Science.gov

Sample records for mcf-7 cell proliferation

  1. Delta(9)-Tetrahydrocannabinol enhances MCF-7 cell proliferation via cannabinoid receptor-independent signaling.

    PubMed

    Takeda, Shuso; Yamaori, Satoshi; Motoya, Erina; Matsunaga, Tamihide; Kimura, Toshiyuki; Yamamoto, Ikuo; Watanabe, Kazuhito

    2008-03-12

    We recently reported that Delta(9)-tetrahydrocannabinol (Delta(9)-THC) has the ability to stimulate the proliferation of human breast carcinoma MCF-7 cells. However, the mechanism of action remains to be clarified. The present study focused on the relationship between receptor expression and the effects of Delta(9)-THC on cell proliferation. RT-PCR analysis demonstrated that there was no detectable expression of CB receptors in MCF-7 cells. In accordance with this, no effects of cannabinoid 1/2 (CB1/2) receptor antagonists and pertussis toxin on cell proliferation were observed. Although MCF-7 cell proliferation is suggested to be suppressed by Delta(9)-THC in the presence of CB receptors, it was revealed that Delta(9)-THC could exert upregulation of living cells in the absence of the receptors. Interestingly, Delta(9)-THC upregulated human epithelial growth factor receptor type 2 (HER2) expression, which is known to be a predictive factor of human breast cancer and is able to stimulate cancer cells as well as MCF-7 cells. Actinomycin D-treatment interfered with the upregulation of HER2 and cell proliferation by cannabinoid. Taken together, these studies suggest that, in the absence of CB receptors, Delta(9)-THC can stimulate the proliferation of MCF-7 cells by modulating, at least in part, HER2 transcription.

  2. Improving the reproducibility of the MCF-7 cell proliferation assay for the detection of xenoestrogens.

    PubMed

    Payne, J; Jones, C; Lakhani, S; Kortenkamp, A

    2000-03-29

    The MCF-7 cell proliferation assay is potentially a simple and highly reproducible tool for the identification of estrogenic compounds. However, its widespread use has been complicated by the lack of a standardised protocol, resulting in considerable inter-laboratory variability. We have explored the sources of variability both in relation to cell lines and test regimens and report on optimised procedures for the identification of estrogenic agents. Two supposedly identical MCF-7 parent cell lines (designated UCL and SOP), and the BUS subline were cultured according to an existing protocol, and responses to 17-estradiol (E2) assessed. Despite yielding almost identical EC50 values, the proliferative response varied widely between cell lines from 0.98-fold over controls (UCL) to 8.9-fold (BUS) indicating major differences between them. The underlying causes may be genetic, and to assess this we used comparative genomic hybridisation (CGH), a technique which allows the detection of DNA sequence copy number changes on a genome-wide scale. Although numerous similarities existed between the different cell lines, the least oestrogen-responsive line (MCF-7/UCL) exhibited the greatest number of cytogenetic changes, many of which were not seen in MCF-7/SOP cells. We suggest that care must be taken, therefore, when choosing a cell line for MCF-7 cell-based experiments. Selecting the MCF-7/SOP line for further work, we carried out a thorough and systematic optimisation of the MCF-7 cell proliferation assay, finding that a 72-h period in oestrogen-free medium before treatment strongly influenced the cells response to E2. With 1 nM E2, proliferation increased from 1.5-fold to 6.5-fold relative to vehicle-treated controls, a response similar to that seen with MCF-7/BUS cells in the E-SCREEN protocol devised by Soto et al. With parent MCF-7 cells, other laboratories have reported only 4.5-fold increases as maximal. Here we present evidence that the choice of cell line and culture

  3. Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7)

    NASA Astrophysics Data System (ADS)

    Meena, Ramovatar; Kesari, Kavindra Kumar; Rani, Madhu; Paulraj, R.

    2012-02-01

    The study aimed to correlate cell proliferation inhibition with oxidative stress and p53 protein expression in cancerous cells. Hydroxyapatite (HAP) (Ca10(PO4)6(OH)2) is the essential component of inorganic composition in human bone. It has been found to have obvious inhibitory function on growth of many kinds of tumor cells and its nanoparticle has stronger anti-cancerous effect than macromolecule microparticles. Human breast cancer cells (MCF-7) were cultured and treated with HAP nanoparticles at various concentrations. Cells viability was detected with MTT colorimetric assay. The morphology of the cancerous cells was performed by transmission electron microscopy and the expression of a cell apoptosis related gene (p53) was determined by ELISA assay and flow cytometry (FCM). The intracellular reactive oxygen species (ROS) level in HAP exposed cells was measured by H2DCFDA staining. DNA damage was measured by single-cell gel electrophoresis assay. The statistical analysis was done by one way ANOVA. The cellular proliferation inhibition rate was significantly ( p < 0.05) increasing in a dose-dependent manner of HAP nanoparticles. Cell apoptotic characters were observed after MCF-7 cells were treated by HAP nanoparticles for 48 h. Moreover, ELISA assay and FCM shows a dose-dependent activation of p53 in MCF-7 cells treated with nanoHAP. These causative factors of the above results may be justified by an overproduction of ROS. In this study, a significant ( p < 0.05) increase in the level of intracellular ROS in HAP-treated cells was observed. This study shows that HAP inhibits the growth of human breast cancer MCF-7 cells as well as induces cell apoptosis. This study shows that HAP NPs Induce the production of intracellular reactive oxygen species and activate p53, which may be responsible for DNA damage and cell apoptosis.

  4. A Robotic MCF-7:WS8 Cell Proliferation Assay to Detect Agonist and Antagonist Estrogenic Activity

    PubMed Central

    Casey, Warren

    2014-01-01

    Endocrine-disrupting chemicals with estrogenic activity (EA) or anti-EA (AEA) have been extensively reported to possibly have many adverse health effects. We have developed robotized assays using MCF-7:WS8 cell proliferation (or suppression) to detect EA (or AEA) of 78 test substances supplied by the Interagency Coordinating Committee on the Validation of Alternative Methods and the National Toxicology Program’s Interagency Center for the Evaluation of Alternative Toxicological Methods for validation studies. We also assayed ICI 182,780, a strong estrogen antagonist. Chemicals to be assayed were initially examined for solubility and volatility to determine optimal assay conditions. For both EA and AEA determinations, a Range-Finder assay was conducted to determine the concentration range for testing, followed by a Comprehensive assay. Test substances with potentially positive results from an EA Comprehensive assay were subjected to an EA Confirmation assay that evaluated the ability of ICI 182,780 to reverse chemically induced MCF-7 cell proliferation. The AEA assays examined the ability of chemicals to decrease MCF-7 cell proliferation induced by nonsaturating concentrations of 17β-estradiol (E2), relative to ICI or raloxifene, also a strong estrogen antagonist. To be classified as having AEA, a saturating concentration of E2 had to significantly reverse the decrease in cell proliferation produced by the test substance in nonsaturating E2. We conclude that our robotized MCF-7 EA and AEA assays have accuracy, sensitivity, and specificity values at least equivalent to validated test methods accepted by the U.S. Environmental Protection Agency and the Organisation for Economic Co-operation and Development. PMID:24213142

  5. A robotic MCF-7:WS8 cell proliferation assay to detect agonist and antagonist estrogenic activity.

    PubMed

    Yang, Chun Z; Casey, Warren; Stoner, Matthew A; Kollessery, Gayathri J; Wong, Amy W; Bittner, George D

    2014-02-01

    Endocrine-disrupting chemicals with estrogenic activity (EA) or anti-EA (AEA) have been extensively reported to possibly have many adverse health effects. We have developed robotized assays using MCF-7:WS8 cell proliferation (or suppression) to detect EA (or AEA) of 78 test substances supplied by the Interagency Coordinating Committee on the Validation of Alternative Methods and the National Toxicology Program's Interagency Center for the Evaluation of Alternative Toxicological Methods for validation studies. We also assayed ICI 182,780, a strong estrogen antagonist. Chemicals to be assayed were initially examined for solubility and volatility to determine optimal assay conditions. For both EA and AEA determinations, a Range-Finder assay was conducted to determine the concentration range for testing, followed by a Comprehensive assay. Test substances with potentially positive results from an EA Comprehensive assay were subjected to an EA Confirmation assay that evaluated the ability of ICI 182,780 to reverse chemically induced MCF-7 cell proliferation. The AEA assays examined the ability of chemicals to decrease MCF-7 cell proliferation induced by nonsaturating concentrations of 17β-estradiol (E2), relative to ICI or raloxifene, also a strong estrogen antagonist. To be classified as having AEA, a saturating concentration of E2 had to significantly reverse the decrease in cell proliferation produced by the test substance in nonsaturating E2. We conclude that our robotized MCF-7 EA and AEA assays have accuracy, sensitivity, and specificity values at least equivalent to validated test methods accepted by the U.S. Environmental Protection Agency and the Organisation for Economic Co-operation and Development.

  6. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    SciTech Connect

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M.

    2014-10-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  7. Commonly consumed and specialty dietary mushrooms reduce cellular proliferation in MCF-7 human breast cancer cells.

    PubMed

    Martin, Keith R; Brophy, Sara K

    2010-11-01

    Worldwide, over one million women will be newly diagnosed with breast cancer in the next year. Moreover, breast cancer is the second leading cause of cancer death in the USA. An accumulating body of evidence suggests that consumption of dietary mushrooms can protect against breast cancer. In this study, we tested and compared the ability of five commonly consumed or specialty mushrooms to modulate cell number balance in the cancer process using MCF-7 human breast cancer cells. Hot water extracts (80°C for 2 h) of maitake (MT, Grifola frondosa), crimini (CRIM, Agaricus bisporus), portabella (PORT, Agaricus bisporus), oyster (OYS, Pleurotus ostreatus) and white button (WB, Agaricus bisporus) mushrooms or water alone (5% v/v) were incubated for 24 h with MCF-7 cells. Cellular proliferation determined by bromodeoxyuridine incorporation was significantly (P < 0.05) reduced up to 33% by all mushrooms, with MT and OYS being the most effective. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) reduction, an often used mitochondrion-dependent marker of proliferation, was unchanged although decreased (P > 0.05) by 15% with OYS extract. Lactate dehydrogenase release, as a marker of necrosis, was significantly increased after incubation with MT but not with other test mushrooms. Furthermore, MT extract significantly increased apoptosis, or programmed cell death, as determined by terminal deoxynucleotidyl end labeling method, whereas other test mushrooms displayed trends of ∼15%. The total numbers of cells per flask, determined by hemacytometry, were not different from control cultures. Overall, all test mushrooms significantly suppressed cellular proliferation, with MT further significantly inducing apoptosis and cytotoxicity in human breast cancer cells. This suggests that both common and specialty mushrooms may be chemoprotective against breast cancer.

