28 CFR 51.20 - Form of submissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... megabyte MS-DOS formatted diskettes; 5 1/4″ 1.2 megabyte MS-DOS formatted floppy disks; nine-track tape... provided in hard copy. (c) All magnetic media shall be clearly labeled with the following information: (1... a disk operating system (DOS) file, it shall be formatted in a standard American Standard Code for...
Automated Camouflage Pattern Generation Technology Survey.
1985-08-07
supported by high speed data communications? Costs: 9 What are your rates? $/CPU hour: $/MB disk storage/day: S/connect hour: other charges: What are your... data to the workstation, tape drives are needed for backing up and archiving completed patterns, 256 megabytes of on-line hard disk space as a minimum...is needed to support multiple processes and data files, and 4 megabytes of actual or virtual memory is needed to process the largest expected single
50 CFR 660.15 - Equipment requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... water, slime, mud, debris, or other materials. Scale printouts must show: (A) The vessel name and...; (ii) Random Access Memory (RAM): 256 megabytes (MB) or higher; (iii) Hard disk space: (A) If already...
50 CFR 660.15 - Equipment requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... water, slime, mud, debris, or other materials. Scale printouts must show: (A) The vessel name and...; (ii) Random Access Memory (RAM): 256 megabytes (MB) or higher; (iii) Hard disk space: (A) If already...
50 CFR 660.15 - Equipment requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... water, slime, mud, debris, or other materials. Scale printouts must show: (A) The vessel name and...; (ii) Random Access Memory (RAM): 256 megabytes (MB) or higher; (iii) Hard disk space: (A) If already...
Antimicrobial Testing Methods & Procedures: MB-31
Information about ATMP - SOP Quantitative Disk Carrier Test Method (QCT-2) Modified for Testing Antimicrobial Products Against Spores of Clostridium difficile (ATCC 43598) on Inanimate, Hard, Non-porous Surfaces - MB-31-Final
Antimicrobial Testing Methods & Procedures: MB-31-03
Information about ATMP - SOP Quantitative Disk Carrier Test Method (QCT-2) Modified for Testing Antimicrobial Products Against Spores of Clostridium difficile (ATCC 43598) on Inanimate, Hard, Non-porous Surfaces - MB-31-03
HECWRC, Flood Flow Frequency Analysis Computer Program 723-X6-L7550
1989-02-14
AGENCY NAME AND ADDRESS, ORDER NO., ETC. (1 NTS sells, leave blank) 11. PRICE INFORMA-ION Price includes documentation: Price code: DO1 $50.00 12 ...required is 256 K. Math coprocessor (8087/80287/80387) is highly recommended but not required. 16. DATA FILE TECHNICAL DESCRIPTION The software is...disk drive (360 KB or 1.2 MB). A 10 MB or larger hard disk is recommended. Math coprocessor (8087/80287/80387) is highly recommended but not renuired
The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock.
Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong
2009-01-01
In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode.
The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock
Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong
2009-01-01
In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode. PMID:22291566
Rating Training Continuum: Development Procedures
1992-01-01
During the workshop, the SMEs will need to review technical documents to refresh their memory and resolve any technical issues. It is important that a...endorsement. 7 additional memory space was very useful. The computers with the 80-megabyte hard disk drive were used to collect all final PPPs and TLAs...description, general, and documentation). If you reed to refresh your memory , refer to Figure 3-5 for the definitions associated with the indirectly
Development of Site Characterization Simulator Specifications
1996-11-01
Jeff Farrar, Geotechnical Engineer with Earth Sciences Laboratory, Bureau of Reclamation; Jason Smolensky, Hydrogeologist at SRK-Canada, and Doctors Ed...Heyse and Mark Goltz , Department of Engineering and Environmental Management, Air Force Institute of Technology). Considering these discussions, the...Windows 3.1 or higher, 35mb, hard disk. Delta Research Corporation, Niceville FL. 139 Roberts, P.V., Goltz , M.N., and Mackay, D.M. 1986. A Natural
Taming the Viper: Software Upgrade for VFAUser and Viper
DOE Office of Scientific and Technical Information (OSTI.GOV)
DORIN,RANDALL T.; MOSER III,JOHN C.
2000-08-08
This report describes the procedure and properties of the software upgrade for the Vibration Performance Recorder. The upgrade will check the 20 memory cards for proper read/write operation. The upgrade was successfully installed and uploaded into the Viper and the field laptop. The memory checking routine must run overnight to complete the test, although the laptop need only be connected to the Viper unit until the downloading routine is finished. The routine has limited ability to recognize incomplete or corrupt header and footer files. The routine requires 400 Megabytes of free hard disk space. There is one minor technical flawmore » detailed in the conclusion.« less
Development of Real-Time Image and In Situ Data Analysis at Sea
1991-10-16
for continuous capture from multiple satellites. The Blackhole System is the analysis machine used either by researchers to process/analyze their...Orbital Tracker and the antenna subsystem was overhauled. THE BLACKHOLE ANALYSIS SYSTEM A new HP9000/350 workstation was installed at SSOC to perform...L 4)L Scripps Satellite Oceanography Center Blackhole System Diagram (Analysis Machine) HP 350 Workstation Motorola 68020 CPU 2 - 512 MB hard disks
Environmental Containment Property Estimation Using QSARs in an Expert System
1993-01-15
2 megabytes of memory (RAM), with 1000 kBytes of memory allocated for HyperCard. PEP overview The PEP system currently consists of four HyperCard...BCF Universel I ’ mI Figure 6. TSA module card from PEP The TSA module is also designed to accept files generated by other hardware/software... allocated to 1500 MB. * Installation of PEP PEP is typically shipped on one 3.5 inch 1.44 Megabyte floppy disk. To install PEP: 1. Insert the PEP disk into
Economic impact of off-line PC viewer for private folder management
NASA Astrophysics Data System (ADS)
Song, Koun-Sik; Shin, Myung J.; Lee, Joo Hee; Auh, Yong H.
1999-07-01
We developed a PC-based clinical workstation and implemented at Asan Medical Center in Seoul, Korea, Hardwares used were Pentium-II, 8M video memory, 64-128 MB RAM, 19 inch color monitor, and 10/100Mbps network adaptor. One of the unique features of this workstation is management tool for folders reside both in PACS short-term storage unit and local hard disk. Users can copy the entire study or part of the study to local hard disk, removable storages, or CD recorder. Even the images in private folders in PACS short-term storage can be copied to local storage devices. All images are saved as DICOM 3.0 file format with 2:1 lossless compression. We compared the prices of copy films and storage medias considering the possible savings of expensive PACS short- term storage and network traffic. Price savings of copy film is most remarkable in MR exam. Price savings arising from minimal use of short-term unit was 50,000 dollars. It as hard to calculate the price savings arising from the network usage. Off-line PC viewer is a cost-effective way of handling private folder management under the PACS environment.
Optical disk processing of solar images.
NASA Astrophysics Data System (ADS)
Title, A.; Tarbell, T.
The current generation of space and ground-based experiments in solar physics produces many megabyte-sized image data arrays. Optical disk technology is the leading candidate for convenient analysis, distribution, and archiving of these data. The authors have been developing data analysis procedures which use both analog and digital optical disks for the study of solar phenomena.
General-purpose interface bus for multiuser, multitasking computer system
NASA Technical Reports Server (NTRS)
Generazio, Edward R.; Roth, Don J.; Stang, David B.
1990-01-01
The architecture of a multiuser, multitasking, virtual-memory computer system intended for the use by a medium-size research group is described. There are three central processing units (CPU) in the configuration, each with 16 MB memory, and two 474 MB hard disks attached. CPU 1 is designed for data analysis and contains an array processor for fast-Fourier transformations. In addition, CPU 1 shares display images viewed with the image processor. CPU 2 is designed for image analysis and display. CPU 3 is designed for data acquisition and contains 8 GPIB channels and an analog-to-digital conversion input/output interface with 16 channels. Up to 9 users can access the third CPU simultaneously for data acquisition. Focus is placed on the optimization of hardware interfaces and software, facilitating instrument control, data acquisition, and processing.
NASA Astrophysics Data System (ADS)
Lee, Tzuo-Chang; Chen, Di
1987-01-01
We present in this paper an overview of Optotech's 5984 Optical Disk Drive. Key features such as the modulation code, the disk format, defect mapping scheme and the optical head and servo subsystem will be singled out for discussion. Description of Optotech's 5984 disk drive The Optotech 5984 optical disk drive is a write-once-read-mostly (WORM) rotating optical memory with 200 Megabyte capacity on each side of the disk. It has a 5 1/4 inch form factor that will fit into any personal computer full-height slot. The drive specification highlights are given in Table 1. A perspective view of the drive mechanical assembly is shown in Figure 1. The spindle that rotates the disk has a runout of less than 10 um. The rotational speed at 1200 revolutions per minute (rpm) is held to an accuracy of 10-3. The total angular tolerance from perfect perpendicular alignment between the rotating disk and the incident optical beam axis is held to less than 17 milliradians. The coarse seek is accomplished through a stepping motor driving the optical head with 1.3 milliseconds per step or 32 tracks per step. The analog channels including read/write, the phase lock loop and the servo loops for focus and track control are contained on one surface mount pc board while the digital circuitry that interfaces with the drive and the controller is on a separate pc board. A microprocessor 8039 is used to control the handshake and the sequence of R/W commands. A separate power board is used to provide power to the spindle and the stepping motors. In the following we will discuss some of the salient features in the drive and leave the details to three accompanying Optotech papers. These salient features are derived from a design that is driven by three major considerations. One is precise control of the one micron diameter laser spot to any desired location on the disk. The second consideration is effective management of media defects. Given the state of the art of the Te-based disk technology with an average raw defect density of approximately 10-5(compared to 10-draw error rate in high density magnetic hard disks), elaborate defect management tools are required to assure data integrity. The last consideration is, needless to say, low cost and high reliability.
A 500 megabyte/second disk array
NASA Technical Reports Server (NTRS)
Ruwart, Thomas M.; Okeefe, Matthew T.
1994-01-01
Applications at the Army High Performance Computing Research Center's (AHPCRC) Graphic and Visualization Laboratory (GVL) at the University of Minnesota require a tremendous amount of I/O bandwidth and this appetite for data is growing. Silicon Graphics workstations are used to perform the post-processing, visualization, and animation of multi-terabyte size datasets produced by scientific simulations performed of AHPCRC supercomputers. The M.A.X. (Maximum Achievable Xfer) was designed to find the maximum achievable I/O performance of the Silicon Graphics CHALLENGE/Onyx-class machines that run these applications. Running a fully configured Onyx machine with 12-150MHz R4400 processors, 512MB of 8-way interleaved memory, 31 fast/wide SCSI-2 channel each with a Ciprico disk array controller we were able to achieve a maximum sustained transfer rate of 509.8 megabytes per second. However, after analyzing the results it became clear that the true maximum transfer rate is somewhat beyond this figure and we will need to do further testing with more disk array controllers in order to find the true maximum.
Design and implementation of reliability evaluation of SAS hard disk based on RAID card
NASA Astrophysics Data System (ADS)
Ren, Shaohua; Han, Sen
2015-10-01
Because of the huge advantage of RAID technology in storage, it has been widely used. However, the question associated with this technology is that the hard disk based on the RAID card can not be queried by Operating System. Therefore how to read the self-information and log data of hard disk has been a problem, while this data is necessary for reliability test of hard disk. In traditional way, this information can be read just suitable for SATA hard disk, but not for SAS hard disk. In this paper, we provide a method by using LSI RAID card's Application Program Interface, communicating with RAID card and analyzing the feedback data to solve the problem. Then we will get the necessary information to assess the SAS hard disk.
Computational scalability of large size image dissemination
NASA Astrophysics Data System (ADS)
Kooper, Rob; Bajcsy, Peter
2011-01-01
We have investigated the computational scalability of image pyramid building needed for dissemination of very large image data. The sources of large images include high resolution microscopes and telescopes, remote sensing and airborne imaging, and high resolution scanners. The term 'large' is understood from a user perspective which means either larger than a display size or larger than a memory/disk to hold the image data. The application drivers for our work are digitization projects such as the Lincoln Papers project (each image scan is about 100-150MB or about 5000x8000 pixels with the total number to be around 200,000) and the UIUC library scanning project for historical maps from 17th and 18th century (smaller number but larger images). The goal of our work is understand computational scalability of the web-based dissemination using image pyramids for these large image scans, as well as the preservation aspects of the data. We report our computational benchmarks for (a) building image pyramids to be disseminated using the Microsoft Seadragon library, (b) a computation execution approach using hyper-threading to generate image pyramids and to utilize the underlying hardware, and (c) an image pyramid preservation approach using various hard drive configurations of Redundant Array of Independent Disks (RAID) drives for input/output operations. The benchmarks are obtained with a map (334.61 MB, JPEG format, 17591x15014 pixels). The discussion combines the speed and preservation objectives.
Transport coefficients and mechanical response in hard-disk colloidal suspensions
NASA Astrophysics Data System (ADS)
Zhang, Bo-Kai; Li, Jian; Chen, Kang; Tian, Wen-De; Ma, Yu-Qiang
2016-11-01
We investigate the transport properties and mechanical response of glassy hard disks using nonlinear Langevin equation theory. We derive expressions for the elastic shear modulus and viscosity in two dimensions on the basis of thermal-activated barrier-hopping dynamics and mechanically accelerated motion. Dense hard disks exhibit phenomena such as softening elasticity, shear-thinning of viscosity, and yielding upon deformation, which are qualitatively similar to dense hard-sphere colloidal suspensions in three dimensions. These phenomena can be ascribed to stress-induced “landscape tilting”. Quantitative comparisons of these phenomena between hard disks and hard spheres are presented. Interestingly, we find that the density dependence of yield stress in hard disks is much more significant than in hard spheres. Our work provides a foundation for further generalizing the nonlinear Langevin equation theory to address slow dynamics and rheological behavior in binary or polydisperse mixtures of hard or soft disks. Project supported by the National Basic Research Program of China (Grant No. 2012CB821500) and the National Natural Science Foundation of China (Grant Nos. 21374073 and, 21574096).
Disposal of waste computer hard disk drive: data destruction and resources recycling.
Yan, Guoqing; Xue, Mianqiang; Xu, Zhenming
2013-06-01
An increasing quantity of discarded computers is accompanied by a sharp increase in the number of hard disk drives to be eliminated. A waste hard disk drive is a special form of waste electrical and electronic equipment because it holds large amounts of information that is closely connected with its user. Therefore, the treatment of waste hard disk drives is an urgent issue in terms of data security, environmental protection and sustainable development. In the present study the degaussing method was adopted to destroy the residual data on the waste hard disk drives and the housing of the disks was used as an example to explore the coating removal process, which is the most important pretreatment for aluminium alloy recycling. The key operation points of the degaussing determined were: (1) keep the platter plate parallel with the magnetic field direction; and (2) the enlargement of magnetic field intensity B and action time t can lead to a significant upgrade in the degaussing effect. The coating removal experiment indicated that heating the waste hard disk drives housing at a temperature of 400 °C for 24 min was the optimum condition. A novel integrated technique for the treatment of waste hard disk drives is proposed herein. This technique offers the possibility of destroying residual data, recycling the recovered resources and disposing of the disks in an environmentally friendly manner.
An Evolutionary Algorithm for Feature Subset Selection in Hard Disk Drive Failure Prediction
ERIC Educational Resources Information Center
Bhasin, Harpreet
2011-01-01
Hard disk drives are used in everyday life to store critical data. Although they are reliable, failure of a hard disk drive can be catastrophic, especially in applications like medicine, banking, air traffic control systems, missile guidance systems, computer numerical controlled machines, and more. The use of Self-Monitoring, Analysis and…
Spectrophotometry (by Barbara Sawrey and Gabriele Wienhausen)
NASA Astrophysics Data System (ADS)
Pringle, David L.
1998-08-01
Science Media: San Diego, 1997. 1-10 copies, 99 each; 11-20 copies, 69 each; 21+ copies, $49 each. (Note: CD operates with both Mac and PC.) Spectrophotometry is an interactive CD-ROM which introduces the basics of UV-visible spectrophotometry with some mention of infrared and other forms of spectrophotometry. A Macintosh System 7.5 or higher, CPU 68040 or Power PC processor, 6 megabytes of free RAM, 2.6 megabytes of free disk space, and 4X CD-ROM or faster are required.
40 CFR 63.11995 - In what form and how long must I keep my records?
Code of Federal Regulations, 2013 CFR
2013-07-01
... years. Records may be maintained in hard copy or computer-readable format including, but not limited to, on paper, microfilm, hard disk drive, floppy disk, compact disk, magnetic tape or microfiche. ...
40 CFR 63.11995 - In what form and how long must I keep my records?
Code of Federal Regulations, 2014 CFR
2014-07-01
... years. Records may be maintained in hard copy or computer-readable format including, but not limited to, on paper, microfilm, hard disk drive, floppy disk, compact disk, magnetic tape or microfiche. ...
40 CFR 63.11995 - In what form and how long must I keep my records?
Code of Federal Regulations, 2012 CFR
2012-07-01
... years. Records may be maintained in hard copy or computer-readable format including, but not limited to, on paper, microfilm, hard disk drive, floppy disk, compact disk, magnetic tape or microfiche. ...
A DOS Primer for Librarians: Part II.
ERIC Educational Resources Information Center
Beecher, Henry
1990-01-01
Provides an introduction to DOS commands and strategies for the effective organization and use of hard disks. Functions discussed include the creation of directories and subdirectories, enhanced copying, the assignment of disk drives, and backing up the hard disk. (CLB)
Environment Sentinel Biomonitor Technology Assessment
2013-09-01
turbidity, humic /fulvic acids , geosmin/MIB, hard water) with minimal effect on test outcome. It is better to be able to operate under a wide range...inhibition between 20–80%. c. Susceptibility to source water conditions: very low i. No response for pH (4.5–9), geosmin, MIB, humic /fulvic acids , or hard
40 CFR 63.9060 - In what form and how long must I keep my records?
Code of Federal Regulations, 2010 CFR
2010-07-01
... may be maintained in hard copy or computer-readable format including, but not limited to, on paper, microfilm, hard disk drive, floppy disk, compact disk, magnetic tape, or microfiche. (d) You must keep each...
A Test of Black-Hole Disk Truncation: Thermal Disk Emission in the Bright Hard State
NASA Astrophysics Data System (ADS)
Steiner, James
2017-09-01
The assumption that a black hole's accretion disk extends inwards to the ISCO is on firm footing for soft spectral states, but has been challenged for hard spectral states where it is often argued that the accretion flow is truncated far from the horizon. This is of critical importance because black-hole spin is measured on the basis of this assumption. The direct detection (or absence) of thermal disk emission associated with a disk extending to the ISCO is the smoking-gun test to rule truncation in or out for the bright hard state. Using a self-consistent spectral model on data taken in the bright hard state while taking advantage of the complementary coverage and capabilities of Chandra and NuSTAR, we will achieve a definitive test of the truncation paradigm.
Mapping hard magnetic recording disks by TOF-SIMS
NASA Astrophysics Data System (ADS)
Spool, A.; Forrest, J.
2008-12-01
Mapping of hard magnetic recording disks by TOF-SIMS was performed both to produce significant analytical results for the understanding of the disk surface and the head disk interface in hard disk drives, and as an example of a macroscopic non-rectangular mapping problem for the technique. In this study, maps were obtained by taking discrete samples of the disk surface at set intervals in R and Θ. Because both in manufacturing, and in the disk drive, processes that may affect the disk surface are typically circumferential in nature, changes in the surface are likely to be blurred in the Θ direction. An algorithm was developed to determine the optimum relative sampling ratio in R and Θ. The results confirm what the experience of the analysts suggested, that changes occur more rapidly on disks in the radial direction, and that more sampling in the radial direction is desired. The subsequent use of statistical methods principle component analysis (PCA), maximum auto-correlation factors (MAF), and the algorithm inverse distance weighting (IDW) are explored.
Optimization of Smart Structure for Improving Servo Performance of Hard Disk Drive
NASA Astrophysics Data System (ADS)
Kajiwara, Itsuro; Takahashi, Masafumi; Arisaka, Toshihiro
Head positioning accuracy of the hard disk drive should be improved to meet today's increasing performance demands. Vibration suppression of the arm in the hard disk drive is very important to enhance the servo bandwidth of the head positioning system. In this study, smart structure technology is introduced into the hard disk drive to suppress the vibration of the head actuator. It has been expected that the smart structure technology will contribute to the development of small and light-weight mechatronics devices with the required performance. First, modeling of the system is conducted with finite element method and modal analysis. Next, the actuator location and the control system are simultaneously optimized using genetic algorithm. Vibration control effect with the proposed vibration control mechanisms has been evaluated by some simulations.
Antimicrobial Testing Methods & Procedures: MB-26-02
Information about ATMP - SOP Neutralization of Microbicidal Activity using the OECD Quantitative Method for Evaluating Bactericidal Activity of Microbicides Used on Hard, Non-Porous Surfaces - MB-26-02
Antimicrobial Testing Methods & Procedures: MB-33-00
Information about ATMP - SOP Quantitative Petri Plate Method (QPM) for Determining the Effectiveness of Antimicrobial Towelettes Against Vegetative Bacteria on Inanimate, Hard, Non-porous Surfaces - MB-33-00
Carey, A.E.; Prudic, David E.
1996-01-01
Documentation is provided of model input and sample output used in a previous report for analysis of ground-water flow and simulated pumping scenarios in Paradise Valley, Humboldt County, Nevada.Documentation includes files containing input values and listings of sample output. The files, in American International Standard Code for Information Interchange (ASCII) or binary format, are compressed and put on a 3-1/2-inch diskette. The decompressed files require approximately 8.4 megabytes of disk space on an International Business Machine (IBM)- compatible microcomputer using the MicroSoft Disk Operating System (MS-DOS) operating system version 5.0 or greater.
Um, Ki Sung; Kwak, Yun Sik; Cho, Hune; Kim, Il Kon
2005-11-01
A basic assumption of Health Level Seven (HL7) protocol is 'No limitation of message length'. However, most existing commercial HL7 interface engines do limit message length because they use the string array method, which is run in the main memory for the HL7 message parsing process. Specifically, messages with image and multi-media data create a long string array and thus cause the computer system to raise critical and fatal problem. Consequently, HL7 messages cannot handle the image and multi-media data necessary in modern medical records. This study aims to solve this problem with the 'streaming algorithm' method. This new method for HL7 message parsing applies the character-stream object which process character by character between the main memory and hard disk device with the consequence that the processing load on main memory could be alleviated. The main functions of this new engine are generating, parsing, validating, browsing, sending, and receiving HL7 messages. Also, the engine can parse and generate XML-formatted HL7 messages. This new HL7 engine successfully exchanged HL7 messages with 10 megabyte size images and discharge summary information between two university hospitals.
Wong, Wing Chung; Kim, Dewey; Carter, Hannah; Diekhans, Mark; Ryan, Michael C; Karchin, Rachel
2011-08-01
Thousands of cancer exomes are currently being sequenced, yielding millions of non-synonymous single nucleotide variants (SNVs) of possible relevance to disease etiology. Here, we provide a software toolkit to prioritize SNVs based on their predicted contribution to tumorigenesis. It includes a database of precomputed, predictive features covering all positions in the annotated human exome and can be used either stand-alone or as part of a larger variant discovery pipeline. MySQL database, source code and binaries freely available for academic/government use at http://wiki.chasmsoftware.org, Source in Python and C++. Requires 32 or 64-bit Linux system (tested on Fedora Core 8,10,11 and Ubuntu 10), 2.5*≤ Python <3.0*, MySQL server >5.0, 60 GB available hard disk space (50 MB for software and data files, 40 GB for MySQL database dump when uncompressed), 2 GB of RAM.
Evolution of magnetic disk subsystems
NASA Astrophysics Data System (ADS)
Kaneko, Satoru
1994-06-01
The higher recording density of magnetic disk realized today has brought larger storage capacity per unit and smaller form factors. If the required access performance per MB is constant, the performance of large subsystems has to be several times better. This article describes mainly the technology for improving the performance of the magnetic disk subsystems and the prospects of their future evolution. Also considered are 'crosscall pathing' which makes the data transfer channel more effective, 'disk cache' which improves performance coupling with solid state memory technology, and 'RAID' which improves the availability and integrity of disk subsystems by organizing multiple disk drives in a subsystem. As a result, it is concluded that since the performance of the subsystem is dominated by that of the disk cache, maximation of the performance of the disk cache subsystems is very important.
Floppy disk utility user's guide
NASA Technical Reports Server (NTRS)
Akers, J. W.
1981-01-01
The Floppy Disk Utility Program transfers programs between files on the hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System (RDOS).
Countering Violent Extremism: Scientific Methods & Strategies
2011-09-01
reinforced. Those who disagree or have contrary opinions quickly peel off, leaving behind a hard-core group that increasingly becomes more and more...1920s when Hassan al Banna , opposed to British occupation, founded the MB. Some scenes portray the MB as corrupt and isolated from its followers and...had enhanced MB popularity. In fact, the screenwriter Wahid Hamid seemed sympathetic to the MB when he remarked that Hassan al Banna was a brilliant
Storage Media for Microcomputers.
ERIC Educational Resources Information Center
Trautman, Rodes
1983-01-01
Reviews computer storage devices designed to provide additional memory for microcomputers--chips, floppy disks, hard disks, optical disks--and describes how secondary storage is used (file transfer, formatting, ingredients of incompatibility); disk/controller/software triplet; magnetic tape backup; storage volatility; disk emulator; and…
Microvax-based data management and reduction system for the regional planetary image facilities
NASA Technical Reports Server (NTRS)
Arvidson, R.; Guinness, E.; Slavney, S.; Weiss, B.
1987-01-01
Presented is a progress report for the Regional Planetary Image Facilities (RPIF) prototype image data management and reduction system being jointly implemented by Washington University and the USGS, Flagstaff. The system will consist of a MicroVAX with a high capacity (approx 300 megabyte) disk drive, a compact disk player, an image display buffer, a videodisk player, USGS image processing software, and SYSTEM 1032 - a commercial relational database management package. The USGS, Flagstaff, will transfer their image processing software including radiometric and geometric calibration routines, to the MicroVAX environment. Washington University will have primary responsibility for developing the database management aspects of the system and for integrating the various aspects into a working system.
47 CFR 1.734 - Specifications as to pleadings, briefs, and other documents; subscription.
Code of Federal Regulations, 2010 CFR
2010-10-01
... submitted both as hard copies and on computer disk formatted to be compatible with the Commission's computer... copies of tariffs or reports with their hard copies need not include such tariffs or reports on the disk...
Floppy disk utility user's guide
NASA Technical Reports Server (NTRS)
Akers, J. W.
1980-01-01
A floppy disk utility program is described which transfers programs between files on a hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System. Sample operations are given.
IMDISP - INTERACTIVE IMAGE DISPLAY PROGRAM
NASA Technical Reports Server (NTRS)
Martin, M. D.
1994-01-01
The Interactive Image Display Program (IMDISP) is an interactive image display utility for the IBM Personal Computer (PC, XT and AT) and compatibles. Until recently, efforts to utilize small computer systems for display and analysis of scientific data have been hampered by the lack of sufficient data storage capacity to accomodate large image arrays. Most planetary images, for example, require nearly a megabyte of storage. The recent development of the "CDROM" (Compact Disk Read-Only Memory) storage technology makes possible the storage of up to 680 megabytes of data on a single 4.72-inch disk. IMDISP was developed for use with the CDROM storage system which is currently being evaluated by the Planetary Data System. The latest disks to be produced by the Planetary Data System are a set of three disks containing all of the images of Uranus acquired by the Voyager spacecraft. The images are in both compressed and uncompressed format. IMDISP can read the uncompressed images directly, but special software is provided to decompress the compressed images, which can not be processed directly. IMDISP can also display images stored on floppy or hard disks. A digital image is a picture converted to numerical form so that it can be stored and used in a computer. The image is divided into a matrix of small regions called picture elements, or pixels. The rows and columns of pixels are called "lines" and "samples", respectively. Each pixel has a numerical value, or DN (data number) value, quantifying the darkness or brightness of the image at that spot. In total, each pixel has an address (line number, sample number) and a DN value, which is all that the computer needs for processing. DISPLAY commands allow the IMDISP user to display all or part of an image at various positions on the display screen. The user may also zoom in and out from a point on the image defined by the cursor, and may pan around the image. To enable more or all of the original image to be displayed on the screen at once, the image can be "subsampled." For example, if the image were subsampled by a factor of 2, every other pixel from every other line would be displayed, starting from the upper left corner of the image. Any positive integer may be used for subsampling. The user may produce a histogram of an image file, which is a graph showing the number of pixels per DN value, or per range of DN values, for the entire image. IMDISP can also plot the DN value versus pixels along a line between two points on the image. The user can "stretch" or increase the contrast of an image by specifying low and high DN values; all pixels with values lower than the specified "low" will then become black, and all pixels higher than the specified "high" value will become white. Pixels between the low and high values will be evenly shaded between black and white. IMDISP is written in a modular form to make it easy to change it to work with different display devices or on other computers. The code can also be adapted for use in other application programs. There are device dependent image display modules, general image display subroutines, image I/O routines, and image label and command line parsing routines. The IMDISP system is written in C-language (94%) and Assembler (6%). It was implemented on an IBM PC with the MS DOS 3.21 operating system. IMDISP has a memory requirement of about 142k bytes. IMDISP was developed in 1989 and is a copyrighted work with all copyright vested in NASA. Additional planetary images can be obtained from the National Space Science Data Center at (301) 286-6695.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, J.
CCHDT constructs and classifies various arrangements of hard disks of a single radius places on the unit square with periodic boundary conditions. Specifially, a given configuration is evolved to the nearest critical point on a smoothed hard disk energy fuction, and is classified by the adjacency matrix of the canonically labelled contact graph.
EPA is announcing the availability of two test methods (MB-19 and MB-20) for evaluating the efficacy of antimicrobial pesticides against two biofilm bacteria, Pseudomonas aeruginosa and Staphylococcus aureus.
X-Ray Spectral Analysis of the Steady States of GRS1915+105
NASA Astrophysics Data System (ADS)
Peris, Charith S.; Remillard, Ronald A.; Steiner, James F.; Vrtilek, Saeqa D.; Varnière, Peggy; Rodriguez, Jerome; Pooley, Guy
2016-05-01
We report on the X-ray spectral behavior within the steady states of GRS1915+105. Our work is based on the full data set of the source obtained using the Proportional Counter Array (PCA) on the Rossi X-ray Timing Explorer (RXTE) and 15 GHz radio data obtained using the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to these regions as steady-soft and steady-hard. GRS1915+105 displays significant curvature in the coronal component in both the soft and hard data within the RXTE/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius ({R}{{in}}), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations, we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes η ˜ 0.68+/- 0.35 and η ˜ 1.12+/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of the model parameters to the state definitions shows that almost all of the steady-soft observations match the criteria of either a thermal or steep power-law state, while a large portion of the steady-hard observations match the hard-state criteria when the disk fraction constraint is neglected.
Code of Federal Regulations, 2013 CFR
2013-10-01
... FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO ADVANCED COMMUNICATIONS SERVICES AND EQUIPMENT BY... a hard copy and on computer disk in accordance with the requirements of § 14.51(d) of this subpart... submitted both as a hard copy and on computer disk in accordance with the requirements of § 14.51(d) of this...
Code of Federal Regulations, 2012 CFR
2012-10-01
... FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO ADVANCED COMMUNICATIONS SERVICES AND EQUIPMENT BY... a hard copy and on computer disk in accordance with the requirements of § 14.51(d) of this subpart... submitted both as a hard copy and on computer disk in accordance with the requirements of § 14.51(d) of this...
Code of Federal Regulations, 2014 CFR
2014-10-01
... FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO ADVANCED COMMUNICATIONS SERVICES AND EQUIPMENT BY... a hard copy and on computer disk in accordance with the requirements of § 14.51(d) of this subpart... submitted both as a hard copy and on computer disk in accordance with the requirements of § 14.51(d) of this...
Synthesis of Ultrathin ta-C Films by Twist-Filtered Cathodic Arc Carbon Plasmas
2001-04-01
system. Ultrathin tetrahedral amorphous carbon (ta-C) films have been deposited on 6 inch wafers. Film properties have been investigated with respect to...Diamondlike films are characterized by an outstanding combination of advantageous properties : they can be very hard, tough, super-smooth, chemically...5 nm) hard carbon films are being used as protective overcoats on hard disks and read-write heads. The tribological properties of the head-disk
NASA Technical Reports Server (NTRS)
Lyon, R. J. P.; Lanz, K.
1985-01-01
Geologists in exploration need to be able to determine the mineral composition of a given outcrop, and then proceed to another in order to carry out the process of geologic mapping. Since April 1984 researchers have been developing a portable microcomputer-based imaging system (with a grey-scale of 16 shades of amber), which were demonstrated during the November 1984 GSA field trip in the field at Yerington, NV. A color-version of the same technology was recently demonstrated. The portable computer selected is a COLBY 10-Megabyte, hard disk-equipped repackaged-IBM/XT, which operates on either 110/220 VAC or on 12VDC from the cigarette lighter in a field vehicle. A COMPAQ PLUS or an IBM Portable will also work on modified software. The underlying concept is that the atmospheric transmission and surface albedo/slope terms are multiplicative, relating the spectral irradiance to the spectral color of the surface materials. Thus, the spectral color of a pixel remains after averaged log-albedo and log-irradiance have been estimated. All these steps can be carried out on the COLBY microcomputer, using 80 image lines of the 128-channel, 12-bit imagery. Results are shown for such an 80-line segment, showing the identification of an O-H bearing mineral group (of slightly varying specific characters) on the flight line.
Code of Federal Regulations, 2010 CFR
2010-10-01
... “Proposed Order.” The proposed order shall be submitted both as a hard copy and on computer disk in accordance with the requirements of § 1.734(d). Where appropriate, the proposed order format should conform... a “Proposed Order.” The proposed order shall be submitted both as a hard copy and on computer disk...
TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Marco, B.; Ponti, G.; Nandra, K.
2015-11-20
We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4more » in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation.« less
Detecting Hardware-assisted Hypervisor Rootkits within Nested Virtualized Environments
2012-06-14
least the minimum required for the guest OS and click “Next”. For 64-bit Windows 7 the minimum required is 2048 MB (Figure 66). Figure 66. Memory...prompted for Memory, allocate at least the minimum required for the guest OS, for 64-bit Windows 7 the minimum required is 2048 MB (Figure 79...130 21. Within the virtual disk creation wizard, select VDI for the file type (Figure 81). Figure 81. Select File Type 22. Select Dynamically
Free-Field Spatialized Aural Cues for Synthetic Environments
1994-09-01
any of the references previously listed. B. MIDI Other than electronic musicians and a few hobbyists, the Musical Instrument Digital Interface (MIDI...developed in 1983 and still has a long way to go in improving its capabilities, but the advantages are numerous. An entire musical score can be stored...the same musical file on a computer in one of the various digital sound formats could easily occupy 90 megabytes of disk space. 7 K III. PREVIOUS WORK
ERIC Educational Resources Information Center
Valentine, Pamela
1980-01-01
The author describes the floppy disk with an analogy to the phonograph record, and discusses the advantages, disadvantages, and capabilities of hard-sectored and soft-sectored floppy disks. She concludes that, at present, the floppy disk will continue to be the primary choice of personal computer manufacturers and their customers. (KC)
CHASM and SNVBox: toolkit for detecting biologically important single nucleotide mutations in cancer
Carter, Hannah; Diekhans, Mark; Ryan, Michael C.; Karchin, Rachel
2011-01-01
Summary: Thousands of cancer exomes are currently being sequenced, yielding millions of non-synonymous single nucleotide variants (SNVs) of possible relevance to disease etiology. Here, we provide a software toolkit to prioritize SNVs based on their predicted contribution to tumorigenesis. It includes a database of precomputed, predictive features covering all positions in the annotated human exome and can be used either stand-alone or as part of a larger variant discovery pipeline. Availability and Implementation: MySQL database, source code and binaries freely available for academic/government use at http://wiki.chasmsoftware.org, Source in Python and C++. Requires 32 or 64-bit Linux system (tested on Fedora Core 8,10,11 and Ubuntu 10), 2.5*≤ Python <3.0*, MySQL server >5.0, 60 GB available hard disk space (50 MB for software and data files, 40 GB for MySQL database dump when uncompressed), 2 GB of RAM. Contact: karchin@jhu.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21685053
Theories 3:30 p.m. DIRECTOR'S COFFEE BREAK - 2nd Flr X-Over 4:00 p.m. Accelerator Physics and Technology ; --Siri Steiner Temporary restrictions transferring disk drives If your hard drive breaks down and you try to you. They are just following a new rule. According to a recent DOE memo, no hard disk drive or
Disk Memories: What You Should Know before You Buy Them.
ERIC Educational Resources Information Center
Bursky, Dave
1981-01-01
Explains the basic features of floppy disk and hard disk computer storage systems and the purchasing decisions which must be made, particularly in relation to certain popular microcomputers. A disk vendors directory is included. Journal availability: Hayden Publishing Company, 50 Essex Street, Rochelle Park, NJ 07662. (SJL)
Active versus Passive Hard Disks against a Membrane: Mechanical Pressure and Instability.
Junot, G; Briand, G; Ledesma-Alonso, R; Dauchot, O
2017-07-14
We experimentally study the mechanical pressure exerted by a set of respectively passive isotropic and self-propelled polar disks onto two different flexible unidimensional membranes. In the case of the isotropic disks, the mechanical pressure, inferred from the shape of the membrane, is identical for both membranes and follows the equilibrium equation of state for hard disks. On the contrary, for the self-propelled disks, the mechanical pressure strongly depends on the membrane in use and thus is not a state variable. When self-propelled disks are present on both sides of the membrane, we observe an instability of the membrane akin to the one predicted theoretically for active Brownian particles against a soft wall. In that case, the integrated mechanical pressure difference across the membrane cannot be computed from the sole knowledge of the packing fractions on both sides, further evidence of the absence of an equation of state.
Modeling the X-Ray Timing Properties of Cygnus X-1 Caused by Waves Propagating in a Transition Disk
NASA Astrophysics Data System (ADS)
Misra, R.
2000-02-01
We show that waves propagating in a transition disk can explain the short-term temporal behavior of Cygnus X-1. In the transition-disk model, the spectrum is produced by saturated Comptonization within the inner region of the accretion disk where the temperature varies rapidly with radius. Recently, the spectrum from such a disk has been shown to fit the average broadband spectrum of this source better than that predicted by the soft-photon Comptonization model. Here we consider a simple model in which waves are propagating cylindrically symmetrically in the transition disk with a uniform propagation speed (cp). We show that this model can qualitatively explain (1) the variation of the power spectral density with energy, (2) the hard lags as a function of frequency, and (3) the hard lags as a function of energy for various frequencies. Thus, the transition-disk model can explain the average spectrum and the short-term temporal behavior of Cyg X-1.
Bond-orientational analysis of hard-disk and hard-sphere structures.
Senthil Kumar, V; Kumaran, V
2006-05-28
We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.
NASA Astrophysics Data System (ADS)
Wu, Lin
2018-05-01
In this paper, we model the depletion dynamics of the molecularly thin layer of lubricants on a bit patterned media disk of hard disk drives under a sliding air bearing head. The dominant physics and consequently, the lubricant depletion dynamics on a patterned disk are shown to be significantly different from the well-studied cases of a smooth disk. Our results indicate that the surface tension effect, which is negligible on a flat disk, apparently suppresses depletion by enforcing a bottleneck effect around the disk pattern peak regions to thwart the migration of lubricants. When the disjoining pressure is relatively small, it assists the depletion. But, when the disjoining pressure becomes dominant, the disjoining pressure resists depletion. Disk pattern orientation plays a critical role in the depletion process. The effect of disk pattern orientation on depletion originates from its complex interaction with other intermingled factors of external air shearing stress distribution and lubricant particle trajectory. Patterning a disk surface with nanostructures of high density, large height/pitch ratio, and particular orientation is demonstrated to be one efficient way to alleviate the formation of lubricant depletion tracks.
Reducing the Cost of System Administration of a Disk Storage System Built from Commodity Components
2000-05-01
quickly by using checkpointing and roll-forward logs. Microsoft Tiger is a video server built from commodity PCs which they call “cubs” [ BBD +96, BFD97...20 cents per megabyte using street prices of components. 3.2.2 Redundancy In designing the TD prototype, we have taken care to ensure it does not have... Td /GridPix/, 1999. [ATP99] Satoshi Asami, Nisha Talagala, and David Patterson. Designing a self-maintaining storage system. In Proceedings of the
Dairy Herd On-line Information System
NASA Astrophysics Data System (ADS)
Takahashi, Satoshi
As the business circumstances have become worse, computational breeding management based on the scientific matters has been needed for dairy farming in our country. In this connection it was urgent to construct the system which provided data effectively used in the fields for dairy farmers. The Federation has executed to provide dairy farming technical data promptly through its own on-line network being composed of middle sized general-purpose computer (main memory : 5MB, and fixed disk : 1100MB) and 22 terminals.
2011-12-01
and measures of effectiveness (MOE). New technologies that offer solid-state hard drives built into modular VDI devices known as appliances ...Joint Reconfigurable Vehicle LAN Local Area Network LOS Line of Sight LTE Long Term Evolution MB Megabyte MOP Measure of Performance MOE Measure ...re-usable measures of performance and measures of effectiveness (MOP and MOE) and evaluation procedures will be applied to this research. A
Galactic Black Holes in the Hard State: A Multi-Wavelength View of Accretion and Ejection
NASA Technical Reports Server (NTRS)
Kalemci; Tomsick, John A.; Migliari; Corbel; Markoff
2010-01-01
The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with mult i-wavelength campaigns using RXTE, Swift, Suzaku, Spitzer, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the Swift results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including Spitzer data) of GRO J1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of elected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objective of our group.
The raw disk i/o performance of compaq storage works RAID arrays under tru64 unix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uselton, A C
2000-10-19
We report on the raw disk i/o performance of a set of Compaq StorageWorks RAID arrays connected to our cluster of Compaq ES40 computers via Fibre Channel. The best cumulative peak sustained data rate is l17MB/s per node for reads and 77MB/s per node for writes. This value occurs for a configuration in which a node has two Fibre Channel interfaces to a switch, which in turn has two connections to each of two Compaq StorageWorks RAID arrays. Each RAID array has two HSG80 RAID controllers controlling (together) two 5+p RAID chains. A 10% more space efficient arrangement using amore » single 1l+p RAID chain in place of the two 5+P chains is 25% slower for reads and 40% slower for writes.« less
Swivel Joint For Liquid Nitrogen
NASA Technical Reports Server (NTRS)
Milner, James F.
1988-01-01
Swivel joint allows liquid-nitrogen pipe to rotate through angle of 100 degree with respect to mating pipe. Functions without cracking hard foam insulation on lines. Pipe joint rotates on disks so mechanical stress not transmitted to thick insulation on pipes. Inner disks ride on fixed outer disks. Disks help to seal pressurized liquid nitrogen flowing through joint.
RAID-2: Design and implementation of a large scale disk array controller
NASA Technical Reports Server (NTRS)
Katz, R. H.; Chen, P. M.; Drapeau, A. L.; Lee, E. K.; Lutz, K.; Miller, E. L.; Seshan, S.; Patterson, D. A.
1992-01-01
We describe the implementation of a large scale disk array controller and subsystem incorporating over 100 high performance 3.5 inch disk drives. It is designed to provide 40 MB/s sustained performance and 40 GB capacity in three 19 inch racks. The array controller forms an integral part of a file server that attaches to a Gb/s local area network. The controller implements a high bandwidth interconnect between an interleaved memory, an XOR calculation engine, the network interface (HIPPI), and the disk interfaces (SCSI). The system is now functionally operational, and we are tuning its performance. We review the design decisions, history, and lessons learned from this three year university implementation effort to construct a truly large scale system assembly.
Time-resolved scanning Kerr microscopy of flux beam formation in hard disk write heads
NASA Astrophysics Data System (ADS)
Valkass, Robert A. J.; Spicer, Timothy M.; Burgos Parra, Erick; Hicken, Robert J.; Bashir, Muhammad A.; Gubbins, Mark A.; Czoschke, Peter J.; Lopusnik, Radek
2016-06-01
To meet growing data storage needs, the density of data stored on hard disk drives must increase. In pursuit of this aim, the magnetodynamics of the hard disk write head must be characterized and understood, particularly the process of "flux beaming." In this study, seven different configurations of perpendicular magnetic recording (PMR) write heads were imaged using time-resolved scanning Kerr microscopy, revealing their detailed dynamic magnetic state during the write process. It was found that the precise position and number of driving coils can significantly alter the formation of flux beams during the write process. These results are applicable to the design and understanding of current PMR and next-generation heat-assisted magnetic recording devices, as well as being relevant to other magnetic devices.
Fast disk array for image storage
NASA Astrophysics Data System (ADS)
Feng, Dan; Zhu, Zhichun; Jin, Hai; Zhang, Jiangling
1997-01-01
A fast disk array is designed for the large continuous image storage. It includes a high speed data architecture and the technology of data striping and organization on the disk array. The high speed data path which is constructed by two dual port RAM and some control circuit is configured to transfer data between a host system and a plurality of disk drives. The bandwidth can be more than 100 MB/s if the data path based on PCI (peripheral component interconnect). The organization of data stored on the disk array is similar to RAID 4. Data are striped on a plurality of disk, and each striping unit is equal to a track. I/O instructions are performed in parallel on the disk drives. An independent disk is used to store the parity information in the fast disk array architecture. By placing the parity generation circuit directly on the SCSI (or SCSI 2) bus, the parity information can be generated on the fly. It will affect little on the data writing in parallel on the other disks. The fast disk array architecture designed in the paper can meet the demands of the image storage.
Hirota, Akihiko; Ito, Shin-ichi
2006-06-01
Using real-time hard disk recording, we have developed an optical system for the long-duration detection of changes in membrane potential from 1,020 sites with a high temporal resolution. The signal-to-noise ratio was sufficient for analyzing the spreading pattern of excitatory waves in frog atria in a single sweep.
Water in the presence of inert Lennard-Jones obstacles
NASA Astrophysics Data System (ADS)
Kurtjak, Mario; Urbic, Tomaz
2014-04-01
Water confined by the presence of a 'sea' of inert obstacles was examined. In the article, freely mobile two-dimensional Mercedes-Benz (MB) water put to a disordered, but fixed, matrix of Lennard-Jones disks was studied by the Monte Carlo computer simulations. For the MB water molecules in the matrix of Lennard-Jones disks, we explored the structures, hydrogen-bond-network formation and thermodynamics as a function of temperature and size and density of matrix particles. We found that the structure of model water is perturbed by the presence of the obstacles. Density of confined water, which was in equilibrium with the bulk water, was smaller than the density of the bulk water and the temperature dependence of the density of absorbed water did not show the density anomaly in the studied temperature range. The behaviour observed as a consequence of confinement is similar to that of increasing temperature, which can for a matrix lead to a process similar to capillary evaporation. At the same occupancy of space, smaller matrix molecules cause higher destruction effect on the absorbed water molecules than the bigger ones. We have also tested the hypothesis that at low matrix densities the obstacles induce an increased ordering and 'hydrogen bonding' of the MB model molecules, relative to pure fluid, while at high densities the obstacles reduce MB water structuring, as they prevent the fluid to form good 'hydrogen-bonding' networks. However, for the size of matrix molecules similar to that of water, we did not observe this effect.
Broadband X-Ray Spectra of GX 339-4 and the Geometry of Accreting Black Holes in the Hard State
NASA Technical Reports Server (NTRS)
Tomsick, John A.; Kalemci, Emrah; Kaaret, Philip; Markoff, Sera; Corbel, Stephane; Migliari, Simone; Fender, Rob; Bailyn, Charles D.; Buxton, Michelle M.
2008-01-01
A major question in the study of black hole binaries involves our understanding of the accretion geometry when the sources are in the "hard" state, with an X-ray energy spectrum dominated by a hard power-law component and radio emission coming from a steady "compact" jet. Although the common hard state picture is that the accretion disk is truncated, perhaps at hundreds of gravitational radii (Rg) from the black hole, recent results for the recurrent transient GX 339-4 by Miller and coworkers show evidence for disk material very close to the black hole's innermost stable circular orbit. That work studied GX 339-4 at a luminosity of approximately 5% of the Eddington limit (L(sub Edd) and used parameters from a relativistic reflection model and the presence of a thermal component as diagnostics. Here we use similar diagnostics but extend the study to lower luminosities (2.3% and 0.8% L(sub Edd)) using Swift and RXTE observations of GX 339-4. We detect a thermal component with an inner disk temperature of approximately 0.2 keV at 2.3% L (sub Edd). At both luminosities, we detect broad features due to iron K-alpha that are likely related to reflection of hard X-rays off disk material. If these features are broadened by relativistic effects, they indicate that the material resides within 10 Rg, and the measurements are consistent with the disk's inner radius remaining at approximately 4 Rg down to 0.8% L(sub Edd). However, we also discuss an alternative model for the broadening, and we note that the evolution of the thermal component is not entirely consistent with the constant inner radius interpretation. Finally, we discuss the results in terms of recent theoretical work by Liu and co-workers on the possibility that material may condense out of an Advection-Dominated Accretion Flow to maintain an inner optically thick disk.
Rhinoplasty perioperative database using a personal digital assistant.
Kotler, Howard S
2004-01-01
To construct a reliable, accurate, and easy-to-use handheld computer database that facilitates the point-of-care acquisition of perioperative text and image data specific to rhinoplasty. A user-modified database (Pendragon Forms [v.3.2]; Pendragon Software Corporation, Libertyville, Ill) and graphic image program (Tealpaint [v.4.87]; Tealpaint Software, San Rafael, Calif) were used to capture text and image data, respectively, on a Palm OS (v.4.11) handheld operating with 8 megabytes of memory. The handheld and desktop databases were maintained secure using PDASecure (v.2.0) and GoldSecure (v.3.0) (Trust Digital LLC, Fairfax, Va). The handheld data were then uploaded to a desktop database of either FileMaker Pro 5.0 (v.1) (FileMaker Inc, Santa Clara, Calif) or Microsoft Access 2000 (Microsoft Corp, Redmond, Wash). Patient data were collected from 15 patients undergoing rhinoplasty in a private practice outpatient ambulatory setting. Data integrity was assessed after 6 months' disk and hard drive storage. The handheld database was able to facilitate data collection and accurately record, transfer, and reliably maintain perioperative rhinoplasty data. Query capability allowed rapid search using a multitude of keyword search terms specific to the operative maneuvers performed in rhinoplasty. Handheld computer technology provides a method of reliably recording and storing perioperative rhinoplasty information. The handheld computer facilitates the reliable and accurate storage and query of perioperative data, assisting the retrospective review of one's own results and enhancement of surgical skills.
NASA Astrophysics Data System (ADS)
Shidatsu, M.; Ueda, Y.; Yamada, S.; Done, C.; Hori, T.; Yamaoka, K.; Kubota, A.; Nagayama, T.; Moritani, Y.
2014-07-01
We report on the results from Suzaku observations of the Galactic black hole X-ray binary H1743-322 in the low/hard state during its outburst in 2012 October. We appropriately take into account the effects of dust scattering to accurately analyze the X-ray spectra. The time-averaged spectra in the 1-200 keV band are dominated by a hard power-law component of a photon index of ≈1.6 with a high-energy cutoff at ≈60 keV, which is well described with the Comptonization of the disk emission by the hot corona. We estimate the inner disk radius from the multi-color disk component, and find that it is 1.3-2.3 times larger than the radius in the high/soft state. This suggests that the standard disk was not extended to the innermost stable circular orbit. A reflection component from the disk is detected with R = Ω/2π ≈ 0.6 (Ω is the solid angle). We also successfully estimate the stable disk component independent of the time-averaged spectral modeling by analyzing short-term spectral variability on a ~1 s timescale. A weak low-frequency quasi-periodic oscillation at 0.1-0.2 Hz is detected, whose frequency is found to correlate with the X-ray luminosity and photon index. This result may be explained by the evolution of the disk truncation radius.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajauria, Sukumar, E-mail: sukumar.rajauria@hgst.com; Canchi, Sripathi V., E-mail: sripathi.canchi@hgst.com; Schreck, Erhard
The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein the head and the disk are less than 10 nm apart and move at sliding speeds of 5–10 m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head andmore » the disk leads to friction, wear, and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface is extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.« less
Finite Element Analysis of Flexural Vibrations in Hard Disk Drive Spindle Systems
NASA Astrophysics Data System (ADS)
LIM, SEUNGCHUL
2000-06-01
This paper is concerned with the flexural vibration analysis of the hard disk drive (HDD) spindle system by means of the finite element method. In contrast to previous research, every system component is here analytically modelled taking into account its structural flexibility and also the centrifugal effect particularly on the disk. To prove the effectiveness and accuracy of the formulated models, commercial HDD systems with two and three identical disks are selected as examples. Then their major natural modes are computed with only a small number of element meshes as the shaft rotational speed is varied, and subsequently compared with the existing numerical results obtained using other methods and newly acquired experimental ones. Based on such a series of studies, the proposed method can be concluded as a very promising tool for the design of HDDs and various other high-performance computer disk drives such as floppy disk drives, CD ROM drives, and their variations having spindle mechanisms similar to those of HDDs.
Nanoscale wear and kinetic friction between atomically smooth surfaces sliding at high speeds
NASA Astrophysics Data System (ADS)
Rajauria, Sukumar; Canchi, Sripathi V.; Schreck, Erhard; Marchon, Bruno
2015-02-01
The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein the head and the disk are less than 10 nm apart and move at sliding speeds of 5-10 m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head and the disk leads to friction, wear, and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface is extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.
NASA Technical Reports Server (NTRS)
White, Nicholas E. (Technical Monitor); Ebisawa, Ken; Zycki, Piotr; Kubota, Aya; Mizuno, Tsunefumi; Watarai, Ken-ya
2003-01-01
Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (greater than or approximately equal to 300 Solar Mass). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super- Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and their X-ray emission is from the slim disk shining at super-Eddington luminosities.
Time-resolved scanning Kerr microscopy of flux beam formation in hard disk write heads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valkass, Robert A. J., E-mail: rajv202@ex.ac.uk; Spicer, Timothy M.; Burgos Parra, Erick
To meet growing data storage needs, the density of data stored on hard disk drives must increase. In pursuit of this aim, the magnetodynamics of the hard disk write head must be characterized and understood, particularly the process of “flux beaming.” In this study, seven different configurations of perpendicular magnetic recording (PMR) write heads were imaged using time-resolved scanning Kerr microscopy, revealing their detailed dynamic magnetic state during the write process. It was found that the precise position and number of driving coils can significantly alter the formation of flux beams during the write process. These results are applicable tomore » the design and understanding of current PMR and next-generation heat-assisted magnetic recording devices, as well as being relevant to other magnetic devices.« less
Head-Disk Interface Technology: Challenges and Approaches
NASA Astrophysics Data System (ADS)
Liu, Bo
Magnetic hard disk drive (HDD) technology is believed to be one of the most successful examples of modern mechatronics systems. The mechanical beauty of magnetic HDD includes simple but super high accuracy positioning head, positioning technology, high speed and stability spindle motor technology, and head-disk interface technology which keeps the millimeter sized slider flying over a disk surface at nanometer level slider-disk spacing. This paper addresses the challenges and possible approaches on how to further reduce the slider disk spacing whilst retaining the stability and robustness level of head-disk systems for future advanced magnetic disk drives.
Recent Advances in Molecular, Multimodal and Theranostic Ultrasound Imaging
Kiessling, Fabian; Fokong, Stanley; Bzyl, Jessica; Lederle, Wiltrud; Palmowski, Moritz; Lammers, Twan
2014-01-01
Ultrasound (US) imaging is an exquisite tool for the non-invasive and real-time diagnosis of many different diseases. In this context, US contrast agents can improve lesion delineation, characterization and therapy response evaluation. US contrast agents are usually micrometer-sized gas bubbles, stabilized with soft or hard shells. By conjugating antibodies to the microbubble (MB) surface, and by incorporating diagnostic agents, drugs or nucleic acids into or onto the MB shell, molecular, multimodal and theranostic MB can be generated. We here summarize recent advances in molecular, multimodal and theranostic US imaging, and introduce concepts how such advanced MB can be generated, applied and imaged. Examples are given for their use to image and treat oncological, cardiovascular and neurological diseases. Furthermore, we discuss for which therapeutic entities incorporation into (or conjugation to) MB is meaningful, and how US-mediated MB destruction can increase their extravasation, penetration, internalization and efficacy. PMID:24316070
Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105.
