI-QKD protocol is secure as quantum key distribution protocol. The maximum probability that the relay outputs successful results is 16% when existing eavesdropping. Moreover, the probability that the relay outputs successful results when existing eavesdropping is higher than the situation without eavesdropping. The paper validates that MDI-QKD protocol has better robustness.
Characterization of the electrical output of flat-plate photovoltaic arrays
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.
1982-01-01
The electric output of flat-plate photovoltaic arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as direct-current to alternating-current power conditioners must be able to accommodate widely varying input levels, while maintaining operation at or near the array maximum power point.The results of an extensive computer simulation study that was used to define the parameters necessary for the systematic design of array/power-conditioner interfaces are presented as normalized ratios of power-conditioner parameters to array parameters, to make the results universally applicable to a wide variety of system sizes, sites, and operating modes. The advantages of maximum power tracking and a technique for computing average annual power-conditioner efficiency are discussed.
Djordjevic, Ivan B; Vasic, Bane
2006-05-29
A maximum a posteriori probability (MAP) symbol decoding supplemented with iterative decoding is proposed as an effective mean for suppression of intrachannel nonlinearities. The MAP detector, based on Bahl-Cocke-Jelinek-Raviv algorithm, operates on the channel trellis, a dynamical model of intersymbol interference, and provides soft-decision outputs processed further in an iterative decoder. A dramatic performance improvement is demonstrated. The main reason is that the conventional maximum-likelihood sequence detector based on Viterbi algorithm provides hard-decision outputs only, hence preventing the soft iterative decoding. The proposed scheme operates very well in the presence of strong intrachannel intersymbol interference, when other advanced forward error correction schemes fail, and it is also suitable for 40 Gb/s upgrade over existing 10 Gb/s infrastructure.
High Power SiGe X-Band (8-10 GHz) Heterojunction Bipolar Transistors and Amplifiers
NASA Technical Reports Server (NTRS)
Ma, Zhenqiang; Jiang, Ningyue; Ponchak, George E.; Alterovitz, Samuel A.
2005-01-01
Limited by increased parasitics and thermal effects as the device size becomes large, current commercial SiGe power HBTs are difficult to operate at X-band (8-12 GHz) with adequate power added efficiencies at high power levels. We found that, by changing the heterostructure and doping profile of SiGe HBTs, their power gain can be significantly improved without resorting to substantial lateral scaling. Furthermore, employing a common-base configuration with proper doping profile instead of a common-emitter configuration improves the power gain characteristics of SiGe HBTs, which thus permits these devices to be efficiently operated at X-band. In this paper, we report the results of SiGe power HBTs and MMIC power amplifiers operating at 8-10 GHz. At 10 GHz, 22.5 dBm (178 mW) RF output power with concurrent gain of 7.32 dB is measured at the peak power-added efficiency of 20.0% and the maximum RF output power of 24.0 dBm (250 mW) is achieved from a 20 emitter finger SiGe power HBT. Demonstration of single-stage X-band medium-power linear MMIC power amplifier is also realized at 8 GHz. Employing a 10-emitter finger SiGe HBT and on-chip input and output matching passive components, a linear gain of 9.7 dB, a maximum output power of 23.4 dBm and peak power added efficiency of 16% is achieved from the power amplifier. The MMIC exhibits very low distortion with third order intermodulation (IM) suppression C/I of -13 dBc at output power of 21.2 dBm and over 20dBm third order output intercept point (OIP3).
NASA Astrophysics Data System (ADS)
Jelínková, Helena; Doroshenko, Maxim E.; Šulc, Jan; Němec, Michal; Jelínek, Michal; Osiko, Vjatcheslav V.; Badikov, Valerii V.; Badikov, Dmitri V.
2016-03-01
On the basis of our previous Dy3+:PbGa2S4 laser study, laser output wavelength temporal evolution as well as tuning possibilities in the range 4.3-4.7 μm were investigated. Active crystal was pumped by a fiber-coupled Brightlase Ultra- 50 diode laser (1.7 μm, max. power 7.5 W). Laser resonator was formed by flat dichroic pumping mirror (T = 70%@1.7 μm, R~100% @ 3.5 - 5 μm) and a concave (r = 200 mm) output coupler with R~99% @ 3.5 - 5 μm. The laser output wavelength dependence on the pump pulse duration and its evolution during the pulse was investigated first without any spectrally-selective element in the cavity. At pump pulse duration of 1 ms, generation just near Dy3+ fluorescence maximum of 4.35 μm has been observed. Prolongation of the pulse up to 5 ms led to similar lasing at 4.35 μm in the first millisecond, followed by simultaneous generation at 4.35 and 4.38 μm in the next millisecond, and further lasing at 4.6 μm till the end of the pump pulse. Increase of pump pulse duration up to 10 ms led to similar oscillation pulse development followed by generation at 4.6 μm only. Furthermore, output wavelength tuning using MgF2 birefringent filter as a cavity spectral selective element was investigated under 10 ms pumping. Almost continuous tuning without any significant dip has been observed within spectral range from 4.3 up to 4.7 μm. Due to practically closed cavity mean output power in the maximum of tuning curve was in the order of 400 μW.
Roy, Subrata K
2002-03-01
In developing countries like India, where the incidence of protein-calorie malnutrition is high and mechanization is at a minimum, human labor provides much of the power for physical activity. This study presents anthropometric measurements, somatotypes, food intakes, energy expenditures, and work outputs of Oraon agricultural laborers of the Jalpaiguri district, West Bengal, in an attempt to identify the factors that predict high work productivity. Specifically, this study investigates 1) the relationship between morphological variation (anthropometric measurements and somatotype) and work productivity, 2) the nature and extent of the relationship between nutritional status and work productivity, and 3) the best predictor variables of work output. Classification of groups on the basis of median values of work output show that in the aggregate, the high productive groups are significantly younger than low-productive groups in both sexes. Before age-adjustment, the high productive groups show higher mean values of a few body dimensions, though these differ by sex, and both males and females exhibit a normal range of blood pressure and pulse rate values. Mean values of grip strength and back strength are higher in high-output men and women. Mean values of both food intake and energy expenditure are also higher among men in high-output groups, with only food intake higher in high-output women. However, after eliminating the effects of age, the differences between low-productive groups and high-productive groups in most of the variables are not significant. Productivity predictors in males consist of age, food intake and chest girth (inhalation). Females, on the other hand, show age and grip strength (left) as work output predictors. Copyright 2002 Wiley-Liss, Inc.
High power, high signal-to-noise ratio single-frequency 1μm Brillouin all-fiber laser
NASA Astrophysics Data System (ADS)
Wang, Jing; Hou, Yubin; Zhang, Qian; Jin, Dongchen; Sun, Ruoyu; Shi, Hongxing; Liu, Jiang; Wang, Pu
2016-03-01
We demonstrate a high-power, high signal-to-noise ratio single-frequency 1 μm Brillouin all-fiber laser with high slope efficiency. The Brillouin laser system consists of a high-power single-frequency fiber laser and a single-pass Brillouin ring cavity. The high-power single-frequency fiber laser is one-stage master-oscillator power amplifier with the maximum output power of 10.33 W, the signal-to-noise ratio of 50 dB and the slope efficiency of 46%. The Brillouin fiber laser is pumped by the amplified laser with a linewidth of 33 kHz and an output power of 2.61 W limited by the damage threshold of the optical isolator. By optimizing the length of the Brillouin ring cavity to 10 m, stable singlefrequency Brillouin fiber laser is obtained with 3 kHz linewidth owing to the linewidth narrowing effect. At the launched pump power of 2.15 W, the Brillouin fiber laser generates maximum output power of 1.4 W with a slope efficiency of 79% and the optical signal-to-noise ratio of 77 dB.
Performance study of highly efficient 520 W average power long pulse ceramic Nd:YAG rod laser
NASA Astrophysics Data System (ADS)
Choubey, Ambar; Vishwakarma, S. C.; Ali, Sabir; Jain, R. K.; Upadhyaya, B. N.; Oak, S. M.
2013-10-01
We report the performance study of a 2% atomic doped ceramic Nd:YAG rod for long pulse laser operation in the millisecond regime with pulse duration in the range of 0.5-20 ms. A maximum average output power of 520 W with 180 J maximum pulse energy has been achieved with a slope efficiency of 5.4% using a dual rod configuration, which is the highest for typical lamp pumped ceramic Nd:YAG lasers. The laser output characteristics of the ceramic Nd:YAG rod were revealed to be nearly equivalent or superior to those of high-quality single crystal Nd:YAG rod. The laser pump chamber and resonator were designed and optimized to achieve a high efficiency and good beam quality with a beam parameter product of 16 mm mrad (M2˜47). The laser output beam was efficiently coupled through a 400 μm core diameter optical fiber with 90% overall transmission efficiency. This ceramic Nd:YAG laser will be useful for various material processing applications in industry.
Fuzzy Logic Controlled Solar Module for Driving Three- Phase Induction Motor
NASA Astrophysics Data System (ADS)
Afiqah Zainal, Nurul; Sooi Tat, Chan; Ajisman
2016-02-01
Renewable energy produced by solar module gives advantages for generated three- phase induction motor in remote area. But, solar module's ou tput is uncertain and complex. Fuzzy logic controller is one of controllers that can handle non-linear system and maximum power of solar module. Fuzzy logic controller used for Maximum Power Point Tracking (MPPT) technique to control Pulse-Width Modulation (PWM) for switching power electronics circuit. DC-DC boost converter used to boost up photovoltaic voltage to desired output and supply voltage source inverter which controlled by three-phase PWM generated by microcontroller. IGBT switched Voltage source inverter (VSI) produced alternating current (AC) voltage from direct current (DC) source to control speed of three-phase induction motor from boost converter output. Results showed that, the output power of solar module is optimized and controlled by using fuzzy logic controller. Besides that, the three-phase induction motor can be drive and control using VSI switching by the PWM signal generated by the fuzzy logic controller. This concluded that the non-linear system can be controlled and used in driving three-phase induction motor.
Initial experiments with gel-water: towards MRI-linac dosimetry and imaging.
Alnaghy, Sarah J; Gargett, Maegan; Liney, Gary; Petasecca, Marco; Begg, Jarrad; Espinoza, Anthony; Newall, Matthew K; Duncan, Mitchell; Holloway, Lois; Lerch, Michael L F; Lazea, Mircea; Rosenfeld, Anatoly B; Metcalfe, Peter
2016-12-01
Tracking the position of a moving radiation detector in time and space during data acquisition can replicate 4D image-guided radiotherapy (4DIGRT). Magnetic resonance imaging (MRI)-linacs need MRI-visible detectors to achieve this, however, imaging solid phantoms is an issue. Hence, gel-water, a material that provides signal for MRI-visibility, and which will in future work, replace solid water for an MRI-linac 4DIGRT quality assurance tool, is discussed. MR and CT images of gel-water were acquired for visualisation and electron density verification. Characterisation of gel-water at 0 T was compared to Gammex-RMI solid water, using MagicPlate-512 (M512) and RMI Attix chamber; this included percentage depth dose, tissue-phantom ratio (TPR 20/10 ), tissue-maximum ratio (TMR), profiles, output factors, and a gamma analysis to investigate field penumbral differences. MR images of a non-powered detector in gel-water demonstrated detector visualisation. The CT-determined gel-water electron density agreed with the calculated value of 1.01. Gel-water depth dose data demonstrated a maximum deviation of 0.7% from solid water for M512 and 2.4% for the Attix chamber, and by 2.1% for TPR 20/10 and 1.0% for TMR. FWHM and output factor differences between materials were ≤0.3 and ≤1.4%. M512 data passed gamma analysis with 100% within 2%, 2 mm tolerance for multileaf collimator defined fields. Gel-water was shown to be tissue-equivalent for dosimetry and a feasible option to replace solid water.
NASA Astrophysics Data System (ADS)
Erturk, A.; Anton, S. R.; Inman, D. J.
2009-03-01
This paper discusses the basic design factors for modifying an original wing spar to a multifunctional load-bearing - energy harvester wing spar. A distributed-parameter electromechanical formulation is given for modeling of a multilayer piezoelectric power generator beam for different combinations of the electrical outputs of piezoceramic layers. In addition to the coupled vibration response and voltage response expressions for a multimorph, strength formulations are given in order to estimate the maximum load input that can be sustained by the cantilevered structure without failure for a given safety factor. Embedding piezoceramics into an original wing spar for power generation tends to reduce the maximum load that can be sustained without failure and increase the total mass due to the brittle nature and large mass densities of typical piezoelectric ceramics. Two case studies are presented for demonstration. The theoretical case study discusses modification of a rectangular wing spar to a 3-layer generator wing spar with a certain restriction on mass addition for fixed dimensions. Power generation and strength analyses are provided using the electromechanical model. The experimental case study considers a 9-layer generator beam with aluminum, piezoceramic, Kapton and epoxy layers and investigates its power generation and load-bearing performances experimentally and analytically. This structure constitutes the main body of the multifunctional self-charging structure concept proposed by the authors. The second part of this work (experiments and storage applications) employs this multi-layer generator along with the thin-film battery layers in order to charge the battery layers using the electrical outputs of the piezoceramic layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Xiaopin; Yang, Ziqiang; Shi, Zongjun
A novel backward wave oscillator (BWO) based on a hole-grating slow wave structure is proposed as a dual sheet beam millimeter wave radiation source. In this paper, we focus on the output characteristics of a 0.14 THz hole-grating BWO. The output characteristics of the hole-grating BWO, the conventional single-beam grating BWO, and the dual-beam grating BWO are contrasted in detail. 3-D particle-in-cell results indicate that the hole-grating slow wave structure can help to increase the maximum output power as well as lower the operating current density. Meanwhile, the hole-grating BWO shows good insensitivity to the differences between two sheet electronmore » beams. These characteristics make the hole-grating BWO feasible to be a stable millimeter wave radiation source with higher output power.« less
Sampled-data chain-observer design for a class of delayed nonlinear systems
NASA Astrophysics Data System (ADS)
Kahelras, M.; Ahmed-Ali, T.; Giri, F.; Lamnabhi-Lagarrigue, F.
2018-05-01
The problem of observer design is addressed for a class of triangular nonlinear systems with not-necessarily small delay and sampled output measurements. One more difficulty is that the system state matrix is dependent on the un-delayed output signal which is not accessible to measurement, making existing observers inapplicable. A new chain observer, composed of m elementary observers in series, is designed to compensate for output sampling and arbitrary large delays. The larger the time-delay the larger the number m. Each elementary observer includes an output predictor that is conceived to compensate for the effects of output sampling and a fractional delay. The predictors are defined by first-order ordinary differential equations (ODEs) much simpler than those of existing predictors which involve both output and state predictors. Using a small gain type analysis, sufficient conditions for the observer to be exponentially convergent are established in terms of the minimal number m of elementary observers and the maximum sampling interval.