  8. Whey acidic protein (WAP) depresses the proliferation of mouse (MMT) and human (MCF-7) mammary tumor cells.

    PubMed

    Nukumi, Naoko; Iwamori, Tokuko; Naito, Kunihiko; Tojo, Hideaki

    2005-10-01

    We previously reported that the enforced expression of exogenous whey acidic protein (WAP) significantly inhibited the proliferation of mouse mammary epithelial cells (HC11 and EpH4/H6 cells). This paper presents the first evidence that WAP also depresses the proliferation of mammary tumor cells from mouse (MMT cells) and human (MCF-7 cells). We established WAP-clonal MMT and MCF-7 cell lines, and confirmed the secretion of WAP from the WAP-clonal cells into culture medium. The enforced expression of WAP significantly inhibited the proliferation of MMT and MCF-7 cells in in vitro culture. FACScan analyses revealed that G0/G1 phase cell-cycle progression was disordered and elongated in the WAP-clonal MMT and MCF-7 cells compared to that of the control cells. The expression of cyclin D1 was significantly decreased in the WAP-clonal MMT and MCF-7 cells, suggesting that progression from the G1 to the S phase was delayed in the WAP-clonal cells. The present results indicate that WAP plays a negative regulatory role in the cell-cycle progression of mammary tumor cells via a paracrine mechanism.

  9. Combinations of parabens at concentrations measured in human breast tissue can increase proliferation of MCF-7 human breast cancer cells.

    PubMed

    Charles, Amelia K; Darbre, Philippa D

    2013-05-01

    The alkyl esters of p-hydroxybenzoic acid (parabens), which are used as preservatives in consumer products, possess oestrogenic activity and have been measured in human breast tissue. This has raised concerns for a potential involvement in the development of human breast cancer. In this paper, we have investigated the extent to which proliferation of MCF-7 human breast cancer cells can be increased by exposure to the five parabens either alone or in combination at concentrations as recently measured in 160 human breast tissue samples. Determination of no-observed-effect concentrations (NOEC), lowest-observed-effect concentrations (LOEC), EC50 and EC100 values for stimulation of proliferation of MCF-7 cells by five parabens revealed that 43/160 (27%) of the human breast tissue samples contained at least one paraben at a concentration ≥ LOEC and 64/160 (40%) > NOEC. Proliferation of MCF-7 cells could be increased by combining all five parabens at concentrations down to the 50(th) percentile (median) values measured in the tissues. For the 22 tissue samples taken at the site of ER + PR + primary cancers, 12 contained a sufficient concentration of one or more paraben to stimulate proliferation of MCF-7 cells. This demonstrates that parabens, either alone or in combination, are present in human breast tissue at concentrations sufficient to stimulate the proliferation of MCF-7 cells in vitro, and that functional consequences of the presence of paraben in human breast tissue should be assessed on the basis of all five parabens and not single parabens individually.

  10. Downregulation of Steroid Receptor Coactivator-2 Modulates Estrogen-Responsive Genes and Stimulates Proliferation of MCF-7 Breast Cancer Cells

    PubMed Central

    Fenne, Ingvild S.; Helland, Thomas; Flågeng, Marianne H.; Dankel, Simon N.; Mellgren, Gunnar; Sagen, Jørn V.

    2013-01-01

    The p160/Steroid Receptor Coactivators SRC-1, SRC-2/GRIP1, and SRC-3/AIB1 are important regulators of Estrogen Receptor alpha (ERα) activity. However, whereas the functions of SRC-1 and SRC-3 in breast tumourigenesis have been extensively studied, little is known about the role of SRC-2. Previously, we reported that activation of the cAMP-dependent protein kinase, PKA, facilitates ubiquitination and proteasomal degradation of SRC-2 which in turn leads to inhibition of SRC-2-coactivation of ERα and changed expression of the ERα target gene, pS2. Here we have characterized the global program of transcription in SRC-2-depleted MCF-7 breast cancer cells using short-hairpin RNA technology, and in MCF-7 cells exposed to PKA activating agents. In order to identify genes that may be regulated through PKA-induced downregulation of SRC-2, overlapping transcriptional targets in response to the respective treatments were characterized. Interestingly, we observed decreased expression of several breast cancer tumour suppressor genes (e.g., TAGLN, EGR1, BCL11b, CAV1) in response to both SRC-2 knockdown and PKA activation, whereas the expression of a number of other genes implicated in cancer progression (e.g., RET, BCAS1, TFF3, CXCR4, ADM) was increased. In line with this, knockdown of SRC-2 also stimulated proliferation of MCF-7 cells. Together, these results suggest that SRC-2 may have an antiproliferative function in breast cancer cells. PMID:23936147

  11. All-trans-retinoic acid metabolites significantly inhibit the proliferation of MCF-7 human breast cancer cells in vitro.

    PubMed Central

    Van heusden, J.; Wouters, W.; Ramaekers, F. C.; Krekels, M. D.; Dillen, L.; Borgers, M.; Smets, G.

    1998-01-01

    All-trans-retinoic acid (ATRA) is well known to inhibit the proliferation of human breast cancer cells. Much less is known about the antiproliferative activity of the naturally occurring metabolites and isomers of ATRA. In the present study, we investigated the antiproliferative activity of ATRA, its physiological catabolites 4-oxo-ATRA and 5,6-epoxy-ATRA and isomers 9-cis-RA and 13-cis-RA in MCF-7 human breast cancer cells by bromodeoxyuridine incorporation. MCF-7 cells were grown in steroid- and retinoid-free medium supplemented with growth factors. Under these culture conditions, ATRA and its naturally occurring catabolites and isomers showed significant antiproliferative activity in MCF-7 cells in a concentration-dependent manner (10[-11] M to 10[-6] M). The antiproliferative activity of ATRA catabolites and isomers was equal to that of the parent compound ATRA at concentrations of 10(-8) M and 10(-7) M. Only at 10(-6) M were the catabolites and the stereoisomer 13-cis-RA less potent. The stereoisomer 9-cis-RA was as potent as ATRA at all concentrations tested (10[-11] M to 10[-6] M). In addition, we show that the catabolites and isomers were formed from ATRA to only a limited extent. Together, our findings suggest that in spite of their high antiproliferative activity the catabolites and isomers of ATRA cannot be responsible for the observed growth inhibition induced by ATRA. PMID:9459142

  12. Evaluation of estrogenic potential of flavonoids using a recombinant yeast strain and MCF7/BUS cell proliferation assay.

    PubMed

    Resende, Flávia A; de Oliveira, Ana Paula S; de Camargo, Mariana S; Vilegas, Wagner; Varanda, Eliana A

    2013-01-01

    Phytoestrogens are of interest because of their reported beneficial effects on many human maladies including cancer, neurodegeneration, cardiovascular disease and diabetes. Furthermore, there is a search for compounds with estrogenic activity that can replace estrogen in hormone replacement therapy during menopause, without the undesirable effects of estrogen, such as the elevation of breast cancer occurrence. Thus, the principal objective of this study was to assess the estrogenic activity of flavonoids with different hydroxylation patterns: quercetin, kaempferol, luteolin, fisetin, chrysin, galangin, flavone, 3-hydroxyflavone, 5-hydroxyflavone and 7-hydroxyflavone via two different in vitro assays, the recombinant yeast assay (RYA) and the MCF-7 proliferation assay (E-screen), since the most potent phytoestrogens are members of the flavonoid family. In these assays, kaempferol was the only compound that showed ERα-dependent transcriptional activation activity by RYA, showing 6.74±1.7 nM EEQ, besides acting as a full agonist for the stimulation of proliferation of MCF-7/BUS cells. The other compounds did not show detectable levels of interaction with ER under the conditions used in the RYA. However, in the E-screen assay, compounds such as galangin, luteolin and fisetin also stimulated the proliferation of MCF-7/BUS cells, acting as partial agonists. In the evaluation of antiestrogenicity, the compounds quercetin, chrysin and 3-hydroxyflavone significantly inhibited the cell proliferation induced by 17-β-estradiol in the E-screen assay, indicating that these compounds may act as estrogen receptor antagonists. Overall, it became clear in the assay results that the estrogenic activity of flavonoids was affected by small structural differences such as the number of hydroxyl groups, especially those on the B ring of the flavonoid.

  13. Evaluation of Estrogenic Potential of Flavonoids Using a Recombinant Yeast Strain and MCF7/BUS Cell Proliferation Assay

    PubMed Central

    Resende, Flávia A.; de Oliveira, Ana Paula S.; de Camargo, Mariana S.; Vilegas, Wagner; Varanda, Eliana A.