Neilsen, Joseph; Lee, Julia C
2009-03-26
Stellar-mass black holes with relativistic jets, also known as microquasars, mimic the behaviour of quasars and active galactic nuclei. Because timescales around stellar-mass black holes are orders of magnitude smaller than those around more distant supermassive black holes, microquasars are ideal nearby 'laboratories' for studying the evolution of accretion disks and jet formation in black-hole systems. Whereas studies of black holes have revealed a complex array of accretion activity, the mechanisms that trigger and suppress jet formation remain a mystery. Here we report the presence of a broad emission line in the faint, hard states and narrow absorption lines in the bright, soft states of the microquasar GRS 1915+105. ('Hard' and 'soft' denote the character of the emitted X-rays.) Because the hard states exhibit prominent radio jets, we argue that the broad emission line arises when the jet illuminates the inner accretion disk. The jet is weak or absent during the soft states, and we show that the absorption lines originate when the powerful radiation field around the black hole drives a hot wind off the accretion disk. Our analysis shows that this wind carries enough mass away from the disk to halt the flow of matter into the radio jet.
Incorporating Oracle on-line space management with long-term archival technology
NASA Technical Reports Server (NTRS)
Moran, Steven M.; Zak, Victor J.
1996-01-01
The storage requirements of today's organizations are exploding. As computers continue to escalate in processing power, applications grow in complexity and data files grow in size and in number. As a result, organizations are forced to procure more and more megabytes of storage space. This paper focuses on how to expand the storage capacity of a Very Large Database (VLDB) cost-effectively within a Oracle7 data warehouse system by integrating long term archival storage sub-systems with traditional magnetic media. The Oracle architecture described in this paper was based on an actual proof of concept for a customer looking to store archived data on optical disks yet still have access to this data without user intervention. The customer had a requirement to maintain 10 years worth of data on-line. Data less than a year old still had the potential to be updated thus will reside on conventional magnetic disks. Data older than a year will be considered archived and will be placed on optical disks. The ability to archive data to optical disk and still have access to that data provides the system a means to retain large amounts of data that is readily accessible yet significantly reduces the cost of total system storage. Therefore, the cost benefits of archival storage devices can be incorporated into the Oracle storage medium and I/O subsystem without loosing any of the functionality of transaction processing, yet at the same time providing an organization access to all their data.
ERIC Educational Resources Information Center
Shade, Daniel D.
1994-01-01
Provides advice and suggestions for educators or parents who are trying to decide what type of computer to buy to run the latest computer software for children. Suggests that purchasers should buy a computer with as large a hard drive as possible, at least 10 megabytes of RAM, and a CD-ROM drive. (MDM)
Security of patient data when decommissioning ultrasound systems.
Moggridge, James
2017-02-01
Although ultrasound systems generally archive to Picture Archiving and Communication Systems (PACS), their archiving workflow typically involves storage to an internal hard disk before data are transferred onwards. Deleting records from the local system will delete entries in the database and from the file allocation table or equivalent but, as with a PC, files can be recovered. Great care is taken with disposal of media from a healthcare organisation to prevent data breaches, but ultrasound systems are routinely returned to lease companies, sold on or donated to third parties without such controls. In this project, five methods of hard disk erasure were tested on nine ultrasound systems being decommissioned: the system's own delete function; full reinstallation of system software; the manufacturer's own disk wiping service; open source disk wiping software for full and just blank space erasure. Attempts were then made to recover data using open source recovery tools. All methods deleted patient data as viewable from the ultrasound system and from browsing the disk from a PC. However, patient identifiable data (PID) could be recovered following the system's own deletion and the reinstallation methods. No PID could be recovered after using the manufacturer's wiping service or the open source wiping software. The typical method of reinstalling an ultrasound system's software may not prevent PID from being recovered. When transferring ownership, care should be taken that an ultrasound system's hard disk has been wiped to a sufficient level, particularly if the scanner is to be returned with approved parts and in a fully working state.
NASA Astrophysics Data System (ADS)
Tobochnik, Jan; Chapin, Phillip M.
1988-05-01
Monte Carlo simulations were performed for hard disks on the surface of an ordinary sphere and hard spheres on the surface of a four-dimensional hypersphere. Starting from the low density fluid the density was increased to obtain metastable amorphous states at densities higher than previously achieved. Above the freezing density the inverse pressure decreases linearly with density, reaching zero at packing fractions equal to 68% for hard spheres and 84% for hard disks. Using these new estimates for random closest packing and coefficients from the virial series we obtain an equation of state which fits all the data up to random closest packing. Usually, the radial distribution function showed the typical split second peak characteristic of amorphous solids and glasses. High density systems which lacked this split second peak and showed other sharp peaks were interpreted as signaling the onset of crystal nucleation.
X-ray spectral analysis of the steady states of GRS 1915+105
NASA Astrophysics Data System (ADS)
Peris, Charith; Remillard, Ronald A.; Steiner, James F.; Vrtilek, Saeqa Dil; Varniere, Peggy; Rodriguez, Jerome; Pooley, Guy G.
2016-04-01
Of the black hole binaries (BHBs) discovered thus far, GRS 1915+105 stands out as an exceptional source primarily due to its wild X-ray variability, the diversity of which has not been replicated in any other stellar-mass black hole. Although extreme variability is commonplace in its light-curve, about half of the observations of GRS1915+105 show fairly steady X-ray intensity. We report on the X-ray spectral behavior within these steady observations. Our work is based on a vast RXTE/PCA data set obtained on GRS 1915+105 during the course of its entire mission and 10 years of radio data from the Ryle Telescope, which overlap the X-ray data. We find that the steady observations within the X-ray data set naturally separate into two regions in a color-color diagram, which we refer to as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the Comptonization component within the PCA band pass suggesting significantly heating from a hot disk present in all states. A new Comptonization model 'simplcut' was developed in order to model this curvature to best effect. A majority of the steady-soft observations display a roughly constant inner disk radius, remarkably reminiscent of canonical soft state black hole binaries. In contrast, the steady-hard observations display a growing disk truncation that is correlated to the mass accretion rate through the disk, which suggests a magnetically truncated disk. A comparison of X-ray model parameters to the canonical state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while the thermal state observations dominate the constant radius branch. A large portion 80 % of the steady-hard observations matches the hard state criteria when the disk fraction constraint is neglected. These results combine to suggest that within the complexity of this source is a simpler underlying basis of states, which map to those observed in canonical BHBs.
Pomeron pole plus grey disk model: Real parts, inelastic cross sections and LHC data
NASA Astrophysics Data System (ADS)
Roy, S. M.
2017-01-01
I propose a two component analytic formula F (s , t) =F (1) (s , t) +F (2) (s , t) for (ab → ab) + (a b bar → a b bar) scattering at energies ≥ 100 GeV, where s , t denote squares of c.m. energy and momentum transfer. It saturates the Froissart-Martin bound and obeys Auberson-Kinoshita-Martin (AKM) [1,2] scaling. I choose ImF (1) (s , 0) + ImF (2) (s , 0) as given by Particle Data Group (PDG) fits [3,4] to total cross sections, corresponding to simple and triple poles in angular momentum plane. The PDG formula is extended to non-zero momentum transfers using partial waves of ImF (1) and ImF (2) motivated by Pomeron pole and 'grey disk' amplitudes and constrained by inelastic unitarity. ReF (s , t) is deduced from real analyticity: I prove that ReF (s , t) / ImF (s , 0) → (π / ln s) d / dτ (τImF (s , t) / ImF (s , 0)) for s → ∞ with τ = t(lns) 2 fixed, and apply it to F (2). Using also the forward slope fit by Schegelsky-Ryskin [5], the model gives real parts, differential cross sections for (- t) < . 3 GeV2, and inelastic cross sections in good agreement with data at 546 GeV, 1.8 TeV, 7 TeV and 8 TeV. It predicts for inelastic cross sections for pp or p bar p, σinel = 72.7 ± 1.0 mb at 7 TeV and 74.2 ± 1.0 mb at 8 TeV in agreement with pp Totem [7-10] experimental values 73.1 ± 1.3 mb and 74.7 ± 1.7 mb respectively, and with Atlas [12-15] values 71.3 ± 0.9 mb and 71.7 ± 0.7 mb respectively. The predictions σinel = 48.1 ± 0.7 mb at 546 GeV and 58.5 ± 0.8 mb at 1800 GeV also agree with p bar p experimental results of Abe et al. [47] 48.4 ± . 98 mb at 546 GeV and 60.3 ± 2.4 mb at 1800 GeV. The model yields for √{ s} > 0.5 TeV, with PDG2013 [4] total cross sections, and Schegelsky-Ryskin slopes [5] as input, σinel (s) = 22.6 + . 034 lns + . 158(lns) 2 mb, and σinel /σtot → 0.56, s → ∞, where s is in GeV2 units. Continuation to positive t indicates an 'effective' t-channel singularity at ∼(1.5 GeV) 2, and suggests that usual Froissart-Martin bounds are quantitatively weak as they only assume absence of singularities upto 4mπ2.
Lower Bound on the Mean Square Displacement of Particles in the Hard Disk Model
NASA Astrophysics Data System (ADS)
Richthammer, Thomas
2016-08-01
The hard disk model is a 2D Gibbsian process of particles interacting via pure hard core repulsion. At high particle density the model is believed to show orientational order, however, it is known not to exhibit positional order. Here we investigate to what extent particle positions may fluctuate. We consider a finite volume version of the model in a box of dimensions 2 n × 2 n with arbitrary boundary configuration, and we show that the mean square displacement of particles near the center of the box is bounded from below by c log n. The result generalizes to a large class of models with fairly arbitrary interaction.
Security of patient data when decommissioning ultrasound systems
2017-01-01
Background Although ultrasound systems generally archive to Picture Archiving and Communication Systems (PACS), their archiving workflow typically involves storage to an internal hard disk before data are transferred onwards. Deleting records from the local system will delete entries in the database and from the file allocation table or equivalent but, as with a PC, files can be recovered. Great care is taken with disposal of media from a healthcare organisation to prevent data breaches, but ultrasound systems are routinely returned to lease companies, sold on or donated to third parties without such controls. Methods In this project, five methods of hard disk erasure were tested on nine ultrasound systems being decommissioned: the system’s own delete function; full reinstallation of system software; the manufacturer’s own disk wiping service; open source disk wiping software for full and just blank space erasure. Attempts were then made to recover data using open source recovery tools. Results All methods deleted patient data as viewable from the ultrasound system and from browsing the disk from a PC. However, patient identifiable data (PID) could be recovered following the system’s own deletion and the reinstallation methods. No PID could be recovered after using the manufacturer’s wiping service or the open source wiping software. Conclusion The typical method of reinstalling an ultrasound system’s software may not prevent PID from being recovered. When transferring ownership, care should be taken that an ultrasound system’s hard disk has been wiped to a sufficient level, particularly if the scanner is to be returned with approved parts and in a fully working state. PMID:28228821
Exciting an Initially Cold Asteroid Belt Through a Planetary Instability
NASA Astrophysics Data System (ADS)
Deienno, Rogerio; Izidoro, Andre; Morbidelli, Alessandro; Gomes, Rodney; Nesvorny, David; Raymond, Sean N.
2018-04-01
The main asteroid belt (MB) is low in mass but dynamically excited, with much larger eccentricities and inclinations than the planets. In recent years, the Grand Tack model has been the predominant model capable of reconciling the formation of the terrestrial planets with a depleted but excited MB. Despite this success, the Grand Tack is still not generally accepted because of uncertainties in orbital migration. It was recently proposed that chaotic early evolution of Jupiter and Saturn could excite the initially cold MB. However, hydrodynamical simulations predict that the giant planets should generally emerge from the gas disk phase on orbits characterized by resonant and regular motion. Here we propose a new mechanism to excite the MB during the giant planets' ('Nice model') instability, which is expected to have included repeated close encounters between Jupiter and one or more ice giants ('Jumping Jupiter' -- JJ). We show that when Jupiter temporarily reaches a high enough level of excitation, both in eccentricity and inclination, it induces strong forced vectors of eccentricity and inclination within the MB region. Because during the JJ instability Jupiter's orbit 'jumps' around, forced vectors keep changing both in magnitude and phase throughout the whole MB region. The entire cold primordial MB can thus be excited as a natural outcome of the JJ instability. Furthermore, we show that the subsequent evolution of the Solar System is capable of reshaping the resultant MB to its present day orbital state, and that a strong mass depletion is always associated to the JJ instability phase.
Renormalization group study of the melting of a two-dimensional system of collapsing hard disks
NASA Astrophysics Data System (ADS)
Ryzhov, V. N.; Tareyeva, E. E.; Fomin, Yu. D.; Tsiok, E. N.; Chumakov, E. S.
2017-06-01
We consider the melting of a two-dimensional system of collapsing hard disks (a system with a hard-disk potential to which a repulsive step is added) for different values of the repulsive-step width. We calculate the system phase diagram by the method of the density functional in crystallization theory using equations of the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young theory to determine the lines of stability with respect to the dissociation of dislocation pairs, which corresponds to the continuous transition from the solid to the hexatic phase. We show that the crystal phase can melt via a continuous transition at low densities (the transition to the hexatic phase) with a subsequent transition from the hexatic phase to the isotropic liquid and via a first-order transition. Using the solution of renormalization group equations with the presence of singular defects (dislocations) in the system taken into account, we consider the influence of the renormalization of the elastic moduli on the form of the phase diagram.
NASA Technical Reports Server (NTRS)
Ray, R. B.
1994-01-01
OPMILL is a computer operating system for a Kearney and Trecker milling machine that provides a fast and easy way to program machine part manufacture with an IBM compatible PC. The program gives the machinist an "equation plotter" feature which plots any set of equations that define axis moves (up to three axes simultaneously) and converts those equations to a machine milling program that will move a cutter along a defined path. Other supported functions include: drill with peck, bolt circle, tap, mill arc, quarter circle, circle, circle 2 pass, frame, frame 2 pass, rotary frame, pocket, loop and repeat, and copy blocks. The system includes a tool manager that can handle up to 25 tools and automatically adjusts tool length for each tool. It will display all tool information and stop the milling machine at the appropriate time. Information for the program is entered via a series of menus and compiled to the Kearney and Trecker format. The program can then be loaded into the milling machine, the tool path graphically displayed, and tool change information or the program in Kearney and Trecker format viewed. The program has a complete file handling utility that allows the user to load the program into memory from the hard disk, save the program to the disk with comments, view directories, merge a program on the disk with one in memory, save a portion of a program in memory, and change directories. OPMILL was developed on an IBM PS/2 running DOS 3.3 with 1 MB of RAM. OPMILL was written for an IBM PC or compatible 8088 or 80286 machine connected via an RS-232 port to a Kearney and Trecker Data Mill 700/C Control milling machine. It requires a "D:" drive (fixed-disk or virtual), a browse or text display utility, and an EGA or better display. Users wishing to modify and recompile the source code will also need Turbo BASIC, Turbo C, and Crescent Software's QuickPak for Turbo BASIC. IBM PC and IBM PS/2 are registered trademarks of International Business Machines. Turbo BASIC and Turbo C are trademarks of Borland International.
No Disk Winds in Failed Black Hole Outbursts? New Observations of H1743-322
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Coriat, Mickael; Motta, Sara; Fender, Rob P.; Ponti, Gabriele; Corbel, Stephane
2016-04-01
The rich and complex physics of stellar-mass black holes in outburst is often referred to as the "disk-jet connection," a term that encapsulates the evolution of accretion disks over several orders of magnitude in Eddington ratio; through Compton scattering, reflection, and thermal emission; as they produce steady compact jets, relativistic plasma ejections, and (from high spectral resolution revelations of the last 15 years) massive, ionized disk winds. It is well established that steady jets are associated with radiatively inefficient X-ray states, and that winds tend to appear during states with more luminous disks, but the underlying physical processes that govern these connections (and their changes during state transitions) are not fully understood. I will present a unique perspective on the disk-wind-jet connection based on new Chandra HETGS, NuSTAR, and JVLA observations of the black hole H1743-322. Rather than following the usual outburst track, the 2015 outburst of H1743 fizzled: the disk never appeared in X-rays, and the source remained spectrally hard for the entire ~100 days. Remarkably, we find no evidence for any accretion disk wind in our data, even though H1743-322 has produced winds at comparable hard X-ray luminosities. I will discuss the implications of this "failed outburst" for our picture of winds from black holes and the astrophysics that governs them.
Defect reduction of patterned media templates and disks
NASA Astrophysics Data System (ADS)
Luo, Kang; Ha, Steven; Fretwell, John; Ramos, Rick; Ye, Zhengmao; Schmid, Gerard; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.
2010-05-01
Imprint lithography has been shown to be an effective technique for the replication of nano-scale features. Acceptance of imprint lithography for manufacturing will require a demonstration of defect levels commensurate with cost-effective device production. This work summarizes the results of defect inspections of hard disks patterned using Jet and Flash Imprint Lithography (J-FILTM). Inspections were performed with optical based automated inspection tools. For the hard drive market, it is important to understand the defectivity of both the template and the imprinted disk. This work presents a methodology for automated pattern inspection and defect classification for imprint-patterned media. Candela CS20 and 6120 tools from KLA-Tencor map the optical properties of the disk surface, producing highresolution grayscale images of surface reflectivity and scattered light. Defects that have been identified in this manner are further characterized according to the morphology. The imprint process was tested after optimizing both the disk cleaning and adhesion layers processes that precede imprinting. An extended imprint run was performed and both the defect types and trends are reported.
Using Purpose-Built Functions and Block Hashes to Enable Small Block and Sub-file Forensics
2010-01-01
JPEGs. We tested precarve using the nps-2009-canon2-gen6 (Garfinkel et al., 2009) disk image. The disk image was created with a 32 MB SD card and a...analysis of n-grams in the fragment. Fig. 1 e Usage of a 160 GB iPod reported by iTunes 8.2.1 (6) (top), as reported by the file system (bottom center), and...as computing with random sampling (bottom right). Note that iTunes usage actually in GiB, even though the program displays the “GB” label. Fig. 2 e
NASA Astrophysics Data System (ADS)
Wong, G.
The unparalleled cost and form factor advantages of NAND flash memory has driven 35 mm photographic film, floppy disks and one-inch hard drives to extinction. Due to its compelling price/performance characteristics, NAND Flash memory is now expanding its reach into the once-exclusive domain of hard disk drives and DRAM in the form of Solid State Drives (SSDs). Driven by the proliferation of thin and light mobile devices and the need for near-instantaneous accessing and sharing of content through the cloud, SSDs are expected to become a permanent fixture in the computing infrastructure.
NASA Astrophysics Data System (ADS)
Holland, S. Douglas
1992-09-01
A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.
NASA Technical Reports Server (NTRS)
Holland, S. Douglas (Inventor)
1992-01-01
A handheld, programmable, digital camera is disclosed that supports a variety of sensors and has program control over the system components to provide versatility. The camera uses a high performance design which produces near film quality images from an electronic system. The optical system of the camera incorporates a conventional camera body that was slightly modified, thus permitting the use of conventional camera accessories, such as telephoto lenses, wide-angle lenses, auto-focusing circuitry, auto-exposure circuitry, flash units, and the like. An image sensor, such as a charge coupled device ('CCD') collects the photons that pass through the camera aperture when the shutter is opened, and produces an analog electrical signal indicative of the image. The analog image signal is read out of the CCD and is processed by preamplifier circuitry, a correlated double sampler, and a sample and hold circuit before it is converted to a digital signal. The analog-to-digital converter has an accuracy of eight bits to insure accuracy during the conversion. Two types of data ports are included for two different data transfer needs. One data port comprises a general purpose industrial standard port and the other a high speed/high performance application specific port. The system uses removable hard disks as its permanent storage media. The hard disk receives the digital image signal from the memory buffer and correlates the image signal with other sensed parameters, such as longitudinal or other information. When the storage capacity of the hard disk has been filled, the disk can be replaced with a new disk.
On the Dynamics of Rocking Motion of the Hard-Disk Drive Spindle Motor System
NASA Astrophysics Data System (ADS)
Wang, Joseph
Excessive rocking motion of the spindle motor system can cause track misregistration resulting in poor throughput or even drive failure. The chance of excessive disk stack rocking increases as a result of decreasing torsional stiffness of spindle motor bearing system due to the market demand for low profile hard drives. As the track density increases and the vibration specification becomes increasingly stringent, rocking motion of a spindle motor system deserves even more attention and has become a primary challenge for a spindle motor system designer. Lack of understanding of the rocking phenomenon combined with misleading paradox has presented a great difficulty in the effort of avoiding the rocking motion in the hard-disk drive industry. This paper aims to provide fundamental understanding of the rocking phenomenon of a rotating spindle motor system, to clarify the paradox in disk-drive industry and to provide a design guide to an optimized spindle system. This paper, theoretically and experimentally, covers a few important areas of industrial interest including the prediction of rocking natural frequencies and mode shape of a rotating spindle, free vibration, and frequency response under common forcing functions such as rotating and fixed-plane forcing functions. The theory presented here meets with agreeable experimental observation.
Accounting Systems and the Electronic Office.
ERIC Educational Resources Information Center
Gafney, Leo
1986-01-01
Discusses a systems approach to accounting instruction and examines it from the viewpoint of four components: people (titles and responsibilities, importance of interaction), forms (nonpaper records such as microfiche, floppy disks, hard disks), procedures (for example, electronic funds transfer), and technology (for example, electronic…
Oshima, Hiraku; Kinoshita, Masahiro
2015-04-14
In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent models and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient values, however, the many-body correlation plays significant roles in the β-sheet formation and argument of relative stabilities of very similar structures of a protein. These results are argued in detail with respect to the four physically insightful constituents and the two factors mentioned above. The relevance to the absence or presence of hydrogen-bonding properties in the solvent is also discussed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshima, Hiraku; Kinoshita, Masahiro, E-mail: kinoshit@iae.kyoto-u.ac.jp
In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent modelsmore » and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient values, however, the many-body correlation plays significant roles in the β-sheet formation and argument of relative stabilities of very similar structures of a protein. These results are argued in detail with respect to the four physically insightful constituents and the two factors mentioned above. The relevance to the absence or presence of hydrogen-bonding properties in the solvent is also discussed in detail.« less
Free-energy landscape for cage breaking of three hard disks.
Hunter, Gary L; Weeks, Eric R
2012-03-01
We investigate cage breaking in dense hard-disk systems using a model of three Brownian disks confined within a circular corral. This system has a six-dimensional configuration space, but can be equivalently thought to explore a symmetric one-dimensional free-energy landscape containing two energy minima separated by an energy barrier. The exact free-energy landscape can be calculated as a function of system size by a direct enumeration of states. Results of simulations show the average time between cage breaking events follows an Arrhenius scaling when the energy barrier is large. We also discuss some of the consequences of using a one-dimensional representation to understand dynamics through a multidimensional space, such as diffusion acquiring spatial dependence and discontinuities in spatial derivatives of free energy.
Recent Cooperative Research Activities of HDD and Flexible Media Transport Technologies in Japan
NASA Astrophysics Data System (ADS)
Ono, Kyosuke
This paper presents the recent status of industry-university cooperative research activities in Japan on the mechatronics of information storage and input/output equipment. There are three research committees for promoting information exchange on technical problems and research topics of head-disk interface in hard disk drives (HDD), flexible media transport and image printing processes which are supported by the Japan Society of Mechanical Engineering (JSME), the Japanese Society of Tribologists (JAST) and the Japan Society of Precision Engineering (JSPE). For hard disk drive technology, the Storage Research Consortium (SRC) is supporting more than 40 research groups in various different universities to perform basic research for future HDD technology. The past and present statuses of these activities are introduced, particularly focusing on HDD and flexible media transport mechanisms.
Antimicrobial Testing Methods & Procedures: MB-11-05
Describes the methodology for determining the effectiveness of a neutralizer used when testing the tuberculocidal activity of disinfectants against Mycobacterium bovis (BCG) on hard surfaces using liquid, sprays, or towelettes.
Hybrid accretion disks in active galactic nuclei. I - Structure and spectra
NASA Technical Reports Server (NTRS)
Wandel, Amri; Liang, Edison P.
1991-01-01
A unified treatment is presented of the two distinct states of vertically thin AGN accretion disks: a cool (about 10 to the 6th K) optically thick solution, and a hot (about 10 to the 9th K) optically thin solution. A generalized formalism and a new radiative cooling equation valid in both regimes are introduced. A new luminosity limit is found at which the hot and cool alpha solutions merge into a single solution of intermediate optical depth. Analytic solutions for the disk structure are given, and output spectra are computed numerically. This is used to demonstrate the prospect of fitting AGN broadband spectra containing both the UV bump as well as the hard X-ray and gamma-ray tail, using a single accretion disk model. Such models are found to make definite predictions about the observed spectrum, such as the relation between the hard X-ray spectral index, the UV-to-X-ray luminosity ratio, and a feature of about 1 MeV.
NuSTAR and XMM-Newton Observations of the 2015 Outburst Decay of GX 339-4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiele, H.; Kong, A. K. H., E-mail: hstiele@mx.nthu.edu.tw
The extent of the accretion disk in the low/hard state of stellar mass black hole X-ray binaries remains an open question. There is some evidence suggesting that the inner accretion disk is truncated and replaced by a hot flow, while the detection of relativistic broadened iron emission lines seems to require an accretion disk extending fully to the innermost stable circular orbit. We present comprehensive spectral and timing analyses of six Nuclear Spectroscopic Telescope Array and XMM-Newton observations of GX 339–4 taken during outburst decay in the autumn of 2015. Using a spectral model consisting of a thermal accretion disk,more » Comptonized emission, and a relativistic reflection component, we obtain a decreasing photon index, consistent with an X-ray binary during outburst decay. Although we observe a discrepancy in the inner radius of the accretion disk and that of the reflector, which can be attributed to the different underlying assumptions in each model, both model components indicate a truncated accretion disk that resiles with decreasing luminosity. The evolution of the characteristic frequency in Fourier power spectra and their missing energy dependence support the interpretation of a truncated and evolving disk in the hard state. The XMM-Newton data set allowed us to study, for the first time, the evolution of the covariance spectra and ratio during outburst decay. The covariance ratio increases and steeps during outburst decay, consistent with increased disk instabilities.« less
An X-Ray Reprocessing Model of Disk Thermal Emission in Type 1 Seyfert Galaxies
NASA Technical Reports Server (NTRS)
Chiang, James; White, Nicholas E. (Technical Monitor)
2002-01-01
Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert. galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, and Ryde for the X-ray binary Cygnus X-1 and later applied to Seyfert galaxies by Zdziarski, Lubifiski, and Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum, and as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those which have been observed from these objects can, in principle, be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Furthermore, by positing a disk mass accretion rate which satisfies a condition for global energy balance between the thermal Comptonization luminosity and the power available from accretion, one can predict the spectral properties of the heretofore poorly measured hard X-ray continuum above approximately 50 keV in type 1 Seyfert galaxies. Conversely, forthcoming measurements of the hard X-ray continuum by more sensitive hard X-ray and soft gamma-ray telescopes, such as those aboard the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) in conjunction with simultaneous optical, UV, and soft X-ray monitoring, will allow the mass accretion rates to be directly constrained for these sources in the context of this model.
STRONGER REFLECTION FROM BLACK HOLE ACCRETION DISKS IN SOFT X-RAY STATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, James F.; Remillard, Ronald A.; García, Javier A.
We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe–K line as measured with respect to the power law. A key distinction ofmore » our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe–K line, namely, the Compton power law. We find that reflection is several times more pronounced (∼3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.« less
X-ray nova MAXI J1828-249. Evolution of the broadband spectrum during its 2013-2014 outburst
NASA Astrophysics Data System (ADS)
Grebenev, S. A.; Prosvetov, A. V.; Burenin, R. A.; Krivonos, R. A.; Mescheryakov, A. V.
2016-02-01
Based on data from the SWIFT, INTEGRAL, MAXI/ISS orbital observatories, and the ground-based RTT-150 telescope, we have investigated the broadband (from the optical to the hard X-ray bands) spectrum of the X-ray nova MAXI J1828-249 and its evolution during the outburst of the source in 2013-2014. The optical and infrared emissions from the nova are shown to be largely determined by the extension of the power-law component responsible for the hard X-ray emission. The contribution from the outer cold regions of the accretion disk, even if the X-ray heating of its surface is taken into account, turns out to be moderate during the source's "high" state (when a soft blackbody emission component is observed in the X-ray spectrum) and is virtually absent during its "low" ("hard") state. This result suggests that much of the optical and infrared emissions from such systems originates in the same region of main energy release where their hard X-ray emission is formed. This can be the Compton or synchro-Compton radiation from a high-temperature plasma in the central accretion disk region puffed up by instabilities, the synchrotron radiation from a hot corona above the disk, or the synchrotron radiation from its relativistic jets.
Antimicrobial Testing Methods & Procedures: MB-09-06
Describes the methodology used to determine the efficacy of towelette-based disinfectants against microbes on hard surfaces. The test is based on AOAC Method 961.02 (Germicidal Spray Products as Disinfectants).
NASA Astrophysics Data System (ADS)
Miller, J. M.; Fabian, A. C.; Reynolds, C. S.; Nowak, M. A.; Homan, J.; Freyberg, M. J.; Ehle, M.; Belloni, T.; Wijnands, R.; van der Klis, M.; Charles, P. A.; Lewin, W. H. G.
2004-05-01
We have analyzed spectra of the Galactic black hole GX 339-4 obtained through simultaneous 76 ks XMM-Newton/EPIC-pn and 10 ks Rossi X-Ray Timing Explorer observations during a bright phase of its 2002-2003 outburst. An extremely skewed, relativistic Fe Kα emission line and ionized disk reflection spectrum are revealed in these spectra. Self-consistent models for the Fe Kα emission-line profile and disk reflection spectrum rule out an inner disk radius compatible with a Schwarzschild black hole at more than the 8 σ level of confidence. The best-fit inner disk radius of (2-3)rg suggests that GX 339-4 harbors a black hole with a>=0.8-0.9 (where rg=GM/c2 and a=cJ/GM2, and assuming that reflection in the plunging region is relatively small). This confirms indications for black hole spin based on a Chandra spectrum obtained later in the outburst. The emission line and reflection spectrum also rule out a standard power-law disk emissivity in GX 339-4 a broken power-law form with enhanced emissivity inside ~6rg gives improved fits at more than the 8 σ level of confidence. The extreme red wing of the line and the steep emissivity require a centrally concentrated source of hard X-rays that can strongly illuminate the inner disk. Hard X-ray emission from the base of a jet-enhanced by gravitational light-bending effects-could create the concentrated hard X-ray emission; this process may be related to magnetic connections between the black hole and the inner disk. We discuss these results within the context of recent results from analyses of XTE J1650-500 and MCG -6-30-15, and of models for the inner accretion flow environment around black holes.
NASA Astrophysics Data System (ADS)
Isobe, Masaharu
Hard sphere/disk systems are among the simplest models and have been used to address numerous fundamental problems in the field of statistical physics. The pioneering numerical works on the solid-fluid phase transition based on Monte Carlo (MC) and molecular dynamics (MD) methods published in 1957 represent historical milestones, which have had a significant influence on the development of computer algorithms and novel tools to obtain physical insights. This chapter addresses the works of Alder's breakthrough regarding hard sphere/disk simulation: (i) event-driven molecular dynamics, (ii) long-time tail, (iii) molasses tail, and (iv) two-dimensional melting/crystallization. From a numerical viewpoint, there are serious issues that must be overcome for further breakthrough. Here, we present a brief review of recent progress in this area.
NASA Astrophysics Data System (ADS)
Xu, Yanjun; Harrison, Fiona A.; García, Javier A.; Fabian, Andrew C.; Fürst, Felix; Gandhi, Poshak; Grefenstette, Brian W.; Madsen, Kristin K.; Miller, Jon M.; Parker, Michael L.; Tomsick, John A.; Walton, Dominic J.
2018-01-01
We report on a Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the recently discovered bright black hole candidate MAXI J1535-571. NuSTAR observed the source on MJD 58003 (five days after the outburst was reported). The spectrum is characteristic of a black hole binary in the hard state. We observe clear disk reflection features, including a broad Fe Kα line and a Compton hump peaking around 30 keV. Detailed spectral modeling reveals a narrow Fe Kα line complex centered around 6.5 keV on top of the strong relativistically broadened Fe Kα line. The narrow component is consistent with distant reflection from moderately ionized material. The spectral continuum is well described by a combination of cool thermal disk photons and a Comptonized plasma with the electron temperature {{kT}}{{e}}=19.7+/- 0.4 keV. An adequate fit can be achieved for the disk reflection features with a self-consistent relativistic reflection model that assumes a lamp-post geometry for the coronal illuminating source. The spectral fitting measures a black hole spin a> 0.84, inner disk radius {R}{in}< 2.01 {r}{ISCO}, and a lamp-post height h={7.2}-2.0+0.8 {r}{{g}} (statistical errors, 90% confidence), indicating no significant disk truncation and a compact corona. Although the distance and mass of this source are not currently known, this suggests the source was likely in the brighter phases of the hard state during this NuSTAR observation.
Liquid part of the phase diagram and percolation line for two-dimensional Mercedes-Benz water.
Urbic, T
2017-09-01
Monte Carlo simulations and Wertheim's thermodynamic perturbation theory (TPT) are used to predict the phase diagram and percolation curve for the simple two-dimensional Mercedes-Benz (MB) model of water. The MB model of water is quite popular for explaining water properties, but the phase diagram has not been reported till now. In the MB model, water molecules are modeled as two-dimensional Lennard-Jones disks, with three orientation-dependent hydrogen-bonding arms, arranged as in the MB logo. The liquid part of the phase space is explored using grand canonical Monte Carlo simulations and two versions of Wertheim's TPT for associative fluids, which have been used before to predict the properties of the simple MB model. We find that the theory reproduces well the physical properties of hot water but is less successful at capturing the more structured hydrogen bonding that occurs in cold water. In addition to reporting the phase diagram and percolation curve of the model, it is shown that the improved TPT predicts the phase diagram rather well, while the standard one predicts a phase transition at lower temperatures. For the percolation line, both versions have problems predicting the correct position of the line at high temperatures.
Liquid part of the phase diagram and percolation line for two-dimensional Mercedes-Benz water
NASA Astrophysics Data System (ADS)
Urbic, T.
2017-09-01
Monte Carlo simulations and Wertheim's thermodynamic perturbation theory (TPT) are used to predict the phase diagram and percolation curve for the simple two-dimensional Mercedes-Benz (MB) model of water. The MB model of water is quite popular for explaining water properties, but the phase diagram has not been reported till now. In the MB model, water molecules are modeled as two-dimensional Lennard-Jones disks, with three orientation-dependent hydrogen-bonding arms, arranged as in the MB logo. The liquid part of the phase space is explored using grand canonical Monte Carlo simulations and two versions of Wertheim's TPT for associative fluids, which have been used before to predict the properties of the simple MB model. We find that the theory reproduces well the physical properties of hot water but is less successful at capturing the more structured hydrogen bonding that occurs in cold water. In addition to reporting the phase diagram and percolation curve of the model, it is shown that the improved TPT predicts the phase diagram rather well, while the standard one predicts a phase transition at lower temperatures. For the percolation line, both versions have problems predicting the correct position of the line at high temperatures.
A Persistent Disk Wind in GRS 1915+105 with NICER
NASA Astrophysics Data System (ADS)
Neilsen, J.; Cackett, E.; Remillard, R. A.; Homan, J.; Steiner, J. F.; Gendreau, K.; Arzoumanian, Z.; Prigozhin, G.; LaMarr, B.; Doty, J.; Eikenberry, S.; Tombesi, F.; Ludlam, R.; Kara, E.; Altamirano, D.; Fabian, A. C.
2018-06-01
The bright, erratic black hole X-ray binary GRS 1915+105 has long been a target for studies of disk instabilities, radio/infrared jets, and accretion disk winds, with implications that often apply to sources that do not exhibit its exotic X-ray variability. With the launch of the Neutron star Interior Composition Explorer (NICER), we have a new opportunity to study the disk wind in GRS 1915+105 and its variability on short and long timescales. Here we present our analysis of 39 NICER observations of GRS 1915+105 collected during five months of the mission data validation and verification phase, focusing on Fe XXV and Fe XXVI absorption. We report the detection of strong Fe XXVI in 32 (>80%) of these observations, with another four marginal detections; Fe XXV is less common, but both likely arise in the well-known disk wind. We explore how the properties of this wind depend on broad characteristics of the X-ray lightcurve: mean count rate, hardness ratio, and fractional rms variability. The trends with count rate and rms are consistent with an average wind column density that is fairly steady between observations but varies rapidly with the source on timescales of seconds. The line dependence on spectral hardness echoes the known behavior of disk winds in outbursts of Galactic black holes; these results clearly indicate that NICER is a powerful tool for studying black hole winds.
Solving Reynolds Equation in the Head-Disk Interface of Hard Disk Drives by Using a Meshless Method
NASA Astrophysics Data System (ADS)
Bao-Jun, Shi; Ting-Yi, Yang; Jian, Zhang; Yun-Dong, Du
2010-05-01
With the decrease of the flying height of the magnetic head/slider in hard disk drives (HDDs), Reynolds equation, which is used to describe the pressure distribution of the air bearing film in HDDs, must be modified to account for the rarefaction effect. Meshless local Petrov-Galerkin (MLPG) method has been successfully used in some fields of solid mechanics and fluid mechanics and was proven to be an efficacious method. No meshes are needed in MLPG method either for the interpolation of the trial and test functions, or for the integration of the weak form of the related differential equation. We solve Reynolds equation in the head-disk interface (HDI) of HDDs by using MLPG method. The pressure distribution of the air baring film by using MLPG method is obtained and compared with the exact solution and that obtained by using a least square finite difference (LSFD) method. We also investigate effects of the bearing number on the pressure value and the center of pressure based on this meshless method for different film-thickness ratios.
Evolution of Large-Scale Magnetic Fields and State Transitions in Black Hole X-Ray Binaries
NASA Astrophysics Data System (ADS)
Wang, Ding-Xiong; Huang, Chang-Yin; Wang, Jiu-Zhou
2010-04-01
The state transitions of black hole (BH) X-ray binaries are discussed based on the evolution of large-scale magnetic fields, in which the combination of three energy mechanisms are involved: (1) the Blandford-Znajek (BZ) process related to the open field lines connecting a rotating BH with remote astrophysical loads, (2) the magnetic coupling (MC) process related to the closed field lines connecting the BH with its surrounding accretion disk, and (3) the Blandford-Payne (BP) process related to the open field lines connecting the disk with remote astrophysical loads. It turns out that each spectral state of the BH binaries corresponds to each configuration of magnetic field in BH magnetosphere, and the main characteristics of low/hard (LH) state, hard intermediate (HIM) state and steep power law (SPL) state are roughly fitted based on the evolution of large-scale magnetic fields associated with disk accretion.
NASA Astrophysics Data System (ADS)
Tan, Baolin; Mapps, Desmond J.; Pan, Genhua; Robinson, Paul
1996-03-01
A disk with a data, servo and isolation layer has been fabricated with the data layer magnetized along the circumferential direction. The servo layer was recorded with servo pattern magnetized along the radial direction. A continuous servo signal is obtained and the servo does not occupy any data area. In this new method, the servo and data bits can share media surface area on the disk without interference. Track following on 0.7 μm tracks has been demonstrated using the new servo method on longitudinal rigid disks.
A two-dimensional model of water: Theory and computer simulations
NASA Astrophysics Data System (ADS)
Urbič, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Southall, N. T.; Dill, K. A.
2000-02-01
We develop an analytical theory for a simple model of liquid water. We apply Wertheim's thermodynamic perturbation theory (TPT) and integral equation theory (IET) for associative liquids to the MB model, which is among the simplest models of water. Water molecules are modeled as 2-dimensional Lennard-Jones disks with three hydrogen bonding arms arranged symmetrically, resembling the Mercedes-Benz (MB) logo. The MB model qualitatively predicts both the anomalous properties of pure water and the anomalous solvation thermodynamics of nonpolar molecules. IET is based on the orientationally averaged version of the Ornstein-Zernike equation. This is one of the main approximations in the present work. IET correctly predicts the pair correlation function of the model water at high temperatures. Both TPT and IET are in semi-quantitative agreement with the Monte Carlo values of the molar volume, isothermal compressibility, thermal expansion coefficient, and heat capacity. A major advantage of these theories is that they require orders of magnitude less computer time than the Monte Carlo simulations.
van der Waals-Tonks-type equations of state for hard-hypersphere fluids in four and five dimensions
NASA Astrophysics Data System (ADS)
Wang, Xian-Zhi
2004-04-01
Recently, we developed accurate van der Waals-Tonks-type equations of state for hard-disk and hard-sphere fluids by using the known virial coefficients. In this paper, we derive the van der Waals-Tonks-type equations of state. We further apply these equations of state to hard-hypersphere fluids in four and five dimensions. In the low-density fluid regime, these equations of state are in good agreement with the simulation results and existing equations of state.
Development of a 32-bit UNIX-based ELAS workstation
NASA Technical Reports Server (NTRS)
Spiering, Bruce A.; Pearson, Ronnie W.; Cheng, Thomas D.
1987-01-01
A mini/microcomputer UNIX-based image analysis workstation has been designed and is being implemented to use the Earth Resources Laboratory Applications Software (ELAS). The hardware system includes a MASSCOMP 5600 computer, which is a 32-bit UNIX-based system (compatible with AT&T System V and Berkeley 4.2 BSD operating system), a floating point accelerator, a 474-megabyte fixed disk, a tri-density magnetic tape drive, and an 1152 by 910 by 12-plane color graphics/image interface. The software conversion includes reconfiguring the ELAs driver Master Task, recompiling and then testing the converted application modules. This hardware and software configuration is a self-sufficient image analysis workstation which can be used as a stand-alone system, or networked with other compatible workstations.
Development of a multimedia CD-ROM on telemedicine and teleradiology
NASA Astrophysics Data System (ADS)
Schnur, Mark T.; Williamson, Morgan P.; Goeringer, Fred; Zimnik, Paul; Linn, Reid; Suitor, Charles T.; Rocca, Mitra A.; Strother, Thomas
1996-04-01
The Department of Defense Telemedicine Test Bed produced a CD-ROM including information on telemedicine, teleradiology and military medical advanced technology projects. The CD-ROM was produced using media from the Telemedicine Test Bed World Wide Web site and academic papers and presentations. Apple Media Tools software was used to produce the interactive program and the authoring was done on a high speed Apple Macintosh Power PC computer. The process took roughly 100 hours to author 50 Mb of data into 200 frames of interactive material. Future versions of the Telemedicine CD-ROM are in progress which will include much more material to take advantage of the 650 Mb available on a compact disk. This paper graphically depicts and explains the authoring process.
The Weekly Fab Five: Things You Should Do Every Week To Keep Your Computer Running in Tip-Top Shape.
ERIC Educational Resources Information Center
Crispen, Patrick
2001-01-01
Describes five steps that school librarians should follow every week to keep their computers running at top efficiency. Explains how to update virus definitions; run Windows update; run ScanDisk to repair errors on the hard drive; run a disk defragmenter; and backup all data. (LRW)
NASA Astrophysics Data System (ADS)
Pattabhiraman, Harini; Gantapara, Anjan P.; Dijkstra, Marjolein
2015-10-01
Using computer simulations, we study the phase behavior of a model system of colloidal hard disks with a diameter σ and a soft corona of width 1.4σ. The particles interact with a hard core and a repulsive square-shoulder potential. We calculate the free energy of the random-tiling quasicrystal and its crystalline approximants using the Frenkel-Ladd method. We explicitly account for the configurational entropy associated with the number of distinct configurations of the random-tiling quasicrystal. We map out the phase diagram and find that the random tiling dodecagonal quasicrystal is stabilised by entropy at finite temperatures with respect to the crystalline approximants that we considered, and its stability region seems to extend to zero temperature as the energies of the defect-free quasicrystal and the crystalline approximants are equal within our statistical accuracy.
Dynamo magnetic-field generation in turbulent accretion disks
NASA Technical Reports Server (NTRS)
Stepinski, T. F.
1991-01-01
Magnetic fields can play important roles in the dynamics and evolution of accretion disks. The presence of strong differential rotation and vertical density gradients in turbulent disks allows the alpha-omega dynamo mechanism to offset the turbulent dissipation and maintain strong magnetic fields. It is found that MHD dynamo magnetic-field normal modes in an accretion disk are highly localized to restricted regions of a disk. Implications for the character of real, dynamically constrained magnetic fields in accretion disks are discussed. The magnetic stress due to the mean magnetic field is found to be of the order of a viscous stress. The dominant stress, however, is likely to come from small-scale fluctuating magnetic fields. These fields may also give rise to energetic flares above the disk surface, providing a possible explanation for the highly variable hard X-ray emission from objects like Cyg X-l.
A study of the cross-correlation and time lag in black hole X-ray binary XTE J1859+226
NASA Astrophysics Data System (ADS)
Pei, Songpeng; Ding, Guoqiang; Li, Zhibing; Lei, Yajuan; Yuen, Rai; Qu, Jinlu
2017-07-01
With Rossi X-ray Timing Explorer (RXTE) data, we systematically study the cross-correlation and time lag in all spectral states of black hole X-ray binary (BHXB) XTE J1859+226 in detail during its entire 1999-2000 outburst that lasted for 166 days. Anti-correlations and positive correlations and their respective soft and hard X-ray lags are only detected in the first 100 days of the outburst when the luminosity is high. This suggests that the cross-correlations may be related to high luminosity. Positive correlations are detected in every state of XTE J1859+226, viz., hard state, hard-intermediate state (HIMS), soft-intermediate state (SIMS) and soft state. However, anti-correlations are only detected in HIMS and SIMS, anti-correlated hard lags are only detected in SIMS, while anti-correlated soft lags are detected in both HIMS and SIMS. Moreover, the ratio of the observations with anti-correlated soft lags to hard lags detected in XTE J1859+226 is significantly different from that in neutron star low-mass X-ray binaries (NS LMXBs). So far, anti-correlations are never detected in the soft state of BHXBs but detected in every branch or state of NS LMXBs. This may be due to the origin of soft seed photons in BHXBs is confined to the accretion disk and, for NS LMXBs, from both accretion disk and the surface of the NS. We notice that the timescale of anti-correlated time lags detected in XTE J1859+226 is similar with that of other BHXBs and NS LMXBs. We suggest that anti-correlated soft lag detected in BHXB may result from fluctuation in the accretion disk as well as NS LMXB.
Fluctuating Navier-Stokes equations for inelastic hard spheres or disks.
Brey, J Javier; Maynar, P; de Soria, M I García
2011-04-01
Starting from the fluctuating Boltzmann equation for smooth inelastic hard spheres or disks, closed equations for the fluctuating hydrodynamic fields to Navier-Stokes order are derived. This requires deriving constitutive relations for both the fluctuating fluxes and the correlations of the random forces. The former are identified as having the same form as the macroscopic average fluxes and involving the same transport coefficients. On the other hand, the random force terms exhibit two peculiarities as compared with their elastic limit for molecular systems. First, they are not white but have some finite relaxation time. Second, their amplitude is not determined by the macroscopic transport coefficients but involves new coefficients. ©2011 American Physical Society
Static structure of active Brownian hard disks
NASA Astrophysics Data System (ADS)
de Macedo Biniossek, N.; Löwen, H.; Voigtmann, Th; Smallenburg, F.
2018-02-01
We explore the changes in static structure of a two-dimensional system of active Brownian particles (ABP) with hard-disk interactions, using event-driven Brownian dynamics simulations. In particular, the effect of the self-propulsion velocity and the rotational diffusivity on the orientationally-averaged fluid structure factor is discussed. Typically activity increases structural ordering and generates a structure factor peak at zero wave vector which is a precursor of motility-induced phase separation. Our results provide reference data to test future statistical theories for the fluid structure of active Brownian systems. This manuscript was submitted for the special issue of the Journal of Physics: Condensed Matter associated with the Liquid Matter Conference 2017.
34 CFR 668.24 - Record retention and examinations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... representative. (3) An institution may keep required records in hard copy or in microform, computer file, optical disk, CD-ROM, or other media formats, provided that— (i) Except for the records described in paragraph (d)(3)(ii) of this section, all record information must be retrievable in a coherent hard copy format...
Enforcing Hardware-Assisted Integrity for Secure Transactions from Commodity Operating Systems
2015-08-17
OS. First, we dedicate one hard disk to each OS. A System Management Mode ( SMM )-based monitoring module monitors if an OS is accessing another hard...hypervisor- based systems. An adversary can only target the BIOS-anchored SMM code, which is tiny, and without any need for foreign code (i.e. third
NASA Astrophysics Data System (ADS)
Stopper, Daniel; Thorneywork, Alice L.; Dullens, Roel P. A.; Roth, Roland
2018-03-01
Using dynamical density functional theory (DDFT), we theoretically study Brownian self-diffusion and structural relaxation of hard disks and compare to experimental results on quasi two-dimensional colloidal hard spheres. To this end, we calculate the self-van Hove correlation function and distinct van Hove correlation function by extending a recently proposed DDFT-approach for three-dimensional systems to two dimensions. We find that the theoretical results for both self-part and distinct part of the van Hove function are in very good quantitative agreement with the experiments up to relatively high fluid packing fractions of roughly 0.60. However, at even higher densities, deviations between the experiment and the theoretical approach become clearly visible. Upon increasing packing fraction, in experiments, the short-time self-diffusive behavior is strongly affected by hydrodynamic effects and leads to a significant decrease in the respective mean-squared displacement. By contrast, and in accordance with previous simulation studies, the present DDFT, which neglects hydrodynamic effects, shows no dependence on the particle density for this quantity.
Accretion in Radiative Equipartition (AiRE) Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazdi, Yasaman K.; Afshordi, Niayesh, E-mail: yyazdi@pitp.ca, E-mail: nafshordi@pitp.ca
2017-07-01
Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (i.e., inner disk) need to be modified. Here, we present a modification to the Shakura and Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks andmore » show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.« less
Accretion in Radiative Equipartition (AiRE) Disks
NASA Astrophysics Data System (ADS)
Yazdi, Yasaman K.; Afshordi, Niayesh
2017-07-01
Standard accretion disk theory predicts that the total pressure in disks at typical (sub-)Eddington accretion rates becomes radiation pressure dominated. However, radiation pressure dominated disks are thermally unstable. Since these disks are observed in approximate steady state over the instability timescale, our accretion models in the radiation-pressure-dominated regime (I.e., inner disk) need to be modified. Here, we present a modification to the Shakura & Sunyaev model, where the radiation pressure is in equipartition with the gas pressure in the inner region. We call these flows accretion in radiative equipartition (AiRE) disks. We introduce the basic features of AiRE disks and show how they modify disk properties such as the Toomre parameter and the central temperature. We then show that the accretion rate of AiRE disks is limited from above and below, by Toomre and nodal sonic point instabilities, respectively. The former leads to a strict upper limit on the mass of supermassive black holes as a function of cosmic time (and spin), while the latter could explain the transition between hard and soft states of X-ray binaries.
High-Speed Recording of Test Data on Hard Disks
NASA Technical Reports Server (NTRS)
Lagarde, Paul M., Jr.; Newnan, Bruce
2003-01-01
Disk Recording System (DRS) is a systems-integration computer program for a direct-to-disk (DTD) high-speed data acquisition system (HDAS) that records rocket-engine test data. The HDAS consists partly of equipment originally designed for recording the data on tapes. The tape recorders were replaced with hard-disk drives, necessitating the development of DRS to provide an operating environment that ties two computers, a set of five DTD recorders, and signal-processing circuits from the original tape-recording version of the HDAS into one working system. DRS includes three subsystems: (1) one that generates a graphical user interface (GUI), on one of the computers, that serves as a main control panel; (2) one that generates a GUI, on the other computer, that serves as a remote control panel; and (3) a data-processing subsystem that performs tasks on the DTD recorders according to instructions sent from the main control panel. The software affords capabilities for dynamic configuration to record single or multiple channels from a remote source, remote starting and stopping of the recorders, indexing to prevent overwriting of data, and production of filtered frequency data from an original time-series data file.
Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks
NASA Astrophysics Data System (ADS)
Levis, Demian; Berthier, Ludovic
2014-06-01
We introduce a kinetic Monte Carlo model for self-propelled hard disks to capture with minimal ingredients the interplay between thermal fluctuations, excluded volume, and self-propulsion in large assemblies of active particles. We analyze in detail the resulting (density, self-propulsion) nonequilibrium phase diagram over a broad range of parameters. We find that purely repulsive hard disks spontaneously aggregate into fractal clusters as self-propulsion is increased and rationalize the evolution of the average cluster size by developing a kinetic model of reversible aggregation. As density is increased, the nonequilibrium clusters percolate to form a ramified structure reminiscent of a physical gel. We show that the addition of a finite amount of noise is needed to trigger a nonequilibrium phase separation, showing that demixing in active Brownian particles results from a delicate balance between noise, interparticle interactions, and self-propulsion. We show that self-propulsion has a profound influence on the dynamics of the active fluid. We find that the diffusion constant has a nonmonotonic behavior as self-propulsion is increased at finite density and that activity produces strong deviations from Fickian diffusion that persist over large time scales and length scales, suggesting that systems of active particles generically behave as dynamically heterogeneous systems.
GRS 1739-278 Observed at Very Low Luminosity with XMM-Newton and NuSTAR
NASA Astrophysics Data System (ADS)
Fürst, F.; Tomsick, J. A.; Yamaoka, K.; Dauser, T.; Miller, J. M.; Clavel, M.; Corbel, S.; Fabian, A.; García, J.; Harrison, F. A.; Loh, A.; Kaaret, P.; Kalemci, E.; Migliari, S.; Miller-Jones, J. C. A.; Pottschmidt, K.; Rahoui, F.; Rodriguez, J.; Stern, D.; Stuhlinger, M.; Walton, D. J.; Wilms, J.
2016-12-01
We present a detailed spectral analysis of XMM-Newton and NuSTAR observations of the accreting transient black hole GRS 1739-278 during a very faint low hard state at ˜0.02% of the Eddington luminosity (for a distance of 8.5 kpc and a mass of 10 {M}⊙ ). The broadband X-ray spectrum between 0.5 and 60 keV can be well-described by a power-law continuum with an exponential cutoff. The continuum is unusually hard for such a low luminosity, with a photon index of Γ = 1.39 ± 0.04. We find evidence for an additional reflection component from an optically thick accretion disk at the 98% likelihood level. The reflection fraction is low, with {{ R }}{refl}={0.043}-0.023+0.033. In combination with measurements of the spin and inclination parameters made with NuSTAR during a brighter hard state by Miller et al., we seek to constrain the accretion disk geometry. Depending on the assumed emissivity profile of the accretion disk, we find a truncation radius of 15-35 {R}{{g}} (5-12 {R}{ISCO}) at the 90% confidence limit. These values depend strongly on the assumptions and we discuss possible systematic uncertainties.
Security for decentralized health information systems.
Bleumer, G
1994-02-01
Health care information systems must reflect at least two basic characteristics of the health care community: the increasing mobility of patients and the personal liability of everyone giving medical treatment. Open distributed information systems bear the potential to reflect these requirements. But the market for open information systems and operating systems hardly provides secure products today. This 'missing link' is approached by the prototype SECURE Talk that provides secure transmission and archiving of files on top of an existing operating system. Its services may be utilized by existing medical applications. SECURE Talk demonstrates secure communication utilizing only standard hardware. Its message is that cryptography (and in particular asymmetric cryptography) is practical for many medical applications even if implemented in software. All mechanisms are software implemented in order to be executable on standard-hardware. One can investigate more or less decentralized forms of public key management and the performance of many different cryptographic mechanisms. That of, e.g. hybrid encryption and decryption (RSA+DES-PCBC) is about 300 kbit/s. That of signing and verifying is approximately the same using RSA with a DES hash function. The internal speed, without disk accesses etc., is about 1.1 Mbit/s. (Apple Quadra 950 (MC 68040, 33 MHz, RAM: 20 MB, 80 ns. Length of RSA modulus is 512 bit).
Study of data I/O performance on distributed disk system in mask data preparation
NASA Astrophysics Data System (ADS)
Ohara, Shuichiro; Odaira, Hiroyuki; Chikanaga, Tomoyuki; Hamaji, Masakazu; Yoshioka, Yasuharu
2010-09-01
Data volume is getting larger every day in Mask Data Preparation (MDP). In the meantime, faster data handling is always required. MDP flow typically introduces Distributed Processing (DP) system to realize the demand because using hundreds of CPU is a reasonable solution. However, even if the number of CPU were increased, the throughput might be saturated because hard disk I/O and network speeds could be bottlenecks. So, MDP needs to invest a lot of money to not only hundreds of CPU but also storage and a network device which make the throughput faster. NCS would like to introduce new distributed processing system which is called "NDE". NDE could be a distributed disk system which makes the throughput faster without investing a lot of money because it is designed to use multiple conventional hard drives appropriately over network. NCS studies I/O performance with OASIS® data format on NDE which contributes to realize the high throughput in this paper.