Laser diode and pumped Cr:Yag passively Q-switched yellow-green laser at 543 nm
NASA Astrophysics Data System (ADS)
Yao, Y.; Ling, Zhao; Li, B.; Qu, D. P.; Zhou, K.; Zhang, Y. B.; Zhao, Y.; Zheng, Q.
2013-03-01
Efficient and compact yellow green pulsed laser output at 543 nm is generated by frequency doubling of a passively Q-switched end diode-pumped Nd:YVO4 laser at 1086 nm under the condition of sup-pressing the higher gain transition near 1064 nm. With 15 W of diode pump power and the frequency doubling crystal LBO, as high as 1.58 W output power at 543 nm is achieved. The optical to optical conversion efficiency from the corresponding Q-switched fundamental output to the yellow green output is 49%. The peak power of the Q-switched yellow green pulse laser is up to 30 kW with 5 ns pulse duration. The output power stability over 8 hours is better than 2.56% at the maximum output power. To the best of our knowledge, this is the highest watt-level laser at 543 nm generated by frequency doubling of a passively Q-switched end diode pumped Nd:YVO4 laser at 1086 nm.
NASA Astrophysics Data System (ADS)
Gebhart, Trey; Baylor, Larry; Winfrey, Leigh
2016-10-01
The realization of fusion energy requires materials that can withstand high heat and particle fluxes at the plasma material interface. In this work, an electrothermal (ET) plasma source has been designed as a possible transient heat flux source for a linear plasma material interaction device. An ET plasma source operates in the ablative arc regime, which is driven by a DC capacitive discharge. The current travels through the 4mm bore of a boron nitride liner and subsequently ablates and ionizes the liner material. This results in a high density plasma with a large unidirectional bulk flow out of the source exit. The pulse length for the ET source has been optimized using a pulse forming network to have a duration of 1ms at full-width half maximum. The peak currents and maximum source energies seen in this system are 2kA and 5kJ. The goal of this work is to show that the ET source produces electron densities and heat fluxes that are comparable to transient events in future large magnetic confinement fusion devices. Heat flux, plasma temperature, and plasma density were determined for each test shot using infrared imaging and optical spectroscopy techniques. This work will compare the ET source output (heat flux, temperature, and density) with and without an applied magnetic field. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.
Ma, Wei Ji; Shen, Shan; Dziugaite, Gintare; van den Berg, Ronald
2015-11-01
In tasks such as visual search and change detection, a key question is how observers integrate noisy measurements from multiple locations to make a decision. Decision rules proposed to model this process have fallen into two categories: Bayes-optimal (ideal observer) rules and ad-hoc rules. Among the latter, the maximum-of-outputs (max) rule has been the most prominent. Reviewing recent work and performing new model comparisons across a range of paradigms, we find that in all cases except for one, the optimal rule describes human data as well as or better than every max rule either previously proposed or newly introduced here. This casts doubt on the utility of the max rule for understanding perceptual decision-making. Copyright © 2015 Elsevier Ltd. All rights reserved.
Exploring the Relationship between Modified Output and Working Memory Capacity
ERIC Educational Resources Information Center
Mackey, Alison; Adams, Rebecca; Stafford, Catherine; Winke, Paula
2010-01-01
This study examines the relationship between learners' production of modified output and their working memory (WM) capacity. The task-based interactions of 42 college-level, native English-speaking learners of Spanish as a foreign language were examined. A relationship was found between learners' WM test scores and their tendency to modify output.…
NASA Astrophysics Data System (ADS)
Korytov, M. S.; Shcherbakov, V. S.; Titenko, V. V.
2018-01-01
Limitation of the swing of the bridge crane cargo rope is a matter of urgency, as it can significantly improve the efficiency and safety of the work performed. In order to completely dampen the pendulum swing after the break-up of a bridge or a bridge-crane freight cart to maximum speed, it is necessary, in the normal repulsion control of the electric motor, to split the process of dispersion into a minimum of three gaps. For a dynamic system of swinging of a bridge crane on a flexible cable hanger in a separate vertical plane, an analytical solution was obtained to determine the temporal dependence of the cargo rope angle relative to the gravitational vertical when the cargo suspension point moves with constant acceleration. The resulting analytical dependence of the cargo rope angle and its first derivative can break the process of dispersing the cargo suspension point into three stages of dispersal and braking with various accelerations and enter maximum speed of movement of the cargo suspension point. In doing so, the condition of eliminating the swings of the cargo rope relative to the gravitational vertical is fulfilled. Provides examples of the maximum speed output constraints-to-time when removing the rope swing.
Solar-pumped 80 W laser irradiated by a Fresnel lens.
Ohkubo, Tomomasa; Yabe, Takashi; Yoshida, Kunio; Uchida, Shigeaki; Funatsu, Takayuki; Bagheri, Behgol; Oishi, Takehiro; Daito, Kazuya; Ishioka, Manabu; Nakayama, Yuichirou; Yasunaga, Norihito; Kido, Kouichirou; Sato, Yuji; Baasandash, Choijil; Kato, Kiyoshi; Yanagitani, Takagimi; Okamoto, Yoshiaki
2009-01-15
A solar-pumped 100 W class laser that features high efficiency and low cost owing to the use of a Fresnel lens and a chromium codoped neodymium YAG ceramic laser medium was developed. A laser output of about 80 W was achieved with combination of a 4 m(2) Fresnel lens and a pumping cavity as a secondary power concentrator. This output corresponds to 4.3% of conversion efficiency from solar power into laser, and the maximum output from a unit area of Fresnel lens was 20 W/m(2), which is 2.8 times larger than previous results with mirror-type concentrator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Sternberg, Alex
The contact control code is a generalized force control scheme meant to interface with a robotic arm being controlled using the Robot Operating System (ROS). The code allows the user to specify a control scheme for each control dimension in a way that many different control task controllers could be built from the same generalized controller. The input to the code includes maximum velocity, maximum force, maximum displacement, and a control law assigned to each direction and the output is a 6 degree of freedom velocity command that is sent to the robot controller.
A 100 mW-level single-mode switchable dual-wavelength erbium-doped fiber laser
NASA Astrophysics Data System (ADS)
Cheng, Jianqun; Zhang, Liaolin; Sharafudeen, Kaniyarakkal; Qiu, Jianrong
2013-10-01
A switchable dual-wavelength CW erbium-doped fiber laser with two cascaded fiber Bragg gratings has been proposed and demonstrated experimentally at room temperature. The laser uses a linear resonant cavity configuration incorporating a Sagnac loop with a polarization controller (PC) and can switch flexibly to output a single wavelength or dual wavelengths based on the polarization hole burning (PHB) effect. The slope efficiency and maximum output power can reach 23% and 96 mW, respectively. The two lasing peaks of the laser, with a narrow linewidth output and an optical signal-to-noise ratio of more than 50 dB, are located in the C and L bands of the optical communication window, respectively. The laser shows good stability with respect to the wavelength and output power.
Gyro and accelerometer failure detection and identification in redundant sensor systems
NASA Technical Reports Server (NTRS)
Potter, J. E.; Deckert, J. C.
1972-01-01
Algorithms for failure detection and identification for redundant noncolinear arrays of single degree of freedom gyros and accelerometers are described. These algorithms are optimum in the sense that detection occurs as soon as it is no longer possible to account for the instrument outputs as the outputs of good instruments operating within their noise tolerances, and identification occurs as soon as it is true that only a particular instrument failure could account for the actual instrument outputs within the noise tolerance of good instruments. An estimation algorithm is described which minimizes the maximum possible estimation error magnitude for the given set of instrument outputs. Monte Carlo simulation results are presented for the application of the algorithms to an inertial reference unit consisting of six gyros and six accelerometers in two alternate configurations.
NASA Astrophysics Data System (ADS)
Castro, N.; Reis, S.; Silva, M. P.; Correia, V.; Lanceros-Mendez, S.; Martins, P.
2018-06-01
The magnetoelectric (ME) effect is increasingly being considered an attractive alternative for magnetic field and smart current sensing, being able to sense static and dynamic magnetic fields. This work reports on a contactless DC current sensor device based on a ME PVDF/Metglas composite, a solenoid and the corresponding electronic instrumentation. The ME sample shows a maximum resonant ME coefficient (α 33) of 34.48 V cm‑1 Oe‑1, a linear response (R 2 = 0.998) and a sensitivity of 6.7 mV A‑1. With the incorporation of a charge amplifier, an AC-RMS converter and a microcontroller the linearity is maintained (R 2 = 0.997), the ME output voltage increases to a maximum of 2320 mV and the sensitivity rises to 476.5 mV A‑1. Such features allied to the highest sensitivity reported in the literature on polymer-based ME composites provide to the reported ME sensing device suitable characteristics to be used in non-contact electric current measurement, motor operational status checking, and condition monitoring of rechargeable batteries, among others.
Novel Maximum-based Timing Acquisition for Spread-Spectrum Communications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sibbetty, Taylor; Moradiz, Hussein; Farhang-Boroujeny, Behrouz
This paper proposes and analyzes a new packet detection and timing acquisition method for spread spectrum systems. The proposed method provides an enhancement over the typical thresholding techniques that have been proposed for direct sequence spread spectrum (DS-SS). The effective implementation of thresholding methods typically require accurate knowledge of the received signal-to-noise ratio (SNR), which is particularly difficult to estimate in spread spectrum systems. Instead, we propose a method which utilizes a consistency metric of the location of maximum samples at the output of a filter matched to the spread spectrum waveform to achieve acquisition, and does not require knowledgemore » of the received SNR. Through theoretical study, we show that the proposed method offers a low probability of missed detection over a large range of SNR with a corresponding probability of false alarm far lower than other methods. Computer simulations that corroborate our theoretical results are also presented. Although our work here has been motivated by our previous study of a filter bank multicarrier spread-spectrum (FB-MC-SS) system, the proposed method is applicable to DS-SS systems as well.« less
Huang, Long; Ma, Pengfei; Tao, Rumao; Shi, Chen; Wang, Xiaolin; Zhou, Pu
2015-04-01
A linearly polarized monolithic fiber laser based on a master oscillator power amplifier structure with a master oscillator and a one-stage power amplifier is reported. We design a homemade oscillator based on the theory that, in the coiled gain fiber, the higher modes and the polarized mode of the fundamental mode along the fast axis are suppressed effectively because of their obviously higher bend loss than that of the polarized mode of the fundamental mode along the slow axis. The oscillator operates at 1080 nm, launching a 30 W seed laser with a high polarization extinction ratio of 19 dB into the power amplifier via a mode field adapter. The power amplifier utilizes Yb-doped polarization-maintaining fiber of 20/400 μm, which produces nearly diffraction-limited output power of about 1.5 kW with an optical-optical efficiency of 81.5% and a polarization extinction ratio of 13.8 dB. Both the M(x)² factor and the M(y)² factor of the collimated beam are measured to be about 1.2. The spectral width of the output power is broadened approximately linearly, and the full width at half maximum of the spectrum at the maximum output power is about 5.8 nm. It is known as the highest linearly polarized output power to the best of our knowledge.
Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor
NASA Astrophysics Data System (ADS)
Kim, Min-Ook; Pyo, Soonjae; Oh, Yongkeun; Kang, Yunsung; Cho, Kyung-Ho; Choi, Jungwook; Kim, Jongbaeg
2018-03-01
A flexible piezoelectric strain energy harvester that is responsive to multi-directional input forces produced by various human motions is proposed. The structure of the harvester, which includes a polydimethylsiloxane (PDMS) bump, facilitates the effective conversion of strain energy, produced by input forces applied in random directions, into electrical energy. The structural design of the PDMS bump and frame as well as the slits in the piezoelectric polyvinylidene fluoride (PVDF) film provide mechanical flexibility and enhance the strain induced in the PVDF film under input forces applied at various angles. The amount and direction of the strain induced in PVDF can be changed by the direction of the applied force; thus, the generated output power can be varied. The measured maximum output peak voltage is 1.75, 1.29, and 0.98 V when an input force of 4 N (2 Hz) is applied at angles of 0°, 45°, and 90°, and the corresponding maximum output power is 0.064, 0.026, and 0.02 μW, respectively. Moreover, the harvester stably generates output voltage over 1.4 × 104 cycles. Thus, the proposed harvester successfully identifies and converts strain energy produced by multi-directional input forces by various human motions into electrical energy. We demonstrate the potential utility of the proposed flexible energy harvester as a self-powered human motion sensor for wireless healthcare systems.
Quality factor concept in piezoceramic transformer performance description.
Mezheritsky, Alex V
2006-02-01
A new general approach based on the quality factor concept to piezoceramic transformer (PT) performance description is proposed. The system's quality factor, material elastic anisotropy, and coupling factors of the input and output sections of an electrically excited and electrically loaded PT fully characterize its resonance and near-resonance behavior. The PT efficiency, transformation ratio, and input and output power were analytically analyzed and simulated as functions of the load and frequency for the simplest classical Langevin-type and Rosen-type PT designs. A new formulation of the electrical input impedance allows one to separate the power consumed by PT from the power transferred into the load. The system's PT quality factor takes into account losses in each PT "input-output-load" functional components. The loading process is changing PT input electrical impedance on the way that under loading the minimum series impedance is increasing and the maximum parallel impedance is decreasing coincidentally. The quality-factors ratio, between the states of fully loaded and nonloaded PT, is one of the best measures of PTs dynamic performance--practically, the lower the ratio is, the better PT efficiency. A simple and effective method for the loaded PT quality factor determination is proposed. As was found, a piezoceramic with low piezoelectric anisotropy is required to provide maximum PT efficiency and higher corresponding voltage gain. Limitations on the PT output voltage and power, caused by nonlinear effects in piezoceramics, were established.
Wang, Yanhu; Zhang, Lina; Cui, Kang; Xu, Caixia; Li, Hao; Liu, Hong; Yu, Jinghua
2018-02-15
One solar-driven electrochromic photoelectrochemical fuel cell (PFC) with highly efficient energy conversion and storage is easily constructed to achieve quantitative self-powered sensing. Layered bismuth oxyiodide-zinc oxide nanorod arrays (ZnO@BiOI NRA) with a core/shell p-n heterostructure are fabricated as the photoanode with electrochromic Prussian blue (PB) as the cathode. The core/shell p-n heterostructure for the ZnO@BiOI photoanode can effectively boost the photoelectrochemical (PEC) performance through the improvement of photon absorption and charge carrier separation. The optimal assembled PFC yields an open-circuit voltage (V OC ) of 0.48 V with the maximum power output density (P max ) as high as 155 μW cm -2 upon illumination. Benefitting from the interactive color-changing behavior of PB, the cathode not only exhibits cathodic catalytic activity in the PFC but also serves as an electrochromic display for self-powered sensing. The as-constructed PFC possesses multiple readable signal output nanochannels through the maximum power output density (P max ) of the PFC or the color change of PB. Meanwhile, the dual-signal-output makes the as-constructed self-powered sensor highly available in various operations demands with the enhanced reliability. With the advantages of high efficiency of PFCs, unique assay ability, and broad environmental suitability, the constructed self-powered platform shows broad application prospects as an integrated smart analytical device.
