Science.gov

Sample records for maxwell statistics

  1. Maxwell's Daemon: Information versus Particle Statistics

    PubMed Central

    Plesch, Martin; Dahlsten, Oscar; Goold, John; Vedral, Vlatko

    2014-01-01

    Maxwell's daemon is a popular personification of a principle connecting information gain and extractable work in thermodynamics. A Szilard Engine is a particular hypothetical realization of Maxwell's daemon, which is able to extract work from a single thermal reservoir by measuring the position of particle(s) within the system. Here we investigate the role of particle statistics in the whole process; namely, how the extractable work changes if instead of classical particles fermions or bosons are used as the working medium. We give a unifying argument for the optimal work in the different cases: the extractable work is determined solely by the information gain of the initial measurement, as measured by the mutual information, regardless of the number and type of particles which constitute the working substance. PMID:25385291

  2. Maxwell's color statistics: from reduction of visible errors to reduction to invisible molecules.

    PubMed

    Cat, Jordi

    2014-12-01

    This paper presents a cross-disciplinary and multi-disciplinary account of Maxwell's introduction of statistical models of molecules for the composition of gases. The account focuses on Maxwell's deployment of statistical models of data in his contemporaneous color researches as established in Cambridge mathematical physics, especially by Maxwell's seniors and mentors. The paper also argues that the cross-disciplinary, or cross-domain, transfer of resources from the natural and social sciences took place in both directions and relied on the complex intra-disciplinary, or intra-domain, dynamics of Maxwell's researches in natural sciences, in color theory, physical astronomy, electromagnetism and dynamical theory of gases, as well as involving a variety of types of communicating and mediating media, from material objects to concepts, techniques and institutions.

  3. Cost of s-fold decisions in exact Maxwell Boltzmann, Bose Einstein and Fermi Dirac statistics

    NASA Astrophysics Data System (ADS)

    Niven, Robert K.

    2006-06-01

    The exact forms of the degenerate Maxwell-Boltzmann (MB), Bose-Einstein (BE) and Fermi-Dirac (FD) entropy functions, derived by Boltzmann's principle without the Stirling approximation [R.K. Niven, Physics Letters A, 342(4) (2005) 286], are further examined. Firstly, an apparent paradox in quantization effects is resolved using the Laplace-Jaynes interpretation of probability. The energy cost of learning that a system, distributed over s equiprobable states, is in one such state (an “ s-fold decision”) is then calculated for each statistic. The analysis confirms that the cost depends on one's knowledge of the number of entities N and (for BE and FD statistics) the degeneracy, extending the findings of Niven (2005).

  4. Maxwell electromagnetic theory, Planck's radiation law, and Bose—Einstein statistics

    NASA Astrophysics Data System (ADS)

    França, H. M.; Maia, A.; Malta, C. P.

    1996-08-01

    We give an example in which it is possible to understand quantum statistics using classical concepts. This is done by studying the interaction of chargedmatter oscillators with the thermal and zeropoint electromagnetic fields characteristic of quantum electrodynamics and classical stochastic electrodynamics. Planck's formula for the spectral distribution and the elements of energy hw are interpreted without resorting to discontinuities. We also show the aspects in which our model calculation complement other derivations of blackbody radiation spectrum without quantum assumptions.

  5. Maxwell's fishpond

    NASA Astrophysics Data System (ADS)

    Kinsler, Paul; Tan, Jiajun; Thio, Timothy C. Y.; Trant, Claire; Kandapper, Navin

    2012-11-01

    Most of us will have at some time thrown a pebble into water, and watched the ripples spread outwards and fade away. But now there is also a way to reverse the process, and make those ripples turn around and reconverge again, …and again, and again. To do this we have designed the Maxwell's fishpond, a water wave or ‘transformation aquatics’ version of the Maxwell's fisheye lens (Tyc et al 2011 New J. Phys. 13 115004; Luneburg 1964 Mathematical Theory of Optics). These are transformation devices where wave propagation on the surface of a sphere is modelled using a flat device with spatially varying properties. And just as for rays from a point source on a sphere, a wave disturbance in a Maxwell's fisheye or fishpond spreads out at first, but then reforms itself at its opposite (or complementary) point. Here we show how such a device can be made for water waves, partly in friendly competition with comparable electromagnetic devices (Ma et al 2011 New J. Phys. 13 033016) and partly as an accessible and fun demonstration of the power of transformation mechanics. To the eye, our Maxwell's fishpond was capable of reforming a disturbance up to five times, although such a feat required taking considerable care, close observation, and a little luck.

  6. Statistically-averaged rate equations for intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations

    SciTech Connect

    Davidson, R.C.; Lee, W.W.; Stoltz, P.

    1997-08-01

    This paper presents a detailed formulation and analysis of the rate equations for statistically-averaged quantities for an intense nonneutral beam propagating through a periodic solenoidal focusing field B{sup sol}(x). The analysis is based on the nonlinear Vlasov-Maxwell equations in the electrostatic approximation, assuming a thin beam with characteristic beam radius r{sub b} {much_lt} S. The results are applied to investigate the nonlinear evolution of the generalized entropy, mean canonical angular momentum {l_angle}P{sub {theta}}{r_angle}, center-of-mass motion for {l_angle}X{r_angle} and {l_angle}Y{r_angle}, mean kinetic energy (1/2) {l_angle}X{sup {prime}2} + Y{sup {prime}2}{r_angle}, mean-square beam radius {l_angle}X{sup 2} + Y{sup 2}{r_angle}, and coupled rate equations for the unnormalized transverse emittance {epsilon}(s) and root-mean-square beam radius R{sub b}(s) = {l_angle}X{sup 2} + Y{sup 2}{r_angle}{sup 1/2}. Global energy balance is discussed, and the coupled rate equations for {epsilon}(s) and R{sub b}(s) are examined for the class of axisymmetric beam distributions F{sub b}.

  7. RANDOMNESS of Numbers DEFINITION(QUERY:WHAT? V HOW?) ONLY Via MAXWELL-BOLTZMANN CLASSICAL-Statistics(MBCS) Hot-Plasma VS. Digits-Clumping Log-Law NON-Randomness Inversion ONLY BOSE-EINSTEIN QUANTUM-Statistics(BEQS) .

    NASA Astrophysics Data System (ADS)

    Siegel, Z.; Siegel, Edward Carl-Ludwig

    2011-03-01

    RANDOMNESS of Numbers cognitive-semantics DEFINITION VIA Cognition QUERY: WHAT???, NOT HOW?) VS. computer-``science" mindLESS number-crunching (Harrel-Sipser-...) algorithmics Goldreich "PSEUDO-randomness"[Not.AMS(02)] mea-culpa is ONLY via MAXWELL-BOLTZMANN CLASSICAL-STATISTICS(NOT FDQS!!!) "hot-plasma" REPULSION VERSUS Newcomb(1881)-Weyl(1914;1916)-Benford(1938) "NeWBe" logarithmic-law digit-CLUMPING/ CLUSTERING NON-Randomness simple Siegel[AMS Joint.Mtg.(02)-Abs. # 973-60-124] algebraic-inversion to THE QUANTUM and ONLY BEQS preferentially SEQUENTIALLY lower-DIGITS CLUMPING/CLUSTERING with d = 0 BEC, is ONLY VIA Siegel-Baez FUZZYICS=CATEGORYICS (SON OF TRIZ)/"Category-Semantics"(C-S), latter intersection/union of Lawvere(1964)-Siegel(1964)] category-theory (matrix: MORPHISMS V FUNCTORS) "+" cognitive-semantics'' (matrix: ANTONYMS V SYNONYMS) yields Siegel-Baez FUZZYICS=CATEGORYICS/C-S tabular list-format matrix truth-table analytics: MBCS RANDOMNESS TRUTH/EMET!!!

  8. Maxwell's silver theramin

    NASA Astrophysics Data System (ADS)

    O'Brien, Sheila

    2012-12-01

    I found Nicole Yunger-Halpern's Lateral Thoughts on "Fiddling around with physics" (September p60) quite amusing, but I am sure James Clerk Maxwell would have preferred to play the theramin instead of the electric guitar.

  9. Unmasking Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theo M.; Allahverdyan, Armen E.

    2002-11-01

    Maxwell's demon is a tiny but fine-fingered being, capable to extract work from a system at instantaneous equilibrium, without needing energy input or information erasure. In the 20'th century many workers have claimed that the demon cannot operate. Here the point of view is taken that this exorcism of the demon never applied, since one did not consider Maxwell's original invention. For a Brownian particle coupled to a quantum bath it was shown by us that quantum entanglement can allow extraction of work from a non-equilibrium system coupled to a single bath. And mesoscopic work sources may establish work extraction cycles even when they are coupled to equilibrium mesoscopic systems immersed in a macroscopic thermal bath. Quantum entanglement and mesocopicity are now identified with (true) Maxwell demons.

  10. Obtaining Maxwell's equations heuristically

    NASA Astrophysics Data System (ADS)

    Diener, Gerhard; Weissbarth, Jürgen; Grossmann, Frank; Schmidt, Rüdiger

    2013-02-01

    Starting from the experimental fact that a moving charge experiences the Lorentz force and applying the fundamental principles of simplicity (first order derivatives only) and linearity (superposition principle), we show that the structure of the microscopic Maxwell equations for the electromagnetic fields can be deduced heuristically by using the transformation properties of the fields under space inversion and time reversal. Using the experimental facts of charge conservation and that electromagnetic waves propagate with the speed of light, together with Galilean invariance of the Lorentz force, allows us to finalize Maxwell's equations and to introduce arbitrary electrodynamics units naturally.

  11. Uniqueness of Maxwell's Equations.

    ERIC Educational Resources Information Center

    Cohn, Jack

    1978-01-01

    Shows that, as a consequence of two feasible assumptions and when due attention is given to the definition of charge and the fields E and B, the lowest-order equations that these two fields must satisfy are Maxwell's equations. (Author/GA)

  12. Uniqueness of Maxwell's Equations.

    ERIC Educational Resources Information Center

    Cohn, Jack

    1978-01-01

    Shows that, as a consequence of two feasible assumptions and when due attention is given to the definition of charge and the fields E and B, the lowest-order equations that these two fields must satisfy are Maxwell's equations. (Author/GA)

  13. Maxwell's Demon and the Second Law

    NASA Astrophysics Data System (ADS)

    Leff, Harvey S.; Rex, Andrew F.

    2002-11-01

    Maxwell's demon emanates from a thought experiment proposed by James Clerk Maxwell in 1867 to illustrate the statistical nature of the second law of thermodynamics. Subsequently researchers wondered whether such a demon could in fact violate the second law. Leon Brillouin argued that the entropy produced during the demon's measurement precluded such a violation. Years later Oliver Penrose and Charles Bennett observed (independently) that a Maxwell's demon gathers information and stores it in a memory. Penrose showed that erasure of such a memory sends sufficient entropy to the environment to preclude violation of the second law. Notably this is so even when measurement produces arbitrarily little entropy. Bennett obtained the same result using Rolf Landauer's seminal research on the thermodynamics of computation. The stunning shift in focus from measurement to erasure provided the impetus to better understand the role of information in quantum mechanics and thermodynamics. Indeed the linkage of information with physics is the principal legacy of Maxwell's demon. Szilard's one-particle classical "gas" model and its quantum mechanical extension, together with postulated connections between entropy and algorithmic information, have provided useful insights. We review the long history of Maxwell's demon and assess the current status of the second law in the context of the demon's operations.

  14. Dynamics of Maxwell's pendulum

    NASA Astrophysics Data System (ADS)

    Markeev, A. P.

    2017-04-01

    The stability of motion of Maxwell's pendulum is investigated in a uniform gravity field. By means of several canonic transforms of the equations of pendulum motion and the method of the surfaces of Poincaré sections, the problem is reduced to investigation of the immobile-point stability retaining the area of mapping of the plane into itself. In the space of dimensionless parameters, the stability and instability regions are singled out.

  15. James Clerk Maxwell and religion

    NASA Astrophysics Data System (ADS)

    Theerman, Paul

    1986-04-01

    The evolution of James Clerk Maxwell's religious beliefs is described. His college-age conversion experience and his membership in the ``Apostles'' were crucial in his religious development. In his mature statements, Maxwell denied that scientific truth was dependent on religious truth, or the reverse. Nonetheless, scientific conclusions could enrich religious contemplation of God's actions in nature. Maxwell provided a religious interpretation of the apparent uniformity and eternity of atoms.

  16. An Omniscient Maxwell Demon

    NASA Astrophysics Data System (ADS)

    Weiss, David S.; Vala, Jiri; Thapliyal, Ashish V.; Myrgren, Simon; Vazirani, Umesh; Whaley, K. Birgitta

    2003-05-01

    We present a proposed experimental scheme for collecting detailed information about a disordered system, and then acting on that system in a reversible way to obtain a state of manifestly zero entropy. Specifically, the locations of vacancies of laser cooled atoms in an optical lattice can be measured. The distribution can then be efficiently compacted using a combination of site specific state flips and state-sensitive lattice site translations. The computer, armed with complete information about the system, acts in the same sense as the active demon that Maxwell envisaged.

  17. Photonic Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Vidrighin, Mihai D.; Dahlsten, Oscar; Barbieri, Marco; Kim, M. S.; Vedral, Vlatko; Walmsley, Ian A.

    2016-02-01

    We report an experimental realization of Maxwell's demon in a photonic setup. We show that a measurement at the few-photons level followed by a feed-forward operation allows the extraction of work from intense thermal light into an electric circuit. The interpretation of the experiment stimulates the derivation of an equality relating work extraction to information acquired by measurement. We derive a bound using this relation and show that it is in agreement with the experimental results. Our work puts forward photonic systems as a platform for experiments related to information in thermodynamics.

  18. Engineering Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Lu, Zhiyue; Mandal, Dibyendu; Jarzynski, Christopher

    2015-03-01

    We describe a hypothetical machine, with moving, mechanical components, that acts as an autonomous Maxwell's demon. The machine operates in two useful modes. It can act as an information engine by rectifying the thermal motions of surrounding gas particles to lift a mass against gravity, while writing information to a stream of bits. Alternatively, it can act as an eraser, harnessing the energy of a falling mass to erase information from a stream of bits. We solve for the phase diagram and compute the efficiency of our model, both analytically and numerically. Our model provides a simple example of a mechanical machine that is driven by the information entropy of a stream of bits, rather than a difference in temperatures or chemical potentials. This research is supported by the U.S. Army Research Office under Contract Number W911NF-13-1-0390.

  19. Reduced Vlasov-Maxwell simulations

    NASA Astrophysics Data System (ADS)

    Helluy, Philippe; Navoret, Laurent; Pham, Nhung; Crestetto, Anaïs

    2014-10-01

    In this paper we review two different numerical methods for Vlasov-Maxwell simulations. The first method is based on a coupling between a Discontinuous Galerkin (DG) Maxwell solver and a Particle-In-Cell (PIC) Vlasov solver. The second method only uses a DG approach for the Vlasov and Maxwell equations. The Vlasov equation is first reduced to a space-only hyperbolic system thanks to the finite-element method. The two numerical methods are implemented using OpenCL in order to achieve high performance on recent Graphic Processing Units (GPU).

  20. Maxwell's Enduring Legacy

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm

    2016-07-01

    Preface; Acknowledgements; Figure credits; Part I. To 1874: 1. Physics in the nineteenth century; 2. Mathematics and physics in Cambridge in the nineteenth century; Part II. 1874 to 1879: 3. The Maxwell era; Part III. 1879 to 1884: 4. Rayleigh's Quinquennium; Part IV. 1884 to 1919: 5. The challenges facing J. J. Thomson; 6. The J. J. Thomson era, 1884-1900 - the electron; 7. The Thomson era, 1900-19 - atomic structure; Part V. 1919 to 1937: 8. Rutherford at McGill and Manchester Universities - new challenges in Cambridge; 9. The Rutherford era - the radioactivists; 10. Rutherford era - the seeds of the new physics; Part VI. 1938 to 1953: 11. Bragg and the war years; 12. Bragg and the post-war years; Part VII. 1953 to 1971: 13. The Mott era - an epoch of expansion; 14. The Mott era - radio astronomy and high energy physics; 15. The Mott era - the growth of condensed matter physics; Part VIII. 1971 to 1982: 16. The Pippard era - a new laboratory and a new vision; 17. The Pippard era - radio astronomy, high energy physics and laboratory astrophysics; 18. The Pippard era - condensed matter physics; Part IX. 1984 to 1995: 19. The Edwards era - a new epoch of expansion; 20. The Edwards era - new directions in condensed matter physics; 21. The Edwards era - high energy physics and radio astronomy; Part X. 1995 to present: 22. Towards the new millennium and beyond; 23. The evolution of the New Museums site; Notes; Bibliography; Author index; Index.

  1. The Road to Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Hemmo, Meir; Shenker, Orly R.

    2014-07-01

    Preface; 1. Introduction; 2. Thermodynamics; 3. Classical mechanics; 4. Time; 5. Macrostates; 6. Probability; 7. Entropy; 8. Typicality; 9. Measurement; 10. The past; 11. Gibbs; 12. Erasure; 13. Maxwell's Demon; Appendixes; References; Index.

  2. The Road to Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Hemmo, Meir; Shenker, Orly R.

    2012-09-01

    Preface; 1. Introduction; 2. Thermodynamics; 3. Classical mechanics; 4. Time; 5. Macrostates; 6. Probability; 7. Entropy; 8. Typicality; 9. Measurement; 10. The past; 11. Gibbs; 12. Erasure; 13. Maxwell's Demon; Appendixes; References; Index.

  3. James Clerk Maxwell and the Kinetic Theory of Gases: A Review Based on Recent Historical Studies

    ERIC Educational Resources Information Center

    Brush, Stephen G.

    1971-01-01

    Maxwell's four major papers and some shorter publications relating to kinetic theory and statistical mechanics are discussed in the light of subsequent research. Reviews Maxwell's ideas on such topics as velocity, distribution law, the theory of heat conduction, the mechanism of the radiometer effect, the ergodic hypothesis, and his views on the…

  4. James Clerk Maxwell and the Kinetic Theory of Gases: A Review Based on Recent Historical Studies

    ERIC Educational Resources Information Center

    Brush, Stephen G.

    1971-01-01

    Maxwell's four major papers and some shorter publications relating to kinetic theory and statistical mechanics are discussed in the light of subsequent research. Reviews Maxwell's ideas on such topics as velocity, distribution law, the theory of heat conduction, the mechanism of the radiometer effect, the ergodic hypothesis, and his views on the…

  5. Maxwell's demon and data compression

    NASA Astrophysics Data System (ADS)

    Hosoya, Akio; Maruyama, Koji; Shikano, Yutaka

    2011-12-01

    In an asymmetric Szilard engine model of Maxwell's demon, we show the equivalence between information theoretical and thermodynamic entropies when the demon erases information optimally. The work gain by the engine can be exactly canceled out by the work necessary to reset the demon's memory after optimal data compression in the manner of Shannon before the erasure.

  6. Quantum discord and Maxwell's demons

    SciTech Connect

    Zurek, Wojciech Hubert

    2003-01-01

    Quantum discord was proposed as an information-theoretic measure of the 'quantumness' of correlations. I show that discord determines the difference between the efficiency of quantum and classical Maxwell's demons - that is, entities that can or cannot measure nonlocal observables or carry out conditional quantum operations - in extracting work from collections of correlated quantum systems.

  7. The discovery of Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Everitt, Francis

    2012-02-01

    In January 1865, Maxwell at age 34 wrote a letter to his cousin Charles Cay describing various doings, including his work on the viscosity of gases and a visit from two of the world's leading oculists to inspect the eyes of his dog ``Spice''. He added, ``I have also a paper afloat, with an electromagnetic theory of light, which, till I am convinced to the contrary, I hold to be great guns.'' That paper ``A Dynamical Theory of the Electromagnetic Field'' was his fourth on the subject. It was followed in 1868 by another, and then in 1873 by his massive two volume Treatise on Electricity and Magnetism. Even so, by the time of his death in 1879 as he was beginning a radically revised edition of the Treatise, much remained to be done. We celebrate here the 150^th anniversary of Maxwell's first astonished realization in 1862 of the link between electromagnetism and light. So revolutionary was this that 15 or more years went by before Lorentz, Poynting, FitzGerald, and others came to address it, sometimes with improvements, sometimes not. Not until 1888 did Hertz make the essential experimental discovery of radio waves. What is so remarkable about Maxwell's five papers is that each presents a complete view of the subject radically different from the one before. I shall say something about each, emphasizing in particular Maxwell's most unexpected idea, the displacement current, so vastly more interesting than the accounts of it found in textbooks today. Beyond lie other surprises. The concept of gauge invariance, and the role the vector potential would play in defining the canonical momentum of the electron, both go back to Maxwell. In 1872 came a paper ``On the Mathematical Classification of Physical Quantities'', which stands as an education in itself. Amid much else, there for the first time appears the distinction between axial and polar vectors and those new operational concepts related to quaternion theory: curl, divergence, and gradient.

  8. Are Maxwell's equations Lorentz-covariant?

    NASA Astrophysics Data System (ADS)

    Redžić, D. V.

    2017-01-01

    It is stated in many textbooks that Maxwell's equations are manifestly covariant when written down in tensorial form. We recall that tensorial form of Maxwell's equations does not secure their tensorial contents; they become covariant by postulating certain transformation properties of field functions. That fact should be stressed when teaching about the covariance of Maxwell's equations.

  9. Environmental Assessment: Disposition of Maxwell Heights Annex

    DTIC Science & Technology

    2005-07-01

    Maxwell Support Division May 4, 2005 Mr. David Rabon Tribal Historic Preservation Officer Cherokee Nation of Oklahoma P.O. Box 948 Tahlequah...Oklahoma 74465 RE: Disposal of the Existing Property and Facilities of the Maxwell Heights Annex Maxwell Air Force Base, Alabama Dear Mr. Rabon , The

  10. James Clerk Maxwell: Life and science

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2016-07-01

    Maxwell's life and science are presented with an account of the progression of Maxwell's research on electromagnetic theory. This is appropriate for the International Year of Light and Light-based Technologies, 2015. Maxwell's own confidence in his 1865 electromagnetic theory of light is examined, along with some of the difficulties he faced and the difficulties faced by some of his followers. Maxwell's interest in radiation pressure and electromagnetic stress is addressed, as well as subsequent developments. Some of Maxwell's other contributions to physics are discussed with an emphasis on the kinetic and molecular theory of gases. Maxwell's theistic perspective on science is illustrated, accompanied by examples of perspectives on Maxwell and his science provided by his peers and accounts of his interactions with those peers. Appendices examine the peer review of Maxwell's 1865 electromagnetic theory paper and the naming of the Maxwell Garnett effective media approximation and provide various supplemental perspectives. From Maxwell's publications and correspondence there is evidence he had a high regard for Michael Faraday. Examples of Maxwell's contributions to electromagnetic terminology are noted.

  11. Structural mapping of Maxwell Montes

    NASA Technical Reports Server (NTRS)

    Keep, Myra; Hansen, Vicki L.

    1993-01-01

    Four sets of structures were mapped in the western and southern portions of Maxwell Montes. An early north-trending set of penetrative lineaments is cut by dominant, spaced ridges and paired valleys that trend northwest. To the south the ridges and valleys splay and graben form in the valleys. The spaced ridges and graben are cut by northeast-trending graben. The northwest-trending graben formed synchronously with or slightly later than the spaced ridges. Formation of the northeast-trending graben may have overlapped with that of the northwest-trending graben, but occurred in a spatially distinct area (regions of 2 deg slope). Graben formation, with northwest-southeast extension, may be related to gravity-sliding. Individually and collectively these structures are too small to support the immense topography of Maxwell, and are interpreted as parasitic features above a larger mass that supports the mountain belt.

  12. Joseph Maxwell on mediumistic personifications.

    PubMed

    Alvarado, Carlos S

    2016-09-01

    The study of mediumship received much impetus from the work of psychical researchers. This included ideas about the phenomena of personation, or changes in attitudes, dispositions and behaviours shown by some mediums that supposedly indicated discarnate action. The aim of this Classic Text is to reprint passages about this topic from the writings of French psychical researcher Joseph Maxwell (1858-1938), which were part of the contributions of some psychical researchers to reconceptualize the manifestations in psychological terms. Maxwell suggested these changes in mediums were a production of their subconscious mind. His ideas are a reflection of previous theorization about secondary personalities and a particular example of the contributions of psychical researchers to understand the psychology of mediumship.

  13. Statistics

    Cancer.gov

    Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.

  14. The Statistical Basis of Chemical Equilibria.

    ERIC Educational Resources Information Center

    Hauptmann, Siegfried; Menger, Eva

    1978-01-01

    Describes a machine which demonstrates the statistical bases of chemical equilibrium, and in doing so conveys insight into the connections among statistical mechanics, quantum mechanics, Maxwell Boltzmann statistics, statistical thermodynamics, and transition state theory. (GA)

  15. The Statistical Basis of Chemical Equilibria.

    ERIC Educational Resources Information Center

    Hauptmann, Siegfried; Menger, Eva

    1978-01-01

    Describes a machine which demonstrates the statistical bases of chemical equilibrium, and in doing so conveys insight into the connections among statistical mechanics, quantum mechanics, Maxwell Boltzmann statistics, statistical thermodynamics, and transition state theory. (GA)

  16. Continuous Observability for the Anisotropic Maxwell System

    SciTech Connect

    Eller, Matthias M.

    2007-03-15

    A boundary observability inequality for the homogeneous Maxwell system with variable, anisotropic coefficients is proved. The result implies uniqueness for an ill-posed Cauchy problem for Maxwell's system. Both results are so far known only in the special case of isotropic coefficients, i.e., when Maxwell's system reduces to a vector wave equation. Here the analysis has been carried out for the first-order system directly without references to the wave equation.

  17. Introducing polarization and magnetization into Maxwell's equations: A modified approach

    NASA Astrophysics Data System (ADS)

    Jakoby, Bernhard

    2014-01-01

    The introduction of electric polarization and magnetization—the density of electric and magnetic dipole moments respectively—into Maxwell's equations requires establishing their respective relation to polarization charges and magnetization currents. Using a method introduced by Feynman in his famous lectures on physics and considering statistically distributed dipoles on the microscopic scale, the desired relations can be established in a manner that may be more intuitive to undergraduate students.

  18. Geometric Implications of Maxwell's Equations

    NASA Astrophysics Data System (ADS)

    Smith, Felix T.

    2015-03-01

    Maxwell's synthesis of the varied results of the accumulated knowledge of electricity and magnetism, based largely on the searching insights of Faraday, still provide new issues to explore. A case in point is a well recognized anomaly in the Maxwell equations: The laws of electricity and magnetism require two 3-vector and two scalar equations, but only six dependent variables are available to be their solutions, the 3-vectors E and B. This leaves an apparent redundancy of two degrees of freedom (J. Rosen, AJP 48, 1071 (1980); Jiang, Wu, Povinelli, J. Comp. Phys. 125, 104 (1996)). The observed self-consistency of the eight equations suggests that they contain additional information. This can be sought as a previously unnoticed constraint connecting the space and time variables, r and t. This constraint can be identified. It distorts the otherwise Euclidean 3-space of r with the extremely slight, time dependent curvature k (t) =Rcurv-2 (t) of the 3-space of a hypersphere whose radius has the time dependence dRcurv / dt = +/- c nonrelativistically, or dRcurvLor / dt = +/- ic relativistically. The time dependence is exactly that of the Hubble expansion. Implications of this identification will be explored.

  19. Venus - Maxwell Montes and Cleopatra Crater

    NASA Image and Video Library

    1996-02-05

    NASA's Magellan full-resolution image shows Maxwell Montes, centered at 65 degrees north latitude and 6 degrees east longitude. Maxwell is the highest mountain on Venus, rising almost 11 kilometers 6.8 miles above mean planetary radius. http://photojournal.jpl.nasa.gov/catalog/PIA00149

  20. From Maxwell's theory of Saturn's rings to the negative mass instability.

    PubMed

    Fedele, Renato

    2008-05-28

    The impact of Maxwell's theory of Saturn's rings, formulated in Aberdeen ca 1856, is discussed. One century later, Nielsen, Sessler and Symon formulated a similar theory to describe the coherent instabilities (in particular, the negative mass instability) exhibited by a charged particle beam in a high-energy accelerating machine. Extended to systems of particles where the mutual gravitational attraction is replaced by the electric repulsion, Maxwell's approach was the conceptual basis to formulate the kinetic theory of coherent instability (Vlasov-Maxwell system), which, in particular, predicts the stabilizing role of the Landau damping. However, Maxwell's idea was so fertile that, later on, it was extended to quantum-like models (e.g. thermal wave model), providing the quantum-like description of coherent instability (Schrödinger-Maxwell system) and its identification with the modulational instability (MI). The latter has recently been formulated for any nonlinear wave propagation governed by the nonlinear Schrödinger equation, as in the statistical approach to MI (Wigner-Maxwell system). It seems that the above recent developments may provide a possible feedback to Maxwell's original idea with the extension to quantum gravity and cosmology.

  1. Vortex shedding and Maxwell's problem

    NASA Astrophysics Data System (ADS)

    Michelin, Sebastien; Smith, Stefan Llewellyn

    2006-11-01

    The coupled problem of a flow around a solid body has applications from the fall of objects in a fluid to the computation of forces on wind-exposed structures. A simplified 2D model is proposed here for the interaction between solid bodies and potential flows. Potential flows over sharp edges generate singular velocities at the edges. To satisfy the Kutta condition, vorticity sheets must be shed from the edges to remove these singularities. Here 2D vorticity sheets are represented as discrete point-vortices with monotically varying intensity. From the fluid momentum conservation, an equation of motion for these vortices, the Brown and Michael equation, is derived and mechanical efforts applied by the fluid on the body are computed. The set of dynamical equations obtained for the fluid-body system is closed and is applied to Maxwell's problem of the 2D fall of a plate in an inviscid fluid initially at rest.

  2. Galerkin GX Vlasov-Maxwell system

    NASA Astrophysics Data System (ADS)

    Burby, Joshua

    2016-10-01

    A variety of ''gyroaveraged'' kinetic plasma models are structurally very similar, even though they describe different physical processes. I will show that drift kinetics, gyro kinetics, and Vlasov-Maxwell theory are all particular examples of a much more general theory that I call GX Vlasov-Maxwell theory. The GX Vlasov-Maxwell system is an infinite-dimensional Hamiltonian system. Starting from the GX Vlasov-Maxwell system, I will derive a finite-dimensional version of the theory called Galerikin GX Vlasov-Maxwell theory. By representing the electromagnetic field using finite element exterior calculus, and replacing the one-particle distribution function with the Klimontovich distribution, the partial differential-integral equation that comprises the GX Vlasov-Maxwell system will be replaced with a finite dimensional ordinary differential equation. The conserved Hamiltonian and Poisson bracket for this system will be presented. While infinite-dimensional Hamiltonian systems do not possess (functional) Liouville measures, finite dimensional approximations of these systems do. The expression for Galerkin GX Vlasov-Maxwell theory's Liouville volume will be presented.

  3. Gauged Ads-Maxwell Algebra and Gravity

    NASA Astrophysics Data System (ADS)

    Durka, R.; Kowalski-Glikman, J.; Szczachor, M.

    We deform the anti-de Sitter algebra by adding additional generators {Z}ab, forming in this way the negative cosmological constant counterpart of the Maxwell algebra. We gauge this algebra and construct a dynamical model with the help of a constrained BF theory. It turns out that the resulting theory is described by the Einstein-Cartan action with Holst term, and the gauge fields associated with the Maxwell generators {Z}ab appear only in topological terms that do not influence dynamical field equations. We briefly comment on the extension of this construction, which would lead to a nontrivial Maxwell fields dynamics.

  4. The Proell Effect: A Macroscopic Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Rauen, Kenneth M.

    2011-12-01

    Maxwell's Demon is a legitimate challenge to the Second Law of Thermodynamics when the "demon" is executed via the Proell effect. Thermal energy transfer according to the Kinetic Theory of Heat and Statistical Mechanics that takes place over distances greater than the mean free path of a gas circumvents the microscopic randomness that leads to macroscopic irreversibility. No information is required to sort the particles as no sorting occurs; the entire volume of gas undergoes the same transition. The Proell effect achieves quasi-spontaneous thermal separation without sorting by the perturbation of a heterogeneous constant volume system with displacement and regeneration. The classical analysis of the constant volume process, such as found in the Stirling Cycle, is incomplete and therefore incorrect. There are extra energy flows that classical thermo does not recognize. When a working fluid is displaced across a regenerator with a temperature gradient in a constant volume system, complimentary compression and expansion work takes place that transfers energy between the regenerator and the bulk gas volumes of the hot and cold sides of the constant volume system. Heat capacity at constant pressure applies instead of heat capacity at constant volume. The resultant increase in calculated, recyclable energy allows the Carnot Limit to be exceeded in certain cycles. Super-Carnot heat engines and heat pumps have been designed and a US patent has been awarded.

  5. Green`s function of Maxwell`s equations and corresponding implications for iterative methods

    SciTech Connect

    Singer, B.S.; Fainberg, E.B.

    1996-12-31

    Energy conservation law imposes constraints on the norm and direction of the Hilbert space vector representing a solution of Maxwell`s equations. In this paper, we derive these constrains and discuss the corresponding implications for the Green`s function of Maxwell`s equations in a dissipative medium. It is shown that Maxwell`s equations can be reduced to an integral equation with a contracting kernel. The equation can be solved using simple iterations. Software based on this algorithm have successfully been applied to a wide range of problems dealing with high contrast models. The matrix corresponding to the integral equation has a well defined spectrum. The equation can be symmetrized and solved using different approaches, for instance one of the conjugate gradient methods.

  6. Cautious revolutionaries: Maxwell, Planck, Hubble

    NASA Astrophysics Data System (ADS)

    Brush, Stephen G.

    2002-02-01

    Three scientists exemplified the cautious behavior that we might like all scientists to display: indeed, they were so critical of their own ideas that they risked losing credit for them. Nevertheless, they finally earned at least as much fame as they deserved, leaving historians to wonder about what they really believed. Maxwell initially rejected the kinetic theory of gases because two of its predictions disagreed with experiments; later he revived the theory, showed that one of those experiments had been misinterpreted, and eventually became known as one of the founders of the modern theory. Planck seems to have intended his 1900 quantum hypothesis as a mathematical device, not a physical discontinuity; later he limited it to the emission (not absorption) of radiation, thereby discovering ``zero-point energy.'' Eventually he accepted the physical quantum hypothesis and became known as its discoverer. Hubble (with Humason) established the distance-velocity law, which others used as a basis for the expanding universe theory; later he suggested that redshifts may not be due to motion and appeared to lean toward a static model in place of the expanding universe.

  7. Maxwellians and the Remaking of Maxwell's Equations

    NASA Astrophysics Data System (ADS)

    Hunt, Bruce

    2012-02-01

    Although James Clerk Maxwell first formulated his theory of the electromagnetic field in the early 1860s, it went through important changes before it gained general acceptance in the 1890s. Those changes were largely the work of a group of younger physicists, the Maxwellians, led by G. F. FitzGerald in Ireland, Oliver Lodge and Oliver Heaviside in England, and Heinrich Hertz in Germany. Together, they extended, refined, tested, and confirmed Maxwell's theory, and recast it into the set of four vector equations known ever since as ``Maxwell's equations.'' By tracing how the Maxwellians remade and disseminated Maxwell's theory between the late 1870s and the mid-1890s, we can gain a clearer understanding not just of how the electromagnetic field was understood at the end of the 19th century, but of the collaborative nature of work at the frontiers of physics.

  8. Venus - Lakshmi Planum and Maxwell Montes

    NASA Image and Video Library

    1996-03-07

    This full resolution radar image from NASA Magellan spacecraft is centered along the eastern edge of Lakshmi Planum and the western edge of Maxwell Montes. http://photojournal.jpl.nasa.gov/catalog/PIA00241

  9. How Maxwell's equations came to light

    NASA Astrophysics Data System (ADS)

    Mahon, Basil

    2015-01-01

    The nineteenth-century Scottish physicist James Clerk Maxwell made groundbreaking contributions to many areas of science including thermodynamics and colour vision. However, he is best known for his equations that unified electricity, magnetism and light.

  10. Maxwell Duality, Lorentz Invariance, and Topological Phase

    NASA Technical Reports Server (NTRS)

    Dowling, J.; Williams, C.; Franson, J.

    1999-01-01

    We discuss the Maxwell electromagnetic duality relations between the Aharonov-Bohm, Aharonov-Casher, and He-McKellar-Wilkens topological phases, which allows a unified description of all three phenomena.

  11. James Clerk Maxwell 150 years on.

    PubMed

    Reid, John S; Wang, Charles H-T; Thompson, J Michael T

    2008-05-28

    This paper is the preface to a special Issue of Phil. Trans. R. Soc. A reporting selected proceedings of the international conference marking the 150th anniversary of James Clerk Maxwell's professorial debut at Marischal College, Aberdeen. Following an introduction to Marischal College, a brief historical note summarizes Maxwell's life prior to his entering the college as professor of natural philosophy. The preface provides a short summary of the event and overviews the contributed papers devoted to subjects covering a wide range of Maxwell's research interests and their modern developments. The mixture of review and research papers reflects both the fundamental importance and the diverse applicability of Maxwell's works in electromagnetics, colour science, dynamics and kinetics. Acknowledgements are given to the individuals and bodies who made the conference the success that it was.

  12. Magnetic monopoles, Galilean invariance, and Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Crawford, Frank S.

    1992-02-01

    Maxwell's equations have space reserved for magnetic monopoles. Whether or not they exist in our part of the universe, monopoles provide a useful didactic tool to help us recognize relations among Maxwell's equations less easily apparent in the approach followed by many introductory textbooks, wherein Coulomb's law, Biot and Savart's law, Ampere's law, Faraday's law, Maxwell's displacement current, etc., are introduced independently, ``as demanded by experiment.'' Instead a conceptual path that deduces all of Maxwell's equations from the near-minimal set of assumptions: (a) Inertial frames exist, in which Newton's laws hold, to a first approximation; (b) the laws of electrodynamics are Galilean invariant-i.e., they have the same form in every inertial frame, to a first approximation; (c) magnetic poles (as well as the usual electric charges) exist; (d) the complete Lorentz force on an electric charge is known; (e) the force on a monopole at rest is known; (f) the Coulomb-like field produced by a resting electric charge and by a resting monopole are known. Everything else is deduced. History is followed in the assumption that Newtonian mechanics have been discovered, but not special relativity. (Only particle velocities v<Maxwell's equations (Maxwell did not need special relativity, so why should we,) but facing Einstein's paradox, the solution of which is encapsulated in the Einstein velocity-addition formula.

  13. Venus - Maxwell Montes and Cleopatra Crater

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan full-resolution image shows Maxwell Montes, and is centered at 65 degrees north latitude and 6 degrees east longitude. Maxwell is the highest mountain on Venus, rising almost 11 kilometers (6.8 miles) above mean planetary radius. The western slopes (on the left) are very steep, whereas the eastern slopes descend gradually into Fortuna Tessera. The broad ridges and valleys making up Maxwell and Fortuna suggest that the topography resulted from compression. Most of Maxwell Montes has a very bright radar return; such bright returns are common on Venus at high altitudes. This phenomenon is thought to result from the presence of a radar reflective mineral such as pyrite. Interestingly, the highest area on Maxwell is less bright than the surrounding slopes, suggesting that the phenomenon is limited to a particular elevation range. The pressure, temperature, and chemistry of the atmosphere vary with altitude; the material responsible for the bright return probably is only stable in a particular range of atmospheric conditions and therefore a particular elevation range. The prominent circular feature in eastern Maxwell is Cleopatra. Cleopatra is a double-ring impact basin about 100 kilometers (62 miles) in diameter and 2.5 kilometers (1.5 miles) deep. A steep-walled, winding channel a few kilometers wide breaks through the rough terrain surrounding the crater rim. A large amount of lava originating in Cleopatra flowed through this channel and filled valleys in Fortuna Tessera. Cleopatra is superimposed on the structures of Maxwell Montes and appears to be undeformed, indicating that Cleopatra is relatively young.

  14. Maxwell times in higher-order generalized hydrodynamics: Classical fluids, and carriers and phonons in semiconductors.

    PubMed

    Rodrigues, Clóves G; Silva, Carlos A B; Ramos, José G; Luzzi, Roberto

    2017-02-01

    A family of what can be so-called Maxwell times which arises in the context of higher-order generalized hydrodynamics (HOGH; also called mesoscopic hydrothermodynamics) is evidenced. This is done in the framework of a HOGH built within a statistical formalism in terms of a nonequilibrium statistical ensemble formalism. It consists in a description in terms of the densities of particles and energy and their fluxes of all orders, with the motion described by a set of coupled nonlinear integro-differential equations involving them. These Maxwell times have a fundamental role in determining the type of hydrodynamic motion that the system would display in the given conditions and constraints. They determine a Maxwell viscous force not present in the usual hydrodynamic equations, for example, in Navier-Stokes equation.

  15. Maxwell times in higher-order generalized hydrodynamics: Classical fluids, and carriers and phonons in semiconductors

    NASA Astrophysics Data System (ADS)

    Rodrigues, Clóves G.; Silva, Carlos A. B.; Ramos, José G.; Luzzi, Roberto

    2017-02-01

    A family of what can be so-called Maxwell times which arises in the context of higher-order generalized hydrodynamics (HOGH; also called mesoscopic hydrothermodynamics) is evidenced. This is done in the framework of a HOGH built within a statistical formalism in terms of a nonequilibrium statistical ensemble formalism. It consists in a description in terms of the densities of particles and energy and their fluxes of all orders, with the motion described by a set of coupled nonlinear integro-differential equations involving them. These Maxwell times have a fundamental role in determining the type of hydrodynamic motion that the system would display in the given conditions and constraints. They determine a Maxwell viscous force not present in the usual hydrodynamic equations, for example, in Navier-Stokes equation.

  16. Maxwell's demon. (I) A thermodynamic exorcism

    NASA Astrophysics Data System (ADS)

    Gyftopoulos, Elias P.

    2002-05-01

    It is shown that Maxwell's demon is unable to accomplish his task not because of considerations related to irreversibility, acquisition of information, and computers and erasure of information but because of limitations imposed by the properties of the system on which he is asked to perform his demonic manipulations. The limitations emerge from two recent but related developments of which Maxwell was completely unaware. One is an exposition of thermodynamics as a nonstatistical theory, valid for all systems, both large and small, including a system with only one degree of (translational) freedom, and for all states, both thermodynamic or stable equilibrium states and states that are not thermodynamic equilibrium, including states encountered in mechanics. In this theory, entropy is proven to be a nondestructible, nonstatistical property of any state in the same sense that inertial mass is a nonstatistical property of any state. In Part I, the demon is shown to be incapable of accomplishing his task because this would be equivalent either to reducing the nondestructible and nonstatistical entropy of air in a container without compensation by any other system, including himself, or to extracting only energy from the air under conditions that require the extraction of both energy and entropy. The second development is a unified, quantum-theoretic interpretation of mechanics and the thermodynamics just cited. In this theory: (a) the quantum-theoretic probabilities of measurement results are represented by a density operator ρ that corresponds to a homogeneous ensemble of identical systems, identically prepared; homogeneous is an ensemble in which every member is described by the same density operator ρ as any other member, that is, the ensemble is not a statistical mixture of projectors (wave functions); said differently, experimentally (as opposed to algebraically) the homogeneous ensemble cannot be decomposed into mixtures either of pure states or other mixtures

  17. Power generator driven by Maxwell's demon

    NASA Astrophysics Data System (ADS)

    Chida, Kensaku; Desai, Samarth; Nishiguchi, Katsuhiko; Fujiwara, Akira

    2017-05-01

    Maxwell's demon is an imaginary entity that reduces the entropy of a system and generates free energy in the system. About 150 years after its proposal, theoretical studies explained the physical validity of Maxwell's demon in the context of information thermodynamics, and there have been successful experimental demonstrations of energy generation by the demon. The demon's next task is to convert the generated free energy to work that acts on the surroundings. Here, we demonstrate that Maxwell's demon can generate and output electric current and power with individual randomly moving electrons in small transistors. Real-time monitoring of electron motion shows that two transistors functioning as gates that control an electron's trajectory so that an electron moves directionally. A numerical calculation reveals that power generation is increased by miniaturizing the room in which the electrons are partitioned. These results suggest that evolving transistor-miniaturization technology can increase the demon's power output.

  18. Solutions of the cylindrical nonlinear Maxwell equations.

    PubMed

    Xiong, Hao; Si, Liu-Gang; Ding, Chunling; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying

    2012-01-01

    Cylindrical nonlinear optics is a burgeoning research area which describes cylindrical electromagnetic wave propagation in nonlinear media. Finding new exact solutions for different types of nonlinearity and inhomogeneity to describe cylindrical electromagnetic wave propagation is of great interest and meaningful for theory and application. This paper gives exact solutions for the cylindrical nonlinear Maxwell equations and presents an interesting connection between the exact solutions for different cylindrical nonlinear Maxwell equations. We also provide some examples and discussion to show the application of the results we obtained. Our results provide the basis for solving complex systems of nonlinearity and inhomogeneity with simple systems.

  19. Physical Fields Described By Maxwell's Equations

    SciTech Connect

    Ahmetaj, Skender; Veseli, Ahmet; Jashari, Gani

    2007-04-23

    Fields that satisfy Maxwell's equations of motion are analyzed. Investigation carried out in this work, shows that the free electromagnetic field, spinor Dirac's field without mass, spinor Dirac's field with mass, and some other fields are described by the same variational formulation. The conditions that a field be described by Maxwell's equations of motion are given in this work, and some solutions of these conditions are also given. The question arises, which physical objects are formulated by the same or analogous equations of physics.

  20. Maxwell's demons realized in electronic circuits

    NASA Astrophysics Data System (ADS)

    Koski, Jonne V.; Pekola, Jukka P.

    2016-12-01

    We review recent progress in making the former gedanken experiments of Maxwell's demon [1] into real experiments in a lab. In particular, we focus on realizations based on single-electron tunneling in electronic circuits. We first present how stochastic thermodynamics can be investigated in these circuits. Next we review recent experiments on an electron-based Szilard engine. Finally, we report on experiments on single-electron tunneling-based cooling, overviewing the recent realization of a Coulomb gap refrigerator, as well as an autonomous Maxwell's demon.

  1. Shock waves: The Maxwell-Cattaneo case

    NASA Astrophysics Data System (ADS)

    Uribe, F. J.

    2016-03-01

    Several continuum theories for shock waves give rise to a set of differential equations in which the analysis of the underlying vector field can be done using the tools of the theory of dynamical systems. We illustrate the importance of the divergences associated with the vector field by considering the ideas by Maxwell and Cattaneo and apply them to study shock waves in dilute gases. By comparing the predictions of the Maxwell-Cattaneo equations with shock wave experiments we are lead to the following conclusions: (a) For low compressions (low Mach numbers: M ) the results from the Maxwell-Cattaneo equations provide profiles that are in fair agreement with the experiments, (b) as the Mach number is increased we find a range of Mach numbers (1.27 ≈M1Maxwell-Cattaneo equations cannot be found, and (c) for greater Mach numbers (M >M2) shock wave solutions can be found though they differ significantly from experiments.

  2. A Modification to Maxwell's Needle Apparatus

    ERIC Educational Resources Information Center

    Soorya, Tribhuvan N.

    2015-01-01

    Maxwell's needle apparatus is used to determine the shear modulus (?) of the material of a wire of uniform cylindrical cross section. Conventionally, a single observation is taken for each observable, and the value of ? is calculated in a single shot. A modification to the above apparatus is made by varying one of the observables, namely the mass…

  3. Time-Reversible Maxwell’s Demon

    DTIC Science & Technology

    1992-09-01

    Maxwell, Theory of Heat, (Longmans, Green, London 1871), pp. 308- 309. 28 [8] R.P. Feynman , R.B. Leighton, and M. Sands, The FeyzIman Lectures on physics...Quantum Theory and Measurement, edited by J.A. Wheeler and W.H.Zurek, (Princeton University Press, Prince- ton 1983), pp. 539-548. 29 Figure 1: A system of

  4. Is Maxwell's Displacement Current a Current?

    ERIC Educational Resources Information Center

    French, A. P.

    2000-01-01

    Discusses in detail the claim that certain well-known physics experiments demonstrate the magnetic field produced by Maxwell's displacement current. Addresses the question of whether the displacement current acts as a source of magnetic field in the same way as a current in a wire would. (Contains 12 references.) (WRM)

  5. Maxwell's electromagnetic theory and special relativity.

    PubMed

    Hall, Graham

    2008-05-28

    This paper presents a brief history of electromagnetic theory from ancient times up to the work of Maxwell and the advent of Einstein's special theory of relativity. It is divided into five convenient periods and the intention is to describe these developments for the benefit of a lay scientific audience and with the minimum of technical detail.

  6. Maxwell and the classical wave particle dualism.

    PubMed

    Mendonça, J T

    2008-05-28

    Maxwell's equations are one of the greatest theoretical achievements in physics of all times. They have survived three successive theoretical revolutions, associated with the advent of relativity, quantum mechanics and modern quantum field theory. In particular, they provide the theoretical framework for the understanding of the classical wave particle dualism.

  7. Shock waves: The Maxwell-Cattaneo case.

    PubMed

    Uribe, F J

    2016-03-01

    Several continuum theories for shock waves give rise to a set of differential equations in which the analysis of the underlying vector field can be done using the tools of the theory of dynamical systems. We illustrate the importance of the divergences associated with the vector field by considering the ideas by Maxwell and Cattaneo and apply them to study shock waves in dilute gases. By comparing the predictions of the Maxwell-Cattaneo equations with shock wave experiments we are lead to the following conclusions: (a) For low compressions (low Mach numbers: M) the results from the Maxwell-Cattaneo equations provide profiles that are in fair agreement with the experiments, (b) as the Mach number is increased we find a range of Mach numbers (1.27 ≈ M(1) < M < M(2) ≈ 1.90) such that numerical shock wave solutions to the Maxwell-Cattaneo equations cannot be found, and (c) for greater Mach numbers (M>M_{2}) shock wave solutions can be found though they differ significantly from experiments.

  8. Maxwell Equations for Slow-Moving Media

    NASA Astrophysics Data System (ADS)

    Rozov, Andrey

    2015-12-01

    In the present work, the Minkowski equations obtained on the basis of theory of relativity are used to describe electromagnetic fields in moving media. But important electromagnetic processes run under non-relativistic conditions of slow-moving media. Therefore, one should carry out its description in terms of classical mechanics. Hertz derived electrodynamic equations for moving media within the frame of classical mechanics on the basis of the Maxwell theory. His equations disagree with the experimental data concerned with the moving dielectrics. In the paper, a way of description of electromagnetic fields in slow-moving media on the basis of the Maxwell theory within the frame of classical mechanics is offered by combining the Hertz approach and the experimental data concerned with the movement of dielectrics in electromagnetic fields. Received Maxwell equations lack asymmetry in the description of the reciprocal electrodynamic action of a magnet and a conductor and conform to known experimental data. Comparative analysis of the Minkowski and Maxwell models is carried out.

  9. A Modification to Maxwell's Needle Apparatus

    ERIC Educational Resources Information Center

    Soorya, Tribhuvan N.

    2015-01-01

    Maxwell's needle apparatus is used to determine the shear modulus (?) of the material of a wire of uniform cylindrical cross section. Conventionally, a single observation is taken for each observable, and the value of ? is calculated in a single shot. A modification to the above apparatus is made by varying one of the observables, namely the mass…

  10. What physics is encoded in Maxwell's equations?

    NASA Astrophysics Data System (ADS)

    Kosyakov, B. P.