Correlated Timing and Spectral Behavior of 4U 1705-44
NASA Astrophysics Data System (ADS)
Olive, Jean-François; Barret, Didier; Gierliński, Marek
2003-01-01
We follow the timing properties of the neutron star low-mass X-ray binary system 4U 1705-44 in different spectral states, as monitored by the Rossi X-Ray Timing Explorer over about a month. We fit the power density spectra using multiple Lorentzians. We show that the characteristic frequencies of these Lorentzians, when properly identified, fit within the correlations previously reported. The time evolution of these frequencies and their relation with the parameters of the energy spectra reported in Barret & Olive are used to constrain the accretion geometry changes. The spectral data were fitted by the sum of a blackbody and a Comptonized component and were interpreted in the framework of a truncated accretion disk geometry, with a varying truncation radius. If one assumes that the characteristic frequencies of the Lorentzians are some measure of this truncation radius, as in most theoretical models, then the timing data presented here strengthen the above interpretation. The soft-to-hard and hard-to-soft transitions are clearly associated with the disk receding from and approaching the neutron star, respectively. During the transitions, correlations are found between the Lorentzian frequencies and the flux and temperature of the blackbody, which is thus likely to be coming from the disk. On the other hand, in the hard state, the characteristic Lorentzians frequencies that are the lowest remained nearly constant despite significant evolution of the spectra parameters. The disk no longer contributes to the X-ray emission, and the blackbody is now likely to be emitted by the neutron star surface that is providing the seed photons for the Comptonization.
NASA Technical Reports Server (NTRS)
Zhang, S. N.; Zhang, Xiaoling; Sun, Xuejun; Yao, Yangsen; Cui, Wei; Chen, Wan; Wu, Xuebing; Xu, Haiguang
1999-01-01
We have carried out systematic modeling of the X-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40, using our newly developed spectral fitting methods. Our results reveal, for the first time, a three-layered structure of the atmosphere in the inner region of the accretion disks. Above the conanonly known, cold and optically thick disk of a blackbody temperature 0.2-0.5 keV, there is a layer of warm gas with a temperature of 1.0-1.5 keV and an optical depth of around 10. Compton scattering of the underlying disk blackbody photons produces the soft X-ray component we comonly observe. Under certain conditions, there is also a much hotter, optically thin corona above the warm layer, characterized by a temperature of 100 keV or higher and an optical depth of unity or less. The corona produces the hard X-ray component typically seen in these sources. We emphasize that the existence of the warm layer seem to be independent of the presence of the hot corona and, therefore, it is not due to irradiation of the disk by hard X-rays from the corona. Our results suggest a striking structural similarity between the accretion disks and the solar atmosphere, which may provide a new stimulus to study the common underlying physical processes operating in these vastly different systems. We also report the first unambiguous detection of an emission line around 6.4 keV in GRO J1655-40, which may allow further constraining of the accretion disk structure. We acknowledge NASA GSFC and MFC for partial financial support. (copyright) 1999: American Astronomical Society. All rights reverved.
Nanoscale roughness contact in a slider-disk interface.
Hua, Wei; Liu, Bo; Yu, Shengkai; Zhou, Weidong
2009-07-15
The nanoscale roughness contact between molecularly smooth surfaces of a slider-disk interface in a hard disk drive is analyzed, and the lubricant behavior at very high shear rate is presented. A new contact model is developed to study the nanoscale roughness contact behavior by classifying various forms of contact into slider-lubricant contact, slider-disk elastic contact and plastic contact. The contact pressure and the contact probabilities of the three types of contact are investigated. The new contact model is employed to explain and provide insight to an interesting experimental result found in a thermal protrusion slider. The protrusion budget for head surfing in the lubricant, which is the ideal state for contact recording, is also discussed.
Experimental dynamic characterizations and modelling of disk vibrations for HDDs.
Pang, Chee Khiang; Ong, Eng Hong; Guo, Guoxiao; Qian, Hua
2008-01-01
Currently, the rotational speed of spindle motors in HDDs (Hard-Disk Drives) are increasing to improve high data throughput and decrease rotational latency for ultra-high data transfer rates. However, the disk platters are excited to vibrate at their natural frequencies due to higher air-flow excitation as well as eccentricities and imbalances in the disk-spindle assembly. These factors contribute directly to TMR (Track Mis-Registration) which limits achievable high recording density essential for future mobile HDDs. In this paper, the natural mode shapes of an annular disk mounted on a spindle motor used in current HDDs are characterized using FEM (Finite Element Methods) analysis and verified with SLDV (Scanning Laser Doppler Vibrometer) measurements. The identified vibration frequencies and amplitudes of the disk ODS (Operating Deflection Shapes) at corresponding disk mode shapes are modelled as repeatable disturbance components for servo compensation in HDDs. Our experimental results show that the SLDV measurements are accurate in capturing static disk mode shapes without the need for intricate air-flow aero-elastic models, and the proposed disk ODS vibration model correlates well with experimental measurements from a LDV.
Disks around merging binary black holes: From GW150914 to supermassive black holes
NASA Astrophysics Data System (ADS)
Khan, Abid; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.
2018-02-01
We perform magnetohydrodynamic simulations in full general relativity of disk accretion onto nonspinning black hole binaries with mass ratio q =29 /36 . We survey different disk models which differ in their scale height, total size and magnetic field to quantify the robustness of previous simulations on the initial disk model. Scaling our simulations to LIGO GW150914 we find that such systems could explain possible gravitational wave and electromagnetic counterparts such as the Fermi GBM hard x-ray signal reported 0.4 s after GW150915 ended. Scaling our simulations to supermassive binary black holes, we find that observable flow properties such as accretion rate periodicities, the emergence of jets throughout inspiral, merger and postmerger, disk temperatures, thermal frequencies, and the time delay between merger and the boost in jet outflows that we reported in earlier studies display only modest dependence on the initial disk model we consider here.
Shibata, Shizuma; Vieira, Luiz Clovis Cardoso; Baratieri, Luiz Narciso; Fu, Jiale; Hoshika, Shuhei; Matsuda, Yasuhiro; Sano, Hidehiko
2016-01-01
The purpose of this study was to evaluate the µTBS (microtensile bond strength) of currently available self-etching adhesives with an experimental self-etch adhesive in normal and caries-affected dentin, using a portable hardness measuring device, in order to standardize dentin Knoop hardness. Normal (ND) and caries-affected dentin (CAD) were obtained from twenty human molars with class II natural caries. The following adhesive systems were tested: Mega Bond (MB), a 2-step self-etching adhesive; MTB-200 (MTB), an experimental 1-step self-etching adhesive (1-SEA), and two commercially available one-step self-etching systems, G-Bond Plus (GB) and Adper Easy Bond (EB). MB-ND achieved the highest µTBS (p<0.05). The mean µTBS was statistically lower in CAD than in ND for all adhesives tested (p<0.05), and the 2-step self-etch adhesive achieved better overall performance than the 1-step self-etch adhesives.
Study on compensation algorithm of head skew in hard disk drives
NASA Astrophysics Data System (ADS)
Xiao, Yong; Ge, Xiaoyu; Sun, Jingna; Wang, Xiaoyan
2011-10-01
In hard disk drives (HDDs), head skew among multiple heads is pre-calibrated during manufacturing process. In real applications with high capacity of storage, the head stack may be tilted due to environmental change, resulting in additional head skew errors from outer diameter (OD) to inner diameter (ID). In case these errors are below the preset threshold for power on recalibration, the current strategy may not be aware, and drive performance under severe environment will be degraded. In this paper, in-the-field compensation of small DC head skew variation across stroke is proposed, where a zone table has been equipped. Test results demonstrating its effectiveness to reduce observer error and to enhance drive performance via accurate prediction of DC head skew are provided.
Use of redundant arrays of inexpensive disks in orthodontic practice.
Graham, David Matthew; Graham, Michael James; Mupparapu, Mel
2017-04-01
In a time when orthodontists are getting away from paper charts and going digital with their patient data and imaging, practitioners need to be prepared for a potential hardware failure in their data infrastructure. Although a backup plan in accordance with the Security Rule of the Health Insurance Portability and Accountability Act (HIPAA) of 1996 may prevent data loss in case of a disaster or hard drive failure, it does little to ensure business and practice continuity. Through the implementation of a common technique used in information technology, the redundant array of inexpensive disks, a practice may continue normal operations without interruption if a hard drive fails. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Interfacing a high performance disk array file server to a Gigabit LAN
NASA Technical Reports Server (NTRS)
Seshan, Srinivasan; Katz, Randy H.
1993-01-01
Our previous prototype, RAID-1, identified several bottlenecks in typical file server architectures. The most important bottleneck was the lack of a high-bandwidth path between disk, memory, and the network. Workstation servers, such as the Sun-4/280, have very slow access to peripherals on busses far from the CPU. For the RAID-2 system, we addressed this problem by designing a crossbar interconnect, Xbus board, that provides a 40MB/s path between disk, memory, and the network interfaces. However, this interconnect does not provide the system CPU with low latency access to control the various interfaces. To provide a high data rate to clients on the network, we were forced to carefully and efficiently design the network software. A block diagram of the system hardware architecture is given. In the following subsections, we describe pieces of the RAID-2 file server hardware that had a significant impact on the design of the network interface.
DICOM implementation on online tape library storage system
NASA Astrophysics Data System (ADS)
Komo, Darmadi; Dai, Hailei L.; Elghammer, David; Levine, Betty A.; Mun, Seong K.
1998-07-01
The main purpose of this project is to implement a Digital Image and Communications (DICOM) compliant online tape library system over the Internet. Once finished, the system will be used to store medical exams generated from U.S. ARMY Mobile ARMY Surgical Hospital (MASH) in Tuzla, Bosnia. A modified UC Davis implementation of DICOM storage class is used for this project. DICOM storage class user and provider are implemented as the system's interface to the Internet. The DICOM software provides flexible configuration options such as types of modalities and trusted remote DICOM hosts. Metadata is extracted from each exam and indexed in a relational database for query and retrieve purposes. The medical images are stored inside the Wolfcreek-9360 tape library system from StorageTek Corporation. The tape library system has nearline access to more than 1000 tapes. Each tape has a capacity of 800 megabytes making the total nearline tape access of around 1 terabyte. The tape library uses the Application Storage Manager (ASM) which provides cost-effective file management, storage, archival, and retrieval services. ASM automatically and transparently copies files from expensive magnetic disk to less expensive nearline tape library, and restores the files back when they are needed. The ASM also provides a crash recovery tool, which enable an entire file system restore in a short time. A graphical user interface (GUI) function is used to view the contents of the storage systems. This GUI also allows user to retrieve the stored exams and send the exams to anywhere on the Internet using DICOM protocols. With the integration of different components of the system, we have implemented a high capacity online tape library storage system that is flexible and easy to use. Using tape as an alternative storage media as opposed to the magnetic disk has the great potential of cost savings in terms of dollars per megabyte of storage. As this system matures, the Hospital Information Systems/Radiology Information Systems (HIS/RIS) or other components can be developed potentially as interfaces to the outside world thus widen the usage of the tape library system.
The excitation of a primordial cold asteroid belt as a natural outcome of the planetary instability
NASA Astrophysics Data System (ADS)
Deienno, Rogerio; Izidoro, André; Gomes, Rodney S.; Morbidelli, Alessandro; Nesvorny, David
2017-10-01
The initial dynamical state of the main asteroid belt (MB) always puzzled astronomers and it is still a hot subject under debate. For years, the currently well known Grand Tack model was considered to be the only capable of reconciling the formation of the terrestrial planets together with a well dynamically excited MB. This model, despite its success, is still not generally accepted given that it implies an invasion of Jupiter within the terrestrial region, passing through the MB twice. Other models for the terrestrial planet formation, on the other hand, always end up with a fully or partially cold MB formed. It was recently proposed that a chaotic evolution for Jupiter and Saturn before the planetary instability of the Solar System could excite an initially cold MB. However, hydrodynamical simulations predict that the orbits of those planets at the end of the gas disk phase should be characterized by resonant and regular motion. Therefore, the origin of this chaotic evolution is not fully understood. Here, assuming initial resonant and regular motion for Jupiter and Saturn, we propose a different mechanism capable of exciting a primordial cold MB during the planetary instability. For this, we assume that the planetary instability was of the jumping-Jupiter (JJ) type, and that it accounts for all the constraints already placed. Our results, which also possibly can explain the pathway to the chaotic evolution of Jupiter and Saturn, show that when Jupiter gets a temporary large enough level of excitation, both in eccentricity and inclination, it induces strong forced vectors of eccentricity and inclination within the MB region. Then, because in the JJ instability Jupiter is jumping around, such forced vectors keep changing both in magnitude and phase throughout the whole MB region. Thus, depending on the evolution of Jupiter during the JJ instability, the excitation of a primordial cold MB can indeed be achieved as a natural outcome of the planetary instability for any initial planetary configuration. Acknowledgment FAPESP 2014/02013-5.
2008-08-21
Yuma Proving Ground Open Field ............................................................................... 76 B.3.1 Response Stage... Yuma Proving Ground ZIP (250) Iomega ZIP disk (250 MB version) xv ACKNOWLEDGEMENTS Glenn Harbaugh and Daniel Steinhurst (P.I.) of Nova Research...sites at Aberdeen Proving Ground and Yuma Proving Ground in 2003 and 2004 [6]. At each of the sites, the Calibration Lanes, the Blind Test Grid
50 Mb/s, 220-mW Laser-Array Transmitter
NASA Technical Reports Server (NTRS)
Cornwell, Donald M., Jr.
1992-01-01
Laser transmitter based on injection locking produces single-wavelength, diffraction-limited, single-lobe beam. Output stage is array of laser diodes producing non-diffraction-limited, multi-mode beam in absence of injection locking. Suitable for both free-space and optical-fiber communication systems. Because beam from transmitter focused to spot as small as 5 micrometers, devices usable for reading and writing optical disks at increased information densities. Application also in remote sensing and ranging.
Revelations of X-ray spectral analysis of the enigmatic black hole binary GRS 1915+105
NASA Astrophysics Data System (ADS)
Peris, Charith; Remillard, Ronald A.; Steiner, James; Vrtilek, Saeqa Dil; Varniere, Peggy; Rodriguez, Jerome; Pooley, Guy
2016-01-01
Of the black hole binaries discovered thus far, GRS 1915+105 stands out as an exceptional source primarily due to its wild X-ray variability, the diversity of which has not been replicated in any other stellar-mass black hole. Although extreme variability is commonplace in its light-curve, about half of the observations of GRS1915+105 show fairly steady X-ray intensity. We report on the X-ray spectral behavior within these steady observations. Our work is based on a vast RXTE/PCA data set obtained on GRS 1915+105 during the course of its entire mission and 10 years of radio data from the Ryle Telescope, which overlap the X-ray data. We find that the steady observations within the X-ray data set naturally separate into two regions in a color-color diagram, which we refer to as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the Comptonization component within the PCA band pass suggesting significantly heating from a hot disk present in all states. A new Comptonization model 'simplcut' was developed in order to model this curvature to best effect. A majority of the steady-soft observations display a roughly constant inner radius; remarkably reminiscent of canonical soft state black hole binaries. In contrast, the steady-hard observations display a growing disk truncation that is correlated to the mass accretion rate through the disk, which suggests a magnetically truncated disk. A comparison of X-ray model parameters to the canonical state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while the thermal state observations dominate the constant radius branch. A large portion (80%) of the steady-hard observations matches the hard state criteria when the disk fraction constraint is neglected. These results suggest that within the complexity of this source is a simpler underlying basis of states, which map to those observed in canonical black hole binaries. When represented in a color-color diagram, state assignments appear to map to ``A, B and C'' (Belloni et al. 2000) regions that govern fast variability cycles in GRS 1915+105 demonstrating a compelling link between short and long time scales in its phenomenology.
Using Monte-Carlo Simulations to Study the Disk Structure in Cygnus X-1
NASA Technical Reports Server (NTRS)
Yao, Y.; Zhang, S. N.; Zhang, X. L.; Feng, Y. X.
2002-01-01
As the first dynamically determined black hole X-ray binary system, Cygnus X-1 has been studied extensively. However, its broad-band spectra in hard state with BeppoSAX is still not well understood. Besides the soft excess described by the multi-color disk model (MCD), the power- law component and a broad excess feature above 10 keV (disk reflection component), there is also an additional soft component around 1 keV, whose origin is not known currently.We propose that the additional soft component is due to the thermal Comptonization process between the s oft disk photon and the warm plasma cloud just above the disk.i.e., a warm layer. We use Monte-Carlo technique t o simulate this Compton scattering process and build several table models based on our simulation results.
State transitions of GRS 1739-278 in the 2014 outburst
NASA Astrophysics Data System (ADS)
Wang, Sili; Kawai, Nobuyuki; Shidatsu, Megumi; Tachibana, Yutaro; Yoshii, Taketoshi; Sudo, Masayuki; Kubota, Aya
2018-05-01
We report on the X-ray spectral analysis and time evolution of GRS 1739-278 during its 2014 outburst, based on MAXI/GSC and Swift/XRT observations. Over the course of the outburst, a transition from the low/hard state to the high/soft state and then back to the low/hard state was seen. During the high/soft state, the innermost disk temperature mildly decreased, while the innermost radius estimated with the multi-color disk model remained constant at ˜18 (D/8.5 kpc)(cos i/cos 30°)-1/2 km, where D is the source distance and i is the inclination of observation. This small innermost radius of the accretion disk suggests that the central object is more likely to be a Kerr black hole rather than a Schwardzschild black hole. Applying a relativistic disk emission model to the high/soft state spectra, a mass upper limit of 18.3 M⊙ was obtained based on the inclination limit i < 60° for an assumed distance of 8.5 kpc. Using the empirical relation of the transition luminosity to the Eddington limit, the mass is constrained to 4.0-18.3 M⊙ for the same distance. The mass can be further constrained to be no larger than 9.5 M⊙ by adopting the constraints based on the fits to the NuSTAR spectra with relativistically blurred disk reflection models (Miller et al. 2015, ApJ, 799, L6).
AIBA as Free Radical Initiator for Abrasive-Free Polishing of Hard Disk Substrate
NASA Astrophysics Data System (ADS)
Lei, Hong; Ren, Xiaoyan
2015-04-01
In order to optimize the existing slurry for abrasive-free polishing (AFP) of a hard disk substrate, a water-soluble free radical initiator, 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AIBA) was introduced into H2O2-based slurry in the present work. Polishing experiment results with AIBA in the H2O2 slurry indicate that the material removal rate (MRR) increases and the polished surface has a lower surface roughness. The mechanism of AIBA in AFP was investigated using electron spin-resonance spectroscopy and UV-Visible analysis, which showed that the concentration of hydroxyl radical (a stronger oxidizer than H2O2) in the slurry was enhanced in the present of AIBA. The structure of the film formed on the substrate surface was investigated by scanning electron microscopy, auger electron spectroscopy and electrochemical impedance spectroscopy technology, showing that a looser and porous oxide film was found on the hard disk substrate surface when treated with the H2O2-AIBA slurry. Furthermore, potentiodynamic polarization tests show that the H2O2-AIBA slurry has a higher corrosion current density, implying that a fast dissolution reaction can occur on the substrate surface. Therefore, we can conclude that the stronger oxidation ability, loose oxide film on the substrate surface, and the higher corrosion-wear rate of the H2O2-AIBA slurry lead to the higher MRR.
NASA Technical Reports Server (NTRS)
Nowak, Michael A.; Wilms, Joern; Vaughan, Brian A.; Dove, James B.; Begelman, Mitchell C.
1999-01-01
We have recently shown that a 'sphere + disk' geometry Compton corona model provides a good description of Rossi X-ray Timing Explorer (RXTE) observations of the hard/low state of Cygnus X-1. Separately, we have analyzed the temporal data provided by RXTE. In this paper we consider the implications of this timing analysis for our best-fit 'sphere + disk' Comptonization models. We focus our attention on the observed Fourier frequency-dependent time delays between hard and soft photons. We consider whether the observed time delays are: created in the disk but are merely reprocessed by the corona; created by differences between the hard and soft photon diffusion times in coronae with extremely large radii; or are due to 'propagation' of disturbances through the corona. We find that the time delays are most likely created directly within the corona; however, it is currently uncertain which specific model is the most likely explanation. Models that posit a large coronal radius [or equivalently, a large Advection Dominated Accretion Flow (ADAF) region] do not fully address all the details of the observed spectrum. The Compton corona models that do address the full spectrum do not contain dynamical information. We show, however, that simple phenomenological propagation models for the observed time delays for these latter models imply extremely slow characteristic propagation speeds within the coronal region.
A minimal SATA III Host Controller based on FPGA
NASA Astrophysics Data System (ADS)
Liu, Hailiang
2018-03-01
SATA (Serial Advanced Technology Attachment) is an advanced serial bus which has a outstanding performance in transmitting high speed real-time data applied in Personal Computers, Financial Industry, astronautics and aeronautics, etc. In this express, a minimal SATA III Host Controller based on Xilinx Kintex 7 serial FPGA is designed and implemented. Compared to the state-of-art, registers utilization are reduced 25.3% and LUTs utilization are reduced 65.9%. According to the experimental results, the controller works precisely and steady with the reading bandwidth of up to 536 MB per second and the writing bandwidth of up to 512 MB per second, both of which are close to the maximum bandwidth of the SSD(Solid State Disk) device. The host controller is very suitable for high speed data transmission and mass data storage.
Broadband X-Ray Spectra of GX 339-4 and the Geometry of Accreting Black Holes in the Hard State
NASA Technical Reports Server (NTRS)
Tomsick; Kalemci; Kaaret; Markoff; Corbel; Migliari; Fender; Bailyn; Buxton
2008-01-01
A major question in the study of black hole binaries involves our understanding of the accretion geometry when the sources are in the "hard" state. In this state, the X-ray energy spectrum is dominated by a hard power-law component and radio observations indicate the presence of a steady and powerful "compact" jet. Although the common hard state picture is that the accretion disk is truncated, perhaps at hundreds of gravitational radii (R(sub g)) from the black hole, recent results for the recurrent transient GX 339-4 by Miller and co-workers show evidence for optically thick material very close to the black hole's innermost stable circular orbit. That work focused on an observation of GX 339-4 at a luminosity of about 5% of the Eddington limit (L(sub Edd)) and used parameters from a relativistic reflection model and the presence of a soft, thermal component as diagnostics. In this work, we use similar diagnostics, but extend the study to lower luminosities (2.3% and 0.8% L(sub Edd)) using Swift and RXTE observations of GX 339-4. We detect a thermal component with an inner disk temperature of approx.0.2 keV at 2.3% L(sub Edd). At 0.8% L(sub Edd), the spectrum is consistent with the presence of such a component, but the component is not required with high confidence. At both luminosities, we detect broad features due to iron Ka that are likely related to reflection of hard X-rays off the optically thick material. If these features are broadened by relativistic effects, they indicate that optically thick material resides within 10 R(sub g) down to 0.8% L(sub Edd), and the measurements are consistent with the inner radius of the disk remaining at approx.4 R(sub g) down to this level. However, we also discuss an alternative model for the broadening, and we note that the evolution of the thermal component is not entirely consistent with the constant inner radius interpretation. Finally, we discuss the results in terms of recent theoretical work by Liu and co-workers on the possibility that material may condense out of an Advection-Dominated Accretion Flow to maintain an inner optically thick disk.
NASA Astrophysics Data System (ADS)
Bagri, Kalyani; Misra, Ranjeev; Rao, Anjali; Singh Yadav, Jagdish; Pandey, Shiv Kumar
2018-05-01
One of the popular models for the low/hard state of black hole binaries is that the standard accretion disk is truncated and the hot inner region produces, via Comptonization, hard X-ray flux. This is supported by the value of the high energy photon index, which is often found to be small, ∼ 1.7(< 2), implying that the hot medium is starved of seed photons. On the other hand, the suggestive presence of a broad relativistic Fe line during the hard state would suggest that the accretion disk is not truncated but extends all the way to the innermost stable circular orbit. In such a case, it is a puzzle why the hot medium would remain photon starved. The broad Fe line should be accompanied by a broad smeared reflection hump at ∼ 30 keV and it may be that this additional component makes the spectrum hard and the intrinsic photon index is larger, i.e. >2. This would mean that the medium is not photon deficient, reconciling the presence of a broad Fe line in the observed hard state. To test this hypothesis, we have analyzed the RXTE observations of GX 339–4 from the four outbursts during 2002–2011 and identify observations when the system was in the hard state and showed a broad Fe line. We have then attempted to fit these observationswith models,which include smeared reflection, to understandwhether the intrinsic photon index can indeed be large. We find that, while for some observations the inclusion of reflection does increase the photon index, there are hard state observations with a broad Fe line that have photon indices less than 2.
Optimization of Materials and Interfaces for Spintronic Devices
NASA Astrophysics Data System (ADS)
Clark, Billy
In recent years' Spintronic devices have drawn a significant amount of research attention. This interest comes in large part from their ability to enable interesting and new technology such as Spin Torque Transfer Random Access Memory or improve existing technology such as High Signal Read Heads for Hard Disk Drives. For the former we worked on optimizing and improving magnetic tunnel junctions by optimizing their thermal stability by using Ta insertion layers in the free layer. We further tried to simplify the design of the MTJ stack by attempting to replace the Co/Pd multilayer with CoPd alloy. In this dissertation, we detail its development and examine the switching characteristics. Lastly we look at a highly spin polarized material, Fe2MnGe, for optimizing Hard Drive Disk read heads.
The Relativistic Iron Line Profile in the Seyfert 1 Galaxy IC4329a
NASA Technical Reports Server (NTRS)
Done, C.; Madejski, G. M.; Zycki, P. T.
2000-01-01
We present simultaneous ASCA and RXTE data on the bright Seyfert 1 galaxy IC4329a. The iron line is significantly broadened, but not to the extent expected from an accretion disk which extends down to the last stable orbit around a black hole. We marginally detect a narrow line component, presumably from the molecular torus, but, even including this gives a line profile from the accretion disk which is significantly narrower that that seen in MCG-6-30-15, and is much more like that seen from the low/hard state galactic black hole candidates. This is consistent with the inner disk being truncated before the last stable orbit, forming a hot flow at small radii as in the ADAF models. However. we cannot rule out the presence of an inner disk which does not contribute to the reflected spectrum. either because of extreme ionisation suppressing the characteristic atomic features of the reflected spectrum or because the X-ray source is intrinsically anisotropic, so it does not illuminate the inner disk. The source was monitored by RXTE every 2 days for 2 months, and these snapshot spectra show that there is intrinsic spectral variability. The data are good enough to disentangle the power law from the reflected continuum and we see that the power law softens as the source brightens. The lack of a corresponding increase in the observed reflected spectrum implies that either the changes in disk inner radial extent/ionization structure are small, or that the variability is actually driven by changes in the seed photons which are decoupled from the hard X-ray mechanism.
SOFT LAGS IN NEUTRON STAR kHz QUASI-PERIODIC OSCILLATIONS: EVIDENCE FOR REVERBERATION?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barret, Didier, E-mail: didier.barret@irap.omp.eu; CNRS, Institut de Recherche en Astrophysique et Planetologie, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4
2013-06-10
High frequency soft reverberation lags have now been detected from stellar mass and supermassive black holes. Their interpretation involves reflection of a hard source of photons onto an accretion disk, producing a delayed reflected emission, with a time lag consistent with the light travel time between the irradiating source and the disk. Independently of the location of the clock, the kHz quasi-periodic oscillation (QPO) emission is thought to arise from the neutron star boundary layer. Here, we search for the signature of reverberation of the kHz QPO emission, by measuring the soft lags and the lag energy spectrum of themore » lower kHz QPOs from 4U1608-522. Soft lags, ranging from {approx}15 to {approx}40 {mu}s, between the 3-8 keV and 8-30 keV modulated emissions are detected between 565 and 890 Hz. The soft lags are not constant with frequency and show a smooth decrease between 680 Hz and 890 Hz. The broad band X-ray spectrum is modeled as the sum of a disk and a thermal Comptonized component, plus a broad iron line, expected from reflection. The spectral parameters follow a smooth relationship with the QPO frequency, in particular the fitted inner disk radius decreases steadily with frequency. Both the bump around the iron line in the lag energy spectrum and the consistency between the lag changes and the inferred changes of the inner disk radius, from either spectral fitting or the QPO frequency, suggest that the soft lags may indeed involve reverberation of the hard pulsating QPO source on the disk.« less
[PACS: storage and retrieval of digital radiological image data].
Wirth, S; Treitl, M; Villain, S; Lucke, A; Nissen-Meyer, S; Mittermaier, I; Pfeifer, K-J; Reiser, M
2005-08-01
Efficient handling of both picture archiving and retrieval is a crucial factor when new PACS installations as well as technical upgrades are planned. For a large PACS installation for 200 actual studies, the number, modality,and body region of available priors were evaluated. In addition, image access time of 100 CT studies from hard disk (RAID), magneto-optic disk (MOD), and tape archives (TAPE) were accessed. For current examinations priors existed in 61.1% with an averaged quantity of 7.7 studies. Thereof 56.3% were within 0-3 months, 84.9% within 12 months, 91.7% within 24 months, and 96.2% within 36 months. On average, access to images from the hard disk cache was more than 100 times faster then from MOD or TAPE. Since only PACS RAID provides online image access, at least current imaging of the past 12 months should be available from cache. An accurate prefetching mechanism facilitates effective use of the expensive online cache area. For that, however, close interaction of PACS, RIS, and KIS is an indispensable prerequisite.
An XMM-Newton view of the radio galaxy 3C 411
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostrom, Allison; Reynolds, Christopher S.; Tombesi, Francesco
We present the first high signal-to-noise XMM-Newton observations of the broad-line radio galaxy 3C 411. After fitting various spectral models, an absorbed double power-law (PL) continuum and a blurred relativistic disk reflection model (kdblur) are found to be equally plausible descriptions of the data. While the softer PL component (Γ = 2.11) of the double PL model is entirely consistent with that found in Seyfert galaxies (and hence likely originates from a disk corona), the additional PL component is very hard (Γ = 1.05); amongst the active galactic nucleus zoo, only flat-spectrum radio quasars (FSRQ) have such hard spectra. Togethermore » with the flat radio-spectrum displayed by this source, we suggest that it should instead be classified as an FSRQ. This leads to potential discrepancies regarding the jet inclination angle, with the radio morphology suggesting a large jet inclination but the FSRQ classification suggesting small inclinations. The kdblur model predicts an inner disk radius of at most 20 r {sub g} and relativistic reflection.« less
Micromagnetic structure in Co-alloy thin films and its correlation with microstructure
NASA Astrophysics Data System (ADS)
Tang, Kai
The development of magnetic hard disk recording has resulted in an increase of recording density in an accelerated pace. How to maintain the increasingly smaller bits with low noise presents a tremendous challenge to the recording media, which requires detailed study of micromagnetic structure of the media to understand the noise mechanism, and elucidation of the correlation between the micromagnetic structure and microstructure to systematically develop media materials and tailor their microstructure. Lorentz transmission electron microscopy (LTEM) is a high-resolution magnetic imaging technique. However, it requires uniformly thin specimens, which cannot be produced by conventional TEM specimen preparation methods. Consequently, its application to real computer magnetic hard disks has been limited. In this dissertation, a combined dimpling and chemical etching method is introduced to prepare specimens directly from the unmodified hard disks with the typical C/Co alloy/Cr/NiP/Al (substrate) structure. The specimens typically have 2000 μmsp2 or larger electron transparent areas of Co alloy/Cr films with uniform thickness, which are suitable for LTEM observation. This method is applicable to disks with both smooth and mechanically textured substrates. In this work, LTEM has been employed to study recorded patterns in real hard disks. Magnetic recording was performed on a standard spin stand. Bits of densities from 15 to 100 kfci were examined with head skew angles of 0sp° and 20sp°, respectively. We also compared tracks recorded on dc-erased disks with those on as-deposited disks. We observed magnetic ripples within the tracks and the inter-track regions, magnetic vortices of 0.1-0.2 mum in diameter at the bit-transitions, and curved magnetic domain walls in the track-edge regions resulting from the "dog-bone" shaped head field profile. Our results also indicate that the micromagnetic structure at the track edges is influenced by head skew and magnetization direction in the inter-track regions. The LTEM results are combined with MFM observations to provide further understanding. The study has concentrated on isotropic media on smooth substrates since low head-to-medium spacing required by high recording density demonstrates the need for this type of media. The recorded tracks are remanent magnetic states after a strong (head) magnetic field was applied. We also examined an ac-erased state, in which the effect of external field is removed. Magnetic vortices are identified, in which small crystal grains form magnetic clusters and these clusters then form closed-fluxed vortices. The size of these vortices is estimated to be around 1.0-1.5 mum, about 10 times larger than that found in the bit-transition regions. The smaller vortex sizes in the bit-transition regions may result from constraints from adjacent bits as well as the difference in magnetic processes generating these states. (Abstract shortened by UMI.)
Adinolfi, Barbara; Pellegrino, Mario; Giannetti, Ambra; Tombelli, Sara; Trono, Cosimo; Sotgiu, Giovanna; Varchi, Greta; Ballestri, Marco; Posati, Tamara; Carpi, Sara; Nieri, Paola; Baldini, Francesco
2017-02-15
One of the main goals of nanomedicine in cancer is the development of effective drug delivery systems, primarily nanoparticles. Survivin, an overexpressed anti-apoptotic protein in cancer, represents a pharmacological target for therapy and a Molecular Beacon (MB) specific for survivin mRNA is available. In this study, the ability of polymethylmethacrylate nanoparticles (PMMA-NPs) to promote survivin MB uptake in human A549 cells was investigated. Fluorescent and positively charged core PMMA-NPs of nearly 60nm, obtained through an emulsion co-polymerization reaction, and the MB alone were evaluated in solution, for their analytical characterization; then, the MB specificity and functionality were verified after adsorption onto the PMMA-NPs. The carrier ability of PMMA-NPs in A549 was examined by confocal microscopy. With the optimized protocol, a hardly detectable fluorescent signal was obtained after incubation of the cells with the MB alone (fluorescent spots per cell of 1.90±0.40 with a mean area of 1.04±0.20µm 2 ), while bright fluorescent spots inside the cells were evident by using the MB loaded onto the PMMA-NPs. (27.50±2.30 fluorescent spots per cell with a mean area of 2.35±0.16µm 2 ). These results demonstrate the ability of the PMMA-NPs to promote the survivin-MB internalization, suggesting that this complex might represent a promising strategy for intracellular sensing and for the reduction of cancer cell proliferation. Copyright © 2016 Elsevier B.V. All rights reserved.
Out-of-Core Streamline Visualization on Large Unstructured Meshes
NASA Technical Reports Server (NTRS)
Ueng, Shyh-Kuang; Sikorski, K.; Ma, Kwan-Liu
1997-01-01
It's advantageous for computational scientists to have the capability to perform interactive visualization on their desktop workstations. For data on large unstructured meshes, this capability is not generally available. In particular, particle tracing on unstructured grids can result in a high percentage of non-contiguous memory accesses and therefore may perform very poorly with virtual memory paging schemes. The alternative of visualizing a lower resolution of the data degrades the original high-resolution calculations. This paper presents an out-of-core approach for interactive streamline construction on large unstructured tetrahedral meshes containing millions of elements. The out-of-core algorithm uses an octree to partition and restructure the raw data into subsets stored into disk files for fast data retrieval. A memory management policy tailored to the streamline calculations is used such that during the streamline construction only a very small amount of data are brought into the main memory on demand. By carefully scheduling computation and data fetching, the overhead of reading data from the disk is significantly reduced and good memory performance results. This out-of-core algorithm makes possible interactive streamline visualization of large unstructured-grid data sets on a single mid-range workstation with relatively low main-memory capacity: 5-20 megabytes. Our test results also show that this approach is much more efficient than relying on virtual memory and operating system's paging algorithms.
Studying the Warm Layer and the Hardening Factor in Cygnus X-1
NASA Technical Reports Server (NTRS)
Yao, Yangsen; Zhang, Shuangnan; Zhang, Xiaoling; Feng, Yuxin
2002-01-01
As the first dynamically determined black hole X-ray binary system, Cygnus X-1 has been studied extensively. However, its broadband spectrum observed with BeppoSax is still not well understood. Besides the soft excess described by the multi-color disk model (MCD), the power-law hard component and a broad excess feature above 10 keV (a disk reflection component), there is also an additional soft component around 1 keV, whose origin is not known currently. Here we propose that the additional soft component is due to the thermal Comptonization between the soft disk photons and a warm plasma cloud just above the disk, i.e., a warm layer. We use the Monte-Carlo technique to simulate this Compton scattering process and build a table model based on our simulation results. With this table model, we study the disk structure and estimate the hardening factor to the MCD component in Cygnus X-1.
Schnyder, Simon K; Horbach, Jürgen
2018-02-16
Molecular dynamics simulations of interacting soft disks confined in a heterogeneous quenched matrix of soft obstacles show dynamics which is fundamentally different from that of hard disks. The interactions between the disks can enhance transport when their density is increased, as disks cooperatively help each other over the finite energy barriers in the matrix. The system exhibits a transition from a diffusive to a localized state, but the transition is strongly rounded. Effective exponents in the mean-squared displacement can be observed over three decades in time but depend on the density of the disks and do not correspond to asymptotic behavior in the vicinity of a critical point, thus, showing that it is incorrect to relate them to the critical exponents in the Lorentz model scenario. The soft interactions are, therefore, responsible for a breakdown of the universality of the dynamics.
NASA Astrophysics Data System (ADS)
Schnyder, Simon K.; Horbach, Jürgen
2018-02-01
Molecular dynamics simulations of interacting soft disks confined in a heterogeneous quenched matrix of soft obstacles show dynamics which is fundamentally different from that of hard disks. The interactions between the disks can enhance transport when their density is increased, as disks cooperatively help each other over the finite energy barriers in the matrix. The system exhibits a transition from a diffusive to a localized state, but the transition is strongly rounded. Effective exponents in the mean-squared displacement can be observed over three decades in time but depend on the density of the disks and do not correspond to asymptotic behavior in the vicinity of a critical point, thus, showing that it is incorrect to relate them to the critical exponents in the Lorentz model scenario. The soft interactions are, therefore, responsible for a breakdown of the universality of the dynamics.
Site Partitioning for Redundant Arrays of Distributed Disks
NASA Technical Reports Server (NTRS)
Mourad, Antoine N.; Fuchs, W. Kent; Saab, Daniel G.
1996-01-01
Redundant arrays of distributed disks (RADD) can be used in a distributed computing system or database system to provide recovery in the presence of disk crashes and temporary and permanent failures of single sites. In this paper, we look at the problem of partitioning the sites of a distributed storage system into redundant arrays in such a way that the communication costs for maintaining the parity information are minimized. We show that the partitioning problem is NP-hard. We then propose and evaluate several heuristic algorithms for finding approximate solutions. Simulation results show that significant reduction in remote parity update costs can be achieved by optimizing the site partitioning scheme.
Computer simulation and high level virial theory of Saturn-ring or UFO colloids.
Bates, Martin A; Dennison, Matthew; Masters, Andrew
2008-08-21
Monte Carlo simulations are used to map out the complete phase diagram of hard body UFO systems, in which the particles are composed of a concentric sphere and thin disk. The equation of state and phase behavior are determined for a range of relative sizes of the sphere and disk. We show that for relatively large disks, nematic and solid phases are observed in addition to the isotropic fluid. For small disks, two different solid phases exist. For intermediate sizes, only a disordered fluid phase is observed. The positional and orientational structure of the various phases are examined. We also compare the equations of state and the nematic-isotropic coexistence densities with those predicted by an extended Onsager theory using virial coefficients up to B(8).
Computer simulation and high level virial theory of Saturn-ring or UFO colloids
NASA Astrophysics Data System (ADS)
Bates, Martin A.; Dennison, Matthew; Masters, Andrew
2008-08-01
Monte Carlo simulations are used to map out the complete phase diagram of hard body UFO systems, in which the particles are composed of a concentric sphere and thin disk. The equation of state and phase behavior are determined for a range of relative sizes of the sphere and disk. We show that for relatively large disks, nematic and solid phases are observed in addition to the isotropic fluid. For small disks, two different solid phases exist. For intermediate sizes, only a disordered fluid phase is observed. The positional and orientational structure of the various phases are examined. We also compare the equations of state and the nematic-isotropic coexistence densities with those predicted by an extended Onsager theory using virial coefficients up to B8.
Collectivity and manifestations of minimum-bias jets in high-energy nuclear collisions
NASA Astrophysics Data System (ADS)
Trainor, Thomas A.
2018-01-01
Collectivity, as interpreted to mean flow of a dense medium in high-energy A-A collisions described by hydrodynamics, has been attributed to smaller collision systems - p-A and even p-p collisions - based on recent analysis of LHC data. However, alternative methods reveal that some data features attributed to flows are actually manifestations of minimum-bias (MB) jets. In this presentation I review the differential structure of single-particle pt spectra from SPS to LHC energies in the context of a two-component (soft + hard) model (TCM) of hadron production. I relate the spectrum hard component to measured properties of isolated jets. I use the spectrum TCM to predict accurately the systematics of ensemble-mean p̅t in p-p, p-A and A-A collision systems over a large energy interval. Detailed comparisons of the TCM with spectrum and correlation data suggest that MB jets play a dominant role in hadron production near midrapidity. Claimed flow phenomena are better explained as jet manifestations agreeing quantitatively with measured jet properties.
The Dynamics of Truncated Black Hole Accretion Disks. II. Magnetohydrodynamic Case
NASA Astrophysics Data System (ADS)
Hogg, J. Drew; Reynolds, Christopher S.
2018-02-01
We study a truncated accretion disk using a well-resolved, semi-global magnetohydrodynamic simulation that is evolved for many dynamical times (6096 inner disk orbits). The spectral properties of hard-state black hole binary systems and low-luminosity active galactic nuclei are regularly attributed to truncated accretion disks, but a detailed understanding of the flow dynamics is lacking. In these systems the truncation is expected to arise through thermal instability driven by sharp changes in the radiative efficiency. We emulate this behavior using a simple bistable cooling function with efficient and inefficient branches. The accretion flow takes on an arrangement where a “transition zone” exists in between hot gas in the innermost regions and a cold, Shakura & Sunyaev thin disk at larger radii. The thin disk is embedded in an atmosphere of hot gas that is fed by a gentle outflow originating from the transition zone. Despite the presence of hot gas in the inner disk, accretion is efficient. Our analysis focuses on the details of the angular momentum transport, energetics, and magnetic field properties. We find that the magnetic dynamo is suppressed in the hot, truncated inner region of the disk which lowers the effective α-parameter by 65%.
NASA Astrophysics Data System (ADS)
You, Bei; Bursa, Michal; Życki, Piotr T.
2018-05-01
We develop a Monte Carlo code to compute the Compton-scattered X-ray flux arising from a hot inner flow that undergoes Lense–Thirring precession. The hot flow intercepts seed photons from an outer truncated thin disk. A fraction of the Comptonized photons will illuminate the disk, and the reflected/reprocessed photons will contribute to the observed spectrum. The total spectrum, including disk thermal emission, hot flow Comptonization, and disk reflection, is modeled within the framework of general relativity, taking light bending and gravitational redshift into account. The simulations are performed in the context of the Lense–Thirring precession model for the low-frequency quasi-periodic oscillations, so the inner flow is assumed to precess, leading to periodic modulation of the emitted radiation. In this work, we concentrate on the energy-dependent X-ray variability of the model and, in particular, on the evolution of the variability during the spectral transition from hard to soft state, which is implemented by the decrease of the truncation radius of the outer disk toward the innermost stable circular orbit. In the hard state, where the Comptonizing flow is geometrically thick, the Comptonization is weakly variable with a fractional variability amplitude of ≤10% in the soft state, where the Comptonizing flow is cooled down and thus becomes geometrically thin, the fractional variability of the Comptonization is highly variable, increasing with photon energy. The fractional variability of the reflection increases with energy, and the reflection emission for low spin is counterintuitively more variable than the one for high spin.
Computer-based desktop system for surgical videotape editing.
Vincent-Hamelin, E; Sarmiento, J M; de la Puente, J M; Vicente, M
1997-05-01
The educational role of surgical video presentations should be optimized by linking surgical images to graphic evaluation of indications, techniques, and results. We describe a PC-based video production system for personal editing of surgical tapes, according to the objectives of each presentation. The hardware requirement is a personal computer (100 MHz processor, 1-Gb hard disk, 16 Mb RAM) with a PC-to-TV/video transfer card plugged into a slot. Computer-generated numerical data, texts, and graphics are transformed into analog signals displayed on TV/video. A Genlock interface (a special interface card) synchronizes digital and analog signals, to overlay surgical images to electronic illustrations. The presentation is stored as digital information or recorded on a tape. The proliferation of multimedia tools is leading us to adapt presentations to the objectives of lectures and to integrate conceptual analyses with dynamic image-based information. We describe a system that handles both digital and analog signals, production being recorded on a tape. Movies may be managed in a digital environment, with either an "on-line" or "off-line" approach. System requirements are high, but handling a single device optimizes editing without incurring such complexity that management becomes impractical to surgeons. Our experience suggests that computerized editing allows linking surgical scientific and didactic messages on a single communication medium, either a videotape or a CD-ROM.
Trimarchi, Matteo; Lund, Valerie J; Nicolai, Piero; Pini, Massimiliano; Senna, Massimo; Howard, David J
2004-04-01
The Neoplasms of the Sinonasal Tract software package (NSNT v 1.0) implements a complete visual database for patients with sinonasal neoplasia, facilitating standardization of data and statistical analysis. The software, which is compatible with the Macintosh and Windows platforms, provides multiuser application with a dedicated server (on Windows NT or 2000 or Macintosh OS 9 or X and a network of clients) together with web access, if required. The system hardware consists of an Apple Power Macintosh G4500 MHz computer with PCI bus, 256 Mb of RAM plus 60 Gb hard disk, or any IBM-compatible computer with a Pentium 2 processor. Image acquisition may be performed with different frame-grabber cards for analog or digital video input of different standards (PAL, SECAM, or NTSC) and levels of quality (VHS, S-VHS, Betacam, Mini DV, DV). The visual database is based on 4th Dimension by 4D Inc, and video compression is made in real-time MPEG format. Six sections have been developed: demographics, symptoms, extent of disease, radiology, treatment, and follow-up. Acquisition of data includes computed tomography and magnetic resonance imaging, histology, and endoscopy images, allowing sequential comparison. Statistical analysis integral to the program provides Kaplan-Meier survival curves. The development of a dedicated, user-friendly database for sinonasal neoplasia facilitates a multicenter network and has obvious clinical and research benefits.
Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions.
Wojciechowski, K W; Tretiakov, K V; Kowalik, M
2003-03-01
Systems of model planar, nonconvex, hard-body "molecules" of fivefold and sevenfold symmetry axes are studied by constant pressure Monte Carlo simulations with variable shape of the periodic box. The molecules, referred to as pentamers (heptamers), are composed of five (seven) identical hard disks "atoms" with centers forming regular pentagons (heptagons) of sides equal to the disk diameter. The elastic compliances of defect-free solid phases are computed by analysis of strain fluctuations and the reference (equilibrium) state is determined within the same run in which the elastic properties are computed. Results obtained by using pseudorandom number generators based on the idea proposed by Holian and co-workers [Holian et al., Phys. Rev. E 50, 1607 (1994)] are in good agreement with the results generated by DRAND48. It is shown that singular behavior of the elastic constants near close packing is in agreement with the free volume approximation; the coefficients of the leading singularities are estimated. The simulations prove that the highest density structures of heptamers (in which the molecules cannot rotate) are auxetic, i.e., show negative Poisson ratios.
Radio continuum of galaxies with H2O megamaser disks: 33 GHz VLA data
NASA Astrophysics Data System (ADS)
Kamali, F.; Henkel, C.; Brunthaler, A.; Impellizzeri, C. M. V.; Menten, K. M.; Braatz, J. A.; Greene, J. E.; Reid, M. J.; Condon, J. J.; Lo, K. Y.; Kuo, C. Y.; Litzinger, E.; Kadler, M.
2017-09-01
Context. Galaxies with H2O megamaser disks are active galaxies in whose edge-on accretion disks 22 GHz H2O maser emission has been detected. Because their geometry is known, they provide a unique view into the properties of active galactic nuclei. Aims: The goal of this work is to investigate the nuclear environment of galaxies with H2O maser disks and to relate the maser and host galaxy properties to those of the radio continuum emission of the galaxy. Methods: The 33 GHz (9 mm) radio continuum properties of 24 galaxies with reported 22 GHz H2O maser emission from their disks are studied in the context of the multiwavelength view of these sources. The 29-37 GHz Ka-band observations are made with the Karl Jansky Very Large Array in B, CnB, or BnA configurations, achieving a resolution of 0.2-0.5 arcsec. Hard X-ray data from the Swift/BAT survey and 22 μm infrared data from WISE, 22 GHz H2O maser data and 1.4 GHz data from NVSS and FIRST surveys are also included in the analysis. Results: Eighty-seven percent (21 out of 24) galaxies in our sample show 33 GHz radio continuum emission at levels of 4.5-240σ. Five sources show extended emission (deconvolved source size larger than 2.5 times the major axis of the beam), including one source with two main components and one with three main components. The remaining detected 16 sources (and also some of the above-mentioned targets) exhibit compact cores within the sensitivity limits. Little evidence is found for extended jets (>300 pc) in most sources. Either they do not exist, or our chosen frequency of 33 GHz is too high for a detection of these supposedly steep spectrum features. In NGC 4388, we find an extended jet-like feature that appears to be oriented perpendicular to the H2O megamaser disk. NGC 2273 is another candidate whose radio continuum source might be elongated perpendicular to the maser disk. Smaller 100-300 pc sized jets might also be present, as is suggested by the beam-deconvolved morphology of our sources. Whenever possible, central positions with accuracies of 20-280 mas are provided. A correlation analysis shows that the 33 GHz luminosity weakly correlates with the infrared luminosity. The 33 GHz luminosity is anticorrelated with the circular velocity of the galaxy. The black hole masses show stronger correlations with H2O maser luminosity than with 1.4 GHz, 33 GHz, or hard X-ray luminosities. Furthermore, the inner radii of the disks show stronger correlations with 1.4 GHz, 33 GHz, and hard X-ray luminosities than their outer radii, suggesting that the outer radii may be affected by disk warping, star formation, or peculiar density distributions.
Transport coefficients for dense hard-disk systems.
García-Rojo, Ramón; Luding, Stefan; Brey, J Javier
2006-12-01
A study of the transport coefficients of a system of elastic hard disks based on the use of Helfand-Einstein expressions is reported. The self-diffusion, the viscosity, and the heat conductivity are examined with averaging techniques especially appropriate for event-driven molecular dynamics algorithms with periodic boundary conditions. The density and size dependence of the results are analyzed, and comparison with the predictions from Enskog's theory is carried out. In particular, the behavior of the transport coefficients in the vicinity of the fluid-solid transition is investigated and a striking power law divergence of the viscosity with density is obtained in this region, while all other examined transport coefficients show a drop in that density range in relation to the Enskog's prediction. Finally, the deviations are related to shear band instabilities and the concept of dilatancy.
JARE Syowa Station 11-m Antenna, Antarctica
NASA Technical Reports Server (NTRS)
Aoyama, Yuichi; Doi, Koichiro; Shibuya, Kazuo
2013-01-01
In 2012, the 52nd and the 53rd Japanese Antarctic Research Expeditions (hereinafter, referred to as JARE-52 and JARE-53, respectively) participated in five OHIG sessions - OHIG76, 78, 79, 80, and 81. These data were recorded on hard disks through the K5 terminal. Only the hard disks for the OHIG76 session have been brought back from Syowa Station to Japan, in April 2012, by the icebreaker, Shirase, while those of the other four sessions are scheduled to arrive in April 2013. The data obtained from the OHIG73, 74, 75, and 76 sessions by JARE-52 and JARE-53 have been transferred to the Bonn Correlator via the servers of National Institute of Information and Communications Technology (NICT). At Syowa Station, JARE-53 and JARE-54 will participate in six OHIG sessions in 2013.
Scaling laws and bulk-boundary decoupling in heat flow.
del Pozo, Jesús J; Garrido, Pedro L; Hurtado, Pablo I
2015-03-01
When driven out of equilibrium by a temperature gradient, fluids respond by developing a nontrivial, inhomogeneous structure according to the governing macroscopic laws. Here we show that such structure obeys strikingly simple scaling laws arbitrarily far from equilibrium, provided that both macroscopic local equilibrium and Fourier's law hold. Extensive simulations of hard disk fluids confirm the scaling laws even under strong temperature gradients, implying that Fourier's law remains valid in this highly nonlinear regime, with putative corrections absorbed into a nonlinear conductivity functional. In addition, our results show that the scaling laws are robust in the presence of strong finite-size effects, hinting at a subtle bulk-boundary decoupling mechanism which enforces the macroscopic laws on the bulk of the finite-sized fluid. This allows one to measure the marginal anomaly of the heat conductivity predicted for hard disks.
Low temperature Grüneisen parameter of cubic ionic crystals
NASA Astrophysics Data System (ADS)
Batana, Alicia; Monard, María C.; Rosario Soriano, María
1987-02-01
Title of program: CAROLINA Catalogue number: AATG Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland (see application form in this issue) Computer: IBM/370, Model 158; Installation: Centro de Tecnología y Ciencia de Sistemas, Universidad de Buenos Aires Operating system: VM/370 Programming language used: FORTRAN High speed storage required: 3 kwords No. of bits in a word: 32 Peripherals used: disk IBM 3340/70 MB No. of lines in combined program and test deck: 447
Dynamic stability and slider-lubricant interactions in hard disk drives
NASA Astrophysics Data System (ADS)
Ambekar, Rohit Pradeep
2007-12-01
Hard disk drives (HDD) have played a significant role in the current information age and have become the backbone of storage. The soaring demand for mass data storage drives the necessity for increasing capacity of the drives and hence the areal density on the disks as well as the reliability of the HDD. To achieve greater areal density in hard disk drives, the flying height of the airbearing slider continually decreases. Different proximity forces and interactions influence the air bearing slider resulting in fly height modulation and instability. This poses several challenges to increasing the areal density (current goal is 2Tb/in.2) as well as making the head-disk interface (HDI) more reliable. Identifying and characterizing these forces or interactions has become important for achieving a stable fly height at proximity and realizing the goals of areal density and reliability. Several proximity forces or interactions influencing the slider are identified through the study of touchdown-takeoff hysteresis. Slider-lubricant interaction which causes meniscus force between the slider and disk as well as airbearing surface contamination seems to be the most important factor affecting stability and reliability at proximity. In addition, intermolecular forces and disk topography are identified as important factors. Disk-to-slider lubricant transfer leads to lubricant pickup on the slider and also causes depletion of lubricant on the disk, affecting stability and reliability of the HDI. Experimental and numerical investigation as well as a parametric study of the process of lubricant transfer has been done using a half-delubed disk. In the first part of this parametric study, dependence on the disk lubricant thickness, lubricant type and slider ABS design has been investigated. It is concluded that the lubricant transfer can occur without slider-disk contact and there can be more than one timescale associated with the transfer. Further, the transfer increases non-linearly with increasing disk lubricant thickness. Also, the transfer depends on the type of lubricant used, and is less for Ztetraol than for Zdol. The slider ABS design also plays an important role, and a few suggestions are made to improve the ABS design for better lubricant performance. In the second part of the parametric study, the effect of carbon overcoat, lubricant molecular weight and inclusion of X-1P and A20H on the slider-lubricant interactions is investigated using a half-delubed disk approach. Based on the results, it is concluded that there exists a critical head-disk clearance above which there is negligible slider-lubricant interaction. The interaction starts at this critical clearance and increases in intensity as the head-disk clearance is further decreased below the critical clearance. Using shear stress simulations and previously published work a theory is developed to support the experimental observations. The critical clearance depends on various HDI parameters and hence can be reduced through proper design of the interface. Comparison of critical clearance on CHx and CHxNy media indicates that presence of nitrogen is better for HDI as it reduces the critical clearance, which is found to increase with increasing lubricant molecular weight and in presence of additives X-1P and A20H. Further experiments maintaining a fixed slider-disk clearance suggest that two different mechanisms dominate the disk-to-slider and slider-to-disk lubricant transfer. One of the key factors influencing the slider stability at proximity is the disk topography, since it provides dynamic excitation to the low-flying sliders and strongly influences its dynamics. The effect of circumferential as well as radial disk topography is investigated using a new method to measure the 2-D (true) disk topography. Simulations using CMLAir dynamic simulator indicate a strong dependence on the circumferential roughness and waviness features as well as radial features, which have not been studied intensively till now. The simulations with 2-D disk topography are viewed as more realistic than the 1-D simulations. Further, it is also seen that the effect of the radial features can be reduced through effective ABS design. Finally, an attempt has been made to establish correlations between some of the proximity interactions as well as others which may affect the HDI reliability by creating a relational chart. Such an organization serves to give a bigger picture of the various efforts being made in the field of HDI reliability and link them together. From this chart, a causal relationship is suggested between the electrostatic, intermolecular and meniscus forces.
First-principles modeling of hardness in transition-metal diborides
NASA Astrophysics Data System (ADS)
Lazar, Petr; Chen, Xing-Qiu; Podloucky, Raimund
2009-07-01
Based on recent experiments, the diborides OsB2 and ReB2 were proposed to be ultraincompressible and superhard materials. By application of an ab initio density-functional theory approach we investigate the elastic and cleavage fracture properties of the borides MB2 ( M=Hf , Ta, W, Re, Os, and Ir). We derive a direct correlation between the lowest calculated critical cleavage stress and the experimental (micro)hardness. By calculating the critical shear stress and estimating the possibility of dislocation emission we can justify the prediction that ReB2 is indeed a superhard material.