A piezoelectric ultrasonic linear micromotor using a slotted stator.
Yun, Cheol-Ho; Watson, Brett; Friend, James; Yeo, Leslie
2010-08-01
A novel ultrasonic micro linear motor that uses 1st longitudinal and 2nd bending modes, derived from a bartype stator with a rectangular slot cut through the stator length, has been proposed and designed for end-effect devices of microrobotics and bio-medical applications. The slot structure plays an important role in the motor design, and can be used not only to tune the resonance frequency of the two vibration modes but also to reduce the undesirable longitudinal coupling displacement caused by bending vibration at the end of the stator. By using finite element analysis, the optimal slot dimension to improve the driving tip motion was determined, resulting in the improvement of the motor performance. The trial linear motor, with a weight of 1.6 g, gave a maximum driving velocity of 1.12 m/s and a maximum driving force of 3.4 N. A maximum mechanical output power of 1.1 W was obtained at force of 1.63 N and velocity of 0.68 m/s. The output mechanical power per unit weight was 688 W/kg.
NASA Astrophysics Data System (ADS)
Jeong, K.; Jeong, H.; Ji, M.; Kim, J.; Park, J.; Chung, H.
2015-09-01
With the increase in the size and speed of recently built vessels, the output and speed (rpm) of propulsion or generation engines have continuously increased, and the high-output, highspeed engine has become a major cause of excessive vessel noise and vibration. Accordingly, resonance occurs in the equipment and other outfitting equipment installed in a vessel, and thus, periodic requests for correction are received from ship owners or officers. In this study, to resolve this problem, supports that stably fix the outfitting equipment installed in the engine room of a very large crude oil tanker and provide protection from physical or external shock were classified into seven types for three kinds of widely used standard shapes, and an optimized shape was developed and suggested by analyzing the structural characteristics of the shapes of the supports (the maximum bending moment, maximum bending stress, and maximum deformation) using DNV NATICUS HULL 3D BEAM, a structural analysis program, so that it could be used for the outfitting design of a vessel.
2 µm high-power dissipative soliton resonance in a compact σ-shaped Tm-doped double-clad fiber laser
NASA Astrophysics Data System (ADS)
Du, Tuanjie; Li, Weiwei; Ruan, Qiujun; Wang, Kaijie; Chen, Nan; Luo, Zhengqian
2018-05-01
We report direct generation of a high-power, large-energy dissipative soliton resonance (DSR) in a 2 µm Tm-doped double-clad fiber laser. A compact σ-shaped cavity is formed by a fiber Bragg grating and a 10/90 fiber loop mirror (FLM). The 10/90 FLM is not only used as an output mirror, but also acts as a nonlinear optical loop mirror for initiating mode locking. The mode-locked laser can deliver high-power, nanosecond DSR pulses at 2005.9 nm. We further perform a comparison study of the effect of the FLM’s loop length on the mode-locking threshold, peak power, pulse energy, and optical spectrum of the DSR pulses. We achieve a maximum average output power as high as 1.4 W, a maximum pulse energy of 353 nJ, and a maximum peak power of 84 W. This is, to the best of our knowledge, the highest power for 2 µm DSR pulses obtained in a mode-locked fiber laser.
High-slope-efficiency 2.06 μm Ho: YLF laser in-band pumped by a fiber-coupled broadband diode.
Ji, Encai; Liu, Qiang; Nie, Mingming; Cao, Xuezhe; Fu, Xing; Gong, Mali
2016-03-15
We first demonstrate the laser performance of a compact 2.06 μm Ho: YLF laser resonantly pumped by a broadband fiber-coupled diode. In continuous-wave (CW) operation, maximum output power of 1.63 W, corresponding to a slope efficiency of 89.2%, was obtained with a near diffraction-limited beam quality. In actively Q-switched operation, maximum pulse energy of 1.1 mJ was achieved at the repetition frequency of 100 Hz. The minimum pulse duration was 43 ns. The performance in both the CW and Q-switched regimes indicates that the current fiber-coupled diode in-band pumped Ho: YLF laser has great potential in certain conditions that require several watts of output power or several millijoules of short pulse energy.
Tidal Turbine Array Optimization Based on the Discrete Particle Swarm Algorithm
NASA Astrophysics Data System (ADS)
Wu, Guo-wei; Wu, He; Wang, Xiao-yong; Zhou, Qing-wei; Liu, Xiao-man
2018-06-01
In consideration of the resource wasted by unreasonable layout scheme of tidal current turbines, which would influence the ratio of cost and power output, particle swarm optimization algorithm is introduced and improved in the paper. In order to solve the problem of optimal array of tidal turbines, the discrete particle swarm optimization (DPSO) algorithm has been performed by re-defining the updating strategies of particles' velocity and position. This paper analyzes the optimization problem of micrositing of tidal current turbines by adjusting each turbine's position, where the maximum value of total electric power is obtained at the maximum speed in the flood tide and ebb tide. Firstly, the best installed turbine number is generated by maximizing the output energy in the given tidal farm by the Farm/Flux and empirical method. Secondly, considering the wake effect, the reasonable distance between turbines, and the tidal velocities influencing factors in the tidal farm, Jensen wake model and elliptic distribution model are selected for the turbines' total generating capacity calculation at the maximum speed in the flood tide and ebb tide. Finally, the total generating capacity, regarded as objective function, is calculated in the final simulation, thus the DPSO could guide the individuals to the feasible area and optimal position. The results have been concluded that the optimization algorithm, which increased 6.19% more recourse output than experience method, can be thought as a good tool for engineering design of tidal energy demonstration.
He, Xianming; Guo, Hengyu; Yue, Xule; Gao, Jun; Xi, Yi; Hu, Chenguo
2015-02-07
Nanogenerators with capacitor structures based on piezoelectricity, pyroelectricity, triboelectricity and electrostatic induction have been extensively investigated. Although the electron flow on electrodes is well understood, the maximum efficiency-dependent structure design is not clearly known. In this paper, a clear understanding of triboelectric generators with capacitor structures is presented by the investigation of polydimethylsiloxane-based composite film nanogenerators, indicating that the generator, in fact, acts as both an energy storage and output device. Maximum energy storage and output depend on the maximum charge density on the dielectric polymer surface, which is determined by the capacitance of the device. The effective thickness of polydimethylsiloxane can be greatly reduced by mixing a suitable amount of conductive nanoparticles into the polymer, through which the charge density on the polymer surface can be greatly increased. This finding can be applied to all the triboelectric nanogenerators with capacitor structures, and it provides an important guide to the structural design for nanogenerators. It is demonstrated that graphite particles with sizes of 20-40 nm and 3.0% mass mixed into the polydimethylsiloxane can reduce 34.68% of the effective thickness of the dielectric film and increase the surface charges by 111.27% on the dielectric film. The output power density of the triboelectric nanogenerator with the composite polydimethylsiloxane film is 3.7 W m(-2), which is 2.6 times as much as that of the pure polydimethylsiloxane film.
Hirschowitz, B I; Molina, E
1983-05-01
To quantitate bombesin stimulation of gastric acid and pepsin via release of gastrin, five gastric fistula dogs were given graded doses (60-1,250 pmol X kg-1 X h-1) of bombesin tetradecapeptide and 40-2,000 pmol X kg-1 X h-1 of synthetic gastrin-17 (G-17). Acid and pepsin output and serum gastrin were proportional to the dose of stimulant. The half-maximal dose of bombesin for gastrin release was 200 pmol X kg-1 X h-1. Bombesin-stimulated acid secretion related to serum gastrin concentrations was congruent with the G-17 curve, but with a maximum of only 62% of the G-17 maximum before declining by 27% despite higher serum gastrin levels. This suggested that bombesin stimulates acid secretion only via gastrin release and inhibits at higher doses by releasing another inhibitory peptide, most likely somatostatin, which is also released by bombesin. The same mechanism could apply to supramaximal inhibition of acid and pepsin seen with high doses of G-17. Because the pepsin curve related to serum gastrin was to the left of the G-17 curve, we concluded that another secretagogue released by bombesin acts synergistically with gastrin on pepsin secretion. Therefore, bombesin stimulates gastric secretion through gastrin release, but its effects are modified by peptides coreleased to a) increase pepsin output at low doses and b) limit the output of acid and pepsin to 50-60% of the G-17 maximum.
Output power distributions of terminals in a 3G mobile communication network.
Persson, Tomas; Törnevik, Christer; Larsson, Lars-Eric; Lovén, Jan
2012-05-01
The objective of this study was to examine the distribution of the output power of mobile phones and other terminals connected to a 3G network in Sweden. It is well known that 3G terminals can operate with very low output power, particularly for voice calls. Measurements of terminal output power were conducted in the Swedish TeliaSonera 3G network in November 2008 by recording network statistics. In the analysis, discrimination was made between rural, suburban, urban, and dedicated indoor networks. In addition, information about terminal output power was possible to collect separately for voice and data traffic. Information from six different Radio Network Controllers (RNCs) was collected during at least 1 week. In total, more than 800000 h of voice calls were collected and in addition to that a substantial amount of data traffic. The average terminal output power for 3G voice calls was below 1 mW for any environment including rural, urban, and dedicated indoor networks. This is <1% of the maximum available output power. For data applications the average output power was about 6-8 dB higher than for voice calls. For rural areas the output power was about 2 dB higher, on average, than in urban areas. Copyright © 2011 Wiley Periodicals, Inc.
Designing a ticket to ride with the Cognitive Work Analysis Design Toolkit.
Read, Gemma J M; Salmon, Paul M; Lenné, Michael G; Jenkins, Daniel P
2015-01-01
Cognitive work analysis has been applied in the design of numerous sociotechnical systems. The process used to translate analysis outputs into design concepts, however, is not always clear. Moreover, structured processes for translating the outputs of ergonomics methods into concrete designs are lacking. This paper introduces the Cognitive Work Analysis Design Toolkit (CWA-DT), a design approach which has been developed specifically to provide a structured means of incorporating cognitive work analysis outputs in design using design principles and values derived from sociotechnical systems theory. This paper outlines the CWA-DT and describes its application in a public transport ticketing design case study. Qualitative and quantitative evaluations of the process provide promising early evidence that the toolkit fulfils the evaluation criteria identified for its success, with opportunities for improvement also highlighted. The Cognitive Work Analysis Design Toolkit has been developed to provide ergonomics practitioners with a structured approach for translating the outputs of cognitive work analysis into design solutions. This paper demonstrates an application of the toolkit and provides evaluation findings.
Development of the output monitor with single-chip microcomputer in a time-keeping system.
NASA Astrophysics Data System (ADS)
Zhou, Jiguang; Gong, Yuanfang
An output monitor has been designed with Intel 8031 single-chip microcomputer for a time working station. The functions of the instrument include the comparable measurement of the clocks, the buffer output of time and frequency signals, the monitoring and alarming of working state etc. The principle and application of the instrument are described.
Constant-current regulator improves tunnel diode threshold-detector performance
NASA Technical Reports Server (NTRS)
Cancro, C. A.
1965-01-01
Grounded-base transistor is placed in a tunnel diode threshold detector circuit, and a bias voltage is applied to the tunnel diode. This provides the threshold detector with maximum voltage output and overload protection.
NASA Astrophysics Data System (ADS)
Zhang, Shubin; Zhang, Yufeng; Chen, Junyu; Yin, Congwen; Liu, Xiaowei
2018-06-01
In this paper, an integrated reformed methanol fuel cell (RMFC) as a portable power source is designed, fabricated and tested. The RMFC consists of a methanol steam reformer (MSR), a high temperature proton exchange membrane fuel cell (HT-PEMFC) stack, a microcontroller unit (MCU) and other auxiliaries. First, a system model based on Matlab/Simulink is established to investigate the mass and energy transport characteristics within the whole system. The simulation results suggest a hydrogen flow rate of at least 670 sccm is needed for the system to output 30 W and simultaneously maintain thermal equilibrium. Second, a metallic MSR and an HT-PEMFC stack with 12 cells are fabricated and tested. The tests show that the RMFC system is able to function normally when the performances of all the components meet the minimum requirements. At last, in the experiment of successfully powering a laptop, the RMFC system exhibits a stable performance during the complete work flow of all the phases, namely start-up, output and shutdown. Moreover, with a conservative design of 20 W power rating, maximum energy conversion efficiency of the RMFC system can be achieved (36%), and good stability in long-term operation is shown.
Standing wave brass-PZT square tubular ultrasonic motor.
Park, Soonho; He, Siyuan
2012-09-01
This paper reports a standing wave brass-PZT tubular ultrasonic motor. The motor is composed of a brass square tube with two teeth on each tube end. Four PZT plates are attached to the outside walls of the brass tube. The motor requires only one driving signal to excite vibration in a single bending mode to generate reciprocating diagonal trajectories of teeth on the brass tube ends, which drive the motor to rotate. Bi-directional rotation is achieved by exciting different pairs of PZT plates to switch the bending vibration direction. Through using the brass-PZT tube structure, the motor can take high magnitude vibration to achieve a high output power in comparison to PZT tube based ultrasonic motors. Prototypes are fabricated and tested. The dimension of the brass-PZT tube is 3.975mm×3.975mm×16mm. Measured performance is a no-load speed of >1000RPM, a stall torque of 370μNm and a maximum output power of 16 mW when a sinusoidal driving voltage of 50V is applied. The working frequencies of the motor are 46,050Hz (clockwise) and 46,200Hz (counter-clockwise). Copyright © 2012. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Bin, Che; Ruoying, Yu; Dongsheng, Dang; Xiangyan, Wang
2017-05-01
Distributed Generation (DG) integrating to the network would cause the harmonic pollution which would cause damages on electrical devices and affect the normal operation of power system. On the other hand, due to the randomness of the wind and solar irradiation, the output of DG is random, too, which leads to an uncertainty of the harmonic generated by the DG. Thus, probabilistic methods are needed to analyse the impacts of the DG integration. In this work we studied the harmonic voltage probabilistic distribution and the harmonic distortion in distributed network after the distributed photovoltaic (DPV) system integrating in different weather conditions, mainly the sunny day, cloudy day, rainy day and the snowy day. The probabilistic distribution function of the DPV output power in different typical weather conditions could be acquired via the parameter identification method of maximum likelihood estimation. The Monte-Carlo simulation method was adopted to calculate the probabilistic distribution of harmonic voltage content at different frequency orders as well as the harmonic distortion (THD) in typical weather conditions. The case study was based on the IEEE33 system and the results of harmonic voltage content probabilistic distribution as well as THD in typical weather conditions were compared.