    2005-08-01

    We reconstruct Maxwell's equations showing that a major part of the information encoded in them is taken from topological properties of spacetime, and the residual information, divorced from geometry, which represents the physical contents of electrodynamics, %these equations, translates into four assumptions:(i) locality; (ii) linearity; %of the dynamical law; (iii) identity of the charge-source and the charge-coupling; and (iv) lack of magnetic monopoles. However, a closer inspection of symmetries peculiar to electrodynamics shows that these assumptions may have much to do with geometry. Maxwell's equations tell us that we live in a three-dimensional space with trivial (Euclidean) topology; time is a one-dimensional unidirectional and noncompact continuum; and spacetime is endowed with a light cone structure readable in the conformal invariance of electrodynamics. Our geometric feelings relate to the fact that Maxwell's equations are built in our brain, hence our space and time orientation, our visualization and imagination capabilities are ensured by perpetual instinctive processes of solving Maxwell's equations. People are usually agree in their observations of angle relations, for example, a right angle is never confused with an angle slightly different from right. By contrast, we may disagree in metric issues, say, a colour-blind person finds the light wave lengths quite different from those found by a man with normal vision. This lends support to the view that conformal invariance of Maxwell's equations is responsible for producing our notion of space. Assuming that our geometric intuition is guided by our innate realization of electrodynamical laws, some abnormal mental phenomena, such as clairvoyance, may have a rational explanation.

  11. Altered Maxwell equations in the length gauge

    NASA Astrophysics Data System (ADS)

    Reiss, H. R.

    2013-09-01

    The length gauge uses a scalar potential to describe a laser field, thus treating it as a longitudinal field rather than as a transverse field. This distinction is manifested by the fact that the Maxwell equations that relate to the length gauge are not the same as those for transverse fields. In particular, a source term is necessary in the length-gauge Maxwell equations, whereas the Coulomb-gauge description of plane waves possesses the basic property of transverse fields that they propagate with no source terms at all. This difference is shown to be importantly consequential in some previously unremarked circumstances; and it explains why the Göppert-Mayer gauge transformation does not provide the security that might be expected of full gauge equivalence.

  12. Maxwell electrodynamics subjected to quantum vacuum fluctuations

    SciTech Connect

    Gevorkyan, A. S.; Gevorkyan, A. A.

    2011-06-15

    The propagation of electromagnetic waves in the vacuum is considered taking into account quantum fluctuations in the limits of Maxwell-Langevin (ML) equations. For a model of 'white noise' fluctuations, using ML equations, a second order partial differential equation is found which describes the quantum distribution of virtual particles in vacuum. It is proved that in order to satisfy observed facts, the Lamb Shift etc, the virtual particles should be quantized in unperturbed vacuum. It is shown that the quantized virtual particles in toto (approximately 86 percent) are condensed on the 'ground state' energy level. It is proved that the extension of Maxwell electrodynamics with inclusion of the vacuum quantum field fluctuations may be constructed on a 6D space-time continuum with a 2D compactified subspace. Their influence on the refraction indexes of vacuum is studied.

  13. Observing a quantum Maxwell demon at work.

    PubMed

    Cottet, Nathanaël; Jezouin, Sébastien; Bretheau, Landry; Campagne-Ibarcq, Philippe; Ficheux, Quentin; Anders, Janet; Auffèves, Alexia; Azouit, Rémi; Rouchon, Pierre; Huard, Benjamin

    2017-07-18

    In apparent contradiction to the laws of thermodynamics, Maxwell's demon is able to cyclically extract work from a system in contact with a thermal bath, exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between information and thermodynamics. Here, we realize a Maxwell demon experiment that tracks the state of each constituent in both the classical and quantum regimes. The demon is a microwave cavity that encodes quantum information about a superconducting qubit and converts information into work by powering up a propagating microwave pulse by stimulated emission. Thanks to the high level of control of superconducting circuits, we directly measure the extracted work and quantify the entropy remaining in the demon's memory. This experiment provides an enlightening illustration of the interplay of thermodynamics with quantum information.

  14. Classes of exact Einstein Maxwell solutions

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Maharaj, S. D.

    2007-12-01

    We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.

  15. Historic Landscape Survey, Maxwell AFB, Alabama

    DTIC Science & Technology

    2013-08-01

    plant list Acer palmatum Japanese Maple • Small tree • Good fall color • Understory tree with dappled shade Acer rubrum Red Maple Native...saccharum Sugar Maple Native • Bright fall foliage • Shallow roots may interfere with grass growing under the tree • Does not thrive in the...evergreen tree • Greenish white flowers and stiff glossy leaves • Red berries persistent into winter • Approved for use on Maxwell AFB Juniperus

  16. Szilard's Engine: Measurement, Information, and Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Devereux, Michael

    2002-11-01

    Using an isolated measurement process, we calculate the effect measurement has on entropy for the multi-cylinder Szilard engine. We find that the system of cylinders possesses an entropy associated with cylinder total energy states, and that it records information transferred at measurement. Contrary to other's results, we find that the apparatus loses entropy due to measurement. The Second Law of Thermodynamics may be preserved if Maxwell's demon gains entropy moving the engine partition.

  17. Venus - Detailed mapping of Maxwell Montes region

    NASA Astrophysics Data System (ADS)

    Alexandrov, Yu. N.; Crymov, A. A.; Kotelnikov, V. A.; Petrov, G. M.; Rzhiga, O. N.; Sidorenko, A. I.; Sinilo, V. P.; Zakharov, A. I.; Akim, E. L.; Basilevski, A. T.; Kadnichanski, S. A.; Tjuflin, Yu. S.

    1986-03-01

    From October 1983 to July 1984, the north hemisphere of Venus, from latitude 30° to latitude 90°, was mapped by means of the radar imagers and altimeters of the spacecraft Venera 15 and Venera 16. This report presents the results of the radar mapping of the Maxwell Montes region, one of the most interesting features of Venus' surface. A radar mosaic map and contour map have been compiled.

  18. Loading relativistic Maxwell distributions in particle simulations

    SciTech Connect

    Zenitani, Seiji

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  19. Deforming the Maxwell-Sim algebra

    SciTech Connect

    Gibbons, G. W.; Gomis, Joaquim; Pope, C. N.

    2010-09-15

    The Maxwell algebra is a noncentral extension of the Poincare algebra, in which the momentum generators no longer commute, but satisfy [P{sub {mu}},P{sub {nu}}]=Z{sub {mu}{nu}}. The charges Z{sub {mu}{nu}} commute with the momenta, and transform tensorially under the action of the angular momentum generators. If one constructs an action for a massive particle, invariant under these symmetries, one finds that it satisfies the equations of motion of a charged particle interacting with a constant electromagnetic field via the Lorentz force. In this paper, we explore the analogous constructions where one starts instead with the ISim subalgebra of Poincare, this being the symmetry algebra of very special relativity. It admits an analogous noncentral extension, and we find that a particle action invariant under this Maxwell-Sim algebra again describes a particle subject to the ordinary Lorentz force. One can also deform the ISim algebra to DISim{sub b}, where b is a nontrivial dimensionless parameter. We find that the motion described by an action invariant under the corresponding Maxwell-DISim algebra is that of a particle interacting via a Finslerian modification of the Lorentz force. In an appendix is it shown that the DISim{sub b} algebra is isomorphic to the extended Schroedinger algebra with its standard deformation parameter z, when b=(1/1-z).

  20. Maxwell: A new vision of the world

    NASA Astrophysics Data System (ADS)

    Maystre, Daniel

    2014-05-01

    The paper outlines the crucial contributions of James Clerk Maxwell to Physics and more generally to our vision of the world. He achieved 150 years ago a synthesis of the pioneering works in magnetostatics, electrostatics, induction and, by introducing the notion of displacement current, gave birth to Electromagnetics. Then, he deduced the existence of electromagnetic waves and identified light as one of them. Maxwell equations deeply changed a Newtonian conception of the world based on particle interactions by pointing out the vital role of waves in physics. This new conception had a strong influence on the development of quantum physics. Finally, the invariance of light velocity in Galilean frames led to Lorentz transformations, a key step toward the theory of relativity. Par ailleurs, les équations de Maxwell ont profondément changé une conception du monde newtonienne basée sur l'interaction entre particules en révélant le rôle essentiel des ondes en physique, ce qui eut une influence déterminante sur le développement de la physique quantique. Enfin, l'invariance de la vitesse de la lumière dans les repères galiléens a entraîné la découverte des transformations de Lorentz, une étape capitale vers la théorie de la relativité.

  1. Maxwell's equal area law for black holes in power Maxwell invariant

    NASA Astrophysics Data System (ADS)

    Li, Huai-Fan; Guo, Xiong-ying; Zhao, Hui-Hua; Zhao, Ren

    2017-08-01

    In this paper, we consider the phase transition of black hole in power Maxwell invariant by means of Maxwell's equal area law. First, we review and study the analogy of nonlinear charged black hole solutions with the Van der Waals gas-liquid system in the extended phase space, and obtain isothermal P- v diagram. Then, using the Maxwell's equal area law we study the phase transition of AdS black hole with different temperatures. Finally, we extend the method to the black hole in the canonical (grand canonical) ensemble in which charge (potential) is fixed at infinity. Interestingly, we find the phase transition occurs in the both ensembles. We also study the effect of the parameters of the black hole on the two-phase coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems.

  2. Maxwell-Boltzmann type Hawking radiation

    NASA Astrophysics Data System (ADS)

    Yoon, Youngsub

    2017-04-01

    Twenty years ago, Rovelli proposed that the degeneracy of black hole (i.e. the exponential of the Bekenstein-Hawking entropy) is given by the number of ways the black hole horizon area can be expressed as a sum of unit areas. However, when counting the sum, one should treat the area quanta on the black hole horizon as distinguishable. This distinguishability of area quanta is noted in Rovelli’s paper. Building on this idea, we derive that the Hawking radiation spectrum is not given by Planck radiation spectrum (i.e. Bose-Einstein distribution) but given by Maxwell-Boltzmann distribution.

  3. Duality relation for the Maxwell system

    NASA Astrophysics Data System (ADS)

    Zolla, F.; Guenneau, S.

    2003-02-01

    This paper is intended to establish a link between the vector Maxwell system for three-dimensional (3D) and 2D finite photonic crystals in the low-frequency limit. For this, we generalize the classical results of Keller and Dykhne (chessboard problem) to periodic media described by piecewise continuous permittivity profiles: our theorem enlights the result of Mendelson (polycrystalline and multiphase media) in the framework of homogenization theory of elliptic operators. In fine, we give illustrative examples by using both integral equation and variational approaches via the so-called method of fictitious charges and finite-element method.

  4. A posteriori error estimates for Maxwell equations

    NASA Astrophysics Data System (ADS)

    Schoeberl, Joachim

    2008-06-01

    Maxwell equations are posed as variational boundary value problems in the function space H(operatorname{curl}) and are discretized by Nedelec finite elements. In Beck et al., 2000, a residual type a posteriori error estimator was proposed and analyzed under certain conditions onto the domain. In the present paper, we prove the reliability of that error estimator on Lipschitz domains. The key is to establish new error estimates for the commuting quasi-interpolation operators recently introduced in J. Schoeberl, Commuting quasi-interpolation operators for mixed finite elements. Similar estimates are required for additive Schwarz preconditioning. To incorporate boundary conditions, we establish a new extension result.

  5. Maxwell's demon based on a single qubit

    NASA Astrophysics Data System (ADS)

    Pekola, J. P.; Golubev, D. S.; Averin, D. V.

    2016-01-01

    We propose and analyze Maxwell's demon based on a single qubit with avoided level crossing. Its operation cycle consists of adiabatic drive to the point of minimum energy separation, measurement of the qubit state, and conditional feedback. We show that the heat extracted from the bath at temperature T can ideally approach the Landauer limit of kBT ln2 per cycle even in the quantum regime. Practical demon efficiency is limited by the interplay of Landau-Zener transitions and coupling to the bath. We suggest that an experimental demonstration of the demon is fully feasible using one of the standard superconducting qubits.

  6. Maxwell's demon. (II) A quantum-theoretic exorcism

    NASA Astrophysics Data System (ADS)

    Gyftopoulos, Elias P.

    2002-05-01

    In Part II of this two-part paper we prove that Maxwell's demon is unable to accomplish his task of sorting air molecules into swift and slow because in air in a thermodynamic equilibrium state there are no such molecules. The proof is based on the principles of a unified quantum theory of mechanics and thermodynamics. The key idea of the unified theory is that von Neumann's concept of a homogeneous ensemble of identical systems, identically prepared, is valid not only for a density operator ρ equal to a projector (every member of the ensemble is assigned the same projector, ρi=| ψi> < ψi|= ρi2, or the same wave function ψ i as any other member) but also for a density operator that is not a projector (every member of the ensemble is assigned the same density operator, ρ>ρ 2, as any other member). So, the latter ensemble is not a statistical mixture of projectors. The broadening of the validity of the homogeneous ensemble is consistent with the quantum-theoretic postulates about observables, measurement results, and value of any observable. In the context of the unified theory, among the many novel results is the theorem that each molecule of a system in a thermodynamic equilibrium state has zero value of momentum, that is, each molecule is at a standstill and, therefore, there are no molecules to be sorted as swift and slow. Said differently, if Maxwell were cognizant of quantum theory, he would not have conceived of the idea of the demon. It is noteworthy that the zero value of momentum is not the result of averaging over different momenta of many molecules. Under the specified conditions, it is the quantum-theoretic value of the momentum of any one molecule, and the same result is valid even if the system consists of only one molecule.

  7. Book Review: Maxwell's Demon 2: Entropy, classical and quantum information, computing. Harvey Leff and Andrew Rex (Eds.); Institute of Physics, Bristol, 2003, 500pp., US 55, ISBN 0750307595

    NASA Astrophysics Data System (ADS)

    Shenker, Orly R.

    2004-09-01

    In 1867, James Clerk Maxwell proposed a perpetuum mobile of the second kind, that is, a counter example for the Second Law of thermodynamics, which came to be known as "Maxwell's Demon." Unlike any other perpetual motion machine, this one escaped attempts by the best scientists and philosophers to show that the Second Law or its statistical mechanical counterparts are universal after all. "Maxwell's demon lives on. After more than 130 years of uncertain life and at least two pronouncements of death, this fanciful character seems more vibrant than ever." These words of Harvey Leff and Andrew Rex (1990), which open their introduction to Maxwell's Demon 2: Entropy, Classical and Quantum Information, Computing (hereafter MD2) are very true: the Demon is as challenging and as intriguing as ever, and forces us to think and rethink about the foundations of thermodynamics and of statistical mechanics.

  8. Comparing Teaching Approaches About Maxwell's Displacement Current

    NASA Astrophysics Data System (ADS)

    Karam, Ricardo; Coimbra, Debora; Pietrocola, Maurício

    2014-08-01

    Due to its fundamental role for the consolidation of Maxwell's equations, the displacement current is one of the most important topics of any introductory course on electromagnetism. Moreover, this episode is widely used by historians and philosophers of science as a case study to investigate several issues (e.g. the theory-experiment relationship). Despite the consensus among physics educators concerning the relevance of the topic, there are many possible ways to interpret and justify the need for the displacement current term. With the goal of understanding the didactical transposition of this topic more deeply, we investigate three of its domains: (1) The historical development of Maxwell's reasoning; (2) Different approaches to justify the term insertion in physics textbooks; and (3) Four lectures devoted to introduce the topic in undergraduate level given by four different professors. By reflecting on the differences between these three domains, significant evidence for the knowledge transformation caused by the didactization of this episode is provided. The main purpose of this comparative analysis is to assist physics educators in developing an epistemological surveillance regarding the teaching and learning of the displacement current.

  9. On Feynman's proof of the Maxwell equations

    NASA Astrophysics Data System (ADS)

    Noyes, H. P.

    1991-03-01

    Dyson has presented a derivation of the free space Maxwell Equations and the Lorentz force starting from Newton's Second Law and the commutation relations between x(sub i), x(sub j), and x(sub k). The proof is attributed to Feynman. The reason why it works is puzzling. The finite and discrete reconciliation between relativity and quantum mechanics offers a less problematic logical chain. The mass ratios are defined using deBroglie wave interference in a theory which necessarily entails the commutation relations. It is shown that this route implies Newton's Third Law. Following Mach, Newton's Second Law then becomes a definition of force, and given this the Lorentz force becomes a definition of the electromagnetic fields. The use of the relativistic Zitterbewegun with the step length h/mc consistently introduces the limiting velocity c into the calculation, and removes a puzzle about dimensions from the Feynman results. By adopting the Wheeler-Feynman point of view that the energy and momenta of massless quanta are defined by the sources and sinks, the inhomogeneous Maxwell equations are derived from quantum particle physics - which Feynman was unable to do - and hence the classical electromagnetic theory was established as a well defined continuum approximation to the fully discrete relativistic quantum mechanics. Exploration of quantum gravity along these lines appears to be promising.

  10. How Many Maxwell's Demons, and Where?

    NASA Astrophysics Data System (ADS)

    Fanchon, Eric; Neori, Klil Ha-Horesh; Elitzur, Avshalom C.

    Maxwell's demon has been conceived as a tool for challenging the law of entropy increase. Several resolutions of the paradox have been proposed, making it clear that the demon does not violate the second law of thermodynamics. Nevertheless, since recent experiments come close to realizing some variants of Maxwell's demon, it is interesting to revisit it. In this article we first address two questions, left unnoticed despite many years of intensive study: (1) on which side of the door should the demon be located when the door is shut? and (2) how is kinetic energy exchanged between the two compartments due to the demon's sorting? We propose a simple setting which is more realistic than the current versions, in which the demon monitors and accesses both sides of the partition, so as to enable the sorting task. Next we study the impact of this sorting on the molecular kinetic energy exchanges. We show that the temperature difference between compartments grows till the cold part of the gas approaches 0 K. We then emphasize that this setting yields to the familiar resolution of the paradox. In the last part we derive the expression of the average rate of energy flow between the two compartments of the system, based on the new setting proposed.

  11. Generalized Maxwell equations and charge conservation censorship

    NASA Astrophysics Data System (ADS)

    Modanese, G.

    2017-02-01

    The Aharonov-Bohm electrodynamics is a generalization of Maxwell theory with reduced gauge invariance. It allows to couple the electromagnetic field to a charge which is not locally conserved, and has an additional degree of freedom, the scalar field S = ∂αAα, usually interpreted as a longitudinal wave component. By reformulating the theory in a compact Lagrangian formalism, we are able to eliminate S explicitly from the dynamics and we obtain generalized Maxwell equation with interesting properties: they give ∂μFμν as the (conserved) sum of the (possibly non-conserved) physical current density jν, and a “secondary” current density iν which is a nonlocal function of jν. This implies that any non-conservation of jν is effectively “censored” by the observable field Fμν, and yet it may have real physical consequences. We give examples of stationary solutions which display these properties. Possible applications are to systems where local charge conservation is violated due to anomalies of the Adler-Bell-Jackiw (ABJ) kind or to macroscopic quantum tunnelling with currents which do not satisfy a local continuity equation.

  12. Convective instabilities of Maxwell-Cattaneo fluids

    NASA Astrophysics Data System (ADS)

    Eltayeb, I. A.

    2017-05-01

    Motivated by the need to understand better the dynamics of non-Fourier fluids, we examine the linear and weakly nonlinear stabilities of a horizontal layer of fluid obeying the Maxwell-Cattaneo relationship of heat flux and temperature using three different forms of the time derivative of the heat flux. Linear stability mode regime diagrams in the parameter plane have been established and used to summarize the linear instabilities. The energy balance of the system is used to identify the mechanism by which the Maxwell-Cattaneo effect (i) introduces overstability, (ii) leads to preferred stationary modes with the critical Rayleigh and wavelengths either both increasing or both decreasing, (iii) gives rise to instabilities in a layer heated from above, and (iv) enhances heat transfer. A formal weakly nonlinear analysis leads to evolution equations for the amplitudes of linear instability modes. It is shown that the amplitude of the stationary mode obeys an equation of the Landau-Stuart type. The two equally excitable overstable modes obey two equations of the same type coupled by an interaction term. The evolution of the different amplitudes leads to supercritical stability, supercritical instability or subcritical instability depending on the model and parameter values. The results are presented in regime diagrams.

  13. Disk entanglement entropy for a Maxwell field

    NASA Astrophysics Data System (ADS)

    Agón, César A.; Headrick, Matthew; Jafferis, Daniel L.; Kasko, Skyler

    2014-01-01

    In three dimensions, the pure Maxwell theory with a compact U(1) gauge group is dual to a free compact scalar, and it flows from the Maxwell theory with a noncompact gauge group in the ultraviolet to a noncompact free massless scalar theory in the infrared. We compute the vacuum disk entanglement entropy all along this flow and show that the renormalized entropy F(r) decreases monotonically with the radius r as predicted by the F-theorem, interpolating between a logarithmic growth for small r (matching the behavior of the S3 free energy) and a constant at large r (equal to the free energy of the conformal scalar). The calculation is carried out by the replica trick, employing the scalar formulation of the theory. The Rényi entropies for n >1 are given by a sum over winding sectors, leading to a Riemann-Siegel theta function. The extrapolation to n=1, to obtain the von Neumann entropy, is done by analytic continuation in the large- and small-r limits and by a numerical extrapolation method at intermediate values. We also compute the leading contribution to the renormalized entanglement entropy of the compact free scalar in higher dimensions. Finally, we point out some interesting features of the reduced density matrix for the compact scalar, and its relation to that for the noncompact theory.

  14. Internal and Boundary Observability Estimates for the Heterogeneous Maxwell's System

    SciTech Connect

    Nicaise, Serge Pignotti, Cristina

    2006-06-15

    Observability estimates for Maxwell's system with variable coefficients are established using the differential geometry method recently developed for scalar wave equations.The main tool is that Maxwell's system is reducible to a perturbed vectorial wave equation with a decoupled principal part.

  15. Soliton-plasmon resonances as Maxwell nonlinear bound states.

    PubMed

    Milián, C; Ceballos-Herrera, D E; Skryabin, D V; Ferrando, A

    2012-10-15

    We demonstrate that soliplasmons (soliton-plasmon bound states) appear naturally as eigenmodes of nonlinear Maxwell's equations for a metal/Kerr interface. Conservative stability analysis is performed by means of finite element numerical modeling of the time-independent nonlinear Maxwell equations. Dynamical features are in agreement with the presented nonlinear oscillator model.

  16. Maxwell Equations and the Redundant Gauge Degree of Freedom

    ERIC Educational Resources Information Center

    Wong, Chun Wa

    2009-01-01

    On transformation to the Fourier space (k,[omega]), the partial differential Maxwell equations simplify to algebraic equations, and the Helmholtz theorem of vector calculus reduces to vector algebraic projections. Maxwell equations and their solutions can then be separated readily into longitudinal and transverse components relative to the…

  17. Chaotic magnetic fields in Vlasov-Maxwell equilibria

    SciTech Connect

    Ghosh, Abhijit; Janaki, M. S.; Dasgupta, Brahmananda; Bandyopadhyay, Alak

    2014-03-15

    Stationary solutions of Vlasov-Maxwell equations are obtained by exploiting the invariants of single particle motion leading to linear or nonlinear functional relations between current and vector potential. For a specific combination of invariants, it is shown that Vlasov-Maxwell equilibria have an associated Hamiltonian that exhibits chaos.

  18. Maxwell Equations and the Redundant Gauge Degree of Freedom

    ERIC Educational Resources Information Center

    Wong, Chun Wa

    2009-01-01

    On transformation to the Fourier space (k,[omega]), the partial differential Maxwell equations simplify to algebraic equations, and the Helmholtz theorem of vector calculus reduces to vector algebraic projections. Maxwell equations and their solutions can then be separated readily into longitudinal and transverse components relative to the…

  19. Chaotic magnetic fields in Vlasov-Maxwell equilibria

    SciTech Connect

    Ghosh, Abhijit; Janaki, M. S.; Dasgupta, Brahmananda; Bandyopadhyay, Alak

    2014-03-15

    Stationary solutions of Vlasov-Maxwell equations are obtained by exploiting the invariants of single particle motion leading to linear or nonlinear functional relations between current and vector potential. For a specific combination of invariants, it is shown that Vlasov-Maxwell equilibria have an associated Hamiltonian that exhibits chaos.

  20. Maxwell and creation: Acceptance, criticism, and his anonymous publication

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2007-08-01

    Although James Clerk Maxwell's religious views and discussions on atoms having the properties of ``manufactured articles'' have been discussed, some aspects of the responses by his contemporaries to his remarks on creation have been neglected. Various responses quoted here include a book from 1878 by ``Physicus'' (George John Romanes) attributing ``arrogance'' to Maxwell for his inferences. Relevant aspects of the evolution of the perspective of Romanes are noted. A response by B. F. Westcott indicated that Maxwell was the author of a related anonymous publication concerned with what eventually became known as the heat death of the universe. In his teaching to theology students, Westcott, a friend of Maxwell, emphasized Maxwell's reasoning based on the dissipation of energy. There are similarities between Maxwell's perspective on creation and Biblical commentaries by fellow Eranus Club members Westcott and J. B. Lightfoot. Interest in Maxwell's remarks extended into the twentieth century. The principal Baptist chapel attended by Maxwell and his wife when in London in the 1860s is identified and some relevant attributes of the chapel and of its pastor are described.

  1. Environmental Assessment: Military Family Housing Privatization Maxwell Air Force Base

    DTIC Science & Technology

    2005-06-01

    Water Resources) Montgomery Chamber of Commerce George , Randall (President) Montgomery County – City Public Library Montgomery County...Force Base Personnel, Interviewer; Tamara Carroll. Zervos , Spero G. 2001. A Brief History of Maxwell AFB. Maxwell AFB, AL: Air University History...35486- 6999 205-247-3589 Montgomery Chamber of Commerce President Randall George 41 Commerce Street Montgomery, AL 36101 PO Box 79 Montgomery, AL

  2. Post-Newtonian approximation in Maxwell-like form

    SciTech Connect

    Kaplan, Jeffrey D.; Nichols, David A.; Thorne, Kip S.

    2009-12-15

    The equations of the linearized first post-Newtonian approximation to general relativity are often written in 'gravitoelectromagnetic' Maxwell-like form, since that facilitates physical intuition. Damour, Soffel, and Xu (DSX) (as a side issue in their complex but elegant papers on relativistic celestial mechanics) have expressed the first post-Newtonian approximation, including all nonlinearities, in Maxwell-like form. This paper summarizes that DSX Maxwell-like formalism (which is not easily extracted from their celestial mechanics papers), and then extends it to include the post-Newtonian (Landau-Lifshitz-based) gravitational momentum density, momentum flux (i.e. gravitational stress tensor), and law of momentum conservation in Maxwell-like form. The authors and their colleagues have found these Maxwell-like momentum tools useful for developing physical intuition into numerical-relativity simulations of compact binaries with spin.

  3. The Life of James Clerk Maxwell

    NASA Astrophysics Data System (ADS)

    Campbell, Lewis; Garnett, William

    2010-06-01

    Preface; Part I. Biographical Outline: 1. Birth and parentage; 2. Glenlair - childhood, 1831-1841; 3. Boyhood, 1841-1844; 4. Adolescence, 1844-1847; 5. Opening manhood, 1847-1850; 6. Undergraduate life at Cambridge, 1850-1854; 7. Bachelor-scholar and fellow of Trinity, 1854-1856; 8. Essays at Cambridge, 1853-1856; 9. Death of his father. Professorship at Aberdeen, 1856-1857; 10. Aberdeen. Marriage, 1857-1860; 11. King's College, London. Glenair, 1860-1870; 12. Cambridge, 1871-1879; 13. Illness and death, 1879; 14. Last essays at Cambridge; Part II. Contributions to Science: 1. Experiments on colour vision, and other contributions to optics; 2. Investigations respecting elastic solids; 3. Pure geometry; 4. Mechanics; 5. Saturn's rings; 6. Faraday's lines of force, and Maxwell's theory of the electromagnetic field; 7. Molecular physics; Part III. Poems: 1. Juvenile verses and translations; 2. Occasional pieces; 3. Serio-comic verse; Index.

  4. Algebraically special Einstein-Maxwell fields

    NASA Astrophysics Data System (ADS)

    Van den Bergh, Norbert

    2017-01-01

    The Geroch-Held-Penrose formalism is used to re-analyse algebraically special non-null Einstein-Maxwell fields, aligned as well as non-aligned, in the presence of a possible non-vanishing cosmological constant. A new invariant characterization is given of the García-Plebański and Plebański-Hacyan metrics within the family of aligned solutions and of the Griffiths metrics within the family of the non-aligned solutions. As a corollary also the double alignment of the Debever-McLenaghan `class D' metrics with non-vanishing cosmological constant is shown to be equivalent with the shear-free and geodesic behavior of their Debever-Penrose vectors.

  5. Maxwell's Demon Through the Looking Glass

    NASA Astrophysics Data System (ADS)

    Silagadze, Z. K.

    2007-01-01

    Mechanical Maxwell's demons, such as Smoluchowski's trapdoor and Feynman's ratchet and pawl need external energy source to operate. If you cease to feed a demon the Second Law of thermodynamics will quickly stop its operation. Nevertheless, if the parity is an unbroken symmetry of nature, it may happen that a small modification leads to demons which do not need feeding. Such demons can act like perpetuum mobiles of the second kind: extract heat energy from only one reservoir, use it to do work and be isolated from the rest of ordinary world. Yet the Second Law is not violated because the demons pay their entropy cost in the hidden (mirror) sector of the world by emitting mirror photons.

  6. Solving Maxwell eigenvalue problems for accelerating cavities

    NASA Astrophysics Data System (ADS)

    Arbenz, Peter; Geus, Roman; Adam, Stefan

    2001-02-01

    We investigate algorithms for computing steady state electromagnetic waves in cavities. The Maxwell equations for the strength of the electric field are solved by a mixed method with quadratic finite edge (Nédélec) elements for the field values and corresponding node-based finite elements for the Lagrange multiplier. This approach avoids so-called spurious modes which are introduced if the divergence-free condition for the electric field is not treated properly. To compute a few of the smallest positive eigenvalues and corresponding eigenmodes of the resulting large sparse matrix eigenvalue problems, two algorithms have been used: the implicitly restarted Lanczos algorithm and the Jacobi-Davidson algorithm, both with shift-and-invert spectral transformation. Two-level hierarchical basis preconditioners have been employed for the iterative solution of the resulting systems of equations.

  7. Observing a quantum Maxwell demon at work

    NASA Astrophysics Data System (ADS)

    Cottet, Nathanaël; Jezouin, Sébastien; Bretheau, Landry; Campagne-Ibarcq, Philippe; Ficheux, Quentin; Anders, Janet; Auffèves, Alexia; Azouit, Rémi; Rouchon, Pierre; Huard, Benjamin

    2017-07-01

    In apparent contradiction to the laws of thermodynamics, Maxwell’s demon is able to cyclically extract work from a system in contact with a thermal bath, exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between information and thermodynamics. Here, we realize a Maxwell demon experiment that tracks the state of each constituent in both the classical and quantum regimes. The demon is a microwave cavity that encodes quantum information about a superconducting qubit and converts information into work by powering up a propagating microwave pulse by stimulated emission. Thanks to the high level of control of superconducting circuits, we directly measure the extracted work and quantify the entropy remaining in the demon’s memory. This experiment provides an enlightening illustration of the interplay of thermodynamics with quantum information.

  8. Loading relativistic Maxwell distributions in particle simulations

    NASA Astrophysics Data System (ADS)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  9. Fractional vector calculus and fractional Maxwell's equations

    SciTech Connect

    Tarasov, Vasily E.

    2008-11-15

    The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using a fractional generalization of the Fundamental Theorem of Calculus. We define the differential and integral vector operations. The fractional Green's, Stokes' and Gauss's theorems are formulated. The proofs of these theorems are realized for simplest regions. A fractional generalization of exterior differential calculus of differential forms is discussed. Fractional nonlocal Maxwell's equations and the corresponding fractional wave equations are considered.

  10. Adaptive node techniques for Maxwell's equations

    SciTech Connect

    Hewett, D W

    2000-04-01

    The computational mesh in numerical simulation provides a framework on which to monitor the spatial dependence of function and their derivatives. Spatial mesh is therefore essential to the ability to integrate systems in time without loss of fidelity. Several philosophies have emerged to provide such fidelity (Eulerian, Lagrangian, Arbitrary Lagrangian Eulerian ALE, Adaptive Mesh Refinement AMR, and adaptive node generation/deletion). Regardless of the type of mesh, a major difficulty is in setting up the initial mesh. Clearly a high density of grid points is essential in regions of high geometric complexity and/or regions of intense, energetic activity. For some problems, mesh generation is such a crucial part of the problem that it can take as much computational effort as the run itself, and these tasks are now taking weeks of massively parallel CPU time. Mesh generation is no less crucial to electromagnetic calculations. In fact EM problem set up can be even more challenging without the clues given by fluid motion in hydrodynamic systems. When the mesh is advected with the fluid (Lagrangian), mesh points naturally congregate in regions of high activity. Similarly in AMR algorithms, strong gradients in the fluid flow are one of the triggers for mesh refinement. In the hyperbolic Maxwell's equations without advection, mesh point placement/motion is not so intuitive. In fixed geometry systems, it at least feasible to finely mesh high leverage, geometrically challenged areas. For other systems, where the action takes place far from the boundaries and, likely, changes position in time, the options are limited to either using a high resolution (expensive) mesh in all regions that could require such resolution or adaptively generating nodes to resolve the physics as it evolves. The authors have developed a new time of adaptive node technique for Maxwell's equations to deal with this set of issues.

  11. Thermodynamics with information flow: Applications to Maxwell demons and biochemical sensing

    NASA Astrophysics Data System (ADS)

    Horowitz, Jordan

    2015-03-01

    Information is often perceived as an immaterial entity. However, since the birth of statistical physics, it has been argued, based on thought experiments by the likes of Maxwell, that there are physical thermodynamic implications to information manipulation. In this talk, I will discuss a unified framework for the information transfers between continuously interacting systems, describing how information generated in an auxiliary system can be utilized by another as a fuel for an otherwise impossible process. Indeed, while the joint system satisfies the second law, the entropy balance of each system is modified by an information term related to the mutual information between the pair of systems. I will then show how this result incorporates the traditional analysis of Maxwell's demon. In addition, I will use this framework to analyze the thermodynamics and energetics of biological sensory adaptation, employing the biochemical sensing network of E. Coli chemotaxis as a representative example.

  12. Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes

    NASA Astrophysics Data System (ADS)

    Buffa, Annalisa; Houston, Paul; Perugia, Ilaria

    2007-07-01

    This paper is concerned with the discontinuous Galerkin approximation of the Maxwell eigenproblem. After reviewing the theory developed in [A. Buffa, I. Perugia, Discontinuous Galerkin approximation of the Maxwell eigenproblem, Technical Report 24-PV, IMATI-CNR, Pavia, Italy, 2005 maxwell.pdf>], we present a set of numerical experiments which both validate the theory, and provide further insight regarding the practical performance of discontinuous Galerkin methods, particularly in the case when non-conforming meshes, characterized by the presence of hanging nodes, are employed.

  13. Generalized gravitational entropy of interacting scalar field and Maxwell field

    NASA Astrophysics Data System (ADS)

    Huang, Wung-Hong

    2014-12-01

    The generalized gravitational entropy proposed recently by Lewkowycz and Maldacena is extended to the interacting real scalar field and Maxwell field system. Using the BTZ geometry we first investigate the case of free real scalar field and then show a possible way to calculate the entropy of the interacting scalar field. Next, we investigate the Maxwell field system. We exactly solve the wave equation and calculate the analytic value of the generalized gravitational entropy. We also use the Einstein equation to find the effect of backreaction of the Maxwell field on the area of horizon. The associated modified area law is consistent with the generalized gravitational entropy.

  14. Quantum Maxwell's demon in thermodynamic cycles.

    PubMed

    Dong, H; Xu, D Z; Cai, C Y; Sun, C P

    2011-06-01

    We study the physical mechanism of Maxwell's demon (MD), which helps do extra work in thermodynamic cycles with the heat engine. This is exemplified with one molecule confined in an infinitely deep square potential with a movable solid wall. The MD is modeled as a two-level system (TLS) for measuring and controlling the motion of the molecule. The processes in the cycle are described in a quantum fashion. It is discovered that a MD with quantum coherence or one at a temperature lower than the molecule's heat bath can enhance the ability of the whole working substance, formed by the heat engine plus the MD, to do work outside. This observation reveals that the essential role of the MD is to drive the whole working substance off equilibrium, or equivalently, to work between two heat baths with different effective temperatures. The elaborate studies with this model explicitly reveal the effect of finite size off the classical limit or thermodynamic limit, which contradicts common sense on a Szilard heat engine (SHE). The quantum SHE's efficiency is evaluated in detail to prove the validity of the second law of thermodynamics.

  15. Weyl, Dirac and Maxwell Quantum Cellular Automata

    NASA Astrophysics Data System (ADS)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro

    2015-10-01

    Recent advances on quantum foundations achieved the derivation of free quantum field theory from general principles, without referring to mechanical notions and relativistic invariance. From the aforementioned principles a quantum cellular automata (QCA) theory follows, whose relativistic limit of small wave-vector provides the free dynamics of quantum field theory. The QCA theory can be regarded as an extended quantum field theory that describes in a unified way all scales ranging from an hypothetical discrete Planck scale up to the usual Fermi scale. The present paper reviews the automaton theory for the Weyl field, and the composite automata for Dirac and Maxwell fields. We then give a simple analysis of the dynamics in the momentum space in terms of a dispersive differential equation for narrowband wave-packets. We then review the phenomenology of the free-field automaton and consider possible visible effects arising from the discreteness of the framework. We conclude introducing the consequences of the automaton dispersion relation, leading to a deformed Lorentz covariance and to possible effects on the thermodynamics of ideal gases.

  16. An autonomous and reversible Maxwell's demon

    NASA Astrophysics Data System (ADS)

    Barato, A. C.; Seifert, U.

    2013-03-01

    Building on a model introduced by Mandal and Jarzynski (Proc. Natl. Acad. Sci. U.S.A., 109 (2012) 11641), we present a simple version of an autonomous reversible Maxwell's demon. By changing the entropy of a tape consisting of a sequence of bits passing through the demon, the demon can lift a mass using the coupling to a heat bath. Our model becomes reversible by allowing the tape to move in both directions. In this thermodynamically consistent model, total entropy production consists of three terms one of which recovers the irreversible limit studied by MJ. Our demon allows an interpretation in terms of an enzyme transporting and transforming molecules between compartments. Moreover, both genuine equilibrium and a linear response regime with corresponding Onsager coefficients are well defined. Efficiency and efficiency at maximum power are calculated. In linear response, the latter is shown to be bounded by 1/2, if the demon operates as a machine and by 1/3, if it is operated as an eraser.

  17. Driven inelastic Maxwell gas in one dimension

    NASA Astrophysics Data System (ADS)

    Prasad, V. V.; Sabhapandit, Sanjib; Dhar, Abhishek; Narayan, Onuttom

    2017-02-01

    A lattice version of the driven inelastic Maxwell gas is studied in one dimension with periodic boundary conditions. Each site i of the lattice is assigned with a scalar "velocity," vi. Nearest neighbors on the lattice interact, with a rate τc-1, according to an inelastic collision rule. External driving, occurring with a rate τw-1, sustains a steady state in the system. A set of closed coupled equations for the evolution of the variance and the two-point correlation is found. Steady-state values of the variance, as well as spatial correlation functions, are calculated. It is shown exactly that the correlation function decays exponentially with distance, and the correlation length for a large system is determined. Furthermore, the spatiotemporal correlation C (x ,t ) = can also be obtained. We find that there is an interior region -x* x* , the correlation function remains the same as the initial form. C (x ,t ) exhibits second-order discontinuity at the transition points x =±x* , and these transition points move away from the x =0 with a constant speed.

  18. 29. GROUND VIEW OF PIER, LOOKING SOUTHWEST FROM MAXWELL'S RESTAURANT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. GROUND VIEW OF PIER, LOOKING SOUTHWEST FROM MAXWELL'S RESTAURANT, SHOWING (LEFT-RIGHT) LIFEGUARD TOWER TO BENT 4 - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  19. Modeling anisotropic Maxwell-Jüttner distributions: derivation and properties

    NASA Astrophysics Data System (ADS)

    Livadiotis, George

    2016-12-01

    In this paper we develop a model for the anisotropic Maxwell-Jüttner distribution and examine its properties. First, we provide the characteristic conditions that the modeling of consistent and well-defined anisotropic Maxwell-Jüttner distributions needs to fulfill. Then, we examine several models, showing their possible advantages and/or failures in accordance to these conditions. We derive a consistent model, and examine its properties and its connection with thermodynamics. We show that the temperature equals the average of the directional temperature-like components, as it holds for the classical, anisotropic Maxwell distribution. We also derive the internal energy and Boltzmann-Gibbs entropy, where we show that both are maximized for zero anisotropy, that is, the isotropic Maxwell-Jüttner distribution.

  20. Complete Vector Spherical Harmonic Expansion for Maxwell's Equations

    ERIC Educational Resources Information Center

    Lambert, R. H.

    1978-01-01

    Conventional expansions of solutions to Maxwell's equations in vector spherical harmonics apply only outside the sources. The complete solution, applying both inside and outside the sources, is given here. Harmonic time dependence is assumed. (Author/GA)

  1. Propagation of ultra-short solitons in stochastic Maxwell's equations

    SciTech Connect

    Kurt, Levent; Schäfer, Tobias

    2014-01-15

    We study the propagation of ultra-short short solitons in a cubic nonlinear medium modeled by nonlinear Maxwell's equations with stochastic variations of media. We consider three cases: variations of (a) the dispersion, (b) the phase velocity, (c) the nonlinear coefficient. Using a modified multi-scale expansion for stochastic systems, we derive new stochastic generalizations of the short pulse equation that approximate the solutions of stochastic nonlinear Maxwell's equations. Numerical simulations show that soliton solutions of the short pulse equation propagate stably in stochastic nonlinear Maxwell's equations and that the generalized stochastic short pulse equations approximate the solutions to the stochastic Maxwell's equations over the distances under consideration. This holds for both a pathwise comparison of the stochastic equations as well as for a comparison of the resulting probability densities.

  2. Complete Vector Spherical Harmonic Expansion for Maxwell's Equations

    ERIC Educational Resources Information Center

    Lambert, R. H.

    1978-01-01

    Conventional expansions of solutions to Maxwell's equations in vector spherical harmonics apply only outside the sources. The complete solution, applying both inside and outside the sources, is given here. Harmonic time dependence is assumed. (Author/GA)

  3. Construction of Three Dimensional Solutions for the Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Yefet, A.; Turkel, E.

    1998-01-01

    We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.

  4. Information-driven current in a quantum Maxwell demon.

    PubMed

    Deffner, Sebastian

    2013-12-01

    We describe a minimal model of a quantum Maxwell demon obeying Hamiltonian dynamics. The model is solved exactly, and we analyze its steady-state behavior. We find that writing information to a quantum memory induces a probability current through the demon, which is the quantum analog of the classical Maxwell demon's action. Our model offers a simple and pedagogical paradigm for investigating the thermodynamics of quantum information processing.

  5. Maxwell-Garnett effective medium theory: Quantum nonlocal effects

    SciTech Connect

    Moradi, Afshin

    2015-04-15

    We develop the Maxwell-Garnett theory for the effective medium approximation of composite materials with metallic nanoparticles by taking into account the quantum spatial dispersion effects in dielectric response of nanoparticles. We derive a quantum nonlocal generalization of the standard Maxwell-Garnett formula, by means the linearized quantum hydrodynamic theory in conjunction with the Poisson equation as well as the appropriate additional quantum boundary conditions.

  6. Compressible Navier-Stokes Equations with Revised Maxwell's Law

    NASA Astrophysics Data System (ADS)

    Hu, Yuxi; Racke, Reinhard

    2017-03-01

    We investigate the compressible Navier-Stokes equations where the constitutive law for the stress tensor given by Maxwell's law is revised to a system of relaxation equations for two parts of the tensor. The global well-posedness is proved as well as the compatibility with the classical compressible Navier-Stokes system in the sense that, for vanishing relaxation parameters, the solutions to the Maxwell system are shown to converge to solutions of the classical system.

  7. Variational formulations of guiding-center Vlasov-Maxwell theory

    SciTech Connect

    Brizard, Alain J.; Tronci, Cesare

    2016-06-15

    The variational formulations of guiding-center Vlasov-Maxwell theory based on Lagrange, Euler, and Euler-Poincaré variational principles are presented. Each variational principle yields a different approach to deriving guiding-center polarization and magnetization effects into the guiding-center Maxwell equations. The conservation laws of energy, momentum, and angular momentum are also derived by Noether method, where the guiding-center stress tensor is now shown to be explicitly symmetric.

  8. New variational principle for the Vlasov-Maxwell equations.

    PubMed

    Brizard, A J

    2000-06-19

    A new Eulerian variational principle is presented for the Vlasov-Maxwell equations. This principle uses constrained variations for the Vlasov distribution in eight-dimensional extended phase space. The standard energy-momentum conservation law is then derived explicitly by the Noether method. This new variational principle can be applied to various reduced Vlasov-Maxwell equations in which fast time scales have been asymptotically eliminated (e.g., low-frequency gyrokinetic theory).

  9. Variational formulations of guiding-center Vlasov-Maxwell theory

    NASA Astrophysics Data System (ADS)

    Brizard, Alain J.; Tronci, Cesare

    2016-06-01

    The variational formulations of guiding-center Vlasov-Maxwell theory based on Lagrange, Euler, and Euler-Poincaré variational principles are presented. Each variational principle yields a different approach to deriving guiding-center polarization and magnetization effects into the guiding-center Maxwell equations. The conservation laws of energy, momentum, and angular momentum are also derived by Noether method, where the guiding-center stress tensor is now shown to be explicitly symmetric.

  10. Complex and biofluids: From Maxwell to nowadays

    NASA Astrophysics Data System (ADS)

    Misbah, Chaouqi

    2009-11-01

    Complex fluids are the rule in biology and in many industrial applications. Typical examples are blood, cartilage, and polymer solutions. Unlike water (as well as domestic oils, soft clear drinks, and so on), the law(s) describing the behavior of complex fluids are not yet fully established. The complexity arises from strong coupling between microscopic scales (like the motion of a red blood cell in the case of blood, or a polymer molecule for a polymer solution) and the global scale of the flow (say at the scale of a blood artery, or a channel in laboratory experiments). In this issue entitled Complex and Biofluids a large panel of experimental and theoretical problems of complex fluids is exposed. The topics range from dilute polymer solutions, food products, to biology (blood flow, cell and tissue mechanics). One of the earliest model put forward as an attempt to describe a complex fluid was suggested a long time ago by James Clerk Maxwell (in 1867). Other famous scientists, like Einstein (in 1906), and Taylor (in 1932) have made important contributions to the field, but the topic of complex fluids still continues to pose a formidable challenge to science. This field has known during the past decade an unbelievable upsurge of interest in many branches of science (physics, mechanics, chemistry, biology, medical science, mathematics, and so on). Understanding complex fluids is viewed as one of the biggest challenge of the present century. This synthesis will provide a simple introduction to the topic, summarize the main contribution of this issue, and list major open questions in this field. To cite this article: C. Misbah, C. R. Physique 10 (2009).

  11. Black hole merger estimates in Einstein-Maxwell and Einstein-Maxwell-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Jai-akson, Puttarak; Chatrabhuti, Auttakit; Evnin, Oleg; Lehner, Luis

    2017-08-01

    The recent birth of gravitational wave astronomy invites a new generation of precision tests of general relativity. Signatures of black hole (BH) mergers must be systematically explored in a wide spectrum of modified gravity theories. Here, we turn to one such theory in which the initial value problem for BH mergers is well posed, the Einstein-Maxwell-dilaton system. We present conservative estimates for the merger parameters (final spins, quasinormal modes) based on techniques that have worked well for ordinary gravity mergers and utilize information extracted from test particle motion in the final BH metric. The computation is developed in parallel for the modified gravity BHs (we specifically focus on the Kaluza-Klein value of the dilaton coupling, for which analytic BH solutions are known) and ordinary Kerr-Newman BHs. We comment on the possibility of obtaining final BHs with spins consistent with current observations.

  12. Exact spherical wave solutions to Maxwell's equations with applications

    NASA Astrophysics Data System (ADS)

    Silvestri, Guy G.

    Electromagnetic radiation from bounded sources represent an important class of physical problems that can be solved for exactly. However, available texts on this subject almost always resort to approximate solution techniques that not only obscure the essential features of the problem but also restrict application to limited ranges of observation. This dissertation presents exact solutions for this important class of problems and demonstrates how these solutions can be applied to situations of genuine physical interest, in particular, the design of device structures with prespecified emission characteristics. The strategy employed is to solve Maxwell's equations in the spherical coordinate system. In this system, fundamental parameters such as electric and magnetic multipole moments fall out quite naturally. Expressions for radiated power, force, and torque assume especially illuminating and simple forms when expressed in terms of these multipole moments. All solutions are derived ab initio using first-principles arguments exclusively. Two operator equations that receive particularly detailed treatment are the vector Helmholtz equation for the time-independent potential vector-a and the 'covariant divergence' equation for the energy-momentum-stress tensor T(exp mu nu). An application of classical formulas, as modified by the requirements of statistical mechanics, to the case of heated black bodies leads to inquiries into the foundations of quantum mechanics and their relation to classical field theory. An application of formulas to various emission structures (spherically shaped antennas, surface diffraction gratings, collimated beams) provides a basis upon which to characterize these structures in an exact sense and, ultimately, to elicit clues as to their optimum design.

  13. Exact Spherical Wave Solutions to Maxwell's Equations with Applications

    NASA Astrophysics Data System (ADS)

    Silvestri, Guy G.

    Electromagnetic radiation from bounded sources represent an important class of physical problems that can be solved for exactly. However, available texts on this subject almost always resort to approximate solution techniques that not only obscure the essential features of the problem but also restrict application to limited ranges of observation. This dissertation presents exact solutions for this important class of problems and demonstrates how these solutions can be applied to situations of genuine physical interest, in particular, the design of device structures with prespecified emission characteristics. The strategy employed is to solve Maxwell's equations in the spherical coordinate system. In this system, fundamental parameters such as electric and magnetic multipole moments fall out quite naturally. Expressions for radiated power, force, and torque assume especially illuminating and simple forms when expressed in terms of these multipole moments. All solutions are derived ab initio using first-principles arguments exclusively. Two operator-equations that receive particularly detailed treatment are the vector Helmholtz equation for the time-independent potential vec a and the "covariant divergence" equation for the energy-momentum-stress tensor T^{mu nu}. An application of classical formulas, as modified by the requirements of statistical mechanics, to the case of heated blackbodies leads to inquiries into the foundations of quantum mechanics and their relation to classical field theory. An application of formulas to various emission structures (spherically-shaped antennas, surface diffraction gratings, collimated beams) provides a basis upon which to characterize these structures in an exact sense, and, ultimately, to elicit clues as to their optimum design.

  14. CSR Fields: Direct Numerical Solution of the Maxwell___s Equation

    SciTech Connect

    Novokhatski, A.; /SLAC

    2011-06-22

    We discuss the properties of the coherent electromagnetic fields of a very short, ultra-relativistic bunch in a rectangular vacuum chamber inside a bending magnet. The analysis is based on the results of a direct numerical solution of Maxwell's equations together with Newton's equations. We use a new dispersion-free time-domain algorithm which employs a more efficient use of finite element mesh techniques and hence produces self-consistent and stable solutions for very short bunches. We investigate the fine structure of the CSR fields including coherent edge radiation. This approach should be useful in the study of existing and future concepts of particle accelerators and ultrafast coherent light sources. The coherent synchrotron radiation (CSR) fields have a strong action on the beam dynamics of very short bunches, which are moving in the bends of all kinds of magnetic elements. They are responsible for additional energy loss and energy spread; micro bunching and beam emittance growth. These fields may bound the efficiency of damping rings, electron-positron colliders and ultrafast coherent light sources, where high peak currents and very short bunches are envisioned. This is relevant to most high-brightness beam applications. On the other hand these fields together with transition radiation fields can be used for beam diagnostics or even as a powerful resource of THz radiation. A history of the study of CSR and a good collection of references can be found in [1]. Electromagnetic theory suggests several methods on how to calculate CSR fields. The most popular method is to use Lienard-Wiechert potentials. Other approach is to solve numerically the approximate equations, which are a Schrodinger type equation. These numerical methods are described in [2]. We suggest that a direct solution of Maxwell's equations together with Newton's equations can describe the detailed structure of the CSR fields [3].