45 CFR 286.260 - May Tribes use sampling and electronic filing?
Code of Federal Regulations, 2010 CFR
2010-10-01
... quarterly reports electronically, based on format specifications that we will provide. Tribes who do not have the capacity to submit reports electronically may submit quarterly reports on a disk or in hard...
The Seven Deadly Sins of Online Microcomputing.
ERIC Educational Resources Information Center
King, Alan
1989-01-01
Offers suggestions for avoiding common errors in online microcomputer use. Areas discussed include learning the basics; hardware protection; backup options; hard disk organization; software selection; file security; and the use of dedicated communications lines. (CLB)
1989-06-01
the Chemistry Department, and the WHOI Education Office for providing financial support and a nice place to work. Parts of this research was funded by...and erosion studies is unknown. c 1.5 OBJECTIVES The objectives of this research are 1) to quantify the diffusive mobility of helium isotopes in...specifically tailored for the diffusion experiments. Data is recorded on a hard disk and on paper , and is automatically backed up to floppy disks
Simulation of aerodynamic noise and vibration noise in hard disk drives
NASA Astrophysics Data System (ADS)
Zhu, Lei; Shen, Sheng-Nan; Li, Hui; Zhang, Guo-Qing; Cui, Fu-Hao
2018-05-01
Internal flow field characteristics of HDDs are usually influenced by the arm swing during seek operations. This, in turn, can affect aerodynamic noise and airflow-induced noise. In this paper, the dynamic mesh method is used to calculate the flow-induced vibration (FIV) by transient structure analysis and the boundary element method (BEM) is utilized to predict the vibration noise. Two operational states are considered: the arm is fixed and swinging over the disk. Both aerodynamic noise and vibration noise inside drives increase rapidly with increase in disk rotation and arm swing velocities. The largest aerodynamic noise source is always located near the arm and swung with the arm.
NASA Technical Reports Server (NTRS)
Fertig, D.; Mukai, K.; Nelson, T.; Cannizzo, J. K.
2011-01-01
In a dwarf nova, the accretion disk around the white dwarf is a source of ultraviolet, optical, and infrared photons, but is never hot enough to emit X-rays. Observed X-rays instead originate from the boundary layer between the disk and the white dwarf. As the disk switches between quiescence and outburst states, the 2-10 keV X-ray flux is usually seen to be anti-correlated with the optical brightness. Here we present RXTE monitoring observations of two dwarf novae, VW Hyi and WW Cet, confirming the optical/X-ray anti-correlation in these two systems. However, we do not detect any episodes of increased hard X-ray flux on the rise (out of two possible chances for WW Cet) or the decline (two for WW Cet and one for VW Hyi) from outburst, attributes that are clearly established in SS Cyg. The addition of these data to the existing literature establishes the fact that the behavior of SS Cyg is the exception, rather than the archetype as is often assumed. We speculate that only dwarf novae with a massive white dwarf may show these hard X-ray spikes.
Hybrid RAID With Dual Control Architecture for SSD Reliability
NASA Astrophysics Data System (ADS)
Chatterjee, Santanu
2010-10-01
The Solid State Devices (SSD) which are increasingly being adopted in today's data storage Systems, have higher capacity and performance but lower reliability, which leads to more frequent rebuilds and to a higher risk. Although SSD is very energy efficient compared to Hard Disk Drives but Bit Error Rate (BER) of an SSD require expensive erase operations between successive writes. Parity based RAID (for Example RAID4,5,6)provides data integrity using parity information and supports losing of any one (RAID4, 5)or two drives(RAID6), but the parity blocks are updated more often than the data blocks due to random access pattern so SSD devices holding more parity receive more writes and consequently age faster. To address this problem, in this paper we propose a Model based System of hybrid disk array architecture in which we plan to use RAID 4(Stripping with Parity) technique and SSD drives as Data drives while any fastest Hard disk drives of same capacity can be used as dedicated parity drives. By this proposed architecture we can open the door to using commodity SSD's past their erasure limit and it can also reduce the need for expensive hardware Error Correction Code (ECC) in the devices.
Publications - GMC 264 | Alaska Division of Geological & Geophysical
DGGS GMC 264 Publication Details Title: X-ray fluorescence trace element data of the following U.S for more information. Bibliographic Reference Werdon, M.B., 1996, X-ray fluorescence trace element . Bureau of Mines hard rock mineral pulp samples from the Colville mining district: West Kivliktort
ALMA Correlator Real-Time Data Processor
NASA Astrophysics Data System (ADS)
Pisano, J.; Amestica, R.; Perez, J.
2005-10-01
The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem with the correlator hardware which presents software engineering challenges as the hardware evolves. The current status of this project and future goals are also presented.
Designing a scalable video-on-demand server with data sharing
NASA Astrophysics Data System (ADS)
Lim, Hyeran; Du, David H.
2000-12-01
As current disk space and transfer speed increase, the bandwidth between a server and its disks has become critical for video-on-demand (VOD) services. Our VOD server consists of several hosts sharing data on disks through a ring-based network. Data sharing provided by the spatial-reuse ring network between servers and disks not only increases the utilization towards full bandwidth but also improves the availability of videos. Striping and replication methods are introduced in order to improve the efficiency of our VOD server system as well as the availability of videos. We consider tow kinds of resources of a VOD server system. Given a representative access profile, our intention is to propose an algorithm to find an initial condition, place videos on disks in the system successfully. If any copy of a video cannot be placed due to lack of resources, more servers/disks are added. When all videos are place on the disks by our algorithm, the final configuration is determined with indicator of how tolerable it is against the fluctuation in demand of videos. Considering it is a NP-hard problem, our algorithm generates the final configuration with O(M log M) at best, where M is the number of movies.
Designing a scalable video-on-demand server with data sharing
NASA Astrophysics Data System (ADS)
Lim, Hyeran; Du, David H. C.
2001-01-01
As current disk space and transfer speed increase, the bandwidth between a server and its disks has become critical for video-on-demand (VOD) services. Our VOD server consists of several hosts sharing data on disks through a ring-based network. Data sharing provided by the spatial-reuse ring network between servers and disks not only increases the utilization towards full bandwidth but also improves the availability of videos. Striping and replication methods are introduced in order to improve the efficiency of our VOD server system as well as the availability of videos. We consider tow kinds of resources of a VOD server system. Given a representative access profile, our intention is to propose an algorithm to find an initial condition, place videos on disks in the system successfully. If any copy of a video cannot be placed due to lack of resources, more servers/disks are added. When all videos are place on the disks by our algorithm, the final configuration is determined with indicator of how tolerable it is against the fluctuation in demand of videos. Considering it is a NP-hard problem, our algorithm generates the final configuration with O(M log M) at best, where M is the number of movies.
Prondvai, E
2017-03-01
Medullary bone (MB) is a special endosteal tissue forming in the bones of female birds during egg laying to serve as a labile calcium reservoir for building the hard eggshell. Therefore, the presence of MB reported in multiple nonavian dinosaurs is currently considered as evidence that those specimens were sexually mature females in their reproductive period. This interpretation has led to further inferences on species-specific growth strategies and related life-history aspects of these extinct vertebrates. However, a few studies questioned the reproductive significance of fossil MB by either regarding the tissue pathological or attributing alternative functions to it. This study reviews the general inferences on extinct vertebrates and discusses the primary role, distribution, regulation and adaptive significance of avian MB to point out important but largely overlooked uncertainties and inconsistencies in this matter. Emerging discordancy is demonstrated when the presence of MB vs. trade-off between growth and reproduction is used for interpreting dinosaurian growth curves. Synthesis of these data suggests that fossil MB was related to high calcium turnover rates but not exclusively to egg laying. Furthermore, revised application of Allosaurus growth data by modelling individual-based growth curves implies a much higher intraspecific variability in growth strategies, including timing of sexual maturation, than usually acknowledged. New hypotheses raised here to resolve these incongruences also propose new directions of research on the origin and functional evolution of this curious bone tissue. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
A magnetic model for low/hard state of black hole binaries
NASA Astrophysics Data System (ADS)
Ye, Yong-Chun; Wang, Ding-Xiong; Huang, Chang-Yin; Cao, Xiao-Feng
2016-03-01
A magnetic model for the low/hard state (LHS) of two black hole X-ray binaries (BHXBs), H1743-322 and GX 339-4, is proposed based on transport of the magnetic field from a companion into an accretion disk around a black hole (BH). This model consists of a truncated thin disk with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising phase of the LHS. In addition, the association of the LHS with a quasi-steady jet is modeled based on transport of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAF. It turns out that the steep radio/X-ray correlations observed in H1743-322 and GX 339-4 can be interpreted based on our model.
Physics and Hard Disk Drives-A Career in Industry
NASA Astrophysics Data System (ADS)
Lambert, Steven
2014-03-01
I will participate in a panel discussion about ``Career Opportunities for Physicists.'' I enjoyed 27 years doing technology development and product support in the hard disk drive business. My PhD in low temperature physics was excellent training for this career since I learned how to work in a lab, analyze data, write and present technical information, and define experiments that got to the heart of a problem. An academic position did not appeal to me because I had no passion to pursue a particular topic in basic physics. My work in industry provided an unending stream of challenging problems to solve, and it was a rich and rewarding experience. I'm now employed by the APS to focus on our interactions with physicists in industry. I welcome the chance to share my industrial experience with students, post-docs, and others who are making decisions about their career path. Industrial Physics Fellow, APS Headquarters.
System and method for manipulating domain pinning and reversal in ferromagnetic materials
Silevitch, Daniel M.; Rosenbaum, Thomas F.; Aeppli, Gabriel
2013-10-15
A method for manipulating domain pinning and reversal in a ferromagnetic material comprises applying an external magnetic field to a uniaxial ferromagnetic material comprising a plurality of magnetic domains, where each domain has an easy axis oriented along a predetermined direction. The external magnetic field is applied transverse to the predetermined direction and at a predetermined temperature. The strength of the magnetic field is varied at the predetermined temperature, thereby isothermally regulating pinning of the domains. A magnetic storage device for controlling domain dynamics includes a magnetic hard disk comprising a uniaxial ferromagnetic material, a magnetic recording head including a first magnet, and a second magnet. The ferromagnetic material includes a plurality of magnetic domains each having an easy axis oriented along a predetermined direction. The second magnet is positioned adjacent to the magnetic hard disk and is configured to apply a magnetic field transverse to the predetermined direction.
Müller, O; Lützenkirchen-Hecht, D; Frahm, R
2015-03-01
A fast X-ray chopper capable of producing ms long X-ray pulses with a typical rise time of few μs was realized. It is ideally suited to investigate the temporal response of X-ray detectors with response times of the order of μs to ms, in particular, any kind of ionization chambers and large area photo diodes. The drive mechanism consists of a brushless DC motor and driver electronics from a common hard disk drive, keeping the cost at an absolute minimum. Due to its simple construction and small dimensions, this chopper operates at home lab based X-ray tubes and synchrotron radiation sources as well. The dynamics of the most important detectors used in time resolved X-ray absorption spectroscopy, namely, ionization chambers and Passivated Implanted Planar Silicon photodiodes, were investigated in detail. The results emphasize the applicability of this X-ray chopper.
An XMM-Newton Study of the Bright Ultrasoft Narrow-Line Quasar NAB 0205+024
NASA Technical Reports Server (NTRS)
Brandt, Niel
2004-01-01
The broad-band X-ray continuum of NAB 0205424 is well constrained due to the excellent photon statistics obtained (about 97,700 counts), and its impressive soft X-ray excess is clearly apparent. The hard X-ray power law has become notably steeper than when NAB 0205424 was observed with ASCA, attesting to the presence of significant X-ray spectral variability. A strong and broad emission feature is detected from about 5 to 6.4 keV, and we have modeled this as a relativistic line emitted close to the black hole from a narrow annulus of the accretion disk. Furthermore, a strong X-ray flare is detected with a hard X-ray spectrum; this flare may be responsible for illuminating the inner line-emitting part of the accretion disk. The combined observational results can be broadly interpreted in terms of the "thundercloud model proposed by Merloni & Fabian (2001).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuyama, H., E-mail: matsu@phys.sci.hokudai.ac.jp; Nara, D.; Kageyama, R.
We developed a micrometer-sized magnetic tip integrated onto the write head of a hard disk drive for spin-polarized scanning tunneling microscopy (SP-STM) in the modulated tip magnetization mode. Using SP-STM, we measured a well-defined in-plane spin-component of the tunneling current of the rough surface of a polycrystalline NiFe film. The spin asymmetry of the NiFe film was about 1.3% within the bias voltage range of -3 to 1 V. We obtained the local spin component image of the sample surface, switching the magnetic field of the sample to reverse the sample magnetization during scanning. We also obtained a spin imagemore » of the rough surface of a polycrystalline NiFe film evaporated on the recording medium of a hard disk drive.« less
NASA Astrophysics Data System (ADS)
Cordle, Michael; Rea, Chris; Jury, Jason; Rausch, Tim; Hardie, Cal; Gage, Edward; Victora, R. H.
2018-05-01
This study aims to investigate the impact that factors such as skew, radius, and transition curvature have on areal density capability in heat-assisted magnetic recording hard disk drives. We explore a "ballistic seek" approach for capturing in-situ scan line images of the magnetization footprint on the recording media, and extract parametric results of recording characteristics such as transition curvature. We take full advantage of the significantly improved cycle time to apply a statistical treatment to relatively large samples of experimental curvature data to evaluate measurement capability. Quantitative analysis of factors that impact transition curvature reveals an asymmetry in the curvature profile that is strongly correlated to skew angle. Another less obvious skew-related effect is an overall decrease in curvature as skew angle increases. Using conventional perpendicular magnetic recording as the reference case, we characterize areal density capability as a function of recording position.
A Comprehensive Study on Energy Efficiency and Performance of Flash-based SSD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Seon-Yeon; Kim, Youngjae; Urgaonkar, Bhuvan
2011-01-01
Use of flash memory as a storage medium is becoming popular in diverse computing environments. However, because of differences in interface, flash memory requires a hard-disk-emulation layer, called FTL (flash translation layer). Although the FTL enables flash memory storages to replace conventional hard disks, it induces significant computational and space overhead. Despite the low power consumption of flash memory, this overhead leads to significant power consumption in an overall storage system. In this paper, we analyze the characteristics of flash-based storage devices from the viewpoint of power consumption and energy efficiency by using various methodologies. First, we utilize simulation tomore » investigate the interior operation of flash-based storage of flash-based storages. Subsequently, we measure the performance and energy efficiency of commodity flash-based SSDs by using microbenchmarks to identify the block-device level characteristics and macrobenchmarks to reveal their filesystem level characteristics.« less
Disordered hyperuniformity in two-component nonadditive hard-disk plasmas
NASA Astrophysics Data System (ADS)
Lomba, Enrique; Weis, Jean-Jacques; Torquato, Salvatore
2017-12-01
We study the behavior of a classical two-component ionic plasma made up of nonadditive hard disks with additional logarithmic Coulomb interactions between them. Due to the Coulomb repulsion, long-wavelength total density fluctuations are suppressed and the system is globally hyperuniform. Short-range volume effects lead to phase separation or to heterocoordination for positive or negative nonadditivities, respectively. These effects compete with the hidden long-range order imposed by hyperuniformity. As a result, the critical behavior of the mixture is modified, with long-wavelength concentration fluctuations partially damped when the system is charged. It is also shown that the decrease of configurational entropy due to hyperuniformity originates from contributions beyond the two-particle level. Finally, despite global hyperuniformity, we show that in our system the spatial configuration associated with each component separately is not hyperuniform, i.e., the system is not "multihyperuniform."
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Hiromitsu; Sakurai, Soki; Makishima, Kazuo, E-mail: hirotaka@hep01.hepl.hiroshima-u.ac.jp
To investigate the physics of mass accretion onto weakly magnetized neutron stars (NSs), 95 archival Rossi X-Ray Timing Explorer data sets of an atoll source 4U 1608-522, acquired over 1996-2004 in the so-called upper-banana state, were analyzed. The object meantime exhibited 3-30 keV luminosity in the range of {approx}< 10{sup 35}-4 x 10{sup 37} erg s{sup -1}, assuming a distance of 3.6 kpc. The 3-30 keV Proportional Counter Array spectra, produced one from each data set, were represented successfully with a combination of a soft and a hard component, the presence of which was revealed in a model-independent manner bymore » studying spectral variations among the observations. The soft component is expressed by the so-called multi-color disk model with a temperature of {approx}1.8 keV, and is attributed to the emission from an optically thick standard accretion disk. The hard component is a blackbody (BB) emission with a temperature of {approx}2.7 keV, thought to be emitted from the NS surface. As the total luminosity increases, a continuous decrease is observed in the ratio of the BB luminosity to that of the disk component. This property suggests that it gradually becomes difficult for the matter flowing through the accretion disk to reach the NS surface, presumably forming outflows driven by the increased radiation pressure. On timescales of hours to days, the overall source variability was found to be controlled by two independent variables: the mass accretion rate and the innermost disk radius, which changes both physically and artificially.« less
Electrodeposited Co-Pt thin films for magnetic hard disks
NASA Astrophysics Data System (ADS)
Bozzini, B.; De Vita, D.; Sportoletti, A.; Zangari, G.; Cavallotti, P. L.; Terrenzio, E.
1993-03-01
ew baths for Co-Pt electrodeposition have been developed and developed and ECD thin films (≤0.3μm) have been prepared and characterized structurally (XRD), morphologically (SEM), chemically (EDS) and magnetically (VSM); their improved corrosion, oxidation and wear resistance have been ascertained. Such alloys appear suitable candidates for magnetic storage systems, from all technological viewpoints. The originally formulated baths contain Co-NH 3-citrate complexes and Pt-p salt (Pt(NH 3) 2(NO 2) 2). Co-Pt thin films of fcc structure are deposited obtaining microcrystallites of definite composition. At Pt ⋍ 30 at% we obtain fcc films with a=0.369 nm, HC=80 kA m, and high squareness; increasing Co and decreasing Pt content in the bath it is possible to reduce the Pt content of the deposit, obtaining fcc structures containing two types of microcrystals with a = 0.3615 nm and a = 0.369 nm deposited simultaneously. NaH 2PO 2 additions to the bath have a stabilizing influence on the fcc structure of a = 0.3615 nm, Pt ⋍ 20 at% and HC as high as 200 kA/m, with hysteresis loops suitable for both longitudinal or perpendicular recording, depending on the thickness. We have prepared 2.5 in. hard disks for magnetic recording with ECD Co-Pt 20 at% with a polished and texturized ACD Ni-P underlayer. Pulse response, 1F & 2F frequency and frequency sweep response behaviour, as well as noise and overwrite characteristics have been measured for both our disks and high-standard sputtered Co-Cr-Ta production disks, showin improved D50 for Co-Pt ECD disks. The signal-to-noise ratio could be improved by pulse electrodeposition and etching post-treatments.
Chandra/ACIS-I Study of the X-Ray Properties of the NGC 6611 and M16 Stellar Populations
NASA Astrophysics Data System (ADS)
Guarcello, M. G.; Caramazza, M.; Micela, G.; Sciortino, S.; Drake, J. J.; Prisinzano, L.
2012-07-01
Mechanisms regulating the origin of X-rays in young stellar objects and the correlation with their evolutionary stage are under debate. Studies of the X-ray properties in young clusters allow us to understand these mechanisms. One ideal target for this analysis is the Eagle Nebula (M16), with its central cluster NGC 6611. At 1750 pc from the Sun, it harbors 93 OB stars, together with a population of low-mass stars from embedded protostars to disk-less Class III objects, with age <=3 Myr. We study an archival 78 ks Chandra/ACIS-I observation of NGC 6611 and two new 80 ks observations of the outer region of M16, one centered on the Column V and the other on a region of the molecular cloud with ongoing star formation. We detect 1755 point sources with 1183 candidate cluster members (219 disk-bearing and 964 disk-less). We study the global X-ray properties of M16 and compare them with those of the Orion Nebula Cluster. We also compare the level of X-ray emission of Class II and Class III stars and analyze the X-ray spectral properties of OB stars. Our study supports the lower level of X-ray activity for the disk-bearing stars with respect to the disk-less members. The X-ray luminosity function (XLF) of M16 is similar to that of Orion, supporting the universality of the XLF in young clusters. Eighty-five percent of the O stars of NGC 6611 have been detected in X-rays. With only one possible exception, they show soft spectra with no hard components, indicating that mechanisms for the production of hard X-ray emission in O stars are not operating in NGC 6611.
EVIDENCE FOR SIMULTANEOUS JETS AND DISK WINDS IN LUMINOUS LOW-MASS X-RAY BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homan, Jeroen; Neilsen, Joseph; Allen, Jessamyn L.
Recent work on jets and disk winds in low-mass X-ray binaries (LMXBs) suggests that they are to a large extent mutually exclusive, with jets observed in spectrally hard states and disk winds observed in spectrally soft states. In this paper we use existing literature on jets and disk winds in the luminous neutron star (NS) LMXB GX 13+1, in combination with archival Rossi X-ray Timing Explorer data, to show that this source is likely able to produce jets and disk winds simultaneously. We find that jets and disk winds occur in the same location on the source’s track in itsmore » X-ray color–color diagram. A further study of literature on other luminous LMXBs reveals that this behavior is more common, with indications for simultaneous jets and disk winds in the black hole LMXBs V404 Cyg and GRS 1915+105 and the NS LMXBs Sco X-1 and Cir X-1. For the three sources for which we have the necessary spectral information, we find that simultaneous jets/winds all occur in their spectrally hardest states. Our findings indicate that in LMXBs with luminosities above a few tens of percent of the Eddington luminosity, jets and disk winds are not mutually exclusive, and the presence of disk winds does not necessarily result in jet suppression.« less
NASA Astrophysics Data System (ADS)
Kalyaan, A.; Desch, S. J.; Monga, N.
2015-12-01
The structure and evolution of protoplanetary disks, especially the radial flows of gas through them, are sensitive to a number of factors. One that has been considered only occasionally in the literature is external photoevaporation by far-ultraviolet (FUV) radiation from nearby, massive stars, despite the fact that nearly half of disks will experience photoevaporation. Another effect apparently not considered in the literature is a spatially and temporally varying value of α in the disk (where the turbulent viscosity ν is α times the sound speed C times the disk scale height H). Here we use the formulation of Bai & Stone to relate α to the ionization fraction in the disk, assuming turbulent transport of angular momentum is due to the magnetorotational instability. We calculate the ionization fraction of the disk gas under various assumptions about ionization sources and dust grain properties. Disk evolution is most sensitive to the surface area of dust. We find that typically α ≲ 10-5 in the inner disk (<2 AU), rising to ˜10-1 beyond 20 AU. This drastically alters the structure of the disk and the flow of mass through it: while the outer disk rapidly viscously spreads, the inner disk hardly evolves; this leads to a steep surface density profile ({{Σ }}\\propto {r}-< p> with < p> ≈ 2-5 in the 5-30 AU region) that is made steeper by external photoevaporation. We also find that the combination of variable α and external photoevaporation eventually causes gas as close as 3 AU, previously accreting inward, to be drawn outward to the photoevaporated outer edge of the disk. These effects have drastic consequences for planet formation and volatile transport in protoplanetary disks.
X-Ray Emission from the Soft X-Ray Transient Aquila X-1
NASA Technical Reports Server (NTRS)
Tavani, Marco
1998-01-01
Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.
Radio-Loud AGN: The Suzaku View
NASA Technical Reports Server (NTRS)
Sambruna, Rita
2009-01-01
We review our Suzaku observations of Broad-Line Radio Galaxies (BLRGs). The continuum above 2 approx.keV in BLRGs is dominated by emission from an accretion flow, with little or no trace of a jet, which is instead expected to emerge at GeV energies and be detected by Fermi. Concerning the physical conditions of the accretion disk, BLRGs are a mixed bag. In some sources the data suggest relatively high disk ionization, in others obscuration of the innermost regions, perhaps by the jet base. While at hard X-rays the distinction between BLRGs and Seyferts appears blurry, one of the cleanest observational differences between the two classes is at soft X-rays, where Seyferts exhibit warm absorbers related to disk winds while BLRGs do not. We discuss the possibility that jet formation inhibits disk winds, and thus is related to the remarkable dearth of absorption features at soft X-rays in BLRGs and other radio-loud AGN.
Inflow Generated X-ray Corona Around Supermassive Black Holes and Unified Model for X-ray Emission
NASA Astrophysics Data System (ADS)
Wang, Lile; Cen, Renyue
2016-01-01
Three-dimensional hydrodynamic simulations, covering the spatial domain from hundreds of Schwarzschild radii to 2 pc around the central supermassive black hole of mass 108 M⊙, with detailed radiative cooling processes, are performed. Generically found is the existence of a significant amount of shock heated, high temperature (≥108 K) coronal gas in the inner (≤104 rsch) region. It is shown that the composite bremsstrahlung emission spectrum due to coronal gas of various temperatures are in reasonable agreement with the overall ensemble spectrum of AGNs and hard X-ray background. Taking into account inverse Compton processes, in the context of the simulation-produced coronal gas, our model can readily account for the wide variety of AGN spectral shape, which can now be understood physically. The distinguishing feature of our model is that X-ray coronal gas is, for the first time, an integral part of the inflow gas and its observable characteristics are physically coupled to the concomitant inflow gas. One natural prediction of our model is the anti-correlation between accretion disk luminosity and spectral hardness: as the luminosity of SMBH accretion disk decreases, the hard X-ray luminosity increases relative to the UV/optical luminosity.
The Reverberation Lag in the Low-mass X-ray Binary H1743-322
NASA Astrophysics Data System (ADS)
De Marco, Barbara; Ponti, Gabriele
2016-07-01
The evolution of the inner accretion flow of a black hole X-ray binary during an outburst is still a matter of active research. X-ray reverberation lags are powerful tools for constraining disk-corona geometry. We present a study of X-ray lags in the black hole transient H1743-322. We compared the results obtained from analysis of all the publicly available XMM-Newton observations. These observations were carried out during two different outbursts that occurred in 2008 and 2014. During all the observations the source was caught in the hard state and at similar luminosities ({L}3-10{keV}/{L}{Edd}˜ 0.004). We detected a soft X-ray lag of ˜60 ms, most likely due to thermal reverberation. We did not detect any significant change of the lag amplitude among the different observations, indicating a similar disk-corona geometry at the same luminosity in the hard state. On the other hand, we observe significant differences between the reverberation lag detected in H1743-322 and in GX 339-4 (at similar luminosities in the hard state), which might indicate variations of the geometry from source to source.
Wear Behavior of an Ultra-High-Strength Eutectoid Steel
NASA Astrophysics Data System (ADS)
Mishra, Alok; Maity, Joydeep
2018-02-01
Wear behavior of an ultra-high-strength AISI 1080 steel developed through incomplete austenitization-based combined cyclic heat treatment is investigated in comparison with annealed and conventional hardened and tempered conditions against an alumina disk (sliding speed = 1 m s-1) using a pin-on-disk tribometer at a load range of 7.35-14.7 N. On a gross scale, the mechanism of surface damage involves adhesive wear coupled with abrasive wear (microcutting effects in particular) at lower loads. At higher loads, mainly the abrasive wear (both microcutting and microploughing mechanisms) and evolution of adherent oxide are observed. Besides, microhardness of matrix increases with load indicating substantial strain hardening during wear test. The rate of overall wear is found to increase with load. As-received annealed steel with the lowest initial hardness suffers from severe abrasive wear, thereby exhibiting the highest wear loss. Such a severe wear loss is not observed in conventional hardened and tempered and combined cyclic heat treatment conditions. Combined cyclic heat-treated steel exhibits the greatest wear resistance (lowest wear loss) due to its initial high hardness and evolution of hard abrasion-resistant tribolayer during wear test at higher load.
LAS - LAND ANALYSIS SYSTEM, VERSION 5.0
NASA Technical Reports Server (NTRS)
Pease, P. B.
1994-01-01
The Land Analysis System (LAS) is an image analysis system designed to manipulate and analyze digital data in raster format and provide the user with a wide spectrum of functions and statistical tools for analysis. LAS offers these features under VMS with optional image display capabilities for IVAS and other display devices as well as the X-Windows environment. LAS provides a flexible framework for algorithm development as well as for the processing and analysis of image data. Users may choose between mouse-driven commands or the traditional command line input mode. LAS functions include supervised and unsupervised image classification, film product generation, geometric registration, image repair, radiometric correction and image statistical analysis. Data files accepted by LAS include formats such as Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Advanced Very High Resolution Radiometer (AVHRR). The enhanced geometric registration package now includes both image to image and map to map transformations. The over 200 LAS functions fall into image processing scenario categories which include: arithmetic and logical functions, data transformations, fourier transforms, geometric registration, hard copy output, image restoration, intensity transformation, multispectral and statistical analysis, file transfer, tape profiling and file management among others. Internal improvements to the LAS code have eliminated the VAX VMS dependencies and improved overall system performance. The maximum LAS image size has been increased to 20,000 lines by 20,000 samples with a maximum of 256 bands per image. The catalog management system used in earlier versions of LAS has been replaced by a more streamlined and maintenance-free method of file management. This system is not dependent on VAX/VMS and relies on file naming conventions alone to allow the use of identical LAS file names on different operating systems. While the LAS code has been improved, the original capabilities of the system have been preserved. These include maintaining associated image history, session logging, and batch, asynchronous and interactive mode of operation. The LAS application programs are integrated under version 4.1 of an interface called the Transportable Applications Executive (TAE). TAE 4.1 has four modes of user interaction: menu, direct command, tutor (or help), and dynamic tutor. In addition TAE 4.1 allows the operation of LAS functions using mouse-driven commands under the TAE-Facelift environment provided with TAE 4.1. These modes of operation allow users, from the beginner to the expert, to exercise specific application options. LAS is written in C-language and FORTRAN 77 for use with DEC VAX computers running VMS with approximately 16Mb of physical memory. This program runs under TAE 4.1. Since TAE 4.1 is not a current version of TAE, TAE 4.1 is included within the LAS distribution. Approximately 130,000 blocks (65Mb) of disk storage space are necessary to store the source code and files generated by the installation procedure for LAS and 44,000 blocks (22Mb) of disk storage space are necessary for TAE 4.1 installation. The only other dependencies for LAS are the subroutine libraries for the specific display device(s) that will be used with LAS/DMS (e.g. X-Windows and/or IVAS). The standard distribution medium for LAS is a set of two 9track 6250 BPI magnetic tapes in DEC VAX BACKUP format. It is also available on a set of two TK50 tape cartridges in DEC VAX BACKUP format. This program was developed in 1986 and last updated in 1992.
PC-SEAPAK - ANALYSIS OF COASTAL ZONE COLOR SCANNER AND ADVANCED VERY HIGH RESOLUTION RADIOMETER DATA
NASA Technical Reports Server (NTRS)
Mcclain, C. R.
1994-01-01
PC-SEAPAK is a user-interactive satellite data analysis software package specifically developed for oceanographic research. The program is used to process and interpret data obtained from the Nimbus-7/Coastal Zone Color Scanner (CZCS), and the NOAA Advanced Very High Resolution Radiometer (AVHRR). PC-SEAPAK is a set of independent microcomputer-based image analysis programs that provide the user with a flexible, user-friendly, standardized interface, and facilitates relatively low-cost analysis of oceanographic satellite data. Version 4.0 includes 114 programs. PC-SEAPAK programs are organized into categories which include CZCS and AVHRR level-1 ingest, level-2 analyses, statistical analyses, data extraction, remapping to standard projections, graphics manipulation, image board memory manipulation, hardcopy output support and general utilities. Most programs allow user interaction through menu and command modes and also by the use of a mouse. Most programs also provide for ASCII file generation for further analysis in spreadsheets, graphics packages, etc. The CZCS scanning radiometer aboard the NIMBUS-7 satellite was designed to measure the concentration of photosynthetic pigments and their degradation products in the ocean. AVHRR data is used to compute sea surface temperatures and is supported for the NOAA 6, 7, 8, 9, 10, 11, and 12 satellites. The CZCS operated from November 1978 to June 1986. CZCS data may be obtained free of charge from the CZCS archive at NASA/Goddard Space Flight Center. AVHRR data may be purchased through NOAA's Satellite Data Service Division. Ordering information is included in the PC-SEAPAK documentation. Although PC-SEAPAK was developed on a COMPAQ Deskpro 386/20, it can be run on most 386-compatible computers with an AT bus, EGA controller, Intel 80387 coprocessor, and MS-DOS 3.3 or higher. A Matrox MVP-AT image board with appropriate monitor and cables is also required. Note that the authors have received some reports of incompatibilities between the MVP-AT image board and ZENITH computers. Also, the MVP-AT image board is not necessarily compatible with 486-based systems; users of 486-based systems should consult with Matrox about compatibility concerns. Other PC-SEAPAK requirements include a Microsoft mouse (serial version), 2Mb RAM, and 100Mb hard disk space. For data ingest and backup, 9-track tape, 8mm tape and optical disks are supported and recommended. PC-SEAPAK has been under development since 1988. Version 4.0 was updated in 1992, and is distributed without source code. It is available only as a set of 36 1.2Mb 5.25 inch IBM MS-DOS format diskettes. PC-SEAPAK is a copyrighted product with all copyright vested in the National Aeronautics and Space Administration. Phar Lap's DOS_Extender run-time version is integrated into several of the programs; therefore, the PC-SEAPAK programs may not be duplicated. Three of the distribution diskettes contain DOS_Extender files. One of the distribution diskettes contains Media Cybernetics' HALO88 font files, also licensed by NASA for dissemination but not duplication. IBM is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. HALO88 is a registered trademark of Media Cybernetics, but the product was discontinued in 1991.
Computer Simulation Results for the Two-Point Probability Function of Composite Media
NASA Astrophysics Data System (ADS)
Smith, P.; Torquato, S.
1988-05-01
Computer simulation results are reported for the two-point matrix probability function S2 of two-phase random media composed of disks distributed with an arbitrary degree of impenetrability λ. The novel technique employed to sample S2( r) (which gives the probability of finding the endpoints of a line segment of length r in the matrix) is very accurate and has a fast execution time. Results for the limiting cases λ = 0 (fully penetrable disks) and λ = 1 (hard disks), respectively, compare very favorably with theoretical predictions made by Torquato and Beasley and by Torquato and Lado. Results are also reported for several values of λ. that lie between these two extremes: cases which heretofore have not been examined.
Godon, Patrick; Sion, Edward M; Balman, Şölen; Blair, William P
2017-09-01
The standard disk is often inadequate to model disk-dominated cataclysmic variables (CVs) and generates a spectrum that is bluer than the observed UV spectra. X-ray observations of these systems reveal an optically thin boundary layer (BL) expected to appear as an inner hole in the disk. Consequently, we truncate the inner disk. However, instead of removing the inner disk, we impose the no-shear boundary condition at the truncation radius, thereby lowering the disk temperature and generating a spectrum that better fits the UV data. With our modified disk, we analyze the archival UV spectra of three novalikes that cannot be fitted with standard disks. For the VY Scl systems MV Lyr and BZ Cam, we fit a hot inflated white dwarf (WD) with a cold modified disk ( [Formula: see text] ~ a few 10 -9 M ⊙ yr -1 ). For V592 Cas, the slightly modified disk ( [Formula: see text] ~ 6 × 10 -9 M ⊙ yr -1 ) completely dominates the UV. These results are consistent with Swift X-ray observations of these systems, revealing BLs merged with ADAF-like flows and/or hot coronae, where the advection of energy is likely launching an outflow and heating the WD, thereby explaining the high WD temperature in VY Scl systems. This is further supported by the fact that the X-ray hardness ratio increases with the shallowness of the UV slope in a small CV sample we examine. Furthermore, for 105 disk-dominated systems, the International Ultraviolet Explorer spectra UV slope decreases in the same order as the ratio of the X-ray flux to optical/UV flux: from SU UMa's, to U Gem's, Z Cam's, UX UMa's, and VY Scl's.
Microbarograph - ESRL Hi-Res Microbarograph, Goldendale - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, Condon - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, Troutdale - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, Troutdale - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, Condon - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, Wasco Airport - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, Walla Walla - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, Goldendale - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, Walla Walla - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, Wasco Airport - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, Boardman - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, John Day - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, Hood River - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, Umatilla - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, Boardman - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, Bonneville - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, Bonneville - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, Umatilla - Raw Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, John Day - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
Microbarograph - ESRL Hi-Res Microbarograph, Hood River - Reviewed Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaffrey, Katherine
High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**
INM. Integrated Noise Model Version 4.11. User’s Guide - Supplement
1993-12-01
KB of Random Access Memory (RAM) or 3 MB of RAM, if operating the INM from a RAM disk, as discussed in Section 1.2.1 below; 0 Math co-processor, Series... accessible from the Data Base using the ACDB11.EXE computer program, supplied with the Version 4.11 release. With the exception of INM airplane numbers 1, 6...9214 10760 -- -.-- 27 7053 6215 9470 10703 --- --- - 28 SS7 5940 SS94 729S . ... ... 29 4223 4884 7897 9214 10760 ..... 30 sots 6474 7939 8774
The Design and Evolution of Jefferson Lab's Jasmine Mass Storage System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan Hess; M. Andrew Kowalski; Michael Haddox-Schatz
We describe the Jasmine mass storage system, in operation since 2001. Jasmine has scaled to meet the challenges of grid applications, petabyte class storage, and hundreds of MB/sec throughput using commodity hardware, Java technologies, and a small but focused development team. The evolution of the integrated disk cache system, which provides a managed online subset of the tape contents, is examined in detail. We describe how the storage system has grown to meet the special needs of the batch farm, grid clients, and new performance demands.
NASA Astrophysics Data System (ADS)
Amini, Kamran; Akhbarizadeh, Amin; Javadpour, Sirus
2012-09-01
The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), hardness test, pin-on-disk wear test, and the reciprocating pin-on-flat wear test. The results show that deep cryogenic treatment eliminates retained austenite, makes a better carbide distribution, and increases the carbide content. Furthermore, some new nano-sized carbides form during the deep cryogenic treatment, thereby increasing the hardness and improving the wear behavior of the samples.
STS-48 Pilot Reightler on OV-103's aft flight deck poses for ESC photo
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Pilot Kenneth S. Reightler, Jr, positioned under overhead window W8, poses for an electronic still camera (ESC) photo on the aft flight deck of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shuttle mission.
Structural Dynamics of Maneuvering Aircraft.
1987-09-01
MANDYN. Written in Fortran 77, it was compiled and executed with Microsoft Fortran, Vers. 4.0 on an IBM PC-AT, with a co-processor, and a 20M hard disk...to the pivot area. Pre- sumably, the pivot area is a hard point in the wing structure. -41- NADC M1i4-0 ResulIts The final mass and flexural rigidity...lowest mode) is an important parameter. If it is less than three, the load factor approach can be problema - tical. In assessing the effect of one maneuver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vevera, Bradley J; Hyres, James W; McClintock, David A
2014-01-01
Irradiated AISI 316L stainless steel disks were removed from the Spallation Neutron Source (SNS) for post-irradiation examination (PIE) to assess mechanical property changes due to radiation damage and erosion of the target vessel. Topics reviewed include high-resolution photography of the disk specimens, cleaning to remove mercury (Hg) residue and surface oxides, profile mapping of cavitation pits using high frequency ultrasonic testing (UT), high-resolution surface replication, and machining of test specimens using wire electrical discharge machining (EDM), tensile testing, Rockwell Superficial hardness testing, Vickers microhardness testing, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The effectiveness of the cleaning proceduremore » was evident in the pre- and post-cleaning photography and permitted accurate placement of the test specimens on the disks. Due to the limited amount of material available and the unique geometry of the disks, machine fixturing and test specimen design were critical aspects of this work. Multiple designs were considered and refined during mock-up test runs on unirradiated disks. The techniques used to successfully machine and test the various specimens will be presented along with a summary of important findings from the laboratory examinations.« less
NASA Technical Reports Server (NTRS)
Starkey, D.; Gehrels, Cornelis; Horne, Keith; Fausnaugh, M. M.; Peterson, B. M.; Bentz, M. C.; Kochanek, C. S.; Denney, K. D.; Edelson, R.; Goad, M. R.;
2017-01-01
We conduct a multi-wavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 Angstrom to 9157 Angstrom) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination i = 36deg +/- 10deg, temperature T(sub 1) = (44+/-6) times 10 (exp 3)K at 1 light day from the black hole, and a temperature radius slope (T proportional to r (exp -alpha)) of alpha = 0.99 +/- 0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/L(sub Edd) = 0.1.
Time-dependent disk accretion in X-ray Nova MUSCAE 1991
NASA Astrophysics Data System (ADS)
Mineshige, Shin; Hirano, Akira; Kitamoto, Shunji; Yamada, Tatsuya T.; Fukue, Jun
1994-05-01
We propose a new model for X-ray spectral fitting of binary black hole candidates. In this model, it is assumed that X-ray spectra are composed of a Comptonized blackbody (hard component) and a disk blackbody spectra (soft component), in which the temperature gradient of the disk, q identically equal to -d log T/d log r, is left as a fitting parameter. With this model, we have fitted X-ray spectra of X-ray Nova Muscae 1991 obtained by Ginga. The fitting shows that a hot cloud, which Compton up-scatters soft photons from the disk, gradually shrank and became transparent after the main peak. The temperature gradient turns out to be fairly constant and is q approximately 0.75, the value expected for a Newtonian disk model. To reproduce this value with a relativistic disk model, a small inclination angle, i approximately equal to 0 deg to 15 deg, is required. It seems, however, that the q-value temporarily decreased below 0.75 at the main flare, and q increased in a transient fashion at the second peak (or the reflare) occurring approximately 70 days after the main peak. Although statistics are poor, these results, if real, would indicate that the disk brightening responsible for the main and secondary peaks are initiated in the relatively inner portions of the disk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debnath, Dipak; Molla, Aslam Ali; Chakrabarti, Sandip K.
2015-04-20
Transient black hole candidates are interesting objects to study in X-rays as these sources show rapid evolutions in their spectral and temporal properties. In this paper, we study the spectral properties of the Galactic transient X-ray binary MAXI J1659-152 during its very first outburst after discovery with the archival data of RXTE Proportional Counter Array instruments. We make a detailed study of the evolution of accretion flow dynamics during its 2010 outburst through spectral analysis using the Chakrabarti–Titarchuk two-component advective flow (TCAF) model as an additive table model in XSPEC. Accretion flow parameters (Keplerian disk and sub-Keplerian halo rates, shockmore » location, and shock strength) are extracted from our spectral fits with TCAF. We studied variations of these fit parameters during the entire outburst as it passed through three spectral classes: hard, hard-intermediate, and soft-intermediate. We compared our TCAF fitted results with standard combined disk blackbody (DBB) and power-law (PL) model fitted results and found that variations of disk rate with DBB flux and halo rate with PL flux are generally similar in nature. There appears to be an absence of the soft state, unlike what is seen in other similar sources.« less
Nanolubrication: patterned lubricating films using ultraviolet (UV) irradiation on hard disks.
Zhang, J; Hsu, S M; Liew, Y F
2007-01-01
Nanolubrication is emerging to be the key technical barrier in many devices. One of the key attributes for successful device lubrication is self-sustainability using only several molecular layers. For single molecular species lubrication, one desires bonding strength and molecular mobility to repair the contact by diffusing back to the contact. One way to achieve this is the use of mask to shield the surface with a patterned surface texture, put a monolayer on the surface and induce bonding. Then re-deposit mobile molecules on the surface to bring the thickness back to the desired thickness. This paper describes the use of long wavelength UV irradiation (320-390 nm) to induce bonding of a perfluoropolyether (PFPE) on CN(x) disks for magnetic hard disk application. This allows the use of irradiation to control the degree of bonding on CN(x) coatings. The effect of induced bonding based on this wavelength was studied by comparing 100% mobile PFPE, 100% bonded PFPE, and a mixture of mobile and bonded PFPE in a series of laboratory tests. Using a lateral force microscope, a diamond-tipped atomic force microscope, and a ball-on-inclined plane apparatus, the friction and wear characteristics of these three cases were obtained. Results suggested that the mixed PFPE has the highest shear rupture strength.
NASA Astrophysics Data System (ADS)
Kobylkin, Konstantin
2016-10-01
Computational complexity and approximability are studied for the problem of intersecting of a set of straight line segments with the smallest cardinality set of disks of fixed radii r > 0 where the set of segments forms straight line embedding of possibly non-planar geometric graph. This problem arises in physical network security analysis for telecommunication, wireless and road networks represented by specific geometric graphs defined by Euclidean distances between their vertices (proximity graphs). It can be formulated in a form of known Hitting Set problem over a set of Euclidean r-neighbourhoods of segments. Being of interest computational complexity and approximability of Hitting Set over so structured sets of geometric objects did not get much focus in the literature. Strong NP-hardness of the problem is reported over special classes of proximity graphs namely of Delaunay triangulations, some of their connected subgraphs, half-θ6 graphs and non-planar unit disk graphs as well as APX-hardness is given for non-planar geometric graphs at different scales of r with respect to the longest graph edge length. Simple constant factor approximation algorithm is presented for the case where r is at the same scale as the longest edge length.
Enhancements to the IBM version of COSMIC/NASTRAN
NASA Technical Reports Server (NTRS)
Brown, W. Keith
1989-01-01
Major improvements were made to the IBM version of COSMIC/NASTRAN by RPK Corporation under contract to IBM Corporation. These improvements will become part of COSMIC's IBM version and will be available in the second quarter of 1989. The first improvement is the inclusion of code to take advantage of IBM's new Vector Facility (VF) on its 3090 machines. The remaining improvements are modifications that will benefit all users as a result of the extended addressing capability provided by the MVS/XA operating system. These improvements include the availability of an in-memory data base that potentially eliminates the need for I/O to the PRIxx disk files. Another improvement is the elimination of multiple load modules that have to be loaded for every link switch within NASTRAN. The last improvement allows for NASTRAN to execute above the 16 mega-byte line. This improvement allows for NASTRAN to have access to 2 giga-bytes of memory for open core and the in-memory data base.
NASA Astrophysics Data System (ADS)
JANG, G. H.; LEE, S. H.; JUNG, M. S.
2002-03-01
Free vibration of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft is analyzed by using Hamilton's principle, FEM and substructure synthesis. The spinning disk is described by using the Kirchhoff plate theory and von Karman non-linear strain. The rotating spindle and stationary shaft are modelled by Rayleigh beam and Euler beam respectively. Using Hamilton's principle and including the rigid body translation and tilting motion, partial differential equations of motion of the spinning flexible disk and spindle are derived consistently to satisfy the geometric compatibility in the internal boundary between substructures. FEM is used to discretize the derived governing equations, and substructure synthesis is introduced to assemble each component of the disk-spindle-bearing-shaft system. The developed method is applied to the spindle system of a computer hard disk drive with three disks, and modal testing is performed to verify the simulation results. The simulation result agrees very well with the experimental one. This research investigates critical design parameters in an HDD spindle system, i.e., the non-linearity of a spinning disk and the flexibility and boundary condition of a stationary shaft, to predict the free vibration characteristics accurately. The proposed method may be effectively applied to predict the vibration characteristics of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft in the various forms of computer storage device, i.e., FDD, CD, HDD and DVD.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., the following definitions apply to this subchapter: Act means the Social Security Act. ANSI stands for... required documents. Electronic media means: (1) Electronic storage media including memory devices in computers (hard drives) and any removable/transportable digital memory medium, such as magnetic tape or disk...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., the following definitions apply to this subchapter: Act means the Social Security Act. ANSI stands for... required documents. Electronic media means: (1) Electronic storage media including memory devices in computers (hard drives) and any removable/transportable digital memory medium, such as magnetic tape or disk...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., the following definitions apply to this subchapter: Act means the Social Security Act. ANSI stands for... required documents. Electronic media means: (1) Electronic storage media including memory devices in computers (hard drives) and any removable/transportable digital memory medium, such as magnetic tape or disk...
ERIC Educational Resources Information Center
Perez, Ernest
1997-01-01
Examines the practical realities of upgrading Intel personal computers in libraries, considering budgets and technical personnel availability. Highlights include adding RAM; putting in faster processor chips, including clock multipliers; new hard disks; CD-ROM speed; motherboards and interface cards; cost limits and economic factors; and…
Fluctuation theorem for the effusion of an ideal gas.
Cleuren, B; Van den Broeck, C; Kawai, R
2006-08-01
The probability distribution of the entropy production for the effusion of an ideal gas between two compartments is calculated explicitly. The fluctuation theorem is verified. The analytic results are in good agreement with numerical data from hard disk molecular dynamics simulations.
Spectro-Timing Study of GX 339-4 in a Hard Intermediate State
NASA Technical Reports Server (NTRS)
Furst, F.; Grinberg, V.; Tomsick, J. A.; Bachetti, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Ghandi, P.; Zhang, William W.
2016-01-01
We present an analysis of Nuclear Spectroscopic Telescope Array observations of a hard intermediate state of the transient black hole GX 339-4 taken in 2015 January. With the source softening significantly over the course of the 1.3 day long observation we split the data into 21 sub-sets and find that the spectrum of all of them can be well described by a power-law continuum with an additional relativistically blurred reflection component. The photon index increases from approx. 1.69 to approx. 1.77 over the course of the observation. The accretion disk is truncated at around nine gravitational radii in all spectra. We also perform timing analysis on the same 21 individual data sets, and find a strong type-C quasi-periodic oscillation (QPO), which increases in frequency from approx. 0.68 to approx. 1.05 Hz with time. The frequency change is well correlated with the softening of the spectrum. We discuss possible scenarios for the production of the QPO and calculate predicted inner radii in the relativistic precession model as well as the global disk mode oscillations model. We find discrepancies with respect to the observed values in both models unless we allow for a black hole mass of approx. 100 Mass compared to the Sun, which is highly unlikely. We discuss possible systematic uncertainties, in particular with the measurement of the inner accretion disk radius in the relativistic reflection model. We conclude that the combination of observed QPO frequencies and inner accretion disk radii, as obtained from spectral fitting, is difficult to reconcile with current models.
Exact mean-energy expansion of Ginibre's gas for coupling constants Γ =2 ×(oddinteger)
NASA Astrophysics Data System (ADS)
Salazar, R.; Téllez, G.
2017-12-01
Using the approach of a Vandermonde determinant to the power Γ =Q2/kBT expansion on monomial functions, a way to find the excess energy Uexc of the two-dimensional one-component plasma (2DOCP) on hard and soft disks (or a Dyson gas) for odd values of Γ /2 is provided. At Γ =2 , the present study not only corroborates the result for the particle-particle energy contribution of the Dyson gas found by Shakirov [Shakirov, Phys. Lett. A 375, 984 (2011), 10.1016/j.physleta.2011.01.004] by using an alternative approach, but also provides the exact N -finite expansion of the excess energy of the 2DOCP on the hard disk. The excess energy is fitted to the ansatz of the form Uexc=K1N +K2√{N }+K3+K4/N +O (1 /N2) to study the finite-size correction, with Ki coefficients and N the number of particles. In particular, the bulk term of the excess energy is in agreement with the well known result of Jancovici for the hard disk in the thermodynamic limit [Jancovici, Phys. Rev. Lett. 46, 386 (1981), 10.1103/PhysRevLett.46.386]. Finally, an expression is found for the pair correlation function which still keeps a link with the random matrix theory via the kernel in the Ginibre ensemble [Ginibre, J. Math. Phys. 6, 440 (1965), 10.1063/1.1704292] for odd values of Γ /2 . A comparison between the analytical two-body density function and histograms obtained with Monte Carlo simulations for small systems and Γ =2 ,6 ,10 ,... shows that the approach described in this paper may be used to study analytically the crossover behavior from systems in the fluid phase to small crystals.
Grain-boundary free energy in an assembly of elastic disks.
Lusk, Mark T; Beale, Paul D
2004-02-01
Grain-boundary free energy is estimated as a function of misoriention for symmetric tilt boundaries in an assembly of nearly hard disks. Fluctuating cell theory is used to accomplish this since the most common techniques for calculating interfacial free energy cannot be applied to such assemblies. The results are analogous to those obtained using a Leonard-Jones potential, but in this case the interfacial energy is dominated by an entropic contribution. Disk assemblies colorized with free and specific volume elucidate differences between these two characteristics of boundary structure. Profiles are also provided of the Helmholtz and Gibbs free energies as a function of distance from the grain boundaries. Low angle grain boundaries are shown to follow the classical relationship between dislocation orientation/spacing and misorientation angle.
A NICER Look at the Aql X-1 Hard State
NASA Astrophysics Data System (ADS)
Bult, Peter; Arzoumanian, Zaven; Cackett, Edward M.; Chakrabarty, Deepto; Gendreau, Keith C.; Guillot, Sebastien; Homan, Jeroen; Jaisawal, Gaurava K.; Keek, Laurens; Kenyon, Steve; Lamb, Frederick K.; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig; Miller, Jon M.; Prigozhin, Gregory; Soong, Yang; Strohmayer, Tod E.; Uttley, Phil
2018-05-01
We report on a spectral-timing analysis of the neutron star low-mass X-ray binary (LMXB) Aql X-1 with the Neutron Star Interior Composition Explorer (NICER) on the International Space Station (ISS). Aql X-1 was observed with NICER during a dim outburst in 2017 July, collecting approximately 50 ks of good exposure. The spectral and timing properties of the source correspond to that of a (hard) extreme island state in the atoll classification. We find that the fractional amplitude of the low-frequency (<0.3 Hz) band-limited noise shows a dramatic turnover as a function of energy: it peaks at 0.5 keV with nearly 25% rms, drops to 12% rms at 2 keV, and rises to 15% rms at 10 keV. Through the analysis of covariance spectra, we demonstrate that band-limited noise exists in both the soft thermal emission and the power-law emission. Additionally, we measure hard time lags, indicating the thermal emission at 0.5 keV leads the power-law emission at 10 keV on a timescale of ∼100 ms at 0.3 Hz to ∼10 ms at 3 Hz. Our results demonstrate that the thermal emission in the hard state is intrinsically variable, and is driving the modulation of the higher energy power-law. Interpreting the thermal spectrum as disk emission, we find that our results are consistent with the disk propagation model proposed for accretion onto black holes.
14 CFR 1206.700 - Schedule of fees.
Code of Federal Regulations, 2013 CFR
2013-01-01
... copies include the time spent in duplicating the documents. For copies of computer disks, still photographs, blueprints, videotapes, engineering drawings, hard copies of aperture cards, etc., the fee... records. Because of the diversity in the types and configurations of computers which may be required in...
14 CFR 1206.700 - Schedule of fees.
Code of Federal Regulations, 2011 CFR
2011-01-01
... copies include the time spent in duplicating the documents. For copies of computer disks, still photographs, blueprints, videotapes, engineering drawings, hard copies of aperture cards, etc., the fee... records. Because of the diversity in the types and configurations of computers which may be required in...
14 CFR 1206.700 - Schedule of fees.
Code of Federal Regulations, 2012 CFR
2012-01-01
... copies include the time spent in duplicating the documents. For copies of computer disks, still photographs, blueprints, videotapes, engineering drawings, hard copies of aperture cards, etc., the fee... records. Because of the diversity in the types and configurations of computers which may be required in...
Army Medical Imaging System - ARMIS
1992-08-08
modems , scanners, hard disk drives, dot matrix printers, erasable-optical disc drives, CD-ROM drives, WORM disc drives and tape drives are fully...can use 56K leased lines, TI links, digital data circuits, or public telephone lines. 3. ISDN The Integrated Services Digital Network, ISDN, is a
Extremes of the jet–accretion power relation of blazars, as explored by NuSTAR
Sbarrato, T.; Ghisellini, G.; Tagliaferri, G.; ...
2016-07-18
Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z > 2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z = 3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviors. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively themore » most luminous accretion disk and the most powerful jet among known blazars. Furthermore, thanks to these properties, they are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars, to which they are consistent.« less
Fabrication of piezoelectric ceramic micro-actuator and its reliability for hard disk drives.
Jing, Yang; Luo, Jianbin; Yang, Wenyan; Ju, Guoxian
2004-11-01
A new U-type micro-actuator for precisely positioning a magnetic head in high-density hard disk drives was proposed and developed. The micro-actuator is composed of a U-type stainless steel substrate and two piezoelectric ceramic elements. Using a high-d31 piezoelectric coefficient PMN-PZT ceramic plate and adopting reactive ion etching process fabricate the piezoelectric elements. Reliability against temperature was investigated to ensure the practical application to the drive products. The U-type substrate attached to each side via piezoelectric elements also was simulated by the finite-element method and practically measured by a laser Doppler vibrometer in order to testify the driving mechanics of it. The micro-actuator coupled with two piezoelectric elements featured large displacement of 0.875 microm and high-resonance frequency over 22 kHz. The novel piezoelectric micro-actuators then possess a useful compromise performance to displacement, resonance frequency, and generative force. The results reveal that the new design concept provides a valuable alternative for multilayer piezoelectric micro-actuators.