Hibi, N; Fujinaga, H; Ishii, K
1996-01-01
Work and power outputs during short-term, maximal exertion on a friction loaded cycle ergometer are usually calculated from the friction force applied to the flywheel. The inertia of the flywheel is sometimes taken into consideration, but the effects of internal resistances and other factors have been ignored. The purpose of this study was to estimate their effects by comparing work or power output determined from the force exerted on the pedals (pedalling force) with work or power output determined from the friction force and the moment of inertia of the rotational parts. A group of 22 male college students accelerated a cycle ergometer as rapidly as possible for 3 s. The total work output determined from the pedalling force (TWp) was significantly greater than that calculated from the friction force and the moment of inertia (TWf). Power output determined from the pedalling force during each pedal stroke (SPp) was also significantly greater than that calculated from the friction force and the moment of inertia. Percentage difference (% diff), defined by % diff = ¿(TWp - TWf)/TWf¿ x 100, ranged from 16.8% to 49.3% with a mean value of 30.8 (SD 9.1)%. It was observed that % diff values were higher in subjects with greater TWp or greater maximal SPp. These results would indicate that internal resistances and other factors, such as the deformation of the chain and the vibrations of the entire system, may have significant effects on the measurements of work and power outputs. The effects appear to depend on the magnitudes of pedalling force and pedal velocity.
Development Status of a Power Processing Unit for Low Power Ion Thrusters
NASA Technical Reports Server (NTRS)
Pinero, Luis R.; Bowers, Glen E.; Lafontaine, Eric M.
2000-01-01
An advanced breadboard Power Processing Unit (PPU) for a low power ion propulsion system incorporating mass reduction techniques was designed and fabricated. As a result of similar output current requirements, the discharge supply was also used to provide the neutralizer heater and discharge heater functions by using three relays to switch the output connections. This multi-function supply reduces to four the number of power converters needed to produce the required six electrical outputs. Switching frequencies of 20 and 50 kHz were chosen as a compromise between the size of the magnetic components and switching losses. The advanced breadboard PPU is capable of a maximum total output power of 0.47 kW. Its component mass is 0.65 kg and its total mass 1.9 kg. The total efficiency at full power is 0.89.
980-nm, 15-W cw laser diodes on F-mount-type heat sinks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezotosnyi, V V; Krokhin, O N; Oleshchenko, V A
2015-12-31
We have studied the key optical emission parameters of laser diodes (emission wavelength, 980 nm; stripe contact width, 95 μm) mounted directly on F- and C-mount-type copper heat sinks, without intermediate elements (submounts). When effectively cooled by a thermoelectric microcooler, the lasers on the F-mount operated stably at output powers up to 20 W. The lasers were tested for reliable operation at an output power of 15 W for 100 h, and no decrease in output power was detected to within measurement accuracy. The experimentally determined maximum total efficiency is 71.7% and the efficiency at a nominal output power ofmore » 15 W is 61%. We compare parameters of the laser diodes mounted on C- and F-mounts and discuss the advantages of the F-mounts. (lasers)« less
Ramanath, Seemanti; Wang, Qian; Bernstein, Sanford I.; Swank, Douglas M.
2011-01-01
Structural interactions between the myosin converter and relay domains have been proposed to be critical for the myosin power stroke and muscle power generation. We tested this hypothesis by mutating converter residue 759, which interacts with relay residues I508, N509, and D511, to glutamate (R759E) and determined the effect on Drosophila indirect flight muscle mechanical performance. Work loop analysis of mutant R759E indirect flight muscle fibers revealed a 58% and 31% reduction in maximum power generation (PWL) and the frequency at which maximum power (fWL) is generated, respectively, compared to control fibers at 15°C. Small amplitude sinusoidal analysis revealed a 30%, 36%, and 32% reduction in mutant elastic modulus, viscous modulus, and mechanical rate constant 2πb, respectively. From these results, we infer that the mutation reduces rates of transitions through work-producing cross-bridge states and/or force generation during strongly bound states. The reductions in muscle power output, stiffness, and kinetics were physiologically relevant, as mutant wing beat frequency and flight index decreased about 10% and 45% compared to control flies at both 15°C and 25°C. Thus, interactions between the relay loop and converter domain are critical for lever-arm and catalytic domain coordination, high muscle power generation, and optimal Drosophila flight performance. PMID:21889448
1981-09-01
power supplies of the transponder to pro - vide a maximum 23.5 dBW power output. Tables 3-5 and 3-6 present the cost development for this configuration...configurations studied the cavity oscillator tube provides the necessary output characteristics for proper operation of the DABS transponder. Power supplies ...however, are affected by each configuration. The power supply was designed to provide 141 watts peak power at the antenna and sufficient capacity in
Divvy Economies Based On (An Abstract) Temperature
NASA Astrophysics Data System (ADS)
Collins, Dennis G.
2004-04-01
The Leontief Input-Output economic system can provide a model for a one-parameter family of economic systems based on an abstract temperature T. In particular, given a normalized input-output matrix R and taking R= R(1), a family of economic systems R(1/T)=R(α) is developed that represents heating (T>1) and cooling (T<1) of the economy relative to T=1. .The economy for a given value of T represents the solution of a constrained maximum entropy problem.
Diode-end-pumped solid-state lasers with dual gain media for multi-wavelength emission
NASA Astrophysics Data System (ADS)
Cho, C. Y.; Chang, C. C.; Chen, Y. F.
2015-01-01
We develop a theoretical model for designing a compact efficient multi-wavelength laser with dual gain media in a shared resonator. The developed model can be used to analyze the optimal output reflectivity for each wavelength to achieve maximum output power for multi-wavelength emission. We further demonstrate a dual-wavelength laser at 946 nm and 1064 nm with Nd:YAG and Nd:YVO4 crystals to confirm the numerical analysis. Under optimum conditions and at incident pump power of 17 W, output power at 946 nm and 1064 nm was up to 2.51 W and 2.81 W, respectively.
High power single mode 980 nm AlGaInAs/AlGaAs quantum well lasers with a very low threshold current
NASA Astrophysics Data System (ADS)
Zhen, Dong; Cuiluan, Wang; Hongqi, Jing; Suping, Liu; Xiaoyu, Ma
2013-11-01
To achieve low threshold current as well as high single mode output power, a graded index separate confinement heterostructure (GRIN-SCH) AlGaInAs/AlGaAs quantum well laser with an optimized ridge waveguide was fabricated. The threshold current was reduced to 8 mA. An output power of 76 mW was achieved at 100 mA current at room temperature, with a slope efficiency of 0.83 W/A and a horizon divergent angle of 6.3°. The maximum single mode output power of the device reached as high as 450 mW.
Senoo, Y; Nishizawa, N; Sakakibara, Y; Sumimura, K; Itoga, E; Kataura, H; Itoh, K
2009-10-26
A high-energy, wavelength-tunable, all-polarization-maintaining Er-doped ultrashort fiber laser was demonstrated using a polyimide film dispersed with single-wall carbon nanotubes. A variable output coupler and wavelength filter were used in the cavity configuration, and high-power operation was demonstrated. The maximum average power was 12.6 mW and pulse energy was 585 pJ for stable single-pulse operation with an output coupling ratio as high as 98.3%. Wide wavelength-tunable operation at 1532-1562 nm was also demonstrated by controlling the wavelength filter. The RF amplitude noise characteristics were examined in terms of their dependence on output coupling ratio and oscillation wavelength.
Squeezed light in an optical parametric oscillator network with coherent feedback quantum control.
Crisafulli, Orion; Tezak, Nikolas; Soh, Daniel B S; Armen, Michael A; Mabuchi, Hideo
2013-07-29
We present squeezing and anti-squeezing spectra of the output from a degenerate optical parametric oscillator (OPO) network arranged in different coherent quantum feedback configurations. One OPO serves as a quantum plant, the other as a quantum controller. The addition of coherent feedback enables shaping of the output squeezing spectrum of the plant, and is found to be capable of pushing the frequency of maximum squeezing away from the optical driving frequency and broadening the spectrum over a wider frequency band. The experimental results are in excellent agreement with the developed theory, and illustrate the use of coherent quantum feedback to engineer the quantum-optical properties of the plant OPO output.
Cascaded a-cut Nd:YVO4 self-Raman with second-Stokes laser at 1313 nm
NASA Astrophysics Data System (ADS)
Xie, Zhi; Duan, Yanmin; Guo, Junhong; Huang, Xiaohong; Yan, Lifen; Zhu, Haiyong
2017-11-01
A diode-end-pumped, acousto-optic Q-switched second-Stokes self-Raman laser at 1313 nm was demonstrated in a common a-cut Nd:YVO4 crystal, with the primary Raman shift of 890 cm-1. At the incident pump power of 17.1 W, the maximum average output power up to 2.51 W and pulse width of 5 ns for second-Stokes were obtained with the pulse repetition frequency of 50 kHz. The slope efficiency and conversion efficiency with respect to the incident pump power are about 23.7% and 14.7%. The efficient output should be attributed to suitable transmittance of the output coupler used.
Modeling and simulation research on electromagnetic and energy-recycled damper based on Adams
NASA Astrophysics Data System (ADS)
Zhou, C. F.; Zhang, K.; Zhang, Pengfei
2018-05-01
In order to study the voltage and power output characteristics of the electromagnetic and energy-recycled damper which consists of gear, rack and generator, the Adams model of this damper and the Simulink model of generator are established, and the co-simulation is accomplished with these two models. The output indexes such as the gear speed and power of generator are obtained by the simulation, and the simulation results demonstrate that the voltage peak of the damper is 25 V; the maximum output power of the damper is 8 W. The above research provides a basis for the prototype development of electromagnetic and energy-recycled damper with gear and rack.
Fitzgerald, Lisa A; Petersen, Emily R; Leary, Dagmar H; Nadeau, Lloyd J; Soto, Carissa M; Ray, Richard I; Little, Brenda J; Ringeisen, Bradley R; Johnson, Glenn R; Vora, Gary J; Biffinger, Justin C
2013-02-15
The genes involved in the proposed pathway for Shewanella extracellular electron transfer (EET) are highly conserved. While extensive studies involving EET from a fresh water Shewanella microbe (S. oneidensis MR-1) to soluble and insoluble electron acceptors have been published, only a few reports have examined EET from marine strains of Shewanella. Thus, Shewanella frigidimarina (an isolate from Antarctic Sea ice) was used within miniature microbial fuel cells (mini-MFC) to evaluate potential power output. During the course of this study several distinct differences were observed between S. oneidensis MR-1 and S. frigidimarina under comparable conditions. The maximum power density with S. frigidimarina was observed when the anolyte was half-strength marine broth (1/2 MB) (0.28 μW/cm(2)) compared to Luria-Bertani (LB) (0.07 μW/cm(2)) or a defined growth minimal medium (MM) (0.02 μW/cm(2)). The systematic modification of S. frigidimarina cultured in 1/2 MB and LB with divalent cations shows that a maximum current output can be generated independent of internal ionic ohmic losses and the presence of external mediators. Published by Elsevier B.V.
Beh, K J
1979-01-01
The output of antibody-containing cells (ACC) was monitored in efferent ileal lymph after continuous infusion of ovalbumin into the ileum of sheep with and without the adjuvant DEAE-dextran. When ovalbumin was infused at the slow rate of 5 ml/h, maximum outputs of 2.9 x 10(5) and 2.4 x 10(5 ACC/h were observed on days 9 and 16 respectively. When infused at the faster rate of 15 ml/h, peak levels of 6.9 x 10(5) and 11.7 x 10(5) ACC/h were recorded on days 10 and 16 respectively. The maximum response was substantially enhanced when ovalbumin was infused simultaneously with DEAE-dextran when a mean output of 51.7 x 10(5) ACC/h occurred on day 10. With all treatments the distribution of ACC amongst various immunoglobulin classes was similar. During the first few days of the response IgM-specific ACC predominated and later IgG1-specific ACC were most abundant. Throughout the response a substantial proportion (10-81%) of ACC in efferent ileal lymph were IgA-specific. PMID:572818
Numerical analysis of 2.7 μm lasing in Er3+-doped tellurite fiber lasers
Wang, Weichao; Li, Lixiu; Chen, Dongdan; Zhang, Qinyuan
2016-01-01
The laser performance of Er3+-doped tellurite fiber lasers operating at 2.7 μm due to 4I11/2 → 4I13/2 transition has been theoretically studied by using rate equations and propagation equations. The effects of pumping configuration and fiber length on the output power, slope efficiency, threshold, and intracavity pump and laser power distributions have been systematically investigated to optimize the performance of fiber lasers. When the pump power is 20 W, the maximum slope efficiency (27.62%), maximum output power (5.219 W), and minimum threshold (278.90 mW) are predicted with different fiber lengths (0.05–5 m) under three pumping configurations. It is also found that reasonable output power is expected for fiber loss below 2 dB/ m. The numerical modeling on the two- and three-dimensional laser field distributions are further analyzed to reveal the characteristics of this multimode step-index tellurite fiber. Preliminary simulation results show that this Er3+-doped tellurite fiber is an excellent alternative to conventional fluoride fiber for developing efficient 2.7 μm fiber lasers. PMID:27545663
Comparative study of high power Tm:YLF and Tm:LLF slab lasers in continuous wave regime.
Berrou, Antoine; Collett, Oliver J P; Morris, Daniel; Esser, M J Daniel
2018-04-16
We report on Tm:YLF and Tm:LLF slab lasers (1.5 x 11 x 20 mm 3 ) end pumped from one end with a high-brightness 792 nm laser diode stack. These two lasers are compared under identical pump conditions in continuous-wave regime. A stronger negative thermal lens in Tm:LLF than in Tm:YLF is highlighted, making it more difficult to operate the Tm:LLF laser under stable lasing conditions. In a configuration where the high reflectivity cavity mirror has a radius of curvature of r = 150 mm, the Tm:YLF (Tm:LLF) laser produces a maximum output power of 150 W (143 W) for 428 W of incident pump power (respectively). For a second cavity configuration where the high reflectivity cavity mirror has a radius of curvature of r = 500 mm, the Tm:YLF laser produces a maximum output power of 164 W for 412 W of incident pump power and a 57% slope efficiency with respect to the absorbed pump power. The emitted wavelength of these two lasers are measured as a function of the output coupler reflectivity and it shows that Tm:LLF laser emits at a longer wavelength than Tm:YLF.
NASA Astrophysics Data System (ADS)
Chang, Chun; Huang, Benxiong; Xu, Zhengguang; Li, Bin; Zhao, Nan
2018-02-01
Three soft-input-soft-output (SISO) detection methods for dual-polarized quadrature duobinary (DP-QDB), including maximum-logarithmic-maximum-a-posteriori-probability-algorithm (Max-log-MAP)-based detection, soft-output-Viterbi-algorithm (SOVA)-based detection, and a proposed SISO detection, which can all be combined with SISO decoding, are presented. The three detection methods are investigated at 128 Gb/s in five-channel wavelength-division-multiplexing uncoded and low-density-parity-check (LDPC) coded DP-QDB systems by simulations. Max-log-MAP-based detection needs the returning-to-initial-states (RTIS) process despite having the best performance. When the LDPC code with a code rate of 0.83 is used, the detecting-and-decoding scheme with the SISO detection does not need RTIS and has better bit error rate (BER) performance than the scheme with SOVA-based detection. The former can reduce the optical signal-to-noise ratio (OSNR) requirement (at BER=10-5) by 2.56 dB relative to the latter. The application of the SISO iterative detection in LDPC-coded DP-QDB systems makes a good trade-off between requirements on transmission efficiency, OSNR requirement, and transmission distance, compared with the other two SISO methods.
