DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Imad, E-mail: iali@ouhsc.edu; Ahmad, Salahuddin
2013-10-01
To compare the doses calculated using the BrainLAB pencil beam (PB) and Monte Carlo (MC) algorithms for tumors located in various sites including the lung and evaluate quality assurance procedures required for the verification of the accuracy of dose calculation. The dose-calculation accuracy of PB and MC was also assessed quantitatively with measurement using ionization chamber and Gafchromic films placed in solid water and heterogeneous phantoms. The dose was calculated using PB convolution and MC algorithms in the iPlan treatment planning system from BrainLAB. The dose calculation was performed on the patient's computed tomography images with lesions in various treatmentmore » sites including 5 lungs, 5 prostates, 4 brains, 2 head and necks, and 2 paraspinal tissues. A combination of conventional, conformal, and intensity-modulated radiation therapy plans was used in dose calculation. The leaf sequence from intensity-modulated radiation therapy plans or beam shapes from conformal plans and monitor units and other planning parameters calculated by the PB were identical for calculating dose with MC. Heterogeneity correction was considered in both PB and MC dose calculations. Dose-volume parameters such as V95 (volume covered by 95% of prescription dose), dose distributions, and gamma analysis were used to evaluate the calculated dose by PB and MC. The measured doses by ionization chamber and EBT GAFCHROMIC film in solid water and heterogeneous phantoms were used to quantitatively asses the accuracy of dose calculated by PB and MC. The dose-volume histograms and dose distributions calculated by PB and MC in the brain, prostate, paraspinal, and head and neck were in good agreement with one another (within 5%) and provided acceptable planning target volume coverage. However, dose distributions of the patients with lung cancer had large discrepancies. For a plan optimized with PB, the dose coverage was shown as clinically acceptable, whereas in reality, the MC showed a systematic lack of dose coverage. The dose calculated by PB for lung tumors was overestimated by up to 40%. An interesting feature that was observed is that despite large discrepancies in dose-volume histogram coverage of the planning target volume between PB and MC, the point doses at the isocenter (center of the lesions) calculated by both algorithms were within 7% even for lung cases. The dose distributions measured with EBT GAFCHROMIC films in heterogeneous phantoms showed large discrepancies of nearly 15% lower than PB at interfaces between heterogeneous media, where these lower doses measured by the film were in agreement with those by MC. The doses (V95) calculated by MC and PB agreed within 5% for treatment sites with small tissue heterogeneities such as the prostate, brain, head and neck, and paraspinal tumors. Considerable discrepancies, up to 40%, were observed in the dose-volume coverage between MC and PB in lung tumors, which may affect clinical outcomes. The discrepancies between MC and PB increased for 15 MV compared with 6 MV indicating the importance of implementation of accurate clinical treatment planning such as MC. The comparison of point doses is not representative of the discrepancies in dose coverage and might be misleading in evaluating the accuracy of dose calculation between PB and MC. Thus, the clinical quality assurance procedures required to verify the accuracy of dose calculation using PB and MC need to consider measurements of 2- and 3-dimensional dose distributions rather than a single point measurement using heterogeneous phantoms instead of homogenous water-equivalent phantoms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y M; Bush, K; Han, B
Purpose: Accurate and fast dose calculation is a prerequisite of precision radiation therapy in modern photon and particle therapy. While Monte Carlo (MC) dose calculation provides high dosimetric accuracy, the drastically increased computational time hinders its routine use. Deterministic dose calculation methods are fast, but problematic in the presence of tissue density inhomogeneity. We leverage the useful features of deterministic methods and MC to develop a hybrid dose calculation platform with autonomous utilization of MC and deterministic calculation depending on the local geometry, for optimal accuracy and speed. Methods: Our platform utilizes a Geant4 based “localized Monte Carlo” (LMC) methodmore » that isolates MC dose calculations only to volumes that have potential for dosimetric inaccuracy. In our approach, additional structures are created encompassing heterogeneous volumes. Deterministic methods calculate dose and energy fluence up to the volume surfaces, where the energy fluence distribution is sampled into discrete histories and transported using MC. Histories exiting the volume are converted back into energy fluence, and transported deterministically. By matching boundary conditions at both interfaces, deterministic dose calculation account for dose perturbations “downstream” of localized heterogeneities. Hybrid dose calculation was performed for water and anthropomorphic phantoms. Results: We achieved <1% agreement between deterministic and MC calculations in the water benchmark for photon and proton beams, and dose differences of 2%–15% could be observed in heterogeneous phantoms. The saving in computational time (a factor ∼4–7 compared to a full Monte Carlo dose calculation) was found to be approximately proportional to the volume of the heterogeneous region. Conclusion: Our hybrid dose calculation approach takes advantage of the computational efficiency of deterministic method and accuracy of MC, providing a practical tool for high performance dose calculation in modern RT. The approach is generalizable to all modalities where heterogeneities play a large role, notably particle therapy.« less
Carver, Robert L; Sprunger, Conrad P; Hogstrom, Kenneth R; Popple, Richard A; Antolak, John A
2016-05-08
The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and < 0.2% statistical uncertainties. The accuracy of the dose calculations using moderate smoothing and no smooth-ing were evaluated. Dose differences (eMC-calculated less measured dose) were evaluated in terms of absolute dose difference, where 100% equals the given dose, as well as distance to agreement (DTA). Dose calculations were also evaluated for calculation speed. Results from the eMC for the retromolar trigone phantom using 1% statistical uncertainty without smoothing showed calculated dose at 89% (41/46) of the measured TLD-dose points was within 3% dose difference or 3 mm DTA of the measured value. The average dose difference was -0.21%, and the net standard deviation was 2.32%. Differences as large as 3.7% occurred immediately distal to the mandible bone. Results for the nose phantom, using 1% statistical uncertainty without smoothing, showed calculated dose at 93% (53/57) of the measured TLD-dose points within 3% dose difference or 3 mm DTA. The average dose difference was 1.08%, and the net standard deviation was 3.17%. Differences as large as 10% occurred lateral to the nasal air cavities. Including smoothing had insignificant effects on the accuracy of the retromolar trigone phantom calculations, but reduced the accuracy of the nose phantom calculations in the high-gradient dose areas. Dose calculation times with 1% statistical uncertainty for the retromolar trigone and nose treatment plans were 30 s and 24 s, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a framework agent server (FAS). In comparison, the eMC was significantly more accurate than the pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.
Head-and-neck IMRT treatments assessed with a Monte Carlo dose calculation engine.
Seco, J; Adams, E; Bidmead, M; Partridge, M; Verhaegen, F
2005-03-07
IMRT is frequently used in the head-and-neck region, which contains materials of widely differing densities (soft tissue, bone, air-cavities). Conventional methods of dose computation for these complex, inhomogeneous IMRT cases involve significant approximations. In the present work, a methodology for the development, commissioning and implementation of a Monte Carlo (MC) dose calculation engine for intensity modulated radiotherapy (MC-IMRT) is proposed which can be used by radiotherapy centres interested in developing MC-IMRT capabilities for research or clinical evaluations. The method proposes three levels for developing, commissioning and maintaining a MC-IMRT dose calculation engine: (a) development of a MC model of the linear accelerator, (b) validation of MC model for IMRT and (c) periodic quality assurance (QA) of the MC-IMRT system. The first step, level (a), in developing an MC-IMRT system is to build a model of the linac that correctly predicts standard open field measurements for percentage depth-dose and off-axis ratios. Validation of MC-IMRT, level (b), can be performed in a rando phantom and in a homogeneous water equivalent phantom. Ultimately, periodic quality assurance of the MC-IMRT system is needed to verify the MC-IMRT dose calculation system, level (c). Once the MC-IMRT dose calculation system is commissioned it can be applied to more complex clinical IMRT treatments. The MC-IMRT system implemented at the Royal Marsden Hospital was used for IMRT calculations for a patient undergoing treatment for primary disease with nodal involvement in the head-and-neck region (primary treated to 65 Gy and nodes to 54 Gy), while sparing the spinal cord, brain stem and parotid glands. Preliminary MC results predict a decrease of approximately 1-2 Gy in the median dose of both the primary tumour and nodal volumes (compared with both pencil beam and collapsed cone). This is possibly due to the large air-cavity (the larynx of the patient) situated in the centre of the primary PTV and the approximations present in the dose calculation.
A clinical study of lung cancer dose calculation accuracy with Monte Carlo simulation.
Zhao, Yanqun; Qi, Guohai; Yin, Gang; Wang, Xianliang; Wang, Pei; Li, Jian; Xiao, Mingyong; Li, Jie; Kang, Shengwei; Liao, Xiongfei
2014-12-16
The accuracy of dose calculation is crucial to the quality of treatment planning and, consequently, to the dose delivered to patients undergoing radiation therapy. Current general calculation algorithms such as Pencil Beam Convolution (PBC) and Collapsed Cone Convolution (CCC) have shortcomings in regard to severe inhomogeneities, particularly in those regions where charged particle equilibrium does not hold. The aim of this study was to evaluate the accuracy of the PBC and CCC algorithms in lung cancer radiotherapy using Monte Carlo (MC) technology. Four treatment plans were designed using Oncentra Masterplan TPS for each patient. Two intensity-modulated radiation therapy (IMRT) plans were developed using the PBC and CCC algorithms, and two three-dimensional conformal therapy (3DCRT) plans were developed using the PBC and CCC algorithms. The DICOM-RT files of the treatment plans were exported to the Monte Carlo system to recalculate. The dose distributions of GTV, PTV and ipsilateral lung calculated by the TPS and MC were compared. For 3DCRT and IMRT plans, the mean dose differences for GTV between the CCC and MC increased with decreasing of the GTV volume. For IMRT, the mean dose differences were found to be higher than that of 3DCRT. The CCC algorithm overestimated the GTV mean dose by approximately 3% for IMRT. For 3DCRT plans, when the volume of the GTV was greater than 100 cm(3), the mean doses calculated by CCC and MC almost have no difference. PBC shows large deviations from the MC algorithm. For the dose to the ipsilateral lung, the CCC algorithm overestimated the dose to the entire lung, and the PBC algorithm overestimated V20 but underestimated V5; the difference in V10 was not statistically significant. PBC substantially overestimates the dose to the tumour, but the CCC is similar to the MC simulation. It is recommended that the treatment plans for lung cancer be developed using an advanced dose calculation algorithm other than PBC. MC can accurately calculate the dose distribution in lung cancer and can provide a notably effective tool for benchmarking the performance of other dose calculation algorithms within patients.
NASA Astrophysics Data System (ADS)
Bush, K.; Zavgorodni, S.; Gagne, I.; Townson, R.; Ansbacher, W.; Beckham, W.
2010-08-01
The aim of the study was to perform the Monte Carlo (MC) evaluation of RapidArc™ (Varian Medical Systems, Palo Alto, CA) dose calculations for four oropharynx midline sparing planning strategies. Six patients with squamous cell cancer of the oropharynx were each planned with four RapidArc head and neck treatment strategies consisting of single and double photon arcs. In each case, RTOG0522 protocol objectives were used during planning optimization. Dose calculations performed with the analytical anisotropic algorithm (AAA) are compared against BEAMnrc/DOSXYZnrc dose calculations for the 24-plan dataset. Mean dose and dose-to-98%-of-structure-volume (D98%) were used as metrics in the evaluation of dose to planning target volumes (PTVs). Mean dose and dose-to-2%-of-structure-volume (D2%) were used to evaluate dose differences within organs at risk (OAR). Differences in the conformity index (CI) and the homogeneity index (HI) as well as 3D dose distributions were also observed. AAA calculated PTV mean dose, D98%, and HIs showed very good agreement with MC dose calculations within the 0.8% MC (statistical) calculation uncertainty. Regional node volume (PTV-80%) mean dose and D98% were found to be overestimated (1.3%, σ = 0.8% and 2.3%, σ = 0.8%, respectively) by the AAA with respect to MC calculations. Mean dose and D2% to OAR were also observed to be consistently overestimated by the AAA. Increasing dose calculation differences were found in planning strategies exhibiting a higher overall fluence modulation. From the plan dataset, the largest local dose differences were observed in heavily shielded regions and within the esophageal and sinus cavities. AAA dose calculations as implemented in RapidArc™ demonstrate excellent agreement with MC calculations in unshielded regions containing moderate inhomogeneities. Acceptable agreement is achieved in regions of increased MLC shielding. Differences in dose are attributed to inaccuracies in the AAA-modulated fluence modeling, modeling of material inhomogeneities and dose deposition within low-density materials. The use of MC dose calculations leads to the same general conclusion as using AAA that a two arc delivery with limited collimator opening can provide the greatest amount of midline sparing compared to the other techniques investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, M; Lee, V; Leung, R
Purpose: Investigating the relative sensitivity of Monte Carlo (MC) and Pencil Beam (PB) dose calculation algorithms to low-Z (titanium) metallic artifacts is important for accurate and consistent dose reporting in post¬operative spinal RS. Methods: Sensitivity analysis of MC and PB dose calculation algorithms on the Monaco v.3.3 treatment planning system (Elekta CMS, Maryland Heights, MO, USA) was performed using CT images reconstructed without (plain) and with Orthopedic Metal Artifact Reduction (OMAR; Philips Healthcare system, Cleveland, OH, USA). 6MV and 10MV volumetric-modulated arc (VMAT) RS plans were obtained for MC and PB on the plain and OMAR images (MC-plain/OMAR and PB-plain/OMAR).more » Results: Maximum differences in dose to 0.2cc (D0.2cc) of spinal cord and cord +2mm for 6MV and 10MV VMAT plans were 0.1Gy between MC-OMAR and MC-plain, and between PB-OMAR and PB-plain. Planning target volume (PTV) dose coverage changed by 0.1±0.7% and 0.2±0.3% for 6MV and 10MV from MC-OMAR to MC-plain, and by 0.1±0.1% for both 6MV and 10 MV from PB-OMAR to PB-plain, respectively. In no case for both MC and PB the D0.2cc to spinal cord was found to exceed the planned tolerance changing from OMAR to plain CT in dose calculations. Conclusion: Dosimetric impacts of metallic artifacts caused by low-Z metallic spinal hardware (mainly titanium alloy) are not clinically important in VMAT-based spine RS, without significant dependence on dose calculation methods (MC and PB) and photon energy ≥ 6MV. There is no need to use one algorithm instead of the other to reduce uncertainty for dose reporting. The dose calculation method that should be used in spine RS shall be consistent with the usual clinical practice.« less
NASA Astrophysics Data System (ADS)
Petoukhova, A. L.; van Wingerden, K.; Wiggenraad, R. G. J.; van de Vaart, P. J. M.; van Egmond, J.; Franken, E. M.; van Santvoort, J. P. C.
2010-08-01
This study presents data for verification of the iPlan RT Monte Carlo (MC) dose algorithm (BrainLAB, Feldkirchen, Germany). MC calculations were compared with pencil beam (PB) calculations and verification measurements in phantoms with lung-equivalent material, air cavities or bone-equivalent material to mimic head and neck and thorax and in an Alderson anthropomorphic phantom. Dosimetric accuracy of MC for the micro-multileaf collimator (MLC) simulation was tested in a homogeneous phantom. All measurements were performed using an ionization chamber and Kodak EDR2 films with Novalis 6 MV photon beams. Dose distributions measured with film and calculated with MC in the homogeneous phantom are in excellent agreement for oval, C and squiggle-shaped fields and for a clinical IMRT plan. For a field with completely closed MLC, MC is much closer to the experimental result than the PB calculations. For fields larger than the dimensions of the inhomogeneities the MC calculations show excellent agreement (within 3%/1 mm) with the experimental data. MC calculations in the anthropomorphic phantom show good agreement with measurements for conformal beam plans and reasonable agreement for dynamic conformal arc and IMRT plans. For 6 head and neck and 15 lung patients a comparison of the MC plan with the PB plan was performed. Our results demonstrate that MC is able to accurately predict the dose in the presence of inhomogeneities typical for head and neck and thorax regions with reasonable calculation times (5-20 min). Lateral electron transport was well reproduced in MC calculations. We are planning to implement MC calculations for head and neck and lung cancer patients.
A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system.
Ma, Jiasen; Beltran, Chris; Seum Wan Chan Tseung, Hok; Herman, Michael G
2014-12-01
Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. An in-house graphics processing unit (GPU)-based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. For relatively large and complex three-field head and neck cases, i.e., >100,000 spots with a target volume of ∼ 1000 cm(3) and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45,000 dollars. The fast calculation and optimization make the system easily expandable to robust and multicriteria optimization.
SU-E-T-29: A Web Application for GPU-Based Monte Carlo IMRT/VMAT QA with Delivered Dose Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folkerts, M; University of California, San Diego, La Jolla, CA; Graves, Y
Purpose: To enable an existing web application for GPU-based Monte Carlo (MC) 3D dosimetry quality assurance (QA) to compute “delivered dose” from linac logfile data. Methods: We added significant features to an IMRT/VMAT QA web application which is based on existing technologies (HTML5, Python, and Django). This tool interfaces with python, c-code libraries, and command line-based GPU applications to perform a MC-based IMRT/VMAT QA. The web app automates many complicated aspects of interfacing clinical DICOM and logfile data with cutting-edge GPU software to run a MC dose calculation. The resultant web app is powerful, easy to use, and is ablemore » to re-compute both plan dose (from DICOM data) and delivered dose (from logfile data). Both dynalog and trajectorylog file formats are supported. Users upload zipped DICOM RP, CT, and RD data and set the expected statistic uncertainty for the MC dose calculation. A 3D gamma index map, 3D dose distribution, gamma histogram, dosimetric statistics, and DVH curves are displayed to the user. Additional the user may upload the delivery logfile data from the linac to compute a 'delivered dose' calculation and corresponding gamma tests. A comprehensive PDF QA report summarizing the results can also be downloaded. Results: We successfully improved a web app for a GPU-based QA tool that consists of logfile parcing, fluence map generation, CT image processing, GPU based MC dose calculation, gamma index calculation, and DVH calculation. The result is an IMRT and VMAT QA tool that conducts an independent dose calculation for a given treatment plan and delivery log file. The system takes both DICOM data and logfile data to compute plan dose and delivered dose respectively. Conclusion: We sucessfully improved a GPU-based MC QA tool to allow for logfile dose calculation. The high efficiency and accessibility will greatly facilitate IMRT and VMAT QA.« less
A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)
NASA Astrophysics Data System (ADS)
Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B.; Jia, Xun
2015-09-01
Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by successfully running it on a variety of different computing devices including an NVidia GPU card, two AMD GPU cards and an Intel CPU processor. Computational efficiency among these platforms was compared.
A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).
Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun
2015-10-07
Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by successfully running it on a variety of different computing devices including an NVidia GPU card, two AMD GPU cards and an Intel CPU processor. Computational efficiency among these platforms was compared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; UT Southwestern Medical Center, Dallas, TX; Tian, Z
2015-06-15
Purpose: Intensity-modulated proton therapy (IMPT) is increasingly used in proton therapy. For IMPT optimization, Monte Carlo (MC) is desired for spots dose calculations because of its high accuracy, especially in cases with a high level of heterogeneity. It is also preferred in biological optimization problems due to the capability of computing quantities related to biological effects. However, MC simulation is typically too slow to be used for this purpose. Although GPU-based MC engines have become available, the achieved efficiency is still not ideal. The purpose of this work is to develop a new optimization scheme to include GPU-based MC intomore » IMPT. Methods: A conventional approach using MC in IMPT simply calls the MC dose engine repeatedly for each spot dose calculations. However, this is not the optimal approach, because of the unnecessary computations on some spots that turned out to have very small weights after solving the optimization problem. GPU-memory writing conflict occurring at a small beam size also reduces computational efficiency. To solve these problems, we developed a new framework that iteratively performs MC dose calculations and plan optimizations. At each dose calculation step, the particles were sampled from different spots altogether with Metropolis algorithm, such that the particle number is proportional to the latest optimized spot intensity. Simultaneously transporting particles from multiple spots also mitigated the memory writing conflict problem. Results: We have validated the proposed MC-based optimization schemes in one prostate case. The total computation time of our method was ∼5–6 min on one NVIDIA GPU card, including both spot dose calculation and plan optimization, whereas a conventional method naively using the same GPU-based MC engine were ∼3 times slower. Conclusion: A fast GPU-based MC dose calculation method along with a novel optimization workflow is developed. The high efficiency makes it attractive for clinical usages.« less
NASA Astrophysics Data System (ADS)
Wang, Lilie; Ding, George X.
2014-07-01
The out-of-field dose can be clinically important as it relates to the dose of the organ-at-risk, although the accuracy of its calculation in commercial radiotherapy treatment planning systems (TPSs) receives less attention. This study evaluates the uncertainties of out-of-field dose calculated with a model based dose calculation algorithm, anisotropic analytical algorithm (AAA), implemented in a commercial radiotherapy TPS, Varian Eclipse V10, by using Monte Carlo (MC) simulations, in which the entire accelerator head is modeled including the multi-leaf collimators. The MC calculated out-of-field doses were validated by experimental measurements. The dose calculations were performed in a water phantom as well as CT based patient geometries and both static and highly modulated intensity-modulated radiation therapy (IMRT) fields were evaluated. We compared the calculated out-of-field doses, defined as lower than 5% of the prescription dose, in four H&N cancer patients and two lung cancer patients treated with volumetric modulated arc therapy (VMAT) and IMRT techniques. The results show that the discrepancy of calculated out-of-field dose profiles between AAA and the MC depends on the depth and is generally less than 1% for in water phantom comparisons and in CT based patient dose calculations for static field and IMRT. In cases of VMAT plans, the difference between AAA and MC is <0.5%. The clinical impact resulting from the error on the calculated organ doses were analyzed by using dose-volume histograms. Although the AAA algorithm significantly underestimated the out-of-field doses, the clinical impact on the calculated organ doses in out-of-field regions may not be significant in practice due to very low out-of-field doses relative to the target dose.
Ojala, J; Hyödynmaa, S; Barańczyk, R; Góra, E; Waligórski, M P R
2014-03-01
Electron radiotherapy is applied to treat the chest wall close to the mediastinum. The performance of the GGPB and eMC algorithms implemented in the Varian Eclipse treatment planning system (TPS) was studied in this region for 9 and 16 MeV beams, against Monte Carlo (MC) simulations, point dosimetry in a water phantom and dose distributions calculated in virtual phantoms. For the 16 MeV beam, the accuracy of these algorithms was also compared over the lung-mediastinum interface region of an anthropomorphic phantom, against MC calculations and thermoluminescence dosimetry (TLD). In the phantom with a lung-equivalent slab the results were generally congruent, the eMC results for the 9 MeV beam slightly overestimating the lung dose, and the GGPB results for the 16 MeV beam underestimating the lung dose. Over the lung-mediastinum interface, for 9 and 16 MeV beams, the GGPB code underestimated the lung dose and overestimated the dose in water close to the lung, compared to the congruent eMC and MC results. In the anthropomorphic phantom, results of TLD measurements and MC and eMC calculations agreed, while the GGPB code underestimated the lung dose. Good agreement between TLD measurements and MC calculations attests to the accuracy of "full" MC simulations as a reference for benchmarking TPS codes. Application of the GGPB code in chest wall radiotherapy may result in significant underestimation of the lung dose and overestimation of dose to the mediastinum, affecting plan optimization over volumes close to the lung-mediastinum interface, such as the lung or heart. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, C; Nanjing University of Aeronautics and Astronautics, Nanjing; Daartz, J
Purpose: To evaluate the accuracy of dose calculations by analytical dose calculation methods (ADC) for small field proton therapy in a gantry based passive scattering facility. Methods: 50 patients with intra-cranial disease were evaluated in the study. Treatment plans followed standard prescription and optimization procedures of proton stereotactic radiosurgery. Dose distributions calculated with the Monte Carlo (MC) toolkit TOPAS were used to represent delivered treatments. The MC dose was first adjusted using the output factor (OF) applied clinically. This factor is determined from the field size and the prescribed range. We then introduced a normalization factor to measure the differencemore » in mean dose between the delivered dose (MC dose with OF) and the dose calculated by ADC for each beam. The normalization was determined by the mean dose of the center voxels of the target area. We compared delivered dose distributions and those calculated by ADC in terms of dose volume histogram parameters and beam range distributions. Results: The mean target dose for a whole treatment is generally within 5% comparing delivered dose (MC dose with OF) and ADC dose. However, the differences can be as great as 11% for shallow and small target treated with a thick range compensator. Applying the normalization factor to the MC dose with OF can reduce the mean dose difference to less than 3%. Considering range uncertainties, the generally applied margins (3.5% of the prescribed range + 1mm) to cover uncertainties in range might not be sufficient to guarantee tumor coverage. The range difference for R90 (90% distal dose falloff) is affected by multiple factors, such as the heterogeneity index. Conclusion: This study indicates insufficient accuracy calculating proton doses using ADC. Our results suggest that uncertainties of target doses are reduced using MC techniques, improving the dosimetric accuracy for proton stereotactic radiosurgery. The work was supported by NIH/NCI under CA U19 021239. CG was partially supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087).« less
A medical image-based graphical platform -- features, applications and relevance for brachytherapy.
Fonseca, Gabriel P; Reniers, Brigitte; Landry, Guillaume; White, Shane; Bellezzo, Murillo; Antunes, Paula C G; de Sales, Camila P; Welteman, Eduardo; Yoriyaz, Hélio; Verhaegen, Frank
2014-01-01
Brachytherapy dose calculation is commonly performed using the Task Group-No 43 Report-Updated protocol (TG-43U1) formalism. Recently, a more accurate approach has been proposed that can handle tissue composition, tissue density, body shape, applicator geometry, and dose reporting either in media or water. Some model-based dose calculation algorithms are based on Monte Carlo (MC) simulations. This work presents a software platform capable of processing medical images and treatment plans, and preparing the required input data for MC simulations. The A Medical Image-based Graphical platfOrm-Brachytherapy module (AMIGOBrachy) is a user interface, coupled to the MCNP6 MC code, for absorbed dose calculations. The AMIGOBrachy was first validated in water for a high-dose-rate (192)Ir source. Next, dose distributions were validated in uniform phantoms consisting of different materials. Finally, dose distributions were obtained in patient geometries. Results were compared against a treatment planning system including a linear Boltzmann transport equation (LBTE) solver capable of handling nonwater heterogeneities. The TG-43U1 source parameters are in good agreement with literature with more than 90% of anisotropy values within 1%. No significant dependence on the tissue composition was observed comparing MC results against an LBTE solver. Clinical cases showed differences up to 25%, when comparing MC results against TG-43U1. About 92% of the voxels exhibited dose differences lower than 2% when comparing MC results against an LBTE solver. The AMIGOBrachy can improve the accuracy of the TG-43U1 dose calculation by using a more accurate MC dose calculation algorithm. The AMIGOBrachy can be incorporated in clinical practice via a user-friendly graphical interface. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biplab, S; Soumya, R; Paul, S
2014-06-01
Purpose: For the first time in the world, BrainLAB has integrated its iPlan treatment planning system for clinical use with Elekta linear accelerator (Axesse with a Beam Modulator). The purpose of this study was to compare the calculated and measured doses with different chambers to establish the calculation accuracy of iPlan system. Methods: The iPlan has both Pencil beam (PB) and Monte Carlo (MC) calculation algorithms. Beam data include depth doses, profiles and output measurements for different field sizes. Collected data was verified by vendor and beam modelling was done. Further QA tests were carried out in our clinic. Dosemore » calculation accuracy verified point, volumetric dose measurement using ion chambers of different volumes (0.01cc and 0.125cc). Planner dose verification was done using diode array. Plans were generated in iPlan and irradiated in Elekta Axesse linear accelerator. Results: Dose calculation accuracies verified using ion chamber for 6 and 10 MV beam were 3.5+/-0.33(PB), 1.7%+/-0.7(MC) and 3.9%+/-0.6(PB), 3.4%+/-0.6(MC) respectively. Using a pin point chamber, dose calculation accuracy for 6MV and 10MV was 3.8%+/-0.06(PB), 1.21%+/-0.2(MC) and 4.2%+/-0.6(PB), 3.1%+/-0.7(MC) respectively. The calculated planar dose distribution for 10.4×10.4 cm2 was verified using a diode array and the gamma analysis for 2%-2mm criteria yielded pass rates of 88 %(PB) and 98.8%(MC) respectively. 3mm-3% yields 100% passing for both MC and PB algorithm. Conclusion: Dose calculation accuracy was found to be within acceptable limits for MC for 6MV beam. PB for both beams and MC for 10 MV beam were found to be outside acceptable limits. The output measurements were done twice for conformation. The lower gamma matching was attributed to meager number of measured profiles (only two profiles for PB) and coarse measurement resolution for diagonal profile measurement (5mm). Based on these measurements we concluded that 6 MV MC algorithm is suitable for patient treatment.« less
Postimplant dosimetry using a Monte Carlo dose calculation engine: a new clinical standard.
Carrier, Jean-François; D'Amours, Michel; Verhaegen, Frank; Reniers, Brigitte; Martin, André-Guy; Vigneault, Eric; Beaulieu, Luc
2007-07-15
To use the Monte Carlo (MC) method as a dose calculation engine for postimplant dosimetry. To compare the results with clinically approved data for a sample of 28 patients. Two effects not taken into account by the clinical calculation, interseed attenuation and tissue composition, are being specifically investigated. An automated MC program was developed. The dose distributions were calculated for the target volume and organs at risk (OAR) for 28 patients. Additional MC techniques were developed to focus specifically on the interseed attenuation and tissue effects. For the clinical target volume (CTV) D(90) parameter, the mean difference between the clinical technique and the complete MC method is 10.7 Gy, with cases reaching up to 17 Gy. For all cases, the clinical technique overestimates the deposited dose in the CTV. This overestimation is mainly from a combination of two effects: the interseed attenuation (average, 6.8 Gy) and tissue composition (average, 4.1 Gy). The deposited dose in the OARs is also overestimated in the clinical calculation. The clinical technique systematically overestimates the deposited dose in the prostate and in the OARs. To reduce this systematic inaccuracy, the MC method should be considered in establishing a new standard for clinical postimplant dosimetry and dose-outcome studies in a near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carver, R; Popple, R; Benhabib, S
Purpose: To evaluate the accuracy of electron dose distribution calculated by the Varian Eclipse electron Monte Carlo (eMC) algorithm for use with recent commercially available bolus electron conformal therapy (ECT). Methods: eMC-calculated electron dose distributions for bolus ECT have been compared to those previously measured for cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV CT anatomy for each site. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The bolus ECT treatment plans were imported into the Eclipse treatment planning system and calculated using the maximum allowable histories (2×10{sup 9}),more » resulting in a statistical error of <0.2%. Smoothing was not used for these calculations. Differences between eMC-calculated and measured dose distributions were evaluated in terms of absolute dose difference as well as distance to agreement (DTA). Results: Results from the eMC for the retromolar trigone phantom showed 89% (41/46) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of −0.12% with a standard deviation of 2.56%. Results for the nose phantom showed 95% (54/57) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of 1.12% with a standard deviation of 3.03%. Dose calculation times for the retromolar trigone and nose treatment plans were 15 min and 22 min, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a Varian Eclipse framework agent server (FAS). Results of this study were consistent with those previously reported for accuracy of the eMC electron dose algorithm and for the .decimal, Inc. pencil beam redefinition algorithm used to plan the bolus. Conclusion: These results show that the accuracy of the Eclipse eMC algorithm is suitable for clinical implementation of bolus ECT.« less
NASA Astrophysics Data System (ADS)
Fragoso, M.; Love, P. A.; Verhaegen, F.; Nalder, C.; Bidmead, A. M.; Leach, M.; Webb, S.
2004-12-01
In this study, the dose distribution delivered by low dose rate Cs-137 brachytherapy sources was investigated using Monte Carlo (MC) techniques and polymer gel dosimetry. The results obtained were compared with a commercial treatment planning system (TPS). The 20 mm and the 30 mm diameter Selectron vaginal applicator set (Nucletron) were used for this study. A homogeneous and a heterogeneous—with an air cavity—polymer gel phantom was used to measure the dose distribution from these sources. The same geometrical set-up was used for the MC calculations. Beyond the applicator tip, differences in dose as large as 20% were found between the MC and TPS. This is attributed to the presence of stainless steel in the applicator and source set, which are not considered by the TPS calculations. Beyond the air cavity, differences in dose of around 5% were noted, due to the TPS assuming a homogeneous water medium. The polymer gel results were in good agreement with the MC calculations for all the cases investigated.
Borzov, Egor; Daniel, Shahar; Bar‐Deroma, Raquel
2016-01-01
Total skin electron irradiation (TSEI) is a complex technique which requires many nonstandard measurements and dosimetric procedures. The purpose of this work was to validate measured dosimetry data by Monte Carlo (MC) simulations using EGSnrc‐based codes (BEAMnrc and DOSXYZnrc). Our MC simulations consisted of two major steps. In the first step, the incident electron beam parameters (energy spectrum, FWHM, mean angular spread) were adjusted to match the measured data (PDD and profile) at SSD=100 cm for an open field. In the second step, these parameters were used to calculate dose distributions at the treatment distance of 400 cm. MC simulations of dose distributions from single and dual fields at the treatment distance were performed in a water phantom. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. MC calculations were compared to the available set of measurements used in clinical practice. For one direct field, MC calculated PDDs agreed within 3%/1 mm with the measurements, and lateral profiles agreed within 3% with the measured data. For the OF, the measured and calculated results were within 2% agreement. The optimal angle of 17° was confirmed for the dual field setup. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. The MC‐calculated multiplication factor (B12‐factor), which relates the skin dose for the whole treatment to the dose from one calibration field, for setups with and without degrader was 2.9 and 2.8, respectively. The measured B12‐factor was 2.8 for both setups. The difference between calculated and measured values was within 3.5%. It was found that a degrader provides more homogeneous dose distribution. The measured X‐ray contamination for the full treatment was 0.4%; this is compared to the 0.5% X‐ray contamination obtained with the MC calculation. Feasibility of MC simulation in an anthropomorphic phantom for a full TSEI treatment was proved and is reported for the first time in the literature. The results of our MC calculations were found to be in general agreement with the measurements, providing a promising tool for further studies of dose distribution calculations in TSEI. PACS number(s): 87.10. Rt, 87.55.K, 87.55.ne PMID:27455502
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larraga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Hernandez-Bojorquez, M.
2010-12-07
This work presents the beam data commissioning and dose calculation validation of the first Monte Carlo (MC) based treatment planning system (TPS) installed in Mexico. According to the manufacturer specifications, the beam data commissioning needed for this model includes: several in-air and water profiles, depth dose curves, head-scatter factors and output factors (6x6, 12x12, 18x18, 24x24, 42x42, 60x60, 80x80 and 100x100 mm{sup 2}). Radiographic and radiochromic films, diode and ionization chambers were used for data acquisition. MC dose calculations in a water phantom were used to validate the MC simulations using comparisons with measured data. Gamma index criteria 2%/2 mmmore » were used to evaluate the accuracy of MC calculations. MC calculated data show an excellent agreement for field sizes from 18x18 to 100x100 mm{sup 2}. Gamma analysis shows that in average, 95% and 100% of the data passes the gamma index criteria for these fields, respectively. For smaller fields (12x12 and 6x6 mm{sup 2}) only 92% of the data meet the criteria. Total scatter factors show a good agreement (<2.6%) between MC calculated and measured data, except for the smaller fields (12x12 and 6x6 mm{sup 2}) that show a error of 4.7%. MC dose calculations are accurate and precise for clinical treatment planning up to a field size of 18x18 mm{sup 2}. Special care must be taken for smaller fields.« less
Cho, Nathan; Tsiamas, Panagiotis; Velarde, Esteban; Tryggestad, Erik; Jacques, Robert; Berbeco, Ross; McNutt, Todd; Kazanzides, Peter; Wong, John
2018-05-01
The Small Animal Radiation Research Platform (SARRP) has been developed for conformal microirradiation with on-board cone beam CT (CBCT) guidance. The graphics processing unit (GPU)-accelerated Superposition-Convolution (SC) method for dose computation has been integrated into the treatment planning system (TPS) for SARRP. This paper describes the validation of the SC method for the kilovoltage energy by comparing with EBT2 film measurements and Monte Carlo (MC) simulations. MC data were simulated by EGSnrc code with 3 × 10 8 -1.5 × 10 9 histories, while 21 photon energy bins were used to model the 220 kVp x-rays in the SC method. Various types of phantoms including plastic water, cork, graphite, and aluminum were used to encompass the range of densities of mouse organs. For the comparison, percentage depth dose (PDD) of SC, MC, and film measurements were analyzed. Cross beam (x,y) dosimetric profiles of SC and film measurements are also presented. Correction factors (CFz) to convert SC to MC dose-to-medium are derived from the SC and MC simulations in homogeneous phantoms of aluminum and graphite to improve the estimation. The SC method produces dose values that are within 5% of film measurements and MC simulations in the flat regions of the profile. The dose is less accurate at the edges, due to factors such as geometric uncertainties of film placement and difference in dose calculation grids. The GPU-accelerated Superposition-Convolution dose computation method was successfully validated with EBT2 film measurements and MC calculations. The SC method offers much faster computation speed than MC and provides calculations of both dose-to-water in medium and dose-to-medium in medium. © 2018 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Woon, Y. L.; Heng, S. P.; Wong, J. H. D.; Ung, N. M.
2016-03-01
Inhomogeneity correction is recommended for accurate dose calculation in radiotherapy treatment planning since human body are highly inhomogeneous with the presence of bones and air cavities. However, each dose calculation algorithm has its own limitations. This study is to assess the accuracy of five algorithms that are currently implemented for treatment planning, including pencil beam convolution (PBC), superposition (SP), anisotropic analytical algorithm (AAA), Monte Carlo (MC) and Acuros XB (AXB). The calculated dose was compared with the measured dose using radiochromic film (Gafchromic EBT2) in inhomogeneous phantoms. In addition, the dosimetric impact of different algorithms on intensity modulated radiotherapy (IMRT) was studied for head and neck region. MC had the best agreement with the measured percentage depth dose (PDD) within the inhomogeneous region. This was followed by AXB, AAA, SP and PBC. For IMRT planning, MC algorithm is recommended for treatment planning in preference to PBC and SP. The MC and AXB algorithms were found to have better accuracy in terms of inhomogeneity correction and should be used for tumour volume within the proximity of inhomogeneous structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebe, M; Pacaci, P; Mabhouti, H
Purpose: In this study, the two available calculation algorithms of the Varian Eclipse treatment planning system(TPS), the electron Monte Carlo(eMC) and General Gaussian Pencil Beam(GGPB) algorithms were used to compare measured and calculated peripheral dose distribution of electron beams. Methods: Peripheral dose measurements were carried out for 6, 9, 12, 15, 18 and 22 MeV electron beams of Varian Triology machine using parallel plate ionization chamber and EBT3 films in the slab phantom. Measurements were performed for 6×6, 10×10 and 25×25cm{sup 2} cone sizes at dmax of each energy up to 20cm beyond the field edges. Using the same filmmore » batch, the net OD to dose calibration curve was obtained for each energy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution measured using parallel plate ionization chamber and EBT3 film and calculated by eMC and GGPB algorithms were compared. The measured and calculated data were then compared to find which algorithm calculates peripheral dose distribution more accurately. Results: The agreement between measurement and eMC was better than GGPB. The TPS underestimated the out of field doses. The difference between measured and calculated doses increase with the cone size. The largest deviation between calculated and parallel plate ionization chamber measured dose is less than 4.93% for eMC, but it can increase up to 7.51% for GGPB. For film measurement, the minimum gamma analysis passing rates between measured and calculated dose distributions were 98.2% and 92.7% for eMC and GGPB respectively for all field sizes and energies. Conclusion: Our results show that the Monte Carlo algorithm for electron planning in Eclipse is more accurate than previous algorithms for peripheral dose distributions. It must be emphasized that the use of GGPB for planning large field treatments with 6 MeV could lead to inaccuracies of clinical significance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlsson Tedgren, A; Persson, M; Nilsson, J
Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT imagesmore » in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.« less
Monte Carlo based electron treatment planning and cutout output factor calculations
NASA Astrophysics Data System (ADS)
Mitrou, Ellis
Electron radiotherapy (RT) offers a number of advantages over photons. The high surface dose, combined with a rapid dose fall-off beyond the target volume presents a net increase in tumor control probability and decreases the normal tissue complication for superficial tumors. Electron treatments are normally delivered clinically without previously calculated dose distributions due to the complexity of the electron transport involved and greater error in planning accuracy. This research uses Monte Carlo (MC) methods to model clinical electron beams in order to accurately calculate electron beam dose distributions in patients as well as calculate cutout output factors, reducing the need for a clinical measurement. The present work is incorporated into a research MC calculation system: McGill Monte Carlo Treatment Planning (MMCTP) system. Measurements of PDDs, profiles and output factors in addition to 2D GAFCHROMICRTM EBT2 film measurements in heterogeneous phantoms were obtained to commission the electron beam model. The use of MC for electron TP will provide more accurate treatments and yield greater knowledge of the electron dose distribution within the patient. The calculation of output factors could invoke a clinical time saving of up to 1 hour per patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan Chan Tseung, H; Ma, J; Ma, D
2015-06-15
Purpose: To demonstrate the feasibility of fast Monte Carlo (MC) based biological planning for the treatment of thyroid tumors in spot-scanning proton therapy. Methods: Recently, we developed a fast and accurate GPU-based MC simulation of proton transport that was benchmarked against Geant4.9.6 and used as the dose calculation engine in a clinically-applicable GPU-accelerated IMPT optimizer. Besides dose, it can simultaneously score the dose-averaged LET (LETd), which makes fast biological dose (BD) estimates possible. To convert from LETd to BD, we used a linear relation based on cellular irradiation data. Given a thyroid patient with a 93cc tumor volume, we createdmore » a 2-field IMPT plan in Eclipse (Varian Medical Systems). This plan was re-calculated with our MC to obtain the BD distribution. A second 5-field plan was made with our in-house optimizer, using pre-generated MC dose and LETd maps. Constraints were placed to maintain the target dose to within 25% of the prescription, while maximizing the BD. The plan optimization and calculation of dose and LETd maps were performed on a GPU cluster. The conventional IMPT and biologically-optimized plans were compared. Results: The mean target physical and biological doses from our biologically-optimized plan were, respectively, 5% and 14% higher than those from the MC re-calculation of the IMPT plan. Dose sparing to critical structures in our plan was also improved. The biological optimization, including the initial dose and LETd map calculations, can be completed in a clinically viable time (∼30 minutes) on a cluster of 25 GPUs. Conclusion: Taking advantage of GPU acceleration, we created a MC-based, biologically optimized treatment plan for a thyroid patient. Compared to a standard IMPT plan, a 5% increase in the target’s physical dose resulted in ∼3 times as much increase in the BD. Biological planning was thus effective in escalating the target BD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Sei-Kwon; Yoon, Jai-Woong; Hwang, Taejin
A metallic contact eye shield has sometimes been used for eyelid treatment, but dose distribution has never been reported for a patient case. This study aimed to show the shield-incorporated CT-based dose distribution using the Pinnacle system and Monte Carlo (MC) calculation for 3 patient cases. For the artifact-free CT scan, an acrylic shield machined as the same size as that of the tungsten shield was used. For the MC calculation, BEAMnrc and DOSXYZnrc were used for the 6-MeV electron beam of the Varian 21EX, in which information for the tungsten, stainless steel, and aluminum material for the eye shieldmore » was used. The same plan was generated on the Pinnacle system and both were compared. The use of the acrylic shield produced clear CT images, enabling delineation of the regions of interest, and yielded CT-based dose calculation for the metallic shield. Both the MC and the Pinnacle systems showed a similar dose distribution downstream of the eye shield, reflecting the blocking effect of the metallic eye shield. The major difference between the MC and the Pinnacle results was the target eyelid dose upstream of the shield such that the Pinnacle system underestimated the dose by 19 to 28% and 11 to 18% for the maximum and the mean doses, respectively. The pattern of dose difference between the MC and the Pinnacle systems was similar to that in the previous phantom study. In conclusion, the metallic eye shield was successfully incorporated into the CT-based planning, and the accurate dose calculation requires MC simulation.« less
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2017-01-07
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6 ± 15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.
NASA Astrophysics Data System (ADS)
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2017-01-01
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6 ± 15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size.
Li, Yongbao; Tian, Zhen; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2016-01-01
Monte Carlo (MC)-based spot dose calculation is highly desired for inverse treatment planning in proton therapy because of its accuracy. Recent studies on biological optimization have also indicated the use of MC methods to compute relevant quantities of interest, e.g. linear energy transfer. Although GPU-based MC engines have been developed to address inverse optimization problems, their efficiency still needs to be improved. Also, the use of a large number of GPUs in MC calculation is not favorable for clinical applications. The previously proposed adaptive particle sampling (APS) method can improve the efficiency of MC-based inverse optimization by using the computationally expensive MC simulation more effectively. This method is more efficient than the conventional approach that performs spot dose calculation and optimization in two sequential steps. In this paper, we propose a computational library to perform MC-based spot dose calculation on GPU with the APS scheme. The implemented APS method performs a non-uniform sampling of the particles from pencil beam spots during the optimization process, favoring those from the high intensity spots. The library also conducts two computationally intensive matrix-vector operations frequently used when solving an optimization problem. This library design allows a streamlined integration of the MC-based spot dose calculation into an existing proton therapy inverse planning process. We tested the developed library in a typical inverse optimization system with four patient cases. The library achieved the targeted functions by supporting inverse planning in various proton therapy schemes, e.g. single field uniform dose, 3D intensity modulated proton therapy, and distal edge tracking. The efficiency was 41.6±15.3% higher than the use of a GPU-based MC package in a conventional calculation scheme. The total computation time ranged between 2 and 50 min on a single GPU card depending on the problem size. PMID:27991456
Monte Carlo simulations to replace film dosimetry in IMRT verification.
Goetzfried, Thomas; Rickhey, Mark; Treutwein, Marius; Koelbl, Oliver; Bogner, Ludwig
2011-01-01
Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase. Copyright © 2010. Published by Elsevier GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venencia, C; Pino, M; Caussa, L
Purpose: The purpose of this work was to quantify the dosimetric impact of Monte Carlo (MC) dose calculation algorithm compared to Pencil Beam (PB) on Spine SBRT with HybridARC (HA) and sliding windows IMRT (dMLC) treatment modality. Methods: A 6MV beam (1000MU/min) produced by a Novalis TX (BrainLAB-Varian) equipped with HDMLC was used. HA uses 1 arc plus 8 IMRT beams (arc weight between 60–40%) and dIMRT 15 beams. Plans were calculated using iPlan v.4.5.3 (BrainLAB) and the treatment dose prescription was 27Gy in 3 fractions. Dose calculation was done by PB (4mm spatial resolution) with heterogeneity correction and MCmore » dose to water (4mm spatial resolution and 4% mean variance). PTV and spinal cord dose comparison were done. Study was done on 12 patients. IROC Spine Phantom was used to validate HA and quantify dose variation using PB and MC algorithm. Results: The difference between PB and MC for PTV D98%, D95%, Dmean, D2% were 2.6% [−5.1, 6.8], 0.1% [−4.2, 5.4], 0.9% [−1.5, 3.8] and 2.4% [−0.5, 8.3]. The difference between PB and MC for spinal cord Dmax, D1.2cc and D0.35cc were 5.3% [−6.4, 18.4], 9% [−7.0, 17.0] and 7.6% [−0.6, 14.8] respectively. IROC spine phantom shows PTV TLD dose variation of 0.98% for PB and 1.01% for MC. Axial and sagittal film plane gamma index (5%-3mm) was 95% and 97% for PB and 95% and 99% for MC. Conclusion: PB slightly underestimates the dose for the PTV. For the spinal cord PB underestimates the dose and dose differences could be as high as 18% which could have unexpected clinical impact. CI shows no variation between PB and MC for both treatment modalities Treatment modalities have no impact with the dose calculation algorithms used. Following the IROC pass-fail criteria, treatment acceptance requirement was fulfilled for PB and MC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Department of Engineering Physics, Tsinghua University, Beijing; Tian, Z
Purpose: Acuros BV has become available to perform accurate dose calculations in high-dose-rate (HDR) brachytherapy with phantom heterogeneity considered by solving the Boltzmann transport equation. In this work, we performed validation studies regarding the dose calculation accuracy of Acuros BV in cases with a shielded cylinder applicator using Monte Carlo (MC) simulations. Methods: Fifteen cases were considered in our studies, covering five different diameters of the applicator and three different shielding degrees. For each case, a digital phantom was created in Varian BrachyVision with the cylinder applicator inserted in the middle of a large water phantom. A treatment plan withmore » eight dwell positions was generated for these fifteen cases. Dose calculations were performed with Acuros BV. We then generated a voxelized phantom of the same geometry, and the materials were modeled according to the vendor’s specifications. MC dose calculations were then performed using our in-house developed fast MC dose engine for HDR brachytherapy (gBMC) on a GPU platform, which is able to simulate both photon transport and electron transport in a voxelized geometry. A phase-space file for the Ir-192 HDR source was used as a source model for MC simulations. Results: Satisfactory agreements between the dose distributions calculated by Acuros BV and those calculated by gBMC were observed in all cases. Quantitatively, we computed point-wise dose difference within the region that receives a dose higher than 10% of the reference dose, defined to be the dose at 5mm outward away from the applicator surface. The mean dose difference was ∼0.45%–0.51% and the 95-percentile maximum difference was ∼1.24%–1.47%. Conclusion: Acuros BV is able to accurately perform dose calculations in HDR brachytherapy with a shielded cylinder applicator.« less
Chetty, Indrin J; Curran, Bruce; Cygler, Joanna E; DeMarco, John J; Ezzell, Gary; Faddegon, Bruce A; Kawrakow, Iwan; Keall, Paul J; Liu, Helen; Ma, C M Charlie; Rogers, D W O; Seuntjens, Jan; Sheikh-Bagheri, Daryoush; Siebers, Jeffrey V
2007-12-01
The Monte Carlo (MC) method has been shown through many research studies to calculate accurate dose distributions for clinical radiotherapy, particularly in heterogeneous patient tissues where the effects of electron transport cannot be accurately handled with conventional, deterministic dose algorithms. Despite its proven accuracy and the potential for improved dose distributions to influence treatment outcomes, the long calculation times previously associated with MC simulation rendered this method impractical for routine clinical treatment planning. However, the development of faster codes optimized for radiotherapy calculations and improvements in computer processor technology have substantially reduced calculation times to, in some instances, within minutes on a single processor. These advances have motivated several major treatment planning system vendors to embark upon the path of MC techniques. Several commercial vendors have already released or are currently in the process of releasing MC algorithms for photon and/or electron beam treatment planning. Consequently, the accessibility and use of MC treatment planning algorithms may well become widespread in the radiotherapy community. With MC simulation, dose is computed stochastically using first principles; this method is therefore quite different from conventional dose algorithms. Issues such as statistical uncertainties, the use of variance reduction techniques, the ability to account for geometric details in the accelerator treatment head simulation, and other features, are all unique components of a MC treatment planning algorithm. Successful implementation by the clinical physicist of such a system will require an understanding of the basic principles of MC techniques. The purpose of this report, while providing education and review on the use of MC simulation in radiotherapy planning, is to set out, for both users and developers, the salient issues associated with clinical implementation and experimental verification of MC dose algorithms. As the MC method is an emerging technology, this report is not meant to be prescriptive. Rather, it is intended as a preliminary report to review the tenets of the MC method and to provide the framework upon which to build a comprehensive program for commissioning and routine quality assurance of MC-based treatment planning systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, D; Zhang, Q; Zhou, S
Purpose: To investigate the impact of normalized prescription isodose line on target dose deficiency calculated with Monte Carlo (MC) vs. pencil Beam (PB) in lung SBRT. RTOG guidelines recommend prescription lines between 60% and 90% for lung SBRT. How this affects the magnitude of MC-calculated target dose deficiency has never been studied. Methods: Under an IRB-approved protocol, four lung SBRT patients were replanned following RTOG0813 by a single physicist. For each patient, four alternative plans were generated based on PB calculation prescribing to 60–90% isodose lines, respectively. Each plan consisted of 360o coplanar dynamic conformal arcs with beam apertures manuallymore » optimized to achieve similar dose coverage and conformity for all plans of the same patient. Dose distribution was calculated with MC and compared to that with PB. PTV dose-volume endpoints were compared, including Dmin, D5, Dmean, D95, and Dmax. PTV V100 coverage, conformity index (CI), and heterogeneity index (HI) were also evaluated. Results: For all 16 plans, median (range) PTV V100 and CI were 99.7% (97.5–100%) and 1.27 (1.20–1.41), respectively. As expected, lower prescription line resulted in higher target dose heterogeneity, yielding median (range) HI of 1.26 (1.05–1.51) for all plans. Comparing MC to PB, median (range) D95, Dmean, D5 PTV dose deficiency were 18.9% (11.2–23.2%), 15.6% (10.0–22.7%), and 9.4%(5.5–13.6%) of the prescription dose, respectively. The Dmean, D5, and Dmax deficiency was found to monotonically increase with decreasing prescription line from 90% to 60%, while the Dmin deficiency monotonically decreased. D95 deficiency exhibited more complex trend, reaching the largest deficiency at 80% for all patients. Conclusion: Dependence on prescription isodose line was found for MC-calculated PTV dose deficiency of lung SBRT. When comparing reported MC dose deficiency values from different institutions, their individual selections of prescription line should be considered in addition to other factors affecting the deficiency magnitude.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, H; Brindle, J; Hepel, J
2015-06-15
Purpose: To analyze and evaluate dose distribution between Ray Tracing (RT) and Monte Carlo (MC) algorithms of 0.5% uncertainty on a critical structure of spinal cord and gross target volume and planning target volume. Methods: Twenty four spinal tumor patients were treated with stereotactic body radiotherapy (SBRT) by CyberKnife in 2013 and 2014. The MC algorithm with 0.5% of uncertainty is used to recalculate the dose distribution for the treatment plan of the patients using the same beams, beam directions, and monitor units (MUs). Results: The prescription doses are uniformly larger for MC plans than RT except one case. Upmore » to a factor of 1.19 for 0.25cc threshold volume and 1.14 for 1.2cc threshold volume of dose differences are observed for the spinal cord. Conclusion: The MC recalculated dose distributions are larger than the original MC calculations for the spinal tumor cases. Based on the accuracy of the MC calculations, more radiation dose might be delivered to the tumor targets and spinal cords with the increase prescription dose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, X; Gao, H; Schuemann, J
2015-06-15
Purpose: The Monte Carlo (MC) method is a gold standard for dose calculation in radiotherapy. However, it is not a priori clear how many particles need to be simulated to achieve a given dose accuracy. Prior error estimate and stopping criterion are not well established for MC. This work aims to fill this gap. Methods: Due to the statistical nature of MC, our approach is based on one-sample t-test. We design the prior error estimate method based on the t-test, and then use this t-test based error estimate for developing a simulation stopping criterion. The three major components are asmore » follows.First, the source particles are randomized in energy, space and angle, so that the dose deposition from a particle to the voxel is independent and identically distributed (i.i.d.).Second, a sample under consideration in the t-test is the mean value of dose deposition to the voxel by sufficiently large number of source particles. Then according to central limit theorem, the sample as the mean value of i.i.d. variables is normally distributed with the expectation equal to the true deposited dose.Third, the t-test is performed with the null hypothesis that the difference between sample expectation (the same as true deposited dose) and on-the-fly calculated mean sample dose from MC is larger than a given error threshold, in addition to which users have the freedom to specify confidence probability and region of interest in the t-test based stopping criterion. Results: The method is validated for proton dose calculation. The difference between the MC Result based on the t-test prior error estimate and the statistical Result by repeating numerous MC simulations is within 1%. Conclusion: The t-test based prior error estimate and stopping criterion are developed for MC and validated for proton dose calculation. Xiang Hong and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, H; Tseung, Chan; Beltran, C
Purpose: To demonstrate fast and accurate Monte Carlo (MC) calculations of proton dose-averaged linear energy transfer (LETd) and biological dose (BD) on a Graphics Processing Unit (GPU) card. Methods: A previously validated GPU-based MC simulation of proton transport was used to rapidly generate LETd distributions for proton treatment plans. Since this MC handles proton-nuclei interactions on an event-by-event using a Bertini intranuclear cascade-evaporation model, secondary protons were taken into account. The smaller contributions of secondary neutrons and recoil nuclei were ignored. Recent work has shown that LETd values are sensitive to the scoring method. The GPU-based LETd calculations were verifiedmore » by comparing with a TOPAS custom scorer that uses tabulated stopping powers, following recommendations by other authors. Comparisons were made for prostate and head-and-neck patients. A python script is used to convert the MC-generated LETd distributions to BD using a variety of published linear quadratic models, and to export the BD in DICOM format for subsequent evaluation. Results: Very good agreement is obtained between TOPAS and our GPU MC. Given a complex head-and-neck plan with 1 mm voxel spacing, the physical dose, LETd and BD calculations for 10{sup 8} proton histories can be completed in ∼5 minutes using a NVIDIA Titan X card. The rapid turnover means that MC feedback can be obtained on dosimetric plan accuracy as well as BD hotspot locations, particularly in regards to their proximity to critical structures. In our institution the GPU MC-generated dose, LETd and BD maps are used to assess plan quality for all patients undergoing treatment. Conclusion: Fast and accurate MC-based LETd calculations can be performed on the GPU. The resulting BD maps provide valuable feedback during treatment plan review. Partially funded by Varian Medical Systems.« less
Würl, M; Englbrecht, F; Parodi, K; Hillbrand, M
2016-01-21
Due to the low-dose envelope of scanned proton beams, the dose output depends on the size of the irradiated field or volume. While this field size dependence has already been extensively investigated by measurements and Monte Carlo (MC) simulations for single pencil beams or monoenergetic fields, reports on the relevance of this effect for analytical dose calculation models are limited. Previous studies on this topic only exist for specific beamline designs. However, the amount of large-angle scattered primary and long-range secondary particles and thus the relevance of the low-dose envelope can considerably be influenced by the particular design of the treatment nozzle. In this work, we therefore addressed the field size dependence of the dose output at the commercially available ProBeam(®) beamline, which is being built in several facilities worldwide. We compared treatment planning dose calculations with ionization chamber (IC) measurements and MC simulations, using an experimentally validated FLUKA MC model of the scanning beamline. To this aim, monoenergetic square fields of three energies, as well as spherical target volumes were studied, including the investigation on the influence of the lateral spot spacing on the field size dependence. For the spherical target volumes, MC as well as analytical dose calculation were found in excellent agreement with the measurements in the center of the spread-out Bragg peak. In the plateau region, the treatment planning system (TPS) tended to overestimate the dose compared to MC calculations and IC measurements by up to almost 5% for the smallest investigated sphere and for small monoenergetic square fields. Narrower spot spacing slightly enhanced the field size dependence of the dose output. The deviations in the plateau dose were found to go in the clinically safe direction, i.e. the actual deposited dose outside the target was found to be lower than predicted by the TPS. Thus, the moderate overestimation of dose to normal tissue by the TPS is likely to result in no severe consequences in clinical cases, even for the most critical cases of small target volumes.
Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2015-04-07
Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 10(6) particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 10(5) particles per beamlet. Correspondingly, the computation time including both MC dose calculations and plan optimizations was reduced by a factor of 4.4, from 494 to 113 s, using only one GPU card.
SU-F-T-74: Experimental Validation of Monaco Electron Monte Carlo Dose Calculation for Small Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varadhan; Way, S; Arentsen, L
2016-06-15
Purpose: To verify experimentally the accuracy of Monaco (Elekta) electron Monte Carlo (eMC) algorithm to calculate small field size depth doses, monitor units and isodose distributions. Methods: Beam modeling of eMC algorithm was performed for electron energies of 6, 9, 12 15 and 18 Mev for a Elekta Infinity Linac and all available ( 6, 10, 14 20 and 25 cone) applicator sizes. Electron cutouts of incrementally smaller field sizes (20, 40, 60 and 80% blocked from open cone) were fabricated. Dose calculation was performed using a grid size smaller than one-tenth of the R{sub 80–20} electron distal falloff distancemore » and number of particle histories was set at 500,000 per cm{sup 2}. Percent depth dose scans and beam profiles at dmax, d{sub 90} and d{sub 80} depths were measured for each cutout and energy with Wellhoffer (IBA) Blue Phantom{sup 2} scanning system and compared against eMC calculated doses. Results: The measured dose and output factors of incrementally reduced cutout sizes (to 3cm diameter) agreed with eMC calculated doses within ± 2.5%. The profile comparisons at dmax, d{sub 90} and d{sub 80} depths and percent depth doses at reduced field sizes agreed within 2.5% or 2mm. Conclusion: Our results indicate that the Monaco eMC algorithm can accurately predict depth doses, isodose distributions, and monitor units in homogeneous water phantom for field sizes as small as 3.0 cm diameter for energies in the 6 to 18 MeV range at 100 cm SSD. Consequently, the old rule of thumb to approximate limiting cutout size for an electron field determined by the lateral scatter equilibrium (E (MeV)/2.5 in centimeters of water) does not apply to Monaco eMC algorithm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiyagarajan, Rajesh; Vikraman, S; Karrthick, KP
Purpose: To evaluate the impact of dose calculation algorithm on the dose distribution of biologically optimized Volumatric Modulated Arc Therapy (VMAT) plans for Esophgeal cancer. Methods: Eighteen retrospectively treated patients with carcinoma esophagus were studied. VMAT plans were optimized using biological objectives in Monaco (5.0) TPS for 6MV photon beam (Elekta Infinity). These plans were calculated for final dose using Monte Carlo (MC), Collapsed Cone Convolution (CCC) & Pencil Beam Convolution (PBC) algorithms from Monaco and Oncentra Masterplan TPS. A dose grid of 2mm was used for all algorithms and 1% per plan uncertainty maintained for MC calculation. MC basedmore » calculations were considered as the reference for CCC & PBC. Dose volume histogram (DVH) indices (D95, D98, D50 etc) of Target (PTV) and critical structures were compared to study the impact of all three algorithms. Results: Beam models were consistent with measured data. The mean difference observed in reference with MC calculation for D98, D95, D50 & D2 of PTV were 0.37%, −0.21%, 1.51% & 1.18% respectively for CCC and 3.28%, 2.75%, 3.61% & 3.08% for PBC. Heart D25 mean difference was 4.94% & 11.21% for CCC and PBC respectively. Lung Dmean mean difference was 1.5% (CCC) and 4.1% (PBC). Spinal cord D2 mean difference was 2.35% (CCC) and 3.98% (PBC). Similar differences were observed for liver and kidneys. The overall mean difference found for target and critical structures was 0.71±1.52%, 2.71±3.10% for CCC and 3.18±1.55%, 6.61±5.1% for PBC respectively. Conclusion: We observed a significant overestimate of dose distribution by CCC and PBC as compared to MC. The dose prediction of CCC is closer (<3%) to MC than that of PBC. This can be attributed to poor performance of CCC and PBC in inhomogeneous regions around esophagus. CCC can be considered as an alternate in the absence of MC algorithm.« less
Giantsoudi, Drosoula; Schuemann, Jan; Jia, Xun; Dowdell, Stephen; Jiang, Steve; Paganetti, Harald
2015-03-21
Monte Carlo (MC) methods are recognized as the gold-standard for dose calculation, however they have not replaced analytical methods up to now due to their lengthy calculation times. GPU-based applications allow MC dose calculations to be performed on time scales comparable to conventional analytical algorithms. This study focuses on validating our GPU-based MC code for proton dose calculation (gPMC) using an experimentally validated multi-purpose MC code (TOPAS) and compare their performance for clinical patient cases. Clinical cases from five treatment sites were selected covering the full range from very homogeneous patient geometries (liver) to patients with high geometrical complexity (air cavities and density heterogeneities in head-and-neck and lung patients) and from short beam range (breast) to large beam range (prostate). Both gPMC and TOPAS were used to calculate 3D dose distributions for all patients. Comparisons were performed based on target coverage indices (mean dose, V95, D98, D50, D02) and gamma index distributions. Dosimetric indices differed less than 2% between TOPAS and gPMC dose distributions for most cases. Gamma index analysis with 1%/1 mm criterion resulted in a passing rate of more than 94% of all patient voxels receiving more than 10% of the mean target dose, for all patients except for prostate cases. Although clinically insignificant, gPMC resulted in systematic underestimation of target dose for prostate cases by 1-2% compared to TOPAS. Correspondingly the gamma index analysis with 1%/1 mm criterion failed for most beams for this site, while for 2%/1 mm criterion passing rates of more than 94.6% of all patient voxels were observed. For the same initial number of simulated particles, calculation time for a single beam for a typical head and neck patient plan decreased from 4 CPU hours per million particles (2.8-2.9 GHz Intel X5600) for TOPAS to 2.4 s per million particles (NVIDIA TESLA C2075) for gPMC. Excellent agreement was demonstrated between our fast GPU-based MC code (gPMC) and a previously extensively validated multi-purpose MC code (TOPAS) for a comprehensive set of clinical patient cases. This shows that MC dose calculations in proton therapy can be performed on time scales comparable to analytical algorithms with accuracy comparable to state-of-the-art CPU-based MC codes.
The Multi-Step CADIS method for shutdown dose rate calculations and uncertainty propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Ahmad M.; Peplow, Douglas E.; Grove, Robert E.
2015-12-01
Shutdown dose rate (SDDR) analysis requires (a) a neutron transport calculation to estimate neutron flux fields, (b) an activation calculation to compute radionuclide inventories and associated photon sources, and (c) a photon transport calculation to estimate final SDDR. In some applications, accurate full-scale Monte Carlo (MC) SDDR simulations are needed for very large systems with massive amounts of shielding materials. However, these simulations are impractical because calculation of space- and energy-dependent neutron fluxes throughout the structural materials is needed to estimate distribution of radioisotopes causing the SDDR. Biasing the neutron MC calculation using an importance function is not simple becausemore » it is difficult to explicitly express the response function, which depends on subsequent computational steps. Furthermore, the typical SDDR calculations do not consider how uncertainties in MC neutron calculation impact SDDR uncertainty, even though MC neutron calculation uncertainties usually dominate SDDR uncertainty.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makkia, R; Pelletier, C; Jung, J
Purpose: To reconstruct major organ doses for the Wilms tumor pediatric patients treated with radiation therapy using pediatric computational phantoms, treatment planning system (TPS), and Monte Carlo (MC) dose calculation methods. Methods: A total of ten female and male pediatric patients (15–88 months old) were selected from the National Wilms Tumor Study cohort and ten pediatric computational phantoms corresponding to the patient’s height and weight were selected for the organ dose reconstruction. Treatment plans were reconstructed on the computational phantoms in a Pinnacle TPS (v9.10) referring to treatment records and exported into DICOM-RT files, which were then used to generatemore » the input files for XVMC MC code. The mean doses to major organs and the dose received by 50% of the heart were calculated and compared between TPS and MC calculations. The same calculations were conducted by replacing the computational human phantoms with a series of diagnostic patient CT images selected by matching the height and weight of the patients to validate the anatomical accuracy of the computational phantoms. Results: Dose to organs located within the treatment fields from the computational phantoms and the diagnostic patient CT images agreed within 2% for all cases for both TPS and MC calculations. The maximum difference of organ doses was 55.9 % (thyroid), but the absolute dose difference in this case was 0.33 Gy which was 0.96% of the prescription dose. The doses to ovaries and testes from MC in out-of-field provided more discrepancy (the maximum difference of 13.2% and 50.8%, respectively). The maximum difference of the 50% heart volume dose between the phantoms and the patient CT images was 40.0%. Conclusion: This study showed the pediatric computational phantoms are applicable to organ doses reconstruction for the radiotherapy patients whose three-dimensional radiological images are not available.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Y; Li, Y; Tian, Z
2015-06-15
Purpose: Pencil-beam or superposition-convolution type dose calculation algorithms are routinely used in inverse plan optimization for intensity modulated radiation therapy (IMRT). However, due to their limited accuracy in some challenging cases, e.g. lung, the resulting dose may lose its optimality after being recomputed using an accurate algorithm, e.g. Monte Carlo (MC). It is the objective of this study to evaluate the feasibility and advantages of a new method to include MC in the treatment planning process. Methods: We developed a scheme to iteratively perform MC-based beamlet dose calculations and plan optimization. In the MC stage, a GPU-based dose engine wasmore » used and the particle number sampled from a beamlet was proportional to its optimized fluence from the previous step. We tested this scheme in four lung cancer IMRT cases. For each case, the original plan dose, plan dose re-computed by MC, and dose optimized by our scheme were obtained. Clinically relevant dosimetric quantities in these three plans were compared. Results: Although the original plan achieved a satisfactory PDV dose coverage, after re-computing doses using MC method, it was found that the PTV D95% were reduced by 4.60%–6.67%. After re-optimizing these cases with our scheme, the PTV coverage was improved to the same level as in the original plan, while the critical OAR coverages were maintained to clinically acceptable levels. Regarding the computation time, it took on average 144 sec per case using only one GPU card, including both MC-based beamlet dose calculation and treatment plan optimization. Conclusion: The achieved dosimetric gains and high computational efficiency indicate the feasibility and advantages of the proposed MC-based IMRT optimization method. Comprehensive validations in more patient cases are in progress.« less
Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation.
Ziegenhein, Peter; Pirner, Sven; Ph Kamerling, Cornelis; Oelfke, Uwe
2015-08-07
Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by leveraging the potential of modern many- and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37[Formula: see text] compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25[Formula: see text] and 1.95[Formula: see text] faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moignier, C; Huet, C; Barraux, V
Purpose: Advanced stereotactic radiotherapy (SRT) treatments require accurate dose calculation for treatment planning especially for treatment sites involving heterogeneous patient anatomy. The purpose of this study was to evaluate the accuracy of dose calculation algorithms, Raytracing and Monte Carlo (MC), implemented in the MultiPlan treatment planning system (TPS) in presence of heterogeneities. Methods: First, the LINAC of a CyberKnife radiotherapy facility was modeled with the PENELOPE MC code. A protocol for the measurement of dose distributions with EBT3 films was established and validated thanks to comparison between experimental dose distributions and calculated dose distributions obtained with MultiPlan Raytracing and MCmore » algorithms as well as with the PENELOPE MC model for treatments planned with the homogenous Easycube phantom. Finally, bones and lungs inserts were used to set up a heterogeneous Easycube phantom. Treatment plans with the 10, 7.5 or the 5 mm field sizes were generated in Multiplan TPS with different tumor localizations (in the lung and at the lung/bone/soft tissue interface). Experimental dose distributions were compared to the PENELOPE MC and Multiplan calculations using the gamma index method. Results: Regarding the experiment in the homogenous phantom, 100% of the points passed for the 3%/3mm tolerance criteria. These criteria include the global error of the method (CT-scan resolution, EBT3 dosimetry, LINAC positionning …), and were used afterwards to estimate the accuracy of the MultiPlan algorithms in heterogeneous media. Comparison of the dose distributions obtained in the heterogeneous phantom is in progress. Conclusion: This work has led to the development of numerical and experimental dosimetric tools for small beam dosimetry. Raytracing and MC algorithms implemented in MultiPlan TPS were evaluated in heterogeneous media.« less
Amoush, Ahmad; Wilkinson, Douglas A.
2015-01-01
This work is a comparative study of the dosimetry calculated by Plaque Simulator, a treatment planning system for eye plaque brachytherapy, to the dosimetry calculated using Monte Carlo simulation for an Eye Physics model EP917 eye plaque. Monte Carlo (MC) simulation using MCNPX 2.7 was used to calculate the central axis dose in water for an EP917 eye plaque fully loaded with 17 IsoAid Advantage 125I seeds. In addition, the dosimetry parameters Λ, gL(r), and F(r,θ) were calculated for the IsoAid Advantage model IAI‐125 125I seed and benchmarked against published data. Bebig Plaque Simulator (PS) v5.74 was used to calculate the central axis dose based on the AAPM Updated Task Group 43 (TG‐43U1) dose formalism. The calculated central axis dose from MC and PS was then compared. When the MC dosimetry parameters for the IsoAid Advantage 125I seed were compared with the consensus values, Λ agreed with the consensus value to within 2.3%. However, much larger differences were found between MC calculated gL(r) and F(r,θ) and the consensus values. The differences between MC‐calculated dosimetry parameters are much smaller when compared with recently published data. The differences between the calculated central axis absolute dose from MC and PS ranged from 5% to 10% for distances between 1 and 12 mm from the outer scleral surface. When the dosimetry parameters for the 125I seed from this study were used in PS, the calculated absolute central axis dose differences were reduced by 2.3% from depths of 4 to 12 mm from the outer scleral surface. We conclude that PS adequately models the central dose profile of this plaque using its defaults for the IsoAid model IAI‐125 at distances of 1 to 7 mm from the outer scleral surface. However, improved dose accuracy can be obtained by using updated dosimetry parameters for the IsoAid model IAI‐125 125I seed. PACS number: 87.55.K‐ PMID:26699577
NASA Astrophysics Data System (ADS)
Yepes, Pablo P.; Eley, John G.; Liu, Amy; Mirkovic, Dragan; Randeniya, Sharmalee; Titt, Uwe; Mohan, Radhe
2016-04-01
Monte Carlo (MC) methods are acknowledged as the most accurate technique to calculate dose distributions. However, due its lengthy calculation times, they are difficult to utilize in the clinic or for large retrospective studies. Track-repeating algorithms, based on MC-generated particle track data in water, accelerate dose calculations substantially, while essentially preserving the accuracy of MC. In this study, we present the validation of an efficient dose calculation algorithm for intensity modulated proton therapy, the fast dose calculator (FDC), based on a track-repeating technique. We validated the FDC algorithm for 23 patients, which included 7 brain, 6 head-and-neck, 5 lung, 1 spine, 1 pelvis and 3 prostate cases. For validation, we compared FDC-generated dose distributions with those from a full-fledged Monte Carlo based on GEANT4 (G4). We compared dose-volume-histograms, 3D-gamma-indices and analyzed a series of dosimetric indices. More than 99% of the voxels in the voxelized phantoms describing the patients have a gamma-index smaller than unity for the 2%/2 mm criteria. In addition the difference relative to the prescribed dose between the dosimetric indices calculated with FDC and G4 is less than 1%. FDC reduces the calculation times from 5 ms per proton to around 5 μs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A, Popescu I; Lobo, J; Sawkey, D
2014-06-15
Purpose: To simulate and measure radiation backscattered into the monitor chamber of a TrueBeam linac; establish a rigorous framework for absolute dose calculations for TrueBeam Monte Carlo (MC) simulations through a novel approach, taking into account the backscattered radiation and the actual machine output during beam delivery; improve agreement between measured and simulated relative output factors. Methods: The ‘monitor backscatter factor’ is an essential ingredient of a well-established MC absolute dose formalism (the MC equivalent of the TG-51 protocol). This quantity was determined for the 6 MV, 6X FFF, and 10X FFF beams by two independent Methods: (1) MC simulationsmore » in the monitor chamber of the TrueBeam linac; (2) linac-generated beam record data for target current, logged for each beam delivery. Upper head MC simulations used a freelyavailable manufacturer-provided interface to a cloud-based platform, allowing use of the same head model as that used to generate the publicly-available TrueBeam phase spaces, without revealing the upper head design. The MC absolute dose formalism was expanded to allow direct use of target current data. Results: The relation between backscatter, number of electrons incident on the target for one monitor unit, and MC absolute dose was analyzed for open fields, as well as a jaw-tracking VMAT plan. The agreement between the two methods was better than 0.15%. It was demonstrated that the agreement between measured and simulated relative output factors improves across all field sizes when backscatter is taken into account. Conclusion: For the first time, simulated monitor chamber dose and measured target current for an actual TrueBeam linac were incorporated in the MC absolute dose formalism. In conjunction with the use of MC inputs generated from post-delivery trajectory-log files, the present method allows accurate MC dose calculations, without resorting to any of the simplifying assumptions previously made in the TrueBeam MC literature. This work has been partially funded by Varian Medical Systems.« less
Fernandez, M Castrillon; Venencia, C; Garrigó, E; Caussa, L
2012-06-01
To compare measured and calculated doses using Pencil Beam (PB) and Monte Carlo (MC) algorithm on a CIRS thorax phantom for SBRT lung treatments. A 6MV photon beam generated by a Primus linac with an Optifocus MLC (Siemens) was used. Dose calculation was done using iPlan v4.1.2 TPS (BrainLAB) by PB and MC (dose to water and dose to medium) algorithms. The commissioning of both algorithms was done reproducing experimental measurements in water. A CIRS thorax phantom was used to compare doses using a Farmer type ion chamber (PTW) and EDR2 radiographic films (KODAK). The ionization chamber, into a tissue equivalent insert, was placed in two position of lung tissue and was irradiated using three treatments plans. Axial dose distributions were measured for four treatments plans using conformal and IMRT technique. Dose distribution comparisons were done by dose profiles and gamma index (3%/3mm). For the studied beam configurations, ion chamber measurements shows that PB overestimate the dose up to 8.5%, whereas MC has a maximum variation of 1.6%. Dosimetric analysis using dose profiles shows that PB overestimates the dose in the region corresponding to the lung up to 16%. For axial dose distribution comparison the percentage of pixels with gamma index bigger than one for MC and PB was, plan 1: 95.6% versus 87.4%, plan 2: 91.2% versus 77.6%, plan 3: 99.7% versus 93.1% and for plan 4: 98.8% versus 91.7%. It was confirmed that the lower dosimetric errors calculated applying MC algorithm appears when the spatial resolution and variance decrease at the expense of increased computation time. The agreement between measured and calculated doses, in a phantom with lung heterogeneities, is better with MC algorithm. PB algorithm overestimates the doses in lung tissue, which could have a clinical impact in SBRT lung treatments. © 2012 American Association of Physicists in Medicine.
Shutdown Dose Rate Analysis Using the Multi-Step CADIS Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Ahmad M.; Peplow, Douglas E.; Peterson, Joshua L.
2015-01-01
The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) hybrid Monte Carlo (MC)/deterministic radiation transport method was proposed to speed up the shutdown dose rate (SDDR) neutron MC calculation using an importance function that represents the neutron importance to the final SDDR. This work applied the MS-CADIS method to the ITER SDDR benchmark problem. The MS-CADIS method was also used to calculate the SDDR uncertainty resulting from uncertainties in the MC neutron calculation and to determine the degree of undersampling in SDDR calculations because of the limited ability of the MC method to tally detailed spatial and energy distributions. The analysismore » that used the ITER benchmark problem compared the efficiency of the MS-CADIS method to the traditional approach of using global MC variance reduction techniques for speeding up SDDR neutron MC calculation. Compared to the standard Forward-Weighted-CADIS (FW-CADIS) method, the MS-CADIS method increased the efficiency of the SDDR neutron MC calculation by 69%. The MS-CADIS method also increased the fraction of nonzero scoring mesh tally elements in the space-energy regions of high importance to the final SDDR.« less
Furstoss, C; Bertrand, M J; Poon, E; Reniers, B; Pignol, J P; Carrier, J F; Beaulieu, L; Verhaegen, F
2008-07-01
This work consists of studying the interseed and tissue composition effects for two model iodine seeds: the IBt Interseed-125 and the 6711 model seed. Three seeds were modeled with the MCNP MC code in a water sphere to evaluate the interseed effect. The dose calculated at different distances from the centre was compared to the dose summed when the seeds were simulated separately. The tissue composition effect was studied calculating the radial dose function for different tissues. Before carrying out post-implant studies, the absolute dose calculated by MC was compared to experiment results: with LiF TLDs in an acrylic breast phantom and with an EBT Gafchromic film placed in a water tank. Afterwards, the TG-43 approximation effects were studied for a prostate and breast post-implant. The interseed effect study shows that this effect is more important for model 6711 (15%) than for IBt (10%) due to the silver rod in 6711. For both seed models the variations of the radial dose function as a function of the tissue composition are quasi similar. The absolute dose comparisons between MC calculations and experiments give good agreement (inferior to 3% in general). For the prostate and breast post-implant studies, a 10% difference between MC calculations and the TG-43 is found for both models of seeds. This study shows that the differences in dose distributions between TG43 and MC are quite similar for the two models of seeds and are about 10% for the studied post-implant treatments. © 2008 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onizuka, R; Araki, F; Ohno, T
2016-06-15
Purpose: To investigate the Monte Carlo (MC)-based dose verification for VMAT plans by a treatment planning system (TPS). Methods: The AAPM TG-119 test structure set was used for VMAT plans by the Pinnacle3 (convolution/superposition), using a Synergy radiation head of a 6 MV beam with the Agility MLC. The Synergy was simulated with the EGSnrc/BEAMnrc code, and VMAT dose distributions were calculated with the EGSnrc/DOSXYZnrc code by the same irradiation conditions as TPS. VMAT dose distributions of TPS and MC were compared with those of EBT3 film, by 2-D gamma analysis of ±3%/3 mm criteria with a threshold of 30%more » of prescribed doses. VMAT dose distributions between TPS and MC were also compared by DVHs and 3-D gamma analysis of ±3%/3 mm criteria with a threshold of 10%, and 3-D passing rates for PTVs and OARs were analyzed. Results: TPS dose distributions differed from those of film, especially for Head & neck. The dose difference between TPS and film results from calculation accuracy for complex motion of MLCs like tongue and groove effect. In contrast, MC dose distributions were in good agreement with those of film. This is because MC can model fully the MLC configuration and accurately reproduce the MLC motion between control points in VMAT plans. D95 of PTV for Prostate, Head & neck, C-shaped, and Multi Target was 97.2%, 98.1%, 101.6%, and 99.7% for TPS and 95.7%, 96.0%, 100.6%, and 99.1% for MC, respectively. Similarly, 3-D gamma passing rates of each PTV for TPS vs. MC were 100%, 89.5%, 99.7%, and 100%, respectively. 3-D passing rates of TPS reduced for complex VMAT fields like Head & neck because MLCs are not modeled completely for TPS. Conclusion: MC-calculated VMAT dose distributions is useful for the 3-D dose verification of VMAT plans by TPS.« less
Towards real-time photon Monte Carlo dose calculation in the cloud
NASA Astrophysics Data System (ADS)
Ziegenhein, Peter; Kozin, Igor N.; Kamerling, Cornelis Ph; Oelfke, Uwe
2017-06-01
Near real-time application of Monte Carlo (MC) dose calculation in clinic and research is hindered by the long computational runtimes of established software. Currently, fast MC software solutions are available utilising accelerators such as graphical processing units (GPUs) or clusters based on central processing units (CPUs). Both platforms are expensive in terms of purchase costs and maintenance and, in case of the GPU, provide only limited scalability. In this work we propose a cloud-based MC solution, which offers high scalability of accurate photon dose calculations. The MC simulations run on a private virtual supercomputer that is formed in the cloud. Computational resources can be provisioned dynamically at low cost without upfront investment in expensive hardware. A client-server software solution has been developed which controls the simulations and transports data to and from the cloud efficiently and securely. The client application integrates seamlessly into a treatment planning system. It runs the MC simulation workflow automatically and securely exchanges simulation data with the server side application that controls the virtual supercomputer. Advanced encryption standards were used to add an additional security layer, which encrypts and decrypts patient data on-the-fly at the processor register level. We could show that our cloud-based MC framework enables near real-time dose computation. It delivers excellent linear scaling for high-resolution datasets with absolute runtimes of 1.1 seconds to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical uncertainty. The computation runtimes include the transportation of data to and from the cloud as well as process scheduling and synchronisation overhead. Cloud-based MC simulations offer a fast, affordable and easily accessible alternative for near real-time accurate dose calculations to currently used GPU or cluster solutions.
Towards real-time photon Monte Carlo dose calculation in the cloud.
Ziegenhein, Peter; Kozin, Igor N; Kamerling, Cornelis Ph; Oelfke, Uwe
2017-06-07
Near real-time application of Monte Carlo (MC) dose calculation in clinic and research is hindered by the long computational runtimes of established software. Currently, fast MC software solutions are available utilising accelerators such as graphical processing units (GPUs) or clusters based on central processing units (CPUs). Both platforms are expensive in terms of purchase costs and maintenance and, in case of the GPU, provide only limited scalability. In this work we propose a cloud-based MC solution, which offers high scalability of accurate photon dose calculations. The MC simulations run on a private virtual supercomputer that is formed in the cloud. Computational resources can be provisioned dynamically at low cost without upfront investment in expensive hardware. A client-server software solution has been developed which controls the simulations and transports data to and from the cloud efficiently and securely. The client application integrates seamlessly into a treatment planning system. It runs the MC simulation workflow automatically and securely exchanges simulation data with the server side application that controls the virtual supercomputer. Advanced encryption standards were used to add an additional security layer, which encrypts and decrypts patient data on-the-fly at the processor register level. We could show that our cloud-based MC framework enables near real-time dose computation. It delivers excellent linear scaling for high-resolution datasets with absolute runtimes of 1.1 seconds to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical uncertainty. The computation runtimes include the transportation of data to and from the cloud as well as process scheduling and synchronisation overhead. Cloud-based MC simulations offer a fast, affordable and easily accessible alternative for near real-time accurate dose calculations to currently used GPU or cluster solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randeniya, S; Mirkovic, D; Titt, U
2014-06-01
Purpose: In intensity modulated proton therapy (IMPT), energy dependent, protons per monitor unit (MU) calibration factors are important parameters that determine absolute dose values from energy deposition data obtained from Monte Carlo (MC) simulations. Purpose of this study was to assess the sensitivity of MC-computed absolute dose distributions to the protons/MU calibration factors in IMPT. Methods: A “verification plan” (i.e., treatment beams applied individually to water phantom) of a head and neck patient plan was calculated using MC technique. The patient plan had three beams; one posterior-anterior (PA); two anterior oblique. Dose prescription was 66 Gy in 30 fractions. Ofmore » the total MUs, 58% was delivered in PA beam, 25% and 17% in other two. Energy deposition data obtained from the MC simulation were converted to Gy using energy dependent protons/MU calibrations factors obtained from two methods. First method is based on experimental measurements and MC simulations. Second is based on hand calculations, based on how many ion pairs were produced per proton in the dose monitor and how many ion pairs is equal to 1 MU (vendor recommended method). Dose distributions obtained from method one was compared with those from method two. Results: Average difference of 8% in protons/MU calibration factors between method one and two converted into 27 % difference in absolute dose values for PA beam; although dose distributions preserved the shape of 3D dose distribution qualitatively, they were different quantitatively. For two oblique beams, significant difference in absolute dose was not observed. Conclusion: Results demonstrate that protons/MU calibration factors can have a significant impact on absolute dose values in IMPT depending on the fraction of MUs delivered. When number of MUs increases the effect due to the calibration factors amplify. In determining protons/MU calibration factors, experimental method should be preferred in MC dose calculations. Research supported by National Cancer Institute grant P01CA021239.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S; Rangaraj, D
2016-06-15
Purpose: Although cone-beam CT (CBCT) imaging became popular in radiation oncology, its imaging dose estimation is still challenging. The goal of this study is to assess the kilovoltage CBCT doses using GMctdospp - an EGSnrc based Monte Carlo (MC) framework. Methods: Two Varian OBI x-ray tube models were implemented in the GMctpdospp framework of EGSnrc MC System. The x-ray spectrum of 125 kVp CBCT beam was acquired from an EGSnrc/BEAMnrc simulation and validated with IPEM report 78. Then, the spectrum was utilized as an input spectrum in GMctdospp dose calculations. Both full and half bowtie pre-filters of the OBI systemmore » were created by using egs-prism module. The x-ray tube MC models were verified by comparing calculated dosimetric profiles (lateral and depth) to ion chamber measurements for a static x-ray beam irradiation to a cuboid water phantom. An abdominal CBCT imaging doses was simulated in GMctdospp framework using a 5-year-old anthropomorphic phantom. The organ doses and effective dose (ED) from the framework were assessed and compared to the MOSFET measurements and convolution/superposition dose calculations. Results: The lateral and depth dose profiles in the water cuboid phantom were well matched within 6% except a few areas - left shoulder of the half bowtie lateral profile and surface of water phantom. The organ doses and ED from the MC framework were found to be closer to MOSFET measurements and CS calculations within 2 cGy and 5 mSv respectively. Conclusion: This study implemented and validated the Varian OBI x-ray tube models in the GMctdospp MC framework using a cuboid water phantom and CBCT imaging doses were also evaluated in a 5-year-old anthropomorphic phantom. In future study, various CBCT imaging protocols will be implemented and validated and consequently patient CT images will be used to estimate the CBCT imaging doses in patients.« less
NASA Astrophysics Data System (ADS)
Yamashita, T.; Akagi, T.; Aso, T.; Kimura, A.; Sasaki, T.
2012-11-01
The pencil beam algorithm (PBA) is reasonably accurate and fast. It is, therefore, the primary method used in routine clinical treatment planning for proton radiotherapy; still, it needs to be validated for use in highly inhomogeneous regions. In our investigation of the effect of patient inhomogeneity, PBA was compared with Monte Carlo (MC). A software framework was developed for the MC simulation of radiotherapy based on Geant4. Anatomical sites selected for the comparison were the head/neck, liver, lung and pelvis region. The dose distributions calculated by the two methods in selected examples were compared, as well as a dose volume histogram (DVH) derived from the dose distributions. The comparison of the off-center ratio (OCR) at the iso-center showed good agreement between the PBA and MC, while discrepancies were seen around the distal fall-off regions. While MC showed a fine structure on the OCR in the distal fall-off region, the PBA showed smoother distribution. The fine structures in MC calculation appeared downstream of very low-density regions. Comparison of DVHs showed that most of the target volumes were similarly covered, while some OARs located around the distal region received a higher dose when calculated by MC than the PBA.
Mukumoto, Nobutaka; Tsujii, Katsutomo; Saito, Susumu; Yasunaga, Masayoshi; Takegawa, Hideki; Yamamoto, Tokihiro; Numasaki, Hodaka; Teshima, Teruki
2009-10-01
To develop an infrastructure for the integrated Monte Carlo verification system (MCVS) to verify the accuracy of conventional dose calculations, which often fail to accurately predict dose distributions, mainly due to inhomogeneities in the patient's anatomy, for example, in lung and bone. The MCVS consists of the graphical user interface (GUI) based on a computational environment for radiotherapy research (CERR) with MATLAB language. The MCVS GUI acts as an interface between the MCVS and a commercial treatment planning system to import the treatment plan, create MC input files, and analyze MC output dose files. The MCVS consists of the EGSnrc MC codes, which include EGSnrc/BEAMnrc to simulate the treatment head and EGSnrc/DOSXYZnrc to calculate the dose distributions in the patient/phantom. In order to improve computation time without approximations, an in-house cluster system was constructed. The phase-space data of a 6-MV photon beam from a Varian Clinac unit was developed and used to establish several benchmarks under homogeneous conditions. The MC results agreed with the ionization chamber measurements to within 1%. The MCVS GUI could import and display the radiotherapy treatment plan created by the MC method and various treatment planning systems, such as RTOG and DICOM-RT formats. Dose distributions could be analyzed by using dose profiles and dose volume histograms and compared on the same platform. With the cluster system, calculation time was improved in line with the increase in the number of central processing units (CPUs) at a computation efficiency of more than 98%. Development of the MCVS was successful for performing MC simulations and analyzing dose distributions.
Beigi, Manije; Afarande, Fatemeh; Ghiasi, Hosein
2016-01-01
The aim of this study was to compare two bunkers designed by only protocols recommendations and Monte Carlo (MC) based upon data derived for an 18 MV Varian 2100Clinac accelerator. High energy radiation therapy is associated with fast and thermal photoneutrons. Adequate shielding against the contaminant neutron has been recommended by IAEA and NCRP new protocols. The latest protocols released by the IAEA (safety report No. 47) and NCRP report No. 151 were used for the bunker designing calculations. MC method based upon data was also derived. Two bunkers using protocols and MC upon data were designed and discussed. From designed door's thickness, the door designed by the MC simulation and Wu-McGinley analytical method was closer in both BPE and lead thickness. In the case of the primary and secondary barriers, MC simulation resulted in 440.11 mm for the ordinary concrete, total concrete thickness of 1709 mm was required. Calculating the same parameters value with the recommended analytical methods resulted in 1762 mm for the required thickness using 445 mm as recommended by TVL for the concrete. Additionally, for the secondary barrier the thickness of 752.05 mm was obtained. Our results showed MC simulation and the followed protocols recommendations in dose calculation are in good agreement in the radiation contamination dose calculation. Difference between the two analytical and MC simulation methods revealed that the application of only one method for the bunker design may lead to underestimation or overestimation in dose and shielding calculations.
NASA Astrophysics Data System (ADS)
Jung, Hyunuk; Kum, Oyeon; Han, Youngyih; Park, Byungdo; Cheong, Kwang-Ho
2014-12-01
For a better understanding of the accuracy of state-of-the-art-radiation therapies, 2-dimensional dosimetry in a patient-like environment will be helpful. Therefore, the dosimetry of EBT3 films in non-water-equivalent tissues was investigated, and the accuracy of commercially-used dose-calculation algorithms was evaluated with EBT3 measurement. Dose distributions were measured with EBT3 films for an in-house-designed phantom that contained a lung or a bone substitute, i.e., an air cavity (3 × 3 × 3 cm3) or teflon (2 × 2 × 2 cm3 or 3 × 3 × 3 cm3), respectively. The phantom was irradiated with 6-MV X-rays with field sizes of 2 × 2, 3 × 3, and 5 × 5 cm2. The accuracy of EBT3 dosimetry was evaluated by comparing the measured dose with the dose obtained from Monte Carlo (MC) simulations. A dose-to-bone-equivalent material was obtained by multiplying the EBT3 measurements by the stopping power ratio (SPR). The EBT3 measurements were then compared with the predictions from four algorithms: Monte Carlo (MC) in iPlan, acuros XB (AXB), analytical anisotropic algorithm (AAA) in Eclipse, and superposition-convolution (SC) in Pinnacle. For the air cavity, the EBT3 measurements agreed with the MC calculation to within 2% on average. For teflon, the EBT3 measurements differed by 9.297% (±0.9229%) on average from the Monte Carlo calculation before dose conversion, and by 0.717% (±0.6546%) after applying the SPR. The doses calculated by using the MC, AXB, AAA, and SC algorithms for the air cavity differed from the EBT3 measurements on average by 2.174, 2.863, 18.01, and 8.391%, respectively; for teflon, the average differences were 3.447, 4.113, 7.589, and 5.102%. The EBT3 measurements corrected with the SPR agreed with 2% on average both within and beyond the heterogeneities with MC results, thereby indicating that EBT3 dosimetry can be used in heterogeneous media. The MC and the AXB dose calculation algorithms exhibited clinically-acceptable accuracy (<5%) in heterogeneities.
NASA Astrophysics Data System (ADS)
Alexander, A.; DeBlois, F.; Stroian, G.; Al-Yahya, K.; Heath, E.; Seuntjens, J.
2007-07-01
Radiotherapy research lacks a flexible computational research environment for Monte Carlo (MC) and patient-specific treatment planning. The purpose of this study was to develop a flexible software package on low-cost hardware with the aim of integrating new patient-specific treatment planning with MC dose calculations suitable for large-scale prospective and retrospective treatment planning studies. We designed the software package 'McGill Monte Carlo treatment planning' (MMCTP) for the research development of MC and patient-specific treatment planning. The MMCTP design consists of a graphical user interface (GUI), which runs on a simple workstation connected through standard secure-shell protocol to a cluster for lengthy MC calculations. Treatment planning information (e.g., images, structures, beam geometry properties and dose distributions) is converted into a convenient MMCTP local file storage format designated, the McGill RT format. MMCTP features include (a) DICOM_RT, RTOG and CADPlan CART format imports; (b) 2D and 3D visualization views for images, structure contours, and dose distributions; (c) contouring tools; (d) DVH analysis, and dose matrix comparison tools; (e) external beam editing; (f) MC transport calculation from beam source to patient geometry for photon and electron beams. The MC input files, which are prepared from the beam geometry properties and patient information (e.g., images and structure contours), are uploaded and run on a cluster using shell commands controlled from the MMCTP GUI. The visualization, dose matrix operation and DVH tools offer extensive options for plan analysis and comparison between MC plans and plans imported from commercial treatment planning systems. The MMCTP GUI provides a flexible research platform for the development of patient-specific MC treatment planning for photon and electron external beam radiation therapy. The impact of this tool lies in the fact that it allows for systematic, platform-independent, large-scale MC treatment planning for different treatment sites. Patient recalculations were performed to validate the software and ensure proper functionality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, H; Li, B; Behrman, R
2015-06-15
Purpose: To measure the CT density model variations between different CT scanners used for treatment planning and impact on the accuracy of MC dose calculation in lung SBRT. Methods: A Gammex electron density phantom (RMI 465) was scanned on two 64-slice CT scanners (GE LightSpeed VCT64) and a 16-slice CT (Philips Brilliance Big Bore CT). All three scanners had been used to acquire CT for CyberKnife lung SBRT treatment planning. To minimize the influences of beam hardening and scatter for improving reproducibility, three scans were acquired with the phantom rotated 120° between scans. The mean CT HU of each densitymore » insert, averaged over the three scans, was used to build the CT density models. For 14 patient plans, repeat MC dose calculations were performed by using the scanner-specific CT density models and compared to a baseline CT density model in the base plans. All dose re-calculations were done using the same plan beam configurations and MUs. Comparisons of dosimetric parameters included PTV volume covered by prescription dose, mean PTV dose, V5 and V20 for lungs, and the maximum dose to the closest critical organ. Results: Up to 50.7 HU variations in CT density models were observed over the baseline CT density model. For 14 patient plans examined, maximum differences in MC dose re-calculations were less than 2% in 71.4% of the cases, less than 5% in 85.7% of the cases, and 5–10% for 14.3% of the cases. As all the base plans well exceeded the clinical objectives of target coverage and OAR sparing, none of the observed differences led to clinically significant concerns. Conclusion: Marked variations of CT density models were observed for three different CT scanners. Though the differences can cause up to 5–10% differences in MC dose calculations, it was found that they caused no clinically significant concerns.« less
Latent uncertainties of the precalculated track Monte Carlo method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, Marc-André; Seuntjens, Jan; Roberge, David
Purpose: While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited numbermore » of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pregenerated for electrons and protons using EGSnrc and GEANT4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (CUDA) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a “ground truth” benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of D{sub max}. Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Results: Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of the maximum dose. In proton calculations, a small (≤1 mm) distance-to-agreement error was observed at the Bragg peak. Latent uncertainty was characterized for electrons and found to follow a Poisson distribution with the number of unique tracks per energy. A track bank of 12 energies and 60000 unique tracks per pregenerated energy in water had a size of 2.4 GB and achieved a latent uncertainty of approximately 1% at an optimal efficiency gain over DOSXYZnrc. Larger track banks produced a lower latent uncertainty at the cost of increased memory consumption. Using an NVIDIA GTX 590, efficiency analysis showed a 807 × efficiency increase over DOSXYZnrc for 16 MeV electrons in water and 508 × for 16 MeV electrons in bone. Conclusions: The PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty of 1% with a large efficiency gain over conventional MC codes. Before performing clinical dose calculations, models to calculate dose contributions from uncharged particles must be implemented. Following the successful implementation of these models, the PMC method will be evaluated as a candidate for inverse planning of modulated electron radiation therapy and scanned proton beams.« less
Latent uncertainties of the precalculated track Monte Carlo method.