Electronic Still Camera Project on STS-48
NASA Technical Reports Server (NTRS)
1991-01-01
On behalf of NASA, the Office of Commercial Programs (OCP) has signed a Technical Exchange Agreement (TEA) with Autometric, Inc. (Autometric) of Alexandria, Virginia. The purpose of this agreement is to evaluate and analyze a high-resolution Electronic Still Camera (ESC) for potential commercial applications. During the mission, Autometric will provide unique photo analysis and hard-copy production. Once the mission is complete, Autometric will furnish NASA with an analysis of the ESC s capabilities. Electronic still photography is a developing technology providing the means by which a hand held camera electronically captures and produces a digital image with resolution approaching film quality. The digital image, stored on removable hard disks or small optical disks, can be converted to a format suitable for downlink transmission, or it can be enhanced using image processing software. The on-orbit ability to enhance or annotate high-resolution images and then downlink these images in real-time will greatly improve Space Shuttle and Space Station capabilities in Earth observations and on-board photo documentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin
Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. However, current processes for recycling e-waste only focus on certain metals due to feedstock and metal price uncertainties. In addition, some believe that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from HDDs, this paper combines techno-economic information of a hydrometallurgical process with end-of-life HDD availability in a simulation model.more » Results showed that adding REEs to HDD recycling was profitable given current prices. As a result, recovered REEs could meet up to 5.1% rest of world (excluding China) magnet demand. Aluminum, gold, copper scrap and REEs were the primary main revenue streams from HDD recycling.« less
Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin; ...
2017-06-05
Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. However, current processes for recycling e-waste only focus on certain metals due to feedstock and metal price uncertainties. In addition, some believe that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from HDDs, this paper combines techno-economic information of a hydrometallurgical process with end-of-life HDD availability in a simulation model.more » Results showed that adding REEs to HDD recycling was profitable given current prices. As a result, recovered REEs could meet up to 5.1% rest of world (excluding China) magnet demand. Aluminum, gold, copper scrap and REEs were the primary main revenue streams from HDD recycling.« less
Effect of Polydispersity on Diffusion in Random Obstacle Matrices
NASA Astrophysics Data System (ADS)
Cho, Hyun Woo; Kwon, Gyemin; Sung, Bong June; Yethiraj, Arun
2012-10-01
The dynamics of tracers in disordered matrices is of interest in a number of diverse areas of physics such as the biophysics of crowding in cells and cell membranes, and the diffusion of fluids in porous media. To a good approximation the matrices can be modeled as a collection of spatially frozen particles. In this Letter, we consider the effect of polydispersity (in size) of the matrix particles on the dynamics of tracers. We study a two dimensional system of hard disks diffusing in a sea of hard disk obstacles, for different values of the polydispersity of the matrix. We find that for a given average size and area fraction, the diffusion of tracers is very sensitive to the polydispersity. We calculate the pore percolation threshold using Apollonius diagrams. The diffusion constant, D, follows a scaling relation D˜(ϕc-ϕm)μ-β for all values of the polydispersity, where ϕm is the area fraction and ϕc is the value of ϕm at the percolation threshold.
Effect of polydispersity on diffusion in random obstacle matrices.
Cho, Hyun Woo; Kwon, Gyemin; Sung, Bong June; Yethiraj, Arun
2012-10-12
The dynamics of tracers in disordered matrices is of interest in a number of diverse areas of physics such as the biophysics of crowding in cells and cell membranes, and the diffusion of fluids in porous media. To a good approximation the matrices can be modeled as a collection of spatially frozen particles. In this Letter, we consider the effect of polydispersity (in size) of the matrix particles on the dynamics of tracers. We study a two dimensional system of hard disks diffusing in a sea of hard disk obstacles, for different values of the polydispersity of the matrix. We find that for a given average size and area fraction, the diffusion of tracers is very sensitive to the polydispersity. We calculate the pore percolation threshold using Apollonius diagrams. The diffusion constant, D, follows a scaling relation D~(φ(c)-φ(m))(μ-β) for all values of the polydispersity, where φ(m) is the area fraction and φ(c) is the value of φ(m) at the percolation threshold.
Extremes of the jet–accretion power relation of blazars, as explored by NuSTAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sbarrato, T.; Ghisellini, G.; Tagliaferri, G.
Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z > 2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z = 3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviors. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively themore » most luminous accretion disk and the most powerful jet among known blazars. Furthermore, thanks to these properties, they are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars, to which they are consistent.« less
Recycling potential of neodymium: the case of computer hard disk drives.
Sprecher, Benjamin; Kleijn, Rene; Kramer, Gert Jan
2014-08-19
Neodymium, one of the more critically scarce rare earth metals, is often used in sustainable technologies. In this study, we investigate the potential contribution of neodymium recycling to reducing scarcity in supply, with a case study on computer hard disk drives (HDDs). We first review the literature on neodymium production and recycling potential. From this review, we find that recycling of computer HDDs is currently the most feasible pathway toward large-scale recycling of neodymium, even though HDDs do not represent the largest application of neodymium. We then use a combination of dynamic modeling and empirical experiments to conclude that within the application of NdFeB magnets for HDDs, the potential for loop-closing is significant: up to 57% in 2017. However, compared to the total NdFeB production capacity, the recovery potential from HDDs is relatively small (in the 1-3% range). The distributed nature of neodymium poses a significant challenge for recycling of neodymium.
The Enskog Equation for Confined Elastic Hard Spheres
NASA Astrophysics Data System (ADS)
Maynar, P.; García de Soria, M. I.; Brey, J. Javier
2018-03-01
A kinetic equation for a system of elastic hard spheres or disks confined by a hard wall of arbitrary shape is derived. It is a generalization of the modified Enskog equation in which the effects of the confinement are taken into account and it is supposed to be valid up to moderate densities. From the equation, balance equations for the hydrodynamic fields are derived, identifying the collisional transfer contributions to the pressure tensor and heat flux. A Lyapunov functional, H[f], is identified. For any solution of the kinetic equation, H decays monotonically in time until the system reaches the inhomogeneous equilibrium distribution, that is a Maxwellian distribution with a density field consistent with equilibrium statistical mechanics.
Inflow Generated X-Ray Corona around Supermassive Black Holes and a Unified Model for X-Ray Emission
NASA Astrophysics Data System (ADS)
Wang, Lile; Cen, Renyue
2016-02-01
Three-dimensional hydrodynamic simulations are performed, which cover the spatial domain from hundreds of Schwarzschild radii to 2 pc around the central supermassive black hole of mass {10}8{M}⊙ , with detailed radiative cooling processes. The existence of a significant amount of shock heated, high temperature (≥slant {10}8 {{K}}) coronal gas in the inner (≤slant {10}4{r}{sch}) region is generally found. It is shown that the composite bremsstrahlung emission spectrum due to coronal gas of various temperatures is in reasonable agreement with the overall ensemble spectrum of active galactic nuclei (AGNs) and hard X-ray background. Taking into account inverse Compton processes, in the context of the simulation-produced coronal gas, our model can readily account for the wide variety of AGN spectral shapes, which can now be understood physically. The distinguishing feature of our model is that X-ray coronal gas is, for the first time, an integral part of the inflow gas and its observable characteristics are physically coupled to the concomitant inflow gas. One natural prediction of our model is the anti-correlation between accretion disk luminosity and spectral hardness: as the luminosity of SMBH accretion disk decreases, the hard X-ray luminosity increases relative to the UV/optical luminosity.
Asymmetric 511 keV Positron Annihilation Line Emission from the Inner Galactic Disk
NASA Technical Reports Server (NTRS)
Skinner, Gerry; Weidenspointner, Georg; Jean, Pierre; Knodlseder, Jurgen; Ballmoos, Perer von; Bignami, Giovanni; Diehl, Roland; Strong, Andrew; Cordier, Bertrand; Schanne, Stephane;
2008-01-01
A recently reported asymmetry in the 511 keV gamma-ray line emission from the inner galactic disk is unexpected and mimics an equally unexpected one in the distribution of LMXBs seen at hard X-ray energies. A possible conclusion is that LMXBs are an important source of the positrons whose annihilation gives rise to the line. We will discuss these results, their statistical significance and that of any link between the two. The implication of any association between LMXBs and positrons for the strong annihilation radiation from the galactic bulge will be reviewed.
STS-48 MS Buchli, eating crackers on OV-103's middeck, is captured by ESC
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Mission Specialist (MS) James F. Buchli 'catches' goldfish snack crackers as they float in the weightless environment of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. Buchli's eating activity on the middeck was documented using the Electronic Still Camera (ESC). Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shuttle mission.
X-RAY VARIABILITY AND HARDNESS OF ESO 243-49 HLX-1: CLEAR EVIDENCE FOR SPECTRAL STATE TRANSITIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Servillat, Mathieu; Farrell, Sean A.; Lin Dacheng
2011-12-10
The ultraluminous X-ray (ULX) source ESO 243-49 HLX-1, which reaches a maximum luminosity of 10{sup 42} erg s{sup -1} (0.2-10 keV), currently provides the strongest evidence for the existence of intermediate-mass black holes (IMBHs). To study the spectral variability of the source, we conduct an ongoing monitoring campaign with the Swift X-ray Telescope (XRT), which now spans more than two years. We found that HLX-1 showed two fast rise and exponential decay type outbursts in the Swift XRT light curve with increases in the count rate of a factor {approx}40 separated by 375 {+-} 13 days. We obtained new XMM-Newtonmore » and Chandra dedicated pointings that were triggered at the lowest and highest luminosities, respectively. From spectral fitting, the unabsorbed luminosities ranged from 1.9 Multiplication-Sign 10{sup 40} to 1.25 Multiplication-Sign 10{sup 42} erg s{sup -1}. We confirm here the detection of spectral state transitions from HLX-1 reminiscent of Galactic black hole binaries (GBHBs): at high luminosities, the X-ray spectrum showed a thermal state dominated by a disk component with temperatures of 0.26 keV at most, and at low luminosities the spectrum is dominated by a hard power law with a photon index in the range 1.4-2.1, consistent with a hard state. The source was also observed in a state consistent with the steep power-law state, with a photon index of {approx}3.5. In the thermal state, the luminosity of the disk component appears to scale with the fourth power of the inner disk temperature, which supports the presence of an optically thick, geometrically thin accretion disk. The low fractional variability (rms of 9% {+-} 9%) in this state also suggests the presence of a dominant disk. The spectral changes and long-term variability of the source cannot be explained by variations of the beaming angle and are not consistent with the source being in a super-Eddington accretion state as is proposed for most ULX sources with lower luminosities. All this indicates that HLX-1 is an unusual ULX as it is similar to GBHBs, which have non-beamed and sub-Eddington emission, but with luminosities three orders of magnitude higher. In this picture, a lower limit on the mass of the black hole of >9000 M{sub Sun} can be derived, and the relatively low disk temperature in the thermal state also suggests the presence of an IMBH of a few 10{sup 3} M{sub Sun }.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J. Y.; Liu, B. F.; Qiao, E. L.
We investigate the accretion process in high-luminosity active galactic nuclei (HLAGNs) in the scenario of the disk evaporation model. Based on this model, the thin disk can extend down to the innermost stable circular orbit (ISCO) at accretion rates higher than 0.02 M-dot{sub Edd} while the corona is weak since part of the coronal gas is cooled by strong inverse Compton scattering of the disk photons. This implies that the corona cannot produce as strong X-ray radiation as observed in HLAGNs with large Eddington ratio. In addition to the viscous heating, other heating to the corona is necessary to interpretmore » HLAGN. In this paper, we assume that a part of accretion energy released in the disk is transported into the corona, heating up the electrons, and is thereby radiated away. For the first time, we compute the corona structure with additional heating, fully taking into account the mass supply to the corona, and find that the corona could indeed survive at higher accretion rates and that its radiation power increases. The spectra composed of bremsstrahlung and Compton radiation are also calculated. Our calculations show that the Compton-dominated spectrum becomes harder with the increase of energy fraction (f) liberating in the corona, and the photon index for hard X-ray (2-10 keV) is 2.2 < {Gamma} < 2.7. We discuss possible heating mechanisms for the corona. Combining the energy fraction transported to the corona with the accretion rate by magnetic heating, we find that the hard X-ray spectrum becomes steeper at a larger accretion rate and the bolometric correction factor (L{sub bol}/L{sub 2-10keV}) increases with increasing accretion rate for f < 8/35, which is roughly consistent with the observational results.« less
CHANDRA/ACIS-I STUDY OF THE X-RAY PROPERTIES OF THE NGC 6611 AND M16 STELLAR POPULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guarcello, M. G.; Drake, J. J.; Caramazza, M.
2012-07-10
Mechanisms regulating the origin of X-rays in young stellar objects and the correlation with their evolutionary stage are under debate. Studies of the X-ray properties in young clusters allow us to understand these mechanisms. One ideal target for this analysis is the Eagle Nebula (M16), with its central cluster NGC 6611. At 1750 pc from the Sun, it harbors 93 OB stars, together with a population of low-mass stars from embedded protostars to disk-less Class III objects, with age {<=}3 Myr. We study an archival 78 ks Chandra/ACIS-I observation of NGC 6611 and two new 80 ks observations of themore » outer region of M16, one centered on the Column V and the other on a region of the molecular cloud with ongoing star formation. We detect 1755 point sources with 1183 candidate cluster members (219 disk-bearing and 964 disk-less). We study the global X-ray properties of M16 and compare them with those of the Orion Nebula Cluster. We also compare the level of X-ray emission of Class II and Class III stars and analyze the X-ray spectral properties of OB stars. Our study supports the lower level of X-ray activity for the disk-bearing stars with respect to the disk-less members. The X-ray luminosity function (XLF) of M16 is similar to that of Orion, supporting the universality of the XLF in young clusters. Eighty-five percent of the O stars of NGC 6611 have been detected in X-rays. With only one possible exception, they show soft spectra with no hard components, indicating that mechanisms for the production of hard X-ray emission in O stars are not operating in NGC 6611.« less
Classical Accreting Pulsars with NICER
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.
2014-01-01
Soft excesses are very common center dot Lx > 1038 erg/s - reprocessing by optically thick material at the inner edge of the accretion disk center dot Lx < 1036 erg/s - photoionized or collisionally heated diffuse gas or thermal emission from the NS surface center dot Lx 1037 erg/s - either or both types of emission center dot NICER observations of soft excesses in bright X-ray pulsars combined with reflection modeling will constrain the ionization state, metalicity and dynamics of the inner edge of the magnetically truncated accretion disk Reflection models of an accretion disk for a hard power law - Strong soft excess below 3 keV from hot X-ray heated disk - For weakly ionized case: strong recombination lines - Are we seeing changes in the disk ionization in 4U1626-26? 13 years of weekly monitoring with RXTE PCA center dot Revealed an unexpectedly large population of Be/X-ray binaries compared to the Milky Way center dot Plotted luminosities are typical of "normal" outbursts (once per orbit) center dot The SMC provides an excellent opportunity to study a homogenous population of HMXBs with low interstellar absorption for accretion disk studies. Monitoring with NICER will enable studies of accretion disk physics in X-ray pulsars center dot The SMC provides a potential homogeneous low-absorption population for this study center dot NICER monitoring and TOO observations will also provide measurements of spinfrequencies, QPOs, pulsed fluxes, and energy spectra.
47 CFR 14.51 - Specifications as to pleadings, briefs, and other documents; subscription.
Code of Federal Regulations, 2012 CFR
2012-10-01
... other documents; subscription. 14.51 Section 14.51 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO ADVANCED COMMUNICATIONS SERVICES AND EQUIPMENT BY PEOPLE WITH DISABILITIES Recordkeeping... improper purpose. (d) All proposed orders shall be submitted both as hard copies and on computer disk...
47 CFR 14.51 - Specifications as to pleadings, briefs, and other documents; subscription.
Code of Federal Regulations, 2014 CFR
2014-10-01
... other documents; subscription. 14.51 Section 14.51 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO ADVANCED COMMUNICATIONS SERVICES AND EQUIPMENT BY PEOPLE WITH DISABILITIES Recordkeeping... improper purpose. (d) All proposed orders shall be submitted both as hard copies and on computer disk...
47 CFR 14.51 - Specifications as to pleadings, briefs, and other documents; subscription.
Code of Federal Regulations, 2013 CFR
2013-10-01
... other documents; subscription. 14.51 Section 14.51 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO ADVANCED COMMUNICATIONS SERVICES AND EQUIPMENT BY PEOPLE WITH DISABILITIES Recordkeeping... improper purpose. (d) All proposed orders shall be submitted both as hard copies and on computer disk...
Industrial-Strength Streaming Video.
ERIC Educational Resources Information Center
Avgerakis, George; Waring, Becky
1997-01-01
Corporate training, financial services, entertainment, and education are among the top applications for streaming video servers, which send video to the desktop without downloading the whole file to the hard disk, saving time and eliminating copyrights questions. Examines streaming video technology, lists ten tips for better net video, and ranks…
14 CFR § 1206.700 - Schedule of fees.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... These charges for copies include the time spent in duplicating the documents. For copies of computer disks, still photographs, blueprints, videotapes, engineering drawings, hard copies of aperture cards... computers which may be required in responding to requests for Agency records maintained in whole or in part...
Launching large computing applications on a disk-less cluster
NASA Astrophysics Data System (ADS)
Schwemmer, Rainer; Caicedo Carvajal, Juan Manuel; Neufeld, Niko
2011-12-01
The LHCb Event Filter Farm system is based on a cluster of the order of 1.500 disk-less Linux nodes. Each node runs one instance of the filtering application per core. The amount of cores in our current production environment is 8 per machine for the old cluster and 12 per machine on extension of the cluster. Each instance has to load about 1.000 shared libraries, weighting 200 MB from several directory locations from a central repository. The repository is currently hosted on a SAN and exported via NFS. The libraries are all available in the local file system cache on every node. Loading a library still causes a huge number of requests to the server though, because the loader will try to probe every available path. Measurements show there are between 100.000-200.000 calls per application instance start up. Multiplied by the numbers of cores in the farm, this translates into a veritable DDoS attack on the servers, which lasts several minutes. Since the application is being restarted frequently, a better solution had to be found.scp Rolling out the software to the nodes is out of the question, because they have no disks and the software in it's entirety is too large to put into a ram disk. To solve this problem we developed a FUSE based file systems which acts as a permanent, controllable cache that keeps the essential files that are necessary in stock.
Fan, Changzeng; Li, Jian; Wang, Limin
2014-01-01
We have explored the mechanical properties, electronic structures and phase transition behaviors of three designed new phases for element boron from ambient condition to high-pressure of 120 GPa including (1) a C2/c symmetric structure (m-B16); (2) a symmetric structure (c-B56) and (3) a Pmna symmetric structure (o-B24). The calculation of the elastic constants and phonon dispersions shows that the phases are of mechanical and dynamic stability. The m-B16 phase is found to transform into another new phase (the o-B16 phase) when pressure exceeds 68 GPa. This might offer a new synthesis strategy for o-B16 from the metastable m-B16 at low temperature under high pressure, bypassing the thermodynamically stable γ-B28. The enthalpies of the c-B56 and o-B24 phases are observed to increase with pressure. The hardness of m-B16 and o-B16 is calculated to be about 56 GPa and 61 GPa, approaching to the highest value of 61 GPa recorded for α-Ga-B among all available Boron phases. The electronic structures and bonding characters are analyzed according to the difference charge-density and crystal orbital Hamilton population (COHP), revealing the metallic nature of the three phases. PMID:25345910
1990-12-17
were measured with LVDT’s mounted on rings encircling the sample. Axial force was generated from an amplified D/A sinusoidal voltage and up to 1000...19 inch rack mount or stand-alone, 7.0 inches high 10 Mbit Ethernet With on-board Transceiver 1.5 Mb/Sec Asynchronous SCSI Bus UNIX and C right to...use license HA RD WARE 4 or 12 MByte Expansion Memory Boards Monochrome or Color Video, Monitor, Keyboard, and Mouse 19-inch Rack- Mount Removable Disk
Alpha, Tau Rho; Diggles, Michael F.
1998-01-01
This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.
Iron lines in model disk spectra of Galactic black hole binaries
NASA Astrophysics Data System (ADS)
Różańska, A.; Madej, J.; Konorski, P.; SaḐowski, A.
2011-03-01
Context. We present angle-dependent, broad-band intensity spectra from accretion disks around black holes of 10 M⊙. In our computations disks are assumed to be slim, which means that the radial advection is taken into account while computing the effective temperature of the disk. Aims: We attempt to reconstruct continuum and line spectra of X-ray binaries in soft state, i.e. dominated by the disk component of multitemperature shape. We follow how the iron-line complex depends on the external irradiation, an accretion rate, and a black hole spin. Methods: Full radiative transfer is solved including effects of Compton scattering, free-free and all important bound-free transitions of 10 main elements. We assume the LTE equation of state. Moreover, we include here the fundamental series of iron lines from helium-like and hydrogen-like ions, and fluorescent Kα and Kβ lines from low ionized iron. We consider two cases: nonrotating black hole, and black hole rotating with almost maximum spin a = 0.98, and obtain spectra for five accretion disks from hard X-rays to the infrared. Results: In nonirradiated disks, resonance lines from He-like and H-like iron appear mostly in absorption. Such disk spectra exhibit limb darkening in the whole energy range. External irradiation causes that iron resonance lines appear in emission. Furthermore, depending on disk effective temperature, fluorescent iron Kα and Kβ lines are present in disk emitting spectra. All models with irradiation exhibit limb brightening in their X-ray reflected continua. Conclusions: We show that the disk around stellar black hole itself is hot enough to produce strong-absorption resonance lines of iron. Emission lines can only be observed if heating by external X-rays dominates thermal processess in a hot disk atmosphere. Irradiated disks are usually brighter in X-ray continuum when seen edge on, and fainter when seen face on.
NASA Astrophysics Data System (ADS)
Godon, Patrick; Sion, Edward M.; Balman, Şölen; Blair, William P.
2017-09-01
The standard disk is often inadequate to model disk-dominated cataclysmic variables (CVs) and generates a spectrum that is bluer than the observed UV spectra. X-ray observations of these systems reveal an optically thin boundary layer (BL) expected to appear as an inner hole in the disk. Consequently, we truncate the inner disk. However, instead of removing the inner disk, we impose the no-shear boundary condition at the truncation radius, thereby lowering the disk temperature and generating a spectrum that better fits the UV data. With our modified disk, we analyze the archival UV spectra of three novalikes that cannot be fitted with standard disks. For the VY Scl systems MV Lyr and BZ Cam, we fit a hot inflated white dwarf (WD) with a cold modified disk (\\dot{M} ˜ a few 10-9 M ⊙ yr-1). For V592 Cas, the slightly modified disk (\\dot{M}˜ 6× {10}-9 {M}⊙ {{yr}}-1) completely dominates the UV. These results are consistent with Swift X-ray observations of these systems, revealing BLs merged with ADAF-like flows and/or hot coronae, where the advection of energy is likely launching an outflow and heating the WD, thereby explaining the high WD temperature in VY Scl systems. This is further supported by the fact that the X-ray hardness ratio increases with the shallowness of the UV slope in a small CV sample we examine. Furthermore, for 105 disk-dominated systems, the International Ultraviolet Explorer spectra UV slope decreases in the same order as the ratio of the X-ray flux to optical/UV flux: from SU UMa’s, to U Gem’s, Z Cam’s, UX UMa’s, and VY Scl’s.
More on accreting black hole spacetime in equatorial plane
NASA Astrophysics Data System (ADS)
Salahshoor, K.; Nozari, K.; Khesali, A. R.
2017-02-01
Spacetime around an accreting black hole is an interesting issue to study. The metric of an isolated black hole (rotating or non-rotating) spacetime has been well-known for decades. Although metrics of some spacetimes containing accreting black holes are known in some situations, the issue has some faces that are not well-known yet and need further investigation. In this paper, we construct a new form of metric which the effect of accretion disk on black hole spacetime is taken into account in the equatorial plane. We study motion and trajectories of massive particles and also photons falling from infinity towards black hole in equatorial plane around the black hole. We use an exponential form for the density profile of the accretion disk in equatorial plane as ρ =ρ0e^{-α r}. We show that with this density profile, the disk is radially stable if α ≤ 3 × 10^{-3} (in units of length inverse). In order to study some important quantities related to the accretion disks such as locations of marginally stable circular orbits (r_{ms} or r_{ISCO}), marginally bounded circular orbits (r_{mb}), and also photon orbits in equatorial plane, we use the effective potential approach. We show that in this spacetime metric the innermost stable circular orbit in equatorial plane is given by r_{ISCO}=4.03 μ (where μ =MG/c 2) which is different, but comparable, with the Schwarzschild spacetime result, r^{(Sch)}_{ISCO}=6 μ . We show that the maximum radiation efficiency of the accretion disk, η , in equatorial plane is 8.6 percent which is greater than the corresponding value for Schwarzschild spacetime. Finally, we show that in this setup photons can have stable circular orbits in equatorial plane unlike the Schwarzschild spacetime.
PCM-Based Durable Write Cache for Fast Disk I/O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhuo; Wang, Bin; Carpenter, Patrick
2012-01-01
Flash based solid-state devices (FSSDs) have been adopted within the memory hierarchy to improve the performance of hard disk drive (HDD) based storage system. However, with the fast development of storage-class memories, new storage technologies with better performance and higher write endurance than FSSDs are emerging, e.g., phase-change memory (PCM). Understanding how to leverage these state-of-the-art storage technologies for modern computing systems is important to solve challenging data intensive computing problems. In this paper, we propose to leverage PCM for a hybrid PCM-HDD storage architecture. We identify the limitations of traditional LRU caching algorithms for PCM-based caches, and develop amore » novel hash-based write caching scheme called HALO to improve random write performance of hard disks. To address the limited durability of PCM devices and solve the degraded spatial locality in traditional wear-leveling techniques, we further propose novel PCM management algorithms that provide effective wear-leveling while maximizing access parallelism. We have evaluated this PCM-based hybrid storage architecture using applications with a diverse set of I/O access patterns. Our experimental results demonstrate that the HALO caching scheme leads to an average reduction of 36.8% in execution time compared to the LRU caching scheme, and that the SFC wear leveling extends the lifetime of PCM by a factor of 21.6.« less
Discovery of Photon Index Saturation in the Black Hole Binary GRS 1915+105
NASA Technical Reports Server (NTRS)
Titarchuk, Lev; Seifina, Elena
2009-01-01
We present a study of the correlations between spectral, timing properties and mass accretion rate observed in X-rays from the Galactic Black Hole (BH) binary GRS 1915+105 during the transition between hard and soft states. We analyze all transition episodes from this source observed with Rossi X-ray Timing Explorer (RXTE), coordinated with Ryle Radio Telescope (RT) observations. We show that broad-band energy spectra of GRS 1915+105 during all these spectral states can be adequately presented by two Bulk Motion Comptonization (BMC) components: a hard component (BMC1, photon index Gamma(sub 1) = 1.7 -- 3.0) with turnover at high energies and soft thermal component (BMC2, Gamma(sub 2) = 2.7 -- 4.2) with characteristic color temperature < or = 1 keV, and the red-skewed iron line (LAOR) component. We also present observable correlations between the index and the normalization of the disk "seed" component. The use of "seed" disk normalization, which is presumably proportional to mass accretion rate in the disk, is crucial to establish the index saturation effect during the transition to the soft state. We discovered the photon index saturation of the soft and hard spectral components at values of < or approximately equal 4.2 and 3 respectively. We present a physical model which explains the index-seed photon normalization correlations. We argue that the index saturation effect of the hard component (BMC1) is due to the soft photon Comptonization in the converging inflow close to 1311 and that of soft component is due to matter accumulation in the transition layer when mass accretion rate increases. Furthermore we demonstrate a strong correlation between equivalent width of the iron line and radio flux in GRS 1915+105. In addition to our spectral model components we also find a strong feature of "blackbody-like" bump which color temperature is about 4.5 keV in eight observations of the intermediate and soft states. We discuss a possible origin of this "blackbody-like" emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, A.E.; Tschanz, J.; Monarch, M.
1996-05-01
The Air Quality Utility Information System (AQUIS) is a database management system that operates under dBASE IV. It runs on an IBM-compatible personal computer (PC) with MS DOS 5.0 or later, 4 megabytes of memory, and 30 megabytes of disk space. AQUIS calculates emissions for both traditional and toxic pollutants and reports emissions in user-defined formats. The system was originally designed for use at 7 facilities of the Air Force Materiel Command, and now more than 50 facilities use it. Within the last two years, the system has been used in support of Title V permit applications at Department ofmore » Defense facilities. Growth in the user community, changes and additions to reference emission factor data, and changing regulatory requirements have demanded additions and enhancements to the system. These changes have ranged from adding or updating an emission factor to restructuring databases and adding new capabilities. Quality assurance (QA) procedures have been developed to ensure that emission calculations are correct even when databases are reconfigured and major changes in calculation procedures are implemented. This paper describes these QA and updating procedures. Some user facilities include light industrial operations associated with aircraft maintenance. These facilities have operations such as fiberglass and composite layup and plating operations for which standard emission factors are not available or are inadequate. In addition, generally applied procedures such as material balances may need special treatment to work in an automated environment, for example, in the use of oils and greases and when materials such as polyurethane paints react chemically during application. Some techniques used in these situations are highlighted here. To provide a framework for the main discussions, this paper begins with a description of AQUIS.« less
47 CFR 1.734 - Specifications as to pleadings, briefs, and other documents; subscription.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Specifications as to pleadings, briefs, and other documents; subscription. 1.734 Section 1.734 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... submitted both as hard copies and on computer disk formatted to be compatible with the Commission's computer...
47 CFR 1.734 - Specifications as to pleadings, briefs, and other documents; subscription.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Specifications as to pleadings, briefs, and other documents; subscription. 1.734 Section 1.734 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... submitted both as hard copies and on computer disk formatted to be compatible with the Commission's computer...
47 CFR 1.734 - Specifications as to pleadings, briefs, and other documents; subscription.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Specifications as to pleadings, briefs, and other documents; subscription. 1.734 Section 1.734 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... submitted both as hard copies and on computer disk formatted to be compatible with the Commission's computer...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-21
... the HDA incorporate semiconductor, magnetic, mechanical, and manufacturing process design into an..., mechanical surface design and manufacturing process design. It takes approximately [xxx] hours to design... brand names ``Barracuda'' and ``Desktop''. HDDs are designed in the United States and assembled either...
Multisensory Public Access Catalogs on CD-ROM.
ERIC Educational Resources Information Center
Harrison, Nancy; Murphy, Brower
1987-01-01
BiblioFile Intelligent Catalog is a CD-ROM-based public access catalog system which incorporates graphics and sound to provide a multisensory interface and artificial intelligence techniques to increase search precision. The system can be updated frequently and inexpensively by linking hard disk drives to CD-ROM optical drives. (MES)
Evaluation of a Biometric Keystroke Typing Dynamics Computer Security System
1992-03-01
intrusions, numerous computer systems have been threatened or destroyed by virus attacks. A recent example was the virus called " Michelangelo ," which...threatened to destroy all data on infected hard disks on the birthday of the artist Michelangelo , 6 March, in 1992. During the 1991 Persian Gulf War
The Stoner-Wohlfarth Model of Ferromagnetism
ERIC Educational Resources Information Center
Tannous, C.; Gieraltowski, J.
2008-01-01
The Stoner-Wohlfarth (SW) model is the simplest model that describes adequately the physics of fine magnetic grains, the magnetization of which can be used in digital magnetic storage (floppies, hard disks and tapes). Magnetic storage density is presently increasing steadily in almost the same way as electronic device size and circuitry are…
VPI - VIBRATION PATTERN IMAGER: A CONTROL AND DATA ACQUISITION SYSTEM FOR SCANNING LASER VIBROMETERS
NASA Technical Reports Server (NTRS)
Rizzi, S. A.
1994-01-01
The Vibration Pattern Imager (VPI) system was designed to control and acquire data from laser vibrometer sensors. The PC computer based system uses a digital signal processing (DSP) board and an analog I/O board to control the sensor and to process the data. The VPI system was originally developed for use with the Ometron VPI Sensor (Ometron Limited, Kelvin House, Worsley Bridge Road, London, SE26 5BX, England), but can be readily adapted to any commercially available sensor which provides an analog output signal and requires analog inputs for control of mirror positioning. VPI's graphical user interface allows the operation of the program to be controlled interactively through keyboard and mouse-selected menu options. The main menu controls all functions for setup, data acquisition, display, file operations, and exiting the program. Two types of data may be acquired with the VPI system: single point or "full field". In the single point mode, time series data is sampled by the A/D converter on the I/O board at a user-defined rate for the selected number of samples. The position of the measuring point, adjusted by mirrors in the sensor, is controlled via a mouse input. In the "full field" mode, the measurement point is moved over a user-selected rectangular area with up to 256 positions in both x and y directions. The time series data is sampled by the A/D converter on the I/O board and converted to a root-mean-square (rms) value by the DSP board. The rms "full field" velocity distribution is then uploaded for display and storage. VPI is written in C language and Texas Instruments' TMS320C30 assembly language for IBM PC series and compatible computers running MS-DOS. The program requires 640K of RAM for execution, and a hard disk with 10Mb or more of disk space is recommended. The program also requires a mouse, a VGA graphics display, a Four Channel analog I/O board (Spectrum Signal Processing, Inc.; Westborough, MA), a break-out box and a Spirit-30 board (Sonitech International, Inc.; Wellesley, MA) which includes a TMS320C30 DSP processor, 256Kb zero wait state SRAM, and a daughter board with 8Mb one wait state DRAM. Please contact COSMIC for additional information on required hardware and software. In order to compile the provided VPI source code, a Microsoft C version 6.0 compiler, a Texas Instruments' TMS320C30 assembly language compiler, and the Spirit 30 run time libraries are required. A math co-processor is highly recommended. A sample MS-DOS executable is provided on the distribution medium. The standard distribution medium for this program is one 5.25 inch 360K MS-DOS format diskette. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. VPI was developed in 1991-1992.
ACCRETION FLOW DYNAMICS OF MAXI J1836-194 DURING ITS 2011 OUTBURST FROM TCAF SOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jana, Arghajit; Debnath, Dipak; Chakrabarti, Sandip K.
2016-03-20
The Galactic transient X-ray binary MAXI J1836-194 was discovered on 2011 August 29. Here we make a detailed study of the spectral and timing properties of its 2011 outburst using archival data from the RXTE Proportional Counter Array instrument. The evolution of accretion flow dynamics of the source during the outburst through spectral analysis with Chakrabarti–Titarchuk’s two-component advective flow (TCAF) solution as a local table model in XSPEC. We also fitted spectra with combined disk blackbody and power-law models and compared it with the TCAF model fitted results. The source is found to be in hard and hard-intermediate spectral states onlymore » during the entire phase of this outburst. No soft or soft-intermediate spectral states are observed. This could be due to the fact that this object belongs to a special class of sources (e.g., MAXI J1659-152, Swift J1753.5-0127, etc.) that have very short orbital periods and that the companion is profusely mass-losing or the disk is immersed inside an excretion disk. In these cases, flows in the accretion disk are primarily dominated by low viscous sub-Keplerian flow and the Keplerian rate is not high enough to initiate softer states. Low-frequency quasi-periodic oscillations (QPOs) are observed sporadically although as in normal outbursts of transient black holes, monotonic evolutions of QPO frequency during both rising and declining phases are observed. From the TCAF fits, we find the mass of the black hole in the range of 7.5–11 M{sub ⊙}, and from time differences between peaks of the Keplerian and sub-Keplerian accretion rates we obtain a viscous timescale for this particular outburst, ∼10 days.« less
Formation and Destruction of Jets in X-ray Binaries
NASA Technical Reports Server (NTRS)
Kylafix, N. D.; Contopoulos, I.; Kazanas, D.; Christodoulou, D. M.
2011-01-01
Context. Neutron-star and black-hole X-ray binaries (XRBs) exhibit radio jets, whose properties depend on the X-ray spectral state e.nd history of the source. In particular, black-hole XRBs emit compact, 8teady radio jets when they are in the so-called hard state. These jets become eruptive as the sources move toward the soft state, disappear in the soft state, and then re-appear when the sources return to the hard state. The jets from neutron-star X-ray binaries are typically weaker radio emitters than the black-hole ones at the same X-ray luminosity and in some cases radio emission is detected in the soft state. Aims. Significant phenomenology has been developed to describe the spectral states of neutron-star and black-hole XRBs, and there is general agreement about the type of the accretion disk around the compact object in the various spectral states. We investigate whether the phenomenology describing the X-ray emission on one hand and the jet appearance and disappearance on the other can be put together in a consistent physical picture. Methods. We consider the so-called Poynting-Robertson cosmic battery (PRCB), which has been shown to explain in a natural way the formation of magnetic fields in the disks of AGNs and the ejection of jets. We investigate whether the PRCB can also explain the [ormation, destruction, and variability or jets in XRBs. Results. We find excellent agreement between the conditions under which the PRCB is efficient (i.e., the type of the accretion disk) and the emission or destruction of the r.adio jet. Conclusions. The disk-jet connection in XRBs can be explained in a natural way using the PRCB.
NASA Technical Reports Server (NTRS)
Sambruna, Rita; Gliozzi, Mario; Tavecchio, F.; Maraschi, L.; Foschini, Luigi
2007-01-01
The connection between the accretion process that powers AGN and the formation of jets is still poorly understood. Here we tackle this issue using new, deep Chandra and XMM-Newton observations of tlie cores of three powerful radio loud quasars: 1136-135, 1150+497 (Chandra), and 0723+679 (XMM-Newton), in the redshift range z=0.3-0.8. These sources are known from our previous Chandra siiapsliot survey to liave kpc-scale X-ray jets. In 1136-135 and 1150-1+497; evidence is found for the presence of diffuse thermal X-ray emission around the cores; on scales of 40-50 kpc and with luminosity L(sub 0.3-2 kev approx. 10(sup 43) erg per second, suggesting thermal emission from the host galaxy or a galaxy group. The X-ray continua of the cores in the three sources are described by an upward-curved (concave) broken power law, with photon indices GAMMA (sub soft) approx. 1.8 - 2.1 and GAMMA (sub hard) approx. 1.7 below and above approx. equal to 2 keV, respectively. There is evidence for an uiiresolved Fe K alpha line with EW approx. 70 eV in the three quasars. The Spectral Energy Distributions of the sources can be well described by a mix of jet and disk emission, with the jet dominating the radio and hard X-rays (via synchrotron and external Compton) and the disk dominating the optical/UV through soft X-rays. The ratio of the jet-to-disk powers is approx. 1, consistent with those derived for a number of gamma ray emitting blazars. This indicates that near equality of accretion and jet power may be common in powerful radio-loud AGN.
The optical, ultraviolet, and X-ray structure of the quasar HE 0435–1223
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blackburne, Jeffrey A.; Kochanek, Christopher S.; Chen, Bin
2014-07-10
Microlensing has proved an effective probe of the structure of the innermost regions of quasars and an important test of accretion disk models. We present light curves of the lensed quasar HE 0435–1223 in the R band and in the ultraviolet (UV), and consider them together with X-ray light curves in two energy bands that are presented in a companion paper. Using a Bayesian Monte Carlo method, we constrain the size of the accretion disk in the rest-frame near- and far-UV, and constrain for the first time the size of the X-ray emission regions in two X-ray energy bands. Themore » R-band scale size of the accretion disk is about 10{sup 15.23} cm (∼23r{sub g}), slightly smaller than previous estimates, but larger than would be predicted from the quasar flux. In the UV, the source size is weakly constrained, with a strong prior dependence. The UV to R-band size ratio is consistent with the thin disk model prediction, with large error bars. In soft and hard X-rays, the source size is smaller than ∼10{sup 14.8} cm (∼10r{sub g} ) at 95% confidence. We do not find evidence of structure in the X-ray emission region, as the most likely value for the ratio of the hard X-ray size to the soft X-ray size is unity. Finally, we find that the most likely value for the mean mass of stars in the lens galaxy is ∼0.3 M{sub ☉}, consistent with other studies.« less
Three-body correlations and conditional forces in suspensions of active hard disks
NASA Astrophysics Data System (ADS)
Härtel, Andreas; Richard, David; Speck, Thomas
2018-01-01
Self-propelled Brownian particles show rich out-of-equilibrium physics, for instance, the motility-induced phase separation (MIPS). While decades of studying the structure of liquids have established a deep understanding of passive systems, not much is known about correlations in active suspensions. In this work we derive an approximate analytic theory for three-body correlations and forces in systems of active Brownian disks starting from the many-body Smoluchowski equation. We use our theory to predict the conditional forces that act on a tagged particle and their dependence on the propulsion speed of self-propelled disks. We identify preferred directions of these forces in relation to the direction of propulsion and the positions of the surrounding particles. We further relate our theory to the effective swimming speed of the active disks, which is relevant for the physics of MIPS. To test and validate our theory, we additionally run particle-resolved computer simulations, for which we explicitly calculate the three-body forces. In this context, we discuss the modeling of active Brownian swimmers with nearly hard interaction potentials. We find very good agreement between our simulations and numerical solutions of our theory, especially for the nonequilibrium pair-distribution function. For our analytical results, we carefully discuss their range of validity in the context of the different levels of approximation we applied. This discussion allows us to study the individual contribution of particles to three-body forces and to the emerging structure. Thus, our work sheds light on the collective behavior, provides the basis for further studies of correlations in active suspensions, and makes a step towards an emerging liquid state theory.
The Design and Application of Data Storage System in Miyun Satellite Ground Station
NASA Astrophysics Data System (ADS)
Xue, Xiping; Su, Yan; Zhang, Hongbo; Liu, Bin; Yao, Meijuan; Zhao, Shu
2015-04-01
China has launched Chang'E-3 satellite in 2013, firstly achieved soft landing on moon for China's lunar probe. Miyun satellite ground station firstly used SAN storage network system based-on Stornext sharing software in Chang'E-3 mission. System performance fully meets the application requirements of Miyun ground station data storage.The Stornext file system is a sharing file system with high performance, supports multiple servers to access the file system using different operating system at the same time, and supports access to data on a variety of topologies, such as SAN and LAN. Stornext focused on data protection and big data management. It is announced that Quantum province has sold more than 70,000 licenses of Stornext file system worldwide, and its customer base is growing, which marks its leading position in the big data management.The responsibilities of Miyun satellite ground station are the reception of Chang'E-3 satellite downlink data and management of local data storage. The station mainly completes exploration mission management, receiving and management of observation data, and provides a comprehensive, centralized monitoring and control functions on data receiving equipment. The ground station applied SAN storage network system based on Stornext shared software for receiving and managing data reliable.The computer system in Miyun ground station is composed by business running servers, application workstations and other storage equipments. So storage systems need a shared file system which supports heterogeneous multi-operating system. In practical applications, 10 nodes simultaneously write data to the file system through 16 channels, and the maximum data transfer rate of each channel is up to 15MB/s. Thus the network throughput of file system is not less than 240MB/s. At the same time, the maximum capacity of each data file is up to 810GB. The storage system planned requires that 10 nodes simultaneously write data to the file system through 16 channels with 240MB/s network throughput.When it is integrated,sharing system can provide 1020MB/s write speed simultaneously.When the master storage server fails, the backup storage server takes over the normal service.The literacy of client will not be affected,in which switching time is less than 5s.The design and integrated storage system meet users requirements. Anyway, all-fiber way is too expensive in SAN; SCSI hard disk transfer rate may still be the bottleneck in the development of the entire storage system. Stornext can provide users with efficient sharing, management, automatic archiving of large numbers of files and hardware solutions. It occupies a leading position in big data management. Storage is the most popular sharing shareware, and there are drawbacks in Stornext: Firstly, Stornext software is expensive, in which charge by the sites. When the network scale is large, the purchase cost will be very high. Secondly, the parameters of Stornext software are more demands on the skills of technical staff. If there is a problem, it is difficult to exclude.
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1974-01-01
The lubricating properties of some benzyl and benzene structures were determined by using 304 stainless steel surfaces strained to various hardness. Friction coefficients and wear track widths were measured with a Bowden-Leben type friction apparatus by using a pin-on-disk specimen configuration. Results obtained indicate that benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol resulted in the lowest friction coefficients for 304 stainless steel, while benzyl ether provided the least surface protection and gave the highest friction. Strainhardening of the 304 stainless steel prior to sliding resulted in reduced friction in dry sliding. With benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol changes in 304 stainless steel hardness had no effect upon friction behavior.
Hard Spheres on the Primitive Surface
NASA Astrophysics Data System (ADS)
Dotera, Tomonari; Takahashi, Yusuke
2015-03-01
Recently hierarchical structures associated with the gyroid in several soft-matter systems have been reported. One of fundamental questions is regular arrangement or tiling on minimal surfaces. We have found certain numbers of hard spheres per unit cell on the gyroid surface are entropically self-organized. Here, new results for the primitive surface are presented. 56/64/72 per unit cell on the primitive minimal surface are entropically self-organized. Numerical evidences for the fluid-solid transition as a function of hard sphere radius are obtained in terms of the acceptance ratio of Monte Carlo moves and order parameters. These arrangements, which are the extensions of the hexagonal arrangement on a flat surface, can be viewed as hyperbolic tiling on the Poincaré disk with a negative Gaussian curvature.
TEJAS - TELEROBOTICS/EVA JOINT ANALYSIS SYSTEM VERSION 1.0
NASA Technical Reports Server (NTRS)
Drews, M. L.
1994-01-01
The primary objective of space telerobotics as a research discipline is the augmentation and/or support of extravehicular activity (EVA) with telerobotic activity; this allows increased emplacement of on-orbit assets while providing for their "in situ" management. Development of the requisite telerobot work system requires a well-understood correspondence between EVA and telerobotics that to date has been only partially established. The Telerobotics/EVA Joint Analysis Systems (TEJAS) hypermedia information system uses object-oriented programming to bridge the gap between crew-EVA and telerobotics activities. TEJAS Version 1.0 contains twenty HyperCard stacks that use a visual, customizable interface of icon buttons, pop-up menus, and relational commands to store, link, and standardize related information about the primitives, technologies, tasks, assumptions, and open issues involved in space telerobot or crew EVA tasks. These stacks are meant to be interactive and can be used with any database system running on a Macintosh, including spreadsheets, relational databases, word-processed documents, and hypermedia utilities. The software provides a means for managing volumes of data and for communicating complex ideas, relationships, and processes inherent to task planning. The stack system contains 3MB of data and utilities to aid referencing, discussion, communication, and analysis within the EVA and telerobotics communities. The six baseline analysis stacks (EVATasks, EVAAssume, EVAIssues, TeleTasks, TeleAssume, and TeleIssues) work interactively to manage and relate basic information which you enter about the crew-EVA and telerobot tasks you wish to analyze in depth. Analysis stacks draw on information in the Reference stacks as part of a rapid point-and-click utility for building scripts of specific task primitives or for any EVA or telerobotics task. Any or all of these stacks can be completely incorporated within other hypermedia applications, or they can be referenced as is, without requiring data to be transferred into any other database. TEJAS is simple to use and requires no formal training. Some knowledge of HyperCard is helpful, but not essential. All Help cards printed in the TEJAS User's Guide are part of the TEJAS Help Stack and are available from a pop-up menu any time you are using TEJAS. Specific stacks created in TEJAS can be exchanged between groups, divisions, companies, or centers for complete communication of fundamental information that forms the basis for further analyses. TEJAS runs on any Apple Macintosh personal computer with at least one megabyte of RAM, a hard disk, and HyperCard 1.21, or later version. TEJAS is a copyrighted work with all copyright vested in NASA. HyperCard and Macintosh are registered trademarks of Apple Computer, Inc.
Erdemir, Ugur; Yildiz, Esra; Eren, Meltem Mert; Ozel, Sevda
2012-01-01
The purpose of this study was to evaluate the effect of sports and energy drinks on the surface hardness of different restorative materials over a 6-month period. Forty-two disk-shaped specimens were prepared for each of the four restorative materials tested: Compoglass F, Filtek Z250, Filtek Supreme, and Premise. Specimens were immersed for 2 min daily, up to 6 months, in six storage solutions (n=7 per material for each solution): distilled water, Powerade, Gatorade, X-IR, Burn, and Red Bull. Surface hardness was measured at baseline, after 1 week, 1 month, and 6 months. Data were analyzed statistically using repeated measures ANOVA followed by the Bonferroni test for multiple comparisons (α=0.05). Surface hardness of the restorative materials was significantly affected by both immersion solution and immersion period (p<0.001). All tested solutions induced significant reduction in surface hardness of the restorative materials over a 6-month immersion period.
Abeyta, Cynthia G.; Frenzel, Peter F.
1999-01-01
This report contains listings of model input and output files for the simulation of the time of arrival of landfill leachate at the water table from the Municipal Solid Waste Landfill Facility (MSWLF), about 10 miles northeast of downtown El Paso, Texas. This simulation was done by the U.S. Geological Survey in cooperation with the U.S. Department of the Army, U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas. The U.S. Environmental Protection Agency-developed Hydrologic Evaluation of Landfill Performance (HELP) and Multimedia Exposure Assessment (MULTIMED) computer models were used to simulate the production of leachate by a landfill and transport of landfill leachate to the water table. Model input data files used with and output files generated by the HELP and MULTIMED models are provided in ASCII format on a 3.5-inch 1.44-megabyte IBM-PC compatible floppy disk.
Development Of The Drexler Optical-Card Reader/Writer System
NASA Astrophysics Data System (ADS)
Pierce, Gerald A.
1988-06-01
An optical-card reader/writer optical and electronic breadboard system, developed by SRI International under contract to Drexler Technology, is described. The optical card, which is the same size as a credit card, can contain more than 2 megabytes of digital user data, which may also include preformatted tracking information and preformatted data. The data layout on the card is similar to that on a floppy disk, with each track containing a header and clocking information. The design of this optical reader/writer system for optical cards is explained. Design of the optical card system entails a number of unique issues: To accommodate both laser-recorded and mass-duplicated information, the system must be compatible with preencoded information, which implies a larger-than-normal spot size (5 gm) and a detection system that can read both types of optical patterns. Cost-reduction considerations led to selection of a birefringent protection layer, which dictated a nonstandard optical system. The non-polarization-sensitive optics use an off-axis approach to detection. An LED illumination system makes it possible to read multiple tracks.
DNA-COMPACT: DNA COMpression Based on a Pattern-Aware Contextual Modeling Technique
Li, Pinghao; Wang, Shuang; Kim, Jihoon; Xiong, Hongkai; Ohno-Machado, Lucila; Jiang, Xiaoqian
2013-01-01
Genome data are becoming increasingly important for modern medicine. As the rate of increase in DNA sequencing outstrips the rate of increase in disk storage capacity, the storage and data transferring of large genome data are becoming important concerns for biomedical researchers. We propose a two-pass lossless genome compression algorithm, which highlights the synthesis of complementary contextual models, to improve the compression performance. The proposed framework could handle genome compression with and without reference sequences, and demonstrated performance advantages over best existing algorithms. The method for reference-free compression led to bit rates of 1.720 and 1.838 bits per base for bacteria and yeast, which were approximately 3.7% and 2.6% better than the state-of-the-art algorithms. Regarding performance with reference, we tested on the first Korean personal genome sequence data set, and our proposed method demonstrated a 189-fold compression rate, reducing the raw file size from 2986.8 MB to 15.8 MB at a comparable decompression cost with existing algorithms. DNAcompact is freely available at https://sourceforge.net/projects/dnacompact/for research purpose. PMID:24282536
How ions affect the structure of water.
Hribar, Barbara; Southall, Noel T; Vlachy, Vojko; Dill, Ken A
2002-10-16
We model ion solvation in water. We use the MB model of water, a simple two-dimensional statistical mechanical model in which waters are represented as Lennard-Jones disks having Gaussian hydrogen-bonding arms. We introduce a charge dipole into MB waters. We perform (NPT) Monte Carlo simulations to explore how water molecules are organized around ions and around nonpolar solutes in salt solutions. The model gives good qualitative agreement with experiments, including Jones-Dole viscosity B coefficients, Samoilov and Hirata ion hydration activation energies, ion solvation thermodynamics, and Setschenow coefficients for Hofmeister series ions, which describe the salt concentration dependence of the solubilities of hydrophobic solutes. The two main ideas captured here are (1) that charge densities govern the interactions of ions with water, and (2) that a balance of forces determines water structure: electrostatics (water's dipole interacting with ions) and hydrogen bonding (water interacting with neighboring waters). Small ions (kosmotropes) have high charge densities so they cause strong electrostatic ordering of nearby waters, breaking hydrogen bonds. In contrast, large ions (chaotropes) have low charge densities, and surrounding water molecules are largely hydrogen bonded.
Interactive digital image manipulation system
NASA Technical Reports Server (NTRS)
Henze, J.; Dezur, R.
1975-01-01
The system is designed for manipulation, analysis, interpretation, and processing of a wide variety of image data. LANDSAT (ERTS) and other data in digital form can be input directly into the system. Photographic prints and transparencies are first converted to digital form with an on-line high-resolution microdensitometer. The system is implemented on a Hewlett-Packard 3000 computer with 128 K bytes of core memory and a 47.5 megabyte disk. It includes a true color display monitor, with processing memories, graphics overlays, and a movable cursor. Image data formats are flexible so that there is no restriction to a given set of remote sensors. Conversion between data types is available to provide a basis for comparison of the various data. Multispectral data is fully supported, and there is no restriction on the number of dimensions. In this way multispectral data collected at more than one point in time may simply be treated as a data collected with twice (three times, etc.) the number of sensors. There are various libraries of functions available to the user: processing functions, display functions, system functions, and earth resources applications functions.
Statistical theory of correlations in random packings of hard particles.
Jin, Yuliang; Puckett, James G; Makse, Hernán A
2014-05-01
A random packing of hard particles represents a fundamental model for granular matter. Despite its importance, analytical modeling of random packings remains difficult due to the existence of strong correlations which preclude the development of a simple theory. Here, we take inspiration from liquid theories for the n-particle angular correlation function to develop a formalism of random packings of hard particles from the bottom up. A progressive expansion into a shell of particles converges in the large layer limit under a Kirkwood-like approximation of higher-order correlations. We apply the formalism to hard disks and predict the density of two-dimensional random close packing (RCP), ϕ(rcp) = 0.85 ± 0.01, and random loose packing (RLP), ϕ(rlp) = 0.67 ± 0.01. Our theory also predicts a phase diagram and angular correlation functions that are in good agreement with experimental and numerical data.
STS-48 MS Brown on OV-103's aft flight deck poses for ESC photo
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Mission Specialist (MS) Mark N. Brown looks away from the portable laptop computer screen to pose for an Electronic Still Camera (ESC) photo on the aft flight deck of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. Brown was working at the payload station before the interruption. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shuttle mission.
STS-48 Commander Creighton on OV-103's aft flight deck poses for ESC photo
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Commander John O. Creighton, positioned under overhead window W8, interrupts an out-the-window observation to display a pleasant countenance for an electronic still camera (ESC) photo on the aft flight deck of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shuttle mission.
The Gaseous Disks of Young Stellar Objects
NASA Technical Reports Server (NTRS)
Glassgold, A. E.
2006-01-01
Disks represent a crucial stage in the formation of stars and planets. They are novel astrophysical systems with attributes intermediate between the interstellar medium and stars. Their physical properties are inhomogeneous and are affected by hard stellar radiation and by dynamical evolution. Observing disk structure is difficult because of the small sizes, ranging from as little as 0.05 AU at the inner edge to 100-1000 AU at large radial distances. Nonetheless, substantial progress has been made by observing the radiation emitted by the dust from near infrared to mm wavelengths, i.e., the spectral energy distribution of an unresolved disk. Many fewer results are available for the gas, which is the main mass component of disks over much of their lifetime. The inner disk gas of young stellar objects (henceforth YSOs) have been studied using the near infrared rovibrational transitions of CO and a few other molecules, while the outer regions have been explored with the mm and sub-mm lines of CO and other species. Further progress can be expected in understanding the physical properties of disks from observations with sub-mm arrays like SMA, CARMA and ALMA, with mid infrared measurements using Spitzer, and near infrared spectroscopy with large ground-based telescopes. Intense efforts are also being made to model the observations using complex thermal-chemical models. After a brief review of the existing observations and modeling results, some of the weaknesses of the models will be discussed, including the absence of good laboratory and theoretical calculations for essential microscopic processes.
NASA Astrophysics Data System (ADS)
Balasubramanian, Balamurugan; Mukherjee, Pinaki; Skomski, Ralph; Manchanda, Priyanka; Das, Bhaskar; Sellmyer, David J.
2014-09-01
Nanoscience has been one of the outstanding driving forces in technology recently, arguably more so in magnetism than in any other branch of science and technology. Due to nanoscale bit size, a single computer hard disk is now able to store the text of 3,000,000 average-size books, and today's high-performance permanent magnets--found in hybrid cars, wind turbines, and disk drives--are nanostructured to a large degree. The nanostructures ideally are designed from Co- and Fe-rich building blocks without critical rare-earth elements, and often are required to exhibit high coercivity and magnetization at elevated temperatures of typically up to 180 °C for many important permanent-magnet applications. Here we achieve this goal in exchange-coupled hard-soft composite films by effective nanostructuring of high-anisotropy HfCo7 nanoparticles with a high-magnetization Fe65Co35 phase. An analysis based on a model structure shows that the soft-phase addition improves the performance of the hard-magnetic material by mitigating Brown's paradox in magnetism, a substantial reduction of coercivity from the anisotropy field. The nanostructures exhibit a high room-temperature energy product of about 20.3 MGOe (161.5 kJ/m3), which is a record for a rare earth- or Pt-free magnetic material and retain values as high as 17.1 MGOe (136.1 kJ/m3) at 180°C.