    2013-01-01

    Phytoestrogens are of interest because of their reported beneficial effects on many human maladies including cancer, neurodegeneration, cardiovascular disease and diabetes. Furthermore, there is a search for compounds with estrogenic activity that can replace estrogen in hormone replacement therapy during menopause, without the undesirable effects of estrogen, such as the elevation of breast cancer occurrence. Thus, the principal objective of this study was to assess the estrogenic activity of flavonoids with different hydroxylation patterns: quercetin, kaempferol, luteolin, fisetin, chrysin, galangin, flavone, 3-hydroxyflavone, 5-hydroxyflavone and 7-hydroxyflavone via two different in vitro assays, the recombinant yeast assay (RYA) and the MCF-7 proliferation assay (E-screen), since the most potent phytoestrogens are members of the flavonoid family. In these assays, kaempferol was the only compound that showed ERα-dependent transcriptional activation activity by RYA, showing 6.74±1.7 nM EEQ, besides acting as a full agonist for the stimulation of proliferation of MCF-7/BUS cells. The other compounds did not show detectable levels of interaction with ER under the conditions used in the RYA. However, in the E-screen assay, compounds such as galangin, luteolin and fisetin also stimulated the proliferation of MCF-7/BUS cells, acting as partial agonists. In the evaluation of antiestrogenicity, the compounds quercetin, chrysin and 3-hydroxyflavone significantly inhibited the cell proliferation induced by 17-β-estradiol in the E-screen assay, indicating that these compounds may act as estrogen receptor antagonists. Overall, it became clear in the assay results that the estrogenic activity of flavonoids was affected by small structural differences such as the number of hydroxyl groups, especially those on the B ring of the flavonoid. PMID:24098354

  14. Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    SciTech Connect

    Choi, Hee-Jung; Chung, Tae-Wook; Kim, Cheorl-Ho; Jeong, Han-Sol; Joo, Myungsoo; Youn, BuHyun; Ha, Ki-Tae

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. Black-Right-Pointing-Pointer Estrogen-induced B4GALT1 expression through the direct binding of ER-{alpha} to ERE in MCF-7 cells. Black-Right-Pointing-Pointer B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. Black-Right-Pointing-Pointer Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose {beta}-1,4-N-acetylglucosamine (Gal{beta}1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Gal{beta}1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-{alpha}-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering

  15. [Study of combined effects of DES and EV on the proliferation of MCF-7 cells by two experimental designs].

    PubMed

    Liu, Qian; Lei, Bing-Li; An, Jing; Shang, Yu; Zhong, Yu-Fang; Kang, Jia; Wen, Yu

    2013-08-01

    The single toxicity of diethylstilbestrol (DES) and beta-estradiol 17-valerate (EV) and the joint toxicity of their binary mixtures in equiconcentration to the proliferation of MCF-7 cells were investigated, respectively. Additive index (AI) method was adopted to evaluate the joint toxicity effect. At the same time, 3 x 3 factorial experimental design was used to verify the joint toxiciy types derived from equiconcentration of DES and EV. The results show that the EC50 values of single EV and DES for 24, 48 and 72 h are 6.02, 0.40 and 0.33 nmol x L(-1) and 5.90, 6.98 and 2.90 nmol x L(-1), respectively. The EC50 values of the binary mixtures of DES and EV for 24, 48 and 72 h are 2.33, 0.71 and 0.39 nmol x L(-1). The binary joint effects of DES and EV for 24 h were synergistic, and the joint effects of DES and EV for 48 and 72 h were antagonistic. But synergistic and antagonistic effects are not strong; their values can be found close to the values of additive effects. Factorial experiment results show that combined effects of DES and EV to proliferation of MCF-7 cells for 24, 48 and 72 h three exposure periods are additive effect types. The consistent joint combined effect types can be drawn from both factorial experimental design and equiconcentration ratio of DES and EV to the proliferation of MCF-7 cells. However, the factorial experimental design is simpler and more convenient, and can avoid unnecessary mistakes due to the derivation of EC50 values.

  16. Implication of protein tyrosine phosphatase 1B in MCF-7 cell proliferation and resistance to 4-OH tamoxifen

    SciTech Connect

    Blanquart, Christophe; Karouri, Salah-Eddine; Issad, Tarik

    2009-10-02

    The protein tyrosine phosphatase 1B (PTP1B) and the T-cell protein tyrosine phosphatase (TC-PTP) were initially thought to be mainly anti-oncogenic. However, overexpression of PTP1B and TC-PTP has been observed in human tumors, and recent studies have demonstrated that PTP1B contributes to the appearance of breast tumors by modulating ERK pathway. In the present work, we observed that decreasing the expression of TC-PTP or PTP1B in MCF-7 cells using siRNA reduced cell proliferation without affecting cell death. This reduction in proliferation was associated with decreased ERK phosphorylation. Moreover, selection of tamoxifen-resistant MCF-7 cells, by long-term culture in presence of 4-OH tamoxifen, resulted in cells that display overexpression of PTP1B and TC-PTP, and concomitant increase in ERK and STAT3 phosphorylation. siRNA experiments showed that PTP1B, but not TC-PTP, is necessary for resistance to 4-OH tamoxifen. Therefore, our work indicates that PTP1B could be a relevant therapeutic target for treatment of tamoxifen-resistant breast cancers.

  17. CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation

    SciTech Connect

    Murooka, Thomas T.; Rahbar, Ramtin; Fish, Eleanor N.

    2009-09-18

    The proliferative capacity of cancer cells is regulated by factors intrinsic to cancer cells and by secreted factors in the microenvironment. Here, we investigated the proto-oncogenic potential of the chemokine receptor, CCR5, in MCF-7 breast cancer cell lines. At physiological levels, CCL5, a ligand for CCR5, enhanced MCF-7.CCR5 proliferation. Treatment with the mTOR inhibitor, rapamycin, inhibited this CCL5-inducible proliferation. Because mTOR directly modulates mRNA translation, we investigated whether CCL5 activation of CCR5 leads to increased translation. CCL5 induced the formation of the eIF4F translation initiation complex through an mTOR-dependent process. Indeed, CCL5 initiated mRNA translation, shown by an increase in high-molecular-weight polysomes. Specifically, we show that CCL5 mediated a rapid up-regulation of protein expression for cyclin D1, c-Myc and Dad-1, without affecting their mRNA levels. Taken together, we describe a mechanism by which CCL5 influences translation of rapamycin-sensitive mRNAs, thereby providing CCR5-positive breast cancer cells with a proliferative advantage.

  18. Anti-proliferation effects of benzimidazole derivatives on HCT-116 colon cancer and MCF-7 breast cancer cell lines.

    PubMed

    Al-Douh, Mohammed Hadi; Sahib, Hayder B; Osman, Hasnah; Abd Hamid, Shafida; Salhimi, Salizawati M

    2012-01-01

    Benzimidazoles 1-4 were obtained using modified synthesis methods and studied for their ability to inhibit cell proliferation of colon cancer cell HCT-116 and breast cancer cell MCF-7 using MTT assays. In the HCT-116 cell line, benzimidazole 2 was found to have an IC50 value of 16.2 ± 3.85 μg/mL and benzimidazole 1 a value of 28.5 ± 2.91 μg/mL, while that for benzimidazole 4 was 24.08 ± 0.31 μg/mL. In the MCF-7 cell line, benzimidazole 4 had an IC50 value of 8.86 ± 1.10 μg/mL, benzimidazole 2 a value of 30.29 ± 6.39 μg/mL, and benzimidazole 1 a value of 31.2 ± 4.49 μg/mL. Benzimidazole 3 exerted no cytotoxicity in either of the cell lines, with IC50 values >50 μg/mL. The results suggest that benzimidazoles derivatives may have chemotherapeutic potential for treatment of both colon and breast cancers.

  19. MicroRNA-34a Suppresses Cell Proliferation by Targeting LMTK3 in Human Breast Cancer MCF-7 Cell Line

    PubMed Central

    Zhao, Guoqing; Guo, Jun; Li, Dong; Jia, Chengyou; Yin, Wanzhong; Sun, Ran; Lv, Zhongwei

    2013-01-01

    Breast cancer remains the leading cause of cancer mortality in females, and about 70% of the primary breast cancer patients are diagnosed ERα-positive, which is the most common type of breast cancer. MicroRNA-34a (miR-34a) has been shown to be a master regulator of tumor suppression in many types of cancers including breast cancer. However, the role of miR-34a in ERα-positive breast cancer has not been elucidated. Here, we find that in MCF-7, which is an ERα-positive breast cancer cell line, miR-34a is remarkably downregulated after E2 treatment. Overexpression of miR-34a by lentivirus suppresses cell proliferation, S phase ratio, and tumor formation in an E2-dependent manner in vitro. According to the mRNA sequence, lemur tyrosine kinase 3 (LMTK3), which is an important regulator of estrogen receptor alpha (ERα), is a predicted target of miR-34a. This is confirmed by dual luciferase reporter assay and the decrease of LMTK3 mRNA and protein levels after overexpression of miR-34a. Moreover, miR-34a overexpression decreases AKT signaling pathway and increases ERα phosphorylation status. Taken together, these results suggest that miR-34a inhibits breast cancer proliferation by targeting LMTK3 and might be used as an anti-ERα agent in breast cancer therapy. PMID:24050776

  20. Abrogation of p53 by its antisense in MCF-7 breast carcinoma cells increases cyclin D1 via activation of Akt and promotion of cell proliferation

    SciTech Connect

    Chhipa, Rishi Raj; Kumari, Ratna; Upadhyay, Ankur Kumar; Bhat, Manoj Kumar

    2007-11-15

    The p53 protein has been a subject of intense research interest since its discovery as about 50% of human cancers carry p53 mutations. Mutations in the p53 gene are the most frequent genetic lesions in breast cancers suggesting a critical role of p53 in breast cancer development, growth and chemosensitivity. This report describes the derivation and characterization of MCF-7As53, an isogenic cell line derived from MCF-7 breast carcinoma cells in which p53 was abrogated by antisense p53 cDNA. Similar to MCF-7 and simultaneously selected hygromycin resistant MCF-7H cells, MCF-7As53 cells have consistent basal epithelial phenotype, morphology, and estrogen receptor expression levels at normal growth conditions. Present work documents investigation of molecular variations, growth kinetics, and cell cycle related studies in relation to absence of wild-type p53 protein and its transactivation potential as well. Even though wild-type tumor suppressor p53 is an activator of cell growth arrest and apoptosis-mediator genes such as p21, Bax, and GADD45 in MCF-7As53 cells, no alterations in expression levels of these genes were detected. The doubling time of these cells decreased due to depletion of G0/G1 cell phase because of constitutive activation of Akt and increase in cyclin D1 protein levels. This proliferative property was abrogated by wortmannin, an inhibitor of PI3-K/Akt signaling pathway. Therefore this p53 null cell line indicates that p53 is an indispensable component of cellular signaling system which is regulated by caveolin-1 expression, involving Akt activation and increase in cyclin D1, thereby promoting proliferation of breast cancer cells.