Renaud, Marc-André; Roberge, David; Seuntjens, Jan
2015-01-01
While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited number of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Particle tracks were pregenerated for electrons and protons using EGSnrc and geant4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (cuda) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a "ground truth" benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of Dmax. Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of the maximum dose. In proton calculations, a small (≤ 1 mm) distance-to-agreement error was observed at the Bragg peak. Latent uncertainty was characterized for electrons and found to follow a Poisson distribution with the number of unique tracks per energy. A track bank of 12 energies and 60000 unique tracks per pregenerated energy in water had a size of 2.4 GB and achieved a latent uncertainty of approximately 1% at an optimal efficiency gain over DOSXYZnrc. Larger track banks produced a lower latent uncertainty at the cost of increased memory consumption. Using an NVIDIA GTX 590, efficiency analysis showed a 807 × efficiency increase over DOSXYZnrc for 16 MeV electrons in water and 508 × for 16 MeV electrons in bone. The PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty of 1% with a large efficiency gain over conventional MC codes. Before performing clinical dose calculations, models to calculate dose contributions from uncharged particles must be implemented. Following the successful implementation of these models, the PMC method will be evaluated as a candidate for inverse planning of modulated electron radiation therapy and scanned proton beams.
NASA Astrophysics Data System (ADS)
Fragoso, Margarida; Wen, Ning; Kumar, Sanath; Liu, Dezhi; Ryu, Samuel; Movsas, Benjamin; Munther, Ajlouni; Chetty, Indrin J.
2010-08-01
Modern cancer treatment techniques, such as intensity-modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT), have greatly increased the demand for more accurate treatment planning (structure definition, dose calculation, etc) and dose delivery. The ability to use fast and accurate Monte Carlo (MC)-based dose calculations within a commercial treatment planning system (TPS) in the clinical setting is now becoming more of a reality. This study describes the dosimetric verification and initial clinical evaluation of a new commercial MC-based photon beam dose calculation algorithm, within the iPlan v.4.1 TPS (BrainLAB AG, Feldkirchen, Germany). Experimental verification of the MC photon beam model was performed with film and ionization chambers in water phantoms and in heterogeneous solid-water slabs containing bone and lung-equivalent materials for a 6 MV photon beam from a Novalis (BrainLAB) linear accelerator (linac) with a micro-multileaf collimator (m3 MLC). The agreement between calculated and measured dose distributions in the water phantom verification tests was, on average, within 2%/1 mm (high dose/high gradient) and was within ±4%/2 mm in the heterogeneous slab geometries. Example treatment plans in the lung show significant differences between the MC and one-dimensional pencil beam (PB) algorithms within iPlan, especially for small lesions in the lung, where electronic disequilibrium effects are emphasized. Other user-specific features in the iPlan system, such as options to select dose to water or dose to medium, and the mean variance level, have been investigated. Timing results for typical lung treatment plans show the total computation time (including that for processing and I/O) to be less than 10 min for 1-2% mean variance (running on a single PC with 8 Intel Xeon X5355 CPUs, 2.66 GHz). Overall, the iPlan MC algorithm is demonstrated to be an accurate and efficient dose algorithm, incorporating robust tools for MC-based SBRT treatment planning in the routine clinical setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vikraman, S; Ramu, M; Karrthick, Kp
Purpose: The purpose of this study was to validate the advent of COMPASS 3D dosimetry as a routine pre treatment verification tool with commercially available CMS Monaco and Oncentra Masterplan planning system. Methods: Twenty esophagus patients were selected for this study. All these patients underwent radical VMAT treatment in Elekta Linac and plans were generated in Monaco v5.0 with MonteCarlo(MC) dose calculation algorithm. COMPASS 3D dosimetry comprises an advanced dose calculation algorithm of collapsed cone convolution(CCC). To validate CCC algorithm in COMPASS, The DICOM RT Plans generated using Monaco MC algorithm were transferred to Oncentra Masterplan v4.3 TPS. Only finalmore » dose calculations were performed using CCC algorithm with out optimization in Masterplan planning system. It is proven that MC algorithm is an accurate algorithm and obvious that there will be a difference with MC and CCC algorithms. Hence CCC in COMPASS should be validated with other commercially available CCC algorithm. To use the CCC as pretreatment verification tool with reference to MC generated treatment plans, CCC in OMP and CCC in COMPASS were validated using dose volume based indices such as D98, D95 for target volumes and OAR doses. Results: The point doses for open beams were observed <1% with reference to Monaco MC algorithms. Comparisons of CCC(OMP) Vs CCC(COMPASS) showed a mean difference of 1.82%±1.12SD and 1.65%±0.67SD for D98 and D95 respectively for Target coverage. Maximum point dose of −2.15%±0.60SD difference was observed in target volume. The mean lung dose of −2.68%±1.67SD was noticed between OMP and COMPASS. The maximum point doses for spinal cord were −1.82%±0.287SD. Conclusion: In this study, the accuracy of CCC algorithm in COMPASS 3D dosimetry was validated by compared with CCC algorithm in OMP TPS. Dose calculation in COMPASS is feasible within < 2% in comparison with commercially available TPS algorithms.« less
SU-E-I-28: Evaluating the Organ Dose From Computed Tomography Using Monte Carlo Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, T; Araki, F
Purpose: To evaluate organ doses from computed tomography (CT) using Monte Carlo (MC) calculations. Methods: A Philips Brilliance CT scanner (64 slice) was simulated using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The X-ray spectra and a bowtie filter for MC simulations were determined to coincide with measurements of half-value layer (HVL) and off-center ratio (OCR) profile in air. The MC dose was calibrated from absorbed dose measurements using a Farmer chamber and a cylindrical water phantom. The dose distribution from CT was calculated using patient CT images and organ doses were evaluated from dose volume histograms.more » Results: The HVLs of Al at 80, 100, and 120 kV were 6.3, 7.7, and 8.7 mm, respectively. The calculated HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 3%. For adult head scans (CTDIvol) =51.4 mGy), mean doses for brain stem, eye, and eye lens were 23.2, 34.2, and 37.6 mGy, respectively. For pediatric head scans (CTDIvol =35.6 mGy), mean doses for brain stem, eye, and eye lens were 19.3, 24.5, and 26.8 mGy, respectively. For adult chest scans (CTDIvol=19.0 mGy), mean doses for lung, heart, and spinal cord were 21.1, 22.0, and 15.5 mGy, respectively. For adult abdominal scans (CTDIvol=14.4 mGy), the mean doses for kidney, liver, pancreas, spleen, and spinal cord were 17.4, 16.5, 16.8, 16.8, and 13.1 mGy, respectively. For pediatric abdominal scans (CTDIvol=6.76 mGy), mean doses for kidney, liver, pancreas, spleen, and spinal cord were 8.24, 8.90, 8.17, 8.31, and 6.73 mGy, respectively. In head scan, organ doses were considerably different from CTDIvol values. Conclusion: MC dose distributions calculated by using patient CT images are useful to evaluate organ doses absorbed to individual patients.« less
Independent Monte-Carlo dose calculation for MLC based CyberKnife radiotherapy
NASA Astrophysics Data System (ADS)
Mackeprang, P.-H.; Vuong, D.; Volken, W.; Henzen, D.; Schmidhalter, D.; Malthaner, M.; Mueller, S.; Frei, D.; Stampanoni, M. F. M.; Dal Pra, A.; Aebersold, D. M.; Fix, M. K.; Manser, P.
2018-01-01
This work aims to develop, implement and validate a Monte Carlo (MC)-based independent dose calculation (IDC) framework to perform patient-specific quality assurance (QA) for multi-leaf collimator (MLC)-based CyberKnife® (Accuray Inc., Sunnyvale, CA) treatment plans. The IDC framework uses an XML-format treatment plan as exported from the treatment planning system (TPS) and DICOM format patient CT data, an MC beam model using phase spaces, CyberKnife MLC beam modifier transport using the EGS++ class library, a beam sampling and coordinate transformation engine and dose scoring using DOSXYZnrc. The framework is validated against dose profiles and depth dose curves of single beams with varying field sizes in a water tank in units of cGy/Monitor Unit and against a 2D dose distribution of a full prostate treatment plan measured with Gafchromic EBT3 (Ashland Advanced Materials, Bridgewater, NJ) film in a homogeneous water-equivalent slab phantom. The film measurement is compared to IDC results by gamma analysis using 2% (global)/2 mm criteria. Further, the dose distribution of the clinical treatment plan in the patient CT is compared to TPS calculation by gamma analysis using the same criteria. Dose profiles from IDC calculation in a homogeneous water phantom agree within 2.3% of the global max dose or 1 mm distance to agreement to measurements for all except the smallest field size. Comparing the film measurement to calculated dose, 99.9% of all voxels pass gamma analysis, comparing dose calculated by the IDC framework to TPS calculated dose for the clinical prostate plan shows 99.0% passing rate. IDC calculated dose is found to be up to 5.6% lower than dose calculated by the TPS in this case near metal fiducial markers. An MC-based modular IDC framework was successfully developed, implemented and validated against measurements and is now available to perform patient-specific QA by IDC.
Independent calculation of monitor units for VMAT and SPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xin; Bush, Karl; Ding, Aiping
Purpose: Dose and monitor units (MUs) represent two important facets of a radiation therapy treatment. In current practice, verification of a treatment plan is commonly done in dose domain, in which a phantom measurement or forward dose calculation is performed to examine the dosimetric accuracy and the MU settings of a given treatment plan. While it is desirable to verify directly the MU settings, a computational framework for obtaining the MU values from a known dose distribution has yet to be developed. This work presents a strategy to calculate independently the MUs from a given dose distribution of volumetric modulatedmore » arc therapy (VMAT) and station parameter optimized radiation therapy (SPORT). Methods: The dose at a point can be expressed as a sum of contributions from all the station points (or control points). This relationship forms the basis of the proposed MU verification technique. To proceed, the authors first obtain the matrix elements which characterize the dosimetric contribution of the involved station points by computing the doses at a series of voxels, typically on the prescription surface of the VMAT/SPORT treatment plan, with unit MU setting for all the station points. An in-house Monte Carlo (MC) software is used for the dose matrix calculation. The MUs of the station points are then derived by minimizing the least-squares difference between doses computed by the treatment planning system (TPS) and that of the MC for the selected set of voxels on the prescription surface. The technique is applied to 16 clinical cases with a variety of energies, disease sites, and TPS dose calculation algorithms. Results: For all plans except the lung cases with large tissue density inhomogeneity, the independently computed MUs agree with that of TPS to within 2.7% for all the station points. In the dose domain, no significant difference between the MC and Eclipse Anisotropic Analytical Algorithm (AAA) dose distribution is found in terms of isodose contours, dose profiles, gamma index, and dose volume histogram (DVH) for these cases. For the lung cases, the MC-calculated MUs differ significantly from that of the treatment plan computed using AAA. However, the discrepancies are reduced to within 3% when the TPS dose calculation algorithm is switched to a transport equation-based technique (Acuros™). Comparison in the dose domain between the MC and Eclipse AAA/Acuros calculation yields conclusion consistent with the MU calculation. Conclusions: A computational framework relating the MU and dose domains has been established. The framework does not only enable them to verify the MU values of the involved station points of a VMAT plan directly in the MU domain but also provide a much needed mechanism to adaptively modify the MU values of the station points in accordance to a specific change in the dose domain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K; Leung, R; Law, G
Background: Commercial treatment planning system Pinnacle3 (Philips, Fitchburg, WI, USA) employs a convolution-superposition algorithm for volumetric-modulated arc radiotherapy (VMAT) optimization and dose calculation. Study of Monte Carlo (MC) dose recalculation of VMAT plans for advanced-stage nasopharyngeal cancers (NPC) is currently limited. Methods: Twenty-nine VMAT prescribed 70Gy, 60Gy, and 54Gy to the planning target volumes (PTVs) were included. These clinical plans achieved with a CS dose engine on Pinnacle3 v9.0 were recalculated by the Monaco TPS v5.0 (Elekta, Maryland Heights, MO, USA) with a XVMC-based MC dose engine. The MC virtual source model was built using the same measurement beam datasetmore » as for the Pinnacle beam model. All MC recalculation were based on absorbed dose to medium in medium (Dm,m). Differences in dose constraint parameters per our institution protocol (Supplementary Table 1) were analyzed. Results: Only differences in maximum dose to left brachial plexus, left temporal lobe and PTV54Gy were found to be statistically insignificant (p> 0.05). Dosimetric differences of other tumor targets and normal organs are found in supplementary Table 1. Generally, doses outside the PTV in the normal organs are lower with MC than with CS. This is also true in the PTV54-70Gy doses but higher dose in the nasal cavity near the bone interfaces is consistently predicted by MC, possibly due to the increased backscattering of short-range scattered photons and the secondary electrons that is not properly modeled by the CS. The straight shoulders of the PTV dose volume histograms (DVH) initially resulted from the CS optimization are merely preserved after MC recalculation. Conclusion: Significant dosimetric differences in VMAT NPC plans were observed between CS and MC calculations. Adjustments of the planning dose constraints to incorporate the physics differences from conventional CS algorithm should be made when VMAT optimization is carried out directly with MC dose engine.« less
Beigi, Manije; Afarande, Fatemeh; Ghiasi, Hosein
2016-01-01
Aim The aim of this study was to compare two bunkers designed by only protocols recommendations and Monte Carlo (MC) based upon data derived for an 18 MV Varian 2100Clinac accelerator. Background High energy radiation therapy is associated with fast and thermal photoneutrons. Adequate shielding against the contaminant neutron has been recommended by IAEA and NCRP new protocols. Materials and methods The latest protocols released by the IAEA (safety report No. 47) and NCRP report No. 151 were used for the bunker designing calculations. MC method based upon data was also derived. Two bunkers using protocols and MC upon data were designed and discussed. Results From designed door's thickness, the door designed by the MC simulation and Wu–McGinley analytical method was closer in both BPE and lead thickness. In the case of the primary and secondary barriers, MC simulation resulted in 440.11 mm for the ordinary concrete, total concrete thickness of 1709 mm was required. Calculating the same parameters value with the recommended analytical methods resulted in 1762 mm for the required thickness using 445 mm as recommended by TVL for the concrete. Additionally, for the secondary barrier the thickness of 752.05 mm was obtained. Conclusion Our results showed MC simulation and the followed protocols recommendations in dose calculation are in good agreement in the radiation contamination dose calculation. Difference between the two analytical and MC simulation methods revealed that the application of only one method for the bunker design may lead to underestimation or overestimation in dose and shielding calculations. PMID:26900357
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohno, T; Araki, F
2015-06-15
Purpose: To compare dosimetric properties and patient organ doses from four commercial multidetector CT (MDCT) using Monte Carlo (MC) simulation based on the absorbed dose measured using a Farmer chamber and cylindrical water phantoms according to AAPM TG-111. Methods: Four commercial MDCT were modeled using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The incident photon spectrum and bowtie filter for MC simulations were determined so that calculated values of aluminum half-value layer (Al-HVL) and off-center ratio (OCR) profile in air agreed with measured values. The MC dose was calibrated from absorbed dose measurements using a Farmer chambermore » and cylindrical water phantoms. The dose distributions of head, chest, and abdominal scan were calculated using patient CT images and mean organ doses were evaluated from dose volume histograms. Results: The HVLs at 120 kVp of Brilliance, LightSpeed, Aquilion, and SOMATOM were 9.1, 7.5, 7.2, and 8.7 mm, respectively. The calculated Al-HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 5%. For adult head scans, mean doses for eye lens from Brilliance, LightSpeed, Aquilion, and SOMATOM were 21.7, 38.5, 47.2 and 28.4 mGy, respectively. For chest scans, mean doses for lung from Brilliance, LightSpeed, Aquilion, and SOMATOM were 21.1, 26.1, 35.3 and 24.0 mGy, respectively. For adult abdominal scans, the mean doses for liver from Brilliance, LightSpeed, Aquilion, and SOMATOM were 16.5, 21.3, 22.7, and 18.0 mGy, respectively. The absorbed doses increased with decreasing Al-HVL. The organ doses from Aquilion were two greater than those from Brilliance in head scan. Conclusion: MC dose distributions based on absorbed dose measurement in cylindrical water phantom are useful to evaluate individual patient organ doses.« less
Ma, Yunzhi; Lacroix, Fréderic; Lavallée, Marie-Claude; Beaulieu, Luc
2015-01-01
To validate the Advanced Collapsed cone Engine (ACE) dose calculation engine of Oncentra Brachy (OcB) treatment planning system using an (192)Ir source. Two levels of validation were performed, conformant to the model-based dose calculation algorithm commissioning guidelines of American Association of Physicists in Medicine TG-186 report. Level 1 uses all-water phantoms, and the validation is against TG-43 methodology. Level 2 uses real-patient cases, and the validation is against Monte Carlo (MC) simulations. For each case, the ACE and TG-43 calculations were performed in the OcB treatment planning system. ALGEBRA MC system was used to perform MC simulations. In Level 1, the ray effect depends on both accuracy mode and the number of dwell positions. The volume fraction with dose error ≥2% quickly reduces from 23% (13%) for a single dwell to 3% (2%) for eight dwell positions in the standard (high) accuracy mode. In Level 2, the 10% and higher isodose lines were observed overlapping between ACE (both standard and high-resolution modes) and MC. Major clinical indices (V100, V150, V200, D90, D50, and D2cc) were investigated and validated by MC. For example, among the Level 2 cases, the maximum deviation in V100 of ACE from MC is 2.75% but up to ~10% for TG-43. Similarly, the maximum deviation in D90 is 0.14 Gy between ACE and MC but up to 0.24 Gy for TG-43. ACE demonstrated good agreement with MC in most clinically relevant regions in the cases tested. Departure from MC is significant for specific situations but limited to low-dose (<10% isodose) regions. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Radiation leakage dose from Elekta electron collimation system
Hogstrom, Kenneth R.; Carver, Robert L.
2016-01-01
This study provided baseline data required for a greater project, whose objective was to design a new Elekta electron collimation system having significantly lighter electron applicators with equally low out‐of field leakage dose. Specifically, off‐axis dose profiles for the electron collimation system of our uniquely configured Elekta Infinity accelerator with the MLCi2 treatment head were measured and calculated for two primary purposes: 1) to evaluate and document the out‐of‐field leakage dose in the patient plane and 2) to validate the dose distributions calculated using a BEAMnrc Monte Carlo (MC) model for out‐of‐field dose profiles. Off‐axis dose profiles were measured in a water phantom at 100 cm SSD for 1 and 2 cm depths along the in‐plane, cross‐plane, and both diagonal axes using a cylindrical ionization chamber with the 10×10 and 20×20 cm2 applicators and 7, 13, and 20 MeV beams. Dose distributions were calculated using a previously developed BEAMnrc MC model of the Elekta Infinity accelerator for the same beam energies and applicator sizes and compared with measurements. Measured results showed that the in‐field beam flatness met our acceptance criteria (±3% on major and ±4% on diagonal axes) and that out‐of‐field mean and maximum percent leakage doses in the patient plane met acceptance criteria as specified by the International Electrotechnical Commission (IEC). Cross‐plane out‐of‐field dose profiles showed greater leakage dose than in‐plane profiles, attributed to the curved edges of the upper X‐ray jaws and multileaf collimator. Mean leakage doses increased with beam energy, being 0.93% and 0.85% of maximum central axis dose for the 10×10 and 20×20 cm2 applicators, respectively, at 20 MeV. MC calculations predicted the measured dose to within 0.1% in most profiles outside the radiation field; however, excluding modeling of nontrimmer applicator components led to calculations exceeding measured data by as much as 0.2% for some regions along the in‐plane axis. Using EGSnrc LATCH bit filtering to separately calculate out‐of‐field leakage dose components (photon dose, primary electron dose, and electron dose arising from interactions in various collimating components), MC calculations revealed that the primary electron dose in the out‐of‐field leakage region was small and decreased as beam energy increased. Also, both the photon dose component and electron dose component resulting from collimator scatter dominated the leakage dose, increasing with increasing beam energy. We concluded that our custom Elekta Infinity with the MLCi2 treatment head met IEC leakage dose criteria in the patient plane. Also, accuracy of our MC model should be sufficient for our use in the design of a new, improved electron collimation system. PACS number(s): 87.56.nk, 87.10.Rt, 87.56.J PMID:27685101
Limitations of analytical dose calculations for small field proton radiosurgery.
Geng, Changran; Daartz, Juliane; Lam-Tin-Cheung, Kimberley; Bussiere, Marc; Shih, Helen A; Paganetti, Harald; Schuemann, Jan
2017-01-07
The purpose of the work was to evaluate the dosimetric uncertainties of an analytical dose calculation engine and the impact on treatment plans using small fields in intracranial proton stereotactic radiosurgery (PSRS) for a gantry based double scattering system. 50 patients were evaluated including 10 patients for each of 5 diagnostic indications of: arteriovenous malformation (AVM), acoustic neuroma (AN), meningioma (MGM), metastasis (METS), and pituitary adenoma (PIT). Treatment plans followed standard prescription and optimization procedures for PSRS. We performed comparisons between delivered dose distributions, determined by Monte Carlo (MC) simulations, and those calculated with the analytical dose calculation algorithm (ADC) used in our current treatment planning system in terms of dose volume histogram parameters and beam range distributions. Results show that the difference in the dose to 95% of the target (D95) is within 6% when applying measured field size output corrections for AN, MGM, and PIT. However, for AVM and METS, the differences can be as great as 10% and 12%, respectively. Normalizing the MC dose to the ADC dose based on the dose of voxels in a central area of the target reduces the difference of the D95 to within 6% for all sites. The generally applied margin to cover uncertainties in range (3.5% of the prescribed range + 1 mm) is not sufficient to cover the range uncertainty for ADC in all cases, especially for patients with high tissue heterogeneity. The root mean square of the R90 difference, the difference in the position of distal falloff to 90% of the prescribed dose, is affected by several factors, especially the patient geometry heterogeneity, modulation and field diameter. In conclusion, implementation of Monte Carlo dose calculation techniques into the clinic can reduce the uncertainty of the target dose for proton stereotactic radiosurgery. If MC is not available for treatment planning, using MC dose distributions to adjust the delivered doses level can also reduce uncertainties below 3% for mean target dose and 6% for the D95.
Dosimetric investigation of proton therapy on CT-based patient data using Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Chongsan, T.; Liamsuwan, T.; Tangboonduangjit, P.
2016-03-01
The aim of radiotherapy is to deliver high radiation dose to the tumor with low radiation dose to healthy tissues. Protons have Bragg peaks that give high radiation dose to the tumor but low exit dose or dose tail. Therefore, proton therapy is promising for treating deep- seated tumors and tumors locating close to organs at risk. Moreover, the physical characteristic of protons is suitable for treating cancer in pediatric patients. This work developed a computational platform for calculating proton dose distribution using the Monte Carlo (MC) technique and patient's anatomical data. The studied case is a pediatric patient with a primary brain tumor. PHITS will be used for MC simulation. Therefore, patient-specific CT-DICOM files were converted to the PHITS input. A MATLAB optimization program was developed to create a beam delivery control file for this study. The optimization program requires the proton beam data. All these data were calculated in this work using analytical formulas and the calculation accuracy was tested, before the beam delivery control file is used for MC simulation. This study will be useful for researchers aiming to investigate proton dose distribution in patients but do not have access to proton therapy machines.
Patient-specific CT dosimetry calculation: a feasibility study.
Fearon, Thomas; Xie, Huchen; Cheng, Jason Y; Ning, Holly; Zhuge, Ying; Miller, Robert W
2011-11-15
Current estimation of radiation dose from computed tomography (CT) scans on patients has relied on the measurement of Computed Tomography Dose Index (CTDI) in standard cylindrical phantoms, and calculations based on mathematical representations of "standard man". Radiation dose to both adult and pediatric patients from a CT scan has been a concern, as noted in recent reports. The purpose of this study was to investigate the feasibility of adapting a radiation treatment planning system (RTPS) to provide patient-specific CT dosimetry. A radiation treatment planning system was modified to calculate patient-specific CT dose distributions, which can be represented by dose at specific points within an organ of interest, as well as organ dose-volumes (after image segmentation) for a GE Light Speed Ultra Plus CT scanner. The RTPS calculation algorithm is based on a semi-empirical, measured correction-based algorithm, which has been well established in the radiotherapy community. Digital representations of the physical phantoms (virtual phantom) were acquired with the GE CT scanner in axial mode. Thermoluminescent dosimeter (TLDs) measurements in pediatric anthropomorphic phantoms were utilized to validate the dose at specific points within organs of interest relative to RTPS calculations and Monte Carlo simulations of the same virtual phantoms (digital representation). Congruence of the calculated and measured point doses for the same physical anthropomorphic phantom geometry was used to verify the feasibility of the method. The RTPS algorithm can be extended to calculate the organ dose by calculating a dose distribution point-by-point for a designated volume. Electron Gamma Shower (EGSnrc) codes for radiation transport calculations developed by National Research Council of Canada (NRCC) were utilized to perform the Monte Carlo (MC) simulation. In general, the RTPS and MC dose calculations are within 10% of the TLD measurements for the infant and child chest scans. With respect to the dose comparisons for the head, the RTPS dose calculations are slightly higher (10%-20%) than the TLD measurements, while the MC results were within 10% of the TLD measurements. The advantage of the algebraic dose calculation engine of the RTPS is a substantially reduced computation time (minutes vs. days) relative to Monte Carlo calculations, as well as providing patient-specific dose estimation. It also provides the basis for a more elaborate reporting of dosimetric results, such as patient specific organ dose volumes after image segmentation.
Advanced proton beam dosimetry part II: Monte Carlo vs. pencil beam-based planning for lung cancer.
Maes, Dominic; Saini, Jatinder; Zeng, Jing; Rengan, Ramesh; Wong, Tony; Bowen, Stephen R
2018-04-01
Proton pencil beam (PB) dose calculation algorithms have limited accuracy within heterogeneous tissues of lung cancer patients, which may be addressed by modern commercial Monte Carlo (MC) algorithms. We investigated clinical pencil beam scanning (PBS) dose differences between PB and MC-based treatment planning for lung cancer patients. With IRB approval, a comparative dosimetric analysis between RayStation MC and PB dose engines was performed on ten patient plans. PBS gantry plans were generated using single-field optimization technique to maintain target coverage under range and setup uncertainties. Dose differences between PB-optimized (PBopt), MC-recalculated (MCrecalc), and MC-optimized (MCopt) plans were recorded for the following region-of-interest metrics: clinical target volume (CTV) V95, CTV homogeneity index (HI), total lung V20, total lung V RX (relative lung volume receiving prescribed dose or higher), and global maximum dose. The impact of PB-based and MC-based planning on robustness to systematic perturbation of range (±3% density) and setup (±3 mm isotropic) was assessed. Pairwise differences in dose parameters were evaluated through non-parametric Friedman and Wilcoxon sign-rank testing. In this ten-patient sample, CTV V95 decreased significantly from 99-100% for PBopt to 77-94% for MCrecalc and recovered to 99-100% for MCopt (P<10 -5 ). The median CTV HI (D95/D5) decreased from 0.98 for PBopt to 0.91 for MCrecalc and increased to 0.95 for MCopt (P<10 -3 ). CTV D95 robustness to range and setup errors improved under MCopt (ΔD95 =-1%) compared to MCrecalc (ΔD95 =-6%, P=0.006). No changes in lung dosimetry were observed for large volumes receiving low to intermediate doses (e.g., V20), while differences between PB-based and MC-based planning were noted for small volumes receiving high doses (e.g., V RX ). Global maximum patient dose increased from 106% for PBopt to 109% for MCrecalc and 112% for MCopt (P<10 -3 ). MC dosimetry revealed a reduction in target dose coverage under PB-based planning that was regained under MC-based planning along with improved plan robustness. MC-based optimization and dose calculation should be integrated into clinical planning workflows of lung cancer patients receiving actively scanned proton therapy.
Advanced proton beam dosimetry part II: Monte Carlo vs. pencil beam-based planning for lung cancer
Maes, Dominic; Saini, Jatinder; Zeng, Jing; Rengan, Ramesh; Wong, Tony
2018-01-01
Background Proton pencil beam (PB) dose calculation algorithms have limited accuracy within heterogeneous tissues of lung cancer patients, which may be addressed by modern commercial Monte Carlo (MC) algorithms. We investigated clinical pencil beam scanning (PBS) dose differences between PB and MC-based treatment planning for lung cancer patients. Methods With IRB approval, a comparative dosimetric analysis between RayStation MC and PB dose engines was performed on ten patient plans. PBS gantry plans were generated using single-field optimization technique to maintain target coverage under range and setup uncertainties. Dose differences between PB-optimized (PBopt), MC-recalculated (MCrecalc), and MC-optimized (MCopt) plans were recorded for the following region-of-interest metrics: clinical target volume (CTV) V95, CTV homogeneity index (HI), total lung V20, total lung VRX (relative lung volume receiving prescribed dose or higher), and global maximum dose. The impact of PB-based and MC-based planning on robustness to systematic perturbation of range (±3% density) and setup (±3 mm isotropic) was assessed. Pairwise differences in dose parameters were evaluated through non-parametric Friedman and Wilcoxon sign-rank testing. Results In this ten-patient sample, CTV V95 decreased significantly from 99–100% for PBopt to 77–94% for MCrecalc and recovered to 99–100% for MCopt (P<10−5). The median CTV HI (D95/D5) decreased from 0.98 for PBopt to 0.91 for MCrecalc and increased to 0.95 for MCopt (P<10−3). CTV D95 robustness to range and setup errors improved under MCopt (ΔD95 =−1%) compared to MCrecalc (ΔD95 =−6%, P=0.006). No changes in lung dosimetry were observed for large volumes receiving low to intermediate doses (e.g., V20), while differences between PB-based and MC-based planning were noted for small volumes receiving high doses (e.g., VRX). Global maximum patient dose increased from 106% for PBopt to 109% for MCrecalc and 112% for MCopt (P<10−3). Conclusions MC dosimetry revealed a reduction in target dose coverage under PB-based planning that was regained under MC-based planning along with improved plan robustness. MC-based optimization and dose calculation should be integrated into clinical planning workflows of lung cancer patients receiving actively scanned proton therapy. PMID:29876310
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallal, Mohammadi Gh.; Riyahi, Alam N.; Graily, Gh.
Purpose: Clinical use of multi detector computed tomography(MDCT) in diagnosis of diseases due to high speed in data acquisition and high spatial resolution is significantly increased. Regarding to the high radiation dose in CT and necessity of patient specific radiation risk assessment, the adoption of new method in the calculation of organ dose is completely required and necessary. In this study by introducing a conversion factor, patient organ dose in thorax region based on CT image data using MC system was calculated. Methods: The geometry of x-ray tube, inherent filter, bow tie filter and collimator were designed using EGSnrc/BEAMnrc MC-systemmore » component modules according to GE-Light-speed 64-slices CT-scanner geometry. CT-scan image of patient thorax as a specific phantom was voxellised with 6.25mm3 in voxel and 64×64×20 matrix size. Dose to thorax organ include esophagus, lung, heart, breast, ribs, muscle, spine, spinal cord with imaging technical condition of prospectively-gated-coronary CT-Angiography(PGT) as a step and shoot method, were calculated. Irradiation of patient specific phantom was performed using a dedicated MC-code as DOSXYZnrc with PGT-irradiation model. The ratio of organ dose value calculated in MC-method to the volume CT dose index(CTDIvol) reported by CT-scanner machine according to PGT radiation technique has been introduced as conversion factor. Results: In PGT method, CTDIvol was 10.6mGy and Organ Dose/CTDIvol conversion factor for esophagus, lung, heart, breast, ribs, muscle, spine and spinal cord were obtained as; 0.96, 1.46, 1.2, 3.28. 6.68. 1.35, 3.41 and 0.93 respectively. Conclusion: The results showed while, underestimation of patient dose was found in dose calculation based on CTDIvol, also dose to breast is higher than the other studies. Therefore, the method in this study can be used to provide the actual patient organ dose in CT imaging based on CTDIvol in order to calculation of real effective dose(ED) based on organ dose. This work has been supported by the research chancellor of tehran university of medical sciences(tums), school of medicine, Tehran, Iran.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, L; Eldib, A; Li, J
Purpose: Uneven nose surfaces and air cavities underneath and the use of bolus present complexity and dose uncertainty when using a single electron energy beam to plan treatments of nose skin with a pencil beam-based planning system. This work demonstrates more accurate dose calculation and more optimal planning using energy and intensity modulated electron radiotherapy (MERT) delivered with a pMLC. Methods: An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reducemore » the scatter-caused penumbra, a short SSD (61 cm) was used. Our previous work demonstrates good agreement in percentage depth dose and off-axis dose between calculations and film measurement for various field sizes. A MERT plan was generated for treating the nose skin using a patient geometry and a dose volume histogram (DVH) was obtained. The work also shows the comparison of 2D dose distributions between a clinically used conventional single electron energy plan and the MERT plan. Results: The MERT plan resulted in improved target dose coverage as compared to the conventional plan, which demonstrated a target dose deficit at the field edge. The conventional plan showed higher dose normal tissue irradiation underneath the nose skin while the MERT plan resulted in improved conformity and thus reduces normal tissue dose. Conclusion: This preliminary work illustrates that MC-based MERT planning is a promising technique in treating nose skin, not only providing more accurate dose calculation, but also offering an improved target dose coverage and conformity. In addition, this technique may eliminate the necessity of bolus, which often produces dose delivery uncertainty due to the air gaps that may exist between the bolus and skin.« less
Gete, Ermias; Duzenli, Cheryl; Teke, Tony
2014-01-01
A Monte Carlo (MC) validation of the vendor‐supplied Varian TrueBeam 6 MV flattened (6X) phase‐space file and the first implementation of the Siebers‐Keall MC MLC model as applied to the HD120 MLC (for 6X flat and 6X flattening filterfree (6X FFF) beams) are described. The MC model is validated in the context of VMAT patient‐specific quality assurance. The Monte Carlo commissioning process involves: 1) validating the calculated open‐field percentage depth doses (PDDs), profiles, and output factors (OF), 2) adapting the Siebers‐Keall MLC model to match the new HD120‐MLC geometry and material composition, 3) determining the absolute dose conversion factor for the MC calculation, and 4) validating this entire linac/MLC in the context of dose calculation verification for clinical VMAT plans. MC PDDs for the 6X beams agree with the measured data to within 2.0% for field sizes ranging from 2 × 2 to 40 × 40 cm2. Measured and MC profiles show agreement in the 50% field width and the 80%‐20% penumbra region to within 1.3 mm for all square field sizes. MC OFs for the 2 to 40 cm2 square fields agree with measurement to within 1.6%. Verification of VMAT SABR lung, liver, and vertebra plans demonstrate that measured and MC ion chamber doses agree within 0.6% for the 6X beam and within 2.0% for the 6X FFF beam. A 3D gamma factor analysis demonstrates that for the 6X beam, > 99% of voxels meet the pass criteria (3%/3 mm). For the 6X FFF beam, > 94% of voxels meet this criteria. The TrueBeam accelerator delivering 6X and 6X FFF beams with the HD120 MLC can be modeled in Monte Carlo to provide an independent 3D dose calculation for clinical VMAT plans. This quality assurance tool has been used clinically to verify over 140 6X and 16 6X FFF TrueBeam treatment plans. PACS number: 87.55.K‐ PMID:24892341
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesneau, H; Lazaro, D; Blideanu, V
Purpose: The intensive use of Cone-Beam Computed Tomography (CBCT) during radiotherapy treatments raise some questions about the dose to healthy tissues delivered during image acquisitions. We hence developed a Monte Carlo (MC)-based tool to predict doses to organs delivered by the Elekta XVI kV-CBCT. This work aims at assessing the dosimetric accuracy of the MC tool, in all tissue types. Methods: The kV-CBCT MC model was developed using the PENELOPE code. The beam properties were validated against measured lateral and depth dose profiles in water, and energy spectra measured with a CdTe detector. The CBCT simulator accuracy then required verificationmore » in clinical conditions. For this, we compared calculated and experimental dose values obtained with OSL nanoDots and XRQA2 films inserted in CIRS anthropomorphic phantoms (male, female, and 5-year old child). Measurements were performed at different locations, including bone and lung structures, and for several acquisition protocols: lung, head-and-neck, and pelvis. OSLs and film measurements were corrected when possible for energy dependence, by taking into account for spectral variations between calibration and measurement conditions. Results: Comparisons between measured and MC dose values are summarized in table 1. A mean difference of 8.6% was achieved for OSLs when the energy correction was applied, and 89.3% of the 84 dose points were within uncertainty intervals, including those in bones and lungs. Results with XRQA2 are not as good, because incomplete information about electronic equilibrium in film layers hampered the application of a simple energy correction procedure. Furthermore, measured and calculated doses (Fig.1) are in agreement with the literature. Conclusion: The MC-based tool developed was validated with an extensive set of measurements, and enables the organ dose calculation with accuracy. It can now be used to compute and report doses to organs for clinical cases, and also to drive strategies to optimize imaging protocols.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serin, E.; Codel, G.; Mabhouti, H.
Purpose: In small field geometries, the electronic equilibrium can be lost, making it challenging for the dose-calculation algorithm to accurately predict the dose, especially in the presence of tissue heterogeneities. In this study, dosimetric accuracy of Monte Carlo (MC) advanced dose calculation and sequential algorithms of Multiplan treatment planning system were investigated for small radiation fields incident on homogeneous and heterogeneous geometries. Methods: Small open fields of fixed cones of Cyberknife M6 unit 100 to 500 mm2 were used for this study. The fields were incident on in house phantom containing lung, air, and bone inhomogeneities and also homogeneous phantom.more » Using the same film batch, the net OD to dose calibration curve was obtained using CK with the 60 mm fixed cone by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. The dosimetric accuracy of MC and sequential algorithms in the presence of the inhomogeneities was compared against EBT3 film dosimetry Results: Open field tests in a homogeneous phantom showed good agreement between two algorithms and film measurement For MC algorithm, the minimum gamma analysis passing rates between measured and calculated dose distributions were 99.7% and 98.3% for homogeneous and inhomogeneous fields in the case of lung and bone respectively. For sequential algorithm, the minimum gamma analysis passing rates were 98.9% and 92.5% for for homogeneous and inhomogeneous fields respectively for used all cone sizes. In the case of the air heterogeneity, the differences were larger for both calculation algorithms. Overall, when compared to measurement, the MC had better agreement than sequential algorithm. Conclusion: The Monte Carlo calculation algorithm in the Multiplan treatment planning system is an improvement over the existing sequential algorithm. Dose discrepancies were observed for in the presence of air inhomogeneities.« less
Furstoss, C; Reniers, B; Bertrand, M J; Poon, E; Carrier, J-F; Keller, B M; Pignol, J P; Beaulieu, L; Verhaegen, F
2009-05-01
A Monte Carlo (MC) study was carried out to evaluate the effects of the interseed attenuation and the tissue composition for two models of 125I low dose rate (LDR) brachytherapy seeds (Medi-Physics 6711, IBt InterSource) in a permanent breast implant. The effect of the tissue composition was investigated because the breast localization presents heterogeneities such as glandular and adipose tissue surrounded by air, lungs, and ribs. The absolute MC dose calculations were benchmarked by comparison to the absolute dose obtained from experimental results. Before modeling a clinical case of an implant in heterogeneous breast, the effects of the tissue composition and the interseed attenuation were studied in homogeneous phantoms. To investigate the tissue composition effect, the dose along the transverse axis of the two seed models were calculated and compared in different materials. For each seed model, three seeds sharing the same transverse axis were simulated to evaluate the interseed effect in water as a function of the distance from the seed. A clinical study of a permanent breast 125I implant for a single patient was carried out using four dose calculation techniques: (1) A TG-43 based calculation, (2) a full MC simulation with realistic tissues and seed models, (3) a MC simulation in water and modeled seeds, and (4) a MC simulation without modeling the seed geometry but with realistic tissues. In the latter, a phase space file corresponding to the particles emitted from the external surface of the seed is used at each seed location. The results were compared by calculating the relevant clinical metrics V85, V100, and V200 for this kind of treatment in the target. D90 and D50 were also determined to evaluate the differences in dose and compare the results to the studies published for permanent prostate seed implants in literature. The experimental results are in agreement with the MC absolute doses (within 5% for EBT Gafchromic film and within 7% for TLD-100). Important differences between the dose along the transverse axis of the seed in water and in adipose tissue are obtained (10% at 3.5 cm). The comparisons between the full MC and the TG-43 calculations show that there are no significant differences for V85 and V100. For V200, 8.4% difference is found coming mainly from the tissue composition effect. Larger differences (about 10.5% for the model 6711 seed and about 13% for the InterSource125) are determined for D90 and D50. These differences depend on the composition of the breast tissue modeled in the simulation. A variation in percentage by mass of the mammary gland and adipose tissue can cause important differences in the clinical dose metrics V200, D90, and D50. Even if the authors can conclude that clinically, the differences in V85, V100, and V200 are acceptable in comparison to the large variation in dose in the treated volume, this work demonstrates that the development of a MC treatment planning system for LDR brachytherapy will improve the dose determination in the treated region and consequently the dose-outcome relationship, especially for the skin toxicity.
SU-E-T-535: Proton Dose Calculations in Homogeneous Media.
Chapman, J; Fontenot, J; Newhauser, W; Hogstrom, K
2012-06-01
To develop a pencil beam dose calculation algorithm for scanned proton beams that improves modeling of scatter events. Our pencil beam algorithm (PBA) was developed for calculating dose from monoenergetic, parallel proton beams in homogeneous media. Fermi-Eyges theory was implemented for pencil beam transport. Elastic and nonelastic scatter effects were each modeled as a Gaussian distribution, with root mean square (RMS) widths determined from theoretical calculations and a nonlinear fit to a Monte Carlo (MC) simulated 1mm × 1mm proton beam, respectively. The PBA was commissioned using MC simulations in a flat water phantom. Resulting PBA calculations were compared with results of other models reported in the literature on the basis of differences between PBA and MC calculations of 80-20% penumbral widths. Our model was further tested by comparing PBA and MC results for oblique beams (45 degree incidence) and surface irregularities (step heights of 1 and 4 cm) for energies of 50-250 MeV and field sizes of 4cm × 4cm and 10cm × 10cm. Agreement between PBA and MC distributions was quantified by computing the percentage of points within 2% dose difference or 1mm distance to agreement. Our PBA improved agreement between calculated and simulated penumbral widths by an order of magnitude compared with previously reported values. For comparisons of oblique beams and surface irregularities, agreement between PBA and MC distributions was better than 99%. Our algorithm showed improved accuracy over other models reported in the literature in predicting the overall shape of the lateral profile through the Bragg peak. This improvement was achieved by incorporating nonelastic scatter events into our PBA. The increased modeling accuracy of our PBA, incorporated into a treatment planning system, may improve the reliability of treatment planning calculations for patient treatments. This research was supported by contract W81XWH-10-1-0005 awarded by The U.S. Army Research Acquisition Activity, 820 Chandler Street, Fort Detrick, MD 21702-5014. This report does not necessarily reflect the position or policy of the Government, and no official endorsement should be inferred. © 2012 American Association of Physicists in Medicine.
Siebers, Jeffrey V
2008-04-04
Monte Carlo (MC) is rarely used for IMRT plan optimization outside of research centres due to the extensive computational resources or long computation times required to complete the process. Time can be reduced by degrading the statistical precision of the MC dose calculation used within the optimization loop. However, this eventually introduces optimization convergence errors (OCEs). This study determines the statistical noise levels tolerated during MC-IMRT optimization under the condition that the optimized plan has OCEs <100 cGy (1.5% of the prescription dose) for MC-optimized IMRT treatment plans.Seven-field prostate IMRT treatment plans for 10 prostate patients are used in this study. Pre-optimization is performed for deliverable beams with a pencil-beam (PB) dose algorithm. Further deliverable-based optimization proceeds using: (1) MC-based optimization, where dose is recomputed with MC after each intensity update or (2) a once-corrected (OC) MC-hybrid optimization, where a MC dose computation defines beam-by-beam dose correction matrices that are used during a PB-based optimization. Optimizations are performed with nominal per beam MC statistical precisions of 2, 5, 8, 10, 15, and 20%. Following optimizer convergence, beams are re-computed with MC using 2% per beam nominal statistical precision and the 2 PTV and 10 OAR dose indices used in the optimization objective function are tallied. For both the MC-optimization and OC-optimization methods, statistical equivalence tests found that OCEs are less than 1.5% of the prescription dose for plans optimized with nominal statistical uncertainties of up to 10% per beam. The achieved statistical uncertainty in the patient for the 10% per beam simulations from the combination of the 7 beams is ~3% with respect to maximum dose for voxels with D>0.5D(max). The MC dose computation time for the OC-optimization is only 6.2 minutes on a single 3 Ghz processor with results clinically equivalent to high precision MC computations.
A method for photon beam Monte Carlo multileaf collimator particle transport
NASA Astrophysics Data System (ADS)
Siebers, Jeffrey V.; Keall, Paul J.; Kim, Jong Oh; Mohan, Radhe
2002-09-01
Monte Carlo (MC) algorithms are recognized as the most accurate methodology for patient dose assessment. For intensity-modulated radiation therapy (IMRT) delivered with dynamic multileaf collimators (DMLCs), accurate dose calculation, even with MC, is challenging. Accurate IMRT MC dose calculations require inclusion of the moving MLC in the MC simulation. Due to its complex geometry, full transport through the MLC can be time consuming. The aim of this work was to develop an MLC model for photon beam MC IMRT dose computations. The basis of the MC MLC model is that the complex MLC geometry can be separated into simple geometric regions, each of which readily lends itself to simplified radiation transport. For photons, only attenuation and first Compton scatter interactions are considered. The amount of attenuation material an individual particle encounters while traversing the entire MLC is determined by adding the individual amounts from each of the simplified geometric regions. Compton scatter is sampled based upon the total thickness traversed. Pair production and electron interactions (scattering and bremsstrahlung) within the MLC are ignored. The MLC model was tested for 6 MV and 18 MV photon beams by comparing it with measurements and MC simulations that incorporate the full physics and geometry for fields blocked by the MLC and with measurements for fields with the maximum possible tongue-and-groove and tongue-or-groove effects, for static test cases and for sliding windows of various widths. The MLC model predicts the field size dependence of the MLC leakage radiation within 0.1% of the open-field dose. The entrance dose and beam hardening behind a closed MLC are predicted within +/-1% or 1 mm. Dose undulations due to differences in inter- and intra-leaf leakage are also correctly predicted. The MC MLC model predicts leaf-edge tongue-and-groove dose effect within +/-1% or 1 mm for 95% of the points compared at 6 MV and 88% of the points compared at 18 MV. The dose through a static leaf tip is also predicted generally within +/-1% or 1 mm. Tests with sliding windows of various widths confirm the accuracy of the MLC model for dynamic delivery and indicate that accounting for a slight leaf position error (0.008 cm for our MLC) will improve the accuracy of the model. The MLC model developed is applicable to both dynamic MLC and segmental MLC IMRT beam delivery and will be useful for patient IMRT dose calculations, pre-treatment verification of IMRT delivery and IMRT portal dose transmission dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L; Ding, G
Purpose: Dose calculation accuracy for the out-of-field dose is important for predicting the dose to the organs-at-risk when they are located outside primary beams. The investigations on evaluating the calculation accuracy of treatment planning systems (TPS) on out-of-field dose in existing publications have focused on low energy (6MV) photon. This study evaluates out-of-field dose calculation accuracy of AAA algorithm for 15MV high energy photon beams. Methods: We used the EGSnrc Monte Carlo (MC) codes to evaluate the AAA algorithm in Varian Eclipse TPS (v.11). The incident beams start with validated Varian phase-space sources for a TrueBeam linac equipped with Millenniummore » 120 MLC. Dose comparisons between using AAA and MC for CT based realistic patient treatment plans using VMAT techniques for prostate and lung were performed and uncertainties of organ dose predicted by AAA at out-of-field location were evaluated. Results: The results show that AAA calculations under-estimate doses at the dose level of 1% (or less) of prescribed dose for CT based patient treatment plans using VMAT techniques. In regions where dose is only 1% of prescribed dose, although AAA under-estimates the out-of-field dose by 30% relative to the local dose, it is only about 0.3% of prescribed dose. For example, the uncertainties of calculated organ dose to liver or kidney that is located out-of-field is <0.3% of prescribed dose. Conclusion: For 15MV high energy photon beams, very good agreements (<1%) in calculating dose distributions were obtained between AAA and MC. The uncertainty of out-of-field dose calculations predicted by the AAA algorithm for realistic patient VMAT plans is <0.3% of prescribed dose in regions where the dose relative to the prescribed dose is <1%, although the uncertainties can be much larger relative to local doses. For organs-at-risk located at out-of-field, the error of dose predicted by Eclipse using AAA is negligible. This work was conducted in part using the resources of Varian research grant VUMC40590-R.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakabe, D; Ohno, T; Araki, F
Purpose: The purpose of this study was to evaluate the combined organ dose of digital subtraction angiography (DSA) and computed tomography (CT) using a Monte Carlo (MC) simulation on the abdominal intervention. Methods: The organ doses for DSA and CT were obtained with MC simulation and actual measurements using fluorescent-glass dosimeters at 7 abdominal portions in an Alderson-Rando phantom. DSA was performed from three directions: posterior anterior (PA), right anterior oblique (RAO), and left anterior oblique (LAO). The organ dose with MC simulation was compared with actual radiation dose measurements. Calculations for the MC simulation were carried out with themore » GMctdospp (IMPS, Germany) software based on the EGSnrc MC code. Finally, the combined organ dose for DSA and CT was calculated from the MC simulation using the X-ray conditions of a patient with a diagnosis of hepatocellular carcinoma. Results: For DSA from the PA direction, the organ doses for the actual measurements and MC simulation were 2.2 and 2.4 mGy/100 mAs at the liver, respectively, and 3.0 and 3.1 mGy/100 mAs at the spinal cord, while for CT, the organ doses were 15.2 and 15.1 mGy/100 mAs at the liver, and 14.6 and 13.5 mGy/100 mAs at the spinal cord. The maximum difference in organ dose between the actual measurements and the MC simulation was 11.0% of the spleen at PA, 8.2% of the spinal cord at RAO, and 6.1% of left kidney at LAO with DSA and 9.3% of the stomach with CT. The combined organ dose (4 DSAs and 6 CT scans) with the use of actual patient conditions was found to be 197.4 mGy for the liver and 205.1 mGy for the spinal cord. Conclusion: Our method makes it possible to accurately assess the organ dose to patients for abdominal intervention with combined DSA and CT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballester, Facundo, E-mail: Facundo.Ballester@uv.es; Carlsson Tedgren, Åsa; Granero, Domingo
Purpose: In order to facilitate a smooth transition for brachytherapy dose calculations from the American Association of Physicists in Medicine (AAPM) Task Group No. 43 (TG-43) formalism to model-based dose calculation algorithms (MBDCAs), treatment planning systems (TPSs) using a MBDCA require a set of well-defined test case plans characterized by Monte Carlo (MC) methods. This also permits direct dose comparison to TG-43 reference data. Such test case plans should be made available for use in the software commissioning process performed by clinical end users. To this end, a hypothetical, generic high-dose rate (HDR) {sup 192}Ir source and a virtual watermore » phantom were designed, which can be imported into a TPS. Methods: A hypothetical, generic HDR {sup 192}Ir source was designed based on commercially available sources as well as a virtual, cubic water phantom that can be imported into any TPS in DICOM format. The dose distribution of the generic {sup 192}Ir source when placed at the center of the cubic phantom, and away from the center under altered scatter conditions, was evaluated using two commercial MBDCAs [Oncentra{sup ®} Brachy with advanced collapsed-cone engine (ACE) and BrachyVision ACUROS{sup TM}]. Dose comparisons were performed using state-of-the-art MC codes for radiation transport, including ALGEBRA, BrachyDose, GEANT4, MCNP5, MCNP6, and PENELOPE2008. The methodologies adhered to recommendations in the AAPM TG-229 report on high-energy brachytherapy source dosimetry. TG-43 dosimetry parameters, an along-away dose-rate table, and primary and scatter separated (PSS) data were obtained. The virtual water phantom of (201){sup 3} voxels (1 mm sides) was used to evaluate the calculated dose distributions. Two test case plans involving a single position of the generic HDR {sup 192}Ir source in this phantom were prepared: (i) source centered in the phantom and (ii) source displaced 7 cm laterally from the center. Datasets were independently produced by different investigators. MC results were then compared against dose calculated using TG-43 and MBDCA methods. Results: TG-43 and PSS datasets were generated for the generic source, the PSS data for use with the ACE algorithm. The dose-rate constant values obtained from seven MC simulations, performed independently using different codes, were in excellent agreement, yielding an average of 1.1109 ± 0.0004 cGy/(h U) (k = 1, Type A uncertainty). MC calculated dose-rate distributions for the two plans were also found to be in excellent agreement, with differences within type A uncertainties. Differences between commercial MBDCA and MC results were test, position, and calculation parameter dependent. On average, however, these differences were within 1% for ACUROS and 2% for ACE at clinically relevant distances. Conclusions: A hypothetical, generic HDR {sup 192}Ir source was designed and implemented in two commercially available TPSs employing different MBDCAs. Reference dose distributions for this source were benchmarked and used for the evaluation of MBDCA calculations employing a virtual, cubic water phantom in the form of a CT DICOM image series. The implementation of a generic source of identical design in all TPSs using MBDCAs is an important step toward supporting univocal commissioning procedures and direct comparisons between TPSs.« less
Dosimetry study for a new in vivo X-ray fluorescence (XRF) bone lead measurement system
NASA Astrophysics Data System (ADS)
Nie, Huiling; Chettle, David; Luo, Liqiang; O'Meara, Joanne
2007-10-01
A new 109Cd γ-ray induced bone lead measurement system has been developed to reduce the minimum detectable limit (MDL) of the system. The system consists of four 16 mm diameter detectors. It requires a stronger source compared to the "conventional" system. A dosimetry study has been performed to estimate the dose delivered by this system. The study was carried out by using human-equivalent phantoms. Three sets of phantoms were made to estimate the dose delivered to three age groups: 5-year old, 10-year old and adults. Three approaches have been applied to evaluate the dose: calculations, Monte Carlo (MC) simulations, and experiments. Experimental results and analytical calculations were used to validate MC simulation. The experiments were performed by placing Panasonic UD-803AS TLDs at different places in phantoms that representing different organs. Due to the difficulty of obtaining the organ dose and the whole body dose solely by experiments and traditional calculations, the equivalent dose and effective dose were calculated by MC simulations. The result showed that the doses delivered to the organs other than the targeted lower leg are negligibly small. The total effective doses to the three age groups are 8.45/9.37 μSv (female/male), 4.20 μSv, and 0.26 μSv for 5-year old, 10-year old and adult, respectively. An approval to conduct human measurements on this system has been received from the Research Ethics Board based on this research.
Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang
2010-03-01
The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry.
Site-specific range uncertainties caused by dose calculation algorithms for proton therapy
NASA Astrophysics Data System (ADS)
Schuemann, J.; Dowdell, S.; Grassberger, C.; Min, C. H.; Paganetti, H.
2014-08-01
The purpose of this study was to assess the possibility of introducing site-specific range margins to replace current generic margins in proton therapy. Further, the goal was to study the potential of reducing margins with current analytical dose calculations methods. For this purpose we investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict the range of proton fields. Dose distributions predicted by an analytical pencil-beam algorithm were compared with those obtained using Monte Carlo (MC) simulations (TOPAS). A total of 508 passively scattered treatment fields were analyzed for seven disease sites (liver, prostate, breast, medulloblastoma-spine, medulloblastoma-whole brain, lung and head and neck). Voxel-by-voxel comparisons were performed on two-dimensional distal dose surfaces calculated by pencil-beam and MC algorithms to obtain the average range differences and root mean square deviation for each field for the distal position of the 90% dose level (R90) and the 50% dose level (R50). The average dose degradation of the distal falloff region, defined as the distance between the distal position of the 80% and 20% dose levels (R80-R20), was also analyzed. All ranges were calculated in water-equivalent distances. Considering total range uncertainties and uncertainties from dose calculation alone, we were able to deduce site-specific estimations. For liver, prostate and whole brain fields our results demonstrate that a reduction of currently used uncertainty margins is feasible even without introducing MC dose calculations. We recommend range margins of 2.8% + 1.2 mm for liver and prostate treatments and 3.1% + 1.2 mm for whole brain treatments, respectively. On the other hand, current margins seem to be insufficient for some breast, lung and head and neck patients, at least if used generically. If no case specific adjustments are applied, a generic margin of 6.3% + 1.2 mm would be needed for breast, lung and head and neck treatments. We conclude that the currently used generic range uncertainty margins in proton therapy should be redefined site specific and that complex geometries may require a field specific adjustment. Routine verifications of treatment plans using MC simulations are recommended for patients with heterogeneous geometries.
Monte Carlo dose calculations for high-dose-rate brachytherapy using GPU-accelerated processing.
Tian, Z; Zhang, M; Hrycushko, B; Albuquerque, K; Jiang, S B; Jia, X
2016-01-01
Current clinical brachytherapy dose calculations are typically based on the Association of American Physicists in Medicine Task Group report 43 (TG-43) guidelines, which approximate patient geometry as an infinitely large water phantom. This ignores patient and applicator geometries and heterogeneities, causing dosimetric errors. Although Monte Carlo (MC) dose calculation is commonly recognized as the most accurate method, its associated long computational time is a major bottleneck for routine clinical applications. This article presents our recent developments of a fast MC dose calculation package for high-dose-rate (HDR) brachytherapy, gBMC, built on a graphics processing unit (GPU) platform. gBMC-simulated photon transport in voxelized geometry with physics in (192)Ir HDR brachytherapy energy range considered. A phase-space file was used as a source model. GPU-based parallel computation was used to simultaneously transport multiple photons, one on a GPU thread. We validated gBMC by comparing the dose calculation results in water with that computed TG-43. We also studied heterogeneous phantom cases and a patient case and compared gBMC results with Acuros BV results. Radial dose function in water calculated by gBMC showed <0.6% relative difference from that of the TG-43 data. Difference in anisotropy function was <1%. In two heterogeneous slab phantoms and one shielded cylinder applicator case, average dose discrepancy between gBMC and Acuros BV was <0.87%. For a tandem and ovoid patient case, good agreement between gBMC and Acruos BV results was observed in both isodose lines and dose-volume histograms. In terms of the efficiency, it took ∼47.5 seconds for gBMC to reach 0.15% statistical uncertainty within the 5% isodose line for the patient case. The accuracy and efficiency of a new GPU-based MC dose calculation package, gBMC, for HDR brachytherapy make it attractive for clinical applications. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Monte Carlo-based QA for IMRT of head and neck cancers
NASA Astrophysics Data System (ADS)
Tang, F.; Sham, J.; Ma, C.-M.; Li, J.-S.
2007-06-01
It is well-known that the presence of large air cavity in a dense medium (or patient) introduces significant electronic disequilibrium when irradiated with megavoltage X-ray field. This condition may worsen by the possible use of tiny beamlets in intensity-modulated radiation therapy (IMRT). Commercial treatment planning systems (TPSs), in particular those based on the pencil-beam method, do not provide accurate dose computation for the lungs and other cavity-laden body sites such as the head and neck. In this paper we present the use of Monte Carlo (MC) technique for dose re-calculation of IMRT of head and neck cancers. In our clinic, a turn-key software system is set up for MC calculation and comparison with TPS-calculated treatment plans as part of the quality assurance (QA) programme for IMRT delivery. A set of 10 off-the-self PCs is employed as the MC calculation engine with treatment plan parameters imported from the TPS via a graphical user interface (GUI) which also provides a platform for launching remote MC simulation and subsequent dose comparison with the TPS. The TPS-segmented intensity maps are used as input for the simulation hence skipping the time-consuming simulation of the multi-leaf collimator (MLC). The primary objective of this approach is to assess the accuracy of the TPS calculations in the presence of air cavities in the head and neck whereas the accuracy of leaf segmentation is verified by fluence measurement using a fluoroscopic camera-based imaging device. This measurement can also validate the correct transfer of intensity maps to the record and verify system. Comparisons between TPS and MC calculations of 6 MV IMRT for typical head and neck treatments review regional consistency in dose distribution except at and around the sinuses where our pencil-beam-based TPS sometimes over-predicts the dose by up to 10%, depending on the size of the cavities. In addition, dose re-buildup of up to 4% is observed at the posterior nasopharyngeal mucosa for some treatments with heavily-weighted anterior fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Cherian, S; Stephans, K
2014-06-15
Purpose: To investigate whether Monte Carlo (MC) recalculated dose distributions can predict the geometric location of the recurrence for nonsmall cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT). Methods: Thirty NSCLC patients with local recurrence were retrospectively selected for this study. The recurred gross target volumes (rGTV) were delineated on the follow-up CT/PET images and then rigidly transferred via imaging fusion to the original planning CTs. Failure pattern was defined according to the overlap between the rGTV and planning GTV (pGTV) as: (a) in-field failure (≥80%), (b) marginal failure (20%–80%), and (c) out-of-field failure (≤20%). All clinicalmore » plans were calculated initially with pencil beam (PB) with or without heterogeneity correction dependent of protocols. These plans were recalculated with MC with heterogeneity correction. Because of non-uniform dose distributions in the rGTVs, the rGTVs were further divided into four regions: inside the pGTV (GTVin), inside the PTV (PTVin), outside the pGTV (GTVout), and outside the PTV (PTVout). The mean doses to these regions were reported and analyzed separately. Results: Among 30 patients, 10 patients had infield recurrences, 15 marginal and 5 out-of-field failures. With MC calculations, D95 and D99 of the PTV were reduced by (10.6 ± 7.4)% and (11.7 ± 7.9)%. The average MC calculated mean doses of GTVin, GTVout, PTVin and PTVout were 48.2 ± 5.3 Gy, 48.2 ± 5.5 Gy, 46.3 ± 6.2 Gy and 46.6 ± 5.6 Gy, respectively. No significant dose differences between GTVin and GTVout (p=0.65), PTVin and PTVout (p=0.19) were observed, using the paired students t-test. Conclusion: Although the PB calculations underestimated the tumor target doses, the geometric location of the recurrence did not correlate with the mean doses of subsections of the recurrent GTV. Under dose regions recalculated by MC cannot predict the local failure for NSCLC patients treated with SBRT.« less
NASA Astrophysics Data System (ADS)
Jung, Hyunuk; Shin, Jungsuk; Chung, Kwangzoo; Han, Youngyih; Kim, Jinsung; Choi, Doo Ho
2015-05-01
The aim of this study was to develop an independent dose verification system by using a Monte Carlo (MC) calculation method for intensity modulated radiation therapy (IMRT) conducted by using a Varian Novalis Tx (Varian Medical Systems, Palo Alto, CA, USA) equipped with a highdefinition multi-leaf collimator (HD-120 MLC). The Geant4 framework was used to implement a dose calculation system that accurately predicted the delivered dose. For this purpose, the Novalis Tx Linac head was modeled according to the specifications acquired from the manufacturer. Subsequently, MC simulations were performed by varying the mean energy, energy spread, and electron spot radius to determine optimum values of irradiation with 6-MV X-ray beams by using the Novalis Tx system. Computed percentage depth dose curves (PDDs) and lateral profiles were compared to the measurements obtained by using an ionization chamber (CC13). To validate the IMRT simulation by using the MC model we developed, we calculated a simple IMRT field and compared the result with the EBT3 film measurements in a water-equivalent solid phantom. Clinical cases, such as prostate cancer treatment plans, were then selected, and MC simulations were performed. The accuracy of the simulation was assessed against the EBT3 film measurements by using a gamma-index criterion. The optimal MC model parameters to specify the beam characteristics were a 6.8-MeV mean energy, a 0.5-MeV energy spread, and a 3-mm electron radius. The accuracy of these parameters was determined by comparison of MC simulations with measurements. The PDDs and the lateral profiles of the MC simulation deviated from the measurements by 1% and 2%, respectively, on average. The computed simple MLC fields agreed with the EBT3 measurements with a 95% passing rate with 3%/3-mm gamma-index criterion. Additionally, in applying our model to clinical IMRT plans, we found that the MC calculations and the EBT3 measurements agreed well with a passing rate of greater than 95% on average with a 3%/3-mm gamma-index criterion. In summary, the Novalis Tx Linac head equipped with a HD-120 MLC was successfully modeled by using a Geant4 platform, and the accuracy of the Geant4 platform was successfully validated by comparisons with measurements. The MC model we have developed can be a useful tool for pretreatment quality assurance of IMRT plans and for commissioning of radiotherapy treatment planning.
NASA Astrophysics Data System (ADS)
Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal
2017-08-01
This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT examinations in a 320 detector-row cone-beam scanner.
Cros, Maria; Joemai, Raoul M S; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal
2017-07-17
This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT examinations in a 320 detector-row cone-beam scanner.
Puchalska, Monika; Sihver, Lembit
2015-06-21
Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.
NASA Astrophysics Data System (ADS)
Puchalska, Monika; Sihver, Lembit
2015-06-01
Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.
Patient‐specific CT dosimetry calculation: a feasibility study
Xie, Huchen; Cheng, Jason Y.; Ning, Holly; Zhuge, Ying; Miller, Robert W.
2011-01-01
Current estimation of radiation dose from computed tomography (CT) scans on patients has relied on the measurement of Computed Tomography Dose Index (CTDI) in standard cylindrical phantoms, and calculations based on mathematical representations of “standard man”. Radiation dose to both adult and pediatric patients from a CT scan has been a concern, as noted in recent reports. The purpose of this study was to investigate the feasibility of adapting a radiation treatment planning system (RTPS) to provide patient‐specific CT dosimetry. A radiation treatment planning system was modified to calculate patient‐specific CT dose distributions, which can be represented by dose at specific points within an organ of interest, as well as organ dose‐volumes (after image segmentation) for a GE Light Speed Ultra Plus CT scanner. The RTPS calculation algorithm is based on a semi‐empirical, measured correction‐based algorithm, which has been well established in the radiotherapy community. Digital representations of the physical phantoms (virtual phantom) were acquired with the GE CT scanner in axial mode. Thermoluminescent dosimeter (TLDs) measurements in pediatric anthropomorphic phantoms were utilized to validate the dose at specific points within organs of interest relative to RTPS calculations and Monte Carlo simulations of the same virtual phantoms (digital representation). Congruence of the calculated and measured point doses for the same physical anthropomorphic phantom geometry was used to verify the feasibility of the method. The RTPS algorithm can be extended to calculate the organ dose by calculating a dose distribution point‐by‐point for a designated volume. Electron Gamma Shower (EGSnrc) codes for radiation transport calculations developed by National Research Council of Canada (NRCC) were utilized to perform the Monte Carlo (MC) simulation. In general, the RTPS and MC dose calculations are within 10% of the TLD measurements for the infant and child chest scans. With respect to the dose comparisons for the head, the RTPS dose calculations are slightly higher (10%–20%) than the TLD measurements, while the MC results were within 10% of the TLD measurements. The advantage of the algebraic dose calculation engine of the RTPS is a substantially reduced computation time (minutes vs. days) relative to Monte Carlo calculations, as well as providing patient‐specific dose estimation. It also provides the basis for a more elaborate reporting of dosimetric results, such as patient specific organ dose volumes after image segmentation. PACS numbers: 87.55.D‐, 87.57.Q‐, 87.53.Bn, 87.55.K‐ PMID:22089016
Chow, J; Leung, M; Van Dyk, J
2008-07-01
This study provides new information on the evaluation of the lung dose calculation algorithms as a function of the relative electron density of lung, ρ e,lung . Doses calculated using the collapsed cone convolution (CCC) and adaptive convolution (AC) algorithm in lung with the Pinnacle 3 system were compared to those calculated using the Monte Carlo (MC) simulation (EGSnrc-based code). Three groups of lung phantoms, namely, "Slab", "Column" and "Cube" with different ρ e,lung (0.05-0.7), positions, volumes and shapes of lung in water were used. 6 and 18MV photon beams with 4×4 and 10×10cm 2 field sizes produced by a Varian 21EX Linac were used in the MC dose calculations. Results show that the CCC algorithm agrees well with AC to within ±1% for doses calculated in the lung phantoms, indicating that the AC, with 3-4 times less computing time required than CCC, is a good substitute for the CCC method. Comparing the CCC and AC with MC, dose deviations are found when ρ e,lung are ⩽0.1-0.3. The degree of deviation depends on the photon beam energy and field size, and is relatively large when high-energy photon beams with small field are used. For the penumbra widths (20%-80%), the CCC and AC agree well with MC for the "Slab" and "Cube" phantoms with the lung volumes at the central beam axis (CAX). However, deviations >2mm occur in the "Column" phantoms, with two lung volumes separated by a water column along the CAX, using the 18MV (4×4cm 2 ) photon beams with ρ e,lung ⩽0.1. © 2008 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Schiavi, A.; Senzacqua, M.; Pioli, S.; Mairani, A.; Magro, G.; Molinelli, S.; Ciocca, M.; Battistoni, G.; Patera, V.
2017-09-01
Ion beam therapy is a rapidly growing technique for tumor radiation therapy. Ions allow for a high dose deposition in the tumor region, while sparing the surrounding healthy tissue. For this reason, the highest possible accuracy in the calculation of dose and its spatial distribution is required in treatment planning. On one hand, commonly used treatment planning software solutions adopt a simplified beam-body interaction model by remapping pre-calculated dose distributions into a 3D water-equivalent representation of the patient morphology. On the other hand, Monte Carlo (MC) simulations, which explicitly take into account all the details in the interaction of particles with human tissues, are considered to be the most reliable tool to address the complexity of mixed field irradiation in a heterogeneous environment. However, full MC calculations are not routinely used in clinical practice because they typically demand substantial computational resources. Therefore MC simulations are usually only used to check treatment plans for a restricted number of difficult cases. The advent of general-purpose programming GPU cards prompted the development of trimmed-down MC-based dose engines which can significantly reduce the time needed to recalculate a treatment plan with respect to standard MC codes in CPU hardware. In this work, we report on the development of fred, a new MC simulation platform for treatment planning in ion beam therapy. The code can transport particles through a 3D voxel grid using a class II MC algorithm. Both primary and secondary particles are tracked and their energy deposition is scored along the trajectory. Effective models for particle-medium interaction have been implemented, balancing accuracy in dose deposition with computational cost. Currently, the most refined module is the transport of proton beams in water: single pencil beam dose-depth distributions obtained with fred agree with those produced by standard MC codes within 1-2% of the Bragg peak in the therapeutic energy range. A comparison with measurements taken at the CNAO treatment center shows that the lateral dose tails are reproduced within 2% in the field size factor test up to 20 cm. The tracing kernel can run on GPU hardware, achieving 10 million primary s-1 on a single card. This performance allows one to recalculate a proton treatment plan at 1% of the total particles in just a few minutes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, J; Zhang, Y; Zheng, Y
2015-06-15
Purpose: Spine hardware made of high-Z materials such as titanium has the potential to affect the dose distribution around the metal rods in CyberKnife spinal stereotactic radiosurgery (SRS) treatments. The purpose of this work was to evaluate the magnitude of such effect retrospectively for clinical CyberKnife plans. Methods: The dose calculation was performed within the MultiPlan treatment planning system using the ray tracing (RT) and Monte Carlo (MC) method. A custom density model was created by extending the CT-to-Density table to titanium density of 4.5 g/cm3 with the CT number of 4095. To understand the dose perturbation caused by themore » titanium rod, a simple beam setup (7.5 mm IRIS collimator) was used to irradiate a mimic rod (5 mm) with overridden high density. Five patient spinal SRS cases were found chronologically from 2010 to 2015 in our institution. For each case, the hardware was contoured manually. The original plan was re-calculated using both RT and MC methods with and without rod density override without changing clinical beam parameters. Results: The simple beam irradiation shows that there is 10% dose increase at the interface because of electron backscattering and 7% decrease behind the rod because of photon attenuation. For actual clinical plans, the iso-dose lines and DVHs are almost identical (<2%) for calculations with and without density override for both RT and MC methods. However, there is a difference of more than 10% for D90 between RT and MC method. Conclusion: Although the dose perturbation around the metal rods can be as large as 10% for a single beam irradiation, for clinical treatments with complex beam composition the effect of spinal hardware to the PTV and spinal dose is minimal. As such, the MC dose algorithm without rod density override for CyberKnife spinal SRS is acceptable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, C; Palma, B; Qu, B
2014-06-01
Purpose: To evaluate the effect of metal implants on treatment plans for radiation therapy with very high-energy electron (VHEE) beams. Methods: The DOSXYZnrc/BEAMnrc Monte Carlo (MC) codes were used to simulate 50–150MeV VHEE beam dose deposition and its effects on steel and titanium (Ti) heterogeneities in a water phantom. Heterogeneities of thicknesses ranging from 0.5cm to 2cm were placed at 10cm depth. MC was also used to calculate electron and photon spectra generated by the VHEE beams' interaction with metal heterogeneities. The original VMAT patient dose calculation was planned in Eclipse. Patient dose calculations with MC-generated beamlets were planned usingmore » a Matlab GUI and research version of RayStation. VHEE MC treatment planning was performed on water-only geometry and water with segmented prostheses (steel and Ti) geometries with 100MeV and 150MeV beams. Results: 100MeV PDD 5cm behind steel/Ti heterogeneity was 51% less than in the water-only phantom. For some cases, dose enhancement lateral to the borders of the phantom increased the dose by up to 22% in steel and 18% in Ti heterogeneities. The dose immediately behind steel heterogeneity decreased by an average of 6%, although for 150MeV, the steel heterogeneity created a 23% increase in dose directly behind it. The average dose immediately behind Ti heterogeneities increased 10%. The prostate VHEE plans resulted in mean dose decrease to the bowel (20%), bladder (7%), and the urethra (5%) compared to the 15MV VMAT plan. The average dose to the body with prosthetic implants was 5% higher than to the body without implants. Conclusion: Based on MC simulations, metallic implants introduce dose perturbations to VHEE beams from lateral scatter and backscatter. However, when performing clinical planning on a prostate case, the use of multiple beams and inverse planning still produces VHEE plans that are dosimetrically superior to photon VMAT plans. BW Loo and P Maxim received research support from RaySearch laboratories; B Hardemark and E Hynning are employees of RaySearch.« less
Morrison, Hali; Menon, Geetha; Larocque, Matthew P; van Veelen, Bob; Niatsetski, Yury; Weis, Ezekiel; Sloboda, Ron S
2018-05-04
To investigate the dose calculation accuracy of the Advanced Collapsed cone Engine (ACE) algorithm for ocular brachytherapy using a COMS plaque loaded with I-125 seeds for two heterogeneous patient tissue scenarios. The Oncura model 6711 I-125 seed and 16 mm COMS plaque were added to a research version (v4.6) of the Oncentra ® Brachy (OcB) treatment planning system (TPS) for dose calculations using ACE. Treatment plans were created for two heterogeneous cases: (a) a voxelized eye phantom comprising realistic eye materials and densities and (b) a patient CT dataset with variable densities throughout the dataset. ACE dose calculations were performed using a high accuracy mode, high-resolution calculation grid matching the imported CT datasets (0.5 × 0.5 × 0.5 mm 3 ), and a user-defined CT calibration curve. The accuracy of ACE was evaluated by replicating the plan geometries and comparing to Monte Carlo (MC) calculated doses obtained using MCNP6. The effects of the heterogeneous patient tissues on the dose distributions were also evaluated by performing the ACE and MCNP6 calculations for the same scenarios but setting all tissues and air to water. Average local percent dose differences between ACE and MC within contoured structures and at points of interest for both scenarios ranged from 1.2% to 20.9%, and along the plaque central axis (CAX) from 0.7% to 7.8%. The largest differences occurred in the plaque penumbra (up to 17%), and at contoured structure interfaces (up to 20%). Other regions in the eye agreed more closely, within the uncertainties of ACE dose calculations (~5%). Compared to that, dose differences between water-based and fully heterogeneous tissue simulations were up to 27%. Overall, ACE dosimetry agreed well with MC in the tumor volume and along the plaque CAX for the two heterogeneous tissue scenarios, indicating that ACE could potentially be used for clinical ocular brachytherapy dosimetry. In general, ACE data matched the fully heterogeneous MC data more closely than water-based data, even in regions where the ACE accuracy was relatively low. However, depending on the plaque position, doses to critical structures near the plaque penumbra or at tissue interfaces were less accurate, indicating that improvements may be necessary. More extensive knowledge of eye tissue compositions is still required. © 2018 American Association of Physicists in Medicine.
Xiang, Hong F; Song, Jun S; Chin, David W H; Cormack, Robert A; Tishler, Roy B; Makrigiorgos, G Mike; Court, Laurence E; Chin, Lee M
2007-04-01
This work is intended to investigate the application and accuracy of micro-MOSFET for superficial dose measurement under clinically used MV x-ray beams. Dose response of micro-MOSFET in the build-up region and on surface under MV x-ray beams were measured and compared to Monte Carlo calculations. First, percentage-depth-doses were measured with micro-MOSFET under 6 and 10 MV beams of normal incidence onto a flat solid water phantom. Micro-MOSFET data were compared with the measurements from a parallel plate ionization chamber and Monte Carlo dose calculation in the build-up region. Then, percentage-depth-doses were measured for oblique beams at 0 degrees-80 degrees onto the flat solid water phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm below the surface. Measurements were compared to Monte Carlo calculations under these settings. Finally, measurements were performed with micro-MOSFET embedded in the first 1 mm layer of bolus placed on a flat phantom and a curved phantom of semi-cylindrical shape. Results were compared to superficial dose calculated from Monte Carlo for a 2 mm thin layer that extends from the surface to a depth of 2 mm. Results were (1) Comparison of measurements with MC calculation in the build-up region showed that micro-MOSFET has a water-equivalence thickness (WET) of 0.87 mm for 6 MV beam and 0.99 mm for 10 MV beam from the flat side, and a WET of 0.72 mm for 6 MV beam and 0.76 mm for 10 MV beam from the epoxy side. (2) For normal beam incidences, percentage depth dose agree within 3%-5% among micro-MOSFET measurements, parallel-plate ionization chamber measurements, and MC calculations. (3) For oblique incidence on the flat phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm, measurements were consistent with MC calculations within a typical uncertainty of 3%-5%. (4) For oblique incidence on the flat phantom and a curved-surface phantom, measurements with micro-MOSFET placed at 1.0 mm agrees with the MC calculation within 6%, including uncertainties of micro-MOSFET measurements of 2%-3% (1 standard deviation), MOSFET angular dependence of 3.0%-3.5%, and 1%-2% systematical error due to phantom setup geometry asymmetry. Micro-MOSFET can be used for skin dose measurements in 6 and 10 MV beams with an estimated accuracy of +/- 6%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, N; Shen, C; Tian, Z
Purpose: Monte Carlo (MC) simulation is typically regarded as the most accurate dose calculation method for proton therapy. Yet for real clinical cases, the overall accuracy also depends on that of the MC beam model. Commissioning a beam model to faithfully represent a real beam requires finely tuning a set of model parameters, which could be tedious given the large number of pencil beams to commmission. This abstract reports an automatic beam-model commissioning method for pencil-beam scanning proton therapy via an optimization approach. Methods: We modeled a real pencil beam with energy and spatial spread following Gaussian distributions. Mean energy,more » and energy and spatial spread are model parameters. To commission against a real beam, we first performed MC simulations to calculate dose distributions of a set of ideal (monoenergetic, zero-size) pencil beams. Dose distribution for a real pencil beam is hence linear superposition of doses for those ideal pencil beams with weights in the Gaussian form. We formulated the commissioning task as an optimization problem, such that the calculated central axis depth dose and lateral profiles at several depths match corresponding measurements. An iterative algorithm combining conjugate gradient method and parameter fitting was employed to solve the optimization problem. We validated our method in simulation studies. Results: We calculated dose distributions for three real pencil beams with nominal energies 83, 147 and 199 MeV using realistic beam parameters. These data were regarded as measurements and used for commission. After commissioning, average difference in energy and beam spread between determined values and ground truth were 4.6% and 0.2%. With the commissioned model, we recomputed dose. Mean dose differences from measurements were 0.64%, 0.20% and 0.25%. Conclusion: The developed automatic MC beam-model commissioning method for pencil-beam scanning proton therapy can determine beam model parameters with satisfactory accuracy.« less
Serban, M; Ruo, R; Sarfehnia, A; Parker, W; Evans, M
2012-07-01
Fast electron Monte Carlo systems have been developed commercially, and implemented for clinical practice in radiation therapy clinics. In this work the Varian eMC (electron Monte Carlo) algorithm was commissioned for clinical electron beams of energies between 6 MeV and 20 MeV. Beam outputs, PDDs and profiles were measured for 29 regular and irregular cutouts using the IC-10 (Wellhöfer) ionization chamber. Detailed percentage depth dose comparisons showed that the agreement between measurement and eMC for different characteristic points on the PDD are generally less than 1 mm and always less than 2 mm, with the eMC calculated values being lower than the measured values. Of the 145 measured output factors, 19 cases fail a ±2% agreement but only 8 cases fail a ±3% agreement between calculation and measurement. Comparison of central axis dose distributions for two electron energies (9, and 20 MeV) for a 10 × 10 cm 2 field, centrally shielded with Pb of width 0 cm (open), 1, 2 and 3 cm, shows agreement to within 3% except near the surface. Comparison of central axis dose distributions for 9 MeV in heterogeneous phantoms including bone and lung inserts showed agreement of 1 mm and 3 mm respectively with measured TLD data. The overall agreement between measurement and eMC calculation has enabled us to begin implementing this calculation model for clinical use. © 2012 American Association of Physicists in Medicine.
TU-AB-BRC-12: Optimized Parallel MonteCarlo Dose Calculations for Secondary MU Checks
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, S; Nazareth, D; Bellor, M
Purpose: Secondary MU checks are an important tool used during a physics review of a treatment plan. Commercial software packages offer varying degrees of theoretical dose calculation accuracy, depending on the modality involved. Dose calculations of VMAT plans are especially prone to error due to the large approximations involved. Monte Carlo (MC) methods are not commonly used due to their long run times. We investigated two methods to increase the computational efficiency of MC dose simulations with the BEAMnrc code. Distributed computing resources, along with optimized code compilation, will allow for accurate and efficient VMAT dose calculations. Methods: The BEAMnrcmore » package was installed on a high performance computing cluster accessible to our clinic. MATLAB and PYTHON scripts were developed to convert a clinical VMAT DICOM plan into BEAMnrc input files. The BEAMnrc installation was optimized by running the VMAT simulations through profiling tools which indicated the behavior of the constituent routines in the code, e.g. the bremsstrahlung splitting routine, and the specified random number generator. This information aided in determining the most efficient compiling parallel configuration for the specific CPU’s available on our cluster, resulting in the fastest VMAT simulation times. Our method was evaluated with calculations involving 10{sup 8} – 10{sup 9} particle histories which are sufficient to verify patient dose using VMAT. Results: Parallelization allowed the calculation of patient dose on the order of 10 – 15 hours with 100 parallel jobs. Due to the compiler optimization process, further speed increases of 23% were achieved when compared with the open-source compiler BEAMnrc packages. Conclusion: Analysis of the BEAMnrc code allowed us to optimize the compiler configuration for VMAT dose calculations. In future work, the optimized MC code, in conjunction with the parallel processing capabilities of BEAMnrc, will be applied to provide accurate and efficient secondary MU checks.« less
Yoo, Do Hyeon; Shin, Wook-Geun; Lee, Jaekook; Yeom, Yeon Soo; Kim, Chan Hyeong; Chang, Byung-Uck; Min, Chul Hee
2017-11-01
After the Fukushima accident in Japan, the Korean Government implemented the "Act on Protective Action Guidelines Against Radiation in the Natural Environment" to regulate unnecessary radiation exposure to the public. However, despite the law which came into effect in July 2012, an appropriate method to evaluate the equivalent and effective doses from naturally occurring radioactive material (NORM) in consumer products is not available. The aim of the present study is to develop and validate an effective dose coefficient database enabling the simple and correct evaluation of the effective dose due to the usage of NORM-added consumer products. To construct the database, we used a skin source method with a computational human phantom and Monte Carlo (MC) simulation. For the validation, the effective dose was compared between the database using interpolation method and the original MC method. Our result showed a similar equivalent dose across the 26 organs and a corresponding average dose between the database and the MC calculations of < 5% difference. The differences in the effective doses were even less, and the result generally show that equivalent and effective doses can be quickly calculated with the database with sufficient accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, D; Badkul, R; Jiang, H
2014-06-01
Purpose: Lung-SBRT uses hypo-fractionated dose in small non-IMRT fields with tissue-heterogeneity corrected plans. An independent MU verification is mandatory for safe and effective delivery of the treatment plan. This report compares planned MU obtained from iPlan-XVM-Calgorithm against spreadsheet-based hand-calculation using most commonly used simple TMR-based method. Methods: Treatment plans of 15 patients who underwent for MC-based lung-SBRT to 50Gy in 5 fractions for PTV V100%=95% were studied. ITV was delineated on MIP images based on 4D-CT scans. PTVs(ITV+5mm margins) ranged from 10.1- 106.5cc(average=48.6cc). MC-SBRT plans were generated using a combination of non-coplanar conformal arcs/beams using iPlan XVM-Calgorithm (BrainLAB iPlan ver.4.1.2)more » for Novalis-TX consisting of micro-MLCs and 6MV-SRS (1000MU/min) beam. These plans were re-computed using heterogeneity-corrected Pencil-Beam (PB-hete) algorithm without changing any beam parameters, such as MLCs/MUs. Dose-ratio: PB-hete/MC gave beam-by-beam inhomogeneity-correction-factors (ICFs):Individual Correction. For independent-2nd-check, MC-MUs were verified using TMR-based hand-calculation and obtained an average ICF:Average Correction, whereas TMR-based hand-calculation systematically underestimated MC-MUs by ∼5%. Also, first 10 MC-plans were verified with an ion-chamber measurement using homogenous phantom. Results: For both beams/arcs, mean PB-hete dose was systematically overestimated by 5.5±2.6% and mean hand-calculated MU systematic underestimated by 5.5±2.5% compared to XVMC. With individual correction, mean hand-calculated MUs matched with XVMC by - 0.3±1.4%/0.4±1.4 for beams/arcs, respectively. After average 5% correction, hand-calculated MUs matched with XVMC by 0.5±2.5%/0.6±2.0% for beams/arcs, respectively. Smaller dependence on tumor volume(TV)/field size(FS) was also observed. Ion-chamber measurement was within ±3.0%. Conclusion: PB-hete overestimates dose to lung tumor relative to XVMC. XVMC-algorithm is much more-complex and accurate with tissues-heterogeneities. Measurement at machine is time consuming and need extra resources; also direct measurement of dose for heterogeneous treatment plans is not clinically practiced, yet. This simple correction-based method was very helpful for independent-2nd-check of MC-lung-SBRT plans and routinely used in our clinic. A look-up table can be generated to include TV/FS dependence in ICFs.« less
Granton, Patrick V; Verhaegen, Frank
2013-05-21
Precision image-guided small animal radiotherapy is rapidly advancing through the use of dedicated micro-irradiation devices. However, precise modeling of these devices in model-based dose-calculation algorithms such as Monte Carlo (MC) simulations continue to present challenges due to a combination of very small beams, low mechanical tolerances on beam collimation, positioning and long calculation times. The specific intent of this investigation is to introduce and demonstrate the viability of a fast analytical source model (AM) for use in either investigating improvements in collimator design or for use in faster dose calculations. MC models using BEAMnrc were developed for circular and square fields sizes from 1 to 25 mm in diameter (or side) that incorporated the intensity distribution of the focal spot modeled after an experimental pinhole image. These MC models were used to generate phase space files (PSFMC) at the exit of the collimators. An AM was developed that included the intensity distribution of the focal spot, a pre-calculated x-ray spectrum, and the collimator-specific entrance and exit apertures. The AM was used to generate photon fluence intensity distributions (ΦAM) and PSFAM containing photons radiating at angles according to the focal spot intensity distribution. MC dose calculations using DOSXYZnrc in a water and mouse phantom differing only by source used (PSFMC versus PSFAM) were found to agree within 7% and 4% for the smallest 1 and 2 mm collimator, respectively, and within 1% for all other field sizes based on depth dose profiles. PSF generation times were approximately 1200 times faster for the smallest beam and 19 times faster for the largest beam. The influence of the focal spot intensity distribution on output and on beam shape was quantified and found to play a significant role in calculated dose distributions. Beam profile differences due to collimator alignment were found in both small and large collimators sensitive to shifts of 1 mm with respect to the central axis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, D; Badkul, R; Jiang, H
2014-06-15
Purpose: SBRT with hypofractionated dose schemata has emerged a compelling treatment modality for medically inoperable early stage lung cancer patients. It requires more accurate dose calculation and treatment delivery technique. This report presents the relationship between tumor control probability(TCP) and size-adjusted biological effective dose(sBED) of tumor volume for MC lung SBRT patients. Methods: Fifteen patients who were treated with MC-based lung SBRT to 50Gy in 5 fractions to PTVV100%=95% were studied. ITVs were delineated on MIP images of 4DCT-scans. PTVs diameter(ITV+5mm margins) ranged from 2.7–4.9cm (mean 3.7cm). Plans were generated using non-coplanar conformal arcs/beams using iPlan XVMC algorithm (BrainLABiPlan ver.4.1.2)more » for Novalis-TX with HD-MLCs and 6MVSRS(1000MU/min) mode, following RTOG-0813 dosimetric guidelines. To understand the known uncertainties of conventional heterogeneities-corrected/uncorrected pencil beam (PBhete/ PB-homo) algorithms, dose distributions were re-calculated with PBhete/ PB-homo using same beam configurations, MLCs and monitor units. Biologically effective dose(BED10) was computed using LQ-model with α/β=10Gy for meanPTV and meanITV. BED10-c*L, gave size-adjusted BED(sBED), where c=10Gy/cm and L=PTV diameter in centimeter. The TCP model was adopted from Ohri et al.(IJROBP, 2012): TCP = exp[sBEDTCD50]/ k /(1.0 + exp[sBED-TCD50]/k), where k=31Gy corresponding to TCD50=0Gy; and more realistic MC-based TCP was computed for PTV(V99%). Results: Mean PTV PB-hete TCP value was 6% higher, but, mean PTV PB-homo TCP value was 4% lower compared to mean PTV MC TCP. Mean ITV PB-hete/PB-homo TCP values were comparable (within ±3.0%) to mean ITV MC TCP. The mean PTV(V99%)had BED10=90.9±3.7%(median=92.2%),sBED=54.1±8.2%(median=53.5%) corresponding to mean MC TCP value of 84.8±3.3%(median=84.9%) at 2- year local control. Conclusion: The TCP model which incorporates BED10 and tumor diameter indicates that radiobiological effect of target volume and dose calculation algorithm significantly affects TCP for lung SBRT patients. Dose calculation using MC-based algorithm is more realistic with tissue heterogeneities and is routinely performed in our clinic. Patients will be followed up to determine whether TCP prediction correlate clinical outcomes.« less
NASA Astrophysics Data System (ADS)
Doucet, R.; Olivares, M.; DeBlois, F.; Podgorsak, E. B.; Kawrakow, I.; Seuntjens, J.
2003-08-01
Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 × 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid WaterTM (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.
Doucet, R; Olivares, M; DeBlois, F; Podgorsak, E B; Kawrakow, I; Seuntjens, J
2003-08-07
Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 x 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid Water (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.
A virtual source model for Monte Carlo simulation of helical tomotherapy.
Yuan, Jiankui; Rong, Yi; Chen, Quan
2015-01-08
The purpose of this study was to present a Monte Carlo (MC) simulation method based on a virtual source, jaw, and MLC model to calculate dose in patient for helical tomotherapy without the need of calculating phase-space files (PSFs). Current studies on the tomotherapy MC simulation adopt a full MC model, which includes extensive modeling of radiation source, primary and secondary jaws, and multileaf collimator (MLC). In the full MC model, PSFs need to be created at different scoring planes to facilitate the patient dose calculations. In the present work, the virtual source model (VSM) we established was based on the gold standard beam data of a tomotherapy unit, which can be exported from the treatment planning station (TPS). The TPS-generated sinograms were extracted from the archived patient XML (eXtensible Markup Language) files. The fluence map for the MC sampling was created by incorporating the percentage leaf open time (LOT) with leaf filter, jaw penumbra, and leaf latency contained from sinogram files. The VSM was validated for various geometry setups and clinical situations involving heterogeneous media and delivery quality assurance (DQA) cases. An agreement of < 1% was obtained between the measured and simulated results for percent depth doses (PDDs) and open beam profiles for all three jaw settings in the VSM commissioning. The accuracy of the VSM leaf filter model was verified in comparing the measured and simulated results for a Picket Fence pattern. An agreement of < 2% was achieved between the presented VSM and a published full MC model for heterogeneous phantoms. For complex clinical head and neck (HN) cases, the VSM-based MC simulation of DQA plans agreed with the film measurement with 98% of planar dose pixels passing on the 2%/2 mm gamma criteria. For patient treatment plans, results showed comparable dose-volume histograms (DVHs) for planning target volumes (PTVs) and organs at risk (OARs). Deviations observed in this study were consistent with literature. The VSM-based MC simulation approach can be feasibly built from the gold standard beam model of a tomotherapy unit. The accuracy of the VSM was validated against measurements in homogeneous media, as well as published full MC model in heterogeneous media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candela-Juan, C., E-mail: ccanjuan@gmail.com; Niatsetski, Y.; Laarse, R. van der
Purpose: The aims of this study were (i) to design a new high-dose-rate (HDR) brachytherapy applicator for treating surface lesions with planning target volumes larger than 3 cm in diameter and up to 5 cm in size, using the microSelectron-HDR or Flexitron afterloader (Elekta Brachytherapy) with a {sup 192}Ir source; (ii) to calculate by means of the Monte Carlo (MC) method the dose distribution for the new applicator when it is placed against a water phantom; and (iii) to validate experimentally the dose distributions in water. Methods: The PENELOPE2008 MC code was used to optimize dwell positions and dwell times.more » Next, the dose distribution in a water phantom and the leakage dose distribution around the applicator were calculated. Finally, MC data were validated experimentally for a {sup 192}Ir mHDR-v2 source by measuring (i) dose distributions with radiochromic EBT3 films (ISP); (ii) percentage depth–dose (PDD) curve with the parallel-plate ionization chamber Advanced Markus (PTW); and (iii) absolute dose rate with EBT3 films and the PinPoint T31016 (PTW) ionization chamber. Results: The new applicator is made of tungsten alloy (Densimet) and consists of a set of interchangeable collimators. Three catheters are used to allocate the source at prefixed dwell positions with preset weights to produce a homogenous dose distribution at the typical prescription depth of 3 mm in water. The same plan is used for all available collimators. PDD, absolute dose rate per unit of air kerma strength, and off-axis profiles in a cylindrical water phantom are reported. These data can be used for treatment planning. Leakage around the applicator was also scored. The dose distributions, PDD, and absolute dose rate calculated agree within experimental uncertainties with the doses measured: differences of MC data with chamber measurements are up to 0.8% and with radiochromic films are up to 3.5%. Conclusions: The new applicator and the dosimetric data provided here will be a valuable tool in clinical practice, making treatment of large skin lesions simpler, faster, and safer. Also the dose to surrounding healthy tissues is minimal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Z; Shi, F; Gu, X
2016-06-15
Purpose: This proof-of-concept study is to develop a real-time Monte Carlo (MC) based treatment-dose reconstruction and monitoring system for radiotherapy, especially for the treatments with complicated delivery, to catch treatment delivery errors at the earliest possible opportunity and interrupt the treatment only when an unacceptable dosimetric deviation from our expectation occurs. Methods: First an offline scheme is launched to pre-calculate the expected dose from the treatment plan, used as ground truth for real-time monitoring later. Then an online scheme with three concurrent threads is launched while treatment delivering, to reconstruct and monitor the patient dose in a temporally resolved fashionmore » in real-time. Thread T1 acquires machine status every 20 ms to calculate and accumulate fluence map (FM). Once our accumulation threshold is reached, T1 transfers the FM to T2 for dose reconstruction ad starts to accumulate a new FM. A GPU-based MC dose calculation is performed on T2 when MC dose engine is ready and a new FM is available. The reconstructed instantaneous dose is directed to T3 for dose accumulation and real-time visualization. Multiple dose metrics (e.g. maximum and mean dose for targets and organs) are calculated from the current accumulated dose and compared with the pre-calculated expected values. Once the discrepancies go beyond our tolerance, an error message will be send to interrupt the treatment delivery. Results: A VMAT Head-and-neck patient case was used to test the performance of our system. Real-time machine status acquisition was simulated here. The differences between the actual dose metrics and the expected ones were 0.06%–0.36%, indicating an accurate delivery. ∼10Hz frequency of dose reconstruction and monitoring was achieved, with 287.94s online computation time compared to 287.84s treatment delivery time. Conclusion: Our study has demonstrated the feasibility of computing a dose distribution in a temporally resolved fashion in real-time and quantitatively and dosimetrically monitoring the treatment delivery.« less
Wang, L; Xing, L; Le, Q
2012-06-01
In H&N cancer patients, the development of oral mucositis is related closely to the radiation dose to the oral cavity. It is generally presumed that the existence of metallic dental implants makes it worse due to the scattering effect of the metal. This study investigates the effects of the dental implants on radiation doses to PTV, tongue mucosa, and other structures for IMRT H&N cancer patients by Monte Carlo (MC) dose calculations. Two H&N cancer patients who have dental implant and are treated by IMRT technique are selected for the purpose. The BEAMnrc/DOSXYZnrc MC codes are employed for the CT-image based dose calculations. The radiation sources are the validated Varian phase-space files for 6MV linac beams. The CT image artifacts caused by the dental fillings are replaced by tissue material. Two sets of MC calculations for each patient are performed at a calculation statistics of 1%: one treats all dental implants as bones, the other substitutes the implants by metal of either titanium or gold with correct density. Doses in PTV and various tissue structures are compared for the two scenarios. With titanium implant, there is no significant difference in doses to PTV and tongue mucosa from that when treating implant as bone. With gold implant, the mean dose to PTV is slightly lowered by 1%; the mean dose to tongue mucosa is reduced by less than 0.5%, although the maximum dose is increased by 5%. The scattering dose from titanium implants is not of concern for H&N patients irradiated by 6MV IMRT beams. For gold implants, the scattering dose to tongue mucosa is not as severe as presumed; and the dose to PTV could be slightly compromised due to the attenuation effect of the metal. This work was supported in part by Varian Medical Systems. © 2012 American Association of Physicists in Medicine.