Magnetic printing characteristics using master disk with perpendicular magnetic anisotropy
NASA Astrophysics Data System (ADS)
Fujiwara, Naoto; Nishida, Yoichi; Ishioka, Toshihide; Sugita, Ryuji; Yasunaga, Tadashi
With the increase in recording density and capacity of hard-disk drives (HDD), high speed, high precision and low cost servo writing method has become an issue in HDD industry. The magnetic printing was proposed as the ultimate solution for this issue [1-3]. There are two types of magnetic printing methods, which are 'Bit Printing (BP)' and 'Edge Printing (EP)'. BP method is conducted by applying external field whose direction is vertical to the plane of both master disk (Master) and perpendicular magnetic recording (PMR) media (Slave). On the other hand, EP method is conducted by applying external field toward down track direction of both master and slave. In BP for bit length shorter than 100 nm, the SNR of perpendicular anisotropic master was higher than isotropic master. And the SNR of EP for the bit length shorter than 50 nm was demonstrated.
Pulsed Thermal Emission from the Accreting Pulsar XMMU J054134.7-682550
NASA Astrophysics Data System (ADS)
Manousakis, Antonis; Walter, Roland; Audard, Marc; Lanz, Thierry
2009-05-01
XMMU J054134.7-682550, located in the LMC, featured a type II outburst in August 2007. We analyzed XMM-Newton (EPIC-MOS) and RXTE (PCA) data in order to derive the spectral and temporal characteristics of the system throughout the outburst. Spectral variability, spin period evolution, energy dependent pulse shape are discussed. The outburst (LX~3×1038 erg/s~LEDD) spectrum can be modeled using, cutoff power law, soft X-ray blackbody, disk emission, and cyclotron absorption line. The blackbody component shows a sinusoidal behavior, expected from hard X-ray reprocessing on the inner edge of the accretion disk. The thickness of the inner accretion disk (width of ~75 km) can be constrained. The spin-up of the pulsar during the outburst is the signature of a (huge) accretion rate. Simbol-X will provide similar capabilities as XMM-Newton and RXTE together, for such bright events.
NASA Astrophysics Data System (ADS)
Xiong, Shaomin; Wu, Haoyu; Bogy, David
2014-09-01
Heat assisted magnetic recording (HAMR) is expected to increase the storage areal density to more than 1 Tb/in2 in hard disk drives (HDDs). In this technology, a laser is used to heat the magnetic media to the Curie point (~400-600 °C) during the writing process. The lubricant on the top of a magnetic disk could evaporate and be depleted under the laser heating. The change of the lubricant can lead to instability of the flying slider and failure of the head-disk interface (HDI). In this study, a HAMR test stage is developed to study the lubricant thermal behavior. Various heating conditions are controlled for the study of the lubricant thermal depletion. The effects of laser heating repetitions and power levels on the lubricant depletion are investigated experimentally. The lubricant reflow behavior is discussed as well.
San Nicolas Island surface radiation-meteorology data
NASA Technical Reports Server (NTRS)
Johnson-Pasqua, Christopher M.; Cox, Stephen K.
1990-01-01
A summary of the surface data collected by Colorado State University (CSU) on San Nicolas Island during the First ISCCP Regional Experiment (FIRE) from 30 June (Julian Day 181) through 19 July (Julian Day 200) is given. The data are available in two formats: hard copy graphs, and processed data on floppy disk.
Software Graphical User Interface For Analysis Of Images
NASA Technical Reports Server (NTRS)
Leonard, Desiree M.; Nolf, Scott R.; Avis, Elizabeth L.; Stacy, Kathryn
1992-01-01
CAMTOOL software provides graphical interface between Sun Microsystems workstation and Eikonix Model 1412 digitizing camera system. Camera scans and digitizes images, halftones, reflectives, transmissives, rigid or flexible flat material, or three-dimensional objects. Users digitize images and select from three destinations: work-station display screen, magnetic-tape drive, or hard disk. Written in C.
The successful of finite element to invent particle cleaning system by air jet in hard disk drive
NASA Astrophysics Data System (ADS)
Jai-Ngam, Nualpun; Tangchaichit, Kaitfa
2018-02-01
Hard Disk Drive manufacturing has faced very challenging with the increasing demand of high capacity drives for Cloud-based storage. Particle adhesion has also become increasingly important in HDD to gain more reliability of storage capacity. The ability to clean on surfaces is more complicated in removing such particles without damaging the surface. This research is aim to improve the particle cleaning in HSA by using finite element to develop the air flow model then invent the prototype of air cleaning system to remove particle from surface. Surface cleaning by air pressure can be applied as alternative for the removal of solid particulate contaminants that is adhering on a solid surface. These technical and economic challenges have driven the process development from traditional way that chemical solvent cleaning. The focus of this study is to develop alternative way from scrub, ultrasonic, mega sonic on surface cleaning principles to serve as a foundation for the development of new processes to meet current state-of-the-art process requirements and minimize the waste from chemical cleaning for environment safety.
NASA Astrophysics Data System (ADS)
Nguyen, Ruby Thuy; Diaz, Luis A.; Imholte, D. Devin; Lister, Tedd E.
2017-09-01
Since the 2011 price spike of rare earth elements (REEs), research on permanent magnet recycling has blossomed globally in an attempt to reduce future REE criticality. Hard disk drives (HDDs) have emerged as one feasible feedstock for recovering valuable REEs such as praseodymium, neodymium, and dysprosium. Nevertheless, current processes for recycling electronic waste only focus on certain metals as a result of feedstock and metal price uncertainties. In addition, there is a perception that recycling REEs is unprofitable. To shed some light on the economic viability of REE recycling from U.S. HDDs, this article combines techno-economic information of an electro-hydrometallurgical process with end-of-life HDD availability in a simulation model. The results showed that adding REE recovery to an HDD base and precious metal recovery process was profitable given current prices. Recovered REEs from U.S. HDDs could meet up to 5.2% rest-of-world (excluding China) neodymium magnet demand. Feedstock, aluminum, and gold prices are key factors to recycling profitability. REEs contributed 13% to the co-recycling profit.
Massively parallel GPU-accelerated minimization of classical density functional theory
NASA Astrophysics Data System (ADS)
Stopper, Daniel; Roth, Roland
2017-08-01
In this paper, we discuss the ability to numerically minimize the grand potential of hard disks in two-dimensional and of hard spheres in three-dimensional space within the framework of classical density functional and fundamental measure theory on modern graphics cards. Our main finding is that a massively parallel minimization leads to an enormous performance gain in comparison to standard sequential minimization schemes. Furthermore, the results indicate that in complex multi-dimensional situations, a heavy parallel minimization of the grand potential seems to be mandatory in order to reach a reasonable balance between accuracy and computational cost.
Adhesion and interfacial fracture toughness between hard and soft materials
NASA Astrophysics Data System (ADS)
Rahbar, Nima; Wolf, Kurt; Orana, Argjenta; Fennimore, Roy; Zong, Zong; Meng, Juan; Papandreou, George; Maryanoff, Cynthia; Soboyejo, Wole
2008-11-01
This paper presents the results of a combined experimental and theoretical study of adhesion between hard and soft layers that are relevant to medical devices such as drug-eluting stents and semiconductor applications. Brazil disk specimens were used to measure the interfacial fracture energies between model parylene C and 316L stainless steel over a wide range of mode mixities. The trends in the overall fracture energies are predicted using a combination of adhesion theories and fracture mechanics concepts. The measured interfacial fracture energies are shown to be in good agreement with the predictions.
Young Stellar Objects from Soft to Hard X-rays
NASA Astrophysics Data System (ADS)
Güdel, Manuel
2009-05-01
Magnetically active stars are the sites of efficient particle acceleration and plasma heating, processes that have been studied in detail in the solar corona. Investigation of such processes in young stellar objects is much more challenging due to various absorption processes. There is, however, evidence for violent magnetic energy release in very young stellar objects. The impact on young stellar environments (e.g., circumstellar disk heating and ionization, operation of chemical networks, photoevaporation) may be substantial. Hard X-ray devices like those carried on Simbol-X will establish a basis for detailed studies of these processes.
NASA Technical Reports Server (NTRS)
Zhang, S. Nan; Zhang, Xiaoling; Wu, Xuebing; Yao, Yangsen; Sun, Xuejun; Xu, Haiguang; Cui, Wei; Chen, Wan; Harmon, B. A.; Robinson, C. R.
1999-01-01
The results of spectral modeling of the data for a series of RXTE observations and four ASCA observations of GRO J1655-40 are presented. The thermal Comptonization model is used instead of the power-law model for the hard component of the two-component continuum spectra. The previously reported dramatic variations of the apparent inner disk radius of GRO J1655-40 during its outburst may be due to the inverse Compton scattering in the hot corona. A procedure is developed for making the radiative transfer correction to the fitting parameters from RXTE data and a more stable inner disk radius is obtained. A practical process of determining the color correction (hardening) factor from observational data is proposed and applied to the four ASCA observations of GRO J1655-40. We found that the color correction factor may vary significantly between different observations and the finally corrected physical inner disk radius remains reasonably stable over a large range of luminosity and spectral states.
An X-ray image of the Seyfert galaxy NGC 1068
NASA Technical Reports Server (NTRS)
Wilson, A. S.; Elvis, M.; Lawrence, A.; Bland-Hawthorn, J.
1992-01-01
An image of NGC 1068 with 4-5 arcsec obtained with the High Resolution Imager on the Rosat X-ray Observatory in the energy band 0.1-2.4 keV is presented and discussed. The map reveals an unresolved nuclear source, extended (about 1.5 kpc) emission around the nucleus, and extended (about 13 kpc) emission from the starburst disk. The extended circumnuclear emission aligns toward the NE, the same direction as found for the resolved emission of the active nucleus in several other wavebands. Thermal emission from a hot wind is argued to be the source of the steep-spectrum, nuclear, and circumnuclear emission. The disk of NGC 1068 has ratios of soft X-ray to B band and soft X-ray to 60-micron luminosities which are similar to those found for other starburst systems. The X-ray spectrum of the starburst disk is harder than that of the nuclear emission. By adopting a plausible spectrum and extrapolating the present measured flux, it is concluded that the starburst disk contributes most of the hard component seen in the 2-10 keV band.
Too Hard to Control: Compromised Pain Anticipation and Modulation in Mild Traumatic Brain Injury
2014-01-07
modulation) will be able to answer these questions. In a related prior study, quantitative sensory testing was conducted in moderate to severe TBI and...found significant loss of thermal and touch sensibility compared with healthy con- trols.67 Although detailed quantitative sensory testing was not...IA. Pain and post traumatic stress disorder ‚Äì Review of clinical and experimental evidence. Neuropharmacology 2012; 62: 586–597. 36 First MB, Spitzer
Multifunctional Cu2-xTe Nanocubes Mediated Combination Therapy for Multi-Drug Resistant MDA MB 453
NASA Astrophysics Data System (ADS)
Poulose, Aby Cheruvathoor; Veeranarayanan, Srivani; Mohamed, M. Sheikh; Aburto, Rebeca Romero; Mitcham, Trevor; Bouchard, Richard R.; Ajayan, Pulickel M.; Sakamoto, Yasushi; Maekawa, Toru; Kumar, D. Sakthi
2016-10-01
Hypermethylated cancer populations are hard to treat due to their enhanced chemo-resistance, characterized by aberrant methylated DNA subunits. Herein, we report on invoking response from such a cancer lineage to chemotherapy utilizing multifunctional copper telluride (Cu2-XTe) nanocubes (NCs) as photothermal and photodynamic agents, leading to significant anticancer activity. The NCs additionally possessed photoacoustic and X-ray contrast imaging abilities that could serve in image-guided therapeutic studies.
Inspection of imprint lithography patterns for semiconductor and patterned media
NASA Astrophysics Data System (ADS)
Resnick, Douglas J.; Haase, Gaddi; Singh, Lovejeet; Curran, David; Schmid, Gerard M.; Luo, Kang; Brooks, Cindy; Selinidis, Kosta; Fretwell, John; Sreenivasan, S. V.
2010-03-01
Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Acceptance of imprint lithography for manufacturing will require demonstration that it can attain defect levels commensurate with the requirements of cost-effective device production. This work summarizes the results of defect inspections of semiconductor masks, wafers and hard disks patterned using Jet and Flash Imprint Lithography (J-FILTM). Inspections were performed with optical and e-beam based automated inspection tools. For the semiconductor market, a test mask was designed which included dense features (with half pitches ranging between 32 nm and 48 nm) containing an extensive array of programmed defects. For this work, both e-beam inspection and optical inspection were used to detect both random defects and the programmed defects. Analytical SEMs were then used to review the defects detected by the inspection. Defect trends over the course of many wafers were observed with another test mask using a KLA-T 2132 optical inspection tool. The primary source of defects over 2000 imprints were particle related. For the hard drive market, it is important to understand the defectivity of both the template and the imprinted disk. This work presents a methodology for automated pattern inspection and defect classification for imprint-patterned media. Candela CS20 and 6120 tools from KLA-Tencor map the optical properties of the disk surface, producing highresolution grayscale images of surface reflectivity, scattered light, phase shift, etc. Defects that have been identified in this manner are further characterized according to the morphology
Spectral Analysis of the Accretion Flow in NGC 1052 with Suzaku
NASA Technical Reports Server (NTRS)
Brenneman, L. W.; Weaver, K. A.; Kadler, M.; Tueller, J.; Marscher, A.; Ros, E.; Zensus,A.; Kovalev, Y. Y.; Aller, M.; Aller, H.;
2008-01-01
We present an analysis of the 101 ks, 2007 Suzaku spectrum of the LINER galaxy NGC 1052. The 0:3..10 keV continuum is well-modeled by a power-law continuum modified by Galactic and intrinsic absorption, and exhibits a soft, thermal emission component below 1 keV. Both a narrow core and a broader component of Fe-Ka emission are robustly detected at 6:4 keV. While the narrow line is consistent with an origin in material distant from the black hole, the broad line is best fit empirically by a model that describes fluorescent emission from the inner accretion disk around a rapidly rotating black hole. We find no direct evidence for Comptonized reflection of the hard X-ray source by the disk above 10 keV, however, which casts doubt on the hypothesis that the broad iron line is produced in a standard accretion disk. We explore other possible scenarios for producing this spectral feature and conclude that the high equivalent width and full width half maximum velocity of the broad iron line (v greater than or equals 0:37c) necessitate an origin within d approx. 8r(sub g) of the hard X-ray source. Based on the confirmed presence of a strong radio jet in this source, the broad iron line may be produced in dense plasma at the base of the jet, implying that emission mechanisms in the central-most portions of active galactic nuclei are more complex than previously thought.
Minidisks in Binary Black Hole Accretion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, Geoffrey; MacFadyen, Andrew, E-mail: gsr257@nyu.edu
Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress thatmore » causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.« less
Dynamics and X-ray emission of a galactic superwind interacting with disk and halo gas
NASA Technical Reports Server (NTRS)
Suchkov, Anatoly A.; Balsara, Dinshaw S.; Heckman, Timothy M.; Leitherner, Claus
1994-01-01
There is a general agreement that the conspicuous extranuclear X-ray, optical-line, and radio-contiuum emission of starbursts is associated with powerful galactic superwinds blowing from their centers. However, despite the significant advances in observational studies of superwinds, there is no consensus on the nature of the emitting material and even on the emission mechanisms themselves. This is to a great extent a consequence of a poor understanding of dynamical processes in the starburst superwind regions. To address this issue, we have conducted two-dimensional hydrodynamical simulations of galactic superwinds. While previous similar studies have used a single (disk) component to represent the ISM of the starburst galaxy, we analyze the interaction of the wind with a two-component disk-halo ambient interstellar medium and argue that this two-component representation is crucial for adequate modeling of starbursts. The emphasis of this study is on the geometry and structure of the wind region and the X-ray emission arising in the wind material and the shocked gas in the disk and the halo of the galaxy. The simulation results have shown that a clear-cut bipolar wind can easily develop under a range of very different conditions. On the other hand, a complex 'filamentary' structure associated with the entrained dense disk material is found to arise within the hot bubble blown out by the wind. The flow pattern within the bubble is dominated equally by the central biconic outflow and a system of whirling motions r elated to the origin and development of the 'filaments'. The filament parameters make them a good candidate for optical-emission-line filamentary gas observed in starburst halos. We find that the history of mass and energy deposition in the starburst region of the galaxy is crucial for wind dynamics. A 'mild' early wind, which arises as a result of the cumulative effect of stellar winds from massive stars, produces a bipolar vertical cavity in the disk and halo gas without strongly affecting the gaseous disk, thus creating conditions for virtually free vertical escape of the hot gas at the later, much more violent supernova-dominated phases of the starburst. We calculate the luminosity, mass, and effective temperature of the X-ray emitting gas in the 'soft' (0.1 to 0.7 keV, 0.7 to 2.2 keV, and 0.1 to 2.2 keV) and 'hard' (1.6 to 8.3 keV) energy bands and estimate the contribution of different gaseous components to the X-ray flux in these bands. Analysis of these parameters enables us to make conclusions regarding the nature of the X-ray-emitting material. We have inferred that the bulk of the soft thermal X-ray emission from starbursts arises in the wind-shocked material of the disk and halo gas rather than in the wind material itself. This enables us to predict that the integrated soft X-ray spectra of starbursts need not show an overabundance of heavy elements which are believed to be produced copiously in the centers of starbursts. Unlike soft X-ray emission, the hard component of thermal X-ray emission is found to originate in the wind material ejected from the starburst region. However, the derived ratio of hard-to-soft X-ray luminosities is too small compared to that observed in starbursts. We conclude therefore that the observed hard X-ray emission of starbursts is probably not associated with the thermal emission of hot wind or ambient shocked gas. Typical temperatures of the bulk of the soft X-ray-emitting material in our very different models have been found to agree well with the ones estimated on the basis of the ROSAT data for the soft component of X-ray emission of nearby starbursts. We predict that temperatures of the extranuclear soft X-ray-emitting gas in starburst galaxies with heavy element abundances near solar should be close to T(sub Xs = 2 to 5 x 10(exp 6)K.
Disk-Wind Connection During the Heartbeats of GRS 1915+105
NASA Technical Reports Server (NTRS)
Zoghbi, Abderahmen; Miller, J. M.; King, A. L.; Miller, M. C.; Proga, D.; Kallman, T.; Fabian, A. C.; Harrison, F. A.; Kaastra, J.; Raymond, J.;
2016-01-01
Disk and wind signatures are seen in the soft state of Galactic black holes, while the jet is seen in the hard state. Here we study the disk-wind connection in the Rho class of variability in GRS 1915+105 using a joint NuSTAR-Chandra observation. The source shows 50 s limit cycle oscillations. By including new information provided by the reflection spectrum and using phase-resolved spectroscopy, we find that the change in the inner disk inferred from the blackbody emission is not matched by reflection measurements. The latter is almost constant, independent of the continuum model. The two radii are comparable only if the disk temperature color correction factor changes, an effect that could be due to the changing opacity of the disk caused by changes in metal abundances. The disk inclination is similar to that inferred from the jet axis, and oscillates by approx.10 deg. The simultaneous Chandra data show the presence of two wind components with velocities between 500 and 5000 km s(exp. -1), and possibly two more with velocities reaching 20,000 km s(exp. -1) (approx. 0.06 c). The column densities are approx. 5 × 10(exp. 22) cm(exp. -2). An upper limit to the wind response time of 2 s is measured, implying a launch radius of less than 6 × 10(exp. 10) cm. The changes in wind velocity and absorbed flux require the geometry of the wind to change during the oscillations, constraining the wind to be launched from a distance of 290-1300 r (sub g) from the black hole. Both data sets support fundamental model predictions in which a bulge originates in the inner disk and moves outward as the instability progresses.
Three Spectral States of the Disk X-Ray Emission of the Black-Hole Candidate 4U 1630- 47
NASA Astrophysics Data System (ADS)
Abe, Yukiko; Fukazawa, Yasushi; Kubota, Aya; Kasama, Daisuke; Makishima, Kazuo
2005-08-01
We studied a time history of X-ray spectral states of a black-hole candidate, 4U 1630-47, utilizing data from a number of monitoring observations with the Rossi X-Ray Timing Explorer over 1996-2004. These observations covered five outbursts of 4U 1630-47, and recorded typical features of the high/soft states. The spectra in the high/soft states can be classified into three states. The first state is explained by a concept of the standard accretion disk picture. The second appears in the very high state, where a dominant hard component is seen and the disk radius apparently becomes too small. These phenomena are explained by the effect of inverse Compton scattering of disk photons, as shown by Kubota, Makishima, and Ebisawa (2001, ApJ, 560, L147) for GRO J1655-40. The third shows that the disk luminosity varies in proportion to Tin2, rather than Tin4, where Tin is the inner-disk temperature. This state suggests an optically-thick and advection-dominated slim disk, as given by Kubota and Makishima (2004, ApJ, 601, 428) for XTE J1550-564. The second and third states appear, with good reproducibility, when Tin and the total X-ray luminosity are higher than 1.2keV and ˜ 2.5 × 1038(D/10 kpc)² [cosθ/(1/√3)]-1 erg s-1, respectively, where D is the distance to the object and θ is the inclination angle to the disk. The results suggest that these spectral states commonly appear among black-hole binaries under high accretion rates.
On the Dramatic Spin-up/Spin-Down Torque Reversals in Accreting Pulsars
NASA Technical Reports Server (NTRS)
Nelson, Robert W.; Bildsten, Lars; Chakrabarty, Deepto; Finger, Mark H.; Koh, Danny T.; Prince, Thomas A.; Rubin, Bradley C.; Scott, D. Mathew; Vaughan, Brian A.; Wilson, Robert B.
1997-01-01
Dramatic torque reversals between spin-up and spin-down have been observed in half of the persistent X-ray pulsars monitored by the Burst and Transient Space Experiment (BATSE) all-sky monitor on the Compton Gamma Ray Observatory. Theoretical models developed to explain early pulsar timing data can explain spin-down torques via a disk-magnetosphere interaction if the star nearly corotates with the inner accretion disk. To produce the observed BATSE torque reversals, however, these equilibrium models require the disk to alternate between two mass accretion rates, with M+/- producing accretion torques of similar magnitude but always of opposite sign. Moreover, in at least one pulsar (GX 1+4) undergoing secular spin-down, the neutron star spins down faster during brief (approximately 20 day) hard X-ray flares-this is opposite the correlation expected from standard theory, assuming that BATSE pulsed flux increases with mass accretion rate. The 10 day to 10 yr intervals between torque reversals in these systems are much longer than any characteristic magnetic or viscous timescale near the inner disk boundary and are more suggestive of a global disk phenomenon. We discuss possible explanations of the observed torque behavior. Despite the preferred sense of rotation defined by the binary orbit, the BATSE observations are surprisingly consistent with an earlier suggestion for GX 1+4: the disks in these systems somehow alternate between episodes of prograde and retrograde rotation. We are unaware of any mechanism that could produce a stable retrograde disk in a binary undergoing Roche lobe overflow, but such flip-flop behavior does occur in numerical simulations of wind-fed systems. One possibility is that the disks in some of these binaries are fed by an X-ray-excited wind.
Disk-Wind Connection during the Heartbeats of GRS 1915+105
NASA Astrophysics Data System (ADS)
Zoghbi, Abderahmen; Miller, J. M.; King, A. L.; Miller, M. C.; Proga, D.; Kallman, T.; Fabian, A. C.; Harrison, F. A.; Kaastra, J.; Raymond, J.; Reynolds, C. S.; Boggs, S. E.; Christensen, F. E.; Craig, W.; Hailey, C. J.; Stern, D.; Zhang, W. W.
2016-12-01
Disk and wind signatures are seen in the soft state of Galactic black holes, while the jet is seen in the hard state. Here we study the disk-wind connection in the ρ class of variability in GRS 1915+105 using a joint NuSTAR-Chandra observation. The source shows 50 s limit cycle oscillations. By including new information provided by the reflection spectrum and using phase-resolved spectroscopy, we find that the change in the inner disk inferred from the blackbody emission is not matched by reflection measurements. The latter is almost constant, independent of the continuum model. The two radii are comparable only if the disk temperature color correction factor changes, an effect that could be due to the changing opacity of the disk caused by changes in metal abundances. The disk inclination is similar to that inferred from the jet axis, and oscillates by ˜10°. The simultaneous Chandra data show the presence of two wind components with velocities between 500 and 5000 km s-1, and possibly two more with velocities reaching 20,000 km s-1 (˜0.06 c). The column densities are ˜5 × 1022 cm-2. An upper limit to the wind response time of 2 s is measured, implying a launch radius of <6 × 1010 cm. The changes in wind velocity and absorbed flux require the geometry of the wind to change during the oscillations, constraining the wind to be launched from a distance of 290-1300 r g from the black hole. Both data sets support fundamental model predictions in which a bulge originates in the inner disk and moves outward as the instability progresses.
77 FR 76518 - Summary of Commission Practice Relating to Administrative Protective Orders
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-28
.... APO breach inquiries are considered on a case-by-case basis. As part of the effort to educate...-called hard disk computer media is to be avoided, because mere erasure of data from such media may not...; (2) Referral to the United States Attorney; (3) In the case of an attorney, accountant, or other...
Parallel Subspace Subcodes of Reed-Solomon Codes for Magnetic Recording Channels
ERIC Educational Resources Information Center
Wang, Han
2010-01-01
Read channel architectures based on a single low-density parity-check (LDPC) code are being considered for the next generation of hard disk drives. However, LDPC-only solutions suffer from the error floor problem, which may compromise reliability, if not handled properly. Concatenated architectures using an LDPC code plus a Reed-Solomon (RS) code…
Preventing Catastrophes from Data Loss
ERIC Educational Resources Information Center
Goldsborough, Reid
2004-01-01
What's the worst thing that can happen to your computer? Worse than a hard disk crash, virus infection, spam assault, denial-of-service attack, hacker take-over, fire, flood, or other human, mechanical or natural disaster is a faulty backup when you really need it. If the computer blows up, as long as your data is backed up securely, you can…
Electronic Structure and Transport in Magnetic Multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2008-02-18
ORNL assisted Seagate Recording Heads Operations in the development of CIPS pin Valves for application as read sensors in hard disk drives. Personnel at ORNL were W. H. Butler and Xiaoguang Zhang. Dr. Olle Heinonen from Seagate RHO also participated. ORNL provided codes and materials parameters that were used by Seagate to model CIP GMR in their heads. The objectives were to: (1) develop a linearized Boltzmann transport code for describing CIP GMR based on realistic models of the band structure and interfaces in materials in CIP spin valves in disk drive heads; (2) calculate the materials parameters needed asmore » inputs to the Boltzmann code; and (3) transfer the technology to Seagate Recording Heads.« less
High fold computer disk storage DATABASE for fast extended analysis of γ-rays events
NASA Astrophysics Data System (ADS)
Stézowski, O.; Finck, Ch.; Prévost, D.
1999-03-01
Recently spectacular technical developments have been achieved to increase the resolving power of large γ-ray spectrometers. With these new eyes, physicists are able to study the intricate nature of atomic nuclei. Concurrently more and more complex multidimensional analyses are needed to investigate very weak phenomena. In this article, we first present a software (DATABASE) allowing high fold coincidences γ-rays events to be stored on hard disk. Then, a non-conventional method of analysis, anti-gating procedure, is described. Two physical examples are given to explain how it can be used and Monte Carlo simulations have been performed to test the validity of this method.
X-window-based 2K display workstation
NASA Astrophysics Data System (ADS)
Weinberg, Wolfram S.; Hayrapetian, Alek S.; Cho, Paul S.; Valentino, Daniel J.; Taira, Ricky K.; Huang, H. K.
1991-07-01
A high-definition, high-performance display station for reading and review of digital radiological images is introduced. The station is based on a Sun SPARC Station 4 and employs X window system for display and manipulation of images. A mouse-operated graphic user interface is implemented utilizing Motif-style tools. The system supports up to four MegaScan gray-scale 2560 X 2048 monitors. A special configuration of frame and video buffer yields a data transfer of 50 M pixels/s. A magnetic disk array supplies a storage capacity of 2 GB with a data transfer rate of 4-6 MB/s. The system has access to the central archive through an ultrahigh-speed fiber-optic network and patient studies are automatically transferred to the local disk. The available image processing functions include change of lookup table, zoom and pan, and cine. Future enhancements will provide for manual contour tracing, length, area, and density measurements, text and graphic overlay, as well as composition of selected images. Additional preprocessing procedures under development will optimize the initial lookup table and adjust the images to a standard orientation.
NASA Technical Reports Server (NTRS)
Titarchuk, Lev; Shaposhnikov, Nickolai
2005-01-01
Recent studies have revealed strong correlations between 1-10 Hz frequencies of quasiperiodic oscillations (QPOs) and the spectral power law index of several Black Hole (BH) candidate sources when seen in the low/hard state, the steep power-law (soft) state, and in transition between these states. In the soft state these index-QPO frequency correlations show a saturation of the photon index GAMMA approximately equal to 2.7 at high values of the low frequency nu(sub L). This saturation effect was previously identified as a black hole signature. In this paper we argue that this saturation does not occur, at least for one neutron star (NS) source 4U 1728-34, for which the index GAMMA monotonically increases with nu(sub L) to the values of 6 and higher. We base this conclusion on our analysis of approximately 1.5 Msec of RXTE archival data for 4U 1728-34. We reveal the spectral evolution of the Comptonized blackbody spectra when the source transitions from the hard to soft states. The hard state spectrum is a typical thermal Comptonization spectrum of the soft photons which originate in the disk and the NS outer photospheric layers. The hard state photon index is GAMMA approximately 2. The soft state spectrum consists of two blackbody components which are only slightly Comptonized. Thus we can claim (as expected from theory) that in NS sources thermal equilibrium is established for the soft state. To the contrary in BH sources, the equilibrium is never established due to the presence of the BH horizon. The emergent BH spectrum, even in the high/soft state, has a power law component. We also identify the low QPO frequency nu(sub L) as a fundamental frequency of the quasi-spherical component of the transition layer (presumably related to the corona and the NS and disk magnetic closed field lines). The lower frequency nu(sub SL) is identified as the frequency of oscillations of a quasi-cylindrical configuration of the TL (presumably related to the NS and disk magnetic open field lines). We also show that the presence of Fe K(sub alpha), emission-line strengths, QPOs, and the link between them does not depend on radio flux in 4U 1728-34.
Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity
NASA Technical Reports Server (NTRS)
Tomsick, John A.; Yamoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone
2011-01-01
Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than or equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observations of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35 R(sub g) at i = 0 degrees and R(sub in) greater than 175 R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically dominated accretion flows.
NP-hardness of the cluster minimization problem revisited
NASA Astrophysics Data System (ADS)
Adib, Artur B.
2005-10-01
The computational complexity of the 'cluster minimization problem' is revisited (Wille and Vennik 1985 J. Phys. A: Math. Gen. 18 L419). It is argued that the original NP-hardness proof does not apply to pairwise potentials of physical interest, such as those that depend on the geometric distance between the particles. A geometric analogue of the original problem is formulated, and a new proof for such potentials is provided by polynomial time transformation from the independent set problem for unit disk graphs. Limitations of this formulation are pointed out, and new subproblems that bear more direct consequences to the numerical study of clusters are suggested.
CheMentor Software System by H. A. Peoples
NASA Astrophysics Data System (ADS)
Reid, Brian P.
1997-09-01
CheMentor Software System H. A. Peoples. Computerized Learning Enhancements: http://www.ecis.com/~clehap; email: clehap@ecis.com; 1996 - 1997. CheMentor is a series of software packages for introductory-level chemistry, which includes Practice Items (I), Stoichiometry (I), Calculating Chemical Formulae, and the CheMentor Toolkit. The first three packages provide practice problems for students and various types of help to solve them; the Toolkit includes "calculators" for determining chemical quantities as well as the Practice Items (I) set of problems. The set of software packages is designed so that each individual product acts as a module of a common CheMentor program. As the name CheMentor implies, the software is designed as a "mentor" for students learning introductory chemistry concepts and problems. The typical use of the software would be by individual students (or perhaps small groups) as an adjunct to lectures. CheMentor is a HyperCard application and the modules are HyperCard stacks. The requirements to run the packages include a Macintosh computer with at least 1 MB of RAM, a hard drive with several MB of available space depending upon the packages selected (10 MB were required for all the packages reviewed here), and the Mac operating system 6.0.5 or later.
A review of high magnetic moment thin films for microscale and nanotechnology applications
Scheunert, Gunther; Heinonen, O.; Hardeman, R.; ...
2016-02-17
Here, the creation of large magnetic fields is a necessary component in many technologies, ranging from magnetic resonance imaging, electric motors and generators, and magnetic hard disk drives in information storage. This is typically done by inserting a ferromagnetic pole piece with a large magnetisation density M S in a solenoid. In addition to large M S, it is usually required or desired that the ferromagnet is magnetically soft and has a Curie temperature well above the operating temperature of the device. A variety of ferromagnetic materials are currently in use, ranging from FeCo alloys in, for example, hard diskmore » drives, to rare earth metals operating at cryogenic temperatures in superconducting solenoids. These latter can exceed the limit on M S for transition metal alloys given by the Slater-Pauling curve. This article reviews different materials and concepts in use or proposed for technological applications that require a large M S, with an emphasis on nanoscale material systems, such as thin and ultra-thin films. Attention is also paid to other requirements or properties, such as the Curie temperature and magnetic softness. In a final summary, we evaluate the actual applicability of the discussed materials for use as pole tips in electromagnets, in particular, in nanoscale magnetic hard disk drive read-write heads; the technological advancement of the latter has been a very strong driving force in the development of the field of nanomagnetism.« less
Hard X-ray Emission along the Z Track in GX 17 + 2
NASA Astrophysics Data System (ADS)
Ding, G. Q.; Huang, C. P.
2015-09-01
Using the data from the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE) on board Rossi X-Ray Timing Explorer for Z source GX 17 + 2, we investigate the evolution of its PCA spectra and HEXTE spectra along a `Z' track on its hardness-intensity diagram. A hard X-ray tail is detected in the HEXTE spectra. The detected hard X-ray tails are discontinuously scattered throughout the Z track. The found hard X-ray tail hardens from the horizontal branch, through the normal branch, to the flaring branch in principle and it contributes ˜(20-50)% of the total flux in 20-200 keV. Our joint fitting results of the PCA + HEXTE spectra in 3-200 keV show that the portion of Comptonization in the Bulk-Motion Comptonization (BMC) model accounts for the hard X-ray tail, which indicates that the BMC process could be responsible for the detected hard tail. The temperature of the seed photons for BMC is ˜2.7 keV, implying that these seed photons might be emitted from the surface of the neutron star (NS) or the boundary layer between the NS and the disk and, therefore, this process could take place around the NS or in the boundary layer.
Microstructure and Hardness Profiles of Bifocal Laser-Welded DP-HSLA Steel Overlap Joints
NASA Astrophysics Data System (ADS)
Grajcar, A.; Matter, P.; Stano, S.; Wilk, Z.; Różański, M.
2017-04-01
The article presents results related to the bifocal laser welding of overlap joints made of HSLA and DP high-strength steels. The joints were made using a disk laser and a head enabling the 50-50% distribution of laser power. The effects of the laser welding rates and the distance between laser spots on morphological features and hardness profiles were analyzed. It was established that the positioning of beams at angles of 0° or 90° determined the hardness of the individual zones of the joints, without causing significant differences in microstructures of the steels. Microstructural features were inspected using scanning electron microscopy. Both steels revealed primarily martensitic-bainitic microstructures in the fusion zone and in the heat-affected zone. Mixed multiphase microstructures were revealed in the inter-critical heat-affected zone of the joint. The research involved the determination of parameters making it possible to reduce the hardness of joints and prevent the formation of the soft zone in the dual-phase steel.
X-ray variability of Cygnus X-1 in its soft state
NASA Technical Reports Server (NTRS)
Cui, W.; Zhang, S. N.; Jahoda, K.; Focke, W.; Swank, J.; Heindl, W. A.; Rothschild, R. E.
1997-01-01
Observations from the Rossi X-ray Timing Explorer (RXTE) of Cyg X-1 in the soft state and during the soft to hard transition are examined. The results of this analysis confirm previous conclusions that for this source there is a settling period (following the transition from the hard to soft state during which the low energy spectrum varies significantly, while the high energy portion changes little) during which the source reaches nominal soft state brightness. This behavior can be characterized by a soft low energy spectrum and significant low frequency 1/f noise and white noise on the power density spectrum, which becomes softer upon reaching the true soft state. The low frequency 1/f noise is not observed when Cyg X-1 is in the hard state, and therefore appears to be positively correlated with the disk mass accretion rate. The difference in the observed spectral and timing properties between the hard and soft states is qualitatively consistent with a fluctuating corona model.
A PROPELLER MODEL FOR THE SUB-LUMINOUS STATE OF THE TRANSITIONAL MILLISECOND PULSAR PSR J1023+0038
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papitto, A.; Torres, D. F.
The discovery of millisecond pulsars switching between states powered either by the rotation of their magnetic field or by the accretion of matter has recently proved the tight link shared by millisecond radio pulsars and neutron stars in low-mass X-ray binaries. Transitional millisecond pulsars also show an enigmatic intermediate state in which the neutron star is surrounded by an accretion disk and emits coherent X-ray pulsations, but is sub-luminous in X-rays with respect to accreting neutron stars, and is brighter in gamma-rays than millisecond pulsars in the rotation-powered state. Here, we model the X-ray and gamma-ray emission observed from PSR J1023+0038more » in such a state based on the assumptions that most of the disk in-flow is propelled away by the rapidly rotating neutron star magnetosphere, and that electrons can be accelerated to energies of a few GeV at the turbulent disk–magnetosphere boundary. We show that the synchrotron and self-synchrotron Compton emission coming from such a region, together with the hard disk emission typical of low states of accreting compact objects, is able to explain the radiation observed in the X-ray and gamma-ray bands. The average emission observed from PSR J1023+0038 is modeled by a disk in-flow with a rate of 1–3 × 10{sup −11} M{sub ⊙} yr{sup −1}, truncated at a radius ranging between 30 and 45 km, compatible with the hypothesis of a propelling magnetosphere. We compare the results we obtained with models that assume that a rotation-powered pulsar is turned on, showing how the spin-down power released in similar scenarios is hardly able to account for the magnitude of the observed emission.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, F. Y.; Bryden, G.; Werner, M. W.
We present dual-band Herschel /PACS imaging for 59 main-sequence stars with known warm dust ( T {sub warm} ∼ 200 K), characterized by Spitzer . Of 57 debris disks detected at Herschel wavelengths (70 and/or 100 and 160 μ m), about half have spectral energy distributions (SEDs) that suggest two-ring disk architectures mirroring that of the asteroid–Kuiper Belt geometry; the rest are consistent with single belts of warm, asteroidal material. Herschel observations spatially resolve the outer/cold dust component around 14 A-type and 4 solar-type stars with two-belt systems, 15 of which for the first time. Resolved disks are typically observedmore » with radii >100 AU, larger than expected from a simple blackbody fit. Despite the absence of narrow spectral features for ice, we find that the shape of the continuum, combined with resolved outer/cold dust locations, can help constrain the grain size distribution and hint at the dust’s composition for each resolved system. Based on the combined Spitzer /IRS+Multiband Imaging Photometer (5-to-70 μ m) and Herschel /PACS (70-to-160 μ m) data set, and under the assumption of idealized spherical grains, we find that over half of resolved outer/cold belts are best fit with a mixed ice/rock composition. Minimum grain sizes are most often equal to the expected radiative blowout limit, regardless of composition. Three of four resolved systems around the solar-type stars, however, tend to have larger minimum grains compared to expectation from blowout ( f {sub MB} = a {sub min}/ a {sub BOS} ∼ 5). We also probe the disk architecture of 39 Herschel -unresolved systems by modeling their SEDs uniformly, and find them to be consistent with 31 single- and 8 two-belt debris systems.« less
Flywheel containment technology assessment
NASA Astrophysics Data System (ADS)
Coppa, A. P.; Zweben, C. H.; Mirandy, L.
1980-07-01
The important effect of containment weight on the density of a flywheel was examined for a selection of flywheel designs incorporating metallic and composite construction as contained by steel housings. Three different flywheel constructions are presented, namely laminated rotor, shaped disk, and multirim. Materials are steel for the first two types and E glass, S glass and Kevlar composites for the third type. All of the flywheels were comparable in that their stress levels were based on long term high cycle operation. All of the specific energy values were penalized heavily by the containment weight, the least being the laminated rotor (-29 percent) and the greatest being the shaped disk (-72 percent). The penalties for the multirim designs are -45 percent (E glass), -55 percent (S glass), and -60 percent (Kevlar). The low penalty of the laminated steel rotor was due to the fact that the containment weight was based on withstanding the rupture of only one of the constituent disks. The high penalty of the shaped steel disk, on the other hand, reflects the severe containment action that resulted from its bursting into large, hard, and axially narrow fragments. The intermediate but nevertheless substantial containment penalty of the multidrum composite rotors resulted from their relatively mild containment behavior.
The Microquasar Cyg X-1: A Short Review
NASA Technical Reports Server (NTRS)
Nowak, M. A.; Wilms, J.; Hanke, M.; Pottschmidt, K.; Markoff, S.
2011-01-01
We review the spectral properties of the black hole candidate Cygnus X-I. Specifically, we discuss two recent sets of multi-satellite observations. One comprises a 0.5-500 keY spectrum, obtained with eve!)' flying X-ray satellite at that time, that is among the hardest Cyg X-I spectra observed to date. The second set is comprised of 0.5-40 keV Chandra-HETG plus RXTE-PCA spectra from a radio-quiet, spectrally soft state. We first discuss the "messy astrophysics" often neglected in the study of Cyg X-I, i.e., ionized absorption from the wind of the secondary and the foreground dust scattering halo. We then discuss components common to both state extremes: a low temperature accretion disk, and a relativistically broadened Fe line and reflection. Hard state spectral models indicate that the disk inner edge does not extend beyond > or approx.= 40 GM/sq c , and may even approach as close as approx. = 6GM/sq c. The soft state exhibits a much more prominent disk component; however, its very low normalization plausibly indicates a spinning black hole in the Cyg X-I system. Key words. accretion, accretion disks - black hole physics - X-rays:binaries
Choudhury, Dipankar; Lackner, Jürgen M; Major, Lukasz; Morita, Takehiro; Sawae, Yoshinori; Bin Mamat, Azuddin; Stavness, Ian; Roy, Chanchal K; Krupka, Ivan
2016-06-01
This study investigates the durability of functional diamond-like carbon (DLC) coated titanium alloy (Ti-6Al-4V) under edge loading conditions for application in artificial hip joints. The multilayered (ML) functional DLC coatings consist of three key layers, each of these layers were designed for specific functions such as increasing fracture strength, adapting stress generation and enhancing wear resistance. A 'ball-on-disk' multi-directional wear tester was used in the durability test. Prior to the wear testing, surface hardness, modulus elasticity and Raman intensity were measured. The results revealed a significant wear reduction to the DLC coated Ti-6Al-4V disks compared to that of non-coated Ti-6Al-4V disks. Remarkably, the counterpart Silicon Nitride (Si3N4) balls also yielded lowered specific wear rate while rubbed against the coated disks. Hence, the pairing of a functional multilayered DLC and Si3N4 could be a potential candidate to orthopedics implants, which would perform a longer life-cycle against wear caused by edge loading. Copyright © 2016 Elsevier Ltd. All rights reserved.
Signs of an Impending Hard Disk Crash
ERIC Educational Resources Information Center
Goldborough, Reid
2004-01-01
If you have worked with computers for any length of time, you have undoubtedly heard the warnings and the recommendations. Data stored on PCs can disappear in a nanosecond. You need to back up any crucial data you cannot risk losing. Ideally, you should store at least one set of crucial back-up data off-site in case of a fire, flood or other…
From Disk to Hard Copy: Teaching Writing with Computers.
ERIC Educational Resources Information Center
Strickland, James
This book is based on the idea that finding the perfect piece of software is less important than understanding the role of computers in helping all students do what writers do: get ideas, generate material, manipulate that material, confer and collaborate with others in the classroom or over a network, edit the documents, and publish a final copy.…
X-ray Diffraction as a Means to Assess Fatigue Performance of Shot-Peened Materials
2012-06-01
titanium 6 - 4 fatigue data exhibited similar trends to the 9310 steel material. Low shot- peening intensities (4A and 8A) improved fatigue performance... 6 Figure 4 ...7 Figure 4 . Residual stress and diffraction peak width data from the beta-STOA titanium 6Al-4V disks. attributed to the hardness of the
78 FR 79481 - Summary of Commission Practice Relating to Administrative Protective Orders
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
... breach of the Commission's APOs. APO breach inquiries are considered on a case-by- case basis. As part of... suitable container (N.B.: storage of BPI on so-called hard disk computer media is to be avoided, because mere erasure of data from such media may not irrecoverably destroy the BPI and may result in violation...
The USL NASA PC R and D development environment standards
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Moreau, Dennis R.
1984-01-01
The development environment standards which have been established in order to control usage of the IBM PC/XT development systems and to prevent interference between projects being currently developed on the PC's are discussed. The standards address the following areas: scheduling PC resources; login/logout procedures; training; file naming conventions; hard disk organization; diskette care; backup procedures; and copying policies.
Preventing Catastrophes from Data Loss
ERIC Educational Resources Information Center
Goldsborough, Reid
2004-01-01
What's the worst thing that can happen to a computer? Worse than a hard disk crash, virus infection, spare assault, denial-of-service attack, hacker take-over, fire, flood or some other human, mechanical or natural disaster is a faulty backup when it is really needed. If the computer blows up, as long as the data is backed up securely, it can be…
The Evolution of GX 339-4 in the Low-hard State as Seen by NuSTAR and Swift
NASA Astrophysics Data System (ADS)
Wang-Ji, Jingyi; García, Javier A.; Steiner, James F.; Tomsick, John A.; Harrison, Fiona A.; Bambi, Cosimo; Petrucci, Pierre-Olivier; Ferreira, Jonathan; Chakravorty, Susmita; Clavel, Maïca
2018-03-01
We analyze 11 Nuclear Spectroscopic Telescope Array and Swift observations of the black hole X-ray binary GX 339–4 in the hard state, 6 of which were taken during the end of the 2015 outburst and 5 during a failed outburst in 2013. These observations cover luminosities from 0.5% to 5% of the Eddington luminosity. Implementing the most recent version of the reflection model relxillCp, we perform simultaneous spectral fits on both data sets to track the evolution of the properties in the accretion disk, including the inner edge radius, the ionization, and the temperature of the thermal emission. We also constrain the photon index and electron temperature of the primary source (the “corona”). We observe a maximum truncation radius of 37 R g in the preferred fit for the 2013 data set, and a marginal correlation between the level of truncation and luminosity. We also explore a self-consistent model under the framework of coronal Comptonization, and find consistent results regarding the disk truncation in the 2015 data, providing a more physical preferred fit for the 2013 observations.
Rahman, Md Arifur; Al Mamun, Abdullah; Yao, Kui
2015-08-01
The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results.
Connections Between Jet Formation and Multiwavelength Spectral Evolution in Black Hole Transients
NASA Technical Reports Server (NTRS)
Kakemci, Emrah; Chun, Yoon-Young; Dincer, Tolga; Buxton, Michelle; Tomsick, John A.; Corbel, Stephane; Kaaret, Philip
2011-01-01
Multiwavelength observations are the key to understand conditions of jet formation in Galactic black hole transient (GBHT) systems. By studying radio and optical-infrared evolution of such systems during outburst decays, the compact jet formation can be traced. Comparing this with X-ray spectral and timing evolution we can obtain physical and geometrical conditions for jet formation, and study the contribution of jets to X-ray emission. In this work, first X-ray evolution - jet relation for XTE J1752-223 will be discussed. This source had very good coverage in X-rays, optical, infrared and radio. A long exposure with INTEGRAL also allowed us to study gamma-ray behavior after the jet turns on. We will also show results from the analysis of data from GX 339-4 in the hard state with SUZAKU at low flux levels. The fits to iron line fluorescence emission show that the inner disk radius increases by a factor of greater than 27 with respect to radii in bright states. This result, along with other disk radius measurements in the hard state will be discussed within the context of conditions for launching and sustaining jets.
ESDAPT - APT PROGRAMMING EDITOR AND INTERPRETER
NASA Technical Reports Server (NTRS)
Premack, T.
1994-01-01
ESDAPT is a graphical programming environment for developing APT (Automatically Programmed Tool) programs for controlling numerically controlled machine tools. ESDAPT has a graphical user interface that provides the user with an APT syntax sensitive text editor and windows for displaying geometry and tool paths. APT geometry statement can also be created using menus and screen picks. ESDAPT interprets APT geometry statements and displays the results in its view windows. Tool paths are generated by batching the APT source to an APT processor (COSMIC P-APT recommended). The tool paths are then displayed in the view windows. Hardcopy output of the view windows is in color PostScript format. ESDAPT is written in C-language, yacc, lex, and XView for use on Sun4 series computers running SunOS. ESDAPT requires 4Mb of disk space, 7Mb of RAM, and MIT's X Window System, Version 11 Release 4, or OpenWindows version 3 for execution. Program documentation in PostScript format and an executable for OpenWindows version 3 are provided on the distribution media. The standard distribution medium for ESDAPT is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. This program was developed in 1992.
NASA Astrophysics Data System (ADS)
Hujeirat, A.; Camenzind, M.
2000-10-01
We present the first 2D quasi-stationary radiative hydrodynamical calculations of accretion flows onto BHs taking into account cooling via Bremsstrahlung, Compton, Synchrotron and conduction. The effect of enhanced Coulomb coupling is investigated also. Based on the numerical results obtained, we find that two-temperature (2T) accretion flows are best suited to describe hard states, and one-temperature (1T) in the soft states, with transition possibly depending on the accretion rate. In the 2T case, the ion-conduction enlarges the disk-truncation-radius from 5 to 9 Schwarzschild radii (RS). The ion-pressure powers outflows, hence substantially decreasing the accretion rate with decreasing radius. The spectrum is partially modified BB with hard photons emitted from the inner region and showing a cutoff at 100 keV. In the 1T case, conduction decreases the truncation radius from 7 to 5 RS and lowers the maximum gas temperature. The outflows are weaker, the spectrum is pre-dominantly modified BB and the emitted photons from the inner region are much harder (up to 175 keV). In both cases, the unsaturated Comptonization region coincides with the transition region between the disk and the advective torus. When gradually enhancing the Coulomb coupling, we find that the ion-temperature Ti decreases and the electron temperature Te increases, asymptotically converging to 1T flows. However, once the dissipated energy goes into heating the ions, ion-electron thermal decoupling is inevitable within the last stable orbit (RMS) even when the Coulomb interaction is enhanced by an additional two orders of magnitude.
STS-48 ESC image of the MODE-01 Fluid Test Article (FTA) on OV-103's middeck
NASA Technical Reports Server (NTRS)
1991-01-01
An electronic still camera (ESC) closeup shows the STS-48 Middeck Zero ('0') Gravity Dynamics Experiment 01 (MODE-01) Fluid Test Article (FTA) attached to an experimental support module (ESM) located in a forward middeck locker onboard the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. The FTA is a 3.1-cm diameter cylindrical sealed Lexan tank. The FTA electromagnetic actuator has excited the test article sinusoidally, which causes the fluid inside the tank to slosh. These slosh forces, along with other data such as acceleration levels of the entire assembly, are measured by the force balance and recorded in digital form on an optical disk for later ground analysis. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shutt
Measurement of Flexed Posture for Flexible Mono-Tread Mobile Track
NASA Astrophysics Data System (ADS)
Kinugasa, Tetsuya; Akagi, Tetsuya; Ishii, Kuniaki; Haji, Takafumi; Yoshida, Koji; Amano, Hisanori; Hayashi, Ryota; Tokuda, Kenichi; Iribe, Masatsugu; Osuka, Koichi
We have proposed Flexible Mono-tread mobile Track (FMT) as a mobile mechanism on rough terrain for rescue activity, environmental investigation and planetary explorer, etc. Generally speaking, one has to teleoperate robots under invisible condition. In order to operate the robots skillfully, it is necessary to detect not only condition around the robots and its position but also posture of the robots at any time. Since flexed posture of FMT decides turning radius and direction, it is important to know its posture. FMT has vertebral structure composed of vertebrae as rigid body and intervertebral disks made by flexible devices such as rubber cylinder and spring. Since the intervertebral disks flex in three dimension, traditional sensors such as potentiometers, rotary encoders and range finders can hardly use for measurement of its deformation. The purpose of the paper, therefore, is to measure flexed posture of FMT using a novel flexible displacement sensor. We prove that the flexed posture of FMT with five intervertebral disks can be detected through experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szulagyi, Judit; Pascucci, Ilaria; Abraham, Peter
Mid-infrared atomic and ionic line ratios measured in spectra of pre-main-sequence stars are sensitive indicators of the hardness of the radiation field impinging on the disk surface. We present a low-resolution Spitzer IRS search for [Ar II] at 6.98 {mu}m, [Ne II] at 12.81 {mu}m, and [Ne III] 15.55 {mu}m lines in 56 transitional disks. These objects, characterized by reduced near-infrared but strong far-infrared excess emission, are ideal targets to set constraints on the stellar radiation field onto the disk, because their spectra are not contaminated by shock emission from jets/outflows or by molecular emission lines. After demonstrating that wemore » can detect [Ne II] lines and recover their fluxes from the low-resolution spectra, here we report the first detections of [Ar II] lines toward protoplanetary disks. We did not detect [Ne III] emission in any of our sources. Our [Ne II]/[Ne III] line flux ratios combined with literature data suggest that a soft-EUV or X-ray spectrum produces these gas lines. Furthermore, the [Ar II]/[Ne II] line flux ratios point to a soft X-ray and/or soft-EUV stellar spectrum as the ionization source of the [Ar II] and [Ne II] emitting layer of the disk. If the soft X-ray component dominates over the EUV, then we would expect larger photoevaporation rates and, hence, a reduction of the time available to form planets.« less
X-ray Novae and Related Systems
NASA Technical Reports Server (NTRS)
Wheeler, J. Craig; Kim, Soonwook; Mineshige, Shin
1992-01-01
Accretion disk thermal instability models have been successful in accounting for the basic observations of dwarf novae and the steady behavior of nova-like systems. Models for the dwarf-nova like variability of the old nova and intermediate polar GK Per give good agreement with the burst amplitude, profile and recurrence time in the optical and UV. A month-long 'precursor plateau' in the UV is predicted for the expected 1992 outburst prior to the rise to maximum in the optical and UV. The models for the time scales of the outbursts and corresponding UV spectra at maximum are consistent with the inner edge of the accretion disk being essentially constant between quiescence and outburst and a factor of four larger than the co-rotation radius. These conclusions represent a challenge to the standard theory of magnetic accretion. Disk instability models have also given a good representation of the soft X-ray and optical outbursts of the X-ray novae A0620-00 and GS2000+25. Formation of coronae above the disk, heated by magneto-acoustic flux from the disk, may account for the temporal and spectral properties of the hard X-ray and gamma ray emission of related sources such as Cyg X-1, GS 2023+33 (V404 Cyg), IE 1740.7-2942 (the 'Galactic Center' Einstein Source), and GS 1124-683 (Nova Muscae).
Thermal modeling of head disk interface system in heat assisted magnetic recording
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vemuri, Sesha Hari; Seung Chung, Pil; Jhon, Myung S., E-mail: mj3a@andrew.cmu.edu
2014-05-07
A thorough understanding of the temperature profiles introduced by the heat assisted magnetic recording is required to maintain the hotspot at the desired location on the disk with minimal heat damage to other components. Here, we implement a transient mesoscale modeling methodology termed lattice Boltzmann method (LBM) for phonons (which are primary carriers of energy) in the thermal modeling of the head disk interface (HDI) components, namely, carbon overcoat (COC). The LBM can provide more accurate results compared to conventional Fourier methodology by capturing the nanoscale phenomena due to ballistic heat transfer. We examine the in-plane and out-of-plane heat transfermore » in the COC via analyzing the temperature profiles with a continuously focused and pulsed laser beam on a moving disk. Larger in-plane hotspot widening is observed in continuously focused laser beam compared to a pulsed laser. A pulsed laser surface develops steeper temperature gradients compared to continuous hotspot. Furthermore, out-of-plane heat transfer from the COC to the media is enhanced with a continuous laser beam then a pulsed laser, while the temperature takes around 140 fs to reach the bottom surface of the COC. Our study can lead to a realistic thermal model describing novel HDI material design criteria for the next generation of hard disk drives with ultra high recording densities.« less
The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk
NASA Technical Reports Server (NTRS)
Walton, D. J.; Tomsick, J. A.; Madsen, K. K.; Grinberg, V.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Clavel, M.; Craig, W. W.; Fabian, A. C.;
2016-01-01
We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93 < approx. a* < approx. 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be approx.10deg-15deg. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at approx. 6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.