  15. RESEARCH NOTE: On Maxwell singularities in postglacial rebound

    NASA Astrophysics Data System (ADS)

    Boschi, Lapo; Tromp, Jeroen; O'Connell, Richard J.

    1999-02-01

    We investigate the problem of finding the numerous relaxation times associated with the postglacial rebound of a layered Maxwell earth model. In general, these relaxation times are the roots of a secular polynomial. When a numerical approach is followed, this polynomial can be very ill behaved, with a number of singularities that coincide with the Maxwell times associated with the model rheology. This problem becomes dramatically evident when the rheological profile of the model is continuous or includes a large number of uniform layers (these two cases are basically the same when the solution is computed numerically). In order to understand the physical meaning of such Maxwell singularities, we perform a comparison between the numerical approach and the existing analytical solution to the problem of the postglacial relaxation of an incompressible, self-gravitating, N-layer, spherical Maxwell earth. We show that the analytical method does not suffer from the Maxwell singularity problem, and give a theoretical explanation of the ill behaviour of the secular polynomial computed in numerical studies.

  16. TWO-GRID METHODS FOR MAXWELL EIGENVALUE PROBLEMS

    PubMed Central

    ZHOU, J.; HU, X.; ZHONG, L.; SHU, S.; CHEN, L.

    2015-01-01

    Two new two-grid algorithms are proposed for solving the Maxwell eigenvalue problem. The new methods are based on the two-grid methodology recently proposed by Xu and Zhou [Math. Comp., 70 (2001), pp. 17–25] and further developed by Hu and Cheng [Math. Comp., 80 (2011), pp. 1287–1301] for elliptic eigenvalue problems. The new two-grid schemes reduce the solution of the Maxwell eigenvalue problem on a fine grid to one linear indefinite Maxwell equation on the same fine grid and an original eigenvalue problem on a much coarser grid. The new schemes, therefore, save total computational cost. The error estimates reveals that the two-grid methods maintain asymptotically optimal accuracy, and the numerical experiments presented confirm the theoretical results. PMID:26190866

  17. James Clerk Maxwell and the dynamics of astrophysical discs.

    PubMed

    Ogilvie, Gordon I

    2008-05-28

    Maxwell's investigations into the stability of Saturn's rings provide one of the earliest analyses of the dynamics of astrophysical discs. Current research in planetary rings extends Maxwell's kinetic theory to treat dense granular gases of particles undergoing moderately frequent inelastic collisions. Rather than disrupting the rings, local instabilities may be responsible for generating their irregular radial structure. Accretion discs around black holes or compact stars consist of a plasma permeated by a tangled magnetic field and may be compared with laboratory fluids through an analogy that connects Maxwell's researches in electromagnetism and viscoelasticity. A common theme in this work is the appearance of a complex fluid with a dynamical constitutive equation relating the stress in the medium to the history of its deformation.

  18. State-relevant Maxwell's equation from Kaluza-Klein theory

    SciTech Connect

    Luan Jing; Ma Yongge; Ma Boqiang

    2007-11-15

    We study a five-dimensional perfect fluid coupled with Kaluza-Klein gravity. By dimensional reduction, a modified form of Maxwell's equation is obtained, which is relevant to the equation of state of the source. Since the relativistic magnetohydrodynamics and the three-dimensional formulation are widely used to study space matter, we derive the modified Maxwell's equations and relativistic magnetohydrodynamics in 3+1 form. We then take an ideal Fermi gas as an example to study the modified effect, which can be visible under high-density or high-energy conditions, while the traditional Maxwell's equation can be regarded as a result in the low density and low temperature limit. We also indicate the possibility to test the state-relevant effect of Kaluza-Klein theory in a telluric laboratory.

  19. Hamiltonian time integrators for Vlasov-Maxwell equations

    NASA Astrophysics Data System (ADS)

    He, Yang; Qin, Hong; Sun, Yajuan; Xiao, Jianyuan; Zhang, Ruili; Liu, Jian

    2015-12-01

    Hamiltonian time integrators for the Vlasov-Maxwell equations are developed by a Hamiltonian splitting technique. The Hamiltonian functional is split into five parts, which produces five exactly solvable subsystems. Each subsystem is a Hamiltonian system equipped with the Morrison-Marsden-Weinstein Poisson bracket. Compositions of the exact solutions provide Poisson structure preserving/Hamiltonian methods of arbitrary high order for the Vlasov-Maxwell equations. They are then accurate and conservative over a long time because of the Poisson-preserving nature.

  20. Thermodynamics of a Physical Model Implementing a Maxwell Demon

    NASA Astrophysics Data System (ADS)

    Strasberg, Philipp; Schaller, Gernot; Brandes, Tobias; Esposito, Massimiliano

    2013-01-01

    We present a physical implementation of a Maxwell demon which consists of a conventional single electron transistor (SET) capacitively coupled to another quantum dot detecting its state. Altogether, the system is described by stochastic thermodynamics. We identify the regime where the energetics of the SET is not affected by the detection, but where its coarse-grained entropy production is shown to contain a new contribution compared to the isolated SET. This additional contribution can be identified as the information flow generated by the “Maxwell demon” feedback in an idealized limit.

  1. Force-free Jacobian equilibria for Vlasov-Maxwell plasmas

    SciTech Connect

    Abraham-Shrauner, B.

    2013-10-15

    New analytic force-free Vlasov-Maxwell equilibria for thin current sheets are presented. The magnetic flux densities are expressed in terms of Jacobian elliptic functions of one Cartesian spatial coordinate. The magnetic flux densities reduce to previously reported hyperbolic functions in one limit and sinusoidal functions in another limit of the modulus k. A much wider class of nonlinear force-free Vlasov-Maxwell equilibria open expanded possibilities for modeling of solar system, astrophysical and laboratory plasmas. Modified Maxwellian distribution functions are determined explicitly in terms of Jacobian elliptic functions. Conditions for double peaked distribution functions that could be unstable are developed.

  2. Maxwell boundary condition and velocity dependent accommodation coefficient

    SciTech Connect

    Struchtrup, Henning

    2013-11-15

    A modification of Maxwell's boundary condition for the Boltzmann equation is developed that allows to incorporate velocity dependent accommodation coefficients into the microscopic description. As a first example, it is suggested to consider the wall-particle interaction as a thermally activated process with three parameters. A simplified averaging procedure leads to jump and slip boundary conditions for hydrodynamics. Coefficients for velocity slip, temperature jump, and thermal transpiration flow are identified and compared with those resulting from the original Maxwell model and the Cercignani-Lampis model. An extension of the model leads to temperature dependent slip and jump coefficients.

  3. Hamiltonian time integrators for Vlasov-Maxwell equations

    SciTech Connect

    He, Yang; Xiao, Jianyuan; Zhang, Ruili; Liu, Jian; Qin, Hong; Sun, Yajuan

    2015-12-15

    Hamiltonian time integrators for the Vlasov-Maxwell equations are developed by a Hamiltonian splitting technique. The Hamiltonian functional is split into five parts, which produces five exactly solvable subsystems. Each subsystem is a Hamiltonian system equipped with the Morrison-Marsden-Weinstein Poisson bracket. Compositions of the exact solutions provide Poisson structure preserving/Hamiltonian methods of arbitrary high order for the Vlasov-Maxwell equations. They are then accurate and conservative over a long time because of the Poisson-preserving nature.

  4. Extracting Work from Quantum Measurement in Maxwell's Demon Engines

    NASA Astrophysics Data System (ADS)

    Elouard, Cyril; Herrera-Martí, David; Huard, Benjamin; Auffèves, Alexia

    2017-06-01

    The essence of both classical and quantum engines is to extract useful energy (work) from stochastic energy sources, e.g., thermal baths. In Maxwell's demon engines, work extraction is assisted by a feedback control based on measurements performed by a demon, whose memory is erased at some nonzero energy cost. Here we propose a new type of quantum Maxwell's demon engine where work is directly extracted from the measurement channel, such that no heat bath is required. We show that in the Zeno regime of frequent measurements, memory erasure costs eventually vanish. Our findings provide a new paradigm to analyze quantum heat engines and work extraction in the quantum world.

  5. Information driven current in a quantum Maxwell demon

    NASA Astrophysics Data System (ADS)

    Deffner, Sebastian

    2014-03-01

    We describe a minimal model of a quantum Maxwell demon obeying Hamiltonian dynamics. The model is solved exactly, and we analyze its steady-state behavior. We find that writing information to a quantum memory induces a probability current through the demon, which is the quantum analog of the classical Maxwell demon's action. Our model offers a simple and pedagogical paradigm for investigating the thermodynamics of quantum information processing. We acknowledge financial support by a fellowship within the postdoc-program of the German Academic Exchange Service (DAAD, contract No D/11/40955) and from the National Science Foundation (USA) under grant DMR-1206971.

  6. How to Obtain the Covariant Form of Maxwell's Equations from the Continuity Equation

    ERIC Educational Resources Information Center

    Heras, Jose A.

    2009-01-01

    The covariant Maxwell equations are derived from the continuity equation for the electric charge. This result provides an axiomatic approach to Maxwell's equations in which charge conservation is emphasized as the fundamental axiom underlying these equations.

  7. How to Obtain the Covariant Form of Maxwell's Equations from the Continuity Equation

    ERIC Educational Resources Information Center

    Heras, Jose A.

    2009-01-01

    The covariant Maxwell equations are derived from the continuity equation for the electric charge. This result provides an axiomatic approach to Maxwell's equations in which charge conservation is emphasized as the fundamental axiom underlying these equations.

  8. A geometric description of Maxwell field in a Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Jezierski, Jacek; Smołka, Tomasz

    2016-06-01

    We consider the Maxwell field in the exterior of a Kerr black hole. For this system, we propose a geometric construction of generalized Klein-Gordon equation called Fackerell-Ipser equation. Our model is based on conformal Yano-Killing tensor (CYK tensor). We present non-standard properties of CYK tensors in the Kerr spacetime which are useful in electrodynamics.

  9. Maxwell-Higgs equation on higher dimensional static curved spacetimes

    SciTech Connect

    Mulyanto; Akbar, Fiki Taufik Gunara, Bobby Eka

    2015-09-30

    In this paper we consider a class of solutions of Maxwell-Higgs equation in higher dimensional static curved spacetimes called Schwarzchild de-Sitter spacetimes. We obtain the general form of the electric fields and magnetic fields in background Schwarzchild de-Sitter spacetimes. However, determining the interaction between photons with the Higgs scalar fields is needed further studies.

  10. Radiation and Maxwell Stress Stabilization of Liquid Bridges

    NASA Technical Reports Server (NTRS)

    Marr-Lyon, M. J.; Thiessen, D. B.; Blonigen, F. J.; Marston, P. L.

    1999-01-01

    The use of both acoustic radiation stress and the Maxwell stress to stabilize liquid bridges is reported. Acoustic radiation stress arises from the time-averaged acoustic pressure at the surface of an object immersed in a sound field. Both passive and active acoustic stabilization schemes as well as an active electrostatic method are examined.

  11. Comparing Teaching Approaches about Maxwell's Displacement Current

    ERIC Educational Resources Information Center

    Karam, Ricardo; Coimbra, Debora; Pietrocola, Maurício

    2014-01-01

    Due to its fundamental role for the consolidation of Maxwell's equations, the displacement current is one of the most important topics of any introductory course on electromagnetism. Moreover, this episode is widely used by historians and philosophers of science as a case study to investigate several issues (e.g. the theory-experiment…

  12. Entanglement entropy of a Maxwell field on the sphere

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Huerta, Marina

    2016-05-01

    We compute the logarithmic coefficient of the entanglement entropy on a sphere for a Maxwell field in d =3 +1 dimensions. In spherical coordinates the problem decomposes into one-dimensional ones along the radial coordinate for each angular momentum. We show that the entanglement entropy of a Maxwell field is equivalent to one of two identical massless scalars from which the mode of l =0 has been removed. This shows the relation clogM=2 (clogS-clogSl =0) between the logarithmic coefficient in the entropy for a Maxwell field clogM , the one for a d =3 +1 massless scalar clogS , and the logarithmic coefficient clogSl =0 for a d =1 +1 scalar with a Dirichlet boundary condition at the origin. Using the accepted values for these coefficients clogS=-1 /90 and clogSl =0=1 /6 , we get clogM=-16 /45 , which coincides with Dowker's calculation, but does not match the coefficient -31/45 in the trace anomaly for a Maxwell field. We have numerically evaluated these three numbers clogM , clogS and clogSl =0, verifying the relation, as well as checked that they coincide with the corresponding logarithmic term in mutual information of two concentric spheres.

  13. DNA extraction method from bones using Maxwell® 16.

    PubMed

    Karija Vlahović, Monika; Kubat, Milovan

    2012-09-01

    This paper describes the automated purification of DNA extracted from human bones using Maxwell® 16 bench top instrument. Analysis of nuclear short tandem repeats (STR) is invaluable in identification of human remains exhumed from mass graves in Croatia. Up to today 4683 skeletal remains have been recovered and for 897 human remains identity has not been determined. DNA has been extracted from 70% of all unidentified samples. For more than 90% of the samples nuclear STR profiles have been obtained using either organic phenol/chloroform method or silica-column purification for the extraction of DNA from bones or teeth. In order to evaluate a Maxwell® 16 DNA extraction performance 40 bone samples with different stage of decomposition were analyzed. The efficacy of manual silica based extraction and an automated purification was compared. The DNA yield per gram of starting material, removal of inhibitors and the quality of resulting STR profiles of the Maxwell extracts from duplicate amplifications were evaluated. The results show that Maxwell 16 platform can be used instead of manual DNA extraction procedures. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Mechanic-Like Resonance in the Maxwell-Bloch Equations

    ERIC Educational Resources Information Center

    Meziane, Belkacem

    2008-01-01

    We show that, in their unstable regime of operation, the "Maxwell-Bloch" equations that describe light-matter interactions inside a bad-cavity-configured laser carry the same resonance properties as any externally driven mechanic or electric oscillator. This finding demonstrates that the nonlinearly coupled laser equations belong to the same…

  15. The Anglo Revolution in New Mexico: The Maxwell Land Grant.

    ERIC Educational Resources Information Center

    Simpson, Thomas K.

    1979-01-01

    Second in a 3-part series of case studies tracing the impact of the "Anglo revolution" on New Mexico, this article traces the effect of the "Anglo revolution" in the history of New Mexico's vast Maxwell Land Grant, which involves property ownership and property law. (Editor/NQ)

  16. Particle-Like Solution of the Maxwell-Lorentz Equations

    NASA Astrophysics Data System (ADS)

    Lasukova, T. V.; Lasukov, V. V.; Abdrashitova, M. O.

    2017-09-01

    It is shown that the Maxwell-Lorentz equations with a nonlinear source of field type can have solutions which asymptotically are solutions of soliton type, so that the electromagnetic field can be localized in space, and the corresponding electromagnetic soliton can move with nonrelativistic velocity.

  17. Plane wave (curl; Ω) conforming finite elements for Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Ledger, P. D.; Morgan, K.; Hassan, O.; Weatherill, N. P.

    This paper proposes a discretisation of Maxwell's equations which combines the popular edge elements of Nédélec with expansions of plane waves. The method is applied to simple two dimensional electromagnetic wave propagation and scattering simulations and issues of accuracy and matrix conditioning are investigated.

  18. A Generalized Mass Lumping Scheme for Maxwell's Wave Equation

    SciTech Connect

    Fisher, A; White, D; Rodrigue, G

    2004-01-15

    We are interested in the high order Vector Finite Element Method (VFEM) [1] solution to Maxwell's wave equation on both orthogonal and non-orthogonal meshes. This method discretizes the wave equation in the following manner, where M is the edge mass matrix and K is the edge stiffness matrix created using classical Nedelec edge elements.

  19. Comparing Teaching Approaches about Maxwell's Displacement Current

    ERIC Educational Resources Information Center

    Karam, Ricardo; Coimbra, Debora; Pietrocola, Maurício

    2014-01-01

    Due to its fundamental role for the consolidation of Maxwell's equations, the displacement current is one of the most important topics of any introductory course on electromagnetism. Moreover, this episode is widely used by historians and philosophers of science as a case study to investigate several issues (e.g. the theory-experiment…

  20. A Basic Program for Calculating the Stuart-Maxwell Test.

    ERIC Educational Resources Information Center

    Powers, Stephen; Gose, Kenneth C.

    1986-01-01

    A BASIC computer program is described which computes the Stuart-Maxwell test with its chi-square value and associate probability level. Following a significant chi-square test, the user has the option of performing multiple comparisons using McNemar's test for the significance of change. (Author)

  1. A one parameter class of fractional Maxwell-like models

    NASA Astrophysics Data System (ADS)

    Colombaro, Ivano; Giusti, Andrea; Mainardi, Francesco

    2017-06-01

    In this paper we discuss a one parameter modification of the well known fractional Maxwell model of viscoelasticity. Such models appear to be particularly interesting because they describe the short time asymptotic limit of a more general class of viscoelastic models known in the literature as Bessel models.

  2. Mechanic-Like Resonance in the Maxwell-Bloch Equations

    ERIC Educational Resources Information Center

    Meziane, Belkacem

    2008-01-01

    We show that, in their unstable regime of operation, the "Maxwell-Bloch" equations that describe light-matter interactions inside a bad-cavity-configured laser carry the same resonance properties as any externally driven mechanic or electric oscillator. This finding demonstrates that the nonlinearly coupled laser equations belong to the same…

  3. Mixed weak-perturbative solution method for Maxwell's equations of diffusion with Müller's partial stress tensor in the low velocity limit

    NASA Astrophysics Data System (ADS)

    Faliagas, A. C.

    2016-03-01

    Maxwell's theory of multicomponent diffusion and subsequent extensions are based on systems of mass and momentum conservation equations. The partial stress tensor, which is involved in these equations, is expressed in terms of the gradients of velocity fields by statistical and continuum mechanical methods. We propose a method for the solution of Maxwell's equations of diffusion coupled with Müller's expression for the partial stress tensor. The proposed method consists in a singular perturbation process, followed by a weak (finite element) analysis of the resulting PDE systems. The singularity involved in the obtained equations was treated by a special technique, by which lower-order systems were supplemented by proper combinations of higher-order equations. The method proved particularly efficient for the solution of the Maxwell-Müller system, eventually reducing the number of unknown fields to that of the classical Navier-Stokes/Fick system. It was applied to the classical Stefan tube problem and the Hagen-Poiseuille flow in a hollow-fiber membrane tube. Numerical results for these problems are presented, and compared with the Navier-Stokes/Fick approximation. It is shown that the 0-th order term of the Maxwell-Müller equations differs from a properly formulated Navier-Stokes/Fick system, by a numerically insignificant amount. Numerical results for 1st-order terms indicate a good agreement of the classical approximation (with properly formulated Navier-Stokes and Fick's equations) with the Maxwell-Müller system, in the studied cases.

  4. Multiparticle quantum Szilard engine with optimal cycles assisted by a Maxwell's demon.

    PubMed

    Cai, C Y; Dong, H; Sun, C P

    2012-03-01

    We present a complete-quantum description of a multiparticle Szilard engine that consists of a working substance and a Maxwell's demon. The demon is modeled as a multilevel quantum system with specific quantum control, and the working substance consists of identical particles obeying Bose-Einstein or Fermi-Dirac statistics. In this description, a reversible scheme to erase the demon's memory by a lower-temperature heat bath is used. We demonstrate that (1) the quantum control of the demon can be optimized for a single-particle Szilard engine so that the efficiency of the demon-assisted thermodynamic cycle could reach the Carnot cycle's efficiency and (2) the low-temperature behavior of the working substance is very sensitive to the quantum statistics of the particles and the insertion position of the partition.

  5. Multiparticle quantum Szilard engine with optimal cycles assisted by a Maxwell's demon

    NASA Astrophysics Data System (ADS)

    Cai, C. Y.; Dong, H.; Sun, C. P.

    2012-03-01

    We present a complete-quantum description of a multiparticle Szilard engine that consists of a working substance and a Maxwell's demon. The demon is modeled as a multilevel quantum system with specific quantum control, and the working substance consists of identical particles obeying Bose-Einstein or Fermi-Dirac statistics. In this description, a reversible scheme to erase the demon's memory by a lower-temperature heat bath is used. We demonstrate that (1) the quantum control of the demon can be optimized for a single-particle Szilard engine so that the efficiency of the demon-assisted thermodynamic cycle could reach the Carnot cycle's efficiency and (2) the low-temperature behavior of the working substance is very sensitive to the quantum statistics of the particles and the insertion position of the partition.

  6. 77 FR 65403 - Notice of Inventory Completion: Maxwell Museum of Anthropology, University of New Mexico...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... National Park Service Notice of Inventory Completion: Maxwell Museum of Anthropology, University of New... to be culturally affiliated with the human remains may contact the Maxwell Museum of Anthropology.... Heather Edgar, Maxwell Museum of Anthropology, MSC01 1050, University of New Mexico, Albuquerque, NM 87131...

  7. Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory

    ERIC Educational Resources Information Center

    Tweney, Ryan D.

    2011-01-01

    James Clerk Maxwell "translated" Michael Faraday's experimentally-based field theory into the mathematical representation now known as "Maxwell's Equations." Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other…

  8. Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory

    ERIC Educational Resources Information Center

    Tweney, Ryan D.

    2011-01-01

    James Clerk Maxwell "translated" Michael Faraday's experimentally-based field theory into the mathematical representation now known as "Maxwell's Equations." Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other…

  9. Knotted optical vortices in exact solutions to Maxwell's equations

    NASA Astrophysics Data System (ADS)

    de Klerk, Albertus J. J. M.; van der Veen, Roland I.; Dalhuisen, Jan Willem; Bouwmeester, Dirk

    2017-05-01

    We construct a family of exact solutions to Maxwell's equations in which the points of zero intensity form knotted lines topologically equivalent to a given but arbitrary algebraic link. These lines of zero intensity, more commonly referred to as optical vortices, and their topology are preserved as time evolves and the fields have finite energy. To derive explicit expressions for these new electromagnetic fields that satisfy the nullness property, we make use of the Bateman variables for the Hopf field as well as complex polynomials in two variables whose zero sets give rise to algebraic links. The class of algebraic links includes not only all torus knots and links thereof, but also more intricate cable knots. While the unknot has been considered before, the solutions presented here show that more general knotted structures can also arise as optical vortices in exact solutions to Maxwell's equations.

  10. Nontopological self-dual Maxwell-Higgs vortices

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Casana, R.; Ferreira, M. M., Jr.; da Hora, E.

    2015-01-01

    We study the existence of self-dual nontopological vortices in generalized Maxwell-Higgs models recently introduced in Bazeia D. et al., Eur. Phys. J. C, 71 (2001) 1833. Our investigation is explicitly illustrated by choosing a sixth-order self-interaction potential, which is the simplest one allowing the existence of nontopological structures. We specify some Maxwell-Higgs models yielding BPS nontopological vortices having energy proportional to the magnetic flux, Φ B , and whose profiles are numerically achieved. Particularly, we investigate the way the new solutions approach the boundary values, from which we verify their nontopological behavior. Finally, we depict the numerically found profiles, highlighting the main features they present.

  11. Analysis of an Incompressible Navier-Stokes-Maxwell-Stefan System

    NASA Astrophysics Data System (ADS)

    Chen, Xiuqing; Jüngel, Ansgar

    2015-12-01

    The Maxwell-Stefan equations for the molar fluxes, supplemented by the incompressible Navier-Stokes equations governing the fluid velocity dynamics, are analyzed in bounded domains with no-flux boundary conditions. The system models the dynamics of a multicomponent gaseous mixture under isothermal conditions. The global-in-time existence of bounded weak solutions to the strongly coupled model and their exponential decay to the homogeneous steady state are proved. The mathematical difficulties are due to the singular Maxwell-Stefan diffusion matrix, the cross-diffusion terms, and the different molar masses of the fluid components. The key idea of the proof is the use of a new entropy functional and entropy variables, which allows for a proof of positive lower and upper bounds of the mass densities without the use of a maximum principle.

  12. The production spectrum of a relativistic Maxwell-Boltzmann gas

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.

    1984-01-01

    A formula is derived for use in the calculation of the spectrum of particles or photons produced through particle collisions in a Maxwell-Boltzmann gas. The result is valid for all temperatures and for the general case when the gas contains different mass particles. It is written in terms of a double integral over the cross section differential in the energy of the produced particles (or photons) in the center-of-momentum system of two colliding particles. Analytic expressions for the reaction rate and luminosity are also derived and reproduce the findings of previous work. Application to the problem of the annihilation spectrum from a relativistic Maxwell-Boltzmann electron-positron gas is made. Agreement is found between the present work and previous numerical and analytical studies.

  13. Computational modeling of femtosecond optical solitons from Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Taflove, Allen; Joseph, Rose M.; Hagness, Susan C.

    1992-01-01

    An algorithm is developed that permits the direct time integration of full-vector nonlinear Maxwell's equations. This capability permits the modeling of both linear and nonlinear instantaneous and dispersive effects in the electric polarization in material media. The modeling of the optical carrier is retained. The fundamental innovation is to notice that it is possible to treat the linear and nonlinear convolution integrals, which describe the dispersion, as new dependent variables. A coupled system of nonlinear second-order ordinary differential equations can then be derived for the linear and nonlinear convolution integrals, by differentiating them in the time domain. These equations, together with Maxwell's equations, are solved to determine the electromagnetic fields in nonlinear dispersive media. Results are presented of calculations in one dimension of the propagation and collision of femtosecond electromagnetic solitons that retain the optical carrier, taking into account as the Kerr and Raman interactions.

  14. Computational modeling of femtosecond optical solitons from Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Taflove, Allen; Joseph, Rose M.; Hagness, Susan C.

    1992-01-01

    An algorithm is developed that permits the direct time integration of full-vector nonlinear Maxwell's equations. This capability permits the modeling of both linear and nonlinear instantaneous and dispersive effects in the electric polarization in material media. The modeling of the optical carrier is retained. The fundamental innovation is to notice that it is possible to treat the linear and nonlinear convolution integrals, which describe the dispersion, as new dependent variables. A coupled system of nonlinear second-order ordinary differential equations can then be derived for the linear and nonlinear convolution integrals, by differentiating them in the time domain. These equations, together with Maxwell's equations, are solved to determine the electromagnetic fields in nonlinear dispersive media. Results are presented of calculations in one dimension of the propagation and collision of femtosecond electromagnetic solitons that retain the optical carrier, taking into account as the Kerr and Raman interactions.

  15. Perfectly matched layers for Maxwell's equations in second order formulation

    SciTech Connect

    Sjogreen, B; Petersson, A

    2004-07-26

    We consider the two-dimensional Maxwell's equations in domains external to perfectly conducting objects of complex shape. The equations are discretized using a node-centered finite-difference scheme on a Cartesian grid and the boundary condition are discretized to second order accuracy employing an embedded technique which does not suffer from a ''small-cell'' time-step restriction in the explicit time-integration method. The computational domain is truncated by a perfectly matched layer (PML). We derive estimates for both the error due to reflections at the outer boundary of the PML, and due to discretizing the continuous PML equations. Using these estimates, we show how the parameters of the PML can be chosen to make the discrete solution of the PML equations converge to the solution of Maxwell's equations on the unbounded domain, as the grid size goes to zero. Several numerical examples are given.

  16. Algorithm development for Maxwell's equations for computational electromagnetism

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.

    1990-01-01

    A new algorithm has been developed for solving Maxwell's equations for the electromagnetic field. It solves the equations in the time domain with central, finite differences. The time advancement is performed implicitly, using an alternating direction implicit procedure. The space discretization is performed with finite volumes, using curvilinear coordinates with electromagnetic components along those directions. Sample calculations are presented of scattering from a metal pin, a square and a circle to demonstrate the capabilities of the new algorithm.

  17. Maxwell's Demon Assisted Thermodynamic Cycle in Superconducting Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Quan, H. T.; Wang, Y. D.; Liu, Yu-Xi; Sun, C. P.; Nori, Franco

    2006-11-01

    We study a new quantum heat engine (QHE), which is assisted by a Maxwell’s demon. The QHE requires three steps: thermalization, quantum measurement, and quantum feedback controlled by the Maxwell demon. We derive the positive-work condition and operation efficiency of this composite QHE. Using controllable superconducting quantum circuits as an example, we show how to construct our QHE. The essential role of the demon is explicitly demonstrated in this macroscopic QHE.

  18. Derivation of special relativity from Maxwell and Newton.

    PubMed

    Dunstan, D J

    2008-05-28

    Special relativity derives directly from the principle of relativity and from Newton's laws of motion with a single undetermined parameter, which is found from Faraday's and Ampère's experimental work and from Maxwell's own introduction of the displacement current to be the -c(-2) term in the Lorentz transformations. The axiom of the constancy of the speed of light is quite unnecessary. The behaviour and the mechanism of the propagation of light are not at the foundations of special relativity.

  19. A Modified Szilard's Engine: Measurement, Information, and Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Devereux, Michael

    2004-03-01

    Using an isolated measurement process, I've calculated the effect measurement has on entropy for the multi-cylinder Szilard engine. This calculation shows that the system of cylinders possesses an entropy associated with cylinder total energy states, and that it records information transferred at measurement. Contrary to other's results, I've found that the apparatus loses entropy due to measurement. The Second Law of Thermodynamics may be preserved if Maxwell's demon gains entropy moving the engine partition.

  20. Maxwell iteration for the lattice Boltzmann method with diffusive scaling

    NASA Astrophysics Data System (ADS)

    Zhao, Weifeng; Yong, Wen-An

    2017-03-01

    In this work, we present an alternative derivation of the Navier-Stokes equations from Bhatnagar-Gross-Krook models of the lattice Boltzmann method with diffusive scaling. This derivation is based on the Maxwell iteration and can expose certain important features of the lattice Boltzmann solutions. Moreover, it will be seen to be much more straightforward and logically clearer than the existing approaches including the Chapman-Enskog expansion.

  1. Transient growth in stable linearized Vlasov-Maxwell plasmas

    SciTech Connect

    Podesta, J. J.

    2010-12-15

    Large amplitude transient growth of kinetic scale perturbations in stable collisionless magnetized plasmas has recently been demonstrated using a linearized Landau fluid model. Initial perturbations with lengthscales of the order of the ion gyroradius were shown to have transient timescales that in some cases were long compared to the ion gyroperiod, {Omega}{sub i}t>>1. Moreover, it was suggested that such perturbations are not rare but instead form a large class within the set of all possible initial conditions. For collisionless plasmas, the Vlasov-Maxwell equations provide a more complete description of kinetic physics and the existence of transient growth of solutions for the linearized Vlasov-Maxwell system is an interesting question. The existence of transient growth of solutions is demonstrated here for a special case of the Vlasov-Maxwell equations, namely, the one dimensional Vlasov-Poisson system. The analysis is different from the standard approach of nonmodal analysis since the initial value problem is described by a Volterra integral equation of the second kind, reflecting the fact that the time evolution of the system depends on the memory of the state from time zero through time t. For the case of a thermal equilibrium plasma, it is shown how initial conditions may be constructed to obtain solutions that grow linearly in time; the duration of this growth is the time required for a thermal electron to traverse the wavelength of the initial perturbation, a timescale that can last for many plasma periods 2{pi}/{omega}{sub pe}, thus demonstrating the existence of transient growth of solutions for the linearized Vlasov-Poisson system. The results suggest that the phenomenon of transient growth may be a common feature of the linearized Vlasov-Maxwell system as well as for Landau fluid models.

  2. Maxwell iteration for the lattice Boltzmann method with diffusive scaling.

    PubMed

    Zhao, Weifeng; Yong, Wen-An

    2017-03-01

    In this work, we present an alternative derivation of the Navier-Stokes equations from Bhatnagar-Gross-Krook models of the lattice Boltzmann method with diffusive scaling. This derivation is based on the Maxwell iteration and can expose certain important features of the lattice Boltzmann solutions. Moreover, it will be seen to be much more straightforward and logically clearer than the existing approaches including the Chapman-Enskog expansion.

  3. Symplectic discretization for spectral element solution of Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Zhao, Yanmin; Dai, Guidong; Tang, Yifa; Liu, Qinghuo

    2009-08-01

    Applying the spectral element method (SEM) based on the Gauss-Lobatto-Legendre (GLL) polynomial to discretize Maxwell's equations, we obtain a Poisson system or a Poisson system with at most a perturbation. For the system, we prove that any symplectic partitioned Runge-Kutta (PRK) method preserves the Poisson structure and its implied symplectic structure. Numerical examples show the high accuracy of SEM and the benefit of conserving energy due to the use of symplectic methods.

  4. Class of Einstein-Maxwell-dilaton-axion space-times

    SciTech Connect

    Matos, Tonatiuh; Miranda, Galaxia; Sanchez-Sanchez, Ruben; Wiederhold, Petra

    2009-06-15

    We use the harmonic maps ansatz to find exact solutions of the Einstein-Maxwell-dilaton-axion (EMDA) equations. The solutions are harmonic maps invariant to the symplectic real group in four dimensions Sp(4,R){approx}O(5). We find solutions of the EMDA field equations for the one- and two-dimensional subspaces of the symplectic group. Specially, for illustration of the method, we find space-times that generalize the Schwarzschild solution with dilaton, axion, and electromagnetic fields.

  5. The Inverse Source Problem for Maxwell’s Equations

    DTIC Science & Technology

    2006-10-01

    if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT...currents from surface electroencephalographic measurements. The application is to prosthesis control . 15. SUBJECT TERMS INVERSE, MAXWELL...measurements could be used to diagnose abnormalities in the brain and also to allow the control of prosthetic limbs. From the point of view of mathematical

  6. Reanalyzing the Ampère-Maxwell Law

    NASA Astrophysics Data System (ADS)

    Hill, S. Eric

    2011-09-01

    In a recent TPT article, I addressed a common miscommunication about Faraday's law, namely, that introductory texts often say the law expresses a causal relationship between the magnetic fields time variation and the electric fields circulation. In that article, I demonstrated that these field behaviors share a common cause in a time-varying current density. From that, many readers may have rightly guessed at a symmetric conclusion: while the Ampère-Maxwell law is commonly said to express a causal relation between the electric fields time variation and the magnetic fields circulation, these field behaviors share a distinct, common cause. Together, Faraday's law and the Ampère-Maxwell law constitute half of Maxwell's laws that form a foundation for almost all of electricity and magnetism. By misrepresenting these two laws, introductory texts not only present students with unnecessary conceptual hurdles early in their physics educations but also leave them with enduring misunderstandings about the very foundation of electricity and magnetism. Fortunately, compared to what is commonly taught, the actual cause of these field variations is conceptually simpler and more consistent with what the students will have already learned in the introductory texts' own earlier chapters.

  7. Maxwell-type behaviour from a geometrical structure

    NASA Astrophysics Data System (ADS)

    Itin, Yakov

    2006-05-01

    We study which geometric structure can be constructed from the vierbein (frame/coframe) variables and which field models can be related to this geometry. The coframe field models, alternative to GR, are known as viable models for gravity, since they have the Schwarzschild solution. Since the local Lorentz invariance is violated, a physical interpretation of additional six degrees of freedom is required. The geometry of such models is usually given by two different connections—the Levi-Civita symmetric and metric-compatible connection and the Weitzenböck flat connection. We construct a general family of linear connections of the same type, which includes two connections above as special limiting cases. We show that for dynamical propagation of six additional degrees of freedom it is necessary for the gauge field of infinitesimal transformations (antisymmetric tensor) to satisfy the system of two first-order differential equations. This system is similar to the vacuum Maxwell system and even coincides with it on a flat manifold. The corresponding 'Maxwell-compatible connections' are derived. Alternatively, we derive the same Maxwell-type system as a symmetry condition of the viable model Lagrangian. Consequently, we derive a nontrivial decomposition of the coframe field to the pure metric field plus a dynamical field of infinitesimal Lorentz rotations. An exact spherical-symmetric solution for our dynamical field is derived. It is bounded near the Schwarzschild radius. Further off, the solution is close to the Coulomb field.

  8. Explicit and implicit ode solvers using Krylov subspace optimization: Application to the diffusion equation and parabolic Maxwell`s system

    SciTech Connect

    Druskin, V.; Knizhnerman, L.

    1994-12-31

    The authors solve the Cauchy problem for an ODE system Au + {partial_derivative}u/{partial_derivative}t = 0, u{vert_bar}{sub t=0} = {var_phi}, where A is a square real nonnegative definite symmetric matrix of the order N, {var_phi} is a vector from R{sup N}. The stiffness matrix A is obtained due to semi-discretization of a parabolic equation or system with time-independent coefficients. The authors are particularly interested in large stiff 3-D problems for the scalar diffusion and vectorial Maxwell`s equations. First they consider an explicit method in which the solution on a whole time interval is projected on a Krylov subspace originated by A. Then they suggest another Krylov subspace with better approximating properties using powers of an implicit transition operator. These Krylov subspace methods generate optimal in a spectral sense polynomial approximations for the solution of the ODE, similar to CG for SLE.

  9. Vortex dynamics in self-dual Maxwell-Higgs systems with a uniform background electric charge density

    SciTech Connect

    Lee, K. Institute for Advanced Studies, Olden Lane, Princeton, New Jersey 08540 Institute for Theoretical Physics, University of California at Santa Barbara, Santa Barbara, California 93106 )

    1994-04-15

    We introduce self-dual Maxwell-Higgs systems with a uniform background electric charge density and show that the self-dual equations satisfied by topological vortices can be reduced to the original Bogomol'nyi equations without any background. These vortices are shown to carry no spin but to feel the Magnus force due to the shielding charge carried by the Higgs field. We also study the dynamics of slowly moving vortices and show that the spin-statistics theorem holds to our vortices.

  10. Geometrization of Maxwell's equations in the construction of optical devices

    NASA Astrophysics Data System (ADS)

    Kulyabov, D. S.; Korolkova, A. V.; Sevastianov, L. A.; Gevorkyan, M. N.; Demidova, A. V.

    2017-04-01

    The paper considers the technics of construction of optical devices based on the method of geometrization of Maxwell's equations. The method is based on representation of material equations in the form of an effective space-time geometry. Thus we get a problem similar to that of some bimetric theory of gravity. That allows to use a well-developed apparatus of differential geometry. On this basis, we can examine the propagation of the electromagnetic field on the given parameters of the medium. It is also possible to find the parameters of the medium by a given law of propagation of electromagnetic fields.

  11. Light wave propagation through a dilaton-Maxwell domain wall

    NASA Astrophysics Data System (ADS)

    Morris, J. R.; Schulze-Halberg, A.

    2015-10-01

    We consider the propagation of electromagnetic waves through a dilaton-Maxwell domain wall of the type introduced by Gibbons and Wells [G. W. Gibbons and C. G. Wells, Classical and Quantum Gravity 11, 2499 (1994)]. It is found that if such a wall exists within our observable Universe, it would be absurdly thick, or else have a magnetic field in its core which is much stronger than observed intergalactic fields. We conclude that it is highly improbable that any such wall is physically realized.

  12. On the physical meaning of the Robinson Trautman Maxwell fields

    NASA Astrophysics Data System (ADS)

    Kozameh, Carlos; Newman, E. T.; Silva-Ortigoza, Gilberto

    2006-12-01

    We study the Robinson Trautman Maxwell fields in two closely related coordinate systems, the original Robinson Trautman (RT) coordinates (in a more general context, often referred to as NU coordinates) and Bondi coordinates. In particular, we identify one of the RT variables as a velocity and then from the Bondi energy momentum 4-vector, we find kinematic expressions for the mass and momentum in terms of this velocity. From these kinematic expressions and the energy momentum loss equation we obtain surprising equations of motion for 'the centre of mass' of the source where the motion takes place in the four-dimensional Poincare translation sub-group of the BMS group.

  13. The MAFIA approach to solving Maxwell's equations in three dimensions

    SciTech Connect

    Cooper, R.K.; Browman, M.J.; Weiland, T.

    1988-01-01

    The acronym MAFIA stands for the solution of Maxwell's equations by the Finite Integration Algorithm and is the name give to a set of codes intended for use in the computer-aided design of three-dimensional magnets, rf structures, and structures in which wake-field effects are important. This paper gives a brief description of the algorithms employed in both the time- and the frequency- domain solvers of the MAFIA collection of codes. Examples of typical accelerator calculations will be presented. 9 refs., 6 figs.

  14. Three-dimensional asymptotically flat Einstein-Maxwell theory

    NASA Astrophysics Data System (ADS)

    Barnich, Glenn; Lambert, Pierre-Henry; Mao, Pujian

    2015-12-01

    Three-dimensional Einstein-Maxwell theory with non-trivial asymptotics at null infinity is solved. The symmetry algebra is a Virasoro-Kac-Moody type algebra that extends the bms3 algebra of the purely gravitational case. Solution space involves logarithms and provides a tractable example of a polyhomogeneous solution space. The associated surface charges are non-integrable and non-conserved due to the presence of electromagnetic news. As in the four-dimensional purely gravitational case, their algebra involves a field-dependent central charge.

  15. Maxwell Equation for the Coupled Spin-Charge Wave Propagation

    SciTech Connect

    Bernevig, B.Andrei; Yu, Xiaowei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    We show that the dissipationless spin current in the ground state of the Rashba model gives rise to a reactive coupling between the spin and charge propagation, which is formally identical to the coupling between the electric and the magnetic fields in the 2 + 1 dimensional Maxwell equation. This analogy leads to a remarkable prediction that a density packet can spontaneously split into two counter propagation packets, each carrying the opposite spins. In a certain parameter regime, the coupled spin and charge wave propagates like a transverse 'photon'. We propose both optical and purely electronic experiments to detect this effect.

  16. Jump conditions for Maxwell equations and their consequences

    NASA Astrophysics Data System (ADS)

    Satapathy, Sikhanda; Hsieh, Kuota

    2013-01-01

    We derived the jump conditions for Faraday's induction law at the interface of two contacting bodies in both Eulerian and Lagrangian descriptions. An algorithm to implement the jump conditions in the potential formulation of Maxwell equation is presented. Calculations show that the use of the correct jump conditions leads to good agreement with experimental data, whereas the use of incorrect jump conditions can lead to severe inaccuracies in the computational results. Our derivation resolves the jump condition discrepancy found in the literature and is validated with experimental results.

  17. Maxwell-Bloch approach to excess quantum noise

    NASA Astrophysics Data System (ADS)

    Dutra, S. M.; Joosten, K.; Nienhuis, G.; van Druten, N. J.; van der Lee, A. M.; van Exter, M. P.; Woerdman, J. P.

    1999-06-01

    To meet recent experimental advances, we generalize the intuitively appealing nonorthogonal-mode theory of excess quantum noise by introducing a Maxwell-Bloch description of the gain medium. The resulting equations extend the nonorthogonal-mode approach beyond the class A linear-gain regime providing a general starting point for theoretical descriptions of excess quantum noise. As an illustration of our theory, we derive rate equations describing excess quantum noise in class B lasers and obtain the non-Lorentzian spectrum due to the coloring of excess noise in class A lasers accounting for gain saturation.

  18. SIM(1)-VSR Maxwell-Chern-Simons electrodynamics

    NASA Astrophysics Data System (ADS)

    Bufalo, R.

    2016-06-01

    In this paper we propose a very special relativity (VSR)-inspired generalization of the Maxwell-Chern-Simons (MCS) electrodynamics. This proposal is based upon the construction of a proper study of the SIM (1)-VSR gauge-symmetry. It is shown that the VSR nonlocal effects present a significant and healthy departure from the usual MCS theory. The classical dynamics is analysed in full detail, by studying the solution for the electric field and static energy for this configuration. Afterwards, the interaction energy between opposite charges is derived and we show that the VSR effects play an important part in obtaining a (novel) finite expression for the static potential.

  19. Climate Controlled Sedimentation in Maxwell Bay, King George Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Hass, H.; Kuhn, G.; Wittenberg, N.; Woelfl, A.; Betzler, C.

    2012-12-01

    Climatic change in Antarctica is strongest over the Antarctic Peninsula where in places the annual mean temperatures increased by 0.5 K per decade through the past 60 years. The impact of this warming trend is clearly visible in the form of retreating glaciers and melting ice sheets, loss of sea ice and strong meltwater discharge into the coastal zone. While it is generally accepted that the rapidity of the present climate change bears a significant anthropogenic aspect, it is not clear whether the effects caused by the warming trend are exceptional and unprecedented or whether the reaction of the environment is similar to that of earlier climate phases such as the Medieval Warm Period (MWP) about 1,000 years ago. One of the major goals of the joint international research project IMCOAST is to investigate the strength of the recent warming trend and its impact on the marine environment of the West Antarctic Peninsula (WAP). The study we present here reveals the Upper Holocene climatic history based on high-resolution sediment cores from Maxwell Bay (King George Island, WAP) and information on the actual processes triggered or altered by the recent warming trend based on sedimentologic and hydroacoustic investigations in Potter Cove, a tributary fjord to Maxwell Bay. Long sediment cores from Maxwell Bay reveal grain-size changes that can be linked to cold and warm phases such as the Little Ice Age (LIA) and the MWP. Generally, warm phases are finer grained than cold phases as a result of longer and stronger melting processes during the warm phases. It is suggested that meltwater plumes carry fine-grained sediment out of the surrounding fjords into Maxwell Bay where it settles in suitable areas to produce sediments that have a modal value around 16 μm. This mode is largely absent in sediments deposited during e.g. the LIA. However, post LIA sediments are depleted in the 16 μm-mode sediment suggesting slightly different conditions during the last century. One reason

  20. Lie-Poisson bifurcations for the Maxwell-Bloch equations

    SciTech Connect

    David, D.

    1990-01-01

    We present a study of the set of Maxwell-Bloch equations on R{sup 3} from the point of view of Hamiltonian dynamics. These equations are shown to be bi-Hamiltonian, on the one hand, and to possess several inequivalent Lie-Poisson structures, on the other hand, parametrized by the group SL(2,R). Each structure is characterized by a particular distinguished function. The level sets of this function provide two-dimensional surfaces onto which the motion takes various symplectic forms. 4 refs.

  1. The Remote Maxwell Demon as Energy Down-Converter

    NASA Astrophysics Data System (ADS)

    Hossenfelder, S.

    2016-04-01

    It is demonstrated that Maxwell's demon can be used to allow a machine to extract energy from a heat bath by use of information that is processed by the demon at a remote location. The model proposed here effectively replaces transmission of energy by transmission of information. For that we use a feedback protocol that enables a net gain by stimulating emission in selected fluctuations around thermal equilibrium. We estimate the down conversion rate and the efficiency of energy extraction from the heat bath.

  2. How an autonomous quantum Maxwell demon can harness correlated information

    NASA Astrophysics Data System (ADS)

    Chapman, Adrian; Miyake, Akimasa

    2015-12-01

    We study an autonomous quantum system which exhibits refrigeration under an information-work trade-off like a Maxwell demon. The system becomes correlated as a single "demon" qubit interacts sequentially with memory qubits while in contact with two heat reservoirs of different temperatures. Using strong subadditivity of the von Neumann entropy, we derive a global Clausius inequality to show thermodynamic advantages from access to correlated information. It is demonstrated, in a matrix product density operator formalism, that our demon can simultaneously realize refrigeration against a thermal gradient and erasure of information from its memory, which is impossible without correlations. The phenomenon can be even enhanced by the presence of quantum coherence.

  3. A Maxwell Demon Model Connecting Information and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Peng, Pei-Yan; Duan, Chang-Kui

    2016-08-01

    In the past decade several theoretical Maxwell's demon models have been proposed exhibiting effects such as refrigerating, doing work at the cost of information, and some experiments have been done to realise these effects. Here we propose a model with a two level demon, information represented by a sequence of bits, and two heat reservoirs. Which reservoir the demon interact with depends on the bit. If information is pure, one reservoir will be refrigerated, on the other hand, information can be erased if temperature difference is large. Genuine examples of such a system are discussed.

  4. By design: James Clerk Maxwell and the evangelical unification of science.

    PubMed

    Stanley, Matthew

    2012-03-01

    James Clerk Maxwell's electromagnetic theory famously unified many of the Victorian laws of physics. This essay argues that Maxwell saw a deep theological significance in the unification of physical laws. He postulated a variation on the design argument that focused on the unity of phenomena rather than Paley's emphasis on complexity. This argument of Maxwell's is shown to be connected to his particular evangelical religious views. His evangelical perspective provided encouragement for him to pursue a unified physics that supplemented his other philosophical, technical and social influences. Maxwell's version of the argument from design is also contrasted with modern 'intelligent-design' theory.

  5. Algorithmic information content, Church-Turing thesis, physical entropy, and Maxwell's demon

    SciTech Connect

    Zurek, W.H.

    1990-01-01

    Measurements convert alternative possibilities of its potential outcomes into the definiteness of the record'' -- data describing the actual outcome. The resulting decrease of statistical entropy has been, since the inception of the Maxwell's demon, regarded as a threat to the second law of thermodynamics. For, when the statistical entropy is employed as the measure of the useful work which can be extracted from the system, its decrease by the information gathering actions of the observer would lead one to believe that, at least from the observer's viewpoint, the second law can be violated. I show that the decrease of ignorance does not necessarily lead to the lowering of disorder of the measured physical system. Measurements can only convert uncertainty (quantified by the statistical entropy) into randomness of the outcome (given by the algorithmic information content of the data). The ability to extract useful work is measured by physical entropy, which is equal to the sum of these two measures of disorder. So defined physical entropy is, on the average, constant in course of the measurements carried out by the observer on an equilibrium system. 27 refs., 6 figs.

  6. A multigrid method for variable coefficient Maxwell's equations

    SciTech Connect

    Jones, J E; Lee, B

    2004-05-13

    This paper presents a multigrid method for solving variable coefficient Maxwell's equations. The novelty in this method is the use of interpolation operators that do not produce multilevel commutativity complexes that lead to multilevel exactness. Rather, the effects of multilevel exactness are built into the level equations themselves--on the finest level using a discrete T-V formulation, and on the coarser grids through the Galerkin coarsening procedure of a T-V formulation. These built-in structures permit the levelwise use of an effective hybrid smoother on the curl-free near-nullspace components, and these structures permit the development of interpolation operators for handling the curl-free and divergence-free error components separately, with the resulting block diagonal interpolation operator not satisfying multilevel commutativity but having good approximation properties for both of these error components. Applying operator-dependent interpolation for each of these error components leads to an effective multigrid scheme for variable coefficient Maxwell's equations, where multilevel commutativity-based methods can degrade. Numerical results are presented to verify the effectiveness of this new scheme.

  7. Fundamental Physical Basis for Maxwell-Heaviside Gravitomagnetism

    NASA Astrophysics Data System (ADS)

    Nyambuya, Golden Gadzirayi

    2015-08-01

    Gravitomagnetism is universally and formally recognised in contemporary physics as being the linear first-order approximation of Einstein's field equations emerging from the General Theory of Relativity (GTR). Herein, we argue that, as has been done by others in the past, gravitomagnetism can be viewed as a fully-fledged independent theory of gravitomagnetism that can be divorced from Professor Einstein's GTR. The gravitomagnetic theory whose exposition we give herein is exactly envisioned by Professor Maxwell and Dr. Heaviside. The once speculative Maxwell-Heaviside Gravitomagnetic theory now finds full justification as a fully fledged theory from Professor José Hera's Existence Theorem which states that all that is needed for there to exist the four Max-well-type field equations is that a mass-current conservation law be obeyed. Our contribution in the present work, if any, is that we demonstrate conclusively that like electromagnetism, the gravitomagnetic phenomenon leads to the prediction of gravitomagnetic waves that travel at the speed of light. Further, we argue that for the gravitational phenomenon, apart from the Newtonian gravitational potential, there are four more potentials and these operate concurrently with the Newtonian potential. At the end of it, it is seen that the present work sets the stage for a very interesting investigation of several gravitational anomalies such as the ponderous Pioneer Anomaly, the vexing Flyby Anomalies, the mysterious Anomalous Rotation Curves of Spiral Galaxies and as well, the possibility of the generation of stellar magnetic fields by rotating gravitational masses.