SU-E-T-493: Accelerated Monte Carlo Methods for Photon Dosimetry Using a Dual-GPU System and CUDA.
Liu, T; Ding, A; Xu, X
2012-06-01
To develop a Graphics Processing Unit (GPU) based Monte Carlo (MC) code that accelerates dose calculations on a dual-GPU system. We simulated a clinical case of prostate cancer treatment. A voxelized abdomen phantom derived from 120 CT slices was used containing 218×126×60 voxels, and a GE LightSpeed 16-MDCT scanner was modeled. A CPU version of the MC code was first developed in C++ and tested on Intel Xeon X5660 2.8GHz CPU, then it was translated into GPU version using CUDA C 4.1 and run on a dual Tesla m 2 090 GPU system. The code was featured with automatic assignment of simulation task to multiple GPUs, as well as accurate calculation of energy- and material- dependent cross-sections. Double-precision floating point format was used for accuracy. Doses to the rectum, prostate, bladder and femoral heads were calculated. When running on a single GPU, the MC GPU code was found to be ×19 times faster than the CPU code and ×42 times faster than MCNPX. These speedup factors were doubled on the dual-GPU system. The dose Result was benchmarked against MCNPX and a maximum difference of 1% was observed when the relative error is kept below 0.1%. A GPU-based MC code was developed for dose calculations using detailed patient and CT scanner models. Efficiency and accuracy were both guaranteed in this code. Scalability of the code was confirmed on the dual-GPU system. © 2012 American Association of Physicists in Medicine.
Application of the MCNPX-McStas interface for shielding calculations and guide design at ESS
NASA Astrophysics Data System (ADS)
Klinkby, E. B.; Knudsen, E. B.; Willendrup, P. K.; Lauritzen, B.; Nonbøl, E.; Bentley, P.; Filges, U.
2014-07-01
Recently, an interface between the Monte Carlo code MCNPX and the neutron ray-tracing code MCNPX was developed [1, 2]. Based on the expected neutronic performance and guide geometries relevant for the ESS, the combined MCNPX-McStas code is used to calculate dose rates along neutron beam guides. The generation and moderation of neutrons is simulated using a full scale MCNPX model of the ESS target monolith. Upon entering the neutron beam extraction region, the individual neutron states are handed to McStas via the MCNPX-McStas interface. McStas transports the neutrons through the beam guide, and by using newly developed event logging capability, the neutron state parameters corresponding to un-reflected neutrons are recorded at each scattering. This information is handed back to MCNPX where it serves as neutron source input for a second MCNPX simulation. This simulation enables calculation of dose rates in the vicinity of the guide. In addition the logging mechanism is employed to record the scatterings along the guides which is exploited to simulate the supermirror quality requirements (i.e. m-values) needed at different positions along the beam guide to transport neutrons in the same guide/source setup.
Superficial dose evaluation of four dose calculation algorithms
NASA Astrophysics Data System (ADS)
Cao, Ying; Yang, Xiaoyu; Yang, Zhen; Qiu, Xiaoping; Lv, Zhiping; Lei, Mingjun; Liu, Gui; Zhang, Zijian; Hu, Yongmei
2017-08-01
Accurate superficial dose calculation is of major importance because of the skin toxicity in radiotherapy, especially within the initial 2 mm depth being considered more clinically relevant. The aim of this study is to evaluate superficial dose calculation accuracy of four commonly used algorithms in commercially available treatment planning systems (TPS) by Monte Carlo (MC) simulation and film measurements. The superficial dose in a simple geometrical phantom with size of 30 cm×30 cm×30 cm was calculated by PBC (Pencil Beam Convolution), AAA (Analytical Anisotropic Algorithm), AXB (Acuros XB) in Eclipse system and CCC (Collapsed Cone Convolution) in Raystation system under the conditions of source to surface distance (SSD) of 100 cm and field size (FS) of 10×10 cm2. EGSnrc (BEAMnrc/DOSXYZnrc) program was performed to simulate the central axis dose distribution of Varian Trilogy accelerator, combined with measurements of superficial dose distribution by an extrapolation method of multilayer radiochromic films, to estimate the dose calculation accuracy of four algorithms in the superficial region which was recommended in detail by the ICRU (International Commission on Radiation Units and Measurement) and the ICRP (International Commission on Radiological Protection). In superficial region, good agreement was achieved between MC simulation and film extrapolation method, with the mean differences less than 1%, 2% and 5% for 0°, 30° and 60°, respectively. The relative skin dose errors were 0.84%, 1.88% and 3.90%; the mean dose discrepancies (0°, 30° and 60°) between each of four algorithms and MC simulation were (2.41±1.55%, 3.11±2.40%, and 1.53±1.05%), (3.09±3.00%, 3.10±3.01%, and 3.77±3.59%), (3.16±1.50%, 8.70±2.84%, and 18.20±4.10%) and (14.45±4.66%, 10.74±4.54%, and 3.34±3.26%) for AXB, CCC, AAA and PBC respectively. Monte Carlo simulation verified the feasibility of the superficial dose measurements by multilayer Gafchromic films. And the rank of superficial dose calculation accuracy of four algorithms was AXB>CCC>AAA>PBC. Care should be taken when using the AAA and PBC algorithms in the superficial dose calculation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y. M., E-mail: ymingy@gmail.com; Bednarz, B.; Svatos, M.
Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship withinmore » a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead.« less
Svatos, M.; Zankowski, C.; Bednarz, B.
2016-01-01
Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship within a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead. PMID:27277051
Fine-resolution voxel S values for constructing absorbed dose distributions at variable voxel size.
Dieudonné, Arnaud; Hobbs, Robert F; Bolch, Wesley E; Sgouros, George; Gardin, Isabelle
2010-10-01
This article presents a revised voxel S values (VSVs) approach for dosimetry in targeted radiotherapy, allowing dose calculation for any voxel size and shape of a given SPECT or PET dataset. This approach represents an update to the methodology presented in MIRD pamphlet no. 17. VSVs were generated in soft tissue with a fine spatial sampling using the Monte Carlo (MC) code MCNPX for particle emissions of 9 radionuclides: (18)F, (90)Y, (99m)Tc, (111)In, (123)I, (131)I, (177)Lu, (186)Re, and (201)Tl. A specific resampling algorithm was developed to compute VSVs for desired voxel dimensions. The dose calculation was performed by convolution via a fast Hartley transform. The fine VSVs were calculated for cubic voxels of 0.5 mm for electrons and 1.0 mm for photons. Validation studies were done for (90)Y and (131)I VSV sets by comparing the revised VSV approach to direct MC simulations. The first comparison included 20 spheres with different voxel sizes (3.8-7.7 mm) and radii (4-64 voxels) and the second comparison a hepatic tumor with cubic voxels of 3.8 mm. MC simulations were done with MCNPX for both. The third comparison was performed on 2 clinical patients with the 3D-RD (3-Dimensional Radiobiologic Dosimetry) software using the EGSnrc (Electron Gamma Shower National Research Council Canada)-based MC implementation, assuming a homogeneous tissue-density distribution. For the sphere model study, the mean relative difference in the average absorbed dose was 0.20% ± 0.41% for (90)Y and -0.36% ± 0.51% for (131)I (n = 20). For the hepatic tumor, the difference in the average absorbed dose to tumor was 0.33% for (90)Y and -0.61% for (131)I and the difference in average absorbed dose to the liver was 0.25% for (90)Y and -1.35% for (131)I. The comparison with the 3D-RD software showed an average voxel-to-voxel dose ratio between 0.991 and 0.996. The calculation time was below 10 s with the VSV approach and 50 and 15 h with 3D-RD for the 2 clinical patients. This new VSV approach enables the calculation of absorbed dose based on a SPECT or PET cumulated activity map, with good agreement with direct MC methods, in a faster and more clinically compatible manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroniger, K; Herzog, M; Landry, G
2015-06-15
Purpose: We describe and demonstrate a fast analytical tool for prompt-gamma emission prediction based on filter functions applied on the depth dose profile. We present the implementation in a treatment planning system (TPS) of the same algorithm for positron emitter distributions. Methods: The prediction of the desired observable is based on the convolution of filter functions with the depth dose profile. For both prompt-gammas and positron emitters, the results of Monte Carlo simulations (MC) are compared with those of the analytical tool. For prompt-gamma emission from inelastic proton-induced reactions, homogeneous and inhomogeneous phantoms alongside with patient data are used asmore » irradiation targets of mono-energetic proton pencil beams. The accuracy of the tool is assessed in terms of the shape of the analytically calculated depth profiles and their absolute yields, compared to MC. For the positron emitters, the method is implemented in a research RayStation TPS and compared to MC predictions. Digital phantoms and patient data are used and positron emitter spatial density distributions are analyzed. Results: Calculated prompt-gamma profiles agree with MC within 3 % in terms of absolute yield and reproduce the correct shape. Based on an arbitrary reference material and by means of 6 filter functions (one per chemical element), profiles in any other material composed of those elements can be predicted. The TPS implemented algorithm is accurate enough to enable, via the analytically calculated positron emitters profiles, detection of range differences between the TPS and MC with errors of the order of 1–2 mm. Conclusion: The proposed analytical method predicts prompt-gamma and positron emitter profiles which generally agree with the distributions obtained by a full MC. The implementation of the tool in a TPS shows that reliable profiles can be obtained directly from the dose calculated by the TPS, without the need of full MC simulation.« less
SU-F-SPS-09: Parallel MC Kernel Calculations for VMAT Plan Improvement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamberlain, S; Roswell Park Cancer Institute, Buffalo, NY; French, S
Purpose: Adding kernels (small perturbations in leaf positions) to the existing apertures of VMAT control points may improve plan quality. We investigate the calculation of kernel doses using a parallelized Monte Carlo (MC) method. Methods: A clinical prostate VMAT DICOM plan was exported from Eclipse. An arbitrary control point and leaf were chosen, and a modified MLC file was created, corresponding to the leaf position offset by 0.5cm. The additional dose produced by this 0.5 cm × 0.5 cm kernel was calculated using the DOSXYZnrc component module of BEAMnrc. A range of particle history counts were run (varying from 3more » × 10{sup 6} to 3 × 10{sup 7}); each job was split among 1, 10, or 100 parallel processes. A particle count of 3 × 10{sup 6} was established as the lower range because it provided the minimal accuracy level. Results: As expected, an increase in particle counts linearly increases run time. For the lowest particle count, the time varied from 30 hours for the single-processor run, to 0.30 hours for the 100-processor run. Conclusion: Parallel processing of MC calculations in the EGS framework significantly decreases time necessary for each kernel dose calculation. Particle counts lower than 1 × 10{sup 6} have too large of an error to output accurate dose for a Monte Carlo kernel calculation. Future work will investigate increasing the number of parallel processes and optimizing run times for multiple kernel calculations.« less
Cellular dosimetry calculations for Strontium-90 using Monte Carlo code PENELOPE.
Hocine, Nora; Farlay, Delphine; Boivin, Georges; Franck, Didier; Agarande, Michelle
2014-11-01
To improve risk assessments associated with chronic exposure to Strontium-90 (Sr-90), for both the environment and human health, it is necessary to know the energy distribution in specific cells or tissue. Monte Carlo (MC) simulation codes are extremely useful tools for calculating deposition energy. The present work was focused on the validation of the MC code PENetration and Energy LOss of Positrons and Electrons (PENELOPE) and the assessment of dose distribution to bone marrow cells from punctual Sr-90 source localized within the cortical bone part. S-values (absorbed dose per unit cumulated activity) calculations using Monte Carlo simulations were performed by using PENELOPE and Monte Carlo N-Particle eXtended (MCNPX). Cytoplasm, nucleus, cell surface, mouse femur bone and Sr-90 radiation source were simulated. Cells are assumed to be spherical with the radii of the cell and cell nucleus ranging from 2-10 μm. The Sr-90 source is assumed to be uniformly distributed in cell nucleus, cytoplasm and cell surface. The comparison of S-values calculated with PENELOPE to MCNPX results and the Medical Internal Radiation Dose (MIRD) values agreed very well since the relative deviations were less than 4.5%. The dose distribution to mouse bone marrow cells showed that the cells localized near the cortical part received the maximum dose. The MC code PENELOPE may prove useful for cellular dosimetry involving radiation transport through materials other than water, or for complex distributions of radionuclides and geometries.
An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations.
Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun
2015-10-21
Recently, there has been a lot of research interest in developing fast Monte Carlo (MC) dose calculation methods on graphics processing unit (GPU) platforms. A good linear accelerator (linac) source model is critical for both accuracy and efficiency considerations. In principle, an analytical source model should be more preferred for GPU-based MC dose engines than a phase-space file-based model, in that data loading and CPU-GPU data transfer can be avoided. In this paper, we presented an analytical field-independent source model specifically developed for GPU-based MC dose calculations, associated with a GPU-friendly sampling scheme. A key concept called phase-space-ring (PSR) was proposed. Each PSR contained a group of particles that were of the same type, close in energy and reside in a narrow ring on the phase-space plane located just above the upper jaws. The model parameterized the probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. Models of one 2D Gaussian distribution or multiple Gaussian components were employed to represent the particle direction distributions of these PSRs. A method was developed to analyze a reference phase-space file and derive corresponding model parameters. To efficiently use our model in MC dose calculations on GPU, we proposed a GPU-friendly sampling strategy, which ensured that the particles sampled and transported simultaneously are of the same type and close in energy to alleviate GPU thread divergences. To test the accuracy of our model, dose distributions of a set of open fields in a water phantom were calculated using our source model and compared to those calculated using the reference phase-space files. For the high dose gradient regions, the average distance-to-agreement (DTA) was within 1 mm and the maximum DTA within 2 mm. For relatively low dose gradient regions, the root-mean-square (RMS) dose difference was within 1.1% and the maximum dose difference within 1.7%. The maximum relative difference of output factors was within 0.5%. Over 98.5% passing rate was achieved in 3D gamma-index tests with 2%/2 mm criteria in both an IMRT prostate patient case and a head-and-neck case. These results demonstrated the efficacy of our model in terms of accurately representing a reference phase-space file. We have also tested the efficiency gain of our source model over our previously developed phase-space-let file source model. The overall efficiency of dose calculation was found to be improved by ~1.3-2.2 times in water and patient cases using our analytical model.
SU-F-BRD-09: A Random Walk Model Algorithm for Proton Dose Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, W; Farr, J
2015-06-15
Purpose: To develop a random walk model algorithm for calculating proton dose with balanced computation burden and accuracy. Methods: Random walk (RW) model is sometimes referred to as a density Monte Carlo (MC) simulation. In MC proton dose calculation, the use of Gaussian angular distribution of protons due to multiple Coulomb scatter (MCS) is convenient, but in RW the use of Gaussian angular distribution requires an extremely large computation and memory. Thus, our RW model adopts spatial distribution from the angular one to accelerate the computation and to decrease the memory usage. From the physics and comparison with the MCmore » simulations, we have determined and analytically expressed those critical variables affecting the dose accuracy in our RW model. Results: Besides those variables such as MCS, stopping power, energy spectrum after energy absorption etc., which have been extensively discussed in literature, the following variables were found to be critical in our RW model: (1) inverse squared law that can significantly reduce the computation burden and memory, (2) non-Gaussian spatial distribution after MCS, and (3) the mean direction of scatters at each voxel. In comparison to MC results, taken as reference, for a water phantom irradiated by mono-energetic proton beams from 75 MeV to 221.28 MeV, the gamma test pass rate was 100% for the 2%/2mm/10% criterion. For a highly heterogeneous phantom consisting of water embedded by a 10 cm cortical bone and a 10 cm lung in the Bragg peak region of the proton beam, the gamma test pass rate was greater than 98% for the 3%/3mm/10% criterion. Conclusion: We have determined key variables in our RW model for proton dose calculation. Compared with commercial pencil beam algorithms, our RW model much improves the dose accuracy in heterogeneous regions, and is about 10 times faster than MC simulations.« less
Monte Carlo dose calculation in dental amalgam phantom
Aziz, Mohd. Zahri Abdul; Yusoff, A. L.; Osman, N. D.; Abdullah, R.; Rabaie, N. A.; Salikin, M. S.
2015-01-01
It has become a great challenge in the modern radiation treatment to ensure the accuracy of treatment delivery in electron beam therapy. Tissue inhomogeneity has become one of the factors for accurate dose calculation, and this requires complex algorithm calculation like Monte Carlo (MC). On the other hand, computed tomography (CT) images used in treatment planning system need to be trustful as they are the input in radiotherapy treatment. However, with the presence of metal amalgam in treatment volume, the CT images input showed prominent streak artefact, thus, contributed sources of error. Hence, metal amalgam phantom often creates streak artifacts, which cause an error in the dose calculation. Thus, a streak artifact reduction technique was applied to correct the images, and as a result, better images were observed in terms of structure delineation and density assigning. Furthermore, the amalgam density data were corrected to provide amalgam voxel with accurate density value. As for the errors of dose uncertainties due to metal amalgam, they were reduced from 46% to as low as 2% at d80 (depth of the 80% dose beyond Zmax) using the presented strategies. Considering the number of vital and radiosensitive organs in the head and the neck regions, this correction strategy is suggested in reducing calculation uncertainties through MC calculation. PMID:26500401
NASA Astrophysics Data System (ADS)
Montanari, Davide; Scolari, Enrica; Silvestri, Chiara; Jiang Graves, Yan; Yan, Hao; Cervino, Laura; Rice, Roger; Jiang, Steve B.; Jia, Xun
2014-03-01
Cone beam CT (CBCT) has been widely used for patient setup in image-guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are (1) to commission a graphics processing unit (GPU)-based Monte Carlo (MC) dose calculation package gCTD for Varian On-Board Imaging (OBI) system and test the calculation accuracy, and (2) to quantitatively evaluate CBCT dose from the OBI system in typical IGRT scan protocols. We first conducted dose measurements in a water phantom. X-ray source model parameters used in gCTD are obtained through a commissioning process. gCTD accuracy is demonstrated by comparing calculations with measurements in water and in CTDI phantoms. Twenty-five brain cancer patients are used to study dose in a standard-dose head protocol, and 25 prostate cancer patients are used to study dose in pelvis protocol and pelvis spotlight protocol. Mean dose to each organ is calculated. Mean dose to 2% voxels that have the highest dose is also computed to quantify the maximum dose. It is found that the mean dose value to an organ varies largely among patients. Moreover, dose distribution is highly non-homogeneous inside an organ. The maximum dose is found to be 1-3 times higher than the mean dose depending on the organ, and is up to eight times higher for the entire body due to the very high dose region in bony structures. High computational efficiency has also been observed in our studies, such that MC dose calculation time is less than 5 min for a typical case.
In vitro Dosimetric Study of Biliary Stent Loaded with Radioactive 125I Seeds
Yao, Li-Hong; Wang, Jun-Jie; Shang, Charles; Jiang, Ping; Lin, Lei; Sun, Hai-Tao; Liu, Lu; Liu, Hao; He, Di; Yang, Rui-Jie
2017-01-01
Background: A novel radioactive 125I seed-loaded biliary stent has been used for patients with malignant biliary obstruction. However, the dosimetric characteristics of the stents remain unclear. Therefore, we aimed to describe the dosimetry of the stents of different lengths — with different number as well as activities of 125I seeds. Methods: The radiation dosimetry of three representative radioactive stent models was evaluated using a treatment planning system (TPS), thermoluminescent dosimeter (TLD) measurements, and Monte Carlo (MC) simulations. In the process of TPS calculation and TLD measurement, two different water-equivalent phantoms were designed to obtain cumulative radial dose distribution. Calibration procedures using TLD in the designed phantom were also conducted. MC simulations were performed using the Monte Carlo N-Particle eXtended version 2.5 general purpose code to calculate the radioactive stent's three-dimensional dose rate distribution in liquid water. Analysis of covariance was used to examine the factors influencing radial dose distribution of the radioactive stent. Results: The maximum reduction in cumulative radial dose was 26% when the seed activity changed from 0.5 mCi to 0.4 mCi for the same length of radioactive stents. The TLD's dose response in the range of 0–10 mGy irradiation by 137Cs γ-ray was linear: y = 182225x − 6651.9 (R2= 0.99152; y is the irradiation dose in mGy, x is the TLDs’ reading in nC). When TLDs were irradiated by different energy radiation sources to a dose of 1 mGy, reading of TLDs was different. Doses at a distance of 0.1 cm from the three stents’ surface simulated by MC were 79, 93, and 97 Gy. Conclusions: TPS calculation, TLD measurement, and MC simulation were performed and were found to be in good agreement. Although the whole experiment was conducted in water-equivalent phantom, data in our evaluation may provide a theoretical basis for dosimetry for the clinical application. PMID:28469106
NASA Astrophysics Data System (ADS)
Smekens, F.; Létang, J. M.; Noblet, C.; Chiavassa, S.; Delpon, G.; Freud, N.; Rit, S.; Sarrut, D.
2014-12-01
We propose the split exponential track length estimator (seTLE), a new kerma-based method combining the exponential variant of the TLE and a splitting strategy to speed up Monte Carlo (MC) dose computation for low energy photon beams. The splitting strategy is applied to both the primary and the secondary emitted photons, triggered by either the MC events generator for primaries or the photon interactions generator for secondaries. Split photons are replaced by virtual particles for fast dose calculation using the exponential TLE. Virtual particles are propagated by ray-tracing in voxelized volumes and by conventional MC navigation elsewhere. Hence, the contribution of volumes such as collimators, treatment couch and holding devices can be taken into account in the dose calculation. We evaluated and analysed the seTLE method for two realistic small animal radiotherapy treatment plans. The effect of the kerma approximation, i.e. the complete deactivation of electron transport, was investigated. The efficiency of seTLE against splitting multiplicities was also studied. A benchmark with analog MC and TLE was carried out in terms of dose convergence and efficiency. The results showed that the deactivation of electrons impacts the dose at the water/bone interface in high dose regions. The maximum and mean dose differences normalized to the dose at the isocenter were, respectively of 14% and 2% . Optimal splitting multiplicities were found to be around 300. In all situations, discrepancies in integral dose were below 0.5% and 99.8% of the voxels fulfilled a 1%/0.3 mm gamma index criterion. Efficiency gains of seTLE varied from 3.2 × 105 to 7.7 × 105 compared to analog MC and from 13 to 15 compared to conventional TLE. In conclusion, seTLE provides results similar to the TLE while increasing the efficiency by a factor between 13 and 15, which makes it particularly well-suited to typical small animal radiation therapy applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, E; Kim, S; Lee, C
Purpose: Epidemiological studies of second cancer risks in breast cancer radiotherapy patients often use generic patient anatomy to reconstruct normal tissue doses when CT images of patients are not available. To evaluate the uncertainty involved in the dosimetry approach, we evaluated the esophagus dose in five sample patients by simulating breast cancer treatments. Methods: We obtained the diagnostic CT images of five anonymized adult female patients in different Body Mass Index (BMI) categories (16– 36kg/m2) from National Institutes of Health Clinical Center. We contoured the esophagus on the CT images and imported them into a Treatment Planning System (TPS) tomore » create treatment plans and calculate esophagus doses. Esophagus dose was calculated once again via experimentally-validated Monte Carlo (MC) transport code, XVMC under the same geometries. We compared the esophagus doses from TPS and the MC method. We also investigated the degree of variation in the esophagus dose across the five patients and also the relationship between the patient characteristics and the esophagus doses. Results: Eclipse TPS using Analytical Anisotropic Algorithm (AAA) significantly underestimates the esophagus dose in breast cancer radiotherapy compared to MC. In the worst case, the esophagus dose from AAA was only 40% of the MC dose. The Coefficient of Variation across the patients was 48%. We found that the maximum esophagus dose was up to 2.7 times greater than the minimum. We finally observed linear relationship (Dose = 0.0218 × BMI – 0.1, R2=0.54) between patient’s BMI and the esophagus doses. Conclusion: We quantified the degree of uncertainty in the esophagus dose in five sample breast radiotherapy patients. The results of the study underscore the importance of individualized dose reconstruction for the study cohort to avoid misclassification in the risk analysis of second cancer. We are currently extending the number of patients up to 30.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prajapati, S; Mo, X; Bednarz, B
Purpose: An open-source, convolution/superposition based kV-treatment planning system(TPS) was developed for small animal radiotherapy from previously existed in-house MV-TPS. It is flexible and applicable to both step and shoot and helical tomotherapy treatment delivery. For initial commissioning process, the dose calculation from kV-TPS was compared with measurements and Monte Carlo(MC) simulations. Methods: High resolution, low energy kernels were simulated using EGSnrc user code EDKnrc, which was used as an input in kV-TPS together with MC-simulated x-ray beam spectrum. The Blue Water™ homogeneous phantom (with film inserts) and heterogeneous phantom (with film and TLD inserts) were fabricated. Phantom was placed atmore » 100cm SSD, and was irradiated with 250 kVp beam for 10mins with 1.1cm × 1.1cm open field (at 100cm) created by newly designed binary micro-MLC assembly positioned at 90cm SSD. Gafchromic™ EBT3 film was calibrated in-phantom following AAPM TG-61 guidelines, and were used for measurement at 5 different depths in phantom. Calibrated TLD-100s were obtained from ADCL. EGS and MNCP5 simulation were used to model experimental irradiation set up calculation of dose in phantom. Results: Using the homogeneous phantom, dose difference between film and kV-TPS was calculated: mean(x)=0.9%; maximum difference(MD)=3.1%; standard deviation(σ)=1.1%. Dose difference between MCNP5 and kV-TPS was: x=1.5%; MD=4.6%; σ=1.9%. Dose difference between EGS and kV-TPS was: x=0.8%; MD=1.9%; σ=0.8%. Using the heterogeneous phantom, dose difference between film and kV-TPS was: x=2.6%; MD=3%; σ=1.1%; and dose difference between TLD and kV-TPS was: x=2.9%; MD=6.4%; σ=2.5%. Conclusion: The inhouse, open-source kV-TPS dose calculation system was comparable within 5% of measurements and MC simulations in both homogeneous and heterogeneous phantoms. The dose calculation system of the kV-TPS is validated as a part of initial commissioning process for small animal radiotherapy. The kV-TPS has the potential for accurate dose calculation for any kV treatment or imaging modalities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, D; Badkul, R; Jiang, H
Purpose: To compare dose distributions calculated using the iPlan XVMC algorithm and heterogeneities corrected/uncorrected Pencil Beam (PB-hete/PB-homo) algorithms for SBRT treatments of lung tumors. Methods: Ten patients with centrally located solitary lung tumors were treated using MC-based SBRT to 60Gy in 5 fractions for PTVV100%=95%. ITV was delineated on MIP-images based on 4D-CT scans. PTVs(ITV+5mm margins) ranged from 10.1–106.5cc(mean=48.6cc). MC-SBRT plans were generated with a combination of non-coplanar conformal arcs/beams using iPlan-XVMC-algorithm (BrainLABiPlan ver.4.1.2) for Novalis-TX consisting of HD-MLCs and 6MV-SRS(1000MU/min) mode, following RTOG 0813 dosimetric criteria. For comparison, PB-hete/PB-homo algorithms were used to re-calculate dose distributions using same beammore » configurations, MLCs/monitor units. Plans were evaluated with isocenter/maximal/mean doses to PTV. Normal lung doses were evaluated with V5/V10/V20 and mean-lung-dose(MLD), excluding PTV. Other OAR doses such as maximal spinal cord/2cc-esophagus/max bronchial tree (BT/maximal heart doses were tabulated. Results: Maximal/mean/isocenter doses to PTV calculated by PB-hete were uniformly larger than MC plans by a factors of 1.09/1.13/1.07, on average, whereas they were consistently lower by PB-homo by a factors of 0.9/0.84/0.9, respectively. The volume covered by 5Gy/10Gy/20Gy isodose-lines of the lung were comparable (average within±3%) when calculated by PB-hete compared to XVMC, but, consistently lower by PB-homo by a factors of 0.90/0.88/0.85, respectively. MLD was higher with PB-hete by 1.05, but, lower by PB-homo by 0.9, on average, compared to XVMC. XVMC max-cord/max-BT/max-heart and 2cc of esophagus doses were comparable to PB-hete; however, PB-homo underestimates by a factors of 0.82/0.89/0.88/0.86, on average, respectively. Conclusion: PB-hete significantly overestimates dose to PTV relative to XVMC -hence underdosing the target. MC is more complex and accurate with tissue-heterogeneities.The magnitude of variation significantly varies with ‘small-island-tumor’ surrounded by low-density lung tissues -PB algorithms lacks later electron scattering. Dose calculation with XVMC for lung SBRT is routinely performed in our clinic, its performance for head'neck/sinus cases will also be investigated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynoso, F; Washington University School of Medicine, St. Louis, MO; Munro, J
2016-06-15
Purpose: To determine the AAPM TG-43 brachytherapy dosimetry parameters of a new titanium-encapsulated Yb-169 source designed to maximize the dose enhancement during gold nanoparticle-aided radiation therapy (GNRT). Methods: An existing Monte Carlo (MC) model of the titanium-encapsulated Yb-169 source, which was described in the current investigators’ published MC optimization study, was modified based on the source manufacturer’s detailed specifications, resulting in an accurate model of the titanium-encapsulated Yb-169 source that was actually manufactured. MC calculations were then performed using the MCNP5 code system and the modified source model, in order to obtain a complete set of the AAPM TG-43 parametersmore » for the new Yb-169 source. Results: The MC-calculated dose rate constant for the new titanium-encapsulated Yb-169 source was 1.05 ± 0.03 cGy per hr U, indicating about 10% decrease from the values reported for the conventional stainless steel-encapsulated Yb-169 sources. The source anisotropy and radial dose function for the new source were found similar to those reported for the conventional Yb-169 sources. Conclusion: In this study, the AAPM TG-43 brachytherapy dosimetry parameters of a new titanium-encapsulated Yb-169 source were determined by MC calculations. The current results suggested that the use of titanium, instead of stainless steel, to encapsulate the Yb-169 core would not lead to any major change in the dosimetric characteristics of the Yb-169 source, while it would allow more low energy photons being transmitted through the source filter thereby leading to an increased dose enhancement during GNRT. Supported by DOD/PCRP grant W81XWH-12-1-0198 This investigation was supported by DOD/PCRP grant W81XWH-12-1- 0198.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Tran Thi Thao; Nakamoto, Takahiro; Shibayama, Yusuke
Purpose: The aim of this study was to investigate the impacts of tissue inhomogeneity on dose distributions using a three-dimensional (3D) gamma analysis in cervical intracavitary brachytherapy using Monte Carlo (MC) simulations. Methods: MC simulations for comparison of dose calculations were performed in a water phantom and a series of CT images of a cervical cancer patient (stage: Ib; age: 27) by employing a MC code, Particle and Heavy Ion Transport Code System (PHIT) version 2.73. The {sup 192}Ir source was set at fifteen dwell positions, according to clinical practice, in an applicator consisting of a tandem and two ovoids.more » Dosimetric comparisons were performed for the dose distributions in the water phantom and CT images by using gamma index image and gamma pass rate (%). The gamma index is the minimum Euclidean distance between two 3D spatial dose distributions of the water phantom and CT images in a same space. The gamma pass rates (%) indicate the percentage of agreement points, which mean that two dose distributions are similar, within an acceptance criteria (3 mm/3%). The volumes of physical and clinical interests for the gamma analysis were a whole calculated volume and a region larger than t% of a dose (close to a target), respectively. Results: The gamma pass rates were 77.1% for a whole calculated volume and 92.1% for a region within 1% dose region. The differences of 7.7% to 22.9 % between two dose distributions in the water phantom and CT images were found around the applicator region and near the target. Conclusion: This work revealed the large difference on the dose distributions near the target in the presence of the tissue inhomogeneity. Therefore, the tissue inhomogeneity should be corrected in the dose calculation for clinical treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonfrate, A; Farah, J; Sayah, R
2015-06-15
Purpose: Development of a parametric equation suitable for a daily use in routine clinic to provide estimates of stray neutron doses in proton therapy. Methods: Monte Carlo (MC) calculations using the UF-NCI 1-year-old phantom were exercised to determine the variation of stray neutron doses as a function of irradiation parameters while performing intracranial treatments. This was done by individually changing the proton beam energy, modulation width, collimator aperture and thickness, compensator thickness and the air gap size while their impact on neutron doses were put into a single equation. The variation of neutron doses with distance from the target volumemore » was also included in it. Then, a first step consisted in establishing the fitting coefficients by using 221 learning data which were neutron absorbed doses obtained with MC simulations while a second step consisted in validating the final equation. Results: The variation of stray neutron doses with irradiation parameters were fitted with linear, polynomial, etc. model while a power-law model was used to fit the variation of stray neutron doses with the distance from the target volume. The parametric equation fitted well MC simulations while establishing fitting coefficients as the discrepancies on the estimate of neutron absorbed doses were within 10%. The discrepancy can reach ∼25% for the bladder, the farthest organ from the target volume. Finally, the validation showed results in compliance with MC calculations since the discrepancies were also within 10% for head-and-neck and thoracic organs while they can reach ∼25%, again for pelvic organs. Conclusion: The parametric equation presents promising results and will be validated for other target sites as well as other facilities to go towards a universal method.« less
Wan Chan Tseung, H; Ma, J; Beltran, C
2015-06-01
Very fast Monte Carlo (MC) simulations of proton transport have been implemented recently on graphics processing units (GPUs). However, these MCs usually use simplified models for nonelastic proton-nucleus interactions. Our primary goal is to build a GPU-based proton transport MC with detailed modeling of elastic and nonelastic proton-nucleus collisions. Using the cuda framework, the authors implemented GPU kernels for the following tasks: (1) simulation of beam spots from our possible scanning nozzle configurations, (2) proton propagation through CT geometry, taking into account nuclear elastic scattering, multiple scattering, and energy loss straggling, (3) modeling of the intranuclear cascade stage of nonelastic interactions when they occur, (4) simulation of nuclear evaporation, and (5) statistical error estimates on the dose. To validate our MC, the authors performed (1) secondary particle yield calculations in proton collisions with therapeutically relevant nuclei, (2) dose calculations in homogeneous phantoms, (3) recalculations of complex head and neck treatment plans from a commercially available treatment planning system, and compared with (GEANT)4.9.6p2/TOPAS. Yields, energy, and angular distributions of secondaries from nonelastic collisions on various nuclei are in good agreement with the (GEANT)4.9.6p2 Bertini and Binary cascade models. The 3D-gamma pass rate at 2%-2 mm for treatment plan simulations is typically 98%. The net computational time on a NVIDIA GTX680 card, including all CPU-GPU data transfers, is ∼ 20 s for 1 × 10(7) proton histories. Our GPU-based MC is the first of its kind to include a detailed nuclear model to handle nonelastic interactions of protons with any nucleus. Dosimetric calculations are in very good agreement with (GEANT)4.9.6p2/TOPAS. Our MC is being integrated into a framework to perform fast routine clinical QA of pencil-beam based treatment plans, and is being used as the dose calculation engine in a clinically applicable MC-based IMPT treatment planning system. The detailed nuclear modeling will allow us to perform very fast linear energy transfer and neutron dose estimates on the GPU.
NASA Astrophysics Data System (ADS)
Almeida, Isabel P.; Schyns, Lotte E. J. R.; Vaniqui, Ana; van der Heyden, Brent; Dedes, George; Resch, Andreas F.; Kamp, Florian; Zindler, Jaap D.; Parodi, Katia; Landry, Guillaume; Verhaegen, Frank
2018-06-01
Proton beam ranges derived from dual-energy computed tomography (DECT) images from a dual-spiral radiotherapy (RT)-specific CT scanner were assessed using Monte Carlo (MC) dose calculations. Images from a dual-source and a twin-beam DECT scanner were also used to establish a comparison to the RT-specific scanner. Proton ranges extracted from conventional single-energy CT (SECT) were additionally performed to benchmark against literature values. Using two phantoms, a DECT methodology was tested as input for GEANT4 MC proton dose calculations. Proton ranges were calculated for different mono-energetic proton beams irradiating both phantoms; the results were compared to the ground truth based on the phantom compositions. The same methodology was applied in a head-and-neck cancer patient using both SECT and dual-spiral DECT scans from the RT-specific scanner. A pencil-beam-scanning plan was designed, which was subsequently optimized by MC dose calculations, and differences in proton range for the different image-based simulations were assessed. For phantoms, the DECT method yielded overall better material segmentation with >86% of the voxel correctly assigned for the dual-spiral and dual-source scanners, but only 64% for a twin-beam scanner. For the calibration phantom, the dual-spiral scanner yielded range errors below 1.2 mm (0.6% of range), like the errors yielded by the dual-source scanner (<1.1 mm, <0.5%). With the validation phantom, the dual-spiral scanner yielded errors below 0.8 mm (0.9%), whereas SECT yielded errors up to 1.6 mm (2%). For the patient case, where the absolute truth was missing, proton range differences between DECT and SECT were on average in ‑1.2 ± 1.2 mm (‑0.5% ± 0.5%). MC dose calculations were successfully performed on DECT images, where the dual-spiral scanner resulted in media segmentation and range accuracy as good as the dual-source CT. In the patient, the various methods showed relevant range differences.
Effect of Embolization Material in the Calculation of Dose Deposition in Arteriovenous Malformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
De la Cruz, O. O. Galvan; Moreno-Jimenez, S.; Larraga-Gutierrez, J. M.
2010-12-07
In this work it is studied the impact of the incorporation of high Z materials (embolization material) in the dose calculation for stereotactic radiosurgery treatment for arteriovenous malformations. A statistical analysis is done to establish the variables that may impact in the dose calculation. To perform the comparison pencil beam (PB) and Monte Carlo (MC) calculation algorithms were used. The comparison between both dose calculations shows that PB overestimates the dose deposited. The statistical analysis, for the quantity of patients of the study (20), shows that the variable that may impact in the dose calculation is the volume of themore » high Z material in the arteriovenous malformation. Further studies have to be done to establish the clinical impact with the radiosurgery result.« less
Monte Carlo simulations in radiotherapy dosimetry.
Andreo, Pedro
2018-06-27
The use of the Monte Carlo (MC) method in radiotherapy dosimetry has increased almost exponentially in the last decades. Its widespread use in the field has converted this computer simulation technique in a common tool for reference and treatment planning dosimetry calculations. This work reviews the different MC calculations made on dosimetric quantities, like stopping-power ratios and perturbation correction factors required for reference ionization chamber dosimetry, as well as the fully realistic MC simulations currently available on clinical accelerators, detectors and patient treatment planning. Issues are raised that include the necessity for consistency in the data throughout the entire dosimetry chain in reference dosimetry, and how Bragg-Gray theory breaks down for small photon fields. Both aspects are less critical for MC treatment planning applications, but there are important constraints like tissue characterization and its patient-to-patient variability, which together with the conversion between dose-to-water and dose-to-tissue, are analysed in detail. Although these constraints are common to all methods and algorithms used in different types of treatment planning systems, they make uncertainties involved in MC treatment planning to still remain "uncertain".
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Q; Lei, Y; Zheng, D
Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness weremore » created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikell, J; Siman, W; Kappadath, S
2014-06-15
Purpose: 90Y microsphere therapy in liver presents a situation where beta transport is dominant and the tissue is relatively homogenous. We compare voxel-based absorbed doses from a 90Y kernel to Monte Carlo (MC) using quantitative 90Y bremsstrahlung SPECT/CT as source distribution. Methods: Liver, normal liver, and tumors were delineated by an interventional radiologist using contrast-enhanced CT registered with 90Y SPECT/CT scans for 14 therapies. Right lung was segmented via region growing. The kernel was generated with 1.04 g/cc soft tissue for 4.8 mm voxel matching the SPECT. MC simulation materials included air, lung, soft tissue, and bone with varying densities.more » We report percent difference between kernel and MC (%Δ(K,MC)) for mean absorbed dose, D70, and V20Gy in total liver, normal liver, tumors, and right lung. We also report %Δ(K,MC) for heterogeneity metrics: coefficient of variation (COV) and D10/D90. The impact of spatial resolution (0, 10, 20 mm FWHM) and lung shunt fraction (LSF) (1,5,10,20%) on the accuracy of MC and kernel doses near the liver-lung interface was modeled in 1D. We report the distance from the interface where errors become <10% of unblurred MC as d10(side of interface, dose calculation, FWHM blurring, LSF). Results: The %Δ(K,MC) for mean, D70, and V20Gy in tumor and liver was <7% while right lung differences varied from 60–90%. The %Δ(K,MC) for COV was <4.8% for tumor and liver and <54% for the right lung. The %Δ(K,MC) for D10/D90 was <5% for 22/23 tumors. d10(liver,MC,10,1–20) awere <9mm and d10(liver,MC,20,1–20) awere <15mm; both agreed within 3mm to the kernel. d10(lung,MC,10,20), d10(lung,MC,10,1), d10(lung,MC,20,20), and d10(lung,MC,20,1) awere 6, 25, 15, and 34mm, respectively. Kernel calculations on blurred distributions in lung had errors > 10%. Conclusions: Liver and tumor voxel doses with 90Y kernel and MC agree within 7%. Large differences exist between the two methods in right lung. Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Number R01CA138986. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.« less
A virtual source model for Monte Carlo simulation of helical tomotherapy
Yuan, Jiankui; Rong, Yi
2015-01-01
The purpose of this study was to present a Monte Carlo (MC) simulation method based on a virtual source, jaw, and MLC model to calculate dose in patient for helical tomotherapy without the need of calculating phase‐space files (PSFs). Current studies on the tomotherapy MC simulation adopt a full MC model, which includes extensive modeling of radiation source, primary and secondary jaws, and multileaf collimator (MLC). In the full MC model, PSFs need to be created at different scoring planes to facilitate the patient dose calculations. In the present work, the virtual source model (VSM) we established was based on the gold standard beam data of a tomotherapy unit, which can be exported from the treatment planning station (TPS). The TPS‐generated sinograms were extracted from the archived patient XML (eXtensible Markup Language) files. The fluence map for the MC sampling was created by incorporating the percentage leaf open time (LOT) with leaf filter, jaw penumbra, and leaf latency contained from sinogram files. The VSM was validated for various geometry setups and clinical situations involving heterogeneous media and delivery quality assurance (DQA) cases. An agreement of <1% was obtained between the measured and simulated results for percent depth doses (PDDs) and open beam profiles for all three jaw settings in the VSM commissioning. The accuracy of the VSM leaf filter model was verified in comparing the measured and simulated results for a Picket Fence pattern. An agreement of <2% was achieved between the presented VSM and a published full MC model for heterogeneous phantoms. For complex clinical head and neck (HN) cases, the VSM‐based MC simulation of DQA plans agreed with the film measurement with 98% of planar dose pixels passing on the 2%/2 mm gamma criteria. For patient treatment plans, results showed comparable dose‐volume histograms (DVHs) for planning target volumes (PTVs) and organs at risk (OARs). Deviations observed in this study were consistent with literature. The VSM‐based MC simulation approach can be feasibly built from the gold standard beam model of a tomotherapy unit. The accuracy of the VSM was validated against measurements in homogeneous media, as well as published full MC model in heterogeneous media. PACS numbers: 87.53.‐j, 87.55.K‐ PMID:25679157
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiebe, J; Department of Physics and Astronomy, University of Calgary, Calgary, AB; Ploquin, N
2014-08-15
Monte Carlo (MC) simulation is accepted as the most accurate method to predict dose deposition when compared to other methods in radiation treatment planning. Current dose calculation algorithms used for treatment planning can become inaccurate when small radiation fields and tissue inhomogeneities are present. At our centre the Novalis Classic linear accelerator (linac) is used for Stereotactic Radiosurgery (SRS). The first MC model to date of the Novalis Classic linac was developed at our centre using the Geant4 Application for Tomographic Emission (GATE) simulation platform. GATE is relatively new, open source MC software built from CERN's Geometry and Tracking 4more » (Geant4) toolkit. The linac geometry was modeled using manufacturer specifications, as well as in-house measurements of the micro MLC's. Among multiple model parameters, the initial electron beam was adjusted so that calculated depth dose curves agreed with measured values. Simulations were run on the European Grid Infrastructure through GateLab. Simulation time is approximately 8 hours on GateLab for a complete head model simulation to acquire a phase space file. Current results have a majority of points within 3% of the measured dose values for square field sizes ranging from 6×6 mm{sup 2} to 98×98 mm{sup 2} (maximum field size on the Novalis Classic linac) at 100 cm SSD. The x-ray spectrum was determined from the MC data as well. The model provides an investigation into GATE'S capabilities and has the potential to be used as a research tool and an independent dose calculation engine for clinical treatment plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kieselmann, J; Bartzsch, S; Oelfke, U
Purpose: Microbeam Radiation Therapy is a preclinical method in radiation oncology that modulates radiation fields on a micrometre scale. Dose calculation is challenging due to arising dose gradients and therapeutically important dose ranges. Monte Carlo (MC) simulations, often used as gold standard, are computationally expensive and hence too slow for the optimisation of treatment parameters in future clinical applications. On the other hand, conventional kernel based dose calculation leads to inaccurate results close to material interfaces. The purpose of this work is to overcome these inaccuracies while keeping computation times low. Methods: A point kernel superposition algorithm is modified tomore » account for tissue inhomogeneities. Instead of conventional ray tracing approaches, methods from differential geometry are applied and the space around the primary photon interaction is locally warped. The performance of this approach is compared to MC simulations and a simple convolution algorithm (CA) for two different phantoms and photon spectra. Results: While peak doses of all dose calculation methods agreed within less than 4% deviations, the proposed approach surpassed a simple convolution algorithm in accuracy by a factor of up to 3 in the scatter dose. In a treatment geometry similar to possible future clinical situations differences between Monte Carlo and the differential geometry algorithm were less than 3%. At the same time the calculation time did not exceed 15 minutes. Conclusion: With the developed method it was possible to improve the dose calculation based on the CA method with respect to accuracy especially at sharp tissue boundaries. While the calculation is more extensive than for the CA method and depends on field size, the typical calculation time for a 20×20 mm{sup 2} field on a 3.4 GHz and 8 GByte RAM processor remained below 15 minutes. Parallelisation and optimisation of the algorithm could lead to further significant calculation time reductions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botas, P; Heidelberg University, Heidelberg; Grassberger, C
Purpose: To demonstrate the feasibility of fast Monte Carlo (MC) treatment planning and verification using four-dimensional CT (4DCT) for adaptive IMPT for lung cancer patients. Methods: A validated GPU MC code, gPMC, has been linked to the patient database at our institution and employed to compute the dose-influence matrices (Dij) on the planning CT (pCT). The pCT is an average of the respiratory motion of the patient. The Dijs and patient structures were fed to the optimizer to calculate a treatment plan. To validate the plan against motion, a 4D dose distribution averaged over the possible starting phases is calculatedmore » using the 4DCT and a model of the time structure of the delivered spot map. The dose is accumulated using vector maps created by a GPU-accelerated deformable image registration program (DIR) from each phase of the 4DCT to the reference phase using the B-spline method. Calculation of the Dij matrices and the DIR are performed on a cluster, with each field and vector map calculated in parallel. Results: The Dij production takes ∼3.5s per beamlet for 10e6 protons, depending on the energy and the CT size. Generating a plan with 4D simulation of 1000 spots in 4 fields takes approximately 1h. To test the framework, IMPT plans for 10 lung cancer patients were generated for validation. Differences between the planned and the delivered dose of 19% in dose to some organs at risk and 1.4/21.1% in target mean dose/homogeneity with respect to the plan were observed, suggesting potential for improvement if adaptation is considered. Conclusion: A fast MC treatment planning framework has been developed that allows reliable plan design and verification for mobile targets and adaptation of treatment plans. This will significantly impact treatments for lung tumors, as 4D-MC dose calculations can now become part of planning strategies.« less
NASA Astrophysics Data System (ADS)
Yani, Sitti; Dirgayussa, I. Gde E.; Rhani, Moh. Fadhillah; Haryanto, Freddy; Arif, Idam
2015-09-01
Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm3, 1 × 1 × 0.5 cm3, and 1 × 1 × 0.8 cm3. The 1 × 109 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in dmax from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.
Dose calculation of dynamic trajectory radiotherapy using Monte Carlo.
Manser, P; Frauchiger, D; Frei, D; Volken, W; Terribilini, D; Fix, M K
2018-04-06
Using volumetric modulated arc therapy (VMAT) delivery technique gantry position, multi-leaf collimator (MLC) as well as dose rate change dynamically during the application. However, additional components can be dynamically altered throughout the dose delivery such as the collimator or the couch. Thus, the degrees of freedom increase allowing almost arbitrary dynamic trajectories for the beam. While the dose delivery of such dynamic trajectories for linear accelerators is technically possible, there is currently no dose calculation and validation tool available. Thus, the aim of this work is to develop a dose calculation and verification tool for dynamic trajectories using Monte Carlo (MC) methods. The dose calculation for dynamic trajectories is implemented in the previously developed Swiss Monte Carlo Plan (SMCP). SMCP interfaces the treatment planning system Eclipse with a MC dose calculation algorithm and is already able to handle dynamic MLC and gantry rotations. Hence, the additional dynamic components, namely the collimator and the couch, are described similarly to the dynamic MLC by defining data pairs of positions of the dynamic component and the corresponding MU-fractions. For validation purposes, measurements are performed with the Delta4 phantom and film measurements using the developer mode on a TrueBeam linear accelerator. These measured dose distributions are then compared with the corresponding calculations using SMCP. First, simple academic cases applying one-dimensional movements are investigated and second, more complex dynamic trajectories with several simultaneously moving components are compared considering academic cases as well as a clinically motivated prostate case. The dose calculation for dynamic trajectories is successfully implemented into SMCP. The comparisons between the measured and calculated dose distributions for the simple as well as for the more complex situations show an agreement which is generally within 3% of the maximum dose or 3mm. The required computation time for the dose calculation remains the same when the additional dynamic moving components are included. The results obtained for the dose comparisons for simple and complex situations suggest that the extended SMCP is an accurate dose calculation and efficient verification tool for dynamic trajectory radiotherapy. This work was supported by Varian Medical Systems. Copyright © 2018. Published by Elsevier GmbH.
Ferretti, A; Martignano, A; Simonato, F; Paiusco, M
2014-02-01
The aim of the present work was the validation of the VMC(++) Monte Carlo (MC) engine implemented in the Oncentra Masterplan (OMTPS) and used to calculate the dose distribution produced by the electron beams (energy 5-12 MeV) generated by the linear accelerator (linac) Primus (Siemens), shaped by a digital variable applicator (DEVA). The BEAMnrc/DOSXYZnrc (EGSnrc package) MC model of the linac head was used as a benchmark. Commissioning results for both MC codes were evaluated by means of 1D Gamma Analysis (2%, 2 mm), calculated with a home-made Matlab (The MathWorks) program, comparing the calculations with the measured profiles. The results of the commissioning of OMTPS were good [average gamma index (γ) > 97%]; some mismatches were found with large beams (size ≥ 15 cm). The optimization of the BEAMnrc model required to increase the beam exit window to match the calculated and measured profiles (final average γ > 98%). Then OMTPS dose distribution maps were compared with DOSXYZnrc with a 2D Gamma Analysis (3%, 3 mm), in 3 virtual water phantoms: (a) with an air step, (b) with an air insert, and (c) with a bone insert. The OMTPD and EGSnrc dose distributions with the air-water step phantom were in very high agreement (γ ∼ 99%), while for heterogeneous phantoms there were differences of about 9% in the air insert and of about 10-15% in the bone region. This is due to the Masterplan implementation of VMC(++) which reports the dose as "dose to water", instead of "dose to medium". Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Pokhrel, Damodar; Badkul, Rajeev; Jiang, Hongyu; Kumar, Pravesh; Wang, Fen
2015-01-08
For stereotactic ablative body radiotherapy (SABR) in lung cancer patients, Radiation Therapy Oncology Group (RTOG) protocols currently require radiation dose to be calculated using tissue heterogeneity corrections. Dosimetric criteria of RTOG 0813 were established based on the results obtained from non-Monte Carlo (MC) algorithms, such as superposition/convolutions. Clinically, MC-based algorithms are now routinely used for lung SABR dose calculations. It is essential to confirm that MC calculations in lung SABR meet RTOG guidelines. This report evaluates iPlan MC plans for SABR in lung cancer patients using dose-volume histogram normalization per current RTOG 0813 compliance criteria. Eighteen Stage I-II non-small cell lung cancer (NSCLC) patients with centrally located tumors, who underwent MC-based lung SABR with heterogeneity correction using X-ray Voxel Monte Carlo (XVMC) algorithm (BrainLAB iPlan version 4.1.2), were analyzed. Total dose of 60 Gy in 5 fractions was delivered to planning target volume (PTV) with at least V100% = 95%. Internal target volumes (ITVs) were delineated on maximum intensity projection (MIP) images of 4D CT scans. PTV (ITV + 5 mm margin) volumes ranged from 10.0 to 99.9 cc (mean = 36.8 ± 20.7 cc). Organs at risk (OARs) were delineated on average images of 4D CT scans. Optimal clinical MC SABR plans were generated using a combination of non-coplanar conformal arcs and beams for the Novalis-TX consisting of high definition multileaf collimators (MLCs) and 6 MV-SRS (1000 MU/min) mode. All plans were evaluated using the RTOG 0813 high and intermediate dose spillage criteria: conformity index (R100%), ratio of 50% isodose volume to the PTV (R50%), maximum dose 2 cm away from PTV in any direction (D2 cm), and percent of normal lung receiving 20 Gy (V20) or more. Other organs-at-risk (OARs) doses were tabulated, including the volume of normal lung receiving 5 Gy (V5), maximum cord dose, dose to < 15 cc of heart, and dose to <5 cc of esophagus. Only six out of 18 patients met all RTOG 0813 compliance criteria. Eight of 18 patients had minor deviations in R100%, four in R50%, and nine in D2 cm. However, only one patient had minor deviation in V20. All other OARs doses, such as maximum cord dose, dose to < 15 cc of heart, and dose to < 5 cc of esophagus, were satisfactory for RTOG criteria, except for one patient, for whom the dose to < 15 cc of heart was higher than RTOG guidelines. The preliminary results for our limited iPlan XVMC dose calculations indicate that the majority (i.e., 2/3) of our patients had minor deviations in the dosimetric guidelines set by RTOG 0813 protocol in one way or another. When using an exclusive highly sophisticated XVMC algorithm, the RTOG 0813 dosimetric compliance criteria such as R100% and D2 cm may need to be revisited. Based on our limited number of patient datasets, in general, about 6% for R100% and 9% for D2 cm corrections could be applied to pass the RTOG 0813 compliance criteria in most of those patients. More patient plans need to be evaluated to make recommendation for R50%. No adjustment is necessary for OAR dose tolerances, including normal lung V20. In order to establish new MC specific dose parameters, further investigation with a large cohort of patients including central, as well as peripheral lung tumors, is anticipated and strongly recommended.
Comparison of Monte Carlo and analytical dose computations for intensity modulated proton therapy
NASA Astrophysics Data System (ADS)
Yepes, Pablo; Adair, Antony; Grosshans, David; Mirkovic, Dragan; Poenisch, Falk; Titt, Uwe; Wang, Qianxia; Mohan, Radhe
2018-02-01
To evaluate the effect of approximations in clinical analytical calculations performed by a treatment planning system (TPS) on dosimetric indices in intensity modulated proton therapy. TPS calculated dose distributions were compared with dose distributions as estimated by Monte Carlo (MC) simulations, calculated with the fast dose calculator (FDC) a system previously benchmarked to full MC. This study analyzed a total of 525 patients for four treatment sites (brain, head-and-neck, thorax and prostate). Dosimetric indices (D02, D05, D20, D50, D95, D98, EUD and Mean Dose) and a gamma-index analysis were utilized to evaluate the differences. The gamma-index passing rates for a 3%/3 mm criterion for voxels with a dose larger than 10% of the maximum dose had a median larger than 98% for all sites. The median difference for all dosimetric indices for target volumes was less than 2% for all cases. However, differences for target volumes as large as 10% were found for 2% of the thoracic patients. For organs at risk (OARs), the median absolute dose difference was smaller than 2 Gy for all indices and cohorts. However, absolute dose differences as large as 10 Gy were found for some small volume organs in brain and head-and-neck patients. This analysis concludes that for a fraction of the patients studied, TPS may overestimate the dose in the target by as much as 10%, while for some OARs the dose could be underestimated by as much as 10 Gy. Monte Carlo dose calculations may be needed to ensure more accurate dose computations to improve target coverage and sparing of OARs in proton therapy.
Schlesinger, David J; Nordström, Håkan; Lundin, Anders; Xu, Zhiyuan; Sheehan, Jason P
2016-12-01
OBJECTIVE Patients with arteriovenous malformations (AVMs) treated with Gamma Knife radiosurgery (GKRS) subsequent to embolization suffer from elevated local failure rates and differences in adverse radiation effects. Onyx is a common embolic material for AVMs. Onyx is formulated with tantalum, a high atomic number (Z = 73) element that has been investigated as a source of dosimetric uncertainty contributing to the less favorable clinical results. However, prior studies have not modeled the complicated anatomical and beam geometries characteristic of GKRS. This study investigated the magnitude of dose perturbation that can occur due to Onyx embolization using clinically realistic anatomical and Gamma Knife beam models. METHODS Leksell GammaPlan (LGP) was used to segment the AVM nidus and areas of Onyx from postcontrast stereotactic MRI for 7 patients treated with GKRS postembolization. The resulting contours, skull surface, and clinically selected dose distributions were exported from LGP in DICOM-RT (Digital Imaging and Communications in Medicine-radiotherapy) format. Isocenter locations and dwell times were recorded from the LGP database. Contours were converted into 3D mesh representations using commercial and in-house mesh-editing software. The resulting data were imported into a Monte Carlo (MC) dose calculation engine (Pegasos, Elekta Instruments AB) with a beam geometry for the Gamma Knife Perfexion. The MC-predicted dose distributions were calculated with Onyx assigned manufacturer-reported physical constants (MC-Onyx), and then compared with corresponding distributions in which Onyx was reassigned constants for water (MC-water). Differences in dose metrics were determined, including minimum, maximum, and mean dose to the AVM nidus; selectivity index; and target coverage. Combined differences in dose magnitude and distance to agreement were calculated as 3D Gamma analysis passing rates using tolerance criteria of 0.5%/0.5 mm, 1.0%/1.0 mm, and 3.0%/3.0 mm. RESULTS Overall, the mean percentage differences in dose metrics for MC-Onyx relative to MC-water were as follows; all data are reported as mean (SD): minimum dose to AVM = -0.7% (1.4%), mean dose to AVM = 0.1% (0.2%), maximum dose to AVM = 2.9% (5.0%), selectivity = 0.1% (0.2%), and coverage = -0.0% (0.2%). The mean percentage of voxels passing at each Gamma tolerance were as follows: 99.7% (0.1%) for 3.0%/3.0 mm, 98.2% (0.7%) for 1.0%/1.0 mm, and 52.1% (4.4%) for 0.5%/0.5 mm. CONCLUSIONS Onyx embolization appears to have a detectable effect on the delivered dose distribution. However, the small changes in dose metrics and high Gamma passing rates at 1.0%/1.0 mm tolerance suggest that these changes are unlikely to be clinically significant. Additional sources of delivery and biological uncertainty should be investigated to determine the root cause of the observed less favorable postembolization GKRS outcomes.
Cuttino, Laurie W; Todor, Dorin; Rosu, Mihaela; Arthur, Douglas W
2011-01-01
Skin and chest wall doses have been correlated with toxicity in patients treated with breast brachytherapy . This investigation compared the ability to control skin and chest wall doses between patients treated with multicatheter (MC), Contura multilumen balloon (CMLB), and MammoSite (MS) brachytherapy. 43 patients treated with the MC technique, 45 patients treated with the CMLB, and 83 patients treated with the MS were reviewed. The maximum doses delivered to the skin and chest wall were calculated for all patients. The mean maximum skin doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.2 Gy per fraction (94% of prescription dose), respectively. Although the skin distances were similar (p = 0.23) for the two balloon techniques, the mean skin dose with the CMLB was significantly lower than with the MS (p = 0.05). The mean maximum rib doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.6 Gy per fraction (105% of prescription dose), respectively. Again, the mean rib dose with the CMLB was significantly lower than with the MS (p = 0.002). The MC and CMLB techniques are associated with significantly lower mean skin and rib doses than is the MS. Treatment with the MS was associated with significantly more patients receiving doses to the skin or rib in excess of 125% of the prescription. Treatment with the CMLB may prove to yield less normal tissue toxicity than treatment with the MS. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuttino, Laurie W., E-mail: lcuttino@mcvh-vcu.ed; Todor, Dorin; Rosu, Mihaela
2011-01-01
Purpose: Skin and chest wall doses have been correlated with toxicity in patients treated with breast brachytherapy . This investigation compared the ability to control skin and chest wall doses between patients treated with multicatheter (MC), Contura multilumen balloon (CMLB), and MammoSite (MS) brachytherapy. Methods and Materials: 43 patients treated with the MC technique, 45 patients treated with the CMLB, and 83 patients treated with the MS were reviewed. The maximum doses delivered to the skin and chest wall were calculated for all patients. Results: The mean maximum skin doses for the MC, CMLB, and MS were 2.3 Gy (67%more » of prescription dose), 2.8 Gy (82% of prescription dose), and 3.2 Gy per fraction (94% of prescription dose), respectively. Although the skin distances were similar (p = 0.23) for the two balloon techniques, the mean skin dose with the CMLB was significantly lower than with the MS (p = 0.05). The mean maximum rib doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.6 Gy per fraction (105% of prescription dose), respectively. Again, the mean rib dose with the CMLB was significantly lower than with the MS (p = 0.002). Conclusion: The MC and CMLB techniques are associated with significantly lower mean skin and rib doses than is the MS. Treatment with the MS was associated with significantly more patients receiving doses to the skin or rib in excess of 125% of the prescription. Treatment with the CMLB may prove to yield less normal tissue toxicity than treatment with the MS.« less
SU-F-T-371: Development of a Linac Monte Carlo Model to Calculate Surface Dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prajapati, S; Yan, Y; Gifford, K
2016-06-15
Purpose: To generate and validate a linac Monte Carlo (MC) model for surface dose prediction. Methods: BEAMnrc V4-2.4.0 was used to model 6 and 18 MV photon beams for a commercially available linac. DOSXYZnrc V4-2.4.0 calculated 3D dose distributions in water. Percent depth dose (PDD) and beam profiles were extracted for comparison to measured data. Surface dose and at depths in the buildup region was measured with radiochromic film at 100 cm SSD for 4 × 4 cm{sup 2} and 10 × 10 cm{sup 2} collimator settings for open and MLC collimated fields. For the 6 MV beam, films weremore » placed at depths ranging from 0.015 cm to 2 cm and for 18 MV, 0.015 cm to 3.5 cm in Solid Water™. Films were calibrated for both photon energies at their respective dmax. PDDs and profiles were extracted from the film and compared to the MC data. The MC model was adjusted to match measured PDD and profiles. Results: For the 6 MV beam, the mean error(ME) in PDD between film and MC for open fields was 1.9%, whereas it was 2.4% for MLC. For the 18 MV beam, the ME in PDD for open fields was 2% and was 3.5% for MLC. For the 6 MV beam, the average root mean square(RMS) deviation for the central 80% of the beam profile for open fields was 1.5%, whereas it was 1.6% for MLC. For the 18 MV beam, the maximum RMS for open fields was 3%, and was 3.1% for MLC. Conclusion: The MC model of a linac agreed to within 4% of film measurements for depths ranging from the surface to dmax. Therefore, the MC linac model can predict surface dose for clinical applications. Future work will focus on adjusting the linac MC model to reduce RMS error and improve accuracy.« less
Suitability of point kernel dose calculation techniques in brachytherapy treatment planning
Lakshminarayanan, Thilagam; Subbaiah, K. V.; Thayalan, K.; Kannan, S. E.
2010-01-01
Brachytherapy treatment planning system (TPS) is necessary to estimate the dose to target volume and organ at risk (OAR). TPS is always recommended to account for the effect of tissue, applicator and shielding material heterogeneities exist in applicators. However, most brachytherapy TPS software packages estimate the absorbed dose at a point, taking care of only the contributions of individual sources and the source distribution, neglecting the dose perturbations arising from the applicator design and construction. There are some degrees of uncertainties in dose rate estimations under realistic clinical conditions. In this regard, an attempt is made to explore the suitability of point kernels for brachytherapy dose rate calculations and develop new interactive brachytherapy package, named as BrachyTPS, to suit the clinical conditions. BrachyTPS is an interactive point kernel code package developed to perform independent dose rate calculations by taking into account the effect of these heterogeneities, using two regions build up factors, proposed by Kalos. The primary aim of this study is to validate the developed point kernel code package integrated with treatment planning computational systems against the Monte Carlo (MC) results. In the present work, three brachytherapy applicators commonly used in the treatment of uterine cervical carcinoma, namely (i) Board of Radiation Isotope and Technology (BRIT) low dose rate (LDR) applicator and (ii) Fletcher Green type LDR applicator (iii) Fletcher Williamson high dose rate (HDR) applicator, are studied to test the accuracy of the software. Dose rates computed using the developed code are compared with the relevant results of the MC simulations. Further, attempts are also made to study the dose rate distribution around the commercially available shielded vaginal applicator set (Nucletron). The percentage deviations of BrachyTPS computed dose rate values from the MC results are observed to be within plus/minus 5.5% for BRIT LDR applicator, found to vary from 2.6 to 5.1% for Fletcher green type LDR applicator and are up to −4.7% for Fletcher-Williamson HDR applicator. The isodose distribution plots also show good agreements with the results of previous literatures. The isodose distributions around the shielded vaginal cylinder computed using BrachyTPS code show better agreement (less than two per cent deviation) with MC results in the unshielded region compared to shielded region, where the deviations are observed up to five per cent. The present study implies that the accurate and fast validation of complicated treatment planning calculations is possible with the point kernel code package. PMID:20589118
Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Rovira, I.; Sempau, J.; Prezado, Y.
Purpose: Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-{mu}m-wide microbeams spaced by 200-400 {mu}m) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct featuresmore » of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. Methods: The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Results: Good agreement between MC simulations and experimental results was achieved, even at the interfaces between two different media. Optimization of the simulation parameters and the use of VR techniques saved a significant amount of computation time. Finally, parallelization of the simulations improved even further the calculation time, which reached 1 day for a typical irradiation case envisaged in the forthcoming clinical trials in MRT. An example of MRT treatment in a dog's head is presented, showing the performance of the calculation engine. Conclusions: The development of the first MC-based calculation engine for the future TPS devoted to MRT has been accomplished. This will constitute an essential tool for the future clinical trials on pets at the ESRF. The MC engine is able to calculate dose distributions in micrometer-sized bins in complex voxelized CT structures in a reasonable amount of time. Minimization of the computation time by using several approaches has led to timings that are adequate for pet radiotherapy at synchrotron facilities. The next step will consist in its integration into a user-friendly graphical front-end.« less
Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy.
Martinez-Rovira, I; Sempau, J; Prezado, Y
2012-05-01
Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-μm-wide microbeams spaced by 200-400 μm) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Good agreement between MC simulations and experimental results was achieved, even at the interfaces between two different media. Optimization of the simulation parameters and the use of VR techniques saved a significant amount of computation time. Finally, parallelization of the simulations improved even further the calculation time, which reached 1 day for a typical irradiation case envisaged in the forthcoming clinical trials in MRT. An example of MRT treatment in a dog's head is presented, showing the performance of the calculation engine. The development of the first MC-based calculation engine for the future TPS devoted to MRT has been accomplished. This will constitute an essential tool for the future clinical trials on pets at the ESRF. The MC engine is able to calculate dose distributions in micrometer-sized bins in complex voxelized CT structures in a reasonable amount of time. Minimization of the computation time by using several approaches has led to timings that are adequate for pet radiotherapy at synchrotron facilities. The next step will consist in its integration into a user-friendly graphical front-end.
Impact of dose engine algorithm in pencil beam scanning proton therapy for breast cancer.
Tommasino, Francesco; Fellin, Francesco; Lorentini, Stefano; Farace, Paolo
2018-06-01
Proton therapy for the treatment of breast cancer is acquiring increasing interest, due to the potential reduction of radiation-induced side effects such as cardiac and pulmonary toxicity. While several in silico studies demonstrated the gain in plan quality offered by pencil beam scanning (PBS) compared to passive scattering techniques, the related dosimetric uncertainties have been poorly investigated so far. Five breast cancer patients were planned with Raystation 6 analytical pencil beam (APB) and Monte Carlo (MC) dose calculation algorithms. Plans were optimized with APB and then MC was used to recalculate dose distribution. Movable snout and beam splitting techniques (i.e. using two sub-fields for the same beam entrance, one with and the other without the use of a range shifter) were considered. PTV dose statistics were recorded. The same planning configurations were adopted for the experimental benchmark. Dose distributions were measured with a 2D array of ionization chambers and compared to APB and MC calculated ones by means of a γ analysis (agreement criteria 3%, 3 mm). Our results indicate that, when using proton PBS for breast cancer treatment, the Raystation 6 APB algorithm does not allow obtaining sufficient accuracy, especially with large air gaps. On the contrary, the MC algorithm resulted into much higher accuracy in all beam configurations tested and has to be recommended. Centers where a MC algorithm is not yet available should consider a careful use of APB, possibly combined with a movable snout system or in any case with strategies aimed at minimizing air gaps. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, L; Fan, J; Eldib, A
Purpose: Treating nose skin with an electron beam is of a substantial challenge due to uneven nose surfaces and tissue heterogeneity, and consequently could have a great uncertainty of dose accuracy on the target. This work explored the method using Monte Carlo (MC)-based energy and intensity modulated electron radiotherapy (MERT), which would be delivered with a photon MLC in a standard medical linac (Artiste). Methods: The traditional treatment on the nose skin involves the usage of a bolus, often with a single energy electron beam. This work avoided using the bolus, and utilized mixed energies of electron beams. An in-housemore » developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. A clinical case of the nose skin, which was previously treated with a single 9 MeV electron beam, was replanned with the MERT method. The resultant dose distributions were compared with the plan previously clinically used. The dose volume histogram of the MERT plan is calculated to examine the coverage of the planning target volume (PTV) and critical structure doses. Results: The target coverage and conformality in the MERT plan are improved as compared to the conventional plan. The MERT can provide more sufficient target coverage and less normal tissue dose underneath the nose skin. Conclusion: Compared to the conventional treatment technique, using MERT for the nose skin treatment has shown the dosimetric advantages in the PTV coverage and conformality. In addition, this technique eliminates the necessity of the cutout and bolus, which makes the treatment more efficient and accurate.« less
Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes.
Hayati, Homa; Mesbahi, Asghar; Nazarpoor, Mahmood
2016-01-01
Our purpose in the current study was to model an X-ray CT scanner with the Monte Carlo (MC) method for gel dosimetry. In this study, a conventional CT scanner with one array detector was modeled with use of the MCNPX MC code. The MC calculated photon fluence in detector arrays was used for image reconstruction of a simple water phantom as well as polyacrylamide polymer gel (PAG) used for radiation therapy. Image reconstruction was performed with the filtered back-projection method with a Hann filter and the Spline interpolation method. Using MC results, we obtained the dose-response curve for images of irradiated gel at different absorbed doses. A spatial resolution of about 2 mm was found for our simulated MC model. The MC-based CT images of the PAG gel showed a reliable increase in the CT number with increasing absorbed dose for the studied gel. Also, our results showed that the current MC model of a CT scanner can be used for further studies on the parameters that influence the usability and reliability of results, such as the photon energy spectra and exposure techniques in X-ray CT gel dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, Hilal; Chiu-Tsao, Sou-Tung; Oezbay, Ismail
Purpose: (1) To measure absolute dose distributions in eye phantom for COMS eye plaques with {sup 125}I seeds (model I25.S16) using radiochromic EBT film dosimetry. (2) To determine the dose correction function for calculations involving the TG-43 formalism to account for the presence of the COMS eye plaque using Monte Carlo (MC) method specific to this seed model. (3) To test the heterogeneous dose calculation accuracy of the new version of Plaque Simulator (v5.3.9) against the EBT film data for this seed model. Methods: Using EBT film, absolute doses were measured for {sup 125}I seeds (model I25.S16) in COMS eyemore » plaques (1) along the plaque's central axis for (a) uniformly loaded plaques (14-20 mm in diameter) and (b) a 20 mm plaque with single seed, and (2) in off-axis direction at depths of 5 and 12 mm for all four plaque sizes. The EBT film calibration was performed at {sup 125}I photon energy. MC calculations using MCNP5 code for a single seed at the center of a 20 mm plaque in homogeneous water and polystyrene medium were performed. The heterogeneity dose correction function was determined from the MC calculations. These function values at various depths were entered into PS software (v5.3.9) to calculate the heterogeneous dose distributions for the uniformly loaded plaques (of all four sizes). The dose distributions with homogeneous water assumptions were also calculated using PS for comparison. The EBT film measured absolute dose rate values (film) were compared with those calculated using PS with homogeneous assumption (PS Homo) and heterogeneity correction (PS Hetero). The values of dose ratio (film/PS Homo) and (film/PS Hetero) were obtained. Results: The central axis depth dose rate values for a single seed in 20 mm plaque measured using EBT film and calculated with MCNP5 code (both in ploystyrene phantom) were compared, and agreement within 9% was found. The dose ratio (film/PS Homo) values were substantially lower than unity (mostly between 0.8 and 0.9) for all four plaque sizes, indicating dose reduction by COMS plaque compared with homogeneous assumption. The dose ratio (film/PS Hetero) values were close to unity, indicating the PS Hetero calculations agree with those from the film study. Conclusions: Substantial heterogeneity effect on the {sup 125}I dose distributions in an eye phantom for COMS plaques was verified using radiochromic EBT film dosimetry. The calculated doses for uniformly loaded plaques using PS with heterogeneity correction option enabled were corroborated by the EBT film measurement data. Radiochromic EBT film dosimetry is feasible in measuring absolute dose distributions in eye phantom for COMS eye plaques loaded with single or multiple {sup 125}I seeds. Plaque Simulator is a viable tool for the calculation of dose distributions if one understands its limitations and uses the proper heterogeneity correction feature.« less
Monte Carlo based, patient-specific RapidArc QA using Linac log files.
Teke, Tony; Bergman, Alanah M; Kwa, William; Gill, Bradford; Duzenli, Cheryl; Popescu, I Antoniu
2010-01-01
A Monte Carlo (MC) based QA process to validate the dynamic beam delivery accuracy for Varian RapidArc (Varian Medical Systems, Palo Alto, CA) using Linac delivery log files (DynaLog) is presented. Using DynaLog file analysis and MC simulations, the goal of this article is to (a) confirm that adequate sampling is used in the RapidArc optimization algorithm (177 static gantry angles) and (b) to assess the physical machine performance [gantry angle and monitor unit (MU) delivery accuracy]. Ten clinically acceptable RapidArc treatment plans were generated for various tumor sites and delivered to a water-equivalent cylindrical phantom on the treatment unit. Three Monte Carlo simulations were performed to calculate dose to the CT phantom image set: (a) One using a series of static gantry angles defined by 177 control points with treatment planning system (TPS) MLC control files (planning files), (b) one using continuous gantry rotation with TPS generated MLC control files, and (c) one using continuous gantry rotation with actual Linac delivery log files. Monte Carlo simulated dose distributions are compared to both ionization chamber point measurements and with RapidArc TPS calculated doses. The 3D dose distributions were compared using a 3D gamma-factor analysis, employing a 3%/3 mm distance-to-agreement criterion. The dose difference between MC simulations, TPS, and ionization chamber point measurements was less than 2.1%. For all plans, the MC calculated 3D dose distributions agreed well with the TPS calculated doses (gamma-factor values were less than 1 for more than 95% of the points considered). Machine performance QA was supplemented with an extensive DynaLog file analysis. A DynaLog file analysis showed that leaf position errors were less than 1 mm for 94% of the time and there were no leaf errors greater than 2.5 mm. The mean standard deviation in MU and gantry angle were 0.052 MU and 0.355 degrees, respectively, for the ten cases analyzed. The accuracy and flexibility of the Monte Carlo based RapidArc QA system were demonstrated. Good machine performance and accurate dose distribution delivery of RapidArc plans were observed. The sampling used in the TPS optimization algorithm was found to be adequate.
Proposed linear energy transfer areal detector for protons using radiochromic film.
Mayer, Rulon; Lin, Liyong; Fager, Marcus; Douglas, Dan; McDonough, James; Carabe, Alejandro
2015-04-01
Radiation therapy depends on predictably and reliably delivering dose to tumors and sparing normal tissues. Protons with kinetic energy of a few hundred MeV can selectively deposit dose to deep seated tumors without an exit dose, unlike x-rays. The better dose distribution is attributed to a phenomenon known as the Bragg peak. The Bragg peak is due to relatively high energy deposition within a given distance or high Linear Energy Transfer (LET). In addition, biological response to radiation depends on the dose, dose rate, and localized energy deposition patterns or LET. At present, the LET can only be measured at a given fixed point and the LET spatial distribution can only be inferred from calculations. The goal of this study is to develop and test a method to measure LET over extended areas. Traditionally, radiochromic films are used to measure dose distribution but not for LET distribution. We report the first use of these films for measuring the spatial distribution of the LET deposited by protons. The radiochromic film sensitivity diminishes for large LET. A mathematical model correlating the film sensitivity and LET is presented to justify relating LET and radiochromic film relative sensitivity. Protons were directed parallel to radiochromic film sandwiched between solid water slabs. This study proposes the scaled-normalized difference (SND) between the Treatment Planning system (TPS) and measured dose as the metric describing the LET. The SND is correlated with a Monte Carlo (MC) calculation of the LET spatial distribution for a large range of SNDs. A polynomial fit between the SND and MC LET is generated for protons having a single range of 20 cm with narrow Bragg peak. Coefficients from these fitted polynomial fits were applied to measured proton dose distributions with a variety of ranges. An identical procedure was applied to the protons deposited from Spread Out Bragg Peak and modulated by 5 cm. Gamma analysis is a method for comparing the calculated LET with the LET measured using radiochromic film at the pixel level over extended areas. Failure rates using gamma analysis are calculated for areas in the dose distribution using parameters of 25% of MC LET and 3 mm. The processed dose distributions find 5%-10% failure rates for the narrow 12.5 and 15 cm proton ranges and 10%-15% for proton ranges of 15, 17.5, and 20 cm and modulated by 5 cm. It is found through gamma analysis that the measured proton energy deposition in radiochromic film and TPS can be used to determine LET. This modified film dosimetry provides an experimental areal LET measurement that can verify MC calculations, support LET point measurements, possibly enhance biologically based proton treatment planning, and determine the polymerization process within the radiochromic film.
Neutron track length estimator for GATE Monte Carlo dose calculation in radiotherapy.
Elazhar, H; Deschler, T; Létang, J M; Nourreddine, A; Arbor, N
2018-06-20
The out-of-field dose in radiation therapy is a growing concern in regards to the late side-effects and secondary cancer induction. In high-energy x-ray therapy, the secondary neutrons generated through photonuclear reactions in the accelerator are part of this secondary dose. The neutron dose is currently not estimated by the treatment planning system while it appears to be preponderant for distances greater than 50 cm from the isocenter. Monte Carlo simulation has become the gold standard for accurately calculating the neutron dose under specific treatment conditions but the method is also known for having a slow statistical convergence, which makes it difficult to be used on a clinical basis. The neutron track length estimator, a neutron variance reduction technique inspired by the track length estimator method has thus been developped for the first time in the Monte Carlo code GATE to allow a fast computation of the neutron dose in radiotherapy. The details of its implementation, as well as the comparison of its performances against the analog MC method, are presented here. A gain of time from 15 to 400 can be obtained by our method, with a mean difference in the dose calculation of about 1% in comparison with the analog MC method.
NASA Astrophysics Data System (ADS)
Davidson, S.; Cui, J.; Followill, D.; Ibbott, G.; Deasy, J.
2008-02-01
The Dose Planning Method (DPM) is one of several 'fast' Monte Carlo (MC) computer codes designed to produce an accurate dose calculation for advanced clinical applications. We have developed a flexible machine modeling process and validation tests for open-field and IMRT calculations. To complement the DPM code, a practical and versatile source model has been developed, whose parameters are derived from a standard set of planning system commissioning measurements. The primary photon spectrum and the spectrum resulting from the flattening filter are modeled by a Fatigue function, cut-off by a multiplying Fermi function, which effectively regularizes the difficult energy spectrum determination process. Commonly-used functions are applied to represent the off-axis softening, increasing primary fluence with increasing angle ('the horn effect'), and electron contamination. The patient dependent aspect of the MC dose calculation utilizes the multi-leaf collimator (MLC) leaf sequence file exported from the treatment planning system DICOM output, coupled with the source model, to derive the particle transport. This model has been commissioned for Varian 2100C 6 MV and 18 MV photon beams using percent depth dose, dose profiles, and output factors. A 3-D conformal plan and an IMRT plan delivered to an anthropomorphic thorax phantom were used to benchmark the model. The calculated results were compared to Pinnacle v7.6c results and measurements made using radiochromic film and thermoluminescent detectors (TLD).
Ohno, Takeshi; Araki, Fujio; Onizuka, Ryota; Hatemura, Masahiro; Shimonobou, Toshiaki; Sakamoto, Takashi; Okumura, Shuichiro; Ideguchi, Daichi; Honda, Keiichi; Kawata, Kenji
2017-03-01
This study compared dosimetric properties among four commercial multi-detector CT (MDCT) scanners. The X-ray beam characteristics were obtained from photon intensity attenuation curves of aluminum and off-center ratio (OCR) profiles in air, which were measured with four commercial MDCT scanners. The absorbed dose for MDCT scanners was evaluated with Farmer ionization chamber measurements at the center and four peripheral points in the body- and head-type cylindrical water phantoms. Measured collected charge was converted to absorbed dose using a 60 Co absorbed dose-to-water calibration factor and Monte Carlo (MC)-calculated correction factors. Four MDCT scanners were modeled to correspond with measured X-ray beam characteristics using GMctdospp (IMPS, Germany) software. Al half-value layers (Al-HVLs) with a body-bowtie filter determined from measured Al-attenuation curves ranged 7.2‒9.1mm at 120kVp and 6.1‒8.0mm at 100kVp. MC-calculated Al-HVLs and OCRs in air were in acceptable agreement within 0.5mm and 5% of measured values, respectively. The percentage difference between nominal and actual beam width was greater with decreasing collimation width. The absorbed doses for MDCT scanners at 120kVp ranged 5.1‒7.1mGy and 10.8‒17.5mGy per 100mAs at the center in the body- and head-type water phantoms, respectively. Measured doses at four peripheral points were within 5% agreement of MC-calculated values. The absorbed dose at the center in both water phantoms increased with decreasing Al-HVL for the same charge on the focus. In this study the X-ray beam characteristics and the absorbed dose were measured and compared with calculated values for four MDCT scanners. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
SU-E-T-439: An Improved Formula of Scatter-To-Primary Ratio for Photon Dose Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, T
2014-06-01
Purpose: Scatter-to-primary ratio (SPR) is an important dosimetric quantity that describes the contribution from the scatter photons in an external photon beam. The purpose of this study is to develop an improved analytical formula to describe SPR as a function of circular field size (r) and depth (d) using Monte Carlo (MC) simulation. Methods: MC simulation was performed for Mohan photon spectra (Co-60, 4, 6, 10, 15, 23 MV) using EGSNRC code. Point-spread scatter dose kernels in water are generated. The scatter-to-primary ratio (SPR) is also calculated using MC simulation as a function of field size for circular field sizemore » with radius r and depth d. The doses from forward scatter and backscatter photons are calculated using a convolution of the point-spread scatter dose kernel and by accounting for scatter photons contributing to dose before (z'd) reaching the depth of interest, d, where z' is the location of scatter photons, respectively. The depth dependence of the ratio of the forward scatter and backscatter doses is determined as a function of depth and field size. Results: We are able to improve the existing 3-parameter (a, w, d0) empirical formula for SPR by introducing depth dependence for one of the parameter d0, which becomes 0 for deeper depths. The depth dependence of d0 can be directly calculated as a ratio of backscatter-to-forward scatter doses for otherwise the same field and depth. With the improved empirical formula, we can fit SPR for all megavoltage photon beams to within 2%. Existing 3-parameter formula cannot fit SPR data for Co-60 to better than 3.1%. Conclusion: An improved empirical formula is developed to fit SPR for all megavoltage photon energies to within 2%.« less
CT-based MCNPX dose calculations for gynecology brachytherapy employing a Henschke applicator
NASA Astrophysics Data System (ADS)
Yu, Pei-Chieh; Nien, Hsin-Hua; Tung, Chuan-Jong; Lee, Hsing-Yi; Lee, Chung-Chi; Wu, Ching-Jung; Chao, Tsi-Chian
2017-11-01
The purpose of this study is to investigate the dose perturbation caused by the metal ovoid structures of a Henschke applicator using Monte Carlo simulation in a realistic phantom. The Henschke applicator has been widely used for gynecologic patients treated by brachytherapy in Taiwan. However, the commercial brachytherapy planning system (BPS) did not properly evaluate the dose perturbation caused by its metal ovoid structures. In this study, Monte Carlo N-Particle Transport Code eXtended (MCNPX) was used to evaluate the brachytherapy dose distribution of a Henschke applicator embedded in a Plastic water phantom and a heterogeneous patient computed tomography (CT) phantom. The dose comparison between the MC simulations and film measurements for a Plastic water phantom with Henschke applicator were in good agreement. However, MC dose with the Henschke applicator showed significant deviation (-80.6%±7.5%) from those without Henschke applicator. Furthermore, the dose discrepancy in the heterogeneous patient CT phantom and Plastic water phantom CT geometries with Henschke applicator showed 0 to -26.7% dose discrepancy (-8.9%±13.8%). This study demonstrates that the metal ovoid structures of Henschke applicator cannot be disregard in brachytherapy dose calculation.
Room scatter effects in Total Skin Electron Irradiation: Monte Carlo simulation study.
Nevelsky, Alexander; Borzov, Egor; Daniel, Shahar; Bar-Deroma, Raquel
2017-01-01
Total Skin Electron Irradiation (TSEI) is a complex technique which usually involves the use of large electron fields and the dual-field approach. In this situation, many electrons scattered from the treatment room floor are produced. However, no investigations of the effect of scattered electrons in TSEI treatments have been reported. The purpose of this work was to study the contribution of floor scattered electrons to skin dose during TSEI treatment using Monte Carlo (MC) simulations. All MC simulations were performed with the EGSnrc code. Influence of beam energy, dual-field angle, and floor material on the contribution of floor scatter was investigated. Spectrum of the scattered electrons was calculated. Measurements of dose profile were performed in order to verify MC calculations. Floor scatter dependency on the floor material was observed (at 20 cm from the floor, scatter contribution was about 21%, 18%, 15%, and 12% for iron, concrete, PVC, and water, respectively). Although total dose profiles exhibited slight variation as functions of beam energy and dual-field angle, no dependence of the floor scatter contribution on the beam energy or dual-field angle was found. The spectrum of the scattered electrons was almost uniform between a few hundred KeV to 4 MeV, and then decreased linearly to 6 MeV. For the TSEI technique, dose contribution due to the electrons scattered from the room floor may be clinically significant and should be taken into account during design and commissioning phases. MC calculations can be used for this task. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
SU-G-TeP4-04: An Automated Monte Carlo Based QA Framework for Pencil Beam Scanning Treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, J; Jee, K; Clasie, B
2016-06-15
Purpose: Prior to treating new PBS field, multiple (three) patient-field-specific QA measurements are performed: two 2D dose distributions at shallow depth (M1) and at the tumor depth (M2) with treatment hardware at zero gantry angle; one 2D dose distribution at iso-center (M3) without patient specific devices at the planned gantry angle. This patient-specific QA could be simplified by the use of MC model. The results of MC model commissioning for a spot-scanning system and the fully automated TOPAS/MC-based QA framework will be presented. Methods: We have developed in-house MC interface to access a TPS (Astroid) database from a computer clustermore » remotely. Once a plan is identified, the interface downloads information for the MC simulations, such as patient images, apertures points, and fluence maps and initiates calculations in both the patient and QA geometries. The resulting calculations are further analyzed to evaluate the TPS dose accuracy and the PBS delivery. Results: The Monte Carlo model of our system was validated within 2.0 % accuracy over the whole range of the dose distribution (proximal/shallow part, as well as target dose part) due to the location of the measurements. The averaged range difference after commissioning was 0.25 mm over entire treatment ranges, e.g., 6.5 cm to 31.6 cm. Conclusion: As M1 depths range typically from 1 cm to 4 cm from the phantom surface, The Monte Carlo model of our system was validated within +− 2.0 % in absolute dose level over a whole treatment range. The averaged range difference after commissioning was 0.25 mm over entire treatment ranges, e.g., 6.5 cm to 31.6 cm. This work was supported by NIH/NCI under CA U19 21239.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan Chan Tseung, Hok Seum, E-mail: wanchantseung.hok@mayo.edu; Ma, Jiasen; Kreofsky, Cole R.
Purpose: Our aim is to demonstrate the feasibility of fast Monte Carlo (MC)–based inverse biological planning for the treatment of head and neck tumors in spot-scanning proton therapy. Methods and Materials: Recently, a fast and accurate graphics processor unit (GPU)–based MC simulation of proton transport was developed and used as the dose-calculation engine in a GPU-accelerated intensity modulated proton therapy (IMPT) optimizer. Besides dose, the MC can simultaneously score the dose-averaged linear energy transfer (LET{sub d}), which makes biological dose (BD) optimization possible. To convert from LET{sub d} to BD, a simple linear relation was assumed. By use of thismore » novel optimizer, inverse biological planning was applied to 4 patients, including 2 small and 1 large thyroid tumor targets, as well as 1 glioma case. To create these plans, constraints were placed to maintain the physical dose (PD) within 1.25 times the prescription while maximizing target BD. For comparison, conventional intensity modulated radiation therapy (IMRT) and IMPT plans were also created using Eclipse (Varian Medical Systems) in each case. The same critical-structure PD constraints were used for the IMRT, IMPT, and biologically optimized plans. The BD distributions for the IMPT plans were obtained through MC recalculations. Results: Compared with standard IMPT, the biologically optimal plans for patients with small tumor targets displayed a BD escalation that was around twice the PD increase. Dose sparing to critical structures was improved compared with both IMRT and IMPT. No significant BD increase could be achieved for the large thyroid tumor case and when the presence of critical structures mitigated the contribution of additional fields. The calculation of the biologically optimized plans can be completed in a clinically viable time (<30 minutes) on a small 24-GPU system. Conclusions: By exploiting GPU acceleration, MC-based, biologically optimized plans were created for small–tumor target patients. This optimizer will be used in an upcoming feasibility trial on LET{sub d} painting for radioresistant tumors.« less
GPU-accelerated Monte Carlo convolution/superposition implementation for dose calculation.
Zhou, Bo; Yu, Cedric X; Chen, Danny Z; Hu, X Sharon
2010-11-01
Dose calculation is a key component in radiation treatment planning systems. Its performance and accuracy are crucial to the quality of treatment plans as emerging advanced radiation therapy technologies are exerting ever tighter constraints on dose calculation. A common practice is to choose either a deterministic method such as the convolution/superposition (CS) method for speed or a Monte Carlo (MC) method for accuracy. The goal of this work is to boost the performance of a hybrid Monte Carlo convolution/superposition (MCCS) method by devising a graphics processing unit (GPU) implementation so as to make the method practical for day-to-day usage. Although the MCCS algorithm combines the merits of MC fluence generation and CS fluence transport, it is still not fast enough to be used as a day-to-day planning tool. To alleviate the speed issue of MC algorithms, the authors adopted MCCS as their target method and implemented a GPU-based version. In order to fully utilize the GPU computing power, the MCCS algorithm is modified to match the GPU hardware architecture. The performance of the authors' GPU-based implementation on an Nvidia GTX260 card is compared to a multithreaded software implementation on a quad-core system. A speedup in the range of 6.7-11.4x is observed for the clinical cases used. The less than 2% statistical fluctuation also indicates that the accuracy of the authors' GPU-based implementation is in good agreement with the results from the quad-core CPU implementation. This work shows that GPU is a feasible and cost-efficient solution compared to other alternatives such as using cluster machines or field-programmable gate arrays for satisfying the increasing demands on computation speed and accuracy of dose calculation. But there are also inherent limitations of using GPU for accelerating MC-type applications, which are also analyzed in detail in this article.
Usmani, Muhammad Nauman; Takegawa, Hideki; Takashina, Masaaki; Numasaki, Hodaka; Suga, Masaki; Anetai, Yusuke; Kurosu, Keita; Koizumi, Masahiko; Teshima, Teruki
2014-11-01
Technical developments in radiotherapy (RT) have created a need for systematic quality assurance (QA) to ensure that clinical institutions deliver prescribed radiation doses consistent with the requirements of clinical protocols. For QA, an ideal dose verification system should be independent of the treatment-planning system (TPS). This paper describes the development and reproducibility evaluation of a Monte Carlo (MC)-based standard LINAC model as a preliminary requirement for independent verification of dose distributions. The BEAMnrc MC code is used for characterization of the 6-, 10- and 15-MV photon beams for a wide range of field sizes. The modeling of the LINAC head components is based on the specifications provided by the manufacturer. MC dose distributions are tuned to match Varian Golden Beam Data (GBD). For reproducibility evaluation, calculated beam data is compared with beam data measured at individual institutions. For all energies and field sizes, the MC and GBD agreed to within 1.0% for percentage depth doses (PDDs), 1.5% for beam profiles and 1.2% for total scatter factors (Scps.). Reproducibility evaluation showed that the maximum average local differences were 1.3% and 2.5% for PDDs and beam profiles, respectively. MC and institutions' mean Scps agreed to within 2.0%. An MC-based standard LINAC model developed to independently verify dose distributions for QA of multi-institutional clinical trials and routine clinical practice has proven to be highly accurate and reproducible and can thus help ensure that prescribed doses delivered are consistent with the requirements of clinical protocols. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
SU-E-T-503: IMRT Optimization Using Monte Carlo Dose Engine: The Effect of Statistical Uncertainty.