  1. Leukotoxin Diols from Ground Corncob Bedding Disrupt Estrous Cyclicity in Rats and Stimulate MCF-7 Breast Cancer Cell Proliferation

    PubMed Central

    Markaverich, Barry M.; Crowley, Jan R.; Alejandro, Mary A.; Shoulars, Kevin; Casajuna, Nancy; Mani, Shaila; Reyna, Andrea; Sharp, John

    2005-01-01

    Previous studies in our laboratory demonstrated that high-performance liquid chromatography (HPLC) analysis of ground corncob bedding extracts characterized two components (peak I and peak II) that disrupted endocrine function in male and female rats and stimulated breast and prostate cancer cell proliferation in vitro and in vivo. The active substances in peak I were identified as an isomeric mixture of 9,12-oxy-10,13-dihydroxyoctadecanoic acid and 10,13-oxy-9,12-dihydroxyoctadecanoic acid, collectively designated tetrahydrofurandiols (THF-diols). Studies presented here describe the purification and identification of the HPLC peak II component as 9,10-dihydroxy-12-octadecenoic acid (leukotoxin diol; LTX-diol), a well-known leukotoxin. A synthetic mixture of LTX-diol and 12,13-dihydroxy-9-octadecenoic acid (isoleukotoxin diol; i-LTX-diol) isomers was separated by HPLC, and each isomer stimulated (p < 0.001) MCF-7 cell proliferation in an equivalent fashion. The LTX-diol isomers failed to compete for [3H]estradiol binding to the estrogen receptor or nuclear type II sites, even though oral administration of very low doses of these compounds (>> 0.8 mg/kg body weight/day) disrupted estrous cyclicity in female rats. The LTX-diols did not disrupt male sexual behavior, suggesting that sex differences exist in response to these endocrine-disruptive agents. PMID:16330350

  2. Detection of weak estrogenic flavonoids using a recombinant yeast strain and a modified MCF7 cell proliferation assay.

    PubMed

    Breinholt, V; Larsen, J C

    1998-06-01

    A newly developed recombinant yeast strain, in which the human estrogen receptor has been stably integrated into the genome of the yeast, was used to gain information on the estrogenic activity of a large series of dietary flavonoids. Among 23 flavonoids investigated, 8 were found to markedly stimulate the transcriptional activity of the human estrogen receptor in the yeast assay increasing transcriptional activity 5-13-fold above background level, corresponding to EC50 values between 0.1 and 25 microM. Five compounds increased the transcriptional activity 2-5-fold over the control, with EC50 values ranging from 84 to 102 microM, whereas the remaining flavonoids were devoid of activity. The most potent flavonoid estrogens tested were naringenin, apigenin, kaempferol, phloretin, and the four isoflavonoids equol, genistein, daidzein, and biochanin A. With the exception of biochanin A, the main feature required to confer estrogenicity was the presence of a single hydroxyl group in the 4'-position of the B-ring of the flavan nucleus, corresponding to the 4-position on phloretin. The estrogenic potency of the flavonoids was found to be 4 000-4 000 000 times lower than that observed for 17beta-estradiol, when compared on the basis of EC50 values. The estrogenic activity of the dietary flavonoids was further investigated in estrogen-dependent human MCF7 breast cancer cells. In this system several of the flavonoids were likewise capable of mimicking natural estrogens and thereby induce cell proliferation. Similar structural requirements for estrogenic activity were found for the two assays. The present results provide evidence that several of the flavo-estrogens possess estrogenic properties comparable in activity to the well-established isoflavonoid estrogens. The use of Alamar Blue, a vital dye which is metabolically reduced by cellular enzymes to a fluorescent product, was found to greatly simplify the MCF7 cell-based estrogen screen, making this mammalian assay

  3. Protein kinase D1 stimulates proliferation and enhances tumorigenesis of MCF-7 human breast cancer cells through a MEK/ERK-dependent signaling pathway

    SciTech Connect

    Karam, Manale; Legay, Christine; Auclair, Christian; Ricort, Jean-Marc

    2012-03-10

    Protein kinase D1, PKD1, is a novel serine/threonine kinase whose altered expression and dysregulation in many tumors as well as its activation by several mitogens suggest that this protein could regulate proliferation and tumorigenesis. Nevertheless, the precise signaling pathways used are still unclear and the potential direct role of PKD1 in tumor development and progression has not been yet investigated. In order to clarify the role of PKD1 in cell proliferation and tumorigenesis, we studied the effects of PKD1 overexpression in a human adenocarcinoma breast cancer cell line, MCF-7 cells. We demonstrated that overexpression of PKD1 specifically promotes MCF-7 cell proliferation through accelerating G0/G1 to S phase transition of the cell cycle. Moreover, inhibition of endogenous PKD1 significantly reduced cell proliferation. Taken together, these results clearly strengthen the regulatory role of PKD1 in cell growth. We also demonstrated that overexpression of PKD1 specifically diminished serum- and anchorage-dependence for proliferation and survival in vitro and allowed MCF-7 cells to form tumors in vivo. Thus, all these data highlight the central role of PKD1 in biological processes which are hallmarks of malignant transformation. Analysis of two major signaling pathways implicated in MCF-7 cell proliferation showed that PKD1 overexpression significantly increased ERK1/2 phosphorylation state without affecting Akt phosphorylation. Moreover, PKD1 overexpression-stimulated cell proliferation and anchorage-independent growth were totally impaired by inhibition of the MEK/ERK kinase cascade. However, neither of these effects was affected by blocking the PI 3-kinase/Akt signaling pathway. Thus, the MEK/ERK signaling appears to be a determining pathway mediating the biological effects of PKD1 in MCF-7 cells. Taken together, all these data demonstrate that PKD1 overexpression increases the aggressiveness of MCF-7 breast cancer cells through enhancing their oncogenic

  4. Epigenetic silencing of miR-19a-3p by cold atmospheric plasma contributes to proliferation inhibition of the MCF-7 breast cancer cell

    NASA Astrophysics Data System (ADS)

    Lee, Seungyeon; Lee, Hyunkyung; Bae, Hansol; Choi, Eun H.; Kim, Sun Jung

    2016-07-01

    Cold atmospheric plasma (CAP) has been proposed as a useful cancer treatment option after showing higher induction of cell death in cancer cells than in normal cells. Although a few studies have contributed to elucidating the molecular mechanism by which CAP differentially inhibits cancer cell proliferation, no results are yet to be reported related to microRNA (miR). In this study, miR-19a-3p (miR-19a) was identified as a mediator of the cell proliferation-inhibitory effect of CAP in the MCF-7 breast cancer cell. CAP treatment of MCF-7 induced hypermethylation at the promoter CpG sites and downregulation of miR-19a, which was known as an oncomiR. The overexpression of miR-19a in MCF-7 increased cell proliferation, and CAP deteriorated the effect. The target genes of miR-19a, such as ABCA1 and PTEN, that had been suppressed by miR recovered their expression through CAP treatment. In addition, an inhibitor of reactive oxygen species that is produced by CAP suppressed the effect of CAP on cell proliferation. Taken together, the present study, to the best of authors’ knowledge, is the first to identify the involvement of a miR, which is dysregulated by the CAP and results in the anti-proliferation effect of CAP on cancer cells.

  5. Epigenetic silencing of miR-19a-3p by cold atmospheric plasma contributes to proliferation inhibition of the MCF-7 breast cancer cell

    PubMed Central

    Lee, Seungyeon; Lee, Hyunkyung; Bae, Hansol; Choi, Eun H.; Kim, Sun Jung

    2016-01-01

    Cold atmospheric plasma (CAP) has been proposed as a useful cancer treatment option after showing higher induction of cell death in cancer cells than in normal cells. Although a few studies have contributed to elucidating the molecular mechanism by which CAP differentially inhibits cancer cell proliferation, no results are yet to be reported related to microRNA (miR). In this study, miR-19a-3p (miR-19a) was identified as a mediator of the cell proliferation-inhibitory effect of CAP in the MCF-7 breast cancer cell. CAP treatment of MCF-7 induced hypermethylation at the promoter CpG sites and downregulation of miR-19a, which was known as an oncomiR. The overexpression of miR-19a in MCF-7 increased cell proliferation, and CAP deteriorated the effect. The target genes of miR-19a, such as ABCA1 and PTEN, that had been suppressed by miR recovered their expression through CAP treatment. In addition, an inhibitor of reactive oxygen species that is produced by CAP suppressed the effect of CAP on cell proliferation. Taken together, the present study, to the best of authors’ knowledge, is the first to identify the involvement of a miR, which is dysregulated by the CAP and results in the anti-proliferation effect of CAP on cancer cells. PMID:27445062

  6. Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation.

    PubMed

    Hasan, M; Belhaj, N; Benachour, H; Barberi-Heyob, M; Kahn, C J F; Jabbari, E; Linder, M; Arab-Tehrany, E

    2014-01-30

    The role of curcumin (diferuloylmethane), for cancer treatment has been an area of growing interest. However, due to its low absorption, the poor bioavailability of curcumin limits its clinical use. In this study, we reported an approach of encapsulation a curcumin by nanoliposome to achieve an improved bioavailability of a poorly absorbed hydrophobic compound. We demonstrated that liposomal preparations to deliver curcumin increase its bioavailability. Liposomes composed of salmon's lecithin also improved curcumin bioavailability compared to those constituted of rapeseed and soya lecithins. A real-time label-free cell analysis system based on real-time cell impedance monitoring was used to investigate the in vitro cytotoxicity of liposomal preparations.

  7. Erucin, the major isothiocyanate in arugula (Eruca sativa), inhibits proliferation of MCF7 tumor cells by suppressing microtubule dynamics.