  8. Einstein-Maxwell-Anti-de-Sitter spinning solitons

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos; Radu, Eugen

    2016-06-01

    Electrostatics on global Anti-de-Sitter (AdS) spacetime is sharply different from that on global Minkowski spacetime. It admits a multipolar expansion with everywhere regular, finite energy solutions, for every multipole moment except the monopole [1]. A similar statement holds for global AdS magnetostatics. We show that everywhere regular, finite energy, electric plus magnetic fields exist on AdS in three distinct classes: (I) with non-vanishing total angular momentum J; (II) with vanishing J but non-zero angular momentum density, Tφt; (III) with vanishing J and Tφt . Considering backreaction, these configurations remain everywhere smooth and finite energy, and we find, for example, Einstein-Maxwell-AdS solitons that are globally - Type I - or locally (but not globally) - Type II - spinning. This backreaction is considered first perturbatively, using analytical methods and then non-perturbatively, by constructing numerical solutions of the fully non-linear Einstein-Maxwell-AdS system. The variation of the energy and total angular momentum with the boundary data is explicitly exhibited for one example of a spinning soliton.

  9. All extremal instantons in Einstein-Maxwell-dilaton-axion theory

    NASA Astrophysics Data System (ADS)

    Azreg-Aïnou, Mustapha; Clément, Gérard; Gal'Tsov, Dmitri V.

    2011-11-01

    We construct explicitly all extremal instanton solutions to N=4, D=4 supergravity truncated to one vector field (Einstein-Maxwell-dilaton-axion theory). These correspond to null geodesics of the target space of the sigma-model G/H=Sp(4,R)/GL(2,R) obtained by compactification of four-dimensional Euclidean Einstein-Maxwell-dilaton-axion on a circle. They satisfy a no-force condition in terms of the asymptotic charges and part of them (corresponding to nilpotent orbits of the Sp(4,R) U-duality) are presumably supersymmetric. The space of finite action solutions is found to be unexpectedly large and includes, besides the Euclidean versions of known Lorentzian solutions, a number of new asymptotically locally flat instantons endowed with electric, magnetic, dilaton and axion charges. We also describe new classes of charged asymptotically locally Euclidean instantons as well as some exceptional solutions. Our classification scheme is based on the algebraic classification of matrix generators according to their rank, according to the nature of the charge vectors, and according to the number of independent harmonic functions with unequal charges. Besides the nilpotent orbits of G, we find solutions which satisfy the asymptotic no-force condition, but are not supersymmetric. The renormalized on-shell action for instantons is calculated using the method of matched background subtraction.

  10. Application of Block Krylov Subspace Spectral Methods to Maxwell's Equations

    NASA Astrophysics Data System (ADS)

    Lambers, James V.

    2009-10-01

    Ever since its introduction by Kane Yee over forty years ago, the finite-difference time-domain (FDTD) method has been a widely-used technique for solving the time-dependent Maxwell's equations. This paper presents an alternative approach to these equations in the case of spatially-varying electric permittivity and/or magnetic permeability, based on Krylov subspace spectral (KSS) methods. These methods have previously been applied to the variable-coefficient heat equation and wave equation, and have demonstrated high-order accuracy, as well as stability characteristic of implicit time-stepping schemes, even though KSS methods are explicit. KSS methods for scalar equations compute each Fourier coefficient of the solution using techniques developed by Gene Golub and Gérard Meurant for approximating elements of functions of matrices by Gaussian quadrature in the spectral, rather than physical, domain. We show how they can be generalized to coupled systems of equations, such as Maxwell's equations, by choosing appropriate basis functions that, while induced by this coupling, still allow efficient and robust computation of the Fourier coefficients of each spatial component of the electric and magnetic fields. We also discuss the implementation of appropriate boundary conditions for simulation on infinite computational domains, and how discontinuous coefficients can be handled.

  11. On the entropy variations and the Maxwell relations

    NASA Astrophysics Data System (ADS)

    Zadehgol, Abed; Ashrafizaadeh, Mahmud

    In the present work, it is shown that the Maxwell relations can effectively be used to partially verify the thermodynamic consistency of the entropic lattice kinetic models. As an example, we consider the Constant Speed Kinetic Model (CSKM) which has recently been introduced in [J. Comp. Phys. 274, 803 (2014); Phys Rev. E 91, 063311 (2015)] and show that, for the quasi-equilibrium flows and at low Mach numbers, the entropy variations are proportional to the pressure variations. The entropy variations of the CSKM are logarithmic (given by the Burg entropy) while the pressure variations obey a nonlogarithmic equation of state. The proportionality of these variations, which is in accordance with the Maxwell relations, can be used to partially verify the thermodynamic consistency of the model. A similar treatment of the previously introduced entropic lattice kinetic models (e.g. of the conventional ELBM of [I. V. Karlin, A. Ferrante and H. C. Öttinger, Europhys. Lett. 47, 182 (1999)]), can provide a new ground for comparing the thermodynamic consistency of the existing entropic lattice kinetic models with each other.

  12. A Test of Maxwell's Z Model Using Inverse Modeling

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, T.

    2003-01-01

    In modeling impact craters a small region of energy and momentum deposition, commonly called a "point source", is often assumed. This assumption implies that an impact is the same as an explosion at some depth below the surface. Maxwell's Z Model, an empirical point-source model derived from explosion cratering, has previously been compared with numerical impact craters with vertical incidence angles, leading to two main inferences. First, the flowfield center of the Z Model must be placed below the target surface in order to replicate numerical impact craters. Second, for vertical impacts, the flow-field center cannot be stationary if the value of Z is held constant; rather, the flow-field center migrates downward as the crater grows. The work presented here evaluates the utility of the Z Model for reproducing both vertical and oblique experimental impact data obtained at the NASA Ames Vertical Gun Range (AVGR). Specifically, ejection angle data obtained through Three-Dimensional Particle Image Velocimetry (3D PIV) are used to constrain the parameters of Maxwell's Z Model, including the value of Z and the depth and position of the flow-field center via inverse modeling.

  13. Application of Block Krylov Subspace Spectral Methods to Maxwell's Equations

    SciTech Connect

    Lambers, James V.

    2009-10-08

    Ever since its introduction by Kane Yee over forty years ago, the finite-difference time-domain (FDTD) method has been a widely-used technique for solving the time-dependent Maxwell's equations. This paper presents an alternative approach to these equations in the case of spatially-varying electric permittivity and/or magnetic permeability, based on Krylov subspace spectral (KSS) methods. These methods have previously been applied to the variable-coefficient heat equation and wave equation, and have demonstrated high-order accuracy, as well as stability characteristic of implicit time-stepping schemes, even though KSS methods are explicit. KSS methods for scalar equations compute each Fourier coefficient of the solution using techniques developed by Gene Golub and Gerard Meurant for approximating elements of functions of matrices by Gaussian quadrature in the spectral, rather than physical, domain. We show how they can be generalized to coupled systems of equations, such as Maxwell's equations, by choosing appropriate basis functions that, while induced by this coupling, still allow efficient and robust computation of the Fourier coefficients of each spatial component of the electric and magnetic fields. We also discuss the implementation of appropriate boundary conditions for simulation on infinite computational domains, and how discontinuous coefficients can be handled.

  14. A Test of Maxwell's Z Model Using Inverse Modeling

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, T.

    2003-01-01

    In modeling impact craters a small region of energy and momentum deposition, commonly called a "point source", is often assumed. This assumption implies that an impact is the same as an explosion at some depth below the surface. Maxwell's Z Model, an empirical point-source model derived from explosion cratering, has previously been compared with numerical impact craters with vertical incidence angles, leading to two main inferences. First, the flowfield center of the Z Model must be placed below the target surface in order to replicate numerical impact craters. Second, for vertical impacts, the flow-field center cannot be stationary if the value of Z is held constant; rather, the flow-field center migrates downward as the crater grows. The work presented here evaluates the utility of the Z Model for reproducing both vertical and oblique experimental impact data obtained at the NASA Ames Vertical Gun Range (AVGR). Specifically, ejection angle data obtained through Three-Dimensional Particle Image Velocimetry (3D PIV) are used to constrain the parameters of Maxwell's Z Model, including the value of Z and the depth and position of the flow-field center via inverse modeling.

  15. Einstein-aether theory with a Maxwell field: General formalism

    SciTech Connect

    Balakin, Alexander B.; Lemos, José P.S.

    2014-11-15

    We extend the Einstein-aether theory to include the Maxwell field in a nontrivial manner by taking into account its interaction with the time-like unit vector field characterizing the aether. We also include a generic matter term. We present a model with a Lagrangian that includes cross-terms linear and quadratic in the Maxwell tensor, linear and quadratic in the covariant derivative of the aether velocity four-vector, linear in its second covariant derivative and in the Riemann tensor. We decompose these terms with respect to the irreducible parts of the covariant derivative of the aether velocity, namely, the acceleration four-vector, the shear and vorticity tensors, and the expansion scalar. Furthermore, we discuss the influence of an aether non-uniform motion on the polarization and magnetization of the matter in such an aether environment, as well as on its dielectric and magnetic properties. The total self-consistent system of equations for the electromagnetic and the gravitational fields, and the dynamic equations for the unit vector aether field are obtained. Possible applications of this system are discussed. Based on the principles of effective field theories, we display in an appendix all the terms up to fourth order in derivative operators that can be considered in a Lagrangian that includes the metric, the electromagnetic and the aether fields.

  16. A Maxwell elasto-brittle rheology for sea ice modelling

    NASA Astrophysics Data System (ADS)

    Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe

    2016-07-01

    A new rheological model is developed that builds on an elasto-brittle (EB) framework used for sea ice and rock mechanics, with the intent of representing both the small elastic deformations associated with fracturing processes and the larger deformations occurring along the faults/leads once the material is highly damaged and fragmented. A viscous-like relaxation term is added to the linear-elastic constitutive law together with an effective viscosity that evolves according to the local level of damage of the material, like its elastic modulus. The coupling between the level of damage and both mechanical parameters is such that within an undamaged ice cover the viscosity is infinitely large and deformations are strictly elastic, while along highly damaged zones the elastic modulus vanishes and most of the stress is dissipated through permanent deformations. A healing mechanism is also introduced, counterbalancing the effects of damaging over large timescales. In this new model, named Maxwell-EB after the Maxwell rheology, the irreversible and reversible deformations are solved for simultaneously; hence drift velocities are defined naturally. First idealized simulations without advection show that the model reproduces the main characteristics of sea ice mechanics and deformation: strain localization, anisotropy, intermittency and associated scaling laws.

  17. Maxwell's demon and the management of ignorance in stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Ford, Ian J.

    2016-07-01

    It is nearly 150 years since Maxwell challenged the validity of the second law of thermodynamics by imagining a tiny creature who could sort the molecules of a gas in such a way that would decrease entropy without exerting any work. The demon has been discussed largely using thought experiments, but it has recently become possible to exert control over nanoscale systems, just as Maxwell imagined, and the status of the second law has become a more practical matter, raising the issue of how measurements manage our ignorance in a way that can be exploited. The framework of stochastic thermodynamics extends macroscopic concepts such as heat, work, entropy and irreversibility to small systems and allows us explore the matter. Some arguments against a successful demon imply a second law that can be suspended indefinitely until we dissipate energy in order to remove the records of his operations. In contrast, under stochastic thermodynamics, the demon fails because on average, more work is performed upfront in making a measurement than can be extracted by exploiting the outcome. This requires us to exclude systems and a demon that evolve under what might be termed self-sorting dynamics, and we reflect on the constraints on control that this implies while still working within a thermodynamic framework.

  18. Statistical mechanics and thermodynamics: A Maxwellian view

    NASA Astrophysics Data System (ADS)

    Myrvold, Wayne C.

    One finds, in Maxwell's writings on thermodynamics and statistical physics, a conception of the nature of these subjects that differs in interesting ways from the way they are usually conceived. In particular, though-in agreement with the currently accepted view-Maxwell maintains that the second law of thermodynamics, as originally conceived, cannot be strictly true, the replacement he proposes is different from the version accepted by most physicists today. The modification of the second law accepted by most physicists is a probabilistic one: although statistical fluctuations will result in occasional spontaneous differences in temperature or pressure, there is no way to predictably and reliably harness these to produce large violations of the original version of the second law. Maxwell advocates a version of the second law that is strictly weaker; the validity of even this probabilistic version is of limited scope, limited to situations in which we are dealing with large numbers of molecules en masse and have no ability to manipulate individual molecules. Connected with this is his conception of the thermodynamic concepts of heat, work, and entropy; on the Maxwellian view, these are concept that must be relativized to the means we have available for gathering information about and manipulating physical systems. The Maxwellian view is one that deserves serious consideration in discussions of the foundation of statistical mechanics. It has relevance for the project of recovering thermodynamics from statistical mechanics because, in such a project, it matters which version of the second law we are trying to recover.

  19. 77 FR 65404 - Notice of Inventory Completion: Maxwell Museum of Anthropology, University of New Mexico...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... National Park Service Notice of Inventory Completion: Maxwell Museum of Anthropology, University of New... Anthropology. Repatriation of the human remains to the Indian tribe stated below may occur if no additional.... ADDRESSES: Dr. Heather Edgar, Maxwell Museum of Anthropology, MSC01 1050, University of New Mexico...

  20. 76 FR 56468 - Notice of Inventory Completion: Maxwell Museum of Anthropology, University of New Mexico...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... National Park Service Notice of Inventory Completion: Maxwell Museum of Anthropology, University of New... Museum of Anthropology, University of New Mexico has completed an inventory of human remains, in... itself to be culturally affiliated with the human remains may contact the Maxwell Museum of Anthropology...

  1. 77 FR 46116 - Notice of Inventory Completion: Maxwell Museum of Anthropology, University of New Mexico...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ...-1100-665] Notice of Inventory Completion: Maxwell Museum of Anthropology, University of New Mexico... Anthropology has completed an inventory of human remains in consultation with the appropriate Indian tribe, and... Museum of Anthropology at the address below by September 4, 2012. ADDRESSES: Heather Edgar, Maxwell...

  2. The Covariant Formulation of Maxwell's Equations Expressed in a Form Independent of Specific Units

    ERIC Educational Resources Information Center

    Heras, Jose A.; Baez, G.

    2009-01-01

    The covariant formulation of Maxwell's equations can be expressed in a form independent of the usual systems of units by introducing the constants alpha, beta and gamma into these equations. Maxwell's equations involving these constants are then specialized to the most commonly used systems of units: Gaussian, SI and Heaviside-Lorentz by giving…

  3. To Flame With a Wild Life: Florida Scott-Maxwell's Experience of Old Age.

    ERIC Educational Resources Information Center

    Berman, Harry J.

    1986-01-01

    Analyzes an intimate journal, Florida Scott-Maxwell's "The Measure of My Days". Scott-Maxwell's journal contains suggestive ideas about the experience of aging among the old-old, about the theoretical issue of late life individuation, and about successful aging. (Author/ABB)

  4. The Covariant Formulation of Maxwell's Equations Expressed in a Form Independent of Specific Units

    ERIC Educational Resources Information Center

    Heras, Jose A.; Baez, G.

    2009-01-01

    The covariant formulation of Maxwell's equations can be expressed in a form independent of the usual systems of units by introducing the constants alpha, beta and gamma into these equations. Maxwell's equations involving these constants are then specialized to the most commonly used systems of units: Gaussian, SI and Heaviside-Lorentz by giving…

  5. General Solutions to Maxwell’s Equations for a Transverse Field.

    DTIC Science & Technology

    1986-05-30

    Maxwell’s equation is a solution to this wave equation, but the converse is not necessarily true. Indeed, by using results from differential geometry...and topology, it is found that smooth, singularity-free transverse solutions to Maxwell’s equation cannot exist if S is a spheroid, a noncircular

  6. Maxwell's contrived analogy: An early version of the methodology of modeling

    NASA Astrophysics Data System (ADS)

    Hon, Giora; Goldstein, Bernard R.

    2012-11-01

    The term "analogy" stands for a variety of methodological practices all related in one way or another to the idea of proportionality. We claim that in his first substantial contribution to electromagnetism James Clerk Maxwell developed a methodology of analogy which was completely new at the time or, to borrow John North's expression, Maxwell's methodology was a "newly contrived analogue". In his initial response to Michael Faraday's experimental researches in electromagnetism, Maxwell did not seek an analogy with some physical system in a domain different from electromagnetism as advocated by William Thomson; rather, he constructed an entirely artificial one to suit his needs. Following North, we claim that the modification which Maxwell introduced to the methodology of analogy has not been properly appreciated. In view of our examination of the evidence, we argue that Maxwell gave a new meaning to analogy; in fact, it comes close to modeling in current usage.

  7. Using Maxwell's Equations in the late 1800s

    NASA Astrophysics Data System (ADS)

    Buchwald, Jed

    2012-02-01

    Between the publication of Maxwell's Treatise on Electricity and Magnetism in 1873 and the early 1900s his field equations were not considered to be fundamental by many Cambridge-trained physicists Instead, they were thought to derive from Hamilton's principle given an appropriate energy expression. Such an expression usually assigned a velocity or a position function to field quantities, though this was not invariably done. Precisely because the Hamiltonian, and not the derivative field equations, was taken to be basic, new effects could be generated by adding terms to the energy expression. This was how the Faraday and Kerr magneto-optic effects were handled. The program however never did generate a method for incorporating dissipative phenomena, as Oliver Heaviside (who disliked the use of Hamilton's principle) demonstrated. The procedure was in the end decisively abandoned when J. G. Leathem, a student of Joseph Larmor a Cambridge, demonstrated that it could not handle a particularly subtle magneto-optic process.

  8. Maxwell's demon in biochemical signal transduction with feedback loop.

    PubMed

    Ito, Sosuke; Sagawa, Takahiro

    2015-06-23

    Signal transduction in living cells is vital to maintain life itself, where information transfer in noisy environment plays a significant role. In a rather different context, the recent intensive research on 'Maxwell's demon'-a feedback controller that utilizes information of individual molecules-have led to a unified theory of information and thermodynamics. Here we combine these two streams of research, and show that the second law of thermodynamics with information reveals the fundamental limit of the robustness of signal transduction against environmental fluctuations. Especially, we find that the degree of robustness is quantitatively characterized by an informational quantity called transfer entropy. Our information-thermodynamic approach is applicable to biological communication inside cells, in which there is no explicit channel coding in contrast to artificial communication. Our result could open up a novel biophysical approach to understand information processing in living systems on the basis of the fundamental information-thermodynamics link.

  9. DAGON: a 3D Maxwell-Bloch code

    NASA Astrophysics Data System (ADS)

    Oliva, Eduardo; Cotelo, Manuel; Escudero, Juan Carlos; González-Fernández, Agustín.; Sanchís, Alberto; Vera, Javier; Vicéns, Sergio; Velarde, Pedro

    2017-05-01

    The amplification of UV radiation and high order harmonics (HOH) in plasmas is a subject of raising interest due to its different potential applications in several fields like environment and security (detection at distance), biology, materials science and industry (3D imaging) and atomic and plasma physics (pump-probe experiments). In order to develop these sources, it is necessary to properly understand the amplification process. Being the plasma an inhomogeneous medium which changes with time, it is desirable to have a full time-dependent 3D description of the interaction of UV and XUV radiation with plasmas. For these reasons, at the Instituto de Fusíon Nuclear we have developed DAGON, a 3D Maxwell-Bloch code capable of studying the full spationtemporal structure of the amplification process abovementioned.

  10. Deciphering the embedded wave in Saturn's Maxwell ringlet

    NASA Astrophysics Data System (ADS)

    French, Richard G.; Nicholson, Philip D.; Hedman, Mathew M.; Hahn, Joseph M.; McGhee-French, Colleen A.; Colwell, Joshua E.; Marouf, Essam A.; Rappaport, Nicole J.

    2016-11-01

    The eccentric Maxwell ringlet in Saturn's C ring is home to a prominent wavelike structure that varies strongly and systematically with true anomaly, as revealed by nearly a decade of high-SNR Cassini occultation observations. Using a simple linear "accordion" model to compensate for the compression and expansion of the ringlet and the wave, we derive a mean optical depth profile for the ringlet and a set of rescaled, background-subtracted radial wave profiles. We use wavelet analysis to identify the wave as a 2-armed trailing spiral, consistent with a density wave driven by an m = 2 outer Lindblad resonance (OLR), with a pattern speed Ωp = 1769.17° d-1 and a corresponding resonance radius ares = 87530.0 km. Estimates of the surface mass density of the Maxwell ringlet range from a mean value of 11g cm-2 derived from the self-gravity model to 5 - 12gcm-2 , as inferred from the wave's phase profile and a theoretical dispersion relation. The corresponding opacity is about 0.12 cm2 g-1, comparable to several plateaus in the outer C ring (Hedman, M.N., Nicholson, P.D. [2014]. Mont. Not. Roy. Astron. Soc. 444, 1369-1388). A linear density wave model using the derived wave phase profile nicely matches the wave's amplitude, wavelength, and phase in most of our observations, confirming the accuracy of the pattern speed and demonstrating the wave's coherence over a period of 8 years. However, the linear model fails to reproduce the narrow, spike-like structures that are prominent in the observed optical depth profiles. Using a symplectic N-body streamline-based dynamical code (Hahn, J.M., Spitale, J.N. [2013]. Astrophys. J. 772, 122), we simulate analogs of the Maxwell ringlet, modeled as an eccentric ringlet with an embedded wave driven by a fictitious satellite with an OLR located within the ring. The simulations reproduce many of the features of the actual observations, including strongly asymmetric peaks and troughs in the inward-propagating density wave. We argue that

  11. Ground state solutions for semilinear time-harmonic Maxwell equations

    NASA Astrophysics Data System (ADS)

    Tang, Xianhua; Qin, Dongdong

    2016-04-01

    This paper is concerned with the time-harmonic semilinear Maxwell equation: ∇ × (∇ × u) + λu = f(x, u) in Ω with the boundary condition ν × u = 0 on ∂Ω, where Ω ⊂ ℝ3 is a simply connected, smooth, bounded domain with connected boundary and ν : ∂Ω → ℝ3 is the exterior normal. Here ∇ × denotes the curl operator in ℝ3 and the boundary condition holds when Ω is surrounded by a perfect conductor. By using the generalized Nehari manifold method due to Szulkin and Weth [Handbook of Nonconvex Analysis and Applications (International Press, Somerville, 2010), pp. 597-632] and some new techniques, existence of ground state solutions for above equation is established under some generic conditions on f.

  12. Exact Vlasov-Maxwell equilibria for asymmetric current sheets

    NASA Astrophysics Data System (ADS)

    Allanson, O.; Wilson, F.; Neukirch, T.; Liu, Y.-H.; Hodgson, J. D. B.

    2017-09-01

    The NASA Magnetospheric Multiscale mission has made in situ diffusion region and kinetic-scale resolution measurements of asymmetric magnetic reconnection for the first time, in the Earth's magnetopause. The principal theoretical tool currently used to model collisionless asymmetric reconnection is particle-in-cell simulations. Many particle-in-cell simulations of asymmetric collisionless reconnection start from an asymmetric Harris-type magnetic field but with distribution functions that are not exact equilibrium solutions of the Vlasov equation. We present new and exact equilibrium solutions of the Vlasov-Maxwell system that are self-consistent with one-dimensional asymmetric current sheets, with an asymmetric Harris-type magnetic field profile, plus a constant nonzero guide field. The distribution functions can be represented as a combination of four shifted Maxwellian distribution functions. This equilibrium describes a magnetic field configuration with more freedom than the previously known exact solution and has different bulk flow properties.

  13. Einstein-Maxwell-dilaton theories with a Liouville potential

    SciTech Connect

    Charmousis, Christos; Gouteraux, Blaise; Soda, Jiro

    2009-07-15

    We find and analyze solutions of Einstein's equations in arbitrary dimensions and in the presence of a scalar field with a Liouville potential coupled to a Maxwell field. We consider spacetimes of cylindrical symmetry or again subspaces of dimension d-2 with constant curvature and analyze in detail the field equations and manifest their symmetries. The field equations of the full system are shown to reduce to a single or couple of ordinary differential equations, which can be used to solve analytically or numerically the theory for the symmetry at hand. Further solutions can also be generated by a solution-generating technique akin to the electromagnetic duality in the absence of a cosmological constant. We then find and analyze explicit solutions including black holes and gravitating solitons for the case of four-dimensional relativity and the higher-dimensional oxidized five-dimensional spacetime. The general solution is obtained for a certain relation between couplings in the case of cylindrical symmetry.

  14. Generalized self-dual Maxwell-Chern-Simons-Higgs model

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Casana, R.; da Hora, E.; Menezes, R.

    2012-06-01

    We present a consistent Bogomol’nyi-Prasad-Sommerfield (BPS) framework for a generalized Maxwell-Chern-Simons-Higgs model. The overall model, including its self-dual potential, depends on three different functions, h(|ϕ|,N), w(|ϕ|), and G(|ϕ|), which are functions of the scalar fields only. The BPS energy is proportional to the magnetic flux when w(|ϕ|) and G(|ϕ|) are related to each other by a differential constraint. We present an explicit nonstandard model and its topologically nontrivial static configurations, which are described by the usual radially symmetric profile. Finally, we note that the nonstandard results behave in a similar way as their standard counterparts, as expected, reinforcing the consistence of the overall construction.

  15. Quantum entanglement of locally excited states in Maxwell theory

    NASA Astrophysics Data System (ADS)

    Nozaki, Masahiro; Watamura, Naoki

    2016-12-01

    In 4 dimensional Maxwell gauge theory, we study the changes of (Rényi) entanglement entropy which are defined by subtracting the entropy for the ground state from the one for the locally excited states, generated by acting with gauge invariant local operators on the state. The changes for the operators which we consider in this paper reflect the electric-magnetic duality. The late-time value of changes can be interpreted in terms of electromagnetic quasi-particles. When the operator constructed of both electric and magnetic fields acts on the ground state, it shows that the operator acts on the late-time structure of quantum entanglement differently from free scalar fields.

  16. Maxwell's demon in biochemical signal transduction with feedback loop

    NASA Astrophysics Data System (ADS)

    Ito, Sosuke; Sagawa, Takahiro

    2015-06-01

    Signal transduction in living cells is vital to maintain life itself, where information transfer in noisy environment plays a significant role. In a rather different context, the recent intensive research on `Maxwell's demon'--a feedback controller that utilizes information of individual molecules--have led to a unified theory of information and thermodynamics. Here we combine these two streams of research, and show that the second law of thermodynamics with information reveals the fundamental limit of the robustness of signal transduction against environmental fluctuations. Especially, we find that the degree of robustness is quantitatively characterized by an informational quantity called transfer entropy. Our information-thermodynamic approach is applicable to biological communication inside cells, in which there is no explicit channel coding in contrast to artificial communication. Our result could open up a novel biophysical approach to understand information processing in living systems on the basis of the fundamental information-thermodynamics link.

  17. Maxwell's Demons Everywhere: Evolving Design as the Arrow of Time

    PubMed Central

    Bejan, Adrian

    2014-01-01

    Science holds that the arrow of time in nature is imprinted on one-way (irreversible) phenomena, and is accounted for by the second law of thermodynamics. Here I show that the arrow of time is painted much more visibly on another self-standing phenomenon: the occurrence and change (evolution in time) of flow organization throughout nature, animate and inanimate. This other time arrow has been present in science but not recognized as such since the birth of thermodynamics. It is Maxwell's demon. Translated in macroscopic terms, this is the physics of the phenomenon of design, which is the universal natural tendency of flow systems to evolve into configurations that provide progressively greater access over time, and is summarized as the constructal law of design and evolution in nature. Knowledge is the ability to effect design changes that facilitate human flows on the landscape. Knowledge too flows. PMID:24510201

  18. Structures of general relativity in dilaton-Maxwell electrodynamics

    NASA Astrophysics Data System (ADS)

    Kechkin, O. V.; Mosharev, P. A.

    2016-08-01

    It is shown that electro (magneto) static sector of Maxwell’s electrodynamics coupled to the dilaton field in a string theory form possesses the symmetry group of the stationary General Relativity in vacuum. Performing the Ernst formalism, we develope a technique for generation of exact solutions in this modified electrodynamics on the base of the normalized Ehlers symmetry transformation. In the electrostatic case, we construct and study a general class of spherically symmetric solutions that describes a pointlike source of the Coulomb type. It is demonstrated that this source is characterized by finite and singularity-free interaction at short distances. Also it is established that the total electrostatic energy of this source is finite and inversely proportional to the dilaton-Maxwell coupling constant.

  19. Implicit a posteriori error estimates for the Maxwell equations

    NASA Astrophysics Data System (ADS)

    Izsak, Ferenc; Harutyunyan, Davit; van der Vegt, Jaap J. W.

    2008-09-01

    An implicit a posteriori error estimation technique is presented and analyzed for the numerical solution of the time-harmonic Maxwell equations using Nedelec edge elements. For this purpose we define a weak formulation for the error on each element and provide an efficient and accurate numerical solution technique to solve the error equations locally. We investigate the well-posedness of the error equations and also consider the related eigenvalue problem for cubic elements. Numerical results for both smooth and non-smooth problems, including a problem with reentrant corners, show that an accurate prediction is obtained for the local error, and in particular the error distribution, which provides essential information to control an adaptation process. The error estimation technique is also compared with existing methods and provides significantly sharper estimates for a number of reported test cases.

  20. Maxwell's demon in biochemical signal transduction with feedback loop

    PubMed Central

    Ito, Sosuke; Sagawa, Takahiro

    2015-01-01

    Signal transduction in living cells is vital to maintain life itself, where information transfer in noisy environment plays a significant role. In a rather different context, the recent intensive research on ‘Maxwell's demon'—a feedback controller that utilizes information of individual molecules—have led to a unified theory of information and thermodynamics. Here we combine these two streams of research, and show that the second law of thermodynamics with information reveals the fundamental limit of the robustness of signal transduction against environmental fluctuations. Especially, we find that the degree of robustness is quantitatively characterized by an informational quantity called transfer entropy. Our information-thermodynamic approach is applicable to biological communication inside cells, in which there is no explicit channel coding in contrast to artificial communication. Our result could open up a novel biophysical approach to understand information processing in living systems on the basis of the fundamental information–thermodynamics link. PMID:26099556

  1. Strain Localization in an Oscillating Maxwell Viscoelastic Cylinder.

    PubMed

    Massouros, Panagiotis G; Bayly, Philip V; Genin, Guy M

    2014-01-15

    The transient rotation responses of simple, axisymmetric, viscoelastic structures are of interest for interpretation of experiments designed to characterize materials and closed structures such as the brain using magnetic resonance techniques. Here, we studied the response of a Maxwell viscoelastic cylinder to small, sinusoidal displacement of its outer boundary. The transient strain field can be calculated in closed form using any of several conventional approaches. The solution is surprising: the strain field develops a singularity that appears when the wavefront leaves the center of the cylinder, and persists as the wavefront reflects to the outer boundary and back to the center of the cylinder. The singularity is alternately annihilated and reinitiated upon subsequent departures of the wavefront from the center of the cylinder until it disappears in the limit of steady state oscillations. We present the solution for this strain field, characterize the nature of this singularity, and discuss its potential role in the mechanical response and evolved morphology of the brain.

  2. An inverse cavity problem for Maxwellʼs equations

    NASA Astrophysics Data System (ADS)

    Li, Peijun

    Consider the scattering of a time-harmonic electromagnetic plane wave by an open cavity embedded in a perfect electrically conducting infinite ground plane, where the electromagnetic wave propagation is governed by the Maxwell equations. The upper half-space is filled with a lossless homogeneous medium above the flat ground surface; while the interior of the cavity is assumed to be filled with a lossy homogeneous medium accounting for the energy absorption. The inverse problem is to determine the cavity structure or the shape of the cavity from the tangential trace of the electric field measured on the aperture of the cavity. In this paper, results on a global uniqueness and a local stability are established for the inverse problem. A crucial step in the proof of the stability is to obtain the existence and characterization of the domain derivative of the electric field with respect to the shape of the cavity.

  3. Cohomogeneity-one solutions in Einstein-Maxwell-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Lim, Yen-Kheng

    2017-05-01

    The field equations for Einstein-Maxwell-dilaton gravity in D dimensions are reduced to an effective one-dimensional system under the influence of exponential potentials. Various cases where exact solutions can be found are explored. With this procedure, we present interesting solutions such as a one-parameter generalization of the dilaton-Melvin spacetime and a three-parameter solution that interpolates between the Reissner-Nordström and Bertotti-Robinson solutions. This procedure also allows simple, alternative derivations of known solutions such as the Lifshitz spacetime and the planar anti-de Sitter naked singularity. In the latter case, the metric is cast in a simpler form which reveals the presence of an additional curvature singularity.

  4. Acceleration of particles in Einstein-Maxwell-dilaton black holes

    NASA Astrophysics Data System (ADS)

    Mao, Pu-Jian; Li, Ran; Jia, Lin-Yu; Ren, Ji-Rong

    2017-06-01

    It has recently been pointed out that, under certain conditions, the energy of particles accelerated by black holes in the center-of-mass frame can become arbitrarily high. In this paper, we study the collision of two particles in the case of four-dimensional charged nonrotating, extremal charged rotating and near-extremal charged rotating Kaluza-Klein black holes as well as the naked singularity case in Einstein-Maxwell-dilaton theory. We find that the center-of-mass energy for a pair of colliding particles is unlimited at the horizon of charged nonrotating Kaluza-Klein black holes, extremal charged rotating Kaluza-Klein black holes and in the naked singularity case. Supported by NSFC (11575202, 11205048), Foundation for Young Key Teacher of Henan Normal University and Cuiying Programme of Lanzhou University (225000-582404) and Fundamental Research Fund for Physics and Mathematic of Lanzhou University (LZULL200911)

  5. A Generalization of the Einstein-Maxwell Equations

    NASA Astrophysics Data System (ADS)

    Cotton, Fredrick

    2016-03-01

    The proposed modifications of the Einstein-Maxwell equations include: (1) the addition of a scalar term to the electromagnetic side of the equation rather than to the gravitational side, (2) the introduction of a 4-dimensional, nonlinear electromagnetic constitutive tensor and (3) the addition of curvature terms arising from the non-metric components of a general symmetric connection. The scalar term is defined by the condition that a spherically symmetric particle be force-free and mathematically well-behaved everywhere. The constitutive tensor introduces two auxiliary fields which describe the particle structure. The additional curvature terms couple both to particle solutions and to electromagnetic and gravitational wave solutions. http://sites.google.com/site/fwcotton/em-30.pdf

  6. Magnetic brane solutions in Gauss-Bonnet-Maxwell massive gravity

    NASA Astrophysics Data System (ADS)

    Hendi, Seyed Hossein; Eslam Panah, Behzad; Panahiyan, Shahram; Momennia, Mehrab

    2017-09-01

    Magnetic branes of Gauss-Bonnet-Maxwell theory in the context of massive gravity is studied in detail. Exact solutions are obtained and their interesting geometrical properties are investigated. It is argued that although these horizonless solutions are free of curvature singularity, they enjoy a cone-like geometry with a conic singularity. In order to investigate the effects of various parameters on the geometry of conic singularity, its corresponding deficit angle is studied. It will be shown that despite the effects of Gauss-Bonnet gravity on the solutions, deficit angle is free of Gauss-Bonnet parameter. On the other hand, the effects of massive gravity, cosmological constant and electrical charge on the deficit angle will be explored. Also, a brief discussion related to possible geometrical phase transition of these topological objects is given.

  7. Fourier analysis of numerical algorithms for the Maxwell equations

    NASA Technical Reports Server (NTRS)

    Liu, Yen

    1993-01-01

    The Fourier method is used to analyze the dispersive, dissipative, and isotropy errors of various spatial and time discretizations applied to the Maxwell equations on multi-dimensional grids. Both Cartesian grids and non-Cartesian grids based on hexagons and tetradecahedra are studied and compared. The numerical errors are quantitatively determined in terms of phase speed, wave number, propagation direction, gridspacings, and CFL number. The study shows that centered schemes are more efficient than upwind schemes. The non-Cartesian grids yield superior isotropy and higher accuracy than the Cartesian ones. For the centered schemes, the staggered grids produce less errors than the unstaggered ones. A new unstaggered scheme which has all the best properties is introduced. The study also demonstrates that a proper choice of time discretization can reduce the overall numerical errors due to the spatial discretization.

  8. Tidal dissipation in heterogeneous bodies: Maxwell vs Andrade rheology

    NASA Astrophysics Data System (ADS)

    Behounkova, M.; Cadek, O.

    2014-04-01

    The tremendous volcanism on Jupiter's moon Io as well as the huge activity at the south pole of Saturn's moon Enceladus show that tidal dissipation is a very strong source of energy for some bodies in the Solar System. Outside the Solar System, tidal heating in short-period exoplanets may cause Io-like volcanism, large-scale melting and even thermal runaways [1-4]. Here we further develop the method to compute tidal heating in heterogeneous bodies [5]. Especially, we concentrate on the Andrade rheology implementation. We study the impact of the improved model on bodies with large lateral viscosity variation such as Enceladus and tidally locked exoEarth with a large surface temperature contrast due to uneven insolation [6]. We discuss the influence of empirical parameters describing the Andrade rheology and compare the tidal heating and tidal stress obtained for the Andrade rheology with frequently used Maxwell models for different forcing frequencies.

  9. On the locally rotationally symmetric Einstein-Maxwell perfect fluid

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Valiente Kroon, J. A.

    2016-06-01

    We examine the stability of Einstein-Maxwell perfect fluid configurations with a privileged radial direction by means of a 1+1+2-tetrad formalism. We use this formalism to cast in a quasilinear symmetric hyperbolic form the equations describing the evolution of the system. This hyperbolic reduction is used to discuss the stability of linear perturbations in some special cases. By restricting the analysis to isotropic fluid configurations, we assume a constant electrical conductivity coefficient for the fluid. As a result of this analysis we provide a complete classification and characterization of various stable and unstable configurations. We find, in particular, that in many cases the stability conditions are strongly determined by the constitutive equations and the electric conductivity. A threshold for the emergence of the instability appears in both contracting and expanding systems.

  10. How can an autonomous quantum Maxwell demon harness correlated information?

    NASA Astrophysics Data System (ADS)

    Chapman, Adrian; Miyake, Akimasa; CQuIC Thermodynamics Team

    We study an autonomous quantum system, which exhibits refrigeration under an information-work tradeoff like a Maxwell demon. The system becomes correlated as a single ``demon'' qubit interacts sequentially with memory qubits while in contact with two heat reservoirs of different temperatures. Using strong subadditivity of the von Neumann entropy, we derive a global Clausius inequality to show thermodynamical advantages from access to correlated information. It is demonstrated, in a matrix product density operator formalism, that our demon can simultaneously realize refrigeration against a thermal gradient and erasure of information from its memory, which is impossible without correlations. The phenomenon can be even enhanced by the presence of quantum coherence. The work was supported in part by National Science Foundation Grants PHY-1212445 and PHY-1521016.

  11. DEM simulation of the granular Maxwell's Demon under zero gravity

    NASA Astrophysics Data System (ADS)

    Wang, Wenguang; Zhou, Zhigang; Zong, Jin; Hou, Meiying

    2017-06-01

    In this work, granular segregation in a two-compartment cell (Maxwell's Demon) under zero gravity is studied numerically by DEM simulation for comparison with the experimental observation in satellite SJ-10. The effect of three parameters: the total number of particlesN, the excitation strengthΓ, and the position of the window coupling the two compartments, on the segregationɛ and the waiting timeτ are investigated. In the simulation, non-zero segregation under zero gravity is obtained, and the segregation ɛ is found independent of the excitation strengthΓ. The waiting time τ, however, depends strongly onΓ. For higher acceleration Γ, |ɛi| reaches steady state valueɛ faster.

  12. Maxwell's demons everywhere: evolving design as the arrow of time.

    PubMed

    Bejan, Adrian

    2014-02-10

    Science holds that the arrow of time in nature is imprinted on one-way (irreversible) phenomena, and is accounted for by the second law of thermodynamics. Here I show that the arrow of time is painted much more visibly on another self-standing phenomenon: the occurrence and change (evolution in time) of flow organization throughout nature, animate and inanimate. This other time arrow has been present in science but not recognized as such since the birth of thermodynamics. It is Maxwell's demon. Translated in macroscopic terms, this is the physics of the phenomenon of design, which is the universal natural tendency of flow systems to evolve into configurations that provide progressively greater access over time, and is summarized as the constructal law of design and evolution in nature. Knowledge is the ability to effect design changes that facilitate human flows on the landscape. Knowledge too flows.

  13. Marginal and irrelevant disorder in Einstein-Maxwell backgrounds

    NASA Astrophysics Data System (ADS)

    García-García, Antonio M.; Loureiro, Bruno

    2016-03-01

    We study analytically the effect of a weak random chemical potential of zero average in an Einstein-Maxwell background. For uncorrelated disorder this perturbation is relevant; however we show that it can become marginal or even irrelevant by tuning disorder correlations. At zero temperature we find that, to leading order in the disorder strength, the correction to the conductivity for irrelevant perturbations vanishes. In the marginal case, in order to renormalize a logarithmic divergence, we carry out a resummation of the perturbative expansion of the metric that leads to a Lifshitz-like geometry in the infrared. Disorder in this case also induces a positive correction to the conductivity. At finite temperature the black hole acquires an effective charge and the thermal conductivity has the expected Drude peak that signals the breaking of translational invariance. However the electric conductivity is not affected by the random chemical potential to leading order in the disorder strength.

  14. Maxwell stress on a small dielectric sphere in a dielectric

    NASA Astrophysics Data System (ADS)

    Datsyuk, Vitaly V.; Pavlyniuk, Oleg R.

    2015-02-01

    Electrically induced normal pressure and tangential stress at the surface of a small dielectric sphere (or cavity) in a dielectric are calculated using the Minkowski, Einstein-Laub, Abraham, and Lorentz forms of the Maxwell stress tensor. Only the Lorentz tensor is in agreement with the following observations: (1) A spherical cavity in a dielectric transforms into a sharp-edge plate perpendicular to the electric field; (2) a liquid drop placed in a medium with a slightly lower refractive index is stretched along the electric field; and (3) there is a torque on a small birefringent sphere. These phenomena cannot be explained by the conventional theory using the Minkowski stress tensor. For example, the Minkowski stress tensor predicts lateral compression of a spherical cavity in a dielectric.

  15. Development and Application of Compatible Discretizations of Maxwell's Equations

    SciTech Connect

    White, D; Koning, J; Rieben, R

    2005-05-27

    We present the development and application of compatible finite element discretizations of electromagnetics problems derived from the time dependent, full wave Maxwell equations. We review the H(curl)-conforming finite element method, using the concepts and notations of differential forms as a theoretical framework. We chose this approach because it can handle complex geometries, it is free of spurious modes, it is numerically stable without the need for filtering or artificial diffusion, it correctly models the discontinuity of fields across material boundaries, and it can be very high order. Higher-order H(curl) and H(div) conforming basis functions are not unique and we have designed an extensible C++ framework that supports a variety of specific instantiations of these such as standard interpolatory bases, spectral bases, hierarchical bases, and semi-orthogonal bases. Virtually any electromagnetics problem that can be cast in the language of differential forms can be solved using our framework. For time dependent problems a method-of-lines scheme is used where the Galerkin method reduces the PDE to a semi-discrete system of ODE's, which are then integrated in time using finite difference methods. For time integration of wave equations we employ the unconditionally stable implicit Newmark-Beta method, as well as the high order energy conserving explicit Maxwell Symplectic method; for diffusion equations, we employ a generalized Crank-Nicholson method. We conclude with computational examples from resonant cavity problems, time-dependent wave propagation problems, and transient eddy current problems, all obtained using the authors massively parallel computational electromagnetics code EMSolve.

  16. A Conway-Maxwell-Poisson (CMP) model to address data dispersion on positron emission tomography.

    PubMed

    Santarelli, Maria Filomena; Della Latta, Daniele; Scipioni, Michele; Positano, Vincenzo; Landini, Luigi

    2016-10-01

    Positron emission tomography (PET) in medicine exploits the properties of positron-emitting unstable nuclei. The pairs of γ- rays emitted after annihilation are revealed by coincidence detectors and stored as projections in a sinogram. It is well known that radioactive decay follows a Poisson distribution; however, deviation from Poisson statistics occurs on PET projection data prior to reconstruction due to physical effects, measurement errors, correction of deadtime, scatter, and random coincidences. A model that describes the statistical behavior of measured and corrected PET data can aid in understanding the statistical nature of the data: it is a prerequisite to develop efficient reconstruction and processing methods and to reduce noise. The deviation from Poisson statistics in PET data could be described by the Conway-Maxwell-Poisson (CMP) distribution model, which is characterized by the centring parameter λ and the dispersion parameter ν, the latter quantifying the deviation from a Poisson distribution model. In particular, the parameter ν allows quantifying over-dispersion (ν<1) or under-dispersion (ν>1) of data. A simple and efficient method for λ and ν parameters estimation is introduced and assessed using Monte Carlo simulation for a wide range of activity values. The application of the method to simulated and experimental PET phantom data demonstrated that the CMP distribution parameters could detect deviation from the Poisson distribution both in raw and corrected PET data. It may be usefully implemented in image reconstruction algorithms and quantitative PET data analysis, especially in low counting emission data, as in dynamic PET data, where the method demonstrated the best accuracy.

  17. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    NASA Astrophysics Data System (ADS)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-08-01

    We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two-level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within the model. These Maxwell-Bloch equations are implemented by using Lumerical's flexible material plug-in tool, which allows a user to define additional equations of motion for the nonlinear polarization. We implement the gain ensemble within triangular-lattice photonic-crystal cavities of various length N (where N refers to the number of missing holes), and investigate the cavity mode characteristics and the threshold regime as a function of cavity length. We develop effective two-dimensional model simulations which are derived after studying the full three-dimensional passive material structures by matching the cavity quality factors and resonance properties. We also demonstrate how to obtain the correct point-dipole radiative decay rate from Fermi's golden rule, which is captured naturally by the FDTD method. Our numerical simulations predict that the pump threshold plateaus around cavity lengths greater than N =9 , which we identify as a consequence of the complex spatial dynamics and gain coupling from the inhomogeneous QD ensemble. This behavior is not expected from simple rate-equation analysis commonly adopted in the literature, but is in qualitative agreement with recent experiments. Single-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also

  18. 78 FR 45963 - Notice of Intent to Repatriate Cultural Item: Maxwell Museum of Anthropology, University of New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... National Park Service Notice of Intent to Repatriate Cultural Item: Maxwell Museum of Anthropology...: The Maxwell Museum of Anthropology, in consultation with the appropriate Indian tribes or Native... the Maxwell Museum of Anthropology. If no additional claimants come forward, transfer of control...

  19. Lifting of the Vlasov-Maxwell Bracket by Lie-transform Method

    NASA Astrophysics Data System (ADS)

    Brizard, A. J.; Morrison, P. J.; Burby, J. W.

    2016-10-01

    The Vlasov-Maxwell equations possess a Hamiltonian structure expressed in terms of a Hamiltonian functional and a functional bracket. The transformation (``lift'') of the Vlasov-Maxwell bracket induced by the dynamical reduction of single-particle dynamics is investigated when the reduction is carried out by Lie-transform perturbation methods. The ultimate goal of this work is to derive explicit Hamiltonian formulations for the guiding-center and gyrokinetic Vlasov-Maxwell equations that have important applications in our understanding of turbulent magnetized plasmas. In particular, we investigate how the Hamiltonian properties of the reduced Vlasov-Maxwell bracket survive (1) the closure problem: the process of truncation of the guiding-center Vlasov-Maxwell bracket at a finite order in ɛ (so far expressions have been derived at all orders in ɛ) and (2) the averaging problem: the process by which which the gyroangle is eliminated from the guiding-center Vlasov-Maxwell bracket (since guiding-center Vlasov-Maxwell equations do not involve the fast gyromotion time scale). Work supported by Grants from US DoE.

  20. Parasitic extraction and magnetic analysis for transformers, inductors and igbt bridge busbar with maxwell 2d and maxwell 3d simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Ning

    This thesis presents the parasitic extraction and magnetic analysis for transformers, inductors, and IGBT bridge busbars with Maxwell 2D and Maxwell 3D simulation. In the first chapter, the magnetic field of a transformer in Maxwell 2D is analyzed. The parasitic capacitance between each winding of the transformer are extracted by Maxwell 2D. According to the actual dimensions, the parasitic capacitances are calculated. The results are verified by comparing with the measurement results from 4395A impedance analyzer. In the second chapter, two CM inductors are simulated in Maxwell 3D. One is the conventional winding inductor, the other one is the proposed one. The magnetic field distributions of different winding directions are analyzed. The analysis is verified by the simulation result. The last chapter introduces a technique to analyze, extract, and measure the parasitic inductance of planar busbars. With this technique, the relationship between self-inductance and mutual-inductance is analyzed. Secondly, a total inductance is calculated based on the developed technique. Thirdly, the current paths and the inductance on a planar busbar are investigated with DC-link capacitors. Furthermore, the analysis of the inductance is addressed. Ansys Q3D simulation and analysis are presented. Finally, the experimental verification is shown by the S-parameter measurement.

  1. James Clerk Maxwell, a precursor of system identification and control science

    NASA Astrophysics Data System (ADS)

    Bittanti, Sergio

    2015-12-01

    One hundred and fifty years ago James Clerk Maxwell published his celebrated paper 'Dynamical theory of electromagnetic field', where the interaction between electricity and magnetism eventually found an explanation. However, Maxwell was also a precursor of model identification and control ideas. Indeed, with the paper 'On Governors' of 1869, he introduced the concept of feedback control system; and moreover, with his essay on Saturn's rings of 1856 he set the basic principle of system identification. This paper is a tutorial exposition having the aim to enlighten these latter aspects of Maxwell's work.

  2. Time domain solutions of Maxwell's equations using a finite-volume formulation

    SciTech Connect

    Noack, R.W.

    1991-01-01

    A new method for solving Maxwell's equations in the time domain was developed. The method approximates the integral form of the time-dependent Maxwell's equations using a finite-volume formulation. The method utilizes a staggered mesh and requires boundary conditions on the electric field or the magnetic field but not both. Predictions from the present method were compared to exact solutions for a full three-dimensional calculation of a sphere and experimental measurements for a generic missile body. These comparisons show that the method is capable of accurately solving the time-dependent Maxwell's equations and yields accurate predictions of the radar cross section for arbitrary geometries.

  3. Computational analysis of magnetohydrodynamic Casson and Maxwell flows over a stretching sheet with cross diffusion

    NASA Astrophysics Data System (ADS)

    Kumaran, G.; Sandeep, N.; Ali, M. E.

    This paper reports the magnetohydrodynamic chemically reacting Casson and Maxwell fluids past a stretching sheet with cross diffusion, non-uniform heat source/sink, thermophoresis and Brownian motion effects. Numerical results are obtained by employing the R-K based shooting method. Effects of pertinent parameters on flow, thermal and concentration fields are discussed with graphical illustrations. We presented the tabular results to discuss the nature of the skin friction coefficient, reduced Nusselt and Sherwood numbers. Dual nature is observed in the solution of Casson and Maxwell fluids. It is also observed a significant increase in heat and mass transfer rate of Maxwell fluid when compared with the Casson fluid.