40 CFR 1065.210 - Work input and output sensors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... may decide to measure the tractive (i.e., electrical output) power of a locomotive, rather than the brake power of the locomotive engine. In these cases, divide the electrical work by accurate values of... boundary, use good engineering judgment to estimate any work-conversion losses in a way that avoids...
40 CFR 1065.210 - Work input and output sensors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... may decide to measure the tractive (i.e., electrical output) power of a locomotive, rather than the brake power of the locomotive engine. In these cases, divide the electrical work by accurate values of... boundary, use good engineering judgment to estimate any work-conversion losses in a way that avoids...
Canadian crop calendars in support of the early warning project
NASA Technical Reports Server (NTRS)
Trenchard, M. H.; Hodges, T. (Principal Investigator)
1980-01-01
The Canadian crop calendars for LACIE are presented. Long term monthly averages of daily maximum and daily minimum temperatures for subregions of provinces were used to simulate normal daily maximum and minimum temperatures. The Robertson (1968) spring wheat and Williams (1974) spring barley phenology models were run using the simulated daily temperatures and daylengths for appropriate latitudes. Simulated daily temperatures and phenology model outputs for spring wheat and spring barley are given.
Heller, Christian Maria
2004-04-27
An organic electroluminescent device ("OELD") has a controllable brightness, an improved energy efficiency, and stable optical output at low brightness. The OELD is activated with a series of voltage pulses, each of which has a maximum voltage value that corresponds to the maximum power efficiency when the OELD is activated. The frequency of the pulses, or the duty cycle, or both are chosen to provide the desired average brightness.
Resonantly pumped high efficiency Ho:YAG laser.
Shen, Ying-Jie; Yao, Bao-Quan; Duan, Xiao-Ming; Dai, Tong-Yu; Ju, You-Lun; Wang, Yue-Zhu
2012-11-20
High-efficient CW and Q-switched Ho:YAG lasers resonantly dual-end-pumped by two diode-pumped Tm:YLF lasers at 1908 nm were investigated. A maximum slope efficiency of 74.8% in CW operation as well as a maximum output power of 58.7 W at 83.2 W incident pump power was achieved, which corresponded to an optical-to-optical conversion efficiency of 70.6%. The maximum pulse energy of 2.94 mJ was achieved, with a 31 ns FWHM pulse width and a peak power of approximately 94.7 kW.
Widman, Lana M; McDonald, Craig M; Abresch, R. Ted
2006-01-01
Background/Objective: To determine whether a new upper extremity exercise device integrated with a video game (GameCycle) requires sufficient metabolic demand and effort to induce an aerobic training effect and to explore the feasibility of using this system as an exercise modality in an exercise intervention. Design: Pre-post intervention. Setting: University-based research facility. Subject Population: A referred sample of 8 adolescent subjects with spina bifida (4 girls, 15.5 ± 0.6 years; 4 boys, 17.5 ± 0.9 years) was recruited to participate in the project. All subjects had some level of mobility impairment that did not allow them to participate in mainstream sports available to their nondisabled peers. Five subjects used a wheelchair full time, one used a wheelchair occasionally, but walked with forearm crutches, and 2 were fully ambulatory, but had impaired gait. Main Outcome Measures: Peak oxygen uptake, maximum work output, aerobic endurance, peak heart rate, rating of perceived exertion, and user satisfaction. Results: Six of the 8 subjects were able to reach a Vo2 of at least 50% of their Vo2 reserve while using the GameCycle. Seven of the 8 subjects reached a heart rate of at least 50% of their heart rate reserve. One subject did not reach either 50% of Vo2 reserve or 50% of heart rate reserve. Seven of the 8 subjects increased their maximum work capability after training with the GameCycle at least 3 times per week for 16 weeks. Conclusions: The data suggest that the GameCycle seems to be adequate as an exercise device to improve oxygen uptake and maximum work capability in adolescents with lower extremity disability caused by spinal cord dysfunction. The subjects in this study reported that the video game component was enjoyable and provided a motivation to exercise. PMID:17044386
An optimal tuning strategy for tidal turbines
2016-01-01
Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This ‘impatient-tuning strategy’ results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing ‘patient-tuning strategy’ which maximizes the power output averaged over the tidal cycle. This paper presents a ‘smart patient tuning strategy’, which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine’s average power output. PMID:27956870
An optimal tuning strategy for tidal turbines
NASA Astrophysics Data System (ADS)
Vennell, Ross
2016-11-01
Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This `impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing `patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a `smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.
An optimal tuning strategy for tidal turbines.
Vennell, Ross
2016-11-01
Tuning wind and tidal turbines is critical to maximizing their power output. Adopting a wind turbine tuning strategy of maximizing the output at any given time is shown to be an extremely poor strategy for large arrays of tidal turbines in channels. This 'impatient-tuning strategy' results in far lower power output, much higher structural loads and greater environmental impacts due to flow reduction than an existing 'patient-tuning strategy' which maximizes the power output averaged over the tidal cycle. This paper presents a 'smart patient tuning strategy', which can increase array output by up to 35% over the existing strategy. This smart strategy forgoes some power generation early in the half tidal cycle in order to allow stronger flows to develop later in the cycle. It extracts enough power from these stronger flows to produce more power from the cycle as a whole than the existing strategy. Surprisingly, the smart strategy can often extract more power without increasing maximum structural loads on the turbines, while also maintaining stronger flows along the channel. This paper also shows that, counterintuitively, for some tuning strategies imposing a cap on turbine power output to limit loads can increase a turbine's average power output.
Skylab experiment M-171 'Metabolic Activity' - Results of the first manned mission
NASA Technical Reports Server (NTRS)
Michel, E. L.; Rummel, J. A.; Sawin, C. F.
1975-01-01
The experiment was performed to ascertain whether man's ability to perform mechanical work would be altered as a result of exposure to the weightless environment. Skylab II crewmen were exercised on a bicycle ergometer at loads approximating 25%, 50%, and 75% of their maximum oxygen uptake while their physiological responses were monitored. The results of these tests indicate that the crewmen had no significant decrement in their response to exercise during their exposure to zero gravity. Immediately postflight, however, all crewmen demonstrated an inability to perform the programmed exercise with the same metabolic effectiveness as they did both preflight and inflight. The most significant changes were elevated heart rates for the same work load and oxygen consumption (decreased oxygen pulse), decreased stroke volume, and decreased cardiac output at the same oxygen consumption level. It is apparent that the changes occurred inflight, but did not manifest themselves until the crewmen attempted to readapt to the 1-G environment.
Adaptive time-sequential binary sensing for high dynamic range imaging
NASA Astrophysics Data System (ADS)
Hu, Chenhui; Lu, Yue M.
2012-06-01
We present a novel image sensor for high dynamic range imaging. The sensor performs an adaptive one-bit quantization at each pixel, with the pixel output switched from 0 to 1 only if the number of photons reaching that pixel is greater than or equal to a quantization threshold. With an oracle knowledge of the incident light intensity, one can pick an optimal threshold (for that light intensity) and the corresponding Fisher information contained in the output sequence follows closely that of an ideal unquantized sensor over a wide range of intensity values. This observation suggests the potential gains one may achieve by adaptively updating the quantization thresholds. As the main contribution of this work, we propose a time-sequential threshold-updating rule that asymptotically approaches the performance of the oracle scheme. With every threshold mapped to a number of ordered states, the dynamics of the proposed scheme can be modeled as a parametric Markov chain. We show that the frequencies of different thresholds converge to a steady-state distribution that is concentrated around the optimal choice. Moreover, numerical experiments show that the theoretical performance measures (Fisher information and Craḿer-Rao bounds) can be achieved by a maximum likelihood estimator, which is guaranteed to find globally optimal solution due to the concavity of the log-likelihood functions. Compared with conventional image sensors and the strategy that utilizes a constant single-photon threshold considered in previous work, the proposed scheme attains orders of magnitude improvement in terms of sensor dynamic ranges.
NASA Astrophysics Data System (ADS)
Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.; Carlson, Rowland D.; Carroll, David L.
2014-05-01
By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4 μVK-1, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW per thermocouple at the maximum temperature difference of 50 K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.
NASA Technical Reports Server (NTRS)
Wilson, T. G.
1980-01-01
The development of 5 kW converters with 100 kHz switching frequencies, consisting of two submodules each capable of 2.5 kW of output power, is discussed. Two semiconductor advances allowed increased power levels. Field effect transistors with ratings of 11 A and 400 V were operated in parallel to provide a converter output power of approximately 2000 W. Secondly, bipolar power switching transistor was operated in conjunction with a turn-off snubber circuit to provide converter output power levels approaching 1000 W. The interrelationships between mass, switching frequency, and efficiency were investigated. Converters were constructed for operation at a maximum output power level of 200 W, and a comparison was made for operation under similar input/output conditions for conversion frequencies of 20 kilohertz and 100 kilohertz. The effects of nondissipative turn-off snubber circuitry were also examined. Finally, a computerized instrumentation system allowing the measurement of pertinent converter operating conditions as well as the recording of converter waveforms is described.
Effects of synthetic speech output in the learning of graphic symbols of varied iconicity.
Koul, Rajinder; Schlosser, Ralf
To examine the effects of additional auditory feedback from synthetic speech on the learning of high translucent symbols versus low translucent symbols. Two adults with little or no functional speech and severe intellectual disabilities served as participants. A single-subject ABACA/ACABA design was used to study the relative effects of two treatments: symbol training in the presence and absence of synthetic speech output. The results clearly indicated that the two treatments, rather than extraneous variables were responsible for gains in the symbol learning. Both participants learned either more low translucent symbols or reached their maximum learning of low translucent symbols in the speech output condition. The results of this preliminary study replicate and extend the iconicity hypothesis to a new set of learning conditions involving speech output, and suggest that feedback from speech output may assist adults with profound intellectual disabilities in coding particularly those symbols whose association with their referent cannot be coded via their visual resemblance with the referent.
Endoreversible quantum heat engines in the linear response regime.
Wang, Honghui; He, Jizhou; Wang, Jianhui
2017-07-01
We analyze general models of quantum heat engines operating a cycle of two adiabatic and two isothermal processes. We use the quantum master equation for a system to describe heat transfer current during a thermodynamic process in contact with a heat reservoir, with no use of phenomenological thermal conduction. We apply the endoreversibility description to such engine models working in the linear response regime and derive expressions of the efficiency and the power. By analyzing the entropy production rate along a single cycle, we identify the thermodynamic flux and force that a linear relation connects. From maximizing the power output, we find that such heat engines satisfy the tight-coupling condition and the efficiency at maximum power agrees with the Curzon-Ahlborn efficiency known as the upper bound in the linear response regime.
NASA Astrophysics Data System (ADS)
Vorontsov, S. V.; Kuvshinov, M. I.; Narozhnyi, A. T.; Popov, V. A.; Solov'ev, V. P.; Yuferev, V. I.
2017-12-01
A reactor with a destructible core (RIR reactor) generating a pulse with an output of 1.5 × 1019 fissions and a full width at half maximum of 2.5 μs was developed and tested at VNIIEF. In the course of investigation, a computational-experimental method for laboratory calibration of the reactor was created and worked out. This method ensures a high accuracy of predicting the energy release in a real experiment with excess reactivity of 3βeff above prompt criticality. A transportable explosion-proof chamber was also developed, which ensures the safe localization of explosion products of the core of small-sized nuclear devices and charges of high explosives with equivalent mass of up to 100 kg of TNT.
A cryogenic multichannel electronically scanned pressure module
NASA Technical Reports Server (NTRS)
Shams, Qamar A.; Fox, Robert L.; Adcock, Edward E.; Kahng, Seun K.
1992-01-01
Consideration is given to a cryogenic multichannel electronically scanned pressure (ESP) module developed and tested over an extended temperature span from -184 to +50 C and a pressure range of 0 to 5 psig. The ESP module consists of 32 pressure sensor dice, four analog 8 differential-input multiplexers, and an amplifier circuit, all of which are packaged in a physical volume of 2 x 1 x 5/8 in with 32 pressure and two reference ports. Maximum nonrepeatability is measured at 0.21 percent of full-scale output. The ESP modules have performed consistently well over 15 times over the above temperature range and continue to work without any sign of degradation. These sensors are also immune to repeated thermal shock tests over a temperature change of 220 C/sec.
NASA Astrophysics Data System (ADS)
Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo
2018-02-01
In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al2O3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.
A diode-pumped Tm:CaYAlO4 laser at 1851 nm
NASA Astrophysics Data System (ADS)
Lan, Jinglong; Guan, Xiaofeng; Xu, Bin; Moncorgé, Richard; Xu, Huiying; Cai, Zhiping
2017-07-01
Laser emission at ~1850 nm is of great interest for neural stimulation applications. In this letter, we report on the diode-pumped continuous-wave (CW) and Q-switched (QS) laser operation of Tm:CaYAlO4 at 1851 nm, for the first time to our knowledge. In the CW regime, a maximum output power up to 0.62 W is obtained with a laser slope efficiency of about 18.0%. Using a Cr:ZnSe saturable absorber, QS laser operation is achieved with a maximum average output power of 0.25 W, the narrowest pulse width of 107 ns and the highest repetition rate of 5.85 kHz. The corresponding pulse peak power and pulse energy are about 388 W and 42.8 µJ, respectively. In this Q-switched mode, wavelength tuning is also realized over about 3 nm by slightly tilting the saturable absorber.
AlGaAs 55Fe X-ray radioisotope microbattery
Butera, S.; Whitaker, M. D. C.; Lioliou, G.; Barnett, A. M.
2016-01-01
This paper describes the performance of a fabricated prototype Al0.2Ga0.8As 55Fe radioisotope microbattery photovoltaic cells over the temperature range −20 °C to 50 °C. Two 400 μm diameter p+-i-n+ (3 μm i-layer) Al0.2Ga0.8As mesa photodiodes were used as conversion devices in a novel X-ray microbattery prototype. The changes of the key microbattery parameters were analysed in response to temperature: the open circuit voltage, the maximum output power and the internal conversion efficiency decreased when the temperature was increased. At −20 °C, an open circuit voltage and a maximum output power of 0.2 V and 0.04 pW, respectively, were measured per photodiode. The best internal conversion efficiency achieved for the fabricated prototype was only 0.95% at −20 °C. PMID:27922093
Comparison of P&O and INC Methods in Maximum Power Point Tracker for PV Systems
NASA Astrophysics Data System (ADS)
Chen, Hesheng; Cui, Yuanhui; Zhao, Yue; Wang, Zhisen
2018-03-01
In the context of renewable energy, the maximum power point tracker (MPPT) is often used to increase the solar power efficiency, taking into account the randomness and volatility of solar energy due to changes in temperature and photovoltaic. In all MPPT techniques, perturb & observe and incremental conductance are widely used in MPPT controllers, because of their simplicity and ease of operation. According to the internal structure of the photovoltaic cell and the output volt-ampere characteristic, this paper established the circuit model and establishes the dynamic simulation model in Matlab/Simulink with the preparation of the s function. The perturb & observe MPPT method and the incremental conductance MPPT method were analyzed and compared by the theoretical analysis and digital simulation. The simulation results have shown that the system with INC MPPT method has better dynamic performance and improves the output power of photovoltaic power generation.