An Extreme X-ray Disk Wind in the Black Hole Candidate IGR J17091-3624
NASA Technical Reports Server (NTRS)
King, A. L.; Miller, J. M.; Raymond, J.; Fabian, A. C.; Reynolds, C. S.; Kallman, T. R.; Maitra, D.; Cackett, E. M.; Rupen, M. P.
2012-01-01
Chandra spectroscopy of transient stellar-mass black holes in outburst has clearly revealed accretion disk winds in soft, disk-dominated states, in apparent anti-correlation with relativistic jets in low/hard states. These disk winds are observed to be highly ionized. dense. and to have typical velocities of approx 1000 km/s or less projected along our line of sight. Here. we present an analysis of two Chandra High Energy Transmission Grating spectra of the Galactic black hole candidate IGR J17091-3624 and contemporaneous EVLA radio observations. obtained in 2011. The second Chandra observation reveals an absorption line at 6.91+/-0.01 keV; associating this line with He-like Fe XXV requires a blue-shift of 9300(+500/-400) km/ s (0.03c. or the escape velocity at 1000 R(sub schw)). This projected outflow velocity is an order of magnitude higher than has previously been observed in stellar-mass black holes, and is broadly consistent with some of the fastest winds detected in active galactic nuclei. A potential feature at 7.32 keV, if due to Fe XXVI, would imply a velocity of approx 14600 km/s (0.05c), but this putative feature is marginal. Photoionization modeling suggests that the accretion disk wind in IGR J17091-3624 may originate within 43,300 Schwarzschild radii of the black hole, and may be expelling more gas than accretes. The contemporaneous EVLA observations strongly indicate that jet activity was indeed quenched at the time of our Chandra observations. We discuss the results in the context of disk winds, jets, and basic accretion disk physics in accreting black hole systems
The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk
NASA Astrophysics Data System (ADS)
Walton, D. J.; Tomsick, J. A.; Madsen, K. K.; Grinberg, V.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Clavel, M.; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Miller, J. M.; Parker, M. L.; Rahoui, F.; Stern, D.; Tao, L.; Wilms, J.; Zhang, W.
2016-07-01
We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93≲ {a}* ≲ 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be ˜10°-15°. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at ˜6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.
QRAP: A numerical code for projected (Q)uasiparticle (RA)ndom (P)hase approximation
NASA Astrophysics Data System (ADS)
Samana, A. R.; Krmpotić, F.; Bertulani, C. A.
2010-06-01
A computer code for quasiparticle random phase approximation - QRPA and projected quasiparticle random phase approximation - PQRPA models of nuclear structure is explained in details. The residual interaction is approximated by a simple δ-force. An important application of the code consists in evaluating nuclear matrix elements involved in neutrino-nucleus reactions. As an example, cross sections for 56Fe and 12C are calculated and the code output is explained. The application to other nuclei and the description of other nuclear and weak decay processes are also discussed. Program summaryTitle of program: QRAP ( Quasiparticle RAndom Phase approximation) Computers: The code has been created on a PC, but also runs on UNIX or LINUX machines Operating systems: WINDOWS or UNIX Program language used: Fortran-77 Memory required to execute with typical data: 16 Mbytes of RAM memory and 2 MB of hard disk space No. of lines in distributed program, including test data, etc.: ˜ 8000 No. of bytes in distributed program, including test data, etc.: ˜ 256 kB Distribution format: tar.gz Nature of physical problem: The program calculates neutrino- and antineutrino-nucleus cross sections as a function of the incident neutrino energy, and muon capture rates, using the QRPA or PQRPA as nuclear structure models. Method of solution: The QRPA, or PQRPA, equations are solved in a self-consistent way for even-even nuclei. The nuclear matrix elements for the neutrino-nucleus interaction are treated as the beta inverse reaction of odd-odd nuclei as function of the transfer momentum. Typical running time: ≈ 5 min on a 3 GHz processor for Data set 1.
Theory of magnetic cataclysmic binary X-ray sources
NASA Technical Reports Server (NTRS)
Lamb, Don Q.
1988-01-01
The theory of magnetic cataclysmic binary X-ray sources is reviewed. The physics of the accretion torque for disk and for stream accretion is described, and the magnetic field strengths of DQ Her stars inferred from their spin behavior and of AM Her stars from direct measurement are discussed. The implications of disk and stream accretion for the geometry of the emission region and for the X-ray pulse profiles are considered. The physicl properties of the X-ray emission region and the expected infrared, optical, soft X-ray, and hard X-ray spectra are described. The orientations of the magnetic moment in AM Her stars inferred from the circular and linear polarization of the optical light and the optical light curve are commented on.
Hard X-ray spectrum of Cygnus X-1
NASA Technical Reports Server (NTRS)
Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Rothschild, R. E.; Marshall, F. E.; Levine, A. M.; Primini, F. A.
1981-01-01
Long-term measurements of the hard X-ray spectrum from 3 keV to 8 MeV of the black-hole candidate Cygnus X-1 in its low state are reported. Observations were made from October 26 to November 18, 1977 with the A2 (Cosmic X-ray) and A4 (Hard X-ray and Low-Energy Gamma-Ray) experiments on board HEAO 1 in the spacecraft's scanning mode. The measured spectrum below 200 keV is found to agree well with previous spectra which have been fit by a model of the Compton scattering of optical or UV photons in a very hot plasma of electron temperature 32.4 keV and optical depth 3.9 or 1.6 for spherical or disk geometry, respectively. At energies above 300 keV, however, flux excess is observed which may be accounted for by a distribution of electron temperatures from 15 to about 100 keV.
Spectral variations of LMC X-3 observed with Ginga
NASA Technical Reports Server (NTRS)
Ebisawa, Ken; Makino, Fumiyoshi; Mitsuda, Kazuhisa; Belloni, Tomaso; Cowley, Anne P.; Schmidtke, Paul C.; Treves, Aldo
1993-01-01
The prime black hole candidate LMC X-3 was observed over three years with the Ginga satellite, and a characteristic spectral variation was found accompanying the periodic intensity variation of about 198 (or possibly about 99) days (Cowley et al., 1991). The energy spectrum of LMC X-3 consists of the soft, thermal component and the hard, power-law component, which are respectively dominant below and above about 9 keV. The soft component, which carries most of the X-ray intensity, shows a clear correlation between the intensity and the hardness, while the hard component varies independently of the soft component. It was found that the spectral variation of the soft component is well described by an optically thick accretion disk model with a remarkably constant innermost radius and variable mass accretion rate. The constancy of the innermost radius suggests it is related to the mass of the central object.
Clustering impact regime with shocks in freely evolving granular gas
NASA Astrophysics Data System (ADS)
Isobe, Masaharu
2017-06-01
A freely cooling granular gas without any external force evolves from the initial homogeneous state to the inhomogeneous clustering state, at which the energy decay deviates from the Haff's law. The asymptotic behavior of energy in the inelastic hard sphere model have been predicted by several theories, which are based on the mode coupling theory or extension of inelastic hard rods gas. In this study, we revisited the clustering regime of freely evolving granular gas via large-scale molecular dynamics simulation with up to 16.7 million inelastic hard disks. We found novel regime regarding on collisions between "clusters" spontaneously appearing after clustering regime, which can only be identified more than a few million particles system. The volumetric dilatation pattern of semicircular shape originated from density shock propagation are well characterized on the appearing of "cluster impact" during the aggregation process of clusters.
Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity
NASA Technical Reports Server (NTRS)
Tomsick, John A.; Yamaoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone
2009-01-01
Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than approximately equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observation of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer (RXTE) that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35R(sub g) at i = 0 degrees and R(sub in) greater than 175R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically-dominated accretion flows.
ACCRETION DISK DYNAMO AS THE TRIGGER FOR X-RAY BINARY STATE TRANSITIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begelman, Mitchell C.; Armitage, Philip J.; Reynolds, Christopher S., E-mail: mitch@jila.colorado.edu
2015-08-20
Magnetohydrodynamic accretion disk simulations suggest that much of the energy liberated by the magnetorotational instability (MRI) can be channeled into large-scale toroidal magnetic fields through dynamo action. Under certain conditions, this field can dominate over gas and radiation pressure in providing vertical support against gravity, even close to the midplane. Using a simple model for the creation of this field, its buoyant rise, and its coupling to the gas, we show how disks could be driven into this magnetically dominated state and deduce the resulting vertical pressure and density profiles. Applying an established criterion for MRI to operate in themore » presence of a toroidal field, we show that magnetically supported disks can have two distinct MRI-active regions, separated by a “dead zone” where local MRI is suppressed, but where magnetic energy continues to flow upward from the dynamo region below. We suggest that the relative strengths of the MRI zones, and the local poloidal flux, determine the spectral states of X-ray binaries. Specifically, “intermediate” and “hard” accretion states occur when MRI is triggered in the hot, upper zone of the corona, while disks in “soft” states do not develop the upper MRI zone. We discuss the conditions under which various transitions should take place and speculate on the relationship of dynamo activity to the various types of quasi-periodic oscillations that sometimes appear in the hard spectral components. The model also explains why luminous accretion disks in the “soft” state show no signs of the thermal/viscous instability predicted by standard α-models.« less
A forward error correction technique using a high-speed, high-rate single chip codec
NASA Astrophysics Data System (ADS)
Boyd, R. W.; Hartman, W. F.; Jones, Robert E.
The authors describe an error-correction coding approach that allows operation in either burst or continuous modes at data rates of multiple hundreds of megabits per second. Bandspreading is low since the code rate is 7/8 or greater, which is consistent with high-rate link operation. The encoder, along with a hard-decision decoder, fits on a single application-specific integrated circuit (ASIC) chip. Soft-decision decoding is possible utilizing applique hardware in conjunction with the hard-decision decoder. Expected coding gain is a function of the application and is approximately 2.5 dB for hard-decision decoding at 10-5 bit-error rate with phase-shift-keying modulation and additive Gaussian white noise interference. The principal use envisioned for this technique is to achieve a modest amount of coding gain on high-data-rate, bandwidth-constrained channels. Data rates of up to 300 Mb/s can be accommodated by the codec chip. The major objective is burst-mode communications, where code words are composed of 32 n data bits followed by 32 overhead bits.
Emergence of the mass discrepancy-acceleration relation from dark matter-baryon interactions
NASA Astrophysics Data System (ADS)
Famaey, Benoit; Khoury, Justin; Penco, Riccardo
2018-03-01
The observed tightness of the mass discrepancy-acceleration relation (MDAR) poses a fine-tuning challenge to current models of galaxy formation. We propose that this relation could arise from collisional interactions between baryons and dark matter (DM) particles, without the need for modification of gravity or ad hoc feedback processes. We assume that these interactions satisfy the following three conditions: (i) the relaxation time of DM particles is comparable to the dynamical time in disk galaxies; (ii) DM exchanges energy with baryons due to elastic collisions; (iii) the product between the baryon-DM cross section and the typical energy exchanged in a collision is inversely proportional to the DM number density. As a proof of principle, we present an example of a particle physics model that gives a DM-baryon cross section with the desired density and velocity dependence. For consistency with direct detection constraints, our DM particles must be either very light (m ll mb) or very heavy (mgg mb), corresponding respectively to heating and cooling of DM by baryons. In both cases, our mechanism applies and an equilibrium configuration can in principle be reached. In this exploratory paper, we focus on the heavy DM/cooling case because it is technically simpler, since the average energy exchanged turns out to be approximately constant throughout galaxies. Under these assumptions, we find that rotationally-supported disk galaxies could naturally settle to equilibrium configurations satisfying a MDAR at all radii without invoking finely tuned feedback processes. We also discuss issues related to the small scale clumpiness of baryons, as well as predictions for pressure-supported systems. We argue in particular that galaxy clusters do not follow the MDAR despite being DM-dominated because they have not reached their equilibrium configuration. Finally, we revisit existing phenomenological, astrophysical and cosmological constraints on baryon-DM interactions in light of the unusual density dependence of the cross section of DM particles.
Organize Your Digital Photos: Display Your Images Without Hogging Hard-Disk Space
ERIC Educational Resources Information Center
Branzburg, Jeffrey
2005-01-01
According to InfoTrends/CAP Ventures, by the end of this year more than 55 percent of all U.S. households will own at least one digital camera. With so many digital cameras in use, it is important for people to understand how to organize and store digital images in ways that make them easy to find. Additionally, today's affordable, large megapixel…
Conversion and Retrievability of Hard Copy and Digital Documents on Optical Disks
1992-03-01
53 B. CURRENT THESIS PREPARATION TOOLS . ....... 54 1. Thesis Preparation using G-Thesis ..... 55 2. Thesis Preparation using Framemaker ...School mainframe. • Computer Science department students can use a software package called Framemaker , available on Sun work stations in their...by most thesis typists and students. For this reason, the discussion of thesis preparation tools will be limited to; G-thesis, Framemaker and
Automatic Adaptation of Tunable Distributed Applications
2001-01-01
size, weight, and battery life, with a single CPU, less memory, smaller hard disk, and lower bandwidth network connectivity. The power of PDAs is...wireless, and bluetooth [32] facilities; thus achieving different rates of data transmission. 1 With the trend of “write once, run everywhere...applications, a single component can execute on multiple processors (or machines) in parallel. These parallel applications, written in a specialized language
Material Problems for High-Temperature, High-Power Space Energy-Conversion Systems.
1984-05-01
M. Takahashi, S. Nanamaku, and M. Kimura , "The growth of ferroelectric single crystal Sr 2 Mb2 0 7 by means of F.Z. technique," J. of Crystal Growth...Holsbeke, "Preparation and characterization of high purity vanadium by EBFZM," J. of Less Common Metals, Vol. 39, 7-16 (1975). 18. S. Takai and H. Kimura ... uranium system from room temperature to 900 0C. The composition of maximum hardness increased from 40 atomic percent (a/o) zirconium at room ’ 69
Outdoor weathering of facial prosthetic elastomers differing in Durometer hardness.
Willett, Emily S; Beatty, Mark W
2015-03-01
Facial prosthetic elastomers with wide ranges in hardness are available, yet material weatherability is unknown. The purpose of this study was to assess color, Durometer hardness, and tensile property changes after 3000 hours of outdoor weathering. Unpigmented elastomers with Durometer hardness 5, 30, 50, 70, and A-2186 were polymerized into dumbbells (ASTM D412) and disks, 34 mm in diameter by 6 mm thick. Materials were subjected to outdoor or time passage environments for 3000 hours. CIELab color (n=5), Durometer hardness (n=5), and tensile mechanical properties (n=10) were measured at 0 and 3000 hours, and group differences were assessed by material and weathering condition (ANOVA/Tukey, α=.05). Except for A-2186, the mean Durometer changes for all materials were 1 unit or less, with no significant differences observed between time passage and weathered groups (P≥.05). Three-thousand-hour tensile mechanical property results demonstrated nonsignificant differences between time passage and weathered materials but significantly changed properties from immediately tested materials (P<.001). Outdoor weathering induced perceptible but acceptable color changes (1.7≤ΔE*≤2.6) for elastomers with Durometer hardness 5 and 30 and A-2186. With a few exceptions, outdoor weathering produced relatively small changes in color, Durometer hardness, or tensile properties compared with time passage. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Steiner, James F.; García, Javier A.; Eikmann, Wiebke; McClintock, Jeffrey E.; Brenneman, Laura W.; Dauser, Thomas; Fabian, Andrew C.
2017-02-01
Continuum and reflection spectral models have each been widely employed in measuring the spins of accreting black holes. However, the two approaches have not been implemented together in a photon-conserving, self-consistent framework. We develop such a framework using the black hole X-ray binary GX 339-4 as a touchstone source, and we demonstrate three important ramifications. (1) Compton scattering of reflection emission in the corona is routinely ignored, but is an essential consideration given that reflection is linked to the regimes with strongest Comptonization. Properly accounting for this causes the inferred reflection fraction to increase substantially, especially for the hard state. Another important impact of the Comptonization of reflection emission by the corona is the downscattered tail. Downscattering has the potential to mimic the relativistically broadened red wing of the Fe line associated with a spinning black hole. (2) Recent evidence for a reflection component with a harder spectral index than the power-law continuum is naturally explained as Compton-scattered reflection emission. (3) Photon conservation provides an important constraint on the hard state’s accretion rate. For bright hard states, we show that disk truncation to large scales R\\gg {R}{ISCO} is unlikely as this would require accretion rates far in excess of the observed \\dot{M} of the brightest soft states. Our principal conclusion is that when modeling relativistically broadened reflection, spectral models should allow for coronal Compton scattering of the reflection features, and when possible, take advantage of the additional constraining power from linking to the thermal disk component.
Chewing rates among domestic dog breeds
Gerstner, Geoffrey E.; Cooper, Meghan; Helvie, Peter
2010-01-01
The mammalian masticatory rhythm is produced by a brainstem timing network. The rhythm is relatively fixed within individual animals but scales allometrically with body mass (Mb) across species. It has been hypothesized that sensory feedback and feed-forward adjust the rhythm to match the jaw's natural resonance frequency, with allometric scaling being an observable consequence. However, studies performed with adult animals show that the rhythm is not affected by jaw mass manipulations, indicating that either developmental or evolutionary mechanisms are required for allometry to become manifest. The present study was performed to tease out the relative effects of development versus natural selection on chewing rate allometry. Thirty-one dog breeds and 31 mass-matched non-domestic mammalian species with a range in Mb from ∼2 kg to 50 kg were studied. Results demonstrated that the chewing rhythm did not scale with Mb among dog breeds (R=0.299, P>0.10) or with jaw length (Lj) (R=0.328, P>0.05). However, there was a significant relationship between the chewing rhythm and Mb among the non-domestic mammals (R=0.634, P<0.001). These results indicate that scaling is not necessary in the adult animal. We conclude that the central timing network and related sensorimotor systems may be necessary for rhythm generation but they do not explain the 1/3rd to 1/4th allometric scaling observed among adult mammals. The rhythm of the timing network is either adjusted to the physical parameters of the jaw system during early development only, is genetically determined independently of the jaw system or is uniquely hard-wired among dogs and laboratory rodents. PMID:20543125
Tharwat, Mohamed; Al-Sobayil, Fahd; Buczinski, Sébastien
2013-09-01
The objective of this study was to investigate the effect of racing on the serum concentrations of cardiac troponin I (cTnI) and creatine kinase myocardial band (CK-MB) in 32 racing greyhounds. Blood samples were collected 24h prior to a 7 km race (T0), within 2h of completion of the race (T1), and 24h post-race (T2). Blood samples were also collected from 20 non-racing greyhounds. The median cTnI concentration in the racing greyhounds was not significantly different from that in the non-racing greyhounds (0.045 ng/mL). Before racing, the median cTnI concentration in the racing greyhounds was 0.050 ng/mL. Following the 7 km race, 31/32 greyhounds showed increases in cTnI concentrations which were significantly higher than the pre-race concentrations (P<0.0001). cTnI concentrations dropped back 24h post-race to values not significantly different from the pre-race concentrations. Following the race, 5/32 greyhounds showed mild increases in CK-MB concentrations but these were not significantly different from the pre-race values. These findings could be of importance when evaluating greyhounds with suspected cardiac disease that have recently performed hard exercise. Copyright © 2013 Elsevier Ltd. All rights reserved.
Juntavee, Niwut; Juntavee, Apa; Saensutthawijit, Phuwiwat
2018-02-01
This study evaluated the effect of light-emitting diode (LED) illumination bleaching technique on the surface nanohardness of various computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic materials. Twenty disk-shaped samples (width, length, and thickness = 10, 15, and 2 mm) were prepared from each of the ceramic materials for CAD/CAM, including Lava™ Ultimate (L V ), Vita Enamic® (E n ) IPS e.max® CAD (M e ), inCoris® TZI (I C ), and Prettau® zirconia (P r ). The samples from each type of ceramic were randomly divided into two groups based on the different bleaching techniques to be used on them, using 35% hydrogen peroxide with and without LED illumination. The ceramic disk samples were bleached according to the manufacturer's instruction. Surface hardness test was performed before and after bleaching using nanohardness tester with a Berkovich diamond indenter. The respective Vickers hardness number upon no bleaching and bleaching without or with LED illumination [mean ± standard deviation (SD)] for each type of ceramic were as follows: 102.52 ± 2.09, 101.04 ± 1.18, and 98.17 ± 1.15 for L V groups; 274.96 ± 5.41, 271.29 ± 5.94, and 268.20 ± 7.02 for E n groups; 640.74 ± 31.02, 631.70 ± 22.38, and 582.32 ± 33.88 for M e groups; 1,442.09 ± 35.07, 1,431.32 ± 28.80, and 1,336.51 ± 34.03 for I C groups; and 1,383.82 ± 33.87, 1,343.51 ± 38.75, and 1,295.96 ± 31.29 for P r groups. The results indicated surface hardness reduction following the bleaching procedure of varying degrees for different ceramic materials. Analysis of variance (ANOVA) revealed a significant reduction in surface hardness due to the effect of bleaching technique, ceramic material, and the interaction between bleaching technique and ceramic material (p < 0.05). Bleaching resulted in a diminution of the surface hardness of dental ceramic for CAD/CAM. Using 35% hydrogen peroxide bleaching agent with LED illumination exhibited more reduction in surface hardness of dental ceramic than what was observed without LED illumination. Clinicians should consider protection of the existing restoration while bleaching.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panda, Subrata, E-mail: subrata.panda@univ-lorrain
2017-01-15
Two distinct bulk light metals were opted to study the shear strain evolution and associated heterogeneities in texture/microstructure development during torsional straining by high pressure torsion (HPT): a face centered cubic Al alloy (A5086) and a hexagonal commercial purity Mg. Relatively thick disk samples - four times thicker than usually employed in HPT process - were processed to 180° and 270° rotations. With the help of X-ray tomography, the shear strain gradients were examined in the axial direction. The results showed strongly localized shear deformation in the middle plane of the disks in both materials. These gradients involved strong heterogeneitiesmore » in texture, microstructure and associated hardness, in particular through the thickness direction at the periphery of the disk where the interplay between significant strain hardening and possible dynamic recrystallization could occur. - Highlights: •HPT processing was conducted on bulk specimens thicker than the usual thin-disks. •The Al alloy (A5086) and commercial purity magnesium samples were compared. •Distributions of strain and microhardness were evaluated in the radial and axial direction. •Plastic deformation is highly localized in the middle plane at outer edge in both materials. •Different DRX rates governed the differences in microstructure and hardening behavior.« less
Laser illuminator and optical system for disk patterning
Hackel, Lloyd A.; Dane, C. Brent; Dixit, Shamasundar N.; Everett, Mathew; Honig, John
2000-01-01
Magnetic recording media are textured over areas designated for contact in order to minimize friction with data transducing heads. In fabricating a hard disk, an aluminum nickel-phosphorous substrate is polished to a specular finish. A mechanical means is then used to roughen an annular area intended to be the head contact band. An optical and mechanical system allows thousands of spots to be generated with each laser pulse, allowing the textured pattern to be rapidly generated with a low repetition rate laser and an uncomplicated mechanical system. The system uses a low power laser, a beam expander, a specially designed phase plate, a prism to deflect the beam, a lens to transmit the diffraction pattern to the far field, a mechanical means to rotate the pattern and a trigger system to fire the laser when sections of the pattern are precisely aligned. The system generates an annular segment of the desired pattern with which the total pattern is generated by rotating the optical system about its optic axis, sensing the rotational position and firing the laser as the annular segment rotates into the next appropriate position. This marking system can be integrated into a disk sputtering system for manufacturing magnetic disks, allowing for a very streamlined manufacturing process.
Radiotherapy supporting system based on the image database using IS&C magneto-optical disk
NASA Astrophysics Data System (ADS)
Ando, Yutaka; Tsukamoto, Nobuhiro; Kunieda, Etsuo; Kubo, Atsushi
1994-05-01
Since radiation oncologists make the treatment plan by prior experience, information about previous cases is helpful in planning the radiation treatment. We have developed an supporting system for the radiation therapy. The case-based reasoning method was implemented in order to search old treatments and images of past cases. This system evaluates similarities between the current case and all stored cases (case base). The portal images of the similar cases can be retrieved for reference images, as well as treatment records which show examples of the radiation treatment. By this system radiotherapists can easily make suitable plans of the radiation therapy. This system is useful to prevent inaccurate plannings due to preconceptions and/or lack of knowledge. Images were stored into magneto-optical disks and the demographic data is recorded to the hard disk which is equipped in the personal computer. Images can be displayed quickly on the radiotherapist's demands. The radiation oncologist can refer past cases which are recorded in the case base and decide the radiation treatment of the current case. The file and data format of magneto-optical disk is the IS&C format. This format provides the interchangeability and reproducibility of the medical information which includes images and other demographic data.
Effect of bioactive glass-containing resin composite on dentin remineralization.
Lee, Myoung Geun; Jang, Ji-Hyun; Ferracane, Jack L; Davis, Harry; Bae, Han Eul; Choi, Dongseok; Kim, Duck-Su
2018-05-25
The purpose of this study was to evaluate the effect of bioactive glass (BAG)-containing composite on dentin remineralization. Sixty-six dentin disks with 3 mm thickness were prepared from thirty-three bovine incisors. The following six experimental groups were prepared according to type of composite (control and experimental) and storage solutions (simulated body fluid [SBF] and phosphate-buffered saline [PBS]): 1 (undemineralized); 2 (demineralized); 3 (demineralized with control in SBF); 4 (demineralized with control in PBS); 5 (demineralized with experimental composite in SBF); and 6 (demineralized with experimental composite in PBS). BAG65S (65% Si, 31% Ca, and 4% P) was prepared via the sol-gel method. The control composite was made with a 50:50 Bis-GMA:TEGDMA resin matrix, 57 wt% strontium glass, and 15 wt% aerosol silica. The experimental composite had the same resin and filler, but with 15 wt% BAG65S replacing the aerosol silica. For groups 3-6, composite disks (20 × 10 × 2 mm) were prepared and approximated to the dentin disks and stored in PBS or SBF for 2 weeks. Micro-hardness measurements, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) and field-emission scanning electron microscopy (FE-SEM) was investigated. The experimental BAG-containing composite significantly increased the micro-hardness of the adjacent demineralized dentin. ATR-FTIR revealed calcium phosphate peaks on the surface of the groups which used experimental composite. FE-SEM revealed surface deposits partially occluding the dentin surface. No significant difference was found between SBF and PBS storage. BAG-containing composites placed in close proximity can partially remineralize adjacent demineralized dentin. Copyright © 2018. Published by Elsevier Ltd.
An Extreme, Blueshifted Iron Line in the Narrow Line Seyfert 1 PG 1402+261
NASA Technical Reports Server (NTRS)
Reeves, J. N.; Porquet, D.; Turner, T. J.
2004-01-01
We report on a short, XMM-Newton observation of the radio-quiet Narrow Line Seyfert 1 PG 1402+261. The EPIC X-ray spectrum of PG 1402+261 shows a strong excess of counts between 6 - 9 keV in the rest frame. This feature can be modeled by an unusually strong (equivalent width 2 keV) and very broad energy at 7.3 keV appears blue-shifted with respect to the iron Kalpha emission band between 6.4 - 6.97 keV, whilst the blue-wing of the line extends to 9 keV in the quasar rest frame. The line profile can be fitted by reflection from the inner accretion disk, but an inclination angle of greater than 60 degrees is required to model the extreme blue-wing of the line. Furthermore the extreme strength of the line requires a geometry whereby the hard X-ray emission from PG1402+261 above 2 keV is dominated by the pure-reflection component from the disk, whilst little or none of the direct hard power-law is observed. Alternatively the spectrum above 2 keV may instead be explained by an ionized absorber, if the column density is sufficiently high (NH greater than 3 x 10(exp 23) per square centimeter) and if the matter is ionized enough to produce a deep (tau approximately equal to 1) iron K-shell absorption edge at 9 keV. This absorber could originate in a large column density, high velocity outflow, perhaps similar to those which appear to be observed in several other high accretion rate AGN. Further observations, especially at higher spectral resolution, are required to distinguish between the accretion disk reflection or outflow scenarios.
Magnetic Recording Media Technology for the Tb/in2 Era"
Bertero, Gerardo [Western Digital
2017-12-09
Magnetic recording has been the technology of choice of massive storage of information. The hard-disk drive industry has recently undergone a major technological transition from longitudinal magnetic recording (LMR) to perpendicular magnetic recording (PMR). However, convention perpendicular recording can only support a few new product generations before facing insurmountable physical limits. In order to support sustained recording areal density growth, new technological paradigms, such as energy-assisted recording and bit-patterined media recording are being contemplated and planned. In this talk, we will briefly discuss the LMR-to-PMR transition, the extendibility of current PMR recording, and the nature and merits of new enabling technologies. We will also discuss a technology roadmap toward recording densities approaching 10 Tv/in2, approximately 40 times higher than in current disk drives.
Evolution of Archival Storage (from Tape to Memory)
NASA Technical Reports Server (NTRS)
Ramapriyan, Hampapuram K.
2015-01-01
Over the last three decades, there has been a significant evolution in storage technologies supporting archival of remote sensing data. This section provides a brief survey of how these technologies have evolved. Three main technologies are considered - tape, hard disk and solid state disk. Their historical evolution is traced, summarizing how reductions in cost have helped being able to store larger volumes of data on faster media. The cost per GB of media is only one of the considerations in determining the best approach to archival storage. Active archives generally require faster response to user requests for data than permanent archives. The archive costs have to consider facilities and other capital costs, operations costs, software licenses, utilities costs, etc. For meeting requirements in any organization, typically a mix of technologies is needed.
The Scalable Checkpoint/Restart Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, A.
The Scalable Checkpoint/Restart (SCR) library provides an interface that codes may use to worite our and read in application-level checkpoints in a scalable fashion. In the current implementation, checkpoint files are cached in local storage (hard disk or RAM disk) on the compute nodes. This technique provides scalable aggregate bandwidth and uses storage resources that are fully dedicated to the job. This approach addresses the two common drawbacks of checkpointing a large-scale application to a shared parallel file system, namely, limited bandwidth and file system contention. In fact, on current platforms, SCR scales linearly with the number of compute nodes.more » It has been benchmarked as high as 720GB/s on 1094 nodes of Atlas, which is nearly two orders of magnitude faster thanthe parallel file system.« less
Rajauria, Sukumar; Schreck, Erhard; Marchon, Bruno
2016-01-01
The understanding of tribo- and electro-chemical phenomenons on the molecular level at a sliding interface is a field of growing interest. Fundamental chemical and physical insights of sliding surfaces are crucial for understanding wear at an interface, particularly for nano or micro scale devices operating at high sliding speeds. A complete investigation of the electrochemical effects on high sliding speed interfaces requires a precise monitoring of both the associated wear and surface chemical reactions at the interface. Here, we demonstrate that head-disk interface inside a commercial magnetic storage hard disk drive provides a unique system for such studies. The results obtained shows that the voltage assisted electrochemical wear lead to asymmetric wear on either side of sliding interface. PMID:27150446
NASA Astrophysics Data System (ADS)
Rajauria, Sukumar; Schreck, Erhard; Marchon, Bruno
2016-05-01
The understanding of tribo- and electro-chemical phenomenons on the molecular level at a sliding interface is a field of growing interest. Fundamental chemical and physical insights of sliding surfaces are crucial for understanding wear at an interface, particularly for nano or micro scale devices operating at high sliding speeds. A complete investigation of the electrochemical effects on high sliding speed interfaces requires a precise monitoring of both the associated wear and surface chemical reactions at the interface. Here, we demonstrate that head-disk interface inside a commercial magnetic storage hard disk drive provides a unique system for such studies. The results obtained shows that the voltage assisted electrochemical wear lead to asymmetric wear on either side of sliding interface.
Moein, M. R.; Ghasemi, Y.; Moein, S.; Nejati, M.
2010-01-01
Juniperus excelsa M.B subsp. Polycarpos (K.Koch), collected from south of Iran, was subjected to hydrodistillation using clevenger apparatus to obtain essential oil. The essential was analyzed by gas chromatography/mass spectrometry (GC/MS) and studied for antimicrobial, antifungal and antioxidant activities. The results indicated α-pinene (67.71%) as the major compound and α-cedral (11.5%), δ3-carene (5.19%) and limonene (4.41%) in moderate amounts. Antimicrobial tests were carried out using disk diffusion method, followed by the measurement of minimum inhibitory concentration (MIC). All the Gram positive and Gram negative bacteria were susceptible to essential oil. The oil showed radical scavenging and antioxidant effects. PMID:21808554
Accretion disk dynamics in X-ray binaries
NASA Astrophysics Data System (ADS)
Peris, Charith Srian
Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which is consistent with its lower accretion state. The donor stars in V691 CrA and Nova Muscae 1991 were also detected.
High-Resolution, Large-Area, Nano Imprint Lithography
2009-08-27
oxides as the seed layers can provide implication as the general synthetic route for the spontaneous growth of metal - silicide nanowires in large...nano-island array preparation , we have successfully fabricated patterned magnetic recording media as described in Fig. 2. About ~30 nm diameter Si...that we fabricated at UCSD with 5-50 nm diameter magnetic islands was used, since a large- area, hard disk size preparation was necessary, and since a
Wire EDM for Refractory Materials
NASA Technical Reports Server (NTRS)
Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.
1982-01-01
In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.
Khain, Evgeniy; Meerson, Baruch; Sasorov, Pavel V
2008-10-01
Thermal wall is a convenient idealization of a rapidly vibrating plate used for vibrofluidization of granular materials. The objective of this work is to incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes hydrodynamic modeling of dilute granular gases of monodisperse particles that collide nearly elastically. The Knudsen temperature jump manifests itself as an additional term, proportional to the temperature gradient, in the boundary condition for the temperature. Up to a numerical prefactor O(1) , this term is known from kinetic theory of elastic gases. We determine the previously unknown numerical prefactor by measuring, in a series of molecular dynamics (MD) simulations, steady-state temperature profiles of a gas of elastically colliding hard disks, confined between two thermal walls kept at different temperatures, and comparing the results with the predictions of a hydrodynamic calculation employing the modified boundary condition. The modified boundary condition is then applied, without any adjustable parameters, to a hydrodynamic calculation of the temperature profile of a gas of inelastic hard disks driven by a thermal wall. We find the hydrodynamic prediction to be in very good agreement with MD simulations of the same system. The results of this work pave the way to a more accurate hydrodynamic modeling of driven granular gases.
Sensorless optimal sinusoidal brushless direct current for hard disk drives
NASA Astrophysics Data System (ADS)
Soh, C. S.; Bi, C.
2009-04-01
Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.
The magnetic properties and microstructure of Co-Pt thin films using wet etching process.
Lee, Chang-Hyoung; Cho, Young-Lae; Lee, Won-Pyo; Suh, Su-Jeong
2014-11-01
Perpendicular magnetic recording (PMR) is a promising candidate for high density magnetic recording and has already been applied to hard disk drive (HDD) systems. However, media noise still limits the recording density. To reduce the media noise and achieve a high signal-to-noise ratio (SNR) in hard disk media, the grains of the magnetic layer must be magnetically isolated from each other. This study examined whether sputter-deposited Co-Pt thin films can have adjacent grains that are physically isolated. To accomplish this, the effects of the sputtering conditions and wet etching process on magnetic properties and the microstructure of the films were investigated. The film structure was Co-Pt (30 nm)/Ru (30 nm)/NiFe (10 nm)/Ta (5 nm). The composition of the Co-Pt thin films was Co-30.7 at.% Pt. The Co-Pt thin films were deposited in Ar gas at 5, 10, 12.5, and 15 mTorr. Wet etching process was performed using 7% nitric acid solution at room temperature. These films had high out-of-plane coercivity of up to 7032 Oe, which is twice that of the as-deposited film. These results suggest that wet etched Co-Pt thin films have weaker exchange coupling and enhanced out-of-plane coercivity, which would reduce the medium noise.
Dwivedi, Neeraj; Satyanarayana, Nalam; Yeo, Reuben J; Xu, Hai; Ping Loh, Kian; Tripathy, Sudhiranjan; Bhatia, Charanjit S
2015-06-25
One of the key issues for future hard disk drive technology is to design and develop ultrathin (<2 nm) overcoats with excellent wear- and corrosion protection and high thermal stability. Forming carbon overcoats (COCs) having interspersed nanostructures by the filtered cathodic vacuum arc (FCVA) process can be an effective approach to achieve the desired target. In this work, by employing a novel bi-level surface modification approach using FCVA, the formation of a high sp(3) bonded ultrathin (~1.7 nm) amorphous carbon overcoat with interspersed graphene/fullerene-like nanostructures, grown on magnetic hard disk media, is reported. The in-depth spectroscopic and microscopic analyses by high resolution transmission electron microscopy, scanning tunneling microscopy, time-of-flight secondary ion mass spectrometry, and Raman spectroscopy support the observed findings. Despite a reduction of ~37% in COC thickness, the FCVA-processed thinner COC (~1.7 nm) shows promising functional performance in terms of lower coefficient of friction (~0.25), higher wear resistance, lower surface energy, excellent hydrophobicity and similar/better oxidation corrosion resistance than current commercial COCs of thickness ~2.7 nm. The surface and tribological properties of FCVA-deposited COC was further improved after deposition of lubricant layer.
NASA Astrophysics Data System (ADS)
Dwivedi, Neeraj; Satyanarayana, Nalam; Yeo, Reuben J.; Xu, Hai; Ping Loh, Kian; Tripathy, Sudhiranjan; Bhatia, Charanjit S.
2015-06-01
One of the key issues for future hard disk drive technology is to design and develop ultrathin (<2 nm) overcoats with excellent wear- and corrosion protection and high thermal stability. Forming carbon overcoats (COCs) having interspersed nanostructures by the filtered cathodic vacuum arc (FCVA) process can be an effective approach to achieve the desired target. In this work, by employing a novel bi-level surface modification approach using FCVA, the formation of a high sp3 bonded ultrathin (~1.7 nm) amorphous carbon overcoat with interspersed graphene/fullerene-like nanostructures, grown on magnetic hard disk media, is reported. The in-depth spectroscopic and microscopic analyses by high resolution transmission electron microscopy, scanning tunneling microscopy, time-of-flight secondary ion mass spectrometry, and Raman spectroscopy support the observed findings. Despite a reduction of ~37 % in COC thickness, the FCVA-processed thinner COC (~1.7 nm) shows promising functional performance in terms of lower coefficient of friction (~0.25), higher wear resistance, lower surface energy, excellent hydrophobicity and similar/better oxidation corrosion resistance than current commercial COCs of thickness ~2.7 nm. The surface and tribological properties of FCVA-deposited COC was further improved after deposition of lubricant layer.
Dwivedi, Neeraj; Satyanarayana, Nalam; Yeo, Reuben J.; Xu, Hai; Ping Loh, Kian; Tripathy, Sudhiranjan; Bhatia, Charanjit S.
2015-01-01
One of the key issues for future hard disk drive technology is to design and develop ultrathin (<2 nm) overcoats with excellent wear- and corrosion protection and high thermal stability. Forming carbon overcoats (COCs) having interspersed nanostructures by the filtered cathodic vacuum arc (FCVA) process can be an effective approach to achieve the desired target. In this work, by employing a novel bi-level surface modification approach using FCVA, the formation of a high sp3 bonded ultrathin (~1.7 nm) amorphous carbon overcoat with interspersed graphene/fullerene-like nanostructures, grown on magnetic hard disk media, is reported. The in-depth spectroscopic and microscopic analyses by high resolution transmission electron microscopy, scanning tunneling microscopy, time-of-flight secondary ion mass spectrometry, and Raman spectroscopy support the observed findings. Despite a reduction of ~37 % in COC thickness, the FCVA-processed thinner COC (~1.7 nm) shows promising functional performance in terms of lower coefficient of friction (~0.25), higher wear resistance, lower surface energy, excellent hydrophobicity and similar/better oxidation corrosion resistance than current commercial COCs of thickness ~2.7 nm. The surface and tribological properties of FCVA-deposited COC was further improved after deposition of lubricant layer. PMID:26109208
Modelling human behaviour in a bumper car ride using molecular dynamics tools: a student project
NASA Astrophysics Data System (ADS)
Buendía, Jorge J.; Lopez, Hector; Sanchis, Guillem; Pardo, Luis Carlos
2017-05-01
Amusement parks are excellent laboratories of physics, not only to check physical laws, but also to investigate if those physical laws might also be applied to human behaviour. A group of Physics Engineering students from Universitat Politècnica de Catalunya has investigated if human behaviour, when driving bumper cars, can be modelled using tools borrowed from the analysis of molecular dynamics simulations, such as the radial and angular distribution functions. After acquiring several clips and obtaining the coordinates of the cars, those magnitudes are computed and analysed. Additionally, an analogous hard disks system is simulated to compare its distribution functions to those obtained from the cars’ coordinates. Despite the clear difference between bumper cars and a hard disk-like particle system, the obtained distribution functions are very similar. This suggests that there is no important effect of the individuals in the collective behaviour of the system in terms of structure. The research, performed by the students, has been undertaken in the frame of a motivational project designed to approach the scientific method for university students named FISIDABO. This project offers both the logistical and technical support to undertake the experiments designed by students at the amusement park of Barcelona TIBIDABO and accompanies them all along the scientific process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zoghbi, Abderahmen; Miller, J. M.; King, A. L.
Disk and wind signatures are seen in the soft state of Galactic black holes, while the jet is seen in the hard state. Here we study the disk–wind connection in the ρ class of variability in GRS 1915+105 using a joint NuSTAR – Chandra observation. The source shows 50 s limit cycle oscillations. By including new information provided by the reflection spectrum and using phase-resolved spectroscopy, we find that the change in the inner disk inferred from the blackbody emission is not matched by reflection measurements. The latter is almost constant, independent of the continuum model. The two radii are comparablemore » only if the disk temperature color correction factor changes, an effect that could be due to the changing opacity of the disk caused by changes in metal abundances. The disk inclination is similar to that inferred from the jet axis, and oscillates by ∼10°. The simultaneous Chandra data show the presence of two wind components with velocities between 500 and 5000 km s{sup −1}, and possibly two more with velocities reaching 20,000 km s{sup −1} (∼0.06 c ). The column densities are ∼5 × 10{sup 22} cm{sup −2}. An upper limit to the wind response time of 2 s is measured, implying a launch radius of <6 × 10{sup 10} cm. The changes in wind velocity and absorbed flux require the geometry of the wind to change during the oscillations, constraining the wind to be launched from a distance of 290–1300 r{sub g} from the black hole. Both data sets support fundamental model predictions in which a bulge originates in the inner disk and moves outward as the instability progresses.« less
NUSTAR AND XMM-Newton Observations of the Neutron Star X-Ray Binary 1RXS J180408.9-34205
NASA Astrophysics Data System (ADS)
Ludlam, Renee; Miller, Jon M.; Cackett, Edward; Fabian, Andrew C.; Bachetti, Matteo; Parker, Michael; Tomsick, John; Barret, Didier; Natalucci, Lorenzo; Rana, Vikram; Harrison, Fiona
2016-04-01
We report on observations of the neutron star (NS) residing in the low-mass X-ray binary 1RXS J180408.9-34205 taken 2015 March by NuSTAR and XMM-Newton while the source was in the hard spectral state. We findmultiple reflection features (Fe Kα detected with NuSTAR N VII, O VII, and O VIII detected in the RGS) fromdifferent ionization zones. Through joint fits using the self consistent relativistic reflection model RELXILL,we determine the inner radius to be 6.6(+13.2,-0.6) Rg. We find the inclination of the system to be between 18-29 degrees.If the disk is truncated at a radius greater than the innermost stable circular orbit (ISCO), then the position at which the inner disk terminates likely corresponds to the magnetospheric radius. For a spin parameter of a = 0, we estimate a conservative upper limit on the strength of the magnetic field to be B ≤ (0.9 - 3.0) × 109 G at the magnetic poles depending on the choice of conversion factor between spherical and disk accretion.
Surface evolution of perfluoropolyether film at high speed quasi-contact conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yung-Kan, E-mail: fftransform@gmail.com, E-mail: ykchen@berkeley.edu; Bogy, David B.; Peng, Jih-Ping
2016-05-30
Nanoscale analysis characterized by microscopy with atomic resolution demand that the targeted surface remains nearly static. Therefore, the interaction between two fast moving surfaces requires a unique methodology to capture its dynamics when contacts are of nominal area on the order of 100 μm{sup 2} but only a few angstroms in depth. We present a contact study of the head-disk interface in hard disk drives, which consists of a disk surface coated with a molecularly thin perfluoropolyether lubricant and a slider surface moving slightly separated from it with a relative velocity of 20 m/s and with 10 nm spacing. By investigating the slidermore » dynamics and lubricant topography in-situ, we disclose that high-speed contact initiates when the slider shears the top surface of the lubricant. Such contact can pile up molecules a few angstroms high as “moguls” or annihilate existing ones through a 5–10 Å interference. The transitional spacing regime of mogul evolution is defined as “quasi-contact,” and it is the initial contact in the fast sliding interface.« less
NuSTAR Observations of the Black Hole GS 1354-645: Evidence of Rapid Black Hole Spin
NASA Technical Reports Server (NTRS)
El-Batal, A. M.; Miller, J. M.; Reynolds, M. T.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Stern, D. K.;
2016-01-01
We present the results of a NuSTAR study of the dynamically confirmed stellar-mass black hole GS 1354-645. The source was observed during its 2015 "hard" state outburst; we concentrate on spectra from two relatively bright phases. In the higher-flux observation, the broadband NuSTAR spectra reveal a clear, strong disk reflection spectrum, blurred by a degree that requires a black hole spin of a = cJ/ GM(sup 2) > or = 0.98 (1(sigma) statistical limits only). The fits also require a high inclination: theta approx. = 75(2)deg. Strong "dips" are sometimes observed in the X-ray light curves of sources viewed at such an angle; these are absent, perhaps indicating that dips correspond to flared disk structures that only manifest at higher accretion rates. In the lower flux observation, there is evidence of radial truncation of the thin accretion disk. We discuss these results in the context of spin in stellar-mass black holes, and inner accretion flow geometries at moderate accretion rates.
A New Relativistic Component of the Accretion Disk Wind in PDS 456
NASA Astrophysics Data System (ADS)
Reeves, J. N.; Braito, V.; Nardini, E.; Lobban, A. P.; Matzeu, G. A.; Costa, M. T.
2018-02-01
Past X-ray observations of the nearby luminous quasar PDS 456 (at z = 0.184) have revealed a wide angle accretion disk wind, with an outflow velocity of ∼‑0.25c. Here, we unveil a new, relativistic component of the wind through hard X-ray observations with NuSTAR and XMM-Newton, obtained in 2017 March when the quasar was in a low-flux state. This very fast wind component, with an outflow velocity of ‑0.46 ± 0.02c, is detected in the iron K band, in addition to the ‑0.25c wind zone. The relativistic component may arise from the innermost disk wind, launched from close to the black hole at a radius of ∼10 gravitational radii. The opacity of the fast wind also increases during a possible obscuration event lasting for 50 ks. We suggest that the very fast wind may only be apparent during the lowest X-ray flux states of PDS 456, becoming overly ionized as the luminosity increases. Overall, the total wind power may even approach the Eddington value.
Observations of A0535 + 26 with the SMM satellite
NASA Technical Reports Server (NTRS)
Sembay, S.; Schwartz, R. A.; Orwig, L. E.; Dennis, B. R.; Davies, S. R.
1990-01-01
An examination of archival data from the hard X-ray instruments on the Solar Maximum Mission (SMM) satellite has revealed a previously undetected outburst from the recurrent X-ray transient, A0535 + 26. The outburst occurred in June 1983 and reached a peak intensity of about 2 crab units in the energy range 32-91 keV. The outburst was detected over a span of 18 days, and the pulse period was observed to spin-up with an average rate of about -6 x 10 to the -8th s/s. A recently proposed model for A0535 + 26 has a pulsar powered by a short-lived accretion disk. A thin accretion disk model is fitted to the present data, assuming an orbital period of 111 days. Two solutions to the magnetic moment of the neutron star are derived. The slow rotator solution is more consistent with the model than the fast rotator, on the grounds that the conditions for the formation of an accretion disk are more favorable for a lower magnetic field strength.
NASA Astrophysics Data System (ADS)
Ludlam, R. M.; Miller, J. M.; Bachetti, M.; Barret, D.; Bostrom, A. C.; Cackett, E. M.; Degenaar, N.; Di Salvo, T.; Natalucci, L.; Tomsick, J. A.; Paerels, F.; Parker, M. L.
2017-02-01
We present NuSTAR observations of neutron star (NS) low-mass X-ray binaries: 4U 1636-53, GX 17+2, and 4U 1705-44. We observed 4U 1636-53 in the hard state, with an Eddington fraction, {F}{Edd}, of 0.01; GX 17+2 and 4U 1705-44 were in the soft state with fractions of 0.57 and 0.10, respectively. Each spectrum shows evidence for a relativistically broadened Fe K α line. Through accretion disk reflection modeling, we constrain the radius of the inner disk in 4U 1636-53 to be {R}{in}=1.03+/- 0.03 ISCO (innermost stable circular orbit), assuming a dimensionless spin parameter {a}* ={cJ}/{{GM}}2=0.0, and {R}{in}=1.08+/- 0.06 ISCO for {a}* =0.3 (errors quoted at 1σ). This value proves to be model independent. For {a}* =0.3 and M=1.4 {M}⊙ , for example, 1.08 ± 0.06 ISCO translates to a physical radius of R=10.8+/- 0.6 km, and the NS would have to be smaller than this radius (other outcomes are possible for allowed spin parameters and masses). For GX 17+2, {R}{in}=1.00{--}1.04 ISCO for {a}* =0.0 and {R}{in}=1.03{--}1.30 ISCO for {a}* =0.3. For {a}* =0.3 and M=1.4 {M}⊙ , {R}{in}=1.03{--}1.30 ISCO translates to R=10.3{--}13.0 km. The inner accretion disk in 4U 1705-44 may be truncated just above the stellar surface, perhaps by a boundary layer or magnetosphere; reflection models give a radius of 1.46-1.64 ISCO for {a}* =0.0 and 1.69-1.93 ISCO for {a}* =0.3. We discuss the implications our results may have on the equation of state of ultradense, cold matter and our understanding of the innermost accretion flow onto NSs with low surface magnetic fields, and systematic errors related to the reflection models and spacetime metric around less idealized NSs.
NASA Astrophysics Data System (ADS)
Kervella, P.; Homan, W.; Richards, A. M. S.; Decin, L.; McDonald, I.; Montargès, M.; Ohnaka, K.
2016-12-01
Six billion years from now, while evolving on the asymptotic giant branch (AGB), the Sun will metamorphose from a red giant into a beautiful planetary nebula. This spectacular evolution will impact the solar system planets, but observational confirmations of the predictions of evolution models are still elusive as no planet orbiting an AGB star has yet been discovered. The nearby AGB red giant L2 Puppis (d = 64 pc) is surrounded by an almost edge-on circumstellar dust disk. We report new observations with ALMA at very high angular resolution (18 × 15 mas) in band 7 (ν ≈ 350 GHz) that allow us to resolve the velocity profile of the molecular disk. We establish that the gas velocity profile is Keplerian within the central cavity of the dust disk, allowing us to derive the mass of the central star L2 Pup A, mA = 0.659 ± 0.011 ± 0.041 M⊙ (± 6.6%). From evolutionary models, we determine that L2 Pup A had a near-solar main-sequence mass, and is therefore a close analog of the future Sun in 5 to 6 Gyr. The continuum map reveals a secondary source (B) at a radius of 2 AU contributing fB/fA = 1.3 ± 0.1% of the flux of the AGB star. L2 Pup B is also detected in CO emission lines at a radial velocity of vB = 12.2 ± 1.0 km s-1. The close coincidence of the center of rotation of the gaseous disk with the position of the continuum emission from the AGB star allows us to constrain the mass of the companion to mB = 12 ± 16 MJup. L2 Pup B is most likely a planet or low-mass brown dwarf with an orbital period of about five years. Its continuum brightness and molecular emission suggest that it may be surrounded by an extended molecular atmosphere or an accretion disk. L2 Pup therefore emerges as a promising vantage point on the distant future of our solar system.
Hard X-ray emission from the solar corona
NASA Astrophysics Data System (ADS)
Krucker, S.; Battaglia, M.; Cargill, P. J.; Fletcher, L.; Hudson, H. S.; MacKinnon, A. L.; Masuda, S.; Sui, L.; Tomczak, M.; Veronig, A. L.; Vlahos, L.; White, S. M.
2008-10-01
This review surveys hard X-ray emissions of non-thermal electrons in the solar corona. These electrons originate in flares and flare-related processes. Hard X-ray emission is the most direct diagnostic of electron presence in the corona, and such observations provide quantitative determinations of the total energy in the non-thermal electrons. The most intense flare emissions are generally observed from the chromosphere at footpoints of magnetic loops. Over the years, however, many observations of hard X-ray and even γ-ray emission directly from the corona have also been reported. These coronal sources are of particular interest as they occur closest to where the electron acceleration is thought to occur. Prior to the actual direct imaging observations, disk occultation was usually required to study coronal sources, resulting in limited physical information. Now RHESSI has given us a systematic view of coronal sources that combines high spatial and spectral resolution with broad energy coverage and high sensitivity. Despite the low density and hence low bremsstrahlung efficiency of the corona, we now detect coronal hard X-ray emissions from sources in all phases of solar flares. Because the physical conditions in such sources may differ substantially from those of the usual “footpoint” emission regions, we take the opportunity to revisit the physics of hard X-radiation and relevant theories of particle acceleration.
NASA Astrophysics Data System (ADS)
Fabbiano, G.; Elvis, M.; Paggi, A.; Karovska, M.; Maksym, W. P.; Raymond, J.; Risaliti, G.; Wang, Junfeng
2017-06-01
We report the discovery of kiloparsec-scale diffuse emission in both the hard continuum (3-6 keV) and in the Fe-Kα line in the Compton thick (CT) Seyfert galaxy ESO 428-G014. This extended hard component contains at least ˜24% of the observed 3-8 keV emission, and follows the direction of the extended optical line emission (ionization cone) and radio jet. The extended hard component has ˜0.5% of the intrinsic 2-10 keV luminosity within the bi-cones. A uniform scattering medium of density 1 {{cm}}-3 would produce this luminosity in a 1 kpc path length in the bi-cones. Alternatively, higher column density molecular clouds in the disk of ESO 428-G014 may be responsible for these components. The continuum may also be enhanced by the acceleration of charged particles in the radio jet. The steeper spectrum (Γ ˜ 1.7 ± 0.4) of the hard continuum outside of the central 1.″5 radius nuclear region suggests a contribution of scattered/fluorescent intrinsic Seyfert emission. Ultrafast nuclear outflows cannot explain the extended Fe-Kα emission. This discovery suggests that we may need to revise the picture at the base of our interpretation of CT AGN spectra.
Hard sphere packings within cylinders.
Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick
2016-03-07
Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.
Cardiopulmonary data-acquisition system
NASA Technical Reports Server (NTRS)
Crosier, W. G.; Reed, R. A.
1981-01-01
Computerized system controls and monitors bicycle and treadmill cardiovascular stress tests. It acquires and reduces stress data and displays heart rate, blood pressure, workload, respiratory rate, exhaled-gas composition, and other variables. Data are printed on hard-copy terminal every 30 seconds for quick operator response to patient. Ergometer workload is controlled in real time according to experimental protocol. Collected data are stored directly on tape in analog form and on floppy disks in digital form for later processing.
Real-Time Processing of Pressure-Sensitive Paint Images
2006-12-01
intermediate or final data to the hard disk in 3D grid format. In addition to the pressure or pressure coefficient at every grid point, the saved file may...occurs. Nevertheless, to achieve an accurate mapping between 2D image coordinates and 3D spatial coordinates, additional parameters must be introduced. A...improved mapping between the 2D and 3D coordinates. In a more sophisticated approach, additional terms corresponding to specific deformation modes
Is magnetar a fact or fiction to us?
NASA Astrophysics Data System (ADS)
Tong, H.; Xu, R. X.
2013-03-01
The key point of studying AXPs/SGRs (anomalous X-ray pulsars/soft gamma-ray repeaters) is relevant to the energy budget. Historically, rotation was thought to be the only free energy of pulsar until the discovery of accretion power in X-ray binaries. AXPs/SGRs could be magnetars if they are magnetism-powered, but would alternatively be quark-star/fallback-disk systems if more and more observations would hardly be understood in the magnetar scenario.
TMR tape drive for a 15 TB cartridge
NASA Astrophysics Data System (ADS)
Biskeborn, Robert G.; Fontana, Robert E.; Lo, Calvin S.; Czarnecki, W. Stanley; Liang, Jason; Iben, Icko E. T.; Decad, Gary M.; Hipolito, Venus A.
2018-05-01
This paper highlights the development of tunnel magnetoresistive (TMR) sensors for magnetic tape recording applications. This has led to the introduction of a tape drives supporting a 15 TB native tape cartridge, currently the highest capacity available. Underscoring this development is the fact that the TMR sensors must run in continual contact with the tape media. This is contrasted with modern hard disk drive (hdd) sensors, which fly above the disk platters. Various challenges encountered in developing and deploying TMR are presented. In addition, advances to the write transducer are also discussed. Lastly, the authors show that future density scaling for tape recording, unlike that for hdd, is not facing limits imposed by photolithography or superparamagnetic physics, suggesting that cartridge capacity improvements of 4 to 6x will be achieved in the next 4 to 8 years.