  4. Exact solutions for the (2+1)-dimensional Hirota-Maxwell-Bloch system

    NASA Astrophysics Data System (ADS)

    Yesmakhanova, Kuralay; Shaikhova, Gaukhar; Bekova, Guldana; Myrzakulov, Ratbay

    2017-09-01

    In this paper, we consider the (2+1)-dimensional Hirota-Maxwell-Bloch system (HMBS) which with higher order effects usually governs the propagation of ultrashort pulses in nonlinear erbium doped fibers. Integrable condition of such system determined via the associated Lax pair is explicitly constructed. The (2+1)-dimensional HMBS admits reductions such as complex modified Korteweg de Vries-Maxwell-Bloch equations, Hirota system, Schrodinger-Maxwell-Bloch equations, nonlinear Schrodinger equations, complex modified Korteweg de Vries equations. We construct Darboux transformation and provide soliton solutions of the (2+1)-dimensional HMBS by using obtained Darboux transformation.

  5. ON THE ROLE OF INVOLUTIONS IN THE DISCONTINUOUS GALERKIN DISCRETIZATION OF MAXWELL AND MAGNETOHYDRODYNAMIC SYSTEMS

    NASA Technical Reports Server (NTRS)

    Barth, Timothy

    2005-01-01

    The role of involutions in energy stability of the discontinuous Galerkin (DG) discretization of Maxwell and magnetohydrodynamic (MHD) systems is examined. Important differences are identified in the symmetrization of the Maxwell and MHD systems that impact the construction of energy stable discretizations using the DG method. Specifically, general sufficient conditions to be imposed on the DG numerical flux and approximation space are given so that energy stability is retained These sufficient conditions reveal the favorable energy consequence of imposing continuity in the normal component of the magnetic induction field at interelement boundaries for MHD discretizations. Counterintuitively, this condition is not required for stability of Maxwell discretizations using the discontinuous Galerkin method.

  6. A fractional-order Maxwell model for non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Carrera, Y.; Avila-de la Rosa, G.; Vernon-Carter, E. J.; Alvarez-Ramirez, J.

    2017-09-01

    This work considers an extension of the fractional-order Maxwell arrangement to incorporate a relaxation process with non-Newtonian viscosity behavior. The resulting model becomes a fractional-order nonlinear differential equation with stable solution converging asymptotically to a unique equilibrium point. Expressions for the corresponding storage and loss moduli as function of strain frequency and amplitude are computed via a first-harmonic analysis of the differential equation. Some distinctive features and their relationship to the classical and fractional-order linear Maxwell models are discussed. Three examples are used to illustrate the ability of the fractional-order Maxwell model to describe experimental data.

  7. L estimates of time-harmonic Maxwell's equations in a bounded domain

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Li, Ying; Zhou, Zhengfang

    Consider the electromagnetic field scattered by a nonlinear bounded optical medium. Because of inhomogeneity of the medium, the governing equations are Maxwell's equation with jump coefficients and a source term. By using the Sommerfeld radiation condition, the model scattering problem may be truncated into a bounded domain. In this paper, L estimates for Maxwell's equation with jump coefficients are established. The solution of Maxwell's equation is represented by spherical harmonics. An application of the L estimates gives rise to the well-posedness of a linearized model.

  8. Treatment of painful pediatric flatfoot with Maxwell-Brancheau subtalar arthroereisis implant a retrospective radiographic review.

    PubMed

    Scharer, Brandon M; Black, Brian E; Sockrider, Nathan

    2010-04-01

    The purposes of this study were to evaluate the outcome of pediatric patients who have undergone Maxwell-Brancheau arthroereisis (MBA) subtalar implants for the treatment of painful pediatric flatfoot deformities. In a retrospective study, 39 patients (68 feet) were evaluated clinically and radiographically. The mean age of the patients was 12 years (range, 6-16 years). The mean period of follow-up was 24 months (range, 6-61 months). Statistical evaluation was performed on all radiographic measurements. Additional surgical procedures (gastrocnemius recession, Achilles tendon lengthening, Kidner posterior tibial tendon advancement) were performed in 22 of 68 feet. There were 10 (15%) complications, which consisted of 10 reoperations in 10 feet. Implants were exchanged in 9 feet because of implant migration, undercorrection, and overcorrection. There was 1 reoperation (in 1 foot) for implant removal because of persistent sinus tarsi pain. Radiographic evaluation demonstrated an improvement of all parameters determined. The parameters that were evaluated include talonavicular joint coverage, as well as lateral and anterior-posterior talocalcaneal angles. There were significant changes noted in pre- and postoperative measurements (P < .001). The MBA implant is effective for the correction of painful, flexible flatfoot deformity in children in short-term follow-up. However, this is a multiplanar deformity, and additional procedures may be needed in addition to the MBA.

  9. Eaters of the lotus: Landauer's principle and the return of Maxwell's demon

    NASA Astrophysics Data System (ADS)

    Norton, John D.

    Landauer's principle is the loosely formulated notion that the erasure of n bits of information must always incur a cost of k ln n in thermodynamic entropy. It can be formulated as a precise result in statistical mechanics, but for a restricted class of erasure processes that use a thermodynamically irreversible phase space expansion, which is the real origin of the law's entropy cost and whose necessity has not been demonstrated. General arguments that purport to establish the unconditional validity of the law (erasure maps many physical states to one; erasure compresses the phase space) fail. They turn out to depend on the illicit formation of a canonical ensemble from memory devices holding random data. To exorcise Maxwell's demon one must show that all candidate devices-the ordinary and the extraordinary-must fail to reverse the second law of thermodynamics. The theorizing surrounding Landauer's principle is too fragile and too tied to a few specific examples to support such general exorcism. Charles Bennett's recent extension of Landauer's principle to the merging of computational paths fails for the same reasons as trouble the original principle.

  10. Characterizing the performance of the Conway-Maxwell Poisson generalized linear model.

    PubMed

    Francis, Royce A; Geedipally, Srinivas Reddy; Guikema, Seth D; Dhavala, Soma Sekhar; Lord, Dominique; LaRocca, Sarah

    2012-01-01

    Count data are pervasive in many areas of risk analysis; deaths, adverse health outcomes, infrastructure system failures, and traffic accidents are all recorded as count events, for example. Risk analysts often wish to estimate the probability distribution for the number of discrete events as part of doing a risk assessment. Traditional count data regression models of the type often used in risk assessment for this problem suffer from limitations due to the assumed variance structure. A more flexible model based on the Conway-Maxwell Poisson (COM-Poisson) distribution was recently proposed, a model that has the potential to overcome the limitations of the traditional model. However, the statistical performance of this new model has not yet been fully characterized. This article assesses the performance of a maximum likelihood estimation method for fitting the COM-Poisson generalized linear model (GLM). The objectives of this article are to (1) characterize the parameter estimation accuracy of the MLE implementation of the COM-Poisson GLM, and (2) estimate the prediction accuracy of the COM-Poisson GLM using simulated data sets. The results of the study indicate that the COM-Poisson GLM is flexible enough to model under-, equi-, and overdispersed data sets with different sample mean values. The results also show that the COM-Poisson GLM yields accurate parameter estimates. The COM-Poisson GLM provides a promising and flexible approach for performing count data regression.

  11. From Maxwell's Equations to Polarimetric SAR Images: A Simulation Approach.

    PubMed

    Sant'Anna, Sidnei J S; Da S Lacava, J C; Fernandes, David

    2008-11-19

    A new electromagnetic approach for the simulation of polarimetric SAR images is proposed. It starts from Maxwell's equations, employs the spectral domain full-wave technique, the moment method, and the stationary phase method to compute the far electromagnetic fields scattered by multilayer structures. A multilayer structure is located at each selected position of a regular rectangular grid of coordinates, which defines the scene area under imaging. The grid is determined taking into account the elementary scatter size and SAR operational parameters, such as spatial resolution, pixel spacing, look angle and platform altitude. A two-dimensional separable "sinc" function to represent the SAR spread point function is also considered. Multifrequency sets of single-look polarimetric SAR images are generated, in L-, C- and X-bands and the images are evaluated using several measurements commonly employed in SAR data analysis. The evaluation shows that the proposed simulation process is working properly, since the obtained results are in accordance with those presented in the literature. Therefore, this new approach becomes suitable for carrying out theoretical and practical studies using polarimetric SAR images.

  12. Compactification of higher dimensional spacetime with Maxwell field

    NASA Astrophysics Data System (ADS)

    Rasyida, A. N.; Ramadhan, H. S.

    2017-07-01

    We find solutions of compactification for p + D dimensional with Einstein-Maxwell action [1, 2]. Using the same method as [3], the first solution of compactification is found by fixing null cosmological constant (Λ = 0) in higher dimensional and that shows us the higher dimensional spacetime is Minkowski. By this compactification, we obtain de Sitter spacetime in lower dimensional with D - 2 dimensional spaces is compacted into p + 2 dimensional. The solution can be written by Mp+D → dSp+2 × SD-2. For the second solution, we find the result by fixing Λ ≠ 0, p = 1 and D = 5. We obtain de Sitter spacetime in lower dimensional and has the negative cosmological constant in 6-dimensional which is anti de Sitter spacetime. The solution can be written by AdS6 → dS3 × S3 which means 3-dimensional spaces are compacted. For both solutions, the charge Q can be positive or negative.

  13. Trading coherence and entropy by a quantum Maxwell demon

    NASA Astrophysics Data System (ADS)

    Lebedev, A. V.; Oehri, D.; Lesovik, G. B.; Blatter, G.

    2016-11-01

    The second law of thermodynamics states that the entropy of a closed system is nondecreasing. Discussing the second law in the quantum world poses different challenges and provides different opportunities, involving fundamental quantum-information-theoretic questions and interesting quantum-engineered devices. In quantum mechanics, systems with an evolution described by a so-called unital quantum channel evolve with a nondecreasing entropy. Here, we seek the opposite, a system described by a nonunital and, furthermore, energy-conserving channel that describes a system whose entropy decreases with time. We propose a setup involving a mesoscopic four-lead scatterer augmented by a microenvironment in the form of a spin that realizes this goal. Within this nonunital and energy-conserving quantum channel, the microenvironment acts with two noncommuting operations on the system in an autonomous way. We find that the process corresponds to a partial exchange or swap between the system and environment quantum states, with the system's entropy decreasing if the environment's state is more pure. This entropy-decreasing process is naturally expressed through the action of a quantum Maxwell demon and we propose a quantum-thermodynamic engine with four qubits that extracts work from a single heat reservoir when provided with a reservoir of pure qubits. The special feature of this engine, which derives from the energy conservation in the nonunital quantum channel, is its separation into two cycles, a working cycle and an entropy cycle, allowing us to run this engine with no local waste heat.

  14. Maxwell stress induced optical torque upon gold prolate nanospheroid

    NASA Astrophysics Data System (ADS)

    Liaw, Jiunn-Woei; Chen, Ying-Syuan; Kuo, Mao-Kuen

    2016-03-01

    This study theoretically analyzes the surface traction on an elongated Au prolate nanospheroid to examine the resultant optical torque exerted by an optical tweezers. The multiple multipole method is applied to evaluate quantitatively the electromagnetic field induced by a linearly polarized plane wave illuminating a nanospheroid, then obtaining the surface traction in terms of Maxwell stress tensor. The optical torque is calculated by the surface integral of the cross product of position vector and traction over the nanospheroid's surface. Our results show that two pairs of positive and negative traction zones at the two apexes of the nanospheroid play a critical role. Furthermore, the resultant optical torque is wavelength-dependent. If the wavelength is shorter than the longitudinal surface plasmon resonance (LSPR) of the nanospheroid, the optical torque rotates the long axis of nanospheroid perpendicular to the polarization direction of the incident wave. In contrast, if the wavelength is longer than the LSPR the long axis is pushed parallel to the polarization direction. The turning point with a null torque, between the perpendicular and parallel modes, is at the LSPR. The optical performance of Au nanospheroid is equivalent to that of Au NR with the same volume and aspect ratio, but the LSPR of Au NR is little red-shifted from that of an equivalent prolate spheroid.

  15. Gravitational spreading of Danu, Freyja and Maxwell Montes, Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, Suzanne E.; Solomon, Sean C.

    1991-01-01

    The potential energy of elevated terrain tends to drive the collapse of the topography. This process of gravitational spreading is likely to be more important on Venus than on Earth because the higher surface temperature weakens the crust. The highest topography on Venus is Ishtar Terra. The high plateau of Lakshmi Planum has an average elevation of 3 km above mean planetary radius, and is surrounded by mountain belts. Freyja, Danu, and Maxwell Montes rise, on average, an additional 3, 0.5, and 5 km above the plateau, respectively. Recent high resolution Magellan radar images of this area, east of approx. 330 deg E, reveal widespread evidence for gravity spreading. Some observational evidence is described for gravity spreading and the implications are discussed in terms of simple mechanical models. Several simple models predict that gravity spreading should be an important process on Venus. One difficulty in using remote observations to infer interior properties is that the observed features may not have formed in response to stresses which are still active. Several causes of surface topography are briefly examined.

  16. Quantum field theory based on birefringent modified Maxwell theory

    NASA Astrophysics Data System (ADS)

    Schreck, M.

    2014-04-01

    In the current paper the properties of a birefringent Lorentz-violating extension of quantum electrodynamics is considered. The theory results from coupling modified Maxwell theory, which is a CPT-even Lorentz-violating extension of the photon sector, to a Dirac theory of standard spin-1/2 particles. It is then restricted to a special birefringent case with one nonzero Lorentz-violating coefficient. The modified dispersion laws of electromagnetic waves are obtained plus their phase and group velocities are considered. After deriving the photon propagator and the polarization vectors for a special momentum configuration we prove both unitarity at tree level and microcausality for the quantum field theory based on this Lorentz-violating modification. These analytical proofs are done for a spatial momentum with two vanishing components and the proof of unitarity is supported by numerical investigations in case all components are nonvanishing. The upshot is that the theory is well behaved within the framework of our assumptions where there is a possible issue for negative Lorentz-violating coefficients. The paper shall provide a basis for the future analysis of alternative birefringent quantum field theories.

  17. Maxwell's equations-based dynamic laser-tissue interaction model.

    PubMed

    Ahmed, Elharith M; Barrera, Frederick J; Early, Edward A; Denton, Michael L; Clark, C D; Sardar, Dhiraj K

    2013-12-01

    Since its invention in the early 1960s, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the dynamic changes in the spatial and temporal temperature rise during laser exposure to biological tissues. Unlike conventional models, the new approach is grounded on the rigorous electromagnetic theory that accounts for wave interference, polarization, and nonlinearity in propagation using a Maxwell's equations-based technique.

  18. Notes on Landauer's principle, reversible computation, and Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Bennett, Charles H.

    Landauer's principle, often regarded as the basic principle of the thermodynamics of information processing, holds that any logically irreversible manipulation of information, such as the erasure of a bit or the merging of two computation paths, must be accompanied by a corresponding entropy increase in non-information-bearing degrees of freedom of the information-processing apparatus or its environment. Conversely, it is generally accepted that any logically reversible transformation of information can in principle be accomplished by an appropriate physical mechanism operating in a thermodynamically reversible fashion. These notions have sometimes been criticized either as being false, or as being trivial and obvious, and therefore unhelpful for purposes such as explaining why Maxwell's Demon cannot violate the second law of thermodynamics. Here I attempt to refute some of the arguments against Landauer's principle, while arguing that although in a sense it is indeed a straightforward consequence or restatement of the Second Law, it still has considerable pedagogic and explanatory power, especially in the context of other influential ideas in nineteenth and twentieth century physics. Similar arguments have been given by Jeffrey Bub (2002).

  19. From Maxwell's Equations to Polarimetric SAR Images: A Simulation Approach

    PubMed Central

    Sant'Anna, Sidnei J. S.; da S. Lacava, J. C.; Fernandes, David

    2008-01-01

    A new electromagnetic approach for the simulation of polarimetric SAR images is proposed. It starts from Maxwell's equations, employs the spectral domain full-wave technique, the moment method, and the stationary phase method to compute the far electromagnetic fields scattered by multilayer structures. A multilayer structure is located at each selected position of a regular rectangular grid of coordinates, which defines the scene area under imaging. The grid is determined taking into account the elementary scatter size and SAR operational parameters, such as spatial resolution, pixel spacing, look angle and platform altitude. A two-dimensional separable “sinc” function to represent the SAR spread point function is also considered. Multifrequency sets of single-look polarimetric SAR images are generated, in L-, C- and X-bands and the images are evaluated using several measurements commonly employed in SAR data analysis. The evaluation shows that the proposed simulation process is working properly, since the obtained results are in accordance with those presented in the literature. Therefore, this new approach becomes suitable for carrying out theoretical and practical studies using polarimetric SAR images. PMID:27873935

  20. The Maxwell-Chern-Simons gravity, and its cosmological implications

    NASA Astrophysics Data System (ADS)

    Haghani, Zahra; Harko, Tiberiu; Shahidi, Shahab

    2017-08-01

    We consider the cosmological implications of a gravitational theory containing two vector fields coupled via a generalized Chern-Simons term. One of the vector fields is the usual Maxwell field, while the other is a constrained vector field with constant norm included in the action via a Lagrange multiplier. The theory admits a de Sitter type solution, with healthy cosmological perturbations. We also show that there are seven degrees of freedom that propagate on top of de Sitter space-time, consisting of two tensor polarizations, four degrees of freedom related to the two vector fields, and a scalar degree of freedom that makes one of the vector fields massive. We investigate the cosmological evolution of Bianchi type I space-time, by assuming that the matter content of the Universe can be described by the stiff and dust. The cosmological evolution of the Bianchi type I Universe strongly depends on the initial conditions of the physical quantities, as well as on the model parameters. The mean anisotropy parameter, and the deceleration parameter, are also studied, and we show that independently of the matter equation of state the cosmological evolution of the Bianchi type I Universe always ends in an isotropic de Sitter type phase.

  1. From Feynman proof of Maxwell equations to noncommutative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bérard, A.; Mohrbach, H.; Lages, J.; Gosselin, P.; Grandati, Y.; Boumrar, H.; Ménas, F.

    2007-05-01

    In 1990, Dyson published a proof due to Feynman of the Maxwell equations assuming only the commutation relations between position and velocity. With this minimal assumption, Feynman never supposed the existence of Hamiltonian or Lagrangian formalism. In the present communication, we review the study of a relativistic particle using "Feynman brackets." We show that Poincaré's magnetic angular momentum and Dirac magnetic monopole are the consequences of the structure of the Lorentz Lie algebra defined by the Feynman's brackets. Then, we extend these ideas to the dual momentum space by considering noncommutative quantum mechanics. In this context, we show that the noncommutativity of the coordinates is responsible for a new effect called the spin Hall effect. We also show its relation with the Berry phase notion. As a practical application, we found an unusual spin-orbit contribution of a nonrelativistic particle that could be experimentally tested. Another practical application is the Berry phase effect on the propagation of light in inhomogeneous media.

  2. A New Observing Tool for the James Clerk Maxwell Telescope

    NASA Astrophysics Data System (ADS)

    Folger, Martin; Bridger, Alan; Dent, Bill; Kelly, Dennis; Adamson, Andy; Economou, Frossie; Hirst, Paul; Jenness, Tim

    A new Observing Tool (OT) has been developed at the UK Astronomy Technology Centre, Edinburgh, UK and the Joint Astronomy Centre, Hilo, Hawaii, USA. It is based on the Gemini Observing Tool and provides the first graphical observation preparation tool for the James Clerk Maxwell Telescope (JCMT) as well as being the first use of the OT for a non-optical/IR telescope. The OT allows the observer to assemble high level Science Programs using graphical representations of observation components such as instrument, target, and filter. This is later translated into low level control sequences for telescope and instruments. The new OT is designed to work on multiple telescopes: currently the UK Infrared Telescope (UKIRT) and JCMT. Object-oriented design makes the inclusion of telescope and instrument specific packages easy. The OT is written in Java using GUI packages such as Swing and JSky. A new component for the JCMT OT is the graphical Frequency Editor for Heterodyne instruments. It can be used to specify parameters such as frequencies, bandwidths, and sidebands of multiple subsystems, while graphically displaying the front-end frequency, emission lines and atmospheric transmission. In addition, Flexible Scheduling support has been added to the OT. The observer can define scheduling constraints by arranging observations graphically. Science Programs can be saved as XML or sent directly from the OT to a database (via SOAP).

  3. Chaotic Dynamics of Falling Disks: from Maxwell to Bar Tricks.

    NASA Astrophysics Data System (ADS)

    Field, Stuart

    1998-03-01

    Understanding the motion of flat objects falling in a viscous medium dates back to at least Newton and Maxwell, and is relevant to problems in meteorology, sedimentology, aerospace and chemical engineering, and bar wagering strategies. Recent theoretical studies have emphasized the role played by deterministic chaos. Here we report(S. B. Field, M. Klaus, M. G. Moore, and F. Nori, Nature 388), 252 (1997) experimental observations and theoretical analysis of the dynamics of disks falling in water/glycerol mixtures. We find four distinct types of motion, and map out a ``phase diagram'' in the appropriate variables. The apparently complex behavior of the disks can be reduced to a series of one-dimensional maps which display a discontinuity at the crossover from periodic and chaotic motion. This discontinuity leads to an unusual intermittency transition between the two behaviors, which has not previously been observed experimentally in any system.

  4. Relativistic plasma expansion with Maxwell-Ju¨ttner distribution

    NASA Astrophysics Data System (ADS)

    Huang, Yongsheng; Wang, Naiyan; Tang, Xiuzhang; Shi, Yijin

    2013-11-01

    A self-similar analytical solution is proposed to describe the relativistic ion acceleration with the local Maxwell-Ju¨ttner relativistic distribution electrons. It is an alternative to the existing static model [M. Passoni and M. Lontano, Phys. Rev. Lett. 101, 115001 (2008)], which exploits a limited solution for the acceleration potential. With our model, the potential is finite naturally and has an upper limitation proportional to the square root of the electron temperature. The divergent potential in the non-relativistic case is the linear items of the Taylor expansion of that obtained relativistic one here. The energy distribution of ions and the dependence of the ion momentum on the acceleration time are obtained analytically. Maximum ion energy has an upper limitation decided by the finite potential difference. In the ultra-relativistic region, the ion energy at the ion front is proportional to t4/5 and the energy of the ions behind the ion front is proportional to t2/3 since the field there is shielded by the ions beyond them and the field at the ion front is the most intense.

  5. Fourth-Order Conservative Vlasov-Maxwell Solver for Cartesian and Cylindrical Phase Space Coordinates

    NASA Astrophysics Data System (ADS)

    Vogman, Genia

    Plasmas are made up of charged particles whose short-range and long-range interactions give rise to complex behavior that can be difficult to fully characterize experimentally. One of the most complete theoretical descriptions of a plasma is that of kinetic theory, which treats each particle species as a probability distribution function in a six-dimensional position-velocity phase space. Drawing on statistical mechanics, these distribution functions mathematically represent a system of interacting particles without tracking individual ions and electrons. The evolution of the distribution function(s) is governed by the Boltzmann equation coupled to Maxwell's equations, which together describe the dynamics of the plasma and the associated electromagnetic fields. When collisions can be neglected, the Boltzmann equation is reduced to the Vlasov equation. High-fidelity simulation of the rich physics in even a subset of the full six-dimensional phase space calls for low-noise high-accuracy numerical methods. To that end, this dissertation investigates a fourth-order finite-volume discretization of the Vlasov-Maxwell equation system, and addresses some of the fundamental challenges associated with applying these types of computationally intensive enhanced-accuracy numerical methods to phase space simulations. The governing equations of kinetic theory are described in detail, and their conservation-law weak form is derived for Cartesian and cylindrical phase space coordinates. This formulation is well known when it comes to Cartesian geometries, as it is used in finite-volume and finite-element discretizations to guarantee local conservation for numerical solutions. By contrast, the conservation-law weak form of the Vlasov equation in cylindrical phase space coordinates is largely unexplored, and to the author's knowledge has never previously been solved numerically. Thereby the methods described in this dissertation for simulating plasmas in cylindrical phase space

  6. Conformal symmetry and the role of torsion in a Maxwell-Einstein system

    NASA Astrophysics Data System (ADS)

    Tiemblo, A.; Tresguerres, R.

    1991-12-01

    We develope a formalism which allows to treat Weyl symmetry with torsion as the gauge theory of the conformal group. The results of the standard Einstein—Cartan theroy are generalized and applied to the Maxwell-Einstein case.

  7. Lifting of the Vlasov-Maxwell bracket by Lie-transform method

    NASA Astrophysics Data System (ADS)

    Brizard, A. J.; Morrison, P. J.; Burby, J. W.; de Guillebon, L.; Vittot, M.

    2016-12-01

    The Vlasov-Maxwell equations possess a Hamiltonian structure expressed in terms of a Hamiltonian functional and a functional bracket. In the present paper, the transformation (`lift') of the Vlasov-Maxwell bracket induced by the dynamical reduction of single-particle dynamics is investigated when the reduction is carried out by Lie-transform perturbation methods. The ultimate goal of this work is to provide an explicit pathway to the Hamiltonian formulations for the guiding-centre and gyrokinetic Vlasov-Maxwell equations, which have found important applications in our understanding of turbulent magnetized plasmas. Here, it is shown that the general form of the reduced Vlasov-Maxwell equations possesses a Hamiltonian structure defined in terms of a reduced Hamiltonian functional and a reduced bracket that automatically satisfies the standard bracket properties.

  8. Obtaining Bounds from Ultra-High Energy Cosmic Rays in Isotropic Modified Maxwell Theory

    NASA Astrophysics Data System (ADS)

    Schreck, M.

    2014-01-01

    This article reviews the methods used to obtain a two-sided bound on isotropic modified Maxwell theory from experimental data of ultra high-energy cosmic rays in 2008. The bound is updated with results from the HEGRA experiment.

  9. Characterization of thunderstorm induced Maxwell current densities in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Baginski, Michael Edward

    1989-01-01

    Middle atmospheric transient Maxwell current densities generated by lightning induced charge perturbations are investigated via a simulation of Maxwell's equations. A time domain finite element analysis is employed for the simulations. The atmosphere is modeled as a region contained within a right circular cylinder with a height of 110 km and radius of 80 km. A composite conductivity profile based on measured data is used when charge perturbations are centered about the vertical axis at altitudes of 6 and 10 km. The simulations indicate that the temporal structure of the Maxwell current density is relatively insensitive to altitude variation within the region considered. It is also shown that the electric field and Maxwell current density are not generally aligned.

  10. Two-Dimensional Numerical Simulations of a Solid State Maxwell Demon

    NASA Astrophysics Data System (ADS)

    Putnam, Andrew R.

    2002-11-01

    Numerical simulations of the solid-state Maxwell demon proposed by Sheehan, Putnam, and Wright (2002) are presented. These verify the results of the original 1-D analytical model. A detailed description of the 2-D device simulator is given.

  11. 5D Einstein-Maxwell solitons and concentric rotating dipole black rings

    SciTech Connect

    Yazadjiev, Stoytcho S.

    2008-09-15

    We discuss the application of the solitonic techniques to the 5D Einstein-Maxwell gravity. As an illustration we construct a new exact solution describing two concentric rotating dipole black rings. The properties of the solution are investigated.

  12. Perturbation theory for Maxwell's equations with a time-dependent current source

    NASA Astrophysics Data System (ADS)

    Roy, T.; Ghosh, S.; Bhattacharjee, J. K.

    2011-12-01

    Using a set of ideas discussed in the second volume of Feynman Lectures, we develop a perturbation-theoretic scheme for solving Maxwell's equations for time-dependent currents which are switched on at t = 0.

  13. Non-static spherically symmetric exact solution of the Einstein-Maxwell field equations

    NASA Astrophysics Data System (ADS)

    Mahmood, Ayesha; Siddiqui, Azad A.; Feroze, Tooba

    2017-10-01

    We present a class of exact spherically symmetric and non-static solutions of Einstein-Maxwell's field equations. We have assumed isotropic pressure distribution and have taken ansatz on two of the gravitational potentials. The solutions admit negative pressure. We show that the solutions satisfy physical boundary conditions associated with the Einstein-Maxwell exact solutions. Therefore, these solutions can model physical systems such as moving dark energy stars.

  14. Exact solutions to Einstein-Maxwell theory on Eguchi-Hanson space

    NASA Astrophysics Data System (ADS)

    Ghezelbash, A. M.; Kumar, V.

    2017-06-01

    In this paper, we construct explicit analytical exact solutions to the six and higher-dimensional Einstein-Maxwell theory. In all solutions, a subspace of the metric is the Eguchi-Hanson space where the metric functions are completely determined in terms of known analytical functions. Moreover, we find the solutions can be extended from nonstationary exact solutions to Einstein-Maxwell theory with cosmological constant. We show that the solutions are asymptotically expanding patches of de Sitter space-time.

  15. Performance evaluation of the Maxwell 16 System for extraction of influenza virus RNA from diverse samples.

    PubMed

    Liu, Hongbo; Gan, Yan; Yang, Bo; Weng, Hui; Huang, Chunmei; Yang, Daofeng; Lei, Ping; Shen, Guanxin

    2012-01-01

    This study evaluated the performance of the Maxwell 16 System (Promega) for extraction of influenza virus (flu-v) RNA from diverse samples compared to a classical manual method (QIAamp Kit, QIAGEN). Following extraction by the two methods, all samples were analyzed by Real-time RT-PCR. Results revealed that the use of the standard Maxwell 16 protocol (Maxwell 16-S) resulted in good linearity and precision across a wide concentration range and higher sensitivity of detection from flu-v stock suspensions than the manual method. Compared with the latter method, Maxwell 16-S extracted RNA more efficiently (higher RNA yield and/or fewer PCR inhibitors) from throat swabs and bronchoalveolar lavage fluids, while both methods performed comparably on fecal samples from human and poultry in terms of overall threshold cycle values and detection rates although the Maxwell 16-S co-purified more inhibitors from fecal samples. The capacity of this system to remove inhibitors from fecal matrix was improved by using a modified Maxwell 16 protocol with a reduced sample input, which eliminated all false-negatives produced by the Maxwell 16-S. These findings suggest that the Maxwell 16 System is suitable for RNA extraction from multiple-source samples for diagnosis of influenza and viral load determination and that a proper reduction in starting sample volume may improve the detection of flu-v from complex matrices such as feces. Additionally, this system allows flexible sample throughput and labor-saving sample processing with little or no risk of cross-contamination.

  16. Performance Evaluation of the Maxwell 16 System for Extraction of Influenza Virus RNA from Diverse Samples

    PubMed Central

    Liu, Hongbo; Gan, Yan; Yang, Bo; Weng, Hui; Huang, Chunmei; Yang, Daofeng; Lei, Ping; Shen, Guanxin

    2012-01-01

    This study evaluated the performance of the Maxwell 16 System (Promega) for extraction of influenza virus (flu-v) RNA from diverse samples compared to a classical manual method (QIAamp Kit, QIAGEN). Following extraction by the two methods, all samples were analyzed by Real-time RT-PCR. Results revealed that the use of the standard Maxwell 16 protocol (Maxwell 16-S) resulted in good linearity and precision across a wide concentration range and higher sensitivity of detection from flu-v stock suspensions than the manual method. Compared with the latter method, Maxwell 16-S extracted RNA more efficiently (higher RNA yield and/or fewer PCR inhibitors) from throat swabs and bronchoalveolar lavage fluids, while both methods performed comparably on fecal samples from human and poultry in terms of overall threshold cycle values and detection rates although the Maxwell 16-S co-purified more inhibitors from fecal samples. The capacity of this system to remove inhibitors from fecal matrix was improved by using a modified Maxwell 16 protocol with a reduced sample input, which eliminated all false-negatives produced by the Maxwell 16-S. These findings suggest that the Maxwell 16 System is suitable for RNA extraction from multiple-source samples for diagnosis of influenza and viral load determination and that a proper reduction in starting sample volume may improve the detection of flu-v from complex matrices such as feces. Additionally, this system allows flexible sample throughput and labor-saving sample processing with little or no risk of cross-contamination. PMID:23144730

  17. Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory

    NASA Astrophysics Data System (ADS)

    Tweney, Ryan D.

    2011-07-01

    James Clerk Maxwell `translated' Michael Faraday's experimentally-based field theory into the mathematical representation now known as `Maxwell's Equations.' Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other results in the physics of electricity and magnetism. Examination of Maxwell's procedures opens many issues about the role of mathematical representation in physics and the learning background required for its success. Specifically, Maxwell's training in `Cambridge University' mathematical physics emphasized the use of analogous equations across fields of physics and the repeated solving of extremely difficult problems in physics. Such training develops an array of overlearned mathematical representations supported by highly sophisticated cognitive mechanisms for the retrieval of relevant information from long term memory. For Maxwell, mathematics constituted a new form of representation in physics, enhancing the formal derivational and calculational role of mathematics and opening a cognitive means for the conduct of `experiments in the mind' and for sophisticated representations of theory.

  18. Modèle de diélectrique associant les effets Poole-Frenkel et Maxwell-Wagner

    NASA Astrophysics Data System (ADS)

    Pillonnet, Alain; Ongaro, Roger; Garoum, Mohammed

    1992-06-01

    The model presented here combines Poole-Frenkel (PF) and Maxwell-Wagner (MW) effects to determine the equivalent conductivity σ of a plane double-layered dielectric. PF effect is introduced first under its usual form (Boltzmann statistics), and then under a more general form (Fermi-Dirac statistics). The curves log (σ) versus the electric field (sqrt{F}) generally display one or two linear parts, with the low-field slopes always larger than the high-field ones. These slopes are dependent on the layer's thickness ration and may greatly differ from slopes associated with PF effect in an homogeneous dielectric. The computer simulations show that this behaviour results from the fact that the potential can dominate successively in each layer. Le modèle présenté associe les effets Poole-Frenkel (PF) et Maxwell-Wagner (MW) dans la détermination de la conductivité équivalente σ d'un diélectrique plan à deux couches. L'effet PF y est introduit sous sa forme usuelle (statistique de Boltzmann), puis sous une forme plus générale (statistique de Fermi-Dirac). Les courbes log σ en fonction du champ électrique (sqrt{F}) présentent généralement une ou deux parties linéaires, la pente en bas champs étant toujours supérieure à la pente en hauts champs. Ces pentes sont fonctions du rapport des épaisseurs des couches et peuvent différer beaucoup des pentes relevant de l'effet PF dans un diélectrique homogène. Les simulations numériques montrent que ce comportement résulte du fait que le potentiel peut être successivement prépondérant dans chacune des couches.

  19. Generalized transport coefficients for inelastic Maxwell mixtures under shear flow

    NASA Astrophysics Data System (ADS)

    Garzó, Vicente; Trizac, Emmanuel

    2015-11-01

    The Boltzmann equation framework for inelastic Maxwell models is considered to determine the transport coefficients associated with the mass, momentum, and heat fluxes of a granular binary mixture in spatially inhomogeneous states close to the simple shear flow. The Boltzmann equation is solved by means of a Chapman-Enskog-type expansion around the (local) shear flow distributions fr(0 ) for each species that retain all the hydrodynamic orders in the shear rate. Due to the anisotropy induced by the shear flow, tensorial quantities are required to describe the transport processes instead of the conventional scalar coefficients. These tensors are given in terms of the solutions of a set of coupled equations, which can be analytically solved as functions of the shear rate a , the coefficients of restitution αr s, and the parameters of the mixture (masses, diameters, and composition). Since the reference distribution functions fr(0 ) apply for arbitrary values of the shear rate and are not restricted to weak dissipation, the corresponding generalized coefficients turn out to be nonlinear functions of both a and αr s. The dependence of the relevant elements of the three diffusion tensors on both the shear rate and dissipation is illustrated in the tracer limit case, the results showing that the deviation of the generalized transport coefficients from their forms for vanishing shear rates is in general significant. A comparison with the previous results obtained analytically for inelastic hard spheres by using Grad's moment method is carried out, showing a good agreement over a wide range of values for the coefficients of restitution. Finally, as an application of the theoretical expressions derived here for the transport coefficients, thermal diffusion segregation of an intruder immersed in a granular gas is also studied.

  20. Generalized transport coefficients for inelastic Maxwell mixtures under shear flow.

    PubMed

    Garzó, Vicente; Trizac, Emmanuel

    2015-11-01

    The Boltzmann equation framework for inelastic Maxwell models is considered to determine the transport coefficients associated with the mass, momentum, and heat fluxes of a granular binary mixture in spatially inhomogeneous states close to the simple shear flow. The Boltzmann equation is solved by means of a Chapman-Enskog-type expansion around the (local) shear flow distributions f(r)(0) for each species that retain all the hydrodynamic orders in the shear rate. Due to the anisotropy induced by the shear flow, tensorial quantities are required to describe the transport processes instead of the conventional scalar coefficients. These tensors are given in terms of the solutions of a set of coupled equations, which can be analytically solved as functions of the shear rate a, the coefficients of restitution α(rs), and the parameters of the mixture (masses, diameters, and composition). Since the reference distribution functions f(r)(0) apply for arbitrary values of the shear rate and are not restricted to weak dissipation, the corresponding generalized coefficients turn out to be nonlinear functions of both a and α(rs). The dependence of the relevant elements of the three diffusion tensors on both the shear rate and dissipation is illustrated in the tracer limit case, the results showing that the deviation of the generalized transport coefficients from their forms for vanishing shear rates is in general significant. A comparison with the previous results obtained analytically for inelastic hard spheres by using Grad's moment method is carried out, showing a good agreement over a wide range of values for the coefficients of restitution. Finally, as an application of the theoretical expressions derived here for the transport coefficients, thermal diffusion segregation of an intruder immersed in a granular gas is also studied.

  1. Tracer diffusion coefficients in a sheared inelastic Maxwell gas

    NASA Astrophysics Data System (ADS)

    Garzó, Vicente; Trizac, Emmanuel

    2016-07-01

    We study the transport properties of an impurity in a sheared granular gas, in the framework of the Boltzmann equation for inelastic Maxwell models. We investigate here the impact of a nonequilibrium phase transition found in such systems, where the tracer species carries a finite fraction of the total kinetic energy (ordered phase). To this end, the diffusion coefficients are first obtained for a granular binary mixture in spatially inhomogeneous states close to the simple shear flow. In this situation, the set of coupled Boltzmann equations are solved by means of a Chapman-Enskog-like expansion around the (local) shear flow distributions for each species, thereby retaining all the hydrodynamic orders in the shear rate a. Due to the anisotropy induced by the shear flow, three tensorial quantities D ij , D p,ij , and D T,ij are required to describe the mass transport process instead of the conventional scalar coefficients. These tensors are given in terms of the solutions of a set of coupled algebraic equations, which can be exactly solved as functions of the shear rate a, the coefficients of restitution {αsr} and the parameters of the mixture (masses and composition). Once the forms of D ij , D p,ij , and D T,ij are obtained for arbitrary mole fraction {{x}1}={{n}1}/≤ft({{n}1}+{{n}2}\\right) (where n r is the number density of species r), the tracer limit ({{x}1}\\to 0 ) is carefully considered for the above three diffusion tensors. Explicit forms for these coefficients are derived showing that their shear rate dependence is significantly affected by the order-disorder transition.

  2. `Number States' and `Pilot Waves' Hidden in Maxwell's Classical Equations

    NASA Astrophysics Data System (ADS)

    Carroll, John E.

    2010-12-01

    Schrödingers equation with boundary conditions gives quantized energy states for electron waves, but Maxwell's wave equations have quantized states only by analogies with harmonic oscillators. This problem is addressed by a novel theory of wave-packets using diffracting Transverse Electric and Transverse Magnetic fields defined by axial H- and E-fields. All transverse fields and gradient operators can together be rotated about the propagation axis at frequencies, independent of the modal frequency. Without altering the axial fields, any helical motion propagates at the group velocity. This is quite different from single frequency helical modes (e.g. Laguerre Gaussian) travelling at the phase velocity. Reversing time and frequency, allows counter rotating helical solutions. These are referred to as adjoint or a fields that may interact and propagate with the classical causal reference or r fields. Overlapping and counter rotating r and a fields with slightly different frequencies interfere, leaving circular polarization states unaltered and creating a nodal structure in the transverse fields distinct from the nodal structure in the axial fields. Number states arise from requiring that transverse and axial nodes co-locate with integral spacings to form a wave-packet,. The a fields act as pilot waves for future potential positions of a quantized interaction between r and a fields. Uncertainty in the position of the overlap leads to conventional probabilistic quantum interpretations. The a fields are not fully determined until their detection with the r wave and this late determination can offer explanations for non-local entanglement.

  3. Language Individuation and Marker Words: Shakespeare and His Maxwell's Demon

    PubMed Central

    Marsden, John; Budden, David; Craig, Hugh; Moscato, Pablo

    2013-01-01

    Background Within the structural and grammatical bounds of a common language, all authors develop their own distinctive writing styles. Whether the relative occurrence of common words can be measured to produce accurate models of authorship is of particular interest. This work introduces a new score that helps to highlight such variations in word occurrence, and is applied to produce models of authorship of a large group of plays from the Shakespearean era. Methodology A text corpus containing 55,055 unique words was generated from 168 plays from the Shakespearean era (16th and 17th centuries) of undisputed authorship. A new score, CM1, is introduced to measure variation patterns based on the frequency of occurrence of each word for the authors John Fletcher, Ben Jonson, Thomas Middleton and William Shakespeare, compared to the rest of the authors in the study (which provides a reference of relative word usage at that time). A total of 50 WEKA methods were applied for Fletcher, Jonson and Middleton, to identify those which were able to produce models yielding over 90% classification accuracy. This ensemble of WEKA methods was then applied to model Shakespearean authorship across all 168 plays, yielding a Matthews' correlation coefficient (MCC) performance of over 90%. Furthermore, the best model yielded an MCC of 99%. Conclusions Our results suggest that different authors, while adhering to the structural and grammatical bounds of a common language, develop measurably distinct styles by the tendency to over-utilise or avoid particular common words and phrasings. Considering language and the potential of words as an abstract chaotic system with a high entropy, similarities can be drawn to the Maxwell's Demon thought experiment; authors subconsciously favour or filter certain words, modifying the probability profile in ways that could reflect their individuality and style. PMID:23826143

  4. Global smooth flows for compressible Navier-Stokes-Maxwell equations

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Cao, Hongmei

    2016-08-01

    Umeda et al. (Jpn J Appl Math 1:435-457, 1984) considered a rather general class of symmetric hyperbolic-parabolic systems: A0zt+sum_{j=1}nAjz_{xj}+Lz=sum_{j,k=1}nB^{jk}z_{xjxk} and showed optimal decay rates with certain dissipative assumptions. In their results, the dissipation matrices {L} and {B^{jk}(j,k=1,ldots,n)} are both assumed to be real symmetric. So far there are no general results in case that {L} and {B^{jk}} are not necessarily symmetric, which is left open now. In this paper, we investigate compressible Navier-Stokes-Maxwell (N-S-M) equations arising in plasmas physics, which is a concrete example of hyperbolic-parabolic composite systems with non-symmetric dissipation. It is observed that the Cauchy problem for N-S-M equations admits the dissipative mechanism of regularity-loss type. Consequently, extra higher regularity is usually needed to obtain the optimal decay rate of {L1({mathbb{R}}^3)}-{L^2({mathbb{R}}^3)} type, in comparison with that for the global-in-time existence of smooth solutions. In this paper, we obtain the minimal decay regularity of global smooth solutions to N-S-M equations, with aid of {L^p({mathbb{R}}^n)}-{Lq({mathbb{R}}^n)}-{Lr({mathbb{R}}^n)} estimates. It is worth noting that the relation between decay derivative orders and the regularity index of initial data is firstly found in the optimal decay estimates.

  5. Language Individuation and Marker Words: Shakespeare and His Maxwell's Demon.

    PubMed

    Marsden, John; Budden, David; Craig, Hugh; Moscato, Pablo

    2013-01-01

    Within the structural and grammatical bounds of a common language, all authors develop their own distinctive writing styles. Whether the relative occurrence of common words can be measured to produce accurate models of authorship is of particular interest. This work introduces a new score that helps to highlight such variations in word occurrence, and is applied to produce models of authorship of a large group of plays from the Shakespearean era. A text corpus containing 55,055 unique words was generated from 168 plays from the Shakespearean era (16th and 17th centuries) of undisputed authorship. A new score, CM1, is introduced to measure variation patterns based on the frequency of occurrence of each word for the authors John Fletcher, Ben Jonson, Thomas Middleton and William Shakespeare, compared to the rest of the authors in the study (which provides a reference of relative word usage at that time). A total of 50 WEKA methods were applied for Fletcher, Jonson and Middleton, to identify those which were able to produce models yielding over 90% classification accuracy. This ensemble of WEKA methods was then applied to model Shakespearean authorship across all 168 plays, yielding a Matthews' correlation coefficient (MCC) performance of over 90%. Furthermore, the best model yielded an MCC of 99%. Our results suggest that different authors, while adhering to the structural and grammatical bounds of a common language, develop measurably distinct styles by the tendency to over-utilise or avoid particular common words and phrasings. Considering language and the potential of words as an abstract chaotic system with a high entropy, similarities can be drawn to the Maxwell's Demon thought experiment; authors subconsciously favour or filter certain words, modifying the probability profile in ways that could reflect their individuality and style.

  6. The James Clerk Maxwell Telescope Spectral Legacy Survey

    NASA Astrophysics Data System (ADS)

    Plume, R.; Fuller, G. A.; Helmich, F.; van der Tak, F. F. S.; Roberts, H.; Bowey, J.; Buckle, J.; Butner, H.; Caux, E.; Ceccarelli, C.; van Dishoeck, E. F.; Friberg, P.; Gibb, A. G.; Hatchell, J.; Hogerheijde, M. R.; Matthews, H.; Millar, T. J.; Mitchell, G.; Moore, T. J. T.; Ossenkopf, V.; Rawlings, J. M. C.; Richer, J.; Roellig, M.; Schilke, P.; Spaans, M.; Tielens, A. G. G. M.; Thompson, M. A.; Viti, S.; Weferling, B.; White, Glenn J.; Wouterloot, J.; Yates, J.; Zhu, M.

    2007-01-01

    Stars form in the densest, coldest, most quiescent regions of molecular clouds. Molecules provide the only probes that can reveal the dynamics, physics, chemistry, and evolution of these regions, but our understanding of the molecular inventory of sources and how this is related to their physical state and evolution is rudimentary and incomplete. The Spectral Legacy Survey (SLS) is one of seven surveys recently approved by the James Clerk Maxwell Telescope (JCMT) Board of Directors. Beginning in 2007, the SLS will produce a spectral imaging survey of the content and distribution of all the molecules detected in the 345 GHz atmospheric window (between 332 and 373 GHz) toward a sample of five sources. Our intended targets are a low-mass core (NGC 1333 IRAS 4), three high-mass cores spanning a range of star-forming environments and evolutionary states (W49, AFGL 2591, and IRAS 20126), and a photodissociation region (the Orion Bar). The SLS will use the unique spectral imaging capabilities of HARP-B/ACSIS (Heterodyne Array Receiver Programme B/Auto-Correlation Spectrometer and Imaging System) to study the molecular inventory and the physical structure of these objects, which span different evolutionary stages and physical environments and to probe their evolution during the star formation process. As its name suggests, the SLS will provide a lasting data legacy from the JCMT that is intended to benefit the entire astronomical community. As such, the entire data set (including calibrated spectral data cubes, maps of molecular emission, line identifications, and calculations of the gas temperature and column density) will be publicly available.

  7. Information in statistical physics

    NASA Astrophysics Data System (ADS)

    Balian, Roger

    We review with a tutorial scope the information theory foundations of quantum statistical physics. Only a small proportion of the variables that characterize a system at the microscopic scale can be controlled, for both practical and theoretical reasons, and a probabilistic description involving the observers is required. The criterion of maximum von Neumann entropy is then used for making reasonable inferences. It means that no spurious information is introduced besides the known data. Its outcomes can be given a direct justification based on the principle of indifference of Laplace. We introduce the concept of relevant entropy associated with some set of relevant variables; it characterizes the information that is missing at the microscopic level when only these variables are known. For equilibrium problems, the relevant variables are the conserved ones, and the Second Law is recovered as a second step of the inference process. For non-equilibrium problems, the increase of the relevant entropy expresses an irretrievable loss of information from the relevant variables towards the irrelevant ones. Two examples illustrate the flexibility of the choice of relevant variables and the multiplicity of the associated entropies: the thermodynamic entropy (satisfying the Clausius-Duhem inequality) and the Boltzmann entropy (satisfying the H -theorem). The identification of entropy with missing information is also supported by the paradox of Maxwell's demon. Spin-echo experiments show that irreversibility itself is not an absolute concept: use of hidden information may overcome the arrow of time.

  8. Numerical Vlasov-Maxwell modelling of space plasma

    NASA Astrophysics Data System (ADS)

    Eliasson, Bengt Erik

    The Vlasov equation describes the evolution of the distribution function of particles in phase space (x, v), where the particles interact with long-range forces, but where short-range “collisional” forces are neglected. A space plasma consists of low-mass electrically charged particles, and therefore the most important long-range forces acting in the plasma are the Lorentz forces created by electromagnetic fields. What makes the numerical solution of the Vlasov equation a challenging task is that the fully three-dimensional problem leads to a partial differential equation in the six-dimensional phase space, plus time, making it hard even to store a discretised solution in a computer's memory. Solutions to the Vlasov equation have also a tendency of becoming oscillatory in velocity space, due to free streaming terms (ballistic particles), in which steep gradients are created and problems of calculating the ν (velocity) derivative of the function accurately increase with time. In the present thesis, the numerical treatment is limited to one- and two-dimensional systems, leading to solutions in two- and four-dimensional phase space, respectively, plus time. The numerical method developed is based on the technique of Fourier transforming the Vlasov equation in velocity space and then solving the resulting equation, in which the small-scale information in velocity space is removed through outgoing wave boundary conditions in the Fourier transformed velocity space. The Maxwell equations are rewritten in a form which conserves the divergences of the electric and magnetic fields, by means of the Lorentz potentials. The resulting equations are solved numerically by high order methods, reducing the need for numerical over-sampling of the problem. The algorithm has been implemented in Fortran 90, and the code for solving the one-dimensional Vlasov equation has been parallelised by the method of domain decomposition, and has been implemented using the Message Passing

  9. Maxwell perturbations on Kerr-anti-de Sitter: quasinormal modes, superradiant instabilities and vector clouds

    NASA Astrophysics Data System (ADS)

    Wang, Mengjie; Herdeiro, Carlos

    2015-12-01

    Scalar and gravitational perturbations on Kerr-anti-de Sitter (Kerr-AdS) black holes have been addressed in the literature and have been shown to exhibit a rich phenomenology. In this paper we complete the analysis of bosonic fields on this background by studying Maxwell perturbations, focusing on superradiant instabilities and vector clouds. For this purpose, we solve the Teukolsky equations numerically, imposing the boundary conditions we have proposed in\\cite{Wang:2015goa} for the radial Teukolsky equation. As found therein, two Robin boundary conditions can be imposed for Maxwell fields on Kerr-AdS black holes, one of which produces a new set of quasinormal modes even for Schwarzschild-AdS black holes. Here, we show these different boundary conditions produce two different sets of superradiant modes. Interestingly the "new modes" may be unstable in a larger parameter space. We then study stationary Maxwell clouds, that exist at the threshold of the superradiant instability, with the two Robin boundary conditions. These clouds, obtained at the linear level, indicate the existence of a new family of black hole solutions at the nonlinear level, within the Einstein-Maxwell-AdS system, branching off from the Kerr-Newman-AdS family. As a comparison with the Maxwell clouds, scalar clouds on Kerr-AdS black holes are also studied, and it is shown there are Kerr-AdS black holes that are stable against scalar, but not vector modes, with the same "quantum numbers".