Efficient laser-diode end-pumped Nd:GGG lasers at 1054 and 1067 nm.
Xu, Bin; Xu, Huiying; Cai, Zhiping; Camy, P; Doualan, J L; Moncorgé, R
2014-10-10
Efficient and compact laser-diode end-pumped Nd:GGG simultaneous multiwavelength continuous-wave lasers at ∼1059, ∼1060 and ∼1062 nm were first demonstrated in a free-running 30 mm plano-concave laser cavity. The maximum output power was up to 3.92 W with a slope efficiency of about 53.6% with respect to the absorbed pump power. By inserting a 0.1 mm optical glass plate acting as a Fabry-Pérot etalon, a single-wavelength laser at ∼1067 nm with a maximum output power of 1.95 W and a slope efficiency of 28.5% can be obtained. Multiwavelength lasers, including those at ∼1054 or ∼1067 nm, were also achievable by suitably tilting the glass etalon. These simultaneous multiwavelength lasers provide a potential source for terahertz wave generation.
16.7 W 885 nm diode-side-pumped actively Q-switched Nd:YAG/YVO4 intracavity Raman laser at 1176 nm
NASA Astrophysics Data System (ADS)
Jiang, Pengbo; Zhang, Guizhong; Liu, Jian; Ding, Xin; Sheng, Quan; Yu, Xuanyi; Sun, Bing; Shi, Rui; Wu, Liang; Wang, Rui; Yao, Jianquan
2017-11-01
We proposed and experimentally demonstrated the generation of high-power 1176 nm Stokes wave by frequency shifting of a 885 nm diode-side-pumped Nd:YAG laser using a YVO4 crystal in a Z-shaped cavity configuration. Employing the 885 nm diode-side-pumped scheme and the Z-shaped cavity, for the first time to our knowledge, we realized the thermal management effectively, achieving excellent 1176 nm Stokes wave consequently. With an incident pump power of ~190.0 W, a maximum average output power of 16.7 W was obtained at the pulse repetition frequency of 10 kHz. The pulse duration and spectrum linewidth of the Stokes wave at the maximum output power were 20.3 ns and ~0.08 nm, respectively.
NASA Astrophysics Data System (ADS)
Yaqoob, Usman; Chung, Gwiy-Sang
2017-09-01
This study investigates the effect of reduced graphene oxide (rGO) on the energy harvesting performance of poly(vinylidenefluoride-trifluoroethylene)-barium titanate (P(VDF-TrFE)-BTO) nanocomposite devices. Several piezoelectric nanogenerators with different rGO contents were prepared, among them PBR5-NG (rGO = 0.5%) exhibited maximum output performance. PBR5-NG showed a maximum open circuit voltage of 8.5 Vpk-pk and short circuit current of 2 μApk-pk at an applied force of 2 N. Moreover, PBR5-NG displayed an output power of 4.5 μW at 2 MΩ load resistance. To confirm device stability, the fabricated device was subjected to several pressing-releasing cycles. The device had excellent stability, even after 1000 pressing-releasing cycles. Together, our results indicate that our fabricated PBR5-NG is a promising energy source for future flexible electronics.
Temperature dependence of an AlInP 63Ni betavoltaic cell
NASA Astrophysics Data System (ADS)
Butera, S.; Lioliou, G.; Krysa, A. B.; Barnett, A. M.
2016-10-01
In this paper, the performance of an Al0.52In0.48P 63Ni radioisotope cell is reported over the temperature range of -20 °C to 140 °C. A 400 μm diameter p+-i-n+ (2 μm i-layer) Al0.52In0.48P mesa photodiode was used as a conversion device in a novel betavoltaic cell. Dark current measurements on the Al0.52In0.48P detector showed that the saturation current increased increasing the temperature, while the ideality factor decreased. The effects of the temperature on the key cell parameters were studied in detail showing that the open circuit voltage, the maximum output power, and the internal conversion efficiency decreased when the temperature was increased. At -20 °C, an open circuit voltage and a maximum output power of 0.52 V and 0.28 pW, respectively, were measured.
Fapetu, Segun; Keshavarz, Taj; Clements, Mark; Kyazze, Godfrey
2016-09-01
To investigate the contribution of direct electron transfer mechanisms to electricity production in microbial fuel cells by physically retaining Shewanella oneidensis cells close to or away from the anode electrode. A maximum power output of 114 ± 6 mWm(-2) was obtained when cells were retained close to the anode using a dialysis membrane. This was 3.5 times more than when the cells were separated away from the anode. Without the membrane the maximum power output was 129 ± 6 mWm(-2). The direct mechanisms of electron transfer contributed significantly to overall electron transfer from S. oneidensis to electrodes, a result that was corroborated by another experiment where S. oneidensis cells were entrapped in alginate gels. S. oneidensis transfers electrons primarily by direct electron transfer as opposed to mediated electron transfer.
408-fs SESAM mode locked Cr:ZnSe laser
NASA Astrophysics Data System (ADS)
Bu, Xiangbao; Shi, Yuhang; Xu, Jia; Li, Huijuan; Wang, Pu
2018-01-01
We report self-starting femtosecond operation of a 127-MHz SESAM mode locked Cr:ZnSe laser around 2420 nm. A thulium doped double clad fiber laser at 1908 nm was used as the pumping source. In the normal dispersion regime, stable pulse pairs with constant phase differences in the multipulse regime were observed. The maximum output power was 342 mW with respect to incident pump power of 4.8 W and the corresponding slope efficiency was 10.4%. By inserting a piece of sapphire plate, dispersion compensation was achieved and the intra-cavity dispersion was moved to the anomalous regime. A maximum output power of 403 mW was obtained and the corresponding slope efficiency was 12.2%. Pulse width was measured to be 408 fs by a collinear autocorrelator using two-photon absorption in an InGaAs photodiode. The laser spectrum in multipulse operation showed a clear periodic modulation.
Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter
NASA Astrophysics Data System (ADS)
Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.
2017-06-01
In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within ±0.2 nm.
Muscular outputs during dynamic bench press under stable versus unstable conditions.
Koshida, Sentaro; Urabe, Yukio; Miyashita, Koji; Iwai, Kanzunori; Kagimori, Aya
2008-09-01
Previous studies have suggested that resistance training exercise under unstable conditions decreases the isometric force output, yet little is known about its influence on muscular outputs during dynamic movement. The objective of this study was to investigate the effect of an unstable condition on power, force, and velocity outputs during the bench press. Twenty male collegiate athletes (mean age, 21.3 +/- 1.5 years; mean height, 167.7 +/- 7.7 cm; mean weight, 75.9 +/- 17.5 kg) participated in this study. Each subject attempted 3 sets of single bench presses with 50% of 1 repetition maximum (1RM) under a stable condition with a flat bench and an unstable condition with a Swiss ball. Acceleration data were obtained with an accelerometer attached to the center of a barbell shaft, and peak outputs of power, force, and velocity were computed. Although significant loss of the peak outputs was found under the unstable condition (p < 0.017), their reduction rates remained relatively low, approximately 6% for force and 10% for power and velocity outputs, compared with previous findings. Such small reduction rates of muscular outputs may not compromise the training effect. Prospective studies are necessary to confirm whether the resistance training under an unstable condition permits the improvement of dynamic performance and trunk stability.
NASA Astrophysics Data System (ADS)
Azhari, Budi; Prawinnetou, Wassy; Hutama, Dewangga Adhyaksa
2017-03-01
Indonesia has several potential ocean energies to utilize. One of them is tidal wave energy, which the potential is about 49 GW. To convert the tidal wave energy to electricity, linear permanent magnet generator (LPMG) is considered as the best appliance. In this paper, a pico-scale tidal wave power converter was designed using quasi-flat LPMG. The generator was meant to be applied in southern coast of Yogyakarta, Indonesia and was expected to generate 1 kW output. First, a quasi-flat LPMG was designed based on the expected output power and the wave characteristic at the placement site. The design was then simulated using finite element software of FEMM. Finally, the output values were calculated and the output characteristics were analyzed. The results showed that the designed power plant was able to produce output power of 725.78 Wp for each phase, with electrical efficiency of 64.5%. The output characteristics of the LPMG: output power would increase as the average wave height or wave period increases. Besides, the efficiency would increase if the external load resistance increases. Meanwhile the output power of the generator would be maximum at load resistance equals 11 Ω.
The effect of temperature and thermal acclimation on the sustainable performance of swimming scup.
Rome, Lawrence C
2007-11-29
There is a significant reduction in overall maximum power output of muscle at low temperatures due to reduced steady-state (i.e. maximum activation) power-generating capabilities of muscle. However, during cyclical locomotion, a further reduction in power is due to the interplay between non-steady-state contractile properties of muscle (i.e. rates of activation and relaxation) and the stimulation and the length-change pattern muscle undergoes in vivo. In particular, even though the relaxation rate of scup red muscle is slowed greatly at cold temperatures (10 degrees C), warm-acclimated scup swim with the same stimulus duty cycles at cold as they do at warm temperature, not affording slow-relaxing muscle any additional time to relax. Hence, at 10 degrees C, red muscle generates extremely low or negative work in most parts of the body, at all but the slowest swimming speeds. Do scup shorten their stimulation duration and increase muscle relaxation rate during cold acclimation? At 10 degrees C, electromyography (EMG) duty cycles were 18% shorter in cold-acclimated scup than in warm-acclimated scup. But contrary to the expectations, the red muscle did not have a faster relaxation rate, rather, cold-acclimated muscle had an approximately 50% faster activation rate. By driving cold- and warm-acclimated muscle through cold- and warm-acclimated conditions, we found a very large increase in red muscle power during swimming at 10 degrees C. As expected, reducing stimulation duration markedly increased power output. However, the increased rate of activation alone produced an even greater effect. Hence, to fully understand thermal acclimation, it is necessary to examine the whole system under realistic physiological conditions.
Sunny, Youhan; Bawiec, Christopher R; Nguyen, An T; Samuels, Joshua A; Weingarten, Michael S; Zubkov, Leonid A; Lewin, Peter A
2012-09-01
This paper describes optimization of un-tethered, low voltage, 20-100kHz flexural transducers for biomedical ultrasonics applications. The goal of this work was to design a fully wearable, low weight (<100g), battery operated, piezoelectric ultrasound applicator providing maximum output pressure amplitude at the minimum excitation voltage. Such implementation of ultrasound applicators that can operate at the excitation voltages on the order of only 10-25V is needed in view of the emerging evidence that spatial-peak temporal-peak ultrasound intensity (I(SPTP)) on the order of 100mW/cm(2) delivered at frequencies below 100kHz can have beneficial therapeutic effects. The beneficial therapeutic applications include wound management of chronic ulcers and non-invasive transdermal delivery of insulin and liposome encapsulated drugs. The early prototypes of the 20 and 100kHz applicators were optimized using the maximum electrical power transfer theorem, which required a punctilious analysis of the complex impedance of the piezoelectric disks mounted in appropriately shaped metal housings. In the implementation tested, the optimized ultrasound transducer applicators were driven by portable, customized electronics, which controlled the excitation voltage amplitude and facilitated operation in continuous wave (CW) or pulsed mode with adjustable (10-90%) duty cycle. The driver unit was powered by remotely located rechargeable lithium (Li) polymer batteries. This was done to further minimize the weight of the applicator unit making it wearable. With DC voltage of approximately 15V the prototypes were capable of delivering pressure amplitudes of about 55kPa or 100mW/cm(2) (I(SPTP)). This level of acoustic output was chosen as it is considered safe and side effects free, even at prolonged exposure. Copyright © 2012. Published by Elsevier B.V.
An alternate protocol to achieve stochastic and deterministic resonances
NASA Astrophysics Data System (ADS)
Tiwari, Ishant; Dave, Darshil; Phogat, Richa; Khera, Neev; Parmananda, P.
2017-10-01
Periodic and Aperiodic Stochastic Resonance (SR) and Deterministic Resonance (DR) are studied in this paper. To check for the ubiquitousness of the phenomena, two unrelated systems, namely, FitzHugh-Nagumo and a particle in a bistable potential well, are studied. Instead of the conventional scenario of noise amplitude (in the case of SR) or chaotic signal amplitude (in the case of DR) variation, a tunable system parameter ("a" in the case of FitzHugh-Nagumo model and the damping coefficient "j" in the bistable model) is regulated. The operating values of these parameters are defined as the "setpoint" of the system throughout the present work. Our results indicate that there exists an optimal value of the setpoint for which maximum information transfer between the input and the output signals takes place. This information transfer from the input sub-threshold signal to the output dynamics is quantified by the normalised cross-correlation coefficient ( | CCC | ). | CCC | as a function of the setpoint exhibits a unimodal variation which is characteristic of SR (or DR). Furthermore, | CCC | is computed for a grid of noise (or chaotic signal) amplitude and setpoint values. The heat map of | CCC | over this grid yields the presence of a resonance region in the noise-setpoint plane for which the maximum enhancement of the input sub-threshold signal is observed. This resonance region could be possibly used to explain how organisms maintain their signal detection efficacy with fluctuating amounts of noise present in their environment. Interestingly, the method of regulating the setpoint without changing the noise amplitude was not able to induce Coherence Resonance (CR). A possible, qualitative reasoning for this is provided.
915MHz microwave ablation with high output power in in vivo porcine spleens.