Enhancement of the wear resistance and microhardness of aluminum alloy by Nd:YaG laser treatment.
Hussein, Haitham T; Kadhim, Abdulhadi; Al-Amiery, Ahmed A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar
2014-01-01
Influence of laser treatment on mechanical properties, wear resistance, and Vickers hardness of aluminum alloy was studied. The specimens were treated by using Nd:YaG laser of energy 780 mj, wavelength 512 nm, and duration time 8 ns. The wear behavior of the specimens was studied for all specimens before and after treatment by Nd:YaG laser and the dry wear experiments were carried out by sing pinon-disc technique. The specimens were machined as a disk with diameter of 25 mm and circular groove in depth of 3 mm. All specimens were conducted by scanning electron microscopy (SEM), energy-dispersive X-ray fluorescence analysis (EDS), optical microscopy, and Vickers hardness. The results showed that the dry wear rate was decreased after laser hardening and increased Vickers hardness values by ratio of 2.4:1. The results showed that the values of wear rate for samples having circular grooves are less than samples without grooves after laser treatment.
NASA Astrophysics Data System (ADS)
Wang, Yongguang; Chen, Yao; Zhao, Dong; Lu, Xiaolong; Liu, Weiwei; Qi, Fei; Chen, Yang
2018-07-01
CrN coatings are widely used to protect metals from wear in industrial engineering. However, fundamental deformation mechanism of these coatings under heavy loading conditions remains elusive. In this paper, multilayered hard coatings with a CrN matrix and a supporting layer were developed by means of the hybrid deposition process combined with PVD and ionicnitriding. The tribological behavior of coatings with and without ionicnitriding were investigated by a pin-on-disk arrangement under heavy loading conditions. In addition, the deformation mechanism of the multilayered hard coatings was studied by nano-scratch experiment with ramp load model, which has not been discussed previously. It was found that the deformation process of coatings could be divided into three regimes based on the evolution of frictional coefficient. The insertion of nitriding films leads to the further increase in frictional resistance owing to the elastic-plastic deformation. The results and analysis reveal some insights into the coating design for multilayered hard coatings with the consideration of deformation mechanisms.
Adsorption of soft and hard proteins onto OTCEs under the influence of an external electric field.
Benavidez, Tomás E; Torrente, Daniel; Marucho, Marcelo; Garcia, Carlos D
2015-03-03
The adsorption behavior of hard and soft proteins under the effect of an external electric field was investigated by a combination of spectroscopic ellipsometry and molecular dynamics (MD) simulations. Optically transparent carbon electrodes (OTCE) were used as conductive, sorbent substrates. Lysozyme (LSZ) and ribonuclease A (RNase A) were selected as representative hard proteins, whereas myoglobin (Mb), α-lactalbumin (α-LAC), bovine serum albumin (BSA), glucose oxidase (GOx), and immunoglobulin G (IgG) were selected to represent soft proteins. In line with recent publications from our group, the experimental results revealed that while the adsorption of all investigated proteins can be enhanced by the potential applied to the electrode, the effect is more pronounced for hard proteins. In contrast with the incomplete monolayers formed at open-circuit potential, the application of +800 mV to the sorbent surface induced the formation of multiple layers of protein. These results suggest that this effect can be related to the intrinsic polarizability of the protein (induction of dipoles), the resulting surface accessible solvent area (SASA), and structural rearrangements induced upon the incorporation on the protein layer. The described experiments are critical to understand the relationship between the structure of proteins and their tendency to form (under electric stimulation) layers with thicknesses that greatly surpass those obtained at open-circuit conditions.
Adsorption of Soft and Hard Proteins onto OTCEs under the influence of an External Electric Field
Benavidez, Tomás E.; Torrente, Daniel; Marucho, Marcelo; Garcia, Carlos D.
2015-01-01
The adsorption behavior of hard and soft proteins under the effect of an external electric field was investigated by a combination of spectroscopic ellipsometry and molecular dynamics (MD) simulations. Optically transparent carbon electrodes (OTCE) were used as conductive, sorbent substrates. Lysozyme (LSZ) and ribonuclease A (RNase A) were selected as representative hard proteins whereas myoglobin (Mb), α-lactalbumin (α-LAC), bovine serum albumin (BSA), glucose oxidase (GOx), and immunoglobulin G (IgG) were selected to represent soft proteins. In line with recent publications from our group, the experimental results revealed that while the adsorption of all investigated proteins can be enhanced by the potential applied to the electrode, the effect is more pronounced for hard proteins. In contrast with the incomplete monolayers formed at open-circuit potential, the application of +800mV to the sorbent surface induced the formation of multiple layers of protein. These results also suggest that this effect can be related to the intrinsic polarizability of the protein (induction of dipoles), the resulting surface accessible solvent area (SASA), and structural rearrangements induced upon the incorporation on the protein layer. The described experiments are critical to understand the relationship between the structure of proteins and their tendency to form (under electric stimulation) layers with thicknesses that greatly surpass those obtained at open-circuit conditions. PMID:25658387
Relativistic Outflows from Advection-dominated Accretion Disks around Black Holes
NASA Astrophysics Data System (ADS)
Becker, Peter A.; Subramanian, Prasad; Kazanas, Demosthenes
2001-05-01
Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter and are therefore gravitationally unbound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a pseudo-Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self-similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Hence, our self-similar solution may help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approaches the unique form M~r1/2, with an associated density variation given by ρ~r-1. This density variation agrees with that implied by the dependence of the hard X-ray time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the predictions made using our self-similar solution need to be confirmed in the future using a detailed model that includes a physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.
TOWARD CHEMICAL CONSTRAINTS ON HOT JUPITER MIGRATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madhusudhan, Nikku; Amin, Mustafa A.; Kennedy, Grant M., E-mail: nmadhu@ast.cam.ac.uk
The origin of hot Jupiters—gas giant exoplanets orbiting very close to their host stars—is a long-standing puzzle. Planet formation theories suggest that such planets are unlikely to have formed in situ but instead may have formed at large orbital separations beyond the snow line and migrated inward to their present orbits. Two competing hypotheses suggest that the planets migrated either through interaction with the protoplanetary disk during their formation, or by disk-free mechanisms such as gravitational interactions with a third body. Observations of eccentricities and spin-orbit misalignments of hot Jupiter systems have been unable to differentiate between the two hypotheses.more » In the present work, we suggest that chemical depletions in hot Jupiter atmospheres might be able to constrain their migration mechanisms. We find that sub-solar carbon and oxygen abundances in Jovian-mass hot Jupiters around Sun-like stars are hard to explain by disk migration. Instead, such abundances are more readily explained by giant planets forming at large orbital separations, either by core accretion or gravitational instability, and migrating to close-in orbits via disk-free mechanisms involving dynamical encounters. Such planets also contain solar or super-solar C/O ratios. On the contrary, hot Jupiters with super-solar O and C abundances can be explained by a variety of formation-migration pathways which, however, lead to solar or sub-solar C/O ratios. Current estimates of low oxygen abundances in hot Jupiter atmospheres may be indicative of disk-free migration mechanisms. We discuss open questions in this area which future studies will need to investigate.« less
The fundamentals and futures of removable mass storage alternatives
NASA Technical Reports Server (NTRS)
Kempster, Linda
1993-01-01
This article reflects my view of how the storage products have been introduced into the marketplace, where they came from, and where others will continue to come from in the future. My corporate goal is to be a resource for those searching for removable solutions to mass storage problems. My introduction to optical storage occurred a few months before signing a non-disclosure agreement with FileNet on 8 Aug. 1983. By 87 or 88, as the optical craze was getting more popular, I started looking for similar or complementary storage technologies. I am still looking and my research is constantly turning up new entrants into this field. Due to the scope of the coverage in this field, this article does not dwell on any single technology. The goal is to provide information that is not compiled in any other single source and focus on facts that are not commonly known. I have provided a few baseline assumptions to ensure the mathematical calculations remain consistent: (1) hard-copy 8.5 in x 11 in documents which are scanned at 200 dots per inch (dpi) and compressed at a ratio of 10:1 result in a document image which requires an average of 50 Kilobytes (KB) of storage; (2) an average ASCII page requires 2 KB of storage; (3) an average flle cabinet drawer can hold 2500 pieces of paper; (4) one GB of storage can hold an average of 20,000 document images (a reel of 6250 tape holds 180 Megabytes (MB)).
NASA Technical Reports Server (NTRS)
Zdziarski, Andrzej A.; Poutanen, Juri; Paciesas, William S.; Wen, Lin-Qing
2002-01-01
We present a comprehensive analysis of all observations of Cyg X-1 by the Compton Gamma Ray Observatory Burst and Transient Source Experiment (BATSE; 20-300 keV) and by the Rossi X-Ray Timing Explorer all-sky monitor (ASM; 1.5-12 keV) until 2002 June, including approximately 1200 days of simultaneous data. We find a number of correlations between fluxes and hardnesses in different energy bands. In the hard (low) spectral state, there is a negative correlation between the ASM 1.5-12 keV flux and the hardness at any energy. In the soft (high) spectral state, the ASM flux is positively correlated with the ASM hardness but uncorrelated with the BATSE hardness. In both spectral states, the BATSE hardness correlates with the flux above 100 keV, while it shows no correlation with the 20-100 keV flux. At the same time, there is clear correlation between the BATSE fluxes below and above 100 keV. In the hard state, most of the variability can be explained by softening the overall spectrum with a pivot at approximately 50 keV. There is also another, independent variability pattern of lower amplitude where the spectral shape does not change when the luminosity changes. In the soft state, the variability is mostly caused by a variable hard (Comptonized) spectral component of a constant shape superposed on a constant soft blackbody component. These variability patterns are in agreement with the dependencies of the rms variability on the photon energy in the two states. We also study in detail recent soft states from late 2000 until 2002. The last of them has lasted thus far for more than 200 days. Their spectra are generally harder in the 1.5-5 keV band and similar or softer in the 3-12 keV band than the spectra of the 1996 soft state, whereas the rms variability is stronger in all the ASM bands. On the other hand, the 1994 soft state transition observed by BATSE appears very similar to the 1996 one. We interpret the variability patterns in terms of theoretical Comptonization models. In the hard state, the variability appears to be driven mostly by changing flux in seed photons Comptonized in a hot thermal plasma cloud with an approximately constant power supply. In the soft state, the variability is consistent with flares of hybrid, thermal/nonthermal, plasma with variable power above a stable cold disk. The spectral and timing differences between the 1996 and 2000-2002 soft states are explained by a decrease of the color disk temperature. Also, on the basis of broadband pointed observations simultaneous with those of the ASM and BATSE, we find the intrinsic bolometric luminosity increases by a factor of approximately 3-4 from the hard state to the soft one, which supports models of the state transition based on a change of the accretion rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
Inclusive four-jet events produced in proton-proton collisions at a centre-of-mass energy of s=7 TeV are analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of 37.3 pb -1 , collected with the ATLAS detector at the LHC. The contribution of hard double-parton scattering to the production of four-jet events is extracted using an artificial neural network, assuming that hard double-parton scattering can be approximated by an uncorrelated overlaying of dijet events. For events containing at least four jets with transverse momentum p T ≥ 20 GeV and pseudorapidity |η| ≤ 4.4, and at leastmore » one having p T ≥ 42.5 GeV, the contribution of hard double-parton scattering is estimated to be f DPS = 0.092 - 0.011 + 0.005 (stat.) - 0.037 + 0.033 (syst.). After combining this measurement with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space regions, the effective cross-section, σ eff , was determined to be σ eff = 14. 9 - 1.0 + 1.2 (stat.) - 3.8 + 5.1 (syst.) mb. This result is consistent within the quoted uncertainties with previous measurements of σ eff , performed at centre-of-mass energies between 63 GeV and 8 TeV using various final states, and it corresponds to 21 - 6 + 7 % of the total inelastic cross-section measured at s=7 TeV. The distributions of the observables sensitive to the contribution of hard double-parton scattering, corrected for detector effects, are also provided.« less
Aaboud, M.; Aad, G.; Abbott, B.; ...
2016-11-01
Inclusive four-jet events produced in proton-proton collisions at a centre-of-mass energy of s=7 TeV are analysed for the presence of hard double-parton scattering using data corresponding to an integrated luminosity of 37.3 pb -1 , collected with the ATLAS detector at the LHC. The contribution of hard double-parton scattering to the production of four-jet events is extracted using an artificial neural network, assuming that hard double-parton scattering can be approximated by an uncorrelated overlaying of dijet events. For events containing at least four jets with transverse momentum p T ≥ 20 GeV and pseudorapidity |η| ≤ 4.4, and at leastmore » one having p T ≥ 42.5 GeV, the contribution of hard double-parton scattering is estimated to be f DPS = 0.092 - 0.011 + 0.005 (stat.) - 0.037 + 0.033 (syst.). After combining this measurement with those of the inclusive dijet and four-jet cross-sections in the appropriate phase space regions, the effective cross-section, σ eff , was determined to be σ eff = 14. 9 - 1.0 + 1.2 (stat.) - 3.8 + 5.1 (syst.) mb. This result is consistent within the quoted uncertainties with previous measurements of σ eff , performed at centre-of-mass energies between 63 GeV and 8 TeV using various final states, and it corresponds to 21 - 6 + 7 % of the total inelastic cross-section measured at s=7 TeV. The distributions of the observables sensitive to the contribution of hard double-parton scattering, corrected for detector effects, are also provided.« less
NASA Technical Reports Server (NTRS)
Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.
2014-01-01
Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with hard X-ray emission from the innermost accretion region. Since we have identified the elusive accretion component in the emission from a sample of symbiotic stars, our results have implications for the understanding of wind-fed mass transfer in wide binaries, and the accretion rate in one class of candidate progenitors of type Ia supernovae.
Microstructures and Hardness/Wear Performance of High-Carbon Stellite Alloys Containing Molybdenum
NASA Astrophysics Data System (ADS)
Liu, Rong; Yao, J. H.; Zhang, Q. L.; Yao, M. X.; Collier, Rachel
2015-12-01
Conventional high-carbon Stellite alloys contain a certain amount of tungsten which mainly serves to provide strengthening to the solid solution matrix. These alloys are designed for combating severe wear. High-carbon molybdenum-containing Stellite alloys are newly developed 700 series of Stellite family, with molybdenum replacing tungsten, which are particularly employed in severe wear condition with corrosion also involved. Three high-carbon Stellite alloys, designated as Stellite 706, Stellite 712, and Stellite 720, with different carbon and molybdenum contents, are studied experimentally in this research, focusing on microstructure and phases, hardness, and wear resistance, using SEM/EDX/XRD techniques, a Rockwell hardness tester, and a pin-on-disk tribometer. It is found that both carbon and molybdenum contents influence the microstructures of these alloys significantly. The former determines the volume fraction of carbides in the alloys, and the latter governs the amount of molybdenum-rich carbides precipitated in the alloys. The hardness and wear resistance of these alloys are increased with the carbide volume fraction. However, with the same or similar carbon content, high-carbon CoCrMo Stellite alloys exhibit worse wear resistance than high-carbon CoCrW Stellite alloys.
Understanding the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters
NASA Astrophysics Data System (ADS)
Guo, Yan-Jun; Dai, Shi; Li, Zhao-Sheng; Liu, Yuan; Tong, Hao; Xu, Ren-Xin
2015-04-01
Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J170849-400910, 1E 1547.0-5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Trümper et al., showing that the accretion scenario could be compatible with X-ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at ˜200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs. Supported by the National Natural Science Foundation of China.
Testing the Impulsiveness of Solar Flare Heating through Analysis of Dynamic Atmospheric Response
NASA Astrophysics Data System (ADS)
Newton, E. K.; Emslie, A. G.; Mariska, J. T.
1996-03-01
One crucial test of a solar flare energy transport model is its ability to reproduce the characteristics of the atmospheric motions inferred from soft X-ray line spectra. Using a recently developed diagnostic, the velocity differential emission measure (VDEM), we can obtain from observations a physical measure of the amount of soft X-ray mitting plasma flowing at each velocity, v, and hence the total momentum of the upflowing plasma, without approximation or parametric fitting. We have correlated solar hard X-ray emission profiles by the Yohkoh Hard X-ray telescope with the mass and momentum histories inferred from soft X-ray line profiles observed by the Yohkoh Bragg crystal spectrometers. For suitably impulsive hard X-ray emission, an analysis of the hydrodynamic equations predicts a proportionality between the hard X-ray intensity and the second time derivative of the soft X-ray mitting plasma's momentum. This relationship is borne out by an analysis of 18 disk-center impulsive flares of varying durations, thereby lending support to the hypothesis that a prompt energy deposition mechanism, such as an energetic electron flux, is indeed responsible for the soft X-ray response observed in the rise phase of sufficiently impulsive solar flares.
Instrumentation for Airwake Measurements on the Flight Deck of a FFG-7
1991-11-01
volatile RAM to the computer hard disk with a unique file name based on time and date. At an opportune time the data file(s) are manually transferred...1967 6 Royal Air Force Manual (Volume D) AP3456D Al-i APPENDIX 1 GENERAL SPECIFICATION FOR VADAR VADAR was developed by the Instrumentation and Trials...TTCP HTP -6) N. Matheson N. Pollock DJ. Sherman Materials Research Laboratory Director/Library Defence Science & Technology Organisation Salisbury
Optical vibration measurement of mechatronics devices
NASA Astrophysics Data System (ADS)
Yanabe, Shigeo
1993-09-01
An optical vibration measuring system which enables to detect both linear and angular displacement of 25 nm and 5 prad was developed. The system is mainly composed of a He-Ne laser, a displacement detecting photo-diode and lenses, and has linear and angular displacement magnification mechanism using two different principles of optical lever. The system was applied to measure vibrational characteristics of magnetic head slider of hard disk drives and to measure stator teeth driving velocities of ultrasonic motor.
Detection of 3-Minute Oscillations in Full-Disk Lyman-alpha Emission During A Solar Flare
NASA Astrophysics Data System (ADS)
Milligan, R. O.; Ireland, J.; Fleck, B.; Hudson, H. S.; Fletcher, L.; Dennis, B. R.
2017-12-01
We report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Lyman-alpha (from GOES/EUVS) and Lyman continuum (from SDO/EVE) emission from the 2011 February 15 X-class flare revealed a 3-minute period present during the flare's main phase. The formation temperature of this emission locates this radiation to the flare's chromospheric footpoints, and similar behaviour is found in the SDO/AIA 1600A and 1700A channels, which are dominated by chromospheric continuum. The implication is that the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray energies (50-100 keV) in RHESSI data we can state that this 3-minute oscillation does not depend on the rate of energization of, or energy deposition by, non-thermal electrons. However, a second period of 120 s found in both hard X-ray and chromospheric emission is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Lyman-alpha line may influence the composition and dynamics of planetary atmospheres during periods of high activity.
Could GRB170817A be really correlated to an NS-NS merging?
NASA Astrophysics Data System (ADS)
Fargion, D.; Khlopov, M. Yu.; Oliva, P.
The exciting development of gravitational wave (GW) astronomy in the correlation of LIGO and VIRGO detection of GW signals makes possible to expect registration of effects of not only binary black hole (BH) coalescence but also binary neutron star (NS) merging accompanied by electromagnetic (gamma ray burst; GRB) signal. Here we consider the possibility that an NS, merging in an NS-NS or NS-BH system might be (soon) observed in correlation with any LIGO-VIRGO GWs detection. We analyze as an example the recent case of the short GRB170817A observed by Fermi and integral. The associated optical transient (OT) source in NGC4993 implies a rare near source, a consequent averaged large rate of such events (almost) compatible with expected NS-NS merging rate. However the expected beamed GRB (or short GRB) may be mostly aligned to a different direction than ours. Therefore, even soft GRB photons, spread more than hard ones, might be hardly able to shower to us. Nevertheless, a prompt spiraling electron turbine jet in largest magnetic fields, at the base of the NS-NS collapse, might shine by its tangential synchrotron radiation in spread way with its skimming photons shining in large open disk. The consequent solid angle for such soft disk gamma radiation may be large enough to be nevertheless often observed.
Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems
NASA Astrophysics Data System (ADS)
Chan, Kwong Wah; Liao, Wei-Hsin
2006-03-01
Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.
Kucuker, Mehmet Ali; Wieczorek, Nils; Kuchta, Kerstin; Copty, Nadim K.
2017-01-01
In recent years, biosorption is being considered as an environmental friendly technology for the recovery of rare earth metals (REE). This study investigates the optimal conditions for the biosorption of neodymium (Nd) from an aqueous solution derived from hard drive disk magnets using green microalgae (Chlorella vulgaris). The parameters considered include solution pH, temperature and biosorbent dosage. Best-fit equilibrium as well as kinetic biosorption models were also developed. At the optimal pH of 5, the maximum experimental Nd uptakes at 21, 35 and 50°C and an initial Nd concentration of 250 mg/L were 126.13, 157.40 and 77.10 mg/g, respectively. Analysis of the optimal equilibrium sorption data showed that the data fitted well (R2 = 0.98) to the Langmuir isotherm model, with maximum monolayer coverage capacity (qmax) of 188.68 mg/g, and Langmuir isotherm constant (KL) of 0.029 L/mg. The corresponding separation factor (RL) is 0.12 indicating that the equilibrium sorption was favorable. The sorption kinetics of Nd ion follows well a pseudo-second order model (R2>0.99), even at low initial concentrations. These results show that Chlorella vulgaris has greater biosorption affinity for Nd than activated carbon and other algae types such as: A. Gracilis, Sargassum sp. and A. Densus. PMID:28388641
Habib, Komal; Parajuly, Keshav; Wenzel, Henrik
2015-10-20
Recovery of resources, in particular, metals, from waste flows is widely seen as a prioritized option to reduce their potential supply constraints in the future. The current waste electrical and electronic equipment (WEEE) treatment system is more focused on bulk metals, where the recycling rate of specialty metals, such as rare earths, is negligible compared to their increasing use in modern products, such as electronics. This study investigates the challenges in recovering these resources in the existing WEEE treatment system. It is illustrated by following the material flows of resources in a conventional WEEE treatment plant in Denmark. Computer hard disk drives (HDDs) containing neodymium-iron-boron (NdFeB) magnets were selected as the case product for this experiment. The resulting output fractions were tracked until their final treatment in order to estimate the recovery potential of rare earth elements (REEs) and other resources contained in HDDs. The results further show that out of the 244 kg of HDDs treated, 212 kg comprising mainly of aluminum and steel can be finally recovered from the metallurgic process. The results further demonstrate the complete loss of REEs in the existing shredding-based WEEE treatment processes. Dismantling and separate processing of NdFeB magnets from their end-use products can be a more preferred option over shredding. However, it remains a technological and logistic challenge for the existing system.
Anvil Forecast Tool in the Advanced Weather Interactive Processing System (AWIPS)
NASA Technical Reports Server (NTRS)
Barrett, Joe H., III; Hood, Doris
2009-01-01
Launch Weather Officers (LWOs) from the 45th Weather Squadron (45 WS) and forecasters from the National Weather Service (NWS) Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violating the Lightning Launch Commit Criteria (LLCC) (Krider et al. 2006; Space Shuttle Flight Rules (FR), NASA/JSC 2004)). As a result, the Applied Meteorology Unit (AMU) developed a tool that creates an anvil threat corridor graphic that can be overlaid on satellite imagery using the Meteorological Interactive Data Display System (MIDDS, Short and Wheeler, 2002). The tool helps forecasters estimate the locations of thunderstorm anvils at one, two, and three hours into the future. It has been used extensively in launch and landing operations by both the 45 WS and SMG. The Advanced Weather Interactive Processing System (AWIPS) is now used along with MIDDS for weather analysis and display at SMG. In Phase I of this task, SMG tasked the AMU to transition the tool from MIDDS to AWIPS (Barrett et aI., 2007). For Phase II, SMG requested the AMU make the Anvil Forecast Tool in AWIPS more configurable by creating the capability to read model gridded data from user-defined model files instead of hard-coded files. An NWS local AWIPS application called AGRID was used to accomplish this. In addition, SMG needed to be able to define the pressure levels for the model data, instead of hard-coding the bottom level as 300 mb and the top level as 150 mb. This paper describes the initial development of the Anvil Forecast Tool for MIDDS, followed by the migration of the tool to AWIPS in Phase I. It then gives a detailed presentation of the Phase II improvements to the AWIPS tool.
The Accreting Black Hole Swift J1753.5-0127 from Radio to Hard X-Ray
NASA Astrophysics Data System (ADS)
Tomsick, John A.; Rahoui, Farid; Kolehmainen, Mari; Miller-Jones, James; Fürst, Felix; Yamaoka, Kazutaka; Akitaya, Hiroshi; Corbel, Stéphane; Coriat, Mickael; Done, Chris; Gandhi, Poshak; Harrison, Fiona A.; Huang, Kuiyun; Kaaret, Philip; Kalemci, Emrah; Kanda, Yuka; Migliari, Simone; Miller, Jon M.; Moritani, Yuki; Stern, Daniel; Uemura, Makoto; Urata, Yuji
2015-07-01
We report on multiwavelength measurements of the accreting black hole Swift J1753.5-0127 in the hard state at low luminosity (L ˜ 2.7 × 1036 erg s-1 assuming a distance of d = 3 kpc) in 2014 April. The radio emission is optically thick synchrotron, presumably from a compact jet. We take advantage of the low extinction (E(B-V)=0.45 from earlier work) and model the near-IR to UV emission with a multitemperature disk model. Assuming a black hole mass of MBH = 5 M⊙ and a system inclination of i = 40°, the fits imply an inner radius for the disk of Rin/Rg > 212d3(MBH/5 M⊙)-1, where Rg is the gravitational radius of the black hole and d3 is the distance to the source in units of 3 kpc. The outer radius is Rout/Rg=90,000 d3(MBH/5 M⊙)-1, which corresponds to 6.6 × 1010 d3 cm, consistent with the expected size of the disk given previous measurements of the size of the companion's Roche lobe. The 0.5-240 keV energy spectrum measured by Swift/X-ray Telescope (XRT), Suzaku (XIS, PIN, and GSO), and Nuclear Spectroscopic Telescope Array is relatively well characterized by an absorbed power law with a photon index of Γ = 1.722 ± 0.003 (90% confidence error), but a significant improvement is seen when a second continuum component is added. Reflection is a possibility, but no iron line is detected, implying a low iron abundance. We are able to fit the entire (radio to 240 keV) spectral energy distribution (SED) with a multitemperature disk component, a Comptonization component, and a broken power law, representing the emission from the compact jet. The broken power law cannot significantly contribute to the soft X-ray emission, and this may be related to why Swift J1753.5-0127 is an outlier in the radio/X-ray correlation. The broken power law (i.e., the jet) might dominate above 20 keV, which would constrain the break frequency to be between 2.4 × 1010 and 3.6 × 1012 Hz. Although the fits to the full SED do not include significant thermal emission in the X-ray band, previous observations have consistently seen such a component, and we find that there is evidence at the 3.1σ level for a disk-blackbody component with a temperature of {{kT}}{in}={150}-20+30 eV and an inner radius of 5Rg-14Rg. If this component is real, it might imply the presence of an inner optically thick accretion disk in addition to the strongly truncated (Rin> 212Rg) disk. We also perform X-ray timing analysis, and the power spectrum is dominated by a Lorentzian component with νmax = 0.110 ± 0.003 Hz and νmax = 0.16 ± 0.04 Hz as measured by XIS and XRT, respectively.
Metallurgical and electrochemical characterization of contemporary silver-based soldering alloys.
Ntasi, Argyro; Al Jabbari, Youssef; Mueller, Wolf Dieter; Eliades, George; Zinelis, Spiros
2014-05-01
To investigate the microstructure, hardness, and electrochemical behavior of four contemporary Ag-based soldering alloys used for manufacturing orthodontic appliances. The Ag-based alloys tested were Dentaurum Universal Silver Solder (DEN), Orthodontic Solders (LEO), Ortho Dental Universal Solder (NOB), and Silver Solder (ORT). Five disk-shaped specimens were produced for each alloy, and after metallographic preparation their microstructural features, elemental composition, and hardness were determined by scanning electron microscopy with energy-dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD) analysis, and Vickers hardness testing. The electrochemical properties were evaluated by anodic potentiodynamic scanning in 0.9% NaCl and Ringer's solutions. Hardness, corrosion current (Icorr), and corrosion potential (Ecorr) were statistically analyzed by one-way analysis of variance and Tukey test (α=.05). EDX analysis showed that all materials belong to the Ag-Zn-Cu ternary system. Three different mean atomic contrast phases were identified for LEO and ORT and two for DEN and NOB. According to XRD analysis, all materials consisted of Ag-rich and Cu-rich face-centered cubic phases. Hardness testing classified the materials in descending order as follows: DEN, 155±3; NOB, 149±3; ORT, 141±4; and LEO, 136±8. Significant differences were found for Icorr of NOB in Ringer's solution and Ecorr of DEN in 0.9% NaCl solution. Ag-based soldering alloys demonstrate great diversity in their elemental composition, phase size and distribution, hardness, and electrochemical properties. These differences may anticipate variations in their clinical performance.
NASA Astrophysics Data System (ADS)
MacMahon, David H. E.; Price, Danny C.; Lebofsky, Matthew; Siemion, Andrew P. V.; Croft, Steve; DeBoer, David; Enriquez, J. Emilio; Gajjar, Vishal; Hellbourg, Gregory; Isaacson, Howard; Werthimer, Dan; Abdurashidova, Zuhra; Bloss, Marty; Brandt, Joe; Creager, Ramon; Ford, John; Lynch, Ryan S.; Maddalena, Ronald J.; McCullough, Randy; Ray, Jason; Whitehead, Mark; Woody, Dave
2018-04-01
The Breakthrough Listen Initiative is undertaking a comprehensive search for radio and optical signatures from extraterrestrial civilizations. An integral component of the project is the design and implementation of wide-bandwidth data recorder and signal processing systems. The capabilities of these systems, particularly at radio frequencies, directly determine survey speed; further, given a fixed observing time and spectral coverage, they determine sensitivity as well. Here, we detail the Breakthrough Listen wide-bandwidth data recording system deployed at the 100 m aperture Robert C. Byrd Green Bank Telescope. The system digitizes up to 6 GHz of bandwidth at 8 bits for both polarizations, storing the resultant 24 GB s‑1 of data to disk. This system is among the highest data rate baseband recording systems in use in radio astronomy. A future system expansion will double recording capacity, to achieve a total Nyquist bandwidth of 12 GHz in two polarizations. In this paper, we present details of the system architecture, along with salient configuration and disk-write optimizations used to achieve high-throughput data capture on commodity compute servers and consumer-class hard disk drives.
DOE Fire Protection Handbook, Volume I
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Department of Energy (DOE) Fire Protection Program is delineated in a number of source documents including; the Code of Federal Regulations (CFR), DOE Policy Statements and Orders, DOE and national consensus standards (such as those promulgated by the National Fire Protection Association), and supplementary guidance, This Handbook is intended to bring together in one location as much of this material as possible to facilitate understanding and ease of use. The applicability of any of these directives to individual Maintenance and Operating Contractors or to given facilities and operations is governed by existing contracts. Questions regarding applicability should be directedmore » to the DOE Authority Having Jurisdiction for fire safety. The information provided within includes copies of those DOE directives that are directly applicable to the implementation of a comprehensive fire protection program. They are delineated in the Table of Contents. The items marked with an asterisk (*) are included on the disks in WordPerfect 5.1 format, with the filename noted below. The items marked with double asterisks are provided as hard copies as well as on the disk. For those using MAC disks, the files are in Wordperfect 2.1 for MAC.« less
The X-Ray Polarization of the Accretion Disk Coronae of Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Beheshtipour, Banafsheh; Krawczynski, Henric; Malzac, Julien
2017-11-01
Hard X-rays observed in Active Galactic Nuclei (AGNs) are thought to originate from the Comptonization of the optical/UV accretion disk photons in a hot corona. Polarization studies of these photons can help to constrain the corona geometry and the plasma properties. We have developed a ray-tracing code that simulates the Comptonization of accretion disk photons in coronae of arbitrary shapes, and use it here to study the polarization of the X-ray emission from wedge and spherical coronae. We study the predicted polarization signatures for the fully relativistic and various approximate treatments of the elemental Compton scattering processes. We furthermore use the code to evaluate the impact of nonthermal electrons and cyclo-synchrotron photons on the polarization properties. Finally, we model the NuSTAR observations of the Seyfert I galaxy Mrk 335 and predict the associated polarization signal. Our studies show that X-ray polarimetry missions such as NASA’s Imaging X-ray Polarimetry Explorer and the X-ray Imaging Polarimetry Explorer proposed to ESA will provide valuable new information about the physical properties of the plasma close to the event horizon of AGN black holes.
Efficacy of a new filler-containing root coating material for dentin remineralization.
Okuyama, Katsushi; Kadowaki, Yoshitaka; Matsuda, Yasuhiro; Hashimoto, Naoki; Oki, Saiko; Yamamoto, Hiroko; Tamaki, Yukimichi; Sano, Hidehiko
2016-08-01
To evaluate a new root coating material containing surface pre-reacted glass-ionomer (S-PRG) filler for remineralization of demineralized dentin. The dentin was exposed on root surfaces of human third molars and demineralized by immersion in demineralization solution for 4 days. The demineralized dentin surface was divided into three areas. The center area was left untreated. The area on one side of the center area was coated with protective wax. The area on the other side was coated with one of four test materials: fluoride-containing S-PRG filler (PRG Barrier Coat: PR), fluoride-containing bonding agent (Bond Force: BF), fluoride-containing glass-ionomer cement as a positive control (Fuji IX EXTRA: EX), or non-fluoride-containing bonding agent as a negative control (Clearfil MegaBond: MB). The samples were stored in remineralization solution for 7 days, and then cut into two slices. The mineral changes, defined as variation in mineral loss between wax-coated area and the central untreated area, were measured in one slice by transversal microradiography. The fluoride concentration was measured in the other slice by µ-particle-induced gamma/X-ray emission. Seven thin specimens (0.25-mm thickness) of each test material were used to determine fluoride ion release from the materials over 21 days. The mineral changes were greatest for EX, followed by PR, with no difference between BF and MB (P> 0.05). Regarding the fluoride concentrations in dentin, there was no difference between EX and PR (P> 0.05). MB had the lowest value (P< 0.01). Fluoride release from EX was largest, followed by PR, with BF showing low fluoride release (P< 0.05). MB had no fluoride release. A new coating material with S-PRG filler can be applied in a thin layer on root dentin, which could be especially useful for hard-to-access lesions. This material remineralized demineralized root dentin and had fluoride diffusion characteristics similar to those of glass-ionomer cement in vitro.
Purely hydrodynamic ordering of rotating disks at a finite Reynolds number.
Goto, Yusuke; Tanaka, Hajime
2015-01-28
Self-organization of moving objects in hydrodynamic environments has recently attracted considerable attention in connection to natural phenomena and living systems. However, the underlying physical mechanism is much less clear due to the intrinsically nonequilibrium nature, compared with self-organization of thermal systems. Hydrodynamic interactions are believed to play a crucial role in such phenomena. To elucidate the fundamental physical nature of many-body hydrodynamic interactions at a finite Reynolds number, here we study a system of co-rotating hard disks in a two-dimensional viscous fluid at zero temperature. Despite the absence of thermal noise, this system exhibits rich phase behaviours, including a fluid state with diffusive dynamics, a cluster state, a hexatic state, a glassy state, a plastic crystal state and phase demixing. We reveal that these behaviours are induced by the off-axis and many-body nature of nonlinear hydrodynamic interactions and the finite time required for propagating the interactions by momentum diffusion.
STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf
NASA Technical Reports Server (NTRS)
1991-01-01
STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.
NASA Technical Reports Server (NTRS)
Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..;
2013-01-01
We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, B.; Brandt, W. N.; Alexander, D. M.
We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantlymore » absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.« less
A report of work activities on the NASA Spacelink public electronic library
NASA Technical Reports Server (NTRS)
Smith, Willard A.
1994-01-01
NASA Spacelink is a comprehensive electronic data base of NASA and other source educational and informational materials. This service originates at Marshall Space Flight Center (MSFC) in Huntsville, Alabama. This is an education service of NASA Headquarters, through the MSFC Education Office, that first began in February of 1988. The new NASA Spacelink Public Electronic Library was the result of a study conducted to investigate an upgrade or redesign of the original NASA Spacelink. The UNIX Operating System was chosen to be the host operating system for the new NASA Spacelink Public Electronic Library. The UNIX system was selected for this project because of the strengths built into the embedded communication system and for its simple and direct file handling capabilities. The host hardware of the new system is a Sun Microsystems SPARCserver 1000 computer system. The configuration has four 50-MHz SuperSPARC processors with 128 megabytes of shared memory; three SB800 serial ports allowing 24 cable links for phone communications; 4.1 gigabytes of on-line disk storage; and ten (10) CD-ROM drives. Communications devices on the system are sufficient to support the expected number of users through the Internet, the local dial services, long distance dial services; the MSFC PABX, and the NPSS (NASA Packet Switching System) and 1-800 access service for the registered teachers.
Precipitation Behavior During Aging in α Phase Titanium Supersaturated with Cu
NASA Astrophysics Data System (ADS)
Mitsuhara, Masatoshi; Masuda, Tomoya; Nishida, Minoru; Kunieda, Tomonori; Fujii, Hideki
2016-04-01
Age hardening of Ti-2.3 mass pct Cu (Ti-2.3Cu) at 673 K to 873 K (400 °C to 600 °C) after solution treatment at 1063 K (790 °C) was observed. The relationship between precipitates formed during aging and changes in hardness was investigated. During aging at 673 K (400 °C), the hardness increased rapidly up to 200 hours, and subsequently increased more slowly up to 1000 hours. At 873 K (600 °C), the hardness began to decrease immediately. Transmission electron microscopy showed that fine disk-shaped precipitates of 20 to 40 nm in diameter grew in the α phase. It is concluded that these precipitates interacted with dislocations and increased the hardness. At 873 K (600 °C), precipitates of 1 µm in length and Ti2Cu particles of 200 nm in length were observed. The decrease in hardness may have resulted from the precipitate formation decreasing the concentration of Cu in the α phase. Bright/dark contrast of the three atomic layers and small atomic shift of the hcp structure were observed in the atomic resolution imaging of the precipitates. This suggests that the precipitates are not just Cu-enriched zones and have structures with similar periodicity to the Ti2Cu phase, which is thermally stable at those aging temperatures.
NASA Astrophysics Data System (ADS)
Iijima, Yushi; Harigai, Toru; Isono, Ryo; Degai, Satoshi; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi; Yasui, Haruyuki; Kaneko, Satoru; Kunitsugu, Shinsuke; Kamiya, Masao; Taki, Makoto
2018-01-01
Conductive hard-coating films have potential application as protective films for contact pins used in the electrical inspection process for integrated circuit chips. In this study, multi-layer diamond-like carbon (DLC) films were prepared as conductive hard-coating films. The multi-layer DLC films consisting of DLC and nitrogen-containing DLC (N-DLC) film were prepared using a T-shape filtered arc deposition method. Periodic DLC/N-DLC four-layer and eight-layer films had the same film thickness by changing the thickness of each layer. In the ball-on-disk test, the N-DLC mono-layer film showed the highest wear resistance; however, in the spherical polishing method, the eight-layer film showed the highest polishing resistance. The wear and polishing resistance and the aggressiveness against an opponent material of the multi-layer DLC films improved by reducing the thickness of a layer. In multi-layer films, the soft N-DLC layer between hard DLC layers is believed to function as a cushion. Thus, the tribological properties of the DLC films were improved by a multi-layered structure. The electrical resistivity of multi-layer DLC films was approximately half that of the DLC mono-layer film. Therefore, the periodic DLC/N-DLC eight-layer film is a good conductive hard-coating film.
Search for and follow-up imaging of subparsec accretion disks in AGN
NASA Astrophysics Data System (ADS)
Kondratko, Paul Thomas
We report results of several large surveys for water maser emission among Active Galactic Nuclei with the 100-m Green Bank Telescope and the two NASA Deep Space Network 70-m antennas at Tidbinbilla, Australia and at Robledo, Spain. We detected 23 new sources, which resulted in a 60% increase in the number of then known nuclear water maser sources. Eight new detections show the characteristic spectral signature of emission from an edge-on accretion disk and therefore constitute good candidates for the determination of black hole mass and geometric distance. This increase in the number of known sources has enabled us to reconsider statistical properties of the resulting sample. For the 30 water maser sources with available hard X-ray data, we found a possible correlation between unabsorbed X-ray luminosity (2-10 keV) and total isotropic water maser luminosity of the form L 2-10 0([Special characters omitted.] , consistent with the model proposed by Neufeld et al. (1994) in which X-ray irradiation of molecular accretion disk gas by the central engine excites the maser emission. We mapped for the first time with Very Long Baseline Interferomatey (VLBI) the full extent of the pc-scale accretion disk in NGC 3079 as traced by water maser emission. Positions and line-of-sight velocities of maser emission are consistent with a nearly edge-on pc-scale disk and a central mass of ~ 2 x 10^6 [Special characters omitted.] enclosed within ~ 0.4 pc. Based on the kinematics of the system, we propose that the disk is geometrically-thick, massive, subject to gravitational instabilities, and hence most likely clumpy and star- forming. The accretion disk in NGC 3079 is thus markedly different from the compact, thin, warped, differentially rotating disk in the archetypal maser galaxy NGC 4258. We also detect maser emission at high latitudes above the disk and suggest that it traces an inward extension of the kpc-scale bipolar wide- angle outflow previously observed along the galactic minor axis. We also report the first VLBI map of the pc-scale accretion disk in NGC 3393. Water maser emission in this source appears to follow Keplerian rotation and traces a linear structure between disk radii of 0.36 and ~ 1 pc. Assuming an edge-on disk and Keplerian rotation, the inferred central mass is (3.1±0.2) × 10^7 [Special characters omitted.] enclosed within 0.36±0.02 pc, which corresponds to a mean mass density of ~ 10 8.2 [Special characters omitted.] pc -3 . We also measured with the Green Bank Telescope centripetal acceleration within the disk, from which we infer the disk radius of 0.17±0.02 pc for the maser feature that is located along the line of sight to the dynamical center. This emission evidently occurs much closer to the center than the emission from the disk midline (0.17 vs. 0.36 pc), contrary to the situation in the two archetypal maser systems NGC 4258 and NGC 1068.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baloković, M.; Harrison, F. A.; Esmerian, C. J.
2015-02-10
Measurements of the high-energy cut-off in the coronal continuum of active galactic nuclei have long been elusive for all but a small number of the brightest examples. We present a direct measurement of the cut-off energy in the nuclear continuum of the nearby Seyfert 1.9 galaxy MCG-05-23-016 with unprecedented precision. The high sensitivity of NuSTAR up to 79 keV allows us to clearly disentangle the spectral curvature of the primary continuum from that of its reflection component. Using a simple phenomenological model for the hard X-ray spectrum, we constrain the cut-off energy to 116{sub −5}{sup +6} keV with 90% confidence.more » Testing for more complex models and nuisance parameters that could potentially influence the measurement, we find that the cut-off is detected robustly. We further use simple Comptonized plasma models to provide independent constraints for both the kinetic temperature of the electrons in the corona and its optical depth. At the 90% confidence level, we find kT{sub e} = 29 ± 2 keV and τ {sub e} = 1.23 ± 0.08 assuming a slab (disk-like) geometry, and kT{sub e} = 25 ± 2 keV and τ {sub e} = 3.5 ± 0.2 assuming a spherical geometry. Both geometries are found to fit the data equally well and their two principal physical parameters are correlated in both cases. With the optical depth in the τ {sub e} ≳ 1 regime, the data are pushing the currently available theoretical models of the Comptonized plasma to the limits of their validity. Since the spectral features and variability arising from the inner accretion disk have been observed previously in MCG-05-23-016, the inferred high optical depth implies that a spherical or disk-like corona cannot be homogeneous.« less
A comparative study of progressive wear of four dental monolithic, veneered glass-ceramics.
Zhang, Zhenzhen; Yi, Yuanping; Wang, Xuesong; Guo, Jiawen; Li, Ding; He, Lin; Zhang, Shaofeng
2017-10-01
This study evaluated the wear performance and wear mechanisms of four dental glass-ceramics, based on the microstructure and mechanical properties in the progressive wear process. Bar (N = 40, n = 10) and disk (N = 32, n = 8) specimens were prepared from (A) lithium disilicate glass-ceramic (LD), (B) leucite reinforced glass-ceramic (LEU), (C) feldspathic glass-ceramic (FEL), and (D) fluorapatite glass-ceramic (FLU). The bar specimens were tested for three-point flexural strength, hardness, fracture toughness and elastic modulus. The disk specimens paired with steatite antagonists were tested in a pin-on-disk tribometer with 10N up to 1000,000 wear cycles. The wear analysis of glass-ceramics was performed using a 3D profilometer after every 200,000 wear cycles. Wear loss of steatite antagonists was calculated by measuring the weight and density using sensitive balance and Archimedes' method. Wear morphologies and microstructures were analyzed by scanning electron microscopy (SEM). The crystalline phase compositions were determined using X-ray diffraction (XRD). One-way analysis of variance (ANOVA) was used to analyze the data. Multiple pair-wise comparison of means was performed by Tukey's post-hoc test. LD showed the highest fracture toughness, flexural strength, elastic modulus and crystallinity, followed by LEU and FEL, and FLU showed the lowest. However, the hardness of LD was lower than all the other three types of ceramics. For steatite antagonists, LD produced the least wear loss of antagonist, followed by LEU and FEL, and FLU had the most wear loss. For glass-ceramic materials, LD exhibited similar wear loss as LEU, but more than FLU and FEL did. Moreover, fracture occurred on the wear surface of FLU. In the progressive wear process, veneering porcelains showed better wear resistance but fluorapatite veneering porcelains appeared fracture surface. Monolithic lithium disilicate glass-ceramics with higher mechanical properties showed more wear loss, however, they did not fracture and produced less wear loss of antagonists. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghosh, Ritesh; Dewangan, Gulab C.; Mallick, Labani; Raychaudhuri, Biplab
2018-06-01
We present a broadband spectral study of the radio-loud narrow-line Seyfert 1 galaxy 1H 0323+342 based on multi-epoch observations performed with NuSTAR on 2014 March 15, and two simultaneous observations performed with Suzaku and Swift on 2009 July 26 and 2013 March 1. We found the presence of a strong soft X-ray excess emission, a broad but weak Fe line and hard X-ray excess emission. We used the blurred reflection (relxill) and the intrinsic disc Comptonization (optxagnf), two physically motivated models, to describe the broadband spectra and to disentangle the disk/corona and jet emission. The relxill model is mainly constrained by the strong soft X-ray excess although the model failed to predict this excess when fitted above 3{keV} and extrapolated to lower energies. The joint spectral analysis of the three datasets above 3{keV} with this model resulted in a high black hole spin (a > 0.9) and moderate reflection fraction R ˜ 0.5. The optxagnf model fitted to the two simultaneous datasets resulted in an excess emission in the UV band. The simultaneous UV-to-hard X-ray spectra of 1H 0323+342 are best described by a model consisting of a primary X-ray power-law continuum with Γ ˜ 1.8, a blurred reflection component with R ˜ 0.5, Comptonised disk emission as the soft X-ray excess, optical/UV emission from a standard accretion disk around a black hole of mass ˜107M⊙ and a steep power law (Γ ˜ 3 - 3.5) component, most likely the jet emission in the UV band. The fractional RMS variability spectra suggest that both the soft excess and the powerlaw component are variable in nature.
Computer Program Development Specification for Tactical Interface System.
1981-07-31
CNTL CNTL TO ONE VT~i.AE CR1 & TWELVE VT100 LCARD READER VIDEO TERMINALS, SIX LA12O) HARD- COPY TERMINALS, & VECTOR GRAPHICS RPO % TERMINAL 17%M DISK...this data into the TIS para - .. meter tables in the TISGBL common area. ICEHANDL will send test interface ICE to PSS in one of two modes: perio- dically...STOPCauss te TI sotwar toexit ,9.*9~ .r .~ * ~%.’h .9~ .. a .~ .. a. 1 , , p * % .’.-:. .m 7 P : SDSS-MMP-BI ." 31 July 1981 TCL commands authorized
NASA Astrophysics Data System (ADS)
2009-09-01
IBM scientist wins magnetism prizes Stuart Parkin, an applied physicist at IBM's Almaden Research Center, has won the European Geophysical Society's Néel Medal and the Magnetism Award from the International Union of Pure and Applied Physics (IUPAP) for his fundamental contributions to nanodevices used in information storage. Parkin's research on giant magnetoresistance in the late 1980s led IBM to develop computer hard drives that packed 1000 times more data onto a disk; his recent work focuses on increasing the storage capacity of solid-state electronic devices.
Suzaku observations of spectral variations of the ultra-luminous X-ray source Holmberg IX X-1
NASA Astrophysics Data System (ADS)
Kobayashi, Shogo B.; Nakazawa, Kazuhiro; Makishima, Kazuo
2017-02-01
Observations of the ultra-luminous X-ray source (ULX) Holmberg IX X-1 were carried out with Suzaku twice, once on 2012 April 13 and then on 2012 October 24, with exposures of 180 ks and 217 ks, respectively. The source showed a hard power-law shaped spectrum with a mild cutoff at ˜8 keV, which is typical of ULXs when they are relatively dim. On both occasions, the 0.6-11 keV spectrum was explained successfully in terms of a cool (˜0.2 keV) multi-color disk blackbody emission model and thermal Comptonization emission produced by an electron cloud with a relatively low temperature and high optical depth, assuming that a large fraction of the disk-blackbody photons are Comptonized whereas the rest are observed directly. The 0.5-10 keV luminosity was 1.2 × 1040 erg s-1 in April, and ˜14% higher in October. This brightening was accompanied by spectral softening in ≥2 keV, with little change in the ≤2 keV spectral shape. This behavior can be understood if the accretion disk remains unchanged while the electron cloud covers a variable fraction of the disk. The absorbing column density was consistent with the galactic line-of sight value, and did not vary by more than 1.6 × 1021 cm-2. Together with the featureless spectra, these properties may not be reconciled easily with the super-critical accretion scenario of this source.
NASA Astrophysics Data System (ADS)
Liu, Tong; Liang, En-Wei; Gu, Wei-Min; Hou, Shu-Jin; Lei, Wei-Hua; Lin, Lin; Dai, Zi-Gao; Zhang, Shuang-Nan
2012-11-01
Soft extended emission (EE) following initial hard spikes up to 100 s was observed with Swift/BAT for about half of known short-type gamma-ray bursts (SGRBs). This challenges the conversional central engine models of SGRBs, i.e., compact star merger models. In the framework of black-hole-neutron-star merger models, we study the roles of radial angular momentum transfer in the disk and the magnetic barrier around the black hole in the activity of SGRB central engines. We show that radial angular momentum transfer may significantly prolong the lifetime of the accretion process, which may be divided into multiple episodes by the magnetic barrier. Our numerical calculations based on models of neutrino-dominated accretion flows suggest that disk mass is critical for producing the observed EE. In the case of the mass being ~0.8 M ⊙, our model can reproduce the observed timescale and luminosity of both the main and the EE episodes in a reasonable parameter set. The predicted luminosity of the EE component is lower than the observed EE within about one order of magnitude and the timescale is shorter than 20 s if the disk mass is ~0.2 M ⊙. Swift/BAT-like instruments may be not sensitive enough to detect the EE component in this case. We argue that the EE component could be a probe for the merger process and disk formation for compact star mergers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Liborio I., E-mail: liborio78@gmail.com
A new Markov Chain Monte Carlo method for simulating the dynamics of particle systems characterized by hard-core interactions is introduced. In contrast to traditional Kinetic Monte Carlo approaches, where the state of the system is associated with minima in the energy landscape, in the proposed method, the state of the system is associated with the set of paths traveled by the atoms and the transition probabilities for an atom to be displaced are proportional to the corresponding velocities. In this way, the number of possible state-to-state transitions is reduced to a discrete set, and a direct link between the Montemore » Carlo time step and true physical time is naturally established. The resulting rejection-free algorithm is validated against event-driven molecular dynamics: the equilibrium and non-equilibrium dynamics of hard disks converge to the exact results with decreasing displacement size.« less
Magnetization dynamics of imprinted non-collinear spin textures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streubel, Robert, E-mail: r.streubel@ifw-dresden.de; Kopte, Martin; Makarov, Denys, E-mail: d.makarov@ifw-dresden.de
2015-09-14
We study the magnetization dynamics of non-collinear spin textures realized via imprint of the magnetic vortex state in soft permalloy into magnetically hard out-of-plane magnetized Co/Pd nanopatterned heterostructures. Tuning the interlayer exchange coupling between soft- and hard-magnetic subsystems provides means to tailor the magnetic state in the Co/Pd stack from being vortex- to donut-like with different core sizes. While the imprinted vortex spin texture leads to the dynamics similar to the one observed for vortices in permalloy disks, the donut-like state causes the appearance of two gyrofrequencies characteristic of the early and later stages of the magnetization dynamics. The dynamicsmore » are described using the Thiele equation supported by the full scale micromagnetic simulations by taking into account an enlarged core size of the donut states compared to magnetic vortices.« less
Mechanical and wear properties of aluminum coating prepared by cold spraying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusof, Siti Nurul Akmal, E-mail: em-leo277@yahoo.com; Manap, Abreeza, E-mail: Abreeza@uniten.edu.my; Afandi, Nurfanizan Mohd
In this study, aluminum (Al) powders were deposited onto Al substrates using cold spray to form a coating. The main objective is to investigate and compare the microstructure, mechanical and wear properties of Al coating to that of the Al substrate. The microstructure of the coating and substrate were observed using Scanning Electron Microscope (SEM). Hardness was evaluated using the Vickers Hardness test and wear properties were investigated using a pin-on-disk wear test machine. The elemental composition of the coating and substrate was determined using Energy-dispersive X-ray spectroscopy (EDX). Results showed that the friction coefficient and specific wear rate decreasedmore » while wear rate increased linearly with increasing load. It was found that the coating exhibit slightly better mechanical and wear properties compared to the substrate.« less
Laser-driven powerful kHz hard x-ray source
NASA Astrophysics Data System (ADS)
Li, Minghua; Huang, Kai; Chen, Liming; Yan, Wenchao; Tao, Mengze; Zhao, Jiarui; Ma, Yong; Li, Yifei; Zhang, Jie
2017-08-01
A powerful hard x-ray source based on laser plasma interaction is developed. By introducing the kHz, 800 nm pulses onto a rotating molybdenum (Mo) disk target, intense Mo Kα x-rays are emitted with suppressed bremsstrahlung background. Results obtained with different laser intensities suggest that the dominant absorption mechanism responsible for the high conversion efficiency is vacuum heating (VH). The high degree of spatial coherence is verified. With the high average flux and a source size comparable to the laser focus spot, absorption contrast imaging and phase contrast imaging are carried out to test the imaging capability of the source. Not only useful for imaging application, this compact x-ray source is also holding great potential for ultrafast x-ray diffraction (XRD) due to the intrinsic merits such as femtosecond pulse duration and natural synchronization with the driving laser pulses.
Özel, Cihan; Gürgenç, Turan
2018-01-01
In this study, AISI 1020 steel surface was coated in different heat inputs with (wt.-%) 50FeCrC-20FeW-30FeB powder mixture by using plasma transferred arc (PTA) welding method. The microstructure of the coated samples were investigated by using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDS). The hardness was measured with micro hardness test device. The dry sliding wear and friction coefficient properties were determined using a block-on-disk type wear test device. Wear tests were performed at 19.62 N, 39.24 N, 58.86 N load and the sliding distance of 900 m. The results were shown that different microstructures formed due to the heat input change. The highest average micro hardness value was measured at 1217 HV on sample coated with low heat input. It was determined that the wear resistance decreased with increasing heat input.
Enhancement of the Wear Resistance and Microhardness of Aluminum Alloy by Nd:YaG Laser Treatment
Hussein, Haitham T.; Kadhim, Abdulhadi; Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar
2014-01-01
Influence of laser treatment on mechanical properties, wear resistance, and Vickers hardness of aluminum alloy was studied. The specimens were treated by using Nd:YaG laser of energy 780 mj, wavelength 512 nm, and duration time 8 ns. The wear behavior of the specimens was studied for all specimens before and after treatment by Nd:YaG laser and the dry wear experiments were carried out by sing pinon-disc technique. The specimens were machined as a disk with diameter of 25 mm and circular groove in depth of 3 mm. All specimens were conducted by scanning electron microscopy (SEM), energy-dispersive X-ray florescence analysis (EDS), optical microscopy, and Vickers hardness. The results showed that the dry wear rate was decreased after laser hardening and increased Vickers hardness values by ratio of 2.4 : 1. The results showed that the values of wear rate for samples having circular grooves are less than samples without grooves after laser treatment. PMID:25136694