  10. On Understanding: Maxwell on the Methods of Illustration and Scientific Metaphor

    NASA Astrophysics Data System (ADS)

    Cat, Jordi

    In this paper I examine the notion and role of metaphors and illustrations in Maxwell's works in exact science as a pathway into a broader and richer philosophical conception of a scientist and scientific practice. While some of these notions and methods are still at work in current scientific research-from economics and biology to quantum computation and quantum field theory-, here I have chosen to attest to their entrenchment and complexity in actual science by attempting to make some conceptual sense of Maxwell's own usage; this endeavour includes situating Maxwell's conceptions and applications in his own culture of Victorian science and philosophy. I trace Maxwell's notions to the formulation of the problem of understanding, or interpreting, abstract representations such as potential functions and Lagrangian equations. I articulate the solution in terms of abstract-concrete relations, where the concrete, in tune with Victorian British psychology and engineering, includes the muscular as well as the pictorial. This sets the basis for a conception of understanding in terms of unification and concrete modelling, or representation. I examine the relation of illustration to analogies and metaphors on which this account rests. Lastly, I stress and explain the importance of context-dependence, its consequences for realism-instrumentalism debates, and Maxwell's own emphasis on method.

  11. General eigenstates of Maxwell's equations in a two-constituent composite medium

    NASA Astrophysics Data System (ADS)

    Bergman, David J.; Farhi, Asaf

    2016-11-01

    Eigenstates of Maxwell's equations in the quasistatic regime were used recently to calculate the response of a Veselago Lens1 to the field produced by a time dependent point electric charge.2, 3 More recently, this approach was extended to calculate the non-quasistatic response of such a lens. This necessitated a calculation of the eigenstates of the full Maxwell equations in a flat slab structure where the electric permittivity ɛ1 of the slab differs from the electric permittivity ɛ2 of its surroundings while the magnetic permeability is equal to 1 everywhere.4 These eigenstates were used to calculate the response of a Veselago Lens to an oscillating point electric dipole source of electromagnetic (EM) waves. A result of these calculations was that, although images with subwavelength resolution are achievable, as first predicted by John Pendry,5 those images appear not at the points predicted by geometric optics. They appear, instead, at points which lie upon the slab surfaces. This is strongly connected to the fact that when ɛ1/ɛ2 = -1 a strong singularity occurs in Maxwell's equations: This value of ɛ1/ɛ2 is a mathemetical accumulation point for the EM eigenvalues.6 Unfortunately, many physicists are unaware of this crucial mathematical property of Maxwell's equations. In this article we describe how the non-quasistatic eigenstates of Maxwell's equations in a composite microstructure can be calculated for general two-constituent microstructures, where both ɛ and μ have different values in the two constituents.

  12. Histoplasmosis Statistics

    MedlinePlus

    ... Treatment & Outcomes Health Professionals Statistics More Resources Candidiasis Candida infections of the mouth, throat, and esophagus Vaginal ... Sources Diagnosis Treatment Statistics Healthcare Professionals More Resources Candida auris General Information about Candida auris Tracking Candida ...

  13. Descriptive statistics.

    PubMed

    Shi, Runhua; McLarty, Jerry W

    2009-10-01

    In this article, we introduced basic concepts of statistics, type of distributions, and descriptive statistics. A few examples were also provided. The basic concepts presented herein are only a fraction of the concepts related to descriptive statistics. Also, there are many commonly used distributions not presented herein, such as Poisson distributions for rare events and exponential distributions, F distributions, and logistic distributions. More information can be found in many statistics books and publications.

  14. Statistical Diversions

    ERIC Educational Resources Information Center

    Petocz, Peter; Sowey, Eric

    2008-01-01

    As a branch of knowledge, Statistics is ubiquitous and its applications can be found in (almost) every field of human endeavour. In this article, the authors track down the possible source of the link between the "Siren song" and applications of Statistics. Answers to their previous five questions and five new questions on Statistics are presented.

  15. Statistical Software.

    ERIC Educational Resources Information Center

    Callamaras, Peter

    1983-01-01

    This buyer's guide to seven major types of statistics software packages for microcomputers reviews Edu-Ware Statistics 3.0; Financial Planning; Speed Stat; Statistics with DAISY; Human Systems Dynamics package of Stats Plus, ANOVA II, and REGRESS II; Maxistat; and Moore-Barnes' MBC Test Construction and MBC Correlation. (MBR)

  16. Thermodynamics and efficiency of an autonomous on-chip Maxwell's demon.

    PubMed

    Kutvonen, Aki; Koski, Jonne; Ala-Nissila, Tapio

    2016-02-18

    In his famous letter in 1870, Maxwell describes how Joule's law can be violated "only by the intelligent action of a mere guiding agent", later coined as Maxwell's demon by Lord Kelvin. In this letter we study thermodynamics of information using an experimentally feasible Maxwell's demon setup based a single electron transistor capacitively coupled to a single electron box, where both the system and the Demon can be clearly identified. Such an engineered on-chip Demon measures and performes feedback on the system, which can be observed as cooling whose efficiency can be adjusted. We present a detailed analysis of the system and the Demon, including the second law of thermodynamics for bare and coarse grained entropy production and the flow of information as well as efficiency of information production and utilization. Our results demonstrate how information thermodynamics can be used to improve functionality of modern nanoscale devices.

  17. Time domain solutions of Maxwell's equations using a finite-volume formulation

    SciTech Connect

    Noack, R.W.; Anderson, D.A. )

    1992-01-01

    A new method for solving Maxwell's equations in the time domain has been developed. The method approximates the integral form of the time-dependent Maxwell's equations using a finite-volume formulation. The method utilizes a staggered mesh and requires boundary conditions on the electric field or the magnetic field but not both. Predictions from the present method have been compared to exact solutions for a full three-dimensional calculation of a sphere and experimental measurements for a generic missile body. These comparisons show that the method is capable of accurately solving the time-dependent Maxwell's equations and yields accurate predictions of the radar cross section for arbitrary geometries. 38 refs.

  18. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  19. Numerical Simulations of Light Bullets, Using the Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  20. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  1. Energy requirement of control: Comments on Szilard's engine and Maxwell's demon

    NASA Astrophysics Data System (ADS)

    Kish, L. B.; Granqvist, C. G.

    2012-06-01

    In mathematical physical analyses of Szilard's engine and Maxwell's demon, a general assumption (explicit or implicit) is that one can neglect the energy needed for relocating the piston in Szilard's engine and for driving the trap door in Maxwell's demon. If this basic assumption is wrong, then the conclusions of a vast literature on the implications of the second law of thermodynamics and of Landauer's erasure theorem are incorrect, too. Our analyses of the fundamental information physical aspects of various types of control within Szilard's engine and Maxwell's demon indicate that the entropy production due to the necessary generation of information yield much greater energy dissipation than the energy Szilard's engine is able to produce even if all sources of dissipation in the rest of these demons (due to measurement, decision, memory, etc.) are neglected.

  2. Quasi-local conserved charges in the Einstein-Maxwell theory

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2017-05-01

    In this paper we consider the Einstein-Maxwell theory and define a combined transformation composed of diffeomorphism and U(1) gauge transformation. For generality, we assume that the generator χ of such transformation is field-dependent. We define the extended off-shell ADT current and then off-shell ADT charge such that they are conserved off-shell for the asymptotically field-dependent symmetry generator χ. Then, we define the conserved charge corresponding to the asymptotically field-dependent symmetry generator χ. We apply the presented method to find the conserved charges of the asymptotically AdS3 spacetimes in the context of the Einstein-Maxwell theory in three dimensions. Although the usual proposal for the quasi local charges provides divergent global charges for the Einstein-Maxwell theory with negative cosmological constant in three dimensions, here we avoid this problem by introducing proposed combined transformation χ

  3. Upscaling for the time-harmonic Maxwell equations with heterogeneous magnetic materials

    NASA Astrophysics Data System (ADS)

    Eberhard, Jens P.

    2005-09-01

    This paper presents a theoretical method for the upscaling of the time-harmonic Maxwell equations. We use the eddy current approximation of the Maxwell equations to describe the fields in heterogeneous materials. The magnetic permeability of the media is assumed to have random heterogeneities given by a Gaussian random field. The upscaling is based on the coarse graining method which applies projections and Green’s function formalism in Fourier space to scale the electric field. An upscaled Maxwell equation is derived which includes an effective magnetic permeability tensor. The effective permeability explicitly depends on the given scale for the upscaling. The scale-dependent permeability is calculated by a second-order perturbative expansion, and we discuss the future verification and the application of the results.

  4. Ludwig Boltzmann als Experimentalphysiker: Frühe Bestätigung der Maxwell-Theorie

    NASA Astrophysics Data System (ADS)

    Rumpf, Klemens; Granitzer, Petra

    2006-09-01

    Am Beispiel von Boltzmanns Experimenten zur Bestätigung der Maxwell-Theorie wird dessen hervorragende Begabung auch als Experimentalphysiker deutlich. Die dargestellten Arbeiten fanden etwa 15 Jahre vor den Hertzschen Experimenten statt, zu einem Zeitpunkt also, als die noch junge Maxwell-Theorie dringend experimenteller Bestätigung bedurfte. Boltzmann konnte mit seinen experimentellen Untersuchungen eine direkte Konsequenz der Maxwellschen elektromagnetischen Theorie, die so genannte Maxwell-Relation, bestätigen. Seine Experimente stellten nicht nur lange Zeit den stärksten Beleg für die Richtigkeit der Maxwellschen Lichttheorie dar, sondern waren eine experimentelle Spitzenleistung an der Grenze des damals Möglichen. Besonders Boltzmanns Bestimmung der Dielektrizitätskonstanten von Gasen fand noch Jahrzehnte später Erwähnung in namhaften Lehrbüchern.

  5. Stress field models from Maxwell stress functions: southern California

    NASA Astrophysics Data System (ADS)

    Bird, Peter

    2017-08-01

    The lithospheric stress field is formally divided into three components: a standard pressure which is a function of elevation (only), a topographic stress anomaly (3-D tensor field) and a tectonic stress anomaly (3-D tensor field). The boundary between topographic and tectonic stress anomalies is somewhat arbitrary, and here is based on the modeling tools available. The topographic stress anomaly is computed by numerical convolution of density anomalies with three tensor Green's functions provided by Boussinesq, Cerruti and Mindlin. By assuming either a seismically estimated or isostatic Moho depth, and by using Poisson ratio of either 0.25 or 0.5, I obtain four alternative topographic stress models. The tectonic stress field, which satisfies the homogeneous quasi-static momentum equation, is obtained from particular second derivatives of Maxwell vector potential fields which are weighted sums of basis functions representing constant tectonic stress components, linearly varying tectonic stress components and tectonic stress components that vary harmonically in one, two and three dimensions. Boundary conditions include zero traction due to tectonic stress anomaly at sea level, and zero traction due to the total stress anomaly on model boundaries at depths within the asthenosphere. The total stress anomaly is fit by least squares to both World Stress Map data and to a previous faulted-lithosphere, realistic-rheology dynamic model of the region computed with finite-element program Shells. No conflict is seen between the two target data sets, and the best-fitting model (using an isostatic Moho and Poisson ratio 0.5) gives minimum directional misfits relative to both targets. Constraints of computer memory, execution time and ill-conditioning of the linear system (which requires damping) limit harmonically varying tectonic stress to no more than six cycles along each axis of the model. The primary limitation on close fitting is that the Shells model predicts very sharp

  6. Harmonic statistics

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2017-05-01

    The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their 'public relations' for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford's law, and 1/f noise.

  7. - criticality of AdS black hole in the Einstein-Maxwell-power-Yang-Mills gravity

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Yang, Zhan-Ying; Zou, De-Cheng; Xu, Wei; Yue, Rui-Hong

    2015-02-01

    We study the - critical behaivor of N-dimensional AdS black holes in Einstein-Maxwell-power-Yang-Mills gravity. Our results show the existence of the Van der Waals like small-large black hole phase transitions when taking some special values of charges of the Maxwell and Yang-Mills fields. Further to calculate the critical exponents of the black holes at the critical point, we find that they are the same as those in the Van der Waals liquid-gas system.

  8. Electromagnetic duality symmetry and helicity conservation for the macroscopic Maxwell's equations.

    PubMed

    Fernandez-Corbaton, Ivan; Zambrana-Puyalto, Xavier; Tischler, Nora; Vidal, Xavier; Juan, Mathieu L; Molina-Terriza, Gabriel

    2013-08-09

    In this Letter, we show that the electromagnetic duality symmetry, broken in the microscopic Maxwell's equations by the presence of charges, can be restored for the macroscopic Maxwell's equations. The restoration of this symmetry is shown to be independent of the geometry of the problem. These results provide a tool for the study of light-matter interactions within the framework of symmetries and conservation laws. We illustrate its use by determining the helicity content of the natural modes of structures possessing spatial inversion symmetries and by elucidating the root causes for some surprising effects in the scattering off magnetic spheres.

  9. Exact helicoidal and catenoidal solutions in five- and higher-dimensional Einstein-Maxwell theory

    NASA Astrophysics Data System (ADS)

    Ghezelbash, A. M.; Kumar, V.

    2017-06-01

    We present several new exact solutions in five- and higher-dimensional Einstein-Maxwell theory by embedding the Nutku instanton. The metric functions for the five-dimensional solutions depend only on a radial coordinate and on two spatial coordinates for the six- and higher-dimensional solutions. The six- and higher-dimensional metric functions are convolutedlike integrals of two special functions. We find that the solutions are regular almost everywhere and some spatial sections of the solution describe wormhole handles. We also find a class of exact and nonstationary convolutedlike solutions to the Einstein-Maxwell theory with a cosmological constant.

  10. Stabilized Interior Penalty Methods for the Time-Harmonic Maxwell Equations

    DTIC Science & Technology

    2001-08-31

    Stabilized interior penalty methods for the time-harmonic Maxwell equations I. Perugia D. Schötzau P. Monk Dipartimento di Matematica ...eigenvalue (see also Proposition 1 below), i.e., for any +CDB , the pair FE 1 3 =: is not an eigensolution of the problem )G*H, . 0 )G* I EJ4 0...problem (3)–(6). Proposition 1 Assume that 1 3 is not a Maxwell eigenvalue. Then problem (3)–(6) has a unique solution /! : U ; #465%78 + VQN

  11. Symmetric space property and an inverse scattering formulation of the SAS Einstein--Maxwell field equations

    SciTech Connect

    Eris, A.; Guerses, M.; Karasu, A.

    1984-05-01

    We formulate stationary axially symmetric (SAS) Einstein--Maxwell fields in the framework of harmonic mappings of Riemannian manifolds and show that the configuration space of the fields is a symmetric space. This result enables us to embed the configuration space into an eight-dimensional flat manifold and formulate SAS Einstein--Maxwell fields as a sigma-model. We then give, in a coordinate free way, a Belinskii--Zakharov type of an inverse scattering transform technique for the field equations supplemented by a reduction scheme similar to that of Zakharov--Mikhailov and Mikhailov--Yarimchuk.

  12. The Maxwell Montes region, surveyed by the Venera 15, Venera 16 orbiters

    NASA Astrophysics Data System (ADS)

    Kotelnikov, V. A.; Akim, E. L.; Aleksandrov, Y. N.; Armand, N. A.; Bazilevskij, A. T.; Bogomolov, A. F.; Vyshlov, A. S.; Dubrovin, V. M.; Zherikhin, N. V.; Zakharov, A. I.; Zimov, V. E.; Kaevitser, V. I.; Kovtunenko, V. M.; Kremnev, R. S.; Krivtsov, A. P.; Krylov, G. A.; Krymov, A. A.; Kucheryavenkova, I. L.; Molotov, E. P.; Petrov, G. M.; Rzhiga, O. N.; Selivanov, A. S.; Sidorenko, A. I.; Sinilo, V. P.; Sknarya, A. V.; Sokolov, G. A.; Sorokin, V. P.; Sukhanov, K. G.; Tikhonov, V. F.; Tyuflin, Y. S.; Feldman, B. Y.; Shakhovskoj, A. M.; Shubin, V. A.

    1984-12-01

    Between November 1983 and July 1984 the radar systems on the Venera 15 and 16 orbiters mapped much of the Venus northern hemisphere at high resolution. In particular, Maxwell Montes (the highest range on Venus) and a large part of the surrounding terrain exhibit horizontal tectonic deformations of compressive origin resembling mountain folds on the earth. The plains contiguous to Maxwell Montes may comprise basaltic extrusions, like the maria found on other terrestrial planets and the moon. The 100-km depression called Patera Cleopatra actually has a structure analogous to double-ring impact craters rather than volcanic calderas.

  13. Multivariate and matrix-variate analogues of Maxwell-Boltzmann and Raleigh densities

    NASA Astrophysics Data System (ADS)

    Mathai, A. M.; Princy, T.

    2017-02-01

    The Maxwell-Boltzmann and Raleigh densities are basic densities in many problems in Physics. A multivariate analogue and a rectangular matrix-variate analogue of these densities are explored in this article. The results may become useful in extending the usual theories, where these densities for the real scalar variable case occur, to multivariate and matrix variable situations. Various properties are studied and connection to the volumes of parallelotopes determined by p linearly independent random points in Euclidean n-space, n ≥ p, is also established. Structural decompositions of these random determinants and pathway extensions of Maxwell-Boltzmann and Raleigh densities are also considered.

  14. Continuous Galerkin methods for solving the time-dependent Maxwell equations in 3D geometries

    NASA Astrophysics Data System (ADS)

    Ciarlet, Patrick, Jr.; Jamelot, Erell

    2007-09-01

    A few years ago, Costabel and Dauge proposed a variational setting, which allows one to solve numerically the time-harmonic Maxwell equations in 3D geometries with the help of a continuous approximation of the electromagnetic field. In this paper, we investigate how their framework can be adapted to compute the solution to the time-dependent Maxwell equations. In addition, we propose some extensions, such as the introduction of a mixed variational setting and its discretization, to handle the constraint on the divergence of the field.

  15. 3-D Maxwell fluid flow over an exponentially stretching surface using 3-stage Lobatto IIIA formula

    NASA Astrophysics Data System (ADS)

    Awais, M.; Hayat, T.; Ali, Aamir

    2016-05-01

    The present study looks at the three dimensional boundary layer flow driven by an exponentially stretching surface. An upper-convected Maxwell (UCM) fluid is considered. Characteristics here are characterized by rheological constitutive equations of upper convected Maxwell (UCM) fluid. Involved mathematical modeling constitutes a nonlinear differential system. 3-stage Lobatto IIIA formula is employed to construct the numerical solutions whereas analytic solutions are computed using HAM. Both solutions are compared and found in good agreement. The velocity components are analyzed for the Deborah number and ratio parameters.

  16. Static Einstein-Maxwell Black Holes with No Spatial Isometries in AdS Space.

    PubMed

    Herdeiro, Carlos A R; Radu, Eugen

    2016-11-25

    We explicitly construct static black hole solutions to the fully nonlinear, D=4, Einstein-Maxwell-anti-de Sitter (AdS) equations that have no continuous spatial symmetries. These black holes have a smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically, global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell-AdS solitons recently discovered, for appropriate boundary data. In sharp contrast to the uniqueness results for a Minkowski electrovacuum, the existence of these black holes shows that single, equilibrium, black hole solutions in an AdS electrovacuum admit an arbitrary multipole structure.

  17. A nonmolecular derivation of Maxwell's thermal-creep boundary condition in gases and liquids via application of the LeChatelier-Braun principle to Maxwell's thermal stress

    NASA Astrophysics Data System (ADS)

    Brenner, Howard

    2009-05-01

    According to the LeChatelier-Braun principle, when a closed quiescent system initially in an equilibrium or unstressed steady state is subjected to an externally imposed "stress" it responds in a manner tending to alleviate that stress. Use of this entropically based qualitative rule, in combination with the notion of Maxwell thermal stresses existing in nonisothermal gases and liquids, enables one to (i) derive Maxwell's thermal-creep boundary condition prevailing at the boundary between a solid and a fluid (either gas or liquid) and (ii) rationalize the phenomenon of thermophoresis in liquids, for which, in contrast with the case of gases, an elementary explanation is currently lacking. These two objectives are achieved by quantitatively interpreting the heretofore qualitative LeChatelier-Braun notion of stress in the present context as being the fluid's stress tensor, the latter including Maxwell's thermal stress. In effect, thermophoretic particle motion is interpreted as the manifestation of the fluid's attempt to expel the particle from its interior so as to alleviate the thermal stress that would otherwise ensue were the particle to remain at rest (thus obeying the traditional no slip rather than thermal-creep boundary condition) following its introduction into the previously stress-free quiescent fluid. With Kn the Knudsen number in the case of rarefied gases, Maxwell's thermal stress constitutes a noncontinuum phenomenon of O(Kn2), whereas his thermal-creep phenomenon constitutes a continuum phenomenon of O(Kn). That these two phenomena can, nevertheless, be proved to be synonymous (in the sense, so to speak, of being two sides of the same coin), as is done in the present paper, supports the "ghost effect" findings of Sone [Y. Sone, "Flows induced by temperature fields in a rarefied gas and their ghost effect on the behavior of a gas in the continuum limit," Annu. Rev. Fluid Mech 32, 779 (2000)], which, philosophically, imply the artificiality of the

  18. Comparative study of sea ice dynamics simulations with a Maxwell elasto-brittle rheology and the elastic-viscous-plastic rheology in NEMO-LIM3

    NASA Astrophysics Data System (ADS)

    Raulier, Jonathan; Dansereau, Véronique; Fichefet, Thierry; Legat, Vincent; Weiss, Jérôme

    2017-04-01

    Sea ice is a highly dynamical environment characterized by a dense mesh of fractures or leads, constantly opening and closing over short time scales. This characteristic geomorphology is linked to the existence of linear kinematic features, which consist of quasi-linear patterns emerging from the observed strain rate field of sea ice. Standard rheologies used in most state-of-the-art sea ice models, like the well-known elastic-viscous-plastic rheology, are thought to misrepresent those linear kinematic features and the observed statistical distribution of deformation rates. Dedicated rheologies built to catch the processes known to be at the origin of the formation of leads are developed but still need evaluations on the global scale. One of them, based on a Maxwell elasto-brittle formulation, is being integrated in the NEMO-LIM3 global ocean-sea ice model (www.nemo-ocean.eu; www.elic.ucl.ac.be/lim). In the present study, we compare the results of the sea ice model LIM3 obtained with two different rheologies: the elastic-viscous-plastic rheology commonly used in LIM3 and a Maxwell elasto-brittle rheology. This comparison is focused on the statistical characteristics of the simulated deformation rate and on the ability of the model to reproduce the existence of leads within the ice pack. The impact of the lead representation on fluxes between ice, atmosphere and ocean is also assessed.

  19. 77 FR 46114 - Notice of Intent to Repatriate Cultural Items: Maxwell Museum of Anthropology, University of New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ...-1100-665] Notice of Intent to Repatriate Cultural Items: Maxwell Museum of Anthropology, University of... Maxwell Museum of Anthropology, in consultation with the Pueblo of Santa Ana, New Mexico, has determined... Anthropology at the address below by September 4, 2012. ADDRESSES: David Phillips, Curator of Archaeology...

  20. Optical Nonlinear Wakefield Vortices: Results from Full-Wave Vector Maxwell Equation Simulations in Two Spatial Dimensions and Time,

    DTIC Science & Technology

    In this paper we report the first multi-dimensional, full-wave, vector Maxwell’s equation solutions to problems describing the interaction of ultra...time domain (NL-FDTD) method which combines a nonlinear generalization of a standard, FDTD, full-wave, vector, linear Maxwell’s equation solver with

  1. Aluminum honeycomb reflector panels on James Clerk Maxwell Telescope

    NASA Astrophysics Data System (ADS)

    Greenhalgh, R. Justin S.

    1993-10-01

    The accuracy requirements and design philosophy of the JCMT reflector structure are briefly reviewed, leading to a steel space-frame with separate reflector panels. The choice of material for the panels is discussed, with particular emphasis on the properties of aluminum honeycomb composites. The development of the manufacturing process and the details of the process are described. Finally, statistics on the results of the manufacturing process are given.

  2. Statistical Diversions

    ERIC Educational Resources Information Center

    Petocz, Peter; Sowey, Eric

    2008-01-01

    In this article, the authors focus on hypothesis testing--that peculiarly statistical way of deciding things. Statistical methods for testing hypotheses were developed in the 1920s and 1930s by some of the most famous statisticians, in particular Ronald Fisher, Jerzy Neyman and Egon Pearson, who laid the foundations of almost all modern methods of…

  3. Cancer Statistics

    MedlinePlus

    ... of cancer on the population and to develop strategies to address the challenges that cancer poses to the society at large. Statistical trends are also important for measuring the success of efforts to control and manage cancer. Statistics at a Glance: The ...

  4. Statistical Diversions

    ERIC Educational Resources Information Center

    Petocz, Peter; Sowey, Eric

    2008-01-01

    In this article, the authors focus on hypothesis testing--that peculiarly statistical way of deciding things. Statistical methods for testing hypotheses were developed in the 1920s and 1930s by some of the most famous statisticians, in particular Ronald Fisher, Jerzy Neyman and Egon Pearson, who laid the foundations of almost all modern methods of…

  5. Maxwell's Relations for a van der Waals Gas and a Nuclear Paramagnetic System.

    ERIC Educational Resources Information Center

    Herlihy, James; And Others

    1981-01-01

    Since Maxwell's relations are derived in general form from the first to second laws, and students often wonder what they mean and how they are used, appropriate partition functions for van der Waals gas and the nuclear paramagnetic system are used to obtain entropy expressions and equations of state. (Author/SK)

  6. Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction

    NASA Astrophysics Data System (ADS)

    Goutéraux, Blaise; Smolic, Jelena; Smolic, Milena; Skenderis, Kostas; Taylor, Marika

    2012-01-01

    We show that a class of Einstein-Maxwell-Dilaton (EMD) theories are re- lated to higher dimensional AdS-Maxwell gravity via a dimensional reduction over com- pact Einstein spaces combined with continuation in the dimension of the compact space to non-integral values (`generalized dimensional reduction'). This relates (fairly complicated) black hole solutions of EMD theories to simple black hole/brane solutions of AdS-Maxwell gravity and explains their properties. The generalized dimensional reduction is used to infer the holographic dictionary and the hydrodynamic behavior for this class of theories from those of AdS. As a specific example, we analyze the case of a black brane carrying a wave whose universal sector is described by gravity coupled to a Maxwell field and two neutral scalars. At thermal equilibrium and finite chemical potential the two operators dual to the bulk scalar fields acquire expectation values characterizing the breaking of con- formal and generalized conformal invariance. We compute holographically the first order transport coefficients (conductivity, shear and bulk viscosity) for this system.

  7. Self-dual Maxwell-Chern-Simons solitons from a Lorentz-violating model

    NASA Astrophysics Data System (ADS)

    Casana, Rodolfo; Sourrouille, Lucas

    2013-10-01

    Self-dual abelian Higgs system, involving both the Maxwell and Chern-Simons terms are obtained from Carroll-Field-Jackiw theory by dimensional reduction. Bogomol'nyi-type equations are studied from theoretical and numerical point of view. In particular, we show that the solutions of these equations are Nielsen-Olesen vortices with electric charge.

  8. BPS Maxwell-Chern Vortices in a Lorentz-Violating Framework

    NASA Astrophysics Data System (ADS)

    Casana, R.; Ferreira, M. M.; Hora, E. Da; Neves, A. B. F.

    2014-01-01

    We have analyzed Maxwell-Chern-Simons-Higgs BPS vortices in a Lorentz-violating CPT-odd context. The Lorentz violation induces profiles with a conical behavior at the origin. For some combination of the coefficients for Lorentz violation there always exists a sufficiently large winding number for which the magnetic field flips its sign.

  9. Maxwell-Higgs self-dual solitons on an infinite cylinder

    NASA Astrophysics Data System (ADS)

    Casana, Rodolfo; Sourrouille, Lucas

    2015-07-01

    We have studied the Maxwell-Higgs model on the surface of an infinite cylinder. In particular, we show that this model supports self-dual topological soliton solutions on the infinite tube. Finally, the Bogomol’nyi-type equations are studied from theoretical and numerical point of view.

  10. The Space-Time CE/SE Method for Solving Maxwell's Equations in Time-Domain

    NASA Technical Reports Server (NTRS)

    Wang, X. Y.; Chen, C. L.; Liu, Yen

    2002-01-01

    An innovative finite-volume-type numerical method named as the space-time conservation element and solution element (CE/SE) method is applied to solve time-dependent Maxwell's equations in this paper. Test problems of electromagnetics scattering and antenna radiation are solved for validations. Numerical results are presented and compared with the analytical solutions, showing very good agreements.

  11. A Problem and Its Solution Involving Maxwell's Equations and an Inhomogeneous Medium.

    ERIC Educational Resources Information Center

    Williamson, W., Jr.

    1980-01-01

    Maxwell's equation are solved for an inhomogeneous medium which has a coordinate-dependent dielectric function. The problem and its solutions are given in a format which should make it useful as an intermediate or advanced level problem in an electrodynamics course. (Author/SK)

  12. A numerical Maxwell Schrödinger model for intense laser matter interaction and propagation

    NASA Astrophysics Data System (ADS)

    Lorin, E.; Chelkowski, S.; Bandrauk, A.

    2007-12-01

    We present in this paper an original ab initio Maxwell-Schrödinger model and a methodology to simulate intense ultrashort laser pulses interacting with a 3D H +2-gas in the nonlinear nonperturbative regime under and beyond Born-Oppenheimer approximation. The model we present is the first one to our knowledge (excepted in [E. Lorin, S. Chelkowski, A. Bandrauk, A Maxwell-Schrödinger model for non-perturbative laser-molecule interaction and some methods of numerical computation, Proceeding CRM, vol. 41, American Mathematics Society, 2007], where a one-dimensional version is presented) to be totally nonperturbative, vectorial and multidimensional, taking into account ionization, and high order nonlinearities going far beyond classical nonlinear Maxwell or Schrödinger models. After a presentation of the model and a short mathematical study, we examine some numerical approximations for its computation. In particular, we focus on the polarization computation allowing an efficient coupling between the Maxwell and time dependent Schrödinger equations (TDSE), and on an efficient parallelization. Examples of numerical computations of high order harmonic generation and of electric field propagation are presented for one molecule and up to 512, thus highlighting cooperative effects in harmonic generation at high order.

  13. Analysis of a three phase induction motor directly from Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Shayak

    2012-01-01

    The torque developed in a three phase AC squirrel cage motor is usually expressed in terms of resistances and reactances of the stator, the rotor, and the motor as a whole. We use Maxwell's equations to find the torque in terms of geometrical parameters. This formulation allows us to estimate the torque developed by a motor without knowing the details of its circuitry.

  14. Series Solution for Rotating Flow of an Upper Convected Maxwell Fluid over a Stretching Sheet

    NASA Astrophysics Data System (ADS)

    Sajid, M.; Z., Iqbal; Hayat, T.; Obaidat, S.

    2011-10-01

    The equations for two-dimensional flow of an upper convected Maxwell (UCM) fluid in a rotating frame are modeled. The resulting equations are first simplified by a boundary layer approach and then solved by a homotopy analysis method (HAM). Convergence of series solution is discussed through residual error curves. The results of the influence of viscoelastic and rotation parameters are plotted and discussed.

  15. An Exact Solution of Einstein-Maxwell Gravity Coupled to a Scalar Field

    NASA Technical Reports Server (NTRS)

    Turyshev, S. G.

    1995-01-01

    The general solution to low-energy string theory representing static spherically symmetric solution of the Einstein-Maxwell gravity with a massless scalar field has been found. Some of the partial cases appear to coincide with known solutions to black holes, naked singularities, and gravity and electromagnetic fields.

  16. Fermions Tunneling from Non-Stationary Dilaton-Maxwell Black Hole via General Tortoise Coordinate Transformation

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Yang, Shu-Zheng

    2009-10-01

    Fermions tunneling of the non-stationary Dilaton-Maxwell black hole is investigated with general tortoise coordinate transformation. The Dirac equation is simplified by semiclassical approximation so that the Hamilton-Jacobi equation is generated. Finally the tunneling rate and the Hawking temperature is calculated.

  17. 3D FEM-BEM-coupling method to solve magnetostatic Maxwell equations

    NASA Astrophysics Data System (ADS)

    Bruckner, Florian; Vogler, Christoph; Feischl, Michael; Praetorius, Dirk; Bergmair, Bernhard; Huber, Thomas; Fuger, Markus; Suess, Dieter

    2012-05-01

    3D magnetostatic Maxwell equations are solved using the direct Johnson-Nédélec FEM-BEM coupling method and a reduced scalar potential approach. The occurring BEM matrices are calculated analytically and approximated by H-matrices using the ACA+ algorithm. In addition a proper preconditioning method is suggested that allows to solve large-scale problems using iterative solvers.

  18. Simple Derivation of the Maxwell Stress Tensor and Electrostrictive Effects in Crystals

    ERIC Educational Resources Information Center

    Juretschke, H. J.

    1977-01-01

    Shows that local equilibrium and energy considerations in an elastic dielectric crystal lead to a simple derivation of the Maxwell stress tensor in anisotropic dielectric solids. The resulting equilibrium stress-strain relations are applied to determine the deformations of a charged parallel plate capacitor. (MLH)

  19. Reply to Comment on ``Maxwell, Electromagnetism, and Fluid Flow in Resistive Media''

    NASA Astrophysics Data System (ADS)

    Narasimhan, T. N.

    2004-04-01

    Glenn Brown takes issue with my statement, ``It is hoped that Maxwell's contribution to the foundations of fluids in porous media will receive due attention, and that his novel approach will lead to new insights.'' He considers that, because Maxwell did not explicitly develop his theory for fluid flow in porous media, his ideas should not be treated as a contribution in that area. Brown contends that doing so is a disservice to Darcy, and is revisionist. Brown and I differ in the way we perceive science. He looks at the material I have presented from an ideological perspective of upholding Darcy's position in history. On the other hand, I do not question Darcy's valid contribution. Rather, I presented some of Maxwell's fascinating ideas that are relevant to the study of fluid flow in porous media, published in the same year Darcy published his seminal work. I have shown that the relevance of Maxwell's ideas to flow in porous media has gone unnoticed in the literature. Scientists are fallible human beings, and important ideas and thoughts are occasionally overlooked. When, on a rare occasion, we chance upon such an oversight, it is part of our scientific enterprise to bring the finding to the attention of the scientific community. It is up to the community to judge the historical significance of the new information.

  20. The Space-Time CE/SE Method for Solving Maxwell's Equations in Time-Domain

    NASA Technical Reports Server (NTRS)

    Wang, X. Y.; Chen, C. L.; Liu, Yen

    2002-01-01

    An innovative finite-volume-type numerical method named as the space-time conservation element and solution element (CE/SE) method is applied to solve time-dependent Maxwell's equations in this paper. Test problems of electromagnetics scattering and antenna radiation are solved for validations. Numerical results are presented and compared with the analytical solutions, showing very good agreements.

  1. Least-Squares Approaches for the Time-Dependent Maxwell Equations

    SciTech Connect

    Zhiquiang, C; Jones, J

    2001-12-01

    When the author was at CASC in LLNL during the period between July and December of last year, he was working on two research topics: (1) least-squares approaches for elasticity and Maxwell equations and (2) high-accuracy approximations for non-smooth problems.

  2. Simple Derivation of the Maxwell Stress Tensor and Electrostrictive Effects in Crystals

    ERIC Educational Resources Information Center

    Juretschke, H. J.

    1977-01-01

    Shows that local equilibrium and energy considerations in an elastic dielectric crystal lead to a simple derivation of the Maxwell stress tensor in anisotropic dielectric solids. The resulting equilibrium stress-strain relations are applied to determine the deformations of a charged parallel plate capacitor. (MLH)

  3. An Exact Solution of Einstein-Maxwell Gravity Coupled to a Scalar Field

    NASA Technical Reports Server (NTRS)

    Turyshev, S. G.

    1995-01-01

    The general solution to low-energy string theory representing static spherically symmetric solution of the Einstein-Maxwell gravity with a massless scalar field has been found. Some of the partial cases appear to coincide with known solutions to black holes, naked singularities, and gravity and electromagnetic fields.

  4. A Problem and Its Solution Involving Maxwell's Equations and an Inhomogeneous Medium.

    ERIC Educational Resources Information Center

    Williamson, W., Jr.

    1980-01-01

    Maxwell's equation are solved for an inhomogeneous medium which has a coordinate-dependent dielectric function. The problem and its solutions are given in a format which should make it useful as an intermediate or advanced level problem in an electrodynamics course. (Author/SK)

  5. Maxwell's Relations for a van der Waals Gas and a Nuclear Paramagnetic System.

    ERIC Educational Resources Information Center

    Herlihy, James; And Others

    1981-01-01

    Since Maxwell's relations are derived in general form from the first to second laws, and students often wonder what they mean and how they are used, appropriate partition functions for van der Waals gas and the nuclear paramagnetic system are used to obtain entropy expressions and equations of state. (Author/SK)

  6. On the Lagrangian theory for rotating charge in the Maxwell field

    NASA Astrophysics Data System (ADS)

    Imaykin, Valeriy; Komech, Alexander; Spohn, Herbert

    2015-01-01

    We justify the Hamilton least action principle for the Maxwell-Lorentz equations coupled with the equations of motion of Abraham's rotating extended electron. The main novelty in the proof is the application of the variational Poincaré equations on the Lie group SO (3).

  7. Statistical ring current of Saturn

    NASA Astrophysics Data System (ADS)

    Carbary, J. F.; Achilleos, N.; Arridge, C. S.

    2012-06-01

    The statistical ring current of Saturn has been determined from the curl of the median magnetic field derived from over 5 years of observations of the Cassini magnetometer. The main issue addressed here is the calculation of the statistical ring current of Saturn by directly computing, for the first time, the symmetrical part of the ring current J from the Maxwell equation ∇ × B = μ0J from assembling the perturbation magnetic field B from 2004 through 2010. This study validates previous studies, based on fewer data and not using ∇ × B, and shows that the ring current flows eastward (in the +ϕ or corotation direction) and extends from ˜3 RS to at least ˜20 RS (1 RS = 60,268 km), which is the vicinity of the dayside magnetopause; that the ring current has a peak strength of ˜75 pA/m2 at ˜9.5 RS; and that the ring current has a half-width of ˜1.5 RS. Two outcomes of this study are that the ring current bends northward, as suggested by the “bowl” model of Saturn's plasma sheet, and that the total ring current is 9.2 ± 1.0 MA. In the context of future endeavors, the statistical ring current presented here can be used for calculations of the magnetic field of Saturn for particle drifts, field line mapping, and J × B force.

  8. Using molecular dynamics to obtain Maxwell-Stefan diffusion coefficients in liquid systems

    NASA Astrophysics Data System (ADS)

    van de Ven-Lucassen Thijs, Irma M. J. J.; Vlugt Antonius, J. H.; van der Zanden Piet, J. J.; Kerkhof, J. A. M.

    Two methods are compared for the calculation of Maxwell-Stefan diffusion coefficients. The first method is a non-equilibrium molecular dynamics (NEMD) algorithm, in which the system is driven away from equilibrium and the system response is monitored. The second method is the equilibrium molecular dynamics (EMD) calculation of the appropriate GreenKubo equation. Simulations were performed for systems of 250 and 300 Lennard-Jones particles at various densities and temperatures. The systems were divided into two or three components by attaching a colour label to the particles. Since a colour label plays no role in the dynamics, the Maxwell-Stefan diffusion coefficients of the binary and ternary systems are equal to the self-diffusion coefficient. In dense fluids, the system response to an external perturbation is not a first-order process, and the diffusion coefficients cannot be determined from the short term response in the NEMD method. Only the long term response can be used, after a steady state has been reached. In binary systems the Maxwell-Stefan diffusion coefficients, determined by the Green-Kubo (EMD) method, are more accurate than the NEMD coefficients. Since in the NEMD method only the long term response can be used, the GreenKubo method is also less time consuming and is therefore preferred for the calculation of the Maxwell-Stefan diffusion coefficients. In ternary systems the Green-Kubo method is tested for the 250 particle system. The Maxwell-Stefan diffusion coefficients agree well with the selfdiffusion coefficient. For low mole fractions of the coloured components the diffusion coefficients were less accurate.

  9. Statistics Clinic

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan H.; Foy, Millennia; Ploutz-Snyder, Robert; Fiedler, James

    2014-01-01

    Do you have elevated p-values? Is the data analysis process getting you down? Do you experience anxiety when you need to respond to criticism of statistical methods in your manuscript? You may be suffering from Insufficient Statistical Support Syndrome (ISSS). For symptomatic relief of ISSS, come for a free consultation with JSC biostatisticians at our help desk during the poster sessions at the HRP Investigators Workshop. Get answers to common questions about sample size, missing data, multiple testing, when to trust the results of your analyses and more. Side effects may include sudden loss of statistics anxiety, improved interpretation of your data, and increased confidence in your results.

  10. Quick Statistics

    MedlinePlus

    ... population, or about 25 million Americans, has experienced tinnitus lasting at least five minutes in the past ... by NIDCD Epidemiology and Statistics Program staff: (1) tinnitus prevalence was obtained from the 2008 National Health ...

  11. Under the influence of Malthus's law of population growth: Darwin eschews the statistical techniques of Aldolphe Quetelet.

    PubMed

    Ariew, André

    2007-03-01

    Charles Darwin, James Clerk Maxwell, and Francis Galton were all aware, by various means, of Aldolphe Quetelet's pioneering work in statistics. Darwin, Maxwell, and Galton all had reason to be interested in Quetelet's work: they were all working on some instance of how large-scale regularities emerge from individual events that vary from one another; all were rejecting the divine interventionistic theories of their contemporaries; and Quetelet's techniques provided them with a way forward. Maxwell and Galton all explicitly endorse Quetelet's techniques in their work; Darwin does not incorporate any of the statistical ideas of Quetelet, although natural selection post-twentieth century synthesis has. Why not Darwin? My answer is that by the time Darwin encountered Malthus's law of excess reproduction he had all he needed to answer about large scale regularities in extinctions, speciation, and adaptation. He didn't need Quetelet.

  12. Statistical origin and properties of kappa distributions

    NASA Astrophysics Data System (ADS)

    Livadiotis, George

    2017-09-01

    Classical particle systems reside at thermal equilibrium with their velocity distribution function stabilized into a Maxwell distribution. On the contrary, collisionless and correlated particle systems, such as space and astrophysical plasmas, are characterized by a non-Maxwellian behavior, typically described by kappa distributions, or combinations thereof. Empirical kappa distributions have become increasingly widespread across space and plasma physics. A breakthrough in the field came with the connection of kappa distributions to non-extensive statistical mechanics. Understanding the statistical origin of kappa distributions was the cornerstone of further theoretical developments and applications, namely, (i) the concept of temperature; (ii) the physical meaning of the kappa index; (iii) the N-particle description of kappa distributions; and the (iv) the generalization to phase-space kappa distribution of a Hamiltonian with non-zero potential.

  13. Statistical Fun

    ERIC Educational Resources Information Center

    Catley, Alan

    2007-01-01

    Following the announcement last year that there will be no more math coursework assessment at General Certificate of Secondary Education (GCSE), teachers will in the future be able to devote more time to preparing learners for formal examinations. One of the key things that the author has learned when teaching statistics is that it makes for far…

  14. Statistics Revelations

    ERIC Educational Resources Information Center

    Chicot, Katie; Holmes, Hilary

    2012-01-01

    The use, and misuse, of statistics is commonplace, yet in the printed format data representations can be either over simplified, supposedly for impact, or so complex as to lead to boredom, supposedly for completeness and accuracy. In this article the link to the video clip shows how dynamic visual representations can enliven and enhance the…

  15. Statistical Inference

    NASA Astrophysics Data System (ADS)

    Khan, Shahjahan

    Often scientific information on various data generating processes are presented in the from of numerical and categorical data. Except for some very rare occasions, generally such data represent a small part of the population, or selected outcomes of any data generating process. Although, valuable and useful information is lurking in the array of scientific data, generally, they are unavailable to the users. Appropriate statistical methods are essential to reveal the hidden "jewels" in the mess of the row data. Exploratory data analysis methods are used to uncover such valuable characteristics of the observed data. Statistical inference provides techniques to make valid conclusions about the unknown characteristics or parameters of the population from which scientifically drawn sample data are selected. Usually, statistical inference includes estimation of population parameters as well as performing test of hypotheses on the parameters. However, prediction of future responses and determining the prediction distributions are also part of statistical inference. Both Classical or Frequentists and Bayesian approaches are used in statistical inference. The commonly used Classical approach is based on the sample data alone. In contrast, increasingly popular Beyesian approach uses prior distribution on the parameters along with the sample data to make inferences. The non-parametric and robust methods are also being used in situations where commonly used model assumptions are unsupported. In this chapter,we cover the philosophical andmethodological aspects of both the Classical and Bayesian approaches.Moreover, some aspects of predictive inference are also included. In the absence of any evidence to support assumptions regarding the distribution of the underlying population, or if the variable is measured only in ordinal scale, non-parametric methods are used. Robust methods are employed to avoid any significant changes in the results due to deviations from the model

  16. Statistical Inference

    NASA Astrophysics Data System (ADS)

    Khan, Shahjahan

    Often scientific information on various data generating processes are presented in the from of numerical and categorical data. Except for some very rare occasions, generally such data represent a small part of the population, or selected outcomes of any data generating process. Although, valuable and useful information is lurking in the array of scientific data, generally, they are unavailable to the users. Appropriate statistical methods are essential to reveal the hidden “jewels” in the mess of the row data. Exploratory data analysis methods are used to uncover such valuable characteristics of the observed data. Statistical inference provides techniques to make valid conclusions about the unknown characteristics or parameters of the population from which scientifically drawn sample data are selected. Usually, statistical inference includes estimation of population parameters as well as performing test of hypotheses on the parameters. However, prediction of future responses and determining the prediction distributions are also part of statistical inference. Both Classical or Frequentists and Bayesian approaches are used in statistical inference. The commonly used Classical approach is based on the sample data alone. In contrast, increasingly popular Beyesian approach uses prior distribution on the parameters along with the sample data to make inferences. The non-parametric and robust methods are also being used in situations where commonly used model assumptions are unsupported. In this chapter,we cover the philosophical andmethodological aspects of both the Classical and Bayesian approaches.Moreover, some aspects of predictive inference are also included. In the absence of any evidence to support assumptions regarding the distribution of the underlying population, or if the variable is measured only in ordinal scale, non-parametric methods are used. Robust methods are employed to avoid any significant changes in the results due to deviations from the model

  17. Hybrid resonance and long-time asymptotic of the solution to Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Després, Bruno; Weder, Ricardo

    2016-03-01

    We study the long-time asymptotic of the solutions to Maxwell's equation in the case of an upper-hybrid resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the recent results of B. Després, L.M. Imbert-Gérard and R. Weder (2014) [15], where the singular solutions to Maxwell's equations in the frequency domain were constructed by means of a limiting absorption principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was obtained. Currently there is considerable interest in these problems, in particular, because upper-hybrid resonances are a possible scenario for the heating of plasmas, and since they can be a model for the diagnostics involving wave scattering in plasmas.

  18. Circularly polarized few-cycle optical rogue waves: Rotating reduced Maxwell-Bloch equations

    NASA Astrophysics Data System (ADS)

    Xu, Shuwei; Porsezian, K.; He, Jingsong; Cheng, Yi

    2013-12-01

    The rotating reduced Maxwell-Bloch (RMB) equations, which describe the propagation of few-cycle optical pulses in a transparent media with two isotropic polarized electronic field components, are derived from a system of complete Maxwell-Bloch equations without using the slowly varying envelope approximations. Two hierarchies of the obtained rational solutions, including rogue waves, which are also called few-cycle optical rogue waves, of the rotating RMB equations are constructed explicitly through degenerate Darboux transformation. In addition to the above, the dynamical evolution of the first-, second-, and third-order few-cycle optical rogue waves are constructed with different patterns. For an electric field E in the three lower-order rogue waves, we find that rogue waves correspond to localized large amplitude oscillations of the polarized electric fields. Further a complementary relationship of two electric field components of rogue waves is discussed in terms of analytical formulas as well as numerical figures.

  19. An asymptotic preserving scheme for the relativistic Vlasov-Maxwell equations in the classical limit

    NASA Astrophysics Data System (ADS)

    Crouseilles, Nicolas; Einkemmer, Lukas; Faou, Erwan

    2016-12-01

    We consider the relativistic Vlasov-Maxwell (RVM) equations in the limit when the light velocity c goes to infinity. In this regime, the RVM system converges towards the Vlasov-Poisson system and the aim of this paper is to construct asymptotic preserving numerical schemes that are robust with respect to this limit. Our approach relies on a time splitting approach for the RVM system employing an implicit time integrator for Maxwell's equations in order to damp the higher and higher frequencies present in the numerical solution. A number of numerical simulations are conducted in order to investigate the performances of our numerical scheme both in the relativistic as well as in the classical limit regime. In addition, we derive the dispersion relation of the Weibel instability for the continuous and the discretized problem.

  20. A new type of massive spin-one boson: And its relation with Maxwell equations

    SciTech Connect

    Ahluwalia, D.V.

    1995-10-01

    First, the author showed that in the (1, 0) {circle_plus} (0, 1) representation space there exist not one but two theories for charged particles. In the Weinberg construct, the boson and its antiboson carry same relative intrinsic parity, whereas in the author`s construct the relative intrinsic parities of the boson and its antiboson are opposite. These results originate from the commutativity of the operations of Charge conjugation and Parity in Weinberg`s theory, and from the anti-commutativity of the operations of Charge conjugation and Parity in the author`s theory. The author thus claims that he has constructed a first non-trivial quantum theory of fields for the Wigner-type particles. Second, the massless limit of both theories seems formally identical and suggests a fundamental modification of Maxwell equations. At its simplest level, the modification to Maxwell equations enters via additional boundary condition(s).

  1. A comparative study of Maxwell viscoelasticity at large strains and rotations

    NASA Astrophysics Data System (ADS)

    Schrank, Christoph E.; Karrech, Ali; Boutelier, David A.; Regenauer-Lieb, Klaus

    2017-10-01

    We present a new Eulerian large-strain model for Maxwell viscoelasticity using a logarithmic co-rotational stress rate and the Hencky strain tensor. This model is compared to the small-strain model without co-rotational terms and a formulation using the Jaumann stress rate. Homogeneous isothermal simple shear is examined for Weissenberg numbers in the interval [0.1; 10]. Significant differences in shear stress and energy evolution occur at Weissenberg numbers >0.1 and shear strains >0.5. In this parameter range, the Maxwell-Jaumann model dissipates elastic energy erroneously and thus should not be used. The small-strain model ignores finite transformations, frame indifference and self-consistency. As a result, it overestimates shear stresses compared to the new model and entails significant errors in the energy budget. Our large-strain model provides an energetically consistent approach to simulating non-coaxial viscoelastic deformation at large strains and rotations.

  2. Maxwell's second- and third-order equations of transfer for non-Maxwellian gases

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1992-01-01

    Condensed algebraic forms for Maxwell's second- and third-order equations of transfer are developed for the case of molecules described by either elastic hard spheres, inverse-power potentials, or by Bird's variable hard-sphere model. These hardly reduced, yet exact, equations provide a new point of origin, when using the moment method, in seeking approximate solutions in the kinetic theory of gases for molecular models that are physically more realistic than that provided by the Maxwell model. An important by-product of the analysis when using these second- and third-order relations is that a clear mathematical connection develops between Bird's variable hard-sphere model and that for the inverse-power potential.

  3. Sources of gravitational waves in asymptotically flat Einstein-Maxwell spacetime

    NASA Astrophysics Data System (ADS)

    Quiroga, G. D.

    2017-02-01

    In this work, the dynamic of isolated systems in general relativity is described when gravitational radiation and electromagnetic fields are present. In this construction, the asymptotic fields received at null infinity together with the regularized null cone cuts equation, and the center of mass of an asymptotically flat Einstein-Maxwell spacetime are used. A set of equations are derived in the low speed regime, linking their time evolution to the emitted gravitational radiation and to the Maxwell fields received at infinity. These equations should be useful when describing the dynamic of compact sources, such as the final moments of binary coalescence and the evolution of the final black hole. Additionally, we compare our equations with those coming from a similar approach given by Newman, finding some differences in the motion of the center of mass and spin of the gravitational system.