Gao, Yongyan; Wang, Yang; Duan, Yaqi; Li, Chunling; Sun, Yuanyuan; Zhang, Dakun; Lu, Tong; Liang, Ping
2010-07-01
The purpose of this study was to evaluate the efficacy of 915 MHz microwave (MW) ablation with high output power in in vivo porcine spleens. MW ablations were performed in 9 porcine spleens with an internally cooled 915 MHz antenna. Thermocouples were placed at 5, 10, 15, 20 mm away from the antenna to measure temperatures in real-time during MW emission. The energy was applied for 10 min at high output power of 60 W, 70 W or 80 W. Gross specimens were sectioned and measured to determine ablation size. Representative areas were examined by light microscopy and electron microscopy. Coagulation sizes and temperatures were compared among the three power groups. Hematoxylin-eosin staining showed irreversible necrosis in the splenic coagulation area after MW ablation. As the power was increased, long-axis diameter enlarged significantly (p<.05). Short-axis diameter also tended to increase, but there were no statistical difference (p>.05). The coagulation size of long-axis and short-axis diameter with 80 W in vivo spleen ablation was 6.43+/-0.52 and 4.95+/-0.30 cm, respectively. With the increase of output power, maximum temperatures at 5, 10, 15, 20 mm from the antenna were increased accordingly (p<.05). The maximum temperature with 80 W at 5 and 20 mm from the antenna reached 146.17+/-6.65 and 72.38+/-4.23 degrees C respectively. With internally cooled antenna and high output power, 915 MHz MW ablation in the spleen could produce irreversible tissue necrosis of clinical significance. MW ablation may be used as a promising minimally invasive method for the treatment of splenic diseases. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Mendez-Villanueva, Alberto; Hamer, Peter; Bishop, David
2008-07-01
The purpose of this study was (1) to determine the relationship between each individual's anaerobic power reserve (APR) [i.e., the difference between the maximum anaerobic (Pana) and aerobic power (Paer)] and fatigability during repeated-sprint exercise and (2) to examine the acute effects of repeated sprints on neuromuscular activity, as evidenced by changes in the surface electromyogram (EMG) signals. Eight healthy males carried out tests to determine Pana (defined as the highest power output attained during a 6-s cycling sprint), Paer (defined as the highest power output achieved during a progressive, discontinuous cycling test to failure) and a repeated cycling sprint test (10 x 6-s max sprints with 30 s rest). Peak power output (PPO) and mean power output (MPO) were calculated for each maximal 6-s cycling bout. Root mean square (RMS) was utilized to quantify EMG activity from the vastus lateralis (VL) muscle of the right leg. Over the ten sprints, PPO and MPO decreased by 24.6 and 28.3% from the maximal value (i.e., sprint 1), respectively. Fatigue index during repeated sprints was significantly correlated with APR (R = 0.87; P < 0.05). RMS values decreased over the ten sprints by 14.6% (+/-6.3%). There was a strong linear relationship (R2 = 0.97; P < 0.05) between the changes in MPO and EMG RMS from the vastus lateralis muscle during the ten sprints. The individual advantage in fatigue-resistance when performing a repeated sprint task was related with a lower anaerobic power reserve. Additionally, a suboptimal net motor unit activity might also impair the ability to repeatedly generate maximum power outputs.
Kesler, Richard M; Ensari, Ipek; Bollaert, Rachel E; Motl, Robert W; Hsiao-Wecksler, Elizabeth T; Rosengren, Karl S; Fernhall, Bo; Smith, Denise L; Horn, Gavin P
2018-03-01
Firefighters' self-contained breathing apparatus (SCBA) protects the respiratory system during firefighting but increases the physiological burden. Extended duration SCBA (>30 min) have increased air supply, potentially increasing the duration of firefighting work cycles. To examine the effects of SCBA configuration and work cycle (length and rest), 30 firefighters completed seven trials using different SCBA and one or two bouts of simulated firefighting following work cycles common in the United States. Heart rate, core temperature, oxygen consumption, work output and self-reported perceptions were recorded during all activities. Varying SCBA resulted in few differences in these parameters. However, during a second bout, work output significantly declined while heart rates and core temperatures were elevated relative to a single bout. Thirty seven per cent of the subjects were unable to complete the second bout in at least one of the two-bout conditions. These firefighters had lower fitness and higher body mass than those who completed all assigned tasks. Practitioner Summary: The effects of extended duration SCBA and work/rest cycles on physiological parameters and work output have not been examined. Cylinder size had minimal effects, but extended work cycles with no rest resulted in increased physiological strain and decreased work output. This effect was more pronounced in firefighters with lower fitness.
Preliminary results and assessment of the MAR outputs over High Mountain Asia
NASA Astrophysics Data System (ADS)
Linares, M.; Tedesco, M.; Margulis, S. A.; Cortés, G.; Fettweis, X.
2017-12-01
Lack of ground measurements has made the use of regional climate models (RCMs) over the High Mountain Asia (HMA) pivotal for understanding the impact of climate change on the hydrological cycle and on the cryosphere. Here, we show an analysis of the assessment of the outputs of Modèle Atmosphérique Régionale (MAR) model RCM over the HMA region as part of the NASA-funded project `Understanding and forecasting changes in High Mountain Asia snow hydrology via a novel Bayesian reanalysis and modeling approach'. The first step was to evaluate the impact of the different forcings on MAR outputs. To this aim, we performed simulations for the 2007 - 2008 and 2014 - 2015 years forcing MAR at its boundaries either with reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) or from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The comparison between the outputs obtained with the two forcings indicates that the impact on MAR simulations depends on specific parameters. For example, in case of surface pressure the maximum percentage error is 0.09 % while the 2-m air temperature has a maximum percentage error of 103.7%. Next, we compared the MAR outputs with reanalysis data fields over the region of interest. In particular, we evaluated the following parameters: surface pressure, snow depth, total cloud cover, two meter temperature, horizontal wind speed, vertical wind speed, wind speed, surface new solar radiation, skin temperature, surface sensible heat flux, and surface latent heat flux. Lastly, we report results concerning the assessment of MAR surface albedo and surface temperature over the region through MODIS remote sensing products. Next steps are to determine whether RCMs and reanalysis datasets are effective at capturing snow and snowmelt runoff processes in the HMA region through a comparison with in situ datasets. This will help determine what refinements are necessary to improve RCM outputs.
Bombelli, Paolo; Zarrouati, Marie; Thorne, Rebecca J; Schneider, Kenneth; Rowden, Stephen J L; Ali, Akin; Yunus, Kamran; Cameron, Petra J; Fisher, Adrian C; Ian Wilson, D; Howe, Christopher J; McCormick, Alistair J
2012-09-21
Bio-photovoltaic cells (BPVs) are a new photo-bio-electrochemical technology for harnessing solar energy using the photosynthetic activity of autotrophic organisms. Currently power outputs from BPVs are generally low and suffer from low efficiencies. However, a better understanding of the electrochemical interactions between the microbes and conductive materials will be likely to lead to increased power yields. In the current study, the fresh-water, filamentous cyanobacterium Pseudanabaena limnetica (also known as Oscillatoria limnetica) was investigated for exoelectrogenic activity. Biofilms of P. limnetica showed a significant photo response during light-dark cycling in BPVs under mediatorless conditions. A multi-channel BPV device was developed to compare quantitatively the performance of photosynthetic biofilms of this species using a variety of different anodic conductive materials: indium tin oxide-coated polyethylene terephthalate (ITO), stainless steel (SS), glass coated with a conductive polymer (PANI), and carbon paper (CP). Although biofilm growth rates were generally comparable on all materials tested, the amplitude of the photo response and achievable maximum power outputs were significantly different. ITO and SS demonstrated the largest photo responses, whereas CP showed the lowest power outputs under both light and dark conditions. Furthermore, differences in the ratios of light : dark power outputs indicated that the electrochemical interactions between photosynthetic microbes and the anode may differ under light and dark conditions depending on the anodic material used. Comparisons between BPV performances and material characteristics revealed that surface roughness and surface energy, particularly the ratio of non-polar to polar interactions (the CQ ratio), may be more important than available surface area in determining biocompatibility and maximum power outputs in microbial electrochemical systems. Notably, CP was readily outperformed by all other conductive materials tested, indicating that carbon may not be an optimal substrate for microbial fuel cell operation.
The ergonomics of vertical turret lathe operation.
Pratt, F M; Corlett, E N
1970-12-01
A study of the work load of 14 vertical turret lathe operators engaged on different work tasks in two factories is reported. For eight of these workers continuous heart rate recordings were made throughout the day. It was shown that in four cases improved technology was unlikely to lead to higher output and certain aspects of posture and equipment manipulation were major contributors to the limitations on increased output. The role of the work-rest schedule in increasing work loads was also demonstrated. Improvements in technology and methods to reduce the extent of certain work loads to enable heavy work to be done in shorter periods followed by light work or rest periods are given as means to modify and improve the output of these machines. Finally, the direction for the development of a predictive model for man-machine matching is introduced.
El Hawary, M. B. E.; Feldberg, W.
1966-01-01
1. In cats anaesthetized with intraperitoneal pentobarbitone sodium the third ventricle, the anterior or inferior horn of the left lateral ventricle, was perfused with 5-hydroxytryptophan (5-HTP) in different concentrations, and the effluent assayed for 5-hydroxytryptamine (5-HT) on the rat stomach strip preparation of Vane (1957). 2. On perfusion of the third ventricle with 5-HTP the output of 5-HT in effluent increased, the increase depending on the 5-HTP concentration: with 1/50,000 it increased 44-69 times (mean 55), with 1/25,000, 81-83 times (mean 82) and with 1/10,000, 71-200 times (mean 128). The 5-HT output depended also on the initial output during the preceding perfusion with artificial c.s.f. The greater this initial output the greater was the maximum output reached during the 5-HTP perfusion. 3. The increase in 5-HT output during perfusion of the third ventricle with 5-HTP was usually associated with shivering and a rise in rectal temperature. This association, however, was not invariably obtained, probably because of a central depressant effect of 5-HTP itself. 4. On perfusion of the anterior or inferior horn of the left lateral ventricle with 5-HTP, the output of 5-HT in the effluent also increased, but to a lesser extent than in the effluent from the third ventricle. There was no association with shivering nor with a rise in rectal temperature. 5. An injection of 1 or 2 mg 5—HTP into the cerebral ventricles of unanaesthetized cats produced a biphasic rise in temperature, shivering, constriction of the skin vessels followed by vasodilatation, tachypnoea, wiping and scratching movements, miaowing and long lasting sleep. 6. The biphasic rise in temperature is explained as the result of two opposing effects: increased formation of 5-HT which would raise body temperature, and a central depressant effect of 5-HTP itself or of one of its metabolites which would lower body temperature. 7. The initial rise in temperature and the shivering in response to an intraventricular injection of 5-HTP varied from cat to cat. In those in which these effects were strong the 5-HT output during a subsequent perfusion of the third ventricle with artificial c.s.f. was higher, and the maximum 5—HT output reached on perfusion with 5-HTP was greater than in those in which these effects had been weak. PMID:5298335
NASA Astrophysics Data System (ADS)
Rahman, M. F. A.; Dhar, A.; Das, S.; Dutta, D.; Paul, M. C.; Rusdi, M. F. M.; Latiff, A. A.; Dimyati, K.; Harun, S. W.
2018-07-01
We demonstrate a Q-switched all-fiber laser operating at 2-μm region by adding a piece of 8 cm long holmium doped fiber (HDF) as a fiber saturable absorber (SA) in Thulium doped fiber laser (TDFL) ring cavity. Doping of Ho ions into yttria-alumina silica glass was done through conventional Modified Chemical Vapor Deposition (MCVD) technique in conjunction with solution doping process. The fabricated HDF has a linear absorption of 3 dB with a core diameter and a numerical aperture of 10 μm and 0.18, respectively. A self-started Q-switching operation begins at 418 mW pump level and continually dominant until 564 mW pump level. As the pump power increases, stable pulse train presence from 30.61 kHz to 38.89 kHz while the pulse width reduces from 3.18 μs to 2.27 μs. Both maximum output power and maximum peak power are obtained at 5.05 mW and 57.2 mW, respectively, while the maximum pulse energy is calculated to be 129 nJ. The signal-to-noise ratio (SNR) of the fundamental frequency is 50 dB. Our work may contribute to the discovery of stable, robust, and economic SA for pulse fiber laser generation at 2-μm region.
NASA Astrophysics Data System (ADS)
Moghimi, Mahdi; Khosravian, Mohammadreza
2018-01-01
In this paper, a novel combination of organic Rankine cycles (ORCs), Stirling cycle and direct expander turbines is modeled and optimized using the genetic algorithm. The Exergy efficiency is considered as an objective function in the genetic algorithm. High efficiency is the main advantage of Stirling cycle, however, it needs nearly isothermal compressor and turbine. Therefore, an argon ORC and a R14 ORC are placed before and after the Striling cycle along with two expander turbines at the end of the line. Each component and cycle of the proposed plant in this article is verified by the previous works available in the literature and good agreement is achieved. The obtained results reveal that 27.98%, 20.86% and 12.90% of the total cold exergy are used by argon ORC, Stirling cycle and R14 ORC, respectively. Therefore, utilization of the Stirling cycle is a good idea for the LNG line cold exergy. The maximum exergy destruction occurs in the heat exchanger after the argon ORC (85.786 kJ/s per one kg/s LNG) due to the wasted cold exergy, which can be used for air conditioning systems in the plant. Finally, it would be shown that the maximum efficiency of the proposed plant is 54.25% and the maximum output power is 355.72 kW.
NASA Astrophysics Data System (ADS)
Moghimi, Mahdi; Khosravian, Mohammadreza
2018-06-01
In this paper, a novel combination of organic Rankine cycles (ORCs), Stirling cycle and direct expander turbines is modeled and optimized using the genetic algorithm. The Exergy efficiency is considered as an objective function in the genetic algorithm. High efficiency is the main advantage of Stirling cycle, however, it needs nearly isothermal compressor and turbine. Therefore, an argon ORC and a R14 ORC are placed before and after the Striling cycle along with two expander turbines at the end of the line. Each component and cycle of the proposed plant in this article is verified by the previous works available in the literature and good agreement is achieved. The obtained results reveal that 27.98%, 20.86% and 12.90% of the total cold exergy are used by argon ORC, Stirling cycle and R14 ORC, respectively. Therefore, utilization of the Stirling cycle is a good idea for the LNG line cold exergy. The maximum exergy destruction occurs in the heat exchanger after the argon ORC (85.786 kJ/s per one kg/s LNG) due to the wasted cold exergy, which can be used for air conditioning systems in the plant. Finally, it would be shown that the maximum efficiency of the proposed plant is 54.25% and the maximum output power is 355.72 kW.
Working Ni-Mn-Ga Single Crystals in a Magnetic Field Against a Spring Load
NASA Astrophysics Data System (ADS)
Lindquist, P. G.; Müllner, P.
2015-03-01
This research characterizes ferromagnetic shape memory elements for use as mechanical actuators. A single crystal of Ni-Mn-Ga was pre-strained in compression from 0 to 6 % and then the shape was recovered with a magnetic field perpendicular to the loading direction while working against a pair of springs. The magnetic field was raised from 0 to 0.64 MA/m and then reduced to zero field. Eight pairs of springs with combined spring constants ranging from 14.3 to 269.4 N/mm were used. When the magnetic field was on, the sample expanded against the springs due to magnetic field-induced strain. When the magnetic field was turned off, the springs compressed the sample back to the initial size before the next cycle. During each cycle, force and displacement were measured and the specific work was computed. Specific work increased with the applied magnetic field and the pre-strain, with a maximum of 14 kJ/m3 at 4.5 % pre-strain and 0.64 MA/m. This value is five times less than the values suggested in the literature which were inferred from stress-strain curves measured under various magnetic fields. The spring prescribes the load-displacement path of the magnetic shape memory element and controls the work output of the actuator.
A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics
Huang, Haiyun; Wang, Dejun; Xu, Yue
2015-01-01
This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW. PMID:26516864
A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics.
Huang, Haiyun; Wang, Dejun; Xu, Yue
2015-10-27
This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.
NASA Astrophysics Data System (ADS)
Li, Guoxing; Xie, Wenqiang; Yang, Xining; Zhang, Ziqiu; Zhang, Hongda; Zhang, Liang
2018-02-01
A two-end-pumped a-cut Tm(0.5%), Ho(0.5%):YAP laser output at 2119nm is reported under cryogenic temperature. The maximum output power reached to 7.76W with the incident pump power of 24.2W in CW mode. With the acousto-optically Q-switch, an average power of 7.3W can be obtained, when the pulse repetition frequency was 7.5 kHz. The corresponding optical-to-optical conversion efficiency was 30.2% and the slope efficiency was 31.4%. Then, the laser output characteristics in the repetition frequency of 7.5 kHz and 10kHz were researched. The output power, the optical-to-optical conversion efficiency and slope efficiency were increased with the increase of the repetition frequency. In the same repetition frequency, the pulse duration was decreasing with the growth of the incident pump power.
Variable camber wing based on pneumatic artificial muscles
NASA Astrophysics Data System (ADS)
Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong
2009-07-01
As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.
CONTROL AND FAULT DETECTOR CIRCUIT
Winningstad, C.N.
1958-04-01
A power control and fault detectcr circuit for a radiofrequency system is described. The operation of the circuit controls the power output of a radio- frequency power supply to automatically start the flow of energizing power to the radio-frequency power supply and to gradually increase the power to a predetermined level which is below the point where destruction occurs upon the happening of a fault. If the radio-frequency power supply output fails to increase during such period, the control does not further increase the power. On the other hand, if the output of the radio-frequency power supply properly increases, then the control continues to increase the power to a maximum value. After the maximumn value of radio-frequency output has been achieved. the control is responsive to a ''fault,'' such as a short circuit in the radio-frequency system being driven, so that the flow of power is interrupted for an interval before the cycle is repeated.
Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih
2015-11-01
This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility. Copyright © 2015 Elsevier Ltd. All rights reserved.
Flight performance of the Pioneer Venus Orbiter solar array
NASA Technical Reports Server (NTRS)
Goldhammer, L. J.; Powe, J. S.; Smith, Marcie
1987-01-01
The Pioneer Venus Orbiter (PVO) solar panel power output capability has degraded much more severely than has the power output capability of solar panels that have operated in earth-orbiting spacecraft for comparable periods of time. The incidence of solar proton events recorded by the spacecraft's scientific instruments accounts for this phenomenon only in part. It cannot explain two specific forms of anomalous behavior observed: 1) a variation of output per spin with roll angle, and 2) a gradual degradation of the maximum output. Analysis indicates that the most probable cause of the first anomaly is that the solar cells underneath the spacecraft's magnetometer boom have been damaged by a reverse biasing of the cells that occurs during pulsed shadowing of the cells by the boom as the spacecraft rotates. The second anomaly might be caused by the effects on the solar array of substances from the upper atmosphere of Venus.
NASA Astrophysics Data System (ADS)
Semaan, Georges; Meng, Yichang; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois
2016-04-01
In this communication, we demonstrate a passive mode-locked Er:Yb co-doped double-clad fiber laser using a tapered microfiber topological insulator (Bi2Se3) saturable absorber (TISA). The topological insulator is drop-casted onto the tapered fiber and optically deposited by optical tweezer effect. We use a ring laser setup including the fabricated TISA. By carefully optimizing the cavity losses and output coupling ratio, the mode-locked laser can operate in L-band with a high average output power. At a maximum pump power of 5 W, we obtain the 91st harmonic mode-locking of soliton bunches with a 3dB spectral bandwidth of 1.06nm, a repetition rate of 640.9 MHz and an average output power of 308mW. As far as we know, this is the highest output power yet reported of a mode-locked fiber laser operating with a TISA.
NASA Astrophysics Data System (ADS)
Xia, Jinan; Hoan O, Beom; Gol Lee, Seung; Hang Lee, El
2005-03-01
High-performance InGaAs/InGaAlAs multiple-quantum-well vertical-cavity surface-emitting lasers (VCSELs) with InGaAlAs/InP distributed Bragg reflectors are proposed for operation at the wavelength of 1.55 μm. The lasers have good heat diffusion characteristic, large index contrast in DBRs, and weak temperature sensitivity. They could be fabricated either by metal-organic chemical vapor deposition (MOCVD) or by molecular beam epitaxy (MBE) growth. The laser light-current characteristics indicate that a suitable reflectivity of the DBR on the light output side in a laser makes its output power increase greatly and its lasing threshold current reduce significantly, and that a small VCSEL could output the power around its maximum for the output mirror at the reflectivity varying in a broader range than a large VCSEL does.
Postdoctoral researchers in the UK: a snapshot at factors affecting their research output.
Felisberti, Fatima M; Sear, Rebecca
2014-01-01
Postdoctoral training is a typical step in the course of an academic career, but very little is known about postdoctoral researchers (PDRs) working in the UK. This study used an online survey to explore, for the first time, relevant environmental factors which may be linked to the research output of PDRs in terms of the number of peer-reviewed articles per year of PDR employment. The findings showed reliable links between the research output and research institutions, time spent as PDR, and parental education, whereas no clear links were observed between PDRs' output and research area, nationality, gender, number of siblings, or work environment. PDRs based in universities tended to publish, on average, more than the ones based in research centres. PDRs with children tended to stay longer in postdoctoral employment than PDRs without children. Moreover, research output tended to be higher in PDRs with fathers educated at secondary or higher level. The work environment did not affect output directly, but about 1/5 of PDRs were not satisfied with their job or institutional support and about 2/3 of them perceived their job prospects as "difficult". The results from this exploratory study raise important questions, which need to be addressed in large-scale studies in order to understand (and monitor) how PDRs' family and work environment interact with their research output-an essential step given the crucial role of PDRs in research and development in the country.
Design principles and optimal performance for molecular motors under realistic constraints
NASA Astrophysics Data System (ADS)
Tu, Yuhai; Cao, Yuansheng
2018-02-01
The performance of a molecular motor, characterized by its power output and energy efficiency, is investigated in the motor design space spanned by the stepping rate function and the motor-track interaction potential. Analytic results and simulations show that a gating mechanism that restricts forward stepping in a narrow window in configuration space is needed for generating high power at physiologically relevant loads. By deriving general thermodynamics laws for nonequilibrium motors, we find that the maximum torque (force) at stall is less than its theoretical limit for any realistic motor-track interactions due to speed fluctuations. Our study reveals a tradeoff for the motor-track interaction: while a strong interaction generates a high power output for forward steps, it also leads to a higher probability of wasteful spontaneous back steps. Our analysis and simulations show that this tradeoff sets a fundamental limit to the maximum motor efficiency in the presence of spontaneous back steps, i.e., loose-coupling. Balancing this tradeoff leads to an optimal design of the motor-track interaction for achieving a maximum efficiency close to 1 for realistic motors that are not perfectly coupled with the energy source. Comparison with existing data and suggestions for future experiments are discussed.
The Budget and Economic Outlook: Fiscal Years 2008 to 2017
2007-01-01
of output to hours worked in the nonfarm business sector . Total, Total, 1950- 1974- 1982- 1991- 2002- 1950- 2007- 2013- 2007- 1973 1981 1990 2001 2006...Business Sectord Overall Economy Nonfarm Business Sector TFP adjustments Contributions to the Growth of Potential Potential Output Potential Labor Force...The primary labor input in CBO’s model for potential output, potential hours worked in the nonfarm business sector , is projected to grow at an average
Lockerbie, N A; Tokmakov, K V
2016-07-01
The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a "tall-thin" rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse "Violin-Mode" vibrations of such a fibre, via the oscillatory movement of the shadow cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor's DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor's more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz-300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m(-1) was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured AC/DC transimpedance gain ratio of 922.5 for this sensor, at 500 Hz, translated into a maximum Violin-Mode (AC) responsivity of (1.16 ± 0.05) MV m(-1), at that frequency.
Simultaneous three-wavelength continuous wave laser at 946 nm, 1319 nm and 1064 nm in Nd:YAG
NASA Astrophysics Data System (ADS)
Lü, Yanfei; Zhao, Lianshui; Zhai, Pei; Xia, Jing; Fu, Xihong; Li, Shutao
2013-01-01
A continuous-wave (cw) diode-end-pumped Nd:YAG laser that generates simultaneous laser at the wavelengths 946 nm, 1319 nm and 1064 nm is demonstrated. The optimum oscillation condition for the simultaneous three-wavelength operation has been derived. Using the separation of the three output couplers, we obtained the maximum output powers of 0.24 W at 946 nm, 1.07 W at 1319 nm and 1.88 W at 1064 nm at the absorbed pump power of 11.2 W. A total output power of 3.19 W for the three-wavelength was achieved at the absorbed pump power of 11.2 W with optical conversion efficiency of 28.5%.
NASA Astrophysics Data System (ADS)
Chen, Lijuan; Wang, Zhengping; Yu, Haohai; Zhuang, Shidong; Han, Shuo; Zhao, Yongguang; Xu, Xinguang
2012-11-01
Diode-end-pumped high-power Nd:GdVO4 lasers at 1083 nm are presented. The maximum continuous-wave output power was 10.1 W with an optical conversion efficiency of 31.3%. For acoustooptic (AO) Q-switched operation, the largest pulse energy, shortest pulse width, and highest peak power were 111 µJ, 77 ns, and 1.44 kW, respectively. By decreasing the 1063 nm transmission of the output coupler, we also achieved efficient CW dual-wavelength operation at 1083 and 1063 nm. Their total output power reached 6.7 W, and the optical conversion efficiency reached 31.6%. These lasers have special requirements in the treatment of facial telangiectasia.
NASA Astrophysics Data System (ADS)
Zhang, F. F.; Zuo, J. W.; Wang, Z. M.; Yang, J.; Cheng, H. L.; Zong, N.; Yang, F.; Peng, Q. J.; Xu, Z. Y.
2013-04-01
We developed a high power mode-locked Nd:GdVO4 oscillator with low timing jitter directly pumped by an 879 nm diode. Under the absorbed pump power of 13.8 W, a maximum output power of 5.68 W at 1063 nm was obtained with a repetition rate of ˜250 MHz, corresponding to a slope efficiency of 78.7%. The measured pulse width and root mean square timing jitter at the output power of 5.35 W were 7.4 ps and 286 fs, respectively. To the best of our knowledge, this is the highest output power for a picosecond Nd:GdVO4 oscillator with low timing jitter.
Improved output power of GaN-based light-emitting diodes grown on a nanopatterned sapphire substrate
NASA Astrophysics Data System (ADS)
Chan, Chia-Hua; Hou, Chia-Hung; Tseng, Shao-Ze; Chen, Tsing-Jen; Chien, Hung-Ta; Hsiao, Fu-Li; Lee, Chien-Chieh; Tsai, Yen-Ling; Chen, Chii-Chang
2009-07-01
This letter describes the improved output power of GaN-based light-emitting diodes (LEDs) formed on a nanopatterned sapphire substrate (NPSS) prepared through etching with a self-assembled monolayer of 750-nm-diameter SiO2 nanospheres used as the mask. The output power of NPSS LEDs was 76% greater than that of LEDs on a flat sapphire substrate. Three-dimensional finite-difference time-domain calculation predicted a 40% enhancement in light extraction efficiency of NPSS LEDs. In addition, the reduction of full widths at half maximum in the ω-scan rocking curves for the (0 0 2) and (1 0 2) planes of GaN on NPSS suggested improved crystal quality.
Laser emission from flash ignition of Zr/Al nanoparticles.
Yang, Fan; Kang, Xiaoli; Luo, Jiangshan; Sun, Laixi; Xia, Handing; Yi, Zao; Tang, Yongjian
2017-10-02
We report the first laser emission from flash ignition of Zr/Al nanoparticles with the addition of strong oxidizer KClO 4 using Nd: YAG as a laser medium. The mixture Zr/Al/Kp-45 (mass ratio = 33%Zr: 33%Al: 34%KClO 4 ) has the highest brightness temperature Tb = 4615 K and the adiabatic flame temperature Tf = 4194 K with the duration of 20 ms. At 1064 nm we measured a maximum output energy of 702.5 mJ with the duration of nearly 10 ms by using only 100 mg mixture with an output coupler (transmission T = 10%). Further optimizing the concentration cavity and increasing the mixture content will yield much higher efficiency and output energy.
Extending Landauer's bound from bit erasure to arbitrary computation
NASA Astrophysics Data System (ADS)
Wolpert, David
The minimal thermodynamic work required to erase a bit, known as Landauer's bound, has been extensively investigated both theoretically and experimentally. However, when viewed as a computation that maps inputs to outputs, bit erasure has a very special property: the output does not depend on the input. Existing analyses of thermodynamics of bit erasure implicitly exploit this property, and thus cannot be directly extended to analyze the computation of arbitrary input-output maps. Here we show how to extend these earlier analyses of bit erasure to analyze the thermodynamics of arbitrary computations. Doing this establishes a formal connection between the thermodynamics of computers and much of theoretical computer science. We use this extension to analyze the thermodynamics of the canonical ``general purpose computer'' considered in computer science theory: a universal Turing machine (UTM). We consider a UTM which maps input programs to output strings, where inputs are drawn from an ensemble of random binary sequences, and prove: i) The minimal work needed by a UTM to run some particular input program X and produce output Y is the Kolmogorov complexity of Y minus the log of the ``algorithmic probability'' of Y. This minimal amount of thermodynamic work has a finite upper bound, which is independent of the output Y, depending only on the details of the UTM. ii) The expected work needed by a UTM to compute some given output Y is infinite. As a corollary, the overall expected work to run a UTM is infinite. iii) The expected work needed by an arbitrary Turing machine T (not necessarily universal) to compute some given output Y can either be infinite or finite, depending on Y and the details of T. To derive these results we must combine ideas from nonequilibrium statistical physics with fundamental results from computer science, such as Levin's coding theorem and other theorems about universal computation. I would like to ackowledge the Santa Fe Institute, Grant No. TWCF0079/AB47 from the Templeton World Charity Foundation, Grant No. FQXi-RHl3-1349 from the FQXi foundation, and Grant No. CHE-1648973 from the U.S. National Science Foundation.
Generation of subnanosecond electron beams in air at atmospheric pressure
NASA Astrophysics Data System (ADS)
Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.
2009-11-01
Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.
High-power diode-side-pumped rod Tm:YAG laser at 2.07 μm.
Wang, Caili; Niu, Yanxiong; Du, Shifeng; Zhang, Chao; Wang, Zhichao; Li, Fangqin; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Xu, Zuyan
2013-11-01
We report a high-power diode-laser (LD) side-pumped rod Tm:YAG laser of around 2 μm. The laser was water-cooled at 8°C and yielded a maximum output power of 267 W at 2.07 μm, which is the highest output power for an all solid-state cw 2.07 μm rod Tm:YAG laser reported as far as we know. The corresponding optical-optical conversion efficiency was 20.7%, and the slope efficiency was about 29.8%, respectively.