Tian, Z; Jia, X; Graves, Y; Uribe-Sanchez, A; Jiang, S
2012-06-01
With the development of ultra-fast GPU-based Monte Carlo (MC) dose engine, it becomes clinically realistic to compute the dose-deposition coefficients (DDC) for IMRT optimization using MC simulation. However, it is still time-consuming if we want to compute DDC with small statistical uncertainty. This work studies the effects of the statistical error in DDC matrix on IMRT optimization. The MC-computed DDC matrices are simulated here by adding statistical uncertainties at a desired level to the ones generated with a finite-size pencil beam algorithm. A statistical uncertainty model for MC dose calculation is employed. We adopt a penalty-based quadratic optimization model and gradient descent method to optimize fluence map and then recalculate the corresponding actual dose distribution using the noise-free DDC matrix. The impacts of DDC noise are assessed in terms of the deviation of the resulted dose distributions. We have also used a stochastic perturbation theory to theoretically estimate the statistical errors of dose distributions on a simplified optimization model. A head-and-neck case is used to investigate the perturbation to IMRT plan due to MC's statistical uncertainty. The relative errors of the final dose distributions of the optimized IMRT are found to be much smaller than those in the DDC matrix, which is consistent with our theoretical estimation. When history number is decreased from 108 to 106, the dose-volume-histograms are still very similar to the error-free DVHs while the error in DDC is about 3.8%. The results illustrate that the statistical errors in the DDC matrix have a relatively small effect on IMRT optimization in dose domain. This indicates we can use relatively small number of histories to obtain the DDC matrix with MC simulation within a reasonable amount of time, without considerably compromising the accuracy of the optimized treatment plan. This work is supported by Varian Medical Systems through a Master Research Agreement. © 2012 American Association of Physicists in Medicine.
Widesott, Lamberto; Lorentini, Stefano; Fracchiolla, Francesco; Farace, Paolo; Schwarz, Marco
2018-05-04
validation of a commercial Monte Carlo (MC) algorithm (RayStation ver6.0.024) for the treatment of brain tumours with pencil beam scanning (PBS) proton therapy, comparing it via measurements and analytical calculations in clinically realistic scenarios. Methods: For the measurements a 2D ion chamber array detector (MatriXX PT)) was placed underneath the following targets: 1) anthropomorphic head phantom (with two different thickness) and 2) a biological sample (i.e. half lamb's head). In addition, we compared the MC dose engine vs. the RayStation pencil beam (PB) algorithm clinically implemented so far, in critical conditions such as superficial targets (i.e. in need of range shifter), different air gaps and gantry angles to simulate both orthogonal and tangential beam arrangements. For every plan the PB and MC dose calculation were compared to measurements using a gamma analysis metrics (3%, 3mm). Results: regarding the head phantom the gamma passing rate (GPR) was always >96% and on average > 99% for the MC algorithm; PB algorithm had a GPR ≤90% for all the delivery configurations with single slab (apart 95 % GPR from gantry 0° and small air gap) and in case of two slabs of the head phantom the GPR was >95% only in case of small air gaps for all the three (0°, 45°,and 70°) simulated beam gantry angles. Overall the PB algorithm tends to overestimate the dose to the target (up to 25%) and underestimate the dose to the organ at risk (up to 30%). We found similar results (but a bit worse for PB algorithm) for the two targets of the lamb's head where only two beam gantry angles were simulated. Conclusions: our results suggest that in PBS proton therapy range shifter (RS) need to be used with extreme caution when planning the treatment with an analytical algorithm due to potentially great discrepancies between the planned dose and the dose delivered to the patients, also in case of brain tumours where this issue could be underestimated. Our results also suggest that a MC evaluation of the dose has to be performed every time the RS is used and, mostly, when it is used with large air gaps and beam directions tangential to the patient surface. . © 2018 Institute of Physics and Engineering in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giantsoudi, D; Jee, K; MacDonald, S
Purpose: Increased risk of coronary artery disease has been documented for patients treated with radiation for left-sided breast cancer. Proton therapy (PRT) has been shown to significantly decrease cardiac irradiation, however variations in relative biological effectiveness (RBE) have been ignored so far. In this study we evaluate the impact of accounting for RBE variations on sensitive structures located within high linear energy transfer (LET) areas (distal end) of the proton treatment fields, for this treatment site. Methods: Three patients treated in our institution with PRT for left-sided breast cancer were selected. All patients underwent reconstructive surgery after mastectomy and treatedmore » to a total dose of 50.4Gy with beam(s) vertical to the chest wall. Dose and LET distributions were calculated using Monte Carlo (MC-TOPAS - TOol for PArticle Simulation). The LET-based, variable-RBE-weighted dose was compared to the analytical calculation algorithm (ACA) and MC dose distributions for a constant RBE of 1.1, based on volume histograms and mean values for the target, heart and left anterior descending coronary artery (LAD). Results: Assuming a constant RBE and compared to the ACA dose, MC predicted lower mean target and heart doses by 0.5% to 2.7% of the prescription dose. For variable RBE, plan evaluation showed increased mean target dose by up to 5%. Mean variable-RBE-weighted doses for the LAD ranged from 2.7 to 5.9Gy(RBE) among patients increased by 41%–64.2% compared to constant RBE ACA calculation (absolute dose: 1.7–3.9Gy(RBE)). Smaller increase in mean heart doses was noticed. Conclusion: ACA overestimates the target mean dose by up to 2.7%. However, disregarding variations in RBE may lead to significant underestimation of the dose to sensitive structures at the distal end of the proton treatment field and could thus impact outcome modeling for cardiac toxicities after proton therapy. These results are subject to RBE model and parameter uncertainties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey
2015-04-15
Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dosemore » distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hee Jung; Department of Biomedical Engineering, Seoul National University, Seoul; Department of Radiation Oncology, Soonchunhyang University Hospital, Seoul
2015-01-01
To investigate how accurately treatment planning systems (TPSs) account for the tongue-and-groove (TG) effect, Monte Carlo (MC) simulations and radiochromic film (RCF) measurements were performed for comparison with TPS results. Two commercial TPSs computed the TG effect for Varian Millennium 120 multileaf collimator (MLC). The TG effect on off-axis dose profile at 3 depths of solid water was estimated as the maximum depth and the full width at half maximum (FWHM) of the dose dip at an interleaf position. When compared with the off-axis dose of open field, the maximum depth of the dose dip for MC and RCF rangedmore » from 10.1% to 20.6%; the maximum depth of the dose dip gradually decreased by up to 8.7% with increasing depths of 1.5 to 10 cm and also by up to 4.1% with increasing off-axis distances of 0 to 13 cm. However, TPS results showed at most a 2.7% decrease for the same depth range and a negligible variation for the same off-axis distances. The FWHM of the dose dip was approximately 0.19 cm for MC and 0.17 cm for RCF, but 0.30 cm for Eclipse TPS and 0.45 cm for Pinnacle TPS. Accordingly, the integrated value of TG dose dip for TPS was larger than that for MC and RCF and almost invariant along the depths and off-axis distances. We concluded that the TG dependence on depth and off-axis doses shown in the MC and RCF results could not be appropriately modeled by the TPS versions in this study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Z; Folkerts, M; Jiang, S
Purpose: We have previously developed a GPU-OpenCL-based MC dose engine named goMC with built-in analytical linac beam model. To move goMC towards routine clinical use, we have developed an automatic beam-commissioning method, and an efficient source sampling strategy to facilitate dose calculations for real treatment plans. Methods: Our commissioning method is to automatically adjust the relative weights among the sub-sources, through an optimization process minimizing the discrepancies between calculated dose and measurements. Six models built for Varian Truebeam linac photon beams (6MV, 10MV, 15MV, 18MV, 6MVFFF, 10MVFFF) were commissioned using measurement data acquired at our institution. To facilitate dose calculationsmore » for real treatment plans, we employed inverse sampling method to efficiently incorporate MLC leaf-sequencing into source sampling. Specifically, instead of sampling source particles control-point by control-point and rejecting the particles blocked by MLC, we assigned a control-point index to each sampled source particle, according to MLC leaf-open duration of each control-point at the pixel where the particle intersects the iso-center plane. Results: Our auto-commissioning method decreased distance-to-agreement (DTA) of depth dose at build-up regions by 36.2% averagely, making it within 1mm. Lateral profiles were better matched for all beams, with biggest improvement found at 15MV for which root-mean-square difference was reduced from 1.44% to 0.50%. Maximum differences of output factors were reduced to less than 0.7% for all beams, with largest decrease being from1.70% to 0.37% found at 10FFF. Our new sampling strategy was tested on a Head&Neck VMAT patient case. Achieving clinically acceptable accuracy, the new strategy could reduce the required history number by a factor of ∼2.8 given a statistical uncertainty level and hence achieve a similar speed-up factor. Conclusion: Our studies have demonstrated the feasibility and effectiveness of our auto-commissioning approach and new efficient source sampling strategy, implying the potential of our GPU-based MC dose engine goMC for routine clinical use.« less
Proposed linear energy transfer areal detector for protons using radiochromic film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Rulon; Lin, Liyong; Fager, Marcus
2015-04-15
Radiation therapy depends on predictably and reliably delivering dose to tumors and sparing normal tissues. Protons with kinetic energy of a few hundred MeV can selectively deposit dose to deep seated tumors without an exit dose, unlike x-rays. The better dose distribution is attributed to a phenomenon known as the Bragg peak. The Bragg peak is due to relatively high energy deposition within a given distance or high Linear Energy Transfer (LET). In addition, biological response to radiation depends on the dose, dose rate, and localized energy deposition patterns or LET. At present, the LET can only be measured atmore » a given fixed point and the LET spatial distribution can only be inferred from calculations. The goal of this study is to develop and test a method to measure LET over extended areas. Traditionally, radiochromic films are used to measure dose distribution but not for LET distribution. We report the first use of these films for measuring the spatial distribution of the LET deposited by protons. The radiochromic film sensitivity diminishes for large LET. A mathematical model correlating the film sensitivity and LET is presented to justify relating LET and radiochromic film relative sensitivity. Protons were directed parallel to radiochromic film sandwiched between solid water slabs. This study proposes the scaled-normalized difference (SND) between the Treatment Planning system (TPS) and measured dose as the metric describing the LET. The SND is correlated with a Monte Carlo (MC) calculation of the LET spatial distribution for a large range of SNDs. A polynomial fit between the SND and MC LET is generated for protons having a single range of 20 cm with narrow Bragg peak. Coefficients from these fitted polynomial fits were applied to measured proton dose distributions with a variety of ranges. An identical procedure was applied to the protons deposited from Spread Out Bragg Peak and modulated by 5 cm. Gamma analysis is a method for comparing the calculated LET with the LET measured using radiochromic film at the pixel level over extended areas. Failure rates using gamma analysis are calculated for areas in the dose distribution using parameters of 25% of MC LET and 3 mm. The processed dose distributions find 5%–10% failure rates for the narrow 12.5 and 15 cm proton ranges and 10%–15% for proton ranges of 15, 17.5, and 20 cm and modulated by 5 cm. It is found through gamma analysis that the measured proton energy deposition in radiochromic film and TPS can be used to determine LET. This modified film dosimetry provides an experimental areal LET measurement that can verify MC calculations, support LET point measurements, possibly enhance biologically based proton treatment planning, and determine the polymerization process within the radiochromic film.« less
NASA Astrophysics Data System (ADS)
Shin, Wook-Geun; Testa, Mauro; Kim, Hak Soo; Jeong, Jong Hwi; Byeong Lee, Se; Kim, Yeon-Joo; Min, Chul Hee
2017-10-01
For the independent validation of treatment plans, we developed a fully automated Monte Carlo (MC)-based patient dose calculation system with the tool for particle simulation (TOPAS) and proton therapy machine installed at the National Cancer Center in Korea to enable routine and automatic dose recalculation for each patient. The proton beam nozzle was modeled with TOPAS to simulate the therapeutic beam, and MC commissioning was performed by comparing percent depth dose with the measurement. The beam set-up based on the prescribed beam range and modulation width was automated by modifying the vendor-specific method. The CT phantom was modeled based on the DICOM CT files with TOPAS-built-in function, and an in-house-developed C++ code directly imports the CT files for positioning the CT phantom, RT-plan file for simulating the treatment plan, and RT-structure file for applying the Hounsfield unit (HU) assignment, respectively. The developed system was validated by comparing the dose distributions with those calculated by the treatment planning system (TPS) for a lung phantom and two patient cases of abdomen and internal mammary node. The results of the beam commissioning were in good agreement of up to 0.8 mm2 g-1 for B8 option in both of the beam range and the modulation width of the spread-out Bragg peaks. The beam set-up technique can predict the range and modulation width with an accuracy of 0.06% and 0.51%, respectively, with respect to the prescribed range and modulation in arbitrary points of B5 option (128.3, 132.0, and 141.2 mm2 g-1 of range). The dose distributions showed higher than 99% passing rate for the 3D gamma index (3 mm distance to agreement and 3% dose difference) between the MC simulations and the clinical TPS in the target volume. However, in the normal tissues, less favorable agreements were obtained for the radiation treatment planning with the lung phantom and internal mammary node cases. The discrepancies might come from the limitations of the clinical TPS, which is the inaccurate dose calculation algorithm for the scattering effect, in the range compensator and inhomogeneous material. Moreover, the steep slope of the compensator, conversion of the HU values to the human phantom, and the dose calculation algorithm for the HU assignment also could be reasons of the discrepancies. The current study could be used for the independent dose validation of treatment plans including high inhomogeneities, the steep compensator, and riskiness such as lung, head & neck cases. According to the treatment policy, the dose discrepancies predicted with MC could be used for the acceptance decision of the original treatment plan.
NASA Astrophysics Data System (ADS)
Baptista, M.; Di Maria, S.; Vieira, S.; Vaz, P.
2017-11-01
Cone-Beam Computed Tomography (CBCT) enables high-resolution volumetric scanning of the bone and soft tissue anatomy under investigation at the treatment accelerator. This technique is extensively used in Image Guided Radiation Therapy (IGRT) for pre-treatment verification of patient position and target volume localization. When employed daily and several times per patient, CBCT imaging may lead to high cumulative imaging doses to the healthy tissues surrounding the exposed organs. This work aims at (1) evaluating the dose distribution during a CBCT scan and (2) calculating the organ doses involved in this image guiding procedure for clinically available scanning protocols. Both Monte Carlo (MC) simulations and measurements were performed. To model and simulate the kV imaging system mounted on a linear accelerator (Edge™, Varian Medical Systems) the state-of-the-art MC radiation transport program MCNPX 2.7.0 was used. In order to validate the simulation results, measurements of the Computed Tomography Dose Index (CTDI) were performed, using standard PMMA head and body phantoms, with 150 mm length and a standard pencil ionizing chamber (IC) 100 mm long. Measurements for head and pelvis scanning protocols, usually adopted in clinical environment were acquired, using two acquisition modes (full-fan and half fan). To calculate the organ doses, the implemented MC model of the CBCT scanner together with a male voxel phantom ("Golem") was used. The good agreement between the MCNPX simulations and the CTDIw measurements (differences up to 17%) presented in this work reveals that the CBCT MC model was successfully validated, taking into account the several uncertainties. The adequacy of the computational model to map dose distributions during a CBCT scan is discussed in order to identify ways to reduce the total CBCT imaging dose. The organ dose assessment highlights the need to evaluate the therapeutic and the CBCT imaging doses, in a more balanced approach, and the importance of improving awareness regarding the increased risk, arising from repeated exposures.
Monte Carlo simulations of a low energy proton beamline for radiobiological experiments.
Dahle, Tordis J; Rykkelid, Anne Marit; Stokkevåg, Camilla H; Mairani, Andrea; Görgen, Andreas; Edin, Nina J; Rørvik, Eivind; Fjæra, Lars Fredrik; Malinen, Eirik; Ytre-Hauge, Kristian S
2017-06-01
In order to determine the relative biological effectiveness (RBE) of protons with high accuracy, radiobiological experiments with detailed knowledge of the linear energy transfer (LET) are needed. Cell survival data from high LET protons are sparse and experiments with low energy protons to achieve high LET values are therefore required. The aim of this study was to quantify LET distributions from a low energy proton beam by using Monte Carlo (MC) simulations, and to further compare to a proton beam representing a typical minimum energy available at clinical facilities. A Markus ionization chamber and Gafchromic films were employed in dose measurements in the proton beam at Oslo Cyclotron Laboratory. Dose profiles were also calculated using the FLUKA MC code, with the MC beam parameters optimized based on comparisons with the measurements. LET spectra and dose-averaged LET (LET d ) were then estimated in FLUKA, and compared with LET calculated from an 80 MeV proton beam. The initial proton energy was determined to be 15.5 MeV, with a Gaussian energy distribution of 0.2% full width at half maximum (FWHM) and a Gaussian lateral spread of 2 mm FWHM. The LET d increased with depth, from approximately 5 keV/μm in the entrance to approximately 40 keV/μm in the distal dose fall-off. The LET d values were considerably higher and the LET spectra were much narrower than the corresponding spectra from the 80 MeV beam. MC simulations accurately modeled the dose distribution from the proton beam and could be used to estimate the LET at any position in the setup. The setup can be used to study the RBE for protons at high LET d , which is not achievable in clinical proton therapy facilities.
Development of a primary standard for absorbed dose from unsealed radionuclide solutions
NASA Astrophysics Data System (ADS)
Billas, I.; Shipley, D.; Galer, S.; Bass, G.; Sander, T.; Fenwick, A.; Smyth, V.
2016-12-01
Currently, the determination of the internal absorbed dose to tissue from an administered radionuclide solution relies on Monte Carlo (MC) calculations based on published nuclear decay data, such as emission probabilities and energies. In order to validate these methods with measurements, it is necessary to achieve the required traceability of the internal absorbed dose measurements of a radionuclide solution to a primary standard of absorbed dose. The purpose of this work was to develop a suitable primary standard. A comparison between measurements and calculations of absorbed dose allows the validation of the internal radiation dose assessment methods. The absorbed dose from an yttrium-90 chloride (90YCl) solution was measured with an extrapolation chamber. A phantom was developed at the National Physical Laboratory (NPL), the UK’s National Measurement Institute, to position the extrapolation chamber as closely as possible to the surface of the solution. The performance of the extrapolation chamber was characterised and a full uncertainty budget for the absorbed dose determination was obtained. Absorbed dose to air in the collecting volume of the chamber was converted to absorbed dose at the centre of the radionuclide solution by applying a MC calculated correction factor. This allowed a direct comparison of the analytically calculated and experimentally determined absorbed dose of an 90YCl solution. The relative standard uncertainty in the measurement of absorbed dose at the centre of an 90YCl solution with the extrapolation chamber was found to be 1.6% (k = 1). The calculated 90Y absorbed doses from published medical internal radiation dose (MIRD) and radiation dose assessment resource (RADAR) data agreed with measurements to within 1.5% and 1.4%, respectively. This study has shown that it is feasible to use an extrapolation chamber for performing primary standard absorbed dose measurements of an unsealed radionuclide solution. Internal radiation dose assessment methods based on MIRD and RADAR data for 90Y have been validated with experimental absorbed dose determination and they agree within the stated expanded uncertainty (k = 2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sung, Wonmo; Kim, Siyong; Kim, Jung-in
2012-10-15
Purpose: To investigate dose perturbations for pacemaker-implanted patients in partial breast irradiation using high dose rate (HDR) balloon brachytherapy. Methods: Monte Carlo (MC) simulations were performed to calculate dose distributions involving a pacemaker in Ir-192 HDR balloon brachytherapy. Dose perturbations by varying balloon-to-pacemaker distances (BPD = 50 or 100 mm) and concentrations of iodine contrast medium (2.5%, 5.0%, 7.5%, and 10.0% by volume) in the balloon were investigated for separate parts of the pacemaker (i.e., battery and substrate). Relative measurements using an ion-chamber were also performed to confirm MC results. Results: The MC and measured results in homogeneous media withoutmore » a pacemaker agreed with published data within 2% from the balloon surface to 100 mm BPD. Further their dose distributions with a pacemaker were in a comparable agreement. The MC results showed that doses over the battery were increased by a factor of 3, compared to doses without a pacemaker. However, there was no significant dose perturbation in the middle of substrate but up to 70% dose increase in the substrate interface with the titanium capsule. The attenuation by iodine contrast medium lessened doses delivered to the pacemaker by up to 9%. Conclusions: Due to inhomogeneity of pacemaker and contrast medium as well as low-energy photons in Ir-192 HDR balloon brachytherapy, the actual dose received in a pacemaker is different from the homogeneous medium-based dose and the external beam-based dose. Therefore, the dose perturbations should be considered for pacemaker-implanted patients when evaluating a safe clinical distance between the balloon and pacemaker.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, A; Wu, Q; Sawkey, D
Purpose: DEAR is a radiation therapy technique utilizing synchronized motion of gantry and couch during delivery to optimize dose distribution homogeneity and penumbra for treatment of superficial disease. Dose calculation for DEAR is not yet supported by commercial TPSs. The purpose of this study is to demonstrate the feasibility of using a web-based Monte Carlo (MC) simulation tool (VirtuaLinac) to calculate dose distributions for a DEAR delivery. Methods: MC simulations were run through VirtuaLinac, which is based on the GEANT4 platform. VirtuaLinac utilizes detailed linac head geometry and material models, validated phase space files, and a voxelized phantom. The inputmore » was expanded to include an XML file for simulation of varying mechanical axes as a function of MU. A DEAR XML plan was generated and used in the MC simulation and delivered on a TrueBeam in Developer Mode. Radiographic film wrapped on a cylindrical phantom (12.5 cm radius) measured dose at a depth of 1.5 cm and compared to the simulation results. Results: A DEAR plan was simulated using an energy of 6 MeV and a 3×10 cm{sup 2} cut-out in a 15×15 cm{sup 2} applicator for a delivery of a 90° arc. The resulting data were found to provide qualitative and quantitative evidence that the simulation platform could be used as the basis for DEAR dose calculations. The resulting unwrapped 2D dose distributions agreed well in the cross-plane direction along the arc, with field sizes of 18.4 and 18.2 cm and penumbrae of 1.9 and 2.0 cm for measurements and simulations, respectively. Conclusion: Preliminary feasibility of a DEAR delivery using a web-based MC simulation platform has been demonstrated. This tool will benefit treatment planning for DEAR as a benchmark for developing other model based algorithms, allowing efficient optimization of trajectories, and quality assurance of plans without the need for extensive measurements.« less
Pencil-beam redefinition algorithm dose calculations for electron therapy treatment planning
NASA Astrophysics Data System (ADS)
Boyd, Robert Arthur
2001-08-01
The electron pencil-beam redefinition algorithm (PBRA) of Shiu and Hogstrom has been developed for use in radiotherapy treatment planning (RTP). Earlier studies of Boyd and Hogstrom showed that the PBRA lacked an adequate incident beam model, that PBRA might require improved electron physics, and that no data existed which allowed adequate assessment of the PBRA-calculated dose accuracy in a heterogeneous medium such as one presented by patient anatomy. The hypothesis of this research was that by addressing the above issues the PBRA-calculated dose would be accurate to within 4% or 2 mm in regions of high dose gradients. A secondary electron source was added to the PBRA to account for collimation-scattered electrons in the incident beam. Parameters of the dual-source model were determined from a minimal data set to allow ease of beam commissioning. Comparisons with measured data showed 3% or better dose accuracy in water within the field for cases where 4% accuracy was not previously achievable. A measured data set was developed that allowed an evaluation of PBRA in regions distal to localized heterogeneities. Geometries in the data set included irregular surfaces and high- and low-density internal heterogeneities. The data was estimated to have 1% precision and 2% agreement with accurate, benchmarked Monte Carlo (MC) code. PBRA electron transport was enhanced by modeling local pencil beam divergence. This required fundamental changes to the mathematics of electron transport (divPBRA). Evaluation of divPBRA with the measured data set showed marginal improvement in dose accuracy when compared to PBRA; however, 4% or 2mm accuracy was not achieved by either PBRA version for all data points. Finally, PBRA was evaluated clinically by comparing PBRA- and MC-calculated dose distributions using site-specific patient RTP data. Results show PBRA did not agree with MC to within 4% or 2mm in a small fraction (<3%) of the irradiated volume. Although the hypothesis of the research was shown to be false, the minor dose inaccuracies should have little or no impact on RTP decisions or patient outcome. Therefore, given ease of beam commissioning, documentation of accuracy, and calculational speed, the PBRA should be considered a practical tool for clinical use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taleei, R; Qin, N; Jiang, S
2016-06-15
Purpose: Biological treatment plan optimization is of great interest for proton therapy. It requires extensive Monte Carlo (MC) simulations to compute physical dose and biological quantities. Recently, a gPMC package was developed for rapid MC dose calculations on a GPU platform. This work investigated its suitability for proton therapy biological optimization in terms of accuracy and efficiency. Methods: We performed simulations of a proton pencil beam with energies of 75, 150 and 225 MeV in a homogeneous water phantom using gPMC and FLUKA. Physical dose and energy spectra for each ion type on the central beam axis were scored. Relativemore » Biological Effectiveness (RBE) was calculated using repair-misrepair-fixation model. Microdosimetry calculations were performed using Monte Carlo Damage Simulation (MCDS). Results: Ranges computed by the two codes agreed within 1 mm. Physical dose difference was less than 2.5 % at the Bragg peak. RBE-weighted dose agreed within 5 % at the Bragg peak. Differences in microdosimetric quantities such as dose average lineal energy transfer and specific energy were < 10%. The simulation time per source particle with FLUKA was 0.0018 sec, while gPMC was ∼ 600 times faster. Conclusion: Physical dose computed by FLUKA and gPMC were in a good agreement. The RBE differences along the central axis were small, and RBE-weighted dose difference was found to be acceptable. The combined accuracy and efficiency makes gPMC suitable for proton therapy biological optimization.« less
A technique for generating phase-space-based Monte Carlo beamlets in radiotherapy applications.
Bush, K; Popescu, I A; Zavgorodni, S
2008-09-21
As radiotherapy treatment planning moves toward Monte Carlo (MC) based dose calculation methods, the MC beamlet is becoming an increasingly common optimization entity. At present, methods used to produce MC beamlets have utilized a particle source model (PSM) approach. In this work we outline the implementation of a phase-space-based approach to MC beamlet generation that is expected to provide greater accuracy in beamlet dose distributions. In this approach a standard BEAMnrc phase space is sorted and divided into beamlets with particles labeled using the inheritable particle history variable. This is achieved with the use of an efficient sorting algorithm, capable of sorting a phase space of any size into the required number of beamlets in only two passes. Sorting a phase space of five million particles can be achieved in less than 8 s on a single-core 2.2 GHz CPU. The beamlets can then be transported separately into a patient CT dataset, producing separate dose distributions (doselets). Methods for doselet normalization and conversion of dose to absolute units of Gy for use in intensity modulated radiation therapy (IMRT) plan optimization are also described.
Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.
Popescu, I A; Shaw, C P; Zavgorodni, S F; Beckham, W A
2005-07-21
Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.
NEURAL NETWORK MODELLING OF CARDIAC DOSE CONVERSION COEFFICIENT FOR ARBITRARY X-RAY SPECTRA.
Kadri, O; Manai, K
2016-12-01
In this article, an approach to compute the dose conversion coefficients (DCCs) is described for the computational voxel phantom 'High-Definition Reference Korean-Man' (HDRK-Man) using artificial neural networks (ANN). For this purpose, the voxel phantom was implemented into the Monte Carlo (MC) transport toolkit GEANT4, and the DCCs for more than 30 tissues and organs, due to a broad parallel beam of monoenergetic photons with energy ranging from 15 to 150 keV by a step of 5 keV, were calculated. To study the influence of patient size on DCC values, DCC calculation was performed, for a representative body size population, using five different sizes covering the range of 80-120 % magnification of the original HDRK-Man. The focus of the present study was on the computation of DCC for the human heart. ANN calculation and MC simulation results were compared, and good agreement was observed showing that ANNs can be used as an efficient tool for modelling DCCs for the computational voxel phantom. ANN approach appears to be a significant advance over the time-consuming MC methods for DCC calculation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moteabbed, M; Trofimov, A; Testa, M
2014-06-01
Purpose: With the anticipated introduction of in vivo range verification methods, the use of anterior fields for proton therapy of prostate cancer may become an attractive treatment option, and improve upon the dose distributions achievable with conventional lateral-opposed fields. This study aimed to evaluate and compare the planned dose accuracy for lateral versus anterior oblique field arrangements. Methods: Four patients with low/intermediate risk prostate cancer, participating in a clinical trial at our institution, were selected for this study. All patients were treated using lateral-opposed fields (LAT). The clinical target volume (CTV) received a total dose of 79.2 Gy in 44more » fractions. Anterior oblique research plans (ANT) were created using the clinical planning system, and featured beams with ±35-degree gantry angle, 1.2 cm aperture margins, 3-mm range compensator smearing and no range uncertainty margins. Monte Carlo (MC) simulations were performed for both beam arrangements using TOPAS. Dose volume histograms were analyzed and compared for planned and MC dose distributions. Differences between MC and planned DVH parameters were computed as a percentage of the total prescribed dose. Results: For all patients, CTV dose was systematically lower (∼2–2.5%) for MC than the plan. This discrepancy was slightly larger (∼0.5%) for LAT compared to ANT plans for all cases. Although the dose differences for bladder and anterior rectal wall remained within 0.7% for all LAT cases, they were slightly larger for ANT plans, especially for case 3 due to larger patient size and MC-plan range difference. The EUD difference for femoral heads was within 0.6% for both LAT and ANT cases. Conclusion: The dose calculated by the treatment planning system using pencil beam algorithm agrees with MC to within 2.5% and is comparable for lateral and anterior scenarios. The dose agreement in the anterior rectal wall is range- and hence, patient-dependent for ANT treatments.« less
Real-time simulator for designing electron dual scattering foil systems.
Carver, Robert L; Hogstrom, Kenneth R; Price, Michael J; LeBlanc, Justin D; Pitcher, Garrett M
2014-11-08
The purpose of this work was to develop a user friendly, accurate, real-time com- puter simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator allows for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator also is a powerful educational tool. The simulator consists of an analytical algorithm for calculating electron fluence and X-ray dose and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with the reduced Gaussian formalism for scattering powers. The simulator also estimates central-axis and off-axis X-ray dose arising from the dual foil system. Once the geometry of the accelerator is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scat- tering foil material and Gaussian shape (thickness and sigma), and beam energy. The off-axis electron relative fluence or total dose profile and central-axis X-ray dose contamination are computed and displayed in real time. The simulator was validated by comparison of off-axis electron relative fluence and X-ray percent dose profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV, using present foils on an Elekta radiotherapy accelerator, the simulator was able to reproduce MC profiles to within 2% out to 20 cm from the central axis. The central-axis X-ray percent dose predictions matched measured data to within 0.5%. The calculation time was approximately 100 ms using a single Intel 2.93 GHz processor, which allows for real-time variation of foil geometrical parameters using slider bars. This work demonstrates how the user-friendly GUI and real-time nature of the simulator make it an effective educational tool for gaining a better understanding of the effects that various system parameters have on a relative dose profile. This work also demonstrates a method for using the simulator as a design tool for creating custom dual scattering foil systems in the clinical range of beam energies (6-20 MeV).
SU-F-T-610: Comparison of Output Factors for Small Radiation Fields Used in SBRT Treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, R; Eldib, A; Li, J
2016-06-15
Purpose: In order to fundamentally understand our previous dose verification results between measurements and calculations from treatment planning system (TPS) for SBRT plans for different sized targets, the goal of the present work was to compare output factors for small fields measured using EDR2 films with TPS and Monet Carlo (MC) simulations. Methods: 6MV beam was delivered to EDR2 films for each of the following field sizes; 1×1 cm{sup 2}, 1.5×1.5 cm{sup 2}, 2×2 cm{sup 2}, 3×3 cm{sup 2}, 4×4 cm{sup 2}, 5×5 cm{sup 2} and 10×10 cm{sup 2}. The films were developed in a film processer, then scanned withmore » a Vidar VXR-16 scanner and analyzed using RIT113 version 6.1. A standard calibration curve was obtained with the 6MV beam and was used to get absolute dose for measured field sizes. Similar plans for all fields sizes mentioned above were generated using Eclipse with the Analytical Anisotropic Algorithm. Similarly, MC simulations were carried out using the MCSIM, an in-house MC code for different field sizes. Output factors normalized to 10×10 cm{sup 2} reference field were calculated for different field sizes in all the three cases and compared. Results: For field sizes ranging from 1×1 cm{sup 2} to 2×2 cm{sup 2}, the differences in output factors between measurements (films), TPS and MC simulations were within 0.22%. For field sizes ranging from 3×3cm{sup 2} to 5×5cm{sup 2}, differences in output factors were within 0.10%. Conclusion: No clinically significant difference was obtained in output factors for different field sizes acquired from films, TPS and MC simulations. Our results showed that the output factors are predicted accurately from TPS when compared to the actual measurements and superior dose calculation Monte Carlo method. This study would help us in understanding our previously obtained dose verification results for small fields used in the SBRT treatment.« less
A single-source photon source model of a linear accelerator for Monte Carlo dose calculation
Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens
2017-01-01
Purpose To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. Materials and methods A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. Results The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. Conclusion A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm. PMID:28886048
A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.
Nwankwo, Obioma; Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens
2017-01-01
To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, M; Lee, V; Wong, M
Purpose: Following the method of in-phantom measurements of reference air kerma rate (Ka) at 100cm and absorbed water dose rate (Dw1) at 1cm of high-dose-rate 192Ir brachytherapy source using 60Co absorbed-dose-to-water calibrated (ND,w,60Co) ionization chamber (IC), we experimentally determined the in-phantom correction factors (kglob) of the PTW30013 (PTW, Freiburg, Germany) IC by comparing the Monte Carlo (MC)-calculated kglob of the other PTW30016 IC. Methods: The Dw1 formalism of in-phantom measurement is: M*ND,w,60Co*(kglob)Dw1, where M is the collected charges, and (kglob)Dw1 the in-phantom Dw1 correction factor. Similarly, Ka is determined by M*ND,w,60Co*(kglob)ka, where (kglob)ka the in-phantom Ka correction factor. Two thimblemore » ICs PTW30013 and another PTW30016 having a ND,w,60Co from the German primary standard laboratory (PTB) were simultaneously exposed to the microselectron 192Ir v2 source at 8cm in a PMMA phantom. A reference well chamber (PTW33004) with a PTB transfer Ka calibration Nka was used for comparing the in-phantom measurements to derive the experimental (kglob)ka factors. We determined the experimental (kglob)Dw1 of the PTW30013 by comparing the PTW30016 measurements with MC-calculated (kglob)Dw1. Results: Ka results of the PTW30016 based on ND,w,60Co and MC-calculated (kglob)ka differ from the well chamber results based on Nka by 1.6% and from the manufacturer by 1.0%. Experimental (kglob)ka factors for the PTW30016 and two other PTW30013 are 0.00683, 0.00681 and 0.00679, and vary <0.5% with 1mm source positioning uncertainty. Experimental (kglob)Dw1 of the PTW30013 ICs are 75.3 and 75.6, and differ by 1.6% from the conversion by dose rate constant from the AAPM report 229. Conclusion: The 1.7% difference between MC and experimental (kglob)ka for the PTW30016 IC is within the PTB 2.5% expanded uncertainty in Ka calibration standard. Using a single IC with ND,w,60Co to calibrate the brachytherapy source and dose output in external radiotherapy is feasible. MC validation of the PTW30013(kglob)Dw1 is warranted.« less
Dosimetric quality control of Eclipse treatment planning system using pelvic digital test object
NASA Astrophysics Data System (ADS)
Benhdech, Yassine; Beaumont, Stéphane; Guédon, Jeanpierre; Crespin, Sylvain
2011-03-01
Last year, we demonstrated the feasibility of a new method to perform dosimetric quality control of Treatment Planning Systems in radiotherapy, this method is based on Monte-Carlo simulations and uses anatomical Digital Test Objects (DTOs). The pelvic DTO was used in order to assess this new method on an ECLIPSE VARIAN Treatment Planning System. Large dose variations were observed particularly in air and bone equivalent material. In this current work, we discuss the results of the previous paper and provide an explanation for observed dose differences, the VARIAN Eclipse (Anisotropic Analytical) algorithm was investigated. Monte Carlo simulations (MC) were performed with a PENELOPE code version 2003. To increase efficiency of MC simulations, we have used our parallelized version based on the standard MPI (Message Passing Interface). The parallel code has been run on a 32- processor SGI cluster. The study was carried out using pelvic DTOs and was performed for low- and high-energy photon beams (6 and 18MV) on 2100CD VARIAN linear accelerator. A square field (10x10 cm2) was used. Assuming the MC data as reference, χ index analyze was carried out. For this study, a distance to agreement (DTA) was set to 7mm while the dose difference was set to 5% as recommended in the TRS-430 and TG-53 (on the beam axis in 3-D inhomogeneities). When using Monte Carlo PENELOPE, the absorbed dose is computed to the medium, however the TPS computes dose to water. We have used the method described by Siebers et al. based on Bragg-Gray cavity theory to convert MC simulated dose to medium to dose to water. Results show a strong consistency between ECLIPSE and MC calculations on the beam axis.
Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes
NASA Astrophysics Data System (ADS)
Aghara, S. K.; Sriprisan, S. I.; Singleterry, R. C.; Sato, T.
2015-01-01
Detailed analyses of Solar Particle Events (SPE) were performed to calculate primary and secondary particle spectra behind aluminum, at various thicknesses in water. The simulations were based on Monte Carlo (MC) radiation transport codes, MCNPX 2.7.0 and PHITS 2.64, and the space radiation analysis website called OLTARIS (On-Line Tool for the Assessment of Radiation in Space) version 3.4 (uses deterministic code, HZETRN, for transport). The study is set to investigate the impact of SPEs spectra transporting through 10 or 20 g/cm2 Al shield followed by 30 g/cm2 of water slab. Four historical SPE events were selected and used as input source spectra particle differential spectra for protons, neutrons, and photons are presented. The total particle fluence as a function of depth is presented. In addition to particle flux, the dose and dose equivalent values are calculated and compared between the codes and with the other published results. Overall, the particle fluence spectra from all three codes show good agreement with the MC codes showing closer agreement compared to the OLTARIS results. The neutron particle fluence from OLTARIS is lower than the results from MC codes at lower energies (E < 100 MeV). Based on mean square difference analysis the results from MCNPX and PHITS agree better for fluence, dose and dose equivalent when compared to OLTARIS results.
NASA Astrophysics Data System (ADS)
Sanchez-Parcerisa, D.; Cortés-Giraldo, M. A.; Dolney, D.; Kondrla, M.; Fager, M.; Carabe, A.
2016-02-01
In order to integrate radiobiological modelling with clinical treatment planning for proton radiotherapy, we extended our in-house treatment planning system FoCa with a 3D analytical algorithm to calculate linear energy transfer (LET) in voxelized patient geometries. Both active scanning and passive scattering delivery modalities are supported. The analytical calculation is much faster than the Monte-Carlo (MC) method and it can be implemented in the inverse treatment planning optimization suite, allowing us to create LET-based objectives in inverse planning. The LET was calculated by combining a 1D analytical approach including a novel correction for secondary protons with pencil-beam type LET-kernels. Then, these LET kernels were inserted into the proton-convolution-superposition algorithm in FoCa. The analytical LET distributions were benchmarked against MC simulations carried out in Geant4. A cohort of simple phantom and patient plans representing a wide variety of sites (prostate, lung, brain, head and neck) was selected. The calculation algorithm was able to reproduce the MC LET to within 6% (1 standard deviation) for low-LET areas (under 1.7 keV μm-1) and within 22% for the high-LET areas above that threshold. The dose and LET distributions can be further extended, using radiobiological models, to include radiobiological effectiveness (RBE) calculations in the treatment planning system. This implementation also allows for radiobiological optimization of treatments by including RBE-weighted dose constraints in the inverse treatment planning process.
Sanchez-Parcerisa, D; Cortés-Giraldo, M A; Dolney, D; Kondrla, M; Fager, M; Carabe, A
2016-02-21
In order to integrate radiobiological modelling with clinical treatment planning for proton radiotherapy, we extended our in-house treatment planning system FoCa with a 3D analytical algorithm to calculate linear energy transfer (LET) in voxelized patient geometries. Both active scanning and passive scattering delivery modalities are supported. The analytical calculation is much faster than the Monte-Carlo (MC) method and it can be implemented in the inverse treatment planning optimization suite, allowing us to create LET-based objectives in inverse planning. The LET was calculated by combining a 1D analytical approach including a novel correction for secondary protons with pencil-beam type LET-kernels. Then, these LET kernels were inserted into the proton-convolution-superposition algorithm in FoCa. The analytical LET distributions were benchmarked against MC simulations carried out in Geant4. A cohort of simple phantom and patient plans representing a wide variety of sites (prostate, lung, brain, head and neck) was selected. The calculation algorithm was able to reproduce the MC LET to within 6% (1 standard deviation) for low-LET areas (under 1.7 keV μm(-1)) and within 22% for the high-LET areas above that threshold. The dose and LET distributions can be further extended, using radiobiological models, to include radiobiological effectiveness (RBE) calculations in the treatment planning system. This implementation also allows for radiobiological optimization of treatments by including RBE-weighted dose constraints in the inverse treatment planning process.
NASA Astrophysics Data System (ADS)
Andreou, M.; Lagopati, N.; Lyra, M.
2011-09-01
Optimum treatment planning of patients suffering from painful skeletal metastases requires accurate calculations concerning absorbed dose in metastatic lesions and critical organs, such as red marrow. Delivering high doses to tumor cells while limiting radiation dose to normal tissue, is the key for successful palliation treatment. The aim of this study is to compare the dosimetric calculations, obtained by Monte Carlo (MC) simulation and the MIRDOSE model, in therapeutic schemes of skeleton metastatic lesions, with Rhenium-186 (Sn) -HEDP and Samarium-153 -EDTMP. A bolus injection of 1295 MBq (35mCi) Re-186- HEDP was infused in 11 patients with multiple skeletal metastases. The administered dose for the 8 patients who received Sm-153 was 1 mCi /kg. Planar scintigraphic images for the two groups of patients were obtained, 24 h, 48 h and 72 h post injection, by an Elscint Apex SPX gamma camera. The images were processed, utilizing ROI quantitative methods, to determine residence times and radionuclide uptakes. Dosimetric calculations were performed using the patient specific scintigraphic data by the MIRDOSE3 code of MIRD. Also, MCNPX was employed, simulating the distribution of the radioisotope in the ROI and calculating the absorbed doses in the metastatic lesion, and in critical organs. Summarizing, there is a good agreement between the results, derived from the two pathways, the patient specific and the mathematical, with a deviation of less than 9% for planar scintigraphic data compared to MC, for both radiopharmaceuticals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova-Carter, Magdalena; Qu, Bradley; Palma, Bianey
2015-05-15
Purpose: The aim of this work was to develop a treatment planning workflow for rapid radiotherapy delivered with very high-energy electron (VHEE) scanning pencil beams of 60–120 MeV and to study VHEE plans as a function of VHEE treatment parameters. Additionally, VHEE plans were compared to clinical state-of-the-art volumetric modulated arc therapy (VMAT) photon plans for three cases. Methods: VHEE radiotherapy treatment planning was performed by linking EGSnrc Monte Carlo (MC) dose calculations with inverse treatment planning in a research version of RayStation. In order to study the effect of VHEE treatment parameters on VHEE dose distributions, a MATLAB graphicalmore » user interface (GUI) for calculation of VHEE MC pencil beam doses was developed. Through the GUI, pediatric case MC simulations were run for a number of beam energies (60, 80, 100, and 120 MeV), number of beams (13, 17, and 36), pencil beam spot (0.1, 1.0, and 3.0 mm) and grid (2.0, 2.5, and 3.5 mm) sizes, and source-to-axis distance, SAD (40 and 50 cm). VHEE plans for the pediatric case calculated with the different treatment parameters were optimized and compared. Furthermore, 100 MeV VHEE plans for the pediatric case, a lung, and a prostate case were calculated and compared to the clinically delivered VMAT plans. All plans were normalized such that the 100% isodose line covered 95% of the target volume. Results: VHEE beam energy had the largest effect on the quality of dose distributions of the pediatric case. For the same target dose, the mean doses to organs at risk (OARs) decreased by 5%–16% when planned with 100 MeV compared to 60 MeV, but there was no further improvement in the 120 MeV plan. VHEE plans calculated with 36 beams outperformed plans calculated with 13 and 17 beams, but to a more modest degree (<8%). While pencil beam spacing and SAD had a small effect on VHEE dose distributions, 0.1–3 mm pencil beam sizes resulted in identical dose distributions. For the 100 MeV VHEE pediatric plan, OAR doses were up to 70% lower and the integral dose was 33% lower for VHEE compared to 6 MV VMAT. Additionally, VHEE conformity indices (CI{sub 100} = 1.09 and CI{sub 50} = 4.07) were better than VMAT conformity indices (CI{sub 100} = 1.30 and CI{sub 50} = 6.81). The 100 MeV VHEE lung plan resulted in mean dose decrease to all OARs by up to 27% for the same target coverage compared to the clinical 6 MV flattening filter-free (FFF) VMAT plan. The 100 MeV prostate plan resulted in 3% mean dose increase to the penile bulb and the urethra, but all other OAR mean doses were lower compared to the 15 MV VMAT plan. The lung case CI{sub 100} and CI{sub 50} conformity indices were 3% and 8% lower, respectively, in the VHEE plan compared to the VMAT plan. The prostate case CI{sub 100} and CI{sub 50} conformity indices were 1% higher and 8% lower, respectively, in the VHEE plan compared to the VMAT plan. Conclusions: The authors have developed a treatment planning workflow for MC dose calculation of pencil beams and optimization for treatment planning of VHEE radiotherapy. The authors have demonstrated that VHEE plans resulted in similar or superior dose distributions for pediatric, lung, and prostate cases compared to clinical VMAT plans.« less
Khatchadourian, R; Davis, S; Evans, M; Licea, A; Seuntjens, J; Kildea, J
2012-07-01
Photoneutrons are a major component of the equivalent dose in the maze and near the door of linac bunkers. Physical measurements and Monte Carlo (MC) calculations of neutron dose are key for validating bunker design with respect to health regulations. We attempted to use bubble detectors and a 3 He neutron spectrometer to measure neutron equivalent dose and neutron spectra in the maze and near the door of one of our bunkers. We also ran MC simulations with MCNP5 to measure the neutron fluence in the same region. Using a point source of neutrons, a Clinac 1800 linac operating at 10 MV was simulated and the fluence measured at various locations of interest. We describe the challenges faced when measuring dose with bubble detectors in the maze and the complexity of photoneutron spectrometry with linacs operating in pulsed mode. Finally, we report on the development of a userfriendly GUI for shielding calculations based on the NCRP 151 formalism. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Salguero, Francisco Javier; Arráns, Rafael; Atriana Palma, Bianey; Leal, Antonio
2010-03-01
The purpose of this paper is to assess the feasibility of delivering intensity- and energy-modulated electron radiation treatment (MERT) by a photon multileaf collimator (xMLC) and to evaluate the improvements obtained in shallow head and neck (HN) tumors. Four HN patient cases covering different clinical situations were planned by MERT, which used an in-house treatment planning system that utilized Monte Carlo dose calculation. The cases included one oronasal, two parotid and one middle ear tumors. The resulting dose-volume histograms were compared with those obtained from conventional photon and electron treatment techniques in our clinic, which included IMRT, electron beam and mixed beams, most of them using fixed-thickness bolus. Experimental verification was performed with plane-parallel ionization chambers for absolute dose verification, and a PTW ionization chamber array and radiochromic film for relative dosimetry. A MC-based treatment planning system for target with compromised volumes in depth and laterally has been validated. A quality assurance protocol for individual MERT plans was launched. Relative MC dose distributions showed a high agreement with film measurements and absolute ion chamber dose measurements performed at a reference point agreed with MC calculations within 2% in all cases. Clinically acceptable PTV coverage and organ-at-risk sparing were achieved by using the proposed MERT approach. MERT treatment plans, based on delivery of intensity-modulated electron beam using the xMLC, for superficial head and neck tumors, demonstrated comparable or improved PTV dose homogeneity with significantly lower dose to normal tissues. The clinical implementation of this technique will be able to offer a viable alternative for the treatment of shallow head and neck tumors.
McSKY: A hybrid Monte-Carlo lime-beam code for shielded gamma skyshine calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shultis, J.K.; Faw, R.E.; Stedry, M.H.
1994-07-01
McSKY evaluates skyshine dose from an isotropic, monoenergetic, point photon source collimated into either a vertical cone or a vertical structure with an N-sided polygon cross section. The code assumes an overhead shield of two materials, through the user can specify zero shield thickness for an unshielded calculation. The code uses a Monte-Carlo algorithm to evaluate transport through source shields and the integral line source to describe photon transport through the atmosphere. The source energy must be between 0.02 and 100 MeV. For heavily shielded sources with energies above 20 MeV, McSKY results must be used cautiously, especially at detectormore » locations near the source.« less
Budanec, M; Knezević, Z; Bokulić, T; Mrcela, I; Vrtar, M; Vekić, B; Kusić, Z
2008-12-01
This work studied the percent depth doses of (60)Co photon beams in the buildup region of a plastic phantom by LiF TLD measurements and by Monte Carlo calculations. An agreement within +/-1.5% was found between PDDs measured by TLD and calculated by the Monte Carlo method with the TLD in a plastic phantom. The dose in the plastic phantom was scored in voxels, with thickness scaled by physical and electron density. PDDs calculated by electron density scaling showed a better match with PDD(TLD)(MC); the difference is within +/-1.5% in the buildup region for square and rectangular field sizes.
Absorbed dose measurements for kV-cone beam computed tomography in image-guided radiation therapy
NASA Astrophysics Data System (ADS)
Hioki, Kazunari; Araki, Fujio; Ohno, Takeshi; Nakaguchi, Yuji; Tomiyama, Yuuki
2014-12-01
In this study, we develope a novel method to directly evaluate an absorbed dose-to-water for kilovoltage-cone beam computed tomography (kV-CBCT) in image-guided radiation therapy (IGRT). Absorbed doses for the kV-CBCT systems of the Varian On-Board Imager (OBI) and the Elekta X-ray Volumetric Imager (XVI) were measured by a Farmer ionization chamber with a 60Co calibration factor. The chamber measurements were performed at the center and four peripheral points in body-type (30 cm diameter and 51 cm length) and head-type (16 cm diameter and 33 cm length) cylindrical water phantoms. The measured ionization was converted to the absorbed dose-to-water by using a 60Co calibration factor and a Monte Carlo (MC)-calculated beam quality conversion factor, kQ, for 60Co to kV-CBCT. The irradiation for OBI and XVI was performed with pelvis and head modes for the body- and the head-type phantoms, respectively. In addition, the dose distributions in the phantom for both kV-CBCT systems were calculated with MC method and were compared with measured values. The MC-calculated doses were calibrated at the center in the water phantom and compared with measured doses at four peripheral points. The measured absorbed doses at the center in the body-type phantom were 1.96 cGy for OBI and 0.83 cGy for XVI. The peripheral doses were 2.36-2.90 cGy for OBI and 0.83-1.06 cGy for XVI. The doses for XVI were lower up to approximately one-third of those for OBI. Similarly, the measured doses at the center in the head-type phantom were 0.48 cGy for OBI and 0.21 cGy for XVI. The peripheral doses were 0.26-0.66 cGy for OBI and 0.16-0.30 cGy for XVI. The calculated peripheral doses agreed within 3% in the pelvis mode and within 4% in the head mode with measured doses for both kV-CBCT systems. In addition, the absorbed dose determined in this study was approximately 4% lower than that in TG-61 but the absorbed dose by both methods was in agreement within their combined uncertainty. This method is more robust and accurate compared to the dosimetry based on a conventional air-kerma calibration factor. Therefore, it is possible to be used as a standard dosimetry protocol for kV-CBCT in IGRT.
Absolute dose calculations for Monte Carlo simulations of radiotherapy beams
NASA Astrophysics Data System (ADS)
Popescu, I. A.; Shaw, C. P.; Zavgorodni, S. F.; Beckham, W. A.
2005-07-01
Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 × 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 × 1013 ± 1.0% electrons incident on the target and a total dose of 20.87 cGy ± 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.
NASA Astrophysics Data System (ADS)
Magro, G.; Dahle, T. J.; Molinelli, S.; Ciocca, M.; Fossati, P.; Ferrari, A.; Inaniwa, T.; Matsufuji, N.; Ytre-Hauge, K. S.; Mairani, A.
2017-05-01
Particle therapy facilities often require Monte Carlo (MC) simulations to overcome intrinsic limitations of analytical treatment planning systems (TPS) related to the description of the mixed radiation field and beam interaction with tissue inhomogeneities. Some of these uncertainties may affect the computation of effective dose distributions; therefore, particle therapy dedicated MC codes should provide both absorbed and biological doses. Two biophysical models are currently applied clinically in particle therapy: the local effect model (LEM) and the microdosimetric kinetic model (MKM). In this paper, we describe the coupling of the NIRS (National Institute for Radiological Sciences, Japan) clinical dose to the FLUKA MC code. We moved from the implementation of the model itself to its application in clinical cases, according to the NIRS approach, where a scaling factor is introduced to rescale the (carbon-equivalent) biological dose to a clinical dose level. A high level of agreement was found with published data by exploring a range of values for the MKM input parameters, while some differences were registered in forward recalculations of NIRS patient plans, mainly attributable to differences with the analytical TPS dose engine (taken as reference) in describing the mixed radiation field (lateral spread and fragmentation). We presented a tool which is being used at the Italian National Center for Oncological Hadrontherapy to support the comparison study between the NIRS clinical dose level and the LEM dose specification.
Kapanen, Mika K.; Hyödynmaa, Simo J.; Wigren, Tuija K.; Pitkänen, Maunu A.
2014-01-01
The accuracy of dose calculation is a key challenge in stereotactic body radiotherapy (SBRT) of the lung. We have benchmarked three photon beam dose calculation algorithms — pencil beam convolution (PBC), anisotropic analytical algorithm (AAA), and Acuros XB (AXB) — implemented in a commercial treatment planning system (TPS), Varian Eclipse. Dose distributions from full Monte Carlo (MC) simulations were regarded as a reference. In the first stage, for four patients with central lung tumors, treatment plans using 3D conformal radiotherapy (CRT) technique applying 6 MV photon beams were made using the AXB algorithm, with planning criteria according to the Nordic SBRT study group. The plans were recalculated (with same number of monitor units (MUs) and identical field settings) using BEAMnrc and DOSXYZnrc MC codes. The MC‐calculated dose distributions were compared to corresponding AXB‐calculated dose distributions to assess the accuracy of the AXB algorithm, to which then other TPS algorithms were compared. In the second stage, treatment plans were made for ten patients with 3D CRT technique using both the PBC algorithm and the AAA. The plans were recalculated (with same number of MUs and identical field settings) with the AXB algorithm, then compared to original plans. Throughout the study, the comparisons were made as a function of the size of the planning target volume (PTV), using various dose‐volume histogram (DVH) and other parameters to quantitatively assess the plan quality. In the first stage also, 3D gamma analyses with threshold criteria 3%/3 mm and 2%/2 mm were applied. The AXB‐calculated dose distributions showed relatively high level of agreement in the light of 3D gamma analysis and DVH comparison against the full MC simulation, especially with large PTVs, but, with smaller PTVs, larger discrepancies were found. Gamma agreement index (GAI) values between 95.5% and 99.6% for all the plans with the threshold criteria 3%/3 mm were achieved, but 2%/2 mm threshold criteria showed larger discrepancies. The TPS algorithm comparison results showed large dose discrepancies in the PTV mean dose (D50%), nearly 60%, for the PBC algorithm, and differences of nearly 20% for the AAA, occurring also in the small PTV size range. This work suggests the application of independent plan verification, when the AAA or the AXB algorithm are utilized in lung SBRT having PTVs smaller than 20‐25 cc. The calculated data from this study can be used in converting the SBRT protocols based on type ‘a’ and/or type ‘b’ algorithms for the most recent generation type ‘c’ algorithms, such as the AXB algorithm. PACS numbers: 87.55.‐x, 87.55.D‐, 87.55.K‐, 87.55.kd, 87.55.Qr PMID:24710454
Almansa, Julio F; Guerrero, Rafael; Torres, Javier; Lallena, Antonio M
60 Co sources have been commercialized as an alternative to 192 Ir sources for high-dose-rate (HDR) brachytherapy. One of them is the Flexisource Co-60 HDR source manufactured by Elekta. The only available dosimetric characterization of this source is that of Vijande et al. [J Contemp Brachytherapy 2012; 4:34-44], whose results were not included in the AAPM/ESTRO consensus document. In that work, the dosimetric quantities were calculated as averages of the results obtained with the Geant4 and PENELOPE Monte Carlo (MC) codes, though for other sources, significant differences have been quoted between the values obtained with these two codes. The aim of this work is to perform the dosimetric characterization of the Flexisource Co-60 HDR source using PENELOPE. The MC simulation code PENELOPE (v. 2014) has been used. Following the recommendations of the AAPM/ESTRO report, the radial dose function, the anisotropy function, the air-kerma strength, the dose rate constant, and the absorbed dose rate in water have been calculated. The results we have obtained exceed those of Vijande et al. In particular, the absorbed dose rate constant is ∼0.85% larger. A similar difference is also found in the other dosimetric quantities. The effect of the electrons emitted in the decay of 60 Co, usually neglected in this kind of simulations, is significant up to the distances of 0.25 cm from the source. The systematic and significant differences we have found between PENELOPE results and the average values found by Vijande et al. point out that the dosimetric characterizations carried out with the various MC codes should be provided independently. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sánchez-Doblado, Francisco; Capote, Roberto; Leal, Antonio; Roselló, Joan V.; Lagares, Juan I.; Arráns, Rafael; Hartmann, Günther H.
2005-03-01
Intensity modulated radiotherapy (IMRT) has become a treatment of choice in many oncological institutions. Small fields or beamlets with sizes of 1 to 5 cm2 are now routinely used in IMRT delivery. Therefore small ionization chambers (IC) with sensitive volumes <=0.1 cm3are generally used for dose verification of an IMRT treatment. The measurement conditions during verification may be quite different from reference conditions normally encountered in clinical beam calibration, so dosimetry of these narrow photon beams pertains to the so-called non-reference conditions for beam calibration. This work aims at estimating the error made when measuring the organ at risk's (OAR) absolute dose by a micro ion chamber (μIC) in a typical IMRT treatment. The dose error comes from the assumption that the dosimetric parameters determining the absolute dose are the same as for the reference conditions. We have selected two clinical cases, treated by IMRT, for our dose error evaluations. Detailed geometrical simulation of the μIC and the dose verification set-up was performed. The Monte Carlo (MC) simulation allows us to calculate the dose measured by the chamber as a dose averaged over the air cavity within the ion-chamber active volume (Dair). The absorbed dose to water (Dwater) is derived as the dose deposited inside the same volume, in the same geometrical position, filled and surrounded by water in the absence of the ion chamber. Therefore, the Dwater/Dair dose ratio is the MC estimator of the total correction factor needed to convert the absorbed dose in air into the absorbed dose in water. The dose ratio was calculated for the μIC located at the isocentre within the OARs for both clinical cases. The clinical impact of the calculated dose error was found to be negligible for the studied IMRT treatments.
Pappas, Eleftherios P; Peppa, Vasiliki; Hourdakis, Costas J; Karaiskos, Pantelis; Papagiannis, Panagiotis
2018-01-01
To evaluate a commercially available Ferrous-Xylenol Orange-Gel (FXG) dosimeter (TrueView™) coupled with Optical-Computed Tomography (OCT) read out, for 3D dose verification in an Ir-192 superficial brachytherapy application. Two identical polyethylene containers filled with gel from the same batch were used. One was irradiated with an 18 MeV electron field to examine the dose-response linearity and obtain a calibration curve. A flap surface applicator was attached to the other to simulate treatment of a skin lesion. The dose distribution in the experimental set up was calculated with the TG-43 and the model based dose calculation (MBCA) algorithms of a commercial treatment planning system (TPS), as well as Monte Carlo (MC) simulation using the MCNP code. Measured and calculated dose distributions were spatially registered and compared. Apart from a region close to the container's neck, where gel measurements exhibited an over-response relative to MC calculations (probably due to stray light perturbation), an excellent agreement was observed between measurements and simulations. More than 97% of points within the 10% isodose line (80 cGy) met the gamma index criteria established from uncertainty analysis (5%/2 mm). The corresponding passing rates for the comparison of experiment to calculations using the TG-43 and MBDCA options of the TPS were 57% and 92%, respectively. TrueView™ is suitable for the quality assurance of demanding radiotherapy applications. Experimental results of this work confirm the advantage of the studied MBDCA over TG-43, expected from the improved account of scatter radiation in the treatment geometry. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes.
Aghara, S K; Sriprisan, S I; Singleterry, R C; Sato, T
2015-01-01
Detailed analyses of Solar Particle Events (SPE) were performed to calculate primary and secondary particle spectra behind aluminum, at various thicknesses in water. The simulations were based on Monte Carlo (MC) radiation transport codes, MCNPX 2.7.0 and PHITS 2.64, and the space radiation analysis website called OLTARIS (On-Line Tool for the Assessment of Radiation in Space) version 3.4 (uses deterministic code, HZETRN, for transport). The study is set to investigate the impact of SPEs spectra transporting through 10 or 20 g/cm(2) Al shield followed by 30 g/cm(2) of water slab. Four historical SPE events were selected and used as input source spectra particle differential spectra for protons, neutrons, and photons are presented. The total particle fluence as a function of depth is presented. In addition to particle flux, the dose and dose equivalent values are calculated and compared between the codes and with the other published results. Overall, the particle fluence spectra from all three codes show good agreement with the MC codes showing closer agreement compared to the OLTARIS results. The neutron particle fluence from OLTARIS is lower than the results from MC codes at lower energies (E<100 MeV). Based on mean square difference analysis the results from MCNPX and PHITS agree better for fluence, dose and dose equivalent when compared to OLTARIS results. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.
NASA Astrophysics Data System (ADS)
Aboulbanine, Zakaria; El Khayati, Naïma
2018-04-01
The use of phase space in medical linear accelerator Monte Carlo (MC) simulations significantly improves the execution time and leads to results comparable to those obtained from full calculations. The classical representation of phase space stores directly the information of millions of particles, producing bulky files. This paper presents a virtual source model (VSM) based on a reconstruction algorithm, taking as input a compressed file of roughly 800 kb derived from phase space data freely available in the International Atomic Energy Agency (IAEA) database. This VSM includes two main components; primary and scattered particle sources, with a specific reconstruction method developed for each. Energy spectra and other relevant variables were extracted from IAEA phase space and stored in the input description data file for both sources. The VSM was validated for three photon beams: Elekta Precise 6 MV/10 MV and a Varian TrueBeam 6 MV. Extensive calculations in water and comparisons between dose distributions of the VSM and IAEA phase space were performed to estimate the VSM precision. The Geant4 MC toolkit in multi-threaded mode (Geant4-[mt]) was used for fast dose calculations and optimized memory use. Four field configurations were chosen for dose calculation validation to test field size and symmetry effects, , , and for squared fields, and for an asymmetric rectangular field. Good agreement in terms of formalism, for 3%/3 mm and 2%/3 mm criteria, for each evaluated radiation field and photon beam was obtained within a computation time of 60 h on a single WorkStation for a 3 mm voxel matrix. Analyzing the VSM’s precision in high dose gradient regions, using the distance to agreement concept (DTA), showed also satisfactory results. In all investigated cases, the mean DTA was less than 1 mm in build-up and penumbra regions. In regards to calculation efficiency, the event processing speed is six times faster using Geant4-[mt] compared to sequential Geant4, when running the same simulation code for both. The developed VSM for 6 MV/10 MV beams widely used, is a general concept easy to adapt in order to reconstruct comparable beam qualities for various linac configurations, facilitating its integration for MC treatment planning purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldib, A; Al-Azhar University Cairo; Jin, L
2014-06-01
Purpose: Modulated electron radiotherapy (MERT) has the potential to achieve better treatment outcome for shallow tumors such as those of breast and scalp. In a separate study with scalp lesions, MERT was compared to volumetric modulated arc therapy. Our results showed a reduction in the dose reaching the brain with MERT. However dose calculation accuracy and delivery efficiency challenges remain. Thus in the current study we proceed to add more cases to demonstrate MERT beneficial outcome and its delivery accuracy using an electron specific multileaf collimator (eMLC). Methods: We have used the MCBEAM code for treatment head simulation and formore » generating phase space files to be used as radiation source input for our Monte Carlo based treatment planning system (MC TPS). MCPLAN code is used for calculation of patient specific dose deposition coefficient and for final MERT plan dose calculation. An in-house developed optimization code is used for the optimization process. MERT plans were generated for real patients and head and neck phantom. Film was used for dosimetric verification. The film was cut following the contour of the curved phantom surface and then sealed with black masking tape. In the measurement, the sealed film packet was sandwiched between two adjacent slabs of the head and neck phantom. The measured 2D dose distribution was then compared with calculations. Results: The eMLC allows effective treatment of scalps with multi-lesions spreading around the patient head, which was usually difficult to plan or very time consuming with conventional applicators. MERT continues to show better reduction in the brain dose. The dosimetric measurements showed slight discrepancy, which was attributed to the film setup. Conclusion: MERT can improve treatment plan quality for patients with scalp cancers. Our in-house MC TPS is capable of performing treatment planning and accurate dose calculation for MERT using the eMLC.« less
Concepts for dose determination in flat-detector CT
NASA Astrophysics Data System (ADS)
Kyriakou, Yiannis; Deak, Paul; Langner, Oliver; Kalender, Willi A.
2008-07-01
Flat-detector computed tomography (FD-CT) scanners provide large irradiation fields of typically 200 mm in the cranio-caudal direction. In consequence, dose assessment according to the current definition of the computed tomography dose index CTDIL=100 mm, where L is the integration length, would demand larger ionization chambers and phantoms which do not appear practical. We investigated the usefulness of the CTDI concept and practical dosimetry approaches for FD-CT by measurements and Monte Carlo (MC) simulations. An MC simulation tool (ImpactMC, VAMP GmbH, Erlangen, Germany) was used to assess the dose characteristics and was calibrated with measurements of air kerma. For validation purposes measurements were performed on an Axiom Artis C-arm system (Siemens Medical Solutions, Forchheim, Germany) equipped with a flat detector of 40 cm × 30 cm. The dose was assessed for 70 kV and 125 kV in cylindrical PMMA phantoms of 160 mm and 320 mm diameter with a varying phantom length from 150 to 900 mm. MC simulation results were compared to the values obtained with a calibrated ionization chambers of 100 mm and 250 mm length and to thermoluminesence (TLD) dose profiles. The MCs simulations were used to calculate the efficiency of the CTDIL determination with respect to the desired CTDI∞. Both the MC simulation results and the dose distributions obtained by MC simulation were in very good agreement with the CTDI measurements and with the reference TLD profiles, respectively, to within 5%. Standard CTDI phantoms which have a z-extent of 150 mm underestimate the dose at the center by up to 55%, whereas a z-extent of >=600 mm appears to be sufficient for FD-CT; the baseline value of the respective profile was within 1% to the reference baseline. As expected, the measurements with ionization chambers of 100 mm and 250 mm offer a limited accuracy, whereas an increased integration length of >=600 mm appeared to be necessary to approximate CTDI∞ in within 1%. MC simulations appear to offer a practical and accurate way of assessing conversion factors for arbitrary dosimetry setups using a standard pencil chamber to provide estimates of CTDI∞. This would eliminate the need for extra-long phantoms and ionization chambers or excessive amounts of TLDs.
Qin, Nan; Botas, Pablo; Giantsoudi, Drosoula; Schuemann, Jan; Tian, Zhen; Jiang, Steve B.; Paganetti, Harald; Jia, Xun
2016-01-01
Monte Carlo (MC) simulation is commonly considered as the most accurate dose calculation method for proton therapy. Aiming at achieving fast MC dose calculations for clinical applications, we have previously developed a GPU-based MC tool, gPMC. In this paper, we report our recent updates on gPMC in terms of its accuracy, portability, and functionality, as well as comprehensive tests on this tool. The new version, gPMC v2.0, was developed under the OpenCL environment to enable portability across different computational platforms. Physics models of nuclear interactions were refined to improve calculation accuracy. Scoring functions of gPMC were expanded to enable tallying particle fluence, dose deposited by different particle types, and dose-averaged linear energy transfer (LETd). A multiple counter approach was employed to improve efficiency by reducing frequency of memory writing conflict at scoring. For dose calculation, accuracy improvements over gPMC v1.0 were observed in both water phantom cases and a patient case. For a prostate cancer case planned using high-energy proton beams, dose discrepancies in beam entrance and target region seen in gPMC v1.0 with respect to the gold standard tool for proton Monte Carlo simulations (TOPAS) results were substantially reduced and gamma test passing rate (1%/1mm) was improved from 82.7% to 93.1%. Average relative difference in LETd between gPMC and TOPAS was 1.7%. Average relative differences in dose deposited by primary, secondary, and other heavier particles were within 2.3%, 0.4%, and 0.2%. Depending on source proton energy and phantom complexity, it took 8 to 17 seconds on an AMD Radeon R9 290x GPU to simulate 107 source protons, achieving less than 1% average statistical uncertainty. As beam size was reduced from 10×10 cm2 to 1×1 cm2, time on scoring was only increased by 4.8% with eight counters, in contrast to a 40% increase using only one counter. With the OpenCL environment, the portability of gPMC v2.0 was enhanced. It was successfully executed on different CPUs and GPUs and its performance on different devices varied depending on processing power and hardware structure. PMID:27694712
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mein, S; Gunasingha, R; Nolan, M
Purpose: X-PACT is an experimental cancer therapy where kV x-rays are used to photo-activate anti-cancer therapeutics through phosphor intermediaries (phosphors that absorb x-rays and re-radiate as UV light). Clinical trials in pet dogs are currently underway (NC State College of Veterinary Medicine) and an essential component is the ability to model the kV dose in these dogs. Here we report the commissioning and characterization of a Monte Carlo (MC) treatment planning simulation tool to calculate X-PACT radiation doses in canine trials. Methods: FLUKA multi-particle MC simulation package was used to simulate a standard X-PACT radiation treatment beam of 80kVp withmore » the Varian OBI x-ray source geometry. The beam quality was verified by comparing measured and simulated attenuation of the beam by various thicknesses of aluminum (2–4.6 mm) under narrow beam conditions (HVL). The beam parameters at commissioning were then corroborated using MC, characterized and verified with empirically collected commissioning data, including: percent depth dose curves (PDD), back-scatter factors (BSF), collimator scatter factor(s), and heel effect, etc. All simulations were conducted for N=30M histories at M=100 iterations. Results: HVL and PDD simulation data agreed with an average percent error of 2.42%±0.33 and 6.03%±1.58, respectively. The mean square error (MSE) values for HVL and PDD (0.07% and 0.50%) were low, as expected; however, longer simulations are required to validate convergence to the expected values. Qualitatively, pre- and post-filtration source spectra matched well with 80kVp references generated via SPEKTR software. Further validation of commissioning data simulation is underway in preparation for first-time 3D dose calculations with canine CBCT data. Conclusion: We have prepared a Monte Carlo simulation capable of accurate dose calculation for use with ongoing X-PACT canine clinical trials. Preliminary results show good agreement with measured data and hold promise for accurate quantification of dose for this novel psoralen X-ray therapy. Funding Support, Disclosures, & Conflict of Interest: The Monte Carlo simulation work was not funded; Drs. Adamson & Oldham have received funding from Immunolight LLC for X-PACT research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Vincent W.C., E-mail: htvinwu@polyu.edu.hk; Tse, Teddy K.H.; Ho, Cola L.M.
2013-07-01
Monte Carlo (MC) simulation is currently the most accurate dose calculation algorithm in radiotherapy planning but requires relatively long processing time. Faster model-based algorithms such as the anisotropic analytical algorithm (AAA) by the Eclipse treatment planning system and multigrid superposition (MGS) by the XiO treatment planning system are 2 commonly used algorithms. This study compared AAA and MGS against MC, as the gold standard, on brain, nasopharynx, lung, and prostate cancer patients. Computed tomography of 6 patients of each cancer type was used. The same hypothetical treatment plan using the same machine and treatment prescription was computed for each casemore » by each planning system using their respective dose calculation algorithm. The doses at reference points including (1) soft tissues only, (2) bones only, (3) air cavities only, (4) soft tissue-bone boundary (Soft/Bone), (5) soft tissue-air boundary (Soft/Air), and (6) bone-air boundary (Bone/Air), were measured and compared using the mean absolute percentage error (MAPE), which was a function of the percentage dose deviations from MC. Besides, the computation time of each treatment plan was recorded and compared. The MAPEs of MGS were significantly lower than AAA in all types of cancers (p<0.001). With regards to body density combinations, the MAPE of AAA ranged from 1.8% (soft tissue) to 4.9% (Bone/Air), whereas that of MGS from 1.6% (air cavities) to 2.9% (Soft/Bone). The MAPEs of MGS (2.6%±2.1) were significantly lower than that of AAA (3.7%±2.5) in all tissue density combinations (p<0.001). The mean computation time of AAA for all treatment plans was significantly lower than that of the MGS (p<0.001). Both AAA and MGS algorithms demonstrated dose deviations of less than 4.0% in most clinical cases and their performance was better in homogeneous tissues than at tissue boundaries. In general, MGS demonstrated relatively smaller dose deviations than AAA but required longer computation time.« less
Poster — Thur Eve — 47: Monte Carlo Simulation of Scp, Sc and Sp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Lixin; Jiang, Runqing; Osei, Ernest K.
The in-water output ratio (Scp), in-air output ratio (Sc), and phantom scattering factor (Sp) are important parameters for radiotherapy dose calculation. Experimentally, Scp is obtained by measuring the dose rate ratio in water phantom, and Sc the water Kerma rate ratio in air. There is no method that allows direct measurement of Sp. Monte Carlo (MC) method has been used to simulate Scp and Sc in literatures, similar to experimental setup, but no MC direct simulation of Sp available yet to the best of our knowledge. We propose in this report a method of performing direct MC simulation of Sp.more » Starting from the definition, we derived that Sp of a clinical photon beam can be approximated by the ratio of the dose rates contributed from the primary beam for a given field size to the reference field size. Since only the primary beam is used, any Linac head scattering should be excluded from the simulation, which can be realized by using the incident electron as a scoring parameter for MU. We performed MC simulations for Scp, Sc and Sp. Scp matches well with golden beam data. Sp obtained by the proposed method agrees well with what is obtained using the traditional method, Sp=Scp/Sc. Since the smaller the field size, the more the primary beam dominates, our Sp simulation method is accurate for small field. By analyzing the calculated data, we found that this method can be used with no problem for large fields. The difference it introduced is clinically insignificant.« less
Farah, J; Bonfrate, A; De Marzi, L; De Oliveira, A; Delacroix, S; Martinetti, F; Trompier, F; Clairand, I
2015-05-01
This study focuses on the configuration and validation of an analytical model predicting leakage neutron doses in proton therapy. Using Monte Carlo (MC) calculations, a facility-specific analytical model was built to reproduce out-of-field neutron doses while separately accounting for the contribution of intra-nuclear cascade, evaporation, epithermal and thermal neutrons. This model was first trained to reproduce in-water neutron absorbed doses and in-air neutron ambient dose equivalents, H*(10), calculated using MCNPX. Its capacity in predicting out-of-field doses at any position not involved in the training phase was also checked. The model was next expanded to enable a full 3D mapping of H*(10) inside the treatment room, tested in a clinically relevant configuration and finally consolidated with experimental measurements. Following the literature approach, the work first proved that it is possible to build a facility-specific analytical model that efficiently reproduces in-water neutron doses and in-air H*(10) values with a maximum difference less than 25%. In addition, the analytical model succeeded in predicting out-of-field neutron doses in the lateral and vertical direction. Testing the analytical model in clinical configurations proved the need to separate the contribution of internal and external neutrons. The impact of modulation width on stray neutrons was found to be easily adjustable while beam collimation remains a challenging issue. Finally, the model performance agreed with experimental measurements with satisfactory results considering measurement and simulation uncertainties. Analytical models represent a promising solution that substitutes for time-consuming MC calculations when assessing doses to healthy organs. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Y; Lacroix, F; Lavallee, M
Purpose: To evaluate the commercially released Collapsed Cone convolution-based(CCC) dose calculation module of the Elekta OncentraBrachy(OcB) treatment planning system(TPS). Methods: An allwater phantom was used to perform TG43 benchmarks with single source and seventeen sources, separately. Furthermore, four real-patient heterogeneous geometries (chestwall, lung, breast and prostate) were used. They were selected based on their clinical representativity of a class of clinical anatomies that pose clear challenges. The plans were used as is(no modification). For each case, TG43 and CCC calculations were performed in the OcB TPS, with TG186-recommended materials properly assigned to ROIs. For comparison, Monte Carlo simulation was runmore » for each case with the same material scheme and grid mesh as TPS calculations. Both modes of CCC (standard and high quality) were tested. Results: For the benchmark case, the CCC dose, when divided by that of TG43, yields hot-n-cold spots in a radial pattern. The pattern of the high mode is denser than that of the standard mode and is representative of angular dicretization. The total deviation ((hot-cold)/TG43) is 18% for standard mode and 11% for high mode. Seventeen dwell positions help to reduce “ray-effect”, with the total deviation to 6% (standard) and 5% (high), respectively. For the four patient cases, CCC produces, as expected, more realistic dose distributions than TG43. A close agreement was observed between CCC and MC for all isodose lines, from 20% and up; the 10% isodose line of CCC appears shifted compared to that of MC. The DVH plots show dose deviations of CCC from MC in small volume, high dose regions (>100% isodose). For patient cases, the difference between standard and high modes is almost undiscernable. Conclusion: OncentraBrachy CCC algorithm marks a significant dosimetry improvement relative to TG43 in real-patient cases. Further researches are recommended regarding the clinical implications of the above observations. Support provided by a CIHR grant and CCC system provided by Elekta-Nucletron.« less
Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment
NASA Astrophysics Data System (ADS)
Asuni, Ganiyu Adeniyi
Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. in vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. in vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was demonstrated that the tool accurately simulates dose to the patient CT and planar detector geometries. The tool has been made freely available to the medical physics research community to help advance the development of in vivo planar detectors. In conclusion, this thesis presents several investigations that improve the understanding of a novel entrance detector designed for patient in vivo dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, X. R.; Poenisch, F.; Lii, M.
2013-04-15
Purpose: To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). Methods: The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm{sup 2}/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateralmore » dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. Results: We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012 with acceptable agreement between TPS calculated and measured dose distributions. However, the current dose model still has limitations in predicting field size dependence of doses at some intermediate depths of proton beams with high energies. Conclusions: We have commissioned a DG fluence model for clinical use. It is demonstrated that the DG fluence model is significantly more accurate than the SG fluence model. However, some deficiencies in modeling the low-dose envelope in the current dose algorithm still exist. Further improvements to the current dose algorithm are needed. The method presented here should be useful for commissioning pencil beam dose algorithms in new versions of TPS in the future.« less
Zhu, X. R.; Poenisch, F.; Lii, M.; Sawakuchi, G. O.; Titt, U.; Bues, M.; Song, X.; Zhang, X.; Li, Y.; Ciangaru, G.; Li, H.; Taylor, M. B.; Suzuki, K.; Mohan, R.; Gillin, M. T.; Sahoo, N.
2013-01-01
Purpose: To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). Methods: The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm2/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateral dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. Results: We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012 with acceptable agreement between TPS calculated and measured dose distributions. However, the current dose model still has limitations in predicting field size dependence of doses at some intermediate depths of proton beams with high energies. Conclusions: We have commissioned a DG fluence model for clinical use. It is demonstrated that the DG fluence model is significantly more accurate than the SG fluence model. However, some deficiencies in modeling the low-dose envelope in the current dose algorithm still exist. Further improvements to the current dose algorithm are needed. The method presented here should be useful for commissioning pencil beam dose algorithms in new versions of TPS in the future. PMID:23556893
Zhu, X R; Poenisch, F; Lii, M; Sawakuchi, G O; Titt, U; Bues, M; Song, X; Zhang, X; Li, Y; Ciangaru, G; Li, H; Taylor, M B; Suzuki, K; Mohan, R; Gillin, M T; Sahoo, N
2013-04-01
To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm(2)/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateral dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012 with acceptable agreement between TPS calculated and measured dose distributions. However, the current dose model still has limitations in predicting field size dependence of doses at some intermediate depths of proton beams with high energies. We have commissioned a DG fluence model for clinical use. It is demonstrated that the DG fluence model is significantly more accurate than the SG fluence model. However, some deficiencies in modeling the low-dose envelope in the current dose algorithm still exist. Further improvements to the current dose algorithm are needed. The method presented here should be useful for commissioning pencil beam dose algorithms in new versions of TPS in the future.
Gharehaghaji, Nahideh; Dadgar, Habib Alah
2018-01-01
The main purpose of this study was evaluate a polymer-gel-dosimeter (PGD) for three-dimensional verification of dose distributions in the lung that is called lung-equivalent gel (LEG) and then to compare its result with Monte Carlo (MC) method. In the present study, to achieve a lung density for PGD, gel is beaten until foam is obtained, and then sodium dodecyl sulfate is added as a surfactant to increase the surface tension of the gel. The foam gel was irradiated with 1 cm × 1 cm field size in the 6 MV photon beams of ONCOR SIEMENS LINAC, along the central axis of the gel. The LEG was then scanned on a 1.5 Tesla magnetic resonance imaging scanner after irradiation using a multiple-spin echo sequence. Least-square fitting the pixel values from 32 consecutive images using a single exponential decay function derived the R2 relaxation rates. Moreover, 6 and 18 MV photon beams of ONCOR SIEMENS LINAC are simulated using MCNPX MC Code. The MC model is used to calculate the depth dose water and low-density water resembling the soft tissue and lung, respectively. Percentages of dose reduction in the lung region relative to homogeneous phantom for 6 MV photon beam were 44.6%, 39%, 13%, and 7% for 0.5 cm × 0.5 cm, 1 cm × 1 cm, 2 cm × 2 cm, and 3 cm × 3 cm fields, respectively. For 18 MV photon beam, the results were found to be 82%, 69%, 46%, and 25.8% for the same field sizes, respectively. Preliminary results show good agreement between depth dose measured with the LEG and the depth dose calculated using MCNP code. Our study showed that the dose reduction with small fields in the lung was very high. Thus, inaccurate prediction of absorbed dose inside the lung and also lung/soft-tissue interfaces with small photon beams may lead to critical consequences for treatment outcome.
Acceptance and commissioning of a treatment planning system based on Monte Carlo calculations.
Lopez-Tarjuelo, J; Garcia-Molla, R; Juan-Senabre, X J; Quiros-Higueras, J D; Santos-Serra, A; de Marco-Blancas, N; Calzada-Feliu, S
2014-04-01
The Monaco Treatment Planning System (TPS), based on a virtual energy fluence model of the photon beam head components of the linac and a dose computation engine made with Monte Carlo (MC) algorithm X-Ray Voxel MC (XVMC), has been tested before being put into clinical use. An Elekta Synergy with 6 MV was characterized using routine equipment. After the machine's model was installed, a set of functionality, geometric, dosimetric and data transfer tests were performed. The dosimetric tests included dose calculations in water, heterogeneous phantoms and Intensity Modulated Radiation Therapy (IMRT) verifications. Data transfer tests were run for every imaging device, TPS and the electronic medical record linked to Monaco. Functionality and geometric tests were run properly. Dose calculations in water were in accordance with measurements so that, in 95% of cases, differences were up to 1.9%. Dose calculation in heterogeneous media showed expected results found in the literature. IMRT verification results with an ionization chamber led to dose differences lower than 2.5% for points inside a standard gradient. When an 2-D array was used, all the fields passed the g (3%, 3 mm) test with a percentage of succeeding points between 90% and 95%, of which the majority of the mentioned fields had a percentage of succeeding points between 95% and 100%. Data transfer caused problems that had to be solved by means of changing our workflow. In general, tests led to satisfactory results. Monaco performance complied with published international recommendations and scored highly in the dosimetric ambit. However, the problems detected when the TPS was put to work together with our current equipment showed that this kind of product must be completely commissioned, without neglecting data workflow, before treating the first patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.edu; Kim, Jong Oh
2016-05-15
Purpose: To develop and evaluate a fast Monte Carlo (MC) dose calculation model of electronic portal imaging device (EPID) based on its effective atomic number modeling in the XVMC code. Methods: A previously developed EPID model, based on the XVMC code by density scaling of EPID structures, was modified by additionally considering effective atomic number (Z{sub eff}) of each structure and adopting a phase space file from the EGSnrc code. The model was tested under various homogeneous and heterogeneous phantoms and field sizes by comparing the calculations in the model with measurements in EPID. In order to better evaluate themore » model, the performance of the XVMC code was separately tested by comparing calculated dose to water with ion chamber (IC) array measurement in the plane of EPID. Results: In the EPID plane, calculated dose to water by the code showed agreement with IC measurements within 1.8%. The difference was averaged across the in-field regions of the acquired profiles for all field sizes and phantoms. The maximum point difference was 2.8%, affected by proximity of the maximum points to penumbra and MC noise. The EPID model showed agreement with measured EPID images within 1.3%. The maximum point difference was 1.9%. The difference dropped from the higher value of the code by employing the calibration that is dependent on field sizes and thicknesses for the conversion of calculated images to measured images. Thanks to the Z{sub eff} correction, the EPID model showed a linear trend of the calibration factors unlike those of the density-only-scaled model. The phase space file from the EGSnrc code sharpened penumbra profiles significantly, improving agreement of calculated profiles with measured profiles. Conclusions: Demonstrating high accuracy, the EPID model with the associated calibration system may be used for in vivo dosimetry of radiation therapy. Through this study, a MC model of EPID has been developed, and their performance has been rigorously investigated for transit dosimetry.« less
Miksys, N; Xu, C; Beaulieu, L; Thomson, R M
2015-08-07
This work investigates and compares CT image metallic artifact reduction (MAR) methods and tissue assignment schemes (TAS) for the development of virtual patient models for permanent implant brachytherapy Monte Carlo (MC) dose calculations. Four MAR techniques are investigated to mitigate seed artifacts from post-implant CT images of a homogeneous phantom and eight prostate patients: a raw sinogram approach using the original CT scanner data and three methods (simple threshold replacement (STR), 3D median filter, and virtual sinogram) requiring only the reconstructed CT image. Virtual patient models are developed using six TAS ranging from the AAPM-ESTRO-ABG TG-186 basic approach of assigning uniform density tissues (resulting in a model not dependent on MAR) to more complex models assigning prostate, calcification, and mixtures of prostate and calcification using CT-derived densities. The EGSnrc user-code BrachyDose is employed to calculate dose distributions. All four MAR methods eliminate bright seed spot artifacts, and the image-based methods provide comparable mitigation of artifacts compared with the raw sinogram approach. However, each MAR technique has limitations: STR is unable to mitigate low CT number artifacts, the median filter blurs the image which challenges the preservation of tissue heterogeneities, and both sinogram approaches introduce new streaks. Large local dose differences are generally due to differences in voxel tissue-type rather than mass density. The largest differences in target dose metrics (D90, V100, V150), over 50% lower compared to the other models, are when uncorrected CT images are used with TAS that consider calcifications. Metrics found using models which include calcifications are generally a few percent lower than prostate-only models. Generally, metrics from any MAR method and any TAS which considers calcifications agree within 6%. Overall, the studied MAR methods and TAS show promise for further retrospective MC dose calculation studies for various permanent implant brachytherapy treatments.
SU-F-T-672: A Novel Kernel-Based Dose Engine for KeV Photon Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinhart, M; Fast, M F; Nill, S
2016-06-15
Purpose: Mimicking state-of-the-art patient radiotherapy with high precision irradiators for small animals allows advanced dose-effect studies and radiobiological investigations. One example is the implementation of pre-clinical IMRT-like irradiations, which requires the development of inverse planning for keV photon beams. As a first step, we present a novel kernel-based dose calculation engine for keV x-rays with explicit consideration of energy and material dependencies. Methods: We follow a superposition-convolution approach adapted to keV x-rays, based on previously published work on micro-beam therapy. In small animal radiotherapy, we assume local energy deposition at the photon interaction point, since the electron ranges in tissuemore » are of the same order of magnitude as the voxel size. This allows us to use photon-only kernel sets generated by MC simulations, which are pre-calculated for six energy windows and ten base materials. We validate our stand-alone dose engine against Geant4 MC simulations for various beam configurations in water, slab phantoms with bone and lung inserts, and on a mouse CT with (0.275mm)3 voxels. Results: We observe good agreement for all cases. For field sizes of 1mm{sup 2} to 1cm{sup 2} in water, the depth dose curves agree within 1% (mean), with the largest deviations in the first voxel (4%) and at depths>5cm (<2.5%). The out-of-field doses at 1cm depth agree within 8% (mean) for all but the smallest field size. In slab geometries, the mean agreement was within 3%, with maximum deviations of 8% at water-bone interfaces. The γ-index (1mm/1%) passing rate for a single-field mouse irradiation is 71%. Conclusion: The presented dose engine yields an accurate representation of keV-photon doses suitable for inverse treatment planning for IMRT. It has the potential to become a significantly faster yet sufficiently accurate alternative to full MC simulations. Further investigations will focus on energy sampling as well as calculation times. Research at ICR is also supported by Cancer Research UK under Programme C33589/A19727 and NHS funding to the NIHR Biomedical Research Centre at RMH and ICR. MFF is supported by Cancer Research UK under Programme C33589/A19908.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malkov, Victor N.; Rogers, David W.O.
The coupling of MRI and radiation treatment systems for the application of magnetic resonance guided radiation therapy necessitates a reliable magnetic field capable Monte Carlo (MC) code. In addition to the influence of the magnetic field on dose distributions, the question of proper calibration has arisen due to the several percent variation of ion chamber and solid state detector responses in magnetic fields when compared to the 0 T case (Reynolds et al., Med Phys, 2013). In the absence of a magnetic field, EGSnrc has been shown to pass the Fano cavity test (a rigorous benchmarking tool of MC codes)more » at the 0.1 % level (Kawrakow, Med.Phys, 2000), and similar results should be required of magnetic field capable MC algorithms. To properly test such developing MC codes, the Fano cavity theorem has been adapted to function in a magnetic field (Bouchard et al., PMB, 2015). In this work, the Fano cavity test is applied in a slab and ion-chamber-like geometries to test the transport options of an implemented magnetic field algorithm in EGSnrc. Results show that the deviation of the MC dose from the expected Fano cavity theory value is highly sensitive to the choice of geometry, and the ion chamber geometry appears to pass the test more easily than larger slab geometries. As magnetic field MC codes begin to be used for dose simulations and correction factor calculations, care must be taken to apply the most rigorous Fano test geometries to ensure reliability of such algorithms.« less
Cavity theory applications for kilovoltage cellular dosimetry.
Oliver, P A K; Thomson, Rowan M
2017-06-07
Relationships between macroscopic (bulk tissue) and microscopic (cellular) dose descriptors are investigated using cavity theory and Monte Carlo (MC) simulations. Small, large, and multiple intermediate cavity theory (SCT, LCT, and ICT, respectively) approaches are considered for 20 to 370 keV incident photons; ICT is a sum of SCT and LCT contributions weighted by parameter d. Considering μm-sized cavities of water in bulk tissue phantoms, different cavity theory approaches are evaluated via comparison of [Formula: see text] (where D w,m is dose-to-water-in-medium and D m,m is dose-to-medium-in-medium) with MC results. The best overall agreement is achieved with an ICT approach in which [Formula: see text], where L is the mean chord length of the cavity and β is given by [Formula: see text] (R CSDA is the continuous slowing down approximation range of an electron of energy equal to that of incident photons). Cell nucleus doses, D nuc , computed with this ICT approach are compared with those from MC simulations involving multicellular soft tissue models considering a representative range of cell/nucleus sizes and elemental compositions. In [Formula: see text] of cases, ICT and MC predictions agree within [Formula: see text]; disagreement is at most 8.8%. These results suggest that cavity theory may be useful for linking doses from model-based dose calculation algorithms (MBDCAs) with energy deposition in cellular targets. Finally, based on the suggestion that clusters of water molecules associated with DNA are important radiobiological targets, two approaches for estimating dose-to-water by application of SCT to MC results for D m,m or D nuc are compared. Results for these two estimates differ by up to [Formula: see text], demonstrating the sensitivity of energy deposition within a small volume of water in nucleus to the geometry and composition of its surroundings. In terms of the debate over the dose specification medium for MBDCAs, these results do not support conversion of D m,m to D w,m using SCT.
Cavity theory applications for kilovoltage cellular dosimetry
NASA Astrophysics Data System (ADS)
Oliver, P. A. K.; Thomson, Rowan M.
2017-06-01
Relationships between macroscopic (bulk tissue) and microscopic (cellular) dose descriptors are investigated using cavity theory and Monte Carlo (MC) simulations. Small, large, and multiple intermediate cavity theory (SCT, LCT, and ICT, respectively) approaches are considered for 20 to 370 keV incident photons; ICT is a sum of SCT and LCT contributions weighted by parameter d. Considering μm-sized cavities of water in bulk tissue phantoms, different cavity theory approaches are evaluated via comparison of Dw, m/Dm, m (where D w,m is dose-to-water-in-medium and D m,m is dose-to-medium-in-medium) with MC results. The best overall agreement is achieved with an ICT approach in which d=(1-e-β L)/(β L) , where L is the mean chord length of the cavity and β is given by e-β R_CSDA=0.04 (R CSDA is the continuous slowing down approximation range of an electron of energy equal to that of incident photons). Cell nucleus doses, D nuc, computed with this ICT approach are compared with those from MC simulations involving multicellular soft tissue models considering a representative range of cell/nucleus sizes and elemental compositions. In 91% of cases, ICT and MC predictions agree within 3% ; disagreement is at most 8.8%. These results suggest that cavity theory may be useful for linking doses from model-based dose calculation algorithms (MBDCAs) with energy deposition in cellular targets. Finally, based on the suggestion that clusters of water molecules associated with DNA are important radiobiological targets, two approaches for estimating dose-to-water by application of SCT to MC results for D m,m or D nuc are compared. Results for these two estimates differ by up to 35% , demonstrating the sensitivity of energy deposition within a small volume of water in nucleus to the geometry and composition of its surroundings. In terms of the debate over the dose specification medium for MBDCAs, these results do not support conversion of D m,m to D w,m using SCT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichacek, Christopher J.; Tafreshi, Narges K.; Budzevich, Mikalai M.
Purpose: The melanocortin-1 receptor (MC1R) is expressed in 94% of uveal melanomas and is described as an ideal target for this untreatable disease. MC1RL is a high affinity MC1R specific peptidomimetic ligand that can serve as a scaffold for therapeutic conjugates such as alpha particle emitting isotopes. The purpose of this study was to assess normal tissue distribution and risk as a result of using the DOTA chelator conjugated to MC1RL to deliver {sup 225}Ac: MC1RL-DOTA-{sup 225}Ac. Methods: 17 non-tumor bearing BALB/c mice were intravenously injected with the novel MC1RL-DOTA-{sup 225}Ac radiopharmaceutical with an average initial administered activity of 2.5more » µCi. After the injection, three groups of animals (6, 6, and 5 per group) were euthanized at 24, 48, and 96 hour time points. A total of 11 organs of interest were harvested at each time point including kidneys and liver. Since the emitted alpha particles from {sup 225}Ac and its daughter products are not easy to detect directly, the isomeric gamma spectra were measured instead in the tissue samples using a modified Atomlab™ Gamma Counter (Biodex Medical Systems, Inc) and converted using factors for gamma ray abundance per alpha decay. Dosimetry was performed using measured radioactivity distribution in organs and the generalized internal dosimetry schema of MIRD pamphlet #21. Results: Our calculations have shown that the maximum absorbed dose was delivered to the liver with a total of 47 cGy per 96 hour period. The average dose per kidney was calculated to be 21 cGy. Heart, brain, lung, spleen, skin doses ranged from 0.01 to 1 cGy over the same time period. All animals gained weight over the 110 day decay period and no organ damage was observed by pathology. Conclusion: Based on our results, the risk of using the MC1RL-DOTA-{sup 225}Ac compound is relatively small in terms of deterministic radiation effects. Funding Support: NIH/NCI P50CA168536-03 Skin SPORE; NIH/NCI Phase I SBIR Contract #HHSN261201500067C; Imaging and Technology Center of Excellence at Moffitt. Disclosures and Conflict of Interest: Collaboration with Modulation Therapeutics, Inc.(MTI) and has been partially funded by sub-contracts from MTI via collaboration on a NIH/NCI phase I SBIR contract.« less
Mason, J; Al-Qaisieh, B; Bownes, P; Henry, A; Thwaites, D
2013-03-01
In permanent seed implant prostate brachytherapy the actual dose delivered to the patient may be less than that calculated by TG-43U1 due to interseed attenuation (ISA) and differences between prostate tissue composition and water. In this study the magnitude of the ISA effect is assessed in a phantom and in clinical prostate postimplant cases. Results are compared for seed models 6711 and 9011 with 0.8 and 0.5 mm diameters, respectively. A polymethyl methacrylate (PMMA) phantom was designed to perform ISA measurements in a simple eight-seed arrangement and at the center of an implant of 36 seeds. Monte Carlo (MC) simulation and experimental measurements using a MOSFET dosimeter were used to measure dose rate and the ISA effect. MC simulations of 15 CT-based postimplant prostate treatment plans were performed to compare the clinical impact of ISA on dose to prostate, urethra, rectum, and the volume enclosed by the 100% isodose, for 6711 and 9011 seed models. In the phantom, ISA reduced the dose rate at the MOSFET position by 8.6%-18.3% (6711) and 7.8%-16.7% (9011) depending on the measurement configuration. MOSFET measured dose rates agreed with MC simulation predictions within the MOSFET measurement uncertainty, which ranged from 5.5% to 7.2% depending on the measurement configuration (k = 1, for the mean of four measurements). For 15 clinical implants, the mean ISA effect for 6711 was to reduce prostate D90 by 4.2 Gy (3%), prostate V100 by 0.5 cc (1.4%), urethra D10 by 11.3 Gy (4.4%), rectal D2cc by 5.5 Gy (4.6%), and the 100% isodose volume by 2.3 cc. For the 9011 seed the mean ISA effect reduced prostate D90 by 2.2 Gy (1.6%), prostate V100 by 0.3 cc (0.7%), urethra D10 by 8.0 Gy (3.2%), rectal D2cc by 3.1 Gy (2.7%), and the 100% isodose volume by 1.2 cc. Differences between the MC simulation and TG-43U1 consensus data for the 6711 seed model had a similar impact, reducing mean prostate D90 by 6 Gy (4.2%) and V100 by 0.6 cc (1.8%). ISA causes the delivered dose in prostate seed implant brachytherapy to be lower than the dose calculated by TG-43U1. MC simulation of phantom seed arrangements show that dose at a point can be reduced by up to 18% and this has been validated using a MOSFET dosimeter. Clinical simulations show that ISA reduces DVH parameter values, but the reduction is less for thinner seeds.
Aboulbanine, Zakaria; El Khayati, Naïma
2018-04-13
The use of phase space in medical linear accelerator Monte Carlo (MC) simulations significantly improves the execution time and leads to results comparable to those obtained from full calculations. The classical representation of phase space stores directly the information of millions of particles, producing bulky files. This paper presents a virtual source model (VSM) based on a reconstruction algorithm, taking as input a compressed file of roughly 800 kb derived from phase space data freely available in the International Atomic Energy Agency (IAEA) database. This VSM includes two main components; primary and scattered particle sources, with a specific reconstruction method developed for each. Energy spectra and other relevant variables were extracted from IAEA phase space and stored in the input description data file for both sources. The VSM was validated for three photon beams: Elekta Precise 6 MV/10 MV and a Varian TrueBeam 6 MV. Extensive calculations in water and comparisons between dose distributions of the VSM and IAEA phase space were performed to estimate the VSM precision. The Geant4 MC toolkit in multi-threaded mode (Geant4-[mt]) was used for fast dose calculations and optimized memory use. Four field configurations were chosen for dose calculation validation to test field size and symmetry effects, [Formula: see text] [Formula: see text], [Formula: see text] [Formula: see text], and [Formula: see text] [Formula: see text] for squared fields, and [Formula: see text] [Formula: see text] for an asymmetric rectangular field. Good agreement in terms of [Formula: see text] formalism, for 3%/3 mm and 2%/3 mm criteria, for each evaluated radiation field and photon beam was obtained within a computation time of 60 h on a single WorkStation for a 3 mm voxel matrix. Analyzing the VSM's precision in high dose gradient regions, using the distance to agreement concept (DTA), showed also satisfactory results. In all investigated cases, the mean DTA was less than 1 mm in build-up and penumbra regions. In regards to calculation efficiency, the event processing speed is six times faster using Geant4-[mt] compared to sequential Geant4, when running the same simulation code for both. The developed VSM for 6 MV/10 MV beams widely used, is a general concept easy to adapt in order to reconstruct comparable beam qualities for various linac configurations, facilitating its integration for MC treatment planning purposes.
NASA Astrophysics Data System (ADS)
Johnstone, Christopher Daniel; Bazalova-Carter, Magdalena
2018-06-01
The goal of this work was to establish imaging dose to mouse organs with a validated Monte Carlo (MC) model of the image-guided Small Animal Radiation Research Platform (SARRP) and to investigate the effect of scatter from the internal walls on animal therapy dose determination. A MC model of the SARRP was built in the BEAMnrc code and validated with a series of homogeneous and heterogeneous phantom measurements. A segmented microCT scan of a mouse was used in DOSXYZnrc to determine mouse organ microCT imaging doses to 15–35 g mice for the SARRP pancake (mouse lying on couch) and standard (mouse standing on couch) imaging geometries for 40–80 kVp tube voltages. Imaging dose for off-center positioning shifts and maintaining image noise across tube voltages were also calculated. Half-value layer (HVL) measurements for the 220 kVp therapy beam in the presence of the SARRP shielding cabinet were modeled in BEAMnrc and compared to the 100 cm source-to-detector distance (SDD) in the scatter free, narrow-beam geometry recommended by the American Association of Physicists in Medicine Task Group 61 (AAPM TG-61). For a 60 kVp, 0.8 mA, and 60 s scan protocol, maximum mean organ imaging doses to boney and non-boney structures were 10.5 cGy and 3.5 cGy, respectively, for an average size 20 g mouse. Current-exposure combinations above 323, 203, 147, 116, and 95 mAs for 40–80 kVp tube voltages, respectively, will increase body doses above 10 cGy. MicroCT mean body dose was 18% lower in pancake compared to standard imaging geometry. An 11% difference in measured HVL at a 50 cm SDD was found compared to MC simulated HVL for the AAPM TG-61 recommended scatter free geometry at a 100 cm SDD. This change in HVL resulted in a 0.5% change in absorbed dose to water calculations for the treatment beam.
Capote, Roberto; Sánchez-Doblado, Francisco; Leal, Antonio; Lagares, Juan Ignacio; Arráns, Rafael; Hartmann, Günther H
2004-09-01
Intensity modulated radiation therapy (IMRT) has evolved toward the use of many small radiation fields, or "beamlets," to increase the resolution of the intensity map. The size of smaller beamlets can be typically about 1-5 cm2. Therefore small ionization chambers (IC) with sensitive volumes < or = 0.1 cm3 are generally used for dose verification of IMRT treatment. The dosimetry of these narrow photon beams pertains to the so-called nonreference conditions for beam calibration. The use of ion chambers for such narrow beams remains questionable due to the lack of electron equilibrium in most of the field. The present contribution aims to estimate, by the Monte Carlo (MC) method, the total correction needed to convert the IBA-Wellhöfer NAC007 micro IC measured charge in such radiation field to the absolute dose to water. Detailed geometrical simulation of the microionization chamber was performed. The ion chamber was always positioned at a 10 cm depth in water, parallel to the beam axis. The delivered doses to air and water cavity were calculated using the CAVRZ EGSnrc user code. The 6 MV phase-spaces for Primus Clinac (Siemens) used as an input to the CAVRZnrc code were derived by BEAM/EGS4 modeling of the treatment head of the machine along with the multileaf collimator [Sánchez-Doblado et al., Phys. Med. Biol. 48, 2081-2099 (2003)] and contrasted with experimental measurements. Dose calculations were carried out for two irradiation geometries, namely, the reference 10x10 cm2 field and an irregular (approximately 2x2 cm2) IMRT beamlet. The dose measured by the ion chamber is estimated by MC simulation as a dose averaged over the air cavity inside the ion-chamber (Dair). The absorbed dose to water is derived as the dose deposited inside the same volume, in the same geometrical position, filled and surrounded by water (Dwater) in the absence of the ionization chamber. Therefore, the Dwater/Dair dose ratio is a MC direct estimation of the total correction factor needed to convert the absorbed dose in air to absorbed dose to water. The dose ratio was calculated for several chamber positions, starting from the penumbra region around the beamlet along the two diagonals crossing the radiation field. For this quantity from 0 up to a 3% difference is observed between the dose ratio values obtained within the small irregular IMRT beamlet in comparison with the dose ratio derived for the reference 10x10 cm2 field. Greater differences from the reference value up to 9% were obtained in the penumbra region of the small IMRT beamlet.
MO-FG-CAMPUS-TeP3-03: Calculation of Proton Pencil Beam Properties with Full Beamline Model in TOPAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulff, J; Abel, E
2016-06-15
Purpose: Introducing Monte Carlo based dose calculation algorithms into proton therapy planning systems (TPS) leads to improved accuracy. However accurate modelling of the proton pencil beam impinging the patient is necessary. Current approaches rely on measurement-driven reconstruction of phase-space and spectrum properties, typically constrained to analytical model functions. In this study a detailed Monte Carlo model of the complete cyclotron-based delivery system was created with the aim of providing more representative beam properties at treatment position. Methods: A model of the Varian Probeam proton system from the cyclotron exit to isocenter was constructed in the TOPAS Monte Carlo framework. Themore » beam evolution through apertures and magnetic elements was validated using Transport/Turtle calculations and additionally against measurements from the Probeam™ system at Scripps Proton Therapy Center (SPTC) in San Diego, CA. A voxelized water phantom at isocenter allowed for comparison of the dose-depth curve from the Probeam model with that of a corresponding Gaussian beam over the entire energy range (70–240 MeV). Measurements of relative beam fluence cross-profiles and depth-dose curves at and around isocenter were also compared to the MC results. Results: The simulated TOPAS beam envelope was found to agree with both the Transport/Turtle and measurements to within 5% for most of the beamline. The MC predicted energy spectrum at isocenter was found to deviate increasingly from Gaussian at energies below 160 MeV. The corresponding effects on the depth dose curve agreed well with measurements. Conclusion: Given the flexibility of TOPAS and available details of the delivery system, an accurate characterization of a proton pencil beam at isocenter is possible. Incorporation of the MC derived properties of the proton pencil beam can eliminate analytical approximations and ultimately increase treatment plan accuracy and quality. Both authors are employees of Varian Medical Systems.« less
SU-E-T-627: Precision Modelling of the Leaf-Bank Rotation in Elekta’s Agility MLC: Is It Necessary?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vujicic, M; Belec, J; Heath, E
Purpose: To demonstrate the method used to determine the leaf bank rotation angle (LBROT) as a parameter for modeling the Elekta Agility multi-leaf collimator (MLC) for Monte Carlo simulations and to evaluate the clinical impact of LBROT. Methods: A detailed model of an Elekta Infinity linac including an Agility MLC was built using the EGSnrc/BEAMnrc Monte Carlo code. The Agility 160-leaf MLC is modelled using the MLCE component module which allows for leaf bank rotation using the parameter LBROT. A precise value of LBROT is obtained by comparing measured and simulated profiles of a specific field, which has leaves arrangedmore » in a repeated pattern such that one leaf is opened and the adjacent one is closed. Profile measurements from an Agility linac are taken with gafchromic film, and an ion chamber is used to set the absolute dose. The measurements are compared to Monte Carlo (MC) simulations and the LBROT is adjusted until a match is found. The clinical impact of LBROT is evaluated by observing how an MC dose calculation changes with LBROT. A clinical Stereotactic Body Radiation Treatment (SBRT) plan is calculated using BEAMnrc/DOSXYZnrc simulations with different input values for LBROT. Results: Using the method outlined above, the LBROT is determined to be 9±1 mrad. Differences as high as 4% are observed in a clinical SBRT plan between the extreme case (LBROT not modeled) and the nominal case. Conclusion: In small-field radiation therapy treatment planning, it is important to properly account for LBROT as an input parameter for MC dose calculations with the Agility MLC. More work is ongoing to elucidate the observed differences by determining the contributions from transmission dose, change in field size, and source occlusion, which are all dependent on LBROT. This work was supported by OCAIRO (Ontario Consortium of Adaptive Interventions in Radiation Oncology), funded by the Ontario Research Fund.« less
Mathematical modelling of scanner-specific bowtie filters for Monte Carlo CT dosimetry
NASA Astrophysics Data System (ADS)
Kramer, R.; Cassola, V. F.; Andrade, M. E. A.; de Araújo, M. W. C.; Brenner, D. J.; Khoury, H. J.
2017-02-01
The purpose of bowtie filters in CT scanners is to homogenize the x-ray intensity measured by the detectors in order to improve the image quality and at the same time to reduce the dose to the patient because of the preferential filtering near the periphery of the fan beam. For CT dosimetry, especially for Monte Carlo calculations of organ and tissue absorbed doses to patients, it is important to take the effect of bowtie filters into account. However, material composition and dimensions of these filters are proprietary. Consequently, a method for bowtie filter simulation independent of access to proprietary data and/or to a specific scanner would be of interest to many researchers involved in CT dosimetry. This study presents such a method based on the weighted computer tomography dose index, CTDIw, defined in two cylindrical PMMA phantoms of 16 cm and 32 cm diameter. With an EGSnrc-based Monte Carlo (MC) code, ratios CTDIw/CTDI100,a were calculated for a specific CT scanner using PMMA bowtie filter models based on sigmoid Boltzmann functions combined with a scanner filter factor (SFF) which is modified during calculations until the calculated MC CTDIw/CTDI100,a matches ratios CTDIw/CTDI100,a, determined by measurements or found in publications for that specific scanner. Once the scanner-specific value for an SFF has been found, the bowtie filter algorithm can be used in any MC code to perform CT dosimetry for that specific scanner. The bowtie filter model proposed here was validated for CTDIw/CTDI100,a considering 11 different CT scanners and for CTDI100,c, CTDI100,p and their ratio considering 4 different CT scanners. Additionally, comparisons were made for lateral dose profiles free in air and using computational anthropomorphic phantoms. CTDIw/CTDI100,a determined with this new method agreed on average within 0.89% (max. 3.4%) and 1.64% (max. 4.5%) with corresponding data published by CTDosimetry (www.impactscan.org) for the CTDI HEAD and BODY phantoms, respectively. Comparison with results calculated using proprietary data for the PHILIPS Brilliance 64 scanner showed agreement on average within 2.5% (max. 5.8%) and with data measured for that scanner within 2.1% (max. 3.7%). Ratios of CTDI100,c/CTDI100, p for this study and corresponding data published by CTDosimetry (www.impactscan.org) agree on average within about 11% (max. 28.6%). Lateral dose profiles calculated with the proposed bowtie filter and with proprietary data agreed within 2% (max. 5.9%), and both calculated data agreed within 5.4% (max. 11.2%) with measured results. Application of the proposed bowtie filter and of the exactly modelled filter to human phantom Monte Carlo calculations show agreement on the average within less than 5% (max. 7.9%) for organ and tissue absorbed doses.
NASA Astrophysics Data System (ADS)
Pappas, E. P.; Moutsatsos, A.; Pantelis, E.; Zoros, E.; Georgiou, E.; Torrens, M.; Karaiskos, P.
2016-02-01
This work presents a comprehensive Monte Carlo (MC) simulation model for the Gamma Knife Perfexion (PFX) radiosurgery unit. Model-based dosimetry calculations were benchmarked in terms of relative dose profiles (RDPs) and output factors (OFs), against corresponding EBT2 measurements. To reduce the rather prolonged computational time associated with the comprehensive PFX model MC simulations, two approximations were explored and evaluated on the grounds of dosimetric accuracy. The first consists in directional biasing of the 60Co photon emission while the second refers to the implementation of simplified source geometric models. The effect of the dose scoring volume dimensions in OF calculations accuracy was also explored. RDP calculations for the comprehensive PFX model were found to be in agreement with corresponding EBT2 measurements. Output factors of 0.819 ± 0.004 and 0.8941 ± 0.0013 were calculated for the 4 mm and 8 mm collimator, respectively, which agree, within uncertainties, with corresponding EBT2 measurements and published experimental data. Volume averaging was found to affect OF results by more than 0.3% for scoring volume radii greater than 0.5 mm and 1.4 mm for the 4 mm and 8 mm collimators, respectively. Directional biasing of photon emission resulted in a time efficiency gain factor of up to 210 with respect to the isotropic photon emission. Although no considerable effect on relative dose profiles was detected, directional biasing led to OF overestimations which were more pronounced for the 4 mm collimator and increased with decreasing emission cone half-angle, reaching up to 6% for a 5° angle. Implementation of simplified source models revealed that omitting the sources’ stainless steel capsule significantly affects both OF results and relative dose profiles, while the aluminum-based bushing did not exhibit considerable dosimetric effect. In conclusion, the results of this work suggest that any PFX simulation model should be benchmarked in terms of both RDP and OF results.
NASA Astrophysics Data System (ADS)
Paiva Fonseca, Gabriel; Landry, Guillaume; White, Shane; D'Amours, Michel; Yoriyaz, Hélio; Beaulieu, Luc; Reniers, Brigitte; Verhaegen, Frank
2014-10-01
Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator.
NASA Astrophysics Data System (ADS)
Magro, G.; Molinelli, S.; Mairani, A.; Mirandola, A.; Panizza, D.; Russo, S.; Ferrari, A.; Valvo, F.; Fossati, P.; Ciocca, M.
2015-09-01
This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus® chamber. An EBT3® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.
Magro, G; Molinelli, S; Mairani, A; Mirandola, A; Panizza, D; Russo, S; Ferrari, A; Valvo, F; Fossati, P; Ciocca, M
2015-09-07
This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo(®) TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus(®) chamber. An EBT3(®) film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.
NASA Astrophysics Data System (ADS)
Aziz Hashikin, Nurul Ab; Yeong, Chai-Hong; Guatelli, Susanna; Jeet Abdullah, Basri Johan; Ng, Kwan-Hoong; Malaroda, Alessandra; Rosenfeld, Anatoly; Perkins, Alan Christopher
2017-09-01
We aimed to investigate the validity of the partition model (PM) in estimating the absorbed doses to liver tumour ({{D}T} ), normal liver tissue ({{D}NL} ) and lungs ({{D}L} ), when cross-fire irradiations between these compartments are being considered. MIRD-5 phantom incorporated with various treatment parameters, i.e. tumour involvement (TI), tumour-to-normal liver uptake ratio (T/N) and lung shunting (LS), were simulated using the Geant4 Monte Carlo (MC) toolkit. 108 track histories were generated for each combination of the three parameters to obtain the absorbed dose per activity uptake in each compartment (DT{{AT}} , DNL{{ANL}} , and DL{{AL}} ). The administered activities, A were estimated using PM, so as to achieve either limiting doses to normal liver, DNLlim or lungs, ~DLlim (70 or 30 Gy, respectively). Using these administered activities, the activity uptake in each compartment ({{A}T} , {{A}NL} , and {{A}L} ) was estimated and multiplied with the absorbed dose per activity uptake attained using the MC simulations, to obtain the actual dose received by each compartment. PM overestimated {{D}L} by 11.7% in all cases, due to the escaped particles from the lungs. {{D}T} and {{D}NL} by MC were largely affected by T/N, which were not considered by PM due to cross-fire exclusion at the tumour-normal liver boundary. These have resulted in the overestimation of {{D}T} by up to 8% and underestimation of {{D}NL} by as high as -78%, by PM. When DNLlim was estimated via PM, the MC simulations showed significantly higher {{D}NL} for cases with higher T/N, and LS ⩽ 10%. All {{D}L} and {{D}T} by MC were overestimated by PM, thus DLlim were never exceeded. PM leads to inaccurate dose estimations due to the exclusion of cross-fire irradiation, i.e. between the tumour and normal liver tissue. Caution should be taken for cases with higher TI and T/N, and lower LS, as they contribute to major underestimation of {{D}NL} . For {{D}L} , a different correction factor for dose calculation may be used for improved accuracy.
Landry, Guillaume; Reniers, Brigitte; Pignol, Jean-Philippe; Beaulieu, Luc; Verhaegen, Frank
2011-03-01
The goal of this work is to compare D(m,m) (radiation transported in medium; dose scored in medium) and D(w,m) (radiation transported in medium; dose scored in water) obtained from Monte Carlo (MC) simulations for a subset of human tissues of interest in low energy photon brachytherapy. Using low dose rate seeds and an electronic brachytherapy source (EBS), the authors quantify the large cavity theory conversion factors required. The authors also assess whether ap plying large cavity theory utilizing the sources' initial photon spectra and average photon energy induces errors related to spatial spectral variations. First, ideal spherical geometries were investigated, followed by clinical brachytherapy LDR seed implants for breast and prostate cancer patients. Two types of dose calculations are performed with the GEANT4 MC code. (1) For several human tissues, dose profiles are obtained in spherical geometries centered on four types of low energy brachytherapy sources: 125I, 103Pd, and 131Cs seeds, as well as an EBS operating at 50 kV. Ratios of D(w,m) over D(m,m) are evaluated in the 0-6 cm range. In addition to mean tissue composition, compositions corresponding to one standard deviation from the mean are also studied. (2) Four clinical breast (using 103Pd) and prostate (using 125I) brachytherapy seed implants are considered. MC dose calculations are performed based on postimplant CT scans using prostate and breast tissue compositions. PTV D90 values are compared for D(w,m) and D(m,m). (1) Differences (D(w,m)/D(m,m)-1) of -3% to 70% are observed for the investigated tissues. For a given tissue, D(w,m)/D(m,m) is similar for all sources within 4% and does not vary more than 2% with distance due to very moderate spectral shifts. Variations of tissue composition about the assumed mean composition influence the conversion factors up to 38%. (2) The ratio of D90(w,m) over D90(m,m) for clinical implants matches D(w,m)/D(m,m) at 1 cm from the single point sources, Given the small variation with distance, using conversion factors based on the emitted photon spectrum (or its mean energy) of a given source introduces minimal error. The large differences observed between scoring schemes underline the need for guidelines on choice of media for dose reporting. Providing such guidelines is beyond the scope of this work.
Disposition and pharmacokinetics in rats of McN-5707, a potential antidepressant drug
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, K.T.; Holland, M.L.; Hills, J.F.
1986-03-01
A single 80 mg/kg oral solution dose of McN-5707-/sup 14/C x HBr (trans-6-(2-chlorophenyl)-1,2,3,5,6,10b-hexahydropyrrolo(2,1-a)isoquinoline hydrobromide (1:1)) was administered orally to 40 Wistar rats. Total /sup 14/C concentrations in plasma were high (> 4.5 ..mu..g x equiv/mL) for at least 24 hours after dosing. Unchanged McN-5707 represented < 10% of the total /sup 14/C concs in plasma at 45 min and < 1% at 24 hours after dosing. In the 8 days following dose administration, 23% of the dose was excreted in urine and 70% of the dose was excreted in feces. Analysis (HPLC and TLC) of glusulase treated urine, plasma andmore » fecal samples revealed the presence of multiple metabolites of McN-5707. Unchanged McN-5707 was found only in fecal extracts (2-7% of dose). Single solution doses of McN-5707 x HBr were administered p.o. (20 mg/kg) and i.v. (4 mg/kg) to 39 Wistar rats. Plasma samples were analyzed for McN-5707 using a capillary GC assay. These studies indicated that McN-5707 was well absorbed and extensively metabolized in rats following oral doses.« less
NASA Astrophysics Data System (ADS)
Paiva Fonseca, Gabriel; Carlsson Tedgren, Åsa; Reniers, Brigitte; Nilsson, Josef; Persson, Maria; Yoriyaz, Hélio; Verhaegen, Frank
2015-06-01
Dose calculation in high dose rate brachytherapy with 192Ir is usually based on the TG-43U1 protocol where all media are considered to be water. Several dose calculation algorithms have been developed that are capable of handling heterogeneities with two possibilities to report dose: dose-to-medium-in-medium (Dm,m) and dose-to-water-in-medium (Dw,m). The relation between Dm,m and Dw,m for 192Ir is the main goal of this study, in particular the dependence of Dw,m on the dose calculation approach using either large cavity theory (LCT) or small cavity theory (SCT). A head and neck case was selected due to the presence of media with a large range of atomic numbers relevant to tissues and mass densities such as air, soft tissues and bone interfaces. This case was simulated using a Monte Carlo (MC) code to score: Dm,m, Dw,m (LCT), mean photon energy and photon fluence. Dw,m (SCT) was derived from MC simulations using the ratio between the unrestricted collisional stopping power of the actual medium and water. Differences between Dm,m and Dw,m (SCT or LCT) can be negligible (<1%) for some tissues e.g. muscle and significant for other tissues with differences of up to 14% for bone. Using SCT or LCT approaches leads to differences between Dw,m (SCT) and Dw,m (LCT) up to 29% for bone and 36% for teeth. The mean photon energy distribution ranges from 222 keV up to 356 keV. However, results obtained using mean photon energies are not equivalent to the ones obtained using the full, local photon spectrum. This work concludes that it is essential that brachytherapy studies clearly report the dose quantity. It further shows that while differences between Dm,m and Dw,m (SCT) mainly depend on tissue type, differences between Dm,m and Dw,m (LCT) are, in addition, significantly dependent on the local photon energy fluence spectrum which varies with distance to implanted sources.
Hirayama, Shusuke; Takayanagi, Taisuke; Fujii, Yusuke; Fujimoto, Rintaro; Fujitaka, Shinichiro; Umezawa, Masumi; Nagamine, Yoshihiko; Hosaka, Masahiro; Yasui, Keisuke; Omachi, Chihiro; Toshito, Toshiyuki
2016-03-01
The main purpose in this study was to present the results of beam modeling and how the authors systematically investigated the influence of double and triple Gaussian proton kernel models on the accuracy of dose calculations for spot scanning technique. The accuracy of calculations was important for treatment planning software (TPS) because the energy, spot position, and absolute dose had to be determined by TPS for the spot scanning technique. The dose distribution was calculated by convolving in-air fluence with the dose kernel. The dose kernel was the in-water 3D dose distribution of an infinitesimal pencil beam and consisted of an integral depth dose (IDD) and a lateral distribution. Accurate modeling of the low-dose region was important for spot scanning technique because the dose distribution was formed by cumulating hundreds or thousands of delivered beams. The authors employed a double Gaussian function as the in-air fluence model of an individual beam. Double and triple Gaussian kernel models were also prepared for comparison. The parameters of the kernel lateral model were derived by fitting a simulated in-water lateral dose profile induced by an infinitesimal proton beam, whose emittance was zero, at various depths using Monte Carlo (MC) simulation. The fitted parameters were interpolated as a function of depth in water and stored as a separate look-up table. These stored parameters for each energy and depth in water were acquired from the look-up table when incorporating them into the TPS. The modeling process for the in-air fluence and IDD was based on the method proposed in the literature. These were derived using MC simulation and measured data. The authors compared the measured and calculated absolute doses at the center of the spread-out Bragg peak (SOBP) under various volumetric irradiation conditions to systematically investigate the influence of the two types of kernel models on the dose calculations. The authors investigated the difference between double and triple Gaussian kernel models. The authors found that the difference between the two studied kernel models appeared at mid-depths and the accuracy of predicting the double Gaussian model deteriorated at the low-dose bump that appeared at mid-depths. When the authors employed the double Gaussian kernel model, the accuracy of calculations for the absolute dose at the center of the SOBP varied with irradiation conditions and the maximum difference was 3.4%. In contrast, the results obtained from calculations with the triple Gaussian kernel model indicated good agreement with the measurements within ±1.1%, regardless of the irradiation conditions. The difference between the results obtained with the two types of studied kernel models was distinct in the high energy region. The accuracy of calculations with the double Gaussian kernel model varied with the field size and SOBP width because the accuracy of prediction with the double Gaussian model was insufficient at the low-dose bump. The evaluation was only qualitative under limited volumetric irradiation conditions. Further accumulation of measured data would be needed to quantitatively comprehend what influence the double and triple Gaussian kernel models had on the accuracy of dose calculations.
Monte Carlo simulation of inverse geometry x-ray fluoroscopy using a modified MC-GPU framework
Dunkerley, David A. P.; Tomkowiak, Michael T.; Slagowski, Jordan M.; McCabe, Bradley P.; Funk, Tobias; Speidel, Michael A.
2015-01-01
Scanning-Beam Digital X-ray (SBDX) is a technology for low-dose fluoroscopy that employs inverse geometry x-ray beam scanning. To assist with rapid modeling of inverse geometry x-ray systems, we have developed a Monte Carlo (MC) simulation tool based on the MC-GPU framework. MC-GPU version 1.3 was modified to implement a 2D array of focal spot positions on a plane, with individually adjustable x-ray outputs, each producing a narrow x-ray beam directed toward a stationary photon-counting detector array. Geometric accuracy and blurring behavior in tomosynthesis reconstructions were evaluated from simulated images of a 3D arrangement of spheres. The artifact spread function from simulation agreed with experiment to within 1.6% (rRMSD). Detected x-ray scatter fraction was simulated for two SBDX detector geometries and compared to experiments. For the current SBDX prototype (10.6 cm wide by 5.3 cm tall detector), x-ray scatter fraction measured 2.8–6.4% (18.6–31.5 cm acrylic, 100 kV), versus 2.1–4.5% in MC simulation. Experimental trends in scatter versus detector size and phantom thickness were observed in simulation. For dose evaluation, an anthropomorphic phantom was imaged using regular and regional adaptive exposure (RAE) scanning. The reduction in kerma-area-product resulting from RAE scanning was 45% in radiochromic film measurements, versus 46% in simulation. The integral kerma calculated from TLD measurement points within the phantom was 57% lower when using RAE, versus 61% lower in simulation. This MC tool may be used to estimate tomographic blur, detected scatter, and dose distributions when developing inverse geometry x-ray systems. PMID:26113765
Monte Carlo simulation of inverse geometry x-ray fluoroscopy using a modified MC-GPU framework.
Dunkerley, David A P; Tomkowiak, Michael T; Slagowski, Jordan M; McCabe, Bradley P; Funk, Tobias; Speidel, Michael A
2015-02-21
Scanning-Beam Digital X-ray (SBDX) is a technology for low-dose fluoroscopy that employs inverse geometry x-ray beam scanning. To assist with rapid modeling of inverse geometry x-ray systems, we have developed a Monte Carlo (MC) simulation tool based on the MC-GPU framework. MC-GPU version 1.3 was modified to implement a 2D array of focal spot positions on a plane, with individually adjustable x-ray outputs, each producing a narrow x-ray beam directed toward a stationary photon-counting detector array. Geometric accuracy and blurring behavior in tomosynthesis reconstructions were evaluated from simulated images of a 3D arrangement of spheres. The artifact spread function from simulation agreed with experiment to within 1.6% (rRMSD). Detected x-ray scatter fraction was simulated for two SBDX detector geometries and compared to experiments. For the current SBDX prototype (10.6 cm wide by 5.3 cm tall detector), x-ray scatter fraction measured 2.8-6.4% (18.6-31.5 cm acrylic, 100 kV), versus 2.1-4.5% in MC simulation. Experimental trends in scatter versus detector size and phantom thickness were observed in simulation. For dose evaluation, an anthropomorphic phantom was imaged using regular and regional adaptive exposure (RAE) scanning. The reduction in kerma-area-product resulting from RAE scanning was 45% in radiochromic film measurements, versus 46% in simulation. The integral kerma calculated from TLD measurement points within the phantom was 57% lower when using RAE, versus 61% lower in simulation. This MC tool may be used to estimate tomographic blur, detected scatter, and dose distributions when developing inverse geometry x-ray systems.
NASA Astrophysics Data System (ADS)
Staton, Robert J.
Of the various types of imaging modalities used in pediatric radiology, fluoroscopy and computed tomography (CT) have the highest associated radiation dose. While these examinations are commonly used for pediatric patients, little data exists on the magnitude of the organ and effective dose values for these procedures. Calculation of these dose values is necessary because of children's increased sensitivity to radiation and their long life expectancy for which to express radiation's latent effects. In this study, a newborn tomographic phantom has been implemented in a radiation transport code to evaluate organ and effective doses for newborn patients in commonly performed fluoroscopy and CT examinations. Organ doses were evaluated for voiding cystourethrogram (VCUG) fluoroscopy studies of infant patients. Time-sequence analysis was performed for videotaped VCUG studies of five different patients. Organ dose values were then estimated for each patient through Monte Carlo (MC) simulations. The effective dose values of the VCUG examination for five patients ranged from 0.6 mSv to 3.2 mSv, with a mean of 1.8 +/- 0.9 mSv. Organ doses were also assessed for infant upper gastrointestinal (UGI) fluoroscopy exams. The effective dose values of the UGI examinations for five patients ranged from 1.05 mSv to 5.92 mSv, with a mean of 2.90 +/- 1.97 mSv. MC simulations of helical multislice CT (MSCT) exams were also completed using, the newborn tomographic phantom and a stylized newborn phantom. The helical path of the source, beam shaping filter, beam profile, patient table, were all included in the MC simulations of the helical MSCT scanner. Organ doses and effective doses and their dependence on scan parameters were evaluated for newborn patients. For all CT scans, the effective dose was found to range approximately 1-13 mSv, with the largest values occurring for CAP scans. Tube current modulation strategies to reduce patient dose were also evaluated for newborn patients. Overall, utilization of the newborn tomographic phantom in MC simulations has shown the need for and usefulness of pediatric tomographic phantoms. The newborn tomographic model has shown more versatility and realistic anatomical modeling when compared to the existing stylized newborn phantom. This work has provided important organ dose data for infant patients in common examinations in pediatric radiology.
Sadeghi, Mohammad Hosein; Sina, Sedigheh; Mehdizadeh, Amir; Faghihi, Reza; Moharramzadeh, Vahed; Meigooni, Ali Soleimani
2018-02-01
The dosimetry procedure by simple superposition accounts only for the self-shielding of the source and does not take into account the attenuation of photons by the applicators. The purpose of this investigation is an estimation of the effects of the tandem and ovoid applicator on dose distribution inside the phantom by MCNP5 Monte Carlo simulations. In this study, the superposition method is used for obtaining the dose distribution in the phantom without using the applicator for a typical gynecological brachytherapy (superposition-1). Then, the sources are simulated inside the tandem and ovoid applicator to identify the effect of applicator attenuation (superposition-2), and the dose at points A, B, bladder, and rectum were compared with the results of superposition. The exact dwell positions, times of the source, and positions of the dosimetry points were determined in images of a patient and treatment data of an adult woman patient from a cancer center. The MCNP5 Monte Carlo (MC) code was used for simulation of the phantoms, applicators, and the sources. The results of this study showed no significant differences between the results of superposition method and the MC simulations for different dosimetry points. The difference in all important dosimetry points was found to be less than 5%. According to the results, applicator attenuation has no significant effect on the calculated points dose, the superposition method, adding the dose of each source obtained by the MC simulation, can estimate the dose to points A, B, bladder, and rectum with good accuracy.
TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuemann, J; Grassberger, C; Paganetti, H
2014-06-15
Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50)more » were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend treatment plan verification using Monte Carlo simulations for patients with complex geometries.« less
Ethylene-vinyl acetate foam as a new lung substitute in radiotherapy.
Marqués, Enrique; Mancha, Pedro J
2018-04-01
The purpose of this study was to evaluate ethylene-vinyl acetate (EVA) foam as a new lung substitute in radiotherapy and to study its physical and dosimetric characteristics. We calculated the ideal vinyl acetate (VA) content of EVA foam sheets to mimic the physical and dosimetric characteristics of the ICRU lung tissue. We also computed the water-to-medium mass collision stopping power ratios, mass attenuation coefficients, CT numbers, effective atomic numbers and electron densities for: ICRU lung tissue, the RANDO commercial phantom, scaled WATER and EVA foam sheets with varying VA contents in a range between the minimum and maximum values supplied by the manufacturer. For all these substitutes, we simulated percent depth-dose curves with EGSnrc Monte Carlo (MC PDDs) in a water-lung substitute-water slab phantom expressed as dose-to-medium and dose-to-water for 3 × 3- and 10 × 10-cm 2 field sizes. PDD for the 10 × 10-cm 2 field size was also calculated with the MultiGrid Superposition algorithm (MGS PDD) for a relative electron density to water ratio of 0.26. The latter was compared with the MC PDDs in dose-to-water for scaled WATER and EVA foam sheets with the VA content that was most similar to the calculated ideal content that is physically achievable in practice. We calculated an ideal VA content of 55%; however, the maximum physically achievable content with current manufacturing techniques is 40%. The physical characteristics of the EVA foam sheets with a VA content of 40% (EVA40) are very close to those of the ICRU lung reference. The physical densities of the EVA40 foam sheets ranged from 0.030 to 0.965 g/cm 3 , almost covering the entire physical density range of the inflated/deflated lung (0.260-1.050 g/cm 3 ). Its mass attenuation coefficient at the effective energy of a 6-MV photon beam agrees within 0.8% of the ICRU reference value, and its CT number agrees within 6 HU. The effective atomic number for EVA40 varies by less than 0.42 of the ICRU value, and its effective electron density is within 0.9%. PDDs expressed in dose-to-medium and dose-to-water agree with the ICRU curve within 2% in all regions. PDDs calculated with both MC and MGS were within 1.5%. The EVA40 is an excellent cork-like lung substitute for radiotherapy applications. From a sole material used in footwear, it is possible to obtain a lung substitute that mimics the physical and dosimetric characteristics of ICRU lung tissue even better than the RANDO commercial phantom. © 2018 American Association of Physicists in Medicine.
Lee, Seungjun; Jiang, Xuewen; Manubolu, Manjunath; Riedl, Ken; Ludsin, Stuart A; Martin, Jay F; Lee, Jiyoung
2017-12-01
Microcystin (MC), a hepatotoxin that can adversely affect human health, has become more prevalent in freshwater ecosystems worldwide, owing to an increase in toxic cyanobacteria blooms. While consumption of water and fish are well-documented exposure pathways of MCs to humans, less is known about the potential transfer to humans through consumption of vegetables that have been irrigated with MC-contaminated water. Likewise, the impact of MC on the performance of food crops is understudied. To help fill these information gaps, we conducted a controlled laboratory experiment in which we exposed lettuce, carrots, and green beans to environmentally relevant concentrations of MC-LR (0, 1, 5, and 10μg/L) via two irrigation methods (drip and spray). We used ELISA and LC-MS/MS to quantify MC-LR concentrations and in different parts of the plant (edible vs. inedible fractions), measured plant performance (e.g., size, mass, edible leaves, color), and calculated human exposure risk based on accumulation patterns. MC-LR accumulation was positively dose-dependent, with it being greater in the plants (2.2-209.2μg/kg) than in soil (0-19.4μg/kg). MC-LR accumulation varied among vegetable types, between plant parts, and between irrigation methods. MC-LR accumulation led to reduced crop growth and quality, with MC-LR persisting in the soil after harvest. Observed toxin accumulation patterns in edible fractions of plants also led to estimates of daily MC-LR intake that exceeded both the chronic reference dose (0.003μg/kg of body weight) and total daily intake guidelines (0.04μg/kg of body weight). Because the use of MC-contaminated water is common in many parts of the world, our collective findings highlight the need for guidelines concerning the use of MC-contaminated water in irrigation, as well as consumption of these crops. Copyright © 2017 Elsevier Ltd. All rights reserved.
An accurate model for the computation of the dose of protons in water.
Embriaco, A; Bellinzona, V E; Fontana, A; Rotondi, A
2017-06-01
The accurate and fast calculation of the dose in proton radiation therapy is an essential ingredient for successful treatments. We propose a novel approach with a minimal number of parameters. The approach is based on the exact calculation of the electromagnetic part of the interaction, namely the Molière theory of the multiple Coulomb scattering for the transversal 1D projection and the Bethe-Bloch formula for the longitudinal stopping power profile, including a gaussian energy straggling. To this e.m. contribution the nuclear proton-nucleus interaction is added with a simple two-parameter model. Then, the non gaussian lateral profile is used to calculate the radial dose distribution with a method that assumes the cylindrical symmetry of the distribution. The results, obtained with a fast C++ based computational code called MONET (MOdel of ioN dosE for Therapy), are in very good agreement with the FLUKA MC code, within a few percent in the worst case. This study provides a new tool for fast dose calculation or verification, possibly for clinical use. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Fiorini, Francesca; Schreuder, Niek; Van den Heuvel, Frank
2018-02-01
Cyclotron-based pencil beam scanning (PBS) proton machines represent nowadays the majority and most affordable choice for proton therapy facilities, however, their representation in Monte Carlo (MC) codes is more complex than passively scattered proton system- or synchrotron-based PBS machines. This is because degraders are used to decrease the energy from the cyclotron maximum energy to the desired energy, resulting in a unique spot size, divergence, and energy spread depending on the amount of degradation. This manuscript outlines a generalized methodology to characterize a cyclotron-based PBS machine in a general-purpose MC code. The code can then be used to generate clinically relevant plans starting from commercial TPS plans. The described beam is produced at the Provision Proton Therapy Center (Knoxville, TN, USA) using a cyclotron-based IBA Proteus Plus equipment. We characterized the Provision beam in the MC FLUKA using the experimental commissioning data. The code was then validated using experimental data in water phantoms for single pencil beams and larger irregular fields. Comparisons with RayStation TPS plans are also presented. Comparisons of experimental, simulated, and planned dose depositions in water plans show that same doses are calculated by both programs inside the target areas, while penumbrae differences are found at the field edges. These differences are lower for the MC, with a γ(3%-3 mm) index never below 95%. Extensive explanations on how MC codes can be adapted to simulate cyclotron-based scanning proton machines are given with the aim of using the MC as a TPS verification tool to check and improve clinical plans. For all the tested cases, we showed that dose differences with experimental data are lower for the MC than TPS, implying that the created FLUKA beam model is better able to describe the experimental beam. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostou, T; Papadimitroulas, P; Kagadis, GC
2014-06-15
Purpose: Commonly used radiopharmaceuticals were tested to define the most important dosimetric factors in preclinical studies. Dosimetric calculations were applied in two different whole-body mouse models, with varying organ size, so as to determine their impact on absorbed doses and S-values. Organ mass influence was evaluated with computational models and Monte Carlo(MC) simulations. Methods: MC simulations were executed on GATE to determine dose distribution in the 4D digital MOBY mouse phantom. Two mouse models, 28 and 34 g respectively, were constructed based on realistic preclinical exams to calculate the absorbed doses and S-values of five commonly used radionuclides in SPECT/PETmore » studies (18F, 68Ga, 177Lu, 111In and 99mTc).Radionuclide biodistributions were obtained from literature. Realistic statistics (uncertainty lower than 4.5%) were acquired using the standard physical model in Geant4. Comparisons of the dosimetric calculations on the two different phantoms for each radiopharmaceutical are presented. Results: Dose per organ in mGy was calculated for all radiopharmaceuticals. The two models introduced a difference of 0.69% in their brain masses, while the largest differences were observed in the marrow 18.98% and in the thyroid 18.65% masses.Furthermore, S-values of the most important target-organs were calculated for each isotope. Source-organ was selected to be the whole mouse body.Differences on the S-factors were observed in the 6.0–30.0% range. Tables with all the calculations as reference dosimetric data were developed. Conclusion: Accurate dose per organ and the most appropriate S-values are derived for specific preclinical studies. The impact of the mouse model size is rather high (up to 30% for a 17.65% difference in the total mass), and thus accurate definition of the organ mass is a crucial parameter for self-absorbed S values calculation.Our goal is to extent the study for accurate estimations in small animal imaging, whereas it is known that there is a large variety in the anatomy of the organs.« less
NASA Astrophysics Data System (ADS)
Saini, Jatinder; Maes, Dominic; Egan, Alexander; Bowen, Stephen R.; St. James, Sara; Janson, Martin; Wong, Tony; Bloch, Charles
2017-10-01
RaySearch Americas Inc. (NY) has introduced a commercial Monte Carlo dose algorithm (RS-MC) for routine clinical use in proton spot scanning. In this report, we provide a validation of this algorithm against phantom measurements and simulations in the GATE software package. We also compared the performance of the RayStation analytical algorithm (RS-PBA) against the RS-MC algorithm. A beam model (G-MC) for a spot scanning gantry at our proton center was implemented in the GATE software package. The model was validated against measurements in a water phantom and was used for benchmarking the RS-MC. Validation of the RS-MC was performed in a water phantom by measuring depth doses and profiles for three spread-out Bragg peak (SOBP) beams with normal incidence, an SOBP with oblique incidence, and an SOBP with a range shifter and large air gap. The RS-MC was also validated against measurements and simulations in heterogeneous phantoms created by placing lung or bone slabs in a water phantom. Lateral dose profiles near the distal end of the beam were measured with a microDiamond detector and compared to the G-MC simulations, RS-MC and RS-PBA. Finally, the RS-MC and RS-PBA were validated against measured dose distributions in an Alderson-Rando (AR) phantom. Measurements were made using Gafchromic film in the AR phantom and compared to doses using the RS-PBA and RS-MC algorithms. For SOBP depth doses in a water phantom, all three algorithms matched the measurements to within ±3% at all points and a range within 1 mm. The RS-PBA algorithm showed up to a 10% difference in dose at the entrance for the beam with a range shifter and >30 cm air gap, while the RS-MC and G-MC were always within 3% of the measurement. For an oblique beam incident at 45°, the RS-PBA algorithm showed up to 6% local dose differences and broadening of distal fall-off by 5 mm. Both the RS-MC and G-MC accurately predicted the depth dose to within ±3% and distal fall-off to within 2 mm. In an anthropomorphic phantom, the gamma index (dose tolerance = 3%, distance-to-agreement = 3 mm) was greater than 90% for six out of seven planes using the RS-MC, and three out seven for the RS-PBA. The RS-MC algorithm demonstrated improved dosimetric accuracy over the RS-PBA in the presence of homogenous, heterogeneous and anthropomorphic phantoms. The computation performance of the RS-MC was similar to the RS-PBA algorithm. For complex disease sites like breast, head and neck, and lung cancer, the RS-MC algorithm will provide significantly more accurate treatment planning.
Saini, Jatinder; Maes, Dominic; Egan, Alexander; Bowen, Stephen R; St James, Sara; Janson, Martin; Wong, Tony; Bloch, Charles
2017-09-12
RaySearch Americas Inc. (NY) has introduced a commercial Monte Carlo dose algorithm (RS-MC) for routine clinical use in proton spot scanning. In this report, we provide a validation of this algorithm against phantom measurements and simulations in the GATE software package. We also compared the performance of the RayStation analytical algorithm (RS-PBA) against the RS-MC algorithm. A beam model (G-MC) for a spot scanning gantry at our proton center was implemented in the GATE software package. The model was validated against measurements in a water phantom and was used for benchmarking the RS-MC. Validation of the RS-MC was performed in a water phantom by measuring depth doses and profiles for three spread-out Bragg peak (SOBP) beams with normal incidence, an SOBP with oblique incidence, and an SOBP with a range shifter and large air gap. The RS-MC was also validated against measurements and simulations in heterogeneous phantoms created by placing lung or bone slabs in a water phantom. Lateral dose profiles near the distal end of the beam were measured with a microDiamond detector and compared to the G-MC simulations, RS-MC and RS-PBA. Finally, the RS-MC and RS-PBA were validated against measured dose distributions in an Alderson-Rando (AR) phantom. Measurements were made using Gafchromic film in the AR phantom and compared to doses using the RS-PBA and RS-MC algorithms. For SOBP depth doses in a water phantom, all three algorithms matched the measurements to within ±3% at all points and a range within 1 mm. The RS-PBA algorithm showed up to a 10% difference in dose at the entrance for the beam with a range shifter and >30 cm air gap, while the RS-MC and G-MC were always within 3% of the measurement. For an oblique beam incident at 45°, the RS-PBA algorithm showed up to 6% local dose differences and broadening of distal fall-off by 5 mm. Both the RS-MC and G-MC accurately predicted the depth dose to within ±3% and distal fall-off to within 2 mm. In an anthropomorphic phantom, the gamma index (dose tolerance = 3%, distance-to-agreement = 3 mm) was greater than 90% for six out of seven planes using the RS-MC, and three out seven for the RS-PBA. The RS-MC algorithm demonstrated improved dosimetric accuracy over the RS-PBA in the presence of homogenous, heterogeneous and anthropomorphic phantoms. The computation performance of the RS-MC was similar to the RS-PBA algorithm. For complex disease sites like breast, head and neck, and lung cancer, the RS-MC algorithm will provide significantly more accurate treatment planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Côté, Nicolas; Bedwani, Stéphane; Carrier, Jean-François, E-mail: jean-francois.carrier.chum@ssss.gouv.qc.ca
Purpose: An improvement in tissue assignment for low-dose rate brachytherapy (LDRB) patients using more accurate Monte Carlo (MC) dose calculation was accomplished with a metallic artifact reduction (MAR) method specific to dual-energy computed tomography (DECT). Methods: The proposed MAR algorithm followed a four-step procedure. The first step involved applying a weighted blend of both DECT scans (I {sub H/L}) to generate a new image (I {sub Mix}). This action minimized Hounsfield unit (HU) variations surrounding the brachytherapy seeds. In the second step, the mean HU of the prostate in I {sub Mix} was calculated and shifted toward the mean HUmore » of the two original DECT images (I {sub H/L}). The third step involved smoothing the newly shifted I {sub Mix} and the two original I {sub H/L}, followed by a subtraction of both, generating an image that represented the metallic artifact (I {sub A,(H/L)}) of reduced noise levels. The final step consisted of subtracting the original I {sub H/L} from the newly generated I {sub A,(H/L)} and obtaining a final image corrected for metallic artifacts. Following the completion of the algorithm, a DECT stoichiometric method was used to extract the relative electronic density (ρ{sub e}) and effective atomic number (Z {sub eff}) at each voxel of the corrected scans. Tissue assignment could then be determined with these two newly acquired physical parameters. Each voxel was assigned the tissue bearing the closest resemblance in terms of ρ{sub e} and Z {sub eff}, comparing with values from the ICRU 42 database. A MC study was then performed to compare the dosimetric impacts of alternative MAR algorithms. Results: An improvement in tissue assignment was observed with the DECT MAR algorithm, compared to the single-energy computed tomography (SECT) approach. In a phantom study, tissue misassignment was found to reach 0.05% of voxels using the DECT approach, compared with 0.40% using the SECT method. Comparison of the DECT and SECT D {sub 90} dose parameter (volume receiving 90% of the dose) indicated that D {sub 90} could be underestimated by up to 2.3% using the SECT method. Conclusions: The DECT MAR approach is a simple alternative to reduce metallic artifacts found in LDRB patient scans. Images can be processed quickly and do not require the determination of x-ray spectra. Substantial information on density and atomic number can also be obtained. Furthermore, calcifications within the prostate are detected by the tissue assignment algorithm. This enables more accurate, patient-specific MC dose calculations.« less
Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Bernard L., E-mail: bernard.jones@ucdenver.edu; Westerly, David; Miften, Moyed
2015-02-15
Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. The authors developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for themore » absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. The accuracies of the proposed methods were evaluated by comparing the known and calculated BB trajectories in phantom-simulated clinical scenarios using abdominal tumor volumes. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square trajectory errors averaged 3.8% ± 1.1% of the marker amplitude. Dosimetric calculations using Phase methods were more accurate, with mean absolute error less than 0.5%, and with error less than 1% in the highest-noise trajectory. MC-based trajectories prevent the overestimation of dose, but when viewed in an absolute sense, add a small amount of dosimetric error (<0.1%). Conclusions: Marker trajectory and target dose-of-the-day were accurately calculated using CBCT projections. This technique provides a method to evaluate highly mobile tumors using ordinary CBCT data, and could facilitate better strategies to mitigate or compensate for motion during stereotactic body radiotherapy.« less
Kim, Sangroh; Yoshizumi, Terry; Toncheva, Greta; Yoo, Sua; Yin, Fang-Fang; Frush, Donald
2010-05-01
To address the lack of accurate dose estimation method in cone beam computed tomography (CBCT), we performed point dose metal oxide semiconductor field-effect transistor (MOSFET) measurements and Monte Carlo (MC) simulations. A Varian On-Board Imager (OBI) was employed to measure point doses in the polymethyl methacrylate (PMMA) CT phantoms with MOSFETs for standard and low dose modes. A MC model of the OBI x-ray tube was developed using BEAMnrc/EGSnrc MC system and validated by the half value layer, x-ray spectrum and lateral and depth dose profiles. We compared the weighted computed tomography dose index (CTDIw) between MOSFET measurements and MC simulations. The CTDIw was found to be 8.39 cGy for the head scan and 4.58 cGy for the body scan from the MOSFET measurements in standard dose mode, and 1.89 cGy for the head and 1.11 cGy for the body in low dose mode, respectively. The CTDIw from MC compared well to the MOSFET measurements within 5% differences. In conclusion, a MC model for Varian CBCT has been established and this approach may be easily extended from the CBCT geometry to multi-detector CT geometry.
Sadeghi, Mohammad Hosein; Mehdizadeh, Amir; Faghihi, Reza; Moharramzadeh, Vahed; Meigooni, Ali Soleimani
2018-01-01
Purpose The dosimetry procedure by simple superposition accounts only for the self-shielding of the source and does not take into account the attenuation of photons by the applicators. The purpose of this investigation is an estimation of the effects of the tandem and ovoid applicator on dose distribution inside the phantom by MCNP5 Monte Carlo simulations. Material and methods In this study, the superposition method is used for obtaining the dose distribution in the phantom without using the applicator for a typical gynecological brachytherapy (superposition-1). Then, the sources are simulated inside the tandem and ovoid applicator to identify the effect of applicator attenuation (superposition-2), and the dose at points A, B, bladder, and rectum were compared with the results of superposition. The exact dwell positions, times of the source, and positions of the dosimetry points were determined in images of a patient and treatment data of an adult woman patient from a cancer center. The MCNP5 Monte Carlo (MC) code was used for simulation of the phantoms, applicators, and the sources. Results The results of this study showed no significant differences between the results of superposition method and the MC simulations for different dosimetry points. The difference in all important dosimetry points was found to be less than 5%. Conclusions According to the results, applicator attenuation has no significant effect on the calculated points dose, the superposition method, adding the dose of each source obtained by the MC simulation, can estimate the dose to points A, B, bladder, and rectum with good accuracy. PMID:29619061
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heilemann, G., E-mail: gerd.heilemann@meduniwien.ac.at; Kostiukhina, N.; Nesvacil, N.
2015-10-15
Purpose: The purpose of this study was to establish a method to perform multidimensional radiochromic film measurements of {sup 106}Ru plaques and to benchmark the resulting dose distributions against Monte Carlo simulations (MC), microdiamond, and diode measurements. Methods: Absolute dose rates and relative dose distributions in multiple planes were determined for three different plaque models (CCB, CCA, and COB), and three different plaques per model, using EBT3 films in an in-house developed polystyrene phantom and the MCNP6 MC code. Dose difference maps were generated to analyze interplaque variations for a specific type, and for comparing measurements against MC simulations. Furthermore,more » dose distributions were validated against values specified by the manufacturer (BEBIG) and microdiamond and diode measurements in a water scanning phantom. Radial profiles were assessed and used to estimate dosimetric margins for a given combination of representative tumor geometry and plaque size. Results: Absolute dose rates at a reference depth of 2 mm on the central axis of the plaque show an agreement better than 5% (10%) when comparing film measurements (MCNP6) to the manufacturer’s data. The reproducibility of depth-dose profile measurements was <7% (2 SD) for all investigated detectors and plaque types. Dose difference maps revealed minor interplaque deviations for a specific plaque type due to inhomogeneities of the active layer. The evaluation of dosimetric margins showed that for a majority of the investigated cases, the tumor was not completely covered by the 100% isodose prescribed to the tumor apex if the difference between geometrical plaque size and tumor base ≤4 mm. Conclusions: EBT3 film dosimetry in an in-house developed phantom was successfully used to characterize the dosimetric properties of different {sup 106}Ru plaque models. The film measurements were validated against MC calculations and other experimental methods and showed a good agreement with data from BEBIG well within published tolerances. The dosimetric information as well as interplaque comparison can be used for comprehensive quality assurance and for considerations in the treatment planning of ophthalmic brachytherapy.« less
Model Comparisons For Space Solar Cell End-Of-Life Calculations
NASA Astrophysics Data System (ADS)
Messenger, Scott; Jackson, Eric; Warner, Jeffrey; Walters, Robert; Evans, Hugh; Heynderickx, Daniel
2011-10-01
Space solar cell end-of-life (EOL) calculations are performed over a wide range of space radiation environments for GaAs-based single and multijunction solar cell technologies. Two general semi-empirical approaches will used to generate these EOL calculation results: 1) the JPL equivalent fluence (EQFLUX) and 2) the NRL displacement damage dose (SCREAM). This paper also includes the first results using the Monte Carlo-based version of SCREAM, called MC- SCREAM, which is now freely available online as part of the SPENVIS suite of programs.
Jin, Lihui; Eldib, Ahmed; Li, Jinsheng; Emam, Ismail; Fan, Jiajin; Wang, Lu; Ma, C-M
2014-01-06
The dosimetric advantage of modulated electron radiotherapy (MERT) has been explored by many investigators and is considered to be an advanced radiation therapy technique in the utilization of electrons. A computer-controlled electron multileaf collimator (MLC) prototype, newly designed to be added onto a Varian linac to deliver MERT, was investigated both experimentally and by Monte Carlo simulations. Four different electron energies, 6, 9, 12, and 15 MeV, were employed for this investigation. To ensure that this device was capable of delivering the electron beams properly, measurements were performed to examine the electron MLC (eMLC) leaf leakage and to determine the appropriate jaw positioning for an eMLC-shaped field in order to eliminate a secondary radiation peak that could otherwise appear outside of an intended radiation field in the case of inappropriate jaw positioning due to insufficient radiation blockage from the jaws. Phase space data were obtained by Monte Carlo (MC) simulation and recorded at the plane just above the jaws for each of the energies (6, 9, 12, and 15 MeV). As an input source, phase space data were used in MC dose calculations for various sizes of the eMLC shaped field (10 × 10 cm2, 3.4 × 3.4 cm2, and 2 × 2 cm2) with respect to a water phantom at source-to-surface distance (SSD) = 94 cm, while the jaws, eMLC leaves, and some accessories associated with the eMLC assembly as well were modeled as modifiers in the calculations. The calculated results were then compared with measurements from a water scanning system. The results showed that jaw settings with 5 mm margins beyond the field shaped by the eMLC were appropriate to eliminate the secondary radiation peak while not widening the beam penumbra; the eMLC leaf leakage measurements ranged from 0.3% to 1.8% for different energies based on in-phantom measurements, which should be quite acceptable for MERT. Comparisons between MC dose calculations and measurements showed agreement within 1%/1 mm based on percentage depth doses (PDDs) and off-axis dose profiles for a range of field sizes for each of the electron energies. Our current work has demonstrated that the eMLC and other relevant components in the linac were correctly modeled and simulated via our in-house MC codes, and the eMLC is capable of accurately delivering electron beams for various eMLC-shaped field sizes with appropriate jaw settings. In the next stage, patient-specific verification with a full MERT plan should be performed.
Eldib, Ahmed; Li, Jinsheng; Emam, Ismail; Fan, Jiajin; Wang, Lu; Ma, C‐M
2014-01-01
The dosimetric advantage of modulated electron radiotherapy (MERT) has been explored by many investigators and is considered to be an advanced radiation therapy technique in the utilization of electrons. A computer‐controlled electron multileaf collimator (MLC) prototype, newly designed to be added onto a Varian linac to deliver MERT, was investigated both experimentally and by Monte Carlo simulations. Four different electron energies, 6, 9, 12, and 15 MeV, were employed for this investigation. To ensure that this device was capable of delivering the electron beams properly, measurements were performed to examine the electron MLC (eMLC) leaf leakage and to determine the appropriate jaw positioning for an eMLC‐shaped field in order to eliminate a secondary radiation peak that could otherwise appear outside of an intended radiation field in the case of inappropriate jaw positioning due to insufficient radiation blockage from the jaws. Phase space data were obtained by Monte Carlo (MC) simulation and recorded at the plane just above the jaws for each of the energies (6, 9, 12, and 15 MeV). As an input source, phase space data were used in MC dose calculations for various sizes of the eMLC shaped field (10×10 cm2, 3.4×3.4 cm2, and 2×2 cm2) with respect to a water phantom at source‐to‐surface distance (SSD)=94cm, while the jaws, eMLC leaves, and some accessories associated with the eMLC assembly as well were modeled as modifiers in the calculations. The calculated results were then compared with measurements from a water scanning system. The results showed that jaw settings with 5 mm margins beyond the field shaped by the eMLC were appropriate to eliminate the secondary radiation peak while not widening the beam penumbra; the eMLC leaf leakage measurements ranged from 0.3% to 1.8% for different energies based on in‐phantom measurements, which should be quite acceptable for MERT. Comparisons between MC dose calculations and measurements showed agreement within 1%/1mm based on percentage depth doses (PDDs) and off‐axis dose profiles for a range of field sizes for each of the electron energies. Our current work has demonstrated that the eMLC and other relevant components in the linac were correctly modeled and simulated via our in‐house MC codes, and the eMLC is capable of accurately delivering electron beams for various eMLC‐shaped field sizes with appropriate jaw settings. In the next stage, patient‐specific verification with a full MERT plan should be performed. PACS number: 87.55.ne PMID:24423848
Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT
NASA Astrophysics Data System (ADS)
Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing
2017-04-01
The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Hali; Menon, Geetha; Sloboda, Ron
Purpose: To investigate the accuracy of model-based dose calculations using a collapsed-cone algorithm for COMS eye plaques loaded with I-125 seeds. Methods: The Nucletron SelectSeed 130.002 I-125 seed and the 12 mm COMS eye plaque were incorporated into a research version of the Oncentra® Brachy v4.5 treatment planning system which uses the Advanced Collapsed-cone Engine (ACE) algorithm. Comparisons of TG-43 and high-accuracy ACE doses were performed for a single seed in a 30×30×30 cm{sup 3} water box, as well as with one seed in the central slot of the 12 mm COMS eye plaque. The doses along the plaque centralmore » axis (CAX) were used to calculate the carrier correction factor, T(r), and were compared to tabulated and MCNP6 simulated doses for both the SelectSeed and IsoAid IAI-125A seeds. Results: The ACE calculated dose for the single seed in water was on average within 0.62 ± 2.2% of the TG-43 dose, with the largest differences occurring near the end-welds. The ratio of ACE to TG-43 calculated doses along the CAX (T(r)) of the 12 mm COMS plaque for the SelectSeed was on average within 3.0% of previously tabulated data, and within 2.9% of the MCNP6 simulated values. The IsoAid and SelectSeed T(r) values agreed within 0.3%. Conclusions: Initial comparisons show good agreement between ACE and MC doses for a single seed in a 12 mm COMS eye plaque; more complicated scenarios are being investigated to determine the accuracy of this calculation method.« less
Aslam; Prestwich, W V; McNeill, F E
2003-03-01
The operating conditions at McMaster KN Van de Graaf accelerator have been optimized to produce neutrons via the (7)Li(p, n)(7)Be reaction for in vivo neutron activation analysis. In a number of earlier studies (development of an accelerator based system for in vivo neutron activation analysis measurements of manganese in humans, Ph.D. Thesis, McMaster University, Hamilton, ON, Canada; Appl. Radiat. Isot. 53 (2000) 657; in vivo measurement of some trace elements in human Bone, Ph.D. Thesis. McMaster University, Hamilton, ON, Canada), a significant discrepancy between the experimental and the calculated neutron doses has been pointed out. The hypotheses formulated in the above references to explain the deviation of the experimental results from analytical calculations, have been tested experimentally. The performance of the lithium target for neutron production has been evaluated by measuring the (7)Be activity produced as a result of (p, n) interaction with (7)Li. In contradiction to the formulated hypotheses, lithium target performance was found to be mainly affected by inefficient target cooling and the presence of oxides layer on target surface. An appropriate choice of these parameters resulted in neutron yields same as predicated by analytical calculations.
Chi, Yujie; Tian, Zhen; Jia, Xun
2016-08-07
Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0.69-1.23 times for photon only transport.
Hueso-González, Fernando; Ballester, Facundo; Perez-Calatayud, Jose; Siebert, Frank-André; Vijande, Javier
RayStretch is a simple algorithm proposed for heterogeneity corrections in low-dose-rate brachytherapy. It is built on top of TG-43 consensus data, and it has been validated with Monte Carlo (MC) simulations. In this study, we take a real clinical prostate implant with 71 125 I seeds as reference and we apply RayStretch to analyze its performance in worst-case scenarios. To do so, we design two cases where large calcifications are located in the prostate lobules. RayStretch resilience under various calcification density values is also explored. Comparisons against MC calculations are performed. Dose-volume histogram-related parameters like prostate D 90 , rectum D 2cc , or urethra D 10 obtained with RayStretch agree within a few percent with the detailed MC results for all cases considered. The robustness and compatibility of RayStretch with commercial treatment planning systems indicate its applicability in clinical practice for dosimetric corrections in prostate calcifications. Its use during intraoperative ultrasound planning is foreseen. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Shiiba, Takuro; Kuga, Naoya; Kuroiwa, Yasuyoshi; Sato, Tatsuhiko
2017-10-01
We assessed the accuracy of mono-energetic electron and beta-emitting isotope dose-point kernels (DPKs) calculated using the particle and heavy ion transport code system (PHITS) for patient-specific dosimetry in targeted radionuclide treatment (TRT) and compared our data with published data. All mono-energetic and beta-emitting isotope DPKs calculated using PHITS, both in water and compact bone, were in good agreement with those in literature using other MC codes. PHITS provided reliable mono-energetic electron and beta-emitting isotope scaled DPKs for patient-specific dosimetry. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devpura, S; Li, H; Liu, C
Purpose: To correlate dose distributions computed using six algorithms for recurrent early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT), with outcome (local failure). Methods: Of 270 NSCLC patients treated with 12Gyx4, 20 were found to have local recurrence prior to the 2-year time point. These patients were originally planned with 1-D pencil beam (1-D PB) algorithm. 4D imaging was performed to manage tumor motion. Regions of local failures were determined from follow-up PET-CT scans. Follow-up CT images were rigidly fused to the planning CT (pCT), and recurrent tumor volumes (Vrecur) were mapped to themore » pCT. Dose was recomputed, retrospectively, using five algorithms: 3-D PB, collapsed cone convolution (CCC), anisotropic analytical algorithm (AAA), AcurosXB, and Monte Carlo (MC). Tumor control probability (TCP) was computed using the Marsden model (1,2). Patterns of failure were classified as central, in-field, marginal, and distant for Vrecur ≥95% of prescribed dose, 95–80%, 80–20%, and ≤20%, respectively (3). Results: Average PTV D95 (dose covering 95% of the PTV) for 3-D PB, CCC, AAA, AcurosXB, and MC relative to 1-D PB were 95.3±2.1%, 84.1±7.5%, 84.9±5.7%, 86.3±6.0%, and 85.1±7.0%, respectively. TCP values for 1-D PB, 3-D PB, CCC, AAA, AcurosXB, and MC were 98.5±1.2%, 95.7±3.0, 79.6±16.1%, 79.7±16.5%, 81.1±17.5%, and 78.1±20%, respectively. Patterns of local failures were similar for 1-D and 3D PB plans, which predicted that the majority of failures occur in centraldistal regions, with only ∼15% occurring distantly. However, with convolution/superposition and MC type algorithms, the majority of failures (65%) were predicted to be distant, consistent with the literature. Conclusion: Based on MC and convolution/superposition type algorithms, average PTV D95 and TCP were ∼15% lower than the planned 1-D PB dose calculation. Patterns of failure results suggest that MC and convolution/superposition type algorithms predict different outcomes for patterns of failure relative to PB algorithms. Work supported in part by Varian Medical Systems, Palo Alto, CA.« less
Dosimetric characterization of two radium sources for retrospective dosimetry studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candela-Juan, C., E-mail: ccanjuan@gmail.com; Karlsson, M.; Lundell, M.
2015-05-15
Purpose: During the first part of the 20th century, {sup 226}Ra was the most used radionuclide for brachytherapy. Retrospective accurate dosimetry, coupled with patient follow up, is important for advancing knowledge on long-term radiation effects. The purpose of this work was to dosimetrically characterize two {sup 226}Ra sources, commonly used in Sweden during the first half of the 20th century, for retrospective dose–effect studies. Methods: An 8 mg {sup 226}Ra tube and a 10 mg {sup 226}Ra needle, used at Radiumhemmet (Karolinska University Hospital, Stockholm, Sweden), from 1925 to the 1960s, were modeled in two independent Monte Carlo (MC) radiationmore » transport codes: GEANT4 and MCNP5. Absorbed dose and collision kerma around the two sources were obtained, from which the TG-43 parameters were derived for the secular equilibrium state. Furthermore, results from this dosimetric formalism were compared with results from a MC simulation with a superficial mould constituted by five needles inside a glass casing, placed over a water phantom, trying to mimic a typical clinical setup. Calculated absorbed doses using the TG-43 formalism were also compared with previously reported measurements and calculations based on the Sievert integral. Finally, the dose rate at large distances from a {sup 226}Ra point-like-source placed in the center of 1 m radius water sphere was calculated with GEANT4. Results: TG-43 parameters [including g{sub L}(r), F(r, θ), Λ, and s{sub K}] have been uploaded in spreadsheets as additional material, and the fitting parameters of a mathematical curve that provides the dose rate between 10 and 60 cm from the source have been provided. Results from TG-43 formalism are consistent within the treatment volume with those of a MC simulation of a typical clinical scenario. Comparisons with reported measurements made with thermoluminescent dosimeters show differences up to 13% along the transverse axis of the radium needle. It has been estimated that the uncertainty associated to the absorbed dose within the treatment volume is 10%–15%, whereas uncertainty of absorbed dose to distant organs is roughly 20%–25%. Conclusions: The results provided here facilitate retrospective dosimetry studies of {sup 226}Ra using modern treatment planning systems, which may be used to improve knowledge on long term radiation effects. It is surely important for the epidemiologic studies to be aware of the estimated uncertainty provided here before extracting their conclusions.« less
VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients.
Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F; Long, Daniel J; Bolch, Wesley E; Liu, Bob; Xu, X George
2015-07-21
This paper describes the development and testing of VirtualDose--a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the 'software as a service (SaaS)' delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose's functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT-two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldib, A; Al-Azhar University, Cairo; Jin, L
2014-06-15
Purpose: Electron arc therapy has long been proposed as the most suitable technique for the treatment of superficial tumors that follow circularly curved surfaces. However it was challenged by unsuitability of the conventional applicators and the lack of adequate 3-D dose calculation tools for arc electron beams in the treatment planning systems (TPS). Now with the availability of an electron specific multi-leaf collimator (eMLC) and an in-house Monte Carlo (MC) based TPS, we were motivated to investigate more advanced modulated electron arc (MeARC) therapy and its beneficial outcome. Methods: We initiated the study by a film measurement conducted in amore » head and neck phantom, where we delivered electron arcs in a step and shoot manner using the light field as a guide to avoid fields abutments. This step was done to insure enough clearance for the arcs with eMLC. MCBEAM and MCPLAN MC codes were used for the treatment head simulation and phantom dose calculation, respectively. Treatment plans were generated for targets drawn in real patient CTs and head and neck phantom. We utilized beams eye view available from a commercial planning system to create beamlets having same isocenter and adjoined at the scalp surface. Then dose-deposition coefficients from those beamlets were calculated for all electron energies using MCPLAN. An in-house optimization code was then used to find the optimum weights needed from individual beamlets. Results: MeARC showed a nicely tailored dose distribution around the circular curved target on the scalp. Some hot spots were noticed and could be attributed to fields abutment problem owing to the bulging nature of electron profiles. Brain dose was shown to be at lower levels compared to photon treatment. Conclusion: MeARC was shown to be a promising modality for treating scalp cases and could be beneficial to all superficial tumors with a circular curvature.« less
NASA Astrophysics Data System (ADS)
Devpura, S.; Siddiqui, M. S.; Chen, D.; Liu, D.; Li, H.; Kumar, S.; Gordon, J.; Ajlouni, M.; Movsas, B.; Chetty, I. J.
2014-03-01
The purpose of this study was to systematically evaluate dose distributions computed with 5 different dose algorithms for patients with lung cancers treated using stereotactic ablative body radiotherapy (SABR). Treatment plans for 133 lung cancer patients, initially computed with a 1D-pencil beam (equivalent-path-length, EPL-1D) algorithm, were recalculated with 4 other algorithms commissioned for treatment planning, including 3-D pencil-beam (EPL-3D), anisotropic analytical algorithm (AAA), collapsed cone convolution superposition (CCC), and Monte Carlo (MC). The plan prescription dose was 48 Gy in 4 fractions normalized to the 95% isodose line. Tumors were classified according to location: peripheral tumors surrounded by lung (lung-island, N=39), peripheral tumors attached to the rib-cage or chest wall (lung-wall, N=44), and centrally-located tumors (lung-central, N=50). Relative to the EPL-1D algorithm, PTV D95 and mean dose values computed with the other 4 algorithms were lowest for "lung-island" tumors with smallest field sizes (3-5 cm). On the other hand, the smallest differences were noted for lung-central tumors treated with largest field widths (7-10 cm). Amongst all locations, dose distribution differences were most strongly correlated with tumor size for lung-island tumors. For most cases, convolution/superposition and MC algorithms were in good agreement. Mean lung dose (MLD) values computed with the EPL-1D algorithm were highly correlated with that of the other algorithms (correlation coefficient =0.99). The MLD values were found to be ~10% lower for small lung-island tumors with the model-based (conv/superposition and MC) vs. the correction-based (pencil-beam) algorithms with the model-based algorithms predicting greater low dose spread within the lungs. This study suggests that pencil beam algorithms should be avoided for lung SABR planning. For the most challenging cases, small tumors surrounded entirely by lung tissue (lung-island type), a Monte-Carlo-based algorithm may be warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mashouf, S; Lai, P; Karotki, A
2014-06-01
Purpose: Seed brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose surrounding the brachytherapy seeds is based on American Association of Physicist in Medicine Task Group No. 43 (TG-43 formalism) which generates the dose in homogeneous water medium. Recently, AAPM Task Group No. 186 emphasized the importance of accounting for tissue heterogeneities. This can be done using Monte Carlo (MC) methods, but it requires knowing the source structure and tissue atomic composition accurately. In this work we describe an efficient analytical dose inhomogeneity correction algorithm implemented usingmore » MIM Symphony treatment planning platform to calculate dose distributions in heterogeneous media. Methods: An Inhomogeneity Correction Factor (ICF) is introduced as the ratio of absorbed dose in tissue to that in water medium. ICF is a function of tissue properties and independent of source structure. The ICF is extracted using CT images and the absorbed dose in tissue can then be calculated by multiplying the dose as calculated by the TG-43 formalism times ICF. To evaluate the methodology, we compared our results with Monte Carlo simulations as well as experiments in phantoms with known density and atomic compositions. Results: The dose distributions obtained through applying ICF to TG-43 protocol agreed very well with those of Monte Carlo simulations as well as experiments in all phantoms. In all cases, the mean relative error was reduced by at least 50% when ICF correction factor was applied to the TG-43 protocol. Conclusion: We have developed a new analytical dose calculation method which enables personalized dose calculations in heterogeneous media. The advantages over stochastic methods are computational efficiency and the ease of integration into clinical setting as detailed source structure and tissue segmentation are not needed. University of Toronto, Natural Sciences and Engineering Research Council of Canada.« less
MCNP-based computational model for the Leksell gamma knife.
Trnka, Jiri; Novotny, Josef; Kluson, Jaroslav
2007-01-01
We have focused on the usage of MCNP code for calculation of Gamma Knife radiation field parameters with a homogenous polystyrene phantom. We have investigated several parameters of the Leksell Gamma Knife radiation field and compared the results with other studies based on EGS4 and PENELOPE code as well as the Leksell Gamma Knife treatment planning system Leksell GammaPlan (LGP). The current model describes all 201 radiation beams together and simulates all the sources in the same time. Within each beam, it considers the technical construction of the source, the source holder, collimator system, the spherical phantom, and surrounding material. We have calculated output factors for various sizes of scoring volumes, relative dose distributions along basic planes including linear dose profiles, integral doses in various volumes, and differential dose volume histograms. All the parameters have been calculated for each collimator size and for the isocentric configuration of the phantom. We have found the calculated output factors to be in agreement with other authors' works except the case of 4 mm collimator size, where averaging over the scoring volume and statistical uncertainties strongly influences the calculated results. In general, all the results are dependent on the choice of the scoring volume. The calculated linear dose profiles and relative dose distributions also match independent studies and the Leksell GammaPlan, but care must be taken about the fluctuations within the plateau, which can influence the normalization, and accuracy in determining the isocenter position, which is important for comparing different dose profiles. The calculated differential dose volume histograms and integral doses have been compared with data provided by the Leksell GammaPlan. The dose volume histograms are in good agreement as well as integral doses calculated in small calculation matrix volumes. However, deviations in integral doses up to 50% can be observed for large volumes such as for the total skull volume. The differences observed in treatment of scattered radiation between the MC method and the LGP may be important in this case. We have also studied the influence of differential direction sampling of primary photons and have found that, due to the anisotropic sampling, doses around the isocenter deviate from each other by up to 6%. With caution about the details of the calculation settings, it is possible to employ the MCNP Monte Carlo code for independent verification of the Leksell Gamma Knife radiation field properties.
NASA Astrophysics Data System (ADS)
Watson, Peter G. F.; Popovic, Marija; Seuntjens, Jan
2018-01-01
Electronic brachytherapy sources are widely accepted as alternatives to radionuclide-based systems. Yet, formal dosimetry standards for these devices to independently complement the dose protocol provided by the manufacturer are lacking. This article presents a formalism for calculating and independently verifying the absorbed dose to water from a kV x-ray source (The INTRABEAM System) measured in a water phantom with an ionization chamber calibrated in terms of air-kerma. This formalism uses a Monte Carlo (MC) calculated chamber conversion factor, CQ , to convert air-kerma in a reference beam to absorbed dose to water in the measurement beam. In this work CQ was determined for a PTW 34013 parallel-plate ionization chamber. Our results show that CQ was sensitive to the chamber plate separation tolerance, with differences of up to 15%. CQ was also found to have a depth dependence which varied with chamber plate separation (0 to 10% variation for the smallest and largest cavity height, over 3 to 30 mm depth). However for all chamber dimensions investigated, CQ was found to be significantly larger than the manufacturer reported value, suggesting that the manufacturer recommended method of dose calculation could be underestimating the dose to water.
NASA Astrophysics Data System (ADS)
Raffi, Julie A.
Intracavitary accelerated partial breast irradiation (APBI) is a method of treating early stage breast cancer using a high dose rate (HDR) brachytherapy source positioned within the lumpectomy cavity. An expandable applicator stretches the surrounding tissue into a roughly spherical or elliptical shape and the dose is prescribed to 1 cm beyond the edge of the cavity. Currently, dosimetry for these treatments is most often performed using the American Association of Physicists in Medicine Task Group No. 43 (TG-43) formalism. The TG-43 dose-rate equation determines the dose delivered to a homogeneous water medium by scaling the measured source strength with standardized parameters that describe the radial and angular features of the dose distribution. Since TG-43 parameters for each source model are measured or calculated in a homogeneous water medium, the dosimetric effects of the patient's dimensions and composition are not accounted for. Therefore, the accuracy of TG-43 calculations for intracavitary APBI is limited by the presence of inhomogeneities in and around the target volume. Specifically, the breast is smaller than the phantoms used to determine TG-43 parameters and is surrounded by air, ribs, and lung tissue. Also, the composition of the breast tissue itself can affect the dose distribution. This dissertation is focused on investigating the limitations of TG-43 dosimetry for intracavitary APBI for two HDR brachytherapy sources: the VariSource TM VS2000 192Ir source and the AxxentRTM miniature x-ray source. The dose for various conditions was determined using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) calculations. Accurate measurements and calculations were achieved through the implementation of new measurement and simulation techniques and a novel breast phantom was developed to enable anthropomorphic phantom measurements. Measured and calculated doses for phantom and patient geometries were compared with TG-43 calculated doses to illustrate the limitations of TG-43 dosimetry for intracavitary APBI. TG-43 dose calculations overestimate the dose for regions approaching the lung and breast surface and underestimate the dose for regions in and beyond less-attenuating media such as lung tissue, and for lower energies, breast tissue as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T; Du, X; Su, L
2014-06-15
Purpose: To compare the CT doses derived from the experiments and GPU-based Monte Carlo (MC) simulations, using a human cadaver and ATOM phantom. Methods: The cadaver of an 88-year old male and the ATOM phantom were scanned by a GE LightSpeed Pro 16 MDCT. For the cadaver study, the Thimble chambers (Model 10×5−0.6CT and 10×6−0.6CT) were used to measure the absorbed dose in different deep and superficial organs. Whole-body scans were first performed to construct a complete image database for MC simulations. Abdomen/pelvis helical scans were then conducted using 120/100 kVps, 300 mAs and a pitch factor of 1.375:1. Formore » the ATOM phantom study, the OSL dosimeters were used and helical scans were performed using 120 kVp and x, y, z tube current modulation (TCM). For the MC simulations, sufficient particles were run in both cases such that the statistical errors of the results by ARCHER-CT were limited to 1%. Results: For the human cadaver scan, the doses to the stomach, liver, colon, left kidney, pancreas and urinary bladder were compared. The difference between experiments and simulations was within 19% for the 120 kVp and 25% for the 100 kVp. For the ATOM phantom scan, the doses to the lung, thyroid, esophagus, heart, stomach, liver, spleen, kidneys and thymus were compared. The difference was 39.2% for the esophagus, and within 16% for all other organs. Conclusion: In this study the experimental and simulated CT doses were compared. Their difference is primarily attributed to the systematic errors of the MC simulations, including the accuracy of the bowtie filter modeling, and the algorithm to generate voxelized phantom from DICOM images. The experimental error is considered small and may arise from the dosimeters. R01 grant (R01EB015478) from National Institute of Biomedical Imaging and Bioengineering.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, J; Micka, J; Culberson, W
Purpose: To determine the in-air azimuthal anisotropy and in-water dose distribution for the 1 cm length of the CivaString {sup 103}Pd brachytherapy source through measurements and Monte Carlo (MC) simulations. American Association of Physicists in Medicine Task Group No. 43 (TG-43) dosimetry parameters were also determined for this source. Methods: The in-air azimuthal anisotropy of the source was measured with a NaI scintillation detector and simulated with the MCNP5 radiation transport code. Measured and simulated results were normalized to their respective mean values and compared. The TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function for this sourcemore » were determined from LiF:Mg,Ti thermoluminescent dosimeter (TLD) measurements and MC simulations. The impact of {sup 103}Pd well-loading variability on the in-water dose distribution was investigated using MC simulations by comparing the dose distribution for a source model with four wells of equal strength to that for a source model with strengths increased by 1% for two of the four wells. Results: NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy showed that ≥95% of the normalized data were within 1.2% of the mean value. TLD measurements and MC simulations of the TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function agreed to within the experimental TLD uncertainties (k=2). MC simulations showed that a 1% variability in {sup 103}Pd well-loading resulted in changes of <0.1%, <0.1%, and <0.3% in the TG-43 dose-rate constant, radial dose distribution, and polar dose distribution, respectively. Conclusion: The CivaString source has a high degree of azimuthal symmetry as indicated by the NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy. TG-43 dosimetry parameters for this source were determined from TLD measurements and MC simulations. {sup 103}Pd well-loading variability results in minimal variations in the in-water dose distribution according to MC simulations. This work was partially supported by CivaTech Oncology, Inc. through an educational grant for Joshua Reed, John Micka, Wesley Culberson, and Larry DeWerd and through research support for Mark Rivard.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, K; Bostani, M; McNitt-Gray, M
2014-06-15
Purpose: To demonstrate the feasibility of using existing data stored within the DICOM header of certain CT localizer radiographs as a patient size metric for calculating CT size-specific dose estimates (SSDE). Methods: For most Siemens CT scanners, the CT localizer radiograph (topogram) contains a private DICOM field that stores an array of numbers describing AP and LAT attenuation-based measures of patient dimension. The square root of the product of the AP and LAT size data, which provides an estimate of water-equivalent-diameter (WED), was calculated retrospectively from topogram data of 20 patients who received clinically-indicated abdomen/pelvis (n=10) and chest (n=10) scansmore » (WED-topo). In addition, slice-by-slice water-equivalent-diameter (WED-image) and effective diameter (ED-image) values were calculated from the respective image data. Using TG-204 lookup tables, size-dependent conversion factors were determined based upon WED-topo, WED-image and ED-image values. These conversion factors were used with the reported CTDIvol to calculate slice-by-slice SSDE for each method. Averaging over all slices, a single SSDE value was determined for each patient and size metric. Patientspecific SSDE and CTDIvol values were then compared with patientspecific organ doses derived from detailed Monte Carlo simulations of fixed tube current scans. Results: For abdomen/pelvis scans, the average difference between liver dose and CTDIvol, SSDE(WED-topo), SSDE(WED-image), and SSDE(ED-image) was 18.70%, 8.17%, 6.84%, and 7.58%, respectively. For chest scans, the average difference between lung dose and CTDIvol, SSDE(WED-topo), SSDE(WED-image), and SSDE(ED-image) was 25.80%, 3.33%, 4.11%, and 7.66%, respectively. Conclusion: SSDE calculated using WED derived from data in the DICOM header of the topogram was comparable to SSDE calculated using WED and ED derived from axial images; each of these estimated organ dose to within 10% for both abdomen/pelvis and chest CT examinations. The topogrambased method has the advantage that WED data are already provided and therefore available without additional post-processing of the image data. Funding Support: NIH Grant R01-EB017095; Disclosures - Michael McNitt-Gray: Institutional Research Agreement, Siemens AG; Research Support, Siemens AG; Consultant, Flaherty Sensabaugh Bonasso PLLC; Consultant, Fulbright and Jaworski; Disclosures - Cynthia McCollough: Research Grant, Siemens Healthcare.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brivio, D; Zygmanski, P; Sajo, E
2015-06-15
Purpose: To evaluate the benefit of gold nanoparticles (AuNP) in radiosurgery of Age related Macular Degeneration (AMD) using Monte Carlo (MC) simulation. AMD disease causes vision loss due to a leaky vasculature of the endothelial cells. Radiosurgical therapy aims to destroy this vasculature while minimizing the delivered dose to healthy tissues of the eye. AuNP known to enhance local dose have been targeted to the macular choroidal endothelial cells to increase the therapeutic efficacy. Methods: Dose enhancement ratio (DER) in macula endothelial cells due to a thin layer of AuNP has been calculated by a MC radiation transport simulation. AuNPmore » layer (10–100nm) has been placed on the bottom of the macula at 2.4cm depth in a water parallelepiped 3×3×6cm3. This layer has been modeled considering various concentrations of AuNP ranging from 5.5–200mg per gram of endothelial cell (volume 10×10×2um3). The x-ray source is 100kVp 4mm diameter beam tilted 0°-30° with respect to the lens. Results: DER in endothelial cell for AuNP concentration of 31mg/g (shown experimentally feasible) and 10–100nm sizes is about 1.8. Tilting 4mm-beam does not reduce the enhancement but allows to avoid the surrounding tissues. Dose distribution in the AuNP vicinity has a significant increase within 30um, peaked at AuNP interface. DER inside and outside of the irradiation 4mm-field are the same while the actual delivered dose is more than one order of magnitude lower outside the field. Compared to 100kVp, usage of filtered spectra with enhanced flux in the region 20keV-40keV shows further increase of DER by about 20%. Dose to the neighboring organs such as retina/optic nerve are reduced accordingly. Conclusion: The results of this MC simulation provide further confirmation of the potential to enhance DER with AuNP from previous analytical calculations. This study provides impetus to improve treatment effectiveness of AMD disease with radiotherapy.« less
Stratis, Andreas; Zhang, Guozhi; Lopez-Rendon, Xochitl; Politis, Constantinus; Hermans, Robert; Jacobs, Reinhilde; Bogaerts, Ria; Shaheen, Eman; Bosmans, Hilde
2017-09-01
To calculate organ doses and estimate the effective dose for justification purposes in patients undergoing orthognathic treatment planning purposes and temporal bone imaging in dental cone beam CT (CBCT) and Multidetector CT (MDCT) scanners. The radiation dose to the ICRP reference male voxel phantom was calculated for dedicated orthognathic treatment planning acquisitions via Monte Carlo simulations in two dental CBCT scanners, Promax 3D Max (Planmeca, FI) and NewTom VGi evo (QR s.r.l, IT) and in Somatom Definition Flash (Siemens, DE) MDCT scanner. For temporal bone imaging, radiation doses were calculated via MC simulations for a CBCT protocol in NewTom 5G (QR s.r.l, IT) and with the use of a software tool (CT-expo) for Somatom Force (Siemens, DE). All procedures had been optimized at the acceptance tests of the devices. For orthognathic protocols, dental CBCT scanners deliver lower doses compared to MDCT scanners. The estimated effective dose (ED) was 0.32mSv for a normal resolution operation mode in Promax 3D Max, 0.27mSv in VGi-evo and 1.18mSv in the Somatom Definition Flash. For temporal bone protocols, the Somatom Force resulted in an estimated ED of 0.28mSv while for NewTom 5G the ED was 0.31 and 0.22mSv for monolateral and bilateral imaging respectively. Two clinical exams which are carried out with both a CBCT or a MDCT scanner were compared in terms of radiation dose. Dental CBCT scanners deliver lower doses for orthognathic patients whereas for temporal bone procedures the doses were similar. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fragoso, Margarida; Kawrakow, Iwan; Faddegon, Bruce A.
In this work, an investigation of efficiency enhancing methods and cross-section data in the BEAMnrc Monte Carlo (MC) code system is presented. Additionally, BEAMnrc was compared with VMC++, another special-purpose MC code system that has recently been enhanced for the simulation of the entire treatment head. BEAMnrc and VMC++ were used to simulate a 6 MV photon beam from a Siemens Primus linear accelerator (linac) and phase space (PHSP) files were generated at 100 cm source-to-surface distance for the 10x10 and 40x40 cm{sup 2} field sizes. The BEAMnrc parameters/techniques under investigation were grouped by (i) photon and bremsstrahlung cross sections,more » (ii) approximate efficiency improving techniques (AEITs), (iii) variance reduction techniques (VRTs), and (iv) a VRT (bremsstrahlung photon splitting) in combination with an AEIT (charged particle range rejection). The BEAMnrc PHSP file obtained without the efficiency enhancing techniques under study or, when not possible, with their default values (e.g., EXACT algorithm for the boundary crossing algorithm) and with the default cross-section data (PEGS4 and Bethe-Heitler) was used as the ''base line'' for accuracy verification of the PHSP files generated from the different groups described previously. Subsequently, a selection of the PHSP files was used as input for DOSXYZnrc-based water phantom dose calculations, which were verified against measurements. The performance of the different VRTs and AEITs available in BEAMnrc and of VMC++ was specified by the relative efficiency, i.e., by the efficiency of the MC simulation relative to that of the BEAMnrc base-line calculation. The highest relative efficiencies were {approx}935 ({approx}111 min on a single 2.6 GHz processor) and {approx}200 ({approx}45 min on a single processor) for the 10x10 field size with 50 million histories and 40x40 cm{sup 2} field size with 100 million histories, respectively, using the VRT directional bremsstrahlung splitting (DBS) with no electron splitting. When DBS was used with electron splitting and combined with augmented charged particle range rejection, a technique recently introduced in BEAMnrc, relative efficiencies were {approx}420 ({approx}253 min on a single processor) and {approx}175 ({approx}58 min on a single processor) for the 10x10 and 40x40 cm{sup 2} field sizes, respectively. Calculations of the Siemens Primus treatment head with VMC++ produced relative efficiencies of {approx}1400 ({approx}6 min on a single processor) and {approx}60 ({approx}4 min on a single processor) for the 10x10 and 40x40 cm{sup 2} field sizes, respectively. BEAMnrc PHSP calculations with DBS alone or DBS in combination with charged particle range rejection were more efficient than the other efficiency enhancing techniques used. Using VMC++, accurate simulations of the entire linac treatment head were performed within minutes on a single processor. Noteworthy differences ({+-}1%-3%) in the mean energy, planar fluence, and angular and spectral distributions were observed with the NIST bremsstrahlung cross sections compared with those of Bethe-Heitler (BEAMnrc default bremsstrahlung cross section). However, MC calculated dose distributions in water phantoms (using combinations of VRTs/AEITs and cross-section data) agreed within 2% of measurements. Furthermore, MC calculated dose distributions in a simulated water/air/water phantom, using NIST cross sections, were within 2% agreement with the BEAMnrc Bethe-Heitler default case.« less
D'Amours, Michel; Pouliot, Jean; Dagnault, Anne; Verhaegen, Frank; Beaulieu, Luc
2011-12-01
Brachytherapy planning software relies on the Task Group report 43 dosimetry formalism. This formalism, based on a water approximation, neglects various heterogeneous materials present during treatment. Various studies have suggested that these heterogeneities should be taken into account to improve the treatment quality. The present study sought to demonstrate the feasibility of incorporating Monte Carlo (MC) dosimetry within an inverse planning algorithm to improve the dose conformity and increase the treatment quality. The method was based on precalculated dose kernels in full patient geometries, representing the dose distribution of a brachytherapy source at a single dwell position using MC simulations and the Geant4 toolkit. These dose kernels are used by the inverse planning by simulated annealing tool to produce a fast MC-based plan. A test was performed for an interstitial brachytherapy breast treatment using two different high-dose-rate brachytherapy sources: the microSelectron iridium-192 source and the electronic brachytherapy source Axxent operating at 50 kVp. A research version of the inverse planning by simulated annealing algorithm was combined with MC to provide a method to fully account for the heterogeneities in dose optimization, using the MC method. The effect of the water approximation was found to depend on photon energy, with greater dose attenuation for the lower energies of the Axxent source compared with iridium-192. For the latter, an underdosage of 5.1% for the dose received by 90% of the clinical target volume was found. A new method to optimize afterloading brachytherapy plans that uses MC dosimetric information was developed. Including computed tomography-based information in MC dosimetry in the inverse planning process was shown to take into account the full range of scatter and heterogeneity conditions. This led to significant dose differences compared with the Task Group report 43 approach for the Axxent source. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Stratis, A.; Zhang, G.; Jacobs, R.; Bogaerts, R.; Bosmans, H.
2016-12-01
In order to carry out Monte Carlo (MC) dosimetry studies, voxel phantoms, modeling human anatomy, and organ-based segmentation of CT image data sets are applied to simulation frameworks. The resulting voxel phantoms preserve patient CT acquisition geometry; in the case of head voxel models built upon head CT images, the head support with which CT scanners are equipped introduces an inclination to the head, and hence to the head voxel model. In dental cone beam CT (CBCT) imaging, patients are always positioned in such a way that the Frankfort line is horizontal, implying that there is no head inclination. The orientation of the head is important, as it influences the distance of critical radiosensitive organs like the thyroid and the esophagus from the x-ray tube. This work aims to propose a procedure to adjust head voxel phantom orientation, and to investigate the impact of head inclination on organ doses in dental CBCT MC dosimetry studies. The female adult ICRP, and three in-house-built paediatric voxel phantoms were in this study. An EGSnrc MC framework was employed to simulate two commonly used protocols; a Morita Accuitomo 170 dental CBCT scanner (FOVs: 60 × 60 mm2 and 80 × 80 mm2, standard resolution), and a 3D Teeth protocol (FOV: 100 × 90 mm2) in a Planmeca Promax 3D MAX scanner. Result analysis revealed large absorbed organ dose differences in radiosensitive organs between the original and the geometrically corrected voxel models of this study, ranging from -45.6% to 39.3%. Therefore, accurate dental CBCT MC dose calculations require geometrical adjustments to be applied to head voxel models.
Neurological Change after Gamma Knife Radiosurgery for Brain Metastases Involving the Motor Cortex
Park, Chang-Yong; Choi, Hyun-Yong; Lee, Sang-Ryul; Roh, Tae Hoon; Seo, Mi-Ra
2016-01-01
Background Although Gamma Knife radiosurgery (GKRS) can provide beneficial therapeutic effects for patients with brain metastases, lesions involving the eloquent areas carry a higher risk of neurologic deterioration after treatment, compared to those located in the non-eloquent areas. We aimed to investigate neurological change of the patients with brain metastases involving the motor cortex (MC) and the relevant factors related to neurological deterioration after GKRS. Methods We retrospectively reviewed clinical, radiological and dosimetry data of 51 patients who underwent GKRS for 60 brain metastases involving the MC. Prior to GKRS, motor deficits existed in 26 patients (50.9%). The mean target volume was 3.2 cc (range 0.001–14.1) at the time of GKRS, and the mean prescription dose was 18.6 Gy (range 12–24 Gy). Results The actuarial median survival time from GKRS was 19.2±5.0 months. The calculated local tumor control rates at 6 and 12 months after GKRS were 89.7% and 77.4%, respectively. During the median clinical follow-up duration of 12.3±2.6 months (range 1–54 months), 18 patients (35.3%) experienced new or worsened neurologic deficits with a median onset time of 2.5±0.5 months (range 0.3–9.7 months) after GKRS. Among various factors, prescription dose (>20 Gy) was a significant factor for the new or worsened neurologic deficits in univariate (p=0.027) and multivariate (p=0.034) analysis. The managements of 18 patients were steroid medication (n=10), boost radiation therapy (n=5), and surgery (n=3), and neurological improvement was achieved in 9 (50.0%). Conclusion In our series, prescription dose (>20 Gy) was significantly related to neurological deterioration after GKRS for brain metastases involving the MC. Therefore, we suggest that careful dose adjustment would be required for lesions involving the MC to avoid neurological deterioration requiring additional treatment in the patients with limited life expectancy. PMID:27867921
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moignier, Alexandra, E-mail: alexandra.moignier@gmail.com; Broggio, David; Derreumaux, Sylvie
2014-05-01
Purpose: In left-side breast radiation therapy (RT), doses to the left main (LM) and left anterior descending (LAD) coronary arteries are usually assessed after delineation by prior anatomic knowledge on the treatment planning computed tomography (CT) scan. In this study, dose sensitivity due to interindividual coronary topology variation was assessed, and hot spots were located. Methods and Materials: Twenty-two detailed heart models, created from heart computed tomography angiographies, were fitted into a single representative female thorax. Two breast RT protocols were then simulated into a treatment planning system: the first protocol comprised tangential and tumoral bed beams (TGs{sub T}B) atmore » 50 + 16 Gy, the second protocol added internal mammary chain beams at 50 Gy to TGs{sub T}B (TGs{sub T}B{sub I}MC). For the heart, the LAD, and the LM, several dose indicators were calculated: dose-volume histograms, mean dose (D{sub mean}), minimal dose received by the most irradiated 2% of the volume (D{sub 2%}), and 3-dimensional (3D) dose maps. Variations of these indicators with anatomies were studied. Results: For the LM, the intermodel dispersion of D{sub mean} and D{sub 2%} was 10% and 11%, respectively, with TGs{sub T}B and 40% and 80%, respectively, with TGs{sub T}B{sub I}MC. For the LAD, these dispersions were 19% (D{sub mean}) and 49% (D{sub 2%}) with TGs{sub T}B and 35% (D{sub mean}) and 76% (D{sub 2%}) with TGs{sub T}B{sub I}MC. The 3D dose maps revealed that the internal mammary chain beams induced hot spots between 20 and 30 Gy on the LM and the proximal LAD for some coronary topologies. Without IMC beams, hot spots between 5 and 26 Gy are located on the middle and distal LAD. Conclusions: Coronary dose distributions with hot spot location and dose level can change significantly depending on coronary topology, as highlighted by 3D coronary dose maps. In clinical practice, coronary imaging may be required for a relevant coronary dose assessment, especially in cases of internal mammary chain irradiation.« less
VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients
NASA Astrophysics Data System (ADS)
Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F.; Long, Daniel J.; Bolch, Wesley E.; Liu, Bob; Xu, X. George
2015-07-01
This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamb, J; Lee, C; Tee, S
2014-06-15
Purpose: To investigate the accuracy of 4D dose accumulation using projection of dose calculated on the end-exhalation, mid-ventilation, or average intensity breathing phase CT scan, versus dose accumulation performed using full Monte Carlo dose recalculation on every breathing phase. Methods: Radiotherapy plans were analyzed for 10 patients with stage I-II lung cancer planned using 4D-CT. SBRT plans were optimized using the dose calculated by a commercially-available Monte Carlo algorithm on the end-exhalation 4D-CT phase. 4D dose accumulations using deformable registration were performed with a commercially available tool that projected the planned dose onto every breathing phase without recalculation, as wellmore » as with a Monte Carlo recalculation of the dose on all breathing phases. The 3D planned dose (3D-EX), the 3D dose calculated on the average intensity image (3D-AVE), and the 4D accumulations of the dose calculated on the end-exhalation phase CT (4D-PR-EX), the mid-ventilation phase CT (4D-PR-MID), and the average intensity image (4D-PR-AVE), respectively, were compared against the accumulation of the Monte Carlo dose recalculated on every phase. Plan evaluation metrics relating to target volumes and critical structures relevant for lung SBRT were analyzed. Results: Plan evaluation metrics tabulated using 4D-PR-EX, 4D-PR-MID, and 4D-PR-AVE differed from those tabulated using Monte Carlo recalculation on every phase by an average of 0.14±0.70 Gy, - 0.11±0.51 Gy, and 0.00±0.62 Gy, respectively. Deviations of between 8 and 13 Gy were observed between the 4D-MC calculations and both 3D methods for the proximal bronchial trees of 3 patients. Conclusions: 4D dose accumulation using projection without re-calculation may be sufficiently accurate compared to 4D dose accumulated from Monte Carlo recalculation on every phase, depending on institutional protocols. Use of 4D dose accumulation should be considered when evaluating normal tissue complication probabilities as well as in clinical situations where target volumes are directly inferior to mobile critical structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baptista, Mariana, E-mail: marianabaptista@ctn.ist.utl.pt; Di Maria, Salvatore; Barros, Sílvia
2015-07-15
Purpose: Due to its capability to more accurately detect deep lesions inside the breast by removing the effect of overlying anatomy, digital breast tomosynthesis (DBT) has the potential to replace the standard mammography technique in clinical screening exams. However, the European Guidelines for DBT dosimetry are still a work in progress and there are little data available on organ doses other than to the breast. It is, therefore, of great importance to assess the dosimetric performance of DBT with respect to the one obtained with standard digital mammography (DM) systems. The aim of this work is twofold: (i) to studymore » the dosimetric properties of a combined DBT/DM system (MAMMOMAT Inspiration Siemens{sup ®}) for a tungsten/rhodium (W/Rh) anode/filter combination and (ii) to evaluate organs doses during a DBT examination. Methods: For the first task, measurements were performed in manual and automatic exposure control (AEC) modes, using two homogeneous breast phantoms: a PMMA slab phantom and a 4 cm thick breast-shaped rigid phantom, with 50% of glandular tissue in its composition. Monte Carlo (MC) simulations were performed using Monte Carlo N-Particle eXtended v.2.7.0. A MC model was implemented to mimic DM and DBT acquisitions for a wide range of x-ray spectra (24 –34 kV). This was used to calculate mean glandular dose (MGD) and to compute series of backscatter factors (BSFs) that could be inserted into the DBT dosimetric formalism proposed by Dance et al. Regarding the second aim of the study, the implemented MC model of the clinical equipment, together with a female voxel phantom (“Laura”), was used to calculate organ doses considering a typical DBT acquisition. Results were compared with a standard two-view mammography craniocaudal (CC) acquisition. Results: Considering the AEC mode, the acquisition of a single CC view results in a MGD ranging from 0.53 ± 0.07 mGy to 2.41 ± 0.31 mGy in DM mode and from 0.77 ± 0.11 mGy to 2.28 ± 0.32 mGy in DBT mode. Regarding the BSF, the results achieved may lead to a MGD correction of about 6%, contributing to the improvement of the current guidelines used in these applications. Finally, considering the MC results obtained for the organ dose study, the radiation doses found for the tissues of the body other than the breast were in the range of tens of μSv, and are in part comparable to the ones obtained in standard DM. Nevertheless, in a single DBT examination, some organs (such as lung and thyroid) receive higher doses (of about 9% and 21%, respectively) with respect to the CC DM acquisition. Conclusions: Taking into account an average breast with a thickness of 4.5 cm, the MGDs for DM and DBT acquisitions were below the achievable value (2.0 mGy) defined by the European protocol. Additionally, in the case of a fusion imaging study (DM + DBT), the MGD for a 4.5 cm thick breast is of the order of 1.88 ± 0.36 mGy. Finally, organ dose evaluations underline the need to improve awareness concerning dose estimation of DBT exams for some organs, especially when radiation risk is assessed by using the effective dose.« less
Bueno, M; Carrasco, P; Jornet, N; Muñoz-Montplet, C; Duch, M A
2014-08-01
The aim of this study was to evaluate the suitability of several detectors for the determination of absorbed dose in bone. Three types of ultrathin LiF-based thermoluminescent dosimeters (TLDs)-two LiF:Mg,Cu,P-based (MCP-Ns and TLD-2000F) and a (7)Li-enriched LiF:Mg,Ti-based (MTS-7s)-as well as EBT2 Gafchromic films were used to measure percentage depth-dose distributions (PDDs) in a water-equivalent phantom with a bone-equivalent heterogeneity for 6 and 18 MV and a set of field sizes ranging from 5 x 5 cm2 to 20 x 20 cm2. MCP-Ns, TLD-2000F, MTS-7s, and EBT2 have active layers of 50, 20, 50, and 30 μm, respectively. Monte Carlo (MC) dose calculations (PENELOPE code) were used as the reference and helped to understand the experimental results and to evaluate the potential perturbation of the fluence in bone caused by the presence of the detectors. The energy dependence and linearity of the TLDs' response was evaluated. TLDs exhibited flat energy responses (within 2.5%) and linearity with dose (within 1.1%) within the range of interest for the selected beams. The results revealed that all considered detectors perturb the electron fluence with respect to the energy inside the bone-equivalent material. MCP-Ns and MTS-7s underestimated the absorbed dose in bone by 4%-5%. EBT2 exhibited comparable accuracy to MTS-7s and MCP-Ns. TLD-2000F was able to determine the dose within 2% accuracy. No dependence on the beam energy or field size was observed. The MC calculations showed that a[Formula: see text] thick detector can provide reliable dose estimations in bone regardless of whether it is made of LiF, water or EBT's active layer material. TLD-2000F was found to be suitable for providing reliable absorbed dose measurements in the presence of bone for high-energy x-ray beams.
Tessonnier, Thomas; Marcelos, Tiago; Mairani, Andrea; Brons, Stephan; Parodi, Katia
2015-01-01
In the field of radiation therapy, accurate and robust dose calculation is required. For this purpose, precise modeling of the irradiation system and reliable computational platforms are needed. At the Heidelberg Ion Therapy Center (HIT), the beamline has been already modeled in the FLUKA Monte Carlo (MC) code. However, this model was kept confidential for disclosure reasons and was not available for any external team. The main goal of this study was to create efficiently phase space (PS) files for proton and carbon ion beams, for all energies and foci available at HIT. PSs are representing the characteristics of each particle recorded (charge, mass, energy, coordinates, direction cosines, generation) at a certain position along the beam path. In order to achieve this goal, keeping a reasonable data size but maintaining the requested accuracy for the calculation, we developed a new approach of beam PS generation with the MC code FLUKA. The generated PSs were obtained using an infinitely narrow beam and recording the desired quantities after the last element of the beamline, with a discrimination of primaries or secondaries. In this way, a unique PS can be used for each energy to accommodate the different foci by combining the narrow-beam scenario with a random sampling of its theoretical Gaussian beam in vacuum. PS can also reproduce the different patterns from the delivery system, when properly combined with the beam scanning information. MC simulations using PS have been compared to simulations, including the full beamline geometry and have been found in very good agreement for several cases (depth dose distributions, lateral dose profiles), with relative dose differences below 0.5%. This approach has also been compared with measured data of ion beams with different energies and foci, resulting in a very satisfactory agreement. Hence, the proposed approach was able to fulfill the different requirements and has demonstrated its capability for application to clinical treatment fields. It also offers a powerful tool to perform investigations on the contribution of primary and secondary particles produced in the beamline. These PSs are already made available to external teams upon request, to support interpretation of their measurements.
NASA Astrophysics Data System (ADS)
Baptista, M.; Teles, P.; Cardoso, G.; Vaz, P.
2014-11-01
Over the last decade, there was a substantial increase in the number of interventional cardiology procedures worldwide, and the corresponding ionizing radiation doses for both the medical staff and patients became a subject of concern. Interventional procedures in cardiology are normally very complex, resulting in long exposure times. Also, these interventions require the operator to work near the patient and, consequently, close to the primary X-ray beam. Moreover, due to the scattered radiation from the patient and the equipment, the medical staff is also exposed to a non-uniform radiation field that can lead to a significant exposure of sensitive body organs and tissues, such as the eye lens, the thyroid and the extremities. In order to better understand the spatial variation of the dose and dose rate distributions during an interventional cardiology procedure, the dose distribution around a C-arm fluoroscopic system, in operation in a cardiac cath lab at Portuguese Hospital, was estimated using both Monte Carlo (MC) simulations and dosimetric measurements. To model and simulate the cardiac cath lab, including the fluoroscopic equipment used to execute interventional procedures, the state-of-the-art MC radiation transport code MCNPX 2.7.0 was used. Subsequently, Thermo-Luminescent Detector (TLD) measurements were performed, in order to validate and support the simulation results obtained for the cath lab model. The preliminary results presented in this study reveal that the cardiac cath lab model was successfully validated, taking into account the good agreement between MC calculations and TLD measurements. The simulated results for the isodose curves related to the C-arm fluoroscopic system are also consistent with the dosimetric information provided by the equipment manufacturer (Siemens). The adequacy of the implemented computational model used to simulate complex procedures and map dose distributions around the operator and the medical staff is discussed, in view of the optimization principle (and the associated ALARA objective), one of the pillars of the international system of radiological protection.
Analysis of Transcriptomic Dose Response Data in the ...
Slide presentation at the HESI-HEALTH Canada-McGill Workshop on Transcriptomic Dose Response Data in the Context of Chemical Risk Assessment Slide presentation at the HESI-HEALTH Canada-McGill Workshop on Transcriptomic Dose Response Data in the Context of Chemical Risk Assessment
MO-E-18C-02: Hands-On Monte Carlo Project Assignment as a Method to Teach Radiation Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pater, P; Vallieres, M; Seuntjens, J
2014-06-15
Purpose: To present a hands-on project on Monte Carlo methods (MC) recently added to the curriculum and to discuss the students' appreciation. Methods: Since 2012, a 1.5 hour lecture dedicated to MC fundamentals follows the detailed presentation of photon and electron interactions. Students also program all sampling steps (interaction length and type, scattering angle, energy deposit) of a MC photon transport code. A handout structured in a step-by-step fashion guides student in conducting consistency checks. For extra points, students can code a fully working MC simulation, that simulates a dose distribution for 50 keV photons. A kerma approximation to dosemore » deposition is assumed. A survey was conducted to which 10 out of the 14 attending students responded. It compared MC knowledge prior to and after the project, questioned the usefulness of radiation physics teaching through MC and surveyed possible project improvements. Results: According to the survey, 76% of students had no or a basic knowledge of MC methods before the class and 65% estimate to have a good to very good understanding of MC methods after attending the class. 80% of students feel that the MC project helped them significantly to understand simulations of dose distributions. On average, students dedicated 12.5 hours to the project and appreciated the balance between hand-holding and questions/implications. Conclusion: A lecture on MC methods with a hands-on MC programming project requiring about 14 hours was added to the graduate study curriculum since 2012. MC methods produce “gold standard” dose distributions and slowly enter routine clinical work and a fundamental understanding of MC methods should be a requirement for future students. Overall, the lecture and project helped students relate crosssections to dose depositions and presented numerical sampling methods behind the simulation of these dose distributions. Research funding from governments of Canada and Quebec. PP acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290)« less
NASA Astrophysics Data System (ADS)
Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.
2016-06-01
The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties.
SU-F-T-50: Evaluation of Monte Carlo Simulations Performance for Pediatric Brachytherapy Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatzipapas, C; Kagadis, G; Papadimitroulas, P
Purpose: Pediatric tumors are generally treated with multi-modal procedures. Brachytherapy can be used with pediatric tumors, especially given that in this patient population low toxicity on normal tissues is critical as is the suppression of the probability for late malignancies. Our goal is to validate the GATE toolkit on realistic brachytherapy applications, and evaluate brachytherapy plans on pediatrics for accurate dosimetry on sensitive and critical organs of interest. Methods: The GATE Monte Carlo (MC) toolkit was used. Two High Dose Rate (HDR) 192Ir brachytherapy sources were simulated (Nucletron mHDR-v1 and Varian VS2000), and fully validated using the AAPM and ESTROmore » protocols. A realistic brachytherapy plan was also simulated using the XCAT anthropomorphic computational model .The simulated data were compared to the clinical dose points. Finally, a 14 years old girl with vaginal rhabdomyosarcoma was modelled based on clinical procedures for the calculation of the absorbed dose per organ. Results: The MC simulations resulted in accurate dosimetry in terms of dose rate constant (Λ), radial dose gL(r) and anisotropy function F(r,θ) for both sources.The simulations were executed using ∼1010 number of primaries resulting in statistical uncertainties lower than 2%.The differences between the theoretical values and the simulated ones ranged from 0.01% up to 3.3%, with the largest discrepancy (6%) being observed in the dose rate constant calculation.The simulated DVH using an adult female XCAT model was also compared to a clinical one resulting in differences smaller than 5%. Finally, a realistic pediatric brachytherapy simulation was performed to evaluate the absorbed dose per organ and to calculate DVH with respect to heterogeneities of the human anatomy. Conclusion: GATE is a reliable tool for brachytherapy simulations both for source modeling and for dosimetry in anthropomorphic voxelized models. Our project aims to evaluate a variety of pediatric brachytherapy schemes using a population of pediatric phantoms for several pathological cases. This study is part of a project that has received funding from the European Union Horizon2020 research and innovation programme under the MarieSklodowska-Curiegrantagreement.No691203.The results published in this study reflect only the authors view and the Research Executive Agency (REA) and the European Commission is not responsible for any use that may be madeof the information it contains.« less
Multi-Case Knowledge-Based IMRT Treatment Planning in Head and Neck Cancer
NASA Astrophysics Data System (ADS)
Grzetic, Shelby Mariah
Head and neck cancer (HNC) IMRT treatment planning is a challenging process that relies heavily on the planner's experience. Previously, we used the single, best match from a library of manually planned cases to semi-automatically generate IMRT plans for a new patient. The current multi-case Knowledge Based Radiation Therapy (MC-KBRT) study utilized different matching cases for each of six individual organs-at-risk (OARs), then combined those six cases to create the new treatment plan. From a database of 103 patient plans created by experienced planners, MC-KBRT plans were created for 40 (17 unilateral and 23 bilateral) HNC "query" patients. For each case, 2D beam's-eye-view images were used to find similar geometric "match" patients separately for each of 6 OARs. Dose distributions for each OAR from the 6 matching cases were combined and then warped to suit the query case's geometry. The dose-volume constraints were used to create the new query treatment plan without the need for human decision-making throughout the IMRT optimization. The optimized MC-KBRT plans were compared against the clinically approved plans and Version 1 (previous KBRT using only one matching case with dose warping) using the dose metrics: mean, median, and maximum (brainstem and cord+5mm) doses. Compared to Version 1, MC-KBRT had no significant reduction of the dose to any of the OARs in either unilateral or bilateral cases. Compared to the manually planned unilateral cases, there was significant reduction of the oral cavity mean/median dose (>2Gy) at the expense of the contralateral parotid. Compared to the manually planned bilateral cases, reduction of dose was significant in the ipsilateral parotid, larynx, and oral cavity (>3Gy mean/median) while maintaining PTV coverage. MC-KBRT planning in head and neck cancer generates IMRT plans with better dose sparing than manually created plans. MC-KBRT using multiple case matches does not show significant dose reduction compared to using a single match case with dose warping.
WE-H-207A-07: Image-Based Versus Atlas-Based Internal Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallahpoor, M; Abbasi, M; Parach, A
Purpose: Monte Carlo (MC) simulation is known as the gold standard method for internal dosimetry. It requires radionuclide distribution from PET or SPECT and body structure from CT for accurate dose calculation. The manual or semi-automatic segmentation of organs from CT images is a major obstacle. The aim of this study is to compare the dosimetry results based on patient’s own CT and a digital humanoid phantom as an atlas with pre-specified organs. Methods: SPECT-CT images of a 50 year old woman who underwent bone pain palliation with Samarium-153 EDTMP for osseous metastases from breast cancer were used. The anatomicalmore » date and attenuation map were extracted from SPECT/CT and three XCAT digital phantoms with different BMIs (i.e. matched (38.8) and unmatched (35.5 and 36.7) with patient’s BMI that was 38.3). Segmentation of patient’s organs in CT image was performed using itk-SNAP software. GATE MC Simulator was used for dose calculation. Specific absorbed fractions (SAFs) and S-values were calculated for the segmented organs. Results: The differences between SAFs and S-values are high using different anatomical data and range from −13% to 39% for SAF values and −109% to 79% for S-values in different organs. In the spine, the clinically important target organ for Samarium Therapy, the differences in the S-values and SAF values are higher between XCAT phantom and CT when the phantom with identical BMI is employed (53.8% relative difference in S-value and 26.8% difference in SAF). However, the whole body dose values were the same between the calculations based on the CT and XCAT with different BMIs. Conclusion: The results indicated that atlas-based dosimetry using XCAT phantom even with matched BMI for patient leads to considerable errors as compared to image-based dosimetry that uses the patient’s own CT Patient-specific dosimetry using CT image is essential for accurate results.« less
Freesmeyer, Martin; Kühnel, Christian; Westphal, Julian G
2015-01-01
Benign thyroid diseases are widely common in western societies. However, the volumetry of the thyroid gland, especially when enlarged or abnormally formed, proves to be a challenge in clinical routine. The aim of this study was to develop a simple and rapid threshold-based isocontour extraction method for thyroid volumetry from (124)I-PET/CT data in patients scheduled for radioactive iodine therapy. PET/CT data from 45 patients were analysed 30 h after 1 MBq (124)I administration. Anatomical reference volume was calculated using manually contoured data from low-dose CT images of the neck (MC). In addition, we applied an automatic isocontour extraction method (IC0.2/1.0), with two different threshold values (0.2 and 1.0 kBq/ml), for volumetry of the PET data-set. IC0.2/1.0 shape data that showed significant variation from MC data were excluded. Subsequently, a mathematical correlation using a model of linear regression with multiple variables and step-wise elimination (mIC0.2/1.0), between IC0.2/1.0 and MC, was established. Data from 41 patients (IC0.2), and 32 patients (IC1.0) were analysed. The mathematically calculated volume, mIC, showed a median deviation from the reference (MC), of ±9 % (1-54 %) for mIC0.2 and of ±8.2 % (1-50 %) for mIC1.0 CONCLUSION: Contour extraction with both, mIC1.0 and mIC0.2 gave rapid and reliable results. However, mIC0.2 can be applied to significantly more patients (>90 %) and is, therefore, deemed to be more suitable for clinical routine, keeping in mind the potential advantages of using (124)I-PET/CT for the preparation of patients scheduled for radioactive iodine therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C; Nguyen, G; Chung, Y
Purpose: Ureteroscopy involves fluoroscopy which potentially results in considerable amount of radiation dose to the patient. Purpose of this study was two-fold: (a) to develop the effective dose computational model for obese and non-obese patients undergoing left and right ureteroscopy, and (b) to evaluate the utility of a commercial Monte Carlo software for dose assessment in ureteroscopy. Methods: Organ dose measurements were performed on an adult male anthropomorphic phantom, representing the non-obese patients, with 20 high-sensitivity MOSFET detectors and two 0.18cc ionization chambers placed in selected organs. Fat-equivalent paddings were placed around the abdominal region to simulate for obese patients.more » Effective dose (ED) was calculated using ICRP 103 tissue weighting factors and normalized to the effective dose rate in miliSivert per second (mSv/s). In addition, a commercial Monte Carlo (MC) dose estimation program was used to estimate ED for the non-obese model, with table attenuation correction applied to simulate clinical procedure. Results: For the equipment and protocols involved in this study, the MOSFETderived ED rates for the obese patient model (‘Left’: 0.0092±0.0004 mSv/s; ‘Right’: 0.0086±0.0004 mSv/s) was found to be more than twice as much as that to the non-obese patient model (‘Left’: 0.0041±0.0003 mSv/s; ‘Right’: 0.0036±0.0007 mSv/s). The MC-derived ED rates for the non-obese patient model (‘Left’: 0.0041 mSv/s; ‘Right’: 0.0036 mSv/s; with statistical uncertainty of 1%) showed a good agreement with the MOSFET method. Conclusion: The significant difference in ED rate between the obese and non-obese patient models shows the limitation of directly applying commercial softwares for obese patients and leading to considerable underestimation of ED. Although commercial softwares offer a convenient means of dose estimation, but the utility may be limited to standard-man geometry as the software does not account for table attenuation, obese patient geometry, and differences between the anthropomorphic phantom and MC mathematical phantom.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorriaux, J; Lee, J; ICTEAM Institute, Universite catholique de Louvain, Louvain-la-Neuve
2015-06-15
Purpose: The IAEA TRS-398 code of practice details the reference conditions for reference dosimetry of proton beams using ionization chambers and the required beam quality correction factors (kQ). Pencil beam scanning (PBS) requires multiple spots to reproduce the reference conditions. The objective is to demonstrate, using Monte Carlo (MC) calculations, that kQ factors for broad beams can be used for scanned beams under the same reference conditions with no significant additional uncertainty. We consider hereafter the general Alfonso formalism (Alfonso et al, 2008) for non-standard beam. Methods: To approach the reference conditions and the associated dose distributions, PBS must combinemore » many pencil beams with range modulation and shaping techniques different than those used in passive systems (broad beams). This might lead to a different energy spectrum at the measurement point. In order to evaluate the impact of these differences on kQ factors, ion chamber responses are computed with MC (Geant4 9.6) in a dedicated scanned pencil beam (Q-pcsr) producing a 10×10cm2 composite field with a flat dose distribution from 10 to 16 cm depth. Ion chamber responses are also computed by MC in a broad beam with quality Q-ds (double scattering). The dose distribution of Q -pcsr matches the dose distribution of Q-ds. k-(Q-pcsr,Q-ds) is computed for a 2×2×0.2cm{sup 3} idealized air cavity and a realistic plane-parallel ion chamber (IC). Results: Under reference conditions, quality correction factors for a scanned composite field versus a broad beam are the same for air cavity dose response, k-(Q-pcsr,Q-ds) =1.001±0.001 and for a Roos IC, k-(Q-pcsr,Q-ds) =0.999±0.005. Conclusion: Quality correction factors for ion chamber response in scanned and broad proton therapy beams are identical under reference conditions within the calculation uncertainties. The results indicate that quality correction factors published in IAEA TRS-398 can be used for scanned beams in the SOBP of a high-energy proton beam. Jefferson Sorriaux is financed by the Walloon Region under the convention 1217662. Jefferson Sorriaux is sponsored by a public-private partnership IBA - Walloon Region.« less
NASA Astrophysics Data System (ADS)
Sihver, L.; Matthiä, D.; Koi, T.; Mancusi, D.
2008-10-01
Radiation exposure of aircrew is more and more recognized as an occupational hazard. The ionizing environment at standard commercial aircraft flight altitudes consists mainly of secondary particles, of which the neutrons give a major contribution to the dose equivalent. Accurate estimations of neutron spectra in the atmosphere are therefore essential for correct calculations of aircrew doses. Energetic solar particle events (SPE) could also lead to significantly increased dose rates, especially at routes close to the North Pole, e.g. for flights between Europe and USA. It is also well known that the radiation environment encountered by personnel aboard low Earth orbit (LEO) spacecraft or aboard a spacecraft traveling outside the Earth's protective magnetosphere is much harsher compared with that within the atmosphere since the personnel are exposed to radiation from both galactic cosmic rays (GCR) and SPE. The relative contribution to the dose from GCR when traveling outside the Earth's magnetosphere, e.g. to the Moon or Mars, is even greater, and reliable and accurate particle and heavy ion transport codes are essential to calculate the radiation risks for both aircrew and personnel on spacecraft. We have therefore performed calculations of neutron distributions in the atmosphere, total dose equivalents, and quality factors at different depths in a water sphere in an imaginary spacecraft during solar minimum in a geosynchronous orbit. The calculations were performed with the GEANT4 Monte Carlo (MC) code using both the binary cascade (BIC) model, which is part of the standard GEANT4 package, and the JQMD model, which is used in the particle and heavy ion transport code PHITS GEANT4.
NASA Astrophysics Data System (ADS)
Tyagi, N.; Curran, B. H.; Roberson, P. L.; Moran, J. M.; Acosta, E.; Fraass, B. A.
2008-02-01
IMRT often requires delivering small fields which may suffer from electronic disequilibrium effects. The presence of heterogeneities, particularly low-density tissues in patients, complicates such situations. In this study, we report on verification of the DPM MC code for IMRT treatment planning in heterogeneous media, using a previously developed model of the Varian 120-leaf MLC. The purpose of this study is twofold: (a) design a comprehensive list of experiments in heterogeneous media for verification of any dose calculation algorithm and (b) verify our MLC model in these heterogeneous type geometries that mimic an actual patient geometry for IMRT treatment. The measurements have been done using an IMRT head and neck phantom (CIRS phantom) and slab phantom geometries. Verification of the MLC model has been carried out using point doses measured with an A14 slim line (SL) ion chamber inside a tissue-equivalent and a bone-equivalent material using the CIRS phantom. Planar doses using lung and bone equivalent slabs have been measured and compared using EDR films (Kodak, Rochester, NY).
NASA Astrophysics Data System (ADS)
Sempau, Josep; Wilderman, Scott J.; Bielajew, Alex F.
2000-08-01
A new Monte Carlo (MC) algorithm, the `dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high-accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 1283 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a `mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The δ-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels.
Pimpinella, Maria; Caporali, Claudio; Guerra, Antonio Stefano; Silvi, Luca; De Coste, Vanessa; Petrucci, Assunta; Delaunay, Frank; Dufreneix, Stéphane; Gouriou, Jean; Ostrowsky, Aimé; Rapp, Benjamin; Bordy, Jean-Marc; Daures, Josiane; Le Roy, Maïwenn; Sommier, Line; Vermesse, Didier
2018-01-01
To investigate the feasibility of using the ratio of dose-area product at 20 cm and 10 cm water depths (DAPR 20,10 ) as a beam quality specifier for radiotherapy photon beams with field diameter below 2 cm. Dose-area product was determined as the integral of absorbed dose to water (D w ) over a surface larger than the beam size. 6 MV and 10 MV photon beams with field diameters from 0.75 cm to 2 cm were considered. Monte Carlo (MC) simulations were performed to calculate energy-dependent dosimetric parameters and to study the DAPR 20,10 properties. Aspects relevant to DAPR 20,10 measurement were explored using large-area plane-parallel ionization chambers with different diameters. DAPR 20,10 was nearly independent of field size in line with the small differences among the corresponding mean beam energies. Both MC and experimental results showed a dependence of DAPR 20,10 on the measurement setup and the surface over which D w is integrated. For a given setup, DAPR 20,10 values obtained using ionization chambers with different air-cavity diameters agreed with one another within 0.4%, after the application of MC correction factors accounting for effects due to the chamber size. DAPR 20,10 differences among the small field sizes were within 1% and sensitivity to the beam energy resulted similar to that of established beam quality specifiers based on the point measurement of D w . For a specific measurement setup and integration area, DAPR 20,10 proved suitable to specify the beam quality of small photon beams for the selection of energy-dependent dosimetric parameters. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Toward a web-based real-time radiation treatment planning system in a cloud computing environment.
Na, Yong Hum; Suh, Tae-Suk; Kapp, Daniel S; Xing, Lei
2013-09-21
To exploit the potential dosimetric advantages of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), an in-depth approach is required to provide efficient computing methods. This needs to incorporate clinically related organ specific constraints, Monte Carlo (MC) dose calculations, and large-scale plan optimization. This paper describes our first steps toward a web-based real-time radiation treatment planning system in a cloud computing environment (CCE). The Amazon Elastic Compute Cloud (EC2) with a master node (named m2.xlarge containing 17.1 GB of memory, two virtual cores with 3.25 EC2 Compute Units each, 420 GB of instance storage, 64-bit platform) is used as the backbone of cloud computing for dose calculation and plan optimization. The master node is able to scale the workers on an 'on-demand' basis. MC dose calculation is employed to generate accurate beamlet dose kernels by parallel tasks. The intensity modulation optimization uses total-variation regularization (TVR) and generates piecewise constant fluence maps for each initial beam direction in a distributed manner over the CCE. The optimized fluence maps are segmented into deliverable apertures. The shape of each aperture is iteratively rectified to be a sequence of arcs using the manufacture's constraints. The output plan file from the EC2 is sent to the simple storage service. Three de-identified clinical cancer treatment plans have been studied for evaluating the performance of the new planning platform with 6 MV flattening filter free beams (40 × 40 cm(2)) from the Varian TrueBeam(TM) STx linear accelerator. A CCE leads to speed-ups of up to 14-fold for both dose kernel calculations and plan optimizations in the head and neck, lung, and prostate cancer cases considered in this study. The proposed system relies on a CCE that is able to provide an infrastructure for parallel and distributed computing. The resultant plans from the cloud computing are identical to PC-based IMRT and VMAT plans, confirming the reliability of the cloud computing platform. This cloud computing infrastructure has been established for a radiation treatment planning. It substantially improves the speed of inverse planning and makes future on-treatment adaptive re-planning possible.
Toward a web-based real-time radiation treatment planning system in a cloud computing environment
NASA Astrophysics Data System (ADS)
Hum Na, Yong; Suh, Tae-Suk; Kapp, Daniel S.; Xing, Lei
2013-09-01
To exploit the potential dosimetric advantages of intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), an in-depth approach is required to provide efficient computing methods. This needs to incorporate clinically related organ specific constraints, Monte Carlo (MC) dose calculations, and large-scale plan optimization. This paper describes our first steps toward a web-based real-time radiation treatment planning system in a cloud computing environment (CCE). The Amazon Elastic Compute Cloud (EC2) with a master node (named m2.xlarge containing 17.1 GB of memory, two virtual cores with 3.25 EC2 Compute Units each, 420 GB of instance storage, 64-bit platform) is used as the backbone of cloud computing for dose calculation and plan optimization. The master node is able to scale the workers on an ‘on-demand’ basis. MC dose calculation is employed to generate accurate beamlet dose kernels by parallel tasks. The intensity modulation optimization uses total-variation regularization (TVR) and generates piecewise constant fluence maps for each initial beam direction in a distributed manner over the CCE. The optimized fluence maps are segmented into deliverable apertures. The shape of each aperture is iteratively rectified to be a sequence of arcs using the manufacture’s constraints. The output plan file from the EC2 is sent to the simple storage service. Three de-identified clinical cancer treatment plans have been studied for evaluating the performance of the new planning platform with 6 MV flattening filter free beams (40 × 40 cm2) from the Varian TrueBeamTM STx linear accelerator. A CCE leads to speed-ups of up to 14-fold for both dose kernel calculations and plan optimizations in the head and neck, lung, and prostate cancer cases considered in this study. The proposed system relies on a CCE that is able to provide an infrastructure for parallel and distributed computing. The resultant plans from the cloud computing are identical to PC-based IMRT and VMAT plans, confirming the reliability of the cloud computing platform. This cloud computing infrastructure has been established for a radiation treatment planning. It substantially improves the speed of inverse planning and makes future on-treatment adaptive re-planning possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besemer, A; Marsh, I; Bednarz, B
Purpose: The calculation of 3D internal dose calculations in targeted radionuclide therapy requires the acquisition and temporal coregistration of a serial PET/CT or SPECT/CT images. This work investigates the dosimetric impact of different temporal coregistration methods commonly used for 3D internal dosimetry. Methods: PET/CT images of four mice were acquired at 1, 24, 48, 72, 96, 144 hrs post-injection of {sup 124}I-CLR1404. The therapeutic {sup 131}I-CLR1404 absorbed dose rate (ADR) was calculated at each time point using a Geant4-based MC dosimetry platform using three temporal image coregistration Methods: (1) no coregistration (NC), whole body sequential CT-CT affine coregistration (WBAC), andmore » individual sequential ROI-ROI affine coregistration (IRAC). For NC, only the ROI mean ADR was integrated to obtain ROI mean doses. For WBAC, the CT at each time point was coregistered to a single reference CT. The CT transformations were applied to the corresponding ADR images and the dose was calculated on a voxel-basis within the whole CT volume. For IRAC, each individual ROI was isolated and sequentially coregistered to a single reference ROI. The ROI transformations were applied to the corresponding ADR images and the dose was calculated on a voxel-basis within the ROI volumes. Results: The percent differences in the ROI mean doses were as large as 109%, 88%, and 32%, comparing the WBAC vs. IRAC, NC vs. IRAC, and NC vs. WBAC methods, respectively. The CoV in the mean dose between the all three methods ranged from 2–36%. The pronounced curvature of the spinal cord was not adequately coregistered using WBAC which resulted in large difference between the WBAC and IRAC. Conclusion: The method used for temporal image coregistration can result in large differences in 3D internal dosimetry calculations. Care must be taken to choose the most appropriate method depending on the imaging conditions, clinical site, and specific application. This work is partially funded by NIH Grant R21 CA198392-01.« less
Abe, Kota; Kadoya, Noriyuki; Sato, Shinya; Hashimoto, Shimpei; Nakajima, Yujiro; Miyasaka, Yuya; Ito, Kengo; Umezawa, Rei; Yamamoto, Takaya; Takahashi, Noriyoshi; Takeda, Ken; Jingu, Keiichi
2018-03-01
We evaluated the impact of model-based dose calculation algorithms (MBDCAs) on high-dose-rate brachytherapy (HDR-BT) treatment planning for patients with cervical cancer. Seven patients with cervical cancer treated using HDR-BT were studied. Tandem and ovoid applicators were used in four patients, a vaginal cylinder in one, and interstitial needles in the remaining two patients. MBDCAs were applied to the Advanced Collapsed cone Engine (ACE; Elekta, Stockholm, Sweden). All plans, which were originally calculated using TG-43, were re-calculated using both ACE and Monte Carlo (MC) simulations. Air was used as the rectal material. The mean difference in the rectum D2cm3 between ACErec-air and MCrec-air was 8.60 ± 4.64%, whereas that in the bladder D2cm3 was -2.80 ± 1.21%. Conversely, in the small group analysis (n = 4) using water instead of air as the rectal material, the mean difference in the rectum D2cm3 between TG-43 and ACErec-air was 11.87 ± 2.65%, whereas that between TG-43 and ACErec-water was 0.81 ± 2.04%, indicating that the use of water as the rectal material reduced the difference in D2cm3 between TG-43 and ACE. Our results suggested that the differences in the dose-volume histogram (DVH) parameters of TG-43 and ACE were large for the rectum when considerable air (gas) volume was present in it, and that this difference was reduced when the air (gas) volume was reduced. Also, ACE exhibited better dose calculation accuracy than that of TG-43 in this situation. Thus, ACE may be able to calculate the dose more accurately than TG-43 for HDR-BT in treating cervical cancers, particularly for patients with considerable air (gas) volume in the rectum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, Brad G.; Dirkes, Roger L.; Napier, Bruce A.
The Hanford Reach National Monument (HRNM) was created by presidential proclamation in 2000. It is located along the Columbia River in south central Washington and consists of five distinct units. The McGee Ranch-Riverlands and the North Slope units are addressed in this report. North Slope refers to two of the HRNM units: the Saddle Mountain Unit and the Wahluke Slope Unit. The Saddle Mountain and Wahluke Slope Units are located north of the Columbia River, while the McGee Ranch-Riverlands Unit is located south of the Columbia River and north and west of Washington State Highway 24. To fulfill internal U.S.more » Department of Energy (DOE) requirements prior to any radiological clearance of land, the DOE must evaluate the potential for residual radioactive contamination on this land and determine compliance with the requirements of DOE Order 5400.5. Authorized limits for residual radioactive contamination were developed based on the DOE annual exposure limit to the public (100 mrem) using future potential land-use scenarios. The DOE Office of Environmental Management approved these authorized limits on March 1, 2004. Historical soil monitoring conducted on and around the HRNM indicated soil concentrations of radionuclides were well below the authorized limits (Fritz et al. 2003). However, the historical sampling was done at a limited number of sampling locations. Therefore, additional soil sampling was conducted to determine if the concentrations of radionuclides in soil on the McGee Ranch-Riverlands and North Slope units were below the authorized limits. Sixty-seven soil samples were collected from the McGee Ranch-Riverlands and North Slope units. A software package (Visual Sample Plan) was used to plan the collection to assure an adequate number of samples were collected. The number of samples necessary to decide with a high level of confidence (99%) that the soil concentrations of radionuclides on the North Slope and McGee Ranch-Riverlands units did not exceed the authorized limits was determined to be 27. Additional soil samples were collected from areas suspected to have a potential for accumulation of radionuclides. This included samples collected from the riparian zone along the Columbia River, Savage Island, and other locations across the North Slope and McGee Ranch-Riverlands units. The 67 soil samples collected from the McGee Ranch-Riverlands and North Slope units all had concentrations of radionuclides far below the authorized limits established by the DOE. Statistical analysis of the results concluded that the Authorized Limits were not exceeded when total uncertainty was considered. The calculated upper confidence limit for each radionuclide measured in this study (which represents the value at which 99% of the measurements reside below with a 99% confidence level) was lower than the Authorized Limit for each radionuclide. The maximum observed soil concentrations for the radionuclides included in the authorized limits would result in a potential annual dose of 0.23 mrem assuming the most probable use scenario, a recreational visitor. This potential dose is well below the DOE 100-mrem/year dose limit for members of the public. Furthermore, the results of the biota dose assessment screen, which used the RESRAD biota code, indicated that the sum of fractions is less than one. This assumed soil concentrations equal to the maximum concentrations of radionuclides measured on the McGee Ranch-Riverlands and North Slope units’ in this study. Since the sum of fractions was less than 1, dose to terrestrial biota will not exceed the recommended biota dose limit for the soil concentrations measured in this study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sangroh; Yoo, Sua; Yin Fangfang
2010-07-15
Purpose: To assess imaging dose of partial and full-angle kilovoltage CBCT scan protocols and to evaluate image quality for each protocol. Methods: The authors obtained the CT dose index (CTDI) of the kilovoltage CBCT protocols in an on-board imager by ion chamber (IC) measurements and Monte Carlo (MC) simulations. A total of six new CBCT scan protocols were evaluated: Standard-dose head (100 kVp, 151 mA s, partial-angle), low-dose head (100 kVp, 75 mA s, partial-angle), high-quality head (100 kVp, 754 mA s, partial-angle), pelvis (125 kVp, 706 mA s, full-angle), pelvis spotlight (125 kVp, 752 mA s, partial-angle), and low-dosemore » thorax (110 kVp, 271 mA s, full-angle). Using the point dose method, various CTDI values were calculated by (1) the conventional weighted CTDI (CTDI{sub w}) calculation and (2) Bakalyar's method (CTDI{sub wb}). The MC simulations were performed to obtain the CTDI{sub w} and CTDI{sub wb}, as well as from (3) central slice averaging (CTDI{sub 2D}) and (4) volume averaging (CTDI{sub 3D}) techniques. The CTDI values of the new protocols were compared to those of the old protocols (full-angle CBCT protocols). Image quality of the new protocols was evaluated following the CBCT image quality assurance (QA) protocol [S. Yoo et al., ''A quality assurance program for the on-board imager registered ,'' Med. Phys. 33(11), 4431-4447 (2006)] testing Hounsfield unit (HU) linearity, spatial linearity/resolution, contrast resolution, and HU uniformity. Results: The CTDI{sub w} were found as 6.0, 3.2, 29.0, 25.4, 23.8, and 7.7 mGy for the new protocols, respectively. The CTDI{sub w} and CTDI{sub wb} differed within +3% between IC measurements and MC simulations. Method (2) results were within {+-}12% of method (1). In MC simulations, the CTDI{sub w} and CTDI{sub wb} were comparable to the CTDI{sub 2D} and CTDI{sub 3D} with the differences ranging from -4.3% to 20.6%. The CTDI{sub 3D} were smallest among all the CTDI values. CTDI{sub w} of the new protocols were found as {approx}14 times lower for standard head scan and 1.8 times lower for standard body scan than the old protocols, respectively. In the image quality QA tests, all the protocols except low-dose head and low-dose thorax protocols were within the tolerance in the HU verification test. The HU value for the two protocols was always higher than the nominal value. All the protocols passed the spatial linearity/resolution and HU uniformity tests. In the contrast resolution test, only high-quality head and pelvis scan protocols were within the tolerance. In addition, crescent effect was found in the partial-angle scan protocols. Conclusions: The authors found that CTDI{sub w} of the new CBCT protocols has been significantly reduced compared to the old protocols with acceptable image quality. The CTDI{sub w} values in the point dose method were close to the volume averaging method within 9%-21% for all the CBCT scan protocols. The Bakalyar's method produced more accurate dose estimation within 14%. The HU inaccuracy from low-dose head and low-dose thorax protocols can render incorrect dose results in the treatment planning system. When high soft-tissue contrast data are desired, high-quality head or pelvis scan protocol is recommended depending on the imaging area. The point dose method can be applicable to estimate CBCT dose with reasonable accuracy in the clinical environment.« less
Su, Lin; Yang, Youming; Bednarz, Bryan; Sterpin, Edmond; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X. George
2014-01-01
Purpose: Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHERRT is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head & neck. Methods: To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHERRT. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHERRT and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. Results: For the water phantom, the depth dose curve and dose profiles from ARCHERRT agree well with DOSXYZnrc. For clinical cases, results from ARCHERRT are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head & neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU, modified Woodcock tracking algorithm performed inferior to the original one. ARCHERRT achieves a fast speed for PSF-based dose calculations. With a single M2090 card, the simulations cost about 60, 50, 80 s for three cases, respectively, with the 1% statistical error in the PTV. Using the latest K40 card, the simulations are 1.7–1.8 times faster. More impressively, six M2090 cards could finish the simulations in 8.9–13.4 s. For comparison, the same simulations on Intel E5-2620 (12 hyperthreading) cost about 500–800 s. Conclusions: ARCHERRT was developed successfully to perform fast and accurate MC dose calculation for radiotherapy using PSFs and patient CT phantoms. PMID:24989378
Su, Lin; Yang, Youming; Bednarz, Bryan; Sterpin, Edmond; Du, Xining; Liu, Tianyu; Ji, Wei; Xu, X George
2014-07-01
Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHERRT is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head & neck. To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHERRT. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improve the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHERRT and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. For the water phantom, the depth dose curve and dose profiles from ARCHERRT agree well with DOSXYZnrc. For clinical cases, results from ARCHERRT are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head & neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU, modified Woodcock tracking algorithm performed inferior to the original one. ARCHERRT achieves a fast speed for PSF-based dose calculations. With a single M2090 card, the simulations cost about 60, 50, 80 s for three cases, respectively, with the 1% statistical error in the PTV. Using the latest K40 card, the simulations are 1.7-1.8 times faster. More impressively, six M2090 cards could finish the simulations in 8.9-13.4 s. For comparison, the same simulations on Intel E5-2620 (12 hyperthreading) cost about 500-800 s. ARCHERRT was developed successfully to perform fast and accurate MC dose calculation for radiotherapy using PSFs and patient CT phantoms.
NASA Astrophysics Data System (ADS)
Fogliata, Antonella; Nicolini, Giorgia; Clivio, Alessandro; Vanetti, Eugenio; Mancosu, Pietro; Cozzi, Luca
2011-05-01
This corrigendum intends to clarify some important points that were not clearly or properly addressed in the original paper, and for which the authors apologize. The original description of the first Acuros algorithm is from the developers, published in Physics in Medicine and Biology by Vassiliev et al (2010) in the paper entitled 'Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams'. The main equations describing the algorithm reported in our paper, implemented as the 'Acuros XB Advanced Dose Calculation Algorithm' in the Varian Eclipse treatment planning system, were originally described (for the original Acuros algorithm) in the above mentioned paper by Vassiliev et al. The intention of our description in our paper was to give readers an overview of the algorithm, not pretending to have authorship of the algorithm itself (used as implemented in the planning system). Unfortunately our paper was not clear, particularly in not allocating full credit to the work published by Vassiliev et al on the original Acuros algorithm. Moreover, it is important to clarify that we have not adapted any existing algorithm, but have used the Acuros XB implementation in the Eclipse planning system from Varian. In particular, the original text of our paper should have been as follows: On page 1880 the sentence 'A prototype LBTE solver, called Attila (Wareing et al 2001), was also applied to external photon beam dose calculations (Gifford et al 2006, Vassiliev et al 2008, 2010). Acuros XB builds upon many of the methods in Attila, but represents a ground-up rewrite of the solver where the methods were adapted especially for external photon beam dose calculations' should be corrected to 'A prototype LBTE solver, called Attila (Wareing et al 2001), was also applied to external photon beam dose calculations (Gifford et al 2006, Vassiliev et al 2008). A new algorithm called Acuros, developed by the Transpire Inc. group, was built upon many of the methods in Attila, but represents a ground-up rewrite of the solver where the methods were especially adapted for external photon beam dose calculations, and described in Vassiliev et al (2010). Acuros XB is the Varian implementation of the original Acuros algorithm in the Eclipse planning system'. On page 1881, the sentence 'Monte Carlo and explicit LBTE solution, with sufficient refinement, will converge on the same solution. However, both methods produce errors (inaccuracies). In explicit LBTE solution methods, errors are primarily systematic, and result from discretization of the solution variables in space, angle, and energy. In both Monte Carlo and explicit LBTE solvers, a trade-off exists between speed and accuracy: reduced computational time may be achieved when less stringent accuracy criteria are specified, and vice versa' should cite the reference Vassiliev et al (2010). On page 1882, the beginning of the sub-paragraph The radiation transport model should start with 'The following description of the Acuros XB algorithm is as outlined by Vassiliev et al (2010) and reports the main steps of the radiation transport model as implemented in Eclipse'. The authors apologize for this lack of clarity in our published paper, and trust that this corrigendum gives full credit to Vassiliev et al in their earlier paper, with respect to previous work on the Acuros algorithm. However we wish to note that the entire contents of the data and results published in our paper are original and the work of the listed authors. References Gifford K A, Horton J L Jr, Wareing T A, Failla G and Mourtada F 2006 Comparison of a finite-element multigroup discrete-ordinates code with Monte Carlo for radiotherapy calculations Phys. Med. Biol. 51 2253-65 Vassiliev O N, Wareing T A, Davis I M, McGhee J, Barnett D, Horton J L, Gifford K, Failla G, Titt U and Mourtada F 2008 Feasibility of a multigroup deterministic solution method for three-dimensional radiotherapy dose calculations Int. J. Radiat. Oncol. Biol. Phys. 72 220-7 Vassiliev O N, Wareing T A, McGhee J, Failla G, Salehpour M R and Mourtada F 2010 Validation of a new grid based Boltzmann equation solver for dose calculation in radiotherapy with photon beams Phys. Med. Biol. 55 581-98 Wareing T A, McGhee J M, Morel J E and Pautz S D 2001 Discontinuous finite element Sn methods on three-dimensional unstructured grids Nucl. Sci. Eng. 138 256-68
Simulation of computed tomography dose based on voxel phantom
NASA Astrophysics Data System (ADS)
Liu, Chunyu; Lv, Xiangbo; Li, Zhaojun
2017-01-01
Computed Tomography (CT) is one of the preferred and the most valuable imaging tool used in diagnostic radiology, which provides a high-quality cross-sectional image of the body. It still causes higher doses of radiation to patients comparing to the other radiological procedures. The Monte-Carlo method is appropriate for estimation of the radiation dose during the CT examinations. The simulation of the Computed Tomography Dose Index (CTDI) phantom was developed in this paper. Under a similar conditions used in physical measurements, dose profiles were calculated and compared against the measured values that were reported. The results demonstrate a good agreement between the calculated and the measured doses. From different CT exam simulations using the voxel phantom, the highest absorbed dose was recorded for the lung, the brain, the bone surface. A comparison between the different scan type shows that the effective dose for a chest scan is the highest one, whereas the effective dose values during abdomen and pelvis scan are very close, respectively. The lowest effective dose resulted from the head scan. Although, the dose in CT is related to various parameters, such as the tube current, exposure time, beam energy, slice thickness and patient size, this study demonstrates that the MC simulation is a useful tool to accurately estimate the dose delivered to any specific organs for patients undergoing the CT exams and can be also a valuable technique for the design and the optimization of the CT x-ray source.
Han, Tao; Mikell, Justin K.; Salehpour, Mohammad; Mourtada, Firas
2011-01-01
Purpose: The deterministic Acuros XB (AXB) algorithm was recently implemented in the Eclipse treatment planning system. The goal of this study was to compare AXB performance to Monte Carlo (MC) and two standard clinical convolution methods: the anisotropic analytical algorithm (AAA) and the collapsed-cone convolution (CCC) method. Methods: Homogeneous water and multilayer slab virtual phantoms were used for this study. The multilayer slab phantom had three different materials, representing soft tissue, bone, and lung. Depth dose and lateral dose profiles from AXB v10 in Eclipse were compared to AAA v10 in Eclipse, CCC in Pinnacle3, and EGSnrc MC simulations for 6 and 18 MV photon beams with open fields for both phantoms. In order to further reveal the dosimetric differences between AXB and AAA or CCC, three-dimensional (3D) gamma index analyses were conducted in slab regions and subregions defined by AAPM Task Group 53. Results: The AXB calculations were found to be closer to MC than both AAA and CCC for all the investigated plans, especially in bone and lung regions. The average differences of depth dose profiles between MC and AXB, AAA, or CCC was within 1.1, 4.4, and 2.2%, respectively, for all fields and energies. More specifically, those differences in bone region were up to 1.1, 6.4, and 1.6%; in lung region were up to 0.9, 11.6, and 4.5% for AXB, AAA, and CCC, respectively. AXB was also found to have better dose predictions than AAA and CCC at the tissue interfaces where backscatter occurs. 3D gamma index analyses (percent of dose voxels passing a 2%∕2 mm criterion) showed that the dose differences between AAA and AXB are significant (under 60% passed) in the bone region for all field sizes of 6 MV and in the lung region for most of field sizes of both energies. The difference between AXB and CCC was generally small (over 90% passed) except in the lung region for 18 MV 10 × 10 cm2 fields (over 26% passed) and in the bone region for 5 × 5 and 10 × 10 cm2 fields (over 64% passed). With the criterion relaxed to 5%∕2 mm, the pass rates were over 90% for both AAA and CCC relative to AXB for all energies and fields, with the exception of AAA 18 MV 2.5 × 2.5 cm2 field, which still did not pass. Conclusions: In heterogeneous media, AXB dose prediction ability appears to be comparable to MC and superior to current clinical convolution methods. The dose differences between AXB and AAA or CCC are mainly in the bone, lung, and interface regions. The spatial distributions of these differences depend on the field sizes and energies. PMID:21776802
Dose and scatter characteristics of a novel cone beam CT system for musculoskeletal extremities
NASA Astrophysics Data System (ADS)
Zbijewski, W.; Sisniega, A.; Vaquero, J. J.; Muhit, A.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.
2012-03-01
A novel cone-beam CT (CBCT) system has been developed with promising capabilities for musculoskeletal imaging (e.g., weight-bearing extremities and combined radiographic / volumetric imaging). The prototype system demonstrates diagnostic-quality imaging performance, while the compact geometry and short scan orbit raise new considerations for scatter management and dose characterization that challenge conventional methods. The compact geometry leads to elevated, heterogeneous x-ray scatter distributions - even for small anatomical sites (e.g., knee or wrist), and the short scan orbit results in a non-uniform dose distribution. These complex dose and scatter distributions were investigated via experimental measurements and GPU-accelerated Monte Carlo (MC) simulation. The combination provided a powerful basis for characterizing dose distributions in patient-specific anatomy, investigating the benefits of an antiscatter grid, and examining distinct contributions of coherent and incoherent scatter in artifact correction. Measurements with a 16 cm CTDI phantom show that the dose from the short-scan orbit (0.09 mGy/mAs at isocenter) varies from 0.16 to 0.05 mGy/mAs at various locations on the periphery (all obtained at 80 kVp). MC estimation agreed with dose measurements within 10-15%. Dose distribution in patient-specific anatomy was computed with MC, confirming such heterogeneity and highlighting the elevated energy deposition in bone (factor of ~5-10) compared to soft-tissue. Scatter-to-primary ratio (SPR) up to ~1.5-2 was evident in some regions of the knee. A 10:1 antiscatter grid was found earlier to result in significant improvement in soft-tissue imaging performance without increase in dose. The results of MC simulations elucidated the mechanism behind scatter reduction in the presence of a grid. A ~3-fold reduction in average SPR was found in the MC simulations; however, a linear grid was found to impart additional heterogeneity in the scatter distribution, mainly due to the increase in the contribution of coherent scatter with increased spatial variation. Scatter correction using MC-generated scatter distributions demonstrated significant improvement in cupping and streaks. Physical experimentation combined with GPU-accelerated MC simulation provided a sophisticated, yet practical approach in identifying low-dose acquisition techniques, optimizing scatter correction methods, and evaluating patientspecific dose.
Monte Carlo verification of radiotherapy treatments with CloudMC.
Miras, Hector; Jiménez, Rubén; Perales, Álvaro; Terrón, José Antonio; Bertolet, Alejandro; Ortiz, Antonio; Macías, José
2018-06-27
A new implementation has been made on CloudMC, a cloud-based platform presented in a previous work, in order to provide services for radiotherapy treatment verification by means of Monte Carlo in a fast, easy and economical way. A description of the architecture of the application and the new developments implemented is presented together with the results of the tests carried out to validate its performance. CloudMC has been developed over Microsoft Azure cloud. It is based on a map/reduce implementation for Monte Carlo calculations distribution over a dynamic cluster of virtual machines in order to reduce calculation time. CloudMC has been updated with new methods to read and process the information related to radiotherapy treatment verification: CT image set, treatment plan, structures and dose distribution files in DICOM format. Some tests have been designed in order to determine, for the different tasks, the most suitable type of virtual machines from those available in Azure. Finally, the performance of Monte Carlo verification in CloudMC is studied through three real cases that involve different treatment techniques, linac models and Monte Carlo codes. Considering computational and economic factors, D1_v2 and G1 virtual machines were selected as the default type for the Worker Roles and the Reducer Role respectively. Calculation times up to 33 min and costs of 16 € were achieved for the verification cases presented when a statistical uncertainty below 2% (2σ) was required. The costs were reduced to 3-6 € when uncertainty requirements are relaxed to 4%. Advantages like high computational power, scalability, easy access and pay-per-usage model, make Monte Carlo cloud-based solutions, like the one presented in this work, an important step forward to solve the long-lived problem of truly introducing the Monte Carlo algorithms in the daily routine of the radiotherapy planning process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, M; Seuntjens, J; Roberge, D
Purpose: Assessing the performance and uncertainty of a pre-calculated Monte Carlo (PMC) algorithm for proton and electron transport running on graphics processing units (GPU). While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from recycling a limited number of tracks in the pre-generated track bank is missing from the literature. With a proper uncertainty analysis, an optimal pre-generated track bank size can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pre-generated for electrons and protons using EGSnrc and GEANT4, respectively. The PMC algorithm for track transport was implementedmore » on the CUDA programming framework. GPU-PMC dose distributions were compared to benchmark dose distributions simulated using general-purpose MC codes in the same conditions. A latent uncertainty analysis was performed by comparing GPUPMC dose values to a “ground truth” benchmark while varying the track bank size and primary particle histories. Results: GPU-PMC dose distributions and benchmark doses were within 1% of each other in voxels with dose greater than 50% of Dmax. In proton calculations, a submillimeter distance-to-agreement error was observed at the Bragg Peak. Latent uncertainty followed a Poisson distribution with the number of tracks per energy (TPE) and a track bank of 20,000 TPE produced a latent uncertainty of approximately 1%. Efficiency analysis showed a 937× and 508× gain over a single processor core running DOSXYZnrc for 16 MeV electrons in water and bone, respectively. Conclusion: The GPU-PMC method can calculate dose distributions for electrons and protons to a statistical uncertainty below 1%. The track bank size necessary to achieve an optimal efficiency can be tuned based on the desired uncertainty. Coupled with a model to calculate dose contributions from uncharged particles, GPU-PMC is a candidate for inverse planning of modulated electron radiotherapy and scanned proton beams. This work was supported in part by FRSQ-MSSS (Grant No. 22090), NSERC RG (Grant No. 432290) and CIHR MOP (Grant No. MOP-211360)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benmakhlouf, H; Andreo, P; Brualla, L
2016-06-15
Purpose: To calculate output correction factors for Varian Clinac 2100iX beams for seven small field detectors and use the values to determine the small field output factors for the linacs at Karolinska university hospital. Methods: Phase space files (psf) for square fields between 0.25cm and 10cm were calculated using the PENELOPE-based PRIMO software. The linac MC-model was tuned by comparing PRIMO-estimated and experimentally determined depth doses and lateral dose-profiles for 40cmx40cm fields. The calculated psf were used as radiation sources to calculate the correction factors of IBA and PTW detectors with the code penEasy/PENELOPE. Results: The optimal tuning parameters ofmore » the MClinac model in PRIMO were 5.4 MeV incident electron energy and zero energy spread, focal spot size and beam divergence. Correction factors obtained for the liquid ion chamber (PTW-T31018) are within 1% down to 0.5 cm fields. For unshielded diodes (IBA-EFD, IBA-SFD, PTW-T60017 and PTW-T60018) the corrections are up to 2% at intermediate fields (>1cm side), becoming down to −11% for fields smaller than 1cm. The shielded diode (IBA-PFD and PTW-T60016) corrections vary with field size from 0 to −4%. Volume averaging effects are found for most detectors in the presence of 0.25cm fields. Conclusion: Good agreement was found between correction factors based on PRIMO-generated psf and those from other publications. The calculated factors will be implemented in output factor measurements (using several detectors) in the clinic. PRIMO is a userfriendly general code capable of generating small field psf and can be used without having to code own linac geometries. It can therefore be used to improve the clinical dosimetry, especially in the commissioning of linear accelerators. Important dosimetry data, such as dose-profiles and output factors can be determined more accurately for a specific machine, geometry and setup by using PRIMO and having a MC-model of the detector used.« less
RESULTS OF YEAR-LONG RADIOPHOSPHORUS ADMINISTRATION IN POLYCYTHEMIA VERA (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stecher, G.
1961-10-01
The results of treating 140 cases of polycythemia vera with P/sup 32/ over the last 9 yr are described. Oral doses of 4 to 5 mc P/sup 32/ or intravenous doses of 3 to 8 mc were given. Two-thirds of the patients experienced remission of the disease after the 1st P/sup 32/ dose, the remissions lasting 8 months or longer. The remainder of the patients required a 2nd dose. The average duration of remission was 20 months with over haif exceeding 1 yr. The mean dose to obtain remission was 4.4 mc/yr. The required dose was directly related to themore » degree of splenomegaly, leukocytosis, and duration of the disease. The higher the initial circulating erythrocyte count before P/sup 32/ treatment, the greater the drop after treatment. The average drop in erythrocyte count was 1.8, 2.4, and 2.6 x 10/sup 6/ after P/sup 32/ doses of 3-5, 5-7, and 7 mc, respectively. In cases with initial counts of 7.5 x 10/sup 6//cu mm the respective decrements in the counts were resulted in transitory anemia, leukopenia, or thrombopenia. Five patients died of leukemia but the infiuence of the P/sup 32/ dose, if any, on this complication could not be determined. Twenty other patients died from the complications of polycythemia, such as thrombosis and hemorrhage. The recommended single dose is 4-5 mc P/sup 32/, which should be repeated after 3 to 4 months if there is an inadequate response to the 1st dose. (H.H.D.)« less
NASA Astrophysics Data System (ADS)
Pappas, Eleftherios P.; Zoros, Emmanouil; Moutsatsos, Argyris; Peppa, Vasiliki; Zourari, Kyveli; Karaiskos, Pantelis; Papagiannis, Panagiotis
2017-05-01
There is an acknowledged need for the design and implementation of physical phantoms appropriate for the experimental validation of model-based dose calculation algorithms (MBDCA) introduced recently in 192Ir brachytherapy treatment planning systems (TPS), and this work investigates whether it can be met. A PMMA phantom was prepared to accommodate material inhomogeneities (air and Teflon), four plastic brachytherapy catheters, as well as 84 LiF TLD dosimeters (MTS-100M 1 × 1 × 1 mm3 microcubes), two radiochromic films (Gafchromic EBT3) and a plastic 3D dosimeter (PRESAGE). An irradiation plan consisting of 53 source dwell positions was prepared on phantom CT images using a commercially available TPS and taking into account the calibration dose range of each detector. Irradiation was performed using an 192Ir high dose rate (HDR) source. Dose to medium in medium, Dmm , was calculated using the MBDCA option of the same TPS as well as Monte Carlo (MC) simulation with the MCNP code and a benchmarked methodology. Measured and calculated dose distributions were spatially registered and compared. The total standard (k = 1) spatial uncertainties for TLD, film and PRESAGE were: 0.71, 1.58 and 2.55 mm. Corresponding percentage total dosimetric uncertainties were: 5.4-6.4, 2.5-6.4 and 4.85, owing mainly to the absorbed dose sensitivity correction and the relative energy dependence correction (position dependent) for TLD, the film sensitivity calibration (dose dependent) and the dependencies of PRESAGE sensitivity. Results imply a LiF over-response due to a relative intrinsic energy dependence between 192Ir and megavoltage calibration energies, and a dose rate dependence of PRESAGE sensitivity at low dose rates (<1 Gy min-1). Calculations were experimentally validated within uncertainties except for MBDCA results for points in the phantom periphery and dose levels <20%. Experimental MBDCA validation is laborious, yet feasible. Further work is required for the full characterization of dosimeter response for 192Ir and the reduction of experimental uncertainties.
Labine, Meaghan; Gong, Yuewen; Minuk, Gerald Y
Acute exposure to high concentrations of microcystin-LR (MC-LR) can cause significant hepatocyte injury. To document the effects of long-term, low-dose MC-LR exposure on hepatic inflammation and fibrosis in mice with healthy and diseased livers. Male CD1 mice (N = 20/group) were exposed to 1.0 μg/L of MC-LR in drinking water; 1.0 μg/L MC-LR plus 300 mg/L of the hepatotoxin thioacetamide (MC-LR/TAA); or 300 mg/L TAA alone for 28 weeks. Liver biochemistry and histology were documented at the end of the study period. In addition, hepatic stellate cells (HSCs), were exposed in vitro to MC-LR (0.1-10,000 μg/L) and monitored for changes in cell metabolism, proliferation and activation. Liver biochemistry and histology were essentially normal in MC-LR alone exposed mice. MC-LR/TAA and TAA alone exposed mice had significant hepatic inflammation and fibrosis but the extent of the changes were similar in the two groups. In vitro, MC-LR had no effect on HSC metabolism, proliferation or activation. Long-term, low-dose exposure to MC-LR is unlikely to lead to chronic liver disease in the setting of a normal liver or exacerbate existing liver disease in the setting of ongoing hepatitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safigholi, H; Soliman, A; Song, W
Purpose: Brachytherapy treatment planning systems based on TG-43 protocol calculate the dose in water and neglects the heterogeneity effect of seeds in multi-seed implant brachytherapy. In this research, the accuracy of a novel analytical model that we propose for the inter-seed attenuation effect (ISA) for 103-Pd seed model is evaluated. Methods: In the analytical model, dose perturbation due to the ISA effect for each seed in an LDR multi-seed implant for 103-Pd is calculated by assuming that the seed of interest is active and the other surrounding seeds are inactive. The cumulative dosimetric effect of all seeds is then summedmore » using the superposition principle. The model is based on pre Monte Carlo (MC) simulated 3D kernels of the dose perturbations caused by the ISA effect. The cumulative ISA effect due to multiple surrounding seeds is obtained by a simple multiplication of the individual ISA effect by each seed, the effect of which is determined by the distance from the seed of interest. This novel algorithm is then compared with full MC water-based simulations (FMCW). Results: The results show that the dose perturbation model we propose is in excellent agreement with the FMCW values for a case with three seeds separated by 1 cm. The average difference of the model and the FMCW simulations was less than 8%±2%. Conclusion: Using the proposed novel analytical ISA effect model, one could expedite the corrections due to the ISA dose perturbation effects during permanent seed 103-Pd brachytherapy planning with minimal increase in time since the model is based on multiplications and superposition. This model can be applied, in principle, to any other brachytherapy seeds. Further work is necessary to validate this model on a more complicated geometry as well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biondo, Elliott D.; Wilson, Paul P. H.
In fusion energy systems (FES) neutrons born from burning plasma activate system components. The photon dose rate after shutdown from resulting radionuclides must be quantified. This shutdown dose rate (SDR) is calculated by coupling neutron transport, activation analysis, and photon transport. The size, complexity, and attenuating configuration of FES motivate the use of hybrid Monte Carlo (MC)/deterministic neutron transport. The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) method can be used to optimize MC neutron transport for coupled multiphysics problems, including SDR analysis, using deterministic estimates of adjoint flux distributions. When used for SDR analysis, MS-CADIS requires the formulation ofmore » an adjoint neutron source that approximates the transmutation process. In this work, transmutation approximations are used to derive a solution for this adjoint neutron source. It is shown that these approximations are reasonably met for typical FES neutron spectra and materials over a range of irradiation scenarios. When these approximations are met, the Groupwise Transmutation (GT)-CADIS method, proposed here, can be used effectively. GT-CADIS is an implementation of the MS-CADIS method for SDR analysis that uses a series of single-energy-group irradiations to calculate the adjoint neutron source. For a simple SDR problem, GT-CADIS provides speedups of 200 100 relative to global variance reduction with the Forward-Weighted (FW)-CADIS method and 9 ± 5 • 104 relative to analog. As a result, this work shows that GT-CADIS is broadly applicable to FES problems and will significantly reduce the computational resources necessary for SDR analysis.« less
Biondo, Elliott D.; Wilson, Paul P. H.
2017-05-08
In fusion energy systems (FES) neutrons born from burning plasma activate system components. The photon dose rate after shutdown from resulting radionuclides must be quantified. This shutdown dose rate (SDR) is calculated by coupling neutron transport, activation analysis, and photon transport. The size, complexity, and attenuating configuration of FES motivate the use of hybrid Monte Carlo (MC)/deterministic neutron transport. The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) method can be used to optimize MC neutron transport for coupled multiphysics problems, including SDR analysis, using deterministic estimates of adjoint flux distributions. When used for SDR analysis, MS-CADIS requires the formulation ofmore » an adjoint neutron source that approximates the transmutation process. In this work, transmutation approximations are used to derive a solution for this adjoint neutron source. It is shown that these approximations are reasonably met for typical FES neutron spectra and materials over a range of irradiation scenarios. When these approximations are met, the Groupwise Transmutation (GT)-CADIS method, proposed here, can be used effectively. GT-CADIS is an implementation of the MS-CADIS method for SDR analysis that uses a series of single-energy-group irradiations to calculate the adjoint neutron source. For a simple SDR problem, GT-CADIS provides speedups of 200 100 relative to global variance reduction with the Forward-Weighted (FW)-CADIS method and 9 ± 5 • 104 relative to analog. As a result, this work shows that GT-CADIS is broadly applicable to FES problems and will significantly reduce the computational resources necessary for SDR analysis.« less
NASA Astrophysics Data System (ADS)
Palleri, Francesca; Baruffaldi, Fabio; Angelini, Anna Lisa; Ferri, Andrea; Spezi, Emiliano
2008-12-01
In external beam radiotherapy the calculation of dose distribution for patients with hip prostheses is critical. Metallic implants not only degrade the image quality but also perturb the dose distribution. Conventional treatment planning systems do not accurately account for high-Z prosthetic implants heterogeneities, especially at interfaces. The materials studied in this work have been chosen on the basis of a statistical investigation on the hip prostheses implanted in 70 medical centres. The first aim of this study is a systematic characterization of materials used for hip prostheses, and it has been provided by BEAMnrc Monte Carlo code. The second aim is to evaluate the capabilities of a specific treatment planning system, Pinnacle 3, when dealing with dose calculations in presence of metals, also close to the regions of high-Z gradients. In both cases it has been carried out an accurate comparison versus experimental measurements for two clinical photon beam energies (6 MV and 18 MV) and for two experimental sets-up: metallic cylinders inserted in a water phantom and in a specifically built PMMA slab. Our results show an agreement within 2% between experiments and MC simulations. TPS calculations agree with experiments within 3%.
Beam coordinate transformations from DICOM to DOSXYZnrc
NASA Astrophysics Data System (ADS)
Zhan, Lixin; Jiang, Runqing; Osei, Ernest K.
2012-12-01
Digital imaging and communications in medicine (DICOM) format is the de facto standard for communications between therapeutic and diagnostic modalities. A plan generated by a treatment planning system (TPS) is often exported in DICOM format. BEAMnrc/DOSXYZnrc is a widely used Monte Carlo (MC) package for modelling the Linac head and simulating dose delivery in radiotherapy. It has its own definition of beam orientation, which is not in compliance with the one defined in the DICOM standard. MC dose calculations using information from TPS generated plans require transformation of beam orientations to the DOSXYZnrc coordinate system (c.s.) and the transformation is non-trivial. There have been two studies on the coordinate transformations. The transformation equation sets derived have been helpful to BEAMnrc/DOSXYZnrc users. However, the transformation equation sets are complex mathematically and not easy to program. In this study, we derive a new set of transformation equations, which are more compact, easily understandable, and easier for computational implementation. The derivation of the polar angle θ and the azimuthal angle φ used by DOSXYZnrc is similar to the existing studies by applying a series of rotations to a vector in DICOM patient c.s. The derivation of the beam rotation ϕcol for DOSXYZnrc, however, is different. It is obtained by a direct combination of the actual collimator rotation with the projection of the couch rotation to the collimator rotating plane. Verification of the transformation has been performed using clinical plans. The comparisons between TPS and MC results show very good geometrical agreement for field placements, together with good agreement in dose distributions.
Is the PTW 60019 microDiamond a suitable candidate for small field reference dosimetry?
NASA Astrophysics Data System (ADS)
De Coste, Vanessa; Francescon, Paolo; Marinelli, Marco; Masi, Laura; Paganini, Lucia; Pimpinella, Maria; Prestopino, Giuseppe; Russo, Serenella; Stravato, Antonella; Verona, Claudio; Verona-Rinati, Gianluca
2017-09-01
A systematic study of the PTW microDiamond (MD) output factors (OF) is reported, aimed at clarifying its response in small fields and investigating its suitability for small field reference dosimetry. Ten MDs were calibrated under 60Co irradiation. OF measurements were performed in 6 MV photon beams by a CyberKnife M6, a Varian DHX and an Elekta Synergy linacs. Two PTW silicon diodes E (Si-D) were used for comparison. The results obtained by the MDs were evaluated in terms of absorbed dose to water determination in reference conditions and OF measurements, and compared to the results reported in the recent literature. To this purpose, the Monte Carlo (MC) beam-quality correction factor, kQMD , was calculated for the MD, and the small field output correction factors, k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} , were calculated for both the MD and the Si-D by two different research groups. An empirical function was also derived, providing output correction factors within 0.5% from the MC values calculated for all of the three linacs. A high reproducibility of the dosimetric properties was observed among the ten MDs. The experimental kQMD values are in agreement within 1% with the MC calculated ones. Output correction factors within +0.7% and -1.4% were obtained down to field sizes as narrow as 5 mm. The resulting MD and Si-D field factors are in agreement within 0.2% in the case of CyberKnife measurements and 1.6% in the other cases. This latter higher spread of the data was demonstrated to be due to a lower reproducibility of small beam sizes defined by jaws or multi leaf collimators. The results of the present study demonstrate the reproducibility of the MD response and provide a validation of the MC modelling of this device. In principle, accurate reference dosimetry is thus feasible by using the microDiamond dosimeter for field sizes down to 5 mm.
Abe, Kota; Kadoya, Noriyuki; Sato, Shinya; Hashimoto, Shimpei; Nakajima, Yujiro; Miyasaka, Yuya; Ito, Kengo; Umezawa, Rei; Yamamoto, Takaya; Takahashi, Noriyoshi; Takeda, Ken; Jingu, Keiichi
2018-01-01
Abstract We evaluated the impact of model-based dose calculation algorithms (MBDCAs) on high-dose-rate brachytherapy (HDR-BT) treatment planning for patients with cervical cancer. Seven patients with cervical cancer treated using HDR-BT were studied. Tandem and ovoid applicators were used in four patients, a vaginal cylinder in one, and interstitial needles in the remaining two patients. MBDCAs were applied to the Advanced Collapsed cone Engine (ACE; Elekta, Stockholm, Sweden). All plans, which were originally calculated using TG-43, were re-calculated using both ACE and Monte Carlo (MC) simulations. Air was used as the rectal material. The mean difference in the rectum D2cm3 between ACErec-air and MCrec-air was 8.60 ± 4.64%, whereas that in the bladder D2cm3 was −2.80 ± 1.21%. Conversely, in the small group analysis (n = 4) using water instead of air as the rectal material, the mean difference in the rectum D2cm3 between TG-43 and ACErec-air was 11.87 ± 2.65%, whereas that between TG-43 and ACErec-water was 0.81 ± 2.04%, indicating that the use of water as the rectal material reduced the difference in D2cm3 between TG-43 and ACE. Our results suggested that the differences in the dose–volume histogram (DVH) parameters of TG-43 and ACE were large for the rectum when considerable air (gas) volume was present in it, and that this difference was reduced when the air (gas) volume was reduced. Also, ACE exhibited better dose calculation accuracy than that of TG-43 in this situation. Thus, ACE may be able to calculate the dose more accurately than TG-43 for HDR-BT in treating cervical cancers, particularly for patients with considerable air (gas) volume in the rectum. PMID:29378024
Evaluation of a Proposed Biodegradable 188Re Source for Brachytherapy Application
Khorshidi, Abdollah; Ahmadinejad, Marjan; Hamed Hosseini, S.
2015-01-01
Abstract This study aimed to evaluate dosimetric characteristics based on Monte Carlo (MC) simulations for a proposed beta emitter bioglass 188Re seed for internal radiotherapy applications. The bioactive glass seed has been developed using the sol-gel technique. The simulations were performed for the seed using MC radiation transport code to investigate the dosimetric factors recommended by the AAPM Task Group 60 (TG-60). Dose distributions due to the beta and photon radiation were predicted at different radial distances surrounding the source. The dose rate in water at the reference point was calculated to be 7.43 ± 0.5 cGy/h/μCi. The dosimetric factors consisting of the reference point dose rate, D(r0,θ0), the radial dose function, g(r), the 2-dimensional anisotropy function, F(r,θ), the 1-dimensional anisotropy function, φan(r), and the R90 quantity were estimated and compared with several available beta-emitting sources. The element 188Re incorporated in bioactive glasses produced by the sol-gel technique provides a suitable solution for producing new materials for seed implants applied to brachytherapy applications in prostate and liver cancers treatment. Dose distribution of 188Re seed was greater isotropic than other commercially attainable encapsulated seeds, since it has no end weld to attenuate radiation. The beta radiation-emitting 188Re source provides high doses of local radiation to the tumor tissue and the short range of the beta particles limit damage to the adjacent normal tissue. PMID:26181543
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcatili, S., E-mail: sara.marcatili@inserm.fr; Villoing, D.; Mauxion, T.
Purpose: The dosimetric assessment of novel radiotracers represents a legal requirement in most countries. While the techniques for the computation of internal absorbed dose in a therapeutic context have made huge progresses in recent years, in a diagnostic scenario the absorbed dose is usually extracted from model-based lookup tables, most often derived from International Commission on Radiological Protection (ICRP) or Medical Internal Radiation Dose (MIRD) Committee models. The level of approximation introduced by these models may impact the resulting dosimetry. The aim of this work is to establish whether a more refined approach to dosimetry can be implemented in nuclearmore » medicine diagnostics, by analyzing a specific case. Methods: The authors calculated absorbed doses to various organs in six healthy volunteers administered with flutemetamol ({sup 18}F) injection. Each patient underwent from 8 to 10 whole body 3D PET/CT scans. This dataset was analyzed using a Monte Carlo (MC) application developed in-house using the toolkit GATE that is capable to take into account patient-specific anatomy and radiotracer distribution at the voxel level. They compared the absorbed doses obtained with GATE to those calculated with two commercially available software: OLINDA/EXM and STRATOS implementing a dose voxel kernel convolution approach. Results: Absorbed doses calculated with GATE were higher than those calculated with OLINDA. The average ratio between GATE absorbed doses and OLINDA’s was 1.38 ± 0.34 σ (from 0.93 to 2.23). The discrepancy was particularly high for the thyroid, with an average GATE/OLINDA ratio of 1.97 ± 0.83 σ for the six patients. Differences between STRATOS and GATE were found to be higher. The average ratio between GATE and STRATOS absorbed doses was 2.51 ± 1.21 σ (from 1.09 to 6.06). Conclusions: This study demonstrates how the choice of the absorbed dose calculation algorithm may introduce a bias when gamma radiations are of importance, as is the case in nuclear medicine diagnostics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampson, Andrew; Le Yi; Williamson, Jeffrey F.
2012-02-15
Purpose: To demonstrate potential of correlated sampling Monte Carlo (CMC) simulation to improve the calculation efficiency for permanent seed brachytherapy (PSB) implants without loss of accuracy. Methods: CMC was implemented within an in-house MC code family (PTRAN) and used to compute 3D dose distributions for two patient cases: a clinical PSB postimplant prostate CT imaging study and a simulated post lumpectomy breast PSB implant planned on a screening dedicated breast cone-beam CT patient exam. CMC tallies the dose difference, {Delta}D, between highly correlated histories in homogeneous and heterogeneous geometries. The heterogeneous geometry histories were derived from photon collisions sampled inmore » a geometrically identical but purely homogeneous medium geometry, by altering their particle weights to correct for bias. The prostate case consisted of 78 Model-6711 {sup 125}I seeds. The breast case consisted of 87 Model-200 {sup 103}Pd seeds embedded around a simulated lumpectomy cavity. Systematic and random errors in CMC were unfolded using low-uncertainty uncorrelated MC (UMC) as the benchmark. CMC efficiency gains, relative to UMC, were computed for all voxels, and the mean was classified in regions that received minimum doses greater than 20%, 50%, and 90% of D{sub 90}, as well as for various anatomical regions. Results: Systematic errors in CMC relative to UMC were less than 0.6% for 99% of the voxels and 0.04% for 100% of the voxels for the prostate and breast cases, respectively. For a 1 x 1 x 1 mm{sup 3} dose grid, efficiency gains were realized in all structures with 38.1- and 59.8-fold average gains within the prostate and breast clinical target volumes (CTVs), respectively. Greater than 99% of the voxels within the prostate and breast CTVs experienced an efficiency gain. Additionally, it was shown that efficiency losses were confined to low dose regions while the largest gains were located where little difference exists between the homogeneous and heterogeneous doses. On an AMD 1090T processor, computing times of 38 and 21 sec were required to achieve an average statistical uncertainty of 2% within the prostate (1 x 1 x 1 mm{sup 3}) and breast (0.67 x 0.67 x 0.8 mm{sup 3}) CTVs, respectively. Conclusions: CMC supports an additional average 38-60 fold improvement in average efficiency relative to conventional uncorrelated MC techniques, although some voxels experience no gain or even efficiency losses. However, for the two investigated case studies, the maximum variance within clinically significant structures was always reduced (on average by a factor of 6) in the therapeutic dose range generally. CMC takes only seconds to produce an accurate, high-resolution, low-uncertainly dose distribution for the low-energy PSB implants investigated in this study.« less
Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirgayussa, I Gde Eka, E-mail: ekadirgayussa@gmail.com; Yani, Sitti; Haryanto, Freddy, E-mail: freddy@fi.itb.ac.id
2015-09-30
Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDPmore » and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good criteria of dose difference in PDD and dose profiles were achieve using incident electron energy 6.4 MeV.« less
Monte Carlo calculations of positron emitter yields in proton radiotherapy.
Seravalli, E; Robert, C; Bauer, J; Stichelbaut, F; Kurz, C; Smeets, J; Van Ngoc Ty, C; Schaart, D R; Buvat, I; Parodi, K; Verhaegen, F
2012-03-21
Positron emission tomography (PET) is a promising tool for monitoring the three-dimensional dose distribution in charged particle radiotherapy. PET imaging during or shortly after proton treatment is based on the detection of annihilation photons following the ß(+)-decay of radionuclides resulting from nuclear reactions in the irradiated tissue. Therapy monitoring is achieved by comparing the measured spatial distribution of irradiation-induced ß(+)-activity with the predicted distribution based on the treatment plan. The accuracy of the calculated distribution depends on the correctness of the computational models, implemented in the employed Monte Carlo (MC) codes that describe the interactions of the charged particle beam with matter and the production of radionuclides and secondary particles. However, no well-established theoretical models exist for predicting the nuclear interactions and so phenomenological models are typically used based on parameters derived from experimental data. Unfortunately, the experimental data presently available are insufficient to validate such phenomenological hadronic interaction models. Hence, a comparison among the models used by the different MC packages is desirable. In this work, starting from a common geometry, we compare the performances of MCNPX, GATE and PHITS MC codes in predicting the amount and spatial distribution of proton-induced activity, at therapeutic energies, to the already experimentally validated PET modelling based on the FLUKA MC code. In particular, we show how the amount of ß(+)-emitters produced in tissue-like media depends on the physics model and cross-sectional data used to describe the proton nuclear interactions, thus calling for future experimental campaigns aiming at supporting improvements of MC modelling for clinical application of PET monitoring. © 2012 Institute of Physics and Engineering in Medicine
Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.
Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei
2011-09-07
Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crijns, S; Glitzner, M; Kontaxis, C
Purpose: The introduction of the MRI-linac in radiotherapy brings MRI-guided treatment with daily plan adaptions within reach. This paradigm demands on-line QA. With its ability to perform continuous volumetric imaging in an outstanding soft-tissue contrast, the MRI- linac promises to elucidate the dose deposition process during a treatment session. Here we study for a prostate case how dynamic MRI combined with linac machine parameters and a fast dose-engine can be used for on-line dose accumulation. Methods: Prostate imaging was performed in healthy volunteer on a 1.5T MR-scanner (Philips, Best, NL) according to a clinical MR-sim protocol, followed by 10min ofmore » dynamic imaging (FLASH, 4s/volume, FOV 40×40×12cm{sup 3}, voxels 3×3×3mm{sup 3}, TR/TE/α=3.5ms/1.7ms/5°). An experienced radiation oncologist made delineations, considering the prostate CTV. Planning was performed on a two-compartment pseudoCT (air/water density) according to clinical constraints (77Gy in PTV) using a Monte-Carlo (MC) based TPS that accounts for magnetic fields. Delivery of one fraction (2.2Gy) was simulated on an emulator for the Axesse linac (Elekta, Stockholm, SE). Machine parameters (MLC settings, gantry angle, dose rate, etc.) were recorded at 25Hz. These were re-grouped per dynamic volume and fed into the MC-engine to calculate a dose delivered for each of the dynamics. Deformations derived from non-rigid registration of each dynamic against the first allowed dose accumulation on a common reference grid. Results: The DVH parameters on the PTV compared to the optimized plan showed little changes. Local deformations however resulted in local deviations, primarily around the air/rectum interface. This clearly indicates the potential of intra-fraction adaptations based on the accumulated dose. Application in each fraction helps to track the influence of plan adaptations to the eventual dose distribution. Calculation times were about twice the delivery time. Conclusion: The current Result paves the way to perform on-line treatment delivery QA on the MRI-linac in the near future.« less
Paudel, Nava Raj; Shvydka, Diana; Parsai, E Ishmael
2016-09-08
Presence of interfaces between high and low atomic number (Z) materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. It is characterized by a very narrow region of sharp dose enhancement at the interface. A rapid falloff of dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial. We use an in-house-built inexpensive thin-film Cadmium Telluride (CdTe) photodetector to study this effect at the gold-tissue interface and verify our experimental results with Monte Carlo (MC) modeling. Three-micron thick thin-film CdTe photodetectors were fabricated in our lab. One-, ten- or one hundred-micron thick gold foils placed in a tissue-equivalent-phantom were irradiated with a clinical Ir-192 high-dose-rate (HDR) source and current measured with a CdTe detector in each case was compared with the current measured for all uniform tissue-equivalent phantom. Percentage signal enhancement (PSE) due to each gold foil was then compared against MC modeled percentage dose enhancement (PDE), obtained from the geometry mimicking the experimental setup. The experimental PSEs due to 1, 10, and 100 μm thick gold foils at the closest measured distance of 12.5μm from the interface were 42.6 ± 10.8 , 137.0 ± 11.9, and 203.0 ± 15.4, respectively. The corresponding MC modeled PDEs were 38.1 ± 1, 164 ± 1, and 249 ± 1, respectively. The experimental and MC modeled values showed a closer agreement at the larger distances from the interface. The dose enhancement in the vicinity of gold-tissue interface was successfully measured using an in-house-built, high-resolution CdTe-based photodetector and validated with MC simulations. A close agreement between experimental and the MC modeled results shows that CdTe detector can be utilized for mapping interface dose distribution encountered in the application of ionizing radiation. © 2016 The Authors.
Poster — Thur Eve — 61: A new framework for MPERT plan optimization using MC-DAO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, M; Lloyd, S AM; Townson, R
2014-08-15
This work combines the inverse planning technique known as Direct Aperture Optimization (DAO) with Intensity Modulated Radiation Therapy (IMRT) and combined electron and photon therapy plans. In particular, determining conditions under which Modulated Photon/Electron Radiation Therapy (MPERT) produces better dose conformality and sparing of organs at risk than traditional IMRT plans is central to the project. Presented here are the materials and methods used to generate and manipulate the DAO procedure. Included is the introduction of a powerful Java-based toolkit, the Aperture-based Monte Carlo (MC) MPERT Optimizer (AMMO), that serves as a framework for optimization and provides streamlined access tomore » underlying particle transport packages. Comparison of the toolkit's dose calculations to those produced by the Eclipse TPS and the demonstration of a preliminary optimization are presented as first benchmarks. Excellent agreement is illustrated between the Eclipse TPS and AMMO for a 6MV photon field. The results of a simple optimization shows the functioning of the optimization framework, while significant research remains to characterize appropriate constraints.« less
Peppa, V; Pappas, E P; Karaiskos, P; Major, T; Polgár, C; Papagiannis, P
2016-10-01
To investigate the clinical significance of introducing model based dose calculation algorithms (MBDCAs) as an alternative to TG-43 in 192 Ir interstitial breast brachytherapy. A 57 patient cohort was used in a retrospective comparison between TG-43 based dosimetry data exported from a treatment planning system and Monte Carlo (MC) dosimetry performed using MCNP v. 6.1 with plan and anatomy information in DICOM-RT format. Comparison was performed for the target, ipsilateral lung, heart, skin, breast and ribs, using dose distributions, dose-volume histograms (DVH) and plan quality indices clinically used for plan evaluation, as well as radiobiological parameters. TG-43 overestimation of target DVH parameters is statistically significant but small (less than 2% for the target coverage indices and 4% for homogeneity indices, on average). Significant dose differences (>5%) were observed close to the skin and at relatively large distances from the implant leading to a TG-43 dose overestimation for the organs at risk. These differences correspond to low dose regions (<50% of the prescribed dose), being less than 2% of the prescribed dose. Detected dosimetric differences did not induce clinically significant differences in calculated tumor control probabilities (mean absolute difference <0.2%) and normal tissue complication probabilities. While TG-43 shows a statistically significant overestimation of most indices used for plan evaluation, differences are small and therefore not clinically significant. Improved MBDCA dosimetry could be important for re-irradiation, technique inter-comparison and/or the assessment of secondary cancer induction risk, where accurate dosimetry in the whole patient anatomy is of the essence. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Botas, Pablo; Grassberger, Clemens; Sharp, Gregory; Paganetti, Harald
2018-02-01
The purpose of this study was to investigate internal tumor volume density overwrite strategies to minimize intensity modulated proton therapy (IMPT) plan degradation of mobile lung tumors. Four planning paradigms were compared for nine lung cancer patients. Internal gross tumor volume (IGTV) and internal clinical target volume (ICTV) structures were defined encompassing their respective volumes in every 4DCT phase. The paradigms use different planning CT (pCT) created from the average intensity projection (AIP) of the 4DCT, overwriting the density within the IGTV to account for movement. The density overwrites were: (a) constant filling with 100 HU (C100) or (b) 50 HU (C50), (c) maximum intensity projection (MIP) across phases, and (d) water equivalent path length (WEPL) consideration from beam’s-eye-view. Plans were created optimizing dose-influence matrices calculated with fast GPU Monte Carlo (MC) simulations in each pCT. Plans were evaluated with MC on the 4DCTs using a model of the beam delivery time structure. Dose accumulation was performed using deformable image registration. Interplay effect was addressed applying 10 times rescanning. Significantly less DVH metrics degradation occurred when using MIP and WEPL approaches. Target coverage (D99≥slant 70 Gy(RBE)) was fulfilled in most cases with MIP and WEPL (D{{99}WEPL}=69.2+/- 4.0 Gy (RBE)), keeping dose heterogeneity low (D5-D{{95}WEPL}=3.9+/- 2.0 Gy(RBE)). The mean lung dose was kept lowest by the WEPL strategy, as well as the maximum dose to organs at risk (OARs). The impact on dose levels in the heart, spinal cord and esophagus were patient specific. Overall, the WEPL strategy gives the best performance and should be preferred when using a 3D static geometry for lung cancer IMPT treatment planning. Newly available fast MC methods make it possible to handle long simulations based on 4D data sets to perform studies with high accuracy and efficiency, even prior to individual treatment planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y M; Han, B; Xing, L
2016-06-15
Purpose: EPID-based patient-specific quality assurance provides verification of the planning setup and delivery process that phantomless QA and log-file based virtual dosimetry methods cannot achieve. We present a method for EPID-based QA utilizing spatially-variant EPID response kernels that allows for direct calculation of the entrance fluence and 3D phantom dose. Methods: An EPID dosimetry system was utilized for 3D dose reconstruction in a cylindrical phantom for the purposes of end-to-end QA. Monte Carlo (MC) methods were used to generate pixel-specific point-spread functions (PSFs) characterizing the spatially non-uniform EPID portal response in the presence of phantom scatter. The spatially-variant PSFs weremore » decomposed into spatially-invariant basis PSFs with the symmetric central-axis kernel as the primary basis kernel and off-axis representing orthogonal perturbations in pixel-space. This compact and accurate characterization enables the use of a modified Richardson-Lucy deconvolution algorithm to directly reconstruct entrance fluence from EPID images without iterative scatter subtraction. High-resolution phantom dose kernels were cogenerated in MC with the PSFs enabling direct recalculation of the resulting phantom dose by rapid forward convolution once the entrance fluence was calculated. A Delta4 QA phantom was used to validate the dose reconstructed in this approach. Results: The spatially-invariant representation of the EPID response accurately reproduced the entrance fluence with >99.5% fidelity with a simultaneous reduction of >60% in computational overhead. 3D dose for 10{sub 6} voxels was reconstructed for the entire phantom geometry. A 3D global gamma analysis demonstrated a >95% pass rate at 3%/3mm. Conclusion: Our approach demonstrates the capabilities of an EPID-based end-to-end QA methodology that is more efficient than traditional EPID dosimetry methods. Displacing the point of measurement external to the QA phantom reduces the necessary complexity of the phantom itself while offering a method that is highly scalable and inherently generalizable to rotational and trajectory based deliveries. This research was partially supported by Varian.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safigholi, H; Soliman, A; Song, W Y
Purpose: To evaluate the possibility of utilizing the BEBIG HDR 60Co remote after-loading system for malignant skin surface treatment using Monte Carlo (MC) simulation technique. Methods: First TG-43 parameters of BEBIG-Co-60 and Nucletron Ir-192-mHDR-V2 brachytherapy sources were simulated using MCNP6 code to benchmark the sources against the literature. Second a conical tungsten-alloy with 3-cm diameter of Planning-Target-Volume (PTV) at surface for use with a single stepping HDR source is designed. The HDR source is modeled parallel to treatment plane at the center of the conical applicator with a source surface distance (SSD) of 1.5-cm and a removable plastic end-cap withmore » a 1-mm thickness. Third, MC calculated dose distributions from HDR Co-60 for conical surface applicator were compared with the simulated data using HDR Ir-192 source. The initial calculations were made with the same conical surface applicator (standard-applicator) dimensions as the ones used with the Ir-192 system. Fourth, the applicator wall-thickness for the Co-60 system was increased (doubled) to diminish leakage dose to levels received when using the Ir-192 system. With this geometry, percentage depth dose (PDD), and relative 2D-dose profiles in transverse/coronal planes were normalized at 3-mm prescription-depth evaluated along the central axis. Results: PDD for Ir-192 and Co-60 were similar with standard and thick-walled applicator. 2D-relative dose distribution of Co-60, inside the standard-conical-applicator, generated higher penumbra (7.6%). For thick-walled applicator, it created smaller penumbra (<4%) compared to Ir-192 source in the standard-conicalapplicator. Dose leakage outside of thick-walled applicator with Co-60 source was approximately equal (≤3%) with standard applicator using Ir-192 source. Conclusion: Skin cancer treatment with equal quality can be performed with Co-60 source and thick-walled conical applicators instead of Ir-192 with standard applicators. These conical surface applicator must be used with a protective plastic end-cap to eliminate electron contamination and over-dosage of the skin.« less
Developing a Treatment Planning Software Based on TG-43U1 Formalism for Cs-137 LDR Brachytherapy.
Sina, Sedigheh; Faghihi, Reza; Soleimani Meigooni, Ali; Siavashpour, Zahra; Mosleh-Shirazi, Mohammad Amin
2013-08-01
The old Treatment Planning Systems (TPSs) used for intracavitary brachytherapy with Cs-137 Selectron source utilize traditional dose calculation methods, considering each source as a point source. Using such methods introduces significant errors in dose estimation. As of 1995, TG-43 is used as the main dose calculation formalism in treatment TPSs. The purpose of this study is to design and establish a treatment planning software for Cs-137 Solectron brachytherapy source, based on TG-43U1 formalism by applying the effects of the applicator and dummy spacers. Two softwares used for treatment planning of Cs-137 sources in Iran (STPS and PLATO), are based on old formalisms. The purpose of this work is to establish and develop a TPS for Selectron source based on TG-43 formalism. In this planning system, the dosimetry parameters of each pellet in different places inside applicators were obtained by MCNP4c code. Then the dose distribution around every combination of active and inactive pellets was obtained by summing the doses. The accuracy of this algorithm was checked by comparing its results for special combination of active and inactive pellets with MC simulations. Finally, the uncertainty of old dose calculation formalism was investigated by comparing the results of STPS and PLATO softwares with those obtained by the new algorithm. For a typical arrangement of 10 active pellets in the applicator, the percentage difference between doses obtained by the new algorithm at 1cm distance from the tip of the applicator and those obtained by old formalisms is about 30%, while the difference between the results of MCNP and the new algorithm is less than 5%. According to the results, the old dosimetry formalisms, overestimate the dose especially towards the applicator's tip. While the TG-43U1 based software perform the calculations more accurately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Lin; Du, Xining; Liu, Tianyu
Purpose: Using the graphical processing units (GPU) hardware technology, an extremely fast Monte Carlo (MC) code ARCHER{sub RT} is developed for radiation dose calculations in radiation therapy. This paper describes the detailed software development and testing for three clinical TomoTherapy® cases: the prostate, lung, and head and neck. Methods: To obtain clinically relevant dose distributions, phase space files (PSFs) created from optimized radiation therapy treatment plan fluence maps were used as the input to ARCHER{sub RT}. Patient-specific phantoms were constructed from patient CT images. Batch simulations were employed to facilitate the time-consuming task of loading large PSFs, and to improvemore » the estimation of statistical uncertainty. Furthermore, two different Woodcock tracking algorithms were implemented and their relative performance was compared. The dose curves of an Elekta accelerator PSF incident on a homogeneous water phantom were benchmarked against DOSXYZnrc. For each of the treatment cases, dose volume histograms and isodose maps were produced from ARCHER{sub RT} and the general-purpose code, GEANT4. The gamma index analysis was performed to evaluate the similarity of voxel doses obtained from these two codes. The hardware accelerators used in this study are one NVIDIA K20 GPU, one NVIDIA K40 GPU, and six NVIDIA M2090 GPUs. In addition, to make a fairer comparison of the CPU and GPU performance, a multithreaded CPU code was developed using OpenMP and tested on an Intel E5-2620 CPU. Results: For the water phantom, the depth dose curve and dose profiles from ARCHER{sub RT} agree well with DOSXYZnrc. For clinical cases, results from ARCHER{sub RT} are compared with those from GEANT4 and good agreement is observed. Gamma index test is performed for voxels whose dose is greater than 10% of maximum dose. For 2%/2mm criteria, the passing rates for the prostate, lung case, and head and neck cases are 99.7%, 98.5%, and 97.2%, respectively. Due to specific architecture of GPU, modified Woodcock tracking algorithm performed inferior to the original one. ARCHER{sub RT} achieves a fast speed for PSF-based dose calculations. With a single M2090 card, the simulations cost about 60, 50, 80 s for three cases, respectively, with the 1% statistical error in the PTV. Using the latest K40 card, the simulations are 1.7–1.8 times faster. More impressively, six M2090 cards could finish the simulations in 8.9–13.4 s. For comparison, the same simulations on Intel E5-2620 (12 hyperthreading) cost about 500–800 s. Conclusions: ARCHER{sub RT} was developed successfully to perform fast and accurate MC dose calculation for radiotherapy using PSFs and patient CT phantoms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynoso, F; Cho, S
Purpose: To develop and validate a Monte Carlo (MC) model of a Phillips RT-250 orthovoltage unit to test various beam spectrum modulation strategies for in vitro/vivo studies. A model of this type would enable the production of unconventional beams from a typical orthovoltage unit for novel therapeutic applications such as gold nanoparticle-aided radiotherapy. Methods: The MCNP5 code system was used to create a MC model of the head of RT-250 and a 30 × 30 × 30 cm{sup 3} water phantom. For the x-ray machine head, the current model includes the vacuum region, beryllium window, collimators, inherent filters and exteriormore » steel housing. For increased computational efficiency, the primary x-ray spectrum from the target was calculated from a well-validated analytical software package. Calculated percentage-depth-dose (PDD) values and photon spectra were validated against experimental data from film and Compton-scatter spectrum measurements. Results: The model was validated for three common settings of the machine namely, 250 kVp (0.25 mm Cu), 125 kVp (2 mm Al), and 75 kVp (2 mm Al). The MC results for the PDD curves were compared with film measurements and showed good agreement for all depths with a maximum difference of 4 % around dmax and under 2.5 % for all other depths. The primary photon spectra were also measured and compared with the MC results showing reasonable agreement between the two, validating the input spectra and the final spectra as predicted by the current MC model. Conclusion: The current MC model accurately predicted the dosimetric and spectral characteristics of each beam from the RT-250 orthovoltage unit, demonstrating its applicability and reliability for beam spectrum modulation tasks. It accomplished this without the need to model the bremsstrahlung xray production from the target, while significantly improved on computational efficiency by at least two orders of magnitude. Supported by DOD/PCRP grant W81XWH-12-1-0198.« less
NASA Astrophysics Data System (ADS)
McGurk, Ross; Seco, Joao; Riboldi, Marco; Wolfgang, John; Segars, Paul; Paganetti, Harald
2010-03-01
The purpose of this work was to create a computational platform for studying motion in intensity modulated radiotherapy (IMRT). Specifically, the non-uniform rational B-spline (NURB) cardiac and torso (NCAT) phantom was modified for use in a four-dimensional Monte Carlo (4D-MC) simulation system to investigate the effect of respiratory-induced intra-fraction organ motion on IMRT dose distributions as a function of diaphragm motion, lesion size and lung density. Treatment plans for four clinical scenarios were designed: diaphragm peak-to-peak amplitude of 1 cm and 3 cm, and two lesion sizes—2 cm and 4 cm diameter placed in the lower lobe of the right lung. Lung density was changed for each phase using a conservation of mass calculation. Further, a new heterogeneous lung model was implemented and tested. Each lesion had an internal target volume (ITV) subsequently expanded by 15 mm isotropically to give the planning target volume (PTV). The PTV was prescribed to receive 72 Gy in 40 fractions. The MLC leaf sequence defined by the planning system for each patient was exported and used as input into the MC system. MC simulations using the dose planning method (DPM) code together with deformable image registration based on the NCAT deformation field were used to find a composite dose distribution for each phantom. These composite distributions were subsequently analyzed using information from the dose volume histograms (DVH). Lesion motion amplitude has the largest effect on the dose distribution. Tumor size was found to have a smaller effect and can be mitigated by ensuring the planning constraints are optimized for the tumor size. The use of a dynamic or heterogeneous lung density model over a respiratory cycle does not appear to be an important factor with a <= 0.6% change in the mean dose received by the ITV, PTV and right lung. The heterogeneous model increases the realism of the NCAT phantom and may provide more accurate simulations in radiation therapy investigations that use the phantom. This work further evaluates the NCAT phantom for use as a tool in radiation therapy research in addition to its extensive use in diagnostic imaging and nuclear medicine research. Our results indicate that the NCAT phantom, combined with 4D-MC simulations, is a useful tool in radiation therapy investigations and may allow the study of relative effects in many clinically relevant situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Castano, D. M.; Gonzalez, L. Brualla; Gago-Arias, M. A.
2012-01-15
Purpose: This work contains an alternative methodology for obtaining correction factors for ionization chamber (IC) dosimetry of small fields and composite fields such as IMRT. The method is based on the convolution/superposition (C/S) of an IC response function (RF) with the dose distribution in a certain plane which includes chamber position. This method is an alternative to the full Monte Carlo (MC) approach that has been used previously by many authors for the same objective. Methods: The readout of an IC at a point inside a phantom irradiated by a certain beam can be obtained as the convolution of themore » dose spatial distribution caused by the beam and the IC two-dimensional RF. The proposed methodology has been applied successfully to predict the response of a PTW 30013 IC when measuring different nonreference fields, namely: output factors of 6 MV small fields, beam profiles of cobalt 60 narrow fields and 6 MV radiosurgery segments. The two-dimensional RF of a PTW 30013 IC was obtained by MC simulation of the absorbed dose to cavity air when the IC was scanned by a 0.6 x 0.6 mm{sup 2} cross section parallel pencil beam at low depth in a water phantom. For each of the cases studied, the results of the IC direct measurement were compared with the corresponding obtained by the C/S method. Results: For all of the cases studied, the agreement between the IC direct measurement and the IC calculated response was excellent (better than 1.5%). Conclusions: This method could be implemented in TPS in order to calculate dosimetry correction factors when an experimental IMRT treatment verification with in-phantom ionization chamber is performed. The miss-response of the IC due to the nonreference conditions could be quickly corrected by this method rather than employing MC derived correction factors. This method can be considered as an alternative to the plan-class associated correction factors proposed recently as part of an IAEA work group on nonstandard field dosimetry.« less
SU-E-T-25: Real Time Simulator for Designing Electron Dual Scattering Foil Systems.
Carver, R; Hogstrom, K; Price, M; Leblanc, J; Harris, G
2012-06-01
To create a user friendly, accurate, real time computer simulator to facilitate the design of dual foil scattering systems for electron beams on radiotherapy accelerators. The simulator should allow for a relatively quick, initial design that can be refined and verified with subsequent Monte Carlo (MC) calculations and measurements. The simulator consists of an analytical algorithm for calculating electron fluence and a graphical user interface (GUI) C++ program. The algorithm predicts electron fluence using Fermi-Eyges multiple Coulomb scattering theory with a refined Moliere formalism for scattering powers. The simulator also estimates central-axis x-ray dose contamination from the dual foil system. Once the geometry of the beamline is specified, the simulator allows the user to continuously vary primary scattering foil material and thickness, secondary scattering foil material and Gaussian shape (thickness and sigma), and beam energy. The beam profile and x-ray contamination are displayed in real time. The simulator was tuned by comparison of off-axis electron fluence profiles with those calculated using EGSnrc MC. Over the energy range 7-20 MeV and using present foils on the Elekta radiotherapy accelerator, the simulator profiles agreed to within 2% of MC profiles from within 20 cm of the central axis. The x-ray contamination predictions matched measured data to within 0.6%. The calculation time was approximately 100 ms using a single processor, which allows for real-time variation of foil parameters using sliding bars. A real time dual scattering foil system simulator has been developed. The tool has been useful in a project to redesign an electron dual scattering foil system for one of our radiotherapy accelerators. The simulator has also been useful as an instructional tool for our medical physics graduate students. © 2012 American Association of Physicists in Medicine.
Lensing, Cody J; Adank, Danielle N; Doering, Skye R; Wilber, Stacey L; Andreasen, Amy; Schaub, Jay W; Xiang, Zhimin; Haskell-Luevano, Carrie
2016-09-21
The melanocortin-4 receptor (MC4R) has been indicated as a therapeutic target for metabolic disorders such as anorexia, cachexia, and obesity. The current study investigates the in vivo effects on energy homeostasis of a 15 nM MC4R antagonist SKY2-23-7, Ac-Trp-DPhe(p-I)-Arg-Trp-NH2, that is a 3700 nM melanocortin-3 receptor (MC3R) antagonist with minimal MC3R and MC4R agonist activity. When monitoring both male and female mice in TSE metabolic cages, sex-specific responses were observed in food intake, respiratory exchange ratio (RER), and energy expenditure. A 7.5 nmol dose of SKY2-23-7 increased food intake, increased RER, and trended toward decreasing energy expenditure in male mice. However, this compound had minimal effect on female mice's food intake and RER at the 7.5 nmol dose. A 2.5 nmol dose of SKY2-23-7 significantly increased female food intake, RER, and energy expenditure while having a minimal effect on male mice at this dose. The observed sex differences of SKY2-23-7 administration result in the discovery of a novel chemical probe for elucidating the molecular mechanisms of the sexual dimorphism present within the melanocortin pathway. To further explore the melanocortin sexual dimorphism, hypothalamic gene expression was examined. The mRNA expression of the MC3R and proopiomelanocortin (POMC) were not significantly different between sexes. However, the expression of agouti-related peptide (AGRP) was significantly higher in female mice which may be a possible mechanism for the sex-specific effects observed with SKY2-23-7.
SU-C-BRC-07: Parametrized GPU Accelerated Electron Monte Carlo Second Check
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haywood, J
Purpose: I am presenting a parameterized 3D GPU accelerated electron Monte Carlo second check program. Method: I wrote the 3D grid dose calculation algorithm in CUDA and utilized an NVIDIA GeForce GTX 780 Ti to run all of the calculations. The electron path beyond the distal end of the cone is governed by four parameters: the amplitude of scattering (AMP), the mean and width of a Gaussian energy distribution (E and α), and the percentage of photons. In my code, I adjusted all parameters until the calculated PDD and profile fit the measured 10×10 open beam data within 1%/1mm. Imore » then wrote a user interface for reading the DICOM treatment plan and images in Python. In order to verify the algorithm, I calculated 3D dose distributions on a variety of phantoms and geometries, and compared them with the Eclipse eMC calculations. I also calculated several patient specific dose distributions, including a nose and an ear. Finally, I compared my algorithm’s computation times to Eclipse’s. Results: The calculated MU for all of the investigated geometries agree with the TPS within the TG-114 action level of 5%. The MU for the nose was < 0.5 % different while the MU for the ear at 105 SSD was ∼2 %. Calculation times for a 12MeV 10×10 open beam ranged from 1 second for a 2.5 mm grid resolution with ∼15 million particles to 33 seconds on a 1 mm grid with ∼460 million particles. Eclipse calculation runtimes distributed over 10 FAS workers were 9 seconds to 15 minutes respectively. Conclusion: The GPU accelerated second check allows quick MU verification while accounting for patient specific geometry and heterogeneity.« less
Reed, J L; Rasmussen, B E; Davis, S D; Micka, J A; Culberson, W S; DeWerd, L A
2014-12-01
To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for (125)I and (103)Pd brachytherapy sources relative to (60)Co. LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a (60)Co teletherapy source. The brachytherapy sources measured were the Best 2301 (125)I seed, the OncoSeed 6711 (125)I seed, and the Best 2335 (103)Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the (60)Co irradiations. Monte Carlo (MC) simulations were used to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the (60)Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for (125)I and (103)Pd relative to (60)Co. The relative TLD intrinsic energy dependences (relative to (60)Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%-15% for (125)I and (103)Pd sources relative to (60)Co. TLD measurements of absolute dose around (125)I and (103)Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biondo, Elliott D; Ibrahim, Ahmad M; Mosher, Scott W
2015-01-01
Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNcemore » reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).« less
Dose and effect of inhaled ozone in resting versus exercising human subjects: comparison with resting rats Authors: Gary E. Hatch, John McKee, James Brown, Bill McDonnell, Elston Seal, Joleen Soukup, Ralph Slade, Kay Crissman and Robert Devlin, National Health and Environmental...
SU-E-T-609: Perturbation Effects of Pedicle Screws On Radiotherapy Dose Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bar-Deroma, R; Borzov, E; Nevelsky, A
2015-06-15
Purpose: Radiation therapy in conjunction with surgical implant fixation is a common combined treatment in case of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced (CFR) PEEK material has been recently introduced for production of intramedullary screws and plates. Gold powder can be added to the CFR-PEEK material in order to enhance visibility of the screws during intraoperative imaging procedures. In this work, we investigated the perturbation effects of the pedicle screws made of CFR-PEEK, CFR-PEEK with added gold powder (CFR-PEEK-AU) and Titanium (Ti) on radiotherapy dose distributions. Methods: Monte Carlo (MC)more » simulations were performed using the EGSnrc code package for 6MV beams with 10×10 fields at SSD=100cm. By means of MC simulations, dose distributions around titanium, CFR- PEEK and CFR-PEEK-AU screws (manufactured by Carbo-Fix Orthopedics LTD, Israel) placed in a water phantom were calculated. The screw axis was either parallel or perpendicular to the beam axis. Dose perturbation (relative to dose in homogeneous water phantom) was assessed. Results: Maximum overdose due to backscatter was 10% for the Ti screws, 5% for the CFR-PEEK-AU screws and effectively zero for the CFR-PEEK screws. Maximum underdose due to attenuation was 25% for the Ti screws, 15% for the CFR-PEEK-AU screws and 5% for the CFR-PEEK screws. Conclusion: Titanium screws introduce the largest distortion on the radiation dose distribution. The gold powder added to the CFR-PEEK material improves visibility at the cost of increased dose perturbation. CFR-PEEK screws caused minimal alteration on the dose distribution. This can decrease possible over and underdose of adjacent tissue and thus favorably influence treatment efficiency. The use of such implants has potential clinical advantage in the treatment of neoplastic bone disease.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, A; Han, B; Bush, K
Purpose: Dosimetric verification of VMAT/SBRT is currently performed on one or two planes in a phantom with either film or array detectors. A robust and easy-to-use 3D dosimetric tool has been sought since the advent of conformal radiation therapy. Here we present such a strategy for independent 3D VMAT/SBRT plan verification system by a combined use of EPID and cloud-based Monte Carlo (MC) dose calculation. Methods: The 3D dosimetric verification proceeds in two steps. First, the plan was delivered with a high resolution portable EPID mounted on the gantry, and the EPID-captured gantry-angle-resolved VMAT/SBRT field images were converted into fluencemore » by using the EPID pixel response function derived from MC simulations. The fluence was resampled and used as the input for an in-house developed Amazon cloud-based MC software to reconstruct the 3D dose distribution. The accuracy of the developed 3D dosimetric tool was assessed using a Delta4 phantom with various field sizes (square, circular, rectangular, and irregular MLC fields) and different patient cases. The method was applied to validate VMAT/SBRT plans using WFF and FFF photon beams (Varian TrueBeam STX). Results: It was found that the proposed method yielded results consistent with the Delta4 measurements. For points on the two detector planes, a good agreement within 1.5% were found for all the testing fields. Patient VMAT/SBRT plan studies revealed similar level of accuracy: an average γ-index passing rate of 99.2± 0.6% (3mm/3%), 97.4± 2.4% (2mm/2%), and 72.6± 8.4 % ( 1mm/1%). Conclusion: A valuable 3D dosimetric verification strategy has been developed for VMAT/SBRT plan validation. The technique provides a viable solution for a number of intractable dosimetry problems, such as small fields and plans with high dose gradient.« less
Gholami, Somayeh; Nedaie, Hassan Ali; Longo, Francesco; Ay, Mohammad Reza; Dini, Sharifeh A.; Meigooni, Ali S.
2017-01-01
Purpose: The clinical efficacy of Grid therapy has been examined by several investigators. In this project, the hole diameter and hole spacing in Grid blocks were examined to determine the optimum parameters that give a therapeutic advantage. Methods: The evaluations were performed using Monte Carlo (MC) simulation and commonly used radiobiological models. The Geant4 MC code was used to simulate the dose distributions for 25 different Grid blocks with different hole diameters and center-to-center spacing. The therapeutic parameters of these blocks, namely, the therapeutic ratio (TR) and geometrical sparing factor (GSF) were calculated using two different radiobiological models, including the linear quadratic and Hug–Kellerer models. In addition, the ratio of the open to blocked area (ROTBA) is also used as a geometrical parameter for each block design. Comparisons of the TR, GSF, and ROTBA for all of the blocks were used to derive the parameters for an optimum Grid block with the maximum TR, minimum GSF, and optimal ROTBA. A sample of the optimum Grid block was fabricated at our institution. Dosimetric characteristics of this Grid block were measured using an ionization chamber in water phantom, Gafchromic film, and thermoluminescent dosimeters in Solid Water™ phantom materials. Results: The results of these investigations indicated that Grid blocks with hole diameters between 1.00 and 1.25 cm and spacing of 1.7 or 1.8 cm have optimal therapeutic parameters (TR > 1.3 and GSF~0.90). The measured dosimetric characteristics of the optimum Grid blocks including dose profiles, percentage depth dose, dose output factor (cGy/MU), and valley-to-peak ratio were in good agreement (±5%) with the simulated data. Conclusion: In summary, using MC-based dosimetry, two radiobiological models, and previously published clinical data, we have introduced a method to design a Grid block with optimum therapeutic response. The simulated data were reproduced by experimental data. PMID:29296035
NASA Astrophysics Data System (ADS)
Ródenas, José
2017-11-01
All materials exposed to some neutron flux can be activated independently of the kind of the neutron source. In this study, a nuclear reactor has been considered as neutron source. In particular, the activation of control rods in a BWR is studied to obtain the doses produced around the storage pool for irradiated fuel of the plant when control rods are withdrawn from the reactor and installed into this pool. It is very important to calculate these doses because they can affect to plant workers in the area. The MCNP code based on the Monte Carlo method has been applied to simulate activation reactions produced in the control rods inserted into the reactor. Obtained activities are introduced as input into another MC model to estimate doses produced by them. The comparison of simulation results with experimental measurements allows the validation of developed models. The developed MC models have been also applied to simulate the activation of other materials, such as components of a stainless steel sample introduced into a training reactors. These models, once validated, can be applied to other situations and materials where a neutron flux can be found, not only nuclear reactors. For instance, activation analysis with an Am-Be source, neutrography techniques in both medical applications and non-destructive analysis of materials, civil engineering applications using a Troxler, analysis of materials in decommissioning of nuclear power plants, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ureba, A.; Salguero, F. J.; Barbeiro, A. R.
Purpose: The authors present a hybrid direct multileaf collimator (MLC) aperture optimization model exclusively based on sequencing of patient imaging data to be implemented on a Monte Carlo treatment planning system (MC-TPS) to allow the explicit radiation transport simulation of advanced radiotherapy treatments with optimal results in efficient times for clinical practice. Methods: The planning system (called CARMEN) is a full MC-TPS, controlled through aMATLAB interface, which is based on the sequencing of a novel map, called “biophysical” map, which is generated from enhanced image data of patients to achieve a set of segments actually deliverable. In order to reducemore » the required computation time, the conventional fluence map has been replaced by the biophysical map which is sequenced to provide direct apertures that will later be weighted by means of an optimization algorithm based on linear programming. A ray-casting algorithm throughout the patient CT assembles information about the found structures, the mass thickness crossed, as well as PET values. Data are recorded to generate a biophysical map for each gantry angle. These maps are the input files for a home-made sequencer developed to take into account the interactions of photons and electrons with the MLC. For each linac (Axesse of Elekta and Primus of Siemens) and energy beam studied (6, 9, 12, 15 MeV and 6 MV), phase space files were simulated with the EGSnrc/BEAMnrc code. The dose calculation in patient was carried out with the BEAMDOSE code. This code is a modified version of EGSnrc/DOSXYZnrc able to calculate the beamlet dose in order to combine them with different weights during the optimization process. Results: Three complex radiotherapy treatments were selected to check the reliability of CARMEN in situations where the MC calculation can offer an added value: A head-and-neck case (Case I) with three targets delineated on PET/CT images and a demanding dose-escalation; a partial breast irradiation case (Case II) solved with photon and electron modulated beams (IMRT + MERT); and a prostatic bed case (Case III) with a pronounced concave-shaped PTV by using volumetric modulated arc therapy. In the three cases, the required target prescription doses and constraints on organs at risk were fulfilled in a short enough time to allow routine clinical implementation. The quality assurance protocol followed to check CARMEN system showed a high agreement with the experimental measurements. Conclusions: A Monte Carlo treatment planning model exclusively based on maps performed from patient imaging data has been presented. The sequencing of these maps allows obtaining deliverable apertures which are weighted for modulation under a linear programming formulation. The model is able to solve complex radiotherapy treatments with high accuracy in an efficient computation time.« less
Ureba, A; Salguero, F J; Barbeiro, A R; Jimenez-Ortega, E; Baeza, J A; Miras, H; Linares, R; Perucha, M; Leal, A
2014-08-01
The authors present a hybrid direct multileaf collimator (MLC) aperture optimization model exclusively based on sequencing of patient imaging data to be implemented on a Monte Carlo treatment planning system (MC-TPS) to allow the explicit radiation transport simulation of advanced radiotherapy treatments with optimal results in efficient times for clinical practice. The planning system (called CARMEN) is a full MC-TPS, controlled through aMATLAB interface, which is based on the sequencing of a novel map, called "biophysical" map, which is generated from enhanced image data of patients to achieve a set of segments actually deliverable. In order to reduce the required computation time, the conventional fluence map has been replaced by the biophysical map which is sequenced to provide direct apertures that will later be weighted by means of an optimization algorithm based on linear programming. A ray-casting algorithm throughout the patient CT assembles information about the found structures, the mass thickness crossed, as well as PET values. Data are recorded to generate a biophysical map for each gantry angle. These maps are the input files for a home-made sequencer developed to take into account the interactions of photons and electrons with the MLC. For each linac (Axesse of Elekta and Primus of Siemens) and energy beam studied (6, 9, 12, 15 MeV and 6 MV), phase space files were simulated with the EGSnrc/BEAMnrc code. The dose calculation in patient was carried out with the BEAMDOSE code. This code is a modified version of EGSnrc/DOSXYZnrc able to calculate the beamlet dose in order to combine them with different weights during the optimization process. Three complex radiotherapy treatments were selected to check the reliability of CARMEN in situations where the MC calculation can offer an added value: A head-and-neck case (Case I) with three targets delineated on PET/CT images and a demanding dose-escalation; a partial breast irradiation case (Case II) solved with photon and electron modulated beams (IMRT + MERT); and a prostatic bed case (Case III) with a pronounced concave-shaped PTV by using volumetric modulated arc therapy. In the three cases, the required target prescription doses and constraints on organs at risk were fulfilled in a short enough time to allow routine clinical implementation. The quality assurance protocol followed to check CARMEN system showed a high agreement with the experimental measurements. A Monte Carlo treatment planning model exclusively based on maps performed from patient imaging data has been presented. The sequencing of these maps allows obtaining deliverable apertures which are weighted for modulation under a linear programming formulation. The model is able to solve complex radiotherapy treatments with high accuracy in an efficient computation time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badkul, R; Pokhrel, D; Jiang, H
2016-06-15
Purpose: Intra-fractional tumor motion due to respiration may potentially compromise dose delivery for SBRT of lung tumors. Even sufficient margins are used to ensure there is no geometric miss of target volume, there is potential dose blurring effect may present due to motion and could impact the tumor coverage if motions are larger. In this study we investigated dose blurring effect of open fields as well as Lung SBRT patients planned using 2 non-coplanar dynamic conformal arcs(NCDCA) and few conformal beams(CB) calculated with Monte Carlo (MC) based algorithm utilizing phantom with 2D-diode array(MapCheck) and ion-chamber. Methods: SBRT lung patients weremore » planned on Brainlab-iPlan system using 4D-CT scan and ITV were contoured on MIP image set and verified on all breathing phase image sets to account for breathing motion and then 5mm margin was applied to generate PTV. Plans were created using two NCDCA and 4-5 CB 6MV photon calculated using XVMC MC-algorithm. 3 SBRT patients plans were transferred to phantom with MapCheck and 0.125cc ion-chamber inserted in the middle of phantom to calculate dose. Also open field 3×3, 5×5 and 10×10 were calculated on this phantom. Phantom was placed on motion platform with varying motion from 5, 10, 20 and 30 mm with duty cycle of 4 second. Measurements were carried out for open fields as well 3 patients plans at static and various degree of motions. MapCheck planar dose and ion-chamber reading were collected and compared with static measurements and computed values to evaluate the dosimetric effect on tumor coverage due to motion. Results: To eliminate complexity of patients plan 3 simple open fields were also measured to see the dose blurring effect with the introduction of motion. All motion measured ionchamber values were normalized to corresponding static value. For open fields 5×5 and 10×10 normalized central axis ion-chamber values were 1.00 for all motions but for 3×3 they were 1 up to 10mm motion and 0.97 and 0.87 for 20 and 30mm motion respectively. For SBRT plans central axis dose values were within 1% upto 10mm motions but decreased to average of 5% for 20mm and 8% for 30mm motion. Mapcheck comparison with static showed penumbra enlargement due to motion blurring at the edges of the field for 3×3,5×5,10×10 pass rates were 88% to 12%, 100% to 43% and 100% to 63% respectively as motion increased from 5 to 30mm. For SBRT plans MapCheck mean pass rate were decreased from 73.8% to 39.5% as motion increased from 5mm to 30mm. Conclusion: Dose blurring effect has been seen in open fields as well as SBRT lung plans using NCDCA with CB which worsens with increasing respiratory motion and decreasing field size(tumor size). To reduce this effect larger margins and appropriate motion reduction techniques should be utilized.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palma, B; Bazalova-Carter, M; Qu, B
Purpose: To evaluate the performance of 100–120 MeV very-high energy electron (VHEE) scanning pencil beams to radiotherapy by means of Monte Carlo (MC) simulations. Methods: We selected five clinical cases with target sizes of 1.2 cm{sup 3} to 990.4 cm{sup 3}. We calculated VHEE treatment plans using the MC EGSnrc code implemented in a MATLAB-based graphical user interface developed by our group. We generated phase space data for beam energies: 100 and 120 MeV and pencil beam spot sizes of 1, 3, and 5 mm at FWHM. The number of equidistant beams considered in this work was 16 or 32.more » Dose was calculated and then imported into a research version of RayStation where treatment plan optimization was performed. We compared the VHEE plans with the clinically delivered volumetric modulated arc therapy (VMAT) plan to evaluate VHEE plans performance. Results: VHEE plans provided the same PTV coverage and dose homogeneity than VMAT plans for all the cases. In average, the mean dose to organs at risk (OARs) was 24% lower for the VHEE plans. The structures that benefited the most from using VHEE were: large bowel for the esophagus case, chest wall for the liver case, brainstem for the acoustic case, carina for the lung case, and genitalia for the anal case, with 23.7–34.6% lower dose. VHEE dose distributions were more conformal than VMAT solution as confirmed by conformity indices CI100 and CI50. Integral dose to the body was in average 19.6% (9.2%–36.5%) lower for the VHEE plans. Conclusion: We have shown that VHEE plans resulted in similar or superior dose distributions compared to clinical VMAT plans for five different cases and a wide range of target volumes, including a case with a small target (1.2 cm{sup 3}), which represents a challenge for VMAT planning and might require the use of more complex non-coplanar VMAT plans. B Palma: None. M Bazalova: None. B Hardemark: Employee, RaySearch Laboratories AB. E Hynning: Employee, RaySearch Laboratories AB. B Qu: None. B Loo Jr.: Research support, RaySearch, Varian. P Maxim: Research support, RaySearch, Varian.« less
Radiation environment at LEO orbits: MC simulation and experimental data.
NASA Astrophysics Data System (ADS)
Zanini, Alba; Borla, Oscar; Damasso, Mario; Falzetta, Giuseppe
The evaluations of the different components of the radiation environment in spacecraft, both in LEO orbits and in deep space is of great importance because the biological effect on humans and the risk for instrumentation strongly depends on the kind of radiation (high or low LET). That is important especially in view of long term manned or unmanned space missions, (mission to Mars, solar system exploration). The study of space radiation field is extremely complex and not completely solved till today. Given the complexity of the radiation field, an accurate dose evaluation should be considered an indispensable part of any space mission. Two simulation codes (MCNPX and GEANT4) have been used to assess the secondary radiation inside FO-TON M3 satellite and ISS. The energy spectra of primary radiation at LEO orbits have been modelled by using various tools (SPENVIS, OMERE, CREME96) considering separately Van Allen protons, the GCR protons and the GCR alpha particles. This data are used as input for the two MC codes and transported inside the spacecraft. The results of two calculation meth-ods have been compared. Moreover some experimental results previously obtained on FOTON M3 satellite by using TLD, Bubble dosimeter and LIULIN detector are considered to check the performances of the two codes. Finally the same experimental device are at present collecting data on the ISS (ASI experiment BIOKIS -nDOSE) and at the end of the mission the results will be compared with the calculation.
Andrade, Chittaranjan; Srinivasamurthy, Gurunath M; Vishwasenani, A; Prakash, G Sai; Srihari, B S; Chandra, J Suresh
2002-06-01
Clinical research shows that the antidepressant and cognitive adverse effects of electroconvulsive therapy are both dependent on the administered electrical stimulus intensity (dose); however, dose-dependent neurotransmitter system changes in the brain, which might underlie the therapeutic or adverse effects, remain to be demonstrated. We used a behavioral model to examine dose-related effects of electroconvulsive shock (ECS) on dopamine postsynaptic receptor functioning in the rat brain. In a factorially designed study, rats (n = 100) were treated with five once-daily ECSs at three levels (sham ECS, 30 mC ECS, and 120 mC ECS), and with drug at two levels (saline, and 1 mg/kg s.c. apomorphine). Motility was assessed in the small open field. Apomorphine-elicited, dopamine postsynaptic receptor-mediated hypermotility was significantly increased by 120 mC ECS but not by 30 mC ECS. An additional but unrelated finding was that, while the ECS seizure duration expectedly decreased across time, no dose-dependent effects were observed. ECS-induced dopamine postsynaptic receptor up-regulation may depend on the intensity of the administered electrical stimulus.
NASA Astrophysics Data System (ADS)
Kurosu, Keita; Das, Indra J.; Moskvin, Vadim P.
2016-01-01
Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm3, which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm3 voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation technique. We therefore conclude that customization parameters must be set with reference to the optimized parameters of the corresponding irradiation technique in order to render them useful for achieving artifact-free MC simulation for use in computational experiments and clinical treatments.
Evaluation of six TPS algorithms in computing entrance and exit doses.
Tan, Yun I; Metwaly, Mohamed; Glegg, Martin; Baggarley, Shaun; Elliott, Alex
2014-05-08
Entrance and exit doses are commonly measured in in vivo dosimetry for comparison with expected values, usually generated by the treatment planning system (TPS), to verify accuracy of treatment delivery. This report aims to evaluate the accuracy of six TPS algorithms in computing entrance and exit doses for a 6 MV beam. The algorithms tested were: pencil beam convolution (Eclipse PBC), analytical anisotropic algorithm (Eclipse AAA), AcurosXB (Eclipse AXB), FFT convolution (XiO Convolution), multigrid superposition (XiO Superposition), and Monte Carlo photon (Monaco MC). Measurements with ionization chamber (IC) and diode detector in water phantoms were used as a reference. Comparisons were done in terms of central axis point dose, 1D relative profiles, and 2D absolute gamma analysis. Entrance doses computed by all TPS algorithms agreed to within 2% of the measured values. Exit doses computed by XiO Convolution, XiO Superposition, Eclipse AXB, and Monaco MC agreed with the IC measured doses to within 2%-3%. Meanwhile, Eclipse PBC and Eclipse AAA computed exit doses were higher than the IC measured doses by up to 5.3% and 4.8%, respectively. Both algorithms assume that full backscatter exists even at the exit level, leading to an overestimation of exit doses. Despite good agreements at the central axis for Eclipse AXB and Monaco MC, 1D relative comparisons showed profiles mismatched at depths beyond 11.5 cm. Overall, the 2D absolute gamma (3%/3 mm) pass rates were better for Monaco MC, while Eclipse AXB failed mostly at the outer 20% of the field area. The findings of this study serve as a useful baseline for the implementation of entrance and exit in vivo dosimetry in clinical departments utilizing any of these six common TPS algorithms for reference comparison.
SU-E-T-154: Establishment and Implement of 3D Image Guided Brachytherapy Planning System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, S; Zhao, S; Chen, Y
2014-06-01
Purpose: Cannot observe the dose intuitionally is a limitation of the existing 2D pre-implantation dose planning. Meanwhile, a navigation module is essential to improve the accuracy and efficiency of the implantation. Hence a 3D Image Guided Brachytherapy Planning System conducting dose planning and intra-operative navigation based on 3D multi-organs reconstruction is developed. Methods: Multi-organs including the tumor are reconstructed in one sweep of all the segmented images using the multiorgans reconstruction method. The reconstructed organs group establishs a three-dimensional visualized operative environment. The 3D dose maps of the three-dimentional conformal localized dose planning are calculated with Monte Carlo method whilemore » the corresponding isodose lines and isodose surfaces are displayed in a stereo view. The real-time intra-operative navigation is based on an electromagnetic tracking system (ETS) and the fusion between MRI and ultrasound images. Applying Least Square Method, the coordinate registration between 3D models and patient is realized by the ETS which is calibrated by a laser tracker. The system is validated by working on eight patients with prostate cancer. The navigation has passed the precision measurement in the laboratory. Results: The traditional marching cubes (MC) method reconstructs one organ at one time and assembles them together. Compared to MC, presented multi-organs reconstruction method has superiorities in reserving the integrality and connectivity of reconstructed organs. The 3D conformal localized dose planning, realizing the 'exfoliation display' of different isodose surfaces, helps make sure the dose distribution has encompassed the nidus and avoid the injury of healthy tissues. During the navigation, surgeons could observe the coordinate of instruments real-timely employing the ETS. After the calibration, accuracy error of the needle position is less than 2.5mm according to the experiments. Conclusion: The speed and quality of 3D reconstruction, the efficiency in dose planning and accuracy in navigation all can be improved simultaneously.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezaeian, N Hassan; Chi, Y; Tian, Z
Purpose: A clinical trial on stereotactic body radiation therapy (SBRT) for high-risk prostate cancer is undergoing at our institution. In addition to escalating dose to the prostate, we have increased dose to intra-prostatic lesions. Intra-fractional prostate motion deteriorates well planned radiation dose, especially for the small intra-prostatic lesions. To solve this problem, we have developed a motion tracking and 4D dose-reconstruction system to facilitate adaptive re-planning. Methods: Patients in the clinical trial were treated with VMAT using four arcs and 10 FFF beam. KV triggered x-ray projections were taken every 3 sec during delivery to acquire 2D projections of 3Dmore » anatomy at the direction orthogonal to the therapeutic beam. Each patient had three implanted prostate markers. Our developed system first determined 2D projection locations of these markers and then 3D prostate translation and rotation via 2D/3D registration of the markers. Using delivery log files, our GPU-based Monte Carlo tool (goMC) reconstructed dose corresponding to each triggered image. The calculated 4D dose distributions were further aggregated to yield the delivered dose. Results: We first tested each module in our system. MC dose engine were commissioned to our treatment planning system with dose difference of <0.5%. For motion tracking, 1789 kV projections from 7 patients were acquired. The 2D marker location error was <1 mm. For 3D motion tracking, root mean square (RMS) errors along LR, AP, and CC directions were 0.26mm, 0.36mm, and 0.01mm respectively in simulation studies and 1.99mm, 1.37mm, and 0.22mm in phantom studies. We also tested the entire system workflow. Our system was able to reconstruct delivered dose. Conclusion: We have developed a functional intra-fractional motion tracking and 4D dose re-construction system to support our clinical trial on adaptive high-risk prostate cancer SBRT. Comprehensive evaluations have shown the capability and accuracy of our system.« less
Hadad, K; Zohrevand, M; Faghihi, R; Sedighi Pashaki, A
2015-03-01
HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry.
Hadad, K.; Zohrevand, M.; Faghihi, R.; Sedighi Pashaki, A.
2015-01-01
Background HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. Materials and Methods In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. Results The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Conclusion Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry. PMID:25973408
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paudel, N; University of Toledo Medical Center, Toledo, OH; Shvydka, D
Purpose: Presence of interfaces between high and low atomic number materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. This phenomenon is characterized by a very narrow region of sharp dose enhancement at the interface. The rapid fall-off of the dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial. We use an in-house-built inexpensive thin-film Cadmium Telluride (CdTe) photodetector to study this effect at the gold-tissue interface and verify our experimental results with Monte Carlo (MC) modeling. Methods: Three micron thick CdTe photodetectors were fabricated in our lab. One,more » ten or one hundred micron thick gold foils placed in a tissue-equivalent-phantom were irradiated with a clinical Ir-192 high dose rate source and current measured with a CdTe detector in each case was compared against the current measured for all uniform tissue-equivalent phantom. Percentage signal enhancement (PSE) due to each gold foil was compared against MC modeled percentage dose enhancement (PDE), obtained from the geometry mimicking the experimental setup. Results: The experiment based PSEs due to 1, 10, and 100 micron thick gold foils at the closest measured distance of measurement (12.5 micron) from the interface were 42.6 ± 10.8, 137.0 ± 11.9 and 203.0 ± 15.4 respectively. The corresponding MC modeled PDEs were 38.1 ± 1, 164 ± 1 and 249 ± 1 respectively. The experimental and MC modeled values showed a closer agreement at the larger distances from the interface. Conclusion: The dose enhancement near the gold-tissue interface was measured using an in-house-built high-resolution CdTe-based photodetector and validated with MC simulations. A close agreement of the experimental results with the corresponding MC modeled results shows that CdTe detector can be utilized for mapping interface dose distribution encountered in the application of ionizing radiation.« less
Paudel, Nava Raj; Shvydka, Diana
2016-01-01
Presence of interfaces between high and low atomic number (Z) materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. It is characterized by a very narrow region of sharp dose enhancement at the interface. A rapid falloff of dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial. We use an in‐house‐built inexpensive thin‐film Cadmium Telluride (CdTe) photodetector to study this effect at the gold‐tissue interface and verify our experimental results with Monte Carlo (MC) modeling. Three‐micron thick thin‐film CdTe photodetectors were fabricated in our lab. One‐, ten‐ or one hundred‐micron thick gold foils placed in a tissue‐equivalent‐phantom were irradiated with a clinical Ir‐192 high‐dose‐rate (HDR) source and current measured with a CdTe detector in each case was compared with the current measured for all uniform tissue‐equivalent phantom. Percentage signal enhancement (PSE) due to each gold foil was then compared against MC modeled percentage dose enhancement (PDE), obtained from the geometry mimicking the experimental setup. The experimental PSEs due to 1, 10, and 100 μm thick gold foils at the closest measured distance of 12.5 μm from the interface were 42.6±10.8, 137.0±11.9, and 203.0±15.4, respectively. The corresponding MC modeled PDEs were 38.1±1., 164±1, and 249±1, respectively. The experimental and MC modeled values showed a closer agreement at the larger distances from the interface. The dose enhancement in the vicinity of gold‐tissue interface was successfully measured using an in‐house‐built, high‐resolution CdTe‐based photodetector and validated with MC simulations. A close agreement between experimental and the MC modeled results shows that CdTe detector can be utilized for mapping interface dose distribution encountered in the application of ionizing radiation. PACS number(s): 29.40.Wk, 73.50.Pz, 87.53.Jw, 87.55.K‐ PMID:27685139
NASA Technical Reports Server (NTRS)
Hu, S.; Kim, M. Y.; McClellan, G. E.; Nikjoo, H.; Cucinotta, F. A.
2007-01-01
In space exploration outside the Earth's geomagnetic field, radiation exposure from solar particle events (SPE) presents a health concern for astronauts, that could impair their performance and result in possibility of failure of the mission. Acute risks are especially of concern during spacewalks on the lunar surface because of the rapid onset of SPE's and science goals that involve long distances to crew habitats. Thus assessing the potential of early radiation effect under such adverse conditions is of prime importance. Here we present a biologic based mathematical model which describes the dose and time-dependent early human responses to ionizing radiation. We examine the possible early effects on crew behind various shielding materials from exposure to some historical large SPEs on the lunar and Mars surfaces. The doses and dose rates were calculated using the BRYNTRN code (Kim, M.Y, Hu, X, and Cucinotta, F.A, Effect of Shielding Materials from SPEs on the Lunar and Mars Surface, AIAA Space 2005, paper number AIAA-2005-6653, Long Beach, CA, August 30-September 1, 2005) and the hazard of the early radiation effects and performance reduction were calculated using the RIPD code (Anno, G.H, McClellan, G.E., Dore, M.A, Protracted Radiation-Induced Performance Decrement, Volume 1 Model Development,1996, Defense Nuclear Agency: Alexandria VA). Based on model assumptions we show that exposure to these historical SPEs do cause early effects to crew members and impair their performance if effective shielding and medical countermeasure tactics are not provided. The calculations show multiple occurrence of large SPEs in a short period of time significantly increase the severity of early illness, however early death from failure of the hematopoietic system is very unlikely because of the dose-rate and dose heterogeneity of SPEs. Results from these types of calculations will be a guide in design of protection systems and medical response strategy for astronauts in case of exposure to high dose irradiation during future space missions.
Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure
NASA Astrophysics Data System (ADS)
Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei
2011-09-01
Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. This work was presented in part at the 2010 Annual Meeting of the American Association of Physicists in Medicine (AAPM), Philadelphia, PA.
2015-08-01
McCullagh, P.; Nelder, J.A. Generalized Linear Model , 2nd ed.; Chapman and Hall: London, 1989. 7. Johnston, J. Econometric Methods, 3rd ed.; McGraw...FOR A DOSE-RESPONSE MODEL ECBC-TN-068 Kyong H. Park Steven J. Lagan RESEARCH AND TECHNOLOGY DIRECTORATE August 2015 Approved for public release...Likelihood Estimation Method for Completely Separated and Quasi-Completely Separated Data for a Dose-Response Model 5a. CONTRACT NUMBER 5b. GRANT
Ródenas, J; Abarca, A; Gallardo, S
2011-08-01
BWR control rods are activated by neutron reactions in the reactor. The dose produced by this activity can affect workers in the area surrounding the storage pool, where activated rods are stored. Monte Carlo (MC) models for neutron activation and dose assessment around the storage pool have been developed and validated. In this work, the MC models are applied to verify the expected reduction of dose when the irradiated control rod is hanged in an inverted position into the pool. 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Kino, A; Newman, B
2014-06-01
Purpose: To investigate the radiation dose for pediatric high pitch cardiac CTA Methods: A total of 14 cases were included in this study, with mean age of 6.2 years (ranges from 2 months to 15 years). Cardiac CTA was performed using a dual-source CT system (Definition Flash, Siemens). Tube voltage (70, 80 and 100kV) was chosen based on patient weight. All patients were scanned using a high-pitch spiral mode (pitch ranges from 2.5 to 3) with tube current modulation technique (CareDose4D, Siemens). For each case, the three dimensional dose distributions were calculated using a Monte Carlo software package (IMPACT-MC, CTmore » Image GmbH). Scanning parameters of each exam, including tube voltage, tube current, beamshaping filters, beam collimation, were defined in the Monte Carlo calculation. Tube current profile along projection angles was obtained from projection data of each tube, which included data within the over-scanning range along z direction. The volume of lungs was segmented out with CT images (3DSlicer). Lung doses of all patients were calculated and compared with CTDIvol, DLP, and SSDE. Results: The average (range) of CTDIvol, DLP and SSDE of all patients was 1.19 mGy (0.58 to 3.12mGy), 31.54 mGy*cm (12.56 to 99 mGy*cm), 2.26 mGy (1.19 to 6.24 mGy), respectively. Radiation dose to the lungs ranged from 0.83 to 4.18 mGy. Lung doses correlated with CTDIvol, DLP and SSDE with correlation coefficients(k) at 0.98, 0.93, and 0.99. However, for the cases with CTDIvol less than 1mGy, only SSDE preserved a strong correlation with lung doses (k=0.83), while much weaker correlations were found for CTDIvol (k=0.29) and DLP (k=-0.47). Conclusion: Lung doses to pediatric patients during Cardiac CTA were estimated. SSDE showed the most robust correlation with lung doses in contrast to CTDIvol and DLP.« less
Andrade, Chittaranjan; Thyagarajan, S; Vinod, P S; Srikanth, S N; Rao, N S K; Chandra, J Suresh
2002-12-01
Animal models are frequently used to generate and test hypotheses about amnesia resulting from electroconvulsive therapy (ECT). Although many predictors of ECT-induced amnesia are known, their relative effects have been inadequately researched in the context of the animal models. We sought to determine the relative retrograde amnestic effects of electroconvulsive shock (ECS) stimulus intensity (dose) and number on strong memories in rats. We also sought to identify dose-dependent ceiling amnestic effects, if any. Adult rats (n = 144) were overtrained in a passive avoidance task using a step down apparatus. The rats were then randomized in a factorial design to receive one, two, or three once-daily bilateral ECS at 0-mC (sham ECS), 30-mC, 60-mC, 120-mC, or 180-mC doses. Recall of the pre-ECS training was assessed 1 day after the last ECS. Retrograde amnesia was observed only in rats that received 3 ECS; dose-dependent amnestic effects did not emerge. Higher stimulus intensity was associated with a small (13%) but significant increase in motor seizure duration, but only at the first ECS; stimulus intensity did not influence the attenuation of seizure duration across repeated occasions of ECS. With bilateral ECS, the number of ECSs administered is a more important variable than the ECS dose in weakening a strong, recently acquired, noxious memory; this finding may have important clinical implications. Higher stimulus intensity marginally increases motor seizure duration at the first ECS but does not influence the decrease in seizure duration across repeated ECSs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Lee, J; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul
Purpose: To evaluate the effect of a tungsten eye-shield on the dose distribution of a patient. Methods: A 3D scanner was used to extract the dimension and shape of a tungsten eye-shield in the STL format. Scanned data was transferred into a 3D printer. A dummy eye shield was then produced using bio-resin (3D systems, VisiJet M3 Proplast). For a patient with mucinous carcinoma, the planning CT was obtained with the dummy eye-shield placed on the patient’s right eye. Field shaping of 6 MeV was performed using a patient-specific cerrobend block on the 15 x 15 cm{sup 2} applicator. Themore » gantry angle was 330° to cover the planning target volume near by the lens. EGS4/BEAMnrc was commissioned from our measurement data from a Varian 21EX. For the CT-based dose calculation using EGS4/DOSXYZnrc, the CT images were converted to a phantom file through the ctcreate program. The phantom file had the same resolution as the planning CT images. By assigning the CT numbers of the dummy eye-shield region to 17000, the real dose distributions below the tungsten eye-shield were calculated in EGS4/DOSXYZnrc. In the TPS, the CT number of the dummy eye-shield region was assigned to the maximum allowable CT number (3000). Results: As compared to the maximum dose, the MC dose on the right lens or below the eye shield area was less than 2%, while the corresponding RTP calculated dose was an unrealistic value of approximately 50%. Conclusion: Utilizing a 3D scanner and a 3D printer, a dummy eye-shield for electron treatment can be easily produced. The artifact-free CT images were successfully incorporated into the CT-based Monte Carlo simulations. The developed method was useful in predicting the realistic dose distributions around the lens blocked with the tungsten shield.« less
NASA Astrophysics Data System (ADS)
Remy, Charlotte; Lalonde, Arthur; Béliveau-Nadeau, Dominic; Carrier, Jean-François; Bouchard, Hugo
2018-01-01
The purpose of this study is to evaluate the impact of a novel tissue characterization method using dual-energy over single-energy computed tomography (DECT and SECT) on Monte Carlo (MC) dose calculations for low-dose rate (LDR) prostate brachytherapy performed in a patient like geometry. A virtual patient geometry is created using contours from a real patient pelvis CT scan, where known elemental compositions and varying densities are overwritten in each voxel. A second phantom is made with additional calcifications. Both phantoms are the ground truth with which all results are compared. Simulated CT images are generated from them using attenuation coefficients taken from the XCOM database with a 100 kVp spectrum for SECT and 80 and 140Sn kVp for DECT. Tissue segmentation for Monte Carlo dose calculation is made using a stoichiometric calibration method for the simulated SECT images. For the DECT images, Bayesian eigentissue decomposition is used. A LDR prostate brachytherapy plan is defined with 125I sources and then calculated using the EGSnrc user-code Brachydose for each case. Dose distributions and dose-volume histograms (DVH) are compared to ground truth to assess the accuracy of tissue segmentation. For noiseless images, DECT-based tissue segmentation outperforms the SECT procedure with a root mean square error (RMS) on relative errors on dose distributions respectively of 2.39% versus 7.77%, and provides DVHs closest to the reference DVHs for all tissues. For a medium level of CT noise, Bayesian eigentissue decomposition still performs better on the overall dose calculation as the RMS error is found to be of 7.83% compared to 9.15% for SECT. Both methods give a similar DVH for the prostate while the DECT segmentation remains more accurate for organs at risk and in presence of calcifications, with less than 5% of RMS errors within the calcifications versus up to 154% for SECT. In a patient-like geometry, DECT-based tissue segmentation provides dose distributions with the highest accuracy and the least bias compared to SECT. When imaging noise is considered, benefits of DECT are noticeable if important calcifications are found within the prostate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Lixin; Jiang, Runqing; Osei, Ernest K.
2014-08-15
Flattening filter free (FFF) beams have been adopted by many clinics and used for patient treatment. However, compared to the traditional flattened beams, we have limited knowledge of FFF beams. In this study, we successfully modeled the 6 MV FFF beam for Varian TrueBeam accelerator with the Monte Carlo (MC) method. Both the percentage depth dose and profiles match well to the Golden Beam Data (GBD) from Varian. MC simulations were then performed to predict the relative output factors. The in-water output ratio, Scp, was simulated in water phantom and data obtained agrees well with GBD. The in-air output ratio,more » Sc, was obtained by analyzing the phase space placed at isocenter, in air, and computing the ratio of water Kerma rates for different field sizes. The phantom scattering factor, Sp, can then be obtained from the traditional way of taking the ratio of Scp and Sc. We also simulated Sp using a recently proposed method based on only the primary beam dose delivery in water phantom. Because there is no concern of lateral electronic disequilibrium, this method is more suitable for small fields. The results from both methods agree well with each other. The flattened 6 MV beam was simulated and compared to 6 MV FFF. The comparison confirms that 6 MV FFF has less scattering from the Linac head and less phantom scattering contribution to the central axis dose, which will be helpful for improving accuracy in beam modeling and dose calculation in treatment planning systems.« less
NASA Astrophysics Data System (ADS)
Fraser, Danielle
In radiation therapy an uncertainty in the delivered dose always exists because anatomic changes are unpredictable and patient specific. Image guided radiation therapy (IGRT) relies on imaging in the treatment room to monitor the tumour and surrounding tissue to ensure their prescribed position in the radiation beam. The goal of this thesis was to determine the dosimetric impact on the misaligned radiation therapy target for three cancer sites due to common setup errors; organ motion, tumour tissue deformation, changes in body habitus, and treatment planning errors. For this purpose, a novel 3D ultrasound system (Restitu, Resonant Medical, Inc.) was used to acquire a reference image of the target in the computed tomography simulation room at the time of treatment planning, to acquire daily images in the treatment room at the time of treatment delivery, and to compare the daily images to the reference image. The measured differences in position and volume between daily and reference geometries were incorporated into Monte Carlo (MC) dose calculations. The EGSnrc (National Research Council, Canada) family of codes was used to model Varian linear accelerators and patient specific beam parameters, as well as to estimate the dose to the target and organs at risk under several different scenarios. After validating the necessity of MC dose calculations in the pelvic region, the impact of interfraction prostate motion, and subsequent patient realignment under the treatment beams, on the delivered dose was investigated. For 32 patients it is demonstrated that using 3D conformal radiation therapy techniques and a 7 mm margin, the prescribed dose to the prostate, rectum, and bladder is recovered within 0.5% of that planned when patient setup is corrected for prostate motion, despite the beams interacting with a new external surface and internal tissue boundaries. In collaboration with the manufacturer, the ultrasound system was adapted from transabdominal imaging to neck imaging. Two case studies of nasopharyngeal cancer are discussed. The deformation of disease-positive cervical lymph nodes was monitored throughout treatment. Node volumes shrunk to 17% of the initial volume, moved up 1.3 cm, and received up to a 12% lower dose than that prescribed. It is shown that difficulties in imaging soft tissue in the neck region are circumvented with ultrasound imaging, and after dosimetric verification it is argued that adaptive replanning may be more beneficial than patient realignment when intensity modulated radiation therapy techniques are used. Some of the largest dose delivery errors were found in external electron beam treatments for breast cancer patients who underwent breast conserving surgery. Inaccuracies in conventional treatment planning resulted in substantial target dose discrepancies of up to 88%. When patient setup errors, interfraction tumour bed motion, and tissue remodeling were considered, inadequate target coverage was exacerbated. This thesis quantifies the dose discrepancy between that prescribed and that delivered. I delve into detail for common IGRT treatment sites, and illuminate problems that have not received much attention for less common IGRT treatment sites.
Lin, Mu-Han; Veltchev, Iavor; Koren, Sion; Ma, Charlie; Li, Jinsgeng
2015-07-08
Robotic radiosurgery system has been increasingly employed for extracranial treatments. This work is aimed to study the feasibility of a cylindrical diode array and a planar ion chamber array for patient-specific QA with this robotic radiosurgery system and compare their performance. Fiducial markers were implanted in both systems to enable image-based setup. An in-house program was developed to postprocess the movie file of the measurements and apply the beam-by-beam angular corrections for both systems. The impact of noncoplanar delivery was then assessed by evaluating the angles created by the incident beams with respect to the two detector arrangements and cross-comparing the planned dose distribution to the measured ones with/without the angular corrections. The sensitivity of detecting the translational (1-3 mm) and the rotational (1°-3°) delivery errors were also evaluated for both systems. Six extracranial patient plans (PTV 7-137 cm³) were measured with these two systems and compared with the calculated doses. The plan dose distributions were calculated with ray-tracing and the Monte Carlo (MC) method, respectively. With 0.8 by 0.8 mm² diodes, the output factors measured with the cylindrical diode array agree better with the commissioning data. The maximum angular correction for a given beam is 8.2% for the planar ion chamber array and 2.4% for the cylindrical diode array. The two systems demonstrate a comparable sensitivity of detecting the translational targeting errors, while the cylindrical diode array is more sensitive to the rotational targeting error. The MC method is necessary for dose calculations in the cylindrical diode array phantom because the ray-tracing algorithm fails to handle the high-Z diodes and the acrylic phantom. For all the patient plans, the cylindrical diode array/ planar ion chamber array demonstrate 100% / > 92% (3%/3 mm) and > 96% / ~ 80% (2%/2 mm) passing rates. The feasibility of using both systems for robotic radiosurgery system patient-specific QA has been demonstrated. For gamma evaluation, 2%/2 mm criteria for cylindrical diode array and 3%/3 mm criteria for planar ion chamber array are suggested. The customized angular correction is necessary as proven by the improved passing rate, especially with the planar ion chamber array system.
Glick, S D; Maisonneuve, I M; Szumlinski, K K
2000-09-01
18-MC, a novel iboga alkaloid congener, is being developed as a potential treatment for multiple forms of drug abuse. Like ibogaine (40 mg/kg), 18-MC (40 mg/kg) decreases the intravenous self-administration of morphine and cocaine and the oral self-administration of ethanol and nicotine in rats; unlike ibogaine, 18-MC does not affect responding for a nondrug reinforcer (water). Both ibogaine and 18-MC ameliorate opioid withdrawal signs. Both ibogaine and 18-MC decrease extracellular levels of dopamine in the nucleus accumbens, but only ibogaine increases extracellular levels of serotonin in the nucleus accumbens. Both ibogaine and 18-MC block morphine-induced and nicotine-induced dopamine release in the nucleus accumbens; only ibogaine enhances cocaine-induced increases in accumbal dopamine. Both ibogaine and 18-MC enhance the locomotor and/or stereotypic effects of stimulants. Ibogaine attenuates, but 18-MC potentiates, the acute locomotor effects of morphine; both compounds attenuate morphine-induced locomotion in morphine-experienced rats. Ibogaine produces whole body tremors and, at high doses (> or = 100 mg/kg), cerebellar damage; 18-MC does not produce these effects. Ibogaine, but not 18-MC, decreases heart rate at high doses. While 18-MC and ibogaine have similar affinities for kappa opioid and possibly nicotinic receptors, 18-MC has much lower affinities than ibogaine for NMDA and sigma-2 receptors, sodium channels, and the 5-HT transporter. Both 18-MC and ibogaine are sequestered in fat and, like ibogaine, 18-MC probably has an active metabolite. The data suggest that 18-MC has a narrower spectrum of actions and will have a substantially greater therapeutic index than ibogaine.
A procedure to determine the planar integral spot dose values of proton pencil beam spots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, Aman; Sahoo, Narayan; Zhu, X. Ronald
2012-02-15
Purpose: Planar integral spot dose (PISD) of proton pencil beam spots (PPBSs) is a required input parameter for beam modeling in some treatment planning systems used in proton therapy clinics. The measurement of PISD by using commercially available large area ionization chambers, like the PTW Bragg peak chamber (BPC), can have large uncertainties due to the size limitation of these chambers. This paper reports the results of our study of a novel method to determine PISD values from the measured lateral dose profiles and peak dose of the PPBS. Methods: The PISDs of 72.5, 89.6, 146.9, 181.1, and 221.8 MeVmore » energy PPBSs were determined by area integration of their planar dose distributions at different depths in water. The lateral relative dose profiles of the PPBSs at selected depths were measured by using small volume ion chambers and were investigated for their angular anisotropies using Kodak XV films. The peak spot dose along the beam's central axis (D{sub 0}) was determined by placing a small volume ion chamber at the center of a broad field created by the superposition of spots at different locations. This method allows eliminating positioning uncertainties and the detector size effect that could occur when measuring it in single PPBS. The PISD was then calculated by integrating the measured lateral relative dose profiles for two different upper limits of integration and then multiplying it with corresponding D{sub 0}. The first limit of integration was set to radius of the BPC, namely 4.08 cm, giving PISD{sub RBPC}. The second limit was set to a value of the radial distance where the profile dose falls below 0.1% of the peak giving the PISD{sub full}. The calculated values of PISD{sub RBPC} obtained from area integration method were compared with the BPC measured values. Long tail dose correction factors (LTDCFs) were determined from the ratio of PISD{sub full}/PISD{sub RBPC} at different depths for PPBSs of different energies. Results: The spot profiles were found to have angular anisotropy. This anisotropy in PPBS dose distribution could be accounted in a reasonable approximate manner by taking the average of PISD values obtained using the in-line and cross-line profiles. The PISD{sub RBPC} values fall within 3.5% of those measured by BPC. Due to inherent dosimetry challenges associated with PPBS dosimetry, which can lead to large experimental uncertainties, such an agreement is considered to be satisfactory for validation purposes. The PISD{sub full} values show differences ranging from 1 to 11% from BPC measured values, which are mainly due to the size limitation of the BPC to account for the dose in the long tail regions of the spots extending beyond its 4.08 cm radius. The dose in long tail regions occur both for high energy beams such as 221.8 MeV PPBS due to the contributions of nuclear interactions products in the medium, and for low energy PPBS because of their larger spot sizes. The calculated LTDCF values agree within 1% with those determined by the Monte Carlo (MC) simulations. Conclusions: The area integration method to compute the PISD from PPBS lateral dose profiles is found to be useful both to determine the correction factors for the values measured by the BPC and to validate the results from MC simulations.« less
NASA Astrophysics Data System (ADS)
Zheng, Yi; Sanche, Léon
2018-06-01
Ionizing radiation is intensively used for therapeutic [e.g., radiotherapy, brachytherapy, and targeted radionuclide therapy (TRT)], as well as for diagnostic medical imaging purposes. In these applications, the radiation dose given to the patient should be known and controlled. In conventional cancer treatments, absorbed dose calculations rely essentially on scattering cross sections (CSs) of the primary high-energy radiation. In more sophisticated treatments, such as combined radio- and chemo-therapy, a description of the details of energy deposits at the micro- and nano-scopic level is preferred to relate dose to radiobiological effectiveness or to evaluate doses at the biomolecular level, when radiopharmaceuticals emitting short-range radiation are delivered to critical molecular components of cancer cells (e.g., TRT). These highly radiotoxic compounds emit large densities of low-energy electrons (LEEs). More generally, LEE (0-30 eV) are emitted in large numbers by any type of high-energy radiation; i.e., about 30 000 per MeV of deposited primary energy. Thus, to optimize the effectiveness of several types of radiation treatments, the energy deposited by LEEs must be known at the level of the cell, nucleus, chromosome, or DNA. Such local doses can be evaluated by Monte Carlo (MC) calculations, which account event-by-event, for the slowing down of all generations of particles. In particular, these codes require as input parameters absolute LEE CSs for elastic scattering, energy losses, and direct damage to vital cellular molecules, particularly DNA, the main target of radiation therapy. In the last decade, such CSs have emerged in the literature. Furthermore, a method was developed to transform relative yields of damages into absolute CSs by measuring specific parameters in the experiments. In this review article, we first present a general description of dose calculations in biological media via MC simulation and give an overview of the CSs available from theoretical calculations and gas-phase experiments. The properties of LEE scattering in the gas-phase are then compared to those in the condensed phase. The remaining portion of the article is devoted to condensed-phase CSs. We provide absolute LEE scattering CSs for electronic, vibrational, and phonon excitation of biomolecules as well as for dissociative electron attachment, electron intra- and inter-molecular stabilization, and bond dissociation, including strand breaks and degradation product formation. The biomolecules are O2, CO2, H2O, DNA bases, sugar and phosphate unit analogs, oligonucleotides, plasmid DNA, and the amino acid tryptophan. CSs for strand breaks in radiosensitizing and chemotherapeutic molecules bond or not to a short DNA strand are also listed. The principle of each experimental technique and mathematical methods utilized to generate all condensed-phase CSs are briefly explained. The mechanisms responsible for the magnitudes of the CSs are discussed.
egs_brachy: a versatile and fast Monte Carlo code for brachytherapy
NASA Astrophysics Data System (ADS)
Chamberland, Marc J. P.; Taylor, Randle E. P.; Rogers, D. W. O.; Thomson, Rowan M.
2016-12-01
egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm)3 voxels) and eye plaque (with (1 mm)3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.
egs_brachy: a versatile and fast Monte Carlo code for brachytherapy.
Chamberland, Marc J P; Taylor, Randle E P; Rogers, D W O; Thomson, Rowan M
2016-12-07
egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm) 3 voxels) and eye plaque (with (1 mm) 3 voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.
Evaluation of six TPS algorithms in computing entrance and exit doses
Metwaly, Mohamed; Glegg, Martin; Baggarley, Shaun P.; Elliott, Alex
2014-01-01
Entrance and exit doses are commonly measured in in vivo dosimetry for comparison with expected values, usually generated by the treatment planning system (TPS), to verify accuracy of treatment delivery. This report aims to evaluate the accuracy of six TPS algorithms in computing entrance and exit doses for a 6 MV beam. The algorithms tested were: pencil beam convolution (Eclipse PBC), analytical anisotropic algorithm (Eclipse AAA), AcurosXB (Eclipse AXB), FFT convolution (XiO Convolution), multigrid superposition (XiO Superposition), and Monte Carlo photon (Monaco MC). Measurements with ionization chamber (IC) and diode detector in water phantoms were used as a reference. Comparisons were done in terms of central axis point dose, 1D relative profiles, and 2D absolute gamma analysis. Entrance doses computed by all TPS algorithms agreed to within 2% of the measured values. Exit doses computed by XiO Convolution, XiO Superposition, Eclipse AXB, and Monaco MC agreed with the IC measured doses to within 2%‐3%. Meanwhile, Eclipse PBC and Eclipse AAA computed exit doses were higher than the IC measured doses by up to 5.3% and 4.8%, respectively. Both algorithms assume that full backscatter exists even at the exit level, leading to an overestimation of exit doses. Despite good agreements at the central axis for Eclipse AXB and Monaco MC, 1D relative comparisons showed profiles mismatched at depths beyond 11.5 cm. Overall, the 2D absolute gamma (3%/3 mm) pass rates were better for Monaco MC, while Eclipse AXB failed mostly at the outer 20% of the field area. The findings of this study serve as a useful baseline for the implementation of entrance and exit in vivo dosimetry in clinical departments utilizing any of these six common TPS algorithms for reference comparison. PACS numbers: 87.55.‐x, 87.55.D‐, 87.55.N‐, 87.53.Bn PMID:24892349
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakaguchi, Y; Shimohigashi, Y; Onizuka, R
Purpose: Recently, there has been increased clinical use of stereotactic body radiation therapy (SBRT). SBRT treatments will strongly benefit from in vivo patient dose verification, as any errors in delivery can be more detrimental to the radiobiology of the patient as compared to conventional therapy. In vivo dose measurements, a commercially available quality assurance platform which is able to correlate the delivered dose to the patient’s anatomy and take into account tissue inhomogeneity, is the COMPASS system (IBA Dosimetry, Germany) using a new transmission detector (Dolphin, IBA Dosimetry). In this work, we evaluate a method for in vivo 3D dosemore » reconstruction for SBRT using a new transmission detector, which was developed for in vivo dose verification for intensity-modulated radiation therapy (IMRT). Methods: We evaluated the accuracy of measurement for SBRT using simple small fields (2×2−10×10 cm2), a multileaf collimator (MLC) test pattern, and clinical cases. The dose distributions from the COMPASS were compared with those of EDR2 films (Kodak, USA) and the Monte Carlo simulations (MC). For clinical cases, we compared MC using dose-volume-histograms (DVHs) and dose profiles. Results: The dose profiles from the COMPASS for small fields and the complicated MLC test pattern agreed with those of EDR2 films, and MC within 3%. This showed the COMPASS with Dolphin system showed good spatial resolution and can measure small fields which are required for SBRT. Those results also suggest that COMPASS with Dolphin is able to detect MLC leaf position errors for SBRT. In clinical cases, the COMPASS with Dolphin agreed well with MC. The Dolphin detector, which consists of ionization chambers, provided stable measurement. Conclusion: COMPASS with Dolphin detector showed a useful in vivo 3D dose reconstruction for SBRT. The accuracy of the results indicates that this approach is suitable for clinical implementation.« less
MC-PDFT can calculate singlet-triplet splittings of organic diradicals
NASA Astrophysics Data System (ADS)
Stoneburner, Samuel J.; Truhlar, Donald G.; Gagliardi, Laura
2018-02-01
The singlet-triplet splittings of a set of diradical organic molecules are calculated using multiconfiguration pair-density functional theory (MC-PDFT), and the results are compared with those obtained by Kohn-Sham density functional theory (KS-DFT) and complete active space second-order perturbation theory (CASPT2) calculations. We found that MC-PDFT, even with small and systematically defined active spaces, is competitive in accuracy with CASPT2, and it yields results with greater accuracy and precision than Kohn-Sham DFT with the parent functional. MC-PDFT also avoids the challenges associated with spin contamination in KS-DFT. It is also shown that MC-PDFT is much less computationally expensive than CASPT2 when applied to larger active spaces, and this illustrates the promise of this method for larger diradical organic systems.
Tournilhac, O; Santos, D D; Xu, L; Kutok, J; Tai, Y-T; Le Gouill, S; Catley, L; Hunter, Z; Branagan, A R; Boyce, J A; Munshi, N; Anderson, K C; Treon, S P
2006-08-01
Bone marrow (BM) mast cells (MC) are commonly found in association with lymphoplasmacytic cells (LPC) in patients with Waldenström's macroglobulinemia (WM). We therefore sought to clarify the role of MC in WM. Co-culture of sublethally irradiated HMC-1 MC, KU812 basophilic cells, or autologous BM MC along with BM LPC from WM patients resulted in MC dose-dependent tumor colony formation and/or proliferation as assessed by 3H-thymidine uptake studies. Furthermore, by immunohistochemistry, multicolor flow cytometry and/or RT-PCR analysis, CD40 ligand (CD154), a potent inducer of B-cell expansion, was expressed on BM MC from 32 of 34 (94%), 11 of 13 (85%), and 7 of 9 (78%) patients, respectively. In contrast, MC from five healthy donors did not express CD154. By multicolor flow cytometry, CD154 was expressed on BM LPC from 35 of 38 (92%) patients and functionality was confirmed by CD154 and CD40 agonistic antibody stimulation, which induced proliferation, support survival and/or pERK phosphorylation of LPC. Moreover, MC induced expansion of LPC from 3 of 5 patients was blocked in a dose dependent manner by use of a CD154 blocking protein. These studies demonstrate that in WM, MC may support tumor cell expansion through constitutive CD154-CD40 signaling and therefore provide the framework for therapeutic targeting of MC and MC-WM cell interactions in WM.
Lemaire, Benjamin; Beck, Michaël; Jaspart, Mélanie; Debier, Cathy; Calderon, Pedro Buc; Thomé, Jean-Pierre; Rees, Jean-François
2011-02-01
Fish isolated cell systems have long been used to predict in vivo toxicity of man-made chemicals. In present study, we tested the suitability of Precision-Cut Liver Slices (PCLS) as an alternative to these models that allows the evaluation of a global tissue response to toxicants, to investigate oxidative stress response to cytochrome P450 1A (CYP1A) induction in fish liver. PCLS of Salmo salar were exposed for 21 h to increasing doses of 3-methylcholanthrene (3-MC) and Polychlorobiphenyl 126 (PCB 126). 3-MC (25 μM) strongly induced CYP1A transcription. In dose-response analysis (25-100 μM), EROD activity was strongly increased at intermediate 3-MC concentrations. We found the counter-intuitive decline of EROD at the highest 3-MC doses to result from reversible competition with ethoxyresorufin. No increases of H(2)O(2) production, antioxidant enzymes activities or oxidative damage to lipids were found with 3-MC treatments. PCLS subjected to PCB 126 (2-200 nM) showed increased contamination levels and a parallel increased CYP1A mRNA synthesis and EROD activity. H(2)O(2) production tended to increase but no oxidative damage to lipids was found. As antioxidant enzymes activities declined at the highest PCB 126 dose, it is suggested that longer incubation periods could be required to generate oxidative stress in PCLS. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perfetti, Christopher M; Rearden, Bradley T
2014-01-01
This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giantsoudi, D; Schuemann, J; Dowdell, S
Purpose: For proton radiation therapy, Monte Carlo simulation (MCS) methods are recognized as the gold-standard dose calculation approach. Although previously unrealistic due to limitations in available computing power, GPU-based applications allow MCS of proton treatment fields to be performed in routine clinical use, on time scales comparable to that of conventional pencil-beam algorithms. This study focuses on validating the results of our GPU-based code (gPMC) versus fully implemented proton therapy based MCS code (TOPAS) for clinical patient cases. Methods: Two treatment sites were selected to provide clinical cases for this study: head-and-neck cases due to anatomical geometrical complexity (air cavitiesmore » and density heterogeneities), making dose calculation very challenging, and prostate cases due to higher proton energies used and close proximity of the treatment target to sensitive organs at risk. Both gPMC and TOPAS methods were used to calculate 3-dimensional dose distributions for all patients in this study. Comparisons were performed based on target coverage indices (mean dose, V90 and D90) and gamma index distributions for 2% of the prescription dose and 2mm. Results: For seven out of eight studied cases, mean target dose, V90 and D90 differed less than 2% between TOPAS and gPMC dose distributions. Gamma index analysis for all prostate patients resulted in passing rate of more than 99% of voxels in the target. Four out of five head-neck-cases showed passing rate of gamma index for the target of more than 99%, the fifth having a gamma index passing rate of 93%. Conclusion: Our current work showed excellent agreement between our GPU-based MCS code and fully implemented proton therapy based MC code for a group of dosimetrically challenging patient cases.« less
Williams, Hywel D; Sassene, Philip; Kleberg, Karen; Calderone, Marilyn; Igonin, Annabel; Jule, Eduardo; Vertommen, Jan; Blundell, Ross; Benameur, Hassan; Müllertz, Anette; Pouton, Colin W; Porter, Christopher J H
2013-12-01
Recent studies have shown that digestion of lipid-based formulations (LBFs) can stimulate both supersaturation and precipitation. The current study has evaluated the drug, formulation and dose-dependence of the supersaturation - precipitation balance for a range of LBFs. Type I, II, IIIA/B LBFs containing medium-chain (MC) or long-chain (LC) lipids, and lipid-free Type IV LBF incorporating different doses of fenofibrate or tolfenamic acid were digested in vitro in a simulated intestinal medium. The degree of supersaturation was assessed through comparison of drug concentrations in aqueous digestion phases (APDIGEST) during LBF digestion and the equilibrium drug solubility in the same phases. Increasing fenofibrate or tolfenamic acid drug loads (i.e., dose) had negligible effects on LC LBF performance during digestion, but promoted drug crystallization (confirmed by XRPD) from MC and Type IV LBF. Drug crystallization was only evident in instances when the calculated maximum supersaturation ratio (SR(M)) was >3. This threshold SR(M) value was remarkably consistent across all LBF and was also consistent with previous studies with danazol. The maximum supersaturation ratio (SR(M)) provides an indication of the supersaturation 'pressure' exerted by formulation digestion and is strongly predictive of the likelihood of drug precipitation in vitro. This may also prove effective in discriminating the in vivo performance of LBFs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souris, K; Lee, J; Sterpin, E
2014-06-15
Purpose: Recent studies have demonstrated the capability of graphics processing units (GPUs) to compute dose distributions using Monte Carlo (MC) methods within clinical time constraints. However, GPUs have a rigid vectorial architecture that favors the implementation of simplified particle transport algorithms, adapted to specific tasks. Our new, fast, and multipurpose MC code, named MCsquare, runs on Intel Xeon Phi coprocessors. This technology offers 60 independent cores, and therefore more flexibility to implement fast and yet generic MC functionalities, such as prompt gamma simulations. Methods: MCsquare implements several models and hence allows users to make their own tradeoff between speed andmore » accuracy. A 200 MeV proton beam is simulated in a heterogeneous phantom using Geant4 and two configurations of MCsquare. The first one is the most conservative and accurate. The method of fictitious interactions handles the interfaces and secondary charged particles emitted in nuclear interactions are fully simulated. The second, faster configuration simplifies interface crossings and simulates only secondary protons after nuclear interaction events. Integral depth-dose and transversal profiles are compared to those of Geant4. Moreover, the production profile of prompt gammas is compared to PENH results. Results: Integral depth dose and transversal profiles computed by MCsquare and Geant4 are within 3%. The production of secondaries from nuclear interactions is slightly inaccurate at interfaces for the fastest configuration of MCsquare but this is unlikely to have any clinical impact. The computation time varies between 90 seconds for the most conservative settings to merely 59 seconds in the fastest configuration. Finally prompt gamma profiles are also in very good agreement with PENH results. Conclusion: Our new, fast, and multi-purpose Monte Carlo code simulates prompt gammas and calculates dose distributions in less than a minute, which complies with clinical time constraints. It has been successfully validated with Geant4. This work has been financialy supported by InVivoIGT, a public/private partnership between UCL and IBA.« less
MO-AB-BRA-03: Development of Novel Real Time in Vivo EPID Treatment Verification for Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonseca, G; Podesta, M; Reniers, B
2016-06-15
Purpose: High Dose Rate (HDR) brachytherapy treatments are employed worldwide to treat a wide variety of cancers. However, in vivo dose verification remains a challenge with no commercial dosimetry system available to verify the treatment dose delivered to the patient. We propose a novel dosimetry system that couples an independent Monte Carlo (MC) simulation platform and an amorphous silicon Electronic Portal Imaging Device (EPID) to provide real time treatment verification. Methods: MC calculations predict the EPID response to the photon fluence emitted by the HDR source by simulating the patient, the source dwell positions and times, and treatment complexities suchmore » as tissue compositions/densities and different applicators. Simulated results are then compared against EPID measurements acquired with ∼0.14s time resolution which allows dose measurements for each dwell position. The EPID has been calibrated using an Ir-192 HDR source and experiments were performed using different phantoms, including tissue equivalent materials (PMMA, lung and bone). A source positioning accuracy of 0.2 mm, without including the afterloader uncertainty, was ensured using a robotic arm moving the source. Results: An EPID can acquire 3D Cartesian source positions and its response varies significantly due to differences in the material composition/density of the irradiated object, allowing detection of changes in patient geometry. The panel time resolution allows dose rate and dwell time measurements. Moreover, predicted EPID images obtained from clinical treatment plans provide anatomical information that can be related to the patient anatomy, mostly bone and air cavities, localizing the source inside of the patient using its anatomy as reference. Conclusion: Results obtained show the feasibility of the proposed dose verification system that is capable to verify all the brachytherapy treatment steps in real time providing data about treatment delivery quality and also applicator/structure motion during or between treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pappas, E; Karaiskos, P; Zourari, K
2015-06-15
Purpose: To implement a 3D dose verification procedure of Model-Based Dose Calculation Algorithms (MBDCAs) for {sup 192}Ir HDR brachytherapy, based on a novel Ferrous Xylenol-orange gel (FXG) and optical CT read-out. Methods: The TruView gel was employed for absolute dosimetry in conjunction with cone-beam optical CT read-out with the VISTA scanner (both from Modus Medical Inc, London, ON, Canada). A multi-catheter skin flap was attached to a cylindrical PETE jar (d=9.6cm, h=16cm) filled with FXG, which served as both the dosimeter and the water equivalent phantom of bounded dimensions. X- ray CT image series of the jar with flap attachedmore » was imported to Oncentra Brachy v.4.5. A treatment plan consisting of 8 catheters and 56 dwell positions was generated, and Oncentra-ACE MBDCA as well as TG43 dose results were exported for further evaluation. The irradiation was carried out with a microSelecton v2 source. The FXG dose-response, measured via an electron irradiation of a second dosimeter from the same batch, was linear (R2>0.999) at least up to 12Gy. A MCNP6 input file was prepared from the DICOM-RT plan data using BrachyGuide to facilitate Monte Carlo (MC) simulation dosimetry in the actual experimental geometry. Agreement between experimental (reference) and calculated dose distributions was evaluated using the 3D gamma index (GI) method with criteria (5%-2mm applied locally) determined from uncertainty analysis. Results: The TG-43 GI failed, as expected, in the majority of voxels away from the flap (pass rate 59% for D>0.8Gy, corresponding to 10% of prescribed dose). ACE performed significantly better (corresponding pass rate 92%). The GI evaluation for the MC data (corresponding pass rate 97%) failed mainly at low dose points of increased uncertainty. Conclusion: FXG gel/optical CT is an efficient method for level-2 commissioning of brachytherapy MBDCAs. Target dosimetry is not affected from uncertainty introduced by TG43 assumptions in 192Ir skin brachytherapy. Research co-financed by the ESF and Greek funds through the Operational Program Education and Lifelong Learning Investing in Knowledge Society of the NSRF. Research Funding Program: Aristeia. Modus Medical Devices Inc. provided a TruView dosimeter batch and Nucletron, and Elekta company, provided access to Oncentra Brachy v4.5, for research purposes.« less
Measurement and properties of the dose-area product ratio in external small-beam radiotherapy.
Niemelä, Jarkko; Partanen, Mari; Ojala, Jarkko; Sipilä, Petri; Björkqvist, Mikko; Kapanen, Mika; Keyriläinen, Jani
2017-06-21
In small-beam radiation therapy (RT) the measurement of the beam quality parameter, i.e. the tissue-phantom ratio or TPR 20,10 , using a conventional point detector is a challenge. To obtain reliable results, one has to consider potential sources of error, including volume averaging and adjustment of the point detector into the narrow beam. To overcome these challenges, a different type of beam quality parameter in small beams was studied, namely the dose-area product ratio, or DAPR 20,10 . With this method, the measurement of a dose-area product (DAP) using a large-area plane-parallel chamber (LAC) eliminates the uncertainties in detector positioning and volume averaging that are present when using a point detector. In this study, the properties of the DAPR 20,10 of a cone-collimated 6 MV photon beam were investigated using Monte Carlo (MC) calculations and the obtained values were compared to measurements obtained using two LAC detectors, PTW Type 34073 and PTW Type 34070. In addition, the possibility of determining the DAP using EBT3 film and a Razor diode detector was studied. The determination of the DAPR 20,10 value was found to be feasible in external small-beam radiotherapy using cone-collimated beams with diameters from 4-40 mm, based on the results of the two LACs, the MC calculations and the Razor diode. The measurements indicated a constant DAPR 20,10 value for fields 20-40 mm in diameter, with a maximum relative change of 0.6%, but an increase of 7.0% for fields from 20-4 mm in diameter for the PTW Type 34070 chamber. Simulations and measurements showed an increase of DAPR 20,10 with increasing LAC size or dose integral area for the studied 4-40 mm cone-collimated 6 MV photon beams. This has the consequence that there should be a reference to the size of the used LAC active area or the DAP integration area with the reported DAPR 20,10 value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, H; Medin, P; Jiang, S
Purpose: In-treatment tumor localization is critical for the management of tumor motion in lung cancer radiotherapy. Conventional tumor-tracking methods using a kV or MV x-ray projection has limited contrast. To facilitate real-time, marker-less and low-dose in-treatment image tumor tracking, we propose a novel scheme using Compton scatter imaging. This study reports Monte Carlo (MC) simulations on this scheme for the purpose of proof-of-principle. Methods: A slit x-ray beam along the patient superior-inferior (SI) direction is directed to the patient, intersecting the patient lung at a 2D plane containing majority part of the tumor motion trajectory. X-ray photons are scattered duemore » to Compton effect from this plane, which are spatially collimated by, e.g., a pinhole, on one side of the plane and then captured by a detector behind it. The captured image, after correcting for x-ray attenuation and scatter angle variation, reflects the electron density, which allows visualization of the instantaneous anatomy on this plane. We performed MC studies on a phantom and a patient case for the initial test of this proposed method. Results: In the phantom case, the contrast-resolution calculated using tumor/lung as foreground/background for kV fluoroscopy, cone-beam CT, and scattering image were 0.0625, 0.6993, and 0.5290, respectively. In the patient case, tumor motion can be clearly observed in the scatter images. Compared to fluoroscopy, scattering imaging also significantly reduced imaging dose because of its narrower beam design. Conclusion: MC simulation studies demonstrated the potential of the proposed scheme in terms of capturing the instantaneous anatomy of a patient on a 2D plane. Clear visualization of the tumor will probably facilitate ‘marker-less’ and ‘real-time’ tumor tracking with low imaging dose. NIH (1R01CA154747-01, 1R21CA178787-01A1 and 1R21EB017978-01A1)« less
SU-C-BRC-06: OpenCL-Based Cross-Platform Monte Carlo Simulation Package for Carbon Ion Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, N; Tian, Z; Pompos, A
2016-06-15
Purpose: Monte Carlo (MC) simulation is considered to be the most accurate method for calculation of absorbed dose and fundamental physical quantities related to biological effects in carbon ion therapy. Its long computation time impedes clinical and research applications. We have developed an MC package, goCMC, on parallel processing platforms, aiming at achieving accurate and efficient simulations for carbon therapy. Methods: goCMC was developed under OpenCL framework. It supported transport simulation in voxelized geometry with kinetic energy up to 450 MeV/u. Class II condensed history algorithm was employed for charged particle transport with stopping power computed via Bethe-Bloch equation. Secondarymore » electrons were not transported with their energy locally deposited. Energy straggling and multiple scattering were modeled. Production of secondary charged particles from nuclear interactions was implemented based on cross section and yield data from Geant4. They were transported via the condensed history scheme. goCMC supported scoring various quantities of interest e.g. physical dose, particle fluence, spectrum, linear energy transfer, and positron emitting nuclei. Results: goCMC has been benchmarked against Geant4 with different phantoms and beam energies. For 100 MeV/u, 250 MeV/u and 400 MeV/u beams impinging to a water phantom, range difference was 0.03 mm, 0.20 mm and 0.53 mm, and mean dose difference was 0.47%, 0.72% and 0.79%, respectively. goCMC can run on various computing devices. Depending on the beam energy and voxel size, it took 20∼100 seconds to simulate 10{sup 7} carbons on an AMD Radeon GPU card. The corresponding CPU time for Geant4 with the same setup was 60∼100 hours. Conclusion: We have developed an OpenCL-based cross-platform carbon MC simulation package, goCMC. Its accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon therapy.« less
SU-E-T-558: Monte Carlo Photon Transport Simulations On GPU with Quadric Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Y; Tian, Z; Jiang, S
Purpose: Monte Carlo simulation on GPU has experienced rapid advancements over the past a few years and tremendous accelerations have been achieved. Yet existing packages were developed only in voxelized geometry. In some applications, e.g. radioactive seed modeling, simulations in more complicated geometry are needed. This abstract reports our initial efforts towards developing a quadric geometry module aiming at expanding the application scope of GPU-based MC simulations. Methods: We defined the simulation geometry consisting of a number of homogeneous bodies, each specified by its material composition and limiting surfaces characterized by quadric functions. A tree data structure was utilized tomore » define geometric relationship between different bodies. We modified our GPU-based photon MC transport package to incorporate this geometry. Specifically, geometry parameters were loaded into GPU’s shared memory for fast access. Geometry functions were rewritten to enable the identification of the body that contains the current particle location via a fast searching algorithm based on the tree data structure. Results: We tested our package in an example problem of HDR-brachytherapy dose calculation for shielded cylinder. The dose under the quadric geometry and that under the voxelized geometry agreed in 94.2% of total voxels within 20% isodose line based on a statistical t-test (95% confidence level), where the reference dose was defined to be the one at 0.5cm away from the cylinder surface. It took 243sec to transport 100million source photons under this quadric geometry on an NVidia Titan GPU card. Compared with simulation time of 99.6sec in the voxelized geometry, including quadric geometry reduced efficiency due to the complicated geometry-related computations. Conclusion: Our GPU-based MC package has been extended to support photon transport simulation in quadric geometry. Satisfactory accuracy was observed with a reduced efficiency. Developments for charged particle transport in this geometry are currently in progress.« less
Range Verification Methods in Particle Therapy: Underlying Physics and Monte Carlo Modeling
Kraan, Aafke Christine
2015-01-01
Hadron therapy allows for highly conformal dose distributions and better sparing of organs-at-risk, thanks to the characteristic dose deposition as function of depth. However, the quality of hadron therapy treatments is closely connected with the ability to predict and achieve a given beam range in the patient. Currently, uncertainties in particle range lead to the employment of safety margins, at the expense of treatment quality. Much research in particle therapy is therefore aimed at developing methods to verify the particle range in patients. Non-invasive in vivo monitoring of the particle range can be performed by detecting secondary radiation, emitted from the patient as a result of nuclear interactions of charged hadrons with tissue, including β+ emitters, prompt photons, and charged fragments. The correctness of the dose delivery can be verified by comparing measured and pre-calculated distributions of the secondary particles. The reliability of Monte Carlo (MC) predictions is a key issue. Correctly modeling the production of secondaries is a non-trivial task, because it involves nuclear physics interactions at energies, where no rigorous theories exist to describe them. The goal of this review is to provide a comprehensive overview of various aspects in modeling the physics processes for range verification with secondary particles produced in proton, carbon, and heavier ion irradiation. We discuss electromagnetic and nuclear interactions of charged hadrons in matter, which is followed by a summary of some widely used MC codes in hadron therapy. Then, we describe selected examples of how these codes have been validated and used in three range verification techniques: PET, prompt gamma, and charged particle detection. We include research studies and clinically applied methods. For each of the techniques, we point out advantages and disadvantages, as well as clinical challenges still to be addressed, focusing on MC simulation aspects. PMID:26217586
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, J. L., E-mail: jlreed2@wisc.edu; Micka, J. A.; Culberson, W. S.
Purpose: To determine the intrinsic energy dependence of LiF:Mg,Ti thermoluminescent dosimeters (TLD-100) for {sup 125}I and {sup 103}Pd brachytherapy sources relative to {sup 60}Co. Methods: LiF:Mg,Ti TLDs were irradiated with low-energy brachytherapy sources and with a {sup 60}Co teletherapy source. The brachytherapy sources measured were the Best 2301 {sup 125}I seed, the OncoSeed 6711 {sup 125}I seed, and the Best 2335 {sup 103}Pd seed. The TLD light output per measured air-kerma strength was determined for the brachytherapy source irradiations, and the TLD light output per air kerma was determined for the {sup 60}Co irradiations. Monte Carlo (MC) simulations were usedmore » to calculate the dose-to-TLD rate per air-kerma strength for the brachytherapy source irradiations and the dose to TLD per air kerma for the {sup 60}Co irradiations. The measured and MC-calculated results for all irradiations were used to determine the TLD intrinsic energy dependence for {sup 125}I and {sup 103}Pd relative to {sup 60}Co. Results: The relative TLD intrinsic energy dependences (relative to {sup 60}Co) and associated uncertainties (k = 1) were determined to be 0.883 ± 1.3%, 0.870 ± 1.4%, and 0.871 ± 1.5% for the Best 2301 seed, OncoSeed 6711 seed, and Best 2335 seed, respectively. Conclusions: The intrinsic energy dependence of TLD-100 is dependent on photon energy, exhibiting changes of 13%–15% for {sup 125}I and {sup 103}Pd sources relative to {sup 60}Co. TLD measurements of absolute dose around {sup 125}I and {sup 103}Pd brachytherapy sources should explicitly account for the relative TLD intrinsic energy dependence in order to improve dosimetric accuracy.« less
Popescu, Cristina; Draghici, George A.; Andrica, Florina-Maria; Privistirescu, Ionela A.; Gergen, Iosif I.; Stöger, Reinhard
2017-01-01
5-methylcytosine (5mC) is a key epigenetic mark which influences gene expression and phenotype. In vertebrates, this epigenetic mark is sensitive to Cd exposure, but there is no information linking such an event with changes in global 5mC levels in terrestrial gastropods despite their importance as excellentecotoxicological bioindicators of metal contamination. Therefore, we first evaluated total 5mC content in DNA of the hepatopancreas of adult Cantareus aspersus with the aim to determine whether this epigenetic mark is responsive to Cd exposure. The experiment was conducted under laboratory conditions and involved a continuous exposure, multiple dose- and time-point (14, 28, and 56 days) study design. Hepatopancreas cadmium levels were measured using Flame Atomic Absorption Spectrometry and the percentage of 5-mC in samples using an ELISA-based colorimetric assay. Snail death rates were also assessed. Our results, for the first time, reveal the presence of 5mC in C. aspersus and provide evidence for Cd-induced changes in global 5mC levels in DNA of gastropods and mollusks. Although less sensitive than tissue accumulation, DNA methylation levels responded in a dose- and time-dependent manner to dietary cadmium, with exposure dose having a much stronger effect than exposure duration. An obvious trend of increasing 5mC levels was observed starting at 28 days of exposure to the second highest dose and this trend persisted at the two highest treatments for close to one month, when the experiment was terminated after 56 days. Moreover, a strong association was identified between Cd concentrations in the hepatopancreas and DNA methylation levels in this organ. These data indicate an overall trend towards DNA hypermethylation with elevated Cd exposure. No consistent lethal effect was observed, irrespective of time point and Cd-dosage. Overall, our findings suggest that the total 5mC content in DNA of the hepatopancreas of land snails is responsive to sublethal Cd exposure and give new insights into invertebrate environmental epigenetics. PMID:28877233
van Hamersvelt, Robbert W; Willemink, Martin J; Takx, Richard A P; Eikendal, Anouk L M; Budde, Ricardo P J; Leiner, Tim; Mol, Christian P; Isgum, Ivana; de Jong, Pim A
2014-07-01
To determine inter-observer and inter-examination variability for aortic valve calcification (AVC) and mitral valve and annulus calcification (MC) in low-dose unenhanced ungated lung cancer screening chest computed tomography (CT). We included 578 lung cancer screening trial participants who were examined by CT twice within 3 months to follow indeterminate pulmonary nodules. On these CTs, AVC and MC were measured in cubic millimetres. One hundred CTs were examined by five observers to determine the inter-observer variability. Reliability was assessed by kappa statistics (κ) and intra-class correlation coefficients (ICCs). Variability was expressed as the mean difference ± standard deviation (SD). Inter-examination reliability was excellent for AVC (κ = 0.94, ICC = 0.96) and MC (κ = 0.95, ICC = 0.90). Inter-examination variability was 12.7 ± 118.2 mm(3) for AVC and 31.5 ± 219.2 mm(3) for MC. Inter-observer reliability ranged from κ = 0.68 to κ = 0.92 for AVC and from κ = 0.20 to κ = 0.66 for MC. Inter-observer ICC was 0.94 for AVC and ranged from 0.56 to 0.97 for MC. Inter-observer variability ranged from -30.5 ± 252.0 mm(3) to 84.0 ± 240.5 mm(3) for AVC and from -95.2 ± 210.0 mm(3) to 303.7 ± 501.6 mm(3) for MC. AVC can be quantified with excellent reliability on ungated unenhanced low-dose chest CT, but manual detection of MC can be subject to substantial inter-observer variability. Lung cancer screening CT may be used for detection and quantification of cardiac valve calcifications. • Low-dose unenhanced ungated chest computed tomography can detect cardiac valve calcifications. • However, calcified cardiac valves are not reported by most radiologists. • Inter-observer and inter-examination variability of aortic valve calcifications is sufficient for longitudinal studies. • Volumetric measurement variability of mitral valve and annulus calcifications is substantial.
CloudMC: a cloud computing application for Monte Carlo simulation.
Miras, H; Jiménez, R; Miras, C; Gomà, C
2013-04-21
This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.
Paudel, N; Shvydka, D; Parsai, E
2012-06-01
Gold nanoparticles (AuNP) have been proposed to be utilized for local dose enhancement in radiation therapy. Due to a very sharp spatial fall-off of the effect, the dosimetry associated with such an approach is difficult to implement in a direct measurement. This study is aimed at establishing a micro-dosimetry technique for experimental verification of dose enhancement in the vicinity of gold-tissue interface. The spatial distribution of the dose enhancement near the gold-tissue interface is modeled with Monte Carlo (MC) package MCNP5 in a 1-dimentional approach of a thin gold slab placed in an ICRU-4 component tissue phantom. The model is replicating the experiment, where the dose enhancement due to gold foils having thicknesses of 1, 10, and 100μm and areas of 12.5×25mm 2 are placed at a short distance from clinical HDR brachytherapy (Ir-192) source. The measurements are carried out with a thin-film CdTe-based photodetector, having thickness <10μm, allowing for high spatial resolution at progressively increasing distances from the foil. Our MC simulation results indicate that for Ir-192 energy spectrum the dose enhancement region extends over ∼1 mm distance from the foil, changing from several hundred at the interface to just a few percent. The trend in the measured dose enhancement closely follows the results obtained from MC simulations. AuNP's have been established as promising candidates for dose enhancement in nanoparticle-aided radiation therapy, particularly, in the energy range relevant to brachytherapy applications. Most researchers study the dose enhancement with MC simulations, or experimental approaches involving biological systems, where achievable dose enhancements are difficult to quantify. Successful development of micro-dosimetry approaches will pave a way for direct assessment of the dose in experiments on biological models, shedding some light on apparent discrepancy between physical dose enhancement and biological effect established in studies of AuNP-aided radiation therapy. No conflict of interest. © 2012 American Association of Physicists in Medicine.
Factors associated with mortality of myxedema coma: report of eight cases and literature survey.
Yamamoto, T; Fukuyama, J; Fujiyoshi, A
1999-12-01
High-dose thyroid hormone replacement has been recommended for treatment of myxedema coma (MC) while questions of safety of the therapy and of efficacy of low-dose thyroid hormone replacement have not been systematically addressed. We treated 8 patients with MC in a period of 18 years, the first 3 with high-dose intravenous injections of levotriiodothyronine (LT3) and the other 5 patients with a smaller amount of either LT3 or levothyroxine (LT4). Two of the first 3 patients died of pneumonia and the other 5 recovered despite pulmonary abnormalities at the outset. To find factors associated with fatal outcome after treatment, the MEDLINE database was searched for MC cases with data of thyroid hormone replacement and outcome within 1 month of therapy. Clinical data for our 5 patients and 82 cases from the MEDLINE search were pooled and factors associated with mortality were sought among age, gender, presence of cardiac or pulmonary complications, and doses of thyroid hormone by multiple logistic regression analysis. It revealed that greater age, cardiac complications, and high-dose thyroid hormone replacement (LT4 > or = 500 microg/d or LT3 > or = 75 microg/d) were significantly associated with a fatal outcome within 1 month of treatment. Elderly MC patients can be treated with low-dose hormone replacement. A bolus of 500 microg LT4, especially by mouth or via nasogastric tube, appears to be tolerated by younger patients (< 55 years) without cardiac complication. The conclusion remains to be confirmed in more patients.
Ishizawa, Yoshiki; Dobashi, Suguru; Kadoya, Noriyuki; Ito, Kengo; Chiba, Takahito; Takayama, Yoshiki; Sato, Kiyokazu; Takeda, Ken
2018-05-17
An accurate source model of a medical linear accelerator is essential for Monte Carlo (MC) dose calculations. This study aims to propose an analytical photon source model based on particle transport in parameterized accelerator structures, focusing on a more realistic determination of linac photon spectra compared to existing approaches. We designed the primary and secondary photon sources based on the photons attenuated and scattered by a parameterized flattening filter. The primary photons were derived by attenuating bremsstrahlung photons based on the path length in the filter. Conversely, the secondary photons were derived from the decrement of the primary photons in the attenuation process. This design facilitates these sources to share the free parameters of the filter shape and be related to each other through the photon interaction in the filter. We introduced two other parameters of the primary photon source to describe the particle fluence in penumbral regions. All the parameters are optimized based on calculated dose curves in water using the pencil-beam-based algorithm. To verify the modeling accuracy, we compared the proposed model with the phase space data (PSD) of the Varian TrueBeam 6 and 15 MV accelerators in terms of the beam characteristics and the dose distributions. The EGS5 Monte Carlo code was used to calculate the dose distributions associated with the optimized model and reference PSD in a homogeneous water phantom and a heterogeneous lung phantom. We calculated the percentage of points passing 1D and 2D gamma analysis with 1%/1 mm criteria for the dose curves and lateral dose distributions, respectively. The optimized model accurately reproduced the spectral curves of the reference PSD both on- and off-axis. The depth dose and lateral dose profiles of the optimized model also showed good agreement with those of the reference PSD. The passing rates of the 1D gamma analysis with 1%/1 mm criteria between the model and PSD were 100% for 4 × 4, 10 × 10, and 20 × 20 cm 2 fields at multiple depths. For the 2D dose distributions calculated in the heterogeneous lung phantom, the 2D gamma pass rate was 100% for 6 and 15 MV beams. The model optimization time was less than 4 min. The proposed source model optimization process accurately produces photon fluence spectra from a linac using valid physical properties, without detailed knowledge of the geometry of the linac head, and with minimal optimization time. © 2018 American Association of Physicists in Medicine.
Sulforaphane prevents microcystin-LR-induced oxidative damage and apoptosis in BALB/c mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Xiaoyun; Mi Lixin; Liu Jin
2011-08-15
Microcystins (MCs), the products of blooming algae Microcystis, are waterborne environmental toxins that have been implicated in the development of liver cancer, necrosis, and even fatal intrahepatic bleeding. Alternative protective approaches in addition to complete removal of MCs in drinking water are urgently needed. In our previous work, we found that sulforaphane (SFN) protects against microcystin-LR (MC-LR)-induced cytotoxicity by activating the NF-E2-related factor 2 (Nrf2)-mediated defensive response in human hepatoma (HepG2) and NIH 3T3 cells. The purpose of this study was to investigate and confirm efficacy the SFN-induced multi-mechanistic defense system against MC-induced hepatotoxicity in an animal model. We reportmore » that SFN protected against MC-LR-induced liver damage and animal death at a nontoxic and physiologically relevant dose in BALB/c mice. The protection by SFN included activities of anti-cytochrome P450 induction, anti-oxidation, anti-inflammation, and anti-apoptosis. Our results suggest that SFN may protect mice against MC-induced hepatotoxicity. This raises the possibility of a similar protective effect in human populations, particularly in developing countries where freshwaters are polluted by blooming algae. - Graphical abstract: Display Omitted Research Highlights: > SFN protected against MC-LR-induced liver damage and animal death in BALB/c mice. > The dose of SFN is at a nontoxic and physiologically relevant dose. > The protection included activities of anti-oxidation, anti-inflammation, and anti-apoptosis. > SFN may protect mice against MC-induced hepatotoxicity.« less
Monte Carlo modeling of ultrasound probes for image guided radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova-Carter, Magdalena, E-mail: bazalova@uvic.ca; Schlosser, Jeffrey; Chen, Josephine
2015-10-15
Purpose: To build Monte Carlo (MC) models of two ultrasound (US) probes and to quantify the effect of beam attenuation due to the US probes for radiation therapy delivered under real-time US image guidance. Methods: MC models of two Philips US probes, an X6-1 matrix-array transducer and a C5-2 curved-array transducer, were built based on their megavoltage (MV) CT images acquired in a Tomotherapy machine with a 3.5 MV beam in the EGSnrc, BEAMnrc, and DOSXYZnrc codes. Mass densities in the probes were assigned based on an electron density calibration phantom consisting of cylinders with mass densities between 0.2 andmore » 8.0 g/cm{sup 3}. Beam attenuation due to the US probes in horizontal (for both probes) and vertical (for the X6-1 probe) orientation was measured in a solid water phantom for 6 and 15 MV (15 × 15) cm{sup 2} beams with a 2D ionization chamber array and radiographic films at 5 cm depth. The MC models of the US probes were validated by comparison of the measured dose distributions and dose distributions predicted by MC. Attenuation of depth dose in the (15 × 15) cm{sup 2} beams and small circular beams due to the presence of the probes was assessed by means of MC simulations. Results: The 3.5 MV CT number to mass density calibration curve was found to be linear with R{sup 2} > 0.99. The maximum mass densities in the X6-1 and C5-2 probes were found to be 4.8 and 5.2 g/cm{sup 3}, respectively. Dose profile differences between MC simulations and measurements of less than 3% for US probes in horizontal orientation were found, with the exception of the penumbra region. The largest 6% dose difference was observed in dose profiles of the X6-1 probe placed in vertical orientation, which was attributed to inadequate modeling of the probe cable. Gamma analysis of the simulated and measured doses showed that over 96% of measurement points passed the 3%/3 mm criteria for both probes placed in horizontal orientation and for the X6-1 probe in vertical orientation. The X6-1 probe in vertical orientation caused the highest attenuation of the 6 and 15 MV beams, which at 10 cm depth accounted for 33% and 43% decrease compared to the respective (15 × 15) cm{sup 2} open fields. The C5-2 probe in horizontal orientation, on the other hand, caused a dose increase of 10% and 53% for the 6 and 15 MV beams, respectively, in the buildup region at 0.5 cm depth. For the X6-1 probe in vertical orientation, the dose at 5 cm depth for the 3-cm diameter 6 MV and 5-cm diameter 15 MV beams was attenuated compared to the corresponding open fields to a greater degree by 65% and 43%, respectively. Conclusions: MC models of two US probes used for real-time image guidance during radiotherapy have been built. Due to the high beam attenuation of the US probes, the authors generally recommend avoiding delivery of treatment beams that intersect the probe. However, the presented MC models can be effectively integrated into US-guided radiotherapy treatment planning in cases for which beam avoidance is not practical due to anatomy geometry.« less
NOTE: Monte Carlo evaluation of kerma in an HDR brachytherapy bunker
NASA Astrophysics Data System (ADS)
Pérez-Calatayud, J.; Granero, D.; Ballester, F.; Casal, E.; Crispin, V.; Puchades, V.; León, A.; Verdú, G.
2004-12-01
In recent years, the use of high dose rate (HDR) after-loader machines has greatly increased due to the shift from traditional Cs-137/Ir-192 low dose rate (LDR) to HDR brachytherapy. The method used to calculate the required concrete and, where appropriate, lead shielding in the door is based on analytical methods provided by documents published by the ICRP, the IAEA and the NCRP. The purpose of this study is to perform a more realistic kerma evaluation at the entrance maze door of an HDR bunker using the Monte Carlo code GEANT4. The Monte Carlo results were validated experimentally. The spectrum at the maze entrance door, obtained with Monte Carlo, has an average energy of about 110 keV, maintaining a similar value along the length of the maze. The comparison of results from the aforementioned values with the Monte Carlo ones shows that results obtained using the albedo coefficient from the ICRP document more closely match those given by the Monte Carlo method, although the maximum value given by MC calculations is 30% greater.
Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC
Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath
2015-01-01
A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed 28Al, 24Na, 54Mn and 60Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is 28Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several 28Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. PMID:26265661
Pharmacokinetics of Phenobarbital in Microenema Via Macy Catheter Versus Suppository.
Lam, Y W Francis; Lam, Ansom; Macy, Brad
2016-06-01
The oral route is compromised for nearly all patients approaching death. When agitation, seizures, or other intractable symptoms occur, a quick, discreet, comfortable, and effective alternate route for medication delivery that is easy to administer in the home setting is highly desirable. To characterize the early absorption profile, variability, and comfort of phenobarbital given in microenema suspensions delivered via the Macy Catheter(®) (MC) vs. the same dose given via suppository. This was a randomized, open-label, crossover study comparing the early absorption profile of equal doses of phenobarbital administered rectally in three treatment phases: phenobarbital suppository and two different microenemas with phenobarbital tablets crushed and suspended in 6 mL (MC-6) or 20 mL (MC-20) of tap water. Mean plasma phenobarbital concentrations at 10 minutes were 12× higher for MC-20 and 8× higher for MC-6 compared to suppository. Concentrations achieved in 30 minutes via MC-20 took almost three hours to achieve with suppository. Mean AUC values were higher for MC-20 and MC-6 (82% and 46%, respectively) vs. suppository (P < 0.05). There was less variability in absorption for MC-20 and MC-6 (1.4- to 1.9-fold difference) compared to a 4.4-fold difference via suppository. MC administrations were reported as "not uncomfortable" compared to suppositories, which were reported as "mildly uncomfortable" (P < 0.05). These results suggest phenobarbital oral tablets crushed and suspended in water and administered via the MC is superior to suppository in delivering the medication reliably and rapidly. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
McStas 1.1: a tool for building neutron Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Lefmann, K.; Nielsen, K.; Tennant, A.; Lake, B.
2000-03-01
McStas is a project to develop general tools for the creation of simulations of neutron scattering experiments. In this paper, we briefly introduce McStas and describe a particular application of the program: the Monte Carlo calculation of the resolution function of a standard triple-axis neutron scattering instrument. The method compares well with the analytical calculations of Popovici.
Bronchial hyperresponsiveness, word descriptors, and ethnicity: women with mild asthma.
Hardie, Grace E; Brown, James K; Gold, Warren M
2012-02-01
Few studies have examined the ethnic differences in symptom reporting and airway hyperresponsiveness (AHR) for women with mild asthma during a methacholine (McH) challenge. The purpose of this sub-analysis was to determine: (1) whether AHR to McH varied by the ethnicity of women with mild asthma and (2) whether ethnic word descriptors (EWDs) varied by the ethnicity during induced bronchoconstriction. Specific inclusion criteria included the following: FEV(1) (forced expiratory volume in 1 second) ≥ 70% predicted normal, PC(30) ≤ 8 mg/McH, β(2) inhaler only, and self-reported ethnicity of African American (AFAM), Mexican American-Hispanic-Latino (MexAMLat), Asian-Pacific Islander (Asian PI), or white. Serial pulmonary function testing (PFT) and Borg, visual analogue scale (VAS), and EWDs were collected. A total of 44 women, mean age of 31.3 years old, with a mean baseline FEV(1) of 2.85 L comprised this sub-analysis. Ethnic-racial diversity included: 12 AFAMs, 5 MexAMLat, 13 Asian-PIs, and 14 whites. All had atopy ≥ 2 pinprick responses of 3 mm. At PC(30), Asian-PI women required a significantly (p < .05) smaller mean dose of McH 1.9 mg/mL. MexAMLat women required an McH dose of 1.6 mg/mL. At PC(30), McH dose was 2.9 mg/mL for AFAMs and 3.0 mg/mL for whites, respectively. Asian-PIs who used only upper airway EWDs at PC(30) vere itchy throat, itchy chin, and constricted throat (p < .001). AFAMs significant EWDs were itchy throat, itchy chin/face, and tight throat (p < .01). Lower airway EWD was used by both MexAMLat and whites. Significant EWD for Whites were tight chest (p < .01) and hard to inhale/lungs tight (p < .001). Asian-PI women required a significantly smaller dose (p < .05) of McH to induce a PC(30). AFAM and whites required a comparable dose of Mch at PC(30). Asian-PI and AFAM women used only upper airway EWD. Asian-PI women may be at a greater risk for acute asthma episodes that are not recognized or treated due to their upper airway symptom reporting.
Rex, Douglas K; Katz, Philip O; Bertiger, Gerald; Vanner, Stephen; Hookey, Lawrence C; Alderfer, Vivian; Joseph, Raymond E
2013-07-01
New bowel cleansers for colonoscopy that lead to improved efficacy, safety, and tolerability are needed. This study evaluated a nonphosphate, dual-action, low-volume, orange-flavored preparation containing sodium picosulfate and magnesium citrate (P/MC). Multicenter, assessor-blinded, randomized, noninferiority study. University hospitals, academic medical centers, and private clinics across the United States. Adults preparing for colonoscopy. P/MC versus 2 L of polyethylene glycol solution (2L PEG-3350) and two 5-mg bisacodyl tablets. This phase 3 study investigated the efficacy, safety, and tolerability of split-dose administration of P/MC versus day-before dosing of 2L PEG-3350 and two 5-mg bisacodyl tablets (SEE CLEAR I study). Efficacy was evaluated by using the Aronchick and Ottawa scales; noninferiority and superiority analyses were performed. Safety was assessed by monitoring adverse events (AEs). Tolerability was measured via a patient questionnaire. The intent-to-treat population consisted of 601 patients who self-administered P/MC (n = 304) or 2L PEG-3350 and bisacodyl tablets (n = 297). P/MC was superior to 2L PEG-3350 and bisacodyl tablets in overall colon cleansing (84.2% vs 74.4%; 1-sided 97.5% confidence interval [CI], 3.4) (Aronchick scores of excellent or good) and in cleansing of the ascending (89.5% vs 78.8%; 1-sided 97.5% CI, 4.9), mid (transverse and descending) (92.4% vs 85.9%; 1-sided 97.5% CI, 1.6), and rectosigmoid (92.4% vs 87.2%; 1-sided 97.5% CI, 0.4) segments of the colon (Ottawa scores of excellent, good, or fair). Commonly reported AEs related to the bowel preparations were nausea, vomiting, headache, and chills. Patient-reported tolerability, including ease of consumption and taste, was significantly higher for P/MC than 2L PEG-3350 and bisacodyl tablets (P < .0001). Because of differences in administration and volume of the bowel preparations, the study was designed to be a single-assessor, blinded study. The bowel-cleansing effects and patient acceptability of split-dose P/MC were superior to day-before dosing with 2L PEG-3350 and bisacodyl tablets. Copyright © 2013 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papadimitroulas, P; Kagadis, GC; Loudos, G
Purpose: Our purpose is to evaluate the administered absorbed dose in pediatric, nuclear imaging studies. Monte Carlo simulations with the incorporation of pediatric computational models can serve as reference for the accurate determination of absorbed dose. The procedure of the calculated dosimetric factors is described, while a dataset of reference doses is created. Methods: Realistic simulations were executed using the GATE toolkit and a series of pediatric computational models, developed by the “IT'IS Foundation”. The series of the phantoms used in our work includes 6 models in the range of 5–14 years old (3 boys and 3 girls). Pre-processing techniquesmore » were applied to the images, to incorporate the phantoms in GATE simulations. The resolution of the phantoms was set to 2 mm3. The most important organ densities were simulated according to the GATE “Materials Database”. Several used radiopharmaceuticals in SPECT and PET applications are being tested, following the EANM pediatric dosage protocol. The biodistributions of the several isotopes used as activity maps in the simulations, were derived by the literature. Results: Initial results of absorbed dose per organ (mGy) are presented in a 5 years old girl from the whole body exposure to 99mTc - SestaMIBI, 30 minutes after administration. Heart, kidney, liver, ovary, pancreas and brain are the most critical organs, in which the S-factors are calculated. The statistical uncertainty in the simulation procedure was kept lower than 5%. The Sfactors for each target organ are calculated in Gy/(MBq*sec) with highest dose being absorbed in kidneys and pancreas (9.29*10{sup 10} and 0.15*10{sup 10} respectively). Conclusion: An approach for the accurate dosimetry on pediatric models is presented, creating a reference dosage dataset for several radionuclides in children computational models with the advantages of MC techniques. Our study is ongoing, extending our investigation to other reference models and evaluating the results with clinical estimated doses.« less
Slimani, Faiçal A A; Hamdi, Mahdjoub; Bentourkia, M'hamed
2018-05-01
Monte Carlo (MC) simulation is widely recognized as an important technique to study the physics of particle interactions in nuclear medicine and radiation therapy. There are different codes dedicated to dosimetry applications and widely used today in research or in clinical application, such as MCNP, EGSnrc and Geant4. However, such codes made the physics easier but the programming remains a tedious task even for physicists familiar with computer programming. In this paper we report the development of a new interface GEANT4 Dose And Radiation Interactions (G4DARI) based on GEANT4 for absorbed dose calculation and for particle tracking in humans, small animals and complex phantoms. The calculation of the absorbed dose is performed based on 3D CT human or animal images in DICOM format, from images of phantoms or from solid volumes which can be made from any pure or composite material to be specified by its molecular formula. G4DARI offers menus to the user and tabs to be filled with values or chemical formulas. The interface is described and as application, we show results obtained in a lung tumor in a digital mouse irradiated with seven energy beams, and in a patient with glioblastoma irradiated with five photon beams. In conclusion, G4DARI can be easily used by any researcher without the need to be familiar with computer programming, and it will be freely available as an application package. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gagne, Nolan L; Cutright, Daniel R; Rivard, Mark J
2012-09-01
To improve tumor dose conformity and homogeneity for COMS plaque brachytherapy by investigating the dosimetric effects of varying component source ring radionuclides and source strengths. The MCNP5 Monte Carlo (MC) radiation transport code was used to simulate plaque heterogeneity-corrected dose distributions for individually-activated source rings of 14, 16 and 18 mm diameter COMS plaques, populated with (103)Pd, (125)I and (131)Cs sources. Ellipsoidal tumors were contoured for each plaque size and MATLAB programming was developed to generate tumor dose distributions for all possible ring weighting and radionuclide permutations for a given plaque size and source strength resolution, assuming a 75 Gy apical prescription dose. These dose distributions were analyzed for conformity and homogeneity and compared to reference dose distributions from uniformly-loaded (125)I plaques. The most conformal and homogeneous dose distributions were reproduced within a reference eye environment to assess organ-at-risk (OAR) doses in the Pinnacle(3) treatment planning system (TPS). The gamma-index analysis method was used to quantitatively compare MC and TPS-generated dose distributions. Concentrating > 97% of the total source strength in a single or pair of central (103)Pd seeds produced the most conformal dose distributions, with tumor basal doses a factor of 2-3 higher and OAR doses a factor of 2-3 lower than those of corresponding uniformly-loaded (125)I plaques. Concentrating 82-86% of the total source strength in peripherally-loaded (131)Cs seeds produced the most homogeneous dose distributions, with tumor basal doses 17-25% lower and OAR doses typically 20% higher than those of corresponding uniformly-loaded (125)I plaques. Gamma-index analysis found > 99% agreement between MC and TPS dose distributions. A method was developed to select intra-plaque ring radionuclide compositions and source strengths to deliver more conformal and homogeneous tumor dose distributions than uniformly-loaded (125)I plaques. This method may support coordinated investigations of an appropriate clinical target for eye plaque brachytherapy.
NASA Astrophysics Data System (ADS)
Sand, Andrew M.; Truhlar, Donald G.; Gagliardi, Laura
2017-01-01
The recently developed multiconfiguration pair-density functional theory (MC-PDFT) combines multiconfiguration wave function theory with a density functional that depends on the on-top pair density of an electronic system. In an MC-PDFT calculation, there are two steps: a conventional multiconfiguration self-consistent-field (MCSCF) calculation and a post-MCSCF evaluation of the energy with an on-top density functional. In this work, we present the details of the MC-PDFT algorithm that avoids steeply scaling steps that are present in other post-self-consistent-field multireference calculations of dynamic correlation energy. We demonstrate the favorable scaling by considering systems of H2 molecules with active spaces of several different sizes. We then apply the MC-PDFT method to calculate the heterolytic dissociation enthalpy of ferrocene. We find that MC-PDFT yields results that are at least as accurate as complete active space second-order perturbation theory and are more stable with respect to basis set, but at a fraction of the cost in both time and memory.
Sand, Andrew M; Truhlar, Donald G; Gagliardi, Laura
2017-01-21
The recently developed multiconfiguration pair-density functional theory (MC-PDFT) combines multiconfiguration wave function theory with a density functional that depends on the on-top pair density of an electronic system. In an MC-PDFT calculation, there are two steps: a conventional multiconfiguration self-consistent-field (MCSCF) calculation and a post-MCSCF evaluation of the energy with an on-top density functional. In this work, we present the details of the MC-PDFT algorithm that avoids steeply scaling steps that are present in other post-self-consistent-field multireference calculations of dynamic correlation energy. We demonstrate the favorable scaling by considering systems of H 2 molecules with active spaces of several different sizes. We then apply the MC-PDFT method to calculate the heterolytic dissociation enthalpy of ferrocene. We find that MC-PDFT yields results that are at least as accurate as complete active space second-order perturbation theory and are more stable with respect to basis set, but at a fraction of the cost in both time and memory.
SU-F-BRA-12: End-User Oriented Tools and Procedures for Testing Brachytherapy TPSs Employing MBDCAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peppa, V; Pappas, E; Lahanas, V
2015-06-15
Purpose: To develop user-oriented tools for commissioning and dosimetry testing of {sup 192}Ir brachytherapy treatment planning systems (TPSs) employing model based dose calculation algorithms (MBDCAs). Methods: A software tool (BrachyGuide) has been developed for the automatic generation of MCNP6 input files from any CT based plan exported in DICOM RT format from Elekta and Varian TPSs. BrachyGuide also facilitates the evaluation of imported Monte Carlo (MC) and TPS dose distributions in terms of % dose differences and gamma index (CT overlaid colormaps or relative frequency plots) as well as DVHs and related indices. For users not equipped to perform MC,more » a set of computational models was prepared in DICOM format, accompanied by treatment plans and corresponding MCNP6 generated reference data. BrachyGuide can then be used to compare institutional and reference data as per TG186. The model set includes a water sphere with the MBDCA WG {sup 192}Ir source placed centrically and in two eccentric positions, a water sphere with cubic bone and lung inhomogeneities and a five source dwells plan, and a patient equivalent model with an Accelerated Partial Breast Irradiation (APBI) plan. Results: The tools developed were used for the dosimetry testing of the Acuros and ACE MBDCAs implemented in BrachyVision v.13 and Oncentra Brachy v.4.5, respectively. Findings were consistent with previous results in the literature. Besides points close to the source dwells, Acuros was found to agree within type A uncertainties with the reference MC results. Differences greater than MC type A uncertainty were observed for ACE at distances >5cm from the source dwells and in bone. Conclusion: The tools developed are efficient for brachytherapy MBDCA planning commissioning and testing. Since they are appropriate for distribution over the web, they will be put at the AAPM WG MBDCA’s disposal. Research co-financed by the ESF and Greek funds. NSRF operational Program: Education and Lifelong Learning Investing in Knowledge Society-Aristeia. Varian Medical Systems and Nucletron, an Elekta company provided access to TPSs for research purposes. Miss Peppa was supported by IKY-fellowships of excellence for postgraduate studies in Greece,Siemens Program.« less
WE-EF-207-05: Monte Carlo Dosimetry for a Dedicated Cone-Beam CT Head Scanner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisniega, A; Zbijewski, W; Xu, J
Purpose: Cone-Beam CT (CBCT) is an attractive platform for point-of-care imaging of traumatic brain injury and intracranial hemorrhage. This work implements and evaluates a fast Monte-Carlo (MC) dose estimation engine for development of a dedicated head CBCT scanner, optimization of acquisition protocols, geometry, bowtie filter designs, and patient-specific dosimetry. Methods: Dose scoring with a GPU-based MC CBCT simulator was validated on an imaging bench using a modified 16 cm CTDI phantom with 7 ion chamber shafts along the central ray for 80–100 kVp (+2 mm Al, +0.2 mm Cu). Dose distributions were computed in a segmented CBCT reconstruction of anmore » anthropomorphic head phantom with 4×10{sup 5} tracked photons per scan (5 min runtime). Circular orbits with angular span ranging from short scan (180° + fan angle) to full rotation (360°) were considered for fixed total mAs per scan. Two aluminum filters were investigated: aggressive bowtie, and moderate bowtie (matched to 16 cm and 32 cm water cylinder, respectively). Results: MC dose estimates showed strong agreement with measurements (RMSE<0.001 mGy/mAs). A moderate (aggressive) bowtie reduced the dose, per total mAs, by 20% (30%) at the center of the head, by 40% (50%) at the eye lens, and by 70% (80%) at the posterior skin entrance. For the no bowtie configuration, a short scan reduced the eye lens dose by 62% (from 0.08 mGy/mAs to 0.03 mGy/mAs) compared to full scan, although the dose to spinal bone marrow increased by 40%. For both bowties, the short scan resulted in a similar 40% increase in bone marrow dose, but the reduction in the eye lens was more pronounced: 70% (90%) for the moderate (aggressive) bowtie. Conclusions: Dose maps obtained with validated MC simulation demonstrated dose reduction in sensitive structures (eye lens and bone marrow) through combination of short-scan trajectories and bowtie filters. Xiaohui Wang and David Foos are employees of Carestream Health.« less
Liu, Yingzi; Koltick, David; Byrne, Patrick; Wang, Haoyu; Zheng, Wei; Nie, Linda H
2013-12-01
This study was conducted to investigate the methodology and feasibility of developing a transportable neutron activation analysis (NAA) system to quantify manganese (Mn) in bone using a portable deuterium-deuterium (DD) neutron generator as the neutron source. Since a DD neutron generator was not available in our laboratory, a deuterium-tritium (DT) neutron generator was used to obtain experimental data and validate the results from Monte Carlo (MC) simulations. After validation, MC simulations using a DD generator as the neutron source were then conducted. Different types of moderators and reflectors were simulated, and the optimal thicknesses for the moderator and reflector were determined. To estimate the detection limit (DL) of the system, and to observe the interference of the magnesium (Mg) γ line at 844 keV to the Mn γ line at 847 keV, three hand phantoms with Mn concentrations of 30 parts per million (ppm), 150 ppm, and 500 ppm were made and irradiated by the DT generator system. The Mn signals in these phantoms were then measured using a 50% high-efficiency high-purity germanium (HPGe) detector. The DL was calculated to be about 4.4 ppm for the chosen irradiation, decay, and measurement time. This was calculated to be equivalent to a DL of about 3.3 ppm for the DD generator system. To achieve this DL with one 50% high-efficiency HPGe detector, the dose to the hand was simulated to be about 37 mSv, with the total body equivalent dose being about 23µSv. In conclusion, it is feasible to develop a transportable NAA system to quantify Mn in bone in vivo with an acceptable radiation exposure to the subject.
Liu, Yingzi; Koltick, David; Byrne, Patrick; Wang, Haoyu; Zheng, Wei; Nie, Linda H
2014-01-01
This study was conducted to investigate the methodology and feasibility of developing a transportable neutron activation analysis (NAA) system to quantify manganese (Mn) in bone using a portable deuterium–deuterium (DD) neutron generator as the neutron source. Since a DD neutron generator was not available in our laboratory, a deuterium–tritium (DT) neutron generator was used to obtain experimental data and validate the results from Monte Carlo (MC) simulations. After validation, MC simulations using a DD generator as the neutron source were then conducted. Different types of moderators and reflectors were simulated, and the optimal thicknesses for the moderator and reflector were determined. To estimate the detection limit (DL) of the system, and to observe the interference of the magnesium (Mg) γ line at 844 keV to the Mn γ line at 847 keV, three hand phantoms with Mn concentrations of 30 parts per million (ppm), 150 ppm, and 500 ppm were made and irradiated by the DT generator system. The Mn signals in these phantoms were then measured using a 50% high-efficiency high-purity germanium (HPGe) detector. The DL was calculated to be about 4.4 ppm for the chosen irradiation, decay, and measurement time. This was calculated to be equivalent to a DL of about 3.3 ppm for the DD generator system. To achieve this DL with one 50% high-efficiency HPGe detector, the dose to the hand was simulated to be about 37 mSv, with the total body equivalent dose being about 23μSv. In conclusion, it is feasible to develop a transportable NAA system to quantify Mn in bone in vivo with an acceptable radiation exposure to the subject. PMID:24165395
2017-09-30
veterans, their dependents , the Department of Veterans Affairs (VA), and the Naval Dosimetry Center regarding the VA radiogenic disease claims process. 15...nonexistent (HPS, 2010). Finally, to assist McMurdo Station veterans, their dependents , the VA, and the Naval Dosimetry Center, this report includes...24 h d−1 for 180 d Reasonable assumption 47 Parameter Value Rationale/Reference/Comment Dose coefficients Depends on organ 5-micrometer (µm
SU-E-T-155: Calibration of Variable Longitudinal Strength 103Pd Brachytherapy Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, J; Radtke, J; Micka, J
Purpose: Brachytherapy sources with variable longitudinal strength (VLS) allow for a customized intensity along the length of the source. These have applications in focal brachytherapy treatments of prostate cancer where dose boosting can be achieved through modulation of intra-source strengths. This work focused on development of a calibration methodology for VLS sources based on measurements and Monte Carlo (MC) simulations of five 1 cm {sup 10} {sup 3}Pd sources each containing four regions of variable {sup 103}Pd strength. Methods: The air-kerma strengths of the sources were measured with a variable-aperture free-air chamber (VAFAC). Source strengths were also measured using amore » well chamber. The in-air azimuthal and polar anisotropy of the sources were measured by rotating them in front of a NaI scintillation detector and were calculated with MC simulations. Azimuthal anisotropy results were normalized to their mean intensity values. Polar anisotropy results were normalized to their average transverse axis intensity values. The relative longitudinal strengths of the sources were measured via on-contact irradiations with radiochromic film, and were calculated with MC simulations. Results: The variable {sup 103}Pd loading of the sources was validated by VAFAC and well chamber measurements. Ratios of VAFAC air-kerma strengths and well chamber responses were within ±1.3% for all sources. Azimuthal anisotropy results indicated that ≥95% of the normalized values for all sources were within ±1.7% of the mean values. Polar anisotropy results indicated variations within ±0.3% for a ±7.6° angular region with respect to the source transverse axis. Locations and intensities of the {sup 103}Pd regions were validated by radiochromic film measurements and MC simulations. Conclusion: The calibration methodology developed in this work confirms that the VLS sources investigated have a high level of polar uniformity, and that the strength and longitudinal intensity can be verified experimentally and through MC simulations. {sup 103}Pd sources were provided by CivaTech Oncology, Inc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seco, J; Giantsoudi, D; Eaton, BR
Purpose: To investigate the trade-off between vertebral column sparing and thecal-sac target coverage in craniospinal irradiation (CSI) of pediatric patients treated with passive-scattering (PS) and intensity modulated (IMPT) proton therapy. Methods: We selected 2 pediatric patients treated with PS CSI for medulloblastoma. Spinal irradiation was re-planned with IMPT. For all cases, we assumed prescription dose of 23.4 Gy(RBE), with the spinal canal receiving at least 95% of 23.4 Gy(RBE). PS planning was performed using the commercial system XiO. IMPT planning was done using the Astroid planning system. Beam arrangements consisted of (a) PS posterior-anterior (PA) field, PS-PA, (b) IMPT PAmore » field, IMPT-PA, and (c) two posterior oblique IMPT fields, IMPT2 (-35°, 35°). Dose distributions were re-calculated using TOPAS Monte Carlo, along with LET distributions, to investigate LET variations within the target and vertebra anatomy. Variable RBE-weighed dose distributions were also calculated based on a dose and LET-dependent biophysical model. Dosimetric data were compared among the plans for the target volume, spinal cord and adjacent critical organs (thecal-sac and cauda equina). Results: IMPT2 resulted in better sparing of the posterior vertebral column (entrance region posterior to thecal-sac), where planned dose was approximately 6–8Gy(RBE). For IMPT-PA and PS-PA the MC-calculated dose to the posterior vertebral column was, on average, 20Gy and 18Gy respectively. For IMPT2 higher mean-LET (5keV/µm/(g/cm3)) values were observed in anterior vertebral column (beyond the thecal-sac) relative to IMPT-PA and PS-PA, where mean-LET was 3.5keV/µm/(g/cm3) and 2.5keV/µm/(g/cm3) respectively. The higher LET region observed for both IMPT plans was in the distal end of treatment fields, where dose delivered was less 5Gy(RBE). Conclusion: The two-oblique proton beams IMPT2 best spared the spinal column, while reducing the dose to the posterior spinal column from 18–20 to 6–8 Gy(RBE). The best LET distribution was obtained with the PS-PA fields.« less
Guillou, Marie; Maurel, Blandine; Necib, Hatem; Vent, Pierre-Alexandre; Costargent, Alain; Chaillou, Philippe; Gouëffic, Yann; Kaladji, Adrien
2018-02-01
Flat-panel detectors on mobile C-arm (MC-arm) systems are currently challenging fixed C-arm (FC-arm) systems used in hybrid operating rooms. MC-arm systems offer an alternative to FC-arm systems in the endovascular treatment of peripheral arterial disease (PAD) but their efficiency has not been evaluated comparatively. Two series of patients undergoing arteriography with intention to treat were included. Each series consisted of 2 nonrandomized groups: an MC-arm group and an FC-arm group. Series 1 evaluated exposure to the patient (MC-arm, n = 113; FC-arm, n = 206) while series 2 evaluated exposure to patients and also health care personnel (MC-arm, n = 24; FC-arm, n = 76). The primary end points for evaluating exposure were air kerma (AK, in mGy) for patients and effective dose for health care personnel (in μSv). After adjustment for the effect of body mass index (analysis of covariance test), AK was found to be lower in the MC-arm group than in the FC-arm group (124.1 ± 142 vs. 173.3 ± 248.7, P = 0.025). There was no difference between the groups with regard to effective dose recorded for senior surgeons or for operating room nurses. However, a higher effective dose was recorded by the MC-arm group external dosimeter for the trainee resident and for nurse anesthetists. In endovascular treatment of lower limb PAD, use of an FC-arm system is associated with more radiation exposure to the patient than an MC-arm system. However, this type of imaging system does not appear to affect exposure to health care personnel. Copyright © 2017 Elsevier Inc. All rights reserved.
De Vries, Rowen J; Marsh, Steven
2015-11-08
Internal lead shielding is utilized during superficial electron beam treatments of the head and neck, such as lip carcinoma. Methods for predicting backscattered dose include the use of empirical equations or performing physical measurements. The accuracy of these empirical equations required verification for the local electron beams. In this study, a Monte Carlo model of a Siemens Artiste linac was developed for 6, 9, 12, and 15 MeV electron beams using the EGSnrc MC package. The model was verified against physical measurements to an accuracy of better than 2% and 2mm. Multiple MC simulations of lead interfaces at different depths, corresponding to mean electron energies in the range of 0.2-14 MeV at the interfaces, were performed to calculate electron backscatter values. The simulated electron backscatter was compared with current empirical equations to ascertain their accuracy. The major finding was that the current set of backscatter equations does not accurately predict electron backscatter, particularly in the lower energies region. A new equation was derived which enables estimation of electron backscatter factor at any depth upstream from the interface for the local treatment machines. The derived equation agreed to within 1.5% of the MC simulated electron backscatter at the lead interface and upstream positions. Verification of the equation was performed by comparing to measurements of the electron backscatter factor using Gafchromic EBT2 film. These results show a mean value of 0.997 ± 0.022 to 1σ of the predicted values of electron backscatter. The new empirical equation presented can accurately estimate electron backscatter factor from lead shielding in the range of 0.2 to 14 MeV for the local linacs.
Marsh, Steven
2015-01-01
Internal lead shielding is utilized during superficial electron beam treatments of the head and neck, such as lip carcinoma. Methods for predicting backscattered dose include the use of empirical equations or performing physical measurements. The accuracy of these empirical equations required verification for the local electron beams. In this study, a Monte Carlo model of a Siemens Artiste linac was developed for 6, 9, 12, and 15 MeV electron beams using the EGSnrc MC package. The model was verified against physical measurements to an accuracy of better than 2% and 2 mm. Multiple MC simulations of lead interfaces at different depths, corresponding to mean electron energies in the range of 0.2–14 MeV at the interfaces, were performed to calculate electron backscatter values. The simulated electron backscatter was compared with current empirical equations to ascertain their accuracy. The major finding was that the current set of backscatter equations does not accurately predict electron backscatter, particularly in the lower energies region. A new equation was derived which enables estimation of electron backscatter factor at any depth upstream from the interface for the local treatment machines. The derived equation agreed to within 1.5% of the MC simulated electron backscatter at the lead interface and upstream positions. Verification of the equation was performed by comparing to measurements of the electron backscatter factor using Gafchromic EBT2 film. These results show a mean value of 0.997±0.022 to 1σ of the predicted values of electron backscatter. The new empirical equation presented can accurately estimate electron backscatter factor from lead shielding in the range of 0.2 to 14 MeV for the local linacs. PACS numbers: 87.53.Bn, 87.55.K‐, 87.56.bd PMID:26699566
Sharmin, Nusrat; Khan, Ruhul A; Salmieri, Stephane; Dussault, Dominic; Bouchard, Jean; Lacroix, Monique
2012-01-18
Methylcellulose (MC)-based films were prepared by solution casting from its 1% aqueous suspension containing 0.25% glycerol. Trimethylolpropane trimethacrylate (TMPTMA) monomer (0.1-2% by wt) along with the glycerol was added to the MC suspension. The films were cast and irradiated from a radiation dose varied from 0.1 to 10 kGy. Then the mechanical properties such as tensile strength (TS), tensile modulus (TM), and elongation at break (Eb) and barrier properties of the films were evaluated. The highest TS (47.88 PMa) and TM (1791.50 MPa) of the films were found by using 0.1% monomer at 5 kGy dose. The lowest water vapor permeability (WVP) of the films was found to be 5.57 g·mm/m(2)·day·kPa (at 0.1% monomer and 5 kGy dose), which is 12.14% lower than control MC-based films. Molecular interactions due to incorporation of TMPTMA were supported by FTIR spectroscopy. A band at 1720 cm(-1) was observed due to the addition of TMPTMA in MC-based films, which indicated the typical (C═O) carbonyl stretching. For the further improvement of the mechanical and barrier properties of the film, 0.025-1% nanocrystalline cellulose (NCC) was added to the MC-based suspension containing 1% TMPTMA. Addition of NCC led to a significant improvement in the mechanical and barrier properties. The novelty of this investigation was to graft insoluble monomer using γ radiation with MC-based films and use of biodegradable NCC as the reinforcing agent.
Hauri, Pascal; Schneider, Uwe
2018-04-01
Long-term survivors of cancer who were treated with radiotherapy are at risk of a radiation-induced tumor. Hence, it is important to model the out-of-field dose resulting from a cancer treatment. These models have to be verified with measurements, due to the small size, the high sensitivity to ionizing radiation and the tissue-equivalent composition, LiF thermoluminescence dosimeters (TLD) are well-suited for out-of-field dose measurements. However, the photon energy variation of the stray dose leads to systematic dose errors caused by the variation in response with radiation energy of the TLDs. We present a dosimeter which automatically corrects for the energy variation of the measured photons by combining LiF:Mg,Ti (TLD100) and LiF:Mg,Cu,P (TLD100H) chips. The response with radiation energy of TLD100 and TLD100H compared to 60 Co was taken from the literature. For the measurement, a TLD100H was placed on top of a TLD100 chip. The dose ratio between the TLD100 and TLD100H, combined with the ratio of the response curves was used to determine the mean energy. With the energy, the individual correction factors for TLD100 and TLD100H could be found. The accuracy in determining the in- and out-of-field dose for a nominal beam energy of 6MV using the double-TLD unit was evaluated by an end-to-end measurement. Furthermore, published Monte Carlo (M.C.) simulations of the mean photon energy for brachytherapy sources, stray radiation of a treatment machine and cone beam CT (CBCT) were compared to the measured mean energies. Finally, the photon energy distribution in an Alderson phantom was measured for different treatment techniques applied with a linear accelerator. Additionally, a treatment plan was measured with a cobalt machine combined with an MRI. For external radiotherapy, the presented double-TLD unit showed a relative type A uncertainty in doses of -1%±2% at the two standard deviation level compared to an ionization chamber. The type A uncertainty in dose was in agreement with the theoretically calculated type B uncertainty. The measured energies for brachytherapy sources, stray radiation of a treatment machine and CBCT imaging were in agreement with M.C. simulations. A shift in energy with increasing distance to the isocenter was noticed for the various treatment plans measured with the Alderson phantom. The calculated type B uncertainties in energy were in line with the experimentally evaluated type A uncertainties. The double-TLD unit is able to predict the photon energy of scatter radiation in external radiotherapy, X-ray imagine and brachytherapy sources. For external radiotherapy, the individual energy correction factors enabled a more accurate dose determination compared to conventional TLD measurements. Copyright © 2017. Published by Elsevier GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wronski, M; Sarfehnia, A; Sahgal, A
Purpose: To evaluate the interface effects when irradiating through a hip prosthesis in the presence of an orthogonal 1.5 T magnetic field using Monte Carlo simulations. Methods: A 20×20×38 cm virtual phantom with two 5×5×5 cm sections of bilateral titanium hip prosthesis was created in GPU-based Monte Carlo (MC) algorithm (GPUMCD, Elekta AB, Stockholm Sweden). The lateral prosthesis spacing was based on a representative patient CT scan. A treatment SAD of 143.5 cm was chosen, corresponding to the Elekta AB MRI Linac and the beam energy distribution was sampled from a histogram representing the true MRI Linac spectrum. A magneticmore » field of 1.5 T was applied perpendicular to the plane of irradiation. Dose was calculated, in voxels of side 1 mm, for 2×2, 5×5, and 10×10 cm treatment field sizes with normal beam incidence (gantry at 90° or 270°) and at 5° and 10° from normal, representing the range of incidence through the bilateral prosthesis. Results: With magnetic field ON (B-On) and normal beam incidence the backscatter dose at the interfaces of proximal and distal implants is reduced for all the field sizes compared to the magnetic field OFF (B-Off) case. The absolute reduction in doses at the interface was in the range of 12.93% to 13.16% for the proximal implant and 13.57% to 16.12% for the distal implant. Similarly for the oblique incidences of 5o and 10o the dose in the plane adjacent to the prosthetic implants is lower when the magnetic field is ON. Conclusion: The dosimetric effects of irradiating through a hip prosthesis in the presence of a transverse magnetic field have been determined using MC simulation. The backscatter dose reduction translates into significantly lower hot spots at the prosthetic interfaces, which are otherwise substantially high in the absence of the magnetic field. This project was supported through funding provided by ElektaTM.« less
Application of a dummy eye shield for electron treatment planning
Kang, Sei-Kwon; Park, Soah; Hwang, Taejin; Cheong, Kwang-Ho; Han, Taejin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Oh, Do Hoon; Bae, Hoonsik
2013-01-01
Metallic eye shields have been widely used for near-eye treatments to protect critical regions, but have never been incorporated into treatment plans because of the unwanted appearance of the metal artifacts on CT images. The purpose of this work was to test the use of an acrylic dummy eye shield as a substitute for a metallic eye shield during CT scans. An acrylic dummy shield of the same size as the tungsten eye shield was machined and CT scanned. The BEAMnrc and the DOSXYZnrc were used for the Monte Carlo (MC) simulation, with the appropriate material information and density for the aluminum cover, steel knob and tungsten body of the eye shield. The Pinnacle adopting the Hogstrom electron pencil-beam algorithm was used for the one-port 6-MeV beam plan after delineation and density override of the metallic parts. The results were confirmed with the metal oxide semiconductor field effect transistor (MOSFET) detectors and the Gafchromic EBT2 film measurements. For both the maximum eyelid dose over the shield and the maximum dose under the shield, the MC results agreed with the EBT2 measurements within 1.7%. For the Pinnacle plan, the maximum dose under the shield agreed with the MC within 0.3%; however, the eyelid dose differed by –19.3%. The adoption of the acrylic dummy eye shield was successful for the treatment plan. However, the Pinnacle pencil-beam algorithm was not sufficient to predict the eyelid dose on the tungsten shield, and more accurate algorithms like MC should be considered for a treatment plan. PMID:22915776
Dosimetry applications in GATE Monte Carlo toolkit.
Papadimitroulas, Panagiotis
2017-09-01
Monte Carlo (MC) simulations are a well-established method for studying physical processes in medical physics. The purpose of this review is to present GATE dosimetry applications on diagnostic and therapeutic simulated protocols. There is a significant need for accurate quantification of the absorbed dose in several specific applications such as preclinical and pediatric studies. GATE is an open-source MC toolkit for simulating imaging, radiotherapy (RT) and dosimetry applications in a user-friendly environment, which is well validated and widely accepted by the scientific community. In RT applications, during treatment planning, it is essential to accurately assess the deposited energy and the absorbed dose per tissue/organ of interest, as well as the local statistical uncertainty. Several types of realistic dosimetric applications are described including: molecular imaging, radio-immunotherapy, radiotherapy and brachytherapy. GATE has been efficiently used in several applications, such as Dose Point Kernels, S-values, Brachytherapy parameters, and has been compared against various MC codes which are considered as standard tools for decades. Furthermore, the presented studies show reliable modeling of particle beams when comparing experimental with simulated data. Examples of different dosimetric protocols are reported for individualized dosimetry and simulations combining imaging and therapy dose monitoring, with the use of modern computational phantoms. Personalization of medical protocols can be achieved by combining GATE MC simulations with anthropomorphic computational models and clinical anatomical data. This is a review study, covering several dosimetric applications of GATE, and the different tools used for modeling realistic clinical acquisitions with accurate dose assessment. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Morikami, Kenji; Itezono, Yoshiko; Nishimoto, Masahiro; Ohta, Masateru
2014-01-01
Compounds with a medium-sized flexible ring often show atropisomerism that is caused by the high-energy barriers between long-lived conformers that can be isolated and often have different biological properties to each other. In this study, the frequency of the transition between the two stable conformers, aS and aR, of thienotriazolodiazepine compounds with flexible 7-membered rings was estimated computationally by Monte Carlo (MC) simulations and validated experimentally by NMR experiments. To estimate the energy barriers for transitions as precisely as possible, the potential energy (PE) surfaces used in the MC simulations were calculated by molecular orbital (MO) methods. To accomplish the MC simulations with the MO-based PE surfaces in a practical central processing unit (CPU) time, the MO-based PE of each conformer was pre-calculated and stored before the MC simulations, and then only referred to during the MC simulations. The activation energies for transitions calculated by the MC simulations agreed well with the experimental ΔG determined by the NMR experiments. The analysis of the transition trajectories of the MC simulations revealed that the transition occurred not only through the transition states, but also through many different transition paths. Our computational methods gave us quantitative estimates of atropisomerism of the thienotriazolodiazepine compounds in a practical period of time, and the method could be applicable for other slow-dynamics phenomena that cannot be investigated by other atomistic simulations.
Hagan, M M; Rushing, P A; Pritchard, L M; Schwartz, M W; Strack, A M; Van Der Ploeg, L H; Woods, S C; Seeley, R J
2000-07-01
Overexpression of agouti-related peptide (AgRP), an endogenous melanocortin (MC) 3 and 4 receptor antagonist (MC3/4-R), causes obesity. Exogenous AgRP-(83---132) increases food intake, but its duration and mode of action are unknown. We report herein that doses as low as 10 pmol can have a potent effect on food intake of rats over a 24-h period after intracerebroventricular injection. Additionally, a single third ventricular dose as low as 100 pmol in rats produces a robust increase in food intake that persists for an entire week. AgRP-(83---132) completely blocks the anorectic effect of MTII (MC3/4-R agonist), given simultaneously, consistent with a competitive antagonist action. However, when given 24 h prior to MTII, AgRP-(83---132) is ineffective at reversing the anorectic effects of the agonist. These results support a critical role of MC tone in limiting food intake and indicate that the orexigenic effects of AgRP-(83---132) are initially mediated by competitive antagonism at MC receptors but are sustained by alternate mechanisms.
NASA Astrophysics Data System (ADS)
Zoros, E.; Moutsatsos, A.; Pappas, E. P.; Georgiou, E.; Kollias, G.; Karaiskos, P.; Pantelis, E.
2017-09-01
Detector-, field size- and machine-specific correction factors are required for precise dosimetry measurements in small and non-standard photon fields. In this work, Monte Carlo (MC) simulation techniques were used to calculate the k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} and k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors for a series of ionization chambers, a synthetic microDiamond and diode dosimeters, used for reference and/or output factor (OF) measurements in the Gamma Knife Perfexion photon fields. Calculations were performed for the solid water (SW) and ABS plastic phantoms, as well as for a water phantom of the same geometry. MC calculations for the k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors in SW were compared against corresponding experimental results for a subset of ionization chambers and diode detectors. Reference experimental OF data were obtained through the weighted average of corresponding measurements using TLDs, EBT-2 films and alanine pellets. k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} values close to unity (within 1%) were calculated for most of ionization chambers in water. Greater corrections of up to 6.0% were observed for chambers with relatively large air-cavity dimensions and steel central electrode. A phantom correction of 1.006 and 1.024 (breaking down to 1.014 from the ABS sphere and 1.010 from the accompanying ABS phantom adapter) were calculated for the SW and ABS phantoms, respectively, adding up to k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} corrections in water. Both measurements and MC calculations for the diode and microDiamond detectors resulted in lower than unit k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors, due to their denser sensitive volume and encapsulation materials. In comparison, higher than unit k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} results for the ionization chambers suggested field size depended dose underestimations (being significant for the 4 mm field), with magnitude depending on the combination of contradicting phenomena associated with volume averaging and electron fluence perturbations. Finally, the presence of 0.5 mm air-gap between the diodes’ frontal surface and their phantom-inserts may considerably influence OF measurements, reaching 4.6% for the Razor diode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y; Cai, J; Meltsner, S
2016-06-15
Purpose: The Varian tandem and ring applicators are used to deliver HDR Ir-192 brachytherapy for cervical cancer. The source path within the ring is hard to predict due to the larger interior ring lumen. Some studies showed the source could be several millimeters different from planned positions, while other studies demonstrated minimal dosimetric impact. A global shift can be applied to limit the effect of positioning offsets. The purpose of this study was to assess the necessities of implementing a global source shift using Monte Carlo (MC) simulations. Methods: The MCNP5 radiation transport code was used for all MC simulations.more » To accommodate TG-186 guidelines and eliminate inter-source attenuation, a BrachyVision plan with 10 dwell positions (0.5cm step sizes) was simulated as the summation of 10 individual sources with equal dwell times for simplification. To simplify the study, the tandem was also excluded from the MC model. Global shifts of ±0.1, ±0.3, ±0.5 cm were then simulated as distal and proximal from the reference positions. Dose was scored in water for all MC simulations and was normalized to 100% at the normalization point 0.5 cm from the cap in the ring plane. For dose comparison, Point A was 2 cm caudal from the buildup cap and 2 cm lateral on either side of the ring axis. With seventy simulations, 108 photon histories gave a statistical uncertainties (k=1) <2% for (0.1 cm)3 voxels. Results: Compared to no global shift, average Point A doses were 0.0%, 0.4%, and 2.2% higher for distal global shifts, and 0.4%, 2.8%, and 5.1% higher for proximal global shifts, respectively. The MC Point A doses differed by < 1% when compared to BrachyVision. Conclusion: Dose variations were not substantial for ±0.3 cm global shifts, which is common in clinical practice.« less
Khosravi, H; Hashemi, B; Mahdavi, S R; Hejazi, P
2015-03-01
Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs) and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. There was a good agreement between the dose enhancement factors (DEFs) estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal and external radiotherapy practices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manohar, Nivedh; Jones, Bernard L.; Cho, Sang Hyun, E-mail: scho@mdanderson.org
Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of leadmore » (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81–100 keV, increased the FSDR up to a factor of 20, compared to 1 mm Pb, and further facilitated separation of gold XRF peaks from the scatter background. Conclusions: A detailed MC model of an experimental benchtop XFCT system has been developed and validated. In exemplary calculations to illustrate the usefulness of this model, it was shown that potential use of quasimonochromatic spectra or judicious choice of filter material/thickness to tailor the spectrum of a polychromatic x-ray source can significantly improve the performance of benchtop XFCT, while considering trade-offs between FSDR and FNST. As demonstrated, the current MC model is a reliable and powerful computational tool that can greatly expedite the further development of a benchtop XFCT system for routine preclinical molecular imaging with GNPs and other metal probes.« less
Analysis of Neural Systems Involved in Modulation of Memory Storage
1993-02-01
doses of the muscarinic cholinergic agonist oxotremorine (Castellano and McGaugh, 1991). In experiments (unpublished) using intra- amygdala injections...and McGaugh, J.L. Oxotremorine attenuates retrograde amnesia induced by posttraining administration of the, GABAergic agonists muscimol and baclofen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansom, B.F.; Garner, R.J.; West, L.C.
1964-01-01
In experiments designed to investigate the relative behavior of the alkaline earth elements in bovine metabolism, two pairs of lactating Ayrshire X Redpoll cows received doses of /sup 224/Ra and /sup 45/Ca. One pair (W258 and W259) received 24 mc /sup 224/Ra + 2 mc /sup 45/Ca administered intravenously, and the others (U45 and U402) received 2 mc /sup 224/Ra + /sup 45/Ca intravenously followed after 77 days by 5 mc /sup 224/Ra + 5 mc /sup 45/Ca orally. Four days after the oral dose, W258 and W259 were both off their feed and badly constipated, and their milk yieldmore » was down. They remained ill for 2 days but then showed steady improvement until, a week after the first symptoms, they were eating well and their milk yield was improving. Similar symptoms, but without constipation, were observed after the intravenous dose to these cows. Cows U45 and U402 showed no clinical symptoms after either the irtravenous or oral dose. In W258 and W259 the white cell counts made 4 days after oral dosing were within the normal range but on the 7th and 11th days there was a moderate leukopenia in both cows with minimum white cel1 counts of 2.82 and 1.56 x 10/sup 3//mm/sup 3/. The differential counts showed this to be due mainly to a fall in the number of neutrophils. By the 18th day the neutrophils had recovered to their normal proportion of about 30%, and only a slight leukopenia was apparent. Seven days after the intravenous dose, a moderate leukopenia was seen in both cows, with white cell counts of 2.2 x 10/sup 3/ and 1.8 x 10/sup 3//mm/sup 3/, mainly to neutropenia. In this instance recovery was slower, and the values were still very abnormal 14 days after the injection. Both doses also caused slight but progressive thrombocytopenia and anemia. No abnormalities in the blood picture of U45 and U402 were observed at any time after the irtravenous or oral doses. Although in man the most sensitive indication of radiation damage is a fall in the numbers of lymphocytes and platelets, the clearest reaction in cows to the feeding or injection of /sup 224/Ra and /sup 45/Ca was a transient neutropenia. Radiation doses were estimated, and it was shown that the threshold dose to produce changes in the blood picture of cows of sufficient magnitude to be recognized during routine hematological examination lies between 35 and 60 rem. For most mammalian species the threshold dose for significant effects on the hematopoietic system is approximates 100 r of gamma radiation. In a large animal this air dose would be roughly equivalent to an absorbed dose of 50 rem. (BBB)« less
NASA Astrophysics Data System (ADS)
Jagiełowicz-Ryznar, C.
2016-12-01
The numerical calculations results of torsional vibration of the multi-cylinder crankshaft in the serial combustion engine (MC), including a viscous damper (VD), at complex forcing, were shown. In fact, in the MC case the crankshaft rotation forcings spectrum is the sum of harmonic forcing whose amplitude can be compared with the amplitude of the 1st harmonic. A significant impact, in the engine operational velocity, on the vibration damping process of MC, may be the amplitude of the 2nd harmonic of a forcing moment. The calculations results of MC vibration, depending on the amplitude of the 2nd harmonic of the forcing moment, for the first form of the torsional vibration, were shown. Higher forms of torsional vibrations have no practical significance. The calculations assume the optimum damping coefficient VD, when the simple harmonic forcing is equal to the base critical velocity of the MC crankshaft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirkovic, D; Titt, U; Mohan, R
2016-06-15
Purpose: To evaluate effects of motion and variable relative biological effectiveness (RBE) in a lung cancer patient treated with passively scattered proton therapy using dose volume histograms associated with patient dose computed using three different methods. Methods: A proton treatment plan of a lung cancer patient optimized using clinical treatment planning system (TPS) was used to construct a detailed Monte Carlo (MC) model of the beam delivery system and the patient specific aperture and compensator. A phase space file containing all particles transported through the beam line was collected at the distal surface of the range compensator and subsequently transportedmore » through two different patient models. The first model was based on the average CT used by the TPS and the second model included all 10 phases of the corresponding 4DCT. The physical dose and proton linear energy transfer (LET) were computed in each voxel of two models and used to compute constant and variable RBE MC dose on average CT and 4D CT. The MC computed doses were compared to the TPS dose using dose volume histograms for relevant structures. Results: The results show significant differences in doses to the target and critical structures suggesting the need for more accurate proton dose computation methods. In particular, the 4D dose shows reduced coverage of the target and higher dose to the spinal cord, while variable RBE dose shows higher lung dose. Conclusion: The methodology developed in this pilot study is currently used for the analysis of a cohort of ∼90 lung patients from a clinical trial comparing proton and photon therapy for lung cancer. The results from this study will help us in determining the clinical significance of more accurate dose computation models in proton therapy.« less
SU-E-T-22: A Deterministic Solver of the Boltzmann-Fokker-Planck Equation for Dose Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, X; Gao, H; Paganetti, H
2015-06-15
Purpose: The Boltzmann-Fokker-Planck equation (BFPE) accurately models the migration of photons/charged particles in tissues. While the Monte Carlo (MC) method is popular for solving BFPE in a statistical manner, we aim to develop a deterministic BFPE solver based on various state-of-art numerical acceleration techniques for rapid and accurate dose calculation. Methods: Our BFPE solver is based on the structured grid that is maximally parallelizable, with the discretization in energy, angle and space, and its cross section coefficients are derived or directly imported from the Geant4 database. The physical processes that are taken into account are Compton scattering, photoelectric effect, pairmore » production for photons, and elastic scattering, ionization and bremsstrahlung for charged particles.While the spatial discretization is based on the diamond scheme, the angular discretization synergizes finite element method (FEM) and spherical harmonics (SH). Thus, SH is used to globally expand the scattering kernel and FFM is used to locally discretize the angular sphere. As a Result, this hybrid method (FEM-SH) is both accurate in dealing with forward-peaking scattering via FEM, and efficient for multi-energy-group computation via SH. In addition, FEM-SH enables the analytical integration in energy variable of delta scattering kernel for elastic scattering with reduced truncation error from the numerical integration based on the classic SH-based multi-energy-group method. Results: The accuracy of the proposed BFPE solver was benchmarked against Geant4 for photon dose calculation. In particular, FEM-SH had improved accuracy compared to FEM, while both were within 2% of the results obtained with Geant4. Conclusion: A deterministic solver of the Boltzmann-Fokker-Planck equation is developed for dose calculation, and benchmarked against Geant4. Xiang Hong and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less
Troeller, Almut; Garny, Sylvia; Pachmann, Sophia; Kantz, Steffi; Gerum, Sabine; Manapov, Farkhad; Ganswindt, Ute; Belka, Claus; Söhn, Matthias
2015-02-22
The use of high accuracy dose calculation algorithms, such as Monte Carlo (MC) and Collapsed Cone (CC) determine dose in inhomogeneous tissue more accurately than pencil beam (PB) algorithms. However, prescription protocols based on clinical experience with PB are often used for treatment plans calculated with CC. This may lead to treatment plans with changes in field size (FS) and changes in dose to organs at risk (OAR), especially for small tumor volumes in lung tissue treated with SABR. We re-evaluated 17 3D-conformal treatment plans for small intrapulmonary lesions with a prescription of 60 Gy in fractions of 7.5 Gy to the 80% isodose. All treatment plans were initially calculated in Oncentra MasterPlan® using a PB algorithm and recalculated with CC (CCre-calc). Furthermore, a CC-based plan with coverage similar to the PB plan (CCcov) and a CC plan with relaxed coverage criteria (CCclin), were created. The plans were analyzed in terms of Dmean, Dmin, Dmax and coverage for GTV, PTV and ITV. Changes in mean lung dose (MLD), V10Gy and V20Gy were evaluated for the lungs. The re-planned CC plans were compared to the original PB plans regarding changes in total monitor units (MU) and average FS. When PB plans were recalculated with CC, the average V60Gy of GTV, ITV and PTV decreased by 13.2%, 19.9% and 41.4%, respectively. Average Dmean decreased by 9% (GTV), 11.6% (ITV) and 14.2% (PTV). Dmin decreased by 18.5% (GTV), 21.3% (ITV) and 17.5% (PTV). Dmax declined by 7.5%. PTV coverage correlated with PTV volume (p < 0.001). MLD, V10Gy, and V20Gy were significantly reduced in the CC plans. Both, CCcov and CCclin had significantly increased MUs and FS compared to PB. Recalculation of PB plans for small lung lesions with CC showed a strong decline in dose and coverage in GTV, ITV and PTV, and declined dose in the lung. Thus, switching from a PB algorithm to CC, while aiming to obtain similar target coverage, can be associated with application of more MU and extension of radiotherapy fields, causing greater OAR exposition.
Chen, Min; Georgeson, Keith E; Harmon, Carroll M; Haskell-Luevano, Carrie; Yang, Yingkui
2006-11-01
The melanocortin system plays an important role in energy homeostasis as well as skin pigmentation, steroidogenesis and exocrine gland function. In this study, we examined eight Ac-His-Phe-Arg-Trp-NH(2) tetrapeptides that were modified at the Phe position and pharmacologically characterized their activities at the human MCR wild-types and their mutants. Our results indicate that at the hMC1R, all D stereochemical modified residues at the Phe position of peptides increase cAMP production in a dose-dependent manner. At the hMC3R, the DPhe peptide dose dependently increases cAMP production but all other three tetrapeptides were not. At the hMC4R, both the DPhe and DNal(1') peptides induce cAMP production. However, both DTyr and DNal(2') were not able to induce cAMP production. Further studies indicated that at the hMC1R M128L mutant receptor, the all D-configured tetrapeptides reduce their potencies as compared to that of hMC1R wild-type. However, at the hMC3R and hMC4R L165M and L133M mutant receptors, the DNal(2') and DTyr tetrapeptides possess agonist activity. These findings indicate that DPhe in tetrapeptide plays an important role in ligand selectivity and specific residue TM3 of the melanocortin receptors is crucial for ligand selectivity.
A Detailed FLUKA-2005 Monte Carlo Simulation for the ATIC Detector
NASA Technical Reports Server (NTRS)
Gunasingha, R. M.; Fazely, A. R.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Ganel, O.; Guzik, T. G.
2006-01-01
We have performed a detailed Monte Carlo (MC) calculation for the Advanced thin Ionization Calorimeter (ATIC) detector using the MC code FLUKA-2005 which is capable of simulating particles up to 10 PeV. The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon Bight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy; using a fully active Bismuth Germanate @GO) calorimeter. It is equipped with a large mosaic of silicon detector pixels capable of charge identification and as a particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the middle and below a 0.75 nuclear interaction length graphite target. Our calculations are part of an analysis package of both A- and energy-dependences of different nuclei interacting with the ATIC detector. The MC simulates the responses of different components of the detector such as the Simatrix, the scintillator hodoscopes and the BGO calorimeter to various nuclei. We also show comparisons of the FLUKA-2005 MC calculations with a GEANT calculation and data for protons, He and CNO.
NASA Astrophysics Data System (ADS)
Oderinde, Oluwaseyi Michael; du Plessis, FCP
2017-12-01
The purpose of this study was to develop a new component module (CM) namely IQM to accurately model the integral quality monitoring (IQM) system® to be used in the BEAMnrc Monte Carlo (MC) code. The IQM is essentially a double wedge ionization chamber with the central electrode plate bisecting the wedge. The IQM CM allows the user to characterize the double wedge of this ionization chamber and BEAMnrc can then accurately calculate the dose in this CM including its enclosed air regions. This has been verified against measured data. The newly created CM was added into the standard BEAMnrc CMs, and it will be made available through the NRCC website. The BEAMnrc graphical user interface (GUI) and particle ray-tracing techniques were used to validate the IQM geometry. In subsequent MC simulations, the dose scored in the IQM was verified against measured data over a range of square fields ranging from 1 × 1-30 × 30 cm2. The IQM system is designed for the present day need for a device that could verify beam output in real-time during treatment. This CM is authentic, and it can serve as a basis for researchers that have an interest in real-time beam delivery checking using wedge-shaped ionization chamber based instruments like the IQM.
Calculated X-ray Intensities Using Monte Carlo Algorithms: A Comparison to Experimental EPMA Data
NASA Technical Reports Server (NTRS)
Carpenter, P. K.
2005-01-01
Monte Carlo (MC) modeling has been used extensively to simulate electron scattering and x-ray emission from complex geometries. Here are presented comparisons between MC results and experimental electron-probe microanalysis (EPMA) measurements as well as phi(rhoz) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been widely used to develop phi(rhoz) correction algorithms. X-ray intensity data produced by MC simulations represents an independent test of both experimental and phi(rhoz) correction algorithms. The alpha-factor method has previously been used to evaluate systematic errors in the analysis of semiconductor and silicate minerals, and is used here to compare the accuracy of experimental and MC-calculated x-ray data. X-ray intensities calculated by MC are used to generate a-factors using the certificated compositions in the CuAu binary relative to pure Cu and Au standards. MC simulations are obtained using the NIST, WinCasino, and WinXray algorithms; derived x-ray intensities have a built-in atomic number correction, and are further corrected for absorption and characteristic fluorescence using the PAP phi(rhoz) correction algorithm. The Penelope code additionally simulates both characteristic and continuum x-ray fluorescence and thus requires no further correction for use in calculating alpha-factors.
Kalantzis, Georgios; Tachibana, Hidenobu
2014-01-01
For microdosimetric calculations event-by-event Monte Carlo (MC) methods are considered the most accurate. The main shortcoming of those methods is the extensive requirement for computational time. In this work we present an event-by-event MC code of low projectile energy electron and proton tracks for accelerated microdosimetric MC simulations on a graphic processing unit (GPU). Additionally, a hybrid implementation scheme was realized by employing OpenMP and CUDA in such a way that both GPU and multi-core CPU were utilized simultaneously. The two implementation schemes have been tested and compared with the sequential single threaded MC code on the CPU. Performance comparison was established on the speed-up for a set of benchmarking cases of electron and proton tracks. A maximum speedup of 67.2 was achieved for the GPU-based MC code, while a further improvement of the speedup up to 20% was achieved for the hybrid approach. The results indicate the capability of our CPU-GPU implementation for accelerated MC microdosimetric calculations of both electron and proton tracks without loss of accuracy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Manigandan, Durai; Karrthick, Karukkupalayam Palaniappan; Sambasivaselli, Raju; Senniandavar, Vellaingiri; Ramu, Mahendran; Rajesh, Thiyagarajan; Lutz, Muller; Muthukumaran, Manavalan; Karthikeyan, Nithyanantham; Tejinder, Kataria
2014-01-01
The purpose of this study was to evaluate quantitatively the patient‐specific 3D dosimetry tool COMPASS with 2D array MatriXX detector for stereotactic volumetric‐modulated arc delivery. Twenty‐five patients CT images and RT structures from different sites (brain, head & neck, thorax, abdomen, and spine) were taken from CyberKnife Multiplan planning system for this study. All these patients underwent radical stereotactic treatment in CyberKnife. For each patient, linac based volumetric‐modulated arc therapy (VMAT) stereotactic plans were generated in Monaco TPS v3.1 using Elekta Beam Modulator MLC. Dose prescription was in the range of 5–20 Gy per fraction. Target prescription and critical organ constraints were tried to match the delivered treatment plans. Each plan quality was analyzed using conformity index (CI), conformity number (CN), gradient Index (GI), target coverage (TC), and dose to 95% of volume (D95). Monaco Monte Carlo (MC)‐calculated treatment plan delivery accuracy was quantitatively evaluated with COMPASS‐calculated (CCA) dose and COMPASS indirectly measured (CME) dose based on dose‐volume histogram metrics. In order to ascertain the potential of COMPASS 3D dosimetry for stereotactic plan delivery, 2D fluence verification was performed with MatriXX using MultiCube phantom. Routine quality assurance of absolute point dose verification was performed to check the overall delivery accuracy. Quantitative analyses of dose delivery verification were compared with pass and fail criteria of 3 mm and 3% distance to agreement and dose differences. Gamma passing rate was compared with 2D fluence verification from MatriXX with MultiCube. Comparison of COMPASS reconstructed dose from measured fluence and COMPASS computed dose has shown a very good agreement with TPS calculated dose. Each plan was evaluated based on dose volume parameters for target volumes such as dose at 95% of volume (D95) and average dose. For critical organs dose at 20% of volume (D20), dose at 50% of volume (D50), and maximum point doses were evaluated. Comparison was carried out using gamma analysis with passing criteria of 3 mm and 3%. Mean deviation of 1.9%±1% was observed for dose at 95% of volume (D95) of target volumes, whereas much less difference was noticed for critical organs. However, significant dose difference was noticed in two cases due to the smaller tumor size. Evaluation of this study revealed that the COMPASS 3D dosimetry is efficient and easy to use for patient‐specific QA of VMAT stereotactic delivery. 3D dosimetric QA with COMPASS provides additional degrees of freedom to check the high‐dose modulated stereotactic delivery with very high precision on patient CT images. PACS numbers: 87.55.Qr, 87.56.Fc PMID:25679152
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adnani, N
Purpose: To commission the Monaco Treatment Planning System for the Novalis Tx machine. Methods: The commissioning of Monte-Carlo (MC), Collapsed Cone (CC) and electron Monte-Carlo (eMC) beam models was performed through a series of measurements and calculations in medium and in water. In medium measurements relied Octavius 4D QA system with the 1000 SRS detector array for field sizes less than 4 cm × 4 cm and the 1500 detector array for larger field sizes. Heterogeneity corrections were validated using a custom built phantom. Prior to clinical implementation, an end to end testing of a Prostate and H&N VMAT plansmore » was performed. Results: Using a 0.5% uncertainty and 2 mm grid sizes, Tables I and II summarize the MC validation at 6 MV and 18 MV in both medium and water. Tables III and IV show similar comparisons for CC. Using the custom heterogeneity phantom setup of Figure 1 and IGRT guidance summarized in Figure 2, Table V lists the percent pass rate for a 2%, 2 mm gamma criteria at 6 and 18 MV for both MC and CC. The relationship between MC calculations settings of uncertainty and grid size and the gamma passing rate for a prostate and H&N case is shown in Table VI. Table VII lists the results of the eMC calculations compared to measured data for clinically available applicators and Table VIII for small field cutouts. Conclusion: MU calculations using MC are highly sensitive to uncertainty and grid size settings. The difference can be of the order of several per cents. MC is superior to CC for small fields and when using heterogeneity corrections, regardless of field size, making it more suitable for SRS, SBRT and VMAT deliveries. eMC showed good agreement with measurements down to 2 cm − 2 cm field size.« less
Reliability of dose volume constraint inference from clinical data.
Lutz, C M; Møller, D S; Hoffmann, L; Knap, M M; Alber, M
2017-04-21
Dose volume histogram points (DVHPs) frequently serve as dose constraints in radiotherapy treatment planning. An experiment was designed to investigate the reliability of DVHP inference from clinical data for multiple cohort sizes and complication incidence rates. The experimental background was radiation pneumonitis in non-small cell lung cancer and the DVHP inference method was based on logistic regression. From 102 NSCLC real-life dose distributions and a postulated DVHP model, an 'ideal' cohort was generated where the most predictive model was equal to the postulated model. A bootstrap and a Cohort Replication Monte Carlo (CoRepMC) approach were applied to create 1000 equally sized populations each. The cohorts were then analyzed to establish inference frequency distributions. This was applied to nine scenarios for cohort sizes of 102 (1), 500 (2) to 2000 (3) patients (by sampling with replacement) and three postulated DVHP models. The Bootstrap was repeated for a 'non-ideal' cohort, where the most predictive model did not coincide with the postulated model. The Bootstrap produced chaotic results for all models of cohort size 1 for both the ideal and non-ideal cohorts. For cohort size 2 and 3, the distributions for all populations were more concentrated around the postulated DVHP. For the CoRepMC, the inference frequency increased with cohort size and incidence rate. Correct inference rates >[Formula: see text] were only achieved by cohorts with more than 500 patients. Both Bootstrap and CoRepMC indicate that inference of the correct or approximate DVHP for typical cohort sizes is highly uncertain. CoRepMC results were less spurious than Bootstrap results, demonstrating the large influence that randomness in dose-response has on the statistical analysis.
Reliability of dose volume constraint inference from clinical data
NASA Astrophysics Data System (ADS)
Lutz, C. M.; Møller, D. S.; Hoffmann, L.; Knap, M. M.; Alber, M.
2017-04-01
Dose volume histogram points (DVHPs) frequently serve as dose constraints in radiotherapy treatment planning. An experiment was designed to investigate the reliability of DVHP inference from clinical data for multiple cohort sizes and complication incidence rates. The experimental background was radiation pneumonitis in non-small cell lung cancer and the DVHP inference method was based on logistic regression. From 102 NSCLC real-life dose distributions and a postulated DVHP model, an ‘ideal’ cohort was generated where the most predictive model was equal to the postulated model. A bootstrap and a Cohort Replication Monte Carlo (CoRepMC) approach were applied to create 1000 equally sized populations each. The cohorts were then analyzed to establish inference frequency distributions. This was applied to nine scenarios for cohort sizes of 102 (1), 500 (2) to 2000 (3) patients (by sampling with replacement) and three postulated DVHP models. The Bootstrap was repeated for a ‘non-ideal’ cohort, where the most predictive model did not coincide with the postulated model. The Bootstrap produced chaotic results for all models of cohort size 1 for both the ideal and non-ideal cohorts. For cohort size 2 and 3, the distributions for all populations were more concentrated around the postulated DVHP. For the CoRepMC, the inference frequency increased with cohort size and incidence rate. Correct inference rates >85 % were only achieved by cohorts with more than 500 patients. Both Bootstrap and CoRepMC indicate that inference of the correct or approximate DVHP for typical cohort sizes is highly uncertain. CoRepMC results were less spurious than Bootstrap results, demonstrating the large influence that randomness in dose-response has on the statistical analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, James, E-mail: james.renaud@mail.mcgill.ca; Seuntjens, Jan; Sarfehnia, Arman
Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials wasmore » also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, k{sub ecal}, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol. General agreement between the relative electron energy dependence of the PTW Roos data measured in this work and a recent MC-based study are also shown. Conclusions: This is the first time that water calorimetry has been successfully used to measure electron beam quality conversion factors for energies as low as 6 MeV (R{sub 50} = 2.25 cm)« less
Pujades-Claumarchirant, Ma Carmen; Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo; Melhus, Christopher; Rivard, Mark
2010-03-01
The aim of this work was to determine dose distributions for high-energy brachytherapy sources at spatial locations not included in the radial dose function g L ( r ) and 2D anisotropy function F ( r , θ ) table entries for radial distance r and polar angle θ . The objectives of this study are as follows: 1) to evaluate interpolation methods in order to accurately derive g L ( r ) and F ( r , θ ) from the reported data; 2) to determine the minimum number of entries in g L ( r ) and F ( r , θ ) that allow reproduction of dose distributions with sufficient accuracy. Four high-energy photon-emitting brachytherapy sources were studied: 60 Co model Co0.A86, 137 Cs model CSM-3, 192 Ir model Ir2.A85-2, and 169 Yb hypothetical model. The mesh used for r was: 0.25, 0.5, 0.75, 1, 1.5, 2-8 (integer steps) and 10 cm. Four different angular steps were evaluated for F ( r , θ ): 1°, 2°, 5° and 10°. Linear-linear and logarithmic-linear interpolation was evaluated for g L ( r ). Linear-linear interpolation was used to obtain F ( r , θ ) with resolution of 0.05 cm and 1°. Results were compared with values obtained from the Monte Carlo (MC) calculations for the four sources with the same grid. Linear interpolation of g L ( r ) provided differences ≤ 0.5% compared to MC for all four sources. Bilinear interpolation of F ( r , θ ) using 1° and 2° angular steps resulted in agreement ≤ 0.5% with MC for 60 Co, 192 Ir, and 169 Yb, while 137 Cs agreement was ≤ 1.5% for θ < 15°. The radial mesh studied was adequate for interpolating g L ( r ) for high-energy brachytherapy sources, and was similar to commonly found examples in the published literature. For F ( r , θ ) close to the source longitudinal-axis, polar angle step sizes of 1°-2° were sufficient to provide 2% accuracy for all sources.
TU-EF-304-03: 4D Monte Carlo Robustness Test for Proton Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souris, K; Sterpin, E; Lee, J
Purpose: Breathing motion and approximate dose calculation engines may increase proton range uncertainties. We address these two issues using a comprehensive 4D robustness evaluation tool based on an efficient Monte Carlo (MC) engine, which can simulate breathing with no significant increase in computation time. Methods: To assess the robustness of the treatment plan, multiple scenarios of uncertainties are simulated, taking into account the systematic and random setup errors, range uncertainties, and organ motion. Our fast MC dose engine, called MCsquare, implements optimized models on a massively-parallel computation architecture and allows us to accurately simulate a scenario in less than onemore » minute. The deviations of the uncertainty scenarios are then reported on a DVH-band and compared to the nominal plan.The robustness evaluation tool is illustrated in a lung case by comparing three 60Gy treatment plans. First, a plan is optimized on a PTV obtained by extending the CTV with an 8mm margin, in order to take into account systematic geometrical uncertainties, like in our current practice in radiotherapy. No specific strategy is employed to correct for tumor and organ motions. The second plan involves a PTV generated from the ITV, which encompasses the tumor volume in all breathing phases. The last plan results from robust optimization performed on the ITV, with robustness parameters of 3% for tissue density and 8 mm for positioning errors. Results: The robustness test revealed that the first two plans could not properly cover the target in the presence of uncertainties. CTV-coverage (D95) in the three plans ranged respectively between 39.4–55.5Gy, 50.2–57.5Gy, and 55.1–58.6Gy. Conclusion: A realistic robustness verification tool based on a fast MC dose engine has been developed. This test is essential to assess the quality of proton therapy plan and very useful to study various planning strategies for mobile tumors. This work is partly funded by IBA (Louvain-la-Neuve, Belgium)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irazola, L; Terron, J; Sanchez-Doblado, F
2015-06-15
Purpose: Previous measurements with Bonner spheres{sup 1} showed that normalized neutron spectra are equal for the majority of the existing linacs{sup 2}. This information, in addition to thermal neutron fluences obtained in the characterization procedure{sup 3}3, would allow to estimate neutron doses accidentally received by exposed workers, without the need of an extra experimental measurement. Methods: Monte Carlo (MC) simulations demonstrated that the thermal neutron fluence distribution inside the bunker is quite uniform, as a consequence of multiple scatter in the walls{sup 4}. Although inverse square law is approximately valid for the fast component, a more precise calculation could bemore » obtained with a generic fast fluence distribution map around the linac, from MC simulations{sup 4}. Thus, measurements of thermal neutron fluences performed during the characterization procedure{sup 3}, together with a generic unitary spectra{sup 2}, would allow to estimate the total neutron fluences and H*(10) at any point{sup 5}. As an example, we compared estimations with Bonner sphere measurements{sup 1}, for two points in five facilities: 3 Siemens (15–23 MV), Elekta (15 MV) and Varian (15 MV). Results: Thermal neutron fluences obtained from characterization, are within (0.2–1.6×10{sup 6}) cm−{sup 2}•Gy{sup −1} for the five studied facilities. This implies ambient equivalent doses ranging from (0.27–2.01) mSv/Gy 50 cm far from the isocenter and (0.03–0.26) mSv/Gy at detector location with an average deviation of ±12.1% respect to Bonner measurements. Conclusion: The good results obtained demonstrate that neutron fluence and H*(10) can be estimated based on: (a) characterization procedure established for patient risk estimation in each facility, (b) generic unitary neutron spectrum and (c) generic MC map distribution of the fast component. [1] Radiat. Meas (2010) 45: 1391 – 1397; [2] Phys. Med. Biol (2012) 5 7:6167–6191; [3] Med. Phys (2015) 42:276 - 281. [4] IFMBE (2012) 39: 1245–1248. [5] ICRU Report 57 (1998)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkby, Charles, E-mail: charles.kirkby@albertahealthservices.ca; Ghasroddashti, Esmaeel; Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4
2015-02-15
Purpose: Radiation damage to mitochondria has been shown to alter cellular processes and even lead to apoptosis. Gold nanoparticles (AuNPs) may be used to enhance these effects in scenarios where they collect on the outer membranes of mitochondria. A Monte Carlo (MC) approach is used to estimate mitochondrial dose enhancement under a variety of conditions. Methods: The PENELOPE MC code was used to generate dose distributions resulting from photons striking a 13 nm diameter AuNP with various thicknesses of water-equivalent coatings. Similar dose distributions were generated with the AuNP replaced by water so as to estimate the gain in dosemore » on a microscopic scale due to the presence of AuNPs within an irradiated volume. Models of mitochondria with AuNPs affixed to their outer membrane were then generated—considering variation in mitochondrial size and shape, number of affixed AuNPs, and AuNP coating thickness—and exposed (in a dose calculation sense) to source spectra ranging from 6 MV to 90 kVp. Subsequently dose enhancement ratios (DERs), or the dose with the AuNPs present to that for no AuNPs, for the entire mitochondrion and its components were tallied under these scenarios. Results: For a representative case of a 1000 nm diameter mitochondrion affixed with 565 AuNPs, each with a 13 nm thick coating, the mean DER over the whole organelle ranged from roughly 1.1 to 1.6 for the kilovoltage sources, but was generally less than 1.01 for the megavoltage sources. The outer membrane DERs remained less than 1.01 for the megavoltage sources, but rose to 2.3 for 90 kVp. The voxel maximum DER values were as high as 8.2 for the 90 kVp source and increased further when the particles clustered together. The DER exhibited dependence on the mitochondrion dimensions, number of AuNPs, and the AuNP coating thickness. Conclusions: Substantial dose enhancement directly to the mitochondria can be achieved under the conditions modeled. If the mitochondrion dose can be directly enhanced, as these simulations show, this work suggests the potential for both a tool to study the role of mitochondria in cellular response to radiation and a novel avenue for radiation therapy in that the mitochondria may be targeted, rather than the nuclear DNA.« less
Fermi gases with imaginary mass imbalance and the sign problem in Monte-Carlo calculations
NASA Astrophysics Data System (ADS)
Roscher, Dietrich; Braun, Jens; Chen, Jiunn-Wei; Drut, Joaquín E.
2014-05-01
Fermi gases in strongly coupled regimes are inherently challenging for many-body methods. Although progress has been made analytically, quantitative results require ab initio numerical approaches, such as Monte-Carlo (MC) calculations. However, mass-imbalanced and spin-imbalanced gases are not accessible to MC calculations due to the infamous sign problem. For finite spin imbalance, the problem can be circumvented using imaginary polarizations and analytic continuation, and large parts of the phase diagram then become accessible. We propose to apply this strategy to the mass-imbalanced case, which opens up the possibility to study the associated phase diagram with MC calculations. We perform a first mean-field analysis which suggests that zero-temperature studies, as well as detecting a potential (tri)critical point, are feasible.
Gerig, L H; Niedbala, M; Nyiri, B J
2010-01-01
To measure the effect of the treatment couch on dose distributions and to investigate the ability of a modern planning system to accurately model these effects. This work measured the dose perturbation at depth and in the dose buildup region when one of two treatment couches, CIVCO (formerly MED-TEC) or Medical Intelligence, was placed between a photon beam source (6, 10, and 18 MV) and the phantom. Beam attenuation was measured in the center of a cylindrical acrylic phantom with a Farmer type ion chamber at multiple gantry angles. Dose buildup was measured in Solid Water with plane parallel ion chambers (NACP-02 and PTW Markus) with the beam normal to both the phantom and couch surfaces. The effective point of measurement method as described [M. R. McEwen et al. "The effective point of measurement of ionization chambers and the build-up anomaly in MV x-ray beams," Med. Phys. 35(3), 950-958 (2008)] was employed to calculate dose in the buildup region. Both experiments were modeled in XiO. Images of the treatment couches were merged with images of the phantoms such that they were included as part of the "patient" image. Dose distributions calculated with superposition and fast superposition algorithms were compared to measurement. The two treatment couches have different radiological signatures and dissimilar water equivalent thicknesses (4.2 vs 6.3 mm.) Maximum attenuation was 7%. Both couches caused significant loss of skin sparing, the worst case showing an increase in surface dose from 17% (no couch) to 88% (with couch). The TPS accurately predicted the surface dose (+/-3%) and the attenuation at depth when the phantom was in contact with the couch. For the open beam the TPS was less successful in the buildup region. The treatment couch is not radio-transparent. Its presence between the patient and beam source significantly alters dose in the patient. For the most part, a modern treatment planning system can adequately predict the altered dose distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, P; Thomson, R
2015-06-15
Purpose: To investigate how doses to cellular (microscopic) targets depend on cell morphology, and how cellular doses relate to doses to bulk tissues and water for 20 to 370 keV photon sources using Monte Carlo (MC) simulations. Methods: Simulation geometries involve cell clusters, single cells, and single nuclear cavities embedded in various healthy and cancerous bulk tissue phantoms. A variety of nucleus and cytoplasm elemental compositions are investigated. Cell and nucleus radii range from 5 to 10 microns and 2 to 9 microns, respectively. Doses to water and bulk tissue cavities are compared to nucleus and cytoplasm doses. Results: Variationsmore » in cell dose with simulation geometry are most pronounced for lower energy sources. Nuclear doses are sensitive to the surrounding geometry: the nuclear dose in a multicell model differs from the dose to a cavity of nuclear medium in an otherwise homogeneous bulk tissue phantom by more than 7% at 20 keV. Nuclear doses vary with cell size by up to 20% at 20 keV, with 10% differences persisting up to 90 keV. Bulk tissue and water cavity doses differ from cellular doses by up to 16%. MC results are compared to cavity theory predictions; large and small cavity theories qualitatively predict nuclear doses for energies below and above 50 keV, respectively. Burlin’s (1969) intermediate cavity theory best predicts MC results with an average discrepancy of 4%. Conclusion: Cellular doses vary as a function of source energy, subcellular compartment size, elemental composition, and tissue morphology. Neither water nor bulk tissue is an appropriate surrogate for subcellular targets in radiation dosimetry. The influence of microscopic inhomogeneities in the surrounding environment on the nuclear dose and the importance of the nucleus as a target for radiation-induced cell death emphasizes the potential importance of cellular dosimetry for understanding radiation effects. Funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chairs Program (CRC), and the Ontario Ministry of Training, Colleges and Universities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saini, Amarjit S.; Zhang, Geoffrey G., E-mail: geoffrey.zhang@moffitt.org; Finkelstein, Steven E.
2011-07-15
Purpose: Vaginal balloon packing is a means to displace organs at risk during high dose rate brachytherapy of the uterine cervix. We tested the hypothesis that contrast-filled vaginal balloon packing reduces radiation dose to organs at risk, such as the bladder and rectum, in comparison to water- or air-filled balloons. Methods and Materials: In a phantom study, semispherical vaginal packing balloons were filled with air, saline solution, and contrast agents. A high dose rate iridium-192 source was placed on the anterior surface of the balloon, and the diode detector was placed on the posterior surface. Dose ratios were taken withmore » each material in the balloon. Monte Carlo (MC) simulations, by use of the MC computer program DOSXYZnrc, were performed to study dose reduction vs. balloon size and contrast material, including commercially available iodine- and gadolinium-based contrast agents. Results: Measured dose ratios on the phantom with the balloon radius of 3.4 cm were 0.922 {+-} 0.002 for contrast/saline solution and 0.808 {+-} 0.001 for contrast/air. The corresponding ratios by MC simulations were 0.895 {+-} 0.010 and 0.781 {+-} 0.010. The iodine concentration in the contrast was 23.3% by weight. The dose reduction of contrast-filled balloon ranges from 6% to 15% compared with water-filled balloon and 11% to 26% compared with air-filled balloon, with a balloon size range between 1.4 and 3.8 cm, and iodine concentration in contrast of 24.9%. The dose reduction was proportional to the contrast agent concentration. The gadolinium-based contrast agents showed less dose reduction because of much lower concentrations in their solutions. Conclusions: The dose to the posterior wall of the bladder and the anterior wall of the rectum can be reduced if the vaginal balloon is filled with contrast agent in comparison to vaginal balloons filled with saline solution or air.« less
Impairment of endoplasmic reticulum is involved in β-cell dysfunction induced by microcystin-LR.
Zhao, Yanyan; Cao, Qing; He, Yaojia; Xue, Qingju; Xie, Liqiang; Yan, Yunjun
2017-04-01
Microcystins (MCs) widely distributed in freshwaters have posed a significant risk to human health. Previous studies have demonstrated that exposure to MC-LR impairs pancreatic islet function, however, the underlying mechanisms still remain unclear. In the present study, we explored the role of endoplasmic reticulum (ER) impairment in β-cell dysfunction caused by MC-LR. The result showed that MC-LR modified ER morphology evidenced by increased ER amount and size at low doses (15, 30 or 60 μM) and vacuolar and dilated ER ultrastructure at high doses (100 or 200 μM). Also, insulin content showed increased at 15 or 30 μM but declined at 60, 100, or 200 μM, which was highly accordant with ER morphological alteration. Transcriptomic analysis identified a number of factors and several pathways associated with ER protein processing, ER stress, apoptosis, and diabetes mellitus in the cells treated with MC-LR compared with non-treated cells. Furthermore, MC-LR-induced ER stress significantly promoted the expression of PERK/eIF2α and their downstream targets (ATF4, CHOP, and Gadd34), which indicates that PERK-eIF2α-ATF4 pathway is involved in MC-LR-induced insulin deficiency. These results suggest that ER impairment is an important contributor to MC-LR-caused β-cell failure and provide a new insight into the association between MCs contamination and the occurrence of human diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Balderson, Michael J; Kirkby, Charles
2015-01-01
In light of in vitro evidence suggesting that radiation-induced bystander effects may enhance non-local cell killing, there is potential for impact on radiotherapy treatment planning paradigms such as the goal of delivering a uniform dose throughout the clinical target volume (CTV). This work applies a bystander effect model to calculate equivalent uniform dose (EUD) and tumor control probability (TCP) for external beam prostate treatment and compares the results with a more common model where local response is dictated exclusively by local absorbed dose. The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. EUD and TCP of a prostate cancer target volume under conditions of increasing dose heterogeneity were calculated using two models: One incorporating bystander effects derived from previously published in vitro bystander data ( McMahon et al. 2012 , 2013a); and one using a common linear-quadratic (LQ) response that relies exclusively on local absorbed dose. Dose through the CTV was modelled as a normal distribution, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). Also, a representative clinical dose distribution was examined as cold (low dose) sub-volumes were systematically introduced. The bystander model suggests a moderate degree of dose heterogeneity throughout a target volume will yield as good or better outcome compared to a uniform dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD occurred at SD ∼ 5 Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences in the outcome metrics between the models were identified in the clinically-derived dose distribution as cold sub-volumes were introduced. In terms of EUD and TCP, the bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV varies. The results suggest, at least in a limiting sense, the potential for allowing some degree of dose heterogeneity within a CTV, although further investigation of the assumptions of the bystander model are warranted.
Dennhardt, Nils; Boethig, Dietmar; Beck, Christiane; Heiderich, Sebastian; Boehne, Martin; Leffler, Andreas; Schultz, Barbara; Sümpelmann, Robert
2017-04-01
Sevoflurane induction followed by intravenous anesthesia is a widely used technique to combine the benefits of an easier and less traumatic venipuncture after sevoflurane inhalation with a recovery with less agitation, nausea, and vomiting after total intravenous anesthesia (TIVA). Combination of two different anesthetics may lead to unwanted burst suppression in the electroencephalogram (EEG) during the transition phase. The objective of this prospective clinical observational study was to identify the optimal initial propofol bolus dose for a smooth transition from sevoflurane induction to TIVA using the EEG Narcotrend Index (NI). Fifty children aged 1-8 years scheduled for elective pediatric surgery were studied. After sevoflurane induction and establishing of an intravenous access, a propofol bolus dose range 0-5 mg·kg -1 was administered at the attending anesthetist's discretion to maintain a NI between 20 and 64, and sevoflurane was stopped. Anesthesia was continued as TIVA with a propofol infusion dose of 15 mg·kg -1 ·h -1 for the first 15 min, followed by stepwise reduction according to McFarlan's pediatric infusion regime, and remifentanil 0.25 μg·kg -1 ·min -1 . Endtidal concentration of sevoflurane, NI, and hemodynamic data were recorded during the whole study period using a standardized case report form. Propofol plasma concentrations were calculated using the paedfusor dataset and a TIVA simulation program. Median endtidal concentration of sevoflurane at the time of administration of the propofol bolus was 5.1 [IQR 4.7-5.9] Vol%. The median propofol bolus dose was 1.2 [IQR 0.9-2.5] mg·kg -1 and median NI thereafter was 33 [IQR 23-40]. Nine children presented with a NI 13-20 and three children with burst suppression in the EEG (NI 0-12); all of them received an initial propofol bolus dose >2 mg·kg -1 . Regression equation demonstrated that NI 20-64 was achieved with a 95% probability when using a propofol bolus dose of 1 mg·kg -1 after sevoflurane induction. Decrease in mean arterial blood pressure correlated significantly with propofol bolus dose (P = 0.038). After 25 min of TIVA, children younger than 2 years had a higher NI (median difference 14.0, 95%CI: 6.0-20.0, P = 0.001), higher deviations from the expected Narcotend Index (median difference 4.1, 95%CI: 3.9-4.2, P < 0.001) and lower calculated propofol plasma concentrations (median difference 0.2 μg·ml -1 , 95% CI: 0.1-0.3 μg·ml -1 , P < 0.001) than older children. After sevoflurane induction, a reduced propofol bolus dose of 1 mg·kg -1 followed by TIVA according to McFarlan's regime resulted in a NI within the recommended range in children aged 1-8 years. During the course of TIVA, children younger than 2 years displayed higher NI values and more pronounced interindividual variation. Processed EEG monitoring is recommended to find adequate individual age-dependent doses. © 2017 John Wiley & Sons Ltd.
Evaluation of equivalent dose from neutrons and activation products from a 15-MV X-ray LINAC.
Israngkul-Na-Ayuthaya, Isra; Suriyapee, Sivalee; Pengvanich, Phongpheath
2015-11-01
A high-energy photon beam that is more than 10 MV can produce neutron contamination. Neutrons are generated by the [γ,n] reactions with a high-Z target material. The equivalent neutron dose and gamma dose from activation products have been estimated in a LINAC equipped with a 15-MV photon beam. A Monte Carlo simulation code was employed for neutron and photon dosimetry due to mixed beam. The neutron dose was also experimentally measured using the Optically Stimulated Luminescence (OSL) under various conditions to compare with the simulation. The activation products were measured by gamma spectrometer system. The average neutron energy was calculated to be 0.25 MeV. The equivalent neutron dose at the isocenter obtained from OSL measurement and MC calculation was 5.39 and 3.44 mSv/Gy, respectively. A gamma dose rate of 4.14 µSv/h was observed as a result of activations by neutron inside the treatment machine. The gamma spectrum analysis showed (28)Al, (24)Na, (54)Mn and (60)Co. The results confirm that neutrons and gamma rays are generated, and gamma rays remain inside the treatment room after the termination of X-ray irradiation. The source of neutrons is the product of the [γ,n] reactions in the machine head, whereas gamma rays are produced from the [n,γ] reactions (i.e. neutron activation) with materials inside the treatment room. The most activated nuclide is (28)Al, which has a half life of 2.245 min. In practice, it is recommended that staff should wait for a few minutes (several (28)Al half-lives) before entering the treatment room after the treatment finishes to minimize the dose received. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
77 FR 12576 - Veterans' Advisory Board on Dose Reconstruction; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-01
... related to the Fukushima incident in Japan and the McMurdo Station in Antarctica. Meeting Agenda: The... Fairchild, USN; ``Review of the DoD Population of Interest Dose Reconstruction from the Fukushima incident...