  4. Maxwell and the normal distribution: A colored story of probability, independence, and tendency toward equilibrium

    NASA Astrophysics Data System (ADS)

    Gyenis, Balázs

    2017-02-01

    We investigate Maxwell's attempt to justify the mathematical assumptions behind his 1860 Proposition IV according to which the velocity components of colliding particles follow the normal distribution. Contrary to the commonly held view we find that his molecular collision model plays a crucial role in reaching this conclusion, and that his model assumptions also permit inference to equalization of mean kinetic energies (temperatures), which is what he intended to prove in his discredited and widely ignored Proposition VI. If we take a charitable reading of his own proof of Proposition VI then it was Maxwell, and not Boltzmann, who gave the first proof of a tendency towards equilibrium, a sort of H-theorem. We also call attention to a potential conflation of notions of probabilistic and value independence in relevant prior works of his contemporaries and of his own, and argue that this conflation might have impacted his adoption of the suspect independence assumption of Proposition IV.

  5. Maxwell's fish-eye lens and the mirage of perfect imaging

    NASA Astrophysics Data System (ADS)

    Merlin, R.

    2011-02-01

    Recent claims that Maxwell's fish-eye is a perfect lens, capable of providing images with deep subwavelength resolution, are examined. We show that the imaging properties of a dispersionless fish-eye are very similar to those of an ideal spherical cavity. Using this correspondence, we prove that the correct solution to Maxwell equations in the fish-eye gives image sizes that are consistent with the standard diffraction limit. Perfect focusing is an optical illusion that results from placing a time-reversed source at the position of the geometrical image which, when combined with the field due to the primary (object) source, mimics the behavior of a perfect drain. Issues of causality are briefly discussed. We also demonstrate that passive outlets are not a good alternative to time-reversed sources for broadband drain-like behavior and that, even if they were, they could not do a better job than conventional optical systems at providing high resolution.

  6. The Euler-Maxwell System for Electrons: Global Solutions in 2 D

    NASA Astrophysics Data System (ADS)

    Deng, Yu; Ionescu, Alexandru D.; Pausader, Benoit

    2017-08-01

    A basic model for describing plasma dynamics is given by the Euler-Maxwell system, in which compressible ion and electron fluids interact with their own self-consistent electromagnetic field. In this paper we consider the "one-fluid" Euler-Maxwell model for electrons, in 2 spatial dimensions, and prove global stability of a constant neutral background. In 2 dimensions our global solutions have relatively slow (strictly less than 1/ t) pointwise decay and the system has a large (codimension 1) set of quadratic time resonances. The issue in such a situation is to solve the "division problem". To control the solutions we use a combination of improved energy estimates in the Fourier space, an L 2 bound on an oscillatory integral operator, and Fourier analysis of the Duhamel formula.

  7. A decoupling-based imaging method for inverse medium scattering for Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Lakhal, A.

    2010-01-01

    We present an iterative reconstruction method for an inverse medium scattering problem (IMP) for the three-dimensional time-harmonic Maxwell equations. The goal here is to determine the electromagnetic properties of a nonmagnetic unknown inhomogeneous object. The data are near-field measurements of scattered electric fields for multiple illuminations at a fixed frequency. We use the concept of the generalized induced source (GIS) to recast the intertwined vector equations of Maxwell into decoupled scalar scattering problems. To treat the nonlinearity of the IMP, we apply the localized nonlinear approximation due to Habashy and co-workers. In this framework, we derive a fast reconstruction method based on the Kaczmarz algorithm. Besides, for the underlying approximation we present a uniqueness result for determining the contrast function. Numerical experiments in 3D with synthetic and real data show the scope and limitations of the method.

  8. Formalism of two potentials for the numerical solution of Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. N.; Trashkeev, S. I.

    2013-11-01

    A new formulation of Maxwell's equations based on the introduction of two vector and two scalar potentials is proposed. As a result, the electromagnetic field equations are written as a hyperbolic system that contains, in contrast to the original Maxwell system, only evolution equations and does not involve equations in the form of differential constraints. This makes the new equations especially convenient for the numerical simulation of electromagnetic processes. Specifically, they can be solved by applying powerful modern shock-capturing methods based on the approximation of spatial derivatives by upwind differences. The cases of an electromagnetic field in a vacuum and an inhomogeneous material are considered. Examples are given in which electromagnetic wave propagation is simulated by solving the formulated system of equations with the help of modern high-order accurate schemes.

  9. Relativistic Vlasov-Maxwell modelling using finite volumes and adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Wettervik, Benjamin Svedung; DuBois, Timothy C.; Siminos, Evangelos; Fülöp, Tünde

    2017-06-01

    The dynamics of collisionless plasmas can be modelled by the Vlasov-Maxwell system of equations. An Eulerian approach is needed to accurately describe processes that are governed by high energy tails in the distribution function, but is of limited efficiency for high dimensional problems. The use of an adaptive mesh can reduce the scaling of the computational cost with the dimension of the problem. Here, we present a relativistic Eulerian Vlasov-Maxwell solver with block-structured adaptive mesh refinement in one spatial and one momentum dimension. The discretization of the Vlasov equation is based on a high-order finite volume method. A flux corrected transport algorithm is applied to limit spurious oscillations and ensure the physical character of the distribution function. We demonstrate a speed-up by a factor of 7 × in a typical scenario involving laser pulse interaction with an underdense plasma due to the use of an adaptive mesh.

  10. Analysis and quantification of mental stress and fatigue using Maxwell relations from thermodynamics.

    PubMed

    Boregowda, S C; Tiwari, S N; Chaturvedi, S K; Redondo, D R

    1997-06-01

    Several experimental and theoretical techniques have been developed to analyze both physical and psychological stresses. These techniques have relied mainly on certain parameters based on physiological, behavioral, and performance related data. This study is based on a thought experiment which describes the technique to quantify mental stress based on physiological responses using the entropy concept. It relates different physiological parameters using the Maxwell relations of thermodynamics with a systems approach. Data for testing this analytical approach were obtained from an experimental study which was conducted to determine the effects of a mentally stressful situation (final examination) on the common physiological responses (blood pressure, pulse rate, and oral body temperature) of students. The results indicated that the imposed mental stress causes significant changes in physiological responses. The Maxwell relations of thermodynamics were used to quantify the level of stress under different conditions. The results obtained from these relations validated the principles of thermodynamics as applied to the human system.

  11. T-S criticality of black holes with power Maxwell invariant source

    NASA Astrophysics Data System (ADS)

    Lin, Ze-Tao; Li, Gu-Qiang; Long, Kun; He, Fang; Mo, Jie-Xiong

    2017-09-01

    In this paper, we show that black holes with PMI source exhibit the T-S criticality and derive the relevant critical physical quantities analytically. The values of critical quantities for the case s≠1 vary from those for the case s=1, showing the effect of PMI field on the critical phenomena of black holes. When q< qc, the T-S curve can be divided into three branches by a maximum point and a minimum point of Hawking temperature. With the help of specific heat analysis, we further show that the small entropy branch and the large entropy branch are stable. However, the medium entropy branch is unstable and can be removed via the technique of free energy analysis. Moreover, we examine the Maxwell equal area law and find that the relative errors for all the cases are small enough. So the existence of the PMI field does not affect the Maxwell equal area law.

  12. Chiral Maxwell demon in a quantum Hall system with a localized impurity

    NASA Astrophysics Data System (ADS)

    Rosselló, Guillem; López, Rosa; Platero, Gloria

    2017-08-01

    We investigate the role of chirality on the performance of a Maxwell demon implemented in a quantum Hall bar with a localized impurity. Within a stochastic thermodynamics description, we investigate the ability of such a demon to drive a current against a bias. We show that the ability of the demon to perform is directly related to its ability to extract information from the system. The key features of the proposed Maxwell demon are the topological properties of the quantum Hall system. The asymmetry of the electronic interactions felt at the localized state when the magnetic field is reversed joined to the fact that we consider energy-dependent (and asymmetric) tunneling barriers that connect such state with the Hall edge modes allow the demon to properly work.

  13. Experimental Rectification of Entropy Production by Maxwell's Demon in a Quantum System

    NASA Astrophysics Data System (ADS)

    Camati, Patrice A.; Peterson, John P. S.; Batalhão, Tiago B.; Micadei, Kaonan; Souza, Alexandre M.; Sarthour, Roberto S.; Oliveira, Ivan S.; Serra, Roberto M.

    2016-12-01

    Maxwell's demon explores the role of information in physical processes. Employing information about microscopic degrees of freedom, this "intelligent observer" is capable of compensating entropy production (or extracting work), apparently challenging the second law of thermodynamics. In a modern standpoint, it is regarded as a feedback control mechanism and the limits of thermodynamics are recast incorporating information-to-energy conversion. We derive a trade-off relation between information-theoretic quantities empowering the design of an efficient Maxwell's demon in a quantum system. The demon is experimentally implemented as a spin-1 /2 quantum memory that acquires information, and employs it to control the dynamics of another spin-1 /2 system, through a natural interaction. Noise and imperfections in this protocol are investigated by the assessment of its effectiveness. This realization provides experimental evidence that the irreversibility in a nonequilibrium dynamics can be mitigated by assessing microscopic information and applying a feed-forward strategy at the quantum scale.

  14. New class of exact solutions in Einstein-Maxwell-dilaton theory

    NASA Astrophysics Data System (ADS)

    Ghezelbash, A. M.

    2017-03-01

    We find new solutions to the five-dimensional Einstein-Maxwell-dilaton theory with cosmological constant where the dilaton field couples to the electromagnetic field as well as to the cosmological term with two different coupling constants. The five-dimensional spacetime is nonstationary and is a conformally regular spacetime, everywhere. Both the dilaton field and the electromagnetic field depend on time and two spatial directions. The cosmological constant takes a positive, negative, or zero value, depending on the value of the coupling constant. We study the physical properties of the spacetime, and we show that the solutions are unique in five dimensions and that they cannot be uplifted to higher-dimensional Einstein-Maxwell theory or Einstein gravity in the presence of the cosmological constant. Moreover, we construct new solutions to the theory in which both coupling constants are equal.

  15. Local energy conservation law for a spatially-discretized Hamiltonian Vlasov-Maxwell system

    NASA Astrophysics Data System (ADS)

    Xiao, Jianyuan; Qin, Hong; Liu, Jian; Zhang, Ruili

    2017-06-01

    Because of the unparalleled long-term conservative property, the structure-preserving geometric algorithm for the Vlasov-Maxwell (VM) equations is currently an active research topic. We show that spatially discretized Hamiltonian systems for the VM equations admit a local energy conservation law in space-time. This is accomplished by proving that a sum-free and only locally non-zero scalar field can always be written as the divergence of a vector field that is only locally non-zero. The result demonstrates that the Hamiltonian discretization of Vlasov-Maxwell system can preserve local conservation laws, in addition to the symplectic structure, both of which are the intrinsic physical properties of infinite dimensional Hamiltonian systems in physics.

  16. Spacetimes with Killing tensors. [for Einstein-Maxwell fields with certain spinor indices

    NASA Technical Reports Server (NTRS)

    Hughston, L. P.; Sommers, P.

    1973-01-01

    The characteristics of the Killing equation and the Killing tensor are discussed. A conformal Killing tensor is of interest inasmuch as it gives rise to a quadratic first integral for null geodesic orbits. The Einstein-Maxwell equations are considered together with the Bianchi identity and the conformal Killing tensor. Two examples for the application of the considered relations are presented, giving attention to the charged Kerr solution and the charged C-metric.

  17. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field

    NASA Astrophysics Data System (ADS)

    Zhao, Guangpu; Jian, Yongjun; Chang, Long; Buren, Mandula

    2015-08-01

    By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented.

  18. Maxwell-Bloch Equations Modeling of Ultrashort Optical Pulse Propagation in Semiconductor Materials

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Agrawal, Govind, P.

    1997-01-01

    An algorithm has been developed that solves the semiconductor Maxwell-Bloch equations, without making the standard slowly-varying envelope (SVEA) and rotating-wave (RWA) approximations. It is applied to study the propagation of ultrashort pulses in semiconductor materials. The results include many-body effects due to the Coulomb interaction among the charge carriers as well as the nonlinear effects resulting from spectral hole-burning.

  19. Slow Time-Scale Source-Free Maxwell Equations for a Nonstationary, Inhomogeneous Medium.

    DTIC Science & Technology

    1983-02-01

    along the same lines, gives -(- 4n E+ 1 2 ) at V(V.E) 47t a2 L2 E. (3.10) 12 NSWC TR 83-100 L.s. (3.9) and (3.10) are exact consequences of Maxwell’s ... equation for a nonstationary inhomoheneous medium characterized by constitutive relations defined by Eqs. (2.3) and (2.5). The special case o-0 and

  20. Accurate time propagation method for the coupled Maxwell and Kohn-Sham equations.

    PubMed

    Li, Yonghui; He, Shenglai; Russakoff, Arthur; Varga, Kálmán

    2016-08-01

    An accurate method for time propagation of the coupled Maxwell and time-dependent Kohn-Sham (TDKS) equation is presented. The new approach uses a simultaneous fourth-order Runge-Kutta-based propagation of the vector potential and the Kohn-Sham orbitals. The approach is compared to the conventional fourth-order Taylor propagation and predictor-corrector methods. The calculations show several computational and numerical advantages, including higher computational performance, greater stability, better accuracy, and faster convergence.

  1. Regularization method for solving the quasi-stationary Maxwell equations in an inhomogeneous conducting medium

    NASA Astrophysics Data System (ADS)

    Ivanov, M. I.; Kremer, I. A.; Urev, M. V.

    2012-03-01

    Nedelec vector finite elements are used for the numerical solution of a regularized version of the quasi-stationary Maxwell equations written in terms of a scalar and a vector magnetic potential with special calibration taking into account the conductivity of the medium. An optimal energy estimate for the error of the approximate solution in Lipschitz polyhedral domains is established. Numerical results are presented that demonstrate the stability of the method.

  2. Characterization of carbon-based electrochemical capacitor technology from Maxwell Energy Products, Inc.

    SciTech Connect

    Wright, R.B.; Murphy, T.C.

    1998-04-01

    The electrochemical capacitor devices described in this report were deliverables from the US Department of Energy--Idaho Operations Office (DOE-ID) Contract No. DE-AC07-92ID13404 as part of the US Department of Energy`s (DOE) High Power Energy Storage Program. The Idaho national Engineering and Environmental Laboratory (INEEL) has responsibility for technical management, testing, and evaluation of high-power batteries and electrochemical capacitors under this Program. The DOE has developed various electrochemical capacitors as candidate power assist devices for the Partnership for a New Generation of Vehicles (PNGV) fast response engine requirement. This contract with Maxwell Energy Products, Inc. (Maxwell) was intended to develop a high-energy-density, high-power-density ultracapacitor that is capable of load leveling batteries in electric vehicles. The performance criteria for this device are delivery of 5 W {center_dot} h/kg of useful energy that can be used by the vehicle at an average power rating of 600 W/kg. The capacitor must also have an overall charge/discharge efficiency of 90%, and a useful life of more than 100,000 discharge cycles. The deliverables reported on here are those prepared by Maxwell Energy Products, Inc. at various stages of their developmental program. Deliverables were sent to the INEEL`s Energy Storage Technologies (EST) Laboratory for independent testing and evaluation. This report describes performance testing on three sets of capacitors delivered over a two year period. Additional testing has been done on Set {number_sign}2 described herein, as well as on an additional deliverable from Maxwell. These tests results will be documented in a follow-up report.

  3. Spacetimes with Killing tensors. [for Einstein-Maxwell fields with certain spinor indices

    NASA Technical Reports Server (NTRS)

    Hughston, L. P.; Sommers, P.

    1973-01-01

    The characteristics of the Killing equation and the Killing tensor are discussed. A conformal Killing tensor is of interest inasmuch as it gives rise to a quadratic first integral for null geodesic orbits. The Einstein-Maxwell equations are considered together with the Bianchi identity and the conformal Killing tensor. Two examples for the application of the considered relations are presented, giving attention to the charged Kerr solution and the charged C-metric.

  4. Finite-surface method for the Maxwell equations with corner singularities

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel; Yarrow, Maurice

    1994-01-01

    The finite-surface method for the two-dimensional Maxwell equations in generalized coordinates is extended to treat perfect conductor boundaries with sharp corners. Known singular forms of the grid and the electromagnetic fields in the neighborhood of each corner are used to obtain accurate approximations to the surface and line integrals appearing in the method. Numerical results are presented for a harmonic plane wave incident on a finite flat plate. Comparisons with exact solutions show good agreement.

  5. The Command or Control Dilemma. When Technology and Organizational Orientation Collide (Maxwell Paper, Number 8)

    DTIC Science & Technology

    1997-03-01

    prepared for information-age warfare. Notes 1. Alvin and Heidi Toffler, War and Anti-War: Survival at the Dawn of the 21st Century (Boston: Little, Brown ...Scott Norwood, Thunderbolts and Eggshells : Composite Air Operations during Desert Storm and Implications for USAF Doctrine and Force Structure (Maxwell...Generals’ War: The Inside Story of the Conflict in the Gulf (Boston: Little, Brown and Company, 1995), 320. Vice Adm Stanley Arthur, senior Navy officer in

  6. Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme

    NASA Astrophysics Data System (ADS)

    Squire, J.; Qin, H.; Tang, W. M.

    2012-08-01

    A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of discrete exterior calculus [Desbrun et al., e-print arXiv:math/0508341 (2005)], the field solver, interpolation scheme, and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.

  7. Power of an optical Maxwell's demon in the presence of photon-number correlations

    NASA Astrophysics Data System (ADS)

    Shu, Angeline; Dai, Jibo; Scarani, Valerio

    2017-02-01

    We study how correlations affect the performance of the simulator of a Maxwell's demon demonstrated in a recent optical experiment [M. D. Vidrighin, O. Dahlsten, M. Barbieri, M. S. Kim, V. Vedral, and I. A. Walmsley, Phys. Rev. Lett. 116, 050401 (2016), 10.1103/PhysRevLett.116.050401]. The power of the demon is found to be enhanced or hindered, depending on the nature of the correlation, in close analogy to the situation faced by a thermal demon.

  8. Geometric Integration Of The Vlasov-Maxwell System With A Variational Particle-in-cell Scheme

    SciTech Connect

    J. Squire, H. Qin and W.M. Tang

    2012-03-27

    A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of Discrete Exterior Calculus [1], the field solver, interpolation scheme and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.

  9. Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme

    SciTech Connect

    Squire, J.; Tang, W. M.; Qin, H.

    2012-08-15

    A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of discrete exterior calculus [Desbrun et al., e-print arXiv:math/0508341 (2005)], the field solver, interpolation scheme, and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.

  10. Relativistic version of the Feynman-Dyson-Hughes derivation of the Lorentz force law and Maxwell's homogeneous equations

    NASA Astrophysics Data System (ADS)

    Essén, Hanno; Nordmark, Arne B.

    2016-09-01

    The canonical Poisson bracket algebra of four-dimensional relativistic mechanics is used to derive the equation of motion for a charged particle, with the Lorentz force, and the homogeneous Maxwell equations.

  11. Exact solutions of the Bianchi types V and IX via time-dependent quasi-Maxwell equations

    NASA Astrophysics Data System (ADS)

    Yavari, Morteza

    2014-02-01

    The exact solutions of the Einstein field equations for the Bianchi types V and IX in presence of a perfect fluid via the time-dependent quasi-Maxwell (TQM) equations are investigated by using the threading formalism.

  12. Implications of the Electrostatic Approximation in the Beam Frame on the Nonlinear Vlasov-Maxwell Equations for Intense Beam Propagation

    SciTech Connect

    Ronald C. Davidson; W. Wei-li Lee; Hong Qin; Edward Startsev

    2001-11-08

    This paper develops a clear procedure for solving the nonlinear Vlasov-Maxwell equations for a one-component intense charged particle beam or finite-length charge bunch propagating through a cylindrical conducting pipe (radius r = r(subscript)w = const.), and confined by an applied focusing force. In particular, the nonlinear Vlasov-Maxwell equations are Lorentz-transformed to the beam frame ('primed' variables) moving with axial velocity relative to the laboratory. In the beam frame, the particle motions are nonrelativistic for the applications of practical interest, already a major simplification. Then, in the beam frame, we make the electrostatic approximation which fully incorporates beam space-charge effects, but neglects any fast electromagnetic processes with transverse polarization (e.g., light waves). The resulting Vlasov-Maxwell equations are then Lorentz-transformed back to the laboratory frame, and properties of the self-generated fields and resulting nonlinear Vlasov-Maxwell equations in the laboratory frame are discussed.

  13. Reformulation of Maxwell's equations to incorporate near-solute solvent structure.

    PubMed

    Yang, Pei-Kun; Lim, Carmay

    2008-09-04

    Maxwell's equations, which treat electromagnetic interactions between macroscopic charged objects in materials, have explained many phenomena and contributed to many applications in our lives. Derived in 1861 when no methods were available to determine the atomic structure of macromolecules, Maxwell's equations assume the solvent to be a structureless continuum. However, near-solute solvent molecules are highly structured, unlike far-solute bulk solvent molecules. Current methods cannot treat both the near-solute solvent structure and time-dependent electromagnetic interactions in a macroscopic system. Here, we derive "microscopic" electrodynamics equations that can treat macroscopic time-dependent electromagnetic field problems like Maxwell's equations and reproduce the solvent molecular and dipole density distributions observed in molecular dynamics simulations. These equations greatly reduce computational expense by not having to include explicit solvent molecules, yet they treat the solvent electrostatic and van der Waals effects more accurately than continuum models. They provide a foundation to study electromagnetic interactions between molecules in a macroscopic system that are ubiquitous in biology, bioelectromagnetism, and nanotechnology. The general strategy presented herein to incorporate the near-solute solvent structure would enable studies on how complex cellular protein-ligand interactions are affected by electromagnetic radiation, which could help to prevent harmful electromagnetic spectra or find potential therapeutic applications.

  14. Energy/dissipation-preserving Birkhoffian multi-symplectic methods for Maxwell's equations with dissipation terms

    DOE PAGES

    Su, Hongling; Li, Shengtai

    2016-02-03

    In this study, we propose two new energy/dissipation-preserving Birkhoffian multi-symplectic methods (Birkhoffian and Birkhoffian box) for Maxwell's equations with dissipation terms. After investigating the non-autonomous and autonomous Birkhoffian formalism for Maxwell's equations with dissipation terms, we first apply a novel generating functional theory to the non-autonomous Birkhoffian formalism to propose our Birkhoffian scheme, and then implement a central box method to the autonomous Birkhoffian formalism to derive the Birkhoffian box scheme. We have obtained four formal local conservation laws and three formal energy global conservation laws. We have also proved that both of our derived schemes preserve the discrete versionmore » of the global/local conservation laws. Furthermore, the stability, dissipation and dispersion relations are also investigated for the schemes. Theoretical analysis shows that the schemes are unconditionally stable, dissipation-preserving for Maxwell's equations in a perfectly matched layer (PML) medium and have second order accuracy in both time and space. Numerical experiments for problems with exact theoretical results are given to demonstrate that the Birkhoffian multi-symplectic schemes are much more accurate in preserving energy than both the exponential finite-difference time-domain (FDTD) method and traditional Hamiltonian scheme. Finally, we also solve the electromagnetic pulse (EMP) propagation problem and the numerical results show that the Birkhoffian scheme recovers the magnitude of the current source and reaction history very well even after long time propagation.« less

  15. A comparison of Fick and Maxwell-Stefan diffusion formulations in PEMFC gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Lindstrom, Michael; Wetton, Brian

    2017-01-01

    This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. The simple Fick law with a diagonal diffusion matrix is an approximation of Maxwell-Stefan. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. For this application, the formulations can be compared computationally in a simple, one dimensional setting. Despite the models' seemingly different structure, it is observed that the predictions of the formulations are very similar on the cathode when air is used as oxidant. The two formulations give quite different results when the Nitrogen in the air oxidant is replaced by helium (this is often done as a diagnostic for fuel cells designs). The two formulations also give quite different results for the anode with a dilute Hydrogen stream. These results give direction to when Maxwell-Stefan diffusion, which is more complicated to implement computationally in many codes, should be used in fuel cell simulations.

  16. High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem.

    PubMed

    Hesthaven, J S; Warburton, T

    2004-03-15

    The Maxwell eigenvalue problem is known to pose difficulties for standard numerical methods, predominantly due to its large null space. As an alternative to the widespread use of Galerkin finite-element methods based on curl-conforming elements, we propose to use high-order nodal elements in a discontinuous element scheme. We consider both two- and three-dimensional problems and show the former to be without problems in a wide range of cases. Numerical experiments suggest the validity of this for general problems. For the three-dimensional eigenproblem, we encounter difficulties with a naive formulation of the scheme and propose minor modifications, intimately related to the discontinuous nature of the formulation, to overcome these concerns. We conclude by connecting the findings to time domain solution of Maxwell's equations. The discussion, analysis, and numerous computational experiments suggest that using discontinuous element schemes for solving Maxwell's equation in the frequency- or time-domain present a high-order accurate, efficient and robust alternative to classical Galerkin finite-element methods.

  17. L2-stability of the Vlasov-Maxwell-Boltzmann system near global Maxwellians

    NASA Astrophysics Data System (ADS)

    Ha, Seung-Yeal; Xiao, Qinghua; Xiong, Linjie; Zhao, Huijiang

    2013-12-01

    We present a L2-stability theory of the Vlasov-Maxwell-Boltzmann system for the two-species collisional plasma. We show that in a perturbative regime of a global Maxwellian, the L2-distance between two strong solutions can be controlled by that between initial data in a Lipschitz manner. Our stability result extends earlier results [Ha, S.-Y. and Xiao, Q.-H., "A revisiting to the L2-stability theory of the Boltzmann equation near global Maxwellians," (submitted) and Ha, S.-Y., Yang, X.-F., and Yun, S.-B., "L2 stability theory of the Boltzmann equation near a global Maxwellian," Arch. Ration. Mech. Anal. 197, 657-688 (2010)] on the L2-stability of the Boltzmann equation to the Boltzmann equation coupled with self-consistent external forces. As a direct application of our stability result, we show that classical solutions in Duan et al. ["Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space," Commun. Pure Appl. Math. 24, 1497-1546 (2011)] and Guo ["The Vlasov-Maxwell-Boltzmann system near Maxwellians," Invent. Math. 153(3), 593-630 (2003)] satisfy a uniform L2-stability estimate. This is the first result on the L2-stability of the Boltzmann equation coupled with self-consistent field equations in three dimensions.

  18. Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America

  19. Ice bridges and ridges in the Maxwell-EB sea ice rheology

    NASA Astrophysics Data System (ADS)

    Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe; Coche, Edmond

    2017-09-01

    This paper presents a first implementation of a new rheological model for sea ice on geophysical scales. This continuum model, called Maxwell elasto-brittle (Maxwell-EB), is based on a Maxwell constitutive law, a progressive damage mechanism that is coupled to both the elastic modulus and apparent viscosity of the ice cover and a Mohr-Coulomb damage criterion that allows for pure (uniaxial and biaxial) tensile strength. The model is tested on the basis of its capability to reproduce the complex mechanical and dynamical behaviour of sea ice drifting through a narrow passage. Idealized as well as realistic simulations of the flow of ice through Nares Strait are presented. These demonstrate that the model reproduces the formation of stable ice bridges as well as the stoppage of the flow, a phenomenon occurring within numerous channels of the Arctic. In agreement with observations, the model captures the propagation of damage along narrow arch-like kinematic features, the discontinuities in the velocity field across these features dividing the ice cover into floes, the strong spatial localization of the thickest, ridged ice, the presence of landfast ice in bays and fjords and the opening of polynyas downstream of the strait. The model represents various dynamical behaviours linked to an overall weakening of the ice cover and to the shorter lifespan of ice bridges, with implications in terms of increased ice export through narrow outflow pathways of the Arctic.

  20. Higher-derivative gravity with non-minimally coupled Maxwell field

    NASA Astrophysics Data System (ADS)

    Feng, Xing-Hui; Lü, H.

    2016-04-01

    We construct higher-derivative gravities with a non-minimally coupled Maxwell field. The Lagrangian consists of polynomial invariants built from the Riemann tensor and the Maxwell field strength in such a way that the equations of motion are second order for both the metric and the Maxwell potential. We also generalize the construction to involve a generic non-minimally coupled p-form field strength. We then focus on one low-lying example in four dimensions and construct the exact magnetically charged black holes. We also construct exact electrically charged z=2 Lifshitz black holes. We obtain approximate dyonic black holes for the small coupling constant or small charges. We find that the thermodynamics based on the Wald formalism disagrees with that derived from the Euclidean action procedure, suggesting this may be a general situation in higher-derivative gravities with non-minimally coupled form fields. As an application in the AdS/CFT correspondence, we study the entropy/viscosity ratio for the AdS or Lifshitz planar black holes, and find that the exact ratio can be obtained without having to know the details of the solutions, even for this higher-derivative theory.

  1. Energy/dissipation-preserving Birkhoffian multi-symplectic methods for Maxwell's equations with dissipation terms

    SciTech Connect

    Su, Hongling; Li, Shengtai

    2016-02-03

    In this study, we propose two new energy/dissipation-preserving Birkhoffian multi-symplectic methods (Birkhoffian and Birkhoffian box) for Maxwell's equations with dissipation terms. After investigating the non-autonomous and autonomous Birkhoffian formalism for Maxwell's equations with dissipation terms, we first apply a novel generating functional theory to the non-autonomous Birkhoffian formalism to propose our Birkhoffian scheme, and then implement a central box method to the autonomous Birkhoffian formalism to derive the Birkhoffian box scheme. We have obtained four formal local conservation laws and three formal energy global conservation laws. We have also proved that both of our derived schemes preserve the discrete version of the global/local conservation laws. Furthermore, the stability, dissipation and dispersion relations are also investigated for the schemes. Theoretical analysis shows that the schemes are unconditionally stable, dissipation-preserving for Maxwell's equations in a perfectly matched layer (PML) medium and have second order accuracy in both time and space. Numerical experiments for problems with exact theoretical results are given to demonstrate that the Birkhoffian multi-symplectic schemes are much more accurate in preserving energy than both the exponential finite-difference time-domain (FDTD) method and traditional Hamiltonian scheme. Finally, we also solve the electromagnetic pulse (EMP) propagation problem and the numerical results show that the Birkhoffian scheme recovers the magnitude of the current source and reaction history very well even after long time propagation.

  2. Energy/dissipation-preserving Birkhoffian multi-symplectic methods for Maxwell's equations with dissipation terms

    NASA Astrophysics Data System (ADS)

    Su, Hongling; Li, Shengtai

    2016-04-01

    In this paper, we propose two new energy/dissipation-preserving Birkhoffian multi-symplectic methods (Birkhoffian and Birkhoffian box) for Maxwell's equations with dissipation terms. After investigating the non-autonomous and autonomous Birkhoffian formalism for Maxwell's equations with dissipation terms, we first apply a novel generating functional theory to the non-autonomous Birkhoffian formalism to propose our Birkhoffian scheme, and then implement a central box method to the autonomous Birkhoffian formalism to derive the Birkhoffian box scheme. We have obtained four formal local conservation laws and three formal energy global conservation laws. We have also proved that both of our derived schemes preserve the discrete version of the global/local conservation laws. Furthermore, the stability, dissipation and dispersion relations are also investigated for the schemes. Theoretical analysis shows that the schemes are unconditionally stable, dissipation-preserving for Maxwell's equations in a perfectly matched layer (PML) medium and have second order accuracy in both time and space. Numerical experiments for problems with exact theoretical results are given to demonstrate that the Birkhoffian multi-symplectic schemes are much more accurate in preserving energy than both the exponential finite-difference time-domain (FDTD) method and traditional Hamiltonian scheme. We also solve the electromagnetic pulse (EMP) propagation problem and the numerical results show that the Birkhoffian scheme recovers the magnitude of the current source and reaction history very well even after long time propagation.

  3. Elastomeric composites with high dielectric constant for use in Maxwell stress actuators

    NASA Astrophysics Data System (ADS)

    Szabo, Jeffrey P.; Hiltz, Johnathan A.; Cameron, Colin G.; Underhill, Royale S.; Massey, Jason; White, Brian; Leidner, Jacob

    2003-07-01

    Electroactive polymer actuators that utilize the Maxwell stress effect have generated considerable interest in recent years for use in applications such as artificial muscles, sensors, and parasitic energy capture. In order to maximize performance, the dielectric layer in Maxwell stress actuators should ideally have a high dielectric constant and high dielectric breakdown strength. In this study, the effect of high dielectric constant fillers on the electrical and mechanical properties of thin elastomeric films was examined. The fillers studied included the inorganic compounds titanium dioxide (TiO2), barium titanate (BaTiO3), and lead magnesium niobate-lead titanate (Pb(Mg1/3Nb2/3)O3-PbTiO). A high dielectric constant filler based on a polymeric conjugated ligand-metal complex, poly(copper phthalocyanine), was also synthesized and studied. Maxwell stress actuators fabricated with BaTiO3 dispersed in a silicone elastomer matrix were evaluated and compared with unfilled systems. A model was presented which relates filler volume fraction to actuation stress, strain, and elastic energy density at fields below dielectric breakdown. The model and experimental results suggest that for the case of strong filler particle-elastomer matrix interaction, actuation strain decreases with increasing filler content.

  4. A Two-Layer Model for Superposed Electrified Maxwell Fluids in Presence of Heat Transfer

    NASA Astrophysics Data System (ADS)

    Kadry, Zakaria; Magdy, A. Sirwah; Sameh, A. Alkharashi

    2011-06-01

    Based on a modified-Darcy—Maxwell model, two-dimensional, incompressible and heat transfer flow of two bounded layers, through electrified Maxwell fluids in porous media is performed. The driving force for the instability under an electric field, is an electrostatic force exerted on the free charges accumulated at the dividing interface. Normal mode analysis is considered to study the linear stability of the disturbances layers. The solutions of the linearized equations of motion with the boundary conditions lead to an implicit dispersion relation between the growth rate and wave number. These equations are parameterized by Weber number, Reynolds number, Marangoni number, dimensionless conductivities, and dimensionless electric potentials. The case of long waves interfacial stability has been studied. The stability criteria are performed theoretically in which stability diagrams are obtained. In the limiting cases, some previously published results can be considered as particular cases of our results. It is found that the Reynolds number plays a destabilizing role in the stability criteria, while the damping influence is observed for the increasing of Marangoni number and Maxwell relaxation time.

  5. Direct time integration of Maxwell's equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Taflove, Allen

    1992-01-01

    The initial results for femtosecond electromagnetic soliton propagation and collision obtained from first principles, i.e., by a direct time integration of Maxwell's equations are reported. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit the modeling of 2D and 3D optical soliton propagation, scattering, and switching from the full-vector Maxwell's equations.

  6. [Descriptive statistics].

    PubMed

    Rendón-Macías, Mario Enrique; Villasís-Keever, Miguel Ángel; Miranda-Novales, María Guadalupe

    2016-01-01

    Descriptive statistics is the branch of statistics that gives recommendations on how to summarize clearly and simply research data in tables, figures, charts, or graphs. Before performing a descriptive analysis it is paramount to summarize its goal or goals, and to identify the measurement scales of the different variables recorded in the study. Tables or charts aim to provide timely information on the results of an investigation. The graphs show trends and can be histograms, pie charts, "box and whiskers" plots, line graphs, or scatter plots. Images serve as examples to reinforce concepts or facts. The choice of a chart, graph, or image must be based on the study objectives. Usually it is not recommended to use more than seven in an article, also depending on its length.

  7. Statistical Optics

    NASA Astrophysics Data System (ADS)

    Goodman, Joseph W.

    2000-07-01

    The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research

  8. Order Statistics and Nonparametric Statistics.

    DTIC Science & Technology

    2014-09-26

    Topics investigated include the following: Probability that a fuze will fire; moving order statistics; distribution theory and properties of the...problem posed by an Army Scientist: A fuze will fire when at least n-i (or n-2) of n detonators function within time span t. What is the probability of

  9. Climate signals in Late Holocene sediments from Maxwell Bay and English Strait (South Shetland Islands, Antarctica)

    NASA Astrophysics Data System (ADS)

    Hass, H. Christian; Schröder, Simon; Kuhn, Gerhard

    2017-04-01

    Climate fluctuations of the past two millennia such as the Little Ice Age and the Medieval Warm Period are reported mainly from the Northern Hemisphere. Evidence from Antarctica is comparably sparse and reveals regional and temporal differences, which are particularly evident at the western and eastern sides of the Antarctic Peninsula. High-resolution coastal-marine sediment cores from the northernmost tip of the West Antarctic Peninsula reveal periods dominated by finer sediments between periods that lack the finer sediment component. In Maxwell Bay this fine sediment (grain size mode around 16 µm) has been traced back to sediment related to the occurrence of glacial meltwater. It was found in sheltered places and meltwater creeks of Potter Cove, a small tributary fjord to Maxwell Bay. In the sediment core this sediment occurs predominantly between 600 and 1250 AD (Medieval Warm Period) whereas it is only sparsely affecting the record between 1450 and 1900 AD (Little Ice Age). The temporal pattern is very similar to global-temperature reconstructions and even resembles temperature reconstructions from the Northern Hemisphere. To avoid local effects that may occur in Maxwell Bay more sediment cores were taken from bays and straits further south of King George Island during Cruise PS97 of RV "Polarstern" in 2016. A core from English Strait reveals completely different sedimentary conditions with no detectable meltwater signal (16 µm). However, the mean grain size record resembles that of the cores from Maxwell Bay. The lack of a clear-cut meltwater sediment class as it occurs further north is likely the result of a much smaller hinterland (Greenwich and Robert islands) when compared to Maxwell Bay between Nelson Island and the much bigger King George Island where glaciers and ice sheets discharge large quantities of very turbid meltwater directly into the bay. It is concluded that during the warmer climate periods a large amount of meltwater was released along the

  10. Venus' radar-bright highlands: Different signatures and materials on Ovda Regio and on Maxwell Montes

    NASA Astrophysics Data System (ADS)

    Treiman, Allan; Harrington, Elise; Sharpton, Virgil

    2016-12-01

    Venus' highlands appear much brighter than its lowland plains in reflected radar, which has been explained by several conflicting hypotheses. We study this transition at higher spatial and elevation resolution than previously possible by combining Magellan synthetic aperture radar (SAR) images with Magellan SAR stereo elevations. We confirm that SAR backscatter over Ovda Regio (5°N to 15°S) grades from low to high as elevation increases (2-4.5 km above the datum), and then drops precipitously above ∼4.5 km (T= ∼702 K). This pattern is consistent with presence of a substance that undergoes a phase transition from ferroelectric to normal dielectric at ∼700 K; the mineral chlorapatite is a likely candidate. This pattern is seen across Ovda, on other near-equatorial highlands, and on some shield volcanoes like the Tepev Montes. We also confirm that Maxwell Montes (60-68°N) shows a different pattern; its surface transitions abruptly from low backscatter to high backscatter at ∼4.5 km above the datum, and remains so to nearly its highest elevations (∼10 km). This pattern is consistent with the presence of a semiconductor material either precipitated from the atmosphere (e.g., a frost) or produced by atmosphere-surface interaction. If a ferroelectric substance were in the rock at Maxwell (as at Ovda), it could be invisible beneath the coating of semiconductor material. However, the absence of a semiconductor material on Ovda requires either that [1] the atmosphere compositions at Maxwell and Ovda are substantially different, or [2] that the semiconductor at Maxwell forms by atmosphere-surface reaction (not as an atmospheric precipitate) and that the surface materials at Ovda and Maxwell are substantially different. Obviously, artifacts in both the altimetry and SAR datasets are propagated into this stereo DEM, which therefore must be evaluated for self-consistency and consistency with inferences from the images. All elevations

  11. Statistical Neurodynamics.

    NASA Astrophysics Data System (ADS)

    Paine, Gregory Harold

    1982-03-01

    The primary objective of the thesis is to explore the dynamical properties of small nerve networks by means of the methods of statistical mechanics. To this end, a general formalism is developed and applied to elementary groupings of model neurons which are driven by either constant (steady state) or nonconstant (nonsteady state) forces. Neuronal models described by a system of coupled, nonlinear, first-order, ordinary differential equations are considered. A linearized form of the neuronal equations is studied in detail. A Lagrange function corresponding to the linear neural network is constructed which, through a Legendre transformation, provides a constant of motion. By invoking the Maximum-Entropy Principle with the single integral of motion as a constraint, a probability distribution function for the network in a steady state can be obtained. The formalism is implemented for some simple networks driven by a constant force; accordingly, the analysis focuses on a study of fluctuations about the steady state. In particular, a network composed of N noninteracting neurons, termed Free Thinkers, is considered in detail, with a view to interpretation and numerical estimation of the Lagrange multiplier corresponding to the constant of motion. As an archetypical example of a net of interacting neurons, the classical neural oscillator, consisting of two mutually inhibitory neurons, is investigated. It is further shown that in the case of a network driven by a nonconstant force, the Maximum-Entropy Principle can be applied to determine a probability distribution functional describing the network in a nonsteady state. The above examples are reconsidered with nonconstant driving forces which produce small deviations from the steady state. Numerical studies are performed on simplified models of two physical systems: the starfish central nervous system and the mammalian olfactory bulb. Discussions are given as to how statistical neurodynamics can be used to gain a better

  12. Rigorous simulation of OCT image formation using Maxwell's equations in three dimensions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Munro, Peter R. T.; Curatolo, Andrea; Sampson, David D.

    2016-03-01

    Existing models of image formation in optical coherence tomography are based upon the extended Huygens-Fresnel formalism. These models all, to varying degrees, rely on scatterer ensemble averages, rather than deterministic scattering distributions. Whilst the former is sometimes preferable, there are a growing number of applications where the ability to predict image formation based upon deterministic refractive index distributions is of great interest, including, for example, image formation in turbid tissue. A rigorous model based upon three-dimensional solutions of Maxwell's equations offers a number of tantalising opportunities. For example, shedding light on features near or below the resolution of an OCT system and on the impact of phenomena usually described as diffraction, interference and scattering, but which more generally result from light scattering satisfying Maxwell's equations. A rigorous model allows inverse scattering methods to be developed not requiring the first-order Born approximation. Finally, a rigorous model can provide gold standard verification of myriad quantitative techniques currently being developed throughout the field. We have developed the first such model of image formation based upon three-dimensional solutions of Maxwell's equations, which has vastly different properties to models based on two-dimensional solutions. Although we present simulated B-scans, this model is equally applicable to C-scans. This has been made possible by advances in computational techniques and in computational resources routinely available. We will present the main features of our model, comparisons of measured and simulated image formation for phantoms and discuss the future of rigorous modelling in optical coherence tomography research and application.

  13. Using quantum erasure to exorcize Maxwell's demon: I. Concepts and context

    NASA Astrophysics Data System (ADS)

    Scully, Marlan O.; Rostovtsev, Yuri; Sariyanni, Zoe-Elizabeth; Suhail Zubairy, M.

    2005-10-01

    Szilard [L. Szilard, Zeitschrift für Physik, 53 (1929) 840] made a decisive step toward solving the Maxwell demon problem by introducing and analyzing the single atom heat engine. Bennett [Sci. Am. 255 (1987) 107] completed the solution by pointing out that there must be an entropy, ΔS=kln2, generated as the result of information erased on each cycle. Nevertheless, others have disagreed. For example, philosophers such as Popper “have found the literature surrounding Maxwell's demon deeply problematic.” We propose and analyze a new kind of single atom quantum heat engine which allows us to resolve the Maxwell demon paradox simply, and without invoking the notions of information or entropy. The energy source of the present quantum engine [Scully, Phys. Rev. Lett. 87 (2001) 22601] is a Stern-Gerlach apparatus acting as a demonesque heat sorter. An isothermal compressor acts as the entropy sink. In order to complete a thermodynamic cycle, an energy of ΔW=kTln2 must be expended. This energy is essentially a “reset” or “eraser” energy. Thus Bennett's entropy ΔS=ΔW/T emerges as a simple consequence of the quantum thermodynamics of our heat engine. It would seem that quantum mechanics contains the kernel of information entropy at its very core. That is the concept of information erasure as it appears in quantum mechanics [Scully and Drühl, Phys. Rev. A 25 (1982) 2208] and the present quantum heat engine have a deep common origin.

  14. L{sup 2}-stability of the Vlasov-Maxwell-Boltzmann system near global Maxwellians

    SciTech Connect

    Ha, Seung-Yeal Xiao, Qinghua; Xiong, Linjie Zhao, Huijiang

    2013-12-15

    We present a L{sup 2}-stability theory of the Vlasov-Maxwell-Boltzmann system for the two-species collisional plasma. We show that in a perturbative regime of a global Maxwellian, the L{sup 2}-distance between two strong solutions can be controlled by that between initial data in a Lipschitz manner. Our stability result extends earlier results [Ha, S.-Y. and Xiao, Q.-H., “A revisiting to the L{sup 2}-stability theory of the Boltzmann equation near global Maxwellians,” (submitted) and Ha, S.-Y., Yang, X.-F., and Yun, S.-B., “L{sup 2} stability theory of the Boltzmann equation near a global Maxwellian,” Arch. Ration. Mech. Anal. 197, 657–688 (2010)] on the L{sup 2}-stability of the Boltzmann equation to the Boltzmann equation coupled with self-consistent external forces. As a direct application of our stability result, we show that classical solutions in Duan et al. [“Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,” Commun. Pure Appl. Math. 24, 1497–1546 (2011)] and Guo [“The Vlasov-Maxwell-Boltzmann system near Maxwellians,” Invent. Math. 153(3), 593–630 (2003)] satisfy a uniform L{sup 2}-stability estimate. This is the first result on the L{sup 2}-stability of the Boltzmann equation coupled with self-consistent field equations in three dimensions.

  15. Holographic conductivity in the massive gravity with power-law Maxwell field

    NASA Astrophysics Data System (ADS)

    Dehyadegari, A.; Kord Zangeneh, M.; Sheykhi, A.

    2017-10-01

    We obtain a new class of topological black hole solutions in (n + 1)-dimensional massive gravity in the presence of the power-Maxwell electrodynamics. We calculate the conserved and thermodynamic quantities of the system and show that the first law of thermodynamics is satisfied on the horizon. Then, we investigate the holographic conductivity for the four and five dimensional black brane solutions. For completeness, we study the holographic conductivity for both massless (m = 0) and massive (m ≠ 0) gravities with power-Maxwell field. The massless gravity enjoys translational symmetry whereas the massive gravity violates it. For massless gravity, we observe that the real part of conductivity, Re [ σ ], decreases as charge q increases when frequency ω tends to zero, while the imaginary part of conductivity, Im [ σ ], diverges as ω → 0. For the massive gravity, we find that Im [ σ ] is zero at ω = 0 and becomes larger as q increases (temperature decreases), which is in contrast to the massless gravity. It also has a maximum value for ω ≠ 0 which increases with increasing q (with fixed p) or increasing p (with fixed q) for (2 + 1)-dimensional dual system, where p is the power parameter of the power-law Maxwell field. Interestingly, we observe that in contrast to the massless case, Re [ σ ] has a maximum value at ω = 0 (known as the Drude peak) for p = (n + 1) / 4 (conformally invariant electrodynamics) and this maximum increases with increasing q. In this case (m ≠ 0) and for different values of p, the real and imaginary parts of the conductivity has a relative extremum for ω ≠ 0. Finally, we show that for high frequencies, the real part of the holographic conductivity have the power law behavior in terms of frequency, ωa where a ∝ (n + 1 - 4 p). Some similar behaviors for high frequencies in possible dual CFT systems have been reported in experimental observations.

  16. Reversing the Landauer's erasure: Single-electron Maxwell's demon operating at the limit of thermodynamic efficiency

    NASA Astrophysics Data System (ADS)

    Averin, Dmitri V.; Pekola, Jukka P.

    2017-03-01

    According to Landauer's principle, erasure of information is the only part of a computation process that unavoidably involves energy dissipation. If done reversibly, such an erasure generates the minimal heat of $k_BT\\ln 2$ per erased bit of information. The goal of this work is to discuss the actual reversal of the optimal erasure which can serve as the basis for the Maxwell's demon operating with ultimate thermodynamic efficiency as dictated by the second law of thermodynamics. The demon extracts $k_BT\\ln 2$ of heat from an equilibrium reservoir at temperature $T$ per one bit of information obtained about the measured system used by the demon. We have analyzed this Maxwell's demon in the situation when it uses a general quantum system with a discrete spectrum of energy levels as its working body. In the case of the effectively two-level system, which has been realized experimentally based on tunneling of individual electron in a single-electron box [J.V. Koski et al., PNAS 111, 13786 (2014)], we also studied and minimized corrections to the ideal reversible operation of the demon. These corrections include, in particular, the non-adiabatic terms which are described by a version of the classical fluctuation-dissipation theorem. The overall reversibility of the Maxwell's demon requires, beside the reversibility of the intrinsic working body dynamics, the reversibility of the measurement and feedback processes. The single-electron demon can, in principle, be made fully reversible by developing a thermodynamically reversible single-electron charge detector for measurements of the individual charge states of the single-electron box.

  17. Superradiance of a charged scalar field coupled to the Einstein-Maxwell equations

    NASA Astrophysics Data System (ADS)

    Baake, Olaf; Rinne, Oliver

    2016-12-01

    We consider the Einstein-Maxwell-Klein-Gordon equations for a spherically symmetric scalar field scattering off a Reissner-Nordström black hole in asymptotically flat spacetime. The equations are solved numerically using a hyperboloidal evolution scheme. For suitable frequencies of the initial data, superradiance is observed, leading to a substantial decrease of mass and charge of the black hole. We also derive a Bondi mass loss formula using the Kodama vector field and investigate the late-time decay of the scalar field.

  18. Submillimeter observations of the sun from the James Clerk Maxwell Telescope

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles A.; Yee, Selwyn; Roellig, Thomas L.; Hills, Richard; Brock, David

    1990-01-01

    The first submillimeter solar observations from the 15 m James Clerk Maxwell Telescope (JCMT) on Mauna Kea are reported. The JCMT submillimeter heterodyne receiver is used to observe the sun in 850 micron radiation. These are the first submillimeter observations of features on the size scale of the chromospheric supergranular network and of sunspots. A comparison is made between 850 micron images and calcium K line images of the chromospheric supergranular network in the quiet sun and in plage. Images of sunspots are given, noting that their 850 micron brightness is comparable to, or somewhat greater than, that of the quiet sun.

  19. Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions

    SciTech Connect

    Mustafa, M.; Khan, Junaid Ahmad; Hayat, T.; Alsaedi, A.

    2015-02-15

    In this paper we address the flow of Maxwell fluid due to constantly moving flat radiative surface with convective condition. The flow is under the influence of non-uniform transverse magnetic field. The velocity and temperature distributions have been evaluated numerically by shooting approach. The solution depends on various interesting parameters including local Deborah number De, magnetic field parameter M, Prandtl number Pr and Biot number Bi. We found that variation in velocity with an increase in local Deborah number De is non-monotonic. However temperature is a decreasing function of local Deborah number De.

  20. Submillimeter observations of the sun from the James Clerk Maxwell Telescope

    SciTech Connect

    Lindsey, C.A.; Yee, S.; Roellig, T.L.; Hills, R.; Brock, D. NASA, Ames Research Center, Moffett Field, CA Mullard Radio Astronomy Observatory, Cambridge Joint Astronomy Centre, Hilo, HI )

    1990-04-01

    The first submillimeter solar observations from the 15 m James Clerk Maxwell Telescope (JCMT) on Mauna Kea are reported. The JCMT submillimeter heterodyne receiver is used to observe the sun in 850 micron radiation. These are the first submillimeter observations of features on the size scale of the chromospheric supergranular network and of sunspots. A comparison is made between 850 micron images and calcium K line images of the chromospheric supergranular network in the quiet sun and in plage. Images of sunspots are given, noting that their 850 micron brightness is comparable to, or somewhat greater than, that of the quiet sun. 7 refs.