    PubMed

    Azarenko, Olga; Jordan, Mary Ann; Wilson, Leslie

    2014-01-01

    Consumption of cruciferous vegetables is associated with reduced risk of various types of cancer. Isothiocyanates including sulforaphane and erucin are believed to be responsible for this activity. Erucin [1-isothiocyanato-4-(methylthio)butane], which is metabolically and structurally related to sulforaphane, is present in large quantities in arugula (Eruca sativa, Mill.), kohlrabi and Chinese cabbage. However, its cancer preventive mechanisms remain poorly understood. We found that erucin inhibits proliferation of MCF7 breast cancer cells (IC50 = 28 µM) in parallel with cell cycle arrest at mitosis (IC50 = 13 µM) and apoptosis, by a mechanism consistent with impairment of microtubule dynamics. Concentrations of 5-15 µM erucin suppressed the dynamic instability of microtubules during interphase in the cells. Most dynamic instability parameters were inhibited, including the rates and extents of growing and shortening, the switching frequencies between growing and shortening, and the overall dynamicity. Much higher erucin concentrations were required to reduce the microtubule polymer mass. In addition, erucin suppressed dynamic instability of microtubules reassembled from purified tubulin in similar fashion. The effects of erucin on microtubule dynamics, like those of sulforaphane, are similar qualitatively to those of much more powerful clinically-used microtubule-targeting anticancer drugs, including taxanes and the vinca alkaloids. The results suggest that suppression of microtubule dynamics by erucin and the resulting impairment of critically important microtubule-dependent cell functions such as mitosis, cell migration and microtubule-based transport may be important in its cancer preventive activities.

  8. Synthesis and study of benzothiazole conjugates in the control of cell proliferation by modulating Ras/MEK/ERK-dependent pathway in MCF-7 cells.

    PubMed

    Kamal, Ahmed; Faazil, Shaikh; Ramaiah, M Janaki; Ashraf, Md; Balakrishna, M; Pushpavalli, S N C V L; Patel, Nibedita; Pal-Bhadra, Manika

    2013-10-15

    By applying a methodology, a series of benzothiazole-pyrrole based conjugates (4a-r) were synthesized and evaluated for their antiproliferative activity. Compounds such as 4a, 4c, 4e, 4g-j, 4m, 4n, 4o and 4r exhibited significant cytotoxic effect in the MCF-7 cell line. Cell cycle effects were examined for these conjugates at 2 μM as well as 4 μM concentrations and FACS analysis show an increase of G2/M phase cells with concomitant decrease of G1 phase cells thereby indicating G2/M cell cycle arrest by them. Interestingly 4o and 4r are effective in causing apoptosis in MCF-7 cells. Moreover, 4o showed down regulation of oncogenic expression of Ras and its downstream effector molecules such as MEK1, ERK1/2, p38 MAPK and VEGF. The apoptotic aspect of this conjugate is further evidenced by increased expression of caspase-9 in MCF-7 cells. Hence these small molecules have the potential to control both the cell proliferation as well as the invasion process in the highly malignant breast cancers.

  9. Umbilical cord-derived mesenchymal stem cells promote proliferation and migration in MCF-7 and MDA-MB-231 breast cancer cells through activation of the ERK pathway.

    PubMed

    Li, Tao; Zhang, Chunfu; Ding, Yanling; Zhai, Wei; Liu, Kui; Bu, Fan; Tu, Tao; Sun, Lingxian; Zhu, Wei; Zhou, Fangfang; Qi, Wenkai; Hu, Jiabo; Chen, Huabiao; Sun, Xiaochun

    2015-09-01

    Mesenchymal stem cells (MSCs) are known to migrate to tumor tissues and to play an important role in cancer progression. However, the effects of MSCs on tumor progression remain controversial. The purpose of the present study was to detect the effects of human umbilical cord-derived MSCs (hUC‑MSCs) on the human breast cancer cell lines MDA-MB‑231 and MCF-7 in vitro and the underlying mechanisms. MSCs were isolated and identified from umbilical cord tissues. MDA-MB‑231 and MCF-7 cells were treated with conditioned medium (CM) from 10 and 20% umbilical cord MSCs (UC-MSCs), and the resulting changes in proliferation and migration were investigated. The 3-(4,5-dimethyl-2-thiazolyl)‑2,5-diphenyl‑2-H-tetrazolium bromide (MTT) and plate clone formation assays were used to assess the effect on proliferation, and the effects of CM on MDA-MB-231 and MCF-7 migration were assessed through scratch wound and Transwell migration assays. The expression of cell proliferation- and metastasis-related genes and proteins and activation of the ERK signaling pathway were analyzed by RT-PCR and western blot assays. UC-MSCs are characteristically similar to bone marrow MSCs (BM-MSCs) and exhibit multipotential differentiation capability (i.e., osteoblasts and adipocytes). The MTT, plate clone formation, scratch wound and Transwell migration assay results revealed that 10 and 20% CM promoted the proliferation and migration to higher levels than those observed in the control group. Our findings showed that UC-MSC-CM inhibited E-cadherin expression, increased the expression of N-cadherin and proliferating cell nuclear antigen (PCNA) and enhanced the expression of ZEB1, a transcription factor involved in epithelial‑to‑mesenchymal transition (EMT), through activation of the ERK pathway. U0126, an inhibitor of ERK, reversed the effects of UC-MSC-CM on breast cancer cell proliferation and migration. We conclude that UC-MSCs promote the proliferation and migration of breast

  10. Phospholipase C δ-4 overexpression upregulates ErbB1/2 expression, Erk signaling pathway, and proliferation in MCF-7 cells

    PubMed Central

    Leung, David W; Tompkins, Chris; Brewer, Jim; Ball, Alexey; Coon, Mike; Morris, Valerie; Waggoner, David; Singer, Jack W

    2004-01-01

    Background The expression of the rodent phosphoinositide-specific phospholipase C δ-4 (PLCδ4) has been found to be elevated upon mitogenic stimulation and expression analysis have linked the upregulation of PLCδ4 expression with rapid proliferation in certain rat transformed cell lines. The human homologue of PLCδ4 has not been extensively characterized. Accordingly, we investigate the effects of overexpression of human PLCδ4 on cell signaling and proliferation in this study. Results The cDNA for human PLCδ4 has been isolated and expressed ectopically in breast cancer MCF-7 cells. Overexpression of PLCδ4 selectively activates protein kinase C-φ and upregulates the expression of epidermal growth factor receptors EGFR/erbB1 and HER2/erbB2, leading to constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway in MCF-7 cells. MCF-7 cells stably expressing PLCδ4 demonstrates several phenotypes of transformation, such as rapid proliferation in low serum, formation of colonies in soft agar, and capacity to form densely packed spheroids in low-attachment plates. The growth signaling responses induced by PLCδ4 are not reversible by siRNA. Conclusion Overexpression or dysregulated expression of PLCδ4 may initiate oncogenesis in certain tissues through upregulation of ErbB expression and activation of ERK pathway. Since the growth responses induced by PLCδ4 are not reversible, PLCδ4 itself is not a suitable drug target, but enzymes in pathways activated by PLCδ4 are potential therapeutic targets for oncogenic intervention. PMID:15140260

  11. Interaction of estradiol and high density lipoproteins on proliferation of the human breast cancer cell line MCF-7 adapted to grow in serum free conditions

    SciTech Connect

    Jozan, S.; Faye, J.C.; Tournier, J.F.; Tauber, J.P.; David, J.F.; Bayard, F.

    1985-11-27

    The responsiveness of the human mammary carcinoma cell line MCF-7 to estradiol and tamoxifen treatment has been studied in different culture conditions. Cells from exponentially growing cultures were compared with cells in their initial cycles after replating from confluent cultures (''confluent-log'' cells). It has been observed that estradiol stimulation of tritiated thymidine incorporation decreases with cell density and that ''confluent-log'' cells are estrogen unresponsive for a period of four cell cycles in serum-free medium conditions. On the other hand, growth of cells replated from exponentially growing, as well as from confluent cultures, can be inhibited by tamoxifen or a combined treatment with tamoxifen and the progestin levonorgestrel. This growth inhibitory effect can be rescued by estradiol when cells are replated from exponentially growing cultures. The growth inhibitory effect cannot be rescued by estradiol alone (10(-10) to 10(-8) M) when cells are replated from confluent cultures. In this condition, the addition of steroid depleted serum is necessary to reverse the state of estradiol unresponsiveness. Serum can be replaced by high density lipoproteins but not by low density lipoproteins or lipoprotein deficient serum. The present data show that estradiol and HDL interact in the control of MCF-7 cell proliferation.

  12. Benzoquinone from Fusarium pigment inhibits the proliferation of estrogen receptor-positive MCF-7 cells through the NF-κB pathway via estrogen receptor signaling

    PubMed Central

    Zheng, Lixiang; Cai, Yujian; Zhou, Li; Huang, Ping; Ren, Xiaoying; Zuo, Airen; Meng, Xianming; Xu, Minjuan; Liao, Xiangru

    2017-01-01

    Natural pigments are known for possessing a wide range of pharmacological and health-promoting properties. The pigments, produced by a new strain Fusarium (Fusarium sp. JN158) previously identified in our laboratory, were found to have 6 peaks (representing 6 compounds) by high-performance liquid chromatography with a diode-array detector (HPLC-DAD) separation. The 6th peak compound (compound VI) is a benzoquinone compound. In this study, we examined the effects of compound VI on the proliferation of breast cancer cells and aimed to elucidate the underlying mechamisms. Compound VI exerted anti-proliferative effects on MCF-7 estrogen receptor (ER)+ cells in a dose-dependent manner (IC25, 7 µM; IC50, 11 µM), whereas it had no effect on MDA-MB-231 ER− cells and normal cells. The cell index (CI) began to decrease at 24 h following treatment with benzoquinone. Mechanistically, the results from molecular analysis revealed that compound VI inhibited the expression of ERα, progesterone receptor (PR), vascular endothelial growth factor (VEGF), Bcl-2, cyclin D1 and nuclear factor-κB (NF-κB) p65, while it increased the expression of cleaved caspase-3 and Bax in the MCF-7 cells. Taken together, our findings indicate that compound VI exerts anti-proliferative effects on MCF-7 cells through the NF-κB pathway via the regulation of ER signaling. Our data may indicate that benzoquinone from Fusarium pigment may have potential for use as an anti-proliferative agent in the treatment of breast cancer. PMID:27878233

  13. ELEVATED HSP70 STIMULATES CELL PROLIFERATION AND IS CYTOPROTECTIVE AGAINST HEAT AND VINCRISTINE TOXICITY IN MCF-7 CELLS.

    EPA Science Inventory

    Heat-shock proteins (HSPs) play important roles in regulating cell growth and protecting cells from adverse effects of heat and chemical stress. In many types of cancer, elevated HSP70 levels are associated with poor prognosis and resistance to chemotherapeutic agents. In the pre...

  14. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    SciTech Connect

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta; Bodipati, Naganjaneyulu; Krishna Peddinti, Rama; Roy, Partha

    2014-01-15

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC{sub 50}=25±0.38) when compared to reference compound PTER (IC{sub 50}=65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene.

  15. Tart cherry juice induces differential dose-dependent effects on apoptosis, but not cellular proliferation, in MCF-7 human breast cancer cells.

    PubMed

    Martin, Keith R; Wooden, Alissa

    2012-11-01

    Consumption of polyphenol-rich fruits, for example, tart cherries, is associated with a lower risk of cardiovascular disease and cancer. This is due, in large part, to the diverse myriad bioactive agents, that is, polyphenol anthocyanins, present in fruits. Anthocyanin-rich tart cherries purportedly modulate numerous cellular processes associated with oncogenesis such as apoptosis, cellular proliferation (CP), and cell cycle progression, although the effective concentrations eliciting these effects are unclear. We hypothesized that several dose-dependent effects over a large concentration range of 100% tart cherry juice (TCJ) would exist and affect these processes differentially with the potential for cellular protection and cellular death either by apoptosis or by necrosis. In this in vitro study, we tested the dose response of TCJ on CP and cell death in MCF-7 human breast cancer cells. TCJ was added at 0.03-30% (v/v) to cells and incubated overnight with the medium alone or with increasing TCJ. Bromodeoxyuridine incorporation was significantly reduced by 20% at ≥10% (v/v) TCJ and associated with necrosis, but was not different between the control and treatment groups at <10% TCJ. MTT reduction was also significantly reduced by 27% and 80% at 10% and 30% TCJ, respectively, and associated with necrosis. Apoptosis, but not necrosis, was increased ∼63% at 3% TCJ (∼307 nM monomeric anthocyanins), yet significantly decreased (P<.05) by 20% at 1% TCJ (920 nM) both of which were physiologically relevant concentrations of anthocyanins. The data support a biphasic effect on apoptosis and no effect on proliferation.

  16. The proliferative effects of 5-androstene-3 beta,17 beta-diol and 5 alpha-dihydrotestosterone on cell cycle analysis and cell proliferation in MCF7, T47D and MDAMB231 breast cancer cell lines.

    PubMed

    Aspinall, S R; Stamp, S; Davison, A; Shenton, B K; Lennard, T W J

    2004-01-01

    Epidemiological studies suggest that precursor steroids are implicated in the aetiology of breast cancer. However, our understanding of the role of precursor steroids in breast cancer is complicated by fact that there are many precursor steroids, which are metabolically inter-related and have divergent proliferative activities on the growth of breast cancer cell lines. In this study the proliferative affects of 5 alpha-dihydrotestosterone and 5-androstene-3 beta,17 beta-diol, which may be considered true metabolites acting at a tissue level, on MCF7, T47D and MDAMB231 breast cancer cell lines have been examined by a flow cytometric technique. DNA cell cycle analysis demonstrates that 5-androstene-3 beta,17 beta-diol stimulates the proliferation of hormone-dependent cell lines at physiological levels by an oestrogen receptor mediated mechanism whereas 5 alpha-dihydrotestosterone does not affect the proliferation of MCF7 and T47D cell lines at physiological levels over short (48 h) incubations. Both 5 alpha-dihydrotestosterone and 5-androstene-3 beta,17 beta-diol stimulate proliferation of hormone-dependent cell lines at pharmacological levels via and interaction with the oestrogen receptor. In long (6-9 days) incubations both 5 alpha-dihydrotestosterone and 5-androstene-3 beta,17 beta-diol inhibit the 17 beta-oestradiol induced proliferation of MCF7 and T47D cell lines, however, 5 alpha-dihydrotestosterone inhibits while 5-androstene-3 beta,17 beta-diol stimulates basal proliferation. These cell line studies suggest a model for the role of precursor steroids in pre- and postmenopausal breast cancer.

  17. Nandrolone and stanozolol upregulate aromatase expression and further increase IGF-I-dependent effects on MCF-7 breast cancer cell proliferation.

    PubMed

    Sirianni, Rosa; Capparelli, Claudia; Chimento, Adele; Panza, Salvatore; Catalano, Stefania; Lanzino, Marilena; Pezzi, Vincenzo; Andò, Sebastiano

    2012-11-05

    Several doping agents, such as anabolic androgenic steroids (AAS) and peptide hormones like insulin-like growth factor-I (IGF-I), are employed without considering the potential deleterious effects that they can cause. In addition, androgens are used in postmenopausal women as replacement therapy. However, there are no clear guidelines regarding the optimal therapeutic doses of androgens or long-term safety data. In this study we aimed to determine if two commonly used AAS, nandrolone and stanozolol, alone or in combination with IGF-I, could activate signaling involved in breast cancer cell proliferation. Using a human breast cancer cell line, MCF-7, as an experimental model we found that both nandrolone and stanozolol caused a dose-dependent induction of aromatase expression and, consequently, estradiol production. Moreover, when nandrolone and stanozolol were combined with IGF-I, higher induction in aromatase expression was observed. This increase involved phosphatidylinositol 3-kinase (PI3K)/AKT and phospholipase C (PLC)/protein kinase C (PKC), which are part of IGF-I transductional pathways. Specifically, both AAS were able to activate membrane rapid signaling involving IGF-I receptor, extracellular regulated protein kinases 1/2 (ERK1/2) and AKT, after binding to estrogen receptor (ER), as confirmed by the ability of the ER antagonist ICI182, 780 to block such activation. The estrogenic activity of nandrolone and stanozolol was further confirmed by their capacity to induce the expression of the ER-regulated gene, CCND1 encoding for the cell cycle regulator cyclin D1, which represents a key protein for the control of breast cancer cell proliferation. In fact, when nandrolone and stanozolol were combined with IGF-I, they increased cell proliferation to levels higher than those elicited by the single factors. Taken together these data clearly indicate that the use of high doses of AAS, as occurs in doping practice, may increase the risk of breast cancer. This

  18. SET protein overexpression contributes to paclitaxel resistance in MCF-7/S cells through PI3K/Akt pathway.

    PubMed

    Zhang, Weipeng; Zheng, Xiaowei; Meng, Ti; You, Haisheng; Dong, Yalin; Xing, Jianfeng; Chen, Siying

    2017-03-01

    Patient SE translation (SET) is a carcinogen in facilitating cellular growth and proliferation, and promoting tumorigenesis and metastasis. The present study was to investigate the resistance mechanisms associated with SET in paclitaxel-induced human breast cancer cells. The different expressions of SET, ATP-binding cassette (ABC) transporters and PI3K/Akt pathway between paclitaxel sensitive MCF-7/S and paclitaxel resistant MCF-7/PTX cells were identified using western blotting. We adopted plasmid transfection to upregulate SET in MCF-7/S cells and a novel SET antagonist COG112 to decrease SET in MCF-7/PTX cells. Subsequently, cell viability to paclitaxel was assessed by MTT assay and cell apoptosis was analyzed by flow cytometry. We found that levels of SET, ABC transporters and PI3K/Akt pathway were elevated in MCF-7/PTX. Upregulation of SET in MCF-7/S cells expressed resistant to paclitaxel and decreased cell apoptosis. Moreover, overexpression of SET promoted the mRNA and protein level of ABC transporters and PI3K/Akt signal pathway in MCF-7/S cells. Conversely, decreased level of SET by COG112 not only significantly sensitized MCF-7/PTX cells to paclitaxel, but also enhanced paclitaxel-induced cell apoptosis. Additionally, the levels of the ABC transporters and PI3K/Akt signal pathway were also reduced in the COG112-treated MCF-7/PTX cells. The above results demonstrated that SET was associated with paclitaxel resistance in MCF-7/PTX cells.

  19. Exopolysaccharide from Trichoderma pseudokoningii induces the apoptosis of MCF-7 cells through an intrinsic mitochondrial pathway.

    PubMed

    Wang, Guodong; Liu, Chunyan; Liu, Jun; Liu, Bo; Li, Ping; Qin, Guozheng; Xu, Yanghui; Chen, Ke; Liu, Huixia; Chen, Kaoshan

    2016-01-20

    In this study, we reported the anticancer efficacy of exopolysaccharide (EPS) derived from Trichoderma pseudokoningii, on human breast cancer MCF-7 cells. Our results showed that EPS inhibited the proliferation of MCF-7 cells and induced lactic dehydrogenase release by inducing apoptosis and cell arrest at S phase. Further study revealed that EPS-induced apoptosis of MCF-7 cells was associated with alteration of nuclear morphology, disruption of mitochondrial membrane potential and accumulation of intracellular reactive oxygen species. Sequentially, EPS increased the activation of caspase-9 and caspase-3 in a dose-dependent manner; however, caspase-8 remained intact. Western blot analysis revealed that EPS increased the ratio of Bax/Bcl-2 and promoted the release of cytochrome c into the cytoplasm. Taken together, these findings provided evidence that EPS induced the apoptosis of MCF-7 cells through an intrinsic mitochondrial apoptotic pathway and that EPS may therefore be considered as an effective adjuvant agent against human breast cancer.

  20. The E-screen assay: a comparison of different MCF7 cell stocks.

    PubMed Central

    Villalobos, M; Olea, N; Brotons, J A; Olea-Serrano, M F; Ruiz de Almodovar, J M; Pedraza, V

    1995-01-01

    MCF7 human breast cancer cells have been studied extensively as a model for hormonal effects on breast cancer cell growth and specific protein synthesis. Because the proliferative effect of natural estrogen is considered the hallmark of estrogen action, it was proposed that this property be used to determine whether a substance is an estrogen. The E-screen assay, developed for this purpose, is based on the ability of MCF7 cells to proliferate in the presence of estrogens. The aim of our study was to characterize the response of four MCF7 cell stocks (BUS, ATCC, BB, and BB104) and determine which of them performed best in the E-screen test. The four stocks assayed were distinguishable by their biological behavior. In the absence of estrogen, MCF7 BUS cells stopped proliferating and accumulated in the G0/G1 phase of the cell cycle; estrogen receptors increased, progesterone receptors decreased, and small amounts of pS2 protein were secreted. Of all the MCF7 stocks tested, MCF7 BUS cells showed the highest proliferative response to estradiol-17 beta: cell yields increased up to sixfold over those of nontreated cells in a 144-hr period. The differences between estrogen-supplemented and nonsupplemented MCF7 BUS cells were due mostly to G0/G1 proliferative arrest mediated by charcoal dextran-stripped serum. MCF7 BUS cell stocks and others showing a similar proliferative pattern should be chosen for use in the E-screen test, or whenever a proliferative effect of estrogen is to be demonstrated. Images Figure 1. A Figure 1. B Figure 1. C Figure 1. D Figure 2. A Figure 2. B Figure 2. C Figure 2. D Figure 3. A Figure 3. B Figure 4. A Figure 4. B Figure 5. A Figure 5. B Figure 5. C Figure 5. D PMID:7498097

  1. Determination of the estrogenic activity of wild phytoestrogen-rich Pueraria mirifica by MCF-7 proliferation assay.

    PubMed

    Cherdshewasart, Wichai; Traisup, Virasinee; Picha, Porntipa

    2008-02-01

    The aim of this study was to evaluate the estrogenic activity of tuberous samples of wild, phytoestrogen-rich Pueraria mirifica collected from 28 out of 76 provinces of Thailand by MCF-7 proliferation assay. The plant extracts were administered to MCF-7, ER alpha positive human mammary adenocarcinoma cell cultures, for 3 days at dosages of 0.1, 1, 10, 100 and 1,000 microg/ml and were compared with 17 beta-estradiol at concentrations of 10(-12)-10(-6) M. The mean P. mirifica population at 1 mug/ml exhibited significant proliferation. Two plant samples exhibited levels of proliferation in MCF-7 that were similar to 17beta-estradiol. The mean P. mirifica populations at 100 and 1,000 microg/ml exhibited significant cytotoxicity in MCF-7. Analysis of the estrogenic activity of puerarin, representative of major isoflavonoids in P. mirifica tubers, revealed proliferation in MCF-7 only at the highest dose (10(-6) M) that was 10(2)-10(5) times less active than 17 beta-estradiol. Puerarin and 17 beta-estradiol at concentration of 10(-12)-10(-6) M exhibited no cytotoxicity in MCF-7.

  2. Effect of recombinant human erythropoietin and doxorubicin in combination on the proliferation of MCF-7 and MDA-MB231 breast cancer cells.

    PubMed

    Radwan, Esam M; Abdullah, Rasedee; Al-Qubaisi, Mothanna Sadiq; El Zowalaty, Mohamed E; Naadja, Seïf-Eddine; Alitheen, Noorjahan B; Omar, Abdul-Rahman

    2016-05-01

    Patients with cancer often exhibit signs of anemia as the result of the disease. Thus, cancer chemotherapies often include erythropoietin (EPO) in the regime to improve the survival rate of these patients. The aim of the present study was to determine the effect of EPO on doxorubicin-treated breast cancer cells. The cytotoxicity of doxorubicin alone or in combination with EPO against the MCF-7 and MDA-MB‑231 human breast cancer cells were determined using an MTT cell viability assay, neutral red (NR) uptake assay and lactate dehydrogenase (LDH) assay. The estimated half maximal inhibitory concentration values for doxorubicin and the combination of doxorubicin with EPO were between 0.140 and 0.260 µg/ml for all cells treated for 72 h. Treatment with doxorubicin in combination with EPO led to no notable difference in cytotoxicity, compared with treatment with doxorubicin alone. The antiproliferative effect of doxorubicin at a concentration of 1 µg/ml on the MDA‑MB‑231 cells was demonstrated by the decrease in viable cells from 3.6x10(5) at 24 h to 2.1x10(5) at 72 h of treatment. In order to confirm apoptosis in the doxorubicin-treated cells, the activities of caspases-3/7 and ‑9 were determined using a TBE assay. The results indicated that the activities of caspases-3/7 and ‑9 were significantly elevated in the doxorubicin-treated MDA-MB-231 cells by 571 and 645%, respectively, and in the MCF 7 cells by 471 and 345%, respectively, compared with the control cells. EPO did not modify the effect of doxorubicin on these cell lines. The results of the present study suggested that EPO was safe for use in combination with doxorubicin in the treatment of patients with breast cancer and concurrent anemia.

  3. Growth suppression of MCF-7 cancer cell-derived xenografts in nude mice by caveolin-1

    SciTech Connect

    Wu Ping; Wang Xiaohui; Li Fei; Qi Baoju; Zhu Hua; Liu Shuang; Cui Yeqing; Chen Jianwen

    2008-11-07

    Caveolin-1 is an essential structural constituent of caveolae membrane domains that has been implicated in mitogenic signaling and oncogenesis. However, the exact functional role of caveolin-1 still remains controversial. In this report, utilizing MCF-7 human breast adenocarcinoma cells stably transfected with caveolin-1 (MCF-7/cav-1 cells), we demonstrate that caveolin-1 expression dramatically inhibits invasion and migration of these cells. Importantly, in vivo experiments employing xenograft tumor models demonstrated that expression of caveolin-1 results in significant growth inhibition of breast tumors. Moreover, a dramatic delay in tumor progression was observed in MCF-7/cav-1 cells as compared with MCF-7 cells. Histological analysis of tumor sections demonstrated a marked decrease in the percentage of proliferating tumor cells (Ki-67 assay) along with an increase in apoptotic tumor cells (TUNEL assay) in MCF-7/cav-1-treated animals. Our current findings provide for the first time in vivo evidence that caveolin-1 can indeed function as a tumor suppressor in human breast adenocarcinoma derived from MCF-7 cells rather than as a tumor promoter.

  4. Knockdown of dual specificity phosphatase 4 enhances the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin

    SciTech Connect

    Liu, Yu; Du, Feiya; Chen, Wei; Yao, Minya; Lv, Kezhen; Fu, Peifen

    2013-12-10

    Background: Breast cancer is the major cause of cancer-related deaths in females world-wide. Doxorubicin-based therapy has limited efficacy in breast cancer due to drug resistance, which has been shown to be associated with the epithelial-to-mesenchymal transition (EMT). However, the molecular mechanisms linking the EMT and drug resistance in breast cancer cells remain unclear. Dual specificity phosphatase 4 (DUSP4), a member of the dual specificity phosphatase family, is associated with cellular proliferation and differentiation; however, its role in breast cancer progression is controversial. Methods: We used cell viability assays, Western blotting and immunofluorescent staining, combined with siRNA interference, to evaluate chemoresistance and the EMT in MCF-7 and adriamycin-resistant MCF-7/ADR breast cancer cells, and investigate the underlying mechanisms. Results: Knockdown of DUSP4 significantly increased the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin, and MCF-7/ADR cells which expressed high levels of DUSP4 had a mesenchymal phenotype. Furthermore, knockdown of DUSP4 reversed the EMT in MCF-7/ADR cells, as demonstrated by upregulation of epithelial biomarkers and downregulation of mesenchymal biomarkers, and also increased the chemosensitivity of MCF-7/ADR cells to doxorubicin. Conclusions: DUSP4 might represent a potential drug target for inhibiting drug resistance and regulating the process of the EMT during the treatment of breast cancer. - Highlights: • We used different technologies to prove our conclusion. • DUSP4 knockdown increased doxorubicin chemosensitivity in breast cancer cells. • DUSP4 is a potential target for combating drug resistance in breast cancer. • DUSP4 is a potential target for regulating the EMT in breast cancer.

  5. A comparison of the effects of tributyltin chloride and triphenyltin chloride on cell proliferation, proapoptotic p53, Bax, and antiapoptotic Bcl-2 protein levels in human breast cancer MCF-7 cell line.

    PubMed

    Fickova, Maria; Macho, Ladislav; Brtko, Julius

    2015-06-01

    In recent years it was disclosed, that numerous organotin(IV) derivatives have remarkable cytotoxicity against several types of cancer cells. The property to inhibit cell growth makes these compounds promising for antitumor therapy, as the clinical effectiveness of cisplatin is limited by drug resistance and significant side effects. Tributyltin and triphenyltin are known as endocrine disruptors. Moreover, the compounds exert their toxicity in mammals predominantly through nuclear receptor signaling. Here we present the effects of tributyltin chloride (TBT-Cl) and triphenyltin chloride (TPT-Cl) on cell proliferation, expression of proapoptotic p53, Bax, and antiapoptotic Bcl-2 proteins in human breast cancer MCF-7 cell line. Dose and time dependent (24, 48 and 72 h) cell expositions have demonstrated TBT-Cl as more effective in inhibiting MCF-7 cell proliferation than TPT-Cl. Short time treatment with TBT-Cl displayed marked stimulation of p53 protein expression when compared to TPT-Cl. Both organotin compounds displayed similar mild enhancement of Bax protein expression. The 24h exposition of TPT-Cl induced substantial diminution of Bcl-2 protein expression in comparison with both, untreated cells and TBT-Cl treated cells. Our observations indicate that TBT-Cl and TPT-Cl have different antiproliferative potency and distinct impact on expression of apoptosis marker proteins.

  6. Bioactivity of mango flesh and peel extracts on peroxisome proliferator-activated receptor γ [PPARγ] activation and MCF-7 cell proliferation: fraction and fruit variability.

    PubMed

    Wilkinson, Ashley S; Flanagan, Bernadine M; Pierson, Jean-Thomas; Hewavitharana, Amitha K; Dietzgen, Ralf G; Shaw, P Nicholas; Roberts-Thomson, Sarah J; Monteith, Gregory R; Gidley, Michael J

    2011-01-01

    Mangos are a source of bioactive compounds with potential health promoting activity. Biological activities associated with mango fractions were assessed in cell-based assays to develop effective extraction and fractionation methodologies and to define sources of variability. Two techniques were developed for extraction and fractionation of mango fruit peel and flesh. Liquid chromatography-mass spectrometry (LC-MS) was used to assess compositional differences between mango fractions in flesh extracts. Many of the extracts were effective in inhibiting the proliferation of human breast cancer cells in vitro. All fractions showed bioactivity in PPAR activation assays, but quantitative responses showed marked fruit-to-fruit variability, highlighting the need to bulk fruit prior to extraction for activity-guided fractionation of bioactive components. This study also suggests that combinations of diverse molecular components may be responsible for cell-level bioactivities from mango fractions, and that purification and activity profiling of individual components may be difficult to relate to whole fruit effects. Practical Application: Although the health benefits of fruits are strongly indicated from studies of diet and disease, it is not known what role individual fruit types can play, particularly for tropical fruits. This study shows that there is a diversity of potentially beneficial bioactivities within the flesh and peel of mango fruit, although fruit-to-fruit variation can be large. The results add to the evidence that the food approach of eating all components of fruits is likely to be more beneficial to health than consuming refined extracts, as the purification process would inevitably remove components with beneficial bioactivities.

  7. Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by oridonin nanosuspension.

    PubMed

    Feng, Fei-Fei; Zhang, Dian-Rui; Tian, Ke-Li; Lou, Hai-Yan; Qi, Xiao-Li; Wang, Yan-Cai; Duan, Cun-Xian; Jia, Le-Jiao; Wang, Fei-Hu; Liu, Yue; Zhang, Qiang

    2011-05-01

    The mechanism for anti-tumor activity of oridonin (ORI) nanosuspension, prepared by the high pressure homogenization method, was studied using MCF-7 human breast carcinoma cells in vitro. MTT assay, observation of morphologic changes, flow cytometric analysis, and western blot analysis indicated that ORI nanosuspension could significantly intensify the in vitro anti-tumor activity to MCF-7 cells, as compared with ORI solution. Furthermore, ORI nanosuspension induced G₂/M stage proliferation arrest and apoptosis in MCF-7 cells depending on its concentration. In addition, western blot analysis indicated that the pro-caspase-3 protein was not cleaved into the activated form and the expression of anti-apoptotic Bcl-2 protein decreased, on the contrary, the expression of pro-apoptotic Bax protein increased in a dose-dependent manner in ORI nanosuspension-treated cells. These observations indicated that the anti-tumor activity of ORI nanosuspension was intensified by cell-cycle arrest and apoptosis induction.

  8. Chemosensitivity of MCF-7 cells to eugenol: release of cytochrome-c and lactate dehydrogenase.

    PubMed

    Al Wafai, Rana; El-Rabih, Warde; Katerji, Meghri; Safi, Remi; El Sabban, Marwan; El-Rifai, Omar; Usta, Julnar

    2017-03-08

    Phytochemicals have been extensively researched for their potential anticancer effects. In previous study, direct exposure of rat liver mitochondria to eugenol main ingredient of clove, uncoupled mitochondria and increased F0F1ATPase activity. In the present study, we further investigated the effects of eugenol on MCF-7 cells in culture. Eugenol demonstrated: a dose-dependent decrease in viability (MTT assay), and proliferation (real time cell analysis) of MCF-7 cells, (EC50: 0.9 mM); an increase in reactive oxygen species; a decrease in ATP level and mitochondrial membrane potential (MitoPT JC-1 assay); and a release of cytochrome-c and lactate dehydrogenase (Cytotoxicity Detection Kit (PLUS)) into culture media at eugenol concentration >EC50. Pretreatment with the antioxidants Trolox and N-acetyl cysteine partially restored cell viability and decreased ROS, with Trolox being more potent. Expression levels of both anti- and pro-apoptotic markers (Bcl-2 and Bax, respectively) decreased with increasing eugenol concentration, with no variation in their relative ratios. Eugenol-treated MCF-7 cells overexpressing Bcl-2 exhibited results similar to those of MCF-7. Our findings indicate that eugenol toxicity is non-apoptotic Bcl-2 independent, affecting mitochondrial function and plasma membrane integrity with no effect on migration or invasion. We report here the chemo-sensitivity of MCF-7 cells to eugenol, a phytochemical with anticancer potential.

  9. Chemosensitivity of MCF-7 cells to eugenol: release of cytochrome-c and lactate dehydrogenase

    PubMed Central

    Al Wafai, Rana; El-Rabih, Warde; Katerji, Meghri; Safi, Remi; El Sabban, Marwan; El-Rifai, Omar; Usta, Julnar

    2017-01-01

    Phytochemicals have been extensively researched for their potential anticancer effects. In previous study, direct exposure of rat liver mitochondria to eugenol main ingredient of clove, uncoupled mitochondria and increased F0F1ATPase activity. In the present study, we further investigated the effects of eugenol on MCF-7 cells in culture. Eugenol demonstrated: a dose-dependent decrease in viability (MTT assay), and proliferation (real time cell analysis) of MCF-7 cells, (EC50: 0.9 mM); an increase in reactive oxygen species; a decrease in ATP level and mitochondrial membrane potential (MitoPT JC-1 assay); and a release of cytochrome-c and lactate dehydrogenase (Cytotoxicity Detection Kit PLUS) into culture media at eugenol concentration >EC50. Pretreatment with the antioxidants Trolox and N-acetyl cysteine partially restored cell viability and decreased ROS, with Trolox being more potent. Expression levels of both anti- and pro-apoptotic markers (Bcl-2 and Bax, respectively) decreased with increasing eugenol concentration, with no variation in their relative ratios. Eugenol-treated MCF-7 cells overexpressing Bcl-2 exhibited results similar to those of MCF-7. Our findings indicate that eugenol toxicity is non-apoptotic Bcl-2 independent, affecting mitochondrial function and plasma membrane integrity with no effect on migration or invasion. We report here the chemo-sensitivity of MCF-7 cells to eugenol, a phytochemical with anticancer potential. PMID:28272477

  10. Econazole Nitrate Induces Apoptosis in MCF-7 Cells via Mitochondrial and Caspase Pathways

    PubMed Central

    Sun, Juan; Yu, Chun-Hui; Zhao, Xue-Ling; Wang, Yang; Jiang, Shou-Gang; Gong, Xian-Feng

    2014-01-01

    Econazole nitrate (EN), a synthetic compound, is now in use as a routine antifungal drug. EN was shown to have antitumor effect, the tumor cell killing mechanisms, however, remain unclear. In this research, the apoptosis-inducing effect of EN on MCF-7 cells was investigated. The results showed that EN inhibited the proliferation of MCF-7 cells in a time- and dose-dependent manner by MTT method and colony forming assay. MCF-7 cells treated with EN showed typical characteristics of apoptosis including the morphological changes and DNA fragmentation. Meanwhile, the loss of mitochondrial membrane potential was showed by flow cytometry. In addition, western blot analysis showed that EN resulted in the decrease expression of procaspase-3, procaspase-9 and bcl-2. In conclusion, these findings suggest that EN may be an effective way for treating human breast cancer. The anti-tumor mechanisms of EN might involve mitochondrial and caspase pathways. PMID:25587322

  11. Turkish propolis supresses MCF-7 cell death induced by homocysteine.

    PubMed

    Tartik, Musa; Darendelioglu, Ekrem; Aykutoglu, Gurkan; Baydas, Giyasettin

    2016-08-01

    Elevated plasma homocysteine (Hcy) level is a most important risk factor for various vascular diseases including coronary, cerebral and peripheral arterial and venous thrombosis. Propolis is produced by honeybee from various oils, pollens and wax materials. Therefore, it has various biological properties including antioxidant, antitumor and antimicrobial activities. This study investigated the effects of propolis and Hcy on apoptosis in cancer cells. According to our findings, Hcy induced apoptosis in human breast adenocarcinoma (MCF-7) cells by regulating numerous genes and proteins involved in the apoptotic signal transduction pathway. In contrast, treatment with propolis inhibited caspase- 3 and -9 induced by Hcy in MCF-7 cells. It can be concluded that Hcy may augment the activity of anticancer agents that induce excessive reactive oxygen species (ROS) generation and apoptosis in their target cells. In contrast to the previous studies herein we found that propolis in low doses protected cancer cells inhibiting cellular apoptosis mediated by intracellular ROS-dependent mitochondrial pathway.

  12. Downregulation of SOK1 promotes the migration of MCF-7 cells

    SciTech Connect

    Chen, Xu-Dong; Cho, Chien-Yu

    2011-04-08

    Highlights: {yields} SOK1 is a member of GCK-III subfamily. It is activated by oxidative stress or chemical anoxia. {yields} Barr's group have found that autophosphorylation of SOK1 is triggered by binding to the Golgi matrix protein GM130 and made the cells migration through dimeric adaptor protein 14-3-3. {yields} But what we found is that downregulation of SOK1 promotes cell migration and leads to the upregulation of GM130 and Tyr861 of FAK in MCF-7 cells. -- Abstract: SOK1 is a member of the germinal center kinase (GCK-III) subfamily but little is known about it, particularly with respect to its role in signal transduction pathways relative to tumor metastasis. By stably transfecting SOK1 siRNA into the MCF-7 breast cancer cell line we found that SOK1 promotes the migration of MCF-7 cells, as determined using wound-healing and Boyden chamber assays. However, cell proliferation assays revealed that silencing SOK1 had no effect on cell growth relative to the normal cells. Silencing SOK1 also had an effect on the expression and phosphorylation status of a number of proteins in MCF-7 cells, including FAK and GM130, whereby a decrease in SOK1 led to an increase in the expression of these proteins.

  13. Dioscin strengthens the efficiency of adriamycin in MCF-7 and MCF-7/ADR cells through autophagy induction: More than just down-regulation of MDR1

    PubMed Central

    Wang, Changyuan; Huo, