Sample records for maximum-likelihood phylogenetic analysis

  1. PAMLX: a graphical user interface for PAML.

    PubMed

    Xu, Bo; Yang, Ziheng

    2013-12-01

    This note announces pamlX, a graphical user interface/front end for the paml (for Phylogenetic Analysis by Maximum Likelihood) program package (Yang Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 13:555-556; Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24:1586-1591). pamlX is written in C++ using the Qt library and communicates with paml programs through files. It can be used to create, edit, and print control files for paml programs and to launch paml runs. The interface is available for free download at http://abacus.gene.ucl.ac.uk/software/paml.html.

  2. A Gateway for Phylogenetic Analysis Powered by Grid Computing Featuring GARLI 2.0

    PubMed Central

    Bazinet, Adam L.; Zwickl, Derrick J.; Cummings, Michael P.

    2014-01-01

    We introduce molecularevolution.org, a publicly available gateway for high-throughput, maximum-likelihood phylogenetic analysis powered by grid computing. The gateway features a garli 2.0 web service that enables a user to quickly and easily submit thousands of maximum likelihood tree searches or bootstrap searches that are executed in parallel on distributed computing resources. The garli web service allows one to easily specify partitioned substitution models using a graphical interface, and it performs sophisticated post-processing of phylogenetic results. Although the garli web service has been used by the research community for over three years, here we formally announce the availability of the service, describe its capabilities, highlight new features and recent improvements, and provide details about how the grid system efficiently delivers high-quality phylogenetic results. [garli, gateway, grid computing, maximum likelihood, molecular evolution portal, phylogenetics, web service.] PMID:24789072

  3. A gateway for phylogenetic analysis powered by grid computing featuring GARLI 2.0.

    PubMed

    Bazinet, Adam L; Zwickl, Derrick J; Cummings, Michael P

    2014-09-01

    We introduce molecularevolution.org, a publicly available gateway for high-throughput, maximum-likelihood phylogenetic analysis powered by grid computing. The gateway features a garli 2.0 web service that enables a user to quickly and easily submit thousands of maximum likelihood tree searches or bootstrap searches that are executed in parallel on distributed computing resources. The garli web service allows one to easily specify partitioned substitution models using a graphical interface, and it performs sophisticated post-processing of phylogenetic results. Although the garli web service has been used by the research community for over three years, here we formally announce the availability of the service, describe its capabilities, highlight new features and recent improvements, and provide details about how the grid system efficiently delivers high-quality phylogenetic results. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  4. PHYLOGENETIC RELATIONSHIP OF ALEXANDRIUM MONILATUM (DINOPHYCAE)TO OTHER ALEXANDRIUM SPECIES BASED ON 18S RIBOSOMAL RNA GENE SEQUENCES

    EPA Science Inventory

    The phylogenetic relationship of Alexandrium monilatum to other Alexandrium spp. was explored using 18S rDNA sequences. Maximum likelihood phylogenetic analysis of the combined rDNA sequences established that A. monilatum paired with Alexandrium taylori and that the pair was the ...

  5. Inferring Phylogenetic Networks Using PhyloNet.

    PubMed

    Wen, Dingqiao; Yu, Yun; Zhu, Jiafan; Nakhleh, Luay

    2018-07-01

    PhyloNet was released in 2008 as a software package for representing and analyzing phylogenetic networks. At the time of its release, the main functionalities in PhyloNet consisted of measures for comparing network topologies and a single heuristic for reconciling gene trees with a species tree. Since then, PhyloNet has grown significantly. The software package now includes a wide array of methods for inferring phylogenetic networks from data sets of unlinked loci while accounting for both reticulation (e.g., hybridization) and incomplete lineage sorting. In particular, PhyloNet now allows for maximum parsimony, maximum likelihood, and Bayesian inference of phylogenetic networks from gene tree estimates. Furthermore, Bayesian inference directly from sequence data (sequence alignments or biallelic markers) is implemented. Maximum parsimony is based on an extension of the "minimizing deep coalescences" criterion to phylogenetic networks, whereas maximum likelihood and Bayesian inference are based on the multispecies network coalescent. All methods allow for multiple individuals per species. As computing the likelihood of a phylogenetic network is computationally hard, PhyloNet allows for evaluation and inference of networks using a pseudolikelihood measure. PhyloNet summarizes the results of the various analyzes and generates phylogenetic networks in the extended Newick format that is readily viewable by existing visualization software.

  6. Phylogenetic evidence for cladogenetic polyploidization in land plants.

    PubMed

    Zhan, Shing H; Drori, Michal; Goldberg, Emma E; Otto, Sarah P; Mayrose, Itay

    2016-07-01

    Polyploidization is a common and recurring phenomenon in plants and is often thought to be a mechanism of "instant speciation". Whether polyploidization is associated with the formation of new species (cladogenesis) or simply occurs over time within a lineage (anagenesis), however, has never been assessed systematically. We tested this hypothesis using phylogenetic and karyotypic information from 235 plant genera (mostly angiosperms). We first constructed a large database of combined sequence and chromosome number data sets using an automated procedure. We then applied likelihood models (ClaSSE) that estimate the degree of synchronization between polyploidization and speciation events in maximum likelihood and Bayesian frameworks. Our maximum likelihood analysis indicated that 35 genera supported a model that includes cladogenetic transitions over a model with only anagenetic transitions, whereas three genera supported a model that incorporates anagenetic transitions over one with only cladogenetic transitions. Furthermore, the Bayesian analysis supported a preponderance of cladogenetic change in four genera but did not support a preponderance of anagenetic change in any genus. Overall, these phylogenetic analyses provide the first broad confirmation that polyploidization is temporally associated with speciation events, suggesting that it is indeed a major speciation mechanism in plants, at least in some genera. © 2016 Botanical Society of America.

  7. On the quirks of maximum parsimony and likelihood on phylogenetic networks.

    PubMed

    Bryant, Christopher; Fischer, Mareike; Linz, Simone; Semple, Charles

    2017-03-21

    Maximum parsimony is one of the most frequently-discussed tree reconstruction methods in phylogenetic estimation. However, in recent years it has become more and more apparent that phylogenetic trees are often not sufficient to describe evolution accurately. For instance, processes like hybridization or lateral gene transfer that are commonplace in many groups of organisms and result in mosaic patterns of relationships cannot be represented by a single phylogenetic tree. This is why phylogenetic networks, which can display such events, are becoming of more and more interest in phylogenetic research. It is therefore necessary to extend concepts like maximum parsimony from phylogenetic trees to networks. Several suggestions for possible extensions can be found in recent literature, for instance the softwired and the hardwired parsimony concepts. In this paper, we analyze the so-called big parsimony problem under these two concepts, i.e. we investigate maximum parsimonious networks and analyze their properties. In particular, we show that finding a softwired maximum parsimony network is possible in polynomial time. We also show that the set of maximum parsimony networks for the hardwired definition always contains at least one phylogenetic tree. Lastly, we investigate some parallels of parsimony to different likelihood concepts on phylogenetic networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Parallel implementation of D-Phylo algorithm for maximum likelihood clusters.

    PubMed

    Malik, Shamita; Sharma, Dolly; Khatri, Sunil Kumar

    2017-03-01

    This study explains a newly developed parallel algorithm for phylogenetic analysis of DNA sequences. The newly designed D-Phylo is a more advanced algorithm for phylogenetic analysis using maximum likelihood approach. The D-Phylo while misusing the seeking capacity of k -means keeps away from its real constraint of getting stuck at privately conserved motifs. The authors have tested the behaviour of D-Phylo on Amazon Linux Amazon Machine Image(Hardware Virtual Machine)i2.4xlarge, six central processing unit, 122 GiB memory, 8  ×  800 Solid-state drive Elastic Block Store volume, high network performance up to 15 processors for several real-life datasets. Distributing the clusters evenly on all the processors provides us the capacity to accomplish a near direct speed if there should arise an occurrence of huge number of processors.

  9. Characterization of the complete mitochondrial genome of the hybrid Epinephelus moara♀ × Epinephelus lanceolatus♂, and phylogenetic analysis in subfamily epinephelinae

    NASA Astrophysics Data System (ADS)

    Gao, Fengtao; Wei, Min; Zhu, Ying; Guo, Hua; Chen, Songlin; Yang, Guanpin

    2017-06-01

    This study presents the complete mitochondrial genome of the hybrid Epinephelus moara♀× Epinephelus lanceolatus♂. The genome is 16886 bp in length, and contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, a light-strand replication origin and a control region. Additionally, phylogenetic analysis based on the nucleotide sequences of 13 conserved protein-coding genes using the maximum likelihood method indicated that the mitochondrial genome is maternally inherited. This study presents genomic data for studying phylogenetic relationships and breeding of hybrid Epinephelinae.

  10. Spermatogenic and Phylo-molecular Characterizations of Isolated Fasciola Spp. From Cattle, North West Iran.

    PubMed

    Rouhani, Soheila; Raeghi, Saber; Spotin, Adel

    2017-01-01

    Fascioliasis is economically important to the livestock industry that caused with Fasciola hepatica and Fasciola gigantica. The objective of this study was to identify these two species F. hepatica and F. gigantica by using nuclear and mitochondrial markers (ITS1, ND1 and CO1) and have been employed to analyze intraspecific phylogenetic relations of Fasciola spp. Approximately 150 Fasciola specimens were collected, then stained with haematoxylin-carmine dye and observed under an optical microscope to examine for the existence of sperm. The ITS1 marker was used to identify different Fasciola and phylogenetic analysis based on ND1 and CO1 sequence data were conducted by maximum likelihood algorithm. Fasciola samples were separated into 2 groups. Almost all specimens had many sperms in the seminal vesicle (spermic fluke) and one fluke did not contain any sperm in the seminal vesicle. The aspermic sample had F. gigantica RFLP pattern with ITS1 gene. Phylogenetic analysis based on NDI and COI sequence data were conducted by maximum likelihood showed a similar topology of the trees obtained particularly for F. hepatica and F. gigantica. This study demonstrated that aspermic Fasciola found in this region of Iran has same genetic structures through the spermic F. gigantica populations in accordance to phylogenetic tree.

  11. Investigation of the protein osteocalcin of Camelops hesternus: Sequence, structure and phylogenetic implications

    NASA Astrophysics Data System (ADS)

    Humpula, James F.; Ostrom, Peggy H.; Gandhi, Hasand; Strahler, John R.; Walker, Angela K.; Stafford, Thomas W.; Smith, James J.; Voorhies, Michael R.; George Corner, R.; Andrews, Phillip C.

    2007-12-01

    Ancient DNA sequences offer an extraordinary opportunity to unravel the evolutionary history of ancient organisms. Protein sequences offer another reservoir of genetic information that has recently become tractable through the application of mass spectrometric techniques. The extent to which ancient protein sequences resolve phylogenetic relationships, however, has not been explored. We determined the osteocalcin amino acid sequence from the bone of an extinct Camelid (21 ka, Camelops hesternus) excavated from Isleta Cave, New Mexico and three bones of extant camelids: bactrian camel ( Camelus bactrianus); dromedary camel ( Camelus dromedarius) and guanaco ( Llama guanacoe) for a diagenetic and phylogenetic assessment. There was no difference in sequence among the four taxa. Structural attributes observed in both modern and ancient osteocalcin include a post-translation modification, Hyp 9, deamidation of Gln 35 and Gln 39, and oxidation of Met 36. Carbamylation of the N-terminus in ancient osteocalcin may result in blockage and explain previous difficulties in sequencing ancient proteins via Edman degradation. A phylogenetic analysis using osteocalcin sequences of 25 vertebrate taxa was conducted to explore osteocalcin protein evolution and the utility of osteocalcin sequences for delineating phylogenetic relationships. The maximum likelihood tree closely reflected generally recognized taxonomic relationships. For example, maximum likelihood analysis recovered rodents, birds and, within hominins, the Homo-Pan-Gorilla trichotomy. Within Artiodactyla, character state analysis showed that a substitution of Pro 4 for His 4 defines the Capra-Ovis clade within Artiodactyla. Homoplasy in our analysis indicated that osteocalcin evolution is not a perfect indicator of species evolution. Limited sequence availability prevented assigning functional significance to sequence changes. Our preliminary analysis of osteocalcin evolution represents an initial step towards a complete character analysis aimed at determining the evolutionary history of this functionally significant protein. We emphasize that ancient protein sequencing and phylogenetic analyses using amino acid sequences must pay close attention to post-translational modifications, amino acid substitutions due to diagenetic alteration and the impacts of isobaric amino acids on mass shifts and sequence alignments.

  12. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods

    PubMed Central

    Tamura, Koichiro; Peterson, Daniel; Peterson, Nicholas; Stecher, Glen; Nei, Masatoshi; Kumar, Sudhir

    2011-01-01

    Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net. PMID:21546353

  13. Phylogenetic place of guinea pigs: no support of the rodent-polyphyly hypothesis from maximum-likelihood analyses of multiple protein sequences.

    PubMed

    Cao, Y; Adachi, J; Yano, T; Hasegawa, M

    1994-07-01

    Graur et al.'s (1991) hypothesis that the guinea pig-like rodents have an evolutionary origin within mammals that is separate from that of other rodents (the rodent-polyphyly hypothesis) was reexamined by the maximum-likelihood method for protein phylogeny, as well as by the maximum-parsimony and neighbor-joining methods. The overall evidence does not support Graur et al.'s hypothesis, which radically contradicts the traditional view of rodent monophyly. This work demonstrates that we must be careful in choosing a proper method for phylogenetic inference and that an argument based on a small data set (with respect to the length of the sequence and especially the number of species) may be unstable.

  14. PAL: an object-oriented programming library for molecular evolution and phylogenetics.

    PubMed

    Drummond, A; Strimmer, K

    2001-07-01

    Phylogenetic Analysis Library (PAL) is a collection of Java classes for use in molecular evolution and phylogenetics. PAL provides a modular environment for the rapid construction of both special-purpose and general analysis programs. PAL version 1.1 consists of 145 public classes or interfaces in 13 packages, including classes for models of character evolution, maximum-likelihood estimation, and the coalescent, with a total of more than 27000 lines of code. The PAL project is set up as a collaborative project to facilitate contributions from other researchers. AVAILIABILTY: The program is free and is available at http://www.pal-project.org. It requires Java 1.1 or later. PAL is licensed under the GNU General Public License.

  15. Molecular epidemiology and phylogenetic analysis of Hepatitis B virus in a group of migrants in Italy.

    PubMed

    Villano, Umbertina; Lo Presti, Alessandra; Equestre, Michele; Cella, Eleonora; Pisani, Giulio; Giovanetti, Marta; Bruni, Roberto; Tritarelli, Elena; Amicosante, Massimo; Grifoni, Alba; Scarcella, Carmelo; El-Hamad, Issa; Pezzoli, Maria Chiara; Angeletti, Silvia; Silvia, Angeletti; Ciccaglione, Anna Rita; Ciccozzi, Massimo

    2015-07-25

    Hepatitis B virus infection (HBV) is widespread and it is considered a major health problem worldwide. The global distribution of HBV varies significantly between countries and between regions of the world. Among the many factors contributing to the changing epidemiology of viral hepatitis, the movement of people within and between countries is a potentially important one. In Italy, the number of migrant individuals has been increasing during the past 25 years. HBV genotype D has been found throughout the world, although its highest prevalence is in the Mediterranean area, the Middle East and southern Asia. We describe the molecular epidemiology of HBV in a chronically infected population of migrants (living in Italy), by using the phylogenetic analysis. HBV-DNA was amplified and sequenced from 43 HBV chronically infected patients. Phylogenetic and evolutionary analysis were performed using both maximum Likelihood and Bayesian methods. Of the 43 HBV S gene isolates from migrants, 25 (58.1 %) were classified as D genotype. Maximum Likelihood analysis showed an intermixing between Moldavian and foreigners sequences mostly respect to Italian ones. Italian sequences clustered mostly together in a main clade separately from all others. The estimation of the time of the tree's root gave a mean value of 17 years ago, suggesting the origin of the tree back to 1992 year. The skyline plot showed that the number of infections softly increased until the early 2005s, after which reached a plateau. Comparing phylogenetic data to the migrants date of arrival in Italy, it should be possible that migrants arrived in Italy yet infected from their country of origin. In conclusion, this is the first paper where phylogenetic analysis and genetic evolution has been used to characterize HBV sub genotypes D1 circulation in a selected and homogenous group of migrants coming from a restricted area of Balkans and to approximately define the period of infection besides the migration date.

  16. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data.

    PubMed

    Lee, Tae-Ho; Guo, Hui; Wang, Xiyin; Kim, Changsoo; Paterson, Andrew H

    2014-02-26

    Phylogenetic trees are widely used for genetic and evolutionary studies in various organisms. Advanced sequencing technology has dramatically enriched data available for constructing phylogenetic trees based on single nucleotide polymorphisms (SNPs). However, massive SNP data makes it difficult to perform reliable analysis, and there has been no ready-to-use pipeline to generate phylogenetic trees from these data. We developed a new pipeline, SNPhylo, to construct phylogenetic trees based on large SNP datasets. The pipeline may enable users to construct a phylogenetic tree from three representative SNP data file formats. In addition, in order to increase reliability of a tree, the pipeline has steps such as removing low quality data and considering linkage disequilibrium. A maximum likelihood method for the inference of phylogeny is also adopted in generation of a tree in our pipeline. Using SNPhylo, users can easily produce a reliable phylogenetic tree from a large SNP data file. Thus, this pipeline can help a researcher focus more on interpretation of the results of analysis of voluminous data sets, rather than manipulations necessary to accomplish the analysis.

  17. Dynamically heterogenous partitions and phylogenetic inference: an evaluation of analytical strategies with cytochrome b and ND6 gene sequences in cranes.

    PubMed

    Krajewski, C; Fain, M G; Buckley, L; King, D G

    1999-11-01

    ki ctes over whether molecular sequence data should be partitioned for phylogenetic analysis often confound two types of heterogeneity among partitions. We distinguish historical heterogeneity (i.e., different partitions have different evolutionary relationships) from dynamic heterogeneity (i.e., different partitions show different patterns of sequence evolution) and explore the impact of the latter on phylogenetic accuracy and precision with a two-gene, mitochondrial data set for cranes. The well-established phylogeny of cranes allows us to contrast tree-based estimates of relevant parameter values with estimates based on pairwise comparisons and to ascertain the effects of incorporating different amounts of process information into phylogenetic estimates. We show that codon positions in the cytochrome b and NADH dehydrogenase subunit 6 genes are dynamically heterogenous under both Poisson and invariable-sites + gamma-rates versions of the F84 model and that heterogeneity includes variation in base composition and transition bias as well as substitution rate. Estimates of transition-bias and relative-rate parameters from pairwise sequence comparisons were comparable to those obtained as tree-based maximum likelihood estimates. Neither rate-category nor mixed-model partitioning strategies resulted in a loss of phylogenetic precision relative to unpartitioned analyses. We suggest that weighted-average distances provide a computationally feasible alternative to direct maximum likelihood estimates of phylogeny for mixed-model analyses of large, dynamically heterogenous data sets. Copyright 1999 Academic Press.

  18. A phylogeny of robber flies (Diptera: Asilidae) at the subfamilial level: molecular evidence.

    PubMed

    Bybee, Seth M; Taylor, Sean D; Riley Nelson, C; Whiting, Michael F

    2004-03-01

    We present the first formal analysis of phylogenetic relationships among the Asilidae, based on four genes: 16S rDNA, 18S rDNA, 28S rDNA, and cytochrome oxidase II. Twenty-six ingroup taxa representing 11 of the 12 described subfamilies were selected to produce a phylogenetic estimate of asilid subfamilial relationships via optimization alignment, parsimony, and maximum likelihood techniques. Phylogenetic analyses support the monophyly of Asilidae with Leptogastrinae as the most basal robber fly lineage. Apocleinae+(Asilinae+Ommatiinae) is supported as monophyletic. The laphriinae-group (Laphriinae+Laphystiinae) and the dasypogoninae-group (Dasypogoninae+Stenopogoninae+Stichopogoninae+ Trigonomiminae) are paraphyletic. These results suggest that current subfamilial classification only partially reflects robber fly phylogeny, indicating the need for further phylogenetic investigation of this group.

  19. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree

    PubMed Central

    2010-01-01

    Background Likelihood-based phylogenetic inference is generally considered to be the most reliable classification method for unknown sequences. However, traditional likelihood-based phylogenetic methods cannot be applied to large volumes of short reads from next-generation sequencing due to computational complexity issues and lack of phylogenetic signal. "Phylogenetic placement," where a reference tree is fixed and the unknown query sequences are placed onto the tree via a reference alignment, is a way to bring the inferential power offered by likelihood-based approaches to large data sets. Results This paper introduces pplacer, a software package for phylogenetic placement and subsequent visualization. The algorithm can place twenty thousand short reads on a reference tree of one thousand taxa per hour per processor, has essentially linear time and memory complexity in the number of reference taxa, and is easy to run in parallel. Pplacer features calculation of the posterior probability of a placement on an edge, which is a statistically rigorous way of quantifying uncertainty on an edge-by-edge basis. It also can inform the user of the positional uncertainty for query sequences by calculating expected distance between placement locations, which is crucial in the estimation of uncertainty with a well-sampled reference tree. The software provides visualizations using branch thickness and color to represent number of placements and their uncertainty. A simulation study using reads generated from 631 COG alignments shows a high level of accuracy for phylogenetic placement over a wide range of alignment diversity, and the power of edge uncertainty estimates to measure placement confidence. Conclusions Pplacer enables efficient phylogenetic placement and subsequent visualization, making likelihood-based phylogenetics methodology practical for large collections of reads; it is freely available as source code, binaries, and a web service. PMID:21034504

  20. Phylogenetically marking the limits of the genus Fusarium for post-Article 59 usage

    USDA-ARS?s Scientific Manuscript database

    Fusarium (Hypocreales, Nectriaceae) is one of the most important and systematically challenging groups of mycotoxigenic, plant pathogenic, and human pathogenic fungi. We conducted maximum likelihood (ML), maximum parsimony (MP) and Bayesian (B) analyses on partial nucleotide sequences of genes encod...

  1. MultiPhyl: a high-throughput phylogenomics webserver using distributed computing

    PubMed Central

    Keane, Thomas M.; Naughton, Thomas J.; McInerney, James O.

    2007-01-01

    With the number of fully sequenced genomes increasing steadily, there is greater interest in performing large-scale phylogenomic analyses from large numbers of individual gene families. Maximum likelihood (ML) has been shown repeatedly to be one of the most accurate methods for phylogenetic construction. Recently, there have been a number of algorithmic improvements in maximum-likelihood-based tree search methods. However, it can still take a long time to analyse the evolutionary history of many gene families using a single computer. Distributed computing refers to a method of combining the computing power of multiple computers in order to perform some larger overall calculation. In this article, we present the first high-throughput implementation of a distributed phylogenetics platform, MultiPhyl, capable of using the idle computational resources of many heterogeneous non-dedicated machines to form a phylogenetics supercomputer. MultiPhyl allows a user to upload hundreds or thousands of amino acid or nucleotide alignments simultaneously and perform computationally intensive tasks such as model selection, tree searching and bootstrapping of each of the alignments using many desktop machines. The program implements a set of 88 amino acid models and 56 nucleotide maximum likelihood models and a variety of statistical methods for choosing between alternative models. A MultiPhyl webserver is available for public use at: http://www.cs.nuim.ie/distributed/multiphyl.php. PMID:17553837

  2. Molecular biogeography of tribe Thermopsideae (Leguminosae): A Madrean-Tethyan disjunction pattern with an African origin of core genistoides

    Treesearch

    Ming-Li Zhang; Jian-Feng Huang; Stewart C. Sanderson; Ping Yan; Yu-H Wu; Bo-Rong Pan

    2015-01-01

    Thermopsideae has 45 species and exhibits a series of interesting biogeographical distribution patterns, such as Madrean-Tethyan disjunction and EastAsia-North America disjunction,with a center of endemism in the Qinghai-Xizang Plateau (QTP) and Central Asia. Phylogenetic analysis in this paper employed maximum likelihood using ITS, rps16, psbA-trnH, and trnL-F...

  3. Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data.

    PubMed

    da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos

    2013-12-01

    The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree.

  4. Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data

    PubMed Central

    da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos

    2013-01-01

    The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree. PMID:24385862

  5. Phylogenetic analysis in Myrcia section Aulomyrcia and inferences on plant diversity in the Atlantic rainforest

    PubMed Central

    Staggemeier, Vanessa Graziele; Diniz-Filho, José Alexandre Felizola; Forest, Félix; Lucas, Eve

    2015-01-01

    Background and Aims Myrcia section Aulomyrcia includes ∼120 species that are endemic to the Neotropics and disjunctly distributed in the moist Amazon and Atlantic coastal forests of Brazil. This paper presents the first comprehensive phylogenetic study of this group and this phylogeny is used as a basis to evaluate recent classification systems and to test alternative hypotheses associated with the history of this clade. Methods Fifty-three taxa were sampled out of the 120 species currently recognized, plus 40 outgroup taxa, for one nuclear marker (ribosomal internal transcribed spacer) and four plastid markers (psbA-trnH, trnL-trnF, trnQ-rpS16 and ndhF). The relationships were reconstructed based on Bayesian and maximum likelihood analyses. Additionally, a likelihood approach, ‘geographic state speciation and extinction’, was used to estimate region- dependent rates of speciation, extinction and dispersal, comparing historically climatic stable areas (refugia) and unstable areas. Key Results Maximum likelihood and Bayesian inferences indicate that Myrcia and Marlierea are polyphyletic, and the internal groupings recovered are characterized by combinations of morphological characters. Phylogenetic relationships support a link between Amazonian and north-eastern species and between north-eastern and south-eastern species. Lower extinction rates within glacial refugia suggest that these areas were important in maintaining diversity in the Atlantic forest biodiversity hotspot. Conclusions This study provides a robust phylogenetic framework to address important ecological questions for Myrcia s.l. within an evolutionary context, and supports the need to unite taxonomically the two traditional genera Myrcia and Marlierea in an expanded Myrcia s.l. Furthermore, this study offers valuable insights into the diversification of plant species in the highly impacted Atlantic forest of South America; evidence is presented that the lowest extinction rates are found inside refugia and that range expansion from unstable areas contributes to the highest levels of plant diversity in the Bahian refugium. PMID:25757471

  6. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms.

    PubMed

    Speiser, Daniel I; Pankey, M Sabrina; Zaharoff, Alexander K; Battelle, Barbara A; Bracken-Grissom, Heather D; Breinholt, Jesse W; Bybee, Seth M; Cronin, Thomas W; Garm, Anders; Lindgren, Annie R; Patel, Nipam H; Porter, Megan L; Protas, Meredith E; Rivera, Ajna S; Serb, Jeanne M; Zigler, Kirk S; Crandall, Keith A; Oakley, Todd H

    2014-11-19

    Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.

  7. Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria

    USDA-ARS?s Scientific Manuscript database

    Fusarium (Hypocreales, Nectriaceae) is one of the most economically important and systematically challenging groups of mycotoxigenic phytopathogens and emergent human pathogens. We conducted maximum likelihood (ML), maximum parsimony (MP) and Bayesian (B) analyses on partial RNA polymerase largest (...

  8. A Distance Measure for Genome Phylogenetic Analysis

    NASA Astrophysics Data System (ADS)

    Cao, Minh Duc; Allison, Lloyd; Dix, Trevor

    Phylogenetic analyses of species based on single genes or parts of the genomes are often inconsistent because of factors such as variable rates of evolution and horizontal gene transfer. The availability of more and more sequenced genomes allows phylogeny construction from complete genomes that is less sensitive to such inconsistency. For such long sequences, construction methods like maximum parsimony and maximum likelihood are often not possible due to their intensive computational requirement. Another class of tree construction methods, namely distance-based methods, require a measure of distances between any two genomes. Some measures such as evolutionary edit distance of gene order and gene content are computational expensive or do not perform well when the gene content of the organisms are similar. This study presents an information theoretic measure of genetic distances between genomes based on the biological compression algorithm expert model. We demonstrate that our distance measure can be applied to reconstruct the consensus phylogenetic tree of a number of Plasmodium parasites from their genomes, the statistical bias of which would mislead conventional analysis methods. Our approach is also used to successfully construct a plausible evolutionary tree for the γ-Proteobacteria group whose genomes are known to contain many horizontally transferred genes.

  9. A Phylogenetic Analysis of the Genus Fragaria (Strawberry) Using Intron-Containing Sequence from the ADH-1 Gene

    PubMed Central

    DiMeglio, Laura M.; Yu, Hongrun; Davis, Thomas M.

    2014-01-01

    The genus Fragaria encompasses species at ploidy levels ranging from diploid to decaploid. The cultivated strawberry, Fragaria×ananassa, and its two immediate progenitors, F. chiloensis and F. virginiana, are octoploids. To elucidate the ancestries of these octoploid species, we performed a phylogenetic analysis using intron-containing sequences of the nuclear ADH-1 gene from 39 germplasm accessions representing nineteen Fragaria species and one outgroup species, Dasiphora fruticosa. All trees from Maximum Parsimony and Maximum Likelihood analyses showed two major clades, Clade A and Clade B. Each of the sampled octoploids contributed alleles to both major clades. All octoploid-derived alleles in Clade A clustered with alleles of diploid F. vesca, with the exception of one octoploid allele that clustered with the alleles of diploid F. mandshurica. All octoploid-derived alleles in clade B clustered with the alleles of only one diploid species, F. iinumae. When gaps encoded as binary characters were included in the Maximum Parsimony analysis, tree resolution was improved with the addition of six nodes, and the bootstrap support was generally higher, rising above the 50% threshold for an additional nine branches. These results, coupled with the congruence of the sequence data and the coded gap data, validate and encourage the employment of sequence sets containing gaps for phylogenetic analysis. Our phylogenetic conclusions, based upon sequence data from the ADH-1 gene located on F. vesca linkage group II, complement and generally agree with those obtained from analyses of protein-encoding genes GBSSI-2 and DHAR located on F. vesca linkage groups V and VII, respectively, but differ from a previous study that utilized rDNA sequences and did not detect the ancestral role of F. iinumae. PMID:25078607

  10. Likelihood of Tree Topologies with Fossils and Diversification Rate Estimation.

    PubMed

    Didier, Gilles; Fau, Marine; Laurin, Michel

    2017-11-01

    Since the diversification process cannot be directly observed at the human scale, it has to be studied from the information available, namely the extant taxa and the fossil record. In this sense, phylogenetic trees including both extant taxa and fossils are the most complete representations of the diversification process that one can get. Such phylogenetic trees can be reconstructed from molecular and morphological data, to some extent. Among the temporal information of such phylogenetic trees, fossil ages are by far the most precisely known (divergence times are inferences calibrated mostly with fossils). We propose here a method to compute the likelihood of a phylogenetic tree with fossils in which the only considered time information is the fossil ages, and apply it to the estimation of the diversification rates from such data. Since it is required in our computation, we provide a method for determining the probability of a tree topology under the standard diversification model. Testing our approach on simulated data shows that the maximum likelihood rate estimates from the phylogenetic tree topology and the fossil dates are almost as accurate as those obtained by taking into account all the data, including the divergence times. Moreover, they are substantially more accurate than the estimates obtained only from the exact divergence times (without taking into account the fossil record). We also provide an empirical example composed of 50 Permo-Carboniferous eupelycosaur (early synapsid) taxa ranging in age from about 315 Ma (Late Carboniferous) to 270 Ma (shortly after the end of the Early Permian). Our analyses suggest a speciation (cladogenesis, or birth) rate of about 0.1 per lineage and per myr, a marginally lower extinction rate, and a considerable hidden paleobiodiversity of early synapsids. [Extinction rate; fossil ages; maximum likelihood estimation; speciation rate.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Complete mitochondrial genome of Cuora trifasciata (Chinese three-striped box turtle), and a comparative analysis with other box turtles.

    PubMed

    Li, Wei; Zhang, Xin-Cheng; Zhao, Jian; Shi, Yan; Zhu, Xin-Ping

    2015-01-25

    Cuora trifasciata has become one of the most critically endangered species in the world. The complete mitochondrial genome of C. trifasciata (Chinese three-striped box turtle) was determined in this study. Its mitochondrial genome is a 16,575-bp-long circular molecule that consists of 37 genes that are typically found in other vertebrates. And the basic characteristics of the C. trifasciata mitochondrial genome were also determined. Moreover, a comparison of C. trifasciata with Cuora cyclornata, Cuora pani and Cuora aurocapitata indicated that the four mitogenomics differed in length, codons, overlaps, 13 protein-coding genes (PCGs), ND3, rRNA genes, control region, and other aspects. Phylogenetic analysis with Bayesian inference and maximum likelihood based on 12 protein-coding genes of the genus Cuora indicated the phylogenetic position of C. trifasciata within Cuora. The phylogenetic analysis also showed that C. trifasciata from Vietnam and China formed separate monophyletic clades with different Cuora species. The results of nucleotide base compositions, protein-coding genes and phylogenetic analysis showed that C. trifasciata from these two countries may represent different Cuora species. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Phylogenetic position of the North American isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, as inferred from 16S rDNA sequence analysis.

    PubMed

    Atibalentja, N; Noel, G R; Domier, L L

    2000-03-01

    A 1341 bp sequence of the 16S rDNA of an undescribed species of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, was determined and then compared with a homologous sequence of Pasteuria ramosa, a parasite of cladoceran water fleas of the family Daphnidae. The two Pasteuria sequences, which diverged from each other by a dissimilarity index of 7%, also were compared with the 16S rDNA sequences of 30 other bacterial species to determine the phylogenetic position of the genus Pasteuria among the Gram-positive eubacteria. Phylogenetic analyses using maximum-likelihood, maximum-parsimony and neighbour-joining methods showed that the Heterodera glycines-infecting Pasteuria and its sister species, P. ramosa, form a distinct line of descent within the Alicyclobacillus group of the Bacillaceae. These results are consistent with the view that the genus Pasteuria is a deeply rooted member of the Clostridium-Bacillus-Streptococcus branch of the Gram-positive eubacteria, neither related to the actinomycetes nor closely related to true endospore-forming bacteria.

  13. Evaluating Fast Maximum Likelihood-Based Phylogenetic Programs Using Empirical Phylogenomic Data Sets

    PubMed Central

    Zhou, Xiaofan; Shen, Xing-Xing; Hittinger, Chris Todd

    2018-01-01

    Abstract The sizes of the data matrices assembled to resolve branches of the tree of life have increased dramatically, motivating the development of programs for fast, yet accurate, inference. For example, several different fast programs have been developed in the very popular maximum likelihood framework, including RAxML/ExaML, PhyML, IQ-TREE, and FastTree. Although these programs are widely used, a systematic evaluation and comparison of their performance using empirical genome-scale data matrices has so far been lacking. To address this question, we evaluated these four programs on 19 empirical phylogenomic data sets with hundreds to thousands of genes and up to 200 taxa with respect to likelihood maximization, tree topology, and computational speed. For single-gene tree inference, we found that the more exhaustive and slower strategies (ten searches per alignment) outperformed faster strategies (one tree search per alignment) using RAxML, PhyML, or IQ-TREE. Interestingly, single-gene trees inferred by the three programs yielded comparable coalescent-based species tree estimations. For concatenation-based species tree inference, IQ-TREE consistently achieved the best-observed likelihoods for all data sets, and RAxML/ExaML was a close second. In contrast, PhyML often failed to complete concatenation-based analyses, whereas FastTree was the fastest but generated lower likelihood values and more dissimilar tree topologies in both types of analyses. Finally, data matrix properties, such as the number of taxa and the strength of phylogenetic signal, sometimes substantially influenced the programs’ relative performance. Our results provide real-world gene and species tree phylogenetic inference benchmarks to inform the design and execution of large-scale phylogenomic data analyses. PMID:29177474

  14. Phylogenetic relationships within the cyst-forming nematodes (Nematoda, Heteroderidae) based on analysis of sequences from the ITS regions of ribosomal DNA.

    PubMed

    Subbotin, S A; Vierstraete, A; De Ley, P; Rowe, J; Waeyenberge, L; Moens, M; Vanfleteren, J R

    2001-10-01

    The ITS1, ITS2, and 5.8S gene sequences of nuclear ribosomal DNA from 40 taxa of the family Heteroderidae (including the genera Afenestrata, Cactodera, Heterodera, Globodera, Punctodera, Meloidodera, Cryphodera, and Thecavermiculatus) were sequenced and analyzed. The ITS regions displayed high levels of sequence divergence within Heteroderinae and compared to outgroup taxa. Unlike recent findings in root knot nematodes, ITS sequence polymorphism does not appear to complicate phylogenetic analysis of cyst nematodes. Phylogenetic analyses with maximum-parsimony, minimum-evolution, and maximum-likelihood methods were performed with a range of computer alignments, including elision and culled alignments. All multiple alignments and phylogenetic methods yielded similar basic structure for phylogenetic relationships of Heteroderidae. The cyst-forming nematodes are represented by six main clades corresponding to morphological characters and host specialization, with certain clades assuming different positions depending on alignment procedure and/or method of phylogenetic inference. Hypotheses of monophyly of Punctoderinae and Heteroderinae are, respectively, strongly and moderately supported by the ITS data across most alignments. Close relationships were revealed between the Avenae and the Sacchari groups and between the Humuli group and the species H. salixophila within Heteroderinae. The Goettingiana group occupies a basal position within this subfamily. The validity of the genera Afenestrata and Bidera was tested and is discussed based on molecular data. We conclude that ITS sequence data are appropriate for studies of relationships within the different species groups and less so for recovery of more ancient speciations within Heteroderidae. Copyright 2001 Academic Press.

  15. Are humans the initial source of canine mange?

    PubMed

    Andriantsoanirina, Valérie; Fang, Fang; Ariey, Frédéric; Izri, Arezki; Foulet, Françoise; Botterel, Françoise; Bernigaud, Charlotte; Chosidow, Olivier; Huang, Weiyi; Guillot, Jacques; Durand, Rémy

    2016-03-25

    Scabies, or mange as it is called in animals, is an ectoparasitic contagious infestation caused by the mite Sarcoptes scabiei. Sarcoptic mange is an important veterinary disease leading to significant morbidity and mortality in wild and domestic animals. A widely accepted hypothesis, though never substantiated by factual data, suggests that humans were the initial source of the animal contamination. In this study we performed phylogenetic analyses of populations of S. scabiei from humans and from canids to validate or not the hypothesis of a human origin of the mites infecting domestic dogs. Mites from dogs and foxes were obtained from three French sites and from other countries. A part of cytochrome c oxidase subunit 1 (cox1) gene was amplified and directly sequenced. Other sequences corresponding to mites from humans, raccoon dogs, foxes, jackal and dogs from various geographical areas were retrieved from GenBank. Phylogenetic analyses were performed using the Otodectes cynotis cox1 sequence as outgroup. Maximum Likelihood and Bayesian Inference analysis approaches were used. To visualize the relationship between the haplotypes, a median joining haplotype network was constructed using Network v4.6 according to host. Twenty-one haplotypes were observed among mites collected from five different host species, including humans and canids from nine geographical areas. The phylogenetic trees based on Maximum Likelihood and Bayesian Inference analyses showed similar topologies with few differences in node support values. The results were not consistent with a human origin of S. scabiei mites in dogs and, on the contrary, did not exclude the opposite hypothesis of a host switch from dogs to humans. Phylogenetic relatedness may have an impact in terms of epidemiological control strategy. Our results and other recent studies suggest to re-evaluate the level of transmission between domestic dogs and humans.

  16. Genetic distances and phylogenetic trees of different Awassi sheep populations based on DNA sequencing.

    PubMed

    Al-Atiyat, R M; Aljumaah, R S

    2014-08-27

    This study aimed to estimate evolutionary distances and to reconstruct phylogeny trees between different Awassi sheep populations. Thirty-two sheep individuals from three different geographical areas of Jordan and the Kingdom of Saudi Arabia (KSA) were randomly sampled. DNA was extracted from the tissue samples and sequenced using the T7 promoter universal primer. Different phylogenetic trees were reconstructed from 0.64-kb DNA sequences using the MEGA software with the best general time reverse distance model. Three methods of distance estimation were then used. The maximum composite likelihood test was considered for reconstructing maximum likelihood, neighbor-joining and UPGMA trees. The maximum likelihood tree indicated three major clusters separated by cytosine (C) and thymine (T). The greatest distance was shown between the South sheep and North sheep. On the other hand, the KSA sheep as an outgroup showed shorter evolutionary distance to the North sheep population than to the others. The neighbor-joining and UPGMA trees showed quite reliable clusters of evolutionary differentiation of Jordan sheep populations from the Saudi population. The overall results support geographical information and ecological types of the sheep populations studied. Summing up, the resulting phylogeny trees may contribute to the limited information about the genetic relatedness and phylogeny of Awassi sheep in nearby Arab countries.

  17. Craniofacial form and function in Metriorhynchidae (Crocodylomorpha: Thalattosuchia): modelling phenotypic evolution with maximum-likelihood methods.

    PubMed

    Young, Mark T; Bell, Mark A; Brusatte, Stephen L

    2011-12-23

    Metriorhynchid crocodylomorphs were the only group of archosaurs to fully adapt to a pelagic lifestyle. During the Jurassic and Early Cretaceous, this group diversified into a variety of ecological and morphological types, from large super-predators with a broad short snout and serrated teeth to specialized piscivores/teuthophages with an elongate tubular snout and uncarinated teeth. Here, we use an integrated repertoire of geometric morphometric (form), biomechanical finite-element analysis (FEA; function) and phylogenetic data to examine the nature of craniofacial evolution in this clade. FEA stress values significantly correlate with morphometric values representing skull length and breadth, indicating that form and function are associated. Maximum-likelihood methods, which assess which of several models of evolution best explain the distribution of form and function data on a phylogenetic tree, show that the two major metriorhynchid subclades underwent different evolutionary modes. In geosaurines, both form and function are best explained as evolving under 'random' Brownian motion, whereas in metriorhynchines, the form metrics are best explained as evolving under stasis and the function metric as undergoing a directional change (towards most efficient low-stress piscivory). This suggests that the two subclades were under different selection pressures, and that metriorhynchines with similar skull shape were driven to become functionally divergent.

  18. Molecular systematics of terraranas (Anura: Brachycephaloidea) with an assessment of the effects of alignment and optimality criteria.

    PubMed

    Padial, José M; Grant, Taran; Frost, Darrel R

    2014-06-26

    Brachycephaloidea is a monophyletic group of frogs with more than 1000 species distributed throughout the New World tropics, subtropics, and Andean regions. Recently, the group has been the target of multiple molecular phylogenetic analyses, resulting in extensive changes in its taxonomy. Here, we test previous hypotheses of phylogenetic relationships for the group by combining available molecular evidence (sequences of 22 genes representing 431 ingroup and 25 outgroup terminals) and performing a tree-alignment analysis under the parsimony optimality criterion using the program POY. To elucidate the effects of alignment and optimality criterion on phylogenetic inferences, we also used the program MAFFT to obtain a similarity-alignment for analysis under both parsimony and maximum likelihood using the programs TNT and GARLI, respectively. Although all three analytical approaches agreed on numerous points, there was also extensive disagreement. Tree-alignment under parsimony supported the monophyly of the ingroup and the sister group relationship of the monophyletic marsupial frogs (Hemiphractidae), while maximum likelihood and parsimony analyses of the MAFFT similarity-alignment did not. All three methods differed with respect to the position of Ceuthomantis smaragdinus (Ceuthomantidae), with tree-alignment using parsimony recovering this species as the sister of Pristimantis + Yunganastes. All analyses rejected the monophyly of Strabomantidae and Strabomantinae as originally defined, and the tree-alignment analysis under parsimony further rejected the recently redefined Craugastoridae and Pristimantinae. Despite the greater emphasis in the systematics literature placed on the choice of optimality criterion for evaluating trees than on the choice of method for aligning DNA sequences, we found that the topological differences attributable to the alignment method were as great as those caused by the optimality criterion. Further, the optimal tree-alignment indicates that insertions and deletions occurred in twice as many aligned positions as implied by the optimal similarity-alignment, confirming previous findings that sequence turnover through insertion and deletion events plays a greater role in molecular evolution than indicated by similarity-alignments. Our results also provide a clear empirical demonstration of the different effects of wildcard taxa produced by missing data in parsimony and maximum likelihood analyses. Specifically, maximum likelihood analyses consistently (81% bootstrap frequency) provided spurious resolution despite a lack of evidence, whereas parsimony correctly depicted the ambiguity due to missing data by collapsing unsupported nodes. We provide a new taxonomy for the group that retains previously recognized Linnaean taxa except for Ceuthomantidae, Strabomantidae, and Strabomantinae. A phenotypically diagnosable superfamily is recognized formally as Brachycephaloidea, with the informal, unranked name terrarana retained as the standard common name for these frogs. We recognize three families within Brachycephaloidea that are currently diagnosable solely on molecular grounds (Brachycephalidae, Craugastoridae, and Eleutherodactylidae), as well as five subfamilies (Craugastorinae, Eleutherodactylinae, Holoadeninae, Phyzelaphryninae, and Pristimantinae) corresponding in large part to previous families and subfamilies. Our analyses upheld the monophyly of all tested genera, but we found numerous subgeneric taxa to be non-monophyletic and modified the taxonomy accordingly.

  19. DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments.

    PubMed

    Kelly, Steven; Maini, Philip K

    2013-01-01

    The rapidly growing availability of genome information has created considerable demand for both fast and accurate phylogenetic inference algorithms. We present a novel method called DendroBLAST for reconstructing phylogenetic dendrograms/trees from protein sequences using BLAST. This method differs from other methods by incorporating a simple model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the inferred tree. Using realistic simulated sequence data we demonstrate that this method produces phylogenetic trees that are more accurate than other commonly-used distance based methods though not as accurate as maximum likelihood methods from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an approximate phylogeny of the Archaea that has both high precision and recall when compared to previously published analysis of the same dataset using conventional methods. Taken together these results demonstrate that approximate phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the DendroBLAST method is freely available for use at http://www.dendroblast.com/.

  20. Phylogenetic Information Content of Copepoda Ribosomal DNA Repeat Units: ITS1 and ITS2 Impact

    PubMed Central

    Zagoskin, Maxim V.; Lazareva, Valentina I.; Grishanin, Andrey K.; Mukha, Dmitry V.

    2014-01-01

    The utility of various regions of the ribosomal repeat unit for phylogenetic analysis was examined in 16 species representing four families, nine genera, and two orders of the subclass Copepoda (Crustacea). Fragments approximately 2000 bp in length containing the ribosomal DNA (rDNA) 18S and 28S gene fragments, the 5.8S gene, and the internal transcribed spacer regions I and II (ITS1 and ITS2) were amplified and analyzed. The DAMBE (Data Analysis in Molecular Biology and Evolution) software was used to analyze the saturation of nucleotide substitutions; this test revealed the suitability of both the 28S gene fragment and the ITS1/ITS2 rDNA regions for the reconstruction of phylogenetic trees. Distance (minimum evolution) and probabilistic (maximum likelihood, Bayesian) analyses of the data revealed that the 28S rDNA and the ITS1 and ITS2 regions are informative markers for inferring phylogenetic relationships among families of copepods and within the Cyclopidae family and associated genera. Split-graph analysis of concatenated ITS1/ITS2 rDNA regions of cyclopoid copepods suggested that the Mesocyclops, Thermocyclops, and Macrocyclops genera share complex evolutionary relationships. This study revealed that the ITS1 and ITS2 regions potentially represent different phylogenetic signals. PMID:25215300

  1. Treetrimmer: a method for phylogenetic dataset size reduction.

    PubMed

    Maruyama, Shinichiro; Eveleigh, Robert J M; Archibald, John M

    2013-04-12

    With rapid advances in genome sequencing and bioinformatics, it is now possible to generate phylogenetic trees containing thousands of operational taxonomic units (OTUs) from a wide range of organisms. However, use of rigorous tree-building methods on such large datasets is prohibitive and manual 'pruning' of sequence alignments is time consuming and raises concerns over reproducibility. There is a need for bioinformatic tools with which to objectively carry out such pruning procedures. Here we present 'TreeTrimmer', a bioinformatics procedure that removes unnecessary redundancy in large phylogenetic datasets, alleviating the size effect on more rigorous downstream analyses. The method identifies and removes user-defined 'redundant' sequences, e.g., orthologous sequences from closely related organisms and 'recently' evolved lineage-specific paralogs. Representative OTUs are retained for more rigorous re-analysis. TreeTrimmer reduces the OTU density of phylogenetic trees without sacrificing taxonomic diversity while retaining the original tree topology, thereby speeding up downstream computer-intensive analyses, e.g., Bayesian and maximum likelihood tree reconstructions, in a reproducible fashion.

  2. Complete chloroplast genome of Prunus yedoensis Matsum.(Rosaceae), wild and endemic flowering cherry on Jeju Island, Korea.

    PubMed

    Cho, Myong-Suk; Hyun Cho, Chung; Yeon Kim, Su; Su Yoon, Hwan; Kim, Seung-Chul

    2016-09-01

    The complete chloroplast genome sequences of the wild flowering cherry, Prunus yedoensis Matsum., which is native and endemic to Jeju Island, Korea, is reported in this study. The genome size is 157 786 bp in length with 36.7% GC content, which is composed of LSC region of 85 908 bp, SSC region of 19 120 bp and two IR copies of 26 379 bp each. The cp genome contains 131 genes, including 86 coding genes, 8 rRNA genes and 37 tRNA genes. The maximum likelihood analysis was conducted to verify a phylogenetic position of the newly sequenced cp genome of P. yedoensis using 11 representatives of complete cp genome sequences within the family Rosaceae. The genus Prunus exhibited monophyly and the result of the phylogenetic relationship agreed with the previous phylogenetic analyses within Rosaceae.

  3. A RAD-based phylogenetics for Orestias fishes from Lake Titicaca.

    PubMed

    Takahashi, Tetsumi; Moreno, Edmundo

    2015-12-01

    The fish genus Orestias is endemic to the Andes highlands, and Lake Titicaca is the centre of the species diversity of the genus. Previous phylogenetic studies based on a single locus of mitochondrial and nuclear DNA strongly support the monophyly of a group composed of many of species endemic to the Lake Titicaca basin (the Lake Titicaca radiation), but the relationships among the species in the radiation remain unclear. Recently, restriction site-associated DNA (RAD) sequencing, which can produce a vast number of short sequences from various loci of nuclear DNA, has emerged as a useful way to resolve complex phylogenetic problems. To propose a new phylogenetic hypothesis of Orestias fishes of the Lake Titicaca radiation, we conducted a cluster analysis based on morphological similarities among fish samples and a molecular phylogenetic analysis based on RAD sequencing. From a morphological cluster analysis, we recognised four species groups in the radiation, and three of the four groups were resolved as monophyletic groups in maximum-likelihood trees based on RAD sequencing data. The other morphology-based group was not resolved as a monophyletic group in molecular phylogenies, and some members of the group were diverged from its sister group close to the root of the Lake Titicaca radiation. The evolution of these fishes is discussed from the phylogenetic relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Phylogenetic analysis in Myrcia section Aulomyrcia and inferences on plant diversity in the Atlantic rainforest.

    PubMed

    Staggemeier, Vanessa Graziele; Diniz-Filho, José Alexandre Felizola; Forest, Félix; Lucas, Eve

    2015-04-01

    Myrcia section Aulomyrcia includes ∼120 species that are endemic to the Neotropics and disjunctly distributed in the moist Amazon and Atlantic coastal forests of Brazil. This paper presents the first comprehensive phylogenetic study of this group and this phylogeny is used as a basis to evaluate recent classification systems and to test alternative hypotheses associated with the history of this clade. Fifty-three taxa were sampled out of the 120 species currently recognized, plus 40 outgroup taxa, for one nuclear marker (ribosomal internal transcribed spacer) and four plastid markers (psbA-trnH, trnL-trnF, trnQ-rpS16 and ndhF). The relationships were reconstructed based on Bayesian and maximum likelihood analyses. Additionally, a likelihood approach, 'geographic state speciation and extinction', was used to estimate region- dependent rates of speciation, extinction and dispersal, comparing historically climatic stable areas (refugia) and unstable areas. Maximum likelihood and Bayesian inferences indicate that Myrcia and Marlierea are polyphyletic, and the internal groupings recovered are characterized by combinations of morphological characters. Phylogenetic relationships support a link between Amazonian and north-eastern species and between north-eastern and south-eastern species. Lower extinction rates within glacial refugia suggest that these areas were important in maintaining diversity in the Atlantic forest biodiversity hotspot. This study provides a robust phylogenetic framework to address important ecological questions for Myrcia s.l. within an evolutionary context, and supports the need to unite taxonomically the two traditional genera Myrcia and Marlierea in an expanded Myrcia s.l. Furthermore, this study offers valuable insights into the diversification of plant species in the highly impacted Atlantic forest of South America; evidence is presented that the lowest extinction rates are found inside refugia and that range expansion from unstable areas contributes to the highest levels of plant diversity in the Bahian refugium. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Identifying the Basal Angiosperm Node in Chloroplast GenomePhylogenies: Sampling One's Way Out of the Felsenstein Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leebens-Mack, Jim; Raubeson, Linda A.; Cui, Liying

    2005-05-27

    While there has been strong support for Amborella and Nymphaeales (water lilies) as branching from basal-most nodes in the angiosperm phylogeny, this hypothesis has recently been challenged by phylogenetic analyses of 61 protein-coding genes extracted from the chloroplast genome sequences of Amborella, Nymphaea and 12 other available land plant chloroplast genomes. These character-rich analyses placed the monocots, represented by three grasses (Poaceae), as sister to all other extant angiosperm lineages. We have extracted protein-coding regions from draft sequences for six additional chloroplast genomes to test whether this surprising result could be an artifact of long-branch attraction due to limited taxonmore » sampling. The added taxa include three monocots (Acorus, Yucca and Typha), a water lily (Nuphar), a ranunculid(Ranunculus), and a gymnosperm (Ginkgo). Phylogenetic analyses of the expanded DNA and protein datasets together with microstructural characters (indels) provided unambiguous support for Amborella and the Nymphaeales as branching from the basal-most nodes in the angiospermphylogeny. However, their relative positions proved to be dependent on method of analysis, with parsimony favoring Amborella as sister to all other angiosperms, and maximum likelihood and neighbor-joining methods favoring an Amborella + Nympheales clade as sister. The maximum likelihood phylogeny supported the later hypothesis, but the likelihood for the former hypothesis was not significantly different. Parametric bootstrap analysis, single gene phylogenies, estimated divergence dates and conflicting in del characters all help to illuminate the nature of the conflict in resolution of the most basal nodes in the angiospermphylogeny. Molecular dating analyses provided median age estimates of 161 mya for the most recent common ancestor of all extant angiosperms and 145 mya for the most recent common ancestor of monocots, magnoliids andeudicots. Whereas long sequences reduce variance in branch lengths and molecular dating estimates, the impact of improved taxon sampling on the rooting of the angiosperm phylogeny together with the results of parametric bootstrap analyses demonstrate how long-branch attraction can mislead genome-scale phylogenetic analyses.« less

  6. Comprehensive Phylogenetic Analysis of Bovine Non-aureus Staphylococci Species Based on Whole-Genome Sequencing

    PubMed Central

    Naushad, Sohail; Barkema, Herman W.; Luby, Christopher; Condas, Larissa A. Z.; Nobrega, Diego B.; Carson, Domonique A.; De Buck, Jeroen

    2016-01-01

    Non-aureus staphylococci (NAS), a heterogeneous group of a large number of species and subspecies, are the most frequently isolated pathogens from intramammary infections in dairy cattle. Phylogenetic relationships among bovine NAS species are controversial and have mostly been determined based on single-gene trees. Herein, we analyzed phylogeny of bovine NAS species using whole-genome sequencing (WGS) of 441 distinct isolates. In addition, evolutionary relationships among bovine NAS were estimated from multilocus data of 16S rRNA, hsp60, rpoB, sodA, and tuf genes and sequences from these and numerous other single genes/proteins. All phylogenies were created with FastTree, Maximum-Likelihood, Maximum-Parsimony, and Neighbor-Joining methods. Regardless of methodology, WGS-trees clearly separated bovine NAS species into five monophyletic coherent clades. Furthermore, there were consistent interspecies relationships within clades in all WGS phylogenetic reconstructions. Except for the Maximum-Parsimony tree, multilocus data analysis similarly produced five clades. There were large variations in determining clades and interspecies relationships in single gene/protein trees, under different methods of tree constructions, highlighting limitations of using single genes for determining bovine NAS phylogeny. However, based on WGS data, we established a robust phylogeny of bovine NAS species, unaffected by method or model of evolutionary reconstructions. Therefore, it is now possible to determine associations between phylogeny and many biological traits, such as virulence, antimicrobial resistance, environmental niche, geographical distribution, and host specificity. PMID:28066335

  7. Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics

    PubMed Central

    Van Holle, Sofie; De Schutter, Kristof; Eggermont, Lore; Tsaneva, Mariya; Dang, Liuyi; Van Damme, Els J. M.

    2017-01-01

    Lectins are present throughout the plant kingdom and are reported to be involved in diverse biological processes. In this study, we provide a comparative analysis of the lectin families from model species in a phylogenetic framework. The analysis focuses on the different plant lectin domains identified in five representative core angiosperm genomes (Arabidopsis thaliana, Glycine max, Cucumis sativus, Oryza sativa ssp. japonica and Oryza sativa ssp. indica). The genomes were screened for genes encoding lectin domains using a combination of Basic Local Alignment Search Tool (BLAST), hidden Markov models, and InterProScan analysis. Additionally, phylogenetic relationships were investigated by constructing maximum likelihood phylogenetic trees. The results demonstrate that the majority of the lectin families are present in each of the species under study. Domain organization analysis showed that most identified proteins are multi-domain proteins, owing to the modular rearrangement of protein domains during evolution. Most of these multi-domain proteins are widespread, while others display a lineage-specific distribution. Furthermore, the phylogenetic analyses reveal that some lectin families evolved to be similar to the phylogeny of the plant species, while others share a closer evolutionary history based on the corresponding protein domain architecture. Our results yield insights into the evolutionary relationships and functional divergence of plant lectins. PMID:28587095

  8. Genetic variation and phylogenetic relationships of the ectomycorrhizal Floccularia luteovirens on the Qinghai-Tibet Plateau.

    PubMed

    Xing, Rui; Gao, Qing-Bo; Zhang, Fa-Qi; Fu, Peng-Cheng; Wang, Jiu-Li; Yan, Hui-Ying; Chen, Shi-Long

    2017-08-01

    Floccularia luteovirens, as an ectomycorrhizal fungus, is widely distributed in the Qinghai-Tibet Plateau. As an edible fungus, it is famous for its unique flavor. Former studies mainly focus on the chemical composition and genetic structure of this species. However, the phylogenetic relationship between genotypes remains unknown. In this study, the genetic variation and phylogenetic relationship between the genotypes of F. luteovirens in Qinghai-Tibet Plateau was estimated through the analysis on two protein-coding genes (rpb1 and ef-1α) from 398 individuals collected from 24 wild populations. The sample covered the entire range of this species during all the growth seasons from 2011 to 2015. 13 genotypes were detected and moderate genetic diversity was revealed. Based on the results of network analysis, the maximum likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI) analyses, the genotypes H-1, H-4, H-6, H-8, H-10, and H-11 were grouped into one clade. Additionally, a relatively higher genotype diversity (average h value is 0.722) and unique genotypes in the northeast edge of Qinghai- Tibet plateau have been found, combined with the results of mismatch analysis and neutrality tests indicated that Southeast Qinghai-Tibet plateau was a refuge for F. luteovirens during the historical geological or climatic events (uplifting of the Qinghai-Tibet Plateau or Last Glacial Maximum). Furthermore, the present distribution of the species on the Qinghai-Tibet plateau has resulted from the recent population expansion. Our findings provide a foundation for the future study of the evolutionary history and the speciation of this species.

  9. Taxonomic position of Hormaphis similibetulae Qiao & Zhang, 2004 (Hemiptera, Aphididae): molecular and biological evidences

    PubMed Central

    Chen, Jing; Jiang, Li-Yun; Qiao, Ge-Xia

    2011-01-01

    Abstract The taxonomic position of Hormaphis similibetulae Qiao & Zhang, 2004 has been reexamined. The phylogenetic position of Hormaphis similibetulae was inferred by maximum parsimony, maximum likelihood and Bayesian analyses on the basis of partial nuclear elongation factor-1α and mitochondrial tRNA leucine/cytochrome oxidase II sequences. The results showed that this species fell into the clade of Hamamelistes species, occupying a basal position, and was clearly distinct from other Hormaphis species. A closer relationship between Hormaphis similibetulae and Hamamelistes species was also revealed by life cycle analysis. Therefore, we conclude that Hormaphis similibetulae should be transferred to the genus Hamamelistes as Hamamelistes similibetulae (Qiao & Zhang), comb. n. PMID:21852935

  10. Phylogenetic Network Analysis Revealed the Occurrence of Horizontal Gene Transfer of 16S rRNA in the Genus Enterobacter

    PubMed Central

    Sato, Mitsuharu; Miyazaki, Kentaro

    2017-01-01

    Horizontal gene transfer (HGT) is a ubiquitous genetic event in bacterial evolution, but it seldom occurs for genes involved in highly complex supramolecules (or biosystems), which consist of many gene products. The ribosome is one such supramolecule, but several bacteria harbor dissimilar and/or chimeric 16S rRNAs in their genomes, suggesting the occurrence of HGT of this gene. However, we know little about whether the genes actually experience HGT and, if so, the frequency of such a transfer. This is primarily because the methods currently employed for phylogenetic analysis (e.g., neighbor-joining, maximum likelihood, and maximum parsimony) of 16S rRNA genes assume point mutation-driven tree-shape evolution as an evolutionary model, which is intrinsically inappropriate to decipher the evolutionary history for genes driven by recombination. To address this issue, we applied a phylogenetic network analysis, which has been used previously for detection of genetic recombination in homologous alleles, to the 16S rRNA gene. We focused on the genus Enterobacter, whose phylogenetic relationships inferred by multi-locus sequence alignment analysis and 16S rRNA sequences are incompatible. All 10 complete genomic sequences were retrieved from the NCBI database, in which 71 16S rRNA genes were included. Neighbor-joining analysis demonstrated that the genes residing in the same genomes clustered, indicating the occurrence of intragenomic recombination. However, as suggested by the low bootstrap values, evolutionary relationships between the clusters were uncertain. We then applied phylogenetic network analysis to representative sequences from each cluster. We found three ancestral 16S rRNA groups; the others were likely created through recursive recombination between the ancestors and chimeric descendants. Despite the large sequence changes caused by the recombination events, the RNA secondary structures were conserved. Successive intergenomic and intragenomic recombination thus shaped the evolution of 16S rRNA genes in the genus Enterobacter. PMID:29180992

  11. Insight into the validity of Leptobrachium guangxiense (Anura: Megophryidae): evidence from mitochondrial DNA sequences and morphological characters.

    PubMed

    Chen, Weicai; Zhang, Wei; Zhou, Shichu; Li, Ning; Huang, Yong; Mo, Yunming

    2013-01-01

    Lepobrachiun guangxiense Fei, Mo, Ye and Jiang, 2009 (Anura: Megophryidae), is presently thought to be endemic to Shangsi, Guangxi Province, China. A molecular phylogenetic analysis and morphological data were performed to gain insight into the phylogenetic position of this species. Maximum parsimony, maximum likelihood, and Bayesian inference methods were employed to reconstruct phylogenetic relationship, using 1914 bp of sequences from mtDNA genes of 12S rRNA, tRNAVal and 16S rRNA. Topologies revealed that L. guangxiense and Tam Dao (Vietnam) L. chapaense lineage (3A) formed a monophyletic group with well-supported values. The uncorrected p-distance of ~1.4k bp 16S rRNA data-sets between Tam Dao L. chapaense lineage (3A) and L. guangxiense is only 0.1%. Morphologically, L. guangxiense and Tam Dao L. chapaense lineage (3A) shared the same characters, and are distinguishable from "true" L. chapaense from the type locality in Sa Pa, Vietnam. Based on morphological characters and mitochondrial DNA, we suggested that the Tam Dao lineages of L. chapaense are conspecific with L. guangxiense. This represents a range extension for L. guangxiense, and a new country record for Vietnam.

  12. Maximum parsimony, substitution model, and probability phylogenetic trees.

    PubMed

    Weng, J F; Thomas, D A; Mareels, I

    2011-01-01

    The problem of inferring phylogenies (phylogenetic trees) is one of the main problems in computational biology. There are three main methods for inferring phylogenies-Maximum Parsimony (MP), Distance Matrix (DM) and Maximum Likelihood (ML), of which the MP method is the most well-studied and popular method. In the MP method the optimization criterion is the number of substitutions of the nucleotides computed by the differences in the investigated nucleotide sequences. However, the MP method is often criticized as it only counts the substitutions observable at the current time and all the unobservable substitutions that really occur in the evolutionary history are omitted. In order to take into account the unobservable substitutions, some substitution models have been established and they are now widely used in the DM and ML methods but these substitution models cannot be used within the classical MP method. Recently the authors proposed a probability representation model for phylogenetic trees and the reconstructed trees in this model are called probability phylogenetic trees. One of the advantages of the probability representation model is that it can include a substitution model to infer phylogenetic trees based on the MP principle. In this paper we explain how to use a substitution model in the reconstruction of probability phylogenetic trees and show the advantage of this approach with examples.

  13. Coalescent-based species tree inference from gene tree topologies under incomplete lineage sorting by maximum likelihood.

    PubMed

    Wu, Yufeng

    2012-03-01

    Incomplete lineage sorting can cause incongruence between the phylogenetic history of genes (the gene tree) and that of the species (the species tree), which can complicate the inference of phylogenies. In this article, I present a new coalescent-based algorithm for species tree inference with maximum likelihood. I first describe an improved method for computing the probability of a gene tree topology given a species tree, which is much faster than an existing algorithm by Degnan and Salter (2005). Based on this method, I develop a practical algorithm that takes a set of gene tree topologies and infers species trees with maximum likelihood. This algorithm searches for the best species tree by starting from initial species trees and performing heuristic search to obtain better trees with higher likelihood. This algorithm, called STELLS (which stands for Species Tree InfErence with Likelihood for Lineage Sorting), has been implemented in a program that is downloadable from the author's web page. The simulation results show that the STELLS algorithm is more accurate than an existing maximum likelihood method for many datasets, especially when there is noise in gene trees. I also show that the STELLS algorithm is efficient and can be applied to real biological datasets. © 2011 The Author. Evolution© 2011 The Society for the Study of Evolution.

  14. Automation and Evaluation of the SOWH Test with SOWHAT.

    PubMed

    Church, Samuel H; Ryan, Joseph F; Dunn, Casey W

    2015-11-01

    The Swofford-Olsen-Waddell-Hillis (SOWH) test evaluates statistical support for incongruent phylogenetic topologies. It is commonly applied to determine if the maximum likelihood tree in a phylogenetic analysis is significantly different than an alternative hypothesis. The SOWH test compares the observed difference in log-likelihood between two topologies to a null distribution of differences in log-likelihood generated by parametric resampling. The test is a well-established phylogenetic method for topology testing, but it is sensitive to model misspecification, it is computationally burdensome to perform, and its implementation requires the investigator to make several decisions that each have the potential to affect the outcome of the test. We analyzed the effects of multiple factors using seven data sets to which the SOWH test was previously applied. These factors include a number of sample replicates, likelihood software, the introduction of gaps to simulated data, the use of distinct models of evolution for data simulation and likelihood inference, and a suggested test correction wherein an unresolved "zero-constrained" tree is used to simulate sequence data. To facilitate these analyses and future applications of the SOWH test, we wrote SOWHAT, a program that automates the SOWH test. We find that inadequate bootstrap sampling can change the outcome of the SOWH test. The results also show that using a zero-constrained tree for data simulation can result in a wider null distribution and higher p-values, but does not change the outcome of the SOWH test for most of the data sets tested here. These results will help others implement and evaluate the SOWH test and allow us to provide recommendations for future applications of the SOWH test. SOWHAT is available for download from https://github.com/josephryan/SOWHAT. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

  15. Evaluation of properties over phylogenetic trees using stochastic logics.

    PubMed

    Requeno, José Ignacio; Colom, José Manuel

    2016-06-14

    Model checking has been recently introduced as an integrated framework for extracting information of the phylogenetic trees using temporal logics as a querying language, an extension of modal logics that imposes restrictions of a boolean formula along a path of events. The phylogenetic tree is considered a transition system modeling the evolution as a sequence of genomic mutations (we understand mutation as different ways that DNA can be changed), while this kind of logics are suitable for traversing it in a strict and exhaustive way. Given a biological property that we desire to inspect over the phylogeny, the verifier returns true if the specification is satisfied or a counterexample that falsifies it. However, this approach has been only considered over qualitative aspects of the phylogeny. In this paper, we repair the limitations of the previous framework for including and handling quantitative information such as explicit time or probability. To this end, we apply current probabilistic continuous-time extensions of model checking to phylogenetics. We reinterpret a catalog of qualitative properties in a numerical way, and we also present new properties that couldn't be analyzed before. For instance, we obtain the likelihood of a tree topology according to a mutation model. As case of study, we analyze several phylogenies in order to obtain the maximum likelihood with the model checking tool PRISM. In addition, we have adapted the software for optimizing the computation of maximum likelihoods. We have shown that probabilistic model checking is a competitive framework for describing and analyzing quantitative properties over phylogenetic trees. This formalism adds soundness and readability to the definition of models and specifications. Besides, the existence of model checking tools hides the underlying technology, omitting the extension, upgrade, debugging and maintenance of a software tool to the biologists. A set of benchmarks justify the feasibility of our approach.

  16. Divergent ancestral lineages of newfound hantaviruses harbored by phylogenetically related crocidurine shrew species in Korea

    PubMed Central

    Arai, Satoru; Gu, Se Hun; Baek, Luck Ju; Tabara, Kenji; Bennett, Shannon; Oh, Hong-Shik; Takada, Nobuhiro; Kang, Hae Ji; Tanaka-Taya, Keiko; Morikawa, Shigeru; Okabe, Nobuhiko; Yanagihara, Richard; Song, Jin-Won

    2012-01-01

    Spurred by the recent isolation of a novel hantavirus, named Imjin virus (MJNV), from the Ussuri white-toothed shrew (Crocidura lasiura), targeted trapping was conducted for the phylogenetically related Asian lesser white-toothed shrew (Crocidura shantungensis). Pair-wise alignment and comparison of the S, M and L segments of a newfound hantavirus, designated Jeju virus (JJUV), indicated remarkably low nucleotide and amino acid sequence similarity with MJNV. Phylogenetic analyses, using maximum likelihood and Bayesian methods, showed divergent ancestral lineages for JJUV and MJNV, despite the close phylogenetic relationship of their reservoir soricid hosts. Also, no evidence of host switching was apparent in tanglegrams, generated by TreeMap 2.0β. PMID:22230701

  17. One tree to link them all: a phylogenetic dataset for the European tetrapoda.

    PubMed

    Roquet, Cristina; Lavergne, Sébastien; Thuiller, Wilfried

    2014-08-08

    Since the ever-increasing availability of phylogenetic informative data, the last decade has seen an upsurge of ecological studies incorporating information on evolutionary relationships among species. However, detailed species-level phylogenies are still lacking for many large groups and regions, which are necessary for comprehensive large-scale eco-phylogenetic analyses. Here, we provide a dataset of 100 dated phylogenetic trees for all European tetrapods based on a mixture of supermatrix and supertree approaches. Phylogenetic inference was performed separately for each of the main Tetrapoda groups of Europe except mammals (i.e. amphibians, birds, squamates and turtles) by means of maximum likelihood (ML) analyses of supermatrix applying a tree constraint at the family (amphibians and squamates) or order (birds and turtles) levels based on consensus knowledge. For each group, we inferred 100 ML trees to be able to provide a phylogenetic dataset that accounts for phylogenetic uncertainty, and assessed node support with bootstrap analyses. Each tree was dated using penalized-likelihood and fossil calibration. The trees obtained were well-supported by existing knowledge and previous phylogenetic studies. For mammals, we modified the most complete supertree dataset available on the literature to include a recent update of the Carnivora clade. As a final step, we merged the phylogenetic trees of all groups to obtain a set of 100 phylogenetic trees for all European Tetrapoda species for which data was available (91%). We provide this phylogenetic dataset (100 chronograms) for the purpose of comparative analyses, macro-ecological or community ecology studies aiming to incorporate phylogenetic information while accounting for phylogenetic uncertainty.

  18. Stasis and convergence characterize morphological evolution in eupolypod II ferns.

    PubMed

    Sundue, Michael A; Rothfels, Carl J

    2014-01-01

    Patterns of morphological evolution at levels above family rank remain underexplored in the ferns. The present study seeks to address this gap through analysis of 79 morphological characters for 81 taxa, including representatives of all ten families of eupolypod II ferns. Recent molecular phylogenetic studies demonstrate that the evolution of the large eupolypod II clade (which includes nearly one-third of extant fern species) features unexpected patterns. The traditional 'athyrioid' ferns are scattered across the phylogeny despite their apparent morphological cohesiveness, and mixed among these seemingly conservative taxa are morphologically dissimilar groups that lack any obvious features uniting them with their relatives. Maximum-likelihood and maximum-parsimony character optimizations are used to determine characters that unite the seemingly disparate groups, and to test whether the polyphyly of the traditional athyrioid ferns is due to evolutionary stasis (symplesiomorphy) or convergent evolution. The major events in eupolypod II character evolution are reviewed, and character and character state concepts are reappraised, as a basis for further inquiries into fern morphology. Characters were scored from the literature, live plants and herbarium specimens, and optimized using maximum-parsimony and maximum-likelihood, onto a highly supported topology derived from maximum-likelihood and Bayesian analysis of molecular data. Phylogenetic signal of characters were tested for using randomization methods and fitdiscrete. The majority of character state changes within the eupolypod II phylogeny occur at the family level or above. Relative branch lengths for the morphological data resemble those from molecular data and fit an ancient rapid radiation model (long branches subtended by very short backbone internodes), with few characters uniting the morphologically disparate clades. The traditional athyrioid ferns were circumscribed based upon a combination of symplesiomorphic and homoplastic characters. Petiole vasculature consisting of two bundles is ancestral for eupolypods II and a synapomorphy for eupolypods II under deltran optimization. Sori restricted to one side of the vein defines the recently recognized clade comprising Rhachidosoraceae through Aspleniaceae, and sori present on both sides of the vein is a synapomorphy for the Athyriaceae sensu stricto. The results indicate that a chromosome base number of x =41 is synapomorphic for all eupolypods, a clade that includes over two-thirds of extant fern species. The integrated approach synthesizes morphological studies with current phylogenetic hypotheses and provides explicit statements of character evolution in the eupolypod II fern families. Strong character support is found for previously recognized clades, whereas few characters support previously unrecognized clades. Sorus position appears to be less complicated than previously hypothesized, and linear sori restricted to one side of the vein support the clade comprising Aspleniaceae, Diplaziopsidaceae, Hemidictyaceae and Rachidosoraceae - a lineage only recently identified. Despite x =41 being a frequent number among extant species, to our knowledge it has not previously been demonstrated as the ancestral state. This is the first synapomorphy proposed for the eupolypod clade, a lineage comprising 67 % of extant fern species. This study provides some of the first hypotheses of character evolution at the family level and above in light of recent phylogenetic results, and promotes further study in an area that remains open for original observation.

  19. Stasis and convergence characterize morphological evolution in eupolypod II ferns

    PubMed Central

    Sundue, Michael A.; Rothfels, Carl J.

    2014-01-01

    Background and Aims Patterns of morphological evolution at levels above family rank remain underexplored in the ferns. The present study seeks to address this gap through analysis of 79 morphological characters for 81 taxa, including representatives of all ten families of eupolypod II ferns. Recent molecular phylogenetic studies demonstrate that the evolution of the large eupolypod II clade (which includes nearly one-third of extant fern species) features unexpected patterns. The traditional ‘athyrioid’ ferns are scattered across the phylogeny despite their apparent morphological cohesiveness, and mixed among these seemingly conservative taxa are morphologically dissimilar groups that lack any obvious features uniting them with their relatives. Maximum-likelihood and maximum-parsimony character optimizations are used to determine characters that unite the seemingly disparate groups, and to test whether the polyphyly of the traditional athyrioid ferns is due to evolutionary stasis (symplesiomorphy) or convergent evolution. The major events in eupolypod II character evolution are reviewed, and character and character state concepts are reappraised, as a basis for further inquiries into fern morphology. Methods Characters were scored from the literature, live plants and herbarium specimens, and optimized using maximum-parsimony and maximum-likelihood, onto a highly supported topology derived from maximum-likelihood and Bayesian analysis of molecular data. Phylogenetic signal of characters were tested for using randomization methods and fitdiscrete. Key Results The majority of character state changes within the eupolypod II phylogeny occur at the family level or above. Relative branch lengths for the morphological data resemble those from molecular data and fit an ancient rapid radiation model (long branches subtended by very short backbone internodes), with few characters uniting the morphologically disparate clades. The traditional athyrioid ferns were circumscribed based upon a combination of symplesiomorphic and homoplastic characters. Petiole vasculature consisting of two bundles is ancestral for eupolypods II and a synapomorphy for eupolypods II under deltran optimization. Sori restricted to one side of the vein defines the recently recognized clade comprising Rhachidosoraceae through Aspleniaceae, and sori present on both sides of the vein is a synapomorphy for the Athyriaceae sensu stricto. The results indicate that a chromosome base number of x =41 is synapomorphic for all eupolypods, a clade that includes over two-thirds of extant fern species. Conclusions The integrated approach synthesizes morphological studies with current phylogenetic hypotheses and provides explicit statements of character evolution in the eupolypod II fern families. Strong character support is found for previously recognized clades, whereas few characters support previously unrecognized clades. Sorus position appears to be less complicated than previously hypothesized, and linear sori restricted to one side of the vein support the clade comprising Aspleniaceae, Diplaziopsidaceae, Hemidictyaceae and Rachidosoraceae – a lineage only recently identified. Despite x =41 being a frequent number among extant species, to our knowledge it has not previously been demonstrated as the ancestral state. This is the first synapomorphy proposed for the eupolypod clade, a lineage comprising 67 % of extant fern species. This study provides some of the first hypotheses of character evolution at the family level and above in light of recent phylogenetic results, and promotes further study in an area that remains open for original observation. PMID:24197753

  20. The tempo and mode of New World monkey evolution and biogeography in the context of phylogenomic analysis.

    PubMed

    Jameson Kiesling, Natalie M; Yi, Soojin V; Xu, Ke; Gianluca Sperone, F; Wildman, Derek E

    2015-01-01

    The development and evolution of organisms is heavily influenced by their environment. Thus, understanding the historical biogeography of taxa can provide insights into their evolutionary history, adaptations and trade-offs realized throughout time. In the present study we have taken a phylogenomic approach to infer New World monkey phylogeny, upon which we have reconstructed the biogeographic history of extant platyrrhines. In order to generate sufficient phylogenetic signal within the New World monkey clade, we carried out a large-scale phylogenetic analysis of approximately 40 kb of non-genic genomic DNA sequence in a 36 species subset of extant New World monkeys. Maximum parsimony, maximum likelihood and Bayesian inference analysis all converged on a single optimal tree topology. Divergence dating and biogeographic analysis reconstruct the timing and geographic location of divergence events. The ancestral area reconstruction describes the geographic locations of the last common ancestor of extant platyrrhines and provides insight into key biogeographic events occurring during platyrrhine diversification. Through these analyses we conclude that the diversification of the platyrrhines took place concurrently with the establishment and diversification of the Amazon rainforest. This suggests that an expanding rainforest environment rather than geographic isolation drove platyrrhine diversification. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Molecular diversification of Trichuris spp. from Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences.

    PubMed

    Callejón, Rocío; Robles, María Del Rosario; Panei, Carlos Javier; Cutillas, Cristina

    2016-08-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob). The taxa consisted of nine populations of whipworm from five species of Sigmodontinae rodents from Argentina. Bayesian Inference, Maximum Parsimony, and Maximum Likelihood methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data and the combined mitochondrial and nuclear dataset. Phylogenetic results based on cox1 and cob mitochondrial DNA (mtDNA) revealed three clades strongly resolved corresponding to three different species (Trichuris navonae, Trichuris bainae, and Trichuris pardinasi) showing phylogeographic variation, but relationships among Trichuris species were poorly resolved. Phylogenetic reconstruction based on concatenated sequences had greater phylogenetic resolution for delimiting species and populations intra-specific of Trichuris than those based on partitioned genes. Thus, populations of T. bainae and T. pardinasi could be affected by geographical factors and co-divergence parasite-host.

  2. Applying a multiobjective metaheuristic inspired by honey bees to phylogenetic inference.

    PubMed

    Santander-Jiménez, Sergio; Vega-Rodríguez, Miguel A

    2013-10-01

    The development of increasingly popular multiobjective metaheuristics has allowed bioinformaticians to deal with optimization problems in computational biology where multiple objective functions must be taken into account. One of the most relevant research topics that can benefit from these techniques is phylogenetic inference. Throughout the years, different researchers have proposed their own view about the reconstruction of ancestral evolutionary relationships among species. As a result, biologists often report different phylogenetic trees from a same dataset when considering distinct optimality principles. In this work, we detail a multiobjective swarm intelligence approach based on the novel Artificial Bee Colony algorithm for inferring phylogenies. The aim of this paper is to propose a complementary view of phylogenetics according to the maximum parsimony and maximum likelihood criteria, in order to generate a set of phylogenetic trees that represent a compromise between these principles. Experimental results on a variety of nucleotide data sets and statistical studies highlight the relevance of the proposal with regard to other multiobjective algorithms and state-of-the-art biological methods. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Basal jawed vertebrate phylogeny inferred from multiple nuclear DNA-coded genes

    PubMed Central

    Kikugawa, Kanae; Katoh, Kazutaka; Kuraku, Shigehiro; Sakurai, Hiroshi; Ishida, Osamu; Iwabe, Naoyuki; Miyata, Takashi

    2004-01-01

    Background Phylogenetic analyses of jawed vertebrates based on mitochondrial sequences often result in confusing inferences which are obviously inconsistent with generally accepted trees. In particular, in a hypothesis by Rasmussen and Arnason based on mitochondrial trees, cartilaginous fishes have a terminal position in a paraphyletic cluster of bony fishes. No previous analysis based on nuclear DNA-coded genes could significantly reject the mitochondrial trees of jawed vertebrates. Results We have cloned and sequenced seven nuclear DNA-coded genes from 13 vertebrate species. These sequences, together with sequences available from databases including 13 jawed vertebrates from eight major groups (cartilaginous fishes, bichir, chondrosteans, gar, bowfin, teleost fishes, lungfishes and tetrapods) and an outgroup (a cyclostome and a lancelet), have been subjected to phylogenetic analyses based on the maximum likelihood method. Conclusion Cartilaginous fishes have been inferred to be basal to other jawed vertebrates, which is consistent with the generally accepted view. The minimum log-likelihood difference between the maximum likelihood tree and trees not supporting the basal position of cartilaginous fishes is 18.3 ± 13.1. The hypothesis by Rasmussen and Arnason has been significantly rejected with the minimum log-likelihood difference of 123 ± 23.3. Our tree has also shown that living holosteans, comprising bowfin and gar, form a monophyletic group which is the sister group to teleost fishes. This is consistent with a formerly prevalent view of vertebrate classification, although inconsistent with both of the current morphology-based and mitochondrial sequence-based trees. Furthermore, the bichir has been shown to be the basal ray-finned fish. Tetrapods and lungfish have formed a monophyletic cluster in the tree inferred from the concatenated alignment, being consistent with the currently prevalent view. It also remains possible that tetrapods are more closely related to ray-finned fishes than to lungfishes. PMID:15070407

  4. The evolutionary history of Eugenia sect. Phyllocalyx (Myrtaceae) corroborates historically stable areas in the southern Atlantic forests

    PubMed Central

    de Oliveira Bünger, Mariana; Fernanda Mazine, Fiorella; Forest, Félix; Leandro Bueno, Marcelo; Renato Stehmann, João; Lucas, Eve J.

    2016-01-01

    Background and Aims Eugenia sect. Phyllocalyx Nied. includes 14 species endemic to the Neotropics, mostly distributed in the Atlantic coastal forests of Brazil. Here the first comprehensive phylogenetic study of this group is presented, and this phylogeny is used as the basis to evaluate the recent infrageneric classification in Eugenia sensu lato (s.l.) to test the history of the evolution of traits in the group and test hypotheses associated with the history of this clade. Methods A total of 42 taxa were sampled, of which 14 were Eugenia sect. Phyllocalyx for one nuclear (ribosomal internal transcribed spacer) and four plastid markers (psbA-trnH, rpl16, trnL-rpl32 and trnQ-rps16). The relationships were reconstructed based on Bayesian analysis and maximum likelihood. Additionally, ancestral area analysis and modelling methods were used to estimate species dispersal, comparing historically climatic stable (refuges) and unstable areas. Key Results Maximum likelihood and Bayesian inferences indicate that Eugenia sect. Phyllocalyx is paraphyletic and the two clades recovered are characterized by combinations of morphological characters. Phylogenetic relationships support a link between Cerrado and south-eastern species and a difference in the composition of species from north-eastern and south-eastern Atlantic forest. Refugia and stable areas identified within unstable areas suggest that these areas were important to maintain diversity in the Atlantic forest biodiversity hotspot. Conclusion This study provides a robust phylogenetic framework to address important historical questions for Eugenia s.l. within an evolutionary context, supporting the need for better taxonomic study of one of the largest genera in the Neotropics. Furthermore, valuable insight is offered into diversification and biome shifts of plant species in the highly environmentally impacted Atlantic forest of South America. Evidence is presented that climate stability in the south-eastern Atlantic forest during the Quaternary contributed to the highest levels of plant diversity in this region that acted as a refugium. PMID:27974324

  5. Replicate phylogenies and post-glacial range expansion of the pitcher-plant mosquito, Wyeomyia smithii, in North America.

    PubMed

    Merz, Clayton; Catchen, Julian M; Hanson-Smith, Victor; Emerson, Kevin J; Bradshaw, William E; Holzapfel, Christina M

    2013-01-01

    Herein we tested the repeatability of phylogenetic inference based on high throughput sequencing by increased taxon sampling using our previously published techniques in the pitcher-plant mosquito, Wyeomyia smithii in North America. We sampled 25 natural populations drawn from different localities nearby 21 previous collection localities and used these new data to construct a second, independent phylogeny, expressly to test the reproducibility of phylogenetic patterns. Comparison of trees between the two data sets based on both maximum parsimony and maximum likelihood with Bayesian posterior probabilities showed close correspondence in the grouping of the most southern populations into clear clades. However, discrepancies emerged, particularly in the middle of W. smithii's current range near the previous maximum extent of the Laurentide Ice Sheet, especially concerning the most recent common ancestor to mountain and northern populations. Combining all 46 populations from both studies into a single maximum parsimony tree and taking into account the post-glacial historical biogeography of associated flora provided an improved picture of W. smithii's range expansion in North America. In a more general sense, we propose that extensive taxon sampling, especially in areas of known geological disruption is key to a comprehensive approach to phylogenetics that leads to biologically meaningful phylogenetic inference.

  6. Maximum likelihood inference implies a high, not a low, ancestral haploid chromosome number in Araceae, with a critique of the bias introduced by ‘x’

    PubMed Central

    Cusimano, Natalie; Sousa, Aretuza; Renner, Susanne S.

    2012-01-01

    Background and Aims For 84 years, botanists have relied on calculating the highest common factor for series of haploid chromosome numbers to arrive at a so-called basic number, x. This was done without consistent (reproducible) reference to species relationships and frequencies of different numbers in a clade. Likelihood models that treat polyploidy, chromosome fusion and fission as events with particular probabilities now allow reconstruction of ancestral chromosome numbers in an explicit framework. We have used a modelling approach to reconstruct chromosome number change in the large monocot family Araceae and to test earlier hypotheses about basic numbers in the family. Methods Using a maximum likelihood approach and chromosome counts for 26 % of the 3300 species of Araceae and representative numbers for each of the other 13 families of Alismatales, polyploidization events and single chromosome changes were inferred on a genus-level phylogenetic tree for 113 of the 117 genera of Araceae. Key Results The previously inferred basic numbers x = 14 and x = 7 are rejected. Instead, maximum likelihood optimization revealed an ancestral haploid chromosome number of n = 16, Bayesian inference of n = 18. Chromosome fusion (loss) is the predominant inferred event, whereas polyploidization events occurred less frequently and mainly towards the tips of the tree. Conclusions The bias towards low basic numbers (x) introduced by the algebraic approach to inferring chromosome number changes, prevalent among botanists, may have contributed to an unrealistic picture of ancestral chromosome numbers in many plant clades. The availability of robust quantitative methods for reconstructing ancestral chromosome numbers on molecular phylogenetic trees (with or without branch length information), with confidence statistics, makes the calculation of x an obsolete approach, at least when applied to large clades. PMID:22210850

  7. Plate tectonics and biogeographical patterns of the Pseudophoxinus (Pisces: Cypriniformes) species complex of central Anatolia, Turkey.

    PubMed

    Hrbek, Tomas; Stölting, Kai N; Bardakci, Fevzi; Küçük, Fahrettin; Wildekamp, Rudolf H; Meyer, Axel

    2004-07-01

    We investigated the phylogenetic relationships of Pseudophoxinus (Cyprinidae: Leuciscinae) species from central Anatolia, Turkey to test the hypothesis of geographic speciation driven by early Pliocene orogenic events. We analyzed 1141 aligned base pairs of the complete cytochrome b mitochondrial gene. Phylogenetic relationships reconstructed by maximum likelihood, Bayesian likelihood, and maximum parsimony methods are identical, and generally well supported. Species and clades are restricted to geologically well-defined units, and are deeply divergent from each other. The basal diversification of central Anatolian Pseudophoxinus is estimated to have occurred approximately 15 million years ago. Our results are in agreement with a previous study of the Anatolian fish genus Aphanius that also shows a diversification pattern driven by the Pliocene orogenic events. The distribution of clades of Aphanius and Pseudophoxinus overlap, and areas of distribution comprise the same geological units. The geological history of Anatolia is likely to have had a major impact on the diversification history of many taxa occupying central Anatolia; many of these taxa are likely to be still unrecognized as distinct. Copyright 2004 Elsevier Inc.

  8. Phylogenetic estimation and morphological evolution of Arundinarieae (Bambusoideae: Poaceae) based on plastome phylogenomic analysis.

    PubMed

    Attigala, Lakshmi; Wysocki, William P; Duvall, Melvin R; Clark, Lynn G

    2016-08-01

    We explored phylogenetic relationships among the twelve lineages of the temperate woody bamboo clade (tribe Arundinarieae) based on plastid genome (plastome) sequence data. A representative sample of 28 taxa was used and maximum parsimony, maximum likelihood and Bayesian inference analyses were conducted to estimate the Arundinarieae phylogeny. All the previously recognized clades of Arundinarieae were supported, with Ampelocalamus calcareus (Clade XI) as sister to the rest of the temperate woody bamboos. Well supported sister relationships between Bergbambos tessellata (Clade I) and Thamnocalamus spathiflorus (Clade VII) and between Kuruna (Clade XII) and Chimonocalmus (Clade III) were revealed by the current study. The plastome topology was tested by taxon removal experiments and alternative hypothesis testing and the results supported the current plastome phylogeny as robust. Neighbor-net analyses showed few phylogenetic signal conflicts, but suggested some potentially complex relationships among these taxa. Analyses of morphological character evolution of rhizomes and reproductive structures revealed that pachymorph rhizomes were most likely the ancestral state in Arundinarieae. In contrast leptomorph rhizomes either evolved once with reversions to the pachymorph condition or multiple times in Arundinarieae. Further, pseudospikelets evolved independently at least twice in the Arundinarieae, but the ancestral state is ambiguous. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Evolution of larval life mode of Oecophoridae (Lepidoptera: Gelechioidea) inferred from molecular phylogeny.

    PubMed

    Kim, Sora; Kaila, Lauri; Lee, Seunghwan

    2016-08-01

    Phylogenetic relationships within family Oecophoridae have been poorly understood. Consequently the subfamily and genus level classifications with this family problematic. A comprehensive phylogenetic analysis of Oecophoridae, the concealer moths, was performed based on analysis of 4444 base pairs of mitochondrial COI, nuclear ribosomal RNA genes (18S and 28S) and nuclear protein coding genes (IDH, MDH, Rps5, EF1a and wingless) for 82 taxa. Data were analyzed using maximum likelihood (ML), parsimony (MP) and Bayesian (BP) phylogenetic frameworks. Phylogenetic analyses indicated that (i) genera Casmara, Tyrolimnas and Pseudodoxia did not belong to Oecophoridae, suggesting that Oecophoridae s. authors was not monophyletic; (ii) other oecophorids comprising two subfamilies, Pleurotinae and Oecophorinae, were nested within the same clade, and (iii) Martyringa, Acryptolechia and Periacmini were clustered with core Xyloryctidae. They appeared to be sister lineage with core Oecophoridae. BayesTraits were implemented to explore the ancestral character states to infer historical microhabitat patterns and sheltering strategy of larvae. Reconstruction of ancestral microhabitat of oecophorids indicated that oecophorids might have evolved from dried plant feeders and further convergently specialized. The ancestral larva sheltering strategy of oecophorids might have used a silk tube by making itself, shifting from mining leaves. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Cross-validation to select Bayesian hierarchical models in phylogenetics.

    PubMed

    Duchêne, Sebastián; Duchêne, David A; Di Giallonardo, Francesca; Eden, John-Sebastian; Geoghegan, Jemma L; Holt, Kathryn E; Ho, Simon Y W; Holmes, Edward C

    2016-05-26

    Recent developments in Bayesian phylogenetic models have increased the range of inferences that can be drawn from molecular sequence data. Accordingly, model selection has become an important component of phylogenetic analysis. Methods of model selection generally consider the likelihood of the data under the model in question. In the context of Bayesian phylogenetics, the most common approach involves estimating the marginal likelihood, which is typically done by integrating the likelihood across model parameters, weighted by the prior. Although this method is accurate, it is sensitive to the presence of improper priors. We explored an alternative approach based on cross-validation that is widely used in evolutionary analysis. This involves comparing models according to their predictive performance. We analysed simulated data and a range of viral and bacterial data sets using a cross-validation approach to compare a variety of molecular clock and demographic models. Our results show that cross-validation can be effective in distinguishing between strict- and relaxed-clock models and in identifying demographic models that allow growth in population size over time. In most of our empirical data analyses, the model selected using cross-validation was able to match that selected using marginal-likelihood estimation. The accuracy of cross-validation appears to improve with longer sequence data, particularly when distinguishing between relaxed-clock models. Cross-validation is a useful method for Bayesian phylogenetic model selection. This method can be readily implemented even when considering complex models where selecting an appropriate prior for all parameters may be difficult.

  11. An attempt to reconstruct phylogenetic relationships within Caribbean nummulitids: simulating relationships and tracing character evolution

    NASA Astrophysics Data System (ADS)

    Eder, Wolfgang; Ives Torres-Silva, Ana; Hohenegger, Johann

    2017-04-01

    Phylogenetic analysis and trees based on molecular data are broadly applied and used to infer genetical and biogeographic relationship in recent larger foraminifera. Molecular phylogenetic is intensively used within recent nummulitids, however for fossil representatives these trees are only of minor informational value. Hence, within paleontological studies a phylogenetic approach through morphometric analysis is of much higher value. To tackle phylogenetic relationships within the nummulitid family, a much higher number of morphological character must be measured than are commonly used in biometric studies, where mostly parameters describing embryonic size (e.g., proloculus diameter, deuteroloculus diameter) and/or the marginal spiral (e.g., spiral diagrams, spiral indices) are studied. For this purpose 11 growth-independent and/or growth-invariant characters have been used to describe the morphological variability of equatorial thin sections of seven Carribbean nummulitid taxa (Nummulites striatoreticulatus, N. macgillavry, Palaeonummulites willcoxi, P.floridensis, P. soldadensis, P.trinitatensis and P.ocalanus) and one outgroup taxon (Ranikothalia bermudezi). Using these characters, phylogenetic trees were calculated using a restricted maximum likelihood algorithm (REML), and results are cross-checked by ordination and cluster analysis. Square-change parsimony method has been run to reconstruct ancestral states, as well as to simulate the evolution of the chosen characters along the calculated phylogenetic tree and, independent - contrast analysis was used to estimate confidence intervals. Based on these simulations, phylogenetic tendencies of certain characters proposed for nummulitids (e.g., Cope's rule or nepionic acceleration) can be tested, whether these tendencies are valid for the whole family or only for certain clades. At least, within the Carribean nummulitids, phylogenetic trends along some growth-independent characters of the embryo (e.g., first chamber length and P/D ratio) and some growth-invariant characters of the chamber sequence (e.g., backbend angle, initial chamber base length and chamber length increase) are evident.

  12. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot.

    PubMed

    Kress, W John; Erickson, David L; Swenson, Nathan G; Thompson, Jill; Uriarte, Maria; Zimmerman, Jess K

    2010-11-09

    Species number, functional traits, and phylogenetic history all contribute to characterizing the biological diversity in plant communities. The phylogenetic component of diversity has been particularly difficult to quantify in species-rich tropical tree assemblages. The compilation of previously published (and often incomplete) data on evolutionary relationships of species into a composite phylogeny of the taxa in a forest, through such programs as Phylomatic, has proven useful in building community phylogenies although often of limited resolution. Recently, DNA barcodes have been used to construct a robust community phylogeny for nearly 300 tree species in a forest dynamics plot in Panama using a supermatrix method. In that study sequence data from three barcode loci were used to generate a well-resolved species-level phylogeny. Here we expand upon this earlier investigation and present results on the use of a phylogenetic constraint tree to generate a community phylogeny for a diverse, tropical forest dynamics plot in Puerto Rico. This enhanced method of phylogenetic reconstruction insures the congruence of the barcode phylogeny with broadly accepted hypotheses on the phylogeny of flowering plants (i.e., APG III) regardless of the number and taxonomic breadth of the taxa sampled. We also compare maximum parsimony versus maximum likelihood estimates of community phylogenetic relationships as well as evaluate the effectiveness of one- versus two- versus three-gene barcodes in resolving community evolutionary history. As first demonstrated in the Panamanian forest dynamics plot, the results for the Puerto Rican plot illustrate that highly resolved phylogenies derived from DNA barcode sequence data combined with a constraint tree based on APG III are particularly useful in comparative analysis of phylogenetic diversity and will enhance research on the interface between community ecology and evolution.

  13. Detection of pseudocowpox virus in water buffalo (Bubalus bubalis) with vesicular disease in the state of São Paulo, Brazil, in 2016.

    PubMed

    Laguardia-Nascimento, Mateus; de Oliveira, Ana Paula Ferreira; Fernandes, Fernanda Rodas Pires; Rivetti, Anselmo Vasconcelos; Camargos, Marcelo Fernandes; Fonseca Júnior, Antônio Augusto

    2017-12-01

    Parapoxviruses are zoonotic viruses that infect cattle, goats and sheep; there have also been reports of infections in camels, domestic cats and seals. The objective of this report was to describe a case of vesicular disease caused by pseudocowpox virus (PCPV) in water buffalo (Bubalus bubalis) in Brazil. Sixty buffalo less than 6 months old exhibited ulcers and widespread peeling of the tongue epithelium. There were no cases of vesicular disease in pigs or horses on the same property. Samples were analysed by PCR and sequencing. Phylogenetic analysis in MEGA 7.01 was reconstructed using major envelope protein (B2L) by the Tamura three-parameter nucleotide substitution model and the maximum likelihood and neighbor joining models, both with 1000 bootstrap replicates. The genetic distance between the groups was analysed in MEGA using the maximum composite likelihood model. The rate variation among sites was modeled using gamma distribution. The presence of PCPV in the buffalo herd could be demonstrated in epithelium and serum. The minimum genetic distance between the isolated PCPV strain (262-2016) and orf virus and bovine papular stomatitis virus was 6.7% and 18.4%, respectively. The maximum genetic distance calculated was 4.6% when compared with a PCPV detected in a camel. Conclusions/Clinical Importance: The peculiar position of the isolated strain in the phylogenetic trees does not necessarily indicate a different kind of PCPV that infects buffalo. More samples from cattle and buffalo in Brazil must be sequenced and compared to verify if PCPV from buffalo are genetically different from samples derived from cattle.

  14. Phylogeny of marattioid ferns (Marattiaceae): inferring a root in the absence of a closely related outgroup.

    PubMed

    Murdock, Andrew G

    2008-05-01

    Closely related outgroups are optimal for rooting phylogenetic trees; however, such ideal outgroups are not always available. A phylogeny of the marattioid ferns (Marattiaceae), an ancient lineage with no close relatives, was reconstructed using nucleotide sequences of multiple chloroplast regions (rps4 + rps4-trnS spacer, trnS-trnG spacer + trnG intron, rbcL, atpB), from 88 collections, selected to cover the broadest possible range of morphologies and geographic distributions within the extant taxa. Because marattioid ferns are phylogenetically isolated from other lineages, and internal branches are relatively short, rooting was problematic. Root placement was strongly affected by long-branch attraction under maximum parsimony and by model choice under maximum likelihood. A multifaceted approach to rooting was employed to isolate the sources of bias and produce a consensus root position. In a statistical comparison of all possible root positions with three different outgroups, most root positions were not significantly less optimal than the maximum likelihood root position, including the consensus root position. This phylogeny has several important taxonomic implications for marattioid ferns: Marattia in the broad sense is paraphyletic; the Hawaiian endemic Marattia douglasii is most closely related to tropical American taxa; and Angiopteris is monophyletic only if Archangiopteris and Macroglossum are included.

  15. The First Comprehensive Phylogeny of Coptis (Ranunculaceae) and Its Implications for Character Evolution and Classification

    PubMed Central

    Xiang, Kun-Li; Wu, Sheng-Dan; Yu, Sheng-Xian; Liu, Yang; Jabbour, Florian; Erst, Andrey S.; Zhao, Liang; Wang, Wei; Chen, Zhi-Duan

    2016-01-01

    Coptis (Ranunculaceae) contains 15 species and is one of the pharmaceutically most important plant genera in eastern Asia. Understanding of the evolution of morphological characters and phylogenetic relationships within the genus is very limited. Here, we present the first comprehensive phylogenetic analysis of the genus based on two plastid and one nuclear markers. The phylogeny was reconstructed using Bayesian inference, as well as maximum parsimony and maximum likelihood methods. The Swofford-Olsen-Waddell-Hillis and Bayesian tests were used to assess the strength of the conflicts between traditional taxonomic units and those suggested by the phylogenetic inferences. Evolution of morphological characters was inferred using Bayesian method to identify synapomorphies for the infrageneric lineages. Our data recognize two strongly supported clades within Coptis. The first clade contains subgenus Coptis and section Japonocoptis of subgenus Metacoptis, supported by morphological characters, such as traits of the central leaflet base, petal color, and petal shape. The second clade consists of section Japonocoptis of subgenus Metacoptis. Coptis morii is not united with C. quinquefolia, in contrast with the view that C. morii is a synonym of C. quinquefolia. Two varieties of C. chinensis do not cluster together. Coptis groenlandica and C. lutescens are reduced to C. trifolia and C. japonica, respectively. Central leaflet base, sepal shape, and petal blade carry a strong phylogenetic signal in Coptis, while leaf type, sepal and petal color, and petal shape exhibit relatively higher levels of evolutionary flexibility. PMID:27044035

  16. Efficient computation of the phylogenetic likelihood function on multi-gene alignments and multi-core architectures.

    PubMed

    Stamatakis, Alexandros; Ott, Michael

    2008-12-27

    The continuous accumulation of sequence data, for example, due to novel wet-laboratory techniques such as pyrosequencing, coupled with the increasing popularity of multi-gene phylogenies and emerging multi-core processor architectures that face problems of cache congestion, poses new challenges with respect to the efficient computation of the phylogenetic maximum-likelihood (ML) function. Here, we propose two approaches that can significantly speed up likelihood computations that typically represent over 95 per cent of the computational effort conducted by current ML or Bayesian inference programs. Initially, we present a method and an appropriate data structure to efficiently compute the likelihood score on 'gappy' multi-gene alignments. By 'gappy' we denote sampling-induced gaps owing to missing sequences in individual genes (partitions), i.e. not real alignment gaps. A first proof-of-concept implementation in RAXML indicates that this approach can accelerate inferences on large and gappy alignments by approximately one order of magnitude. Moreover, we present insights and initial performance results on multi-core architectures obtained during the transition from an OpenMP-based to a Pthreads-based fine-grained parallelization of the ML function.

  17. Recreating a functional ancestral archosaur visual pigment.

    PubMed

    Chang, Belinda S W; Jönsson, Karolina; Kazmi, Manija A; Donoghue, Michael J; Sakmar, Thomas P

    2002-09-01

    The ancestors of the archosaurs, a major branch of the diapsid reptiles, originated more than 240 MYA near the dawn of the Triassic Period. We used maximum likelihood phylogenetic ancestral reconstruction methods and explored different models of evolution for inferring the amino acid sequence of a putative ancestral archosaur visual pigment. Three different types of maximum likelihood models were used: nucleotide-based, amino acid-based, and codon-based models. Where possible, within each type of model, likelihood ratio tests were used to determine which model best fit the data. Ancestral reconstructions of the ancestral archosaur node using the best-fitting models of each type were found to be in agreement, except for three amino acid residues at which one reconstruction differed from the other two. To determine if these ancestral pigments would be functionally active, the corresponding genes were chemically synthesized and then expressed in a mammalian cell line in tissue culture. The expressed artificial genes were all found to bind to 11-cis-retinal to yield stable photoactive pigments with lambda(max) values of about 508 nm, which is slightly redshifted relative to that of extant vertebrate pigments. The ancestral archosaur pigments also activated the retinal G protein transducin, as measured in a fluorescence assay. Our results show that ancestral genes from ancient organisms can be reconstructed de novo and tested for function using a combination of phylogenetic and biochemical methods.

  18. Determining the accuracy of maximum likelihood parameter estimates with colored residuals

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Klein, Vladislav

    1994-01-01

    An important part of building high fidelity mathematical models based on measured data is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of the accuracy of parameter estimates, the estimates themselves have limited value. In this work, an expression based on theoretical analysis was developed to properly compute parameter accuracy measures for maximum likelihood estimates with colored residuals. This result is important because experience from the analysis of measured data reveals that the residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Simulated data runs were used to show that the parameter accuracy measures computed with this technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for analysis of the output residuals in the frequency domain or heuristically determined multiplication factors. The result is general, although the application studied here is maximum likelihood estimation of aerodynamic model parameters from flight test data.

  19. MANTIS: a phylogenetic framework for multi-species genome comparisons.

    PubMed

    Tzika, Athanasia C; Helaers, Raphaël; Van de Peer, Yves; Milinkovitch, Michel C

    2008-01-15

    Practitioners of comparative genomics face huge analytical challenges as whole genome sequences and functional/expression data accumulate. Furthermore, the field would greatly benefit from a better integration of this wealth of data with evolutionary concepts. Here, we present MANTIS, a relational database for the analysis of (i) gains and losses of genes on specific branches of the metazoan phylogeny, (ii) reconstructed genome content of ancestral species and (iii) over- or under-representation of functions/processes and tissue specificity of gained, duplicated and lost genes. MANTIS estimates the most likely positions of gene losses on the true phylogeny using a maximum-likelihood function. A user-friendly interface and an extensive query system allow to investigate questions pertaining to gene identity, phylogenetic mapping and function/expression parameters. MANTIS is freely available at http://www.mantisdb.org and constitutes the missing link between multi-species genome comparisons and functional analyses.

  20. Short Tree, Long Tree, Right Tree, Wrong Tree: New Acquisition Bias Corrections for Inferring SNP Phylogenies

    PubMed Central

    Leaché, Adam D.; Banbury, Barbara L.; Felsenstein, Joseph; de Oca, Adrián nieto-Montes; Stamatakis, Alexandros

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are useful markers for phylogenetic studies owing in part to their ubiquity throughout the genome and ease of collection. Restriction site associated DNA sequencing (RADseq) methods are becoming increasingly popular for SNP data collection, but an assessment of the best practises for using these data in phylogenetics is lacking. We use computer simulations, and new double digest RADseq (ddRADseq) data for the lizard family Phrynosomatidae, to investigate the accuracy of RAD loci for phylogenetic inference. We compare the two primary ways RAD loci are used during phylogenetic analysis, including the analysis of full sequences (i.e., SNPs together with invariant sites), or the analysis of SNPs on their own after excluding invariant sites. We find that using full sequences rather than just SNPs is preferable from the perspectives of branch length and topological accuracy, but not of computational time. We introduce two new acquisition bias corrections for dealing with alignments composed exclusively of SNPs, a conditional likelihood method and a reconstituted DNA approach. The conditional likelihood method conditions on the presence of variable characters only (the number of invariant sites that are unsampled but known to exist is not considered), while the reconstituted DNA approach requires the user to specify the exact number of unsampled invariant sites prior to the analysis. Under simulation, branch length biases increase with the amount of missing data for both acquisition bias correction methods, but branch length accuracy is much improved in the reconstituted DNA approach compared to the conditional likelihood approach. Phylogenetic analyses of the empirical data using concatenation or a coalescent-based species tree approach provide strong support for many of the accepted relationships among phrynosomatid lizards, suggesting that RAD loci contain useful phylogenetic signal across a range of divergence times despite the presence of missing data. Phylogenetic analysis of RAD loci requires careful attention to model assumptions, especially if downstream analyses depend on branch lengths. PMID:26227865

  1. Morphological, molecular and phylogenetic analyses of Diplotriaena bargusinica Skrjabin, 1917 (Nematoda: Diplotriaenidae).

    PubMed

    Dutra Vieira, Thainá; Pegoraro de Macedo, Marcia Raquel; Fedatto Bernardon, Fabiana; Müller, Gertrud

    2017-10-01

    The nematode Diplotriaena bargusinica is a bird air sac parasite, and its taxonomy is based mainly on morphological and morphometric characteristics. Increasing knowledge of genetic information variability has spurred the use of DNA markers in conjunction with morphological data for inferring phylogenetic relationships in different taxa. Considering the potential of molecular biology in taxonomy, this study presents the morphological and molecular characterization of D. bargusinica, and establishes the phylogenetic position of the nematode in Spirurina. Twenty partial sequences of the 18S region of D. bargusinica rDNA were generated. Phylogenetic trees were obtained through the Maximum Likelihood and Bayesian Inference methods where both had similar topology. The group Diplotriaenoidea is monophyletic and the topologies generated corroborate the phylogenetic studies based on traditional and previously performed molecular taxonomy. This study is the first to generate molecular data associated with the morphology of the species. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. RY-Coding and Non-Homogeneous Models Can Ameliorate the Maximum-Likelihood Inferences From Nucleotide Sequence Data with Parallel Compositional Heterogeneity.

    PubMed

    Ishikawa, Sohta A; Inagaki, Yuji; Hashimoto, Tetsuo

    2012-01-01

    In phylogenetic analyses of nucleotide sequences, 'homogeneous' substitution models, which assume the stationarity of base composition across a tree, are widely used, albeit individual sequences may bear distinctive base frequencies. In the worst-case scenario, a homogeneous model-based analysis can yield an artifactual union of two distantly related sequences that achieved similar base frequencies in parallel. Such potential difficulty can be countered by two approaches, 'RY-coding' and 'non-homogeneous' models. The former approach converts four bases into purine and pyrimidine to normalize base frequencies across a tree, while the heterogeneity in base frequency is explicitly incorporated in the latter approach. The two approaches have been applied to real-world sequence data; however, their basic properties have not been fully examined by pioneering simulation studies. Here, we assessed the performances of the maximum-likelihood analyses incorporating RY-coding and a non-homogeneous model (RY-coding and non-homogeneous analyses) on simulated data with parallel convergence to similar base composition. Both RY-coding and non-homogeneous analyses showed superior performances compared with homogeneous model-based analyses. Curiously, the performance of RY-coding analysis appeared to be significantly affected by a setting of the substitution process for sequence simulation relative to that of non-homogeneous analysis. The performance of a non-homogeneous analysis was also validated by analyzing a real-world sequence data set with significant base heterogeneity.

  3. Multigene analysis of lophophorate and chaetognath phylogenetic relationships.

    PubMed

    Helmkampf, Martin; Bruchhaus, Iris; Hausdorf, Bernhard

    2008-01-01

    Maximum likelihood and Bayesian inference analyses of seven concatenated fragments of nuclear-encoded housekeeping genes indicate that Lophotrochozoa is monophyletic, i.e., the lophophorate groups Bryozoa, Brachiopoda and Phoronida are more closely related to molluscs and annelids than to Deuterostomia or Ecdysozoa. Lophophorates themselves, however, form a polyphyletic assemblage. The hypotheses that they are monophyletic and more closely allied to Deuterostomia than to Protostomia can be ruled out with both the approximately unbiased test and the expected likelihood weights test. The existence of Phoronozoa, a putative clade including Brachiopoda and Phoronida, has also been rejected. According to our analyses, phoronids instead share a more recent common ancestor with bryozoans than with brachiopods. Platyhelminthes is the sister group of Lophotrochozoa. Together these two constitute Spiralia. Although Chaetognatha appears as the sister group of Priapulida within Ecdysozoa in our analyses, alternative hypothesis concerning chaetognath relationships could not be rejected.

  4. Xylopsora canopeorum (Umbilicariaceae), a new lichen species from the canopy of Sequoia sempervirens.

    PubMed

    Bendiksby, Mika; Næsborg, Rikke Reese; Timdal, Einar

    2018-01-01

    Xylopsora canopeorum Timdal, Reese Næsborg & Bendiksby is described as a new species occupying the crowns of large Sequoia sempervirens trees in California, USA. The new species is supported by morphology, anatomy, secondary chemistry and DNA sequence data. While similar in external appearance to X. friesii , it is distinguished by forming smaller, partly coralloid squamules, by the occurrence of soralia and, in some specimens, by the presence of thamnolic acid in addition to friesiic acid in the thallus. Molecular phylogenetic results are based on nuclear (ITS and LSU) as well as mitochondrial (SSU) ribosomal DNA sequence alignments. Phylogenetic hypotheses obtained using Bayesian Inference, Maximum Likelihood and Maximum Parsimony all support X. canopeorum as a distinct evolutionary lineage belonging to the X. caradocensis - X. friesii clade.

  5. Xylopsora canopeorum (Umbilicariaceae), a new lichen species from the canopy of Sequoia sempervirens

    PubMed Central

    Bendiksby, Mika; Næsborg, Rikke Reese; Timdal, Einar

    2018-01-01

    Abstract Xylopsora canopeorum Timdal, Reese Næsborg & Bendiksby is described as a new species occupying the crowns of large Sequoia sempervirens trees in California, USA. The new species is supported by morphology, anatomy, secondary chemistry and DNA sequence data. While similar in external appearance to X. friesii, it is distinguished by forming smaller, partly coralloid squamules, by the occurrence of soralia and, in some specimens, by the presence of thamnolic acid in addition to friesiic acid in the thallus. Molecular phylogenetic results are based on nuclear (ITS and LSU) as well as mitochondrial (SSU) ribosomal DNA sequence alignments. Phylogenetic hypotheses obtained using Bayesian Inference, Maximum Likelihood and Maximum Parsimony all support X. canopeorum as a distinct evolutionary lineage belonging to the X. caradocensis–X. friesii clade. PMID:29559828

  6. Phylogenetic evidence for a case of misleading rather than mislabeling in caviar in the United Kingdom.

    PubMed

    Johnson, Tania Aspasia; Iyengar, Arati

    2015-01-01

    Sturgeons and paddlefish are freshwater fish which are highly valued for their caviar. Despite the fact that every single species of sturgeon and paddlefish is listed under CITES, there are reports of illegal trade in caviar where products are deliberately mislabeled. Three samples of caviar purchased in the United Kingdom were investigated for accurate CITES labeling using COI and cyt b sequencing. Initial species identification was carried out using BLAST followed by phylogenetic analyses using both maximum parsimony and maximum likelihood methods. Results showed no evidence for mislabeling with respect to CITES labels in any of the three samples, but we observed clear evidence for a case of misleading the customer in one sample. © 2014 American Academy of Forensic Sciences.

  7. Combined molecular and morphological phylogenetic analyses of the New Zealand wolf spider genus Anoteropsis (Araneae: Lycosidae).

    PubMed

    Vink, Cor J; Paterson, Adrian M

    2003-09-01

    Datasets from the mitochondrial gene regions NADH dehydrogenase subunit I (ND1) and cytochrome c oxidase subunit I (COI) of the 20 species in the New Zealand wolf spider (Lycosidae) genus Anoteropsis were generated. Sequence data were phylogenetically analysed using parsimony and maximum likelihood analyses. The phylogenies generated from the ND1 and COI sequence data and a previously generated morphological dataset were significantly congruent (p<0.001). Sequence data were combined with morphological data and phylogenetically analysed using parsimony. The ND1 region sequenced included part of tRNA(Leu(CUN)), which appears to have an unstable amino-acyl arm and no TpsiC arm in lycosids. Analyses supported the existence of five species groups within Anoteropsis and the monophyly of species represented by multiple samples. A radiation of Anoteropsis species within the last five million years is inferred from the ND1 and COI likelihood phylograms, habitat and geological data, which also indicates that Anoteropsis arrived in New Zealand some time after it separated from Gondwana.

  8. Phylogenetic analysis of two Plectus mitochondrial genomes (Nematoda: Plectida) supports a sister group relationship between Plectida and Rhabditida within Chromadorea.

    PubMed

    Kim, Jiyeon; Kern, Elizabeth; Kim, Taeho; Sim, Mikang; Kim, Jaebum; Kim, Yuseob; Park, Chungoo; Nadler, Steven A; Park, Joong-Ki

    2017-02-01

    Plectida is an important nematode order with species that occupy many different biological niches. The order includes free-living aquatic and soil-dwelling species, but its phylogenetic position has remained uncertain. We sequenced the complete mitochondrial genomes of two members of this order, Plectus acuminatus and Plectus aquatilis and compared them with those of other major nematode clades. The genome size and base composition of these species are similar to other nematodes; 14,831 and 14,372bp, respectively, with AT contents of 71.0% and 70.1%. Gene content was also similar to other nematodes, but gene order and coding direction of Plectus mtDNAs were dissimilar from other chromadorean species. P. acuminatus and P. aquatilis are the first chromadorean species found to contain a gene inversion. We reconstructed mitochondrial genome phylogenetic trees using nucleotide and amino acid datasets from 87 nematodes that represent major nematode clades, including the Plectus sequences. Trees from phylogenetic analyses using maximum likelihood and Bayesian methods depicted Plectida as the sister group to other sequenced chromadorean nematodes. This finding is consistent with several phylogenetic results based on SSU rDNA, but disagrees with a classification based on morphology. Mitogenomes representing other basal chromadorean groups (Araeolaimida, Monhysterida, Desmodorida, Chromadorida) are needed to confirm their phylogenetic relationships. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Mitochondrial DNA variation and phylogenetic relationships among five tuna species based on sequencing of D-loop region.

    PubMed

    Kumar, Girish; Kocour, Martin; Kunal, Swaraj Priyaranjan

    2016-05-01

    In order to assess the DNA sequence variation and phylogenetic relationship among five tuna species (Auxis thazard, Euthynnus affinis, Katsuwonus pelamis, Thunnus tonggol, and T. albacares) out of all four tuna genera, partial sequences of the mitochondrial DNA (mtDNA) D-loop region were analyzed. The estimate of intra-specific sequence variation in studied species was low, ranging from 0.027 to 0.080 [Kimura's two parameter distance (K2P)], whereas values of inter-specific variation ranged from 0.049 to 0.491. The longtail tuna (T. tonggol) and yellowfin tuna (T. albacares) were found to share a close relationship (K2P = 0.049) while skipjack tuna (K. pelamis) was most divergent studied species. Phylogenetic analysis using Maximum-Likelihood (ML) and Neighbor-Joining (NJ) methods supported the monophyletic origin of Thunnus species. Similarly, phylogeny of Auxis and Euthynnus species substantiate the monophyly. However, results showed a distinct origin of K. pelamis from genus Thunnus as well as Auxis and Euthynnus. Thus, the mtDNA D-loop region sequence data supports the polyphyletic origin of tuna species.

  10. bcgTree: automatized phylogenetic tree building from bacterial core genomes.

    PubMed

    Ankenbrand, Markus J; Keller, Alexander

    2016-10-01

    The need for multi-gene analyses in scientific fields such as phylogenetics and DNA barcoding has increased in recent years. In particular, these approaches are increasingly important for differentiating bacterial species, where reliance on the standard 16S rDNA marker can result in poor resolution. Additionally, the assembly of bacterial genomes has become a standard task due to advances in next-generation sequencing technologies. We created a bioinformatic pipeline, bcgTree, which uses assembled bacterial genomes either from databases or own sequencing results from the user to reconstruct their phylogenetic history. The pipeline automatically extracts 107 essential single-copy core genes, found in a majority of bacteria, using hidden Markov models and performs a partitioned maximum-likelihood analysis. Here, we describe the workflow of bcgTree and, as a proof-of-concept, its usefulness in resolving the phylogeny of 293 publically available bacterial strains of the genus Lactobacillus. We also evaluate its performance in both low- and high-level taxonomy test sets. The tool is freely available at github ( https://github.com/iimog/bcgTree ) and our institutional homepage ( http://www.dna-analytics.biozentrum.uni-wuerzburg.de ).

  11. Fast and accurate estimation of the covariance between pairwise maximum likelihood distances.

    PubMed

    Gil, Manuel

    2014-01-01

    Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error.

  12. Fast and accurate estimation of the covariance between pairwise maximum likelihood distances

    PubMed Central

    2014-01-01

    Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error. PMID:25279263

  13. The First Mitochondrial Genome for Caddisfly (Insecta: Trichoptera) with Phylogenetic Implications

    PubMed Central

    Wang, Yuyu; Liu, Xingyue; Yang, Ding

    2014-01-01

    The Trichoptera (caddisflies) is a holometabolous insect order with 14,300 described species forming the second most species-rich monophyletic group of animals in freshwater. Hitherto, there is no mitochondrial genome reported of this order. Herein, we describe the complete mitochondrial (mt) genome of a caddisfly species, Eubasilissa regina (McLachlan, 1871). A phylogenomic analysis was carried out based on the mt genomic sequences of 13 mt protein coding genes (PCGs) and two rRNA genes of 24 species belonging to eight holometabolous orders. Both maximum likelihood and Bayesian inference analyses highly support the sister relationship between Trichoptera and Lepidoptera. PMID:24391451

  14. The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data.

    PubMed

    Peters, Ralph S; Meusemann, Karen; Petersen, Malte; Mayer, Christoph; Wilbrandt, Jeanne; Ziesmann, Tanja; Donath, Alexander; Kjer, Karl M; Aspöck, Ulrike; Aspöck, Horst; Aberer, Andre; Stamatakis, Alexandros; Friedrich, Frank; Hünefeld, Frank; Niehuis, Oliver; Beutel, Rolf G; Misof, Bernhard

    2014-03-20

    Despite considerable progress in systematics, a comprehensive scenario of the evolution of phenotypic characters in the mega-diverse Holometabola based on a solid phylogenetic hypothesis was still missing. We addressed this issue by de novo sequencing transcriptome libraries of representatives of all orders of holometabolan insects (13 species in total) and by using a previously published extensive morphological dataset. We tested competing phylogenetic hypotheses by analyzing various specifically designed sets of amino acid sequence data, using maximum likelihood (ML) based tree inference and Four-cluster Likelihood Mapping (FcLM). By maximum parsimony-based mapping of the morphological data on the phylogenetic relationships we traced evolutionary transformations at the phenotypic level and reconstructed the groundplan of Holometabola and of selected subgroups. In our analysis of the amino acid sequence data of 1,343 single-copy orthologous genes, Hymenoptera are placed as sister group to all remaining holometabolan orders, i.e., to a clade Aparaglossata, comprising two monophyletic subunits Mecopterida (Amphiesmenoptera + Antliophora) and Neuropteroidea (Neuropterida + Coleopterida). The monophyly of Coleopterida (Coleoptera and Strepsiptera) remains ambiguous in the analyses of the transcriptome data, but appears likely based on the morphological data. Highly supported relationships within Neuropterida and Antliophora are Raphidioptera + (Neuroptera + monophyletic Megaloptera), and Diptera + (Siphonaptera + Mecoptera). ML tree inference and FcLM yielded largely congruent results. However, FcLM, which was applied here for the first time to large phylogenomic supermatrices, displayed additional signal in the datasets that was not identified in the ML trees. Our phylogenetic results imply that an orthognathous larva belongs to the groundplan of Holometabola, with compound eyes and well-developed thoracic legs, externally feeding on plants or fungi. Ancestral larvae of Aparaglossata were prognathous, equipped with single larval eyes (stemmata), and possibly agile and predacious. Ancestral holometabolan adults likely resembled in their morphology the groundplan of adult neopteran insects. Within Aparaglossata, the adult's flight apparatus and ovipositor underwent strong modifications. We show that the combination of well-resolved phylogenies obtained by phylogenomic analyses and well-documented extensive morphological datasets is an appropriate basis for reconstructing complex morphological transformations and for the inference of evolutionary histories.

  15. Mitochondrial Genetic Differentiation of Spirlin (Actinopterigii: Cyprinidae) in the South Caspian Sea basin of Iran

    PubMed Central

    Seifali, Mahvash; Arshad, Aziz; Moghaddam, Faezeh Yazdani; Esmaeili, Hamid Reza; Kiabi, Bahram H.; Daud, Siti Khalijah; Aliabadian, Mansour

    2012-01-01

    Background Knowledge about Alburnoides remains lacking relative to many other species, resulting in a lack of a systematic position and taxonomic diagnosis. Basic biological information for Alburnoides has been constructed, and it is necessary to understand further and obtain more information about this species. Its phylogenetic relationships are still debated and no molecular data have been used to study this taxon in Iran. A holistic approach for genetic methods was adopted to analyze possible spirlin population differences at selected centers in the south Caspian Sea basin of Iran. Methods The phylogenetic relationships were determined based on 774 base pairs of the mitochondrial cytochrome b gene of 32 specimens of spirlin from nine locations in the south Caspian Sea drainage basin of Iran. The nucleotide sequences were subjected to phylogenetic analysis using the neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian methods. Results The mitochondrial gene tree largely supports the existence of three major clades. The western populations (clade I) may be considered as Alburnoides eichwaldii, whereas the Talar river populations (clade II) are represented as Alburnoides sp.1 and the eastern populations (clade III) may be distinct taxa of Alburnoides sp.2. Conclusion This molecular evidence supports the hypothesis that A. bipunctatus does not exist in the south Caspian Sea basin of Iran, and that the western and eastern populations are distinct taxa. PMID:22654487

  16. Detection and phylogenetic analysis of bacteriophage WO in spiders (Araneae).

    PubMed

    Yan, Qian; Qiao, Huping; Gao, Jin; Yun, Yueli; Liu, Fengxiang; Peng, Yu

    2015-11-01

    Phage WO is a bacteriophage found in Wolbachia. Herein, we represent the first phylogenetic study of WOs that infect spiders (Araneae). Seven species of spiders (Araneus alternidens, Nephila clavata, Hylyphantes graminicola, Prosoponoides sinensis, Pholcus crypticolens, Coleosoma octomaculatum, and Nurscia albofasciata) from six families were infected by Wolbachia and WO, followed by comprehensive sequence analysis. Interestingly, WO could be only detected Wolbachia-infected spiders. The relative infection rates of those seven species of spiders were 75, 100, 88.9, 100, 62.5, 72.7, and 100 %, respectively. Our results indicated that both Wolbachia and WO were found in three different body parts of N. clavata, and WO could be passed to the next generation of H. graminicola by vertical transmission. There were three different sequences for WO infected in A. alternidens and two different WO sequences from C. octomaculatum. Only one sequence of WO was found for the other five species of spiders. The discovered sequence of WO ranged from 239 to 311 bp. Phylogenetic tree was generated using maximum likelihood (ML) based on the orf7 gene sequences. According to the phylogenetic tree, WOs in N. clavata and H. graminicola were clustered in the same group. WOs from A. alternidens (WAlt1) and C. octomaculatum (WOct2) were closely related to another clade, whereas WO in P. sinensis was classified as a sole cluster.

  17. Association of Bartonella Species with Wild and Synanthropic Rodents in Different Brazilian Biomes

    PubMed Central

    Gonçalves, Luiz Ricardo; Favacho, Alexsandra Rodrigues de Mendonça; Roque, André Luiz Rodrigues; Mendes, Natalia Serra; Fidelis Junior, Otávio Luiz; Benevenute, Jyan Lucas; Herrera, Heitor Miraglia; D'Andrea, Paulo Sérgio; de Lemos, Elba Regina Sampaio; Machado, Rosangela Zacarias

    2016-01-01

    ABSTRACT Bartonella spp. comprise an ecologically successful group of microorganisms that infect erythrocytes and have adapted to different hosts, which include a wide range of mammals, besides humans. Rodents are reservoirs of about two-thirds of Bartonella spp. described to date; and some of them have been implicated as causative agents of human diseases. In our study, we performed molecular and phylogenetic analyses of Bartonella spp. infecting wild rodents from five different Brazilian biomes. In order to characterize the genetic diversity of Bartonella spp., we performed a robust analysis based on three target genes, followed by sequencing, Bayesian inference, and maximum likelihood analysis. Bartonella spp. were detected in 25.6% (117/457) of rodent spleen samples analyzed, and this occurrence varied among different biomes. The diversity analysis of gltA sequences showed the presence of 15 different haplotypes. Analysis of the phylogenetic relationship of gltA sequences performed by Bayesian inference and maximum likelihood showed that the Bartonella species detected in rodents from Brazil was closely related to the phylogenetic group A detected in other cricetid rodents from North America, probably constituting only one species. Last, the Bartonella species genogroup identified in the present study formed a monophyletic group that included Bartonella samples from seven different rodent species distributed in three distinct biomes. In conclusion, our study showed that the occurrence of Bartonella bacteria in rodents is much more frequent and widespread than previously recognized. IMPORTANCE In the present study, we reported the occurrence of Bartonella spp. in some sites in Brazil. The identification and understanding of the distribution of this important group of bacteria may allow the Brazilian authorities to recognize potential regions with the risk of transmission of these pathogens among wild and domestic animals and humans. In addition, our study accessed important gaps in the biology of this group of bacteria in Brazil, such as its low host specificity, high genetic diversity, and relationship with other Bartonella spp. detected in rodents trapped in America. Considering the diversity of newly discovered Bartonella species and the great ecological plasticity of these bacteria, new studies with the aim of revealing the biological aspects unknown until now are needed and must be performed around the world. In this context, the impact of Bartonella spp. associated with rodents in human health should be assessed in future studies. PMID:27736785

  18. The evolutionary history of Eugenia sect. Phyllocalyx (Myrtaceae) corroborates historically stable areas in the southern Atlantic forests.

    PubMed

    de Oliveira Bünger, Mariana; Fernanda Mazine, Fiorella; Forest, Félix; Leandro Bueno, Marcelo; Renato Stehmann, João; Lucas, Eve J

    2016-12-01

    Eugenia sect. Phyllocalyx Nied. includes 14 species endemic to the Neotropics, mostly distributed in the Atlantic coastal forests of Brazil. Here the first comprehensive phylogenetic study of this group is presented, and this phylogeny is used as the basis to evaluate the recent infrageneric classification in Eugenia sensu lato (s.l.) to test the history of the evolution of traits in the group and test hypotheses associated with the history of this clade. A total of 42 taxa were sampled, of which 14 were Eugenia sect. Phyllocalyx for one nuclear (ribosomal internal transcribed spacer) and four plastid markers (psbA-trnH, rpl16, trnL-rpl32 and trnQ-rps16). The relationships were reconstructed based on Bayesian analysis and maximum likelihood. Additionally, ancestral area analysis and modelling methods were used to estimate species dispersal, comparing historically climatic stable (refuges) and unstable areas. Maximum likelihood and Bayesian inferences indicate that Eugenia sect. Phyllocalyx is paraphyletic and the two clades recovered are characterized by combinations of morphological characters. Phylogenetic relationships support a link between Cerrado and south-eastern species and a difference in the composition of species from north-eastern and south-eastern Atlantic forest. Refugia and stable areas identified within unstable areas suggest that these areas were important to maintain diversity in the Atlantic forest biodiversity hotspot. This study provides a robust phylogenetic framework to address important historical questions for Eugenia s.l. within an evolutionary context, supporting the need for better taxonomic study of one of the largest genera in the Neotropics. Furthermore, valuable insight is offered into diversification and biome shifts of plant species in the highly environmentally impacted Atlantic forest of South America. Evidence is presented that climate stability in the south-eastern Atlantic forest during the Quaternary contributed to the highest levels of plant diversity in this region that acted as a refugium. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. The Complete Genome Phylogeny of Geographically Distinct Dengue Virus Serotype 2 Isolates (1944-2013) Supports Further Groupings within the Cosmopolitan Genotype

    PubMed Central

    Ali, Akhtar; Ali, Ijaz

    2015-01-01

    Dengue virus serotype 2 (DENV-2) isolates have been implicated in deadly outbreaks of dengue fever (DF) and dengue hemorrhagic fever (DHF) in several regions of the world. Phylogenetic analysis of DENV-2 isolates collected from particular countries has been performed using partial or individual genes but only a few studies have examined complete whole-genome sequences collected worldwide. Herein, 50 complete genome sequences of DENV-2 isolates, reported over the past 70 years from 19 different countries, were downloaded from GenBank. Phylogenetic analysis was conducted and evolutionary distances of the 50 DENV-2 isolates were determined using maximum likelihood (ML) trees or Bayesian phylogenetic analysis created from complete genome nucleotide (nt) and amino acid (aa) sequences or individual gene sequences. The results showed that all DENV-2 isolates fell into seven main groups containing five previously defined genotypes. A Cosmopolitan genotype showed further division into three groups (C-I, C-II, and C-III) with the C-I group containing two subgroups (C-IA and C-IB). Comparison of the aa sequences showed specific mutations among the various groups of DENV-2 isolates. A maximum number of aa mutations was observed in the NS5 gene, followed by the NS2A, NS3 and NS1 genes, while the smallest number of aa substitutions was recorded in the capsid gene, followed by the PrM/M, NS4A, and NS4B genes. Maximum evolutionary distances were found in the NS2A gene, followed by the NS4A and NS4B genes. Based on these results, we propose that genotyping of DENV-2 isolates in future studies should be performed on entire genome sequences in order to gain a complete understanding of the evolution of various isolates reported from different geographical locations around the world. PMID:26414178

  20. The Impact of Reconstruction Methods, Phylogenetic Uncertainty and Branch Lengths on Inference of Chromosome Number Evolution in American Daisies (Melampodium, Asteraceae)

    PubMed Central

    McCann, Jamie; Stuessy, Tod F.; Villaseñor, Jose L.; Weiss-Schneeweiss, Hanna

    2016-01-01

    Chromosome number change (polyploidy and dysploidy) plays an important role in plant diversification and speciation. Investigating chromosome number evolution commonly entails ancestral state reconstruction performed within a phylogenetic framework, which is, however, prone to uncertainty, whose effects on evolutionary inferences are insufficiently understood. Using the chromosomally diverse plant genus Melampodium (Asteraceae) as model group, we assess the impact of reconstruction method (maximum parsimony, maximum likelihood, Bayesian methods), branch length model (phylograms versus chronograms) and phylogenetic uncertainty (topological and branch length uncertainty) on the inference of chromosome number evolution. We also address the suitability of the maximum clade credibility (MCC) tree as single representative topology for chromosome number reconstruction. Each of the listed factors causes considerable incongruence among chromosome number reconstructions. Discrepancies between inferences on the MCC tree from those made by integrating over a set of trees are moderate for ancestral chromosome numbers, but severe for the difference of chromosome gains and losses, a measure of the directionality of dysploidy. Therefore, reliance on single trees, such as the MCC tree, is strongly discouraged and model averaging, taking both phylogenetic and model uncertainty into account, is recommended. For studying chromosome number evolution, dedicated models implemented in the program ChromEvol and ordered maximum parsimony may be most appropriate. Chromosome number evolution in Melampodium follows a pattern of bidirectional dysploidy (starting from x = 11 to x = 9 and x = 14, respectively) with no prevailing direction. PMID:27611687

  1. The Impact of Reconstruction Methods, Phylogenetic Uncertainty and Branch Lengths on Inference of Chromosome Number Evolution in American Daisies (Melampodium, Asteraceae).

    PubMed

    McCann, Jamie; Schneeweiss, Gerald M; Stuessy, Tod F; Villaseñor, Jose L; Weiss-Schneeweiss, Hanna

    2016-01-01

    Chromosome number change (polyploidy and dysploidy) plays an important role in plant diversification and speciation. Investigating chromosome number evolution commonly entails ancestral state reconstruction performed within a phylogenetic framework, which is, however, prone to uncertainty, whose effects on evolutionary inferences are insufficiently understood. Using the chromosomally diverse plant genus Melampodium (Asteraceae) as model group, we assess the impact of reconstruction method (maximum parsimony, maximum likelihood, Bayesian methods), branch length model (phylograms versus chronograms) and phylogenetic uncertainty (topological and branch length uncertainty) on the inference of chromosome number evolution. We also address the suitability of the maximum clade credibility (MCC) tree as single representative topology for chromosome number reconstruction. Each of the listed factors causes considerable incongruence among chromosome number reconstructions. Discrepancies between inferences on the MCC tree from those made by integrating over a set of trees are moderate for ancestral chromosome numbers, but severe for the difference of chromosome gains and losses, a measure of the directionality of dysploidy. Therefore, reliance on single trees, such as the MCC tree, is strongly discouraged and model averaging, taking both phylogenetic and model uncertainty into account, is recommended. For studying chromosome number evolution, dedicated models implemented in the program ChromEvol and ordered maximum parsimony may be most appropriate. Chromosome number evolution in Melampodium follows a pattern of bidirectional dysploidy (starting from x = 11 to x = 9 and x = 14, respectively) with no prevailing direction.

  2. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification.

    PubMed

    Jones, Christopher M; Stres, Blaz; Rosenquist, Magnus; Hallin, Sara

    2008-09-01

    Denitrification is a facultative respiratory pathway in which nitrite (NO2(-)), nitric oxide (NO), and nitrous oxide (N2O) are successively reduced to nitrogen gas (N(2)), effectively closing the nitrogen cycle. The ability to denitrify is widely dispersed among prokaryotes, and this polyphyletic distribution has raised the possibility of horizontal gene transfer (HGT) having a substantial role in the evolution of denitrification. Comparisons of 16S rRNA and denitrification gene phylogenies in recent studies support this possibility; however, these results remain speculative as they are based on visual comparisons of phylogenies from partial sequences. We reanalyzed publicly available nirS, nirK, norB, and nosZ partial sequences using Bayesian and maximum likelihood phylogenetic inference. Concomitant analysis of denitrification genes with 16S rRNA sequences from the same organisms showed substantial differences between the trees, which were supported by examining the posterior probability of monophyletic constraints at different taxonomic levels. Although these differences suggest HGT of denitrification genes, the presence of structural variants for nirK, norB, and nosZ makes it difficult to determine HGT from other evolutionary events. Additional analysis using phylogenetic networks and likelihood ratio tests of phylogenies based on full-length sequences retrieved from genomes also revealed significant differences in tree topologies among denitrification and 16S rRNA gene phylogenies, with the exception of the nosZ gene phylogeny within the data set of the nirK-harboring genomes. However, inspection of codon usage and G + C content plots from complete genomes gave no evidence for recent HGT. Instead, the close proximity of denitrification gene copies in the genomes of several denitrifying bacteria suggests duplication. Although HGT cannot be ruled out as a factor in the evolution of denitrification genes, our analysis suggests that other phenomena, such gene duplication/divergence and lineage sorting, may have differently influenced the evolution of each denitrification gene.

  3. Rapid radiation events in the family Ursidae indicated by likelihood phylogenetic estimation from multiple fragments of mtDNA.

    PubMed

    Waits, L P; Sullivan, J; O'Brien, S J; Ward, R H

    1999-10-01

    The bear family (Ursidae) presents a number of phylogenetic ambiguities as the evolutionary relationships of the six youngest members (ursine bears) are largely unresolved. Recent mitochondrial DNA analyses have produced conflicting results with respect to the phylogeny of ursine bears. In an attempt to resolve these issues, we obtained 1916 nucleotides of mitochondrial DNA sequence data from six gene segments for all eight bear species and conducted maximum likelihood and maximum parsimony analyses on all fragments separately and combined. All six single-region gene trees gave different phylogenetic estimates; however, only for control region data was this significantly incongruent with the results from the combined data. The optimal phylogeny for the combined data set suggests that the giant panda is most basal followed by the spectacled bear. The sloth bear is the basal ursine bear, and there is weak support for a sister taxon relationship of the American and Asiatic black bears. The sun bear is sister taxon to the youngest clade containing brown bears and polar bears. Statistical analyses of alternate hypotheses revealed a lack of strong support for many of the relationships. We suggest that the difficulties surrounding the resolution of the evolutionary relationships of the Ursidae are linked to the existence of sequential rapid radiation events in bear evolution. Thus, unresolved branching orders during these time periods may represent an accurate representation of the evolutionary history of bear species. Copyright 1999 Academic Press.

  4. Phylogenetic relationships of the endangered Shenandoah salamander (Plethodon shenandoah) and other salamanders of the Plethodon cinereus group (Caudata : Plethodontidae)

    USGS Publications Warehouse

    Sites, J.W.; Morando, M.; Highton, R.; Huber, F.; Jung, R.E.

    2004-01-01

    The Shenandoah salamander (Plethodon shenandoah), known from isolated talus slopes on three of the highest mountains in Shenandoah National Park, is listed as state-endangered in Virginia and federally endangered under the U.S. Endangered Species Act. A 1999 paper by G. R. Thurow described P. shenandoah-like salamanders from three localities further south in the Blue Ridge Physiographic Province, which, if confirmed, would represent a range extension for P. shenandoah of approximately 90 km from its nearest known locality. Samples collected from two of these three localities were included in a molecular phylogenetic study of the known populations of P. shenandoah, and all other recognized species in the Plethodon cinereus group, using a 792 bp region of the mitochondrial cytochrome-b gene. Phylogenetic estimates were based on Bayesian, maximum likelihood, and maximum parsimony methods and topologies examined for placement of the new P. shenandoah-like samples relative to all others. All topologies recovered all haplotypes of the P. shenandoah-like animals nested within P. cinereus, and a statistical comparison of the best likelihood tree topology with one with an enforced (Thurow + Shenandoah P. shenandoah) clade revealed that the unconstrained tree had a significantly lower -In L score (P < 0.05, using the Shimodaira-Hasegawa test) than the constraint tree. This result and other anecdotal information give us no solid reason to consider the Thurow report valid. The current recovery program for P. shenandoah should remain focused on populations in Shenandoah National Park.

  5. Molecular phylogeny of the red panda (Ailurus fulgens).

    PubMed

    Slattery, J P; O'Brien, S J

    1995-01-01

    The phylogenetic placement of the red panda (Ailurus fulgens) and the giant panda (Ailuropoda melanoleuca) has been an evolutionary enigma since their original descriptions in the nineteenth century. A series of recent molecular analyses led to a consensus that the giant panda's ancestors were derived from early bears (Ursidae), but left unsettled the phylogenetic relationship of the red panda. Previous molecular and morphological phylogenies were inconclusive and varied among placement of the red panda within the raccoon family (Procyonidae), within the bear family (Ursidae), or in a separate family of carnivores equidistant between the two. To examine a relatively ancient (circa 20-30 million years before the present, MYBP) phylogenetic divergence, we used two slowly evolving genetic markers: mitochondrial 12S rRNA sequence and 592 fibroblast proteins resolved by two dimensional gel electrophoresis. Four different carnivore outgroup species, including dog (Canidae: Canis familiaris), cat (Felidae: Felis catus), fanaloka (Viverridae: Fossa fossa), and mongoose (Herpestidae: Galidia elegans), were selected to identify the root of the phylogenetic topologies. Phylogenetic reconstruction by distance-based methods, maximum parsimony, and maximum likelihood clearly indicate a distinct bifurcation forming the Ursidae and the Procyonidae. Further, our data consistently place the red panda as an early divergence within the Procyonidae radiation and confirm the inclusion of giant panda in the Ursidae lineage.

  6. An integrated phylogenetic analysis on ascaridoid nematodes (Anisakidae, Raphidascarididae), including further description and intraspecific variations of Raphidascaris (Sprentascaris) lanfrediae in freshwater fishes from Brazil.

    PubMed

    Pereira, Felipe B; Luque, José L

    2017-02-01

    Genetic and morphological variations in two component populations of Raphidascaris (Sprentascaris) lanfrediae collected in the intestine of Geophagus argyrosticus and G. proximus (Cichlidae) from States of Pará and Amapá, Brazil, respectively, were explored for the first time. A phylogenetic study including two genes (18S and 28S of the rDNA) plus morphological and life history traits of "anisakid-related" nematodes (Anisakidae, Raphidascarididae) was also performed in order to clarify taxonomic and systematic issues related to these taxa. Gene alignments were subjected to maximum likelihood (ML) and Bayesian Inference (BI), and combined data of the genetic and morphological datasets was subjected to maximum parsimony (MP) analysis. Despite of the subtle differences in the morphology (mainly in male caudal papillae) and morphometry between specimens of R. (S.) lanfrediae from the two different hosts and from the type material of the species, no genetic variation was found among representatives of the newly collected material. This find may represent an example of gene-environment interactions, similar to that recently observed for Raphidascaroides brasiliensis. Phylogenetic reconstructions indicated the paraphyly of Anisakidae represented by two subfamilies, i.e., Anisakinae and Contracaecinae and the monophyly of Raphidascarididae. Analysis of the combined datasets revealed that some morphological traits may represent apomorphic characters of Raphidascarididae and Anisakidae, whereas others are highly homoplastic and some may be interpreted with careful to avoid errors. The results support the premise that taxonomists should consider Anisakidae and Raphidascarididae as separate families, and only two subfamilies of Anisakidae, i.e., Anisakinae and Contracaecinae. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Probabilistic Graphical Model Representation in Phylogenetics

    PubMed Central

    Höhna, Sebastian; Heath, Tracy A.; Boussau, Bastien; Landis, Michael J.; Ronquist, Fredrik; Huelsenbeck, John P.

    2014-01-01

    Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (i) reproducibility of an analysis, (ii) model development, and (iii) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and nonspecialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, Metropolis–Hastings or Gibbs sampling of the posterior distribution. [Computation; graphical models; inference; modularization; statistical phylogenetics; tree plate.] PMID:24951559

  8. Phylogenetic relationships among arecoid palms (Arecaceae: Arecoideae)

    PubMed Central

    Baker, William J.; Norup, Maria V.; Clarkson, James J.; Couvreur, Thomas L. P.; Dowe, John L.; Lewis, Carl E.; Pintaud, Jean-Christophe; Savolainen, Vincent; Wilmot, Tomas; Chase, Mark W.

    2011-01-01

    Background and Aims The Arecoideae is the largest and most diverse of the five subfamilies of palms (Arecaceae/Palmae), containing >50 % of the species in the family. Despite its importance, phylogenetic relationships among Arecoideae are poorly understood. Here the most densely sampled phylogenetic analysis of Arecoideae available to date is presented. The results are used to test the current classification of the subfamily and to identify priority areas for future research. Methods DNA sequence data for the low-copy nuclear genes PRK and RPB2 were collected from 190 palm species, covering 103 (96 %) genera of Arecoideae. The data were analysed using the parsimony ratchet, maximum likelihood, and both likelihood and parsimony bootstrapping. Key Results and Conclusions Despite the recovery of paralogues and pseudogenes in a small number of taxa, PRK and RPB2 were both highly informative, producing well-resolved phylogenetic trees with many nodes well supported by bootstrap analyses. Simultaneous analyses of the combined data sets provided additional resolution and support. Two areas of incongruence between PRK and RPB2 were strongly supported by the bootstrap relating to the placement of tribes Chamaedoreeae, Iriarteeae and Reinhardtieae; the causes of this incongruence remain uncertain. The current classification within Arecoideae was strongly supported by the present data. Of the 14 tribes and 14 sub-tribes in the classification, only five sub-tribes from tribe Areceae (Basseliniinae, Linospadicinae, Oncospermatinae, Rhopalostylidinae and Verschaffeltiinae) failed to receive support. Three major higher level clades were strongly supported: (1) the RRC clade (Roystoneeae, Reinhardtieae and Cocoseae), (2) the POS clade (Podococceae, Oranieae and Sclerospermeae) and (3) the core arecoid clade (Areceae, Euterpeae, Geonomateae, Leopoldinieae, Manicarieae and Pelagodoxeae). However, new data sources are required to elucidate ambiguities that remain in phylogenetic relationships among and within the major groups of Arecoideae, as well as within the Areceae, the largest tribe in the palm family. PMID:21325340

  9. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.

    PubMed

    Stamatakis, Alexandros

    2006-11-01

    RAxML-VI-HPC (randomized axelerated maximum likelihood for high performance computing) is a sequential and parallel program for inference of large phylogenies with maximum likelihood (ML). Low-level technical optimizations, a modification of the search algorithm, and the use of the GTR+CAT approximation as replacement for GTR+Gamma yield a program that is between 2.7 and 52 times faster than the previous version of RAxML. A large-scale performance comparison with GARLI, PHYML, IQPNNI and MrBayes on real data containing 1000 up to 6722 taxa shows that RAxML requires at least 5.6 times less main memory and yields better trees in similar times than the best competing program (GARLI) on datasets up to 2500 taxa. On datasets > or =4000 taxa it also runs 2-3 times faster than GARLI. RAxML has been parallelized with MPI to conduct parallel multiple bootstraps and inferences on distinct starting trees. The program has been used to compute ML trees on two of the largest alignments to date containing 25,057 (1463 bp) and 2182 (51,089 bp) taxa, respectively. icwww.epfl.ch/~stamatak

  10. Mitochondrial Genome of the Stonefly Kamimuria wangi (Plecoptera: Perlidae) and Phylogenetic Position of Plecoptera Based on Mitogenomes

    PubMed Central

    Yu-Han, Qian; Hai-Yan, Wu; Xiao-Yu, Ji; Wei-Wei, Yu; Yu-Zhou, Du

    2014-01-01

    This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848–15651) and stem-loop 2 (15965–15998). The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera. PMID:24466028

  11. Mitochondrial genome of the stonefly Kamimuria wangi (Plecoptera: Perlidae) and phylogenetic position of plecoptera based on mitogenomes.

    PubMed

    Yu-Han, Qian; Hai-Yan, Wu; Xiao-Yu, Ji; Wei-Wei, Yu; Yu-Zhou, Du

    2014-01-01

    This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848-15651) and stem-loop 2 (15965-15998). The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera.

  12. Characterization of phylogenetically diverse astroviruses of marine mammals.

    PubMed

    Rivera, Rebecca; Nollens, Hendrik H; Venn-Watson, Stephanie; Gulland, Frances M D; Wellehan, James F X

    2010-01-01

    Astroviruses are small, non-enveloped, positive-stranded RNA viruses. Previously studied mammalian astroviruses have been associated with diarrhoeal disease. Knowledge of astrovirus diversity is very limited, with only six officially recognized astrovirus species from mammalian hosts and, in addition, one human and some bat astroviruses were recently described. We used consensus PCR techniques for initial identification of five astroviruses of marine mammals: three from California sea lions (Zalophus californianus), one from a Steller sea lion (Eumetopias jubatus) and one from a bottlenose dolphin (Tursiops truncatus). Bayesian and maximum-likelihood phylogenetic analysis found that these viruses showed significant diversity at a level consistent with novel species. Astroviruses that we identified from marine mammals were found across the mamastrovirus tree and did not form a monophyletic group. Recombination analysis found that a recombination event may have occurred between a human and a California sea lion astrovirus, suggesting that both lineages may have been capable of infecting the same host at one point. The diversity found amongst marine mammal astroviruses and their similarity to terrestrial astroviruses suggests that the marine environment plays an important role in astrovirus ecology.

  13. Two C++ Libraries for Counting Trees on a Phylogenetic Terrace.

    PubMed

    Biczok, R; Bozsoky, P; Eisenmann, P; Ernst, J; Ribizel, T; Scholz, F; Trefzer, A; Weber, F; Hamann, M; Stamatakis, A

    2018-05-08

    The presence of terraces in phylogenetic tree space, that is, a potentially large number of distinct tree topologies that have exactly the same analytical likelihood score, was first described by Sanderson et al. (2011). However, popular software tools for maximum likelihood and Bayesian phylogenetic inference do not yet routinely report, if inferred phylogenies reside on a terrace, or not. We believe, this is due to the lack of an efficient library to (i) determine if a tree resides on a terrace, (ii) calculate how many trees reside on a terrace, and (iii) enumerate all trees on a terrace. In our bioinformatics practical that is set up as a programming contest we developed two efficient and independent C++ implementations of the SUPERB algorithm by Constantinescu and Sankoff (1995) for counting and enumerating trees on a terrace. Both implementations yield exactly the same results, are more than one order of magnitude faster, and require one order of magnitude less memory than a previous 3rd party python implementation. The source codes are available under GNU GPL at https://github.com/terraphast. Alexandros.Stamatakis@h-its.org. Supplementary data are available at Bioinformatics online.

  14. Host switch during evolution of a genetically distinct hantavirus in the American shrew mole (Neurotrichus gibbsii)

    PubMed Central

    Kang, Hae Ji; Bennett, Shannon N.; Dizney, Laurie; Sumibcay, Laarni; Arai, Satoru; Ruedas, Luis A.; Song, Jin-Won; Yanagihara, Richard

    2009-01-01

    A genetically distinct hantavirus, designated Oxbow virus (OXBV), was detected in tissues of an American shrew mole (Neurotrichus gibbsii), captured in Gresham, Oregon, in September 2003. Pairwise analysis of full-length S- and M- and partial L-segment nucleotide and amino acid sequences of OXBV indicated low sequence similarity with rodent-borne hantaviruses. Phylogenetic analyses using maximum-likelihood and Bayesian methods, and host-parasite evolutionary comparisons, showed that OXBV and Asama virus, a hantavirus recently identified from the Japanese shrew mole (Urotrichus talpoides), were related to soricine shrew-borne hantaviruses from North America and Eurasia, respectively, suggesting parallel evolution associated with cross-species transmission. PMID:19394994

  15. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics.

    PubMed

    Ayres, Daniel L; Darling, Aaron; Zwickl, Derrick J; Beerli, Peter; Holder, Mark T; Lewis, Paul O; Huelsenbeck, John P; Ronquist, Fredrik; Swofford, David L; Cummings, Michael P; Rambaut, Andrew; Suchard, Marc A

    2012-01-01

    Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software.

  16. BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics

    PubMed Central

    Ayres, Daniel L.; Darling, Aaron; Zwickl, Derrick J.; Beerli, Peter; Holder, Mark T.; Lewis, Paul O.; Huelsenbeck, John P.; Ronquist, Fredrik; Swofford, David L.; Cummings, Michael P.; Rambaut, Andrew; Suchard, Marc A.

    2012-01-01

    Abstract Phylogenetic inference is fundamental to our understanding of most aspects of the origin and evolution of life, and in recent years, there has been a concentration of interest in statistical approaches such as Bayesian inference and maximum likelihood estimation. Yet, for large data sets and realistic or interesting models of evolution, these approaches remain computationally demanding. High-throughput sequencing can yield data for thousands of taxa, but scaling to such problems using serial computing often necessitates the use of nonstatistical or approximate approaches. The recent emergence of graphics processing units (GPUs) provides an opportunity to leverage their excellent floating-point computational performance to accelerate statistical phylogenetic inference. A specialized library for phylogenetic calculation would allow existing software packages to make more effective use of available computer hardware, including GPUs. Adoption of a common library would also make it easier for other emerging computing architectures, such as field programmable gate arrays, to be used in the future. We present BEAGLE, an application programming interface (API) and library for high-performance statistical phylogenetic inference. The API provides a uniform interface for performing phylogenetic likelihood calculations on a variety of compute hardware platforms. The library includes a set of efficient implementations and can currently exploit hardware including GPUs using NVIDIA CUDA, central processing units (CPUs) with Streaming SIMD Extensions and related processor supplementary instruction sets, and multicore CPUs via OpenMP. To demonstrate the advantages of a common API, we have incorporated the library into several popular phylogenetic software packages. The BEAGLE library is free open source software licensed under the Lesser GPL and available from http://beagle-lib.googlecode.com. An example client program is available as public domain software. PMID:21963610

  17. Evolutionary genetic analyses of MEF2C gene: implications for learning and memory in Homo sapiens.

    PubMed

    Kalmady, Sunil V; Venkatasubramanian, Ganesan; Arasappa, Rashmi; Rao, Naren P

    2013-02-01

    MEF2C facilitates context-dependent fear conditioning (CFC) which is a salient aspect of hippocampus-dependent learning and memory. CFC might have played a crucial role in human evolution because of its advantageous influence on survival of species. In this study, we analyzed 23 orthologous mammalian gene sequences of MEF2C gene to examine the evidence for positive selection on this gene in Homo sapiens using Phylogenetic Analysis by Maximum Likelihood (PAML) and HyPhy software. Both PAML Bayes Empirical Bayes (BEB) and HyPhy Fixed Effects Likelihood (FEL) analyses supported significant positive selection on 4 codon sites in H. sapiens. Also, haplotter analysis revealed significant ongoing positive selection on this gene in Central European population. The study findings suggest that adaptive selective pressure on this gene might have influenced human evolution. Further research on this gene might unravel the potential role of this gene in learning and memory as well as its pathogenetic effect in certain hippocampal disorders with evolutionary basis like schizophrenia. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Phylogenetic Analysis of a ‘Jewel Orchid’ Genus Goodyera (Orchidaceae) Based on DNA Sequence Data from Nuclear and Plastid Regions

    PubMed Central

    Hu, Chao; Tian, Huaizhen; Li, Hongqing; Hu, Aiqun; Xing, Fuwu; Bhattacharjee, Avishek; Hsu, Tianchuan; Kumar, Pankaj; Chung, Shihwen

    2016-01-01

    A molecular phylogeny of Asiatic species of Goodyera (Orchidaceae, Cranichideae, Goodyerinae) based on the nuclear ribosomal internal transcribed spacer (ITS) region and two chloroplast loci (matK and trnL-F) was presented. Thirty-five species represented by 132 samples of Goodyera were analyzed, along with other 27 genera/48 species, using Pterostylis longifolia and Chloraea gaudichaudii as outgroups. Bayesian inference, maximum parsimony and maximum likelihood methods were used to reveal the intrageneric relationships of Goodyera and its intergeneric relationships to related genera. The results indicate that: 1) Goodyera is not monophyletic; 2) Goodyera could be divided into four sections, viz., Goodyera, Otosepalum, Reticulum and a new section; 3) sect. Reticulum can be further divided into two subsections, viz., Reticulum and Foliosum, whereas sect. Goodyera can in turn be divided into subsections Goodyera and a new subsection. PMID:26927946

  19. Phylogenetic Analysis of a 'Jewel Orchid' Genus Goodyera (Orchidaceae) Based on DNA Sequence Data from Nuclear and Plastid Regions.

    PubMed

    Hu, Chao; Tian, Huaizhen; Li, Hongqing; Hu, Aiqun; Xing, Fuwu; Bhattacharjee, Avishek; Hsu, Tianchuan; Kumar, Pankaj; Chung, Shihwen

    2016-01-01

    A molecular phylogeny of Asiatic species of Goodyera (Orchidaceae, Cranichideae, Goodyerinae) based on the nuclear ribosomal internal transcribed spacer (ITS) region and two chloroplast loci (matK and trnL-F) was presented. Thirty-five species represented by 132 samples of Goodyera were analyzed, along with other 27 genera/48 species, using Pterostylis longifolia and Chloraea gaudichaudii as outgroups. Bayesian inference, maximum parsimony and maximum likelihood methods were used to reveal the intrageneric relationships of Goodyera and its intergeneric relationships to related genera. The results indicate that: 1) Goodyera is not monophyletic; 2) Goodyera could be divided into four sections, viz., Goodyera, Otosepalum, Reticulum and a new section; 3) sect. Reticulum can be further divided into two subsections, viz., Reticulum and Foliosum, whereas sect. Goodyera can in turn be divided into subsections Goodyera and a new subsection.

  20. Organellar Genomes from a ∼5,000-Year-Old Archaeological Maize Sample Are Closely Related to NB Genotype

    PubMed Central

    Pérez-Zamorano, Bernardo; Vallebueno-Estrada, Miguel; Martínez González, Javier; García Cook, Angel; Montiel, Rafael; Vielle-Calzada, Jean-Philippe

    2017-01-01

    The story of how preColumbian civilizations developed goes hand-in-hand with the process of plant domestication by Mesoamerican inhabitants. Here, we present the almost complete sequence of a mitochondrial genome and a partial chloroplast genome from an archaeological maize sample collected at the Valley of Tehuacán, México. Accelerator mass spectrometry dated the maize sample to be 5,040–5,300 years before present (95% probability). Phylogenetic analysis of the mitochondrial genome shows that the archaeological sample branches basal to the other Zea mays genomes, as expected. However, this analysis also indicates that fertile genotype NB is closely related to the archaeological maize sample and evolved before cytoplasmic male sterility genotypes (CMS-S, CMS-T, and CMS-C), thus contradicting previous phylogenetic analysis of mitochondrial genomes from maize. We show that maximum-likelihood infers a tree where CMS genotypes branch at the base of the tree when including sites that have a relative fast rate of evolution thus suggesting long-branch attraction. We also show that Bayesian analysis infer a topology where NB and the archaeological maize sample are at the base of the tree even when including faster sites. We therefore suggest that previous trees suffered from long-branch attraction. We also show that the phylogenetic analysis of the ancient chloroplast is congruent with genotype NB to be more closely related to the archaeological maize sample. As shown here, the inclusion of ancient genomes on phylogenetic trees greatly improves our understanding of the domestication process of maize, one of the most important crops worldwide. PMID:28338960

  1. Mitochondrial DNA phylogeny of camel spiders (Arachnida: Solifugae) from Iran.

    PubMed

    Maddahi, Hassan; Khazanehdari, Mahsa; Aliabadian, Mansour; Kami, Haji Gholi; Mirshamsi, Amin; Mirshamsi, Omid

    2017-11-01

    In the present study, the mitochondrial DNA phylogeny of five solifuge families of Iran is presented using phylogenetic analysis of mitochondrial cytochrome c oxidase, subunit 1 (COI) sequence data. Moreover, we included available representatives from seven families from GenBank to examine the genetic distance between Old and New World taxa and test the phylogenetic relationships among more solifuge families. Phylogenetic relationships were reconstructed based on the two most probabilistic methods, Maximum Likelihood (ML) and Bayesian inference (BI) approaches. Resulting topologies demonstrated the monophyly of the families Daesiidae, Eremobatidae, Galeodidae, Karschiidae and Rhagodidae, whereas the monophyly of the families Ammotrechidae and Gylippidae was not supported. Also, within the family Eremobatidae, the subfamilies Eremobatinae and Therobatinae and the genus Hemerotrecha were paraphyletic or polyphyletic. According to the resulted topologies, the taxonomic placements of Trichotoma michaelseni (Gylippidae) and Nothopuga sp. 1 (Ammotrechidae) are still remain under question and their revision might be appropriate. According to the results of this study, within the family Galeodidae, the validity of the genus Galeodopsis is supported, while the validity of the genus Paragaleodes still remains uncertain. Moreover, our results revealed that the species Galeodes bacillatus, and Rhagodes melanochaetus are junior synonyms of G. caspius, and R. eylandti, respectively.

  2. A multi-locus analysis of phylogenetic relationships within grass subfamily Pooideae (Poaceae) inferred from sequences of nuclear single copy gene regions compared with plastid DNA.

    PubMed

    Hochbach, Anne; Schneider, Julia; Röser, Martin

    2015-06-01

    To investigate phylogenetic relationships within the grass subfamily Pooideae we studied about 50 taxa covering all recognized tribes, using one plastid DNA (cpDNA) marker (matK gene-3'trnK exon) and for the first time four nuclear single copy gene loci. DNA sequence information from two parts of the nuclear genes topoisomerase 6 (Topo6) spanning the exons 8-13 and 17-19, the exons 9-13 encoding plastid acetyl-CoA-carboxylase (Acc1) and the partial exon 1 of phytochrome B (PhyB) were generated. Individual and nuclear combined data were evaluated using maximum parsimony, maximum likelihood and Bayesian methods. All of the phylogenetic results show Brachyelytrum and the tribe Nardeae as earliest diverging lineages within the subfamily. The 'core' Pooideae (Hordeeae and the Aveneae/Poeae tribe complex) are also strongly supported, as well as the monophyly of the tribes Brachypodieae, Meliceae and Stipeae (except PhyB). The beak grass tribe Diarrheneae and the tribe Duthieeae are not monophyletic in some of the analyses. However, the combined nuclear DNA (nDNA) tree yields the highest resolution and the best delimitation of the tribes, and provides the following evolutionary hypothesis for the tribes: Brachyelytrum, Nardeae, Duthieeae, Meliceae, Stipeae, Diarrheneae, Brachypodieae and the 'core' Pooideae. Within the individual datasets, the phylogenetic trees obtained from Topo6 exon 8-13 shows the most interesting results. The divergent positions of some clone sequences of Ampelodesmos mauritanicus and Trikeraia pappiformis, for instance, may indicate a hybrid origin of these stipoid taxa. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The complete mitochondrial genome of the scab mite Psoroptes cuniculi (Arthropoda: Arachnida) provides insights into Acari phylogeny

    PubMed Central

    2014-01-01

    Background Limited available sequence information has greatly impeded population genetics, phylogenetics and systematics studies in the subclass Acari (mites and ticks). Mitochondrial (mt) DNA is well known to provide genetic markers for investigations in these areas, but complete mt genomic data have been lacking for many Acari species. Herein, we present the complete mt genome of the scab mite Psoroptes cuniculi. Methods P. cuniculi was collected from a naturally infected New Zealand white rabbit from China and identified by morphological criteria. The complete mt genome of P. cuniculi was amplified by PCR and then sequenced. The relationships of this scab mite with selected members of the Acari were assessed by phylogenetic analysis of concatenated amino acid sequence datasets by Bayesian inference (BI), maximum likelihood (ML) and maximum parsimony (MP). Results This mt genome (14,247 bp) is circular and consists of 37 genes, including 13 genes for proteins, 22 genes for tRNA, 2 genes for rRNA. The gene arrangement in mt genome of P. cuniculi is the same as those of Dermatophagoides farinae (Pyroglyphidae) and Aleuroglyphus ovatus (Acaridae), but distinct from those of Steganacarus magnus (Steganacaridae) and Panonychus citri (Tetranychidae). Phylogenetic analyses using concatenated amino acid sequences of 12 protein-coding genes, with three different computational algorithms (BI, ML and MP), showed the division of subclass Acari into two superorders, supported the monophylies of the both superorders Parasitiformes and Acariformes; and the three orders Ixodida and Mesostigmata and Astigmata, but rejected the monophyly of the order Prostigmata. Conclusions The mt genome of P. cuniculi represents the first mt genome of any member of the family Psoroptidae. Analysis of mt genome sequences in the present study has provided new insights into the phylogenetic relationships among several major lineages of Acari species. PMID:25052180

  4. Accurate Phylogenetic Tree Reconstruction from Quartets: A Heuristic Approach

    PubMed Central

    Reaz, Rezwana; Bayzid, Md. Shamsuzzoha; Rahman, M. Sohel

    2014-01-01

    Supertree methods construct trees on a set of taxa (species) combining many smaller trees on the overlapping subsets of the entire set of taxa. A ‘quartet’ is an unrooted tree over taxa, hence the quartet-based supertree methods combine many -taxon unrooted trees into a single and coherent tree over the complete set of taxa. Quartet-based phylogeny reconstruction methods have been receiving considerable attentions in the recent years. An accurate and efficient quartet-based method might be competitive with the current best phylogenetic tree reconstruction methods (such as maximum likelihood or Bayesian MCMC analyses), without being as computationally intensive. In this paper, we present a novel and highly accurate quartet-based phylogenetic tree reconstruction method. We performed an extensive experimental study to evaluate the accuracy and scalability of our approach on both simulated and biological datasets. PMID:25117474

  5. A molecular phylogeny of the Canidae based on six nuclear loci.

    PubMed

    Bardeleben, Carolyne; Moore, Rachael L; Wayne, Robert K

    2005-12-01

    We have reconstructed the phylogenetic relationships of 23 species in the dog family, Canidae, using DNA sequence data from six nuclear loci. Individual gene trees were generated with maximum parsimony (MP) and maximum likelihood (ML) analysis. In general, these individual gene trees were not well resolved, but several identical groupings were supported by more than one locus. Phylogenetic analysis with a data set combining the six nuclear loci using MP, ML, and Bayesian approaches produced a more resolved tree that agreed with previously published mitochondrial trees in finding three well-defined clades, including the red fox-like canids, the South American foxes, and the wolf-like canids. In addition, the nuclear data set provides novel indel support for several previously inferred clades. Differences between trees derived from the nuclear data and those from the mitochondrial data include the grouping of the bush dog and maned wolf into a clade with the South American foxes, the grouping of the side-striped jackal (Canis adustus) and black-backed jackal (Canis mesomelas) and the grouping of the bat-eared fox (Otocyon megalotis) with the raccoon dog (Nycteruetes procyonoides). We also analyzed the combined nuclear+mitochondrial tree. Many nodes that were strongly supported in the nuclear tree or the mitochondrial tree remained strongly supported in the nuclear+mitochondrial tree. Relationships within the clades containing the red fox-like canids and South American canids are well resolved, whereas the relationships among the wolf-like canids remain largely undetermined. The lack of resolution within the wolf-like canids may be due to their recent divergence and insufficient time for the accumulation of phylogenetically informative signal.

  6. A molecular phylogenetic appraisal of the acanthostomines Acanthostomum and Timoniella and their position within Cryptogonimidae (Trematoda: Opisthorchioidea)

    PubMed Central

    Vidal-Martínez, Victor M.

    2017-01-01

    The phylogenetic position of three taxa from two trematode genera, belonging to the subfamily Acanthostominae (Opisthorchioidea: Cryptogonimidae), were analysed using partial 28S ribosomal DNA (Domains 1–2) and internal transcribed spacers (ITS1–5.8S–ITS2). Bayesian inference and Maximum likelihood analyses of combined 28S rDNA and ITS1 + 5.8S + ITS2 sequences indicated the monophyly of the genus Acanthostomum (A. cf. americanum and A. burminis) and paraphyly of the Acanthostominae. These phylogenetic relationships were consistent in analyses of 28S alone and concatenated 28S + ITS1 + 5.8S + ITS2 sequences analyses. Based on molecular phylogenetic analyses, the subfamily Acanthostominae is therefore a paraphyletic taxon, in contrast with previous classifications based on morphological data. Phylogenetic patterns of host specificity inferred from adult stages of other cryptogonimid taxa are also well supported. However, analyses using additional genera and species are necessary to support the phylogenetic inferences from this study. Our molecular phylogenetic reconstruction linked two larval stages of A. cf. americanum cercariae and metacercariae. Here, we present the evolutionary and ecological implications of parasitic infections in freshwater and brackish environments. PMID:29250471

  7. A molecular phylogenetic appraisal of the acanthostomines Acanthostomum and Timoniella and their position within Cryptogonimidae (Trematoda: Opisthorchioidea).

    PubMed

    Martínez-Aquino, Andrés; Vidal-Martínez, Victor M; Aguirre-Macedo, M Leopoldina

    2017-01-01

    The phylogenetic position of three taxa from two trematode genera, belonging to the subfamily Acanthostominae (Opisthorchioidea: Cryptogonimidae), were analysed using partial 28S ribosomal DNA (Domains 1-2) and internal transcribed spacers (ITS1-5.8S-ITS2). Bayesian inference and Maximum likelihood analyses of combined 28S rDNA and ITS1 + 5.8S + ITS2 sequences indicated the monophyly of the genus Acanthostomum ( A. cf. americanum and A. burminis ) and paraphyly of the Acanthostominae . These phylogenetic relationships were consistent in analyses of 28S alone and concatenated 28S + ITS1 + 5.8S + ITS2 sequences analyses. Based on molecular phylogenetic analyses, the subfamily Acanthostominae is therefore a paraphyletic taxon, in contrast with previous classifications based on morphological data. Phylogenetic patterns of host specificity inferred from adult stages of other cryptogonimid taxa are also well supported. However, analyses using additional genera and species are necessary to support the phylogenetic inferences from this study. Our molecular phylogenetic reconstruction linked two larval stages of A. cf. americanum cercariae and metacercariae. Here, we present the evolutionary and ecological implications of parasitic infections in freshwater and brackish environments.

  8. Effect of radiance-to-reflectance transformation and atmosphere removal on maximum likelihood classification accuracy of high-dimensional remote sensing data

    NASA Technical Reports Server (NTRS)

    Hoffbeck, Joseph P.; Landgrebe, David A.

    1994-01-01

    Many analysis algorithms for high-dimensional remote sensing data require that the remotely sensed radiance spectra be transformed to approximate reflectance to allow comparison with a library of laboratory reflectance spectra. In maximum likelihood classification, however, the remotely sensed spectra are compared to training samples, thus a transformation to reflectance may or may not be helpful. The effect of several radiance-to-reflectance transformations on maximum likelihood classification accuracy is investigated in this paper. We show that the empirical line approach, LOWTRAN7, flat-field correction, single spectrum method, and internal average reflectance are all non-singular affine transformations, and that non-singular affine transformations have no effect on discriminant analysis feature extraction and maximum likelihood classification accuracy. (An affine transformation is a linear transformation with an optional offset.) Since the Atmosphere Removal Program (ATREM) and the log residue method are not affine transformations, experiments with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were conducted to determine the effect of these transformations on maximum likelihood classification accuracy. The average classification accuracy of the data transformed by ATREM and the log residue method was slightly less than the accuracy of the original radiance data. Since the radiance-to-reflectance transformations allow direct comparison of remotely sensed spectra with laboratory reflectance spectra, they can be quite useful in labeling the training samples required by maximum likelihood classification, but these transformations have only a slight effect or no effect at all on discriminant analysis and maximum likelihood classification accuracy.

  9. Mitochondrial phylogeny of Chinese barred species of the cyprinid genus Acrossocheilus Oshima, 1919 (Teleostei: Cypriniformes) and its taxonomic implications.

    PubMed

    Yuan, Le-Yang; Liu, Xiao-Xiang; Zhang, E

    2015-12-21

    Sequences from the mitochondrial control region of 14 putative species of Acrossocheilus (Cyprinidae) were examined to elucidate phylogenetic relationships within species of the barred group in that genus. Phylogenetic reconstructions were generated using three tree-building methods: maximum parsimony, maximum likelihood, and Bayesian inference. The resultant phylogenies were consistent with monophyly of the majority of the morphologically recognized species. However, mitochondrial DNA sequence evidence is incongruent with monophyly of A. fasciatus, as currently conceived. This species occurs only in the upper Qiantang-Jiang basin in Zhejiang and Anhui provinces, and coastal rivers in the Zhejiang Province. The species formerly recognized as A. paradoxus from Zhejiang Province is A. fasciatus. The specimens previously reported as A. fasciatus from river basins in Fujian Province are misidentified A. wuyiensis. The barred group of Acrossocheilus is shown to be polyphyletic. Acrossocheilus is restricted to the barred species here placed in "Clade II," containing A. paradoxus and relatives. Separate generic status is recommended for A. monticola and for A. longipinnis and their closest relatives, although more information on phylogenetic relationships based on multiple genes is required to develop robust phylogenetic hypotheses and diagnoses. Masticbarbus Tang, 1942 is available for A. longipinnis and three allied species (A. iridescens, A. microstomus and A. lamus).

  10. ReplacementMatrix: a web server for maximum-likelihood estimation of amino acid replacement rate matrices.

    PubMed

    Dang, Cuong Cao; Lefort, Vincent; Le, Vinh Sy; Le, Quang Si; Gascuel, Olivier

    2011-10-01

    Amino acid replacement rate matrices are an essential basis of protein studies (e.g. in phylogenetics and alignment). A number of general purpose matrices have been proposed (e.g. JTT, WAG, LG) since the seminal work of Margaret Dayhoff and co-workers. However, it has been shown that matrices specific to certain protein groups (e.g. mitochondrial) or life domains (e.g. viruses) differ significantly from general average matrices, and thus perform better when applied to the data to which they are dedicated. This Web server implements the maximum-likelihood estimation procedure that was used to estimate LG, and provides a number of tools and facilities. Users upload a set of multiple protein alignments from their domain of interest and receive the resulting matrix by email, along with statistics and comparisons with other matrices. A non-parametric bootstrap is performed optionally to assess the variability of replacement rate estimates. Maximum-likelihood trees, inferred using the estimated rate matrix, are also computed optionally for each input alignment. Finely tuned procedures and up-to-date ML software (PhyML 3.0, XRATE) are combined to perform all these heavy calculations on our clusters. http://www.atgc-montpellier.fr/ReplacementMatrix/ olivier.gascuel@lirmm.fr Supplementary data are available at http://www.atgc-montpellier.fr/ReplacementMatrix/

  11. The conquering of North America: dated phylogenetic and biogeographic inference of migratory behavior in bee hummingbirds.

    PubMed

    Licona-Vera, Yuyini; Ornelas, Juan Francisco

    2017-06-05

    Geographical and temporal patterns of diversification in bee hummingbirds (Mellisugini) were assessed with respect to the evolution of migration, critical for colonization of North America. We generated a dated multilocus phylogeny of the Mellisugini based on a dense sampling using Bayesian inference, maximum-likelihood and maximum parsimony methods, and reconstructed the ancestral states of distributional areas in a Bayesian framework and migratory behavior using maximum parsimony, maximum-likelihood and re-rooting methods. All phylogenetic analyses confirmed monophyly of the Mellisugini and the inclusion of Atthis, Calothorax, Doricha, Eulidia, Mellisuga, Microstilbon, Myrmia, Tilmatura, and Thaumastura. Mellisugini consists of two clades: (1) South American species (including Tilmatura dupontii), and (2) species distributed in North and Central America and the Caribbean islands. The second clade consists of four subclades: Mexican (Calothorax, Doricha) and Caribbean (Archilochus, Calliphlox, Mellisuga) sheartails, Calypte, and Selasphorus (incl. Atthis). Coalescent-based dating places the origin of the Mellisugini in the mid-to-late Miocene, with crown ages of most subclades in the early Pliocene, and subsequent species splits in the Pleistocene. Bee hummingbirds reached western North America by the end of the Miocene and the ancestral mellisuginid (bee hummingbirds) was reconstructed as sedentary, with four independent gains of migratory behavior during the evolution of the Mellisugini. Early colonization of North America and subsequent evolution of migration best explained biogeographic and diversification patterns within the Mellisugini. The repeated evolution of long-distance migration by different lineages was critical for the colonization of North America, contributing to the radiation of bee hummingbirds. Comparative phylogeography is needed to test whether the repeated evolution of migration resulted from northward expansion of southern sedentary populations.

  12. Molecular phylogeny of the aquatic beetle family Noteridae (Coleoptera: Adephaga) with an emphasis on data partitioning strategies.

    PubMed

    Baca, Stephen M; Toussaint, Emmanuel F A; Miller, Kelly B; Short, Andrew E Z

    2017-02-01

    The first molecular phylogenetic hypothesis for the aquatic beetle family Noteridae is inferred using DNA sequence data from five gene fragments (mitochondrial and nuclear): COI, H3, 16S, 18S, and 28S. Our analysis is the most comprehensive phylogenetic reconstruction of Noteridae to date, and includes 53 species representing all subfamilies, tribes and 16 of the 17 genera within the family. We examine the impact of data partitioning on phylogenetic inference by comparing two different algorithm-based partitioning strategies: one using predefined subsets of the dataset, and another recently introduced method, which uses the k-means algorithm to iteratively divide the dataset into clusters of sites evolving at similar rates across sampled loci. We conducted both maximum likelihood and Bayesian inference analyses using these different partitioning schemes. Resulting trees are strongly incongruent with prior classifications of Noteridae. We recover variant tree topologies and support values among the implemented partitioning schemes. Bayes factors calculated with marginal likelihoods of Bayesian analyses support a priori partitioning over k-means and unpartitioned data strategies. Our study substantiates the importance of data partitioning in phylogenetic inference, and underscores the use of comparative analyses to determine optimal analytical strategies. Our analyses recover Noterini Thomson to be paraphyletic with respect to three other tribes. The genera Suphisellus Crotch and Hydrocanthus Say are also recovered as paraphyletic. Following the results of the preferred partitioning scheme, we here propose a revised classification of Noteridae, comprising two subfamilies, three tribes and 18 genera. The following taxonomic changes are made: Notomicrinae sensu n. (= Phreatodytinae syn. n.) is expanded to include the tribe Phreatodytini; Noterini sensu n. (= Neohydrocoptini syn. n., Pronoterini syn. n., Tonerini syn. n.) is expanded to include all genera of the Noterinae; The genus Suphisellus Crotch is expanded to include species of Pronoterus Sharp syn. n.; and the former subgenus Sternocanthus Guignot stat. rev. is resurrected from synonymy and elevated to genus rank. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A Single Early Introduction of HIV-1 Subtype B into Central America Accounts for Most Current Cases

    PubMed Central

    Murillo, Wendy; Veras, Nazle; Prosperi, Mattia; de Rivera, Ivette Lorenzana; Paz-Bailey, Gabriela; Morales-Miranda, Sonia; Juarez, Sandra I.; Yang, Chunfu; DeVos, Joshua; Marín, José Pablo; Mild, Mattias; Albert, Jan

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1) variants show considerable geographical separation across the world, but there is limited information from Central America. We provide the first detailed investigation of the genetic diversity and molecular epidemiology of HIV-1 in six Central American countries. Phylogenetic analysis was performed on 625 HIV-1 pol gene sequences collected between 2002 and 2010 in Honduras, El Salvador, Nicaragua, Costa Rica, Panama, and Belize. Published sequences from neighboring countries (n = 57) and the rest of the world (n = 740) were included as controls. Maximum likelihood methods were used to explore phylogenetic relationships. Bayesian coalescence-based methods were used to time HIV-1 introductions. Nearly all (98.9%) Central American sequences were of subtype B. Phylogenetic analysis revealed that 437 (70%) sequences clustered within five significantly supported monophyletic clades formed essentially by Central American sequences. One clade contained 386 (62%) sequences from all six countries; the other four clades were smaller and more country specific, suggesting discrete subepidemics. The existence of one large well-supported Central American clade provides evidence that a single introduction of HIV-1 subtype B in Central America accounts for most current cases. An introduction during the early phase of the HIV-1 pandemic may explain its epidemiological success. Moreover, the smaller clades suggest a subsequent regional spread related to specific transmission networks within each country. PMID:23616665

  14. Morphology and Molecular Phylogeny of Raillietina spp. (Cestoda: Cyclophyllidea: Davaineidae) from Domestic Chickens in Thailand.

    PubMed

    Butboonchoo, Preeyaporn; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil

    2016-12-01

    Raillietina species are prevalent in domestic chickens ( Gallus gallus domesticus ) in Phayao province, northern Thailand. Their infection may cause disease and death, which affects the public health and economic situation in chicken farms. The identification of Raillietina has been based on morphology and molecular analysis. In this study, morphological observations using light (LM) and scanning electron microscopies (SEM) coupled with molecular analysis of the internal transcribed spacer 2 (ITS2) region and the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene were employed for precise identification and phylogenetic relationship studies of Raillietina spp. Four Raillietina species, including R. echinobothrida, R. tetragona, R. cesticillus , and Raillietina sp., were recovered in domestic chickens from 4 districts in Phayao province, Thailand. LM and SEM observations revealed differences in the morphology of the scolex, position of the genital pore, number of eggs per egg capsule, and rostellar opening surface structures in all 4 species. Phylogenetic relationships were found among the phylogenetic trees obtained by the maximum likelihood and distance-based neighbor-joining methods. ITS2 and ND1 sequence data recorded from Raillietina sp. appeared to be monophyletic. The query sequences of R. echinobothrida, R. tetragona, R. cesticillus , and Raillietina sp. were separated according to the different morphological characters. This study confirmed that morphological studies combined with molecular analyses can differentiate related species within the genus Raillietina in Thailand.

  15. Multi-locus phylogenetic analysis of Old World chats and flycatchers reveals extensive paraphyly at family, subfamily and genus level (Aves: Muscicapidae).

    PubMed

    Sangster, George; Alström, Per; Forsmark, Emma; Olsson, Urban

    2010-10-01

    The chats and flycatchers (Muscicapidae) represent an assemblage of 275 species in 48 genera. Defining natural groups within this assemblage has been challenging because of its high diversity and a paucity of phylogenetically informative morphological characters. We assessed the phylogenetic relationships of 124 species and 34 genera of Muscicapidae, and 20 species of Turdidae, using molecular sequence data from one mitochondrial gene and three nuclear loci, in total 3240bp. Bayesian and maximum likelihood analyses yielded a well-resolved tree in which nearly all basal nodes were strongly supported. The traditionally defined Muscicapidae, Muscicapinae and Saxicolinae were paraphyletic. Four major clades are recognized in Muscicapidae: Muscicapinae, Niltavinae (new family-group name), Erithacinae and Saxicolinae. Interesting relationships recovered by this analysis include: (i) a clade comprising the 'blue' flycatcher genera Niltava, Cyornis, Cyanoptila and Eumyias and some species of Rhinomyias; (ii) the position of Erithacus rubecula in a clade of otherwise exclusively African species; (iii) a close relationship between the shortwing Heinrichia calligyna and the flycatcher Rhinomyias insignis; (iv) a sister-relationship between forktails Enicurus and whistling thrushes Myophonus; and (v) a sister relationship of Ficedula and the 'chats'Monticola, Phoenicurus, Saxicola and Oenanthe. A high number of traditionally defined genera was found to be paraphyletic or polyphyletic. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Morphology and Molecular Phylogeny of Raillietina spp. (Cestoda: Cyclophyllidea: Davaineidae) from Domestic Chickens in Thailand

    PubMed Central

    Butboonchoo, Preeyaporn; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil

    2016-01-01

    Raillietina species are prevalent in domestic chickens (Gallus gallus domesticus) in Phayao province, northern Thailand. Their infection may cause disease and death, which affects the public health and economic situation in chicken farms. The identification of Raillietina has been based on morphology and molecular analysis. In this study, morphological observations using light (LM) and scanning electron microscopies (SEM) coupled with molecular analysis of the internal transcribed spacer 2 (ITS2) region and the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene were employed for precise identification and phylogenetic relationship studies of Raillietina spp. Four Raillietina species, including R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp., were recovered in domestic chickens from 4 districts in Phayao province, Thailand. LM and SEM observations revealed differences in the morphology of the scolex, position of the genital pore, number of eggs per egg capsule, and rostellar opening surface structures in all 4 species. Phylogenetic relationships were found among the phylogenetic trees obtained by the maximum likelihood and distance-based neighbor-joining methods. ITS2 and ND1 sequence data recorded from Raillietina sp. appeared to be monophyletic. The query sequences of R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp. were separated according to the different morphological characters. This study confirmed that morphological studies combined with molecular analyses can differentiate related species within the genus Raillietina in Thailand. PMID:28095663

  17. Phylogenetic Analysis of Myobia musculi (Schranck, 1781) by Using the 18S Small Ribosomal Subunit Sequence

    PubMed Central

    Feldman, Sanford H; Ntenda, Abraham M

    2011-01-01

    We used high-fidelity PCR to amplify 2 overlapping regions of the ribosomal gene complex from the rodent fur mite Myobia musculi. The amplicons encompassed a large portion of the mite's ribosomal gene complex spanning 3128 nucleotides containing the entire 18S rRNA, internal transcribed spacer (ITS) 1, 5.8S rRNA, ITS2, and a portion of the 5′-end of the 28S rRNA. M. musculi’s 179-nucleotide 5.8S rRNA nucleotide sequence was not conserved, so this region was identified by conservation of rRNA secondary structure. Maximum likelihood and Bayesian inference phylogenetic analyses were performed by using multiple sequence alignment consisting of 1524 nucleotides of M. musculi 18S rRNA and homologous sequences from 42 prostigmatid mites and the tick Dermacentor andersoni. The phylograms produced by both methods were in agreement regarding terminal, secondary, and some tertiary phylogenetic relationships among mites. Bayesian inference discriminated most infraordinal relationships between Eleutherengona and Parasitengona mites in the suborder Anystina. Basal relationships between suborders Anystina and Eupodina historically determined by comparing differences in anatomic characteristics were less well-supported by our molecular analysis. Our results recapitulated similar 18S rRNA sequence analyses recently reported. Our study supports M. musculi as belonging to the suborder Anystina, infraorder Eleutherenona, and superfamily Cheyletoidea. PMID:22330574

  18. Newly resolved relationships in an early land plant lineage: Bryophyta class Sphagnopsida (peat mosses).

    PubMed

    Shaw, A Jonathan; Cox, Cymon J; Buck, William R; Devos, Nicolas; Buchanan, Alex M; Cave, Lynette; Seppelt, Rodney; Shaw, Blanka; Larraín, Juan; Andrus, Richard; Greilhuber, Johann; Temsch, Eva M

    2010-09-01

    The Sphagnopsida, an early-diverging lineage of mosses (phylum Bryophyta), are morphologically and ecologically unique and have profound impacts on global climate. The Sphagnopsida are currently classified in two genera, Sphagnum (peat mosses) with some 350-500 species and Ambuchanania with one species. An analysis of phylogenetic relationships among species and genera in the Sphagnopsida were conducted to resolve major lineages and relationships among species within the Sphagnopsida. • Phylogenetic analyses of nucleotide sequences from the nuclear, plastid, and mitochondrial genomes (11 704 nucleotides total) were conducted and analyzed using maximum likelihood and Bayesian inference employing seven different substitution models of varying complexity. • Phylogenetic analyses resolved three lineages within the Sphagnopsida: (1) Sphagnum sericeum, (2) S. inretortum plus Ambuchanania leucobryoides, and (3) all remaining species of Sphagnum. Sister group relationships among these three clades could not be resolved, but the phylogenetic results indicate that the highly divergent morphology of A. leucobryoides is derived within the Sphagnopsida rather than plesiomorphic. A new classification is proposed for class Sphagnopsida, with one order (Sphagnales), three families, and four genera. • The Sphagnopsida are an old lineage within the phylum Bryophyta, but the extant species of Sphagnum represent a relatively recent radiation. It is likely that additional species critical to understanding the evolution of peat mosses await discovery, especially in the southern hemisphere.

  19. The phylogenetic relationships of known mosquito (Diptera: Culicidae) mitogenomes.

    PubMed

    Chu, Hongliang; Li, Chunxiao; Guo, Xiaoxia; Zhang, Hengduan; Luo, Peng; Wu, Zhonghua; Wang, Gang; Zhao, Tongyan

    2018-01-01

    The known mosquito mitogenomes, containing a total of 34 species, which belong to five genera, were collected from GenBank, and the practicality and effectiveness of the variation in the complete mitochondrial DNA genome and portions of mitochondrial COI gene were assessed to reconstruct the phylogeny of mosquitoes. Phylogenetic trees were reconstructed on the basis of parsimony, maximum likelihood, and Bayesian (BI) methods. It is concluded that: (1) Both mitogenomes and COI gene support the monophly of following taxa: Subgenus Nyssorhynchus, Subgenus Cellia, Anopheles albitarsis complex, Anopheles gambiae complex, and Anopheles punctulatus group; (2) Genus Aedes is not monophyletic relative to Ochlerotatus vigilax; (3) The mitogenome results indicate a close relationship between Anopheles epiroticus and Anopheles gambiae complex, Anopheles dirus complex and Anopheles punctulatus group, respectively; (4) The Bayesian posterior probability (BPP) within phylogenetic tree reconstructed by mitogenomes is higher than COI tree. The results show that phylogenetic relationships reconstructed using the mitogenomes were more similar to those based on morphological data.

  20. Dual phylogenetic origins of Nigerian lions (Panthera leo).

    PubMed

    Tende, Talatu; Bensch, Staffan; Ottosson, Ulf; Hansson, Bengt

    2014-07-01

    Lion fecal DNA extracts from four individuals each from Yankari Game Reserve and Kainji-Lake National Park (central northeast and west Nigeria, respectively) were Sanger-sequenced for the mitochondrial cytochrome b gene. The sequences were aligned against 61 lion reference sequences from other parts of Africa and India. The sequence data were analyzed further for the construction of phylogenetic trees using the maximum-likelihood approach to depict phylogenetic patterns of distribution among sequences. Our results show that Nigerian lions grouped together with lions from West and Central Africa. At the smaller geographical scale, lions from Kainji-Lake National Park in western Nigeria grouped with lions from Benin (located west of Nigeria), whereas lions from Yankari Game Reserve in central northeastern Nigeria grouped with the lion populations in Cameroon (located east of Nigeria). The finding that the two remaining lion populations in Nigeria have different phylogenetic origins is an important aspect to consider in future decisions regarding management and conservation of rapidly shrinking lion populations in West Africa.

  1. Dual phylogenetic origins of Nigerian lions (Panthera leo)

    PubMed Central

    Tende, Talatu; Bensch, Staffan; Ottosson, Ulf; Hansson, Bengt

    2014-01-01

    Lion fecal DNA extracts from four individuals each from Yankari Game Reserve and Kainji-Lake National Park (central northeast and west Nigeria, respectively) were Sanger-sequenced for the mitochondrial cytochrome b gene. The sequences were aligned against 61 lion reference sequences from other parts of Africa and India. The sequence data were analyzed further for the construction of phylogenetic trees using the maximum-likelihood approach to depict phylogenetic patterns of distribution among sequences. Our results show that Nigerian lions grouped together with lions from West and Central Africa. At the smaller geographical scale, lions from Kainji-Lake National Park in western Nigeria grouped with lions from Benin (located west of Nigeria), whereas lions from Yankari Game Reserve in central northeastern Nigeria grouped with the lion populations in Cameroon (located east of Nigeria). The finding that the two remaining lion populations in Nigeria have different phylogenetic origins is an important aspect to consider in future decisions regarding management and conservation of rapidly shrinking lion populations in West Africa. PMID:25077018

  2. Species trees for the tree swallows (Genus Tachycineta): an alternative phylogenetic hypothesis to the mitochondrial gene tree.

    PubMed

    Dor, Roi; Carling, Matthew D; Lovette, Irby J; Sheldon, Frederick H; Winkler, David W

    2012-10-01

    The New World swallow genus Tachycineta comprises nine species that collectively have a wide geographic distribution and remarkable variation both within- and among-species in ecologically important traits. Existing phylogenetic hypotheses for Tachycineta are based on mitochondrial DNA sequences, thus they provide estimates of a single gene tree. In this study we sequenced multiple individuals from each species at 16 nuclear intron loci. We used gene concatenated approaches (Bayesian and maximum likelihood) as well as coalescent-based species tree inference to reconstruct phylogenetic relationships of the genus. We examined the concordance and conflict between the nuclear and mitochondrial trees and between concatenated and coalescent-based inferences. Our results provide an alternative phylogenetic hypothesis to the existing mitochondrial DNA estimate of phylogeny. This new hypothesis provides a more accurate framework in which to explore trait evolution and examine the evolution of the mitochondrial genome in this group. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Phylogenetic analyses of mode of larval development.

    PubMed

    Hart, M

    2000-12-01

    Phylogenies based on morphological or molecular characters have been used to provide an evolutionary context for analysis of larval evolution. Studies of gastropods, bivalves, tunicates, sea stars, sea urchins, and polychaetes have revealed massive parallel evolution of similar larval forms. Some of these studies were designed to test, and have rejected, the species selection hypothesis for evolutionary trends in the frequency of derived larvae or life history traits. However, the lack of well supported models of larval character evolution leave some doubt about the quality of inferences of larval evolution from phylogenies of living taxa. Better models based on maximum likelihood methods and known prior probabilities of larval character state changes will improve our understanding of the history of larval evolution. Copyright 2000 Academic Press.

  4. Bio++: a set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics.

    PubMed

    Dutheil, Julien; Gaillard, Sylvain; Bazin, Eric; Glémin, Sylvain; Ranwez, Vincent; Galtier, Nicolas; Belkhir, Khalid

    2006-04-04

    A large number of bioinformatics applications in the fields of bio-sequence analysis, molecular evolution and population genetics typically share input/output methods, data storage requirements and data analysis algorithms. Such common features may be conveniently bundled into re-usable libraries, which enable the rapid development of new methods and robust applications. We present Bio++, a set of Object Oriented libraries written in C++. Available components include classes for data storage and handling (nucleotide/amino-acid/codon sequences, trees, distance matrices, population genetics datasets), various input/output formats, basic sequence manipulation (concatenation, transcription, translation, etc.), phylogenetic analysis (maximum parsimony, markov models, distance methods, likelihood computation and maximization), population genetics/genomics (diversity statistics, neutrality tests, various multi-locus analyses) and various algorithms for numerical calculus. Implementation of methods aims at being both efficient and user-friendly. A special concern was given to the library design to enable easy extension and new methods development. We defined a general hierarchy of classes that allow the developer to implement its own algorithms while remaining compatible with the rest of the libraries. Bio++ source code is distributed free of charge under the CeCILL general public licence from its website http://kimura.univ-montp2.fr/BioPP.

  5. The phylogenetic utility of acetyltransferase (ARD1) and glutaminyl tRNA synthetase (QtRNA) for reconstructing Cenozoic relationships as exemplified by the large Australian cicada Pauropsalta generic complex.

    PubMed

    Owen, Christopher L; Marshall, David C; Hill, Kathy B R; Simon, Chris

    2015-02-01

    The Pauropsalta generic complex is a large group of cicadas (72 described spp.; >82 undescribed spp.) endemic to Australia. No previous molecular work on deep level relationships within this complex has been conducted, but a recent morphological revision and phylogenetic analysis proposed relationships among the 11 genera. We present here the first comprehensive molecular phylogeny of the complex using five loci (1 mtDNA, 4 nDNA), two of which are from nuclear genes new to cicada systematics. We compare the molecular phylogeny to the morphological phylogeny. We evaluate the phylogenetic informativeness of the new loci to traditional cicada systematics loci to generate a baseline of performance and behavior to aid in gene choice decisions in future systematic and phylogenomic studies. Our maximum likelihood and Bayesian inference phylogenies strongly support the monophyly of most of the newly described genera; however, relationships among genera differ from the morphological phylogeny. A comparison of phylogenetic informativeness among all loci revealed that COI 3rd positions dominate the informativeness profiles relative to all other loci but exhibit some among taxon nucleotide bias. After removing COI 3rd positions, COI 1st positions dominate near the terminals, while the period intron has the most phylogenetic informativeness near the root. Among the nuclear loci, ARD1 and QtRNA have lower phylogenetic informativeness than period intron and elongation factor 1 alpha intron, but the informativeness increases at you move from the tips to the root. The increase in phylogenetic informativeness deeper in the tree suggests these loci may be useful for resolving older relationships. Copyright © 2015. Published by Elsevier Inc.

  6. Delimitation of the Thoracosphaeraceae (Dinophyceae), including the calcareous dinoflagellates, based on large amounts of ribosomal RNA sequence data.

    PubMed

    Gottschling, Marc; Soehner, Sylvia; Zinssmeister, Carmen; John, Uwe; Plötner, Jörg; Schweikert, Michael; Aligizaki, Katerina; Elbrächter, Malte

    2012-01-01

    The phylogenetic relationships of the Dinophyceae (Alveolata) are not sufficiently resolved at present. The Thoracosphaeraceae (Peridiniales) are the only group of the Alveolata that include members with calcareous coccoid stages; this trait is considered apomorphic. Although the coccoid stage apparently is not calcareous, Bysmatrum has been assigned to the Thoracosphaeraceae based on thecal morphology. We tested the monophyly of the Thoracosphaeraceae using large sets of ribosomal RNA sequence data of the Alveolata including the Dinophyceae. Phylogenetic analyses were performed using Maximum Likelihood and Bayesian approaches. The Thoracosphaeraceae were monophyletic, but included also a number of non-calcareous dinophytes (such as Pentapharsodinium and Pfiesteria) and even parasites (such as Duboscquodinium and Tintinnophagus). Bysmatrum had an isolated and uncertain phylogenetic position outside the Thoracosphaeraceae. The phylogenetic relationships among calcareous dinophytes appear complex, and the assumption of the single origin of the potential to produce calcareous structures is challenged. The application of concatenated ribosomal RNA sequence data may prove promising for phylogenetic reconstructions of the Dinophyceae in future. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. First report on the occurrence of Theileria sp. OT3 in China.

    PubMed

    Tian, Zhancheng; Liu, Guangyuan; Yin, Hong; Xie, Junren; Wang, Suyan; Yuan, Xiaosong; Wang, Fangfang; Luo, Jin

    2014-04-01

    Theileria sp. OT3 was firstly detected and identified from clinically healthy sheep in Xinjiang Uygur Autonomous Region of China (XUAR) through comparing the complete 18S rDNA gene sequences available in GenBank database and the phylogenetic status based on the internal transcribed spacers (ITS1, ITS2) as well as the intervening 5.8S coding region of the rRNA gene by the methods of a partitioned multi-locus analysis in BEAST and Maximum likelihood analysis in PhyML. Moreover, the findings were confirmed by the species-specific PCR for Theileria sp. OT3 and the prevalence of Theileria sp. OT3 was 14.9% in the north of XUAR. This study is the first report on the occurrence of Theileria sp. OT3 in China. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Novel canine circovirus strains from Thailand: Evidence for genetic recombination.

    PubMed

    Piewbang, Chutchai; Jo, Wendy K; Puff, Christina; van der Vries, Erhard; Kesdangsakonwut, Sawang; Rungsipipat, Anudep; Kruppa, Jochen; Jung, Klaus; Baumgärtner, Wolfgang; Techangamsuwan, Somporn; Ludlow, Martin; Osterhaus, Albert D M E

    2018-05-14

    Canine circoviruses (CanineCV's), belonging to the genus Circovirus of the Circoviridae family, were detected by next generation sequencing in samples from Thai dogs with respiratory symptoms. Genetic characterization and phylogenetic analysis of nearly complete CanineCV genomes suggested that natural recombination had occurred among different lineages of CanineCV's. Similarity plot and bootscaning analyses indicated that American and Chinese viruses had served as major and minor parental viruses, respectively. Positions of recombination breakpoints were estimated using maximum-likelihood frameworks with statistical significant testing. The putative recombination event was located in the Replicase gene, intersecting with open reading frame-3. Analysis of nucleotide changes confirmed the origin of the recombination event. This is the first description of naturally occurring recombinant CanineCV's that have resulted in the circulation of newly emerging CanineCV lineages.

  9. Integrated Automatic Workflow for Phylogenetic Tree Analysis Using Public Access and Local Web Services.

    PubMed

    Damkliang, Kasikrit; Tandayya, Pichaya; Sangket, Unitsa; Pasomsub, Ekawat

    2016-11-28

    At the present, coding sequence (CDS) has been discovered and larger CDS is being revealed frequently. Approaches and related tools have also been developed and upgraded concurrently, especially for phylogenetic tree analysis. This paper proposes an integrated automatic Taverna workflow for the phylogenetic tree inferring analysis using public access web services at European Bioinformatics Institute (EMBL-EBI) and Swiss Institute of Bioinformatics (SIB), and our own deployed local web services. The workflow input is a set of CDS in the Fasta format. The workflow supports 1,000 to 20,000 numbers in bootstrapping replication. The workflow performs the tree inferring such as Parsimony (PARS), Distance Matrix - Neighbor Joining (DIST-NJ), and Maximum Likelihood (ML) algorithms of EMBOSS PHYLIPNEW package based on our proposed Multiple Sequence Alignment (MSA) similarity score. The local web services are implemented and deployed into two types using the Soaplab2 and Apache Axis2 deployment. There are SOAP and Java Web Service (JWS) providing WSDL endpoints to Taverna Workbench, a workflow manager. The workflow has been validated, the performance has been measured, and its results have been verified. Our workflow's execution time is less than ten minutes for inferring a tree with 10,000 replicates of the bootstrapping numbers. This paper proposes a new integrated automatic workflow which will be beneficial to the bioinformaticians with an intermediate level of knowledge and experiences. All local services have been deployed at our portal http://bioservices.sci.psu.ac.th.

  10. Integrated Automatic Workflow for Phylogenetic Tree Analysis Using Public Access and Local Web Services.

    PubMed

    Damkliang, Kasikrit; Tandayya, Pichaya; Sangket, Unitsa; Pasomsub, Ekawat

    2016-03-01

    At the present, coding sequence (CDS) has been discovered and larger CDS is being revealed frequently. Approaches and related tools have also been developed and upgraded concurrently, especially for phylogenetic tree analysis. This paper proposes an integrated automatic Taverna workflow for the phylogenetic tree inferring analysis using public access web services at European Bioinformatics Institute (EMBL-EBI) and Swiss Institute of Bioinformatics (SIB), and our own deployed local web services. The workflow input is a set of CDS in the Fasta format. The workflow supports 1,000 to 20,000 numbers in bootstrapping replication. The workflow performs the tree inferring such as Parsimony (PARS), Distance Matrix - Neighbor Joining (DIST-NJ), and Maximum Likelihood (ML) algorithms of EMBOSS PHYLIPNEW package based on our proposed Multiple Sequence Alignment (MSA) similarity score. The local web services are implemented and deployed into two types using the Soaplab2 and Apache Axis2 deployment. There are SOAP and Java Web Service (JWS) providing WSDL endpoints to Taverna Workbench, a workflow manager. The workflow has been validated, the performance has been measured, and its results have been verified. Our workflow's execution time is less than ten minutes for inferring a tree with 10,000 replicates of the bootstrapping numbers. This paper proposes a new integrated automatic workflow which will be beneficial to the bioinformaticians with an intermediate level of knowledge and experiences. The all local services have been deployed at our portal http://bioservices.sci.psu.ac.th.

  11. Molecular phylogenetic and dating analysis of pierid butterfly species using complete mitochondrial genomes.

    PubMed

    Cao, Y; Hao, J S; Sun, X Y; Zheng, B; Yang, Q

    2016-12-02

    Pieridae is a butterfly family whose evolutionary history is poorly understood. Due to the difficulties in identifying morphological synapomorphies within the group and the scarcity of the fossil records, only a few studies on higher phylogeny of Pieridae have been reported to date. In this study, we describe the complete mitochondrial genomes of four pierid butterfly species (Aporia martineti, Aporia hippia, Aporia bieti, and Mesapia peloria), in order to better characterize the pierid butterfly mitogenomes and perform the phylogenetic analyses using all available mitogenomic sequence data (13PCGs, rRNAs, and tRNAs) from the 18 pierid butterfly species comprising the three main subfamilies (Dismorphiinae, Coliadinae and Pierinae). Our analysis shows that the four new mitogenomes share similar features with other known pierid mitogenomes in gene order and organization. Phylogenetic analyses by maximum likelihood and Bayesian inference show that the pierid higher-level relationship is: Dismorphiinae + (Coliadinae + Pierinae), which corroborates the results of some previous molecular and morphological studies. However, we found that the Hebomoia and Anthocharis make a sister group, supporting the traditional tribe Anthocharidini; in addition, the Mesapia peloria was shown to be clustered within the Aporia group, suggesting that the genus Mesapia should be reduced to the taxonomic status of subgenus. Our molecular dating analysis indicates that the family Pieridae began to diverge during the Late Cretaceous about 92 million years ago (mya), while the subfamily Pierinae diverged from the Coliadinae at about 86 mya (Late Cretaceous).

  12. Phylogenomic analysis of a rapid radiation of misfit fishes (Syngnathiformes) using ultraconserved elements.

    PubMed

    Longo, S J; Faircloth, B C; Meyer, A; Westneat, M W; Alfaro, M E; Wainwright, P C

    2017-08-01

    Phylogenetics is undergoing a revolution as large-scale molecular datasets reveal unexpected but repeatable rearrangements of clades that were previously thought to be disparate lineages. One of the most unusual clades of fishes that has been found using large-scale molecular datasets is an expanded Syngnathiformes including traditional long-snouted syngnathiform lineages (Aulostomidae, Centriscidae, Fistulariidae, Solenostomidae, Syngnathidae), as well as a diverse set of largely benthic-associated fishes (Callionymoidei, Dactylopteridae, Mullidae, Pegasidae) that were previously dispersed across three orders. The monophyly of this surprising clade of fishes has been upheld by recent studies utilizing both nuclear and mitogenomic data, but the relationships among major lineages within Syngnathiformes remain ambiguous; previous analyses have inconsistent topologies and are plagued by low support at deep divergences between the major lineages. In this study, we use a dataset of ultraconserved elements (UCEs) to conduct the first phylogenomic study of Syngnathiformes. UCEs have been effective markers for resolving deep phylogenetic relationships in fishes and, combined with increased taxon sampling, we expected UCEs to resolve problematic syngnathiform relationships. Overall, UCEs were effective at resolving relationships within Syngnathiformes at a range of evolutionary timescales. We find consistent support for the monophyly of traditional long-snouted syngnathiform lineages (Aulostomidae, Centriscidae, Fistulariidae, Solenostomidae, Syngnathidae), which better agrees with morphological hypotheses than previously published topologies from molecular data. This result was supported by all Bayesian and maximum likelihood analyses, was robust to differences in matrix completeness and potential sources of bias, and was highly supported in coalescent-based analyses in ASTRAL when matrices were filtered to contain the most phylogenetically informative loci. While Bayesian and maximum likelihood analyses found support for a benthic-associated clade (Callionymidae, Dactylopteridae, Mullidae, and Pegasidae) as sister to the long-snouted clade, this result was not replicated in the ASTRAL analyses. The base of our phylogeny is characterized by short internodes separating major syngnathiform lineages and is consistent with the hypothesis of an ancient rapid radiation at the base of Syngnathiformes. Syngnathiformes therefore present an exciting opportunity to study patterns of morphological variation and functional innovation arising from rapid but ancient radiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Phylogeny and Evolutionary Patterns in the Dwarf Crayfish Subfamily (Decapoda: Cambarellinae)

    PubMed Central

    Pedraza-Lara, Carlos; Doadrio, Ignacio; Breinholt, Jesse W.; Crandall, Keith A.

    2012-01-01

    The Dwarf crayfish or Cambarellinae, is a morphologically singular subfamily of decapod crustaceans that contains only one genus, Cambarellus. Its intriguing distribution, along the river basins of the Gulf Coast of United States (Gulf Group) and into Central México (Mexican Group), has until now lacked of satisfactory explanation. This study provides a comprehensive sampling of most of the extant species of Cambarellus and sheds light on its evolutionary history, systematics and biogeography. We tested the impact of Gulf Group versus Mexican Group geography on rates of cladogenesis using a maximum likelihood framework, testing different models of birth/extinction of lineages. We propose a comprehensive phylogenetic hypothesis for the subfamily based on mitochondrial and nuclear loci (3,833 bp) using Bayesian and Maximum Likelihood methods. The phylogenetic structure found two phylogenetic groups associated to the two main geographic components (Gulf Group and Mexican Group) and is partially consistent with the historical structure of river basins. The previous hypothesis, which divided the genus into three subgenera based on genitalia morphology was only partially supported (P = 0.047), resulting in a paraphyletic subgenus Pandicambarus. We found at least two cases in which phylogenetic structure failed to recover monophyly of recognized species while detecting several cases of cryptic diversity, corresponding to lineages not assigned to any described species. Cladogenetic patterns in the entire subfamily are better explained by an allopatric model of speciation. Diversification analyses showed similar cladogenesis patterns between both groups and did not significantly differ from the constant rate models. While cladogenesis in the Gulf Group is coincident in time with changes in the sea levels, in the Mexican Group, cladogenesis is congruent with the formation of the Trans-Mexican Volcanic Belt. Our results show how similar allopatric divergence in freshwater organisms can be promoted through diverse vicariant factors. PMID:23155379

  14. Likelihood analysis of the chalcone synthase genes suggests the role of positive selection in morning glories (Ipomoea).

    PubMed

    Yang, Ji; Gu, Hongya; Yang, Ziheng

    2004-01-01

    Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoides, which are important for the pigmentation of flowers and act as attractants to pollinators. Genes encoding CHS constitute a multigene family in which the copy number varies among plant species and functional divergence appears to have occurred repeatedly. In morning glories (Ipomoea), five functional CHS genes (A-E) have been described. Phylogenetic analysis of the Ipomoea CHS gene family revealed that CHS A, B, and C experienced accelerated rates of amino acid substitution relative to CHS D and E. To examine whether the CHS genes of the morning glories underwent adaptive evolution, maximum-likelihood models of codon substitution were used to analyze the functional sequences in the Ipomoea CHS gene family. These models used the nonsynonymous/synonymous rate ratio (omega = d(N)/ d(S)) as an indicator of selective pressure and allowed the ratio to vary among lineages or sites. Likelihood ratio test suggested significant variation in selection pressure among amino acid sites, with a small proportion of them detected to be under positive selection along the branches ancestral to CHS A, B, and C. Positive Darwinian selection appears to have promoted the divergence of subfamily ABC and subfamily DE and is at least partially responsible for a rate increase following gene duplication.

  15. DNA barcoding and phylogeny of Calidris and Tringa (Aves: Scolopacidae).

    PubMed

    Huang, Zuhao; Tu, Feiyun

    2017-07-01

    The avian genera Calidris and Tringa are the largest of the widespread family of Scolopacidae. The phylogeny of members of the two genera is still a matter of controversial. Mitochondrial cytochrome c oxidase subunit I (COI) can serve as a fast and accurate marker for the identification and phylogeny of animal species. In this study, we analyzed the COI barcodes of thirty-one species of the two genera. All the species had distinct COI sequences. Two hundred and twenty-one variable sites were identified. Kimura two-parameter distances were calculated between barcodes. Neighbor-joining and maximum likelihood methods were used to construct phylogenetic trees. All the species could be discriminated by their distinct clades in the phylogenetic trees. The phylogenetic trees grouped all the species of Calidris and Tringa into different monophyletic clade, respectively. COI data showed a well-supported phylogeny for Calidris and Tringa species.

  16. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis.

    PubMed

    Kumar, Sudhir; Stecher, Glen; Peterson, Daniel; Tamura, Koichiro

    2012-10-15

    There is a growing need in the research community to apply the molecular evolutionary genetics analysis (MEGA) software tool for batch processing a large number of datasets and to integrate it into analysis workflows. Therefore, we now make available the computing core of the MEGA software as a stand-alone executable (MEGA-CC), along with an analysis prototyper (MEGA-Proto). MEGA-CC provides users with access to all the computational analyses available through MEGA's graphical user interface version. This includes methods for multiple sequence alignment, substitution model selection, evolutionary distance estimation, phylogeny inference, substitution rate and pattern estimation, tests of natural selection and ancestral sequence inference. Additionally, we have upgraded the source code for phylogenetic analysis using the maximum likelihood methods for parallel execution on multiple processors and cores. Here, we describe MEGA-CC and outline the steps for using MEGA-CC in tandem with MEGA-Proto for iterative and automated data analysis. http://www.megasoftware.net/.

  17. Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea)

    PubMed Central

    Pérez-Losada, Marcos; Høeg, Jens T; Crandall, Keith A

    2009-01-01

    Background The Thecostraca are arguably the most morphologically and biologically variable group within the Crustacea, including both suspension feeders (Cirripedia: Thoracica and Acrothoracica) and parasitic forms (Cirripedia: Rhizocephala, Ascothoracida and Facetotecta). Similarities between the metamorphosis found in the Facetotecta and Rhizocephala suggests a common evolutionary origin, but until now no comprehensive study has looked at the basic evolution of these thecostracan groups. Results To this end, we collected DNA sequences from three nuclear genes [18S rRNA (2,305), 28S rRNA (2,402), Histone H3 (328)] and 41 larval characters in seven facetotectans, five ascothoracidans, three acrothoracicans, 25 rhizocephalans and 39 thoracicans (ingroup) and 12 Malacostraca and 10 Copepoda (outgroup). Maximum parsimony, maximum likelihood and Bayesian analyses showed the Facetotecta, Ascothoracida and Cirripedia each as monophyletic. The better resolved and highly supported DNA maximum likelihood and morphological-DNA Bayesian analysis trees depicted the main phylogenetic relationships within the Thecostraca as (Facetotecta, (Ascothoracida, (Acrothoracica, (Rhizocephala, Thoracica)))). Conclusion Our analyses indicate a convergent evolution of the very similar and highly reduced slug-shaped stages found during metamorphosis of both the Rhizocephala and the Facetotecta. This provides a remarkable case of convergent evolution and implies that the advanced endoparasitic mode of life known from the Rhizocephala and strongly indicated for the Facetotecta had no common origin. Future analyses are needed to determine whether the most recent common ancestor of the Thecostraca was free-living or some primitive form of ectoparasite. PMID:19374762

  18. The phylogenetic position of the Critically Endangered Saint Croix ground lizard Ameiva polops: revisiting molecular systematics of West Indian Ameiva.

    PubMed

    Hurtado, Luis A; Santamaria, Carlos A; Fitzgerald, Lee A

    2014-05-06

    The phylogenetic position of the critically endangered Saint Croix ground lizard Ameiva polops is presently unknown and several hypotheses have been proposed. We investigated the phylogenetic position of this species using molecular phylogenetic methods. We obtained sequences of DNA fragments of the mitochondrial ribosomal genes 12S rDNA and 16S rDNA for this species. We aligned these sequences with published sequences of other Ameiva species, which include most of the Ameiva species from the West Indies, three Ameiva species from Central America and South America, and one from the teiid lizard Tupinambis teguixin, which was used as outgroup. We conducted Maximum Likelihood and Bayesian phylogenetic analyses. The phylogenetic reconstructions among the different methods were very similar, supporting the monophyly of West Indian Ameiva and showing within this lineage, a basal polytomy of four clades that are separated geographically. Ameiva polops grouped in a cluster that included the other two Ameiva species found in the Puerto Rican Bank: A. wetmorei and A. exsul. A sister relationship between A. polops and A. wetmorei is suggested by our analyses. We compare our results with a previous study on molecular systematics of West Indian Ameiva. 

  19. Long-Branch Attraction Bias and Inconsistency in Bayesian Phylogenetics

    PubMed Central

    Kolaczkowski, Bryan; Thornton, Joseph W.

    2009-01-01

    Bayesian inference (BI) of phylogenetic relationships uses the same probabilistic models of evolution as its precursor maximum likelihood (ML), so BI has generally been assumed to share ML's desirable statistical properties, such as largely unbiased inference of topology given an accurate model and increasingly reliable inferences as the amount of data increases. Here we show that BI, unlike ML, is biased in favor of topologies that group long branches together, even when the true model and prior distributions of evolutionary parameters over a group of phylogenies are known. Using experimental simulation studies and numerical and mathematical analyses, we show that this bias becomes more severe as more data are analyzed, causing BI to infer an incorrect tree as the maximum a posteriori phylogeny with asymptotically high support as sequence length approaches infinity. BI's long branch attraction bias is relatively weak when the true model is simple but becomes pronounced when sequence sites evolve heterogeneously, even when this complexity is incorporated in the model. This bias—which is apparent under both controlled simulation conditions and in analyses of empirical sequence data—also makes BI less efficient and less robust to the use of an incorrect evolutionary model than ML. Surprisingly, BI's bias is caused by one of the method's stated advantages—that it incorporates uncertainty about branch lengths by integrating over a distribution of possible values instead of estimating them from the data, as ML does. Our findings suggest that trees inferred using BI should be interpreted with caution and that ML may be a more reliable framework for modern phylogenetic analysis. PMID:20011052

  20. Long-branch attraction bias and inconsistency in Bayesian phylogenetics.

    PubMed

    Kolaczkowski, Bryan; Thornton, Joseph W

    2009-12-09

    Bayesian inference (BI) of phylogenetic relationships uses the same probabilistic models of evolution as its precursor maximum likelihood (ML), so BI has generally been assumed to share ML's desirable statistical properties, such as largely unbiased inference of topology given an accurate model and increasingly reliable inferences as the amount of data increases. Here we show that BI, unlike ML, is biased in favor of topologies that group long branches together, even when the true model and prior distributions of evolutionary parameters over a group of phylogenies are known. Using experimental simulation studies and numerical and mathematical analyses, we show that this bias becomes more severe as more data are analyzed, causing BI to infer an incorrect tree as the maximum a posteriori phylogeny with asymptotically high support as sequence length approaches infinity. BI's long branch attraction bias is relatively weak when the true model is simple but becomes pronounced when sequence sites evolve heterogeneously, even when this complexity is incorporated in the model. This bias--which is apparent under both controlled simulation conditions and in analyses of empirical sequence data--also makes BI less efficient and less robust to the use of an incorrect evolutionary model than ML. Surprisingly, BI's bias is caused by one of the method's stated advantages--that it incorporates uncertainty about branch lengths by integrating over a distribution of possible values instead of estimating them from the data, as ML does. Our findings suggest that trees inferred using BI should be interpreted with caution and that ML may be a more reliable framework for modern phylogenetic analysis.

  1. Molecular phylogenetic analysis supports a Gondwanan origin of the Hyriidae (Mollusca: Bivalvia: Unionida) and the paraphyly of Australasian taxa.

    PubMed

    Graf, Daniel L; Jones, Hugh; Geneva, Anthony J; Pfeiffer, John M; Klunzinger, Michael W

    2015-04-01

    The freshwater mussel family Hyriidae (Mollusca: Bivalvia: Unionida) has a disjunct trans-Pacific distribution in Australasia and South America. Previous phylogenetic analyses have estimated the evolutionary relationships of the family and the major infra-familial taxa (Velesunioninae and Hyriinae: Hyridellini in Australia; Hyriinae: Hyriini, Castaliini, and Rhipidodontini in South America), but taxon and character sampling have been too incomplete to support a predictive classification or allow testing of biogeographical hypotheses. We sampled 30 freshwater mussel individuals representing the aforementioned hyriid taxa, as well as outgroup species representing the five other freshwater mussel families and their marine sister group (order Trigoniida). Our ingroup included representatives of all Australian genera. Phylogenetic relationships were estimated from three gene fragments (nuclear 28S, COI and 16S mtDNA) using maximum parsimony, maximum likelihood, and Bayesian inference, and we applied a Bayesian relaxed clock model calibrated with fossil dates to estimate node ages. Our analyses found good support for monophyly of the Hyriidae and the subfamilies and tribes, as well as the paraphyly of the Australasian taxa (Velesunioninae, (Hyridellini, (Rhipidodontini, (Castaliini, Hyriini)))). The Hyriidae was recovered as sister to a clade comprised of all other Recent freshwater mussel families. Our molecular date estimation supported Cretaceous origins of the major hyriid clades, pre-dating the Tertiary isolation of South America from Antarctica/Australia. We hypothesize that early diversification of the Hyriidae was driven by terrestrial barriers on Gondwana rather than marine barriers following disintegration of the super-continent. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Cross-Border Sexual Transmission of the Newly Emerging HIV-1 Clade CRF51_01B

    PubMed Central

    Cheong, Hui Ting; Ng, Kim Tien; Ong, Lai Yee; Chook, Jack Bee; Chan, Kok Gan; Takebe, Yutaka; Kamarulzaman, Adeeba; Tee, Kok Keng

    2014-01-01

    A novel HIV-1 recombinant clade (CRF51_01B) was recently identified among men who have sex with men (MSM) in Singapore. As cases of sexually transmitted HIV-1 infection increase concurrently in two socioeconomically intimate countries such as Malaysia and Singapore, cross transmission of HIV-1 between said countries is highly probable. In order to investigate the timeline for the emergence of HIV-1 CRF51_01B in Singapore and its possible introduction into Malaysia, 595 HIV-positive subjects recruited in Kuala Lumpur from 2008 to 2012 were screened. Phylogenetic relationship of 485 amplified polymerase gene sequences was determined through neighbour-joining method. Next, near-full length sequences were amplified for genomic sequences inferred to be CRF51_01B and subjected to further analysis implemented through Bayesian Markov chain Monte Carlo (MCMC) sampling and maximum likelihood methods. Based on the near full length genomes, two isolates formed a phylogenetic cluster with CRF51_01B sequences of Singapore origin, sharing identical recombination structure. Spatial and temporal information from Bayesian MCMC coalescent and maximum likelihood analysis of the protease, gp120 and gp41 genes suggest that Singapore is probably the country of origin of CRF51_01B (as early as in the mid-1990s) and featured a Malaysian who acquired the infection through heterosexual contact as host for its ancestral lineages. CRF51_01B then spread rapidly among the MSM in Singapore and Malaysia. Although the importation of CRF51_01B from Singapore to Malaysia is supported by coalescence analysis, the narrow timeframe of the transmission event indicates a closely linked epidemic. Discrepancies in the estimated divergence times suggest that CRF51_01B may have arisen through multiple recombination events from more than one parental lineage. We report the cross transmission of a novel CRF51_01B lineage between countries that involved different sexual risk groups. Understanding the cross-border transmission of HIV-1 involving sexual networks is crucial for effective intervention strategies in the region. PMID:25340817

  3. Cross-border sexual transmission of the newly emerging HIV-1 clade CRF51_01B.

    PubMed

    Cheong, Hui Ting; Ng, Kim Tien; Ong, Lai Yee; Chook, Jack Bee; Chan, Kok Gan; Takebe, Yutaka; Kamarulzaman, Adeeba; Tee, Kok Keng

    2014-01-01

    A novel HIV-1 recombinant clade (CRF51_01B) was recently identified among men who have sex with men (MSM) in Singapore. As cases of sexually transmitted HIV-1 infection increase concurrently in two socioeconomically intimate countries such as Malaysia and Singapore, cross transmission of HIV-1 between said countries is highly probable. In order to investigate the timeline for the emergence of HIV-1 CRF51_01B in Singapore and its possible introduction into Malaysia, 595 HIV-positive subjects recruited in Kuala Lumpur from 2008 to 2012 were screened. Phylogenetic relationship of 485 amplified polymerase gene sequences was determined through neighbour-joining method. Next, near-full length sequences were amplified for genomic sequences inferred to be CRF51_01B and subjected to further analysis implemented through Bayesian Markov chain Monte Carlo (MCMC) sampling and maximum likelihood methods. Based on the near full length genomes, two isolates formed a phylogenetic cluster with CRF51_01B sequences of Singapore origin, sharing identical recombination structure. Spatial and temporal information from Bayesian MCMC coalescent and maximum likelihood analysis of the protease, gp120 and gp41 genes suggest that Singapore is probably the country of origin of CRF51_01B (as early as in the mid-1990s) and featured a Malaysian who acquired the infection through heterosexual contact as host for its ancestral lineages. CRF51_01B then spread rapidly among the MSM in Singapore and Malaysia. Although the importation of CRF51_01B from Singapore to Malaysia is supported by coalescence analysis, the narrow timeframe of the transmission event indicates a closely linked epidemic. Discrepancies in the estimated divergence times suggest that CRF51_01B may have arisen through multiple recombination events from more than one parental lineage. We report the cross transmission of a novel CRF51_01B lineage between countries that involved different sexual risk groups. Understanding the cross-border transmission of HIV-1 involving sexual networks is crucial for effective intervention strategies in the region.

  4. On the Evolutionary and Biogeographic History of Saxifraga sect. Trachyphyllum (Gaud.) Koch (Saxifragaceae Juss.)

    PubMed Central

    DeChaine, Eric G.; Anderson, Stacy A.; McNew, Jennifer M.; Wendling, Barry M.

    2013-01-01

    Arctic-alpine plants in the genus Saxifraga L. (Saxifragaceae Juss.) provide an excellent system for investigating the process of diversification in northern regions. Yet, sect. Trachyphyllum (Gaud.) Koch, which is comprised of about 8 to 26 species, has still not been explored by molecular systematists even though taxonomists concur that the section needs to be thoroughly re-examined. Our goals were to use chloroplast trnL-F and nuclear ITS DNA sequence data to circumscribe the section phylogenetically, test models of geographically-based population divergence, and assess the utility of morphological characters in estimating evolutionary relationships. To do so, we sequenced both genetic markers for 19 taxa within the section. The phylogenetic inferences of sect. Trachyphyllum using maximum likelihood and Bayesian analyses showed that the section is polyphyletic, with S. aspera L. and S bryoides L. falling outside the main clade. In addition, the analyses supported several taxonomic re-classifications to prior names. We used two approaches to test biogeographic hypotheses: i) a coalescent approach in Mesquite to test the fit of our reconstructed gene trees to geographically-based models of population divergence and ii) a maximum likelihood inference in Lagrange. These tests uncovered strong support for an origin of the clade in the Southern Rocky Mountains of North America followed by dispersal and divergence episodes across refugia. Finally we adopted a stochastic character mapping approach in SIMMAP to investigate the utility of morphological characters in estimating evolutionary relationships among taxa. We found that few morphological characters were phylogenetically informative and many were misleading. Our molecular analyses provide a foundation for the diversity and evolutionary relationships within sect. Trachyphyllum and hypotheses for better understanding the patterns and processes of divergence in this section, other saxifrages, and plants inhabiting the North Pacific Rim. PMID:23922810

  5. Extending the BEAGLE library to a multi-FPGA platform.

    PubMed

    Jin, Zheming; Bakos, Jason D

    2013-01-19

    Maximum Likelihood (ML)-based phylogenetic inference using Felsenstein's pruning algorithm is a standard method for estimating the evolutionary relationships amongst a set of species based on DNA sequence data, and is used in popular applications such as RAxML, PHYLIP, GARLI, BEAST, and MrBayes. The Phylogenetic Likelihood Function (PLF) and its associated scaling and normalization steps comprise the computational kernel for these tools. These computations are data intensive but contain fine grain parallelism that can be exploited by coprocessor architectures such as FPGAs and GPUs. A general purpose API called BEAGLE has recently been developed that includes optimized implementations of Felsenstein's pruning algorithm for various data parallel architectures. In this paper, we extend the BEAGLE API to a multiple Field Programmable Gate Array (FPGA)-based platform called the Convey HC-1. The core calculation of our implementation, which includes both the phylogenetic likelihood function (PLF) and the tree likelihood calculation, has an arithmetic intensity of 130 floating-point operations per 64 bytes of I/O, or 2.03 ops/byte. Its performance can thus be calculated as a function of the host platform's peak memory bandwidth and the implementation's memory efficiency, as 2.03 × peak bandwidth × memory efficiency. Our FPGA-based platform has a peak bandwidth of 76.8 GB/s and our implementation achieves a memory efficiency of approximately 50%, which gives an average throughput of 78 Gflops. This represents a ~40X speedup when compared with BEAGLE's CPU implementation on a dual Xeon 5520 and 3X speedup versus BEAGLE's GPU implementation on a Tesla T10 GPU for very large data sizes. The power consumption is 92 W, yielding a power efficiency of 1.7 Gflops per Watt. The use of data parallel architectures to achieve high performance for likelihood-based phylogenetic inference requires high memory bandwidth and a design methodology that emphasizes high memory efficiency. To achieve this objective, we integrated 32 pipelined processing elements (PEs) across four FPGAs. For the design of each PE, we developed a specialized synthesis tool to generate a floating-point pipeline with resource and throughput constraints to match the target platform. We have found that using low-latency floating-point operators can significantly reduce FPGA area and still meet timing requirement on the target platform. We found that this design methodology can achieve performance that exceeds that of a GPU-based coprocessor.

  6. Mitochondrial genome of Pteronotus personatus (Chiroptera: Mormoopidae): comparison with selected bats and phylogenetic considerations.

    PubMed

    López-Wilchis, Ricardo; Del Río-Portilla, Miguel Ángel; Guevara-Chumacero, Luis Manuel

    2017-02-01

    We described the complete mitochondrial genome (mitogenome) of the Wagner's mustached bat, Pteronotus personatus, a species belonging to the family Mormoopidae, and compared it with other published mitogenomes of bats (Chiroptera). The mitogenome of P. personatus was 16,570 bp long and contained a typically conserved structure including 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one control region (D-loop). Most of the genes were encoded on the H-strand, except for eight tRNA and the ND6 genes. The order of protein-coding and rRNA genes was highly conserved in all mitogenomes. All protein-coding genes started with an ATG codon, except for ND2, ND3, and ND5, which initiated with ATA, and terminated with the typical stop codon TAA/TAG or the codon AGA. Phylogenetic trees constructed using Maximum Parsimony, Maximum Likelihood, and Bayesian inference methods showed an identical topology and indicated the monophyly of different families of bats (Mormoopidae, Phyllostomidae, Vespertilionidae, Rhinolophidae, and Pteropopidae) and the existence of two major clades corresponding to the suborders Yangochiroptera and Yinpterochiroptera. The mitogenome sequence provided here will be useful for further phylogenetic analyses and population genetic studies in mormoopid bats.

  7. Parsimony and Model-Based Analyses of Indels in Avian Nuclear Genes Reveal Congruent and Incongruent Phylogenetic Signals

    PubMed Central

    Yuri, Tamaki; Kimball, Rebecca T.; Harshman, John; Bowie, Rauri C. K.; Braun, Michael J.; Chojnowski, Jena L.; Han, Kin-Lan; Hackett, Shannon J.; Huddleston, Christopher J.; Moore, William S.; Reddy, Sushma; Sheldon, Frederick H.; Steadman, David W.; Witt, Christopher C.; Braun, Edward L.

    2013-01-01

    Insertion/deletion (indel) mutations, which are represented by gaps in multiple sequence alignments, have been used to examine phylogenetic hypotheses for some time. However, most analyses combine gap data with the nucleotide sequences in which they are embedded, probably because most phylogenetic datasets include few gap characters. Here, we report analyses of 12,030 gap characters from an alignment of avian nuclear genes using maximum parsimony (MP) and a simple maximum likelihood (ML) framework. Both trees were similar, and they exhibited almost all of the strongly supported relationships in the nucleotide tree, although neither gap tree supported many relationships that have proven difficult to recover in previous studies. Moreover, independent lines of evidence typically corroborated the nucleotide topology instead of the gap topology when they disagreed, although the number of conflicting nodes with high bootstrap support was limited. Filtering to remove short indels did not substantially reduce homoplasy or reduce conflict. Combined analyses of nucleotides and gaps resulted in the nucleotide topology, but with increased support, suggesting that gap data may prove most useful when analyzed in combination with nucleotide substitutions. PMID:24832669

  8. ATAC Autocuer Modeling Analysis.

    DTIC Science & Technology

    1981-01-01

    the analysis of the simple rectangular scrnentation (1) is based on detection and estimation theory (2). This approach uses the concept of maximum ...continuous wave forms. In order to develop the principles of maximum likelihood, it is con- venient to develop the principles for the "classical...the concept of maximum likelihood is significant in that it provides the optimum performance of the detection/estimation problem. With a knowledge of

  9. Phylogeny of the Gadidae (sensu Svetovidov, 1948) based on their morphology and two mitochondrial genes.

    PubMed

    Teletchea, Fabrice; Laudet, Vincent; Hänni, Catherine

    2006-01-01

    Although Codfishes are probably one of the most studied groups of all teleost fishes worldwide owing to their great importance to fisheries, their phylogeny and classification are still far from being firmly established. In this study, we present phylogenetic relationships of 19 out of 22 genera traditionally included in the Gadidae based on the analysis of entire cytochrome b and partial cytochrome oxidase I genes (1530 bp). Maximum Parsimony, Maximum Likelihood, and Bayesian analyses all recovered five main clades that correspond to traditionally recognized groupings within Gadoids. The same clades were recovered with MP analysis based on 30 morphological characters (collected from the literature). Given these findings, we propose a revised provisional classification of Gadoids: one suborder Gadoidei containing two families, the Merlucciidae (1 genus) and the Gadidae (21 genera) distributed into four subfamilies: the Gadinae (12 genera), the Lotinae (3 genera), the Gaidropsarinae (3 genera), and the Phycinae (3 genera). Lastly, nuclear inserts of mitochondrial DNA (Numts) were identified in two species, i.e., Gadiculus argenteus and Melanogrammus aeglefinus.

  10. Does better taxon sampling help? A new phylogenetic hypothesis for Sepsidae (Diptera: Cyclorrhapha) based on 50 new taxa and the same old mitochondrial and nuclear markers.

    PubMed

    Zhao, Lei; Annie, Ang Shi Hui; Amrita, Srivathsan; Yi, Su Kathy Feng; Rudolf, Meier

    2013-10-01

    We here present a phylogenetic hypothesis for Sepsidae (Diptera: Cyclorrhapha), a group of schizophoran flies with ca. 320 described species that is widely used in sexual selection research. The hypothesis is based on five nuclear and five mitochondrial markers totaling 8813 bp for ca. 30% of the diversity (105 sepsid taxa) and - depending on analysis - six or nine outgroup species. Maximum parsimony (MP), maximum likelihood (ML), and Bayesian inferences (BI) yield overall congruent, well-resolved, and supported trees that are largely unaffected by three different ways to partition the data in BI and ML analyses. However, there are also five areas of uncertainty that affect suprageneric relationships where different analyses yield alternate topologies and MP and ML trees have significant conflict according to Shimodaira-Hasegawa tests. Two of these were already affected by conflict in a previous analysis that was based on the same genes and a subset of 69 species. The remaining three involve newly added taxa or genera whose relationships were previously resolved with low support. We thus find that the denser taxon sample in the present analysis does not reduce the topological conflict that had been identified previously. The present study nevertheless presents a significant contribution to the understanding of sepsid relationships in that 50 additional taxa from 18 genera are added to the Tree-of-Life of Sepsidae and that the placement of most taxa is well supported and robust to different tree reconstruction techniques. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. A Study of Item Bias for Attitudinal Measurement Using Maximum Likelihood Factor Analysis.

    ERIC Educational Resources Information Center

    Mayberry, Paul W.

    A technique for detecting item bias that is responsive to attitudinal measurement considerations is a maximum likelihood factor analysis procedure comparing multivariate factor structures across various subpopulations, often referred to as SIFASP. The SIFASP technique allows for factorial model comparisons in the testing of various hypotheses…

  12. Phylogenetic Analysis of Seven WRKY Genes across the Palm Subtribe Attaleinae (Arecaceae) Identifies Syagrus as Sister Group of the Coconut

    PubMed Central

    Meerow, Alan W.; Noblick, Larry; Borrone, James W.; Couvreur, Thomas L. P.; Mauro-Herrera, Margarita; Hahn, William J.; Kuhn, David N.; Nakamura, Kyoko; Oleas, Nora H.; Schnell, Raymond J.

    2009-01-01

    Background The Cocoseae is one of 13 tribes of Arecaceae subfam. Arecoideae, and contains a number of palms with significant economic importance, including the monotypic and pantropical Cocos nucifera L., the coconut, the origins of which have been one of the “abominable mysteries” of palm systematics for decades. Previous studies with predominantly plastid genes weakly supported American ancestry for the coconut but ambiguous sister relationships. In this paper, we use multiple single copy nuclear loci to address the phylogeny of the Cocoseae subtribe Attaleinae, and resolve the closest extant relative of the coconut. Methodology/Principal Findings We present the results of combined analysis of DNA sequences of seven WRKY transcription factor loci across 72 samples of Arecaceae tribe Cocoseae subtribe Attaleinae, representing all genera classified within the subtribe, and three outgroup taxa with maximum parsimony, maximum likelihood, and Bayesian approaches, producing highly congruent and well-resolved trees that robustly identify the genus Syagrus as sister to Cocos and resolve novel and well-supported relationships among the other genera of the Attaleinae. We also address incongruence among the gene trees with gene tree reconciliation analysis, and assign estimated ages to the nodes of our tree. Conclusions/Significance This study represents the as yet most extensive phylogenetic analyses of Cocoseae subtribe Attaleinae. We present a well-resolved and supported phylogeny of the subtribe that robustly indicates a sister relationship between Cocos and Syagrus. This is not only of biogeographic interest, but will also open fruitful avenues of inquiry regarding evolution of functional genes useful for crop improvement. Establishment of two major clades of American Attaleinae occurred in the Oligocene (ca. 37 MYBP) in Eastern Brazil. The divergence of Cocos from Syagrus is estimated at 35 MYBP. The biogeographic and morphological congruence that we see for clades resolved in the Attaleinae suggests that WRKY loci are informative markers for investigating the phylogenetic relationships of the palm family. PMID:19806212

  13. Multi-gene phylogeny of jacks and pompanos (Carangidae), including placement of monotypic vadigo Campogramma glaycos.

    PubMed

    Damerau, M; Freese, M; Hanel, R

    2018-01-01

    In this study, the phylogenetic trees of jacks and pompanos (Carangidae), an ecologically and morphologically diverse, globally distributed fish family, are inferred from a complete, concatenated data set of two mitochondrial (cytochrome c oxidase I, cytochrome b) loci and one nuclear (myosin heavy chain 6) locus. Maximum likelihood and Bayesian inferences are largely congruent and show a clear separation of Carangidae into the four subfamilies: Scomberoidinae, Trachinotinae, Naucratinae and Caranginae. The inclusion of the carangid sister lineages Coryphaenidae (dolphinfishes) and Rachycentridae (cobia), however, render Carangidae paraphyletic. The phylogenetic trees also show with high statistical support that the monotypic vadigo Campogramma glaycos is the sister to all other species within the Naucratinae. © 2017 The Fisheries Society of the British Isles.

  14. First Record of Raillietina celebensis (Cestoda: Cyclophyllidea) in South America: Redescription and Phylogeny.

    PubMed

    de Oliveira Simões, Raquel; Simões, Susana Balmant Enrique; Luque, José Luis; Iñiguez, Alena Mayo; Júnior, Arnaldo Maldonado

    2017-08-01

    Raillietina celebensis is a cestode that parasitizes the small intestine of rats and humans. Here, we detail the morphology and morphometry of R. celebensis based on specimens collected from Rattus norvegicus in the municipality of São Gonçalo, state of Rio de Janeiro, Brazil, by light and confocal scanning laser microscopies and also report the results of molecular phylogenetic analyses to determine its relationships within the family Davaineidae. Analysis of the number and size of testes, number and shape of rostellar hooks, cirrus sac length, capsules and eggs per capsule, and morphology of the mature proglottid allowed concluding that the present specimens constitute a new record of R. celebensis in South America. Our genetic and phylogenetic analyses, based on the partial small subunit 18S rRNA gene, revealed R. celebensis to be in the family Davaineidae within the genus Raillietina, in agreement with the morphological taxonomy. Phylogenetic trees obtained by neighbor-joining and maximum likelihood methods demonstrated R. celebensis as a unique taxonomic unit, and also demonstrated some taxonomic inconsistences. The incorporation of Brazilian R. celebensis sequences derived from mammals in the phylogeny of davaineids is consistent with the assertion that neither Raillietina nor Fuhrmannetta can be supported as distinct genera.

  15. Toward the resolution of an explosive radiation--a multilocus phylogeny of oceanic dolphins (Delphinidae).

    PubMed

    McGowen, Michael R

    2011-09-01

    Oceanic dolphins (Delphinidae) are the product of a rapid radiation that yielded ∼36 extant species of small to medium-sized cetaceans that first emerged in the Late Miocene. Although they are a charismatic group of organisms that have become poster children for marine conservation, many phylogenetic relationships within Delphinidae remain elusive due to the slow molecular evolution of the group and the difficulty of resolving short branches from successive cladogenic events. Here I combine existing and newly generated sequences from four mitochondrial (mt) genes and 20 nuclear (nu) genes to reconstruct a well-supported phylogenetic hypothesis for Delphinidae. This study compares maximum-likelihood and Bayesian inference methods of several data sets including mtDNA, combined nuDNA, gene trees of individual nuDNA loci, and concatenated mtDNA+nuDNA. In addition, I contrast these standard phylogenetic analyses with the species tree reconstruction method of Bayesian concordance analysis (BCA). Despite finding discordance between mtDNA and individual nuDNA loci, the concatenated matrix recovers a completely resolved and robustly supported phylogeny that is also broadly congruent with BCA trees. This study strongly supports groupings such as Delphininae, Lissodelphininae, Globicephalinae, Sotalia+Delphininae, Steno+Orcaella+Globicephalinae, and Leucopleurus acutus, Lagenorhynchus albirostris, and Orcinus orca as basal delphinid taxa. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Morphological and Molecular Characterization of a New Trichuris Species (Nematoda- Trichuridae), and Phylogenetic Relationships of Trichuris Species of Cricetid Rodents from Argentina

    PubMed Central

    Robles, María del Rosario; Cutillas, Cristina; Panei, Carlos Javier; Callejón, Rocío

    2014-01-01

    Populations of Trichuris spp. isolated from six species of sigmodontine rodents from Argentina were analyzed based on morphological characteristics and ITS2 (rDNA) region sequences. Molecular data provided an opportunity to discuss the phylogenetic relationships among the Trichuris spp. from Noth and South America (mainly from Argentina). Trichuris specimens were identified morphologically as Trichuris pardinasi, T. navonae, Trichuris sp. and Trichuris new species, described in this paper. Sequences analyzed by Maximum Parsimony, Maximum Likelihood and Bayesian inference methods showed four main clades corresponding with the four different species regardless of geographical origin and host species. These four species from sigmodontine rodents clustered together and separated from Trichuris species isolated from murine and arvicoline rodents (outgroup). Different genetic lineages observed among Trichuris species from sigmodontine rodents which supported the proposal of a new species. Moreover, host distribution showed correspondence with the different tribes within the subfamily Sigmodontinae. PMID:25393618

  17. Phylogenetic study on Shiraia bambusicola by rDNA sequence analyses.

    PubMed

    Cheng, Tian-Fan; Jia, Xiao-Ming; Ma, Xiao-Hang; Lin, Hai-Ping; Zhao, Yu-Hua

    2004-01-01

    In this study, 18S rDNA and ITS-5.8S rDNA regions of four Shiraia bambusicola isolates collected from different species of bamboos were amplified by PCR with universal primer pairs NS1/NS8 and ITS5/ITS4, respectively, and sequenced. Phylogenetic analyses were conducted on three selected datasets of rDNA sequences. Maximum parsimony, distance and maximum likelihood criteria were used to infer trees. Morphological characteristics were also observed. The positioning of Shiraia in the order Pleosporales was well supported by bootstrap, which agreed with the placement by Amano (1980) according to their morphology. We did not find significant inter-hostal differences among these four isolates from different species of bamboos. From the results of analyses and comparison of their rDNA sequences, we conclude that Shiraia should be classified into Pleosporales as Amano (1980) proposed and suggest that it might be positioned in the family Phaeosphaeriaceae. Copyright 2004 WILEY-VCH Verlag GmbH & Co.

  18. Phylogenetic relationships within anuran clade Terrarana, with emphasis on the placement of Brazilian Atlantic rainforest frogs genus Ischnocnema (Anura: Brachycephalidae).

    PubMed

    Canedo, Clarissa; Haddad, Célio F B

    2012-11-01

    We present a phylogenetic hypothesis of the anuran clade Terrarana based on partial sequences of nuclear (Tyr and RAG1) and mitochondrial (12S, tRNA-Val, and 16S) genes, testing the monophyly of Ischnocnema and its species series. We performed maximum parsimony, maximum likelihood, and Bayesian inference analyses on 364 terminals: 11 outgroup terminals and 353 ingroup Terrarana terminals, including 139 Ischnocnema terminals (accounting for 29 of the 35 named Ischnocnema species) and 214 other Terrarana terminals within the families Brachycephalidae, Ceuthomantidae, Craugastoridae, and Eleutherodactylidae. Different optimality criteria produced similar results and mostly recovered the currently accepted families and genera. According to these topologies, Ischnocnema is not a monophyletic group. We propose new combinations for three species, relocating them to Pristimantis, and render Eleutherodactylus bilineatus Bokermann, 1975 incertae sedis status within Holoadeninae. The rearrangements in Ischnocnema place it outside the northernmost Brazilian Atlantic rainforest, where the fauna of Terrarana comprises typical Amazonian genera. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. CNL Disease Resistance Genes in Soybean and Their Evolutionary Divergence

    PubMed Central

    Nepal, Madhav P; Benson, Benjamin V

    2015-01-01

    Disease resistance genes (R-genes) encode proteins involved in detecting pathogen attack and activating downstream defense molecules. Recent availability of soybean genome sequences makes it possible to examine the diversity of gene families including disease-resistant genes. The objectives of this study were to identify coiled-coil NBS-LRR (= CNL) R-genes in soybean, infer their evolutionary relationships, and assess structural as well as functional divergence of the R-genes. Profile hidden Markov models were used for sequence identification and model-based maximum likelihood was used for phylogenetic analysis, and variation in chromosomal positioning, gene clustering, and functional divergence were assessed. We identified 188 soybean CNL genes nested into four clades consistent to their orthologs in Arabidopsis. Gene clustering analysis revealed the presence of 41 gene clusters located on 13 different chromosomes. Analyses of the Ks-values and chromosomal positioning suggest duplication events occurring at varying timescales, and an extrapericentromeric positioning may have facilitated their rapid evolution. Each of the four CNL clades exhibited distinct patterns of gene expression. Phylogenetic analysis further supported the extrapericentromeric positioning effect on the divergence and retention of the CNL genes. The results are important for understanding the diversity and divergence of CNL genes in soybean, which would have implication in soybean crop improvement in future. PMID:25922568

  20. The Gondwana Breakup and the History of the Atlantic and Indian Oceans Unveils Two New Clades for Early Neobatrachian Diversification

    PubMed Central

    Frazão, Annelise; da Silva, Hélio Ricardo; Russo, Claudia Augusta de Moraes

    2015-01-01

    The largest anuran diversity belongs to the Neobatrachia, which harbor more than five thousand extant species. Here, we propose a new hypothesis for the historical aspects of the neobatrachian evolution with a formal biogeographical analysis. We selected 12 genes for 144 neobatrachian genera and four archaeobatrachian outgroups and performed a phylogenetic analysis using a maximum likelihood algorithm with the rapid bootstrap test. We also estimated divergence times for major lineages using a relaxed uncorrelated clock method. According to our time scale, the diversification of crown Neobatrachia began around the end of the Early Cretaceous. Our phylogenetic tree suggests that the first split of Neobatrachia is related to the geological events in the Atlantic and Indian Oceans. Hence, we propose names for these clades that indicate this connection, i.e., Atlanticanura and Indianura. The Atlanticanura is composed of three major neobatrachian lineages: Heleophrynidae, Australobatrachia and Nobleobatrachia. On the other hand, the Indianura consists of two major lineages: Sooglossoidea and Ranoides. The biogeographical analysis indicates that many neobatrachian splits occurred as a result of geological events such as the separation between South America and Africa, between India and the Seychelles, and between Australia and South America. PMID:26618546

  1. CNL Disease Resistance Genes in Soybean and Their Evolutionary Divergence.

    PubMed

    Nepal, Madhav P; Benson, Benjamin V

    2015-01-01

    Disease resistance genes (R-genes) encode proteins involved in detecting pathogen attack and activating downstream defense molecules. Recent availability of soybean genome sequences makes it possible to examine the diversity of gene families including disease-resistant genes. The objectives of this study were to identify coiled-coil NBS-LRR (= CNL) R-genes in soybean, infer their evolutionary relationships, and assess structural as well as functional divergence of the R-genes. Profile hidden Markov models were used for sequence identification and model-based maximum likelihood was used for phylogenetic analysis, and variation in chromosomal positioning, gene clustering, and functional divergence were assessed. We identified 188 soybean CNL genes nested into four clades consistent to their orthologs in Arabidopsis. Gene clustering analysis revealed the presence of 41 gene clusters located on 13 different chromosomes. Analyses of the K s-values and chromosomal positioning suggest duplication events occurring at varying timescales, and an extrapericentromeric positioning may have facilitated their rapid evolution. Each of the four CNL clades exhibited distinct patterns of gene expression. Phylogenetic analysis further supported the extrapericentromeric positioning effect on the divergence and retention of the CNL genes. The results are important for understanding the diversity and divergence of CNL genes in soybean, which would have implication in soybean crop improvement in future.

  2. The Complete Mitochondrial Genome of the Land Snail Cornu aspersum (Helicidae: Mollusca): Intra-Specific Divergence of Protein-Coding Genes and Phylogenetic Considerations within Euthyneura

    PubMed Central

    Gaitán-Espitia, Juan Diego; Nespolo, Roberto F.; Opazo, Juan C.

    2013-01-01

    The complete sequences of three mitochondrial genomes from the land snail Cornu aspersum were determined. The mitogenome has a length of 14050 bp, and it encodes 13 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes. It also includes nine small intergene spacers, and a large AT-rich intergenic spacer. The intra-specific divergence analysis revealed that COX1 has the lower genetic differentiation, while the most divergent genes were NADH1, NADH3 and NADH4. With the exception of Euhadra herklotsi, the structural comparisons showed the same gene order within the family Helicidae, and nearly identical gene organization to that found in order Pulmonata. Phylogenetic reconstruction recovered Basommatophora as polyphyletic group, whereas Eupulmonata and Pulmonata as paraphyletic groups. Bayesian and Maximum Likelihood analyses showed that C. aspersum is a close relative of Cepaea nemoralis, and with the other Helicidae species form a sister group of Albinaria caerulea, supporting the monophyly of the Stylommatophora clade. PMID:23826260

  3. The mitochondrial genome sequence of Enterobius vermicularis (Nematoda: Oxyurida)--an idiosyncratic gene order and phylogenetic information for chromadorean nematodes.

    PubMed

    Kang, Seokha; Sultana, Tahera; Eom, Keeseon S; Park, Yung Chul; Soonthornpong, Nathan; Nadler, Steven A; Park, Joong-Ki

    2009-01-15

    The complete mitochondrial genome sequence was determined for the human pinworm Enterobius vermicularis (Oxyurida: Nematoda) and used to infer its phylogenetic relationship to other major groups of chromadorean nematodes. The E. vermicularis genome is a 14,010-bp circular DNA molecule that encodes 36 genes (12 proteins, 22 tRNAs, and 2 rRNAs). This mtDNA genome lacks atp8, as reported for almost all other nematode species investigated. Phylogenetic analyses (maximum parsimony, maximum likelihood, neighbor joining, and Bayesian inference) of nucleotide sequences for the 12 protein-coding genes of 25 nematode species placed E. vermicularis, a representative of the order Oxyurida, as sister to the main Ascaridida+Rhabditida group. Tree topology comparisons using statistical tests rejected an alternative hypothesis favoring a closer relationship among Ascaridida, Spirurida, and Oxyurida, which has been supported from most studies based on nuclear ribosomal DNA sequences. Unlike the relatively conserved gene arrangement found for most chromadorean taxa, E. vermicularis mtDNA gene order is very unique, not sharing similarity to any other nematode species reported to date. This lack of gene order similarity may represent idiosyncratic gene rearrangements unique to this specific lineage of the oxyurids. To more fully understand the extent of gene rearrangement and its evolutionary significance within the nematode phylogenetic framework, additional mitochondrial genomes representing a greater evolutionary diversity of species must be characterized.

  4. Molecular phylogeny of the Achatinoidea (Mollusca: Gastropoda).

    PubMed

    Fontanilla, Ian Kendrich; Naggs, Fred; Wade, Christopher Mark

    2017-09-01

    This study presents a multi-gene phylogenetic analysis of the Achatinoidea and provides an initial basis for a taxonomic re-evaluation of family level groups within the superfamily. A total of 5028 nucleotides from the nuclear rRNA, actin and histone 3 genes and the 1st and 2nd codon positions of the mitochondrial cytochrome c oxidase subunit I gene were sequenced from 24 species, representing six currently recognised families. Results from maximum likelihood, neighbour joining, maximum parsimony and Bayesian inference trees revealed that, of currently recognised families, only the Achatinidae are monophyletic. For the Ferussaciidae, Ferussacia folliculus fell separately to Cecilioides gokweanus and formed a sister taxon to the rest of the Achatinoidea. For the Coeliaxidae, Coeliaxis blandii and Pyrgina umbilicata did not group together. The Subulinidae was not resolved, with some subulinids clustering with the Coeliaxidae and Thyrophorellidae. Three subfamilies currently included within the Subulinidae based on current taxonomy likewise did not form monophyletic groups. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Detection of Bovine Leukemia Virus in Brains of Cattle with a Neurological Syndrome: Pathological and Molecular Studies

    PubMed Central

    D'Angelino, Rubens Henrique Ramos; Pituco, Edviges Maristela; Villalobos, Eliana Monteforte Cassaro; Harakava, Ricardo; Gregori, Fábio

    2013-01-01

    Bovine leukemia virus (BLV) was investigated in the central nervous system (CNS) of cattle with neurological syndrome. A total of 269 CNS samples were submitted to nested-PCR (BLV env gene gp51), and the viral genotypes were identified. The nested-PCR was positive in 4.8% (13/269) CNS samples, with 2.7% (2/74) presenting at histological examination lesions of nonpurulent meningoencephalitis (NPME), whereas 5.6% (11/195) not presenting NPME (P > 0.05). No samples presented lymphosarcoma. The PCR products (437 bp) were sequenced and submitted to phylogenetic analysis by neighbor-joining and maximum composite likelihood methods, and genotypes 1, 5, and 6 were detected, corroborating other South American studies. The genotype 6 barely described in Brazil and Argentina was more frequently detected in this study. The identity matrices showed maximum similarity (100%) among some samples of this study and one from Argentina (FJ808582), recovered from GenBank. There was no association among the genotypes and NPME lesions. PMID:23710448

  6. Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations.

    PubMed

    Adams, Dean C; Collyer, Michael L

    2018-01-01

    Recent years have seen increased interest in phylogenetic comparative analyses of multivariate data sets, but to date the varied proposed approaches have not been extensively examined. Here we review the mathematical properties required of any multivariate method, and specifically evaluate existing multivariate phylogenetic comparative methods in this context. Phylogenetic comparative methods based on the full multivariate likelihood are robust to levels of covariation among trait dimensions and are insensitive to the orientation of the data set, but display increasing model misspecification as the number of trait dimensions increases. This is because the expected evolutionary covariance matrix (V) used in the likelihood calculations becomes more ill-conditioned as trait dimensionality increases, and as evolutionary models become more complex. Thus, these approaches are only appropriate for data sets with few traits and many species. Methods that summarize patterns across trait dimensions treated separately (e.g., SURFACE) incorrectly assume independence among trait dimensions, resulting in nearly a 100% model misspecification rate. Methods using pairwise composite likelihood are highly sensitive to levels of trait covariation, the orientation of the data set, and the number of trait dimensions. The consequences of these debilitating deficiencies are that a user can arrive at differing statistical conclusions, and therefore biological inferences, simply from a dataspace rotation, like principal component analysis. By contrast, algebraic generalizations of the standard phylogenetic comparative toolkit that use the trace of covariance matrices are insensitive to levels of trait covariation, the number of trait dimensions, and the orientation of the data set. Further, when appropriate permutation tests are used, these approaches display acceptable Type I error and statistical power. We conclude that methods summarizing information across trait dimensions, as well as pairwise composite likelihood methods should be avoided, whereas algebraic generalizations of the phylogenetic comparative toolkit provide a useful means of assessing macroevolutionary patterns in multivariate data. Finally, we discuss areas in which multivariate phylogenetic comparative methods are still in need of future development; namely highly multivariate Ornstein-Uhlenbeck models and approaches for multivariate evolutionary model comparisons. © The Author(s) 2017. Published by Oxford University Press on behalf of the Systematic Biology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. High-Dimensional Exploratory Item Factor Analysis by a Metropolis-Hastings Robbins-Monro Algorithm

    ERIC Educational Resources Information Center

    Cai, Li

    2010-01-01

    A Metropolis-Hastings Robbins-Monro (MH-RM) algorithm for high-dimensional maximum marginal likelihood exploratory item factor analysis is proposed. The sequence of estimates from the MH-RM algorithm converges with probability one to the maximum likelihood solution. Details on the computer implementation of this algorithm are provided. The…

  8. Assessment of phylogenetic sensitivity for reconstructing HIV-1 epidemiological relationships.

    PubMed

    Beloukas, Apostolos; Magiorkinis, Emmanouil; Magiorkinis, Gkikas; Zavitsanou, Asimina; Karamitros, Timokratis; Hatzakis, Angelos; Paraskevis, Dimitrios

    2012-06-01

    Phylogenetic analysis has been extensively used as a tool for the reconstruction of epidemiological relations for research or for forensic purposes. It was our objective to assess the sensitivity of different phylogenetic methods and various phylogenetic programs to reconstruct epidemiological links among HIV-1 infected patients that is the probability to reveal a true transmission relationship. Multiple datasets (90) were prepared consisting of HIV-1 sequences in protease (PR) and partial reverse transcriptase (RT) sampled from patients with documented epidemiological relationship (target population), and from unrelated individuals (control population) belonging to the same HIV-1 subtype as the target population. Each dataset varied regarding the number, the geographic origin and the transmission risk groups of the sequences among the control population. Phylogenetic trees were inferred by neighbor-joining (NJ), maximum likelihood heuristics (hML) and Bayesian methods. All clusters of sequences belonging to the target population were correctly reconstructed by NJ and Bayesian methods receiving high bootstrap and posterior probability (PP) support, respectively. On the other hand, TreePuzzle failed to reconstruct or provide significant support for several clusters; high puzzling step support was associated with the inclusion of control sequences from the same geographic area as the target population. In contrary, all clusters were correctly reconstructed by hML as implemented in PhyML 3.0 receiving high bootstrap support. We report that under the conditions of our study, hML using PhyML, NJ and Bayesian methods were the most sensitive for the reconstruction of epidemiological links mostly from sexually infected individuals. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Phylotranscriptomic analysis of the origin and early diversification of land plants

    PubMed Central

    Wickett, Norman J.; Mirarab, Siavash; Nguyen, Nam; Warnow, Tandy; Carpenter, Eric; Matasci, Naim; Ayyampalayam, Saravanaraj; Barker, Michael S.; Burleigh, J. Gordon; Gitzendanner, Matthew A.; Ruhfel, Brad R.; Wafula, Eric; Graham, Sean W.; Mathews, Sarah; Melkonian, Michael; Soltis, Douglas E.; Soltis, Pamela S.; Miles, Nicholas W.; Rothfels, Carl J.; Pokorny, Lisa; Shaw, A. Jonathan; DeGironimo, Lisa; Stevenson, Dennis W.; Surek, Barbara; Villarreal, Juan Carlos; Roure, Béatrice; Philippe, Hervé; dePamphilis, Claude W.; Chen, Tao; Deyholos, Michael K.; Baucom, Regina S.; Kutchan, Toni M.; Augustin, Megan M.; Wang, Jun; Zhang, Yong; Tian, Zhijian; Yan, Zhixiang; Wu, Xiaolei; Sun, Xiao; Wong, Gane Ka-Shu; Leebens-Mack, James

    2014-01-01

    Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated. PMID:25355905

  10. Recent Emergence and Spread of an Arctic-Related Phylogenetic Lineage of Rabies Virus in Nepal

    PubMed Central

    Pant, Ganesh R.; Lavenir, Rachel; Wong, Frank Y. K.; Certoma, Andrea; Larrous, Florence; Bhatta, Dwij R.; Bourhy, Hervé

    2013-01-01

    Rabies is a zoonotic disease that is endemic in many parts of the developing world, especially in Africa and Asia. However its epidemiology remains largely unappreciated in much of these regions, such as in Nepal, where limited information is available about the spatiotemporal dynamics of the main etiological agent, the rabies virus (RABV). In this study, we describe for the first time the phylogenetic diversity and evolution of RABV circulating in Nepal, as well as their geographical relationships within the broader region. A total of 24 new isolates obtained from Nepal and collected from 2003 to 2011 were full-length sequenced for both the nucleoprotein and the glycoprotein genes, and analysed using neighbour-joining and maximum-likelihood phylogenetic methods with representative viruses from all over the world, including new related RABV strains from neighbouring or more distant countries (Afghanistan, Greenland, Iran, Russia and USA). Despite Nepal's limited land surface and its particular geographical position within the Indian subcontinent, our study revealed the presence of a surprising wide genetic diversity of RABV, with the co-existence of three different phylogenetic groups: an Indian subcontinent clade and two different Arctic-like sub-clades within the Arctic-related clade. This observation suggests at least two independent episodes of rabies introduction from neighbouring countries. In addition, specific phylogenetic and temporal evolution analysis of viruses within the Arctic-related clade has identified a new recently emerged RABV lineage we named as the Arctic-like 3 (AL-3) sub-clade that is already widely spread in Nepal. PMID:24278494

  11. The complete chloroplast genome sequence of Euonymus japonicus (Celastraceae).

    PubMed

    Choi, Kyoung Su; Park, SeonJoo

    2016-09-01

    The complete chloroplast (cp) genome sequence of the Euonymus japonicus, the first sequenced of the genus Euonymus, was reported in this study. The total length was 157 637 bp, containing a pair of 26 678 bp inverted repeat region (IR), which were separated by small single copy (SSC) region and large single copy (LSC) region of 18 340 bp and 85 941 bp, respectively. This genome contains 107 unique genes, including 74 coding genes, four rRNA genes, and 29 tRNA genes. Seventeen genes contain intron of E. japonicus, of which three genes (clpP, ycf3, and rps12) include two introns. The maximum likelihood (ML) phylogenetic analysis revealed that E. japonicus was closely related to Manihot and Populus.

  12. Complete Genome Sequence and Comparative Genomics of a Streptococcus pyogenes emm3 Strain M3-b isolated from a Japanese Patient with Streptococcal Toxic Shock Syndrome.

    PubMed

    Ogura, Kohei; Watanabe, Shinya; Kirikae, Teruo; Miyoshi-Akiyama, Tohru

    2017-01-01

    Epidemiologic typing of Streptococcus pyogenes (GAS) is frequently based on the genotype of the emm gene, which encodes M/Emm protein. In this study, the complete genome sequence of GAS emm3 strain M3-b, isolated from a patient with streptococcal toxic shock syndrome (STSS), was determined. This strain exhibited 99% identity with other complete genome sequences of emm3 strains MGAS315, SSI-1, and STAB902. The complete genomes of five additional strains isolated from Japanese patients with and without STSS were also sequences. Maximum-likelihood phylogenetic analysis showed that strains M3-b, M3-e, and SSI-1, all which were isolated from STSS patients, were relatively close.

  13. Phylogeny of Morella rubra and Its Relatives (Myricaceae) and Genetic Resources of Chinese Bayberry Using RAD Sequencing

    PubMed Central

    Liu, Luxian; Jin, Xinjie; Chen, Nan; Li, Xian; Li, Pan; Fu, Chengxin

    2015-01-01

    Phylogenetic relationships among Chinese species of Morella (Myricaceae) are unresolved. Here, we use restriction site-associated DNA sequencing (RAD-seq) to identify candidate loci that will help in determining phylogenetic relationships among Morella rubra, M. adenophora, M. nana and M. esculenta. Three methods for inferring phylogeny, maximum parsimony (MP), maximum likelihood (ML) and Bayesian concordance, were applied to data sets including as many as 4253 RAD loci with 8360 parsimony informative variable sites. All three methods significantly favored the topology of (((M. rubra, M. adenophora), M. nana), M. esculenta). Two species from North America (M. cerifera and M. pensylvanica) were placed as sister to the four Chinese species. According to BEAST analysis, we deduced speciation of M. rubra to be at about the Miocene-Pliocene boundary (5.28 Ma). Intraspecific divergence in M. rubra occurred in the late Pliocene (3.39 Ma). From pooled data, we assembled 29378, 21902 and 23552 de novo contigs with an average length of 229, 234 and 234 bp for M. rubra, M. nana and M. esculenta respectively. The contigs were used to investigate functional classification of RAD tags in a BLASTX search. Additionally, we identified 3808 unlinked SNP sites across the four populations of M. rubra and discovered genes associated with fruit ripening and senescence, fruit quality and disease/defense metabolism based on KEGG database. PMID:26431030

  14. Phylodynamic Analysis Reveals CRF01_AE Dissemination between Japan and Neighboring Asian Countries and the Role of Intravenous Drug Use in Transmission

    PubMed Central

    Shiino, Teiichiro; Hattori, Junko; Yokomaku, Yoshiyuki; Iwatani, Yasumasa; Sugiura, Wataru

    2014-01-01

    Background One major circulating HIV-1 subtype in Southeast Asian countries is CRF01_AE, but little is known about its epidemiology in Japan. We conducted a molecular phylodynamic study of patients newly diagnosed with CRF01_AE from 2003 to 2010. Methods Plasma samples from patients registered in Japanese Drug Resistance HIV-1 Surveillance Network were analyzed for protease-reverse transcriptase sequences; all sequences undergo subtyping and phylogenetic analysis using distance-matrix-based, maximum likelihood and Bayesian coalescent Markov Chain Monte Carlo (MCMC) phylogenetic inferences. Transmission clusters were identified using interior branch test and depth-first searches for sub-tree partitions. Times of most recent common ancestor (tMRCAs) of significant clusters were estimated using Bayesian MCMC analysis. Results Among 3618 patient registered in our network, 243 were infected with CRF01_AE. The majority of individuals with CRF01_AE were Japanese, predominantly male, and reported heterosexual contact as their risk factor. We found 5 large clusters with ≥5 members and 25 small clusters consisting of pairs of individuals with highly related CRF01_AE strains. The earliest cluster showed a tMRCA of 1996, and consisted of individuals with their known risk as heterosexual contacts. The other four large clusters showed later tMRCAs between 2000 and 2002 with members including intravenous drug users (IVDU) and non-Japanese, but not men who have sex with men (MSM). In contrast, small clusters included a high frequency of individuals reporting MSM risk factors. Phylogenetic analysis also showed that some individuals infected with HIV strains spread in East and South-eastern Asian countries. Conclusions Introduction of CRF01_AE viruses into Japan is estimated to have occurred in the 1990s. CFR01_AE spread via heterosexual behavior, then among persons connected with non-Japanese, IVDU, and MSM. Phylogenetic analysis demonstrated that some viral variants are largely restricted to Japan, while others have a broad geographic distribution. PMID:25025900

  15. First complete female mitochondrial genome in four bivalve species genus Donax and their phylogenetic relationships within the Veneroida order

    PubMed Central

    Nantón, Ana; Ruiz-Ruano, Francisco J.; Camacho, Juan Pedro M.; Méndez, Josefina

    2017-01-01

    Background Four species of the genus Donax (D. semistriatus, D. trunculus, D. variegatus and D. vittatus) are common on Iberian Peninsula coasts. Nevertheless, despite their economic importance and overexploitation, scarce genetic resources are available. In this work, we newly determined the complete mitochondrial genomes of these four representatives of the family Donacidae, with the aim of contributing to unveil phylogenetic relationships within the Veneroida order, and of developing genetic markers being useful in wedge clam identification and authentication, and aquaculture stock management. Principal findings The complete female mitochondrial genomes of the four species vary in size from 17,044 to 17,365 bp, and encode 13 protein-coding genes (including the atp8 gene), 2 rRNAs and 22 tRNAs, all located on the same strand. A long non-coding region was identified in each of the four Donax species between cob and cox2 genes, presumably corresponding to the Control Region. The Bayesian and Maximum Likelihood phylogenetic analysis of the Veneroida order indicate that all four species of Donax form a single clade as a sister group of other bivalves within the Tellinoidea superfamily. However, although Tellinoidea is actually monophyletic, none of its families are monophyletic. Conclusions Sequencing of complete mitochondrial genomes provides highly valuable information to establish the phylogenetic relationships within the Veneroida order. Furthermore, we provide here significant genetic resources for further research and conservation of this commercially important fishing resource. PMID:28886105

  16. Plastome sequences and exploration of tree-space help to resolve the phylogeny of riceflowers (Thymelaeaceae: Pimelea).

    PubMed

    Foster, Charles S P; Henwood, Murray J; Ho, Simon Y W

    2018-05-25

    Data sets comprising small numbers of genetic markers are not always able to resolve phylogenetic relationships. This has frequently been the case in molecular systematic studies of plants, with many analyses being based on sequence data from only two or three chloroplast genes. An example of this comes from the riceflowers Pimelea Banks & Sol. ex Gaertn. (Thymelaeaceae), a large genus of flowering plants predominantly distributed in Australia. Despite the considerable morphological variation in the genus, low sequence divergence in chloroplast markers has led to the phylogeny of Pimelea remaining largely uncertain. In this study, we resolve the backbone of the phylogeny of Pimelea in comprehensive Bayesian and maximum-likelihood analyses of plastome sequences from 41 taxa. However, some relationships received only moderate to poor support, and the Pimelea clade contained extremely short internal branches. By using topology-clustering analyses, we demonstrate that conflicting phylogenetic signals can be found across the trees estimated from individual chloroplast protein-coding genes. A relaxed-clock dating analysis reveals that Pimelea arose in the mid-Miocene, with most divergences within the genus occurring during a subsequent rapid diversification. Our new phylogenetic estimate offers better resolution and is more strongly supported than previous estimates, providing a platform for future taxonomic revisions of both Pimelea and the broader subfamily. Our study has demonstrated the substantial improvements in phylogenetic resolution that can be achieved using plastome-scale data sets in plant molecular systematics. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Analysis of whole genome sequences of 16 strains of rubella virus from the United States, 1961-2009.

    PubMed

    Abernathy, Emily; Chen, Min-hsin; Bera, Jayati; Shrivastava, Susmita; Kirkness, Ewen; Zheng, Qi; Bellini, William; Icenogle, Joseph

    2013-01-25

    Rubella virus is the causative agent of rubella, a mild rash illness, and a potent teratogenic agent when contracted by a pregnant woman. Global rubella control programs target the reduction and elimination of congenital rubella syndrome. Phylogenetic analysis of partial sequences of rubella viruses has contributed to virus surveillance efforts and played an important role in demonstrating that indigenous rubella viruses have been eliminated in the United States. Sixteen wild-type rubella viruses were chosen for whole genome sequencing. All 16 viruses were collected in the United States from 1961 to 2009 and are from 8 of the 13 known rubella genotypes. Phylogenetic analysis of 30 whole genome sequences produced a maximum likelihood tree giving high bootstrap values for all genotypes except provisional genotype 1a. Comparison of the 16 new complete sequences and 14 previously sequenced wild-type viruses found regions with clusters of variable amino acids. The 5' 250 nucleotides of the genome are more conserved than any other part of the genome. Genotype specific deletions in the untranslated region between the non-structural and structural open reading frames were observed for genotypes 2B and genotype 1G. No evidence was seen for recombination events among the 30 viruses. The analysis presented here is consistent with previous reports on the genetic characterization of rubella virus genomes. Conserved and variable regions were identified and additional evidence for genotype specific nucleotide deletions in the intergenic region was found. Phylogenetic analysis confirmed genotype groupings originally based on structural protein coding region sequences, which provides support for the WHO nomenclature for genetic characterization of wild-type rubella viruses.

  18. A general methodology for maximum likelihood inference from band-recovery data

    USGS Publications Warehouse

    Conroy, M.J.; Williams, B.K.

    1984-01-01

    A numerical procedure is described for obtaining maximum likelihood estimates and associated maximum likelihood inference from band- recovery data. The method is used to illustrate previously developed one-age-class band-recovery models, and is extended to new models, including the analysis with a covariate for survival rates and variable-time-period recovery models. Extensions to R-age-class band- recovery, mark-recapture models, and twice-yearly marking are discussed. A FORTRAN program provides computations for these models.

  19. Phylogeny of the cycads based on multiple single-copy nuclear genes: congruence of concatenated parsimony, likelihood and species tree inference methods.

    PubMed

    Salas-Leiva, Dayana E; Meerow, Alan W; Calonje, Michael; Griffith, M Patrick; Francisco-Ortega, Javier; Nakamura, Kyoko; Stevenson, Dennis W; Lewis, Carl E; Namoff, Sandra

    2013-11-01

    Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree-species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera. DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree-species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted. Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (Macrozamia-Lepidozamia-Encephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia. A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae.

  20. Maximum likelihood decoding analysis of accumulate-repeat-accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, A.; Divsalar, D.; Yao, K.

    2004-01-01

    In this paper, the performance of the repeat-accumulate codes with (ML) decoding are analyzed and compared to random codes by very tight bounds. Some simple codes are shown that perform very close to Shannon limit with maximum likelihood decoding.

  1. Molecular and karyological data confirm that the enigmatic genus Platypholis from Bonin-Islands (SE Japan) is phylogenetically nested within Orobanche (Orobanchaceae).

    PubMed

    Li, Xi; Jang, Tae-Soo; Temsch, Eva M; Kato, Hidetoshi; Takayama, Koji; Schneeweiss, Gerald M

    2017-03-01

    Molecular phylogenetic studies have greatly improved our understanding of phylogenetic relationships of non-photosynthetic parasitic broomrapes (Orobanche and related genera, Orobanchaceae), but a few genera have remained unstudied. One of those is Platypholis, whose sole species, Platypholis boninsimae, is restricted to the Bonin-Islands (Ogasawara Islands) about 1000 km southeast of Japan. Based on overall morphological similarity, Platypholis has been merged with Orobanche, but this hypothesis has never been tested with molecular data. Employing maximum likelihood and Bayesian analyses on a family-wide data set (two plastid markers, matK and rps2, and three nuclear markers, ITS, phyA and phyB) as well as on an ITS data set focusing on Orobanche s. str., it is shown that P. boninsimae Maxim. is phylogenetically closely linked to or even nested within Orobanche s. str. This position is supported both by morphological evidence and by the newly obtained chromosome number of 2n = 38, which is characteristic for the genus Orobanche s. str.

  2. A Format for Phylogenetic Placements

    PubMed Central

    Matsen, Frederick A.; Hoffman, Noah G.; Gallagher, Aaron; Stamatakis, Alexandros

    2012-01-01

    We have developed a unified format for phylogenetic placements, that is, mappings of environmental sequence data (e.g., short reads) into a phylogenetic tree. We are motivated to do so by the growing number of tools for computing and post-processing phylogenetic placements, and the lack of an established standard for storing them. The format is lightweight, versatile, extensible, and is based on the JSON format, which can be parsed by most modern programming languages. Our format is already implemented in several tools for computing and post-processing parsimony- and likelihood-based phylogenetic placements and has worked well in practice. We believe that establishing a standard format for analyzing read placements at this early stage will lead to a more efficient development of powerful and portable post-analysis tools for the growing applications of phylogenetic placement. PMID:22383988

  3. A format for phylogenetic placements.

    PubMed

    Matsen, Frederick A; Hoffman, Noah G; Gallagher, Aaron; Stamatakis, Alexandros

    2012-01-01

    We have developed a unified format for phylogenetic placements, that is, mappings of environmental sequence data (e.g., short reads) into a phylogenetic tree. We are motivated to do so by the growing number of tools for computing and post-processing phylogenetic placements, and the lack of an established standard for storing them. The format is lightweight, versatile, extensible, and is based on the JSON format, which can be parsed by most modern programming languages. Our format is already implemented in several tools for computing and post-processing parsimony- and likelihood-based phylogenetic placements and has worked well in practice. We believe that establishing a standard format for analyzing read placements at this early stage will lead to a more efficient development of powerful and portable post-analysis tools for the growing applications of phylogenetic placement.

  4. Phylogenetic analysis of Saccharum s.l. (Poaceae; Andropogoneae), with emphasis on the circumscription of the South American species.

    PubMed

    Welker, Cassiano A D; Souza-Chies, Tatiana T; Longhi-Wagner, Hilda M; Peichoto, Myriam Carolina; McKain, Michael R; Kellogg, Elizabeth A

    2015-02-01

    Polyploidy and reticulate evolution are often a complication for discovering phylogenetic relationships between genera and species. Despite the huge economic importance of sugarcane (Saccharum officinarum-Poaceae, Andropogoneae), the limits of the genus Saccharum and its species are complex and largely unresolved, involving both polyploidy and reticulate evolution. This study aimed to assess the phylogenetic relationships of Saccharum s.l., including Erianthus and Tripidium, as well as investigate the taxonomic circumscription of the South American species of the genus. Molecular cloning and sequencing of five regions of four low-copy nuclear loci were performed, including Aberrant panicle organization1 (apo1), Dwarf8 (d8), two exons of Erect panicle2 (ep2-ex7 and ep2-ex8), and Retarded palea1 (rep1). Concatenated trees were reconstructed using Maximum Parsimony, Maximum Likelihood, and Bayesian Inference analyses. The allopolyploid origin of Saccharum was demonstrated using evidence from nuclear genes. The samples of Saccharum s.l. grouped in two distinct clades, with S. arundinaceum and S. ravennae (= Tripidium, or Erianthus sect. Ripidium) apart from all other species analyzed of the genus. Saccharum angustifolium, S. asperum, and S. villosum correspond to distinct clades (different species). The plants with intermediate morphology between S. angustifolium and S. villosum presented a pattern of paralogues consistent with a hybrid origin. Saccharum s.l. is polyphyletic and Tripidium should be recognized as a distinct genus. However, no strong evidence was found to support the segregation of Erianthus. The taxonomic circumscription of the South American species of the genus was resolved and the occurrence of natural hybrids was documented. Better understanding of the phylogenetic relationships of Saccharum and relatives may be useful for sugarcane breeders to identify potential taxa for interspecific and intergeneric crosses in the genetic improvement of sugarcane. © 2015 Botanical Society of America, Inc.

  5. Phylogeny, evolutionary trends and classification of the Spathelia–Ptaeroxylon clade: morphological and molecular insights

    PubMed Central

    Appelhans, M. S.; Smets, E.; Razafimandimbison, S. G.; Haevermans, T.; van Marle, E. J.; Couloux, A.; Rabarison, H.; Randrianarivelojosia, M.; Keßler, P. J. A.

    2011-01-01

    Background and Aims The Spathelia–Ptaeroxylon clade is a group of morphologically diverse plants that have been classified together as a result of molecular phylogenetic studies. The clade is currently included in Rutaceae and recognized at a subfamilial level (Spathelioideae) despite the fact that most of its genera have traditionally been associated with other families and that there are no obvious morphological synapomorphies for the clade. The aim of the present study is to construct phylogenetic trees for the Spathelia–Ptaeroxylon clade and to investigate anatomical characters in order to decide whether it should be kept in Rutaceae or recognized at the familial level. Anatomical characters were plotted on a cladogram to help explain character evolution within the group. Moreover, phylogenetic relationships and generic limits within the clade are also addressed. Methods A species-level phylogenetic analysis of the Spathelia–Ptaeroxylon clade based on five plastid DNA regions (rbcL, atpB, trnL–trnF, rps16 and psbA–trnH) was conducted using Bayesian, maximum parsimony and maximum likelihood methods. Leaf and seed anatomical characters of all genera were (re)investigated by light and scanning electron microscopy. Key Results With the exception of Spathelia, all genera of the Spathelila–Ptaeroxylon clade are monophyletic. The typical leaf and seed anatomical characters of Rutaceae were found. Further, the presence of oil cells in the leaves provides a possible synapomorphy for the clade. Conclusions The Spathelia–Ptaeroxylon clade is well placed in Rutaceae and it is reasonable to unite the genera into one subfamily (Spathelioideae). We propose a new tribal classification of Spathelioideae. A narrow circumscription of Spathelia is established to make the genus monophyletic, and Sohnreyia is resurrected to accommodate the South American species of Spathelia. The most recent common ancestor of Spathelioideae probably had leaves with secretory cavities and oil cells, haplostemonous flowers with appendaged staminal filaments, and a tracheidal tegmen. PMID:21610209

  6. Phylogeny, evolutionary trends and classification of the Spathelia-Ptaeroxylon clade: morphological and molecular insights.

    PubMed

    Appelhans, M S; Smets, E; Razafimandimbison, S G; Haevermans, T; van Marle, E J; Couloux, A; Rabarison, H; Randrianarivelojosia, M; Kessler, P J A

    2011-06-01

    The Spathelia-Ptaeroxylon clade is a group of morphologically diverse plants that have been classified together as a result of molecular phylogenetic studies. The clade is currently included in Rutaceae and recognized at a subfamilial level (Spathelioideae) despite the fact that most of its genera have traditionally been associated with other families and that there are no obvious morphological synapomorphies for the clade. The aim of the present study is to construct phylogenetic trees for the Spathelia-Ptaeroxylon clade and to investigate anatomical characters in order to decide whether it should be kept in Rutaceae or recognized at the familial level. Anatomical characters were plotted on a cladogram to help explain character evolution within the group. Moreover, phylogenetic relationships and generic limits within the clade are also addressed. A species-level phylogenetic analysis of the Spathelia-Ptaeroxylon clade based on five plastid DNA regions (rbcL, atpB, trnL-trnF, rps16 and psbA-trnH) was conducted using Bayesian, maximum parsimony and maximum likelihood methods. Leaf and seed anatomical characters of all genera were (re)investigated by light and scanning electron microscopy. With the exception of Spathelia, all genera of the Spathelila-Ptaeroxylon clade are monophyletic. The typical leaf and seed anatomical characters of Rutaceae were found. Further, the presence of oil cells in the leaves provides a possible synapomorphy for the clade. The Spathelia-Ptaeroxylon clade is well placed in Rutaceae and it is reasonable to unite the genera into one subfamily (Spathelioideae). We propose a new tribal classification of Spathelioideae. A narrow circumscription of Spathelia is established to make the genus monophyletic, and Sohnreyia is resurrected to accommodate the South American species of Spathelia. The most recent common ancestor of Spathelioideae probably had leaves with secretory cavities and oil cells, haplostemonous flowers with appendaged staminal filaments, and a tracheidal tegmen.

  7. The Complete Mitochondrial Genome of Coptotermes ‘suzhouensis’ (syn. Coptotermes formosanus) (Isoptera: Rhinotermitidae) and Molecular Phylogeny Analysis

    PubMed Central

    Li, Juan; Zhu, Jin-long; Lou, Shi-di; Wang, Ping; Zhang, You-sen; Wang, Lin; Yin, Ruo-chun; Zhang, Ping-ping

    2018-01-01

    Abstract Coptotermes suzhouensis (Isoptera: Rhinotermitidae) is a significant subterranean termite pest of wooden structures and is widely distributed in southeastern China. The complete mitochondrial DNA sequence of C. suzhouensis was analyzed in this study. The mitogenome was a circular molecule of 15,764 bp in length, which contained 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes, and an A+T-rich region with a gene arrangement typical of Isoptera mitogenomes. All PCGs were initiated by ATN codons and terminated by complete termination codons (TAA), except COX2, ND5, and Cytb, which ended with an incomplete termination codon T. All tRNAs displayed a typical clover-leaf structure, except for tRNASer(AGN), which did not contain the stem-loop structure in the DHU arm. The A+T content (69.23%) of the A+T-rich region (949 bp) was higher than that of the entire mitogenome (65.60%), and two different sets of repeat units (A+B) were distributed in this region. Comparison of complete mitogenome sequences with those of Coptotermes formosanus indicated that the two taxa have very high genetic similarity. Forty-one representative termite species were used to construct phylogenetic trees by maximum likelihood, maximum parsimony, and Bayesian inference methods. The phylogenetic analyses also strongly supported (BPP, MLBP, and MPBP = 100%) that all C. suzhouensis and C. formosanus samples gathered into one clade with genetic distances between 0.000 and 0.002. This study provides molecular evidence for a more robust phylogenetic position of C. suzhouensis and inferrs that C. suzhouensis was the synonymy of C. formosanus. PMID:29718488

  8. Phylogeography of the Macaronesian Lettuce Species Lactuca watsoniana and L. palmensis (Asteraceae).

    PubMed

    Dias, Elisabete F; Kilian, Norbert; Silva, Luís; Schaefer, Hanno; Carine, Mark; Rudall, Paula J; Santos-Guerra, Arnoldo; Moura, Mónica

    2018-02-24

    The phylogenetic relationships and phylogeography of two relatively rare Macaronesian Lactuca species, Lactuca watsoniana (Azores) and L. palmensis (Canary Islands), were, until this date, unclear. Karyological information of the Azorean species was also unknown. For this study, a chromosome count was performed and L. watsoniana showed 2n = 34. A phylogenetic approach was used to clarify the relationships of the Azorean endemic L. watsoniana and the La Palma endemic L. palmensis within the subtribe Lactucinae. Maximum parsimony, Maximum likelihood and Bayesian analysis of a combined molecular dataset (ITS and four chloroplast DNA regions) and molecular clock analyses were performed with the Macaronesian Lactuca species, as well as a TCS haplotype network. The analyses revealed that L. watsoniana and L. palmensis belong to different subclades of the Lactuca clade. Lactuca watsoniana showed a strongly supported phylogenetic relationship with North American species, while L. palmensis was closely related to L. tenerrima and L. inermis, from Europe and Africa. Lactuca watsoniana showed four single-island haplotypes. A divergence time estimation of the Macaronesian lineages was used to examine island colonization pathways. Results obtained with BEAST suggest a divergence of L. palmensis and L. watsoniana clades c. 11 million years ago, L. watsoniana diverged from its North American sister species c. 3.8 million years ago and L. palmensis diverged from its sister L. tenerrima, c. 1.3 million years ago, probably originating from an African ancestral lineage which colonized the Canary Islands. Divergence analyses with *BEAST indicate a more recent divergence of the L. watsoniana crown, c. 0.9 million years ago. In the Azores colonization, in a stepping stone, east-to-west dispersal pattern, associated with geological events might explain the current distribution range of L. watsoniana.

  9. The Construct Validity of Higher Order Structure-of-Intellect Abilities in a Battery of Tests Emphasizing the Product of Transformations: A Confirmatory Maximum Likelihood Factor Analysis.

    ERIC Educational Resources Information Center

    Khattab, Ali-Maher; And Others

    1982-01-01

    A causal modeling system, using confirmatory maximum likelihood factor analysis with the LISREL IV computer program, evaluated the construct validity underlying the higher order factor structure of a given correlation matrix of 46 structure-of-intellect tests emphasizing the product of transformations. (Author/PN)

  10. PoMo: An Allele Frequency-Based Approach for Species Tree Estimation

    PubMed Central

    De Maio, Nicola; Schrempf, Dominik; Kosiol, Carolin

    2015-01-01

    Incomplete lineage sorting can cause incongruencies of the overall species-level phylogenetic tree with the phylogenetic trees for individual genes or genomic segments. If these incongruencies are not accounted for, it is possible to incur several biases in species tree estimation. Here, we present a simple maximum likelihood approach that accounts for ancestral variation and incomplete lineage sorting. We use a POlymorphisms-aware phylogenetic MOdel (PoMo) that we have recently shown to efficiently estimate mutation rates and fixation biases from within and between-species variation data. We extend this model to perform efficient estimation of species trees. We test the performance of PoMo in several different scenarios of incomplete lineage sorting using simulations and compare it with existing methods both in accuracy and computational speed. In contrast to other approaches, our model does not use coalescent theory but is allele frequency based. We show that PoMo is well suited for genome-wide species tree estimation and that on such data it is more accurate than previous approaches. PMID:26209413

  11. Phylogenetic and microscopic studies in the genus Lactifluus (Basidiomycota, Russulales) in West Africa, including the description of four new species.

    PubMed

    Maba, Dao Lamèga; Guelly, Atsu K; Yorou, Nourou S; Verbeken, Annemieke; Agerer, Reinhard

    2015-06-01

    Despite the crucial ecological role of lactarioid taxa (Lactifluus, Lactarius) as common ectomycorrhiza formers in tropical African seasonal forests, their current diversity is not yet adequately assessed. During the last few years, numerous lactarioid specimens have been sampled in various ecosystems from Togo (West Africa). We generated 48 ITS sequences and aligned them against lactarioid taxa from other tropical African ecozones (Guineo-Congolean evergreen forests, Zambezian miombo). A Maximum Likelihood phylogenetic tree was inferred from a dataset of 109 sequences. The phylogenetic placement of the specimens, combined with morpho-anatomical data, supported the description of four new species from Togo within the monophyletic genus Lactifluus: within subgen. Lactifluus (L. flavellus), subgen. Russulopsis (L. longibasidius and L. pectinatus), and subgen. Edules (L. melleus). This demonstrates that the current species richness of the genus is considerably higher than hitherto estimated for African species and, in addition, a need to redefine the subgenera and sections within it.

  12. The complete mitochondrial genome of Papilio glaucus and its phylogenetic implications.

    PubMed

    Shen, Jinhui; Cong, Qian; Grishin, Nick V

    2015-09-01

    Due to the intriguing morphology, lifecycle, and diversity of butterflies and moths, Lepidoptera are emerging as model organisms for the study of genetics, evolution and speciation. The progress of these studies relies on decoding Lepidoptera genomes, both nuclear and mitochondrial. Here we describe a protocol to obtain mitogenomes from Next Generation Sequencing reads performed for whole-genome sequencing and report the complete mitogenome of Papilio (Pterourus) glaucus. The circular mitogenome is 15,306 bp in length and rich in A and T. It contains 13 protein-coding genes (PCGs), 22 transfer-RNA-coding genes (tRNA), and 2 ribosomal-RNA-coding genes (rRNA), with a gene order typical for mitogenomes of Lepidoptera. We performed phylogenetic analyses based on PCG and RNA-coding genes or protein sequences using Bayesian Inference and Maximum Likelihood methods. The phylogenetic trees consistently show that among species with available mitogenomes Papilio glaucus is the closest to Papilio (Agehana) maraho from Asia.

  13. Influence function for robust phylogenetic reconstructions.

    PubMed

    Bar-Hen, Avner; Mariadassou, Mahendra; Poursat, Marie-Anne; Vandenkoornhuyse, Philippe

    2008-05-01

    Based on the computation of the influence function, a tool to measure the impact of each piece of sampled data on the statistical inference of a parameter, we propose to analyze the support of the maximum-likelihood (ML) tree for each site. We provide a new tool for filtering data sets (nucleotides, amino acids, and others) in the context of ML phylogenetic reconstructions. Because different sites support different phylogenic topologies in different ways, outlier sites, that is, sites with a very negative influence value, are important: they can drastically change the topology resulting from the statistical inference. Therefore, these outlier sites must be clearly identified and their effects accounted for before drawing biological conclusions from the inferred tree. A matrix containing 158 fungal terminals all belonging to Chytridiomycota, Zygomycota, and Glomeromycota is analyzed. We show that removing the strongest outlier from the analysis strikingly modifies the ML topology, with a loss of as many as 20% of the internal nodes. As a result, estimating the topology on the filtered data set results in a topology with enhanced bootstrap support. From this analysis, the polyphyletic status of the fungal phyla Chytridiomycota and Zygomycota is reinforced, suggesting the necessity of revisiting the systematics of these fungal groups. We show the ability of influence function to produce new evolution hypotheses.

  14. Extending the BEAGLE library to a multi-FPGA platform

    PubMed Central

    2013-01-01

    Background Maximum Likelihood (ML)-based phylogenetic inference using Felsenstein’s pruning algorithm is a standard method for estimating the evolutionary relationships amongst a set of species based on DNA sequence data, and is used in popular applications such as RAxML, PHYLIP, GARLI, BEAST, and MrBayes. The Phylogenetic Likelihood Function (PLF) and its associated scaling and normalization steps comprise the computational kernel for these tools. These computations are data intensive but contain fine grain parallelism that can be exploited by coprocessor architectures such as FPGAs and GPUs. A general purpose API called BEAGLE has recently been developed that includes optimized implementations of Felsenstein’s pruning algorithm for various data parallel architectures. In this paper, we extend the BEAGLE API to a multiple Field Programmable Gate Array (FPGA)-based platform called the Convey HC-1. Results The core calculation of our implementation, which includes both the phylogenetic likelihood function (PLF) and the tree likelihood calculation, has an arithmetic intensity of 130 floating-point operations per 64 bytes of I/O, or 2.03 ops/byte. Its performance can thus be calculated as a function of the host platform’s peak memory bandwidth and the implementation’s memory efficiency, as 2.03 × peak bandwidth × memory efficiency. Our FPGA-based platform has a peak bandwidth of 76.8 GB/s and our implementation achieves a memory efficiency of approximately 50%, which gives an average throughput of 78 Gflops. This represents a ~40X speedup when compared with BEAGLE’s CPU implementation on a dual Xeon 5520 and 3X speedup versus BEAGLE’s GPU implementation on a Tesla T10 GPU for very large data sizes. The power consumption is 92 W, yielding a power efficiency of 1.7 Gflops per Watt. Conclusions The use of data parallel architectures to achieve high performance for likelihood-based phylogenetic inference requires high memory bandwidth and a design methodology that emphasizes high memory efficiency. To achieve this objective, we integrated 32 pipelined processing elements (PEs) across four FPGAs. For the design of each PE, we developed a specialized synthesis tool to generate a floating-point pipeline with resource and throughput constraints to match the target platform. We have found that using low-latency floating-point operators can significantly reduce FPGA area and still meet timing requirement on the target platform. We found that this design methodology can achieve performance that exceeds that of a GPU-based coprocessor. PMID:23331707

  15. Molecular phylogenetics of Floridosentis ward, 1953 (Acanthocephala: Neoechinorhynchidae) parasites of mullets (Osteichthyes) from Mexico, using 28S rDNA sequences.

    PubMed

    Rosas-Valdez, Rogelio; Morrone, Juan J; García-Varela, Martín

    2012-08-01

    Species of Floridosentis (Acanthocephala) are common parasites of mullets (Mugil spp., Mugilidae) found in tropical marine and brackish water in the Americas. Floridosentis includes 2 species distributed in Mexico, i.e., Floridosentis pacifica, restricted to the Pacific Ocean near Salina Cruz, Oaxaca, and Floridosentis mugilis, distributed along the coast of the Pacific Ocean and the Gulf of Mexico. We sampled 18 populations of F. mugilis and F. pacifica (12 from the Pacific and 6 from the Gulf of Mexico) and sequenced a fragment of the rDNA large subunit to evaluate phylogenetic relationships of populations of Floridosentis spp. from Mexico. Species identification of museum specimens of F. mugilis from the Pacific Ocean was confirmed by examination of morphology traits. Phylogenetic trees inferred with maximum parsimony, maximum likelihood, and Bayesian inference indicate that Floridosentis is monophyletic comprising of 2 major well-supported clades, the first clade corresponding to F. mugilis from the Gulf of Mexico, and the second to F. pacifica from the Pacific Ocean. Genetic divergence between species ranged from 7.68 to 8.60%. Intraspecific divergence ranged from 0.14 to 0.86% for F. mugilis and from 1.72 to 4.49% for F. pacifica. Data obtained from diagnostic characters indicate that specimens from the Pacific Ocean in Mexico have differences in some traits among locations. These results are consistent with the phylogenetic hypothesis, indicating that F. pacifica is distributed in the Pacific Ocean in Mexico with 3 major lineages.

  16. Population analysis of clinical and environmental Vibrio parahaemolyticus isolated from eastern provinces in China by removing the recombinant SNPs in the MLST loci.

    PubMed

    Lu, Xin; Zhou, Haijian; Du, Xiaoli; Liu, Sha; Xu, Jialiang; Cui, Zhigang; Pang, Bo; Kan, Biao

    2016-11-01

    Vibrio parahaemolyticus is a common seafood-borne pathogenic bacterium which causes gastroenteritis in humans. Continuous surveillance on the molecular characters of the clinical and environmental V. parahaemolyticus strains needs to be conducted for the epidemiological and genetic purposes. To generate a picture of the population distribution of V. parahaemolyticus in eastern China isolated from clinical cases of gastroenteritis and environmental samples, we investigated the genetic and evolutionary relationships of the strains using the commonly used multi-locus sequence typing (MLST, in which seven house-keeping genes are used in the protocol). A highly genetic diversity within the V. parahaemolyticus population was observed but ST3 was still dominant in the clinical strains, and 103 new sequence types (ST) were found in the clinical strains by searching in the global V. parahaemolyticus MLST database. With these genetically diverse strains, we estimated the recombination rates of the loci in MLST analysis. The locus recA was found to be subject to exceptionally high rate of recombination, and the recombinant single nucleotide polymorphisms (SNPs) were also identified within the seven loci. The phylogenetic tree of the strains was re-constructed using the maximum likelihood method by removing the recombination SNPs of the seven loci, and the minimum spanning tree was re-constructed with the six loci without recA. Some changes were observed in comparison with the previously used methods, suggesting that the homologous recombination has roles in shaping the clonal structure of V. parahaemolyticus. We propose the recombination-free SNPs strategy in the clonality analysis of V. parahaemolyticus, especially when using the maximum likelihood method. Copyright © 2016. Published by Elsevier B.V.

  17. HIV infection and hepatitis C virus genotype 1a are associated with phylogenetic clustering among people with recently acquired hepatitis C virus infection.

    PubMed

    Bartlett, Sofia R; Jacka, Brendan; Bull, Rowena A; Luciani, Fabio; Matthews, Gail V; Lamoury, Francois M J; Hellard, Margaret E; Hajarizadeh, Behzad; Teutsch, Suzy; White, Bethany; Maher, Lisa; Dore, Gregory J; Lloyd, Andrew R; Grebely, Jason; Applegate, Tanya L

    2016-01-01

    The aim of this study was to identify factors associated with phylogenetic clustering among people with recently acquired hepatitis C virus (HCV) infection. Participants with available sample at time of HCV detection were selected from three studies; the Australian Trial in Acute Hepatitis C, the Hepatitis C Incidence and Transmission Study - Prison and Community. HCV RNA was extracted and Core to E2 region of HCV sequenced. Clusters were identified from maximum likelihood trees with 1000 bootstrap replicates using 90% bootstrap and 5% genetic distance threshold. Among 225 participants with available Core-E2 sequence (ATAHC, n=113; HITS-p, n=90; and HITS-c, n=22), HCV genotype prevalence was: G1a: 38% (n=86), G1b: 5% (n=12), G2a: 1% (n=2), G2b: 5% (n=11), G3a: 48% (n=109), G6a: 1% (n=2) and G6l 1% (n=3). Of participants included in phylogenetic trees, 22% of participants were in a pair/cluster (G1a-35%, 30/85, mean maximum genetic distance=0.031; G3a-11%, 12/106, mean maximum genetic distance=0.021; other genotypes-21%, 6/28, mean maximum genetic distance=0.023). Among HCV/HIV co-infected participants, 50% (18/36) were in a pair/cluster, compared to 16% (30/183) with HCV mono-infection (P=<0.001). Factors independently associated with phylogenetic clustering were HIV co-infection [vs. HCV mono-infection; adjusted odds ratio (AOR) 4.24; 95%CI 1.91, 9.39], and HCV G1a infection (vs. other HCV genotypes; AOR 3.33, 95%CI 0.14, 0.61).HCV treatment and prevention strategies, including enhanced antiviral therapy, should be optimised. The impact of targeting of HCV treatment as prevention to populations with higher phylogenetic clustering, such as those with HIV co-infection, could be explored through mathematical modelling. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Maximum likelihood solution for inclination-only data in paleomagnetism

    NASA Astrophysics Data System (ADS)

    Arason, P.; Levi, S.

    2010-08-01

    We have developed a new robust maximum likelihood method for estimating the unbiased mean inclination from inclination-only data. In paleomagnetic analysis, the arithmetic mean of inclination-only data is known to introduce a shallowing bias. Several methods have been introduced to estimate the unbiased mean inclination of inclination-only data together with measures of the dispersion. Some inclination-only methods were designed to maximize the likelihood function of the marginal Fisher distribution. However, the exact analytical form of the maximum likelihood function is fairly complicated, and all the methods require various assumptions and approximations that are often inappropriate. For some steep and dispersed data sets, these methods provide estimates that are significantly displaced from the peak of the likelihood function to systematically shallower inclination. The problem locating the maximum of the likelihood function is partly due to difficulties in accurately evaluating the function for all values of interest, because some elements of the likelihood function increase exponentially as precision parameters increase, leading to numerical instabilities. In this study, we succeeded in analytically cancelling exponential elements from the log-likelihood function, and we are now able to calculate its value anywhere in the parameter space and for any inclination-only data set. Furthermore, we can now calculate the partial derivatives of the log-likelihood function with desired accuracy, and locate the maximum likelihood without the assumptions required by previous methods. To assess the reliability and accuracy of our method, we generated large numbers of random Fisher-distributed data sets, for which we calculated mean inclinations and precision parameters. The comparisons show that our new robust Arason-Levi maximum likelihood method is the most reliable, and the mean inclination estimates are the least biased towards shallow values.

  19. Phylogeny of a genomically diverse group of elymus (poaceae) allopolyploids reveals multiple levels of reticulation.

    PubMed

    Mason-Gamer, Roberta J

    2013-01-01

    The grass tribe Triticeae (=Hordeeae) comprises only about 300 species, but it is well known for the economically important crop plants wheat, barley, and rye. The group is also recognized as a fascinating example of evolutionary complexity, with a history shaped by numerous events of auto- and allopolyploidy and apparent introgression involving diploids and polyploids. The genus Elymus comprises a heterogeneous collection of allopolyploid genome combinations, all of which include at least one set of homoeologs, designated St, derived from Pseudoroegneria. The current analysis includes a geographically and genomically diverse collection of 21 tetraploid Elymus species, and a single hexaploid species. Diploid and polyploid relationships were estimated using four molecular data sets, including one that combines two regions of the chloroplast genome, and three from unlinked nuclear genes: phosphoenolpyruvate carboxylase, β-amylase, and granule-bound starch synthase I. Four gene trees were generated using maximum likelihood, and the phylogenetic placement of the polyploid sequences reveals extensive reticulation beyond allopolyploidy alone. The trees were interpreted with reference to numerous phenomena known to complicate allopolyploid phylogenies, and introgression was identified as a major factor in their history. The work illustrates the interpretation of complicated phylogenetic results through the sequential consideration of numerous possible explanations, and the results highlight the value of careful inspection of multiple independent molecular phylogenetic estimates, with particular focus on the differences among them.

  20. Exhaustive sample set among Viverridae reveals the sister-group of felids: the linsangs as a case of extreme morphological convergence within Feliformia.

    PubMed Central

    Gaubert, Philippe; Veron, Géraldine

    2003-01-01

    Although molecular studies have helped to clarify the phylogeny of the problematic family Viverridae, a recent phylogenetic investigation based on cytochrome b (cyt b) has excluded the Asiatic linsangs (genus Prionodon) from the family. To assess the phylogenetic position of the Asiatic linsangs within the Feliformia, we analysed an exhaustive taxonomic sample set with cyt b and newly produced transthyretin intron I sequences (TR-I-I). TR-I-I alone and cyt b +TR-I-I combined (maximum-likelihood analysis) highly support the position of Asiatic linsangs as sister-group of the Felidae. The estimation of minimum divergence dates from molecular data suggests a splitting event ca. 33.3 million years (Myr) ago, which lends support to historical assertions that the Asiatic linsangs are "living fossils" that share a plesiomorphic morphotype with the Oligocene feliform Paleoprionodon. The African linsang is estimated to appear more than 20 Myr later and represents the sister-group of the genus Genetta. Our phylogenetic results illustrate numerous morphological convergences of "diagnostic" characters among Feliformia that might be problematic for the identification of fossil taxa. The morphotype reappearance from the Asiatic to the African linsangs suggests that the genome of the Feliformia conserved its potential ability of expression for a peculiar adaptive phenotype throughout evolution, in this case arboreality and hypercarnivory in tropical forest. PMID:14667345

  1. Short Communication Phylogenetic Characterization of HIV Type 1 CRF01_AE V3 Envelope Sequences in Pregnant Women in Northern Vietnam

    PubMed Central

    Caridha, Rozina; Ha, Tran Thi Thanh; Gaseitsiwe, Simani; Hung, Pham Viet; Anh, Nguyen Mai; Bao, Nguyen Huy; Khang, Dinh Duy; Hien, Nguyen Tran; Cam, Phung Dac; Chiodi, Francesca

    2012-01-01

    Abstract Characterization of HIV-1 strains is important for surveillance of the HIV-1 epidemic. In Vietnam HIV-1-infected pregnant women often fail to receive the care they are entitled to. Here, we analyzed phylogenetically HIV-1 env sequences from 37 HIV-1-infected pregnant women from Ha Noi (n=22) and Hai Phong (n=15), where they delivered in 2005–2007. All carried CRF01_AE in the gp120 V3 region. In 21 women CRF01_AE was also found in the reverse transcriptase gene. We compared their env gp120 V3 sequences phylogenetically in a maximum likelihood tree to those of 198 other CRF01_AE sequences in Vietnam and 229 from neighboring countries, predominantly Thailand, from the HIV-1 database. Altogether 464 sequences were analyzed. All but one of the maternal sequences colocalized with sequences from northern Vietnam. The maternal sequences had evolved the least when compared to sequences collected in Ha Noi in 2002, as shown by analysis of synonymous and nonsynonymous changes, than to other Vietnamese sequences collected earlier and/or elsewhere. Since the HIV-1 epidemic in women in Vietnam may still be underestimated, characterization of HIV-1 in pregnant women is important to observe how HIV-1 has evolved and follow its molecular epidemiology. PMID:21936713

  2. Taxonomic review of Argentine mackerel Scomber japonicus (Houttuyn, 1782) by phylogenetic analysis

    PubMed Central

    Trucco, María Inés; Buratti, Claudio César

    2017-01-01

    Taxonomically, Argentine mackerels were first considered as Scomber japonicus marplatensis and later as Scomber japonicus Houttuyn 1782, although, in the last years, different studies have suggested that South Atlantic mackerel species belongs to Scomber colias Gmelin 1789. These latter results, incorporated in the main fish databases (FishBase and Catalog of Fishes), promoted a phylogenetic study using cytochrome c oxidase I (COI) gene sequences taken from the Barcode of Life (FISH-BOL) database. Thus, 76 sequences of S. japonicus, S. colias, S. australasicus and S. scombrus from different regions were used; including 3 from Sarda sarda as outgroup. Among S. japonicus selected sequences are those corresponding to the Argentine mackerels collected in 2007. Phylogenetic trees were obtained by neighbor joining and maximum likelihood methods and a network of haplotypes was reconstructed to analyze the relationship between species. The results showed the clear differentiation of S. australasicus, S. scombrus and S. japonicus from the Pacific while S. japonicus from Argentina was included in the S. colias group, with genetic differences corresponding to conspecific populations (0.1%). Four of the five Argentine specimens shared the same haplotype with S. colias, and none were shared with S. japonicus from the Pacific. These results suggest that the current specific name of Argentine mackerel S. japonicus should be changed to S. colias, in agreement with several genetic studies carried out with species of the genus Scomber. PMID:29071283

  3. Negative correlation between rates of molecular evolution and flowering cycles in temperate woody bamboos revealed by plastid phylogenomics.

    PubMed

    Ma, Peng-Fei; Vorontsova, Maria S; Nanjarisoa, Olinirina Prisca; Razanatsoa, Jacqueline; Guo, Zhen-Hua; Haevermans, Thomas; Li, De-Zhu

    2017-12-21

    Heterogeneous rates of molecular evolution are universal across the tree of life, posing challenges for phylogenetic inference. The temperate woody bamboos (tribe Arundinarieae, Poaceae) are noted for their extremely slow molecular evolutionary rates, supposedly caused by their mysterious monocarpic reproduction. However, the correlation between substitution rates and flowering cycles has not been formally tested. Here we present 15 newly sequenced plastid genomes of temperate woody bamboos, including the first genomes ever sequenced from Madagascar representatives. A data matrix of 46 plastid genomes representing all 12 lineages of Arundinarieae was assembled for phylogenetic and molecular evolutionary analyses. We conducted phylogenetic analyses using different sequences (e.g., coding and noncoding) combined with different data partitioning schemes, revealing conflicting relationships involving internodes among several lineages. A great difference in branch lengths were observed among the major lineages, and topological inconsistency could be attributed to long-branch attraction (LBA). Using clock model-fitting by maximum likelihood and Bayesian approaches, we furthermore demonstrated extensive rate variation among these major lineages. Rate accelerations mainly occurred for the isolated lineages with limited species diversification, totaling 11 rate shifts during the tribe's evolution. Using linear regression analysis, we found a negative correlation between rates of molecular evolution and flowering cycles for Arundinarieae, notwithstanding that the correlation maybe insignificant when taking the phylogenetic structure into account. Using the temperate woody bamboos as an example, we found further evidence that rate heterogeneity is universal in plants, suggesting that this will pose a challenge for phylogenetic reconstruction of bamboos. The bamboos with longer flowering cycles tend to evolve more slowly than those with shorter flowering cycles, in accordance with a putative generation time effect.

  4. EvoDB: a database of evolutionary rate profiles, associated protein domains and phylogenetic trees for PFAM-A

    PubMed Central

    Ndhlovu, Andrew; Durand, Pierre M.; Hazelhurst, Scott

    2015-01-01

    The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. Database URL: http://www.bioinf.wits.ac.za/software/fire/evodb PMID:26140928

  5. EvoDB: a database of evolutionary rate profiles, associated protein domains and phylogenetic trees for PFAM-A.

    PubMed

    Ndhlovu, Andrew; Durand, Pierre M; Hazelhurst, Scott

    2015-01-01

    The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. © The Author(s) 2015. Published by Oxford University Press.

  6. High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series Study site by phylogenetic placement of pyrosequences

    PubMed Central

    Vergin, Kevin L; Beszteri, Bánk; Monier, Adam; Cameron Thrash, J; Temperton, Ben; Treusch, Alexander H; Kilpert, Fabian; Worden, Alexandra Z; Giovannoni, Stephen J

    2013-01-01

    Advances in next-generation sequencing technologies are providing longer nucleotide sequence reads that contain more information about phylogenetic relationships. We sought to use this information to understand the evolution and ecology of bacterioplankton at our long-term study site in the Western Sargasso Sea. A bioinformatics pipeline called PhyloAssigner was developed to align pyrosequencing reads to a reference multiple sequence alignment of 16S ribosomal RNA (rRNA) genes and assign them phylogenetic positions in a reference tree using a maximum likelihood algorithm. Here, we used this pipeline to investigate the ecologically important SAR11 clade of Alphaproteobacteria. A combined set of 2.7 million pyrosequencing reads from the 16S rRNA V1–V2 regions, representing 9 years at the Bermuda Atlantic Time-series Study (BATS) site, was quality checked and parsed into a comprehensive bacterial tree, yielding 929 036 Alphaproteobacteria reads. Phylogenetic structure within the SAR11 clade was linked to seasonally recurring spatiotemporal patterns. This analysis resolved four new SAR11 ecotypes in addition to five others that had been described previously at BATS. The data support a conclusion reached previously that the SAR11 clade diversified by subdivision of niche space in the ocean water column, but the new data reveal a more complex pattern in which deep branches of the clade diversified repeatedly across depth strata and seasonal regimes. The new data also revealed the presence of an unrecognized clade of Alphaproteobacteria, here named SMA-1 (Sargasso Mesopelagic Alphaproteobacteria, group 1), in the upper mesopelagic zone. The high-resolution phylogenetic analyses performed herein highlight significant, previously unknown, patterns of evolutionary diversification, within perhaps the most widely distributed heterotrophic marine bacterial clade, and strongly links to ecosystem regimes. PMID:23466704

  7. High-resolution SAR11 ecotype dynamics at the Bermuda Atlantic Time-series Study site by phylogenetic placement of pyrosequences.

    PubMed

    Vergin, Kevin L; Beszteri, Bánk; Monier, Adam; Thrash, J Cameron; Temperton, Ben; Treusch, Alexander H; Kilpert, Fabian; Worden, Alexandra Z; Giovannoni, Stephen J

    2013-07-01

    Advances in next-generation sequencing technologies are providing longer nucleotide sequence reads that contain more information about phylogenetic relationships. We sought to use this information to understand the evolution and ecology of bacterioplankton at our long-term study site in the Western Sargasso Sea. A bioinformatics pipeline called PhyloAssigner was developed to align pyrosequencing reads to a reference multiple sequence alignment of 16S ribosomal RNA (rRNA) genes and assign them phylogenetic positions in a reference tree using a maximum likelihood algorithm. Here, we used this pipeline to investigate the ecologically important SAR11 clade of Alphaproteobacteria. A combined set of 2.7 million pyrosequencing reads from the 16S rRNA V1-V2 regions, representing 9 years at the Bermuda Atlantic Time-series Study (BATS) site, was quality checked and parsed into a comprehensive bacterial tree, yielding 929 036 Alphaproteobacteria reads. Phylogenetic structure within the SAR11 clade was linked to seasonally recurring spatiotemporal patterns. This analysis resolved four new SAR11 ecotypes in addition to five others that had been described previously at BATS. The data support a conclusion reached previously that the SAR11 clade diversified by subdivision of niche space in the ocean water column, but the new data reveal a more complex pattern in which deep branches of the clade diversified repeatedly across depth strata and seasonal regimes. The new data also revealed the presence of an unrecognized clade of Alphaproteobacteria, here named SMA-1 (Sargasso Mesopelagic Alphaproteobacteria, group 1), in the upper mesopelagic zone. The high-resolution phylogenetic analyses performed herein highlight significant, previously unknown, patterns of evolutionary diversification, within perhaps the most widely distributed heterotrophic marine bacterial clade, and strongly links to ecosystem regimes.

  8. Description and phylogenetic relationships of a new genus and two new species of lizards from Brazilian Amazonia, with nomenclatural comments on the taxonomy of Gymnophthalmidae (Reptilia: Squamata).

    PubMed

    Colli, Guarino R; Hoogmoed, Marinus S; Cannatella, David C; Cassimiro, José; Gomes, Jerriane Oliveira; Ghellere, José Mário; Gomes, Jerriane Oliveira; Ghellere, José Mário; Nunes, Pedro M Sales; Pellegrino, Kátia C M; Salerno, Patricia; Souza, Sergio Marques De; Rodrigues, Miguel Trefaut

    2015-08-18

    We describe a new genus and two new species of gymnophthalmid lizards based on specimens collected from Brazilian Amazonia, mostly in the "arc of deforestation". The new genus is easily distinguished from other Gymnophthalmidae by having very wide, smooth, and imbricate nuchals, arranged in two longitudinal and 6-10 transverse rows from nape to brachium level, followed by much narrower, strongly keeled, lanceolate, and mucronate scales. It also differs from all other Gymnophthalmidae, except Iphisa, by the presence of two longitudinal rows of ventrals. The new genus differs from Iphisa by having two pairs of enlarged chinshields (one in Iphisa); posterior dorsal scales lanceolate, strongly keeled and not arranged in longitudinal rows (dorsals broad, smooth and forming two longitudinal rows), and lateral scales keeled (smooth). Maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses based on morphological and molecular data indicate the new species form a clade that is most closely related to Iphisa. We also address several nomenclatural issues and present a revised classification of Gymnophthalmidae.

  9. On Muthen's Maximum Likelihood for Two-Level Covariance Structure Models

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Hayashi, Kentaro

    2005-01-01

    Data in social and behavioral sciences are often hierarchically organized. Special statistical procedures that take into account the dependence of such observations have been developed. Among procedures for 2-level covariance structure analysis, Muthen's maximum likelihood (MUML) has the advantage of easier computation and faster convergence. When…

  10. Mixture Rasch Models with Joint Maximum Likelihood Estimation

    ERIC Educational Resources Information Center

    Willse, John T.

    2011-01-01

    This research provides a demonstration of the utility of mixture Rasch models. Specifically, a model capable of estimating a mixture partial credit model using joint maximum likelihood is presented. Like the partial credit model, the mixture partial credit model has the beneficial feature of being appropriate for analysis of assessment data…

  11. An EM Algorithm for Maximum Likelihood Estimation of Process Factor Analysis Models

    ERIC Educational Resources Information Center

    Lee, Taehun

    2010-01-01

    In this dissertation, an Expectation-Maximization (EM) algorithm is developed and implemented to obtain maximum likelihood estimates of the parameters and the associated standard error estimates characterizing temporal flows for the latent variable time series following stationary vector ARMA processes, as well as the parameters defining the…

  12. High-Throughput Sequencing of Six Bamboo Chloroplast Genomes: Phylogenetic Implications for Temperate Woody Bamboos (Poaceae: Bambusoideae)

    PubMed Central

    Li, De-Zhu

    2011-01-01

    Background Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. Methodology/Principal Findings Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae. Conclusions/Significance The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of temperate woody bamboos, even with complete cp genome sequences, suggests that these lineages may have diverged very rapidly. PMID:21655229

  13. THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures

    PubMed Central

    Theobald, Douglas L.; Wuttke, Deborah S.

    2008-01-01

    Summary THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. PMID:16777907

  14. Morphological and genetic analyses of the first record of longrakered trevally, Ulua mentalis (Perciformes: Carangidae) and of the pinjalo snapper, Pinjalo pinjalo (Perciformes: Lutjanidae) in the Odisha coast, Bay of Bengal.

    PubMed

    Barik, Tapan K; Swain, Surya N; Sahu, Bijayalaxmi; Tripathy, Bibarani; Acharya, Usha R

    2018-05-01

    Identification of fish species have so far been carried out mostly by classical morpho-taxonomy. In the present study, however, an attempt has been taken to identify two species of fishes Ulua mentalis and Pinjalo pinjalo of order Perciformes which happens to be the first record in Odisha coast Bay of Bengal, India during the year 2015, using DNA barcoding technique for reconfirmation over conventional morpho-taxonomy. During recent past, study of molecular-taxonomical profile of mitochondrial DNA in general and Cytochrome Oxidase subunit I (COI) gene in particular has gained enormous importance for accurate identification of species. In the present study, the partial COI sequence of Ulua mentalis and Pinjalo pinjalo were generated. Analysis using the COI gene produced phylogenetic trees in concurrence with other multi gene studies and we came across the identical phylogenetic relationship considering Neighbor-Joining and Maximum Likelihood tree. Moreover, these molecular data set further testified in Bayesian framework to reevaluate the exact taxonomic groupings within the family. Surprisingly, Ulua mentalis and Pinjalo pinjalo seems to be closely related to their sister taxa.

  15. Mitochondrial genomes of two Australian fishflies with an evolutionary timescale of Chauliodinae.

    PubMed

    Yang, Fan; Jiang, Yunlan; Yang, Ding; Liu, Xingyue

    2017-06-30

    Fishflies (Corydalidae: Chauliodinae) with a total of ca. 130 extant species are one of the major groups of the holometabolous insect order Megaloptera. As a group which originated during the Mesozoic, the phylogeny and historical biogeography of fishflies are of high interest. The previous hypothesis on the evolutionary history of fishflies was based primarily on morphological data. To further test the existing phylogenetic relationships and to understand the divergence pattern of fishflies, we conducted a molecule-based study. We determined the complete mitochondrial (mt) genomes of two Australian fishfly species, Archichauliodes deceptor Kimmins, 1954 and Protochauliodes biconicus Kimmins, 1954, both members of a major subgroup of Chauliodinae with high phylogenetic significance. A phylogenomic analysis was carried out based on 13 mt protein coding genes (PCGs) and two rRNAs genes from the megalopteran species with determined mt genomes. Both maximum likelihood and Bayesian inference analyses recovered the Dysmicohermes clade as the sister group of the Archichauliodes clade + the Protochauliodes clade, which is consistent with the previous morphology-based hypothesis. The divergence time estimation suggested that the divergence among the three major subgroups of fishflies occurred during the Late Jurassic and Early Cretaceous when the supercontinent Pangaea was undergoing sequential breakup.

  16. MrBayes tgMC3++: A High Performance and Resource-Efficient GPU-Oriented Phylogenetic Analysis Method.

    PubMed

    Ling, Cheng; Hamada, Tsuyoshi; Gao, Jingyang; Zhao, Guoguang; Sun, Donghong; Shi, Weifeng

    2016-01-01

    MrBayes is a widespread phylogenetic inference tool harnessing empirical evolutionary models and Bayesian statistics. However, the computational cost on the likelihood estimation is very expensive, resulting in undesirably long execution time. Although a number of multi-threaded optimizations have been proposed to speed up MrBayes, there are bottlenecks that severely limit the GPU thread-level parallelism of likelihood estimations. This study proposes a high performance and resource-efficient method for GPU-oriented parallelization of likelihood estimations. Instead of having to rely on empirical programming, the proposed novel decomposition storage model implements high performance data transfers implicitly. In terms of performance improvement, a speedup factor of up to 178 can be achieved on the analysis of simulated datasets by four Tesla K40 cards. In comparison to the other publicly available GPU-oriented MrBayes, the tgMC 3 ++ method (proposed herein) outperforms the tgMC 3 (v1.0), nMC 3 (v2.1.1) and oMC 3 (v1.00) methods by speedup factors of up to 1.6, 1.9 and 2.9, respectively. Moreover, tgMC 3 ++ supports more evolutionary models and gamma categories, which previous GPU-oriented methods fail to take into analysis.

  17. Neorickettsia risticii, Rickettsia sp. and Bartonella sp. in Tadarida brasiliensis bats from Buenos Aires, Argentina.

    PubMed

    Cicuttin, Gabriel L; De Salvo, María N; La Rosa, Isabel; Dohmen, Federico E Gury

    2017-06-01

    Bats are potential reservoirs of many vector-borne bacterial pathogens. The aim of the present study was to detect species of Anaplasma, Ehrlichia, Neorickettsia, Rickettsia, Borrelia and Bartonella in Brazilian free-tailed bats (Tadarida brasiliensis, Molossidae) from Buenos Aires city, Argentina. Between 2012 and 2013, 61 T. brasiliensis from urban areas of Buenos Aires city were studied. The samples were molecularly screened by PCR and sequencing. Five bats (8.2%) were positive to Neorickettsia risticii, one (1.6%) was positive to Rickettsia sp. and three bats (4.9%) to Bartonella sp. For molecular characterization, the positive samples were subjected to amplification and sequencing of a fragment of p51 gene for N. risticii, a fragment of citrate synthase gene (gltA) for Rickettsia genus and a fragment of gltA for Bartonella genus. Phylogenetic tree was constructed using the maximum-likelihood method. Phylogenetic analysis of N. risticii detect in our study revealed that it relates to findings in the USA West Coast; Rickettsia sp. detected is phylogenetically within R. bellii group, which also includes many other Rickettsia endosymbionts of insects; and Bartonella sp. found is related to various Bartonella spp. described in Vespertilionidae bats, which are phylogenetically related to Molossidae. Our results are in accordance to previous findings, which demonstrate that insectivorous bats could be infected with vector-borne bacteria representing a potential risk to public health. Future research is necessary to clarify the circulation of these pathogens in bats from Buenos Aires. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Morphological and molecular differentiation of Parastrigea (Trematoda: Strigeidae) from Mexico, with the description of a new species.

    PubMed

    Hernández-Mena, David Iván; García-Prieto, Luís; García-Varela, Martín

    2014-04-01

    Parastrigea plataleae n. sp. (Digenea: Strigeidae) is described from the intestine of the roseate spoonbill Platalea ajaja (Threskiornithidae) from four localities on the Pacific coast of Mexico. The new species is mainly distinguished from the other 18 described species of Parastrigea based on the ratio of its hindbody length to forebody length. A principal component analysis (PCA) of 16 morphometric traits for 15 specimens of P. plataleae n. sp., five of Parastrigea cincta and 11 of Parastrigea diovadena previously recorded in Mexico, clearly shows three clusters, which correspond to the three species. DNA sequences of the internal transcribed spacers (ITSs) of ribosomal DNA and the mitochondrial gene cytochrome c oxidase subunit I (cox 1) were used to corroborate this morphological distinction. The genetic divergence estimated among P. plataleae n. sp., P. cincta and P. diovadena ranged from 0.5 to 1.48% for ITSs and from 9.31 to 11.47% for cox 1. Maximum parsimony (MP) and maximum likelihood (ML) analyses were performed on the combined datasets (ITSs+cox 1) and on each dataset alone. All of the phylogenetic analyses indicated that the specimens from the roseate spoonbill represent a clade with strong bootstrap support. The morphological evidence and the genetic divergence in combination with the reciprocal monophyly in all of the phylogenetic trees support the hypothesis that the digeneans found in the intestines of roseate spoonbills represent a new species. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. The complete chloroplast genome of Gentiana straminea (Gentianaceae), an endemic species to the Sino-Himalayan subregion.

    PubMed

    Ni, Lianghong; Zhao, Zhili; Xu, Hongxi; Chen, Shilin; Dorje, Gaawe

    2016-02-15

    Endemic to the Sino-Himalayan subregion, the medicinal alpine plant Gentiana straminea is a threatened species. The genetic and molecular data about it is deficient. Here we report the complete chloroplast (cp) genome sequence of G. straminea, as the first sequenced member of the family Gentianaceae. The cp genome is 148,991bp in length, including a large single copy (LSC) region of 81,240bp, a small single copy (SSC) region of 17,085bp and a pair of inverted repeats (IRs) of 25,333bp. It contains 112 unique genes, including 78 protein-coding genes, 30 tRNAs and 4 rRNAs. The rps16 gene lacks exon2 between trnK-UUU and trnQ-UUG, which is the first rps16 pseudogene found in the nonparasitic plants of Asterids clade. Sequence analysis revealed the presence of 13 forward repeats, 13 palindrome repeats and 39 simple sequence repeats (SSRs). An entire cp genome comparison study of G. straminea and four other species in Gentianales was carried out. Phylogenetic analyses using maximum likelihood (ML) and maximum parsimony (MP) were performed based on 69 protein-coding genes from 36 species of Asterids. The results strongly supported the position of Gentianaceae as one member of the order Gentianales. The complete chloroplast genome sequence will provide intragenic information for its conservation and contribute to research on the genetic and phylogenetic analyses of Gentianales and Asterids. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Estimating the variance for heterogeneity in arm-based network meta-analysis.

    PubMed

    Piepho, Hans-Peter; Madden, Laurence V; Roger, James; Payne, Roger; Williams, Emlyn R

    2018-04-19

    Network meta-analysis can be implemented by using arm-based or contrast-based models. Here we focus on arm-based models and fit them using generalized linear mixed model procedures. Full maximum likelihood (ML) estimation leads to biased trial-by-treatment interaction variance estimates for heterogeneity. Thus, our objective is to investigate alternative approaches to variance estimation that reduce bias compared with full ML. Specifically, we use penalized quasi-likelihood/pseudo-likelihood and hierarchical (h) likelihood approaches. In addition, we consider a novel model modification that yields estimators akin to the residual maximum likelihood estimator for linear mixed models. The proposed methods are compared by simulation, and 2 real datasets are used for illustration. Simulations show that penalized quasi-likelihood/pseudo-likelihood and h-likelihood reduce bias and yield satisfactory coverage rates. Sum-to-zero restriction and baseline contrasts for random trial-by-treatment interaction effects, as well as a residual ML-like adjustment, also reduce bias compared with an unconstrained model when ML is used, but coverage rates are not quite as good. Penalized quasi-likelihood/pseudo-likelihood and h-likelihood are therefore recommended. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Revisiting the phylogeny of Bombacoideae (Malvaceae): Novel relationships, morphologically cohesive clades, and a new tribal classification based on multilocus phylogenetic analyses.

    PubMed

    Carvalho-Sobrinho, Jefferson G; Alverson, William S; Alcantara, Suzana; Queiroz, Luciano P; Mota, Aline C; Baum, David A

    2016-08-01

    Bombacoideae (Malvaceae) is a clade of deciduous trees with a marked dominance in many forests, especially in the Neotropics. The historical lack of a well-resolved phylogenetic framework for Bombacoideae hinders studies in this ecologically important group. We reexamined phylogenetic relationships in this clade based on a matrix of 6465 nuclear (ETS, ITS) and plastid (matK, trnL-trnF, trnS-trnG) DNA characters. We used maximum parsimony, maximum likelihood, and Bayesian inference to infer relationships among 108 species (∼70% of the total number of known species). We analyzed the evolution of selected morphological traits: trunk or branch prickles, calyx shape, endocarp type, seed shape, and seed number per fruit, using ML reconstructions of their ancestral states to identify possible synapomorphies for major clades. Novel phylogenetic relationships emerged from our analyses, including three major lineages marked by fruit or seed traits: the winged-seed clade (Bernoullia, Gyranthera, and Huberodendron), the spongy endocarp clade (Adansonia, Aguiaria, Catostemma, Cavanillesia, and Scleronema), and the Kapok clade (Bombax, Ceiba, Eriotheca, Neobuchia, Pachira, Pseudobombax, Rhodognaphalon, and Spirotheca). The Kapok clade, the most diverse lineage of the subfamily, includes sister relationships (i) between Pseudobombax and "Pochota fendleri" a historically incertae sedis taxon, and (ii) between the Paleotropical genera Bombax and Rhodognaphalon, implying just two bombacoid dispersals to the Old World, the other one involving Adansonia. This new phylogenetic framework offers new insights and a promising avenue for further evolutionary studies. In view of this information, we present a new tribal classification of the subfamily, accompanied by an identification key. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Design of simplified maximum-likelihood receivers for multiuser CPM systems.

    PubMed

    Bing, Li; Bai, Baoming

    2014-01-01

    A class of simplified maximum-likelihood receivers designed for continuous phase modulation based multiuser systems is proposed. The presented receiver is built upon a front end employing mismatched filters and a maximum-likelihood detector defined in a low-dimensional signal space. The performance of the proposed receivers is analyzed and compared to some existing receivers. Some schemes are designed to implement the proposed receivers and to reveal the roles of different system parameters. Analysis and numerical results show that the proposed receivers can approach the optimum multiuser receivers with significantly (even exponentially in some cases) reduced complexity and marginal performance degradation.

  3. Phylodynamic analysis and molecular diversity of the avian infectious bronchitis virus of chickens in Brazil.

    PubMed

    Fraga, Aline Padilha de; Gräf, Tiago; Pereira, Cleiton Schneider; Ikuta, Nilo; Fonseca, André Salvador Kazantzi; Lunge, Vagner Ricardo

    2018-07-01

    Avian infectious bronchitis virus (IBV) is the etiological agent of a highly contagious disease, which results in severe economic losses to the poultry industry. The spike protein (S1 subunit) is responsible for the molecular diversity of the virus and many sero/genotypes are described around the world. Recently a new standardized classification of the IBV molecular diversity was conducted, based on phylogenetic analysis of the S1 gene sequences sampled worldwide. Brazil is one of the biggest poultry producers in the world and the present study aimed to review the molecular diversity and reconstruct the evolutionary history of IBV in the country. All IBV S1 gene sequences, with local and year of collection information available on GenBank, were retrieved. Phylogenetic analyses were carried out based on a maximum likelihood method for the classification of genotypes occurring in Brazil, according to the new classification. Bayesian phylogenetic analyses were performed with the Brazilian clade and related international sequences to determine the evolutionary history of IBV in Brazil. A total of 143 Brazilian sequences were classified as GI-11 and 46 as GI-1 (Mass). Within the GI-11 clade, we have identified a potential recombinant strain circulating in Brazil. Phylodynamic analysis demonstrated that IBV GI-11 lineage was introduced in Brazil in the 1950s (1951, 1917-1975 95% HPD) and population dynamics was mostly constant throughout the time. Despite the national vaccination protocols, our results show the widespread dissemination and maintenance of the IBV GI-11 lineage in Brazil and highlight the importance of continuous surveillance to evaluate the impact of currently used vaccine strains on the observed viral diversity of the country. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Evolution at the tips: Asclepias phylogenomics and new perspectives on leaf surfaces.

    PubMed

    Fishbein, Mark; Straub, Shannon C K; Boutte, Julien; Hansen, Kimberly; Cronn, Richard C; Liston, Aaron

    2018-03-01

    Leaf surface traits, such as trichome density and wax production, mediate important ecological processes such as anti-herbivory defense and water-use efficiency. We present a phylogenetic analysis of Asclepias plastomes as a framework for analyzing the evolution of trichome density and presence of epicuticular waxes. We produced a maximum-likelihood phylogeny using plastomes of 103 species of Asclepias. We reconstructed ancestral states and used model comparisons in a likelihood framework to analyze character evolution across Asclepias. We resolved the backbone of Asclepias, placing the Sonoran Desert clade and Incarnatae clade as successive sisters to the remaining species. We present novel findings about leaf surface evolution of Asclepias-the ancestor is reconstructed as waxless and sparsely hairy, a macroevolutionary optimal trichome density is supported, and the rate of evolution of trichome density has accelerated. Increased sampling and selection of best-fitting models of evolution provide more resolved and robust estimates of phylogeny and character evolution than obtained in previous studies. Evolutionary inferences are more sensitive to character coding than model selection. © 2018 The Authors. American Journal of Botany is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America.

  5. The complete mitochondrial genome of dhole Cuon alpinus: phylogenetic analysis and dating evolutionary divergence within Canidae.

    PubMed

    Zhang, Honghai; Chen, Lei

    2011-03-01

    The dhole (Cuon alpinus) is the only existent species in the genus Cuon (Carnivora: Canidae). In the present study, the complete mitochondrial genome of the dhole was sequenced. The total length is 16672 base pairs which is the shortest in Canidae. Sequence analysis revealed that most mitochondrial genomic functional regions were highly consistent among canid animals except the CSB domain of the control region. The difference in length among the Canidae mitochondrial genome sequences is mainly due to the number of short segments of tandem repeated in the CSB domain. Phylogenetic analysis was progressed based on the concatenated data set of 14 mitochondrial genes of 8 canid animals by using maximum parsimony (MP), maximum likelihood (ML) and Bayesian (BI) inference methods. The genera Vulpes and Nyctereutes formed a sister group and split first within Canidae, followed by that in the Cuon. The divergence in the genus Canis was the latest. The divarication of domestic dogs after that of the Canis lupus laniger is completely supported by all the three topologies. Pairwise sequence divergence data of different mitochondrial genes among canid animals were also determined. Except for the synonymous substitutions in protein-coding genes, the control region exhibits the highest sequence divergences. The synonymous rates are approximately two to six times higher than those of the non-synonymous sites except for a slightly higher rate in the non-synonymous substitution between Cuon alpinus and Vulpes vulpes. 16S rRNA genes have a slightly faster sequence divergence than 12S rRNA and tRNA genes. Based on nucleotide substitutions of tRNA genes and rRNA genes, the times since divergence between dhole and other canid animals, and between domestic dogs and three subspecies of wolves were evaluated. The result indicates that Vulpes and Nyctereutes have a close phylogenetic relationship and the divergence of Nyctereutes is a little earlier. The Tibetan wolf may be an archaic pedigree within wolf subspecies. The genetic distance between wolves and domestic dogs is less than that among different subspecies of wolves. The domestication of dogs was about 1.56-1.92 million years ago or even earlier.

  6. Molecular phylogeny of the Ellobiidae (Gastropoda: Panpulmonata) supports independent terrestrial invasions.

    PubMed

    Romero, Pedro E; Pfenninger, Markus; Kano, Yasunori; Klussmann-Kolb, Annette

    2016-04-01

    Gastropods of the family Ellobiidae are an interesting group in which to study transitions from intertidal to terrestrial realms. However, the phylogenetic relationships within this family still lack resolution. We present a phylogenetic hypothesis of the Ellobiidae based on Bayesian and maximum likelihood phylograms. We used nuclear (18S, 28S, H3) and mitochondrial (16S, 12S, COI) data, increasing the numbers of markers and data, and making this the most comprehensive phylogenetic study of the family to date. Our results support phylogenetic hypotheses derived from morphological data, and provide a supported framework to evaluate the internal relationships within Ellobiidae. The resulting phylogenetic trees support the previous hypothesis that the Ellobiidae are monophyletic only if the Trimusculinae (Otina, Smeagol and Trimusculus) are considered part of this family. In addition, we found that the Carychiinae, Ellobiinae and Pythiinae are reciprocally monophyletic and closely related, with the Carychiinae as sister group to Ellobiinae. Relationships within Melampodinae and Pedipedinae and their phylogenetic positions remain unresolved. Land invasion by the Ellobiidae occurred independently in Carychiinae and Pythia during different geological times (Mesozoic and Cenozoic, respectively). Diversification in the family does not appear to be related to past climate and biotic changes, neither the Cretaceous-Paleogene boundary nor the lowering of the sea level in the Oligocene. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2005-01-01

    In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…

  8. Comparison of standard maximum likelihood classification and polytomous logistic regression used in remote sensing

    Treesearch

    John Hogland; Nedret Billor; Nathaniel Anderson

    2013-01-01

    Discriminant analysis, referred to as maximum likelihood classification within popular remote sensing software packages, is a common supervised technique used by analysts. Polytomous logistic regression (PLR), also referred to as multinomial logistic regression, is an alternative classification approach that is less restrictive, more flexible, and easy to interpret. To...

  9. Collinear Latent Variables in Multilevel Confirmatory Factor Analysis: A Comparison of Maximum Likelihood and Bayesian Estimations.

    PubMed

    Can, Seda; van de Schoot, Rens; Hox, Joop

    2015-06-01

    Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation coefficient (ICC) and estimation method; maximum likelihood estimation with robust chi-squares and standard errors and Bayesian estimation, on the convergence rate are investigated. The other variables of interest were rate of inadmissible solutions and the relative parameter and standard error bias on the between level. The results showed that inadmissible solutions were obtained when there was between level collinearity and the estimation method was maximum likelihood. In the within level multicollinearity condition, all of the solutions were admissible but the bias values were higher compared with the between level collinearity condition. Bayesian estimation appeared to be robust in obtaining admissible parameters but the relative bias was higher than for maximum likelihood estimation. Finally, as expected, high ICC produced less biased results compared to medium ICC conditions.

  10. Progress, pitfalls and parallel universes: a history of insect phylogenetics

    PubMed Central

    Simon, Chris; Yavorskaya, Margarita; Beutel, Rolf G.

    2016-01-01

    The phylogeny of insects has been both extensively studied and vigorously debated for over a century. A relatively accurate deep phylogeny had been produced by 1904. It was not substantially improved in topology until recently when phylogenomics settled many long-standing controversies. Intervening advances came instead through methodological improvement. Early molecular phylogenetic studies (1985–2005), dominated by a few genes, provided datasets that were too small to resolve controversial phylogenetic problems. Adding to the lack of consensus, this period was characterized by a polarization of philosophies, with individuals belonging to either parsimony or maximum-likelihood camps; each largely ignoring the insights of the other. The result was an unfortunate detour in which the few perceived phylogenetic revolutions published by both sides of the philosophical divide were probably erroneous. The size of datasets has been growing exponentially since the mid-1980s accompanied by a wave of confidence that all relationships will soon be known. However, large datasets create new challenges, and a large number of genes does not guarantee reliable results. If history is a guide, then the quality of conclusions will be determined by an improved understanding of both molecular and morphological evolution, and not simply the number of genes analysed. PMID:27558853

  11. Zika and Chikungunya virus detection in naturally infected Aedes aegypti in Ecuador.

    PubMed

    Cevallos, Varsovia; Ponce, Patricio; Waggoner, Jesse J; Pinsky, Benjamin A; Coloma, Josefina; Quiroga, Cristina; Morales, Diego; Cárdenas, Maria José

    2018-01-01

    The wide and rapid spread of Chikungunya (CHIKV) and Zika (ZIKV) viruses represent a global public health problem, especially for tropical and subtropical environments. The early detection of CHIKV and ZIKV in mosquitoes may help to understand the dynamics of the diseases in high-risk areas, and to design data based epidemiological surveillance to activate the preparedness and response of the public health system and vector control programs. This study was done to detect ZIKV and CHIKV viruses in naturally infected fed female Aedes aegypti (L.) mosquitoes from active epidemic urban areas in Ecuador. Pools (n=193; 22 pools) and individuals (n=22) of field collected Ae. aegypti mosquitoes from high-risk arboviruses infection sites in Ecuador were analyzed for the presence of CHIKV and ZIKV using RT-PCR. Phylogenetic analysis demonstrated that both ZIKV and CHIKV viruses circulating in Ecuador correspond to the Asian lineages. Minimum infection rate (MIR) of CHIKV for Esmeraldas city was 2.3% and the maximum likelihood estimation (MLE) was 3.3%. The minimum infection rate (MIR) of ZIKV for Portoviejo city was 5.3% and for Manta city was 2.1%. Maximum likelihood estimation (MLE) for Portoviejo city was 6.9% and 2.6% for Manta city. Detection of arboviruses and infection rates in the arthropod vectors may help to predict an outbreak and serve as a warning tool in surveillance programs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. TOWARD A MOLECULAR PHYLOGENY FOR PEROMYSCUS: EVIDENCE FROM MITOCHONDRIAL CYTOCHROME-b SEQUENCES

    PubMed Central

    Bradley, Robert D.; Durish, Nevin D.; Rogers, Duke S.; Miller, Jacqueline R.; Engstrom, Mark D.; Kilpatrick, C. William

    2009-01-01

    One hundred DNA sequences from the mitochondrial cytochrome-b gene of 44 species of deer mice (Peromyscus (sensu stricto), 1 of Habromys, 1 of Isthmomys, 2 of Megadontomys, and the monotypic genera Neotomodon, Osgoodomys, and Podomys were used to develop a molecular phylogeny for Peromyscus. Phylogenetic analyses (maximum parsimony, maximum likelihood, and Bayesian inference) were conducted to evaluate alternative hypotheses concerning taxonomic arrangements (sensu stricto versus sensu lato) of the genus. In all analyses, monophyletic clades were obtained that corresponded to species groups proposed by previous authors; however, relationships among species groups generally were poorly resolved. The concept of the genus Peromyscus based on molecular data differed significantly from the most current taxonomic arrangement. Maximum-likelihood and Bayesian trees depicted strong support for a clade placing Habromys, Megadontomys, Neotomodon, Osgoodomys, and Podomys within Peromyscus. If Habromys, Megadontomys, Neotomodon, Osgoodomys, and Podomys are regarded as genera, then several species groups within Peromyscus (sensu stricto) should be elevated to generic rank. Isthmomys was associated with the genus Reithrodontomys; in turn this clade was sister to Baiomys, indicating a distant relationship of Isthmomys to Peromyscus. A formal taxonomic revision awaits synthesis of additional sequence data from nuclear markers together with inclusion of available allozymic and karyotypic data. PMID:19924266

  13. Comparison of plastid 16S rRNA (rrn16) genes from Helicosporidium spp.: evidence supporting the reclassification of Helicosporidia as green algae (Chlorophyta).

    PubMed

    Tartar, Aurélien; Boucias, Drion G; Becnel, James J; Adams, Byron J

    2003-11-01

    The Helicosporidia are invertebrate pathogens that have recently been identified as non-photosynthetic green algae (Chlorophyta). In order to confirm the algal nature of the genus Helicosporidium, the presence of a retained chloroplast genome in Helicosporidia cells was investigated. Fragments homologous to plastid 16S rRNA (rrn16) genes were amplified successfully from cellular DNA extracted from two different Helicosporidium isolates. The fragment sequences are 1269 and 1266 bp long, are very AT-rich (60.7 %) and are similar to homologous genes sequenced from non-photosynthetic green algae. Maximum-parsimony, maximum-likelihood and neighbour-joining methods were used to infer phylogenetic trees from an rrn16 sequence alignment. All trees depicted the Helicosporidia as sister taxa to the non-photosynthetic, pathogenic alga Prototheca zopfii. Moreover, the trees identified Helicosporidium spp. as members of a clade that included the heterotrophic species Prototheca spp. and the mesotrophic species Chlorella protothecoides. The clade is always strongly supported by bootstrap values, suggesting that all these organisms share a most recent common ancestor. Phylogenetic analyses inferred from plastid 16S rRNA genes confirmed that the Helicosporidia are non-photosynthetic green algae, close relatives of the genus Prototheca (Chlorophyta, Trebouxiophyceae). Such phylogenetic affinities suggest that Helicosporidium spp. are likely to possess Prototheca-like organelles and organelle genomes.

  14. Microevolutionary analyses of Pythium insidiosum isolates of Brazil and Thailand based on exo-1,3-β-glucanase gene.

    PubMed

    Ribeiro, Tatiana Corrêa; Weiblen, Carla; de Azevedo, Maria Isabel; de Avila Botton, Sônia; Robe, Lizandra Jaqueline; Pereira, Daniela Isabel Brayer; Monteiro, Danieli Urach; Lorensetti, Douglas Miotto; Santurio, Janio Morais

    2017-03-01

    Pythium insidiosum is an important oomycete due to its ability to infect humans and animals. It causes pythiosis, a disease of difficult treatment that occurs more frequently in humans in Thailand and in horses in Brazil. Since cell-wall components are frequently related to host shifts, we decided here to use sequences from the exo-1,3-β-glucanase gene (exo1), which encodes an immunodominant protein putatively involved in cell wall remodeling, to investigate the microevolutionary relationships of Brazilian and Thai isolates of P. insidiosum. After neutrality ratification, the phylogenetic analyses performed through Maximum parsimony (MP), Neighbor-joining (NJ), Maximum likelihood (ML), and Bayesian analysis (BA) strongly supported Thai isolates being paraphyletic in relation to those from Brazil. The structure recovered by these analyses, as well as by Spatial Analysis of Molecular Variance (SAMOVA), suggests the subdivision of P. insidiosum into three clades or population groups, which are able to explain almost 81% of the variation encountered for exo1. Moreover, the two identified Thai clades were almost as strongly differentiated between each other, as they were from the Brazilian clade, suggesting an ancient Asian subdivision. The derived positioning in the phylogenetic tree, linked to the lower diversity values and the recent expansion signs detected for the Brazilian clade, further support this clade as derived in relation to the Asian populations. Thus, although some patterns presented here are compatible with those recovered with different molecular markers, exo1 was revealed to be a good marker for studying evolution in Pythium, providing robust and strongly supported results with regard to the patterns of origin and diversification of P. insidiosum. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Emergence of Cryptosporidium hominis Monkey Genotype II and Novel Subtype Family Ik in the Squirrel Monkey (Saimiri sciureus) in China.

    PubMed

    Liu, Xuehan; Xie, Na; Li, Wei; Zhou, Ziyao; Zhong, Zhijun; Shen, Liuhong; Cao, Suizhong; Yu, Xingming; Hu, Yanchuan; Chen, Weigang; Peng, Gangneng

    2015-01-01

    A single Cryptosporidium isolate from a squirrel monkey with no clinical symptoms was obtained from a zoo in Ya'an city, China, and was genotyped by PCR amplification and DNA sequencing of the small-subunit ribosomal RNA (SSU rRNA), 70-kDa heat shock protein (HSP70), Cryptosporidium oocyst wall protein, and actin genes. This multilocus genetic characterization determined that the isolate was Cryptosporidium hominis, but carried 2, 10, and 6 nucleotide differences in the SSU rRNA, HSP70, and actin loci, respectively, which is comparable to the variations at these loci between C. hominis and the previously reported monkey genotype (2, 3, and 3 nucleotide differences). Phylogenetic studies, based on neighbor-joining and maximum likelihood methods, showed that the isolate identified in the current study had a distinctly discordant taxonomic status, distinct from known C. hominis and also from the monkey genotype, with respect to the three loci. Restriction fragment length polymorphisms of the SSU rRNA gene obtained from this study were similar to those of known C. hominis but clearly differentiated from the monkey genotype. Further subtyping was performed by sequence analysis of the gene encoding the 60-kDa glycoprotein (gp60). Maximum homology of only 88.3% to C. hominis subtype IdA10G4 was observed for the current isolate, and phylogenetic analysis demonstrated that this particular isolate belonged to a novel C. hominis subtype family, IkA7G4. This study is the first to report C. hominis infection in the squirrel monkey and, based on the observed genetic characteristics, confirms a new C. hominis genotype, monkey genotype II. Thus, these results provide novel insights into genotypic variation in C. hominis.

  16. Genetic characterization of Enterovirus 71 strains circulating in Vietnam in 2012.

    PubMed

    Donato, Celeste; Hoi, Le Thi; Hoa, Nguyen Thi; Hoa, Tran Mai; Van Duyet, Le; Dieu Ngan, Ta Thi; Van Kinh, Nguyen; Vu Trung, Nguyen; Vijaykrishna, Dhanasekaran

    2016-08-01

    Enterovirus 71 subgenogroup C4 caused the largest outbreak of Hand, Foot and Mouth Disease (HFMD) in Vietnam during 2011-2012, resulting in over 200,000 hospitalisations and 207 fatalities. A total of 1917 samples with adequate volume for RT-PCR analysis were collected from patients hospitalised with HFMD throughout Vietnam and 637 were positive for EV71. VP1 gene (n=87) and complete genome (n=9) sequencing was performed. Maximum-likelihood phylogenetic analysis was performed to characterise the B5, C4 and C5 strains detected. Sequence analyses revealed that the dominant subgenogroup associated with the 2012 outbreak was C4, with B5 and C5 strains representing a small proportion of these cases. Numerous countries in the region including Malaysia, Taiwan and China have a large influence on strain diversity in Vietnam and understanding the transmission of EV71 throughout Southeast Asia is vital to inform preventative public health measures and vaccine development efforts. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo)

    PubMed Central

    Abu Salim, Kamariah; Chase, Mark W.; Dexter, Kyle G.; Pennington, R. Toby; Tan, Sylvester; Kaye, Maria Ellen; Samuel, Rosabelle

    2017-01-01

    DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia). The combined matrix (rbcL + matK) comprised 555 haplotypes (from ≥154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI) and nearest taxon index (NTI). In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals into analyses. PMID:29049301

  18. Genealogical Working Distributions for Bayesian Model Testing with Phylogenetic Uncertainty

    PubMed Central

    Baele, Guy; Lemey, Philippe; Suchard, Marc A.

    2016-01-01

    Marginal likelihood estimates to compare models using Bayes factors frequently accompany Bayesian phylogenetic inference. Approaches to estimate marginal likelihoods have garnered increased attention over the past decade. In particular, the introduction of path sampling (PS) and stepping-stone sampling (SS) into Bayesian phylogenetics has tremendously improved the accuracy of model selection. These sampling techniques are now used to evaluate complex evolutionary and population genetic models on empirical data sets, but considerable computational demands hamper their widespread adoption. Further, when very diffuse, but proper priors are specified for model parameters, numerical issues complicate the exploration of the priors, a necessary step in marginal likelihood estimation using PS or SS. To avoid such instabilities, generalized SS (GSS) has recently been proposed, introducing the concept of “working distributions” to facilitate—or shorten—the integration process that underlies marginal likelihood estimation. However, the need to fix the tree topology currently limits GSS in a coalescent-based framework. Here, we extend GSS by relaxing the fixed underlying tree topology assumption. To this purpose, we introduce a “working” distribution on the space of genealogies, which enables estimating marginal likelihoods while accommodating phylogenetic uncertainty. We propose two different “working” distributions that help GSS to outperform PS and SS in terms of accuracy when comparing demographic and evolutionary models applied to synthetic data and real-world examples. Further, we show that the use of very diffuse priors can lead to a considerable overestimation in marginal likelihood when using PS and SS, while still retrieving the correct marginal likelihood using both GSS approaches. The methods used in this article are available in BEAST, a powerful user-friendly software package to perform Bayesian evolutionary analyses. PMID:26526428

  19. PHYLOGENETIC RELATIONSHIP OF ALEXANDRIUM MONILATUM (DINOPHYCEAE) TO OTHER ALEXANDRIUM SPECIES BASED ON 18S RIBOSOMAL RNA GENE SEQUENCES

    EPA Science Inventory

    The phylogenetic relationship of Alexandrium monilatum to other Alexandrium spp. was explored using 18S rDNA sequences. Maximum likelilhood phylogenetic analysis of the combined rDNA sequences established that A. monilatum paired with Alexandrium taylori and that the pair was the...

  20. Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan

    2005-01-01

    In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…

  1. Constrained Maximum Likelihood Estimation for Two-Level Mean and Covariance Structure Models

    ERIC Educational Resources Information Center

    Bentler, Peter M.; Liang, Jiajuan; Tang, Man-Lai; Yuan, Ke-Hai

    2011-01-01

    Maximum likelihood is commonly used for the estimation of model parameters in the analysis of two-level structural equation models. Constraints on model parameters could be encountered in some situations such as equal factor loadings for different factors. Linear constraints are the most common ones and they are relatively easy to handle in…

  2. Computing Maximum Likelihood Estimates of Loglinear Models from Marginal Sums with Special Attention to Loglinear Item Response Theory.

    ERIC Educational Resources Information Center

    Kelderman, Henk

    1992-01-01

    Describes algorithms used in the computer program LOGIMO for obtaining maximum likelihood estimates of the parameters in loglinear models. These algorithms are also useful for the analysis of loglinear item-response theory models. Presents modified versions of the iterative proportional fitting and Newton-Raphson algorithms. Simulated data…

  3. Identification of new antibacterial targets in RNA polymerase of Mycobacterium tuberculosis by detecting positive selection sites.

    PubMed

    Wang, QingBiao; Xu, Yiqin; Gu, Zhuoya; Liu, Nian; Jin, Ke; Li, Yao; Crabbe, M James C; Zhong, Yang

    2018-04-01

    Bacterial RNA polymerase (RNAP) is an effective target for antibacterial treatment. In order to search new potential targets in RNAP of Mycobacterium, we detected adaptive selections of RNAP related genes in 13 strains of Mycobacterium by phylogenetic analysis. We first collected sequences of 17 genes including rpoA, rpoB, rpoC, rpoZ, and sigma factor A-M. Then maximum likelihood trees were constructed, followed by positive selection detection. We found that sigG shows positive selection along the clade (M. tuberculosis, M. bovis), suggesting its important evolutionary role and its potential to be a new antibacterial target. Moreover, the regions near 933Cys and 935His on the rpoB subunit of M. tuberculosis showed significant positive selection, which could also be a new attractive target for anti-tuberculosis drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparative methods for the analysis of gene-expression evolution: an example using yeast functional genomic data.

    PubMed

    Oakley, Todd H; Gu, Zhenglong; Abouheif, Ehab; Patel, Nipam H; Li, Wen-Hsiung

    2005-01-01

    Understanding the evolution of gene function is a primary challenge of modern evolutionary biology. Despite an expanding database from genomic and developmental studies, we are lacking quantitative methods for analyzing the evolution of some important measures of gene function, such as gene-expression patterns. Here, we introduce phylogenetic comparative methods to compare different models of gene-expression evolution in a maximum-likelihood framework. We find that expression of duplicated genes has evolved according to a nonphylogenetic model, where closely related genes are no more likely than more distantly related genes to share common expression patterns. These results are consistent with previous studies that found rapid evolution of gene expression during the history of yeast. The comparative methods presented here are general enough to test a wide range of evolutionary hypotheses using genomic-scale data from any organism.

  5. Initial sequence characterization of the rhabdoviruses of squamate reptiles, including a novel rhabdovirus from a caiman lizard (Dracaena guianensis)

    PubMed Central

    Wellehan, James F.X.; Pessier, Allan P.; Archer, Linda L.; Childress, April L.; Jacobson, Elliott R.; Tesh, Robert B.

    2012-01-01

    Rhabdoviruses infect a variety of hosts, including non-avian reptiles. Consensus PCR techniques were used to obtain partial RNA-dependent RNA polymerase gene sequence from five rhabdoviruses of South American lizards; Marco, Chaco, Timbo, Sena Madureira, and a rhabdovirus from a caiman lizard (Dracaena guianensis). The caiman lizard rhabdovirus formed inclusions in erythrocytes, which may be a route for infecting hematophagous insects. This is the first information on behavior of a rhabdovirus in squamates. We also obtained sequence from two rhabdoviruses of Australian lizards, confirming previous Charleville virus sequence and finding that, unlike a previous sequence report but in agreement with serologic reports, Almpiwar virus is clearly distinct from Charleville virus. Bayesian and maximum likelihood phylogenetic analysis revealed that most known rhabdoviruses of squamates cluster in the Almpiwar subgroup. The exception is Marco virus, which is found in the Hart Park group. PMID:22397930

  6. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics

    PubMed Central

    Ramya, T. N. C.; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions. PMID:27258038

  7. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    PubMed

    Khatri, Indu; Sharma, Shailza; Ramya, T N C; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  8. Data on the genome-wide identification of CNL R-genes in Setaria italica (L.) P. Beauv.

    PubMed

    Andersen, Ethan J; Nepal, Madhav P

    2017-08-01

    We report data associated with the identification of 242 disease resistance genes (R-genes) in the genome of Setaria italica as presented in "Genetic diversity of disease resistance genes in foxtail millet ( Setaria italica L.)" (Andersen and Nepal, 2017) [1]. Our data describe the structure and evolution of the Coiled-coil, Nucleotide-binding site, Leucine-rich repeat (CNL) R-genes in foxtail millet. The CNL genes were identified through rigorous extraction and analysis of recently available plant genome sequences using cutting-edge analytical software. Data visualization includes gene structure diagrams, chromosomal syntenic maps, a chromosomal density plot, and a maximum-likelihood phylogenetic tree comparing Sorghum bicolor , Panicum virgatum , Setaria italica , and Arabidopsis thaliana . Compilation of InterProScan annotations, Gene Ontology (GO) annotations, and Basic Local Alignment Search Tool (BLAST) results for the 242 R-genes identified in the foxtail millet genome are also included in tabular format.

  9. Maximum Likelihood Analysis in the PEN Experiment

    NASA Astrophysics Data System (ADS)

    Lehman, Martin

    2013-10-01

    The experimental determination of the π+ -->e+ ν (γ) decay branching ratio currently provides the most accurate test of lepton universality. The PEN experiment at PSI, Switzerland, aims to improve the present world average experimental precision of 3 . 3 ×10-3 to 5 ×10-4 using a stopped beam approach. During runs in 2008-10, PEN has acquired over 2 ×107 πe 2 events. The experiment includes active beam detectors (degrader, mini TPC, target), central MWPC tracking with plastic scintillator hodoscopes, and a spherical pure CsI electromagnetic shower calorimeter. The final branching ratio will be calculated using a maximum likelihood analysis. This analysis assigns each event a probability for 5 processes (π+ -->e+ ν , π+ -->μ+ ν , decay-in-flight, pile-up, and hadronic events) using Monte Carlo verified probability distribution functions of our observables (energies, times, etc). A progress report on the PEN maximum likelihood analysis will be presented. Work supported by NSF grant PHY-0970013.

  10. Phylogenetic relationships among four new complete mitogenome sequences of Pelophylax (Amphibia: Anura) from the Balkans and Cyprus.

    PubMed

    Hofman, Sebastian; Pabijan, Maciej; Osikowski, Artur; Litvinchuk, Spartak N; Szymura, Jacek M

    2016-09-01

    We present the full-length mitogenome sequences of four European water frog species: Pelophylax cypriensis, P. epeiroticus, P. kurtmuelleri and P. shqipericus. The mtDNA size varied from 17,363 to 17,895 bp, and its organization with the LPTF tRNA gene cluster preceding the 12 S rRNA gene displayed the typical Neobatrachian arrangement. Maximum likelihood and Bayesian inference revealed a well-resolved mtDNA phylogeny of seven European Pelophylax species. The uncorrected p-distance for among Pelophylax mitogenomes was 9.6 (range 0.01-0.13). Most divergent was the P. shqipericus mitogenome, clustering with the "P. lessonae" group, in contrast to the other three new Pelophylax mitogenomes related to the "P. bedriagae/ridibundus" lineage. The new mitogenomes resolve ambiguities of the phylogenetic placement of P. cretensis and P. epeiroticus.

  11. Characterization of an Avipoxvirus From a Bald Eagle ( Haliaeetus leucocephalus ) Using Novel Consensus PCR Protocols for the rpo147 and DNA-Dependent DNA Polymerase Genes.

    PubMed

    Stephen, Alexa A; Leone, Angelique M; Toplon, David E; Archer, Linda L; Wellehan, James F X

    2016-12-01

    A juvenile female bald eagle ( Haliaeetus leucocephalus ) was presented with emaciation and proliferative periocular lesions. The eagle did not respond to supportive therapy and was euthanatized. Histopathologic examination of the skin lesions revealed plaques of marked epidermal hyperplasia parakeratosis, marked acanthosis and spongiosis, and eosinophilic intracytoplasmic inclusion bodies. Novel polymerase chain reaction (PCR) assays were done to amplify and sequence DNA polymerase and rpo147 genes. The 4b gene was also analyzed by a previously developed assay. Bayesian and maximum likelihood phylogenetic analyses of the obtained sequences found it to be poxvirus of the genus Avipoxvirus and clustered with other raptor isolates. Better phylogenetic resolution was found in rpo147 rather than the commonly used DNA polymerase. The novel consensus rpo147 PCR assay will create more accurate phylogenic trees and allow better insight into poxvirus history.

  12. Phylogenetic Status and Timescale for the Diversification of Steno and Sotalia Dolphins

    PubMed Central

    Cunha, Haydée A.; Moraes, Lucas C.; Medeiros, Bruna V.; Lailson-Brito, José; da Silva, Vera M. F.; Solé-Cava, Antonio M.; Schrago, Carlos G.

    2011-01-01

    Molecular data have provided many insights into cetacean evolution but some unsettled issues still remain. We estimated the topology and timing of cetacean evolutionary relationships using Bayesian and maximum likelihood analyses of complete mitochondrial genomes. In order to clarify the phylogenetic placement of Sotalia and Steno within the Delphinidae, we sequenced three new delphinid mitogenomes. Our analyses support three delphinid clades: one joining Steno and Sotalia (supporting the revised subfamily Stenoninae); another placing Sousa within the Delphininae; and a third, the Globicephalinae, which includes Globicephala, Feresa, Pseudorca, Peponocephala and Grampus. We also conclude that Orcinus does not belong in the Globicephalinae, but Orcaella may be part of that subfamily. Divergence dates were estimated using the relaxed molecular clock calibrated with fossil data. We hypothesise that the timing of separation of the marine and Amazonian Sotalia species (2.3 Ma) coincided with the establishment of the modern Amazon River basin. PMID:22163290

  13. Phylogenetic status and timescale for the diversification of Steno and Sotalia dolphins.

    PubMed

    Cunha, Haydée A; Moraes, Lucas C; Medeiros, Bruna V; Lailson-Brito, José; da Silva, Vera M F; Solé-Cava, Antonio M; Schrago, Carlos G

    2011-01-01

    Molecular data have provided many insights into cetacean evolution but some unsettled issues still remain. We estimated the topology and timing of cetacean evolutionary relationships using bayesian and maximum likelihood analyses of complete mitochondrial genomes. In order to clarify the phylogenetic placement of Sotalia and Steno within the Delphinidae, we sequenced three new delphinid mitogenomes. Our analyses support three delphinid clades: one joining Steno and Sotalia (supporting the revised subfamily Stenoninae); another placing Sousa within the Delphininae; and a third, the Globicephalinae, which includes Globicephala, Feresa, Pseudorca, Peponocephala and Grampus. We also conclude that Orcinus does not belong in the Globicephalinae, but Orcaella may be part of that subfamily. Divergence dates were estimated using the relaxed molecular clock calibrated with fossil data. We hypothesise that the timing of separation of the marine and Amazonian Sotalia species (2.3 Ma) coincided with the establishment of the modern Amazon River basin.

  14. Novel Henneguya spp. (Cnidaria: Myxozoa) from cichlid fish in the Amazon basin cluster by geographic origin.

    PubMed

    Zatti, Suellen Aparecida; Atkinson, Stephen D; Maia, Antônio A M; Bartholomew, Jerri L; Adriano, Edson A

    2018-03-01

    We describe three new Henneguya spp. (Myxobolidae) found parasitizing two species of cichlid fish from the Amazon basin, Brazil: H. tucunarei n. sp. from gill filaments of Cichla monoculus and H. tapajoensis n. sp. from gill filaments of Cichla pinima, both from the Tapajós River, Pará State and H. jariensis n. sp. in the fins of Cichla monoculus from the Jari River, Amapá State. We based descriptions on myxospore morphology and small subunit ribosomal DNA sequences, and used a phylogenetic analysis to compare the new Henneguya species with known relatives. Spores of the three species had similar morphology and morphometrics, but differed molecularly 5-7.5%, and were no more than 94% similar to any other sequence in GenBank. Together with having different hosts, these data supported the diagnosis of the parasites as distinct, novel species. Maximum likelihood and Bayesian analyses showed that H. tucunarei n. sp., H. tapajoensis n. sp., and H. jariensis n. sp. plus Henneguya paraensis (which parasitizes Cichla temensis) formed a well-supported sub-clade of Henneguya parasites of cichlids from the Amazon basin, in a lineage sister to those in characiforms hosts. Our analysis was consistent with previous studies that suggest that aquatic environment and vertebrate host group are the strongest correlates with phylogenetic signals in the Myxobolidae.

  15. Defining the phylogenetic position of Amanita species from Andean Colombia.

    PubMed

    Vargas, Natalia; Pardo-de La Hoz, Carlos José; Danies, Giovanna; Franco-Molano, Ana Esperanza; Jiménez, Pedro; Restrepo, Silvia; Grajales, Alejandro

    2017-01-01

    Amanita is a worldwide-distributed fungal genus, with approximately 600 known species. Most species within the genus are ectomycorrhizal (ECM), with some saprotrophic representatives. In this study, we constructed the first comprehensive phylogeny including ECM species from Colombia collected in native Quercus humboldtii forests and in introduced Pinus patula plantations. We included 8 species (A. brunneolocularis, A. colombiana, A. flavoconia, A. fuligineodisca, A. muscaria, A. rubescens, A. sororcula, and A. xylinivolva) out of 16 species reported for the country, two new reports: A. citrina and A. virosa, and a new variety A. brunneolocularis var. pallida. Morphological taxonomic keys together with a phylogenetic approach using three nuclear gene regions: partial nuc rDNA 28S nuc rDNA internal transcribed spacers ITS1 and ITS2 and partial translation elongation factor 1-α gene (TEF1), were used to classify the specimens. Several highly supported clades were obtained from the phylogenetic hypotheses obtained by Bayesian inference and maximum likelihood approaches, allowing us to position the Colombian collections in a coherent infrageneric level and to contribute to the knowledge of local Amanita diversity.

  16. Among-character rate variation distributions in phylogenetic analysis of discrete morphological characters.

    PubMed

    Harrison, Luke B; Larsson, Hans C E

    2015-03-01

    Likelihood-based methods are commonplace in phylogenetic systematics. Although much effort has been directed toward likelihood-based models for molecular data, comparatively less work has addressed models for discrete morphological character (DMC) data. Among-character rate variation (ACRV) may confound phylogenetic analysis, but there have been few analyses of the magnitude and distribution of rate heterogeneity among DMCs. Using 76 data sets covering a range of plants, invertebrate, and vertebrate animals, we used a modified version of MrBayes to test equal, gamma-distributed and lognormally distributed models of ACRV, integrating across phylogenetic uncertainty using Bayesian model selection. We found that in approximately 80% of data sets, unequal-rates models outperformed equal-rates models, especially among larger data sets. Moreover, although most data sets were equivocal, more data sets favored the lognormal rate distribution relative to the gamma rate distribution, lending some support for more complex character correlations than in molecular data. Parsimony estimation of the underlying rate distributions in several data sets suggests that the lognormal distribution is preferred when there are many slowly evolving characters and fewer quickly evolving characters. The commonly adopted four rate category discrete approximation used for molecular data was found to be sufficient to approximate a gamma rate distribution with discrete characters. However, among the two data sets tested that favored a lognormal rate distribution, the continuous distribution was better approximated with at least eight discrete rate categories. Although the effect of rate model on the estimation of topology was difficult to assess across all data sets, it appeared relatively minor between the unequal-rates models for the one data set examined carefully. As in molecular analyses, we argue that researchers should test and adopt the most appropriate model of rate variation for the data set in question. As discrete characters are increasingly used in more sophisticated likelihood-based phylogenetic analyses, it is important that these studies be built on the most appropriate and carefully selected underlying models of evolution. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms

    PubMed Central

    Lee, Seung-Bum; Kaittanis, Charalambos; Jansen, Robert K; Hostetler, Jessica B; Tallon, Luke J; Town, Christopher D; Daniell, Henry

    2006-01-01

    Background Cotton (Gossypium hirsutum) is the most important fiber crop grown in 90 countries. In 2004–2005, US farmers planted 79% of the 5.7-million hectares of nuclear transgenic cotton. Unfortunately, genetically modified cotton has the potential to hybridize with other cultivated and wild relatives, resulting in geographical restrictions to cultivation. However, chloroplast genetic engineering offers the possibility of containment because of maternal inheritance of transgenes. The complete chloroplast genome of cotton provides essential information required for genetic engineering. In addition, the sequence data were used to assess phylogenetic relationships among the major clades of rosids using cotton and 25 other completely sequenced angiosperm chloroplast genomes. Results The complete cotton chloroplast genome is 160,301 bp in length, with 112 unique genes and 19 duplicated genes within the IR, containing a total of 131 genes. There are four ribosomal RNAs, 30 distinct tRNA genes and 17 intron-containing genes. The gene order in cotton is identical to that of tobacco but lacks rpl22 and infA. There are 30 direct and 24 inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Most of the direct repeats are within intergenic spacer regions, introns and a 72 bp-long direct repeat is within the psaA and psaB genes. Comparison of protein coding sequences with expressed sequence tags (ESTs) revealed nucleotide substitutions resulting in amino acid changes in ndhC, rpl23, rpl20, rps3 and clpP. Phylogenetic analysis of a data set including 61 protein-coding genes using both maximum likelihood and maximum parsimony were performed for 28 taxa, including cotton and five other angiosperm chloroplast genomes that were not included in any previous phylogenies. Conclusion Cotton chloroplast genome lacks rpl22 and infA and contains a number of dispersed direct and inverted repeats. RNA editing resulted in amino acid changes with significant impact on their hydropathy. Phylogenetic analysis provides strong support for the position of cotton in the Malvales in the eurosids II clade sister to Arabidopsis in the Brassicales. Furthermore, there is strong support for the placement of the Myrtales sister to the eurosid I clade, although expanded taxon sampling is needed to further test this relationship. PMID:16553962

  18. Fast maximum likelihood estimation of mutation rates using a birth-death process.

    PubMed

    Wu, Xiaowei; Zhu, Hongxiao

    2015-02-07

    Since fluctuation analysis was first introduced by Luria and Delbrück in 1943, it has been widely used to make inference about spontaneous mutation rates in cultured cells. Under certain model assumptions, the probability distribution of the number of mutants that appear in a fluctuation experiment can be derived explicitly, which provides the basis of mutation rate estimation. It has been shown that, among various existing estimators, the maximum likelihood estimator usually demonstrates some desirable properties such as consistency and lower mean squared error. However, its application in real experimental data is often hindered by slow computation of likelihood due to the recursive form of the mutant-count distribution. We propose a fast maximum likelihood estimator of mutation rates, MLE-BD, based on a birth-death process model with non-differential growth assumption. Simulation studies demonstrate that, compared with the conventional maximum likelihood estimator derived from the Luria-Delbrück distribution, MLE-BD achieves substantial improvement on computational speed and is applicable to arbitrarily large number of mutants. In addition, it still retains good accuracy on point estimation. Published by Elsevier Ltd.

  19. Maximum likelihood of phylogenetic networks.

    PubMed

    Jin, Guohua; Nakhleh, Luay; Snir, Sagi; Tuller, Tamir

    2006-11-01

    Horizontal gene transfer (HGT) is believed to be ubiquitous among bacteria, and plays a major role in their genome diversification as well as their ability to develop resistance to antibiotics. In light of its evolutionary significance and implications for human health, developing accurate and efficient methods for detecting and reconstructing HGT is imperative. In this article we provide a new HGT-oriented likelihood framework for many problems that involve phylogeny-based HGT detection and reconstruction. Beside the formulation of various likelihood criteria, we show that most of these problems are NP-hard, and offer heuristics for efficient and accurate reconstruction of HGT under these criteria. We implemented our heuristics and used them to analyze biological as well as synthetic data. In both cases, our criteria and heuristics exhibited very good performance with respect to identifying the correct number of HGT events as well as inferring their correct location on the species tree. Implementation of the criteria as well as heuristics and hardness proofs are available from the authors upon request. Hardness proofs can also be downloaded at http://www.cs.tau.ac.il/~tamirtul/MLNET/Supp-ML.pdf

  20. Molecular phylogeny of the spoonbills (Aves: Threskiornithidae) based on mitochondrial DNA

    USGS Publications Warehouse

    Chesser, R. Terry; Yeung, Carol K.L.; Yao, Cheng-Te; Tian, Xiu-Hua; Li, Shou-Hsien

    2010-01-01

    Spoonbills (genus Platalea) are a small group of wading birds, generally considered to constitute the subfamily Plataleinae (Aves: Threskiornithidae). We reconstructed phylogenetic relationships among the six species of spoonbills using variation in sequences of the mitochondrial genes ND2 and cytochrome b (total 1796 bp). Topologies of phylogenetic trees reconstructed using maximum likelihood, maximum parsimony, and Bayesian analyses were virtually identical and supported monophyly of the spoonbills. Most relationships within Platalea received strong support: P. minor and P. regia were closely related sister species, P. leucorodia was sister to the minor-regia clade, and P. alba was sister to the minor-regia-leucorodia clade. Relationships of P. flavipes and P. ajaja were less well resolved: these species either formed a clade that was sister to the four-species clade, or were successive sisters to this clade. This phylogeny is consistent with ideas of relatedness derived from spoonbill morphology. Our limited sampling of the Threskiornithinae (ibises), the putative sister group to the spoonbills, indicated that this group is paraphyletic, in agreement with previous molecular data; this suggests that separation of the Threskiornithidae into subfamilies Plataleinae and Threskiornithinae may not be warranted.

  1. Phylogenetic position of the giant anuran trypanosomes Trypanosoma chattoni, Trypanosoma fallisi, Trypanosoma mega, Trypanosoma neveulemairei, and Trypanosoma ranarum inferred from 18S rRNA gene sequences.

    PubMed

    Martin, Donald S; Wright, André-Denis G; Barta, John R; Desser, Sherwin S

    2002-06-01

    Phylogenetic relationships within the kinetoplastid flagellates were inferred from comparisons of small-subunit ribosomal RNA gene sequences. These included 5 new gene sequences, Trypanosoma fallisi (2,239 bp), Trypanosoma chattoni (2,180 bp), Trypanosoma mega (2,211 bp), Trypanosoma neveulemairei (2,197 bp), and Trypanosoma ranarum (2,203 bp). Trees produced using maximum-parsimony and distance-matrix methods (least-squares, neighbor-joining, and maximum-likelihood), supported by strong bootstrap and quartet-puzzle analyses, indicated that the trypanosomes are a monophyletic group that divides into 2 major lineages, the salivarian trypanosomes and the nonsalivarian trypanosomes. The nonsalivarian trypanosomes further divide into 2 lineages, 1 containing trypanosomes of birds, mammals, and reptiles and the other containing trypanosomes of fish, reptiles, and anurans. Among the giant trypanosomes, T. chattoni is clearly shown to be distantly related to all the other anuran trypanosome species. Trypanosoma mega is closely associated with T. fallisi and T. ranarum, whereas T. neveulemairei and Trypanosoma rotatorium are sister taxa. The branching order of the anuran trypanosomes suggests that some toad trypanosomes may have evolved by host switching from frogs to toads.

  2. Phylogeny of the cycads based on multiple single-copy nuclear genes: congruence of concatenated parsimony, likelihood and species tree inference methods

    PubMed Central

    Salas-Leiva, Dayana E.; Meerow, Alan W.; Calonje, Michael; Griffith, M. Patrick; Francisco-Ortega, Javier; Nakamura, Kyoko; Stevenson, Dennis W.; Lewis, Carl E.; Namoff, Sandra

    2013-01-01

    Background and aims Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree–species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera. Methods DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree–species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted. Key Results Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (Macrozamia–Lepidozamia–Encephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia. Conclusions A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae. PMID:23997230

  3. Increased phylogenetic resolution within the ecologically important Rhizopogon subgenus Amylopogon using 10 anonymous nuclear loci.

    PubMed

    Dowie, Nicholas J; Grubisha, Lisa C; Burton, Brent A; Klooster, Matthew R; Miller, Steven L

    2017-01-01

    Rhizopogon species are ecologically significant ectomycorrhizal fungi in conifer ecosystems. The importance of this system merits the development and utilization of a more robust set of molecular markers specifically designed to evaluate their evolutionary ecology. Anonymous nuclear loci (ANL) were developed for R. subgenus Amylopogon. Members of this subgenus occur throughout the United States and are exclusive fungal symbionts associated with Pterospora andromedea, a threatened mycoheterotrophic plant endemic to disjunct eastern and western regions of North America. Candidate ANL were developed from 454 shotgun pyrosequencing and assessed for positive amplification across targeted species, sequencing success, and recovery of phylogenetically informative sites. Ten ANL were successfully developed and were subsequently used to sequence representative taxa, herbaria holotype and paratype specimens in R. subgenus Amylopogon. Phylogenetic reconstructions were performed on individual and concatenated data sets by Bayesian inference and maximum likelihood methods. Phylogenetic analyses of these 10 ANL were compared with a phylogeny traditionally constructed using the universal fungal barcode nuc rDNA ITS1-5.8S-ITS2 region (ITS). The resulting ANL phylogeny was consistent with most of the species designations delineated by ITS. However, the ANL phylogeny provided much greater phylogenetic resolution, yielding new evidence for cryptic species within previously defined species of R. subgenus Amylopogon. Additionally, the rooted ANL phylogeny provided an alternate topology to the ITS phylogeny, which inferred a novel set of evolutionary relationships not identified in prior phylogenetic studies.

  4. Molecular phylogenetic relationships among Lemnaceae and Araceae using the chloroplast trnL-trnF intergenic spacer.

    PubMed

    Rothwell, Gar W; Van Atta, Michelle R; Ballard, Harvey E; Stockey, Ruth A

    2004-02-01

    We test competing hypotheses of relationships among Aroids (Araceae) and duckweeds (Lemnaceae) using sequences of the trnL-trnF spacer region of the chloroplast genome. Included in the analysis were 22 aroid genera including Pistia and five genera of Lemnaceae including the recently segregated genus Landoltia. Aponogeton was used as an outgroup to root the tree. A data set of 522 aligned nucleotides yielded maximum parsimony and maximum likelihood trees similar to those previously derived from restriction site data. Pistia and the Lemnaceae are placed in two separate and well-supported clades, suggesting at least two independent origins of the floating aquatic growth form within the aroid clade. Within the Lemnaceae there is only partial support for the paradigm of sequential morphological reduction, given that Wolffia is sister to Wolffiella+Lemna. As in the results of the restriction site analysis, pantropical Pistia is placed with Colocasia and Typhonium of southeastern Asia, indicative of Old World affinities. Branch lengths leading to duckweed terminal taxa are much longer relative to other ingroup taxa (including Pistia), evidently as a result of higher rates of nucleotide substitutions and insertion/deletion events. Morphological reduction within the duckweeds roughly correlates with accelerated chloroplast genome evolution.

  5. The Mitochondrial Genomes of the Nudibranch Mollusks, Melibe leonina and Tritonia diomedea, and Their Impact on Gastropod Phylogeny

    PubMed Central

    Sevigny, Joseph L.; Kirouac, Lauren E.; Thomas, William Kelley; Ramsdell, Jordan S.; Lawlor, Kayla E.; Sharifi, Osman; Grewal, Simarvir; Baysdorfer, Christopher; Curr, Kenneth; Naimie, Amanda A.; Okamoto, Kazufusa; Murray, James A.; Newcomb, James M.

    2015-01-01

    The phylogenetic relationships among certain groups of gastropods have remained unresolved in recent studies, especially in the diverse subclass Opisthobranchia, where nudibranchs have been poorly represented. Here we present the complete mitochondrial genomes of Melibe leonina and Tritonia diomedea (more recently named T. tetraquetra), two nudibranchs from the unrepresented Cladobranchia group, and report on the resulting phylogenetic analyses. Both genomes coded for the typical thirteen protein-coding genes, twenty-two transfer RNAs, and two ribosomal RNAs seen in other species. The twelve-nucleotide deletion previously reported for the cytochrome oxidase 1 gene in several other Melibe species was further clarified as three separate deletion events. These deletions were not present in any opisthobranchs examined in our study, including the newly sequenced M. leonina or T. diomedea, suggesting that these previously reported deletions may represent more recently divergent taxa. Analysis of the secondary structures for all twenty-two tRNAs of both M. leonina and T. diomedea indicated truncated d arms for the two serine tRNAs, as seen in some other heterobranchs. In addition, the serine 1 tRNA in T. diomedea contained an anticodon not yet reported in any other gastropod. For phylogenetic analysis, we used the thirteen protein-coding genes from the mitochondrial genomes of M. leonina, T. diomedea, and seventy-one other gastropods. Phylogenetic analyses were performed for both the class Gastropoda and the subclass Opisthobranchia. Both Bayesian and maximum likelihood analyses resulted in similar tree topologies. In the Opisthobranchia, the five orders represented in our study were monophyletic (Anaspidea, Cephalaspidea, Notaspidea, Nudibranchia, Sacoglossa). In Gastropoda, two of the three traditional subclasses, Opisthobranchia and Pulmonata, were not monophyletic. In contrast, four of the more recently named gastropod clades (Vetigastropoda, Neritimorpha, Caenogastropoda, and Heterobranchia) were all monophyletic, and thus appear to be better classifications for this diverse group. PMID:25996944

  6. Identification of extensive drug resistant Pseudomonas aeruginosa strains: New clone ST1725 and high-risk clone ST233

    PubMed Central

    Aguilar-Rodea, Pamela; Zúñiga, Gerardo; Rodríguez-Espino, Benjamín Antonio; Olivares Cervantes, Alma Lidia; Gamiño Arroyo, Ana Estela; Moreno-Espinosa, Sarbelio; de la Rosa Zamboni, Daniela; López Martínez, Briceida; Castellanos-Cruz, María del Carmen; Parra-Ortega, Israel; Jiménez Rojas, Verónica Leticia; Vigueras Galindo, Juan Carlos; Velázquez-Guadarrama, Norma

    2017-01-01

    Several microorganisms produce nosocomial infections (NIs), among which Pseudomonas aeruginosa stands out as an opportunist pathogen with the capacity to develop multiresistance to first-choice antibiotics. From 2007 to 2013, forty-six NIs produced by P. aeruginosa were detected at a pediatric tertiary care hospital in Mexico with a significant mortality rate (17.39%). All isolates (n = 58/46 patients) were characterized by evaluating their response to several antibiotics as panresistant (PDR), extensively resistant (XDR), multiresistant (MDR) or sensitive (S). In addition, all isolates were typified through multilocus sequencing of seven genes: acsA, aroE, guaA, mutL, nuoD, ppsA and trpE. Furthermore, to establish the genetic relationships among these isolates, we carried out a phylogenetic inference analysis using maximum likelihood to construct a phylogenetic network. To assess evolutionary parameters, recombination was evaluated using the PHI test, and the ratio of nonsynonymous to synonymous substitutions was determined. Two of the strains were PDR (ST1725); 42 were XDR; four were MDR; and ten were S. Twenty-one new sequence types were detected. Thirty-three strains exhibited novel sequence type ST1725. The ratio of nonsynonym to synonym substitutions was 1:1 considering all genes. Phylogenetic analysis showed that the genetic relationship of the PDR, XDR and MDR strains was mainly clonal; however, the PHI test and the phylogenetic network suggest that recombination events occurred to produce a non-clonal population. This study aimed not only to determine the genetic diversity of clinical P. aeruginosa but also to provide a warning regarding the identification and spreading of clone ST1725, its ability to cause outbreaks with high mortality rates, and to remain in the hospital environment for over seven years. These characteristics highlight the need to identify clonal outbreaks, especially where high resistance to most antibiotics is observed, and control measures are needed. This study also represents the first report of the PDR ST1725. PMID:28253282

  7. The relationships within the Chaitophorinae and Drepanosiphinae (Hemiptera, Aphididae) inferred from molecular-based phylogeny and comprehensive morphological data

    PubMed Central

    Wieczorek, Karina; Lachowska-Cierlik, Dorota; Kajtoch, Łukasz; Kanturski, Mariusz

    2017-01-01

    The Chaitophorinae is a bionomically diverse Holarctic subfamily of Aphididae. The current classification includes two tribes: the Chaitophorini associated with deciduous trees and shrubs, and Siphini that feed on monocotyledonous plants. We present the first phylogenetic hypothesis for the subfamily, based on molecular and morphological datasets. Molecular analyses were based on the mitochondrial gene cytochrome oxidase subunit I (COI) and the nuclear gene elongation factor-1α (EF-1α). Phylogenetic inferences were obtained individually on each of genes and joined alignments using Bayesian inference (BI) and Maximum likelihood (ML). In phylogenetic trees reconstructed on the basis of nuclear and mitochondrial genes as well as a morphological dataset, the monophyly of Siphini and the genus Chaitophorus was supported. Periphyllus forms independent lineages from Chaitophorus and Siphini. Within this genus two clades comprising European and Asiatic species, respectively, were indicated. Concerning relationships within the subfamily, EF-1α and joined COI and EF-1α genes analysis strongly supports the hypothesis that Chaitophorini do not form a monophyletic clade. Periphyllus is a sister group to a clade containing Chaitophorus and Siphini. The Asiatic unit of Periphyllus also includes Trichaitophorus koyaensis. The analysis of morphological dataset under equally weighted parsimony also supports the view that Chaitophorini is an artificial taxon, as Lambersaphis pruinosae and Pseudopterocomma hughi, both traditionally included in the Chaitophorini, formed independent lineages. COI analyses support consistent groups within the subfamily, but relationships between groups are poorly resolved. These analyses were extended to include the species of closely related and phylogenetically unstudied subfamily Drepanosiphinae, which produced congruent results. Genera Drepanosiphum and Depanaphis are monophyletic and sister. The position of Yamatocallis tokyoensis differs in the molecular and morphological analyses, i.e. it is either an independent lineage (EF-1α, COI, joined COI and EF-1α genes) or is nested inside this unit (morphology). Our data also support separation of Chaitophorinae from Drepanosiphinae. PMID:28288166

  8. A Comprehensive Phylogenetic Analysis of the Scleractinia (Cnidaria, Anthozoa) Based on Mitochondrial CO1 Sequence Data

    PubMed Central

    Kitahara, Marcelo V.; Cairns, Stephen D.; Stolarski, Jarosław; Blair, David; Miller, David J.

    2010-01-01

    Background Classical morphological taxonomy places the approximately 1400 recognized species of Scleractinia (hard corals) into 27 families, but many aspects of coral evolution remain unclear despite the application of molecular phylogenetic methods. In part, this may be a consequence of such studies focusing on the reef-building (shallow water and zooxanthellate) Scleractinia, and largely ignoring the large number of deep-sea species. To better understand broad patterns of coral evolution, we generated molecular data for a broad and representative range of deep sea scleractinians collected off New Caledonia and Australia during the last decade, and conducted the most comprehensive molecular phylogenetic analysis to date of the order Scleractinia. Methodology Partial (595 bp) sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene were determined for 65 deep-sea (azooxanthellate) scleractinians and 11 shallow-water species. These new data were aligned with 158 published sequences, generating a 234 taxon dataset representing 25 of the 27 currently recognized scleractinian families. Principal Findings/Conclusions There was a striking discrepancy between the taxonomic validity of coral families consisting predominantly of deep-sea or shallow-water species. Most families composed predominantly of deep-sea azooxanthellate species were monophyletic in both maximum likelihood and Bayesian analyses but, by contrast (and consistent with previous studies), most families composed predominantly of shallow-water zooxanthellate taxa were polyphyletic, although Acroporidae, Poritidae, Pocilloporidae, and Fungiidae were exceptions to this general pattern. One factor contributing to this inconsistency may be the greater environmental stability of deep-sea environments, effectively removing taxonomic “noise” contributed by phenotypic plasticity. Our phylogenetic analyses imply that the most basal extant scleractinians are azooxanthellate solitary corals from deep-water, their divergence predating that of the robust and complex corals. Deep-sea corals are likely to be critical to understanding anthozoan evolution and the origins of the Scleractinia. PMID:20628613

  9. Molecular phylogenetics reveals convergent evolution in lower Congo River spiny eels.

    PubMed

    Alter, S Elizabeth; Brown, Bianca; Stiassny, Melanie L J

    2015-10-15

    The lower Congo River (LCR) is a region of exceptional species diversity and endemism in the Congo basin, including numerous species of spiny eels (genus Mastacembelus). Four of these exhibit distinctive phenotypes characterized by greatly reduced optic globes deeply embedded into the head (cryptophthalmia) and reduced (or absent) melanin pigmentation, among other characteristics. A strikingly similar cryptophthalmic phenotype is also found in members of a number of unrelated fish families, strongly suggesting the possibility of convergent evolution. However, little is known about the evolutionary processes that shaped diversification in LCR Mastacembelus, their biogeographic origins, or when colonization of the LCR occurred. We sequenced mitochondrial and nuclear genes from Mastacembelus species collected in the lower Congo River, and compared them with other African species and Asian representatives as outgroups. We analyzed the sequence data using Maximum Likelihood and Bayesian phylogenetic inference. Bayesian and Maximum Likelihood phylogenetic analyses, and Bayesian coalescent methods for species tree reconstruction, reveal that endemic LCR spiny eels derive from two independent origins, clearly demonstrating convergent evolution of the cryptophthalmic phenotype. Mastacembelus crassus, M. aviceps, and M. simbi form a clade, allied to species found in southern, eastern and central Africa. Unexpectedly, M. brichardi and brachyrhinus fall within a clade otherwise endemic to Lake Tanganikya (LT) ca. 1500 km east of the LCR. Divergence dating suggests the ages of these two clades of LCR endemics differ markedly. The age of the crassus group is estimated at ~4 Myr while colonization of the LCR by the brichardi-brachyrhinus progenitor was considerably more recent, dated at ~0.5 Myr. The phylogenetic framework of spiny eels presented here, the first to include LCR species, demonstrates that cryptophthalmia and associated traits evolved at least twice in Mastacembelus: once in M. brichardi and at least once in the M. crassus clade. Timing of diversification is broadly consistent with the onset of modern high-energy flow conditions in the LCR and with previous studies of endemic cichlids. The close genetic relationship between M. brichardi and M. brachyrhinus is particularly notable given the extreme difference in phenotype between these species, and additional work is needed to better understand the evolutionary history of diversification in this clade. The findings presented here demonstrate strong, multi-trait convergence in LCR spiny eels, suggesting that extreme selective pressures have shaped numerous phenotypic attributes of the endemic species of this region.

  10. Rising prevalence of non-B HIV-1 subtypes in North Carolina and evidence for local onward transmission.

    PubMed

    Dennis, Ann M; Hué, Stephane; Learner, Emily; Sebastian, Joseph; Miller, William C; Eron, Joseph J

    2017-01-01

    HIV-1 diversity is increasing in North American and European cohorts which may have public health implications. However, little is known about non-B subtype diversity in the southern United States, despite the region being the epicenter of the nation's epidemic. We characterized HIV-1 diversity and transmission clusters to identify the extent to which non-B strains are transmitted locally. We conducted cross-sectional analyses of HIV-1 partial pol sequences collected from 1997 to 2014 from adults accessing routine clinical care in North Carolina (NC). Subtypes were evaluated using COMET and phylogenetic analysis. Putative transmission clusters were identified using maximum-likelihood trees. Clusters involving non-B strains were confirmed and their dates of origin were estimated using Bayesian phylogenetics. Data were combined with demographic information collected at the time of sample collection and country of origin for a subset of patients. Among 24,972 sequences from 15,246 persons, the non-B subtype prevalence increased from 0% to 3.46% over the study period. Of 325 persons with non-B subtypes, diversity was high with over 15 pure subtypes and recombinants; subtype C (28.9%) and CRF02_AG (24.0%) were most common. While identification of transmission clusters was lower for persons with non-B versus B subtypes, several local transmission clusters (≥3 persons) involving non-B subtypes were identified and all were presumably due to heterosexual transmission. Prevalence of non-B subtype diversity remains low in NC but a statistically significant rise was identified over time which likely reflects multiple importation. However, the combined phylogenetic clustering analysis reveals evidence for local onward transmission. Detection of these non-B clusters suggests heterosexual transmission and may guide diagnostic and prevention interventions.

  11. Bovine leukaemia virus genotypes 5 and 6 are circulating in cattle from the state of São Paulo, Brazil.

    PubMed

    Gregory, Lilian; Carrillo Gaeta, Natália; Araújo, Jansen; Matsumiya Thomazelli, Luciano; Harakawa, Ricardo; Ikuno, Alice A; Hiromi Okuda, Liria; de Stefano, Eliana; Pituco, Edviges Maristela

    2017-12-01

    Enzootic bovine leucosis (EBL) is a silent disease caused by a retrovirus [bovine leukaemia virus (BLV)]. BLV is classified into almost 10 genotypes that are distributed in several countries. The present research aimed to describe two BLV gp51 env sequences of strains detected in the state of São Paulo, Brazil and perform a phylogenetic analysis to compare them to other BLV gp51 env sequences of strains around the world. Two bovines from different herds were admitted to the Bovine and Small Ruminant Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, Brazil. In both, lymphosarcoma was detected and the presence of BLV was confirmed by nested PCR. The neighbour-joining algorithm distance method was used to genotype the BLV sequences by phylogenetic reconstruction, and the maximum likelihood method was used for the phylogenetic reconstruction. The phylogeny estimates were calculated by performing 1000 bootstrap replicates. Analysis of the partial envelope glycoprotein (env) gene sequences from two isolates (25 and 31) revealed two different genotypes of BLV. Isolate 25 clustered with ten genotype 6 isolates from Brazil, Argentina, Thailand and Paraguay. On the other hand, isolate 31 clustered with two genotype 5 isolates (one was also from São Paulo and one was from Costa Rica). The detected genotypes corroborate the results of previous studies conducted in the state of São Paulo, Brazil. The prediction of amino acids showed substitutions, particularly between positions 136 and 150 in 11 out of 13 sequences analysed, including sequences from GenBank. BLV is still important in Brazil and this research should be continued.

  12. Verrucosispora sonchi sp. nov., a novel endophytic actinobacterium isolated from the leaves of common sowthistle (Sonchus oleraceus L.).

    PubMed

    Ma, Zhaoxu; Zhao, Shanshan; Cao, Tingting; Liu, Chongxi; Huang, Ying; Gao, Yuhang; Yan, Kai; Xiang, Wensheng; Wang, Xiangjing

    2016-12-01

    A novel actinobacterium, designated strain NEAU-QY3T, was isolated from the leaves of Sonchus oleraceus L. and examined using a polyphasic taxonomic approach. The organism formed single spores with smooth surface on substrate mycelia. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the strain had a close association with the genus Verrucosispora and shared the highest sequence similarity with Verrucosispora qiuiae RtIII47T (99.17 %), an association that was supported by a bootstrap value of 94 % in the neighbour-joining tree and also recovered with the maximum-likelihood algorithm. The strain also showed high 16S rRNA gene sequence similarities to Xiangella phaseoli NEAU-J5T (98.78 %), Jishengella endophytica 202201T (98.51 %), Micromonospora eburnea LK2-10T (98.28 %), Verrucosispora lutea YIM 013T (98.23 %) and Salinispora pacifica CNR-114T (98.23 %). Furthermore, phylogenetic analysis based on the gyrB gene sequences supported the conclusion that strain NEAU-QY3T should be assigned to the genus Verrucosispora. However, the DNA-DNA hybridization relatedness values between strain NEAU-QY3T and V. qiuiae RtIII47T and V. lutea YIM 013T were below 70 %. With reference to phenotypic characteristics, phylogenetic data and DNA-DNA hybridization results, strain NEAU-QY3T was readily distinguished from its most closely related strains and classified as a new species, for which the name Verrucosispora sonchi sp. nov. is proposed. The type strain is NEAU-QY3T (=CGMCC 4.7312T=DSM 101530T).

  13. Phylogeography of Australia's king brown snake (Pseudechis australis) reveals Pliocene divergence and Pleistocene dispersal of a top predator.

    PubMed

    Kuch, Ulrich; Keogh, J Scott; Weigel, John; Smith, Laurie A; Mebs, Dietrich

    2005-03-01

    King brown snakes or mulga snakes (Pseudechis australis) are the largest and among the most dangerous and wide-ranging venomous snakes in Australia and New Guinea. They occur in diverse habitats, are important predators, and exhibit considerable morphological variation. We infer the relationships and historical biogeography of P. australis based on phylogenetic analysis of 1,249 base pairs from the mitochondrial cytochrome b, NADH dehydrogenase subunit 4 and three adjacent tRNA genes using Bayesian, maximum-likelihood, and maximum-parsimony methods. All methods reveal deep phylogenetic structure with four strongly supported clades comprising snakes from New Guinea (I), localities all over Australia (II), the Kimberleys of Western Australia (III), and north-central Australia (IV), suggesting a much more ancient radiation than previously believed. This conclusion is robust to different molecular clock estimations indicating divergence in Pliocene or Late Miocene, after landbridge dispersal to New Guinea had occurred. While members of clades I, III and IV are medium-sized, slender snakes, those of clade II attain large sizes and a robust build, rendering them top predators in their ecosystems. Genetic differentiation within clade II is low and haplotype distribution largely incongruent with geography or colour morphs, suggesting Pleistocene dispersal and recent ecomorph evolution. Significant haplotype diversity exists in clades III and IV, implying that clade IV comprises two species. Members of clade II are broadly sympatric with members of both northern Australian clades. Thus, our data support the recognition of at least five species from within P. australis (auct.) under various criteria. We discuss biogeographical, ecological and medical implications of our findings.

  14. Phylogeography of Australia's king brown snake (Pseudechis australis) reveals Pliocene divergence and Pleistocene dispersal of a top predator

    NASA Astrophysics Data System (ADS)

    Kuch, Ulrich; Keogh, J. Scott; Weigel, John; Smith, Laurie A.; Mebs, Dietrich

    2005-03-01

    King brown snakes or mulga snakes (Pseudechis australis) are the largest and among the most dangerous and wide-ranging venomous snakes in Australia and New Guinea. They occur in diverse habitats, are important predators, and exhibit considerable morphological variation. We infer the relationships and historical biogeography of P. australis based on phylogenetic analysis of 1,249 base pairs from the mitochondrial cytochrome b, NADH dehydrogenase subunit 4 and three adjacent tRNA genes using Bayesian, maximum-likelihood, and maximum-parsimony methods. All methods reveal deep phylogenetic structure with four strongly supported clades comprising snakes from New Guinea (I), localities all over Australia (II), the Kimberleys of Western Australia (III), and north-central Australia (IV), suggesting a much more ancient radiation than previously believed. This conclusion is robust to different molecular clock estimations indicating divergence in Pliocene or Late Miocene, after landbridge dispersal to New Guinea had occurred. While members of clades I, III and IV are medium-sized, slender snakes, those of clade II attain large sizes and a robust build, rendering them top predators in their ecosystems. Genetic differentiation within clade II is low and haplotype distribution largely incongruent with geography or colour morphs, suggesting Pleistocene dispersal and recent ecomorph evolution. Significant haplotype diversity exists in clades III and IV, implying that clade IV comprises two species. Members of clade II are broadly sympatric with members of both northern Australian clades. Thus, our data support the recognition of at least five species from within P. australis (auct.) under various criteria. We discuss biogeographical, ecological and medical implications of our findings.

  15. Higher level phylogeny and the first divergence time estimation of Heteroptera (Insecta: Hemiptera) based on multiple genes.

    PubMed

    Li, Min; Tian, Ying; Zhao, Ying; Bu, Wenjun

    2012-01-01

    Heteroptera, or true bugs, are the largest, morphologically diverse and economically important group of insects with incomplete metamorphosis. However, the phylogenetic relationships within Heteroptera are still in dispute and most of the previous studies were based on morphological characters or with single gene (partial or whole 18S rDNA). Besides, so far, divergence time estimates for Heteroptera totally rely on the fossil record, while no studies have been performed on molecular divergence rates. Here, for the first time, we used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) with multiple genes (18S rDNA, 28S rDNA, 16S rDNA and COI) to estimate phylogenetic relationships among the infraorders, and meanwhile, the Penalized Likelihood (r8s) and Bayesian (BEAST) molecular dating methods were employed to estimate divergence time of higher taxa of this suborder. Major results of the present study included: Nepomorpha was placed as the most basal clade in all six trees (MP trees, ML trees and Bayesian trees of nuclear gene data and four-gene combined data, respectively) with full support values. The sister-group relationship of Cimicomorpha and Pentatomomorpha was also strongly supported. Nepomorpha originated in early Triassic and the other six infraorders originated in a very short period of time in middle Triassic. Cimicomorpha and Pentatomomorpha underwent a radiation at family level in Cretaceous, paralleling the proliferation of the flowering plants. Our results indicated that the higher-group radiations within hemimetabolous Heteroptera were simultaneously with those of holometabolous Coleoptera and Diptera which took place in the Triassic. While the aquatic habitat was colonized by Nepomorpha already in the Triassic, the Gerromorpha independently adapted to the semi-aquatic habitat in the Early Jurassic.

  16. Temporal and spatial diversification of Pteroglossus araçaris (AVES: Ramphastidae) in the neotropics: constant rate of diversification does not support an increase in radiation during the Pleistocene.

    PubMed

    Patel, Swati; Weckstein, Jason D; Patané, José S L; Bates, John M; Aleixo, Alexandre

    2011-01-01

    We use the small-bodied toucan genus Pteroglossus to test hypotheses about diversification in the lowland Neotropics. We sequenced three mitochondrial genes and one nuclear intron from all Pteroglossus species and used these data to reconstruct phylogenetic trees based on maximum parsimony, maximum likelihood, and Bayesian analyses. These phylogenetic trees were used to make inferences regarding both the pattern and timing of diversification for the group. We used the uplift of the Talamanca highlands of Costa Rica and western Panama as a geologic calibration for estimating divergence times on the Pteroglossus tree and compared these results with a standard molecular clock calibration. Then, we used likelihood methods to model the rate of diversification. Based on our analyses, the onset of the Pteroglossus radiation predates the Pleistocene, which has been predicted to have played a pivotal role in diversification in the Amazon rainforest biota. We found a constant rate of diversification in Pteroglossus evolutionary history, and thus no support that events during the Pleistocene caused an increase in diversification. We compare our data to other avian phylogenies to better understand major biogeographic events in the Neotropics. These comparisons support recurring forest connections between the Amazonian and Atlantic forests, and the splitting of cis/trans Andean species after the final uplift of the Andes. At the subspecies level, there is evidence for reciprocal monophyly and groups are often separated by major rivers, demonstrating the important role of rivers in causing or maintaining divergence. Because some of the results presented here conflict with current taxonomy of Pteroglossus, new taxonomic arrangements are suggested. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Higher Level Phylogeny and the First Divergence Time Estimation of Heteroptera (Insecta: Hemiptera) Based on Multiple Genes

    PubMed Central

    Zhao, Ying; Bu, Wenjun

    2012-01-01

    Heteroptera, or true bugs, are the largest, morphologically diverse and economically important group of insects with incomplete metamorphosis. However, the phylogenetic relationships within Heteroptera are still in dispute and most of the previous studies were based on morphological characters or with single gene (partial or whole 18S rDNA). Besides, so far, divergence time estimates for Heteroptera totally rely on the fossil record, while no studies have been performed on molecular divergence rates. Here, for the first time, we used maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) with multiple genes (18S rDNA, 28S rDNA, 16S rDNA and COI) to estimate phylogenetic relationships among the infraorders, and meanwhile, the Penalized Likelihood (r8s) and Bayesian (BEAST) molecular dating methods were employed to estimate divergence time of higher taxa of this suborder. Major results of the present study included: Nepomorpha was placed as the most basal clade in all six trees (MP trees, ML trees and Bayesian trees of nuclear gene data and four-gene combined data, respectively) with full support values. The sister-group relationship of Cimicomorpha and Pentatomomorpha was also strongly supported. Nepomorpha originated in early Triassic and the other six infraorders originated in a very short period of time in middle Triassic. Cimicomorpha and Pentatomomorpha underwent a radiation at family level in Cretaceous, paralleling the proliferation of the flowering plants. Our results indicated that the higher-group radiations within hemimetabolous Heteroptera were simultaneously with those of holometabolous Coleoptera and Diptera which took place in the Triassic. While the aquatic habitat was colonized by Nepomorpha already in the Triassic, the Gerromorpha independently adapted to the semi-aquatic habitat in the Early Jurassic. PMID:22384163

  18. A Penalized Likelihood Framework For High-Dimensional Phylogenetic Comparative Methods And An Application To New-World Monkeys Brain Evolution.

    PubMed

    Julien, Clavel; Leandro, Aristide; Hélène, Morlon

    2018-06-19

    Working with high-dimensional phylogenetic comparative datasets is challenging because likelihood-based multivariate methods suffer from low statistical performances as the number of traits p approaches the number of species n and because some computational complications occur when p exceeds n. Alternative phylogenetic comparative methods have recently been proposed to deal with the large p small n scenario but their use and performances are limited. Here we develop a penalized likelihood framework to deal with high-dimensional comparative datasets. We propose various penalizations and methods for selecting the intensity of the penalties. We apply this general framework to the estimation of parameters (the evolutionary trait covariance matrix and parameters of the evolutionary model) and model comparison for the high-dimensional multivariate Brownian (BM), Early-burst (EB), Ornstein-Uhlenbeck (OU) and Pagel's lambda models. We show using simulations that our penalized likelihood approach dramatically improves the estimation of evolutionary trait covariance matrices and model parameters when p approaches n, and allows for their accurate estimation when p equals or exceeds n. In addition, we show that penalized likelihood models can be efficiently compared using Generalized Information Criterion (GIC). We implement these methods, as well as the related estimation of ancestral states and the computation of phylogenetic PCA in the R package RPANDA and mvMORPH. Finally, we illustrate the utility of the new proposed framework by evaluating evolutionary models fit, analyzing integration patterns, and reconstructing evolutionary trajectories for a high-dimensional 3-D dataset of brain shape in the New World monkeys. We find a clear support for an Early-burst model suggesting an early diversification of brain morphology during the ecological radiation of the clade. Penalized likelihood offers an efficient way to deal with high-dimensional multivariate comparative data.

  19. Sequencing of whole plastid genomes and nuclear ribosomal DNA of Diospyros species (Ebenaceae) endemic to New Caledonia: many species, little divergence

    PubMed Central

    Turner, Barbara; Paun, Ovidiu; Munzinger, Jérôme; Chase, Mark W.; Samuel, Rosabelle

    2016-01-01

    Background and Aims Some plant groups, especially on islands, have been shaped by strong ancestral bottlenecks and rapid, recent radiation of phenotypic characters. Single molecular markers are often not informative enough for phylogenetic reconstruction in such plant groups. Whole plastid genomes and nuclear ribosomal DNA (nrDNA) are viewed by many researchers as sources of information for phylogenetic reconstruction of groups in which expected levels of divergence in standard markers are low. Here we evaluate the usefulness of these data types to resolve phylogenetic relationships among closely related Diospyros species. Methods Twenty-two closely related Diospyros species from New Caledonia were investigated using whole plastid genomes and nrDNA data from low-coverage next-generation sequencing (NGS). Phylogenetic trees were inferred using maximum parsimony, maximum likelihood and Bayesian inference on separate plastid and nrDNA and combined matrices. Key Results The plastid and nrDNA sequences were, singly and together, unable to provide well supported phylogenetic relationships among the closely related New Caledonian Diospyros species. In the nrDNA, a 6-fold greater percentage of parsimony-informative characters compared with plastid DNA was found, but the total number of informative sites was greater for the much larger plastid DNA genomes. Combining the plastid and nuclear data improved resolution. Plastid results showed a trend towards geographical clustering of accessions rather than following taxonomic species. Conclusions In plant groups in which multiple plastid markers are not sufficiently informative, an investigation at the level of the entire plastid genome may also not be sufficient for detailed phylogenetic reconstruction. Sequencing of complete plastid genomes and nrDNA repeats seems to clarify some relationships among the New Caledonian Diospyros species, but the higher percentage of parsimony-informative characters in nrDNA compared with plastid DNA did not help to resolve the phylogenetic tree because the total number of variable sites was much lower than in the entire plastid genome. The geographical clustering of the individuals against a background of overall low sequence divergence could indicate transfer of plastid genomes due to hybridization and introgression following secondary contact. PMID:27098088

  20. A method of alignment masking for refining the phylogenetic signal of multiple sequence alignments.

    PubMed

    Rajan, Vaibhav

    2013-03-01

    Inaccurate inference of positional homologies in multiple sequence alignments and systematic errors introduced by alignment heuristics obfuscate phylogenetic inference. Alignment masking, the elimination of phylogenetically uninformative or misleading sites from an alignment before phylogenetic analysis, is a common practice in phylogenetic analysis. Although masking is often done manually, automated methods are necessary to handle the much larger data sets being prepared today. In this study, we introduce the concept of subsplits and demonstrate their use in extracting phylogenetic signal from alignments. We design a clustering approach for alignment masking where each cluster contains similar columns-similarity being defined on the basis of compatible subsplits; our approach then identifies noisy clusters and eliminates them. Trees inferred from the columns in the retained clusters are found to be topologically closer to the reference trees. We test our method on numerous standard benchmarks (both synthetic and biological data sets) and compare its performance with other methods of alignment masking. We find that our method can eliminate sites more accurately than other methods, particularly on divergent data, and can improve the topologies of the inferred trees in likelihood-based analyses. Software available upon request from the author.

  1. Bayesian structural equation modeling in sport and exercise psychology.

    PubMed

    Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus

    2015-08-01

    Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.

  2. Pinworm diversity in free-ranging howler monkeys (Alouatta spp.) in Mexico: Morphological and molecular evidence for two new Trypanoxyuris species (Nematoda: Oxyuridae).

    PubMed

    Solórzano-García, Brenda; Nadler, Steven A; Pérez-Ponce de León, Gerardo

    2016-10-01

    Two new species of Trypanoxyuris are described from the intestine of free-ranging howler monkeys in Mexico, Trypanoxyuris multilabiatus n. sp. from the mantled howler Alouatta palliata, and Trypanoxyuris pigrae n. sp. from the black howler Alouatta pigra. An integrative taxonomic approach is followed, where conspicuous morphological traits and phylogenetic trees based on DNA sequences are used to test the validity of the two new species. The mitochondrial cytochrome oxidase subunit 1 gene, and the nuclear ribosomal 18S and 28S rRNA genes were used for evolutionary analyses, with the concatenated dataset of all three genes used for maximum likelihood and Bayesian phylogenetic analyses. The two new species of pinworms from howler monkeys were morphologically distinct and formed reciprocally monophyletic lineages in molecular phylogenetic trees. The three species from howler monkeys, T. multilabiatus n. sp., T. pigrae n. sp., and Trypanoxyuris minutus, formed a monophyletic group with high bootstrap and posterior probability support values. Phylogenetic patterns inferred from sequence data support the hypothesis of a close evolutionary association between these primate hosts and their pinworm parasites. The results suggest that the diversity of pinworm parasites from Neotropical primates might be underestimated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation.

    PubMed

    Agrawal, Anurag A; Salminen, Juha-Pekka; Fishbein, Mark

    2009-03-01

    Although plant-defense theory has long predicted patterns of chemical defense across taxa, we know remarkably little about the evolution of defense, especially in the context of directional phylogenetic trends. Here we contrast the production of phenolics and cardenolides in 35 species of milkweeds (Asclepias and Gomphocarpus). Maximum-likelihood analyses of character evolution revealed three major patterns. First, consistent with the defense-escalation hypothesis, the diversification of the milkweeds was associated with a trend for increasing phenolic production; this pattern was reversed (a declining evolutionary trend) for cardenolides, toxins sequestered by specialist herbivores. Second, phylogenetically independent correlations existed among phenolic classes across species. For example, coumaric acid derivatives showed negatively correlated evolution with caffeic acid derivatives, and this was likely driven by the fact that the former are used as precursors for the latter. In contrast, coumaric acid derivatives were positively correlated with flavonoids, consistent with competition for the precursor p-coumaric acid. Finally, of the phenolic classes, only flavonoids showed correlated evolution (positive) with cardenolides, consistent with a physiological and evolutionary link between the two via malonate. Thus, this study presents a rigorous test of the defense-escalation hypothesis and a novel phylogenetic approach to understanding the long-term persistence of physiological constraints on secondary metabolism.

  4. THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures.

    PubMed

    Theobald, Douglas L; Wuttke, Deborah S

    2006-09-01

    THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. ANSI C source code and selected binaries for various computing platforms are available under the GNU open source license from http://monkshood.colorado.edu/theseus/ or http://www.theseus3d.org.

  5. Comparative mitochondrial genome analysis of Daphnis nerii and other lepidopteran insects reveals conserved mitochondrial genome organization and phylogenetic relationships

    PubMed Central

    Sun, Yu; Chen, Chen; Gao, Jin; Abbas, Muhammad Nadeem; Kausar, Saima; Qian, Cen; Wang, Lei; Wei, Guoqing; Zhu, Bao-Jian

    2017-01-01

    In the present study, the complete sequence of the mitochondrial genome (mitogenome) of Daphnis nerii (Lepidoptera: Sphingidae) is described. The mitogenome (15,247 bp) of D.nerii encodes13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and an adenine (A) + thymine (T)-rich region. Its gene complement and order is similar to that of other sequenced lepidopterans. The 12 PCGs initiated by ATN codons except for cytochrome c oxidase subunit 1 (cox1) gene that is seemingly initiated by the CGA codon as documented in other insect mitogenomes. Four of the 13 PCGs have the incomplete termination codon T, while the remainder terminated with the canonical stop codon. This mitogenome has six major intergenic spacers, with the exception of A+T-rich region, spanning at least 10 bp. The A+T-rich region is 351 bp long, and contains some conserved regions, including ‘ATAGA’ motif followed by a 17 bp poly-T stretch, a microsatellite-like element (AT)9 and also a poly-A element. Phylogenetic analyses based on 13 PCGs using maximum likelihood (ML) and Bayesian inference (BI) revealed that D. nerii resides in the Sphingidae family. PMID:28598968

  6. Unraveling the evolutionary radiation of the families of the Zingiberales using morphological and molecular evidence.

    PubMed

    Kress, W J; Prince, L M; Hahn, W J; Zimmer, E A

    2001-01-01

    The Zingiberales are a tropical group of monocotyledons that includes bananas, gingers, and their relatives. The phylogenetic relationships among the eight families currently recognized are investigated here by using parsimony and maximum likelihood analyses of four character sets: morphological features (1), and sequence data of the (2) chloroplast rbcL gene, (3) chloroplast atpB gene, and (4) nuclear 18S rDNA gene. Outgroups for the analyses include the closely related Commelinaceae + Philydraceae + Haemodoraceae + Pontederiaceae + Hanguanaceae as well as seven more distantly related monocots and paleoherbs. Only slightly different estimates of evolutionary relationships result from the analysis of each character set. The morphological data yield a single fully resolved most-parsimonious tree. None of the molecular datasets alone completely resolves interfamilial relationships. The analyses of the combined molecular dataset provide more resolution than do those of individual genes, and the addition of the morphological data provides a well-supported estimate of phylogenetic relationships: (Musaceae ((Strelitziaceae, Lowiaceae) (Heliconiaceae ((Zingiberaceae, Costaceae) (Cannaceae, Marantaceae))))). Evidence from branch lengths in the parsimony analyses and from the fossil record suggests that the Zingiberales originated in the Early Cretaceous and underwent a rapid radiation in the mid-Cretaceous, by which time most extant family lineages had diverged.

  7. Phylogenetic positions of four hypotrichous ciliates (Protista, Ciliophora) based on SSU rRNA gene, with notes on their morphological characters.

    PubMed

    Yang, Caiting; Liu, An; Xu, Yusen; Xu, Yuan; Fan, Xinpeng; Al-Farraj, Saleh A; Ni, Bing; Gu, Fukang

    2015-08-18

     The morphology and infraciliature of the four hypotrichous ciliates; Rigidohymena inquieta (Stokes, 1887) Berger, 2011, Pattersoniella vitiphila Foissner, 1987, Notohymena australis Foissner & O' Donoghue, 1990, and Cyrtohymena (Cyrtohymenides) australis (Foissner, 1995) Foissner, 2004, collected from east China, were investigated by using live observation and protargol impregnation method. An improved diagnosis for R. inquieta was supplied based on descriptions of present and previous populations. New morphology and morphogenesis information based on Chinese populations of another three hypotrichids were also supplemented. The Small-subunit rRNA (SSU rRNA) gene sequences of the four species were characterized and their phylogenetic positions were revealed by means of Bayesian inference and Maximum-likelihood analysis. The analyses shows that R. inquieta clusters with other members of the subfamily Stylonychinae, which confirms the monophyly of the subfamily and verified R. inquieta as a separated species from R. candens though it differs from others mainly by body size. C. (C.) australis occupying the basal position of the clade which contains cyrtohymenids and some other groups, declines the idea of separating Cyrtohymena into two subgenus. Notohymena australis and China population of Pattersoniella vitiphila respectively clustering with their congeners correspond well with the systematics revealed by morphological similarities.

  8. Streptomyces kronopolitis sp. nov., an actinomycete that produces phoslactomycins isolated from a millipede (Kronopolites svenhedind Verhoeff).

    PubMed

    Liu, Chongxi; Ye, Lan; Li, Yao; Jiang, Shanwen; Liu, Hui; Yan, Kai; Xiang, Wensheng; Wang, Xiangjing

    2016-12-01

    A phoslactomycin-producing actinomycete, designated strain NEAU-ML8T, was isolated from a millipede (Kronopolites svenhedind Verhoeff) and characterized using a polyphasic approach. 16S rRNA gene sequence analysis showed that strain NEAU-ML8T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces lydicus NBRC 13058T (99.39 %) and Streptomyces chattanoogensis DSM 40002T (99.25 %). The maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences showed that the isolate formed a distinct phyletic line with NBRC 13058T and S. chattanoogensis DSM 40002T. This branching pattern was also supported by the tree rconstructed with the neighbour-joining method. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain NEAU-ML8T and its phylogenetically closely related strains, which further clarified their relatedness and demonstrated that NEAU-ML8T could be distinguished from NBRC 13058T and S. chattanoogensis DSM 40002T. Therefore, it is concluded that strain NEAU-ML8T can be classified as representing a novel species of the genus Streptomyces, for which the name Streptomyces kronopolitis sp. nov. is proposed. The type strain is NEAU-ML8T (=DSM 101986T=CGMCC 4.7323T).

  9. Phylogeography of the Western Lyresnake (Trimorphodon biscutatus): testing aridland biogeographical hypotheses across the Nearctic-Neotropical transition.

    PubMed

    Devitt, Thomas J

    2006-12-01

    The Western Lyresnake (Trimorphodon biscutatus) is a widespread, polytypic taxon inhabiting arid regions from the warm deserts of the southwestern United States southward along the Pacific versant of Mexico to the tropical deciduous forests of Mesoamerica. This broadly distributed species provides a unique opportunity to evaluate a priori biogeographical hypotheses spanning two major distinct biogeographical realms (the Nearctic and Neotropical) that are usually treated separately in phylogeographical analyses. I investigated the phylogeography of T. biscutatus using maximum likelihood and Bayesian phylogenetic analysis of mitochondrial DNA (mtDNA) from across this species' range. Phylogenetic analyses recovered five well-supported clades whose boundaries are concordant with existing geographical barriers, a pattern consistent with a model of vicariant allopatric divergence. Assuming a vicariance model, divergence times between mitochondrial lineages were estimated using Bayesian relaxed molecular clock methods calibrated using geological information from putative vicariant events. Divergence time point estimates were bounded by broad confidence intervals, and thus these highly conservative estimates should be considered tentative hypotheses at best. Comparison of mtDNA lineages and taxa traditionally recognized as subspecies based on morphology suggest this taxon is comprised of multiple independent lineages at various stages of divergence, ranging from putative secondary contact and hybridization to sympatry of 'subspecies'.

  10. Rearrangement moves on rooted phylogenetic networks

    PubMed Central

    Gambette, Philippe; van Iersel, Leo; Jones, Mark; Scornavacca, Celine

    2017-01-01

    Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria in use, from maximum likelihood and parsimony to distance-based principles, and in a Bayesian context. Their basic components are rearrangement moves that specify all possible ways of generating alternative phylogenies from a given one, and whose fundamental property is to be able to transform, by repeated application, any phylogeny into any other phylogeny. Despite their long tradition in tree-based phylogenetics, very little research has gone into studying similar rearrangement operations for phylogenetic network—that is, phylogenies explicitly representing scenarios that include reticulate events such as hybridization, horizontal gene transfer, population admixture, and recombination. To fill this gap, we propose “horizontal” moves that ensure that every network of a certain complexity can be reached from any other network of the same complexity, and “vertical” moves that ensure reachability between networks of different complexities. When applied to phylogenetic trees, our horizontal moves—named rNNI and rSPR—reduce to the best-known moves on rooted phylogenetic trees, nearest-neighbor interchange and rooted subtree pruning and regrafting. Besides a number of reachability results—separating the contributions of horizontal and vertical moves—we prove that rNNI moves are local versions of rSPR moves, and provide bounds on the sizes of the rNNI neighborhoods. The paper focuses on the most biologically meaningful versions of phylogenetic networks, where edges are oriented and reticulation events clearly identified. Moreover, our rearrangement moves are robust to the fact that networks with higher complexity usually allow a better fit with the data. Our goal is to provide a solid basis for practical phylogenetic network reconstruction. PMID:28763439

  11. Molecular Phylogenetics and Systematics of the Bivalve Family Ostreidae Based on rRNA Sequence-Structure Models and Multilocus Species Tree

    PubMed Central

    Salvi, Daniele; Macali, Armando; Mariottini, Paolo

    2014-01-01

    The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassotreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics. PMID:25250663

  12. Molecular phylogenetics and systematics of the bivalve family Ostreidae based on rRNA sequence-structure models and multilocus species tree.

    PubMed

    Salvi, Daniele; Macali, Armando; Mariottini, Paolo

    2014-01-01

    The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassostreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized [corrected]. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics.

  13. Molecular phylogenetic reconstruction of the endemic Asian salamander family Hynobiidae (Amphibia, Caudata).

    PubMed

    Weisrock, David W; Macey, J Robert; Matsui, Masafumi; Mulcahy, Daniel G; Papenfuss, Theodore J

    2013-01-01

    The salamander family Hynobiidae contains over 50 species and has been the subject of a number of molecular phylogenetic investigations aimed at reconstructing branches across the entire family. In general, studies using the greatest amount of sequence data have used reduced taxon sampling, while the study with the greatest taxon sampling has used a limited sequence data set. Here, we provide insights into the phylogenetic history of the Hynobiidae using both dense taxon sampling and a large mitochondrial DNA sequence data set. We report exclusive new mitochondrial DNA data of 2566 aligned bases (with 151 excluded sites, of included sites 1157 are variable with 957 parsimony informative). This is sampled from two genic regions encoding a 12S-16S region (the 3' end of 12S rRNA, tRNA(VAI), and the 5' end of 16S rRNA), and a ND2-COI region (ND2, tRNA(Trp), tRNA(Ala), tRNA(Asn), the origin for light strand replication--O(L), tRNA(Cys), tRNAT(Tyr), and the 5' end of COI). Analyses using parsimony, Bayesian, and maximum likelihood optimality criteria produce similar phylogenetic trees, with discordant branches generally receiving low levels of branch support. Monophyly of the Hynobiidae is strongly supported across all analyses, as is the sister relationship and deep divergence between the genus Onychodactylus with all remaining hynobiids. Within this latter grouping our phylogenetic results identify six clades that are relatively divergent from one another, but for which there is minimal support for their phylogenetic placement. This includes the genus Batrachuperus, the genus Hynobius, the genus Pachyhynobius, the genus Salamandrella, a clade containing the genera Ranodon and Paradactylodon, and a clade containing the genera Liua and Pseudohynobius. This latter clade receives low bootstrap support in the parsimony analysis, but is consistent across all three analytical methods. Our results also clarify a number of well-supported relationships within the larger Batrachuperus and Hynobius clades. While the relationships identified in this study do much to clarify the phylogenetic history of the Hynobiidae, the poor resolution among major hynobiid clades, and the contrast of mtDNA-derived relationships with recent phylogenetic results from a small number of nuclear genes, highlights the need for continued phylogenetic study with larger numbers of nuclear loci.

  14. GASP: Gapped Ancestral Sequence Prediction for proteins

    PubMed Central

    Edwards, Richard J; Shields, Denis C

    2004-01-01

    Background The prediction of ancestral protein sequences from multiple sequence alignments is useful for many bioinformatics analyses. Predicting ancestral sequences is not a simple procedure and relies on accurate alignments and phylogenies. Several algorithms exist based on Maximum Parsimony or Maximum Likelihood methods but many current implementations are unable to process residues with gaps, which may represent insertion/deletion (indel) events or sequence fragments. Results Here we present a new algorithm, GASP (Gapped Ancestral Sequence Prediction), for predicting ancestral sequences from phylogenetic trees and the corresponding multiple sequence alignments. Alignments may be of any size and contain gaps. GASP first assigns the positions of gaps in the phylogeny before using a likelihood-based approach centred on amino acid substitution matrices to assign ancestral amino acids. Important outgroup information is used by first working down from the tips of the tree to the root, using descendant data only to assign probabilities, and then working back up from the root to the tips using descendant and outgroup data to make predictions. GASP was tested on a number of simulated datasets based on real phylogenies. Prediction accuracy for ungapped data was similar to three alternative algorithms tested, with GASP performing better in some cases and worse in others. Adding simple insertions and deletions to the simulated data did not have a detrimental effect on GASP accuracy. Conclusions GASP (Gapped Ancestral Sequence Prediction) will predict ancestral sequences from multiple protein alignments of any size. Although not as accurate in all cases as some of the more sophisticated maximum likelihood approaches, it can process a wide range of input phylogenies and will predict ancestral sequences for gapped and ungapped residues alike. PMID:15350199

  15. Inferring epidemiological parameters from phylogenetic information for the HIV-1 epidemic among MSM

    NASA Astrophysics Data System (ADS)

    Quax, Rick; van de Vijver, David A. M. C.; Frentz, Dineke; Sloot, Peter M. A.

    2013-09-01

    The HIV-1 epidemic in Europe is primarily sustained by a dynamic topology of sexual interactions among MSM who have individual immune systems and behavior. This epidemiological process shapes the phylogeny of the virus population. Both fields of epidemic modeling and phylogenetics have a long history, however it remains difficult to use phylogenetic data to infer epidemiological parameters such as the structure of the sexual network and the per-act infectiousness. This is because phylogenetic data is necessarily incomplete and ambiguous. Here we show that the cluster-size distribution indeed contains information about epidemiological parameters using detailed numberical experiments. We simulate the HIV epidemic among MSM many times using the Monte Carlo method with all parameter values and their ranges taken from literature. For each simulation and the corresponding set of parameter values we calculate the likelihood of reproducing an observed cluster-size distribution. The result is an estimated likelihood distribution of all parameters from the phylogenetic data, in particular the structure of the sexual network, the per-act infectiousness, and the risk behavior reduction upon diagnosis. These likelihood distributions encode the knowledge provided by the observed cluster-size distrbution, which we quantify using information theory. Our work suggests that the growing body of genetic data of patients can be exploited to understand the underlying epidemiological process.

  16. IDEA: Interactive Display for Evolutionary Analyses.

    PubMed

    Egan, Amy; Mahurkar, Anup; Crabtree, Jonathan; Badger, Jonathan H; Carlton, Jane M; Silva, Joana C

    2008-12-08

    The availability of complete genomic sequences for hundreds of organisms promises to make obtaining genome-wide estimates of substitution rates, selective constraints and other molecular evolution variables of interest an increasingly important approach to addressing broad evolutionary questions. Two of the programs most widely used for this purpose are codeml and baseml, parts of the PAML (Phylogenetic Analysis by Maximum Likelihood) suite. A significant drawback of these programs is their lack of a graphical user interface, which can limit their user base and considerably reduce their efficiency. We have developed IDEA (Interactive Display for Evolutionary Analyses), an intuitive graphical input and output interface which interacts with PHYLIP for phylogeny reconstruction and with codeml and baseml for molecular evolution analyses. IDEA's graphical input and visualization interfaces eliminate the need to edit and parse text input and output files, reducing the likelihood of errors and improving processing time. Further, its interactive output display gives the user immediate access to results. Finally, IDEA can process data in parallel on a local machine or computing grid, allowing genome-wide analyses to be completed quickly. IDEA provides a graphical user interface that allows the user to follow a codeml or baseml analysis from parameter input through to the exploration of results. Novel options streamline the analysis process, and post-analysis visualization of phylogenies, evolutionary rates and selective constraint along protein sequences simplifies the interpretation of results. The integration of these functions into a single tool eliminates the need for lengthy data handling and parsing, significantly expediting access to global patterns in the data.

  17. IDEA: Interactive Display for Evolutionary Analyses

    PubMed Central

    Egan, Amy; Mahurkar, Anup; Crabtree, Jonathan; Badger, Jonathan H; Carlton, Jane M; Silva, Joana C

    2008-01-01

    Background The availability of complete genomic sequences for hundreds of organisms promises to make obtaining genome-wide estimates of substitution rates, selective constraints and other molecular evolution variables of interest an increasingly important approach to addressing broad evolutionary questions. Two of the programs most widely used for this purpose are codeml and baseml, parts of the PAML (Phylogenetic Analysis by Maximum Likelihood) suite. A significant drawback of these programs is their lack of a graphical user interface, which can limit their user base and considerably reduce their efficiency. Results We have developed IDEA (Interactive Display for Evolutionary Analyses), an intuitive graphical input and output interface which interacts with PHYLIP for phylogeny reconstruction and with codeml and baseml for molecular evolution analyses. IDEA's graphical input and visualization interfaces eliminate the need to edit and parse text input and output files, reducing the likelihood of errors and improving processing time. Further, its interactive output display gives the user immediate access to results. Finally, IDEA can process data in parallel on a local machine or computing grid, allowing genome-wide analyses to be completed quickly. Conclusion IDEA provides a graphical user interface that allows the user to follow a codeml or baseml analysis from parameter input through to the exploration of results. Novel options streamline the analysis process, and post-analysis visualization of phylogenies, evolutionary rates and selective constraint along protein sequences simplifies the interpretation of results. The integration of these functions into a single tool eliminates the need for lengthy data handling and parsing, significantly expediting access to global patterns in the data. PMID:19061522

  18. A Comparison of Pseudo-Maximum Likelihood and Asymptotically Distribution-Free Dynamic Factor Analysis Parameter Estimation in Fitting Covariance Structure Models to Block-Toeplitz Matrices Representing Single-Subject Multivariate Time-Series.

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.; Nesselroade, John R.

    1998-01-01

    Pseudo-Maximum Likelihood (p-ML) and Asymptotically Distribution Free (ADF) estimation methods for estimating dynamic factor model parameters within a covariance structure framework were compared through a Monte Carlo simulation. Both methods appear to give consistent model parameter estimates, but only ADF gives standard errors and chi-square…

  19. Historical biogeography of the fern genus Deparia (Athyriaceae) and its relation with polyploidy.

    PubMed

    Kuo, Li-Yaung; Ebihara, Atsushi; Shinohara, Wataru; Rouhan, Germinal; Wood, Kenneth R; Wang, Chun-Neng; Chiou, Wen-Liang

    2016-11-01

    The wide geographical distribution of many fern species is related to their high dispersal ability. However, very limited studies surveyed biological traits that could contribute to colonization success after dispersal. In this study, we applied phylogenetic approaches to infer historical biogeography of the fern genus Deparia (Athyriaceae, Eupolypods II). Because polyploids are suggested to have better colonization abilities and are abundant in Deparia, we also examined whether polyploidy could be correlated to long-distance dispersal events and whether polyploidy could play a role in these dispersals/establishment and range expansion. Maximum likelihood and Bayesian phylogenetic reconstructions were based on a four-region combined cpDNA dataset (rps16-matK IGS, trnL-L-F, matK and rbcL; a total of 4252 characters) generated from 50 ingroup (ca. 80% of the species diversity) and 13 outgroup taxa. Using the same sequence alignment and maximum likelihood trees, we carried out molecular dating analyses. The resulting chronogram was used to reconstruct ancestral distribution using the DEC model and ancestral ploidy level using ChromEvol. We found that Deparia originated around 27.7Ma in continental Asia/East Asia. A vicariant speciation might account for the disjunctive distribution of East Asia-northeast North America. There were multiple independent long-distance dispersals to Africa/Madagascar (at least once), Southeast Asia (at least once), south Pacific islands (at least twice), Australia/New Guinea/New Zealand (at least once), and the Hawaiian Islands (at least once). In particular, the long-distance dispersal to the Hawaiian Islands was associated with polyploidization, and the dispersal rate was slightly higher in the polyploids than in diploids. Moreover, we found five species showing recent infraspecific range expansions, all of which took place concurrently with polyploidization. In conclusion, our study provides the first investigation using phylogenetic and biogeographic analyses trying to explore the link between historical biogeography and ploidy evolution in a fern genus and our results imply that polyploids might be better colonizers than diploids. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. How to Handle Speciose Clades? Mass Taxon-Sampling as a Strategy towards Illuminating the Natural History of Campanula (Campanuloideae)

    PubMed Central

    Mansion, Guilhem; Parolly, Gerald; Crowl, Andrew A.; Mavrodiev, Evgeny; Cellinese, Nico; Oganesian, Marine; Fraunhofer, Katharina; Kamari, Georgia; Phitos, Dimitrios; Haberle, Rosemarie; Akaydin, Galip; Ikinci, Nursel; Raus, Thomas; Borsch, Thomas

    2012-01-01

    Background Speciose clades usually harbor species with a broad spectrum of adaptive strategies and complex distribution patterns, and thus constitute ideal systems to disentangle biotic and abiotic causes underlying species diversification. The delimitation of such study systems to test evolutionary hypotheses is difficult because they often rely on artificial genus concepts as starting points. One of the most prominent examples is the bellflower genus Campanula with some 420 species, but up to 600 species when including all lineages to which Campanula is paraphyletic. We generated a large alignment of petD group II intron sequences to include more than 70% of described species as a reference. By comparison with partial data sets we could then assess the impact of selective taxon sampling strategies on phylogenetic reconstruction and subsequent evolutionary conclusions. Methodology/Principal Findings Phylogenetic analyses based on maximum parsimony (PAUP, PRAP), Bayesian inference (MrBayes), and maximum likelihood (RAxML) were first carried out on the large reference data set (D680). Parameters including tree topology, branch support, and age estimates, were then compared to those obtained from smaller data sets resulting from “classification-guided” (D088) and “phylogeny-guided sampling” (D101). Analyses of D088 failed to fully recover the phylogenetic diversity in Campanula, whereas D101 inferred significantly different branch support and age estimates. Conclusions/Significance A short genomic region with high phylogenetic utility allowed us to easily generate a comprehensive phylogenetic framework for the speciose Campanula clade. Our approach recovered 17 well-supported and circumscribed sub-lineages. Knowing these will be instrumental for developing more specific evolutionary hypotheses and guide future research, we highlight the predictive value of a mass taxon-sampling strategy as a first essential step towards illuminating the detailed evolutionary history of diverse clades. PMID:23209646

  1. A novel gammaherpesvirus in a large flying fox (Pteropus vampyrus) with blepharitis.

    PubMed

    Paige Brock, A; Cortés-Hinojosa, Galaxia; Plummer, Caryn E; Conway, Julia A; Roff, Shannon R; Childress, April L; Wellehan, James F X

    2013-05-01

    A novel gammaherpesvirus was identified in a large flying fox (Pteropus vampyrus) with conjunctivitis, blepharitis, and meibomianitis by nested polymerase chain reaction and sequencing. Polymerase chain reaction amplification and sequencing of 472 base pairs of the DNA-dependent DNA polymerase gene were used to identify a novel herpesvirus. Bayesian and maximum likelihood phylogenetic analyses indicated that the virus is a member of the genus Percavirus in the subfamily Gammaherpesvirinae. Additional research is needed regarding the association of this virus with conjunctivitis and other ocular pathology. This virus may be useful as a biomarker of stress and may be a useful model of virus recrudescence in Pteropus spp.

  2. Challenges in Species Tree Estimation Under the Multispecies Coalescent Model

    PubMed Central

    Xu, Bo; Yang, Ziheng

    2016-01-01

    The multispecies coalescent (MSC) model has emerged as a powerful framework for inferring species phylogenies while accounting for ancestral polymorphism and gene tree-species tree conflict. A number of methods have been developed in the past few years to estimate the species tree under the MSC. The full likelihood methods (including maximum likelihood and Bayesian inference) average over the unknown gene trees and accommodate their uncertainties properly but involve intensive computation. The approximate or summary coalescent methods are computationally fast and are applicable to genomic datasets with thousands of loci, but do not make an efficient use of information in the multilocus data. Most of them take the two-step approach of reconstructing the gene trees for multiple loci by phylogenetic methods and then treating the estimated gene trees as observed data, without accounting for their uncertainties appropriately. In this article we review the statistical nature of the species tree estimation problem under the MSC, and explore the conceptual issues and challenges of species tree estimation by focusing mainly on simple cases of three or four closely related species. We use mathematical analysis and computer simulation to demonstrate that large differences in statistical performance may exist between the two classes of methods. We illustrate that several counterintuitive behaviors may occur with the summary methods but they are due to inefficient use of information in the data by summary methods and vanish when the data are analyzed using full-likelihood methods. These include (i) unidentifiability of parameters in the model, (ii) inconsistency in the so-called anomaly zone, (iii) singularity on the likelihood surface, and (iv) deterioration of performance upon addition of more data. We discuss the challenges and strategies of species tree inference for distantly related species when the molecular clock is violated, and highlight the need for improving the computational efficiency and model realism of the likelihood methods as well as the statistical efficiency of the summary methods. PMID:27927902

  3. Accurate Structural Correlations from Maximum Likelihood Superpositions

    PubMed Central

    Theobald, Douglas L; Wuttke, Deborah S

    2008-01-01

    The cores of globular proteins are densely packed, resulting in complicated networks of structural interactions. These interactions in turn give rise to dynamic structural correlations over a wide range of time scales. Accurate analysis of these complex correlations is crucial for understanding biomolecular mechanisms and for relating structure to function. Here we report a highly accurate technique for inferring the major modes of structural correlation in macromolecules using likelihood-based statistical analysis of sets of structures. This method is generally applicable to any ensemble of related molecules, including families of nuclear magnetic resonance (NMR) models, different crystal forms of a protein, and structural alignments of homologous proteins, as well as molecular dynamics trajectories. Dominant modes of structural correlation are determined using principal components analysis (PCA) of the maximum likelihood estimate of the correlation matrix. The correlations we identify are inherently independent of the statistical uncertainty and dynamic heterogeneity associated with the structural coordinates. We additionally present an easily interpretable method (“PCA plots”) for displaying these positional correlations by color-coding them onto a macromolecular structure. Maximum likelihood PCA of structural superpositions, and the structural PCA plots that illustrate the results, will facilitate the accurate determination of dynamic structural correlations analyzed in diverse fields of structural biology. PMID:18282091

  4. The critically endangered forest owlet Heteroglaux blewitti is nested within the currently recognized Athene clade: A century-old debate addressed.

    PubMed

    Koparde, Pankaj; Mehta, Prachi; Reddy, Sushma; Ramakrishnan, Uma; Mukherjee, Shomita; Robin, V V

    2018-01-01

    Range-restricted species generally have specific niche requirements and may often have unique evolutionary histories. Unfortunately, many of these species severely lack basic research, resulting in poor conservation strategies. The phylogenetic relationship of the Critically Endangered Forest Owlet Heteroglaux blewitti has been the subject of a century-old debate. The current classifications based on non-phylogenetic comparisons of morphology place the small owls of Asia into three genera, namely, Athene, Glaucidium, and Heteroglaux. Based on morphological and anatomical data, H. blewitti has been alternatively hypothesized to belong within Athene, Glaucidium, or its own monotypic genus Heteroglaux. To test these competing hypotheses, we sequenced six loci (~4300 bp data) and performed phylogenetic analyses of owlets. Mitochondrial and nuclear trees were not congruent in their placement of H. blewitti. However, both mitochondrial and nuclear combined datasets showed strong statistical support with high maximum likelihood bootstrap (>/ = 90) and Bayesian posterior probability values (>/ = 0.98) for H. blewitti being nested in the currently recognized Athene group, but not sister to Indian A. brama. The divergence of H. blewitti from its sister taxa was between 4.3 and 5.7 Ma coinciding with a period of drastic climatic changes in the Indian subcontinent. This study presented the first genetic analysis of H. blewitti, a Critically Endangered species, and addressed the long debate on the relationships of the Athene-Heteroglaux-Glaucidium complex. We recommend further studies with more data and complete taxon sampling to understand the biogeography of Indian Athene species.

  5. The impact of transmission clusters on primary drug resistance in newly diagnosed HIV-1 infection.

    PubMed

    Yerly, Sabine; Junier, Thomas; Gayet-Ageron, Angèle; Amari, Emmanuelle Boffi El; von Wyl, Viktor; Günthard, Huldrych F; Hirschel, Bernard; Zdobnov, Evgeny; Kaiser, Laurent

    2009-07-17

    To monitor HIV-1 transmitted drug resistance (TDR) in a well defined urban area with large access to antiretroviral therapy and to assess the potential source of infection of newly diagnosed HIV individuals. All individuals resident in Geneva, Switzerland, with a newly diagnosed HIV infection between 2000 and 2008 were screened for HIV resistance. An infection was considered as recent when the positive test followed a negative screening test within less than 1 year. Phylogenetic analyses were performed by using the maximum likelihood method on pol sequences including 1058 individuals with chronic infection living in Geneva. Of 637 individuals with newly diagnosed HIV infection, 20% had a recent infection. Mutations associated with resistance to at least one drug class were detected in 8.5% [nucleoside reverse transcriptase inhibitors (NRTIs), 6.3%; non-nucleoside reverse transcriptase inhibitors (NNRTIs), 3.5%; protease inhibitors, 1.9%]. TDR (P-trend = 0.015) and, in particular, NNRTI resistance (P = 0.002) increased from 2000 to 2008. Phylogenetic analyses revealed that 34.9% of newly diagnosed individuals, and 52.7% of those with recent infection were linked to transmission clusters. Clusters were more frequent in individuals with TDR than in those with sensitive strains (59.3 vs. 32.6%, respectively; P < 0.0001). Moreover, 84% of newly diagnosed individuals with TDR were part of clusters composed of only newly diagnosed individuals. Reconstruction of the HIV transmission networks using phylogenetic analysis shows that newly diagnosed HIV infections are a significant source of onward transmission, particularly of resistant strains, thus suggesting an important self-fueling mechanism for TDR.

  6. Mitochondrial genomes suggest that hexapods and crustaceans are mutually paraphyletic

    PubMed Central

    Cook, Charles E; Yue, Qiaoyun; Akam, Michael

    2005-01-01

    For over a century the relationships between the four major groups of the phylum Arthropoda (Chelicerata, Crustacea, Hexapoda and Myriapoda) have been debated. Recent molecular evidence has confirmed a close relationship between the Crustacea and the Hexapoda, and has included the suggestion of a paraphyletic Hexapoda. To test this hypothesis we have sequenced the complete or near-complete mitochondrial genomes of three crustaceans (Parhyale hawaiensis, Squilla mantis and Triops longicaudatus), two collembolans (Onychiurus orientalis and Podura aquatica) and the insect Thermobia domestica. We observed rearrangement of transfer RNA genes only in O. orientalis, P. aquatica and P. hawaiensis. Of these, only the rearrangement in O. orientalis, an apparent autapomorphy for the collembolan family Onychiuridae, was phylogenetically informative. We aligned the nuclear and amino acid sequences from the mitochondrial protein-encoding genes of these taxa with their homologues from other arthropod taxa for phylogenetic analysis. Our dataset contains many more Crustacea than previous molecular phylogenetic analyses of the arthropods. Neighbour-joining, maximum-likelihood and Bayesian posterior probabilities all suggest that crustaceans and hexapods are mutually paraphyletic. A crustacean clade of Malacostraca and Branchiopoda emerges as sister to the Insecta sensu stricto and the Collembola group with the maxillopod crustaceans. Some, but not all, analyses strongly support this mutual paraphyly but statistical tests do not reject the null hypotheses of a monophyletic Hexapoda or a monophyletic Crustacea. The dual monophyly of the Hexapoda and Crustacea has rarely been questioned in recent years but the idea of both groups' paraphyly dates back to the nineteenth century. We suggest that the mutual paraphyly of both groups should seriously be considered. PMID:16024395

  7. The critically endangered forest owlet Heteroglaux blewitti is nested within the currently recognized Athene clade: A century-old debate addressed

    PubMed Central

    Mehta, Prachi; Reddy, Sushma; Ramakrishnan, Uma

    2018-01-01

    Range-restricted species generally have specific niche requirements and may often have unique evolutionary histories. Unfortunately, many of these species severely lack basic research, resulting in poor conservation strategies. The phylogenetic relationship of the Critically Endangered Forest Owlet Heteroglaux blewitti has been the subject of a century-old debate. The current classifications based on non-phylogenetic comparisons of morphology place the small owls of Asia into three genera, namely, Athene, Glaucidium, and Heteroglaux. Based on morphological and anatomical data, H. blewitti has been alternatively hypothesized to belong within Athene, Glaucidium, or its own monotypic genus Heteroglaux. To test these competing hypotheses, we sequenced six loci (~4300 bp data) and performed phylogenetic analyses of owlets. Mitochondrial and nuclear trees were not congruent in their placement of H. blewitti. However, both mitochondrial and nuclear combined datasets showed strong statistical support with high maximum likelihood bootstrap (>/ = 90) and Bayesian posterior probability values (>/ = 0.98) for H. blewitti being nested in the currently recognized Athene group, but not sister to Indian A. brama. The divergence of H. blewitti from its sister taxa was between 4.3 and 5.7 Ma coinciding with a period of drastic climatic changes in the Indian subcontinent. This study presented the first genetic analysis of H. blewitti, a Critically Endangered species, and addressed the long debate on the relationships of the Athene-Heteroglaux-Glaucidium complex. We recommend further studies with more data and complete taxon sampling to understand the biogeography of Indian Athene species. PMID:29401484

  8. Sequence variation in mitochondrial cox1 and nad1 genes of ascaridoid nematodes in cats and dogs from Iran.

    PubMed

    Mikaeili, F; Mirhendi, H; Mohebali, M; Hosseini, M; Sharbatkhori, M; Zarei, Z; Kia, E B

    2015-07-01

    The study was conducted to determine the sequence variation in two mitochondrial genes, namely cytochrome c oxidase 1 (pcox1) and NADH dehydrogenase 1 (pnad1) within and among isolates of Toxocara cati, Toxocara canis and Toxascaris leonina. Genomic DNA was extracted from 32 isolates of T. cati, 9 isolates of T. canis and 19 isolates of T. leonina collected from cats and dogs in different geographical areas of Iran. Mitochondrial genes were amplified by polymerase chain reaction (PCR) and sequenced. Sequence data were aligned using the BioEdit software and compared with published sequences in GenBank. Phylogenetic analysis was performed using Bayesian inference and maximum likelihood methods. Based on pairwise comparison, intra-species genetic diversity within Iranian isolates of T. cati, T. canis and T. leonina amounted to 0-2.3%, 0-1.3% and 0-1.0% for pcox1 and 0-2.0%, 0-1.7% and 0-2.6% for pnad1, respectively. Inter-species sequence variation among the three ascaridoid nematodes was significantly higher, being 9.5-16.6% for pcox1 and 11.9-26.7% for pnad1. Sequence and phylogenetic analysis of the pcox1 and pnad1 genes indicated that there is significant genetic diversity within and among isolates of T. cati, T. canis and T. leonina from different areas of Iran, and these genes can be used for studying genetic variation of ascaridoid nematodes.

  9. The Centipede Genus Scolopendra in Mainland Southeast Asia: Molecular Phylogenetics, Geometric Morphometrics and External Morphology as Tools for Species Delimitation

    PubMed Central

    Siriwut, Warut; Edgecombe, Gregory D.; Sutcharit, Chirasak; Panha, Somsak

    2015-01-01

    Seven Scolopendra species from the Southeast Asian mainland delimited based on standard external morphological characters represent monophyletic groups in phylogenetic trees inferred from concatenated sequences of three gene fragments (cytochrome c oxidase subunit 1, 16S rRNA and 28S rRNA) using Maximum likelihood and Bayesian inference. Geometric morphometric description of shape variation in the cephalic plate, forcipular coxosternite, and tergite of the ultimate leg-bearing segment provides additional criteria for distinguishing species. Colouration patterns in some Scolopendra species show a high degree of fit to phylogenetic trees at the population level. The most densely sampled species, Scolopendra dehaani Brandt, 1840, has three subclades with allopatric distributions in mainland SE Asia. The molecular phylogeny of S. pinguis Pocock, 1891, indicated ontogenetic colour variation among its populations. The taxonomic validation of S. dawydoffi Kronmüller, 2012, S. japonica Koch, 1878, and S. dehaani Brandt, 1840, each a former subspecies of S. subspinipes Leach, 1814 sensu Lewis, 2010, as full species was supported by molecular information and additional morphological data. Species delimitation in these taxonomically challenging animals is facilitated by an integrative approach that draws on both morphology and molecular phylogeny. PMID:26270342

  10. Phylogenetic position of Loricifera inferred from nearly complete 18S and 28S rRNA gene sequences.

    PubMed

    Yamasaki, Hiroshi; Fujimoto, Shinta; Miyazaki, Katsumi

    2015-01-01

    Loricifera is an enigmatic metazoan phylum; its morphology appeared to place it with Priapulida and Kinorhyncha in the group Scalidophora which, along with Nematoida (Nematoda and Nematomorpha), comprised the group Cycloneuralia. Scarce molecular data have suggested an alternative phylogenetic hypothesis, that the phylum Loricifera is a sister taxon to Nematomorpha, although the actual phylogenetic position of the phylum remains unclear. Ecdysozoan phylogeny was reconstructed through maximum-likelihood (ML) and Bayesian inference (BI) analyses of nuclear 18S and 28S rRNA gene sequences from 60 species representing all eight ecdysozoan phyla, and including a newly collected loriciferan species. Ecdysozoa comprised two clades with high support values in both the ML and BI trees. One consisted of Priapulida and Kinorhyncha, and the other of Loricifera, Nematoida, and Panarthropoda (Tardigrada, Onychophora, and Arthropoda). The relationships between Loricifera, Nematoida, and Panarthropoda were not well resolved. Loricifera appears to be closely related to Nematoida and Panarthropoda, rather than grouping with Priapulida and Kinorhyncha, as had been suggested by previous studies. Thus, both Scalidophora and Cycloneuralia are a polyphyletic or paraphyletic groups. In addition, Loricifera and Nematomorpha did not emerge as sister groups.

  11. Phylogeny and active ingredients of artificial Ophiocordyceps lanpingensis ascomata

    NASA Astrophysics Data System (ADS)

    Chen, Zihong; Xu, Ling; Yu, Hong; Zeng, Wenbo; Dai, Yongdong; Wang, Yuanbing

    2018-04-01

    To evaluate the morphological character, phylogenesis and functional components of artificial Ophiocordyceps lanpingensis, a related species of O. sinensis. The ascomata of O. lanpingensis was induced with its asexual strain, HLANY0707 and its microscopic feature was described. Phylogenesis was analyzed with ITS-5.8S sequences of HLANY0707, its cultured stroma, and 39 relative sequences of Hirsutella and Ophiocordyceps based on the maximum likelihood tree. Six nucleosides of artificial O. lanpingensis, natural O. lanpingensis and natural O. sinensis were compared with HPLC analysis. Artificial ascomata of O. lanpingensis could be massively produced with HLANY0707 and had similar microscopic features as the nature specimens. Phylogenetic analysis showed that both the artificial and natural O. lanpingensis had closer relationship with O. sinensis, O. xuefengensis, H. uncinata and O. robertsii, the species whose massively cultured ascomata being not reported. Nucleosides of artificial O. lanpingensis were very similar to natural O. sinensis, implying a promising application prospect of artificial O. lanpingensis as an alternative to O. sinensis. It showed a promising way to develop artificial O. lanpingensis and conserve the rare and endangered species, O. sinensis.

  12. Applications of Ecophylogenetics to Benthic Communities in the Northern Gulf of Mexico: Do Functional Traits Follow Phylogeny?

    NASA Astrophysics Data System (ADS)

    Gadeken, K.; Dorgan, K. M.; Moore, J.; Berke, S. K.

    2016-02-01

    Evolutionary relationships may shed light on observed patterns of diversity and functional traits when viewed through the lens of phylogeny. The potential for phylogenetic information to be used to explain patterns in community structure, such as niche partitioning and responses to stress, is extensive. Differential distribution of related species with similar functional traits suggests niche partitioning, and local redundancy in functional traits may indicate the potential for interspecific competition. In this study, we investigated phylogenetic and functional diversity as a function of habitat for sites with varying levels of oil contamination in the Northern Gulf of Mexico. Our study was conducted in a shallow benthic community at the Chandeleur Islands, a group of uninhabited barrier islands. Infauna were sampled from seagrass (Halodule wrightii) and bare sediment at three sites along the island chain that experienced variable levels of oil impact from the Deepwater Horizon oil spill. Individuals were preserved and 18S and COI genes sequenced, and a phylogenetic tree was constructed of the local community using maximum likelihood. Phylogenetic diversity and evenness were quantified. Ecologically important functional traits were then compiled into respective distance matrices, evaluated through different functional diversity indices, and assessed for correlation with the phylogeny. This integration of functional and phylogenetic diversity has the potential to provide greater insight into factors driving community structure than either metric alone. Determining relevant metrics of diversity is critical to understanding the ecological effects of major disturbances such as oil spills.

  13. Maximum Likelihood Estimation with Emphasis on Aircraft Flight Data

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.; Maine, R. E.

    1985-01-01

    Accurate modeling of flexible space structures is an important field that is currently under investigation. Parameter estimation, using methods such as maximum likelihood, is one of the ways that the model can be improved. The maximum likelihood estimator has been used to extract stability and control derivatives from flight data for many years. Most of the literature on aircraft estimation concentrates on new developments and applications, assuming familiarity with basic estimation concepts. Some of these basic concepts are presented. The maximum likelihood estimator and the aircraft equations of motion that the estimator uses are briefly discussed. The basic concepts of minimization and estimation are examined for a simple computed aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to help illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Specific examples of estimation of structural dynamics are included. Some of the major conclusions for the computed example are also developed for the analysis of flight data.

  14. Testing students' e-learning via Facebook through Bayesian structural equation modeling.

    PubMed

    Salarzadeh Jenatabadi, Hashem; Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad

    2017-01-01

    Learning is an intentional activity, with several factors affecting students' intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods' results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated.

  15. Evidence of seasonal variation in longitudinal growth of height in a sample of boys from Stuttgart Carlsschule, 1771-1793, using combined principal component analysis and maximum likelihood principle.

    PubMed

    Lehmann, A; Scheffler, Ch; Hermanussen, M

    2010-02-01

    Recent progress in modelling individual growth has been achieved by combining the principal component analysis and the maximum likelihood principle. This combination models growth even in incomplete sets of data and in data obtained at irregular intervals. We re-analysed late 18th century longitudinal growth of German boys from the boarding school Carlsschule in Stuttgart. The boys, aged 6-23 years, were measured at irregular 3-12 monthly intervals during the period 1771-1793. At the age of 18 years, mean height was 1652 mm, but height variation was large. The shortest boy reached 1474 mm, the tallest 1826 mm. Measured height closely paralleled modelled height, with mean difference of 4 mm, SD 7 mm. Seasonal height variation was found. Low growth rates occurred in spring and high growth rates in summer and autumn. The present study demonstrates that combining the principal component analysis and the maximum likelihood principle enables growth modelling in historic height data also. Copyright (c) 2009 Elsevier GmbH. All rights reserved.

  16. Testing students’ e-learning via Facebook through Bayesian structural equation modeling

    PubMed Central

    Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad

    2017-01-01

    Learning is an intentional activity, with several factors affecting students’ intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods’ results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated. PMID:28886019

  17. Reclassification of Theileria annae as Babesia vulpes sp. nov.

    PubMed

    Baneth, Gad; Florin-Christensen, Monica; Cardoso, Luís; Schnittger, Leonhard

    2015-04-08

    Theileria annae is a tick-transmitted small piroplasmid that infects dogs and foxes in North America and Europe. Due to disagreement on its placement in the Theileria or Babesia genera, several synonyms have been used for this parasite, including Babesia Spanish dog isolate, Babesia microti-like, Babesia (Theileria) annae, and Babesia cf. microti. Infections by this parasite cause anemia, thrombocytopenia, and azotemia in dogs but are mostly subclinical in red foxes (Vulpes vulpes). Furthermore, high infection rates have been detected among red fox populations in distant regions strongly suggesting that these canines act as the parasite's natural host. This study aims to reassess and harmonize the phylogenetic placement and binomen of T. annae within the order Piroplasmida. Four molecular phylogenetic trees were constructed using a maximum likelihood algorithm based on DNA alignments of: (i) near-complete 18S rRNA gene sequences (n = 76 and n = 93), (ii) near-complete and incomplete 18S rRNA gene sequences (n = 92), and (iii) tubulin-beta gene sequences (n = 32) from B. microti and B. microti-related parasites including those detected in dogs and foxes. All phylogenetic trees demonstrate that T. annae and its synonyms are not Theileria parasites but are most closely related with B. microti. The phylogenetic tree based on the 18S rRNA gene forms two separate branches with high bootstrap value, of which one branch corresponds to Babesia species infecting rodents, humans, and macaques, while the other corresponds to species exclusively infecting carnivores. Within the carnivore group, T. annae and its synonyms from distant regions segregate into a single clade with a highly significant bootstrap value corroborating their separate species identity. Phylogenetic analysis clearly shows that T. annae and its synonyms do not pertain to Theileria and can be clearly defined as a separate species. Based on the facts that T. annae and its synonyms have not been shown to have a leukocyte stage, as expected in Theileria, do not infect humans and rodents as B. microti, and cluster phylogenetically as a separate species, this study proposes to name this parasite Babesia vulpes sp. nov., after its natural host, the red fox V. vulpes.

  18. Population Synthesis of Radio and Gamma-ray Pulsars using the Maximum Likelihood Approach

    NASA Astrophysics Data System (ADS)

    Billman, Caleb; Gonthier, P. L.; Harding, A. K.

    2012-01-01

    We present the results of a pulsar population synthesis of normal pulsars from the Galactic disk using a maximum likelihood method. We seek to maximize the likelihood of a set of parameters in a Monte Carlo population statistics code to better understand their uncertainties and the confidence region of the model's parameter space. The maximum likelihood method allows for the use of more applicable Poisson statistics in the comparison of distributions of small numbers of detected gamma-ray and radio pulsars. Our code simulates pulsars at birth using Monte Carlo techniques and evolves them to the present assuming initial spatial, kick velocity, magnetic field, and period distributions. Pulsars are spun down to the present and given radio and gamma-ray emission characteristics. We select measured distributions of radio pulsars from the Parkes Multibeam survey and Fermi gamma-ray pulsars to perform a likelihood analysis of the assumed model parameters such as initial period and magnetic field, and radio luminosity. We present the results of a grid search of the parameter space as well as a search for the maximum likelihood using a Markov Chain Monte Carlo method. We express our gratitude for the generous support of the Michigan Space Grant Consortium, of the National Science Foundation (REU and RUI), the NASA Astrophysics Theory and Fundamental Program and the NASA Fermi Guest Investigator Program.

  19. Reversible polymorphism-aware phylogenetic models and their application to tree inference.

    PubMed

    Schrempf, Dominik; Minh, Bui Quang; De Maio, Nicola; von Haeseler, Arndt; Kosiol, Carolin

    2016-10-21

    We present a reversible Polymorphism-Aware Phylogenetic Model (revPoMo) for species tree estimation from genome-wide data. revPoMo enables the reconstruction of large scale species trees for many within-species samples. It expands the alphabet of DNA substitution models to include polymorphic states, thereby, naturally accounting for incomplete lineage sorting. We implemented revPoMo in the maximum likelihood software IQ-TREE. A simulation study and an application to great apes data show that the runtimes of our approach and standard substitution models are comparable but that revPoMo has much better accuracy in estimating trees, divergence times and mutation rates. The advantage of revPoMo is that an increase of sample size per species improves estimations but does not increase runtime. Therefore, revPoMo is a valuable tool with several applications, from speciation dating to species tree reconstruction. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Parallel Evolution and Horizontal Gene Transfer of the pst Operon in Firmicutes from Oligotrophic Environments

    PubMed Central

    Moreno-Letelier, Alejandra; Olmedo, Gabriela; Eguiarte, Luis E.; Martinez-Castilla, Leon; Souza, Valeria

    2011-01-01

    The high affinity phosphate transport system (pst) is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB) has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS) were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events. PMID:21461370

  1. Handling Missing Data With Multilevel Structural Equation Modeling and Full Information Maximum Likelihood Techniques.

    PubMed

    Schminkey, Donna L; von Oertzen, Timo; Bullock, Linda

    2016-08-01

    With increasing access to population-based data and electronic health records for secondary analysis, missing data are common. In the social and behavioral sciences, missing data frequently are handled with multiple imputation methods or full information maximum likelihood (FIML) techniques, but healthcare researchers have not embraced these methodologies to the same extent and more often use either traditional imputation techniques or complete case analysis, which can compromise power and introduce unintended bias. This article is a review of options for handling missing data, concluding with a case study demonstrating the utility of multilevel structural equation modeling using full information maximum likelihood (MSEM with FIML) to handle large amounts of missing data. MSEM with FIML is a parsimonious and hypothesis-driven strategy to cope with large amounts of missing data without compromising power or introducing bias. This technique is relevant for nurse researchers faced with ever-increasing amounts of electronic data and decreasing research budgets. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Molecular phylogeny of black fungus gnats (Diptera: Sciaroidea: Sciaridae) and the evolution of larval habitats.

    PubMed

    Shin, Seunggwan; Jung, Sunghoon; Menzel, Frank; Heller, Kai; Lee, Heungsik; Lee, Seunghwan

    2013-03-01

    The phylogeny of the family Sciaridae is reconstructed, based on maximum likelihood, maximum parsimony, and Bayesian analyses of 4809bp from two mitochondrial (COI and 16S) and two nuclear (18S and 28S) genes for 100 taxa including the outgroup taxa. According to the present phylogenetic analyses, Sciaridae comprise three subfamilies and two genus groups: Sciarinae, Chaetosciara group, Cratyninae, and Pseudolycoriella group+Megalosphyinae. Our molecular results are largely congruent with one of the former hypotheses based on morphological data with respect to the monophyly of genera and subfamilies (Sciarinae, Megalosphyinae, and part of postulated "new subfamily"); however, the subfamily Cratyninae is shown to be polyphyletic, and the genera Bradysia, Corynoptera, Leptosciarella, Lycoriella, and Phytosciara are also recognized as non-monophyletic groups. While the ancestral larval habitat state of the family Sciaridae, based on Bayesian inference, is dead plant material (plant litter+rotten wood), the common ancestors of Phytosciara and Bradysia are inferred to living plants habitat. Therefore, shifts in larval habitats from dead plant material to living plants may have occurred within the Sciaridae at least once. Based on the results, we discuss phylogenetic relationships within the family, and present an evolutionary scenario of development of larval habitats. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Statistical parsimony networks and species assemblages in Cephalotrichid nemerteans (nemertea).

    PubMed

    Chen, Haixia; Strand, Malin; Norenburg, Jon L; Sun, Shichun; Kajihara, Hiroshi; Chernyshev, Alexey V; Maslakova, Svetlana A; Sundberg, Per

    2010-09-21

    It has been suggested that statistical parsimony network analysis could be used to get an indication of species represented in a set of nucleotide data, and the approach has been used to discuss species boundaries in some taxa. Based on 635 base pairs of the mitochondrial protein-coding gene cytochrome c oxidase I (COI), we analyzed 152 nemertean specimens using statistical parsimony network analysis with the connection probability set to 95%. The analysis revealed 15 distinct networks together with seven singletons. Statistical parsimony yielded three networks supporting the species status of Cephalothrix rufifrons, C. major and C. spiralis as they currently have been delineated by morphological characters and geographical location. Many other networks contained haplotypes from nearby geographical locations. Cladistic structure by maximum likelihood analysis overall supported the network analysis, but indicated a false positive result where subnetworks should have been connected into one network/species. This probably is caused by undersampling of the intraspecific haplotype diversity. Statistical parsimony network analysis provides a rapid and useful tool for detecting possible undescribed/cryptic species among cephalotrichid nemerteans based on COI gene. It should be combined with phylogenetic analysis to get indications of false positive results, i.e., subnetworks that would have been connected with more extensive haplotype sampling.

  4. The Complete Mitochondrial Genome of Galba pervia (Gastropoda: Mollusca), an Intermediate Host Snail of Fasciola spp

    PubMed Central

    Huang, Wei-Yi; Zhao, Guang-Hui; Wei, Shu-Jun; Song, Hui-Qun; Xu, Min-Jun; Lin, Rui-Qing; Zhou, Dong-Hui; Zhu, Xing-Quan

    2012-01-01

    Complete mitochondrial (mt) genomes and the gene rearrangements are increasingly used as molecular markers for investigating phylogenetic relationships. Contributing to the complete mt genomes of Gastropoda, especially Pulmonata, we determined the mt genome of the freshwater snail Galba pervia, which is an important intermediate host for Fasciola spp. in China. The complete mt genome of G. pervia is 13,768 bp in length. Its genome is circular, and consists of 37 genes, including 13 genes for proteins, 2 genes for rRNA, 22 genes for tRNA. The mt gene order of G. pervia showed novel arrangement (tRNA-His, tRNA-Gly and tRNA-Tyr change positions and directions) when compared with mt genomes of Pulmonata species sequenced to date, indicating divergence among different species within the Pulmonata. A total of 3655 amino acids were deduced to encode 13 protein genes. The most frequently used amino acid is Leu (15.05%), followed by Phe (11.24%), Ser (10.76%) and IIe (8.346%). Phylogenetic analyses using the concatenated amino acid sequences of the 13 protein-coding genes, with three different computational algorithms (maximum parsimony, maximum likelihood and Bayesian analysis), all revealed that the families Lymnaeidae and Planorbidae are closely related two snail families, consistent with previous classifications based on morphological and molecular studies. The complete mt genome sequence of G. pervia showed a novel gene arrangement and it represents the first sequenced high quality mt genome of the family Lymnaeidae. These novel mtDNA data provide additional genetic markers for studying the epidemiology, population genetics and phylogeographics of freshwater snails, as well as for understanding interplay between the intermediate snail hosts and the intra-mollusca stages of Fasciola spp.. PMID:22844544

  5. A Radical Solution: The Phylogeny of the Nudibranch Family Fionidae

    PubMed Central

    Cella, Kristen; Ekimova, Irina; Chichvarkhin, Anton; Schepetov, Dimitry; Gosliner, Terrence M.

    2016-01-01

    Tergipedidae represents a diverse and successful group of aeolid nudibranchs, with approximately 200 species distributed throughout most marine ecosystems and spanning all biogeographical regions of the oceans. However, the systematics of this family remains poorly understood since no modern phylogenetic study has been undertaken to support any of the proposed classifications. The present study is the first molecular phylogeny of Tergipedidae based on partial sequences of two mitochondrial (COI and 16S) genes and one nuclear gene (H3). Maximum likelihood, maximum parsimony and Bayesian analysis were conducted in order to elucidate the systematics of this family. Our results do not recover the traditional Tergipedidae as monophyletic, since it belongs to a larger clade that includes the families Eubranchidae, Fionidae and Calmidae. This newly recovered clade is here referred to as Fionidae, the oldest name for this taxon. In addition, the present molecular phylogeny does not recover the traditional systematic relationships at a generic level, and therefore, systematic changes are required. We recognize the following clades within Fionidae: Calma, Cuthona, Cuthonella, Eubranchus, Fiona, Murmania, Tenellia, Tergipes, Tergiposacca gen. nov., Rubramoena gen. nov. and Abronica gen. nov. The type species of Tergiposacca, T. longicerata nov. sp. is described. The other two new genera have a previously described species as their type species. Most of these taxa, with the exceptions of Eubranchus, Tergipes and Fiona are composed of radically different constituent species from their traditional membership, but appear to be supported by morphological synapomorphies as well as molecular data. Aenigmastyletus, Catriona, Phestilla, Tenellia and Trinchesia are nested within other clades and, thus are here considered as synonyms of the larger clades. The phylogenetic position and validity of Myja, Guyvalvoria, Leostyletus and Subcuthona still need to be tested in future studies when material becomes available. PMID:27977703

  6. Morphological and molecular characterization of three Agaricus species from tropical Asia (Pakistan, Thailand) reveals a new group in section Xanthodermatei.

    PubMed

    Thongklang, Naritsada; Nawaz, Rizwana; Khalid, Abdul N; Chen, Jie; Hyde, Kevin D; Zhao, Ruilin; Parra, Luis A; Hanif, Muhammad; Moinard, Magalie; Callac, Philippe

    2014-01-01

    The genus Agaricus is known for its medicinal and edible species but also includes toxic species that belong to section Xanthodermatei. Previous phylogenetic reconstruction for temperate species, based on sequence data of nuc rRNA gene (rDNA) internal transcribed spacers (ITS), has revealed two major groups in this section and a possible third lineage for A. pseudopratensis. Recent research in Agaricus has shown that classifications need improving with the addition of tropical taxa. In this study we add new tropical collections to section Xanthodermatei. We describe three species from collections made in Pakistan and Thailand and include them in a larger analysis using all available ITS data for section Xanthodermatei. Agaricus bisporiticus sp. nov. and A. fuscopunctatus sp. nov. are introduced based on molecular and morphological studies, whereas A. microvolvatulus is recorded for the first time in Asia. Specimens from Thailand however have a much larger pileus than the type specimens from Congo. In maximum likelihood (ML) and maximum parsimony (MP) phylogenetic analyses these three species cluster with A. pseudopratensis from the Mediterranean area and A. murinocephalus recently described from Thailand. In Agaricus section Xanthodermatei this new group is monophyletic and receives low bootstrap support whereas the two previously known groups receive strong support. Within the new group, the most closely related species share some traits, but we did not find any unifying morphological character; however the five species of the group share a unique short nucleotide sequence. Two putatively toxic species of section Xanthodermatei are now recognized in Pakistan and six in Thailand. © 2014 by The Mycological Society of America.

  7. Initial sequence characterization of the rhabdoviruses of squamate reptiles, including a novel rhabdovirus from a caiman lizard (Dracaena guianensis).

    PubMed

    Wellehan, James F X; Pessier, Allan P; Archer, Linda L; Childress, April L; Jacobson, Elliott R; Tesh, Robert B

    2012-08-17

    Rhabdoviruses infect a variety of hosts, including non-avian reptiles. Consensus PCR techniques were used to obtain partial RNA-dependent RNA polymerase gene sequence from five rhabdoviruses of South American lizards; Marco, Chaco, Timbo, Sena Madureira, and a rhabdovirus from a caiman lizard (Dracaena guianensis). The caiman lizard rhabdovirus formed inclusions in erythrocytes, which may be a route for infecting hematophagous insects. This is the first information on behavior of a rhabdovirus in squamates. We also obtained sequence from two rhabdoviruses of Australian lizards, confirming previous Charleville virus sequence and finding that, unlike a previous sequence report but in agreement with serologic reports, Almpiwar virus is clearly distinct from Charleville virus. Bayesian and maximum likelihood phylogenetic analysis revealed that most known rhabdoviruses of squamates cluster in the Almpiwar subgroup. The exception is Marco virus, which is found in the Hart Park group. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Molecular Phylogeny of Hantaviruses Harbored by Insectivorous Bats in Côte d’Ivoire and Vietnam

    PubMed Central

    Gu, Se Hun; Lim, Burton K.; Kadjo, Blaise; Arai, Satoru; Kim, Jeong-Ah; Nicolas, Violaine; Lalis, Aude; Denys, Christiane; Cook, Joseph A.; Dominguez, Samuel R.; Holmes, Kathryn V.; Urushadze, Lela; Sidamonidze, Ketevan; Putkaradze, Davit; Kuzmin, Ivan V.; Kosoy, Michael Y.; Song, Jin-Won; Yanagihara, Richard

    2014-01-01

    The recent discovery of genetically distinct hantaviruses in multiple species of shrews and moles prompted a further exploration of their host diversification by analyzing frozen, ethanol-fixed and RNAlater®-preserved archival tissues and fecal samples from 533 bats (representing seven families, 28 genera and 53 species in the order Chiroptera), captured in Asia, Africa and the Americas in 1981–2012, using RT-PCR. Hantavirus RNA was detected in Pomona roundleaf bats (Hipposideros pomona) (family Hipposideridae), captured in Vietnam in 1997 and 1999, and in banana pipistrelles (Neoromicia nanus) (family Vespertilionidae), captured in Côte d’Ivoire in 2011. Phylogenetic analysis, based on the full-length S- and partial M- and L-segment sequences using maximum likelihood and Bayesian methods, demonstrated that the newfound hantaviruses formed highly divergent lineages, comprising other recently recognized bat-borne hantaviruses in Sierra Leone and China. The detection of bat-associated hantaviruses opens a new era in hantavirology and provides insights into their evolutionary origins. PMID:24784569

  9. Identification of a testis-enriched heat shock protein and fourteen members of Hsp70 family in the swamp eel.

    PubMed

    He, Yan; Luo, Majing; Yi, Minhan; Sheng, Yue; Cheng, Yibin; Zhou, Rongjia; Cheng, Hanhua

    2013-01-01

    Gonad differentiation is one of the most important developmental events in vertebrates. Some heat shock proteins are associated with gonad development. Heat shock protein 70 (Hsp70) in the teleost fish and its roles in sex differentiation are poorly understood. We have identified a testis-enriched heat shock protein Hspa8b2 in the swamp eel using Western blot analysis and Mass Spectrometry (MS). Fourteen Hsp70 family genes were further identified in this species based on transcriptome information. The phylogenetic tree of Hsp70 family was constructed using the Maximum Likelihood method and their expression patterns in the swamp eel gonads were analyzed by reverse transcription-polymerase chain reaction (RT-PCR). There are fourteen gene members in the Hsp70 family in the swamp eel genome. Hsp70 family, particularly Hspa8, has expanded in the species. One of the family members Hspa8b2 is predominantly expressed in testis of the swamp eel.

  10. Relationships in subtribe Diocleinae (Leguminosae; Papilionoideae) inferred from internal transcribed spacer sequences from nuclear ribosomal DNA.

    PubMed

    Varela, Eduardo S; Lima, João P M S; Galdino, Alexsandro S; Pinto, Luciano da S; Bezerra, Walderly M; Nunes, Edson P; Alves, Maria A O; Grangeiro, Thalles B

    2004-01-01

    The complete sequences of nuclear ribosomal DNA (nrDNA) internal transcribed spacer regions (ITS/5.8S) were determined for species belonging to six genera from the subtribe Diocleinae as well as for the anomalous genera Calopogonium and Pachyrhizus. Phylogenetic trees constructed by distance matrix, maximum parsimony and maximum likelihood methods showed that Calopogonium and Pachyrhizus were outside the clade Diocleinae (Canavalia, Camptosema, Cratylia, Dioclea, Cymbosema, and Galactia). This finding supports previous morphological, phytochemical, and molecular evidence that Calopogonium and Pachyrhizus do not belong to the subtribe Diocleinae. Within the true Diocleinae clade, the clustering of genera and species were congruent with morphology-based classifications, suggesting that ITS/5.8S sequences can provide enough informative sites to allow resolution below the genus level. This is the first evidence of the phylogeny of subtribe Diocleinae based on nuclear DNA sequences.

  11. A century of paraphyly: a molecular phylogeny of katydids (Orthoptera: Tettigoniidae) supports multiple origins of leaf-like wings.

    PubMed

    Mugleston, Joseph D; Song, Hojun; Whiting, Michael F

    2013-12-01

    The phylogenetic relationships of Tettigoniidae (katydids and bush-crickets) were inferred using molecular sequence data. Six genes (18S rDNA, 28S rDNA, Cytochrome Oxidase II, Histone 3, Tubulin Alpha I, and Wingless) were sequenced for 135 ingroup taxa representing 16 of the 19 extant katydid subfamilies. Five subfamilies (Tettigoniinae, Pseudophyllinae, Mecopodinae, Meconematinae, and Listroscelidinae) were found to be paraphyletic under various tree reconstruction methods (Maximum Likelihood, Bayesisan Inference and Maximum Parsimony). Seven subfamilies - Conocephalinae, Hetrodinae, Hexacentrinae, Saginae, Phaneropterinae, Phyllophorinae, and Lipotactinae - were each recovered as well-supported monophyletic groups. We mapped the small and exposed thoracic auditory spiracle (a defining character of the subfamily Pseudophyllinae) and found it to be homoplasious. We also found the leaf-like wings of katydids have been derived independently in at least six lineages. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Two mitochondrial genomes in Alcedinidae (Ceryle rudis/Halcyon pileata) and the phylogenetic placement of Coraciiformes.

    PubMed

    Sun, Xiaomin; Zhao, Ruoping; Zhang, Ting; Gong, Jie; Jing, Meidong; Huang, Ling

    2017-10-01

    Coraciiformes comprises 209 species belonging to ten families with significant divergence on external morphologies and life styles. The phylogenetic placement of Coraciiformes was still in debate. Here, we determined the complete mitochondrial genomes (mitogenomes) of Crested Kingfisher (Ceryle rudis) and Black-capped Kingfisher (Halcyon pileata). The mitogenomes were 17,355 bp (C. rudis) and 17,612 bp (H. pileata) in length, and both of them contained 37 genes (two rRNA genes, 22 tRNA genes and 13 protein-coding genes) and one control region. The gene organizations and characters of two mitogenomes were similar with those of other mitogenomes in Coraciiformes, however the sizes and nucleotide composition of control regions in different mitogenomes were significantly different. Phylogenetic trees were constructed with both Bayesian and Maximum Likelihood methods based on mitogenome sequences from 11 families of six orders. The trees based on two different data sets supported the basal position of Psittacidae (Psittaciformes), the closest relationship between Cuculiformes (Cuculidae) and Trogoniformes (Trogonidae), and the close relationship between Coraciiformes and Piciformes. The phylogenetic placement of the clade including Cuculiformes and Trogoniformes has not been resolved in present study, which need further investigations with more molecular markers and species. The mitogenome sequences presented here provided valuable data for further taxonomic studies on Coraciiformes and other related groups.

  13. Maximum likelihood convolutional decoding (MCD) performance due to system losses

    NASA Technical Reports Server (NTRS)

    Webster, L.

    1976-01-01

    A model for predicting the computational performance of a maximum likelihood convolutional decoder (MCD) operating in a noisy carrier reference environment is described. This model is used to develop a subroutine that will be utilized by the Telemetry Analysis Program to compute the MCD bit error rate. When this computational model is averaged over noisy reference phase errors using a high-rate interpolation scheme, the results are found to agree quite favorably with experimental measurements.

  14. Pathogenicity and molecular analysis of an infectious bursal disease virus isolated from Malaysian village chickens.

    PubMed

    Tan, D Y; Hair-Bejo, M; Omar, A R; Aini, I

    2004-01-01

    The characteristics of the pathogenic infectious bursal disease virus (IBDV) that infected avian species other than commercial chickens were largely unknown. In this study, by using in vivo and molecular methods, we had characterized an IBDV isolate (named 94268) isolated from an infectious bursal disease (IBD) outbreak in Malaysian village chickens--the adulterated descendant of the Southeast Asian jungle fowl (Gallus bankiva) that were commonly reared in the backyard. The 94268 isolate was grouped as the very virulent IBDV (vvIBDV) strain because it caused severe lesions and a high mortality rate in village chickens (>88%) and experimentally infected specific-pathogen-free chickens (>66%). In addition, it possessed all of the vvIBDV molecular markers in its VP2 gene. Phylogenetic analysis using distance, maximum parsimony, and maximum likelihood methods revealed that 94268 was monophyletic with other vvIBDV isolates and closely related to the Malaysian vvIBDV isolates. Given that the VP2 gene of 94268 isolate was almost identical and evolutionarily closely related to other field IBDV isolates that affected the commercial chickens, we therefore concluded that IBD infections had spread across the farm boundary. IBD infection in the village chicken may represent an important part of the IBD epidemiology because these birds could harbor the vvIBDV strain and should not be overlooked in the control and prevention of the disease.

  15. Complete nuclear ribosomal DNA sequence amplification and molecular analyses of Bangia (Bangiales, Rhodophyta) from China

    NASA Astrophysics Data System (ADS)

    Xu, Jiajie; Jiang, Bo; Chai, Sanming; He, Yuan; Zhu, Jianyi; Shen, Zonggen; Shen, Songdong

    2016-09-01

    Filamentous Bangia, which are distributed extensively throughout the world, have simple and similar morphological characteristics. Scientists can classify these organisms using molecular markers in combination with morphology. We successfully sequenced the complete nuclear ribosomal DNA, approximately 13 kb in length, from a marine Bangia population. We further analyzed the small subunit ribosomal DNA gene (nrSSU) and the internal transcribed spacer (ITS) sequence regions along with nine other marine, and two freshwater Bangia samples from China. Pairwise distances of the nrSSU and 5.8S ribosomal DNA gene sequences show the marine samples grouping together with low divergences (00.003; 0-0.006, respectively) from each other, but high divergences (0.123-0.126; 0.198, respectively) from freshwater samples. An exception is the marine sample collected from Weihai, which shows high divergence from both other marine samples (0.063-0.065; 0.129, respectively) and the freshwater samples (0.097; 0.120, respectively). A maximum likelihood phylogenetic tree based on a combined SSU-ITS dataset with maximum likelihood method shows the samples divided into three clades, with the two marine sample clades containing Bangia spp. from North America, Europe, Asia, and Australia; and one freshwater clade, containing Bangia atropurpurea from North America and China.

  16. Molecular phylogenetics and evolution of host plant use in the Neotropical rolled leaf 'hispine' beetle genus Cephaloleia (Chevrolat) (Chrysomelidae: Cassidinae).

    PubMed

    McKenna, Duane D; Farrell, Brian D

    2005-10-01

    Here, we report the results of a species level phylogenetic study of Cephaloleia beetles designed to clarify relationships and patterns of host plant taxon and tissue use among species. Our study is based on up to 2088bp of mtDNA sequence data. Maximum parsimony, maximum likelihood, and Bayesian methods of phylogenetic inference consistently recover a monophyletic Cephaloleia outside of a basal clade of primarily palm feeding species (the 'Arecaceae-feeding clade'), and C. irregularis. In all three analyses, the 'Arecaceae-feeding clade' includes Cephaloleia spp. with unusual morphological features, and a few species currently placed in other cassidine genera and tribes. All three analyses also recover a clade that includes all Zingiberales feeding Cephaloleia and most Cephaloleia species (the 'Zingiberales-feeding clade'). Two notable clades are found within the 'Zingiberales-feeding clade.' One is comprised of beetles that normally feed only on the young rolled leaves of plants in the families Heliconiaceae and Marantaceae (the 'Heliconiaceae & Marantaceae-feeding clade'). The other is comprised of relative host tissue generalist, primarily Zingiberales feeding species (the 'generalist-feeding clade'). A few species in the 'generalist-feeding clade' utilize Cyperaceae or Poaceae as hosts. Overall, relatively basal Cephaloleia (e.g., the 'Arecaceae clade') feed on relatively basal monocots (e.g., Cyclanthaceae and Arecaceae), and relatively derived Cephaloleia (e.g., the 'Zingiberales-feeding clade') feed on relatively derived monocots (mostly in the order Zingiberales). Zingiberales feeding and specialization on young rolled Zingiberales leaves have each apparently evolved just once in Cephaloleia.

  17. Molecular phylogeography and cryptic speciation in the mosses, Mielichhoferia elongata and M. mielichhoferiana (Bryaceae).

    PubMed

    Shaw, A J

    2000-05-01

    Nucleotide sequence variation in the ITS1-5.8S-ITS2 region of nuclear ribosomal DNA (nrDNA) from 70 populations of Mielichhoferia elongata and M. mielichhoferiana, plus two outgroup species, was analysed using maximum parsimony and maximum likelihood methods. High levels of nucleotide substitution and numerous insertion-deletion events were detected within and between the two species. M. elongata is monophyletic with regard to nrDNA variation, but M. mielichhoferiana is paraphyletic. (M. elongata is nested within it.) A clade within M. mielichhoferiana provides evidence of vicariance, with North American and Scandinavian sister groups of populations. Two major clades are resolved in M. elongata by sequence data that are completely congruent with previous isozyme work. One clade includes populations from both North America and Europe whereas the other is strictly North American. These two clades, resolved by multiple independent loci, clearly represent cryptic species within the morphologically uniform M. elongata. Certain geographical areas, most notably southwestern Colorado in Ouray and San Juan Counties, harbour diverse populations of M. elongata with distinct phylogenetic and phylogeographical histories. Morphologically indistinguishable but phylogenetically distant populations were detected a few metres apart at one site. In contrast, all populations collected over hundreds of kilometres in California belong to a single clade. Arctic North American populations belong to a clade that includes disjunct populations in Alaska, northern Ellesmere Island, and the northeastern USA, but not subarctic Swedish populations, which are more closely related to plants from the Rocky Mountains. Morphological uniformity belies complex infraspecific phylogenetic patterns within M. elongata and M. mielichhoferiana.

  18. Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach.

    PubMed

    Borner, Janus; Pick, Christian; Thiede, Jenny; Kolawole, Olatunji Matthew; Kingsley, Manchang Tanyi; Schulze, Jana; Cottontail, Veronika M; Wellinghausen, Nele; Schmidt-Chanasit, Jonas; Bruchhaus, Iris; Burmester, Thorsten

    2016-01-01

    The apicomplexan order Haemosporida is a clade of unicellular blood parasites that infect a variety of reptilian, avian and mammalian hosts. Among them are the agents of human malaria, parasites of the genus Plasmodium, which pose a major threat to human health. Illuminating the evolutionary history of Haemosporida may help us in understanding their enormous biological diversity, as well as tracing the multiple host switches and associated acquisitions of novel life-history traits. However, the deep-level phylogenetic relationships among major haemosporidian clades have remained enigmatic because the datasets employed in phylogenetic analyses were severely limited in either gene coverage or taxon sampling. Using a PCR-based approach that employs a novel set of primers, we sequenced fragments of 21 nuclear genes from seven haemosporidian parasites of the genera Leucocytozoon, Haemoproteus, Parahaemoproteus, Polychromophilus and Plasmodium. After addition of genomic data from 25 apicomplexan species, the unreduced alignment comprised 20,580 bp from 32 species. Phylogenetic analyses were performed based on nucleotide, codon and amino acid data employing Bayesian inference, maximum likelihood and maximum parsimony. All analyses resulted in highly congruent topologies. We found consistent support for a basal position of Leucocytozoon within Haemosporida. In contrast to all previous studies, we recovered a sister group relationship between the genera Polychromophilus and Plasmodium. Within Plasmodium, the sauropsid and mammal-infecting lineages were recovered as sister clades. Support for these relationships was high in nearly all trees, revealing a novel phylogeny of Haemosporida, which is robust to the choice of the outgroup and the method of tree inference. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Prevalence of infection and molecular confirmation by using ITS-2 region of Fasciola gigantica found in domestic cattle from Chiang Mai province, Thailand.

    PubMed

    Phalee, Anawat; Wongsawad, Chalobol

    2014-03-01

    To investigate the infection of Fasciola gigantica (F. gigantica) in domestic cattle from Chiang Mai province and molecular confirmation using ITS-2 region. The liver and gall bladder of Bubalus bubalis (B. bubalis) and Bos taurus (B. taurus) from slaughterhouses were examined adult worms and prevalence investigation. The species confirmation with phylogenetic analysis using ITS-2 sequences was performed by maximum likelihood and UPGMA methods. The total prevalences of infection in B. bubalis and Bubalus taurus (B. taurus) were 67.27% and 52.94% respectively. The respective prevalence in both B. bubalis and B. taurus were acquired from Doi-Saket, Muang, and Sanpatong districts, with 81.25%, 62.50% and 60.00% for B. bubalis and 62.50%, 50.00% and 47.06% for Bos taurus respectively. The species confirmation of F. gigantica and some related species by basing on maximum likelihood and UPGMA methods used, 4 groups of trematodes were generated, first F. gigantica group including specimen of Chiang Mai, second 2 samples of F. hepatica, third group of 3 rumen flukes; Orthocoelium streptocoelium, F. elongatus and Paramphistomum epliclitum and fourth group of 3 minute intestinal flukes; Haplorchis taichui, Stellantchasmu falcatus, Haplorchoides sp. and liver fluke; Opisthorchis viverrini respectively. These results can be confirmed the Giant liver fluke which mainly caused fascioliasis in Chiang Mai was identified as F. gigantica and specimens were the same as those of F. gigantica recorded in other different countries. Nucleotide sequence of ITS-2 region has been proven as effective diagnostic tool for the identification of F. gigantica. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  20. The complete mitochondrial genome of Plodia interpunctella (Lepidoptera: Pyralidae) and comparison with other Pyraloidea insects.

    PubMed

    Liu, Qiu-Ning; Chai, Xin-Yue; Bian, Dan-Dan; Zhou, Chun-Lin; Tang, Bo-Ping

    2016-01-01

    The mitochondrial (mt) genome can provide important information for the understanding of phylogenetic relationships. The complete mt genome of Plodia interpunctella (Lepidoptera: Pyralidae) has been sequenced. The circular genome is 15 287 bp in size, encoding 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The AT skew of this mt genome is slightly negative, and the nucleotide composition is biased toward A+T nucleotides (80.15%). All PCGs start with the typical ATN (ATA, ATC, ATG, and ATT) codons, except for the cox1 gene which may start with the CGA codon. Four of the 13 PCGs harbor the incomplete termination codon T or TA. All the tRNA genes are folded into the typical clover-leaf structure of mitochondrial tRNA, except for trnS1 (AGN) in which the DHU arm fails to form a stable stem-loop structure. The overlapping sequences are 35 bp in total and are found in seven different locations. A total of 240 bp of intergenic spacers are scattered in 16 regions. The control region of the mt genome is 327 bp in length and consisted of several features common to the sequenced lepidopteran insects. Phylogenetic analysis based on 13 PCGs using the Maximum Likelihood method shows that the placement of P. interpunctella was within the Pyralidae.

  1. Phylogenetic analysis of the light-harvesting system in Chromera velia.

    PubMed

    Pan, Hao; Slapeta, Jan; Carter, Dee; Chen, Min

    2012-03-01

    Chromera velia is a newly discovered photosynthetic eukaryotic alga that has functional chloroplasts closely related to the apicoplast of apicomplexan parasites. Recently, the chloroplast in C. velia was shown to be derived from the red algal lineage. Light-harvesting protein complexes (LHC), which are a group of proteins involved in photon capture and energy transfer in photosynthesis, are important for photosynthesis efficiency, photo-adaptation/accumulation and photo-protection. Although these proteins are encoded by genes located in the nucleus, LHC peptides migrate and function in the chloroplast, hence the LHC may have a different evolutionary history compared to chloroplast evolution. Here, we compare the phylogenetic relationship of the C. velia LHCs to LHCs from other photosynthetic organisms. Twenty-three LHC homologues retrieved from C. velia EST sequences were aligned according to their conserved regions. The C. velia LHCs are positioned in four separate groups on trees constructed by neighbour-joining, maximum likelihood and Bayesian methods. A major group of seventeen LHCs from C. velia formed a separate cluster that was closest to dinoflagellate LHC, and to LHC and fucoxanthin chlorophyll-binding proteins from diatoms. One C. velia LHC sequence grouped with LI1818/LI818-like proteins, which were recently identified as environmental stress-induced protein complexes. Only three LHC homologues from C. velia grouped with the LHCs from red algae.

  2. Congruent Deep Relationships in the Grape Family (Vitaceae) Based on Sequences of Chloroplast Genomes and Mitochondrial Genes via Genome Skimming

    PubMed Central

    Zhang, Ning; Wen, Jun; Zimmer, Elizabeth A.

    2015-01-01

    Vitaceae is well-known for having one of the most economically important fruits, i.e., the grape (Vitis vinifera). The deep phylogeny of the grape family was not resolved until a recent phylogenomic analysis of 417 nuclear genes from transcriptome data. However, it has been reported extensively that topologies based on nuclear and organellar genes may be incongruent due to differences in their evolutionary histories. Therefore, it is important to reconstruct a backbone phylogeny of the grape family using plastomes and mitochondrial genes. In this study, next-generation sequencing data sets of 27 species were obtained using genome skimming with total DNAs from silica-gel preserved tissue samples on an Illumina HiSeq 2500 instrument. Plastomes were assembled using the combination of de novo and reference genome (of V. vinifera) methods. Sixteen mitochondrial genes were also obtained via genome skimming using the reference genome of V. vinifera. Extensive phylogenetic analyses were performed using maximum likelihood and Bayesian methods. The topology based on either plastome data or mitochondrial genes is congruent with the one using hundreds of nuclear genes, indicating that the grape family did not exhibit significant reticulation at the deep level. The results showcase the power of genome skimming in capturing extensive phylogenetic data: especially from chloroplast and mitochondrial DNAs. PMID:26656830

  3. Plantactinospora sonchi sp. nov., an actinobacterium isolated from the leaves of common sowthistle (Sonchus oleraceus L.).

    PubMed

    Ma, Zhaoxu; Liu, Chongxi; Fan, Jianlong; He, Hairong; Li, Chuang; Li, Jiansong; Zhao, Shanshan; Xiang, Wensheng; Wang, Xiangjing

    2015-12-01

    A novel actinobacterium, designated strain NEAU-QY2T, was isolated from the leaves of Sonchus oleraceus L. specimen, collected from Wuchang, Heilongjiang Province, China. A polyphasic study was carried out to establish the taxonomic position of this strain. The organism formed single spores with rough surfaces on substrate mycelia. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-QY2T belonged to the genus Plantactinospora and formed a monophyletic clade with its closest related strains Plantactinospora endophytica YIM 68255T (99.2 % 16S rRNA gene sequence similarity), Plantactinospora veratri NEAU-FHS4T (98.8 %) and Plantactinospora mayteni YIM 61359T(98.7 %), an association that was supported by a bootstrap value of 90 % in the neighbor-joining tree and also recovered with the maximum-likelihood algorithm. However, DNA-DNA hybridization values between strain NEAU-QY2T and the three closely related strains were below 70 %. With reference to phenotypic characteristics, phylogenetic data and DNA-DNA hybridization results, strain NEAU-QY2T was distinguished from closely related strains and is classified as representing a novel species of the genus Plantactinospora, for which the name Plantactinospora sonchi sp. nov. is proposed. The type strain is NEAU-QY2T (=CGMCC4.7216T=JCM 30345T).

  4. Congruent Deep Relationships in the Grape Family (Vitaceae) Based on Sequences of Chloroplast Genomes and Mitochondrial Genes via Genome Skimming.

    PubMed

    Zhang, Ning; Wen, Jun; Zimmer, Elizabeth A

    2015-01-01

    Vitaceae is well-known for having one of the most economically important fruits, i.e., the grape (Vitis vinifera). The deep phylogeny of the grape family was not resolved until a recent phylogenomic analysis of 417 nuclear genes from transcriptome data. However, it has been reported extensively that topologies based on nuclear and organellar genes may be incongruent due to differences in their evolutionary histories. Therefore, it is important to reconstruct a backbone phylogeny of the grape family using plastomes and mitochondrial genes. In this study,next-generation sequencing data sets of 27 species were obtained using genome skimming with total DNAs from silica-gel preserved tissue samples on an Illumina NextSeq 500 instrument [corrected]. Plastomes were assembled using the combination of de novo and reference genome (of V. vinifera) methods. Sixteen mitochondrial genes were also obtained via genome skimming using the reference genome of V. vinifera. Extensive phylogenetic analyses were performed using maximum likelihood and Bayesian methods. The topology based on either plastome data or mitochondrial genes is congruent with the one using hundreds of nuclear genes, indicating that the grape family did not exhibit significant reticulation at the deep level. The results showcase the power of genome skimming in capturing extensive phylogenetic data: especially from chloroplast and mitochondrial DNAs.

  5. Phylogenetic Position and Subspecies Divergence of the Endangered New Zealand Dotterel (Charadrius obscurus)

    PubMed Central

    Barth, Julia M. I.; Matschiner, Michael; Robertson, Bruce C.

    2013-01-01

    The New Zealand Dotterel (Charadrius obscurus), an endangered shorebird of the family Charadriidae, is endemic to New Zealand where two subspecies are recognized. These subspecies are not only separated geographically, with C. o. aquilonius being distributed in the New Zealand North Island and C. o. obscurus mostly restricted to Stewart Island, but also differ substantially in morphology and behavior. Despite these divergent traits, previous work has failed to detect genetic differentiation between the subspecies, and the question of when and where the two populations separated is still open. Here, we use mitochondrial and nuclear markers to address molecular divergence between the subspecies, and apply maximum likelihood and Bayesian methods to place C. obscurus within the non-monophyletic genus Charadrius. Despite very little overall differentiation, distinct haplotypes for the subspecies were detected, thus supporting molecular separation of the northern and southern populations. Phylogenetic analysis recovers a monophyletic clade combining the New Zealand Dotterel with two other New Zealand endemic shorebirds, the Wrybill and the Double-Banded Plover, thus suggesting a single dispersal event as the origin of this group. Divergence dates within Charadriidae were estimated with BEAST 2, and our results indicate a Middle Miocene origin of New Zealand endemic Charadriidae, a Late Miocene emergence of the lineage leading to the New Zealand Dotterel, and a Middle to Late Pleistocene divergence of the two New Zealand Dotterel subspecies. PMID:24205094

  6. A maximum pseudo-profile likelihood estimator for the Cox model under length-biased sampling

    PubMed Central

    Huang, Chiung-Yu; Qin, Jing; Follmann, Dean A.

    2012-01-01

    This paper considers semiparametric estimation of the Cox proportional hazards model for right-censored and length-biased data arising from prevalent sampling. To exploit the special structure of length-biased sampling, we propose a maximum pseudo-profile likelihood estimator, which can handle time-dependent covariates and is consistent under covariate-dependent censoring. Simulation studies show that the proposed estimator is more efficient than its competitors. A data analysis illustrates the methods and theory. PMID:23843659

  7. Methamphetamine injecting is associated with phylogenetic clustering of hepatitis C virus infection among street-involved youth in Vancouver, Canada*

    PubMed Central

    Cunningham, Evan; Jacka, Brendan; DeBeck, Kora; Applegate, Tanya A; Harrigan, P. Richard; Krajden, Mel; Marshall, Brandon DL; Montaner, Julio; Lima, Viviane Dias; Olmstead, Andrea; Milloy, M-J; Wood, Evan; Grebely, Jason

    2015-01-01

    Background Among prospective cohorts of people who inject drugs (PWID), phylogenetic clustering of HCV infection has been observed. However, the majority of studies have included older PWID, representing distant transmission events. The aim of this study was to investigate phylogenetic clustering of HCV infection among a cohort of street-involved youth. Methods Data were derived from a prospective cohort of street-involved youth aged 14–26 recruited between 2005 and 2012 in Vancouver, Canada (At Risk Youth Study, ARYS). HCV RNA testing and sequencing (Core-E2) were performed on HCV positive participants. Phylogenetic trees were inferred using maximum likelihood methods and clusters were identified using ClusterPicker (Core-E2 without HVR1, 90% bootstrap threshold, 0.05 genetic distance threshold). Results Among 945 individuals enrolled in ARYS, 16% (n=149, 100% recent injectors) were HCV antibody positive at baseline interview (n=86) or seroconverted during follow-up (n=63). Among HCV antibody positive participants with available samples (n=131), 75% (n=98) had detectable HCV RNA and 66% (n=65, mean age 23, 58% with recent methamphetamine injection, 31% female, 3% HIV+) had available Core-E2 sequences. Of those with Core-E2 sequence, 14% (n=9) were in a cluster (one cluster of three) or pair (two pairs), with all reporting recent methamphetamine injection. Recent methamphetamine injection was associated with membership in a cluster or pair (P=0.009). Conclusion In this study of street-involved youth with HCV infection and recent injecting, 14% demonstrated phylogenetic clustering. Phylogenetic clustering was associated with recent methamphetamine injection, suggesting that methamphetamine drug injection may play an important role in networks of HCV transmission. PMID:25977204

  8. The complete mitochondrial genome of the tapeworm Cladotaenia vulturi (Cestoda: Paruterinidae): gene arrangement and phylogenetic relationships with other cestodes.

    PubMed

    Guo, Aijiang

    2016-08-31

    Tapeworms Cladotaenia spp. are among the most important wildlife pathogens in birds of prey. The genus Cladotaenia is placed in the family Paruterinidae based on morphological characteristics and hosts. However, limited molecular information is available for studying the phylogenetic position of this genus in relation to other cestodes. In this study, the complete mitochondrial (mt) genome of Cladotaenia vulturi was amplified using "Long-PCR" and then sequenced by primer walking. Sequence annotation and gene identification were performed by comparison with published flatworm mt genomes. The phylogenetic relationships of C. vulturi with other cestode species were established using the concatenated amino acid sequences of 12 protein-coding genes with Bayesian Inference and Maximum Likelihood methods. The complete mitochondrial genome of the Cladotaenia vulturi is 13,411 kb in size and contains 36 genes. The gene arrangement of C. vulturi is identical to those in Anoplocephala spp. (Anoplocephalidae), Hymenolepis spp. (Hymenolepididae) and Dipylidium caninum (Dipylidiidae), but different from that in taeniids owing to the order shift between the tRNA (L1) and tRNA (S2) genes. Phylogenetic analyses based on the amino acid sequences of the concatenated 12 protein-coding genes showed that the species in the Taeniidae form a group and C. vulturi is a sister taxon to the species of the family Taeniidae. To our knowledge, the present study provides the first molecular data to support the early proposal from morphological evidence that the Taeniidae is a sister group to the family Paruterinidae. This novel mt genome sequence will be useful for further investigations into the population genetics, phylogenetics and systematics of the family Paruterinidae and inferring phylogenetic relationships among several lineages within the order Cyclophyllidea.

  9. Maximum Likelihood and Restricted Likelihood Solutions in Multiple-Method Studies

    PubMed Central

    Rukhin, Andrew L.

    2011-01-01

    A formulation of the problem of combining data from several sources is discussed in terms of random effects models. The unknown measurement precision is assumed not to be the same for all methods. We investigate maximum likelihood solutions in this model. By representing the likelihood equations as simultaneous polynomial equations, the exact form of the Groebner basis for their stationary points is derived when there are two methods. A parametrization of these solutions which allows their comparison is suggested. A numerical method for solving likelihood equations is outlined, and an alternative to the maximum likelihood method, the restricted maximum likelihood, is studied. In the situation when methods variances are considered to be known an upper bound on the between-method variance is obtained. The relationship between likelihood equations and moment-type equations is also discussed. PMID:26989583

  10. Maximum Likelihood and Restricted Likelihood Solutions in Multiple-Method Studies.

    PubMed

    Rukhin, Andrew L

    2011-01-01

    A formulation of the problem of combining data from several sources is discussed in terms of random effects models. The unknown measurement precision is assumed not to be the same for all methods. We investigate maximum likelihood solutions in this model. By representing the likelihood equations as simultaneous polynomial equations, the exact form of the Groebner basis for their stationary points is derived when there are two methods. A parametrization of these solutions which allows their comparison is suggested. A numerical method for solving likelihood equations is outlined, and an alternative to the maximum likelihood method, the restricted maximum likelihood, is studied. In the situation when methods variances are considered to be known an upper bound on the between-method variance is obtained. The relationship between likelihood equations and moment-type equations is also discussed.

  11. Case-Deletion Diagnostics for Maximum Likelihood Multipoint Quantitative Trait Locus Linkage Analysis

    PubMed Central

    Mendoza, Maria C.B.; Burns, Trudy L.; Jones, Michael P.

    2009-01-01

    Objectives Case-deletion diagnostic methods are tools that allow identification of influential observations that may affect parameter estimates and model fitting conclusions. The goal of this paper was to develop two case-deletion diagnostics, the exact case deletion (ECD) and the empirical influence function (EIF), for detecting outliers that can affect results of sib-pair maximum likelihood quantitative trait locus (QTL) linkage analysis. Methods Subroutines to compute the ECD and EIF were incorporated into the maximum likelihood QTL variance estimation components of the linkage analysis program MAPMAKER/SIBS. Performance of the diagnostics was compared in simulation studies that evaluated the proportion of outliers correctly identified (sensitivity), and the proportion of non-outliers correctly identified (specificity). Results Simulations involving nuclear family data sets with one outlier showed EIF sensitivities approximated ECD sensitivities well for outlier-affected parameters. Sensitivities were high, indicating the outlier was identified a high proportion of the time. Simulations also showed the enormous computational time advantage of the EIF. Diagnostics applied to body mass index in nuclear families detected observations influential on the lod score and model parameter estimates. Conclusions The EIF is a practical diagnostic tool that has the advantages of high sensitivity and quick computation. PMID:19172086

  12. Discovery and phylogenetic analysis of a riverine species flock of African electric fishes (Mormyridae: Teleostei).

    PubMed

    Sullivan, John P; Lavoué, Sébastien; Hopkins, Carl D

    2002-03-01

    The evolution of species-specific mate recognition signals is of particular interest within speciose monophyletic groups with restricted distributions (known as "species flocks"). However, the explosive nature of speciation in these clades makes difficult the reconstruction of their phylogenetic history. Here we describe a species flock of riverine mormyrid fishes from west-central Africa in which electric signals may play a role in the reproductive isolation of sympatric species. In our recent field collections, totaling more than 1400 specimens from many localities, we recognize 38 forms that are distinct in their morphologies and electric organ discharge (EOD) characteristics. Of these 38, only four clearly correspond to described species. Here we treat these forms as operational taxonomic units (OTUs) in a phylogenetic analysis of cytochrome b sequence data from a sample of 86 specimens. We examined support in the molecular data for the monophyly of these 38 OTUs considered together, the monophyly of each phenotypically delimited OTU considered individually, and for relationships among OTUs congruent with those inferred from the distribution of morphological and EOD character states. Trees obtained by both maximum-parsimony and maximum-likelihood analyses, rooted with sequence data from outgroup taxa, provide evidence for the monophyly of these 38 OTUs with respect to other mormyrid fishes. The small genetic distances between many distinct forms suggest their recent divergence. However, in many instances the cytochrome b tree topology fails to support the monophyly of individual OTUs and close relationships between OTUs that are similar in morphology and EOD characteristics. In other cases, individuals from distinct OTUs share identical or nearly identical haplotypes. Close examination of these cases suggests that unnatural OTU definition is not the sole cause of this pattern, and we infer an incongruence between the mitochondrial gene tree and the organismal phylogeny caused by incomplete mitochondrial lineage sorting and/ or introgression across forms. The apparently rapid diversification in this clade of riverine electric fishes and the problems associated with recovering a meaningful species-level phylogeny from mitochondrial data parallel findings in other species flocks. Selection on EOD waveforms as mate recognition signals may be involved in the radiation of these fishes. This is the first description of a freshwater fish species flock from a riverine, as opposed to a lacustrine, environment.

  13. A tribal level phylogeny of Lake Tanganyika cichlid fishes based on a genomic multi-marker approach

    PubMed Central

    Meyer, Britta S.; Matschiner, Michael; Salzburger, Walter

    2015-01-01

    The species-flocks of cichlid fishes in the East African Great Lakes Victoria, Malawi and Tanganyika constitute the most diverse extant adaptive radiations in vertebrates. Lake Tanganyika, the oldest of the lakes, harbors the morphologically and genetically most diverse assemblage of cichlids and contains the highest number of endemic cichlid genera of all African lakes. Based on morphological grounds, the Tanganyikan cichlid species have been grouped into 12–16 distinct lineages, so-called tribes. While the monophyly of most of the tribes is well established, the phylogenetic relationships among the tribes remain largely elusive. Here, we present a new tribal level phylogenetic hypothesis for the cichlid fishes of Lake Tanganyika that is based on the so far largest set of nuclear markers and a total alignment length of close to 18 kb. Using next-generation amplicon sequencing with the 454 pyrosequencing technology, we compiled a dataset consisting of 42 nuclear loci in 45 East African cichlid species, which we subjected to maximum likelihood and Bayesian inference phylogenetic analyses. We analyzed the entire concatenated dataset and each marker individually, and performed a Bayesian concordance analysis and gene tree discordance tests. Overall, we find strong support for a position of the Oreochromini, Boulengerochromini, Bathybatini and Trematocarini outside of a clade combining the substrate spawning Lamprologini and the mouthbrooding tribes of the ‘H-lineage’, which are both strongly supported to be monophyletic. The Eretmodini are firmly placed within the ‘H-lineage’, as sister-group to the most species-rich tribe of cichlids, the Haplochromini. The phylogenetic relationships at the base of the ‘H-lineage’ received less support, which is likely due to high speciation rates in the early phase of the radiation. Discordance among gene trees and marker sets further suggests the occurrence of past hybridization and/or incomplete lineage sorting in the cichlid fishes of Lake Tanganyika. PMID:25433288

  14. Supermatrix and species tree methods resolve phylogenetic relationships within the big cats, Panthera (Carnivora: Felidae).

    PubMed

    Davis, Brian W; Li, Gang; Murphy, William J

    2010-07-01

    The pantherine lineage of cats diverged from the remainder of modern Felidae less than 11 million years ago and consists of the five big cats of the genus Panthera, the lion, tiger, jaguar, leopard, and snow leopard, as well as the closely related clouded leopard. A significant problem exists with respect to the precise phylogeny of these highly threatened great cats. Despite multiple publications on the subject, no two molecular studies have reconstructed Panthera with the same topology. These evolutionary relationships remain unresolved partially due to the recent and rapid radiation of pantherines in the Pliocene, individual speciation events occurring within less than 1 million years, and probable introgression between lineages following their divergence. We provide an alternative, highly supported interpretation of the evolutionary history of the pantherine lineage using novel and published DNA sequence data from the autosomes, both sex chromosomes and the mitochondrial genome. New sequences were generated for 39 single-copy regions of the felid Y chromosome, as well as four mitochondrial and four autosomal gene segments, totaling 28.7 kb. Phylogenetic analysis of these new data, combined with all published data in GenBank, highlighted the prevalence of phylogenetic disparities stemming either from the amplification of a mitochondrial to nuclear translocation event (numt), or errors in species identification. Our 47.6 kb combined dataset was analyzed as a supermatrix and with respect to individual partitions using maximum likelihood and Bayesian phylogenetic inference, in conjunction with Bayesian Estimation of Species Trees (BEST) which accounts for heterogeneous gene histories. Our results yield a robust consensus topology supporting the monophyly of lion and leopard, with jaguar sister to these species, as well as a sister species relationship of tiger and snow leopard. These results highlight new avenues for the study of speciation genomics and understanding the historical events surrounding the origin of the members of this lineage. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Polyphyly of Arundinoideae (Poaceae) and evolution of the twisted geniculate lemma awn.

    PubMed

    Teisher, J K; McKain, M R; Schaal, B A; Kellogg, E A

    2017-11-10

    Subfamily Arundinoideae represents one of the last unsolved taxonomic mysteries in the grass family (Poaceae) due to the narrow and remote distributions of many of its 19 morphologically and ecologically heterogeneous genera. Resolving the phylogenetic relationships of these genera could have substantial implications for understanding character evolution in the grasses, for example the twisted geniculate awn - a hygroscopic awn that has been shown to be important in seed germination for some grass species. In this study, the phylogenetic positions of most arundinoid genera were determined using DNA from herbarium specimens, and their placement affects interpretation of this ecologically important trait. A phylogenetic analysis was conducted on a matrix of full-plastome sequences from 123 species in 107 genera representing all grass subfamilies, with 15 of the 19 genera in subfamily Arundinoideae. Parsimony and maximum likelihood mapping approaches were used to estimate ancestral states for presence of a geniculate lemma awn with a twisted column across Poaceae. Lastly, anatomical characters were examined for former arundinoid taxa using light microscopy and scanning electron microscopy. Four genera traditionally included in Arundinoideae fell outside the subfamily in the plastome phylogeny, with the remaining 11 genera forming Arundinoideae sensu stricto . The twisted geniculate awn has originated independently at least five times in the PACMAD grasses, in the subfamilies Panicoideae, Danthonioideae/Chloridoideae and Arundinoideae. Morphological and anatomical characters support the new positions of the misplaced arundinoid genera in the phylogeny, but also highlight convergent and parallel evolution in the grasses. In placing the majority of arundinoid genera in a phylogenetic framework, our study answers one of the last remaining big questions in grass taxonomy while highlighting examples of convergent evolution in an ecologically important trait, the hygroscopic, twisted geniculate awn. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Life history and biogeographic diversification of an endemic western North American freshwater fish clade using a comparative species tree approach.

    PubMed

    Baumsteiger, Jason; Kinziger, Andrew P; Aguilar, Andres

    2012-12-01

    The west coast of North America contains a number of biogeographic freshwater provinces which reflect an ever-changing aquatic landscape. Clues to understanding this complex structure are often encapsulated genetically in the ichthyofauna, though frequently as unresolved evolutionary relationships and putative cryptic species. Advances in molecular phylogenetics through species tree analyses now allow for improved exploration of these relationships. Using a comprehensive approach, we analyzed two mitochondrial and nine nuclear loci for a group of endemic freshwater fish (sculpin-Cottus) known for a wide ranging distribution and complex species structure in this region. Species delimitation techniques identified three novel cryptic lineages, all well supported by phylogenetic analyses. Comparative phylogenetic analyses consistently found five distinct clades reflecting a number of unique biogeographic provinces. Some internal node relationships varied by species tree reconstruction method, and were associated with either Bayesian or maximum likelihood statistical approaches or between mitochondrial, nuclear, and combined datasets. Limited cases of mitochondrial capture were also evident, suggestive of putative ancestral hybridization between species. Biogeographic diversification was associated with four major regions and revealed historical faunal exchanges across regions. Mapping of an important life-history character (amphidromy) revealed two separate instances of trait evolution, a transition that has occurred repeatedly in Cottus. This study demonstrates the power of current phylogenetic methods, the need for a comprehensive phylogenetic approach, and the potential for sculpin to serve as an indicator of biogeographic history for native ichthyofauna in the region. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Phylogenetic and population genetic analyses of diploid Leucaena (Leguminosae; Mimosoideae) reveal cryptic species diversity and patterns of divergent allopatric speciation.

    PubMed

    Govindarajulu, Rajanikanth; Hughes, Colin E; Bailey, C Donovan

    2011-12-01

    Leucaena comprises 17 diploid species, five tetraploid species, and a complex series of hybrids whose evolutionary histories have been influenced by human seed translocation, cultivation, and subsequent spontaneous hybridization. Here we investigated patterns of evolutionary divergence among diploid Leucaena through comprehensively sampled multilocus phylogenetic and population genetic approaches to address species delimitation, interspecific relationships, hybridization, and the predominant mode of speciation among diploids. Parsimony- and maximum-likelihood-based phylogenetic approaches were applied to 59 accessions sequenced for six SCAR-based nuclear loci, nrDNA ITS, and four cpDNA regions. Population genetic comparisons included 1215 AFLP loci representing 42 populations and 424 individuals. Phylogenetic results provided a well-resolved hypothesis of divergent species relationships, recovering previously recognized clades of diploids as well as newly resolved relationships. Phylogenetic and population genetic assessments identified two cryptic species that are consistent with geography and morphology. Findings from this study highlight the importance and utility of multilocus data in the recovery of complex evolutionary histories. The results are consistent with allopatric divergence representing the predominant mode of speciation among diploid Leucaena. These findings contrast with the potential hybrid origin of several tetraploid species and highlight the importance of human translocation of seed to the origin of these tetraploids. The recognition of one previously unrecognized species (L. cruziana) and the elevation of another taxon (L. collinsii subsp. zacapana) to specific status (L. zacapana) is consistent with a growing number of newly diagnosed species from neotropical seasonally dry forests, suggesting these communities harbor greater species diversity than previously recognized.

  18. Phylogenetic relationships among the North American cleomoids (Cleomaceae): a test of Iltis's reduction series.

    PubMed

    Riser, James P; Cardinal-McTeague, Warren M; Hall, Jocelyn C; Hahn, William J; Sytsma, Kenneth J; Roalson, Eric H

    2013-10-01

    A monophyletic group composed of five genera of the Cleomaceae represents an intriguing lineage with outstanding taxonomic and evolutionary questions. Generic boundaries are poorly defined, and historical hypotheses regarding the evolution of fruit type and phylogenetic relationships provide testable questions. This is the first detailed phylogenetic investigation of all 22 species in this group. We use this phylogenetic framework to assess generic monophyly and test Iltis's evolutionary "reduction series" hypothesis regarding phylogeny and fruit type/seed number. • Maximum likelihood and Bayesian analyses of four plastid intergenic spacer region sequences (rpl32-trnL, trnQ-rps16, ycf1-rps15, and psbA-trnH) and one nuclear (ITS) region were used to reconstruct phylogenetic relationships among the NA cleomoid species. Stochastic mapping and ancestral-state reconstruction were used to study the evolution of fruit type. • Both analyses recovered nearly identical phylogenies. Three of the currently recognized genera (Wislizenia, Carsonia, and Oxystylis) are monophyletic while two (Cleomella and Peritoma) are para- or polyphyletic. There was a single origin of the two-seeded schizocarp in the ancestor of the Oxystylis-Wislizenia clade and a secondary derivation of elongated capsule-type fruits in Peritoma from a truncated capsule state in Cleomella. • Our well-resolved phylogeny supports most of the current species circumscriptions but not current generic circumscriptions. Additionally, our results are inconsistent with Iltis's hypothesis of species with elongated many-seed fruits giving rise to species with truncated few-seeded fruits. Instead, we find support for the reversion to elongated multiseeded fruits from a truncate few-seeded ancestor in Peritoma.

  19. E6 and E7 Gene Polymorphisms in Human Papillomavirus Types-58 and 33 Identified in Southwest China

    PubMed Central

    Wen, Qiang; Wang, Tao; Mu, Xuemei; Chenzhang, Yuwei; Cao, Man

    2017-01-01

    Cancer of the cervix is associated with infection by certain types of human papillomavirus (HPV). The gene variants differ in immune responses and oncogenic potential. The E6 and E7 proteins encoded by high-risk HPV play a key role in cellular transformation. HPV-33 and HPV-58 types are highly prevalent among Chinese women. To study the gene intratypic variations, polymorphisms and positive selections of HPV-33 and HPV-58 E6/E7 in southwest China, HPV-33 (E6, E7: n = 216) and HPV-58 (E6, E7: n = 405) E6 and E7 genes were sequenced and compared to others submitted to GenBank. Phylogenetic trees were constructed by Maximum-likelihood and the Kimura 2-parameters methods by MEGA 6 (Molecular Evolutionary Genetics Analysis version 6.0). The diversity of secondary structure was analyzed by PSIPred software. The selection pressures acting on the E6/E7 genes were estimated by PAML 4.8 (Phylogenetic Analyses by Maximun Likelihood version4.8) software. The positive sites of HPV-33 and HPV-58 E6/E7 were contrasted by ClustalX 2.1. Among 216 HPV-33 E6 sequences, 8 single nucleotide mutations were observed with 6/8 non-synonymous and 2/8 synonymous mutations. The 216 HPV-33 E7 sequences showed 3 single nucleotide mutations that were non-synonymous. The 405 HPV-58 E6 sequences revealed 8 single nucleotide mutations with 4/8 non-synonymous and 4/8 synonymous mutations. Among 405 HPV-58 E7 sequences, 13 single nucleotide mutations were observed with 10/13 non-synonymous mutations and 3/13 synonymous mutations. The selective pressure analysis showed that all HPV-33 and 4/6 HPV-58 E6/E7 major non-synonymous mutations were sites of positive selection. All variations were observed in sites belonging to major histocompatibility complex and/or B-cell predicted epitopes. K93N and R145 (I/N) were observed in both HPV-33 and HPV-58 E6. PMID:28141822

  20. GPSit: An automated method for evolutionary analysis of nonculturable ciliated microeukaryotes.

    PubMed

    Chen, Xiao; Wang, Yurui; Sheng, Yalan; Warren, Alan; Gao, Shan

    2018-05-01

    Microeukaryotes are among the most important components of the microbial food web in almost all aquatic and terrestrial ecosystems worldwide. In order to gain a better understanding their roles and functions in ecosystems, sequencing coupled with phylogenomic analyses of entire genomes or transcriptomes is increasingly used to reconstruct the evolutionary history and classification of these microeukaryotes and thus provide a more robust framework for determining their systematics and diversity. More importantly, phylogenomic research usually requires high levels of hands-on bioinformatics experience. Here, we propose an efficient automated method, "Guided Phylogenomic Search in trees" (GPSit), which starts from predicted protein sequences of newly sequenced species and a well-defined customized orthologous database. Compared with previous protocols, our method streamlines the entire workflow by integrating all essential and other optional operations. In so doing, the manual operation time for reconstructing phylogenetic relationships is reduced from days to several hours, compared to other methods. Furthermore, GPSit supports user-defined parameters in most steps and thus allows users to adapt it to their studies. The effectiveness of GPSit is demonstrated by incorporating available online data and new single-cell data of three nonculturable marine ciliates (Anteholosticha monilata, Deviata sp. and Diophrys scutum) under moderate sequencing coverage (~5×). Our results indicate that the former could reconstruct robust "deep" phylogenetic relationships while the latter reveals the presence of intermediate taxa in shallow relationships. Based on empirical phylogenomic data, we also used GPSit to evaluate the impact of different levels of missing data on two commonly used methods of phylogenetic analyses, maximum likelihood (ML) and Bayesian inference (BI) methods. We found that BI is less sensitive to missing data when fast-evolving sites are removed. © 2018 John Wiley & Sons Ltd.

  1. Phylogeny reconstruction in the Caesalpinieae grade (Leguminosae) based on duplicated copies of the sucrose synthase gene and plastid markers.

    PubMed

    Manzanilla, Vincent; Bruneau, Anne

    2012-10-01

    The Caesalpinieae grade (Leguminosae) forms a morphologically and ecologically diverse group of mostly tropical tree species with a complex evolutionary history. This grade comprises several distinct lineages, but the exact delimitation of the group relative to subfamily Mimosoideae and other members of subfamily Caesalpinioideae, as well as phylogenetic relationships among the lineages are uncertain. With the aim of better resolving phylogenetic relationships within the Caesalpinieae grade, we investigated the utility of several nuclear markers developed from genomic studies in the Papilionoideae. We cloned and sequenced the low copy nuclear gene sucrose synthase (SUSY) and combined the data with plastid trnL and matK sequences. SUSY has two paralogs in the Caesalpinieae grade and in the Mimosoideae, but occurs as a single copy in all other legumes tested. Bayesian and maximum likelihood phylogenetic analyses suggest the two nuclear markers are congruent with plastid DNA data. The Caesalpinieae grade is divided into four well-supported clades (Cassia, Caesalpinia, Tachigali and Peltophorum clades), a poorly supported clade of Dimorphandra Group genera, and two paraphyletic groups, one with other Dimorphandra Group genera and the other comprising genera previously recognized as the Umtiza clade. A selection analysis of the paralogs, using selection models from PAML, suggests that SUSY genes are subjected to a purifying selection. One of the SUSY paralogs, under slightly stronger positive selection, may be undergoing subfunctionalization. The low copy SUSY gene is useful for phylogeny reconstruction in the Caesalpinieae despite the presence of duplicate copies. This study confirms that the Caesalpinieae grade is an artificial group, and highlights the need for further analyses of lineages at the base of the Mimosoideae. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Molecular characterization and phylogenetic relationship of wild type 1 poliovirus strains circulating across Pakistan and Afghanistan bordering areas during 2010-2012.

    PubMed

    Shaukat, Shahzad; Angez, Mehar; Alam, Muhammad Masroor; Sharif, Salmaan; Khurshid, Adnan; Malik, Farzana; Rehman, Lubna; Zaidi, Syed Sohail Zahoor

    2014-01-01

    Pakistan and Afghanistan share a long uncontrolled border with extensive population movement on both sides. Wild poliovirus transmission has never been interrupted in this block due to war against terrorism, poor public health infrastructure, misconceptions about polio vaccines and inadequate immunization activities. All these issues complicate the eradication operations and reinforce the complexity of wiping out poliomyelitis from this region. This study illustrates the origins and routes of cross-border wild poliovirus type 1 (WPV1) transmission during 2010-2012 between Pakistan and Afghanistan. Sequence analyses were conducted based on complete VP1 capsid protein sequences for WPV1 study strains to determine the origin of poliovirus genetic lineages and their evolutionary relationships. Phylogenetic tree was constructed from VP1 gene sequences applying Maximum Likelihood method using Kimura 2- parameter model in MEGA program v 5.0. A total of 72 (14.3%) out of 502 wild-type 1 polioviruses were found circulating in border areas of both countries during 2010-2012. Molecular phylogenetic analysis classified these strains in to two sub-genotypes with four clusters and 18 lineages. Genetic data confirmed that the most of WPV1 lineages (12; 66.6%) were transmitted from Pakistan to Afghanistan. However, the genetic diversity was significantly reduced during 2012 as most of the lineages were completely eliminated. In conclusion, Pakistan-Afghanistan block has emerged as a single poliovirus reservoir sharing the multiple poliovirus lineages due to uncontrolled movement of people across the borders between two countries. If it is neglected, it can jeopardize the extensive global efforts done so-far to eradicate the poliovirus infection. Our data will be helpful to devise the preventive strategies for effective control of wild poliovirus transmission in this region.

  3. Mitochondrial genomes of Meloidogyne chitwoodi and M. incognita (Nematoda: Tylenchina): comparative analysis, gene order and phylogenetic relationships with other nematodes.

    PubMed

    Humphreys-Pereira, Danny A; Elling, Axel A

    2014-01-01

    Root-knot nematodes (Meloidogyne spp.) are among the most important plant pathogens. In this study, the mitochondrial (mt) genomes of the root-knot nematodes, M. chitwoodi and M. incognita were sequenced. PCR analyses suggest that both mt genomes are circular, with an estimated size of 19.7 and 18.6-19.1kb, respectively. The mt genomes each contain a large non-coding region with tandem repeats and the control region. The mt gene arrangement of M. chitwoodi and M. incognita is unlike that of other nematodes. Sequence alignments of the two Meloidogyne mt genomes showed three translocations; two in transfer RNAs and one in cox2. Compared with other nematode mt genomes, the gene arrangement of M. chitwoodi and M. incognita was most similar to Pratylenchus vulnus. Phylogenetic analyses (Maximum Likelihood and Bayesian inference) were conducted using 78 complete mt genomes of diverse nematode species. Analyses based on nucleotides and amino acids of the 12 protein-coding mt genes showed strong support for the monophyly of class Chromadorea, but only amino acid-based analyses supported the monophyly of class Enoplea. The suborder Spirurina was not monophyletic in any of the phylogenetic analyses, contradicting the Clade III model, which groups Ascaridomorpha, Spiruromorpha and Oxyuridomorpha based on the small subunit ribosomal RNA gene. Importantly, comparisons of mt gene arrangement and tree-based methods placed Meloidogyne as sister taxa of Pratylenchus, a migratory plant endoparasitic nematode, and not with the sedentary endoparasitic Heterodera. Thus, comparative analyses of mt genomes suggest that sedentary endoparasitism in Meloidogyne and Heterodera is based on convergent evolution. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Ancient origin of endemic Iberian earth-boring dung beetles (Geotrupidae).

    PubMed

    Cunha, Regina L; Verdú, José R; Lobo, Jorge M; Zardoya, Rafael

    2011-06-01

    The earth-boring dung beetles belong to the family Geotrupidae that includes more than 350 species classified into three subfamilies Geotrupinae, Lethrinae, and Taurocerastinae, mainly distributed across temperate regions. Phylogenetic relationships within the family are based exclusively on morphology and remain controversial. In the Iberian Peninsula there are 33 species, 20 of them endemic, which suggests that these lineages might have experienced a radiation event. The evolution of morphological adaptations to the Iberian semi-arid environments such as the loss of wings (apterism) or the ability to exploit alternative food resources is thought to have promoted diversification. Here, we present a phylogenetic analysis of 31 species of Geotrupidae, 17 endemic to the Iberian Peninsula, and the remaining from southeastern Europe, Morocco, and Austral South America based on partial mitochondrial and nuclear gene sequence data. The reconstructed maximum likelihood and Bayesian inference phylogenies recovered Geotrupinae and Lethrinae as sister groups to the exclusion of Taurocerastinae. Monophyly of the analyzed geotrupid genera was supported but phylogenetic relationships among genera were poorly resolved. Ancestral character-state reconstruction of wing loss evolution, dating, and diversification tests altogether showed neither evidence of a burst of cladogenesis of the Iberian Peninsula group nor an association between apterism and higher diversification rates. Loss of flight did not accelerate speciation rates but it was likely responsible for the high levels of endemism of Iberian geotrupids by preventing their expansion to central Europe. These Iberian flightless beetle lineages are probably paleoendemics that have survived since the Tertiary in this refuge area during Plio-Pleistocene climatic fluctuations by evolving adaptations to arid and semi-arid environments. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Reviewing the history of HIV-1: spread of subtype B in the Americas.

    PubMed

    Junqueira, Dennis Maletich; de Medeiros, Rúbia Marília; Matte, Maria Cristina Cotta; Araújo, Leonardo Augusto Luvison; Chies, Jose Artur Bogo; Ashton-Prolla, Patricia; Almeida, Sabrina Esteves de Matos

    2011-01-01

    The dispersal of HIV-1 subtype B (HIV-1B) is a reflection of the movement of human populations in response to social, political, and geographical issues. The initial dissemination of HIV-1B outside Africa seems to have included the passive involvement of human populations from the Caribbean in spreading the virus to the United States. However, the exact pathways taken during the establishment of the pandemic in the Americas remain unclear. Here, we propose a geographical scenario for the dissemination of HIV-1B in the Americas, based on phylogenetic and genetic statistical analyses of 313 available sequences of the pol gene from 27 countries. Maximum likelihood and bayesian inference methods were used to explore the phylogenetic relationships between HIV-1B sequences, and molecular variance estimates were analyzed to infer the genetic structure of the viral population. We found that the initial dissemination and subsequent spread of subtype B in the Americas occurred via a single introduction event in the Caribbean around 1964 (1950-1967). Phylogenetic trees present evidence of several primary outbreaks in countries in South America, directly seeded by the Caribbean epidemic. Cuba is an exception insofar as its epidemic seems to have been introduced from South America. One clade comprising isolates from different countries emerged in the most-derived branches, reflecting the intense circulation of the virus throughout the American continents. Statistical analysis supports the genetic compartmentalization of the virus among the Americas, with a close relationship between the South American and Caribbean epidemics. These findings reflect the complex establishment of the HIV-1B pandemic and contribute to our understanding between the migration process of human populations and virus diffusion.

  6. Species delimitation in Trametes: a comparison of ITS, RPB1, RPB2 and TEF1 gene phylogenies.

    PubMed

    Carlson, Alexis; Justo, Alfredo; Hibbett, David S

    2014-01-01

    Trametes is a cosmopolitan genus of white rot polypores, including the "turkey tail" fungus, T. versicolor. Although Trametes is one of the most familiar genera of polypores, its species-level taxonomy is unsettled. The ITS region is the most commonly used molecular marker for species delimitation in fungi, but it has been shown to have a low molecular variation in Trametes resulting in poorly resolved phylogenies and unclear species boundaries, especially in the T. versicolor species complex (T. versicolor sensu stricto, T. ochracea, T. pubescens, T. ectypa). Here we evaluate the performance of three protein-coding genes (TEF1, RPB1, RPB2) for species delimitation and phylogenetic reconstruction in Trametes. We obtained 59 TEF1, 34 RPB1 and 55 RPB2 sequences from 69 individuals, focusing on the T. versicolor complex and performed phylogenetic analyses with maximum likelihood and parsimony methods. All three protein-coding genes outperformed ITS for separating species in the T. versicolor complex. The multigene phylogenetic analysis shows the highest amount of resolution and supported nodes separating T. ectypa, T. ochracea, T. pubescens and T. versicolor with strong support. In addition three slineages are resolved in the species complex of T. elegans. The T. elegans complex includes three species: T. elegans (based on material from Puerto Rico, Belize, the Philippines), T. aesculi (from North America) and T. repanda (from Papua New Guinea, the Philippines, Venezuela). The utility of gene markers varies, with TEF1 having the highest PCR and sequencing success rate and RPB1 offering the best backbone resolution for the genus. © 2014 by The Mycological Society of America.

  7. Reviewing the History of HIV-1: Spread of Subtype B in the Americas

    PubMed Central

    Junqueira, Dennis Maletich; de Medeiros, Rúbia Marília; Matte, Maria Cristina Cotta; Araújo, Leonardo Augusto Luvison; Chies, Jose Artur Bogo; Ashton-Prolla, Patricia; Almeida, Sabrina Esteves de Matos

    2011-01-01

    The dispersal of HIV-1 subtype B (HIV-1B) is a reflection of the movement of human populations in response to social, political, and geographical issues. The initial dissemination of HIV-1B outside Africa seems to have included the passive involvement of human populations from the Caribbean in spreading the virus to the United States. However, the exact pathways taken during the establishment of the pandemic in the Americas remain unclear. Here, we propose a geographical scenario for the dissemination of HIV-1B in the Americas, based on phylogenetic and genetic statistical analyses of 313 available sequences of the pol gene from 27 countries. Maximum likelihood and Bayesian inference methods were used to explore the phylogenetic relationships between HIV-1B sequences, and molecular variance estimates were analyzed to infer the genetic structure of the viral population. We found that the initial dissemination and subsequent spread of subtype B in the Americas occurred via a single introduction event in the Caribbean around 1964 (1950–1967). Phylogenetic trees present evidence of several primary outbreaks in countries in South America, directly seeded by the Caribbean epidemic. Cuba is an exception insofar as its epidemic seems to have been introduced from South America. One clade comprising isolates from different countries emerged in the most-derived branches, reflecting the intense circulation of the virus throughout the American continents. Statistical analysis supports the genetic compartmentalization of the virus among the Americas, with a close relationship between the South American and Caribbean epidemics. These findings reflect the complex establishment of the HIV-1B pandemic and contribute to our understanding between the migration process of human populations and virus diffusion. PMID:22132104

  8. High-Performance Clock Synchronization Algorithms for Distributed Wireless Airborne Computer Networks with Applications to Localization and Tracking of Targets

    DTIC Science & Technology

    2010-06-01

    GMKPF represents a better and more flexible alternative to the Gaussian Maximum Likelihood (GML), and Exponential Maximum Likelihood ( EML ...accurate results relative to GML and EML when the network delays are modeled in terms of a single non-Gaussian/non-exponential distribution or as a...to the Gaussian Maximum Likelihood (GML), and Exponential Maximum Likelihood ( EML ) estimators for clock offset estimation in non-Gaussian or non

  9. MXLKID: a maximum likelihood parameter identifier. [In LRLTRAN for CDC 7600

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavel, D.T.

    MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to identify unknown parameters in a nonlinear dynamic system. Using noisy measurement data from the system, the maximum likelihood identifier computes a likelihood function (LF). Identification of system parameters is accomplished by maximizing the LF with respect to the parameters. The main body of this report briefly summarizes the maximum likelihood technique and gives instructions and examples for running the MXLKID program. MXLKID is implemented LRLTRAN on the CDC7600 computer at LLNL. A detailed mathematical description of the algorithm is given in the appendices. 24 figures, 6 tables.

  10. Collinear Latent Variables in Multilevel Confirmatory Factor Analysis

    PubMed Central

    van de Schoot, Rens; Hox, Joop

    2014-01-01

    Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation coefficient (ICC) and estimation method; maximum likelihood estimation with robust chi-squares and standard errors and Bayesian estimation, on the convergence rate are investigated. The other variables of interest were rate of inadmissible solutions and the relative parameter and standard error bias on the between level. The results showed that inadmissible solutions were obtained when there was between level collinearity and the estimation method was maximum likelihood. In the within level multicollinearity condition, all of the solutions were admissible but the bias values were higher compared with the between level collinearity condition. Bayesian estimation appeared to be robust in obtaining admissible parameters but the relative bias was higher than for maximum likelihood estimation. Finally, as expected, high ICC produced less biased results compared to medium ICC conditions. PMID:29795827

  11. SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees.

    PubMed

    Liu, Kevin; Warnow, Tandy J; Holder, Mark T; Nelesen, Serita M; Yu, Jiaye; Stamatakis, Alexandros P; Linder, C Randal

    2012-01-01

    Highly accurate estimation of phylogenetic trees for large data sets is difficult, in part because multiple sequence alignments must be accurate for phylogeny estimation methods to be accurate. Coestimation of alignments and trees has been attempted but currently only SATé estimates reasonably accurate trees and alignments for large data sets in practical time frames (Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564). Here, we present a modification to the original SATé algorithm that improves upon SATé (which we now call SATé-I) in terms of speed and of phylogenetic and alignment accuracy. SATé-II uses a different divide-and-conquer strategy than SATé-I and so produces smaller more closely related subsets than SATé-I; as a result, SATé-II produces more accurate alignments and trees, can analyze larger data sets, and runs more efficiently than SATé-I. Generally, SATé is a metamethod that takes an existing multiple sequence alignment method as an input parameter and boosts the quality of that alignment method. SATé-II-boosted alignment methods are significantly more accurate than their unboosted versions, and trees based upon these improved alignments are more accurate than trees based upon the original alignments. Because SATé-I used maximum likelihood (ML) methods that treat gaps as missing data to estimate trees and because we found a correlation between the quality of tree/alignment pairs and ML scores, we explored the degree to which SATé's performance depends on using ML with gaps treated as missing data to determine the best tree/alignment pair. We present two lines of evidence that using ML with gaps treated as missing data to optimize the alignment and tree produces very poor results. First, we show that the optimization problem where a set of unaligned DNA sequences is given and the output is the tree and alignment of those sequences that maximize likelihood under the Jukes-Cantor model is uninformative in the worst possible sense. For all inputs, all trees optimize the likelihood score. Second, we show that a greedy heuristic that uses GTR+Gamma ML to optimize the alignment and the tree can produce very poor alignments and trees. Therefore, the excellent performance of SATé-II and SATé-I is not because ML is used as an optimization criterion for choosing the best tree/alignment pair but rather due to the particular divide-and-conquer realignment techniques employed.

  12. The numerical evaluation of maximum-likelihood estimates of the parameters for a mixture of normal distributions from partially identified samples

    NASA Technical Reports Server (NTRS)

    Walker, H. F.

    1976-01-01

    Likelihood equations determined by the two types of samples which are necessary conditions for a maximum-likelihood estimate were considered. These equations suggest certain successive approximations iterative procedures for obtaining maximum likelihood estimates. The procedures, which are generalized steepest ascent (deflected gradient) procedures, contain those of Hosmer as a special case.

  13. Characterizing the phylogenetic tree-search problem.

    PubMed

    Money, Daniel; Whelan, Simon

    2012-03-01

    Phylogenetic trees are important in many areas of biological research, ranging from systematic studies to the methods used for genome annotation. Finding the best scoring tree under any optimality criterion is an NP-hard problem, which necessitates the use of heuristics for tree-search. Although tree-search plays a major role in obtaining a tree estimate, there remains a limited understanding of its characteristics and how the elements of the statistical inferential procedure interact with the algorithms used. This study begins to answer some of these questions through a detailed examination of maximum likelihood tree-search on a wide range of real genome-scale data sets. We examine all 10,395 trees for each of the 106 genes of an eight-taxa yeast phylogenomic data set, then apply different tree-search algorithms to investigate their performance. We extend our findings by examining two larger genome-scale data sets and a large disparate data set that has been previously used to benchmark the performance of tree-search programs. We identify several broad trends occurring during tree-search that provide an insight into the performance of heuristics and may, in the future, aid their development. These trends include a tendency for the true maximum likelihood (best) tree to also be the shortest tree in terms of branch lengths, a weak tendency for tree-search to recover the best tree, and a tendency for tree-search to encounter fewer local optima in genes that have a high information content. When examining current heuristics for tree-search, we find that nearest-neighbor-interchange performs poorly, and frequently finds trees that are significantly different from the best tree. In contrast, subtree-pruning-and-regrafting tends to perform well, nearly always finding trees that are not significantly different to the best tree. Finally, we demonstrate that the precise implementation of a tree-search strategy, including when and where parameters are optimized, can change the character of tree-search, and that good strategies for tree-search may combine existing tree-search programs.

  14. The first mitochondrial genome for the butterfly family Riodinidae (Abisara fylloides) and its systematic implications.

    PubMed

    Zhao, Fang; Huang, Dun-Yuan; Sun, Xiao-Yan; Shi, Qing-Hui; Hao, Jia-Sheng; Zhang, Lan-Lan; Yang, Qun

    2013-10-01

    The Riodinidae is one of the lepidopteran butterfly families. This study describes the complete mitochondrial genome of the butterfly species Abisara fylloides, the first mitochondrial genome of the Riodinidae family. The results show that the entire mitochondrial genome of A. fylloides is 15 301 bp in length, and contains 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and a 423 bp A+T-rich region. The gene content, orientation and order are identical to the majority of other lepidopteran insects. Phylogenetic reconstruction was conducted using the concatenated 13 protein-coding gene (PCG) sequences of 19 available butterfly species covering all the five butterfly families (Papilionidae, Nymphalidae, Peridae, Lycaenidae and Riodinidae). Both maximum likelihood and Bayesian inference analyses highly supported the monophyly of Lycaenidae+Riodinidae, which was standing as the sister of Nymphalidae. In addition, we propose that the riodinids be categorized into the family Lycaenidae as a subfamilial taxon. The Riodinidae is one of the lepidopteran butterfly families. This study describes the complete mitochondrial genome of the butterfly species Abisara fylloides , the first mitochondrial genome of the Riodinidae family. The results show that the entire mitochondrial genome of A. fylloides is 15 301 bp in length, and contains 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and a 423 bp A+T-rich region. The gene content, orientation and order are identical to the majority of other lepidopteran insects. Phylogenetic reconstruction was conducted using the concatenated 13 protein-coding gene (PCG) sequences of 19 available butterfly species covering all the five butterfly families (Papilionidae, Nymphalidae, Peridae, Lycaenidae and Riodinidae). Both maximum likelihood and Bayesian inference analyses highly supported the monophyly of Lycaenidae+Riodinidae, which was standing as the sister of Nymphalidae. In addition, we propose that the riodinids be categorized into the family Lycaenidae as a subfamilial taxon.

  15. Isolation of a Novel Insect-Specific Flavivirus from Culiseta melanura in the Northeastern United States

    PubMed Central

    Misencik, Michael J.; Grubaugh, Nathan D.; Andreadis, Theodore G.; Ebel, Gregory D.

    2016-01-01

    Abstract The genus Flavivirus includes a number of newly recognized viruses that infect and replicate only within mosquitoes. To determine whether insect-specific flaviviruses (ISFs) may infect Culiseta (Cs.) melanura mosquitoes, we screened pools of field-collected mosquitoes for virus infection by RT-PCR targeting conserved regions of the NS5 gene. NS5 nucleotide sequences amplified from Cs. melanura pools were genetically similar to other ISFs and most closely matched Calbertado virus from Culex tarsalis, sharing 68.7% nucleotide and 76.1% amino acid sequence identity. The complete genome of one virus isolate was sequenced to reveal a primary open reading frame (ORF) encoding a viral polyprotein characteristic of the genus Flavivirus. Phylogenetic analysis showed that this virus represents a distinct evolutionary lineage that belongs to the classical ISF group. The virus was detected solely in Cs. melanura pools, occurred in sampled populations from Connecticut, New York, New Hampshire, and Maine, and infected both adult and larval stages of the mosquito. Maximum likelihood estimate infection rates (MLE-IR) were relatively stable in overwintering Cs. melanura larvae collected monthly from November of 2012 through May of 2013 (MLE-IR = 0.7–2.1/100 mosquitoes) and in host-seeking females collected weekly from June through October of 2013 (MLE-IR = 3.8–11.5/100 mosquitoes). Phylogenetic analysis of viral sequences revealed limited genetic variation that lacked obvious geographic structure among strains in the northeastern United States. This new virus is provisionally named Culiseta flavivirus on the basis of its host association with Cs. melanura. PMID:26807512

  16. Phylogenetic relationship of Hepatozoon blood parasites found in snakes from Africa, America and Asia.

    PubMed

    Haklová, B; Majláthová, V; Majláth, I; Harris, D J; Petrilla, V; Litschka-Koen, T; Oros, M; Peťko, B

    2014-03-01

    The blood parasites from the genus Hepatozoon Miller, 1908 (Apicomplexa: Adeleida: Hepatozoidae) represent the most common intracellular protozoan parasites found in snakes. In the present study, we examined 209 individuals of snakes, from different zoogeographical regions (Africa, America, Asia and Europe), for the occurrence of blood parasites using both molecular and microscopic examination methods, and assess phylogenetic relationships of all Hepatozoon parasites from snakes for the first time. In total, 178 blood smears obtained from 209 individuals, representing 40 species, were examined, from which Hepatozoon unicellular parasites were found in 26 samples (14·6% prevalence). Out of 180 samples tested by molecular method polymerase chain reaction (PCR), the presence of parasites was observed in 21 individuals (prevalence 11·6%): 14 snakes from Africa belonging to six genera (Dendroaspis, Dispholidus, Mehelya, Naja, Philothamnus and Python), five snakes from Asia from the genus Morelia and two snakes from America, from two genera (Coluber and Corallus). The intensity of infection varied from one to 1433 infected cells per 10 000 erythrocytes. Results of phylogenetic analyses (Bayesian and Maximum Likelihood) revealed the existence of five haplotypes divided into four main lineages. The present data also indicate neither geographical pattern of studied Hepatozoon sp., nor congruency in the host association.

  17. Contentious relationships in phylogenomic studies can be driven by a handful of genes

    PubMed Central

    Shen, Xing-Xing; Hittinger, Chris Todd; Rokas, Antonis

    2017-01-01

    Phylogenomic studies have resolved countless branches of the tree of life (ToL), but remain strongly contradictory on certain, contentious relationships. Here, we employ a maximum likelihood framework to quantify the distribution of phylogenetic signal among genes and sites for 17 contentious branches and 6 well-established control branches in plant, animal, and fungal phylogenomic data matrices. We find that resolution in some of these 17 branches rests on a single gene or a few sites, and that removal of a single gene in concatenation analyses or a single site from every gene in coalescence-based analyses diminishes support and can alter the inferred topology. These results suggest that tiny subsets of very large data matrices drive the resolution of specific internodes, providing a dissection of the distribution of support and observed incongruence in phylogenomic analyses. We submit that quantifying the distribution of phylogenetic signal in phylogenomic data is essential for evaluating whether branches, especially contentious ones, are truly resolved. Finally, we offer one detailed example of such an evaluation for the controversy regarding the earliest-branching metazoan phylum, where examination of the distributions of gene-wise and site-wise phylogenetic signal across 8 data matrices consistently supports ctenophores as sister group to all other metazoans. PMID:28812701

  18. A comprehensive multilocus phylogeny for the wood-warblers and a revised classification of the Parulidae (Aves)

    USGS Publications Warehouse

    Lovette, I.J.; Perez-Eman, J. L.; Sullivan, J.P.; Banks, R.C.; Fiorentino, I.; Cordoba-Cordoba, S.; Echeverry-Galvis, M.; Barker, F.K.; Burns, K.J.; Klicka, J.; Lanyon, Scott M.; Bermingham, E.

    2010-01-01

    The birds in the family Parulidae-commonly termed the New World warblers or wood-warblers-are a classic model radiation for studies of ecological and behavioral differentiation. Although the monophyly of a 'core' wood-warbler clade is well established, no phylogenetic hypothesis for this group has included a full sampling of wood-warbler species diversity. We used parsimony, maximum likelihood, and Bayesian methods to reconstruct relationships among all genera and nearly all wood-warbler species, based on a matrix of mitochondrial DNA (5840 nucleotides) and nuclear DNA (6 loci, 4602 nucleotides) characters. The resulting phylogenetic hypotheses provide a highly congruent picture of wood-warbler relationships, and indicate that the traditional generic classification of these birds recognizes many non-monophyletic groups. We recommend a revised taxonomy in which each of 14 genera (Seiurus, Helmitheros, Mniotilta, Limnothlypis, Protonotaria, Parkesia, Vermivora, Oreothlypis, Geothlypis, Setophaga, Myioborus, Cardellina, Basileuterus, Myiothlypis) corresponds to a well-supported clade; these nomenclatural changes also involve subsuming a number of well-known, traditional wood-warbler genera (Catharopeza, Dendroica, Ergaticus, Euthlypis, Leucopeza, Oporornis, Parula, Phaeothlypis, Wilsonia). We provide a summary phylogenetic hypothesis that will be broadly applicable to investigations of the historical biogeography, processes of diversification, and evolution of trait variation in this well studied avian group. ?? 2010 Elsevier Inc.

  19. Phylogenetic Relationships of American Willows (Salix L., Salicaceae)

    PubMed Central

    Lauron-Moreau, Aurélien; Pitre, Frédéric E.; Argus, George W.; Labrecque, Michel; Brouillet, Luc

    2015-01-01

    Salix L. is the largest genus in the family Salicaceae (450 species). Several classifications have been published, but taxonomic subdivision has been under continuous revision. Our goal is to establish the phylogenetic structure of the genus using molecular data on all American willows, using three DNA markers. This complete phylogeny of American willows allows us to propose a biogeographic framework for the evolution of the genus. Material was obtained for the 122 native and introduced willow species of America. Sequences were obtained from the ITS (ribosomal nuclear DNA) and two plastid regions, matK and rbcL. Phylogenetic analyses (parsimony, maximum likelihood, Bayesian inference) were performed on the data. Geographic distribution was mapped onto the tree. The species tree provides strong support for a division of the genus into two subgenera, Salix and Vetrix. Subgenus Salix comprises temperate species from the Americas and Asia, and their disjunction may result from Tertiary events. Subgenus Vetrix is composed of boreo-arctic species of the Northern Hemisphere and their radiation may coincide with the Quaternary glaciations. Sixteen species have ambiguous positions; genetic diversity is lower in subg. Vetrix. A molecular phylogeny of all species of American willows has been inferred. It needs to be tested and further resolved using other molecular data. Nonetheless, the genus clearly has two clades that have distinct biogeographic patterns. PMID:25880993

  20. Mitochondrial phylogeny of an Asian tree frog genus Theloderma (Anura: Rhacophoridae).

    PubMed

    Nguyen, Tao Thien; Matsui, Masafumi; Eto, Koshiro

    2015-04-01

    We assessed phylogenetic and systematic relationships among 17 out of 23 species of Theloderma and all three species of Nyctixalus from 2412bp sequences of the mitochondrial DNA genes of 12S rRNA, tRNA(val), and 16S rRNA using maximum likelihood and Bayesian inference methods. With the exception of T. moloch, Theloderma and Nyctixalus are confirmed to form a clade, in which each genus also forms a clade. Theloderma moloch is phylogenetically outside these clades and closer to samples from Chiromantis, Feihyla, Gracixalus, Kurixalus, Philautus, Polypedates, Raorchestes, and Rhacophorus. Within Theloderma, T. horridum and T. stellatum form the sister taxon to a clade comprising the remaining species. The basal split within the latter clade groups T. asperum, T. licin, T. petilum, and T. ryabovi as the sister to a clade comprising T. bicolor, T. chuyangsinense, T. corticale, T. gordoni, T. laeve, T. lateriticum, T. nebulosum, T. rhododiscus, and T. truongsonense. Our phylogenetic results indicate homoplastic evolution of four morphological characters: small vs. large body size, presence of vomerine teeth, presence of a vocal opening in males, and interdigital webbing on hands. The common ancestor of Theloderma and Nyctixalus is inferred to have arisen in the area including the current Sunda region. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle)

    PubMed Central

    Raja, Huzefa A.; Kaur, Amninder; El-Elimat, Tamam; Figueroa, Mario; Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh; Faeth, Stanley H.; Cech, Nadja B.; Oberlies, Nicholas H.

    2015-01-01

    Use of the herb milk thistle (Silybum marianum) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. Chemical studies of solid–substrate fermentation cultures led to the isolation of four new natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were tested against the PC-3 cell line, where six compounds displayed cytotoxicity. PMID:26000195

  2. Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle).

    PubMed

    Raja, Huzefa A; Kaur, Amninder; El-Elimat, Tamam; Figueroa, Mario; Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh; Faeth, Stanley H; Cech, Nadja B; Oberlies, Nicholas H

    2015-01-02

    Use of the herb milk thistle ( Silybum marianum ) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. Chemical studies of solid-substrate fermentation cultures led to the isolation of four new natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were tested against the PC-3 cell line, where six compounds displayed cytotoxicity.

  3. Prevalence and phylogenetic analysis of HTLV-1 in a segregated population in Iran.

    PubMed

    Rafatpanah, Houshang; Torkamani, Mahmood; Valizadeh, Narges; Vakili, Rosita; Meshkani, Baratali; Khademi, Hassan; Gerayli, Sina; Mozhgani, Sayed Hamid Reza; Rezaee, Seyed Abdolrahim

    2016-07-01

    Human T-lymphotropic virus type 1 (HTLV-1) infection is an important health issue that affects a variety of endemic areas. The Khorasan province, mainly its capital Mashhad in northeastern Iran, was reported to be as one of these endemic regions. Torbat-e Heydarieh, a large city Southwest border to Mashhad with a segregated population was investigated for the prevalence and associated risk factors of HTLV-1 infection in 400 randomly selected individuals. Blood samples were tested for the presence of HTLV-1 antibodies via the ELISA method and then were confirmed by an Immunoblot test. For the presence of HTLV-1 in lymphocytes of infected subjects, PCR was performed on LTR and TAX regions. DNA sequencing of LTR fragment was also carried out to determine the phylogenetic of HTLV-1, using the Maximum likelihood method. HTLV-1 sero-reactivity (sero-prevalence) among the study population was 2% (8/400), of which 1.25% had HTLV-1 provirus in lymphocytes (actual prevalence). HTLV-1 infection was significantly associated with the age, marital status, and history of blood transfusion (P < 0.05). However, there were no statistical differences between HTLV-1 infection, and gender, surgery, and hospitalization. In regression analysis, age showed the most significant correlation with the infection (P = 0.006, OR = 4.33). Based on our phylogenetic study, the HTLV-1 prevalent sequence type of Torbat-e Heydarieh belongs to the cosmopolitan subtype A. HTLV-1 prevalence in Torbat-e Heydarieh (1.25%) is low comparing to those of both Mashhad (2-3%) and Neishabour (3.5-5%) in the province of Khorasan. Thus, traveling mobility and population mixing such as marriage, bureaucratic affairs, occupation, and economic activities could be the usual routs of HTLV-1 new wave of spreading in this segregated city. © 2015 Wiley Periodicals, Inc.

  4. Evolution and Diversity of Listeria monocytogenes from Clinical and Food Samples in Shanghai, China

    PubMed Central

    Zhang, Jianmin; Cao, Guojie; Xu, Xuebin; Allard, Marc; Li, Peng; Brown, Eric; Yang, Xiaowei; Pan, Haijian; Meng, Jianghong

    2016-01-01

    Listeria monocytogenes is a significant foodborne pathogen causing severe systemic infections in humans with high mortality rates. The objectives of this work were to establish a phylogenetic framework of L. monocytogenes from China and to investigate sequence diversity among different serotypes. We selected 17 L. monocytogenes strains recovered from patients and foods in China representing serotypes 1/2a, 1/2b, and 1/2c. Draft genome sequences were determined using Illumina MiSeq technique and associated protocols. Open reading frames were assigned using prokaryotic genome annotation pipeline by NCBI. Twenty-four published genomes were included for comparative genomic and phylogenetic analysis. More than 154,000 single nucleotide polymorphisms (SNPs) were identified from multiple genome alignment and used to reconstruct maximum likelihood phylogenetic tree. The 41 genomes were differentiated into lineages I and II, which consisted of 4 and 11 subgroups, respectively. A clinical strain from China (SHL009) contained significant SNP differences compared to the rest genomes, whereas clinical strain SHL001 shared most recent common ancestor with strain SHL017 from food. Moreover, clinical strains SHL004 and SHL015 clustered together with two strains (08-5578 and 08-5923) recovered from an outbreak in Canada. Partial sequences of a plasmid found in the Canadian strain were also present in SHL004. We investigated the presence of various genes and gene clusters associated with virulence and subgroup-specific genes, including internalins, L. monocytogenes pathogenicity islands (LIPIs), L. monocytogenes genomic islands (LGIs), stress survival islet 1 (SSI-1), and clustered regularly interspaced short palindromic repeats (CRISPR)/cas system. A novel genomic island, denoted as LGI-2 was identified. Comparative sequence analysis revealed differences among the L. monocytogenes strains related to virulence, survival abilities, and attributes against foreign genetic elements. L. monocytogenes from China were genetically diverse. Strains from clinical specimens and food related closely suggesting foodborne transmission of human listeriosis. PMID:27499751

  5. Multilocus phylogeny and phylogenomics of Eriochrysis P. Beauv. (Poaceae-Andropogoneae): Taxonomic implications and evidence of interspecific hybridization.

    PubMed

    Welker, Cassiano A D; Souza-Chies, Tatiana T; Longhi-Wagner, Hilda M; Peichoto, Myriam Carolina; McKain, Michael R; Kellogg, Elizabeth A

    2016-06-01

    Species delimitation is a vital issue concerning evolutionary biology and conservation of biodiversity. However, it is a challenging task for several reasons, including the low interspecies variability of markers currently used in phylogenetic reconstructions and the occurrence of reticulate evolution and polyploidy in many lineages of flowering plants. The first phylogeny of the grass genus Eriochrysis is presented here, focusing on the New World species, in order to examine its relationships to other genera of the subtribe Saccharinae/tribe Andropogoneae and to define the circumscriptions of its taxonomically complicated species. Molecular cloning and sequencing of five regions of four low-copy nuclear genes (apo1, d8, ep2-ex7 and ep2-ex8, kn1) were performed, as well as complete plastome sequencing. Trees were reconstructed using maximum parsimony, maximum likelihood, and Bayesian inference analyses. The present phylogenetic analyses indicate that Eriochrysis is monophyletic and the Old World E. pallida is sister to the New World species. Subtribe Saccharinae is polyphyletic, as is the genus Eulalia. Based on nuclear and plastome sequences plus morphology, we define the circumscriptions of the New World species of Eriochrysis: E. laxa is distinct from E. warmingiana, and E. villosa is distinct from E. cayennensis. Natural hybrids occur between E. laxa and E. villosa. The hybrids are probably tetraploids, based on the number of paralogues in the nuclear gene trees. This is the first record of a polyploid taxon in the genus Eriochrysis. Some incongruities between nuclear genes and plastome analyses were detected and are potentially caused by incomplete lineage sorting and/or ancient hybridization. The set of low-copy nuclear genes used in this study seems to be sufficient to resolve phylogenetic relationships and define the circumscriptions of other species complexes in the grass family and relatives, even in the presence of polyploidy and reticulate evolution. Complete plastome sequencing is also a promising tool for phylogenetic inference. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. LRR-RLK family from two Citrus species: genome-wide identification and evolutionary aspects.

    PubMed

    Magalhães, Diogo M; Scholte, Larissa L S; Silva, Nicholas V; Oliveira, Guilherme C; Zipfel, Cyril; Takita, Marco A; De Souza, Alessandra A

    2016-08-12

    Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent the largest subfamily of plant RLKs. The functions of most LRR-RLKs have remained undiscovered, and a few that have been experimentally characterized have been shown to have important roles in growth and development as well as in defense responses. Although RLK subfamilies have been previously studied in many plants, no comprehensive study has been performed on this gene family in Citrus species, which have high economic importance and are frequent targets for emerging pathogens. In this study, we performed in silico analysis to identify and classify LRR-RLK homologues in the predicted proteomes of Citrus clementina (clementine) and Citrus sinensis (sweet orange). In addition, we used large-scale phylogenetic approaches to elucidate the evolutionary relationships of the LRR-RLKs and further narrowed the analysis to the LRR-XII group, which contains several previously described cell surface immune receptors. We built integrative protein signature databases for Citrus clementina and Citrus sinensis using all predicted protein sequences obtained from whole genomes. A total of 300 and 297 proteins were identified as LRR-RLKs in C. clementina and C. sinensis, respectively. Maximum-likelihood phylogenetic trees were estimated using Arabidopsis LRR-RLK as a template and they allowed us to classify Citrus LRR-RLKs into 16 groups. The LRR-XII group showed a remarkable expansion, containing approximately 150 paralogs encoded in each Citrus genome. Phylogenetic analysis also demonstrated the existence of two distinct LRR-XII clades, each one constituted mainly by RD and non-RD kinases. We identified 68 orthologous pairs from the C. clementina and C. sinensis LRR-XII genes. In addition, among the paralogs, we identified a subset of 78 and 62 clustered genes probably derived from tandem duplication events in the genomes of C. clementina and C. sinensis, respectively. This work provided the first comprehensive evolutionary analysis of the LRR-RLKs in Citrus. A large expansion of LRR-XII in Citrus genomes suggests that it might play a key role in adaptive responses in host-pathogen co-evolution, related to the perennial life cycle and domestication of the citrus crop species.

  7. A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea

    PubMed Central

    2011-01-01

    Background Cetacea (dolphins, porpoises, and whales) is a clade of aquatic species that includes the most massive, deepest diving, and largest brained mammals. Understanding the temporal pattern of diversification in the group as well as the evolution of cetacean anatomy and behavior requires a robust and well-resolved phylogenetic hypothesis. Although a large body of molecular data has accumulated over the past 20 years, DNA sequences of cetaceans have not been directly integrated with the rich, cetacean fossil record to reconcile discrepancies among molecular and morphological characters. Results We combined new nuclear DNA sequences, including segments of six genes (~2800 basepairs) from the functionally extinct Yangtze River dolphin, with an expanded morphological matrix and published genomic data. Diverse analyses of these data resolved the relationships of 74 taxa that represent all extant families and 11 extinct families of Cetacea. The resulting supermatrix (61,155 characters) and its sub-partitions were analyzed using parsimony methods. Bayesian and maximum likelihood (ML) searches were conducted on the molecular partition, and a molecular scaffold obtained from these searches was used to constrain a parsimony search of the morphological partition. Based on analysis of the supermatrix and model-based analyses of the molecular partition, we found overwhelming support for 15 extant clades. When extinct taxa are included, we recovered trees that are significantly correlated with the fossil record. These trees were used to reconstruct the timing of cetacean diversification and the evolution of characters shared by "river dolphins," a non-monophyletic set of species according to all of our phylogenetic analyses. Conclusions The parsimony analysis of the supermatrix and the analysis of morphology constrained to fit the ML/Bayesian molecular tree yielded broadly congruent phylogenetic hypotheses. In trees from both analyses, all Oligocene taxa included in our study fell outside crown Mysticeti and crown Odontoceti, suggesting that these two clades radiated in the late Oligocene or later, contra some recent molecular clock studies. Our trees also imply that many character states shared by river dolphins evolved in their oceanic ancestors, contradicting the hypothesis that these characters are convergent adaptations to fluvial habitats. PMID:21518443

  8. A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea.

    PubMed

    Geisler, Jonathan H; McGowen, Michael R; Yang, Guang; Gatesy, John

    2011-04-25

    Cetacea (dolphins, porpoises, and whales) is a clade of aquatic species that includes the most massive, deepest diving, and largest brained mammals. Understanding the temporal pattern of diversification in the group as well as the evolution of cetacean anatomy and behavior requires a robust and well-resolved phylogenetic hypothesis. Although a large body of molecular data has accumulated over the past 20 years, DNA sequences of cetaceans have not been directly integrated with the rich, cetacean fossil record to reconcile discrepancies among molecular and morphological characters. We combined new nuclear DNA sequences, including segments of six genes (~2800 basepairs) from the functionally extinct Yangtze River dolphin, with an expanded morphological matrix and published genomic data. Diverse analyses of these data resolved the relationships of 74 taxa that represent all extant families and 11 extinct families of Cetacea. The resulting supermatrix (61,155 characters) and its sub-partitions were analyzed using parsimony methods. Bayesian and maximum likelihood (ML) searches were conducted on the molecular partition, and a molecular scaffold obtained from these searches was used to constrain a parsimony search of the morphological partition. Based on analysis of the supermatrix and model-based analyses of the molecular partition, we found overwhelming support for 15 extant clades. When extinct taxa are included, we recovered trees that are significantly correlated with the fossil record. These trees were used to reconstruct the timing of cetacean diversification and the evolution of characters shared by "river dolphins," a non-monophyletic set of species according to all of our phylogenetic analyses. The parsimony analysis of the supermatrix and the analysis of morphology constrained to fit the ML/Bayesian molecular tree yielded broadly congruent phylogenetic hypotheses. In trees from both analyses, all Oligocene taxa included in our study fell outside crown Mysticeti and crown Odontoceti, suggesting that these two clades radiated in the late Oligocene or later, contra some recent molecular clock studies. Our trees also imply that many character states shared by river dolphins evolved in their oceanic ancestors, contradicting the hypothesis that these characters are convergent adaptations to fluvial habitats.

  9. New Subtypes and Genetic Recombination in HIV Type 1-Infecting Patients with Highly Active Antiretroviral Therapy in Peru (2008–2010)

    PubMed Central

    Acuña, Maribel; Gazzo, Cecilia; Salinas, Gabriela; Cárdenas, Fanny; Valverde, Ada; Romero, Soledad

    2012-01-01

    Abstract HIV-1 subtype B is the most frequent strain in Peru. However, there is no available data about the genetic diversity of HIV-infected patients receiving highly active antiretroviral therapy (HAART) here. A group of 267 patients in the Peruvian National Treatment Program with virologic failure were tested for genotypic evidence of HIV drug resistance at the Instituto Nacional de Salud (INS) of Peru between March 2008 and December 2010. Viral RNA was extracted from plasma and the segments of the protease (PR) and reverse transcriptase (RT) genes were amplified by reverse transcriptase polymerase chain reaction (RT-PCR), purified, and fully sequenced. Consensus sequences were submitted to the HIVdb Genotypic Resistance Interpretation Algorithm Database from Stanford University, and then aligned using Clustal X v.2.0 to generate a phylogenetic tree using the maximum likelihood method. Intrasubtype and intersubtype recombination analyses were performed using the SCUEAL program (Subtype Classification by Evolutionary ALgo-rithms). A total of 245 samples (91%) were successfully genotyped. The analysis obtained from the HIVdb program showed 81.5% resistance cases (n=198). The phylogenetic analysis revealed that subtype B was predominant in the population (98.8%), except for new cases of A, C, and H subtypes (n=4). Of these cases, only subtype C was imported. Likewise, recombination analysis revealed nine intersubtype and 20 intrasubtype recombinant cases. This is the first report of the presence of HIV-1 subtypes C and H in Peru. The introduction of new subtypes and circulating recombinants forms can make it difficult to distinguish resistance profiles in patients and consequently affect future treatment strategies against HIV in this country. PMID:22559065

  10. New subtypes and genetic recombination in HIV type 1-infecting patients with highly active antiretroviral therapy in Peru (2008-2010).

    PubMed

    Yabar, Carlos Augusto; Acuña, Maribel; Gazzo, Cecilia; Salinas, Gabriela; Cárdenas, Fanny; Valverde, Ada; Romero, Soledad

    2012-12-01

    HIV-1 subtype B is the most frequent strain in Peru. However, there is no available data about the genetic diversity of HIV-infected patients receiving highly active antiretroviral therapy (HAART) here. A group of 267 patients in the Peruvian National Treatment Program with virologic failure were tested for genotypic evidence of HIV drug resistance at the Instituto Nacional de Salud (INS) of Peru between March 2008 and December 2010. Viral RNA was extracted from plasma and the segments of the protease (PR) and reverse transcriptase (RT) genes were amplified by reverse transcriptase polymerase chain reaction (RT-PCR), purified, and fully sequenced. Consensus sequences were submitted to the HIVdb Genotypic Resistance Interpretation Algorithm Database from Stanford University, and then aligned using Clustal X v.2.0 to generate a phylogenetic tree using the maximum likelihood method. Intrasubtype and intersubtype recombination analyses were performed using the SCUEAL program (Subtype Classification by Evolutionary ALgo-rithms). A total of 245 samples (91%) were successfully genotyped. The analysis obtained from the HIVdb program showed 81.5% resistance cases (n=198). The phylogenetic analysis revealed that subtype B was predominant in the population (98.8%), except for new cases of A, C, and H subtypes (n=4). Of these cases, only subtype C was imported. Likewise, recombination analysis revealed nine intersubtype and 20 intrasubtype recombinant cases. This is the first report of the presence of HIV-1 subtypes C and H in Peru. The introduction of new subtypes and circulating recombinants forms can make it difficult to distinguish resistance profiles in patients and consequently affect future treatment strategies against HIV in this country.

  11. Phylogenetic position of the genus Perkinsus (Protista, Apicomplexa) based on small subunit ribosomal RNA.

    PubMed

    Goggin, C L; Barker, S C

    1993-07-01

    Parasites of the genus Perkinsus destroy marine molluscs worldwide. Their phylogenetic position within the kingdom Protista is controversial. Nucleotide sequence data (1792 bp) from the small subunit rRNA gene of Perkinsus sp. from Anadara trapezia (Mollusca: Bivalvia) from Moreton Bay, Queensland, was used to examine the phylogenetic affinities of this enigmatic genus. These data were aligned with nucleotide sequences from 6 apicomplexans, 3 ciliates, 3 flagellates, a dinoflagellate, 3 fungi, maize and human. Phylogenetic trees were constructed after analysis with maximum parsimony and distance matrix methods. Our analyses indicate that Perkinsus is phylogenetically closer to dinoflagellates and to coccidean and piroplasm apicomplexans than to fungi or flagellates.

  12. Practical aspects of a maximum likelihood estimation method to extract stability and control derivatives from flight data

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.; Maine, R. E.

    1976-01-01

    A maximum likelihood estimation method was applied to flight data and procedures to facilitate the routine analysis of a large amount of flight data were described. Techniques that can be used to obtain stability and control derivatives from aircraft maneuvers that are less than ideal for this purpose are described. The techniques involve detecting and correcting the effects of dependent or nearly dependent variables, structural vibration, data drift, inadequate instrumentation, and difficulties with the data acquisition system and the mathematical model. The use of uncertainty levels and multiple maneuver analysis also proved to be useful in improving the quality of the estimated coefficients. The procedures used for editing the data and for overall analysis are also discussed.

  13. Phylogenetics of tribe Orchideae (Orchidaceae: Orchidoideae) based on combined DNA matrices: inferences regarding timing of diversification and evolution of pollination syndromes

    PubMed Central

    Inda, Luis A.; Pimentel, Manuel; Chase, Mark W.

    2012-01-01

    Background and aims Tribe Orchideae (Orchidaceae: Orchidoideae) comprises around 62 mostly terrestrial genera, which are well represented in the Northern Temperate Zone and less frequently in tropical areas of both the Old and New Worlds. Phylogenetic relationships within this tribe have been studied previously using only nuclear ribosomal DNA (nuclear ribosomal internal transcribed spacer, nrITS). However, different parts of the phylogenetic tree in these analyses were weakly supported, and integrating information from different plant genomes is clearly necessary in orchids, where reticulate evolution events are putatively common. The aims of this study were to: (1) obtain a well-supported and dated phylogenetic hypothesis for tribe Orchideae, (ii) assess appropriateness of recent nomenclatural changes in this tribe in the last decade, (3) detect possible examples of reticulate evolution and (4) analyse in a temporal context evolutionary trends for subtribe Orchidinae with special emphasis on pollination systems. Methods The analyses included 118 samples, belonging to 103 species and 25 genera, for three DNA regions (nrITS, mitochondrial cox1 intron and plastid rpl16 intron). Bayesian and maximum-parsimony methods were used to construct a well-supported and dated tree. Evolutionary trends in the subtribe were analysed using Bayesian and maximum-likelihood methods of character evolution. Key Results The dated phylogenetic tree strongly supported the recently recircumscribed generic concepts of Bateman and collaborators. Moreover, it was found that Orchidinae have diversified in the Mediterranean basin during the last 15 million years, and one potential example of reticulate evolution in the subtribe was identified. In Orchidinae, pollination systems have shifted on numerous occasions during the last 23 million years. Conclusions The results indicate that ancestral Orchidinae were hymenopteran-pollinated, food-deceptive plants and that these traits have been dominant throughout the evolutionary history of the subtribe in the Mediterranean. Evidence was also obtained that the onset of sexual deception might be linked to an increase in labellum size, and the possibility is discussed that diversification in Orchidinae developed in parallel with diversification of bees and wasps from the Miocene onwards. PMID:22539542

  14. Finite mixture model: A maximum likelihood estimation approach on time series data

    NASA Astrophysics Data System (ADS)

    Yen, Phoong Seuk; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-09-01

    Recently, statistician emphasized on the fitting of finite mixture model by using maximum likelihood estimation as it provides asymptotic properties. In addition, it shows consistency properties as the sample sizes increases to infinity. This illustrated that maximum likelihood estimation is an unbiased estimator. Moreover, the estimate parameters obtained from the application of maximum likelihood estimation have smallest variance as compared to others statistical method as the sample sizes increases. Thus, maximum likelihood estimation is adopted in this paper to fit the two-component mixture model in order to explore the relationship between rubber price and exchange rate for Malaysia, Thailand, Philippines and Indonesia. Results described that there is a negative effect among rubber price and exchange rate for all selected countries.

  15. The Maximum Likelihood Solution for Inclination-only Data

    NASA Astrophysics Data System (ADS)

    Arason, P.; Levi, S.

    2006-12-01

    The arithmetic means of inclination-only data are known to introduce a shallowing bias. Several methods have been proposed to estimate unbiased means of the inclination along with measures of the precision. Most of the inclination-only methods were designed to maximize the likelihood function of the marginal Fisher distribution. However, the exact analytical form of the maximum likelihood function is fairly complicated, and all these methods require various assumptions and approximations that are inappropriate for many data sets. For some steep and dispersed data sets, the estimates provided by these methods are significantly displaced from the peak of the likelihood function to systematically shallower inclinations. The problem in locating the maximum of the likelihood function is partly due to difficulties in accurately evaluating the function for all values of interest. This is because some elements of the log-likelihood function increase exponentially as precision parameters increase, leading to numerical instabilities. In this study we succeeded in analytically cancelling exponential elements from the likelihood function, and we are now able to calculate its value for any location in the parameter space and for any inclination-only data set, with full accuracy. Furtermore, we can now calculate the partial derivatives of the likelihood function with desired accuracy. Locating the maximum likelihood without the assumptions required by previous methods is now straight forward. The information to separate the mean inclination from the precision parameter will be lost for very steep and dispersed data sets. It is worth noting that the likelihood function always has a maximum value. However, for some dispersed and steep data sets with few samples, the likelihood function takes its highest value on the boundary of the parameter space, i.e. at inclinations of +/- 90 degrees, but with relatively well defined dispersion. Our simulations indicate that this occurs quite frequently for certain data sets, and relatively small perturbations in the data will drive the maxima to the boundary. We interpret this to indicate that, for such data sets, the information needed to separate the mean inclination and the precision parameter is permanently lost. To assess the reliability and accuracy of our method we generated large number of random Fisher-distributed data sets and used seven methods to estimate the mean inclination and precision paramenter. These comparisons are described by Levi and Arason at the 2006 AGU Fall meeting. The results of the various methods is very favourable to our new robust maximum likelihood method, which, on average, is the most reliable, and the mean inclination estimates are the least biased toward shallow values. Further information on our inclination-only analysis can be obtained from: http://www.vedur.is/~arason/paleomag

  16. Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae

    PubMed Central

    Smith, Geoff M.; Hutson, Jarod M.; Kindler, Lutz; Garcia-Moreno, Alejandro; Villaluenga, Aritza; Turner, Elaine

    2017-01-01

    Background Ancient protein sequences are increasingly used to elucidate the phylogenetic relationships between extinct and extant mammalian taxa. Here, we apply these recent developments to Middle Pleistocene bone specimens of the rhinoceros genus Stephanorhinus. No biomolecular sequence data is currently available for this genus, leaving phylogenetic hypotheses on its evolutionary relationships to extant and extinct rhinoceroses untested. Furthermore, recent phylogenies based on Rhinocerotidae (partial or complete) mitochondrial DNA sequences differ in the placement of the Sumatran rhinoceros (Dicerorhinus sumatrensis). Therefore, studies utilising ancient protein sequences from Middle Pleistocene contexts have the potential to provide further insights into the phylogenetic relationships between extant and extinct species, including Stephanorhinus and Dicerorhinus. Methods ZooMS screening (zooarchaeology by mass spectrometry) was performed on several Late and Middle Pleistocene specimens from the genus Stephanorhinus, subsequently followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to obtain ancient protein sequences from a Middle Pleistocene Stephanorhinus specimen. We performed parallel analysis on a Late Pleistocene woolly rhinoceros specimen and extant species of rhinoceroses, resulting in the availability of protein sequence data for five extant species and two extinct genera. Phylogenetic analysis additionally included all extant Perissodactyla genera (Equus, Tapirus), and was conducted using Bayesian (MrBayes) and maximum-likelihood (RAxML) methods. Results Various ancient proteins were identified in both the Middle and Late Pleistocene rhinoceros samples. Protein degradation and proteome complexity are consistent with an endogenous origin of the identified proteins. Phylogenetic analysis of informative proteins resolved the Perissodactyla phylogeny in agreement with previous studies in regards to the placement of the families Equidae, Tapiridae, and Rhinocerotidae. Stephanorhinus is shown to be most closely related to the genera Coelodonta and Dicerorhinus. The protein sequence data further places the Sumatran rhino in a clade together with the genus Rhinoceros, opposed to forming a clade with the black and white rhinoceros species. Discussion The first biomolecular dataset available for Stephanorhinus places this genus together with the extinct genus Coelodonta and the extant genus Dicerorhinus. This is in agreement with morphological studies, although we are unable to resolve the order of divergence between these genera based on the protein sequences available. Our data supports the placement of the genus Dicerorhinus in a clade together with extant Rhinoceros species. Finally, the availability of protein sequence data for both extinct European rhinoceros genera allows future investigations into their geographic distribution and extinction chronologies. PMID:28316883

  17. Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae.

    PubMed

    Welker, Frido; Smith, Geoff M; Hutson, Jarod M; Kindler, Lutz; Garcia-Moreno, Alejandro; Villaluenga, Aritza; Turner, Elaine; Gaudzinski-Windheuser, Sabine

    2017-01-01

    Ancient protein sequences are increasingly used to elucidate the phylogenetic relationships between extinct and extant mammalian taxa. Here, we apply these recent developments to Middle Pleistocene bone specimens of the rhinoceros genus Stephanorhinus . No biomolecular sequence data is currently available for this genus, leaving phylogenetic hypotheses on its evolutionary relationships to extant and extinct rhinoceroses untested. Furthermore, recent phylogenies based on Rhinocerotidae (partial or complete) mitochondrial DNA sequences differ in the placement of the Sumatran rhinoceros ( Dicerorhinus sumatrensis ). Therefore, studies utilising ancient protein sequences from Middle Pleistocene contexts have the potential to provide further insights into the phylogenetic relationships between extant and extinct species, including Stephanorhinus and Dicerorhinus . ZooMS screening (zooarchaeology by mass spectrometry) was performed on several Late and Middle Pleistocene specimens from the genus Stephanorhinus , subsequently followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to obtain ancient protein sequences from a Middle Pleistocene Stephanorhinus specimen. We performed parallel analysis on a Late Pleistocene woolly rhinoceros specimen and extant species of rhinoceroses, resulting in the availability of protein sequence data for five extant species and two extinct genera. Phylogenetic analysis additionally included all extant Perissodactyla genera ( Equus , Tapirus ), and was conducted using Bayesian (MrBayes) and maximum-likelihood (RAxML) methods. Various ancient proteins were identified in both the Middle and Late Pleistocene rhinoceros samples. Protein degradation and proteome complexity are consistent with an endogenous origin of the identified proteins. Phylogenetic analysis of informative proteins resolved the Perissodactyla phylogeny in agreement with previous studies in regards to the placement of the families Equidae, Tapiridae, and Rhinocerotidae. Stephanorhinus is shown to be most closely related to the genera Coelodonta and Dicerorhinus . The protein sequence data further places the Sumatran rhino in a clade together with the genus Rhinoceros , opposed to forming a clade with the black and white rhinoceros species. The first biomolecular dataset available for Stephanorhinus places this genus together with the extinct genus Coelodonta and the extant genus Dicerorhinus . This is in agreement with morphological studies, although we are unable to resolve the order of divergence between these genera based on the protein sequences available. Our data supports the placement of the genus Dicerorhinus in a clade together with extant Rhinoceros species. Finally, the availability of protein sequence data for both extinct European rhinoceros genera allows future investigations into their geographic distribution and extinction chronologies.

  18. Enumerating all maximal frequent subtrees in collections of phylogenetic trees

    PubMed Central

    2014-01-01

    Background A common problem in phylogenetic analysis is to identify frequent patterns in a collection of phylogenetic trees. The goal is, roughly, to find a subset of the species (taxa) on which all or some significant subset of the trees agree. One popular method to do so is through maximum agreement subtrees (MASTs). MASTs are also used, among other things, as a metric for comparing phylogenetic trees, computing congruence indices and to identify horizontal gene transfer events. Results We give algorithms and experimental results for two approaches to identify common patterns in a collection of phylogenetic trees, one based on agreement subtrees, called maximal agreement subtrees, the other on frequent subtrees, called maximal frequent subtrees. These approaches can return subtrees on larger sets of taxa than MASTs, and can reveal new common phylogenetic relationships not present in either MASTs or the majority rule tree (a popular consensus method). Our current implementation is available on the web at https://code.google.com/p/mfst-miner/. Conclusions Our computational results confirm that maximal agreement subtrees and all maximal frequent subtrees can reveal a more complete phylogenetic picture of the common patterns in collections of phylogenetic trees than maximum agreement subtrees; they are also often more resolved than the majority rule tree. Further, our experiments show that enumerating maximal frequent subtrees is considerably more practical than enumerating ordinary (not necessarily maximal) frequent subtrees. PMID:25061474

  19. Enumerating all maximal frequent subtrees in collections of phylogenetic trees.

    PubMed

    Deepak, Akshay; Fernández-Baca, David

    2014-01-01

    A common problem in phylogenetic analysis is to identify frequent patterns in a collection of phylogenetic trees. The goal is, roughly, to find a subset of the species (taxa) on which all or some significant subset of the trees agree. One popular method to do so is through maximum agreement subtrees (MASTs). MASTs are also used, among other things, as a metric for comparing phylogenetic trees, computing congruence indices and to identify horizontal gene transfer events. We give algorithms and experimental results for two approaches to identify common patterns in a collection of phylogenetic trees, one based on agreement subtrees, called maximal agreement subtrees, the other on frequent subtrees, called maximal frequent subtrees. These approaches can return subtrees on larger sets of taxa than MASTs, and can reveal new common phylogenetic relationships not present in either MASTs or the majority rule tree (a popular consensus method). Our current implementation is available on the web at https://code.google.com/p/mfst-miner/. Our computational results confirm that maximal agreement subtrees and all maximal frequent subtrees can reveal a more complete phylogenetic picture of the common patterns in collections of phylogenetic trees than maximum agreement subtrees; they are also often more resolved than the majority rule tree. Further, our experiments show that enumerating maximal frequent subtrees is considerably more practical than enumerating ordinary (not necessarily maximal) frequent subtrees.

  20. What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny

    PubMed Central

    2011-01-01

    Background Efforts to solve higher-level evolutionary relationships within the class Insecta by using mitochondrial genomic data are hindered due to fast sequence evolution of several groups, most notably Hymenoptera, Strepsiptera, Phthiraptera, Hemiptera and Thysanoptera. Accelerated rates of substitution on their sequences have been shown to have negative consequences in phylogenetic inference. In this study, we tested several methodological approaches to recover phylogenetic signal from whole mitochondrial genomes. As a model, we used two classical problems in insect phylogenetics: The relationships within Paraneoptera and within Holometabola. Moreover, we assessed the mitochondrial phylogenetic signal limits in the deeper Eumetabola dataset, and we studied the contribution of individual genes. Results Long-branch attraction (LBA) artefacts were detected in all the datasets. Methods using Bayesian inference outperformed maximum likelihood approaches, and LBA was avoided in Paraneoptera and Holometabola when using protein sequences and the site-heterogeneous mixture model CAT. The better performance of this method was evidenced by resulting topologies matching generally accepted hypotheses based on nuclear and/or morphological data, and was confirmed by cross-validation and simulation analyses. Using the CAT model, the order Strepsiptera was recovered as sister to Coleoptera for the first time using mitochondrial sequences, in agreement with recent results based on large nuclear and morphological datasets. Also the Hymenoptera-Mecopterida association was obtained, leaving Coleoptera and Strepsiptera as the basal groups of the holometabolan insects, which coincides with one of the two main competing hypotheses. For the Paraneroptera, the currently accepted non-monophyly of Homoptera was documented as a phylogenetic novelty for mitochondrial data. However, results were not satisfactory when exploring the entire Eumetabola, revealing the limits of the phylogenetic signal that can be extracted from Insecta mitogenomes. Based on the combined use of the five best topology-performing genes we obtained comparable results to whole mitogenomes, highlighting the important role of data quality. Conclusion We show for the first time that mitogenomic data agrees with nuclear and morphological data for several of the most controversial insect evolutionary relationships, adding a new independent source of evidence to study relationships among insect orders. We propose that deeper divergences cannot be inferred with the current available methods due to sequence saturation and compositional bias inconsistencies. Our exploratory analysis indicates that the CAT model is the best dealing with LBA and it could be useful for other groups and datasets with similar phylogenetic difficulties. PMID:22032248

  1. Contributions to the Underlying Bivariate Normal Method for Factor Analyzing Ordinal Data

    ERIC Educational Resources Information Center

    Xi, Nuo; Browne, Michael W.

    2014-01-01

    A promising "underlying bivariate normal" approach was proposed by Jöreskog and Moustaki for use in the factor analysis of ordinal data. This was a limited information approach that involved the maximization of a composite likelihood function. Its advantage over full-information maximum likelihood was that very much less computation was…

  2. A likelihood-based time series modeling approach for application in dendrochronology to examine the growth-climate relations and forest disturbance history

    EPA Science Inventory

    A time series intervention analysis (TSIA) of dendrochronological data to infer the tree growth-climate-disturbance relations and forest disturbance history is described. Maximum likelihood is used to estimate the parameters of a structural time series model with components for ...

  3. Characterization of the complete mitochondrial genome of the cloacal tapeworm Cloacotaenia megalops (Cestoda: Hymenolepididae).

    PubMed

    Guo, Aijiang

    2016-09-05

    The cloacal tapeworm Cloacotaenia megalops (Hymenolepididae) is one of the most common cestode parasites of domestic and wild ducks worldwide. However, limited information is available regarding its epidemiology, biology, genetics and systematics. This study provides characterisation of the complete mitochondrial (mt) genome of C. megalops. The complete mt genome of C. megalops was obtained by long PCR, sequenced and annotated. The length of the entire mt genome of C. megalops is 13,887 bp; it contains 12 protein-coding, 2 ribosomal RNA and 22 transfer RNA genes, but lacks an atp8 gene. The mt gene arrangement of C. megalops is identical to that observed in Anoplocephala magna and A. perfoliata (Anoplocephalidae), Dipylidium caninum (Dipylidiidae) and Hymenolepis diminuta (Hymenolepididae), but differs from that reported in taeniids owing to the position shift between the tRNA (L1) and tRNA (S2) genes. The phylogenetic position of C. megalops was inferred using Maximum likelihood and Bayesian inference methods based on the concatenated amino acid data for 12 protein-coding genes. Phylogenetic trees showed that C. megalops is sister to Anoplocephala spp. (Anoplocephalidae) + Pseudanoplocephala crawfordi + Hymenolepis spp. (Hymenolepididae) indicating that the family Hymenolepididae is paraphyletic. The complete mt genome of C. megalops is sequenced. Phylogenetic analyses provided an insight into the phylogenetic relationships among the families Anoplocephalidae, Hymenolepididae, Dipylidiidae and Taeniidae. This novel genomic information also provides the opportunity to develop useful genetic markers for studying the molecular epidemiology, biology, genetics and systematics of C. megalops.

  4. Phylogenetic Factor Analysis.

    PubMed

    Tolkoff, Max R; Alfaro, Michael E; Baele, Guy; Lemey, Philippe; Suchard, Marc A

    2018-05-01

    Phylogenetic comparative methods explore the relationships between quantitative traits adjusting for shared evolutionary history. This adjustment often occurs through a Brownian diffusion process along the branches of the phylogeny that generates model residuals or the traits themselves. For high-dimensional traits, inferring all pair-wise correlations within the multivariate diffusion is limiting. To circumvent this problem, we propose phylogenetic factor analysis (PFA) that assumes a small unknown number of independent evolutionary factors arise along the phylogeny and these factors generate clusters of dependent traits. Set in a Bayesian framework, PFA provides measures of uncertainty on the factor number and groupings, combines both continuous and discrete traits, integrates over missing measurements and incorporates phylogenetic uncertainty with the help of molecular sequences. We develop Gibbs samplers based on dynamic programming to estimate the PFA posterior distribution, over 3-fold faster than for multivariate diffusion and a further order-of-magnitude more efficiently in the presence of latent traits. We further propose a novel marginal likelihood estimator for previously impractical models with discrete data and find that PFA also provides a better fit than multivariate diffusion in evolutionary questions in columbine flower development, placental reproduction transitions and triggerfish fin morphometry.

  5. A maximum likelihood convolutional decoder model vs experimental data comparison

    NASA Technical Reports Server (NTRS)

    Chen, R. Y.

    1979-01-01

    This article describes the comparison of a maximum likelihood convolutional decoder (MCD) prediction model and the actual performance of the MCD at the Madrid Deep Space Station. The MCD prediction model is used to develop a subroutine that has been utilized by the Telemetry Analysis Program (TAP) to compute the MCD bit error rate for a given signal-to-noise ratio. The results indicate that that the TAP can predict quite well compared to the experimental measurements. An optimal modulation index also can be found through TAP.

  6. Analysis of crackling noise using the maximum-likelihood method: Power-law mixing and exponential damping.

    PubMed

    Salje, Ekhard K H; Planes, Antoni; Vives, Eduard

    2017-10-01

    Crackling noise can be initiated by competing or coexisting mechanisms. These mechanisms can combine to generate an approximate scale invariant distribution that contains two or more contributions. The overall distribution function can be analyzed, to a good approximation, using maximum-likelihood methods and assuming that it follows a power law although with nonuniversal exponents depending on a varying lower cutoff. We propose that such distributions are rather common and originate from a simple superposition of crackling noise distributions or exponential damping.

  7. Sex and the Catasetinae (Darwin's favourite orchids).

    PubMed

    Pérez-Escobar, Oscar Alejandro; Gottschling, Marc; Whitten, W Mark; Salazar, Gerardo; Gerlach, Günter

    2016-04-01

    Two sexual systems are predominant in Catasetinae (Orchidaceae), namely protandry (which has evolved in other orchid lineages as well) and environmental sex determination (ESD) being a unique trait among Orchidaceae. Yet, the lack of a robust phylogenetic framework for Catasetinae has hampered deeper insights in origin and evolution of sexual systems. To investigate the origins of protandry and ESD in Catasetinae, we sequenced nuclear and chloroplast loci from 77 species, providing the most extensive data matrix of Catasetinae available so far with all major lineages represented. We used Maximum Parsimony, Maximum Likelihood and Bayesian methods to infer phylogenetic relationships and evolution of sexual systems. Irrespectively of the methods used, Catasetinae were monophyletic in molecular phylogenies, with all established generic lineages and their relationships resolved and highly supported. According to comparative reconstruction approaches, the last common ancestor of Catasetinae was inferred as having bisexual flowers (i.e., lacking protandry and ESD as well), and protandry originated once in core Catasetinae (comprising Catasetum, Clowesia, Cycnoches, Dressleria and Mormodes). In addition, three independent gains of ESD are reliably inferred, linked to corresponding loss of protandry within core Catasetinae. Thus, prior gain of protandry appears as the necessary prerequisite for gain of ESD in orchids. Our results contribute to a comprehensive evolutionary scenario for sexual systems in Catasetinae and more generally in orchids as well. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Molecular systematics of the Middle American genus Hypopachus (Anura: Microhylidae)

    PubMed Central

    Greenbaum, Eli; Smith, Eric N.; de Sá, Rafael O.

    2011-01-01

    We present the first phylogenetic study on the widespread Middle American microhylid frog genus Hypopachus. Partial sequences of mitochondrial (12S and 16S ribosomal RNA) and nuclear (rhodopsin) genes (1275 bp total) were analyzed from 43 samples of Hypopachus, three currently recognized species of Gastrophryne, and seven arthroleptid, brevicipitid and microhylid outgroup taxa. Maximum parsimony (PAUP), maximum likelihood (RAxML) and Bayesian inference (MrBayes) optimality criteria were used for phylogenetic analyses, and BEAST was used to estimate divergence dates of major clades. Population-level analyses were conducted with the programs NETWORK and Arlequin. Results confirm the placement of Hypopachus and Gastrophryne as sister taxa, but the latter genus was strongly supported as paraphyletic. The African phrynomerine genus Phrynomantis was recovered as the sister taxon to a monophyletic Chiasmocleis, rendering our well-supported clade of gastrophrynines paraphyletic. Hypopachus barberi was supported as a disjunctly distributed highland species, and we recovered a basal split in lowland populations of Hypopachus variolosus from the Pacific versant of Mexico and elsewhere in the Mesoamerican lowlands. Dating analyses from BEAST estimate speciation within the genus Hypopachus occurred in the late Miocene/early Pliocene for most clades. Previous studies have not found bioacoustic or morphological differences among these lowland clades, and our molecular data support the continued recognition of two species in the genus Hypopachus. PMID:21798357

  9. Aliisedimentitalea scapharcae gen. nov., sp. nov., isolated from ark shell Scapharca broughtonii.

    PubMed

    Kim, Young-Ok; Park, Sooyeon; Nam, Bo-Hye; Kim, Dong-Gyun; Won, Sung-Min; Park, Ji-Min; Yoon, Jung-Hoon

    2015-08-01

    A Gram-negative, aerobic, non-spore-forming, motile and ovoid or rod-shaped bacterial strain, designated MA2-16(T), was isolated from ark shell (Scapharca broughtonii) collected from the South Sea, South Korea. Strain MA2-16(T) was found to grow optimally at 30°C, at pH 7.0-8.0 and in the presence of 2.0% (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain MA2-16(T) clustered with the type strain of Sedimentitalea nanhaiensis. The novel strain exhibited a 16S rRNA gene sequence similarity value of 97.1% to the type strain of S. nanhaiensis. In the neighbour-joining phylogenetic tree based on gyrB sequences, strain MA2-16(T) formed an evolutionary lineage independent of those of other taxa. Strain MA2-16(T) contained Q-10 as the predominant ubiquinone and C18:1 ω7c and 11-methyl C18:1 ω7c as the major fatty acids. The major polar lipids of strain MA2-16(T) were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid and an unidentified lipid. The DNA G+C content of strain MA2-16(T) was 57.7 mol% and its DNA-DNA relatedness values with the type strains of S. nanhaiensis and some phylogenetically related species of the genera Leisingera and Phaeobacter were 13-24%. On the basis of the data presented, strain MA2-16(T) is considered to represent a novel genus and novel species within the family Rhodobacteraceae, for which the name Aliisedimentitalea scapharcae gen. nov., sp. nov. is proposed. The type strain is MA2-16(T) (=KCTC 42119(T) =CECT 8598(T)).

  10. Evidence for wild waterfowl origin of H7N3 influenza A virus detected in captive-reared New Jersey pheasants

    USGS Publications Warehouse

    Ramey, Andrew M.; Kim Torchetti, Mia; Poulson, Rebecca L.; Carter, Deborah L.; Reeves, Andrew B.; Link, Paul; Walther, Patrick; Lebarbenchon, Camille; Stallknecht, David E.

    2016-01-01

    In August 2014, a low-pathogenic H7N3 influenza A virus was isolated from pheasants at a New Jersey gamebird farm and hunting preserve. In this study, we use phylogenetic analyses and calculations of genetic similarity to gain inference into the genetic ancestry of this virus and to identify potential routes of transmission. Results of maximum-likelihood (ML) and maximum-clade-credibility (MCC) phylogenetic analyses provide evidence that A/pheasant/New Jersey/26996-2/2014 (H7N3) had closely related H7 hemagglutinin (HA) and N3 neuraminidase (NA) gene segments as compared to influenza A viruses circulating among wild waterfowl in the central and eastern USA. The estimated time of the most recent common ancestry (TMRCA) between the pheasant virus and those most closely related from wild waterfowl was early 2013 for both the H7 HA and N3 NA gene segments. None of the viruses from waterfowl identified as being most closely related to A/pheasant/New Jersey/26996-2/2014 at the HA and NA gene segments in ML and MCC phylogenetic analyses shared ≥99 % nucleotide sequence identity for internal gene segment sequences. This result indicates that specific viral strains identified in this study as being closely related to the HA and NA gene segments of A/pheasant/New Jersey/26996-2/2014 were not the direct predecessors of the etiological agent identified during the New Jersey outbreak. However, the recent common ancestry of the H7 and N3 gene segments of waterfowl-origin viruses and the virus isolated from pheasants suggests that viral diversity maintained in wild waterfowl likely played an important role in the emergence of A/pheasant/New Jersey/26996-2/2014.

  11. Molecular phylogenetics and biogeography of the Neotropical redstarts (Myioborus; Aves, Parulinae).

    PubMed

    Pérez-Emán, Jorge L

    2005-11-01

    Montane areas in the Neotropics are characterized by high diversity and endemism of birds and other groups. The avian genus Myioborus (Parulinae) is a group of insectivorous warblers, characteristic of cloud forests, that represents one of the few Parulinae genera (New World warblers) that has radiated substantially in South America. The genus is distributed throughout most montane regions from the southwestern United States to northern Argentina. Here, I use mitochondrial sequences from the cytochrome b, ND2, and ND3 genes to present the first hypothesis of phylogenetic relationship among all Myioborus species level taxa. Phylogenetic reconstructions based on maximum parsimony, maximum likelihood, and Bayesian methods produced similar results and suggest a northern origin for the genus Myioborus with subsequent colonization of the Neotropical Montane Region. The lower-montane species, M. miniatus, is the sister taxon to a clade in which all taxa occupy upper-montane habitats. These "highland" taxa diverged early in the history of the genus and produced two well-defined monophyletic lineages, a Central-northern Andean clade formed by M. albifrons, M. ornatus, and M. melanocephalus, and a Pantepui (table-mountains of southern Venezuela, northern Brazil, and western Guyana) clade consisting of M. castaneocapillus, M. albifacies, and M. cardonai, and probably M. pariae. M. brunniceps, M. flavivertex, and M. torquatus were included in this upper-montane clade but without clear relationships to other taxa. Lack of resolution of nodes defining the upper-montane species clade is likely to result from a period of rapid diversification mediated by geological and climatic events during the Late Pliocene. These results suggest that an interplay of dispersal and vicariance has shaped the current biogeographic patterns of Myioborus.

  12. Molecular Tracing of Hepatitis C Virus Genotype 1 Isolates in Iran: A NS5B Phylogenetic Analysis with Systematic Review.

    PubMed

    Hesamizadeh, Khashayar; Alavian, Seyed Moayed; Najafi Tireh Shabankareh, Azar; Sharafi, Heidar

    2016-12-01

    Hepatitis C virus (HCV) is characterized by a high degree of genetic heterogeneity and classified into 7 genotypes and different subtypes. It heterogeneously distributed through various risk groups and geographical regions. A well-established phylogenetic relationship can simplify the tracing of HCV hierarchical strata into geographical regions. The current study aimed to find genetic phylogeny of subtypes 1a and 1b of HCV isolates based on NS5B nucleotide sequences in Iran and other members of Eastern Mediterranean regional office of world health organization, as well as other Middle Eastern countries, with a systematic review of available published and unpublished studies. The phylogenetic analyses were performed based on the nucleotide sequences of NS5B gene of HCV genotype 1 (HCV-1), which were registered in the GenBank database. The literature review was performed in two steps: 1) searching studies evaluating the NS5B sequences of HCV-1, on PubMed, Scopus, and Web of Science, and 2) Searching sequences of unpublished studies registered in the GenBank database. In this study, 442 sequences from HCV-1a and 232 from HCV-1b underwent phylogenetic analysis. Phylogenetic analysis of all sequences revealed different clusters in the phylogenetic trees. The results showed that the proportion of HCV-1a and -1b isolates from Iranian patients probably originated from domestic sources. Moreover, the HCV-1b isolates from Iranian patients may have similarities with the European ones. In this study, phylogenetic reconstruction of HCV-1 sequences clearly indicated for molecular tracing and ancestral relationships of the HCV genotypes in Iran, and showed the likelihood of domestic origin for HCV-1a and various origin for HCV-1b.

  13. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests.

    PubMed

    Posada, David; Buckley, Thomas R

    2004-10-01

    Model selection is a topic of special relevance in molecular phylogenetics that affects many, if not all, stages of phylogenetic inference. Here we discuss some fundamental concepts and techniques of model selection in the context of phylogenetics. We start by reviewing different aspects of the selection of substitution models in phylogenetics from a theoretical, philosophical and practical point of view, and summarize this comparison in table format. We argue that the most commonly implemented model selection approach, the hierarchical likelihood ratio test, is not the optimal strategy for model selection in phylogenetics, and that approaches like the Akaike Information Criterion (AIC) and Bayesian methods offer important advantages. In particular, the latter two methods are able to simultaneously compare multiple nested or nonnested models, assess model selection uncertainty, and allow for the estimation of phylogenies and model parameters using all available models (model-averaged inference or multimodel inference). We also describe how the relative importance of the different parameters included in substitution models can be depicted. To illustrate some of these points, we have applied AIC-based model averaging to 37 mitochondrial DNA sequences from the subgenus Ohomopterus(genus Carabus) ground beetles described by Sota and Vogler (2001).

  14. Population genetic structure and vocal dialects in an amazon parrot.

    PubMed Central

    Wright, T F; Wilkinson, G S

    2001-01-01

    The relationship between cultural and genetic evolution was examined in the yellow-naped amazon Amazona auropalliata. This species has previously been shown to have regional dialects defined by large shifts in the acoustic structure of its learned contact call. Mitochondrial DNA sequence variation from a 680 base pair segment of the first domain of the control region was assayed in 41 samples collected from two neighbouring dialects in Costa Rica. The relationship of genetic variation to vocal variation was examined using haplotype analysis, genetic distance analysis, a maximum-likelihood estimator of migration rates and phylogenetic reconstructions. All analyses indicated a high degree of gene flow and, thus, individual dispersal across dialect boundaries. Calls sampled from sound libraries suggested that temporally stable contact call dialects occur throughout the range of the yellow-naped amazon, while the presence of similar dialects in the sister species Amazona ochrocephala suggests that the propensity to form dialects is ancestral in this clade. These results indicate that genes and culture are not closely associated in the yellow-naped amazon. Rather, they suggest that regional diversity in vocalizations is maintained by selective pressures that promote social learning and allow individual repertoires to conform to local call types. PMID:11297178

  15. Molecular diagnosis of populational variants of Anthonomus grandis (Coleoptera: Curculionidae) in North America.

    PubMed

    Barr, Norman; Ruiz-Arce, Raul; Obregón, Oscar; De Leon, Rosita; Foster, Nelson; Reuter, Chris; Boratynski, Theodore; Vacek, Don

    2013-02-01

    The utility of the cytochrome oxidase I (COI) DNA sequence used for DNA barcoding and a Sequence Characterized Amplified Region for diagnosing boll weevil, Anthonomus grandis Boheman, variants was evaluated. Maximum likelihood analysis of COI DNA sequences from 154 weevils collected from the United States and Mexico supports previous evidence for limited gene flow between weevil populations on wild cotton and commercial cotton in northern Mexico and southern United States. The wild cotton populations represent a variant of the species called the thurberia weevil, which is not regarded as a significant pest. The 31 boll weevil COI haplotypes observed in the study form two distinct haplogroups (A and B) that are supported by five fixed nucleotide differences and a phylogenetic analysis. Although wild and commercial cotton populations are closely associated with specific haplogroups, there is not a fixed difference between the thurberia weevil variant and other populations. The Sequence Characterized Amplified Region marker generated a larger number of inconclusive results than the COI gene but also supported evidence of shared genotypes between wild and commercial cotton weevil populations. These methods provide additional markers that can assist in the identification of pest weevil populations but not definitively diagnose samples.

  16. Analysis of the cytochrome c oxidase subunit II (COX2) gene in giant panda, Ailuropoda melanoleuca.

    PubMed

    Ling, S S; Zhu, Y; Lan, D; Li, D S; Pang, H Z; Wang, Y; Li, D Y; Wei, R P; Zhang, H M; Wang, C D; Hu, Y D

    2017-01-23

    The giant panda, Ailuropoda melanoleuca (Ursidae), has a unique bamboo-based diet; however, this low-energy intake has been sufficient to maintain the metabolic processes of this species since the fourth ice age. As mitochondria are the main sites for energy metabolism in animals, the protein-coding genes involved in mitochondrial respiratory chains, particularly cytochrome c oxidase subunit II (COX2), which is the rate-limiting enzyme in electron transfer, could play an important role in giant panda metabolism. Therefore, the present study aimed to isolate, sequence, and analyze the COX2 DNA from individuals kept at the Giant Panda Protection and Research Center, China, and compare these sequences with those of the other Ursidae family members. Multiple sequence alignment showed that the COX2 gene had three point mutations that defined three haplotypes, with 60% of the sequences corresponding to haplotype I. The neutrality tests revealed that the COX2 gene was conserved throughout evolution, and the maximum likelihood phylogenetic analysis, using homologous sequences from other Ursidae species, showed clustering of the COX2 sequences of giant pandas, suggesting that this gene evolved differently in them.

  17. Phylogenetic tree and community structure from a Tangled Nature model.

    PubMed

    Canko, Osman; Taşkın, Ferhat; Argın, Kamil

    2015-10-07

    In evolutionary biology, the taxonomy and origination of species are widely studied subjects. An estimation of the evolutionary tree can be done via available DNA sequence data. The calculation of the tree is made by well-known and frequently used methods such as maximum likelihood and neighbor-joining. In order to examine the results of these methods, an evolutionary tree is pursued computationally by a mathematical model, called Tangled Nature. A relatively small genome space is investigated due to computational burden and it is found that the actual and predicted trees are in reasonably good agreement in terms of shape. Moreover, the speciation and the resulting community structure of the food-web are investigated by modularity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions

    NASA Technical Reports Server (NTRS)

    Peters, B. C., Jr.; Walker, H. F.

    1975-01-01

    A general iterative procedure is given for determining the consistent maximum likelihood estimates of normal distributions. In addition, a local maximum of the log-likelihood function, Newtons's method, a method of scoring, and modifications of these procedures are discussed.

  19. Molecular species delimitation methods recover most song-delimited cicada species in the European Cicadetta montana complex.

    PubMed

    Wade, E J; Hertach, T; Gogala, M; Trilar, T; Simon, C

    2015-12-01

    Molecular species delimitation is increasingly being used to discover and illuminate species level diversity, and a number of methods have been developed. Here, we compare the ability of two molecular species delimitation methods to recover song-delimited species in the Cicadetta montana cryptic species complex throughout Europe. Recent bioacoustics studies of male calling songs (premating reproductive barriers) have revealed cryptic species diversity in this complex. Maximum likelihood and Bayesian phylogenetic analyses were used to analyse the mitochondrial genes COI and COII and the nuclear genes EF1α and period for thirteen European Cicadetta species as well as the closely related monotypic genus Euboeana. Two molecular species delimitation methods, general mixed Yule-coalescent (GMYC) and Bayesian phylogenetics and phylogeography, identified the majority of song-delimited species and were largely congruent with each other. None of the molecular delimitation methods were able to fully recover a recent radiation of four Greek species. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  20. The Relation between Factor Score Estimates, Image Scores, and Principal Component Scores

    ERIC Educational Resources Information Center

    Velicer, Wayne F.

    1976-01-01

    Investigates the relation between factor score estimates, principal component scores, and image scores. The three methods compared are maximum likelihood factor analysis, principal component analysis, and a variant of rescaled image analysis. (RC)

  1. Determining the linkage of disease-resistance genes to molecular markers: the LOD-SCORE method revisited with regard to necessary sample sizes.

    PubMed

    Hühn, M

    1995-05-01

    Some approaches to molecular marker-assisted linkage detection for a dominant disease-resistance trait based on a segregating F2 population are discussed. Analysis of two-point linkage is carried out by the traditional measure of maximum lod score. It depends on (1) the maximum-likelihood estimate of the recombination fraction between the marker and the disease-resistance gene locus, (2) the observed absolute frequencies, and (3) the unknown number of tested individuals. If one replaces the absolute frequencies by expressions depending on the unknown sample size and the maximum-likelihood estimate of recombination value, the conventional rule for significant linkage (maximum lod score exceeds a given linkage threshold) can be resolved for the sample size. For each sub-population used for linkage analysis [susceptible (= recessive) individuals, resistant (= dominant) individuals, complete F2] this approach gives a lower bound for the necessary number of individuals required for the detection of significant two-point linkage by the lod-score method.

  2. Variational Bayesian Parameter Estimation Techniques for the General Linear Model

    PubMed Central

    Starke, Ludger; Ostwald, Dirk

    2017-01-01

    Variational Bayes (VB), variational maximum likelihood (VML), restricted maximum likelihood (ReML), and maximum likelihood (ML) are cornerstone parametric statistical estimation techniques in the analysis of functional neuroimaging data. However, the theoretical underpinnings of these model parameter estimation techniques are rarely covered in introductory statistical texts. Because of the widespread practical use of VB, VML, ReML, and ML in the neuroimaging community, we reasoned that a theoretical treatment of their relationships and their application in a basic modeling scenario may be helpful for both neuroimaging novices and practitioners alike. In this technical study, we thus revisit the conceptual and formal underpinnings of VB, VML, ReML, and ML and provide a detailed account of their mathematical relationships and implementational details. We further apply VB, VML, ReML, and ML to the general linear model (GLM) with non-spherical error covariance as commonly encountered in the first-level analysis of fMRI data. To this end, we explicitly derive the corresponding free energy objective functions and ensuing iterative algorithms. Finally, in the applied part of our study, we evaluate the parameter and model recovery properties of VB, VML, ReML, and ML, first in an exemplary setting and then in the analysis of experimental fMRI data acquired from a single participant under visual stimulation. PMID:28966572

  3. On the log-normality of historical magnetic-storm intensity statistics: implications for extreme-event probabilities

    USGS Publications Warehouse

    Love, Jeffrey J.; Rigler, E. Joshua; Pulkkinen, Antti; Riley, Pete

    2015-01-01

    An examination is made of the hypothesis that the statistics of magnetic-storm-maximum intensities are the realization of a log-normal stochastic process. Weighted least-squares and maximum-likelihood methods are used to fit log-normal functions to −Dst storm-time maxima for years 1957-2012; bootstrap analysis is used to established confidence limits on forecasts. Both methods provide fits that are reasonably consistent with the data; both methods also provide fits that are superior to those that can be made with a power-law function. In general, the maximum-likelihood method provides forecasts having tighter confidence intervals than those provided by weighted least-squares. From extrapolation of maximum-likelihood fits: a magnetic storm with intensity exceeding that of the 1859 Carrington event, −Dst≥850 nT, occurs about 1.13 times per century and a wide 95% confidence interval of [0.42,2.41] times per century; a 100-yr magnetic storm is identified as having a −Dst≥880 nT (greater than Carrington) but a wide 95% confidence interval of [490,1187] nT.

  4. Glutamate receptor-channel gating. Maximum likelihood analysis of gigaohm seal recordings from locust muscle.

    PubMed Central

    Bates, S E; Sansom, M S; Ball, F G; Ramsey, R L; Usherwood, P N

    1990-01-01

    Gigaohm recordings have been made from glutamate receptor channels in excised, outside-out patches of collagenase-treated locust muscle membrane. The channels in the excised patches exhibit the kinetic state switching first seen in megaohm recordings from intact muscle fibers. Analysis of channel dwell time distributions reveals that the gating mechanism contains at least four open states and at least four closed states. Dwell time autocorrelation function analysis shows that there are at least three gateways linking the open states of the channel with the closed states. A maximum likelihood procedure has been used to fit six different gating models to the single channel data. Of these models, a cooperative model yields the best fit, and accurately predicts most features of the observed channel gating kinetics. PMID:1696510

  5. A Comparison of a Bayesian and a Maximum Likelihood Tailored Testing Procedure.

    ERIC Educational Resources Information Center

    McKinley, Robert L.; Reckase, Mark D.

    A study was conducted to compare tailored testing procedures based on a Bayesian ability estimation technique and on a maximum likelihood ability estimation technique. The Bayesian tailored testing procedure selected items so as to minimize the posterior variance of the ability estimate distribution, while the maximum likelihood tailored testing…

  6. Molecular systematics and biogeography of the circumglobally distributed genus Seriola (Pisces: Carangidae).

    PubMed

    Swart, Belinda L; von der Heyden, Sophie; Bester-van der Merwe, Aletta; Roodt-Wilding, Rouvay

    2015-12-01

    The genus Seriola includes several important commercially exploited species and has a disjunct distribution globally; yet phylogenetic relationships within this genus have not been thoroughly investigated. This study reports the first comprehensive molecular phylogeny for this genus based on mitochondrial (Cytb) and nuclear gene (RAG1 and Rhod) DNA sequence data for all extant Seriola species (nine species, n=27). All species were found to be monophyletic based on Maximum parsimony, Maximum likelihood and Bayesian inference. The closure of the Tethys Sea (12-20 MYA) coincides with the divergence of a clade containing ((S. fasciata and S. peruana), S. carpenteri) from the rest of the Seriola species, while the formation of the Isthmus of Panama (±3 MYA) played an important role in the divergence of S. fasciata and S. peruana. Furthermore, factors such as climate and water temperature fluctuations during the Pliocene played important roles during the divergence of the remaining Seriola species. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Anchored phylogenomics illuminates the skipper butterfly tree of life.

    PubMed

    Toussaint, Emmanuel F A; Breinholt, Jesse W; Earl, Chandra; Warren, Andrew D; Brower, Andrew V Z; Yago, Masaya; Dexter, Kelly M; Espeland, Marianne; Pierce, Naomi E; Lohman, David J; Kawahara, Akito Y

    2018-06-19

    Butterflies (Papilionoidea) are perhaps the most charismatic insect lineage, yet phylogenetic relationships among them remain incompletely studied and controversial. This is especially true for skippers (Hesperiidae), one of the most species-rich and poorly studied butterfly families. To infer a robust phylogenomic hypothesis for Hesperiidae, we sequenced nearly 400 loci using Anchored Hybrid Enrichment and sampled all tribes and more than 120 genera of skippers. Molecular datasets were analyzed using maximum-likelihood, parsimony and coalescent multi-species phylogenetic methods. All analyses converged on a novel, robust phylogenetic hypothesis for skippers. Different optimality criteria and methodologies recovered almost identical phylogenetic trees with strong nodal support at nearly all nodes and all taxonomic levels. Our results support Coeliadinae as the sister group to the remaining skippers, the monotypic Euschemoninae as the sister group to all other subfamilies but Coeliadinae, and the monophyly of Eudaminae plus Pyrginae. Within Pyrginae, Celaenorrhinini and Tagiadini are sister groups, the Neotropical firetips, Pyrrhopygini, are sister to all other tribes but Celaenorrhinini and Tagiadini. Achlyodini is recovered as the sister group to Carcharodini, and Erynnini as sister group to Pyrgini. Within the grass skippers (Hesperiinae), there is strong support for the monophyly of Aeromachini plus remaining Hesperiinae. The giant skippers (Agathymus and Megathymus) once classified as a subfamily, are recovered as monophyletic with strong support, but are deeply nested within Hesperiinae. Anchored Hybrid Enrichment sequencing resulted in a large amount of data that built the foundation for a new, robust evolutionary tree of skippers. The newly inferred phylogenetic tree resolves long-standing systematic issues and changes our understanding of the skipper tree of life. These resultsenhance understanding of the evolution of one of the most species-rich butterfly families.

  8. Diversification in Hawaiian long-legged flies (Diptera: Dolichopodidae: Campsicnemus): biogeographic isolation and ecological adaptation.

    PubMed

    Goodman, Kari Roesch; Evenhuis, Neal L; Bartošová-Sojková, Pavla; O'Grady, Patrick M

    2014-12-01

    Flies in the genus Campsicnemus have diversified into the second-largest adaptive radiation of Diptera in the Hawaiian Islands, with 179 Hawaiian endemic species currently described. Here we present the first phylogenetic analysis of Campsicnemus, with a focus on the Hawaiian fauna. We analyzed a combination of two nuclear (CAD, EF1α) and five mitochondrial (COI, COII, 12S, 16S, ND2) loci using Bayesian and maximum likelihood approaches to generate a phylogenetic hypothesis for the genus Campsicnemus. Our sampling included a total of 84 species (6 species from Europe, 1 from North America, 7 species from French Polynesia and 70 species from the Hawaiian Islands). The phylogenies were used to estimate divergence times, reconstruct biogeographic history, and infer ancestral ecological associations within this large genus. We found strong support for a South Pacific+Hawaiian clade, as well as for a monophyletic Hawaiian lineage. Divergence time estimates suggest that Hawaiian Islands were colonized approximately 4.6 million years ago, suggesting that most of the diversity within Campsicnemus evolved since the current high islands began forming ∼5 million years ago. We also observe a novel ecotype within the Pacific Campsicnemus; a widespread obligate water-skating form that has arisen multiple times across the Pacific Islands. Together, these analyses suggest that a combination of ecological, biogeographic and temporal factors have led to the impressive diversity of long-legged flies in Hawaii and elsewhere in the Pacific. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Investigating biogeographic boundaries of the Sunda shelf: A phylogenetic analysis of two island populations of Macaca fascicularis.

    PubMed

    Klegarth, A R; Sanders, S A; Gloss, A D; Lane-deGraaf, K E; Jones-Engel, L; Fuentes, A; Hollocher, H

    2017-08-01

    Cyclical submergence and re-emergence of the Sunda Shelf throughout the Pleistocene served as a dynamic biogeographic landscape, across which long-tailed macaques (Macaca fascicularis) have migrated and evolved. Here, we tested the integrity of the previously reported continental-insular haplotype divide reported among Y and mitochondrial DNA lineages across multiple studies. The continental-insular haplotype divide was tested by heavily sampling wild macaques from two important biogeographic regions within Sundaland: (1) Singapore, the southernmost tip of continental Asia and (2) Bali, Indonesia, the southeastern edge of the Indonesian archipelago, immediately west of Wallace's line. Y DNA was haplotyped for samples from Bali, deep within the Indonesian archipelago. Mitochondrial D-loop from both islands was analyzed against existing data using Maximum Likelihood and Bayesian approaches. We uncovered both "continental" and "insular" Y DNA haplotypes in Bali. Between Singapore and Bali we found 52 unique mitochondrial haplotypes, none of which had been previously described. Phylogenetic analyses confirmed a major haplogroup division within Singapore and identified five new Singapore subclades and two primary subclades in Bali. While we confirmed the continental-insular divide among mtDNA haplotypes, maintenance of both Y DNA haplotypes on Bali, deep within the Indonesian archipelago calls into question the mechanism by which Y DNA diversity has been maintained. It also suggests the continental-insular designation is less appropriate for Y DNA, leading us to propose geographically neutral Y haplotype designations. © 2017 Wiley Periodicals, Inc.

  10. Combined Use of Morphological and Molecular Tools to Resolve Species Mis-Identifications in the Bivalvia The Case of Glycymeris glycymeris and G. pilosa.

    PubMed

    Purroy, Ariadna; Šegvić-Bubić, Tanja; Holmes, Anna; Bušelić, Ivana; Thébault, Julien; Featherstone, Amy; Peharda, Melita

    Morphological and molecular tools were combined to resolve the misidentification between Glycymeris glycymeris and Glycymeris pilosa from Atlantic and Mediterranean populations. The ambiguous literature on the taxonomic status of these species requires this confirmation as a baseline to studies on their ecology and sclerochronology. We used classical and landmark-based morphometric approaches and performed bivariate and multivariate analyses to test for shell character interactions at the individual and population level. Both approaches generated complementary information. The former showed the shell width to length ratio and the valve asymmetry to be the main discriminant characters between Atlantic and Mediterranean populations. Additionally, the external microsculpture of additional and finer secondary ribs in G. glycymeris discriminates it from G. pilosa. Likewise, landmark-based geometric morphometrics revealed a stronger opisthogyrate beak and prosodetic ligament in G. pilosa than G. glycymeris. Our Bayesian and maximum likelihood phylogenetic analyses based on COI and ITS2 genes identified that G. glycymeris and G. pilosa form two separate monophyletic clades with mean interspecific divergence of 11% and 0.9% for COI and ITS2, respectively. The congruent patterns of morphometric analysis together with mitochondrial and nuclear phylogenetic reconstructions indicated the separation of the two coexisting species. The intraspecific divergence occurred during the Eocene and accelerated during the late Pliocene and Pleistocene. Glycymeris pilosa showed a high level of genetic diversity, appearing as a more robust species whose tolerance of environmental conditions allowed its expansion throughout the Mediterranean.

  11. Genetic diversity analysis of the oriental river prawn (Macrobrachium nipponense) in Huaihe River.

    PubMed

    Cui, Feng; Yu, Yanyan; Bao, Fangyin; Wang, Song; Xiao, Ming Song

    2018-04-19

    The oriental river prawn (Macrobrachium nipponense) is an economically and nutritionally important species of decapod crustaceans in China. Genetic structure and demographic history of Macrobrachium nipponense were examined using sequence data from portions of the mitochondrial DNA cytochrome oxidase subunit I (COI) gene. Samples of 191 individuals were collected from 10 localities in the upper to middle reaches of the Huaihe River. Variability was detected at a total of 42 nucleotide sites along 684 bp length of homologous sequence (6.14%), and base substitutions occurred mostly at the second codon position. Haplotype diversity (h) and nucleotide diversity (π) of all populations were 0.9136 ± 0.0116 and 0.0078 ± 0.0042, respectively. Phylogenetic tree constructed using the maximum-likelihood (ML) method showed that the 44 haplotypes were assigned to two obvious clades associated with geographic regions. Moreover, the median-joining network was similar to the topology of the phylogenetic tree with 44 haplotypes. The pairwise F ST values between the populations varied from -0.0298 to 0.2994. Generally, moderate genetic differentiation (F ST  = 0.1598, p = .0000) among different geographic populations was detected, with the significant differentiation between the Huaibin (HB) and other Macrobrachium nipponense populations. Both mismatch distribution analyses and neutrality tests suggested the early stage of Late Pleistocene population expansion 85,500 years before present for the species, which was consistent with the palaeoclimatic condition of the Huaihe River Basin.

  12. A novel molecular marker for the study of Neotropical cichlid phylogeny.

    PubMed

    Fabrin, T M C; Gasques, L S; Prioli, S M A P; Prioli, A J

    2015-12-22

    The use of molecular markers has contributed to phylogeny and to the reconstruction of species' evolutionary history. Each region of the genome has different evolution rates, which may or may not identify phylogenetic signal at different levels. Therefore, it is important to assess new molecular markers that can be used for phylogenetic reconstruction. Regions that may be associated with species characteristics and are subject to selective pressure, such as opsin genes, which encode proteins related to the visual system and are widely expressed by Cichlidae family members, are interesting. Our aim was to identify a new nuclear molecular marker that could establish the phylogeny of Neotropical cichlids and is potentially correlated with the visual system. We used Bayesian inference and maximum likelihood analysis to support the use of the nuclear opsin LWS gene in the phylogeny of eight Neotropical cichlid species. Their use concatenated to the mitochondrial gene COI was also tested. The LWS gene fragment comprised the exon 2-4 region, including the introns. The LWS gene provided good support for both analyses up to the genus level, distinguishing the studied species, and when concatenated to the COI gene, there was a good support up to the species level. Another benefit of utilizing this region, is that some polymorphisms are associated with changes in spectral properties of the LWS opsin protein, which constitutes the visual pigment that absorbs red light. Thus, utilization of this gene as a molecular marker to study the phylogeny of Neotropical cichlids is promising.

  13. 'Candidatus Rickettsia mendelii', a novel basal group rickettsia detected in Ixodes ricinus ticks in the Czech Republic.

    PubMed

    Hajduskova, Eva; Literak, Ivan; Papousek, Ivo; Costa, Francisco B; Novakova, Marketa; Labruna, Marcelo B; Zdrazilova-Dubska, Lenka

    2016-04-01

    A novel rickettsial sequence in the citrate synthase gltA gene indicating a novel Rickettsia species has been detected in 7 out of 4524 Ixodes ricinus ticks examined within several surveys performed in the Czech Republic from 2005 to 2009. This new Candidatus Rickettsia sp. sequence has been found in 2 nymphs feeding on wild birds (Luscinia megarhynchos and Erithacus rubecula), in a male tick from vegetation, and 4 ticks feeding on a dog (3 males, 1 female tick). Portions of the ompA, ompB, sca4, and htrA genes were not amplifiable in these samples. A maximum likelihood tree of rickettsiae based on comparisons of partial amino acid sequences of citrate synthase and nucleotide sequences of 16S rDNA genes and phylogenetic analysis revealed a basal position of the novel species in the proximity of R. bellii and R. canadensis. The novel species has been named 'Candidatus Rickettsia mendelii' after the founder of genetics, Gregor Mendel. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Phylogenetic relationships of the ciliate class Heterotrichea (Protista, Ciliophora, Postciliodesmatophora) inferred from multiple molecular markers and multifaceted analysis strategy.

    PubMed

    Shazib, Shahed Uddin Ahmed; Vd'ačný, Peter; Kim, Ji Hye; Jang, Seok Won; Shin, Mann Kyoon

    2014-09-01

    The ciliate class Heterotrichea is defined by somatic dikinetids bearing postciliodesmata, by an oral apparatus consisting of a paroral membrane and an adoral zone of membranelles, as well as by features of nuclear division involving extramacronuclear microtubules. Although phylogenetic interrelationships among heterotrichs have been analyzed several times, deeper nodes of the heterotrichean tree of life remain poorly resolved. To cast more light on the evolutionary history of heterotricheans, we performed phylogenetic analyses of multiple loci (18S rRNA gene, ITS1-5.8S rRNA-ITS2 region, and 28S rRNA gene) using traditional tree-building phylogenetic methods and statistical tree topology tests as well as phylogenetic networks, split spectrum analysis and quartet likelihood mapping. This multifaceted approach has shown that (1) Peritromus is very likely an adelphotaxon of all other heterotrichs; (2) Spirostomum and Anigsteinia are sister taxa and their common monophyletic origin is strongly supported by a uniquely posteriorly-thickened paroral membrane; (3) the monotypic family Chattonidiidae should be suppressed because its type genus clusters within the family Condylostomatidae; and (4) new families are needed for Gruberia and Fabrea because their affiliation with Spirostomidae and Climacostomidae, respectively, is not supported by molecular phylogenies nor the fine structure of the paroral membrane. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The recursive maximum likelihood proportion estimator: User's guide and test results

    NASA Technical Reports Server (NTRS)

    Vanrooy, D. L.

    1976-01-01

    Implementation of the recursive maximum likelihood proportion estimator is described. A user's guide to programs as they currently exist on the IBM 360/67 at LARS, Purdue is included, and test results on LANDSAT data are described. On Hill County data, the algorithm yields results comparable to the standard maximum likelihood proportion estimator.

  16. New applications of maximum likelihood and Bayesian statistics in macromolecular crystallography.

    PubMed

    McCoy, Airlie J

    2002-10-01

    Maximum likelihood methods are well known to macromolecular crystallographers as the methods of choice for isomorphous phasing and structure refinement. Recently, the use of maximum likelihood and Bayesian statistics has extended to the areas of molecular replacement and density modification, placing these methods on a stronger statistical foundation and making them more accurate and effective.

  17. Search for Point Sources of Ultra-High-Energy Cosmic Rays above 4.0 × 1019 eV Using a Maximum Likelihood Ratio Test

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Bellido, J. A.; Belov, K.; Belz, J. W.; Ben-Zvi, S. Y.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Clay, R. W.; Connolly, B. M.; Dawson, B. R.; Deng, W.; Farrar, G. R.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.

    2005-04-01

    We present the results of a search for cosmic-ray point sources at energies in excess of 4.0×1019 eV in the combined data sets recorded by the Akeno Giant Air Shower Array and High Resolution Fly's Eye stereo experiments. The analysis is based on a maximum likelihood ratio test using the probability density function for each event rather than requiring an a priori choice of a fixed angular bin size. No statistically significant clustering of events consistent with a point source is found.

  18. Methods for estimating drought streamflow probabilities for Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.

    2014-01-01

    Maximum likelihood logistic regression model equations used to estimate drought flow probabilities for Virginia streams are presented for 259 hydrologic basins in Virginia. Winter streamflows were used to estimate the likelihood of streamflows during the subsequent drought-prone summer months. The maximum likelihood logistic regression models identify probable streamflows from 5 to 8 months in advance. More than 5 million streamflow daily values collected over the period of record (January 1, 1900 through May 16, 2012) were compiled and analyzed over a minimum 10-year (maximum 112-year) period of record. The analysis yielded the 46,704 equations with statistically significant fit statistics and parameter ranges published in two tables in this report. These model equations produce summer month (July, August, and September) drought flow threshold probabilities as a function of streamflows during the previous winter months (November, December, January, and February). Example calculations are provided, demonstrating how to use the equations to estimate probable streamflows as much as 8 months in advance.

  19. Application of maximum likelihood methods to laser Thomson scattering measurements of low density plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washeleski, Robert L.; Meyer, Edmond J. IV; King, Lyon B.

    2013-10-15

    Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. Themore » key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed.« less

  20. Application of maximum likelihood methods to laser Thomson scattering measurements of low density plasmas.

    PubMed

    Washeleski, Robert L; Meyer, Edmond J; King, Lyon B

    2013-10-01

    Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. The key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed.

  1. Posterior Predictive Bayesian Phylogenetic Model Selection

    PubMed Central

    Lewis, Paul O.; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn

    2014-01-01

    We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand–Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics; posterior predictive.] PMID:24193892

  2. Fast algorithms for computing phylogenetic divergence time.

    PubMed

    Crosby, Ralph W; Williams, Tiffani L

    2017-12-06

    The inference of species divergence time is a key step in most phylogenetic studies. Methods have been available for the last ten years to perform the inference, but the performance of the methods does not yet scale well to studies with hundreds of taxa and thousands of DNA base pairs. For example a study of 349 primate taxa was estimated to require over 9 months of processing time. In this work, we present a new algorithm, AncestralAge, that significantly improves the performance of the divergence time process. As part of AncestralAge, we demonstrate a new method for the computation of phylogenetic likelihood and our experiments show a 90% improvement in likelihood computation time on the aforementioned dataset of 349 primates taxa with over 60,000 DNA base pairs. Additionally, we show that our new method for the computation of the Bayesian prior on node ages reduces the running time for this computation on the 349 taxa dataset by 99%. Through the use of these new algorithms we open up the ability to perform divergence time inference on large phylogenetic studies.

  3. A maximum likelihood analysis of the CoGeNT public dataset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelso, Chris, E-mail: ckelso@unf.edu

    The CoGeNT detector, located in the Soudan Underground Laboratory in Northern Minnesota, consists of a 475 grams (fiducial mass of 330 grams) target mass of p-type point contact germanium detector that measures the ionization charge created by nuclear recoils. This detector has searched for recoils created by dark matter since December of 2009. We analyze the public dataset from the CoGeNT experiment to search for evidence of dark matter interactions with the detector. We perform an unbinned maximum likelihood fit to the data and compare the significance of different WIMP hypotheses relative to each other and the null hypothesis ofmore » no WIMP interactions. This work presents the current status of the analysis.« less

  4. A Study of Algorithms for Covariance Structure Analysis with Specific Comparisons Using Factor Analysis.

    ERIC Educational Resources Information Center

    Lee, S. Y.; Jennrich, R. I.

    1979-01-01

    A variety of algorithms for analyzing covariance structures are considered. Additionally, two methods of estimation, maximum likelihood, and weighted least squares are considered. Comparisons are made between these algorithms and factor analysis. (Author/JKS)

  5. On the existence of maximum likelihood estimates for presence-only data

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.

    2015-01-01

    It is important to identify conditions for which maximum likelihood estimates are unlikely to be identifiable from presence-only data. In data sets where the maximum likelihood estimates do not exist, penalized likelihood and Bayesian methods will produce coefficient estimates, but these are sensitive to the choice of estimation procedure and prior or penalty term. When sample size is small or it is thought that habitat preferences are strong, we propose a suite of estimation procedures researchers can consider using.

  6. Leishmania tropica isolates from non-healed and healed patients in Iran: A molecular typing and phylogenetic analysis.

    PubMed

    Bamorovat, Mehdi; Sharifi, Iraj; Mohammadi, Mohammad Ali; Eybpoosh, Sana; Nasibi, Saeid; Aflatoonian, Mohammad Reza; Khosravi, Ahmad

    2018-03-01

    The precise identification of the parasite species causing leishmaniasis is essential for selecting proper treatment modality. The present study aims to compare the nucleotide variations of the ITS1, 7SL RNA, and Hsp70 sequences between non-healed and healed anthroponotic cutaneous leishmaniasis (ACL) patients in major foci in Iran. A case-control study was carried out from September 2015 to October 2016 in the cities of Kerman and Bam, in the southeast of Iran. Randomly selected skin-scraping lesions of 40 patients (20 non-healed and 20 healed) were examined and the organisms were grown in a culture medium. Promastigotes were collected by centrifugation and kept for further molecular examinations. The extracted DNA was amplified and sequenced. After global sequence alignment with BioEdit software, maximum likelihood phylogenetic analysis was performed in PhyML for typing of Leishmania isolates. Nucleotide composition of each genetic region was also compared between non-healed and healed patients. Our results showed that all isolates belonged to the Leishmania tropica complex, with their genetic composition in the ITS1 region being different among non-healed and healed patients. 7SL RNA and Hsp70 regions were genetically identical between both groups. Variability in nucleotide patterns observed between both groups in the ITS1 region may serve to encourage future research on the function of these polymorphisms and may improve our understanding of the role of parasite genome properties on patients' response to Leishmania treatment. Our results also do not support future use of 7SL RNA and Hsp70 regions of the parasite for comparative genomic analyses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Ultrastructural morphology and phylogeny of Henneguya gilbert n. sp. (Myxozoa) infecting the teleostean Cyphocharax gilbert (Characiformes: Curimatidae) from Brazil.

    PubMed

    Casal, Graça; São Clemente, Sérgio C; Lopes, Leila; Rocha, Sónia; Felizardo, Nilza; Oliveira, Elsa; Al-Quraishy, Saleh; Azevedo, Carlos

    2017-10-01

    This paper describes light and ultrastructural observations and molecular analysis of a fish-infecting myxosporean, Henneguya gilbert n. sp., which was found infecting the gill epithelium of the commercially important freshwater teleost fish Cyphocharax gilbert (Curimatidae) collected in the estuarine region of Guandu River, Rio de Janeiro State, Brazil. The parasite occurs in the gills, forming whitish spherical to ellipsoidal polysporic cysts measuring up to ~ 750 μm, and displaying asynchronous development. Mature myxospores are ellipsoidal with a bifurcated caudal process. The length, width and thickness of the body of the myxospore are 12.0 × 5.3 × 3.6 μm, respectively; two equal caudal processes are 16.8 μm long, and the total length of the myxospore is 27.2 μm. There are two unequal polar capsules: the larger measures 5.5 μm length × 1.3 μm width and has a polar filament with 9-10 coils; the smaller is 4.0 μm long × 1.3 μm wide and has a polar filament with 7-8 coils. The sporoplasm is binucleated and presents a spherical vacuole surrounded by numerous globular sporoplasmosomes. Phylogenetic analysis, based on the small subunit rRNA sequencing, using maximum likelihood method reveals the parasite clustering together with other myxobolids that are histozoic and parasitize freshwater fish of the order Characiformes, thereby strengthening the contention that the host phylogenetic relationships and aquatic environment are the strongest evolutionary signals for myxosporeans of the family Myxobolidae.

  8. Differentiation of Xylella fastidiosa Strains via Multilocus Sequence Analysis of Environmentally Mediated Genes (MLSA-E)

    PubMed Central

    Parker, Jennifer K.; Havird, Justin C.

    2012-01-01

    Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops. PMID:22194287

  9. Differentiation of Xylella fastidiosa strains via multilocus sequence analysis of environmentally mediated genes (MLSA-E).

    PubMed

    Parker, Jennifer K; Havird, Justin C; De La Fuente, Leonardo

    2012-03-01

    Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops.

  10. Integrated Efforts for Analysis of Geophysical Measurements and Models.

    DTIC Science & Technology

    1997-09-26

    12b. DISTRIBUTION CODE 13. ABSTRACT ( Maximum 200 words) This contract supported investigations of integrated applications of physics, ephemerides...REGIONS AND GPS DATA VALIDATIONS 20 2.5 PL-SCINDA: VISUALIZATION AND ANALYSIS TECHNIQUES 22 2.5.1 View Controls 23 2.5.2 Map Selection...and IR data, about cloudy pixels. Clustering and maximum likelihood classification algorithms categorize up to four cloud layers into stratiform or

  11. Computational Evaluation of the Strict Master and Random Template Models of Endogenous Retrovirus Evolution

    PubMed Central

    Nascimento, Fabrícia F.; Rodrigo, Allen G.

    2016-01-01

    Transposable elements (TEs) are DNA sequences that are able to replicate and move within and between host genomes. Their mechanism of replication is also shared with endogenous retroviruses (ERVs), which are also a type of TE that represent an ancient retroviral infection within animal genomes. Two models have been proposed to explain TE proliferation in host genomes: the strict master model (SMM), and the random template (or transposon) model (TM). In SMM only a single copy of a given TE lineage is able to replicate, and all other genomic copies of TEs are derived from that master copy. In TM, any element of a given family is able to replicate in the host genome. In this paper, we simulated ERV phylogenetic trees under variations of SMM and TM. To test whether current phylogenetic programs can recover the simulated ERV phylogenies, DNA sequence alignments were simulated and maximum likelihood trees were reconstructed and compared to the simulated phylogenies. Results indicate that visual inspection of phylogenetic trees alone can be misleading. However, if a set of statistical summaries is calculated, we are able to distinguish between models with high accuracy by using a data mining algorithm that we introduce here. We also demonstrate the use of our data mining algorithm with empirical data for the porcine endogenous retrovirus (PERV), an ERV that is able to replicate in human and pig cells in vitro. PMID:27649303

  12. Mitochondrial Phylogenomics of Modern and Ancient Equids

    PubMed Central

    Vilstrup, Julia T.; Seguin-Orlando, Andaine; Stiller, Mathias; Ginolhac, Aurelien; Raghavan, Maanasa; Nielsen, Sandra C. A.; Weinstock, Jacobo; Froese, Duane; Vasiliev, Sergei K.; Ovodov, Nikolai D.; Clary, Joel; Helgen, Kristofer M.; Fleischer, Robert C.; Cooper, Alan; Shapiro, Beth; Orlando, Ludovic

    2013-01-01

    The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy’s zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya). PMID:23437078

  13. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites.

    PubMed

    Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying

    2012-10-01

    To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi'an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was successful only in three D. canis isolates and one D. brevis isolate out of the nine Demodex isolates. The obtained fragments were sequenced to be 339 bp for D. canis and 338 bp for D. brevis. The CHS gene sequence similarities between the three Xi'an D. canis isolates and one Japanese D. canis isolate ranged from 99.7% to 100.0%, and those between four D. canis isolates and one D. brevis isolate were 99.1%-99.4%. Phylogenetic trees based on maximum parsimony (MP) and maximum likelihood (ML) methods shared the same clusters, according with the traditional classification. Two open reading frames (ORFs) were identified in each CHS gene sequenced, and their corresponding amino acid sequences were located at the catalytic domain. The relatively conserved sequences could be deduced to be a CHS class A gene, which is associated with chitin synthesis in the integument of Demodex mites.

  14. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites*

    PubMed Central

    Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying

    2012-01-01

    To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi’an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was successful only in three D. canis isolates and one D. brevis isolate out of the nine Demodex isolates. The obtained fragments were sequenced to be 339 bp for D. canis and 338 bp for D. brevis. The CHS gene sequence similarities between the three Xi’an D. canis isolates and one Japanese D. canis isolate ranged from 99.7% to 100.0%, and those between four D. canis isolates and one D. brevis isolate were 99.1%–99.4%. Phylogenetic trees based on maximum parsimony (MP) and maximum likelihood (ML) methods shared the same clusters, according with the traditional classification. Two open reading frames (ORFs) were identified in each CHS gene sequenced, and their corresponding amino acid sequences were located at the catalytic domain. The relatively conserved sequences could be deduced to be a CHS class A gene, which is associated with chitin synthesis in the integument of Demodex mites. PMID:23024043

  15. The numerical evaluation of maximum-likelihood estimates of the parameters for a mixture of normal distributions from partially identified samples

    NASA Technical Reports Server (NTRS)

    Walker, H. F.

    1976-01-01

    Likelihood equations determined by the two types of samples which are necessary conditions for a maximum-likelihood estimate are considered. These equations, suggest certain successive-approximations iterative procedures for obtaining maximum-likelihood estimates. These are generalized steepest ascent (deflected gradient) procedures. It is shown that, with probability 1 as N sub 0 approaches infinity (regardless of the relative sizes of N sub 0 and N sub 1, i=1,...,m), these procedures converge locally to the strongly consistent maximum-likelihood estimates whenever the step size is between 0 and 2. Furthermore, the value of the step size which yields optimal local convergence rates is bounded from below by a number which always lies between 1 and 2.

  16. Improved Maximum Parsimony Models for Phylogenetic Networks.

    PubMed

    Van Iersel, Leo; Jones, Mark; Scornavacca, Celine

    2018-05-01

    Phylogenetic networks are well suited to represent evolutionary histories comprising reticulate evolution. Several methods aiming at reconstructing explicit phylogenetic networks have been developed in the last two decades. In this article, we propose a new definition of maximum parsimony for phylogenetic networks that permits to model biological scenarios that cannot be modeled by the definitions currently present in the literature (namely, the "hardwired" and "softwired" parsimony). Building on this new definition, we provide several algorithmic results that lay the foundations for new parsimony-based methods for phylogenetic network reconstruction.

  17. Phylogenetic congruence of parasitic smut fungi (Anthracoidea, Anthracoideaceae) and their host plants (Carex, Cyperaceae): Cospeciation or host-shift speciation?

    PubMed

    Escudero, Marcial

    2015-07-01

    • Fahrenholz's rule states that common ancestors of extant parasites were parasites of the common ancestors of extant hosts. Consequently, parasite phylogeny should mirror host phylogeny. The smut fungi genus Anthracoidea (Anthracoideaceae) is mainly hosted by species of the genus Carex (Cyperaceae). Whether smut fungi phylogeny mirrors sedge phylogeny is still under debate.• The nuclear large subunit DNA region (LSU; 57 accessions) from 31 Anthracoidea species and the ITS, ETS, and trnL-F spacer-trnL intron complex from 41 Carex species were used to infer the phylogenetic history of parasites and their hosts using a maximum likelihood approach. Event-based and distance-based cophylogenetic methods were used to test the hypothesis of whether the phylogeny of smut fungi from the genus Anthracoidea matches the phylogeny of the sedge Carex species they host.• Cophylogenetic reconstructions taking into account phylogenetic uncertainties based on event-based analyses demonstrated that the Anthracoidea phylogeny has significant topological congruence with the phylogeny of their Carex hosts. A distance-based test was also significant; therefore, the phylogenies of Anthracoide and Carex are partially congruent.• The phylogenetic congruence of Anthracoidea and Carex is partially based on smut fungi species being preferentially hosted by closely related sedges (host conservatism). In addition, many different events rather than only codivergence events are inferred. All of this evidence suggests that host-shift speciation rather than cospeciation seems to explain the cophylogenetic patterns of Anthracoidea and Carex. © 2015 Botanical Society of America, Inc.

  18. Computation of nonparametric convex hazard estimators via profile methods.

    PubMed

    Jankowski, Hanna K; Wellner, Jon A

    2009-05-01

    This paper proposes a profile likelihood algorithm to compute the nonparametric maximum likelihood estimator of a convex hazard function. The maximisation is performed in two steps: First the support reduction algorithm is used to maximise the likelihood over all hazard functions with a given point of minimum (or antimode). Then it is shown that the profile (or partially maximised) likelihood is quasi-concave as a function of the antimode, so that a bisection algorithm can be applied to find the maximum of the profile likelihood, and hence also the global maximum. The new algorithm is illustrated using both artificial and real data, including lifetime data for Canadian males and females.

  19. Fusarium agapanthi sp. nov., a novel bikaverin and fusarubin-producing leaf and stem spot pathogen of Agapanthus praecox (African lily) from Australia and Italy.

    PubMed

    Edwards, Jacqueline; Auer, Desmond; de Alwis, Sri-Kanthi; Summerell, Brett; Aoki, Takayuki; Proctor, Robert H; Busman, Mark; O'Donnell, Kerry

    2016-09-01

    This study was conducted to characterize a novel Fusarium species that caused leaf and stem spot on Agapanthus praecox (Agapanthus, African lily) in northern Italy and leaf rot and spot on the same host in Melbourne, Australia. Formally described as Fusarium agapanthi, this pathogen was analyzed using phenotypic, phytopathogenic, secondary metabolite, molecular phylogenetic and genomic data. Five strains were characterized, including one isolated in 1999 from symptomatic A. praecox in Saluzzo, Italy, and four in 2010 from diseased leaf tissue from the same host exhibiting leaf rot and spot symptoms in the Melbourne Gardens, Royal Botanic Gardens Victoria, Australia. Maximum parsimony and maximum likelihood molecular phylogenetic analyses of portions of six individual genes and the combined dataset all strongly supported F. agapanthi either as the earliest diverging genealogically exclusive lineage in the American Clade of the F. fujikuroi species complex, or alternatively a novel monotypic lineage sister to the American Clade. Koch's postulates were completed on dwarf blue- and large white-flowering varieties of A. praecox, where two isolates of F. agapanthi produced slowly spreading necrotic lesions when inoculated onto leaves and flower stems. Fusarium agapanthi is distinguished from other fusaria by the production of densely branched aerial conidiophores with polyphialides throughout the aerial mycelium on synthetic nutrient-poor agar. BLASTn searches of the F. agapanthi NRRL 31653 and NRRL 54464 (= VPRI 41787) genome sequences were conducted to predict sexual reproductive mode and mycotoxin potential. Results indicated that they possessed MAT1-2 and MAT1-1 idiomorphs, respectively, indicating that this species might be heterothallic. Furthermore, based on the presence of homologs of the bikaverin and fusarubin biosynthetic gene clusters in the F. agapanthi genomes, liquid chromatography-mass spectrometry analysis was conducted and confirmed production of these secondary metabolites in rice and corn kernel cultures of the fungus. © 2016 by The Mycological Society of America.

  20. Actinomycetospora rhizophila sp. nov., an actinomycete isolated from rhizosphere soil of a peace lily (Spathi phyllum Kochii).

    PubMed

    He, Hairong; Zhang, Yuejing; Ma, Zhaoxu; Li, Chuang; Liu, Chongxi; Zhou, Ying; Li, Lianjie; Wang, Xiangjing; Xiang, Wensheng

    2015-05-01

    A novel actinomycete, designated strain NEAU-B-8(T), was isolated from the rhizosphere soil of a peace lily (Spathi phyllum Kochii) collected from Heilongjiang province, north-east China. Key morphological and physiological characteristics as well as chemotaxonomic features of strain NEAU-B-8(T) were congruent with the description of the genus Actinomycetospora , such as the major fatty acids, the whole-cell hydrolysates, the predominant menaquinone and the phospholipid profile. The 16S rRNA gene sequence analysis revealed that strain NEAU-B-8(T) shared the highest sequence similarities with Actinomycetospora lutea JCM 17982(T) (99.3% 16S rRNA gene sequence similarity), Actinomycetospora chlora TT07I-57(T) (98.4 %), Actinomycetospora straminea IY07-55(T) (98.3%) and Actinomycetospora chibensis TT04-21(T) (98.2%); similarities to type strains of other species of this genus were lower than 98%. The phylogenetic tree based on 16S rRNA gene sequences showed that strain NEAU-B-8(T) formed a distinct branch with A. lutea JCM 17982(T) that was supported by a high bootstrap value of 97% in the neighbour-joining tree and was also recovered with the maximum-likelihood algorithm. However, the DNA-DNA relatedness between strain NEAU-B-8(T) and A. lutea JCM 17982(T) was found to be 50.6 ± 1.2%. Meanwhile, strain NEAU-B-8(T) differs from other most closely related strains in phenotypic properties, such as maximum NaCl tolerance, hydrolysis of aesculin and decomposition of urea. On the basis of the morphological, physiological, chemotaxonomic, phylogenetic and DNA-DNA hybridization data, we conclude that strain NEAU-B-8(T) represents a novel species of the genus Actinomycetospora , named Actinomycetospora rhizophila sp. nov. The type strain is NEAU-B-8(T). ( = CGMCC 4.7134(T) =DSM 46673(T)). © 2015 IUMS.

  1. Morphological variability and molecular identification of Uncinaria spp. (Nematoda: Ancylostomatidae) from grizzly and black bears: new species or phenotypic plasticity?

    PubMed

    Catalano, Stefano; Lejeune, Manigandan; van Paridon, Bradley; Pagan, Christopher A; Wasmuth, James D; Tizzani, Paolo; Duignan, Pádraig J; Nadler, Steven A

    2015-04-01

    The hookworms Uncinaria rauschi Olsen, 1968 and Uncinaria yukonensis ( Wolfgang, 1956 ) were formally described from grizzly ( Ursus arctos horribilis) and black bears ( Ursus americanus ) of North America. We analyzed the intestinal tracts of 4 grizzly and 9 black bears from Alberta and British Columbia, Canada and isolated Uncinaria specimens with anatomical traits never previously documented. We applied morphological and molecular techniques to investigate the taxonomy and phylogeny of these Uncinaria parasites. The morphological analysis supported polymorphism at the vulvar region for females of both U. rauschi and U. yukonensis. The hypothesis of morphological plasticity for U. rauschi and U. yukonensis was confirmed by genetic analysis of the internal transcribed spacers (ITS-1 and ITS-2) of the nuclear ribosomal DNA. Two distinct genotypes were identified, differing at 5 fixed sites for ITS-1 (432 base pairs [bp]) and 7 for ITS-2 (274 bp). Morphometric data for U. rauschi revealed host-related size differences: adult U. rauschi were significantly larger in black bears than in grizzly bears. Interpretation of these results, considering the historical biogeography of North American bears, suggests a relatively recent host-switching event of U. rauschi from black bears to grizzly bears which likely occurred after the end of the Wisconsin glaciation. Phylogenetic maximum parsimony (MP) and maximum likelihood (ML) analyses of the concatenated ITS-1 and ITS-2 datasets strongly supported monophyly of U. rauschi and U. yukonensis and their close relationship with Uncinaria stenocephala (Railliet, 1884), the latter a parasite primarily of canids and felids. Relationships among species within this group, although resolved by ML, were unsupported by MP and bootstrap resampling. The clade of U. rauschi, U. yukonensis, and U. stenocephala was recovered as sister to the clade represented by Uncinaria spp. from otariid pinnipeds. These results support the absence of strict host-parasite co-phylogeny for Uncinaria spp. and their carnivore hosts. Phylogenetic relationships among Uncinaria spp. provided a framework to develop the hypothesis of similar transmission patterns for the closely related U. rauschi, U. yukonensis, and U. stenocephala.

  2. Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms.

    PubMed

    Ruhlman, Tracey; Lee, Seung-Bum; Jansen, Robert K; Hostetler, Jessica B; Tallon, Luke J; Town, Christopher D; Daniell, Henry

    2006-08-31

    Carrot (Daucus carota) is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats > or = 30 bp with a sequence identity > or = 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony (MP) and maximum likelihood (ML) were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support (100% bootstrap) for the sister relationship of Daucus with Panax in the euasterid II clade. These results provide the best taxon sampling of complete chloroplast genomes and the strongest support yet for the sister relationship of Caryophyllales to the asterids. The availability of the complete plastid genome sequence should facilitate improved transformation efficiency and foreign gene expression in carrot through utilization of endogenous flanking sequences and regulatory elements.

  3. A Well-Resolved Phylogeny of the Trees of Puerto Rico Based on DNA Barcode Sequence Data

    PubMed Central

    Muscarella, Robert; Uriarte, María; Erickson, David L.; Swenson, Nathan G.; Zimmerman, Jess K.; Kress, W. John

    2014-01-01

    Background The use of phylogenetic information in community ecology and conservation has grown in recent years. Two key issues for community phylogenetics studies, however, are (i) low terminal phylogenetic resolution and (ii) arbitrarily defined species pools. Methodology/principal findings We used three DNA barcodes (plastid DNA regions rbcL, matK, and trnH-psbA) to infer a phylogeny for 527 native and naturalized trees of Puerto Rico, representing the vast majority of the entire tree flora of the island (89%). We used a maximum likelihood (ML) approach with and without a constraint tree that enforced monophyly of recognized plant orders. Based on 50% consensus trees, the ML analyses improved phylogenetic resolution relative to a comparable phylogeny generated with Phylomatic (proportion of internal nodes resolved: constrained ML = 74%, unconstrained ML = 68%, Phylomatic = 52%). We quantified the phylogenetic composition of 15 protected forests in Puerto Rico using the constrained ML and Phylomatic phylogenies. We found some evidence that tree communities in areas of high water stress were relatively phylogenetically clustered. Reducing the scale at which the species pool was defined (from island to soil types) changed some of our results depending on which phylogeny (ML vs. Phylomatic) was used. Overall, the increased terminal resolution provided by the ML phylogeny revealed additional patterns that were not observed with a less-resolved phylogeny. Conclusions/significance With the DNA barcode phylogeny presented here (based on an island-wide species pool), we show that a more fully resolved phylogeny increases power to detect nonrandom patterns of community composition in several Puerto Rican tree communities. Especially if combined with additional information on species functional traits and geographic distributions, this phylogeny will (i) facilitate stronger inferences about the role of historical processes in governing the assembly and composition of Puerto Rican forests, (ii) provide insight into Caribbean biogeography, and (iii) aid in incorporating evolutionary history into conservation planning. PMID:25386879

  4. Whence the red panda?

    PubMed

    Flynn, J J; Nedbal, M A; Dragoo, J W; Honeycutt, R L

    2000-11-01

    The evolutionary history of the red panda (Ailurus fulgens) plays a pivotal role in the higher-level phylogeny of the "bear-like" arctoid carnivoran mammals. Characters from morphology and molecules have provided inconsistent evidence for placement of the red panda. Whereas it certainly is an arctoid, there has been major controversy about whether it should be placed with the bears (ursids), ursids plus pinnipeds (seals, sea lions, walrus), raccoons (procyonids), musteloids (raccoons plus weasels, skunks, otters, and badgers [mustelids]), or as a monotypic lineage of uncertain phylogenetic affinities. Nucleotide sequence data from three mitochondrial genes and one nuclear intron were analyzed, with more complete taxonomic sampling of relevant taxa (arctoids) than previously available in analyses of primary molecular data, to clarify the phylogenetic relationships of the red panda to other arctoid carnivorans. This study provides detailed phylogenetic analyses (both parsimony and maximum-likelihood) of primary character data for arctoid carnivorans, including bootstrap and decay indices for all arctoid nodes, and three statistical tests of alternative phylogenetic hypotheses for the placement of the red panda. Combined phylogenetic analyses reject the hypotheses that the red panda is most closely related to the bears (ursids) or to the raccoons (procyonids). Rather, evidence from nucleotide sequences strongly support placement of the red panda within a broad Musteloidea (sensu lato) clade, including three major lineages (the red panda, the skunks [mephitids], and a clearly monophyletic clade of procyonids plus mustelids [sensu stricto, excluding skunks]). Within the Musteloidea, interrelationships of the three major lineages are unclear and probably are best considered an unresolved trichotomy. These data provide compelling evidence for the relationships of the red panda and demonstrate that small taxonomic sample sizes can result in misleading or possibly erroneous (based on prior modeling, as well as conflict between the results of our analyses of less and more complete data sets) conclusions about phylogenetic relationships and taxonomy. Copyright 2000 Academic Press.

  5. A well-resolved phylogeny of the trees of Puerto Rico based on DNA barcode sequence data.

    PubMed

    Muscarella, Robert; Uriarte, María; Erickson, David L; Swenson, Nathan G; Zimmerman, Jess K; Kress, W John

    2014-01-01

    The use of phylogenetic information in community ecology and conservation has grown in recent years. Two key issues for community phylogenetics studies, however, are (i) low terminal phylogenetic resolution and (ii) arbitrarily defined species pools. We used three DNA barcodes (plastid DNA regions rbcL, matK, and trnH-psbA) to infer a phylogeny for 527 native and naturalized trees of Puerto Rico, representing the vast majority of the entire tree flora of the island (89%). We used a maximum likelihood (ML) approach with and without a constraint tree that enforced monophyly of recognized plant orders. Based on 50% consensus trees, the ML analyses improved phylogenetic resolution relative to a comparable phylogeny generated with Phylomatic (proportion of internal nodes resolved: constrained ML = 74%, unconstrained ML = 68%, Phylomatic = 52%). We quantified the phylogenetic composition of 15 protected forests in Puerto Rico using the constrained ML and Phylomatic phylogenies. We found some evidence that tree communities in areas of high water stress were relatively phylogenetically clustered. Reducing the scale at which the species pool was defined (from island to soil types) changed some of our results depending on which phylogeny (ML vs. Phylomatic) was used. Overall, the increased terminal resolution provided by the ML phylogeny revealed additional patterns that were not observed with a less-resolved phylogeny. With the DNA barcode phylogeny presented here (based on an island-wide species pool), we show that a more fully resolved phylogeny increases power to detect nonrandom patterns of community composition in several Puerto Rican tree communities. Especially if combined with additional information on species functional traits and geographic distributions, this phylogeny will (i) facilitate stronger inferences about the role of historical processes in governing the assembly and composition of Puerto Rican forests, (ii) provide insight into Caribbean biogeography, and (iii) aid in incorporating evolutionary history into conservation planning.

  6. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.

    PubMed

    Guindon, Stéphane; Dufayard, Jean-François; Lefort, Vincent; Anisimova, Maria; Hordijk, Wim; Gascuel, Olivier

    2010-05-01

    PhyML is a phylogeny software based on the maximum-likelihood principle. Early PhyML versions used a fast algorithm performing nearest neighbor interchanges to improve a reasonable starting tree topology. Since the original publication (Guindon S., Gascuel O. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704), PhyML has been widely used (>2500 citations in ISI Web of Science) because of its simplicity and a fair compromise between accuracy and speed. In the meantime, research around PhyML has continued, and this article describes the new algorithms and methods implemented in the program. First, we introduce a new algorithm to search the tree space with user-defined intensity using subtree pruning and regrafting topological moves. The parsimony criterion is used here to filter out the least promising topology modifications with respect to the likelihood function. The analysis of a large collection of real nucleotide and amino acid data sets of various sizes demonstrates the good performance of this method. Second, we describe a new test to assess the support of the data for internal branches of a phylogeny. This approach extends the recently proposed approximate likelihood-ratio test and relies on a nonparametric, Shimodaira-Hasegawa-like procedure. A detailed analysis of real alignments sheds light on the links between this new approach and the more classical nonparametric bootstrap method. Overall, our tests show that the last version (3.0) of PhyML is fast, accurate, stable, and ready to use. A Web server and binary files are available from http://www.atgc-montpellier.fr/phyml/.

  7. The complete mitochondrial genome structure of the jaguar (Panthera onca).

    PubMed

    Caragiulo, Anthony; Dougherty, Eric; Soto, Sofia; Rabinowitz, Salisa; Amato, George

    2016-01-01

    The jaguar (Panthera onca) is the largest felid in the Western hemisphere, and the only member of the Panthera genus in the New World. The jaguar inhabits most countries within Central and South America, and is considered near threatened by the International Union for the Conservation of Nature. This study represents the first sequence of the entire jaguar mitogenome, which was the only Panthera mitogenome that had not been sequenced. The jaguar mitogenome is 17,049 bases and possesses the same molecular structure as other felid mitogenomes. Bayesian inference (BI) and maximum likelihood (ML) were used to determine the phylogenetic placement of the jaguar within the Panthera genus. Both BI and ML analyses revealed the jaguar to be sister to the tiger/leopard/snow leopard clade.

  8. Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution

    PubMed Central

    Soo, Oi Yoon Michelle; Tan, Wooi Boon; Lim, Lee Hong Susan

    2016-01-01

    Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams’s Kmult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root point, and the length between the inner root point and the dent point. The species on M. buchanani evolved larger, more robust anchors; those on L. subviridis evolved smaller, more delicate anchors. Anchor shape and size were significantly correlated, suggesting constraints in anchor evolution. Tight integration between the root and the point compartments within anchors confirms the anchor as a single, fully integrated module. The correlation between male copulatory organ morphology and size with anchor shape was consistent with predictions from the Rohde-Hobbs hypothesis. Conclusions. Monogenean anchors are tightly integrated structures, and their shape variation correlates strongly with phylogeny, thus underscoring their value for systematic and evolutionary biology studies. Our MonogeneaGM R package provides tools for researchers to mine biological insights from geometric morphometric data of speciose monogenean genera. PMID:26966649

  9. A maximum likelihood map of chromosome 1.

    PubMed Central

    Rao, D C; Keats, B J; Lalouel, J M; Morton, N E; Yee, S

    1979-01-01

    Thirteen loci are mapped on chromosome 1 from genetic evidence. The maximum likelihood map presented permits confirmation that Scianna (SC) and a fourteenth locus, phenylketonuria (PKU), are on chromosome 1, although the location of the latter on the PGM1-AMY segment is uncertain. Eight other controversial genetic assignments are rejected, providing a practical demonstration of the resolution which maximum likelihood theory brings to mapping. PMID:293128

  10. Variance Difference between Maximum Likelihood Estimation Method and Expected A Posteriori Estimation Method Viewed from Number of Test Items

    ERIC Educational Resources Information Center

    Mahmud, Jumailiyah; Sutikno, Muzayanah; Naga, Dali S.

    2016-01-01

    The aim of this study is to determine variance difference between maximum likelihood and expected A posteriori estimation methods viewed from number of test items of aptitude test. The variance presents an accuracy generated by both maximum likelihood and Bayes estimation methods. The test consists of three subtests, each with 40 multiple-choice…

  11. Maximum likelihood estimation of signal-to-noise ratio and combiner weight

    NASA Technical Reports Server (NTRS)

    Kalson, S.; Dolinar, S. J.

    1986-01-01

    An algorithm for estimating signal to noise ratio and combiner weight parameters for a discrete time series is presented. The algorithm is based upon the joint maximum likelihood estimate of the signal and noise power. The discrete-time series are the sufficient statistics obtained after matched filtering of a biphase modulated signal in additive white Gaussian noise, before maximum likelihood decoding is performed.

  12. Comparison of Maximum Likelihood Estimation Approach and Regression Approach in Detecting Quantitative Trait Lco Using RAPD Markers

    Treesearch

    Changren Weng; Thomas L. Kubisiak; C. Dana Nelson; James P. Geaghan; Michael Stine

    1999-01-01

    Single marker regression and single marker maximum likelihood estimation were tied to detect quantitative trait loci (QTLs) controlling the early height growth of longleaf pine and slash pine using a ((longleaf pine x slash pine) x slash pine) BC, population consisting of 83 progeny. Maximum likelihood estimation was found to be more power than regression and could...

  13. Molecular differentiation and phylogenetic relationships of three Angiostrongylus species and Angiostrongylus cantonensis geographical isolates based on a 66-kDa protein gene of A. cantonensis (Nematoda: Angiostrongylidae).

    PubMed

    Eamsobhana, Praphathip; Lim, Phaik Eem; Zhang, Hongman; Gan, Xiaoxian; Yong, Hoi Sen

    2010-12-01

    The phylogenetic relationships and molecular differentiation of three species of angiostrongylid nematodes (Angiostrongylus cantonensis, Angiostrongylus costaricensis and Angiostrongylus malaysiensis) were studied using the AC primers for a 66-kDa protein gene of A. cantonensis. The AC primers successfully amplified the genomic DNA of these angiostrongylid nematodes. No amplification was detected for the DNA of Ascaris lumbricoides, Ascaris suum, Anisakis simplex, Gnathostoma spinigerum, Toxocara canis, and Trichinella spiralis. The maximum-parsimony (MP) consensus tree and the maximum-likelihood (ML) tree both showed that the Angiostrongylus taxa could be divided into two major clades - Clade 1 (A. costaricensis) and Clade 2 (A. cantonensis and A. malaysiensis) with a full support bootstrap value. A. costaricensis is the most distant taxon. A. cantonensis is a sister group to A. malaysiensis; these two taxa (species) are clearly separated. There is no clear distinction between the A. cantonensis samples from four different geographical localities (Thailand, China, Japan and Hawaii); only some of the samples are grouped ranging from no support or low support to moderate support of bootstrap values. The published nucleotide sequences of A. cantonensis adult-specific native 66kDa protein mRNA, clone L5-400 from Taiwan (U17585) appear to be very distant from the A. cantonensis samples from Thailand, China, Japan and Hawaii, with the uncorrected p-distance values ranging from 26.87% to 29.92%.

  14. Characterization of the complete mitochondrial genomes of Nematodirus oiratianus and Nematodirus spathiger of small ruminants

    PubMed Central

    2014-01-01

    Background Nematodirus spp. are among the most common nematodes of ruminants worldwide. N. oiratianus and N. spathiger are distributed worldwide as highly prevalent gastrointestinal nematodes, which cause emerging health problems and economic losses. Accurate identification of Nematodirus species is essential to develop effective control strategies for Nematodirus infection in ruminants. Mitochondrial DNA (mtDNA) could provide powerful genetic markers for identifying these closely related species and resolving phylogenetic relationships at different taxonomic levels. Methods In the present study, the complete mitochondrial (mt) genomes of N. oiratianus and N. spathiger from small ruminants in China were obtained using Long-range PCR and sequencing. Results The complete mt genomes of N. oiratianus and N. spathiger were 13,765 bp and 13,519 bp in length, respectively. Both mt genomes were circular and consisted of 36 genes, including 12 genes encoding proteins, 2 genes encoding rRNA, and 22 genes encoding tRNA. Phylogenetic analyses based on the concatenated amino acid sequence data of all 12 protein-coding genes by Bayesian inference (BI), Maximum likelihood (ML) and Maximum parsimony (MP) showed that the two Nematodirus species (Molineidae) were closely related to Dictyocaulidae. Conclusions The availability of the complete mtDNA sequences of N. oiratianus and N. spathiger not only provides new mtDNA sources for a better understanding of nematode mt genomics and phylogeny, but also provides novel and useful genetic markers for studying diagnosis, population genetics and molecular epidemiology of Nematodirus spp. in small ruminants. PMID:25015379

  15. Characterization of the complete mitochondrial genomes of Nematodirus oiratianus and Nematodirus spathiger of small ruminants.

    PubMed

    Zhao, Guang-Hui; Jia, Yan-Qing; Cheng, Wen-Yu; Zhao, Wen; Bian, Qing-Qing; Liu, Guo-Hua

    2014-07-11

    Nematodirus spp. are among the most common nematodes of ruminants worldwide. N. oiratianus and N. spathiger are distributed worldwide as highly prevalent gastrointestinal nematodes, which cause emerging health problems and economic losses. Accurate identification of Nematodirus species is essential to develop effective control strategies for Nematodirus infection in ruminants. Mitochondrial DNA (mtDNA) could provide powerful genetic markers for identifying these closely related species and resolving phylogenetic relationships at different taxonomic levels. In the present study, the complete mitochondrial (mt) genomes of N. oiratianus and N. spathiger from small ruminants in China were obtained using Long-range PCR and sequencing. The complete mt genomes of N. oiratianus and N. spathiger were 13,765 bp and 13,519 bp in length, respectively. Both mt genomes were circular and consisted of 36 genes, including 12 genes encoding proteins, 2 genes encoding rRNA, and 22 genes encoding tRNA. Phylogenetic analyses based on the concatenated amino acid sequence data of all 12 protein-coding genes by Bayesian inference (BI), Maximum likelihood (ML) and Maximum parsimony (MP) showed that the two Nematodirus species (Molineidae) were closely related to Dictyocaulidae. The availability of the complete mtDNA sequences of N. oiratianus and N. spathiger not only provides new mtDNA sources for a better understanding of nematode mt genomics and phylogeny, but also provides novel and useful genetic markers for studying diagnosis, population genetics and molecular epidemiology of Nematodirus spp. in small ruminants.

  16. Reconstructing the origin and elaboration of insect-trapping inflorescences in the Araceae1

    PubMed Central

    Bröderbauer, David; Diaz, Anita; Weber, Anton

    2016-01-01

    Premise of the study Floral traps are among the most sophisticated devices that have evolved in angiosperms in the context of pollination, but the evolution of trap pollination has not yet been studied in a phylogenetic context. We aim to determine the evolutionary history of morphological traits that facilitate trap pollination and to elucidate the impact of pollinators on the evolution of inflorescence traps in the family Araceae. Methods Inflorescence morphology was investigated to determine the presence of trapping devices and to classify functional types of traps. We inferred phylogenetic relationships in the family using maximum likelihood and Bayesian methods. Character evolution of trapping devices, trap types, and pollinator types was then assessed with maximum parsimony and Bayesian methods. We also tested for an association of trap pollination with specific pollinator types. Key results Inflorescence traps have evolved independently at least 10 times within the Araceae. Trapping devices were found in 27 genera. On the basis of different combinations of trapping devices, six functional types of traps were identified. Trap pollination in Araceae is correlated with pollination by flies. Conclusions Trap pollination in the Araceae is more common than was previously thought. Preadaptations such as papillate cells or elongated sterile flowers facilitated the evolution of inflorescence traps. In some clades, imperfect traps served as a precursor for the evolution of more elaborate traps. Traps that evolved in association with fly pollination were most probably derived from mutualistic ancestors, offering a brood-site to their pollinators. PMID:22965851

  17. Fuzzy multinomial logistic regression analysis: A multi-objective programming approach

    NASA Astrophysics Data System (ADS)

    Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan

    2017-05-01

    Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.

  18. Application of the Bootstrap Methods in Factor Analysis.

    ERIC Educational Resources Information Center

    Ichikawa, Masanori; Konishi, Sadanori

    1995-01-01

    A Monte Carlo experiment was conducted to investigate the performance of bootstrap methods in normal theory maximum likelihood factor analysis when the distributional assumption was satisfied or unsatisfied. Problems arising with the use of bootstrap methods are highlighted. (SLD)

  19. Chloroplast variation is incongruent with classification of the Australian bloodwood eucalypts (genus Corymbia, family Myrtaceae)

    PubMed Central

    Schuster, Tanja M.; Setaro, Sabrina D.; Tibbits, Josquin F. G.; Batty, Erin L.; Fowler, Rachael M.; McLay, Todd G. B.; Wilcox, Stephen; Ades, Peter K.

    2018-01-01

    Previous molecular phylogenetic analyses have resolved the Australian bloodwood eucalypt genus Corymbia (~100 species) as either monophyletic or paraphyletic with respect to Angophora (9–10 species). Here we assess relationships of Corymbia and Angophora using a large dataset of chloroplast DNA sequences (121,016 base pairs; from 90 accessions representing 55 Corymbia and 8 Angophora species, plus 33 accessions of related genera), skimmed from high throughput sequencing of genomic DNA, and compare results with new analyses of nuclear ITS sequences (119 accessions) from previous studies. Maximum likelihood and maximum parsimony analyses of cpDNA resolve well supported trees with most nodes having >95% bootstrap support. These trees strongly reject monophyly of Corymbia, its two subgenera (Corymbia and Blakella), most taxonomic sections (Abbreviatae, Maculatae, Naviculares, Septentrionales), and several species. ITS trees weakly indicate paraphyly of Corymbia (bootstrap support <50% for maximum likelihood, and 71% for parsimony), but are highly incongruent with the cpDNA analyses, in that they support monophyly of both subgenera and some taxonomic sections of Corymbia. The striking incongruence between cpDNA trees and both morphological taxonomy and ITS trees is attributed largely to chloroplast introgression between taxa, because of geographic sharing of chloroplast clades across taxonomic groups. Such introgression has been widely inferred in studies of the related genus Eucalyptus. This is the first report of its likely prevalence in Corymbia and Angophora, but this is consistent with previous morphological inferences of hybridisation between species. Our findings (based on continent-wide sampling) highlight a need for more focussed studies to assess the extent of hybridisation and introgression in the evolutionary history of these genera, and that critical testing of the classification of Corymbia and Angophora requires additional sequence data from nuclear genomes. PMID:29668710

  20. Plastid phylogenomics of the cool-season grass subfamily: clarification of relationships among early-diverging tribes

    PubMed Central

    Saarela, Jeffery M.; Wysocki, William P.; Barrett, Craig F.; Soreng, Robert J.; Davis, Jerrold I.; Clark, Lynn G.; Kelchner, Scot A.; Pires, J. Chris; Edger, Patrick P.; Mayfield, Dustin R.; Duvall, Melvin R.

    2015-01-01

    Whole plastid genomes are being sequenced rapidly from across the green plant tree of life, and phylogenetic analyses of these are increasing resolution and support for relationships that have varied among or been unresolved in earlier single- and multi-gene studies. Pooideae, the cool-season grass lineage, is the largest of the 12 grass subfamilies and includes important temperate cereals, turf grasses and forage species. Although numerous studies of the phylogeny of the subfamily have been undertaken, relationships among some ‘early-diverging’ tribes conflict among studies, and some relationships among subtribes of Poeae have not yet been resolved. To address these issues, we newly sequenced 25 whole plastomes, which showed rearrangements typical of Poaceae. These plastomes represent 9 tribes and 11 subtribes of Pooideae, and were analysed with 20 existing plastomes for the subfamily. Maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) robustly resolve most deep relationships in the subfamily. Complete plastome data provide increased nodal support compared with protein-coding data alone at nodes that are not maximally supported. Following the divergence of Brachyelytrum, Phaenospermateae, Brylkinieae–Meliceae and Ampelodesmeae–Stipeae are the successive sister groups of the rest of the subfamily. Ampelodesmeae are nested within Stipeae in the plastome trees, consistent with its hybrid origin between a phaenospermatoid and a stipoid grass (the maternal parent). The core Pooideae are strongly supported and include Brachypodieae, a Bromeae–Triticeae clade and Poeae. Within Poeae, a novel sister group relationship between Phalaridinae and Torreyochloinae is found, and the relative branching order of this clade and Aveninae, with respect to an Agrostidinae–Brizinae clade, are discordant between MP and ML/BI trees. Maximum likelihood and Bayesian analyses strongly support Airinae and Holcinae as the successive sister groups of a Dactylidinae–Loliinae clade. PMID:25940204

Top