  1. Quantization of the Maxwell fish-eye problem and the quantum-classical correspondence

    SciTech Connect

    Makowski, A. J.; Gorska, K. J.

    2009-05-15

    The so-called fish-eye model, originally investigated by Maxwell in geometrical optics, is studied both in the classical as well as in the quantum formulations. The best agreement between the two approaches is achieved by using a suitably constructed coherent state, which is of the SU(2) type. The perfect quantum-classical correspondence is obtained in the sense that classical rays go exactly over maxima of the corresponding quantum probability distributions. The distributions are made of linear combinations of the E=0 bound states of the considered model.

  2. First integrals of motion in a gauge covariant framework, Killing-Maxwell system and quantum anomalies

    SciTech Connect

    Visinescu, M.

    2012-10-15

    Hidden symmetries in a covariant Hamiltonian framework are investigated. The special role of the Stackel-Killing and Killing-Yano tensors is pointed out. The covariant phase-space is extended to include external gauge fields and scalar potentials. We investigate the possibility for a higher-order symmetry to survive when the electromagnetic interactions are taken into account. Aconcrete realization of this possibility is given by the Killing-Maxwell system. The classical conserved quantities do not generally transfer to the quantized systems producing quantum gravitational anomalies. As a rule the conformal extension of the Killing vectors and tensors does not produce symmetry operators for the Klein-Gordon operator.

  3. (2+1)-Dimensional charged black holes with scalar hair in Einstein-Power-Maxwell Theory

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Zou, De-Cheng

    2017-06-01

    In (2+1)-dimensional AdS spacetime, we obtain new exact black hole solutions, including two different models (power parameter k=1 and k≠1), in the Einstein-Power-Maxwell (EPM) theory with nonminimally coupled scalar field. For the charged hairy black hole with k≠1, we find that the solution contains a curvature singularity at the origin and is nonconformally flat. The horizon structures are identified, which indicates the physically acceptable lower bound of mass in according to the existence of black hole solutions. Later, the null geodesic equations for photon around this charged hairy black hole are also discussed in detail.

  4. The Hamiltonian Structure and Euler-Poincare Formulation of the Valsov-Maxwell and Gyrokinetic System

    SciTech Connect

    J. Squire, H. Qin and W.M. Tang

    2012-09-25

    We present a new variational principle for the gyrokinetic system, similar to the Maxwell-Vlasov action presented in Ref. 1. The variational principle is in the Eulerian frame and based on constrained variations of the phase space fluid velocity and particle distribution function. Using a Legendre transform, we explicitly derive the field theoretic Hamiltonian structure of the system. This is carried out with the Dirac theory of constraints, which is used to construct meaningful brackets from those obtained directly from Euler-Poincare theory. Possible applications of these formulations include continuum geometric integration techniques, large-eddy simulation models and Casimir type stability methods. __________________________________________________

  5. First Order Solutions for Klein-Gordon-Maxwell Equations in a Specific Curved Manifold Case

    SciTech Connect

    Murariu, Gabriel

    2009-05-22

    The aim of this paper is to study the SO(3,1)xU(1) gauge minimally coupled charged spinless field to a spherically symmetric curved space-time. It is derived the first order analytically approximation solution for the system of Klein-Gordon-Maxwell equations. Using these solutions, it evaluated the system electric charge density. The considered space -time manifold generalize an anterior studied one. The chosen space time configuration is of S diagonal type from the MAPLE GRTensor II metrics package.

  6. Existence of ground state solutions to a generalized quasilinear Schrödinger-Maxwell system

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoli; Li, Fuyi; Liang, Zhanping

    2016-10-01

    In this paper, a class of generalized quasilinear Schrödinger-Maxwell systems is considered. Via the mountain pass theorem, we conclude the existence of positive ground state solutions when the potential may vanish at infinity and the nonlinear term has a quasicritical growth. During this process, we use the Coulomb energy studied by Ruiz [Arch. Ration. Mech. Anal. 198(1), 349-368 (2010)] and establish a convergency theorem to overcome the lack of compactness caused by the potential which may vanish at infinity.

  7. Metamaterial-based half Maxwell fish-eye lens for broadband directive emissions

    NASA Astrophysics Data System (ADS)

    Dhouibi, Abdallah; Nawaz Burokur, Shah; de Lustrac, André; Priou, Alain

    2013-01-01

    The broadband directive emission from a metamaterial surface is numerically and experimentally reported. The metasurface, composed of non-resonant complementary closed ring structures, is designed to obey the refractive index of a half Maxwell fish-eye lens. A planar microstrip Vivaldi antenna is used as transverse magnetic polarized wave launcher for the lens. A prototype of the lens associated with its feed structure has been fabricated using standard lithography techniques. To experimentally demonstrate the broadband focusing properties and directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Measurements agree quantitatively and qualitatively with theoretical simulations.

  8. Simple model for transport phenomena: microscopic construction of Maxwell demonlike engine.

    PubMed

    Chaudhuri, Jyotipratim Ray; Chattopadhyay, Sudip; Banik, Suman Kumar

    2007-12-14

    We present a microscopic Hamiltonian framework to develop Maxwell demonlike engine. Our model consists of an equilibrium thermal bath and a nonequilibrium bath, latter generated by driving with an external stationary, Gaussian noise. The engine we develop can be considered as a device to extract work by modifying internal fluctuations. Our theoretical analysis focuses on finding the essential ingredients necessary for generating fluctuation induced transport under nonequilibrium condition. An important outcome of our model is that the net motion occurs when the nonlinear bath is modulated by the external noise, creating the nonzero effective temperature even when the temperature of both the baths are the same.

  9. Exact Solutions to the Einstein-Maxwell Equations Describing Wormholes and Handles

    NASA Astrophysics Data System (ADS)

    Khlestkov, Yu. A.; Sukhanova, L. A.

    2016-06-01

    On the basis of the exact solutions to the non-stationary spherically symmetric Einstein and Maxwell equations for dust matter and radial electromagnetic field, a model of a wormhole with the pulsating in time inner world and two static throats has been developed. It has been shown that such a wormhole with an arbitrary radius of the Gaussian curvature can connect both two different asymptotically flat space-times and two regions of the selfsame space-time (handles of the Wheeler type). The problem of the fulfilment of the energy conditions in this wormhole has been investigated, as well as the problem of its traversability investigation has been set.

  10. Fast semi-analytical solution of Maxwell's equations in Born approximation for periodic structures.

    PubMed

    Pisarenco, Maxim; Quintanilha, Richard; van Kraaij, Mark G M M; Coene, Wim M J

    2016-04-01

    We propose a fast semi-analytical approach for solving Maxwell's equations in Born approximation based on the Fourier modal method (FMM). We show that, as a result of Born approximation, most matrices in the FMM algorithm become diagonal, thus allowing a reduction of computational complexity from cubic to linear. Moreover, due to the analytical representation of the solution in the vertical direction, the number of degrees of freedom in this direction is independent of the wavelength. The method is derived for planar illumination with two basic polarizations (TE/TM) and an arbitrary 2D geometry infinitely periodic in one horizontal direction.

  11. The Einstein-Maxwell-aether-axion theory: Dynamo-optical anomaly in the electromagnetic response

    NASA Astrophysics Data System (ADS)

    Alpin, Timur Yu.; Balakin, Alexander B.

    2016-03-01

    We consider a pp-wave symmetric model in the framework of the Einstein-Maxwell-aether-axion theory. Exact solutions to the equations of axion electrodynamics are obtained for the model, in which pseudoscalar, electric and magnetic fields were constant before the arrival of a gravitational pp-wave. We show that dynamo-optical interactions, i.e. couplings of electromagnetic field to a dynamic unit vector field, attributed to the velocity of a cosmic substratum (aether, vacuum, dark fluid…), provide the response of axionically active electrodynamic system to display anomalous behavior.

  12. Efficient solution on solving 3D Maxwell equations using stable semi-implicit splitting method

    NASA Astrophysics Data System (ADS)

    Cen, Wei; Gu, Ning

    2016-05-01

    In this paper, we propose an efficient solution on solving 3-dimensional (3D) time-domain Maxwell equations using the semi-implicit Crank-Nicholson (CN) method for time domain discretization with advantage of unconditional time stability. By applying the idea of fractional steps method (FSM) to the CN scheme, the proposed method provides a much simpler and efficient implementation than a direct implementation of the CN scheme. Compared with the alternating-direction implicit (ADI) method and explicit finite-difference time-domain approach (FDTD), it significantly saves the computational resource like memory and CPU time while remains similar numerical accuracy.

  13. A Spectral Algorithm for Solving the Relativistic Vlasov-Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2001-01-01

    A spectral method algorithm is developed for the numerical solution of the full six-dimensional Vlasov-Maxwell system of equations. Here, the focus is on the electron distribution function, with positive ions providing a constant background. The algorithm consists of a Jacobi polynomial-spherical harmonic formulation in velocity space and a trigonometric formulation in position space. A transform procedure is used to evaluate nonlinear terms. The algorithm is suitable for performing moderate resolution simulations on currently available supercomputers for both scientific and engineering applications.

  14. Plane surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model

    NASA Astrophysics Data System (ADS)

    Wenchang, Tan; Mingyu, Xu

    2002-08-01

    The fractional calculus approach in the constitutive relationship model of viscoelastic fluid is introduced. The flow near a wall suddenly set in motion is studied for a non-Newtonian viscoelastic fluid with the fractional Maxwell model. Exact solutions of velocity and stress are obtained by using the discrete inverse Laplace transform of the sequential fractional derivatives. It is found that the effect of the fractional orders in the constitutive relationship on the flow field is significant. The results show that for small times there are appreciable viscoelastic effects on the shear stress at the plate, for large times the viscoelastic effects become weak.

  15. Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids

    NASA Technical Reports Server (NTRS)

    Madsen, Niel K.

    1992-01-01

    Several new discrete surface integral (DSI) methods for solving Maxwell's equations in the time-domain are presented. These methods, which allow the use of general nonorthogonal mixed-polyhedral unstructured grids, are direct generalizations of the canonical staggered-grid finite difference method. These methods are conservative in that they locally preserve divergence or charge. Employing mixed polyhedral cells, (hexahedral, tetrahedral, etc.) these methods allow more accurate modeling of non-rectangular structures and objects because the traditional stair-stepped boundary approximations associated with the orthogonal grid based finite difference methods can be avoided. Numerical results demonstrating the accuracy of these new methods are presented.

  16. Proposal for detection of QED vacuum nonlinearities in Maxwell's equations by the use of waveguides.

    PubMed

    Brodin, G; Marklund, M; Stenflo, L

    2001-10-22

    We present a novel method for detecting nonlinearities, due to quantum electrodynamics through photon-photon scattering, in Maxwell's equation. The photon-photon scattering gives rise to self-interaction terms which are similar to the nonlinearities due to the polarization in nonlinear optics. These self-interaction terms vanish in the limit of parallel propagating waves, but if, instead of parallel propagating waves, the modes generated in waveguides are used, there will be a nonzero total effect. Based on this idea, we calculate the nonlinear excitation of new modes and estimate the strength of this effect. Furthermore, we suggest a principal experimental setup.

  17. Viscoelastic creep and relaxation of dielectric elastomers characterized by a Kelvin-Voigt-Maxwell model

    NASA Astrophysics Data System (ADS)

    Zhang, Junshi; Ru, Jie; Chen, Hualing; Li, Dichen; Lu, Jian

    2017-01-01

    For dielectric elastomers (DEs), the inherent viscoelasticity leads to a time-dependent deformation during actuation. To describe such a viscoelastic behavior, a constitutive model is developed by utilizing a combined Kelvin-Voigt-Maxwell (KVM) model. The established model captures both the initial jumping deformation and the following slow creeping. Subsequently, with an employment of VHB 4910 elastomer, experiments are performed to validate the viscoelastic KVM model. The results indicate a good agreement between the simulation and experimental data. Effect of the parameters in KVM model on the viscoelastic deformation of DEs is also investigated.

  18. A Fourier collocation time domain method for numerically solving Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1991-01-01

    A new method for solving Maxwell's equations in the time domain for arbitrary values of permittivity, conductivity, and permeability is presented. Spatial derivatives are found by a Fourier transform method and time integration is performed using a second order, semi-implicit procedure. Electric and magnetic fields are collocated on the same grid points, rather than on interleaved points, as in the Finite Difference Time Domain (FDTD) method. Numerical results are presented for the propagation of a 2-D Transverse Electromagnetic (TEM) mode out of a parallel plate waveguide and into a dielectric and conducting medium.

  19. The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.

    2003-01-01

    Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three-dimensional velocities and angles. These data are then used to test the applicability and limitations of Maxwell's Z Model in representing the subsurface evolution of the excavation-stage flow-field center during vertical and oblique impacts.

  20. Maxwell's Demon at work: Two types of Bose condensate fluctuations in power-law traps.

    PubMed

    Grossmann, S; Holthaus, M

    1997-11-10

    After discussing the idea underlying the Maxwell's Demon ensemble, we employ this ensemble for calculating fluctuations of ideal Bose gas condensates in traps with power-law single-particle energy spectra. Two essentially different cases have to be distinguished. If the heat capacity is continuous at the condensation point, the fluctuations of the number of condensate particles vanish linearly with temperature, independent of the trap characteristics. In this case, microcanonical and canonical fluctuations are practically indistinguishable. If the heat capacity is discontinuous, the fluctuations vanish algebraically with temperature, with an exponent determined by the trap, and the micro-canonical fluctuations are lower than their canonical counterparts.

  1. Work and information processing in a solvable model of Maxwell's demon.

    PubMed

    Mandal, Dibyendu; Jarzynski, Christopher

    2012-07-17

    We describe a minimal model of an autonomous Maxwell demon, a device that delivers work by rectifying thermal fluctuations while simultaneously writing information to a memory register. We solve exactly for the steady-state behavior of our model, and we construct its phase diagram. We find that our device can also act as a "Landauer eraser", using externally supplied work to remove information from the memory register. By exposing an explicit, transparent mechanism of operation, our model offers a simple paradigm for investigating the thermodynamics of information processing by small systems.

  2. Mass, angular momentum, and charge inequalities for black holes in Einstein-Maxwell-axion-dilaton gravity

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek

    2014-02-01

    Mass, angular momentum, and charge inequalities for axisymmetric maximal time-symmetric initial data invariant under an action of U(1) group, in Einstein-Maxwell-axion-dilaton gravity being the low-energy limit of the heterotic string theory, is established. We assume that a data set with two asymptotically flat regions is given on a smooth simply connected manifold. We also pay attention to the area momentum charge inequalities for a closed orientable two-dimensional spacelike surface embedded in the spacetime of the considered theory.

  3. High-order accurate methods for solving the time-harmonic Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Wilcox, Lucas Charles

    Maxwell's equations are the partial differential equations describing electromagnetism. They can be used to model electric and magnetic fields in different materials from light in fiber optic cables to radar waves bouncing off a stealth fighter jet. In problems with electromagnetic radiation of a single frequency Maxwell's equations may be reduced to their time-harmonic form. Further simplifying the problem a multilayer boundary variation method for the forward modeling of multilayered diffraction optics is presented. This approach enables fast and high-order accurate modeling of periodic transmission optics consisting of an arbitrary number of materials and interfaces of general shape subject to plane wave illumination or, by solving a sequence of problems, illumination by beams. The key developments of the algorithm are discussed as are details of an efficient implementation. Numerous comparisons with exact solutions and highly accurate direct solutions confirm the accuracy, versatility, and efficiency of the proposed method. The high accuracy of the method is leveraged to solve an application involving the in-coupling process for grating-coupled planar optical waveguide sensors. For more general solutions of the time-harmonic Maxwell's equations an hp-adaptive discontinuous Galerkin finite element method is studied. The discontinuous Galerkin finite element method is a general method for solving partial differential equations that has had success with time evolution problems. The application to time-harmonic problems is a new and developing area of research. As a first step, an overlapping Schwarz method for the discontinuous Galerkin discretization of the indefinite Helmholtz equation is examined. For an hp-adaptive method to be successful an error indicator is required to determine the areas of the computational domain that need increased resolution. The use of adjoint based error indicators is explored through solving the time-harmonic Maxwell's equations for

  4. The Singularity Mystery Associated with a Radially Continuous Maxwell Viscoelastic Structure

    NASA Technical Reports Server (NTRS)

    Fang, Ming; Hager, Bradford H.

    1995-01-01

    The singularity problem associated with a radially continuous Maxwell viscoclastic structure is investigated. A special tool called the isolation function is developed. Results calculated using the isolation function show that the discrete model assumption is no longer valid when the viscoelastic parameter becomes a continuous function of radius. Continuous variations in the upper mantle viscoelastic parameter are especially powerful in destroying the mode-like structures. The contribution to the load Love numbers of the singularities is sensitive to the convexity of the viscoelastic parameter models. The difference between the vertical response and the horizontal response found in layered viscoelastic parameter models remains with continuous models.

  5. Visible and hidden sectors in a model with Maxwell and Chern-Simons gauge dynamics

    NASA Astrophysics Data System (ADS)

    Ireson, Edwin; Schaposnik, Fidel A.; Tallarita, Gianni

    2016-11-01

    We study a U(1) × U(1) gauge theory discussing its vortex solutions and supersymmetric extension. In our set-up, the dynamics of one of two Abelian gauge fields is governed by a Maxwell term, the other by a Chern-Simons term. The two sectors interact via a BF gauge field mixing and a Higgs portal term that connects the two complex scalars. We also consider the supersymmetric version of this system which allows to find for the bosonic sector BPS equations in which an additional real scalar field enters into play. We study numerically the field equations finding vortex solutions with both magnetic flux and electric charge.

  6. On a Hamilton-Poisson Approach of the Maxwell-Bloch Equations with a Control

    NASA Astrophysics Data System (ADS)

    Lăzureanu, Cristian

    2017-09-01

    In this paper we consider the 3D real-valued Maxwell-Bloch equations with a parametric control given by \\dot {x}=y+az+byz,\\dot {y}=xz,\\dot {z}=-xy (a,b\\in R). We give two Lie-Poisson structures of this system that are related with well-known Lie algebras. Moreover, we construct infinitely many Hamilton-Poisson realizations of this system. We also analyze the stability of the equilibrium points, as well as the existence of periodic orbits. In addition, we emphasize some connections between the energy-Casimir mapping of the considered system and the above-mentioned dynamical elements.

  7. The Vlasov-Maxwell-Boltzmann System Near Maxwellians in the Whole Space with Very Soft Potentials

    NASA Astrophysics Data System (ADS)

    Duan, Renjun; Lei, Yuanjie; Yang, Tong; Zhao, Huijiang

    2017-04-01

    Since the work by Guo (Invent Math 153(3):593-630, 2003), it has remained an open problem to establish the global existence of perturbative classical solutions around a global Maxwellian to the Vlasov-Maxwell-Boltzmann system with the whole range of soft potentials. This is mainly due to the complex structure of the system, in particular, the degenerate dissipation at large velocity, the velocity-growth of the nonlinear term induced by the Lorentz force, and the regularity-loss of the electromagnetic fields. This paper solves this problem in the whole space provided that initial perturbation has sufficient regularity and velocity-integrability.

  8. The free-electron laser - Maxwell's equations driven by single-particle currents

    NASA Technical Reports Server (NTRS)

    Colson, W. B.; Ride, S. K.

    1980-01-01

    It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.

  9. Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme

    NASA Astrophysics Data System (ADS)

    Squire, Jonathan; Qin, Hong; Tang, William

    2012-10-01

    A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of Discrete Exterior Calculus [1], the field solver, interpolation scheme and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law. This work was supported by USDOE Contract DE-AC02-09CH11466.[4pt] [1] M. Desbrun, A. N. Hirani, M. Leok, and J. E. Marsden, (2005), arXiv:math/0508341

  10. On-Chip Maxwell's Demon as an Information-Powered Refrigerator

    NASA Astrophysics Data System (ADS)

    Koski, J. V.; Kutvonen, A.; Khaymovich, I. M.; Ala-Nissila, T.; Pekola, J. P.

    2015-12-01

    We present an experimental realization of an autonomous Maxwell's demon, which extracts microscopic information from a system and reduces its entropy by applying feedback. It is based on two capacitively coupled single-electron devices, both integrated on the same electronic circuit. This setup allows a detailed analysis of the thermodynamics of both the demon and the system as well as their mutual information exchange. The operation of the demon is directly observed as a temperature drop in the system. We also observe a simultaneous temperature rise in the demon arising from the thermodynamic cost of generating the mutual information.

  11. Gauge invariances of higher derivative Maxwell-Chern-Simons field theory: A new Hamiltonian approach

    NASA Astrophysics Data System (ADS)

    Mukherjee, Pradip; Paul, Biswajit

    2012-02-01

    A new method of abstracting the independent gauge invariances of higher derivative systems, recently introduced in [R. Banerjee, P. Mukherjee, and B. Paul, J. High Energy Phys.JHEPFG1029-8479 08 (2011) 085.10.1007/JHEP08(2011)085], has been applied to higher derivative field theories. This has been discussed taking the extended Maxwell-Chern-Simons model as an example. A new Hamiltonian analysis of the model is provided. This Hamiltonian analysis has been used to construct the independent gauge generator. An exact mapping between the Hamiltonian gauge transformations and the U(1) symmetries of the action has been established.

  12. Heat transfer analysis in a Maxwell fluid over an oscillating vertical plate using fractional Caputo-Fabrizio derivatives

    NASA Astrophysics Data System (ADS)

    Khan, Ilyas; Ali Shah, Nehad; Mahsud, Yasir; Vieru, Dumitru

    2017-04-01

    This article is focused on heat transfer analysis in the unsteady flow of a generalized Maxwell fluid over an oscillating vertical flat plate with constant temperature. The well-known equation of the Maxwell fluid with classical derivatives, describing the unidirectional and one-dimensional flow, has been generalized to a non-integer-order derivative, known as fractional derivative, with free convection term of buoyancy. A new definition of the fractional derivative introduced by Caputo and Fabrizio has been used in the mathematical formulation of the problem. Exact solution of the dimensionless problem has been obtained by using the Laplace transform. These solutions are expressed with complementary error and modified Bessel functions. Similar solutions for classical Maxwell and Newtonian fluids and generalized Newtonian fluid performing the same motion are obtained as limiting cases of our general results. Graphical illustrations show that the velocity profiles corresponding to a generalized Maxwell fluid are similar to those for an ordinary Maxwell fluid when the fraction order approaches 1. A comparison amongst four different types of fluids is also shown graphically.

  13. Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver

    DOE PAGES

    Vincenti, H.; Vay, J. -L.

    2015-11-22

    Due to discretization effects and truncation to finite domains, many electromagnetic simulations present non-physical modifications of Maxwell's equations in space that may generate spurious signals affecting the overall accuracy of the result. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of themore » errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical discretization errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solver and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation.« less

  14. Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver

    SciTech Connect

    Vincenti, H.; Vay, J. -L.

    2015-11-22

    Due to discretization effects and truncation to finite domains, many electromagnetic simulations present non-physical modifications of Maxwell's equations in space that may generate spurious signals affecting the overall accuracy of the result. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of the errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical discretization errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solver and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation.

  15. Stupid statistics!

    PubMed

    Tellinghuisen, Joel

    2008-01-01

    The method of least squares is probably the most powerful data analysis tool available to scientists. Toward a fuller appreciation of that power, this work begins with an elementary review of statistics fundamentals, and then progressively increases in sophistication as the coverage is extended to the theory and practice of linear and nonlinear least squares. The results are illustrated in application to data analysis problems important in the life sciences. The review of fundamentals includes the role of sampling and its connection to probability distributions, the Central Limit Theorem, and the importance of finite variance. Linear least squares are presented using matrix notation, and the significance of the key probability distributions-Gaussian, chi-square, and t-is illustrated with Monte Carlo calculations. The meaning of correlation is discussed, including its role in the propagation of error. When the data themselves are correlated, special methods are needed for the fitting, as they are also when fitting with constraints. Nonlinear fitting gives rise to nonnormal parameter distributions, but the 10% Rule of Thumb suggests that such problems will be insignificant when the parameter is sufficiently well determined. Illustrations include calibration with linear and nonlinear response functions, the dangers inherent in fitting inverted data (e.g., Lineweaver-Burk equation), an analysis of the reliability of the van't Hoff analysis, the problem of correlated data in the Guggenheim method, and the optimization of isothermal titration calorimetry procedures using the variance-covariance matrix for experiment design. The work concludes with illustrations on assessing and presenting results.

  16. Development of an explicit non-staggered scheme for solving three-dimensional Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Sheu, Tony W. H.; Chung, Y. W.; Li, J. H.; Wang, Y. C.

    2016-10-01

    An explicit finite-difference scheme for solving the three-dimensional Maxwell's equations in non-staggered grids is presented. We aspire to obtain time-dependent solutions of the Faraday's and Ampère's equations and predict the electric and magnetic fields within the discrete zero-divergence context (or Gauss's law). The local conservation laws in Maxwell's equations are numerically preserved using the explicit second-order accurate symplectic partitioned Runge-Kutta temporal scheme. Following the method of lines, the spatial derivative terms in the semi-discretized Faraday's and Ampère's equations are approximated theoretically to obtain a highly accurate numerical phase velocity. The proposed fourth-order accurate space-centered finite difference scheme minimizes the discrepancy between the exact and numerical phase velocities. This minimization process considerably reduces the dispersion and anisotropy errors normally associated with finite difference time-domain methods. The computational efficiency of getting the same level of accuracy at less computing time and the ability of preserving the symplectic property have been numerically demonstrated through several test problems.

  17. Interaction of magnetic field in flow of Maxwell nanofluid with convective effect

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Muhammad, Taseer; Shehzad, S. A.; Chen, G. Q.; Abbas, Ibrahim A.

    2015-09-01

    Magnetohydrodynamic (MHD) three-dimensional flow of Maxwell nanofluid subject to the convective boundary condition is investigated. The flow is generated by a bidirectional stretching surface. Thermophoresis and Brownian motion effects are present. Fluid is electrically conducted in the presence of a constant applied magnetic field. Unlike the previous cases even in the absence of nanoparticles, the correct formulation for the flow of Maxwell fluid in the presence of a magnetic field is established. Newly proposed boundary condition with the zero nanoparticles mass flux at the boundary is employed. The governing nonlinear boundary layer equations through appropriate transformations are reduced in the nonlinear ordinary differential system. The resulting nonlinear system has been solved for the velocities, temperature and nanoparticles concentration distributions. Convergence of the constructed solutions is verified. Effects of emerging parameters on the temperature and nanoparticles concentration are plotted and discussed. Numerical values of local Nusselt number are computed and analyzed. It is observed that the effects of magnetic parameter and the Biot number on the temperature and nanoparticles concentration are quite similar. Both the temperature and nanoparticles concentration are enhanced for the increasing value of magnetic parameter and Biot number.

  18. Entanglement entropy for a Maxwell field: Numerical calculation on a two-dimensional lattice

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Huerta, Marina

    2014-11-01

    We study entanglement entropy (EE) for a Maxwell field in (2 +1 ) dimensions. We do numerical calculations in two-dimensional lattices. This gives a concrete example of the general results of our recent work [1] on entropy for lattice gauge fields using an algebraic approach. To evaluate the entropies we extend the standard calculation methods for the entropy of Gaussian states in canonical commutation algebras to the more general case of algebras with center and arbitrary numerical commutators. We find that while the entropy depends on the details of the algebra choice, mutual information has a well defined continuum limit as predicted in [1]. We study several universal terms for the entropy of the Maxwell field and compare with the case of a massless scalar field. We find some interesting new phenomena: an "evanescent" logarithmically divergent term in the entropy with topological coefficient which does not have any correspondence with ultraviolet entanglement in the universal quantities, and a nonstandard way in which strong subadditivity is realized. Based on the results of our calculations we propose a generalization of strong subadditivity for the entropy on some algebras that are not in tensor product.

  19. Customized finite difference Maxwell solver for elimination of numerical Cherenkov instability in EM-PIC code

    NASA Astrophysics Data System (ADS)

    Yu, Peicheng; Li, Fei; Dalichaouch, Thamine; Fiuza, Frederico; Decyk, Viktor; Davidson, Asher; Tableman, Adam; An, Weiming; Tsung, Frank; Fonseca, Ricardo; Lu, Wei; Vieira, Jorge; Silva, Luis; Mori, Warren

    2016-10-01

    we present a finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm, which is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1& circ; direction). We show that this eliminates the main NCI modes with moderate | k1 | , while keeps additional main NCI modes well outside the range of physical interest with higher | k1 | . These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1& circ; which typically has many more cells than other directions for the problems of interest.

  20. Thermodynamics of phantom black holes in Einstein-Maxwell-dilaton theory

    NASA Astrophysics Data System (ADS)

    Rodrigues, Manuel E.; Oporto, Zui A. A.

    2012-05-01

    A thermodynamic analysis of the black hole solutions coming from the Einstein-Maxwell-dilaton theory in 4D is done. By considering the canonical and grand-canonical ensemble, we apply standard method as well as a recent method known as geometrothermodynamics. We are particularly interested in the characteristics of the so called phantom black hole solutions. We will analyze the thermodynamics of these solutions, the points of phase transition and their extremal limit. The thermodynamic stability is also analyzed. We obtain a mismatch between the results of the geometrothermodynamics method when compared with the ones obtained by the specific heat, revealing a weakness of the method, as well as possible limitations of its applicability to very pathological thermodynamic systems. We also found that normal and phantom solutions are locally and globally unstable, except for certain values of the coupled constant of the Einstein-Maxwell-dilaton action. We also show that the anti-Reissner-Nordstrom solution does not possess extremal limit nor phase transition points, contrary to the Reissner-Nordstrom case.

  1. Topological charged BPS vortices in Lorentz-violating Maxwell-Higgs electrodynamics

    NASA Astrophysics Data System (ADS)

    Casana, R.; Lazar, G.

    2014-09-01

    We have performed a complete study of BPS vortex solutions in the Abelian sector of the standard model extension (SME). Specifically, we have coupled the SME electromagnetism with a Higgs field which is supplemented with a Lorentz-violating CPT-even term. We have verified that Lorentz violation (LV) belonging to the Higgs sector allows us to interpolate between some well-known models like Maxwell-Higgs, Chern-Simons-Higgs, and Maxwell-Chern-Simons-Higgs. We can also observe that the electrical charged density distribution is non-null in both CPT-even and CPT-odd models; however, the total electric charge in the CPT-even case is null, whereas in the CPT-odd one it is proportional to the quantized magnetic flux. The following general results can be established in relation to the LV introduced in the Higgs sector: it changes the vortex ansatz and the gauge field boundary conditions. A direct consequence is that the magnetic flux, besides being proportional to the winding number, also depends explicitly on the Lorentz-violation belonging to the Higgs sector.

  2. A multilevel local discrete convolution method for the numerical solution for Maxwell's Equations

    NASA Astrophysics Data System (ADS)

    Lo, Boris; Colella, Phillip

    2016-10-01

    We present a new discrete multilevel local discrete convolution method for solving Maxwell's equations in three dimensions. We obtain an explicit real-space representation for the propagator of an auxiliary system of differential equations with initial value constraints that is equivalent to Maxwell's equations. The propagator preserves finite speed of propagation and source locality. Because the propagator involves convolution against a singular distribution, we regularize via convolution with smoothing kernels (B-splines) prior to sampling. We have shown that the ultimate discrete convolutional propagator can be constructed to attain an arbitrarily high order of accuracy by using higher-order regularizing kernels and finite difference stencils. The discretized propagator is compactly supported and can be applied using Hockney's method (1970) and parallelized using domain decomposition, leading to a method that is computationally efficient. The algorithm is extended to work for locally refined fixed hierarchy of rectangular grids. This research is supported by the Office of Advanced Scientific Computing Research of the US Department of Energy under Contract Number DE-AC02-05CH11231.

  3. A High-Order Accurate Parallel Solver for Maxwell's Equations on Overlapping Grids

    SciTech Connect

    Henshaw, W D

    2005-09-23

    A scheme for the solution of the time dependent Maxwell's equations on composite overlapping grids is described. The method uses high-order accurate approximations in space and time for Maxwell's equations written as a second-order vector wave equation. High-order accurate symmetric difference approximations to the generalized Laplace operator are constructed for curvilinear component grids. The modified equation approach is used to develop high-order accurate approximations that only use three time levels and have the same time-stepping restriction as the second-order scheme. Discrete boundary conditions for perfect electrical conductors and for material interfaces are developed and analyzed. The implementation is optimized for component grids that are Cartesian, resulting in a fast and efficient method. The solver runs on parallel machines with each component grid distributed across one or more processors. Numerical results in two- and three-dimensions are presented for the fourth-order accurate version of the method. These results demonstrate the accuracy and efficiency of the approach.

  4. Vector dark energy models with quadratic terms in the Maxwell tensor derivatives

    NASA Astrophysics Data System (ADS)

    Haghani, Zahra; Harko, Tiberiu; Sepangi, Hamid Reza; Shahidi, Shahab

    2017-03-01

    We consider a vector-tensor gravitational model with terms quadratic in the Maxwell tensor derivatives, called the Bopp-Podolsky term. The gravitational field equations of the model and the equations describing the evolution of the vector field are obtained and their Newtonian limit is investigated. The cosmological implications of a Bopp-Podolsky type dark energy term are investigated for a Bianchi type I homogeneous and anisotropic geometry for two models, corresponding to the absence and presence of the self-interacting potential of the field, respectively. The time evolutions of the Hubble function, of the matter energy density, of the shear scalar, of the mean anisotropy parameter, and of the deceleration parameter, respectively, as well as the field potentials are obtained for both cases by numerically integrating the cosmological evolution equations. In the presence of the vector type dark energy with quadratic terms in the Maxwell tensor derivatives, depending on the numerical values of the model parameters, the Bianchi type I Universe experiences a complex dynamical evolution, with the dust Universes ending in an isotropic phase. The presence of the self-interacting potential of the vector field significantly shortens the time interval necessary for the full isotropization of the Universe.

  5. Electromagnetic and light scattering by nonspherical particles XV: Celebrating 150 years of Maxwell's electromagnetics

    NASA Astrophysics Data System (ADS)

    Macke, Andreas; Mishchenko, Michael I.

    2016-07-01

    The 15th Electromagnetic and Light Scattering Conference (ELS-XV) was held in Leipzig, Germany from 21 to 26 of June 2015 (Fig. 1). This conference built on the great success of the previous meetings held in Amsterdam (1995) [1], Helsinki (1997) [2], New York City (1998) [3], Vigo (1999), Halifax (2000) [4], Gainesville (2002) [5], Bremen (2003) [6], Salobreña (2005) [7], St. Petersburg (2006) [8], Bodrum (2007) [9], Hatfield (2008) [10], Helsinki (2010) [11], Taormina (2011) [12], and Lille [13] as well as the workshops held in Bremen (1996, 1998) and Moscow (1997). As usual, the main objective of this conference was to bring together scientists, engineers, and PhD students studying various aspects of electromagnetic scattering and to provide a relaxed atmosphere for in-depth discussion of theory, measurements, and applications. Furthermore, ELS-XV supported the United Nations "Year of Light" and celebrated the 150th anniversary of Maxwell's electromagnetics. Maxwell's paper on "A Dynamical Theory of the Electromagnetic Field" [14] was published in 1865 and has widely been acknowledged as one of the supreme achievements in the history of science.

  6. Maxwell and very-hard-particle models for probabilistic ballistic annihilation: Hydrodynamic description

    NASA Astrophysics Data System (ADS)

    Coppex, François; Droz, Michel; Trizac, Emmanuel

    2005-08-01

    The hydrodynamic description of probabilistic ballistic annihilation, for which no conservation laws hold, is an intricate problem with hard spherelike dynamics for which no exact solution exists. We consequently focus on simplified approaches, the Maxwell and very-hard-particle (VHP) models, which allows us to compute analytically upper and lower bounds for several quantities. The purpose is to test the possibility of describing such a far from equilibrium dynamics with simplified kinetic models. The motivation is also in turn to assess the relevance of some singular features appearing within the original model and the approximations invoked to study it. The scaling exponents are first obtained from the (simplified) Boltzmann equation, and are confronted against direct Monte Carlo simulations. Then, the Chapman-Enskog method is used to obtain constitutive relations and transport coefficients. The corresponding Navier-Stokes equations for the hydrodynamic fields are derived for both Maxwell and VHP models. We finally perform a linear stability analysis around the homogeneous solution, which illustrates the importance of dissipation in the possible development of spatial inhomogeneities.

  7. Fractional Generalizations of Maxwell and Kelvin-Voigt Models for Biopolymer Characterization

    PubMed Central

    Jóźwiak, Bertrand; Orczykowska, Magdalena; Dziubiński, Marek

    2015-01-01

    The paper proposes a fractional generalization of the Maxwell and Kelvin-Voigt rheological models for a description of dynamic behavior of biopolymer materials. It was found that the rheological models of Maxwell-type do not work in the case of modeling of viscoelastic solids, and the model which significantly better describes the nature of changes in rheological properties of such media is the modified fractional Kelvin-Voigt model with two built-in springpots (MFKVM2). The proposed model was used to describe the experimental data from the oscillatory and creep tests of 3% (w/v) kuzu starch pastes, and to determine the values of their rheological parameters as a function of pasting time. These parameters provide a lot of additional information about structure and viscoelastic properties of the medium in comparison to the classical analysis of dynamic curves G’ and G” and shear creep compliance J(t). It allowed for a comprehensive description of a wide range of properties of kuzu starch pastes, depending on the conditions of pasting process. PMID:26599756

  8. Integrability of the hyperbolic reduced Maxwell-Bloch equations for strongly correlated Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Arnaudon, Alexis; Gibbon, John D.

    2017-07-01

    We derive and study the hyperbolic reduced Maxwell-Bloch (HRMB) equations, a simplified model for the dynamics of strongly correlated Bose-Einstein condensates (BECs), and in particular for the interaction between the BEC atoms and its evaporated atoms under the strong interactions. This equation is one among four, which are proven to be integrable via the existence of a Lax pair, and thus the method of inverse scattering transform. Another equation is the reduced Maxwell-Bloch equation of quantum optics and the two others do not have physical applications yet. By studying the linear stability of the constant solutions of these four equations we observe various regimes, from stable, to modulational unstable, and unstable at all frequencies. The finite-dimensional reduction of the RMB equations is also used to give more insight into the constant solutions of these equations. From this study, we find that the HRMB equation arising from strongly correlated BECs is stable under the particular condition that the transition rate of evaporation is not too large compared to the number of evaporated atoms. We then derive explicit soliton solutions of the RMB equations and use numerical simulations to show collisions of solitons and kink solitons.

  9. Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system

    NASA Astrophysics Data System (ADS)

    Cheng, Yingda; Christlieb, Andrew J.; Zhong, Xinghui

    2014-12-01

    In this paper, we generalize the idea in our previous work for the Vlasov-Ampère (VA) system (Y. Cheng, A.J. Christlieb, and X. Zhong (2014) [10]) and develop energy-conserving discontinuous Galerkin (DG) methods for the Vlasov-Maxwell (VM) system. The VM system is a fundamental model in the simulation of collisionless magnetized plasmas. Compared to Y. Cheng, A.J. Christlieb, and X. Zhong (2014) [10], additional care needs to be taken for both the temporal and spatial discretizations to achieve similar type of conservation when the magnetic field is no longer negligible. Our proposed schemes conserve the total particle number and the total energy at the same time, therefore can obtain accurate and physically relevant numerical solutions. The main components of our methods include second order and above, explicit or implicit energy-conserving temporal discretizations, and DG methods for Vlasov and Maxwell's equations with carefully chosen numerical fluxes. Benchmark numerical tests such as the streaming Weibel instability are provided to validate the accuracy and conservation of the schemes.

  10. Nonlinear wave structures as exact solutions of Vlasov-Maxwell equations.

    NASA Astrophysics Data System (ADS)

    Dasgupta, B.; Tsurutani, B. T.; Janaki, M. S.; Sharma, A. S.

    2001-12-01

    Many recent observations by POLAR and Geotail spacecraft of the low-latitudes magnetopause boundary layer (LLBL) and the polar cap boundary layer (PCBL) have detected nonlinear wave structures [Tsurutani et al, Geophys. Res. Lett., 25, 4117, 1998]. These nonlinear waves have electromagnetic signatures that are identified with Alfven and Whistler modes. Also solitary waves with mono- and bi-polar features were observed. In general such electromagnetic structures are described by the full Vlasov-Maxwell equations for waves propagating at an angle to the ambient magnetic field, but it has been a diffficult task obtaining the solutions because of the inherent nonlinearity. We have obtained an exact nonlinear solution of the full Vlasov-Maxwell equations in the presence of an electromagnetic wave propagating at an arbitrary direction with an ambient magnetic field. This is accomplished by finding the constants of motion of the charged particles in the electromagnetic field of the wave and then constructing a realistic distribution function as a function of these constants of motion. The corresponding trapping conditions for such waves are obtained, yielding the self-consistent description for the particles in the presence of the nonlinear waves. The interpretation of the observed nonlinear structures in terms of these general solutions will be presented.

  11. String theory extensions of Einstein-Maxwell fields: The stationary case

    NASA Astrophysics Data System (ADS)

    Herrera-Aguilar, Alfredo; Kechkin, Oleg V.

    2004-01-01

    We present a new approach for generating solutions in heterotic string theory compactified down to three dimensions on a torus with d+n>2, where d and n stand for the number of compactified space-time dimensions and Abelian gauge fields, respectively. It is shown that in the case when d=2k+1, and n is arbitrary, one can apply a solution-generating procedure which consists of mapping seed solutions of the stationary Einstein theory with k Maxwell fields to the heterotic string realm by using pure field redefinitions. A novel feature of this method is that it is precisely the electromagnetic sector of the stationary electrovacuum that mainly gives rise to a nontrivial multidimensional metric. This approach leads to classes of solutions which are invariant with respect to the total group of three-dimensional charging symmetries of the heterotic string theory, i.e., to all finite transformations which generate charged solutions from neutral ones and preserve the asymptotics of the starting field configurations. As an application of the presented approach we generate a particular extension of the stationary Einstein-multi-Maxwell theory obtained on the basis of the Kerr-multi-Newman-NUT special class of solutions and establish the conditions under which the resulting multi-dimensional metric of the heterotic string theory is asymptotically flat.

  12. Radiating black holes in Einstein-Maxwell-dilaton theory and cosmic censorship violation

    NASA Astrophysics Data System (ADS)

    Aniceto, Pedro; Pani, Paolo; Rocha, Jorge V.

    2016-05-01

    We construct exact, time-dependent, black hole solutions of Einstein-Maxwell-dilaton theory with arbitrary dilaton coupling, a. For a = 1 this theory arises as the four-dimensional low-energy effective description of heterotic string theory. These solutions represent electrically charged, spherically symmetric black holes emitting or absorbing charged null fluids and generalize the Vaidya and Bonnor-Vaidya solutions of general relativity and of Einstein-Maxwell theory, respectively. The a = 1 case stands out as special, in the sense that it is the only choice of the coupling that allows for a time-dependent dilaton field in this class of solutions. As a by-product, when a = 1 we show that an electrically charged black hole in this theory can be overcharged by bombarding it with a stream of electrically charged null fluid, resulting in the formation of a naked singularity. This provides an example of cosmic censorship violation in an exact dynamical solution to low-energy effective string theory and in a case in which the total stress-energy tensor satisfies all energy conditions. When a ≠ 1, our solutions necessarily have a time-independent scalar field and consequently cannot be overcharged.

  13. Comparisons of the Maxwell and CLL gas/surface interaction models using DSMC

    NASA Technical Reports Server (NTRS)

    Hedahl, Marc O.; Wilmoth, Richard G.

    1995-01-01

    The behavior of two different models of gas-surface interactions is studied using the Direct Simulation Monte Carlo (DSMC) method. The DSMC calculations examine differences in predictions of aerodynamic forces and heat transfer between the Maxwell and the Cercignani-Lampis-Lord (CLL) models for flat plate configurations at freestream conditions corresponding to a 140 km orbit around Venus. The size of the flat plate represents one of the solar panels on the Magellan spacecraft, and the freestream conditions correspond to those experienced during aerobraking maneuvers. Results are presented for both a single flat plate and a two-plate configuration as a function of angle of attack and gas-surface accommodation coefficients. The two-plate system is not representative of the Magellan geometry but is studied to explore possible experiments that might be used to differentiate between the two gas-surface interaction models. The Maxwell and CLL models produce qualitatively similar results for the aerodynamic forces and heat transfer on a single flat plate. However, the flow fields produced with the two models are qualitatively different for both the single-plate and two-plate calculations. These differences in the flowfield lead to predictions of the angle of attack for maximum heat transfer in a two plate configuration that are distinctly different for the two gas-surface interactions models.

  14. Maxwell rheological model for lipid-shelled ultrasound microbubble contrast agents.

    PubMed

    Doinikov, Alexander A; Dayton, Paul A

    2007-06-01

    The present paper proposes a model that describes the encapsulation of microbubble contrast agents by the linear Maxwell constitutive equation. The model also incorporates the translational motion of contrast agent microbubbles and takes into account radiation losses due to the compressibility of the surrounding liquid. To establish physical features of the proposed model, comparative analysis is performed between this model and two existing models, one of which treats the encapsulation as a viscoelastic solid following the Kelvin-Voigt constitutive equation and the other assumes that the encapsulating layer behaves as a viscous Newtonian fluid. Resonance frequencies, damping coefficients, and scattering cross sections for the three shell models are compared in the regime of linear oscillation. Translational displacements predicted by the three shell models are examined by numerically calculating the general, nonlinearized equations of motion for weakly nonlinear excitation. Analogous results for free bubbles are also presented as a basis to which calculations made for encapsulated bubbles can be related. It is shown that the Maxwell shell model possesses specific physical features that are unavailable in the two other models.

  15. Thermal equilibrium and statistical thermometers in special relativity.

    PubMed

    Cubero, David; Casado-Pascual, Jesús; Dunkel, Jörn; Talkner, Peter; Hänggi, Peter

    2007-10-26

    There is an intense debate in the recent literature about the correct generalization of Maxwell's velocity distribution in special relativity. The most frequently discussed candidate distributions include the Jüttner function as well as modifications thereof. Here we report results from fully relativistic one-dimensional molecular dynamics simulations that resolve the ambiguity. The numerical evidence unequivocally favors the Jüttner distribution. Moreover, our simulations illustrate that the concept of "thermal equilibrium" extends naturally to special relativity only if a many-particle system is spatially confined. They make evident that "temperature" can be statistically defined and measured in an observer frame independent way.

  16. Uniqueness theorem for black holes with Kaluza-Klein asymptotic in 5D Einstein-Maxwell gravity

    SciTech Connect

    Yazadjiev, Stoytcho

    2010-07-15

    In the present paper, we prove a uniqueness theorem for stationary multi-black hole configurations with Kaluza-Klein asymptotic in a certain sector of 5D Einstein-Maxwell gravity. As a part of the technical assumptions in the theorem, we assume that the Killing vector associated with the compact dimension is orthogonal to the other Killing vectors and that it is also hypersurface orthogonal. About the Maxwell field, we assume that it is invariant under the Killing symmetries and has a nonzero component only along the Killing vector associated with the compact dimension. We show that such multi-black hole configurations are uniquely specified by the interval structure, angular momenta of the horizons, magnetic charges, and the magnetic flux. A straightforward generalization of the uniqueness theorem for 5D Einstein-Maxwell-dilaton gravity is also given.

  17. Preservation of physical properties of stochastic Maxwell equations with additive noise via stochastic multi-symplectic methods

    SciTech Connect

    Chen, Chuchu Hong, Jialin Zhang, Liying

    2016-02-01

    Stochastic Maxwell equations with additive noise are a system of stochastic Hamiltonian partial differential equations intrinsically, possessing the stochastic multi-symplectic conservation law. It is shown that the averaged energy increases linearly with respect to the evolution of time and the flow of stochastic Maxwell equations with additive noise preserves the divergence in the sense of expectation. Moreover, we propose three novel stochastic multi-symplectic methods to discretize stochastic Maxwell equations in order to investigate the preservation of these properties numerically. We make theoretical discussions and comparisons on all of the three methods to observe that all of them preserve the corresponding discrete version of the averaged divergence. Meanwhile, we obtain the corresponding dissipative property of the discrete averaged energy satisfied by each method. Especially, the evolution rates of the averaged energies for all of the three methods are derived which are in accordance with the continuous case. Numerical experiments are performed to verify our theoretical results.

  18. Models for low-energy Lorentz violation in the photon sector: Addendum to 'Consistency of isotropic modified Maxwell theory'

    NASA Astrophysics Data System (ADS)

    Klinkhamer, F. R.; Schreck, M.

    2012-03-01

    In a previous article, Klinkhamer and Schreck (2011) [1], we established the consistency of isotropic modified Maxwell theory for a finite range of the Lorentz-violating parameter κ, which includes both positive and negative values of κ. As an aside, we mentioned the existence of a physical model which, for low-energy photons, gives rise to isotropic modified Maxwell theory with a positive parameter κ (corresponding to a "slow" photon). Here, we present a related model which gives rise to isotropic modified Maxwell theory with a negative parameter κ (corresponding to a "fast" photon). Both models have an identical particle content, photon and Dirac particles, but differ in the type of spacetime manifold considered.

  19. The Molecular Origin of Turbulence in a Flowing Gas According to James Clerk Maxwell

    NASA Astrophysics Data System (ADS)

    de Graffenried, Albert

    2007-11-01

    James Clerk Maxwell was an eminent physicist who operated out of the University of Edinburgh in the early 1800's. He is internationally famous for his derivation of the laws governing the propagation of electro-magnetic waves. He also derived an equation for the Viscosity of a gas (μ) in terms of its molecular parameters. This derivation established clearly and unequivocably that a real (viscous) flowing gas was a molecular fluid, that is, a flow of molecules which obeys the Kinetic Theory of Gases. Maxwell's derivation of the Viscosity of a gas takes place in a zone of a flowing gas which (1) is remote from any solid surface, and (2) is in a region having a linear velocity-gradient dvx/dy . The derivation which I will present today takes place in a zone of the flowing gas which is (1) immediately adjacent a solid surface, and (2) where the velocity gradient is unknown. My analytical approach, the parameters I use, and the theoretical concepts are all taken from Maxwell's derivation. I have simply re-arranged some of his equations in order to solve the 1-dimensional case of boundary-layer growth over an infinite flat plate, starting with a step-function of flow velocity, namely: vx(y,t) for the initial condition vx(y=0+,t=0+) = U0 ,viz: rectilinear flow as an initial condition. Using Maxwell's approach, we write the equation for Net Stream-Momentum Flux flowing through an element of area, day . This quantity is shown to be the difference between two Convolution integrals which Laplace transform readily into an equation in the s-plane which equation has the same form as a positive-feedback, single closed-loop amplifier gain equation, viz: Output = (input)x(transfer function). The solution in the Real plane shows vx(y,t) equal to the sum of two exponentials. The coefficients of the two exponents, r1 and r2 . are found by using the binomial equation which contains a square-root radical. If the argument under the radical (the radicand) is positive, the two roots are

  20. Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver

    NASA Astrophysics Data System (ADS)

    Vincenti, H.; Vay, J.-L.

    2016-03-01

    Very high order or pseudo-spectral Maxwell solvers are the method of choice to reduce discretization effects (e.g. numerical dispersion) that are inherent to low order Finite-Difference Time-Domain (FDTD) schemes. However, due to their large stencils, these solvers are often subject to truncation errors in many electromagnetic simulations. These truncation errors come from non-physical modifications of Maxwell's equations in space that may generate spurious signals affecting the overall accuracy of the simulation results. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of the errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solvers and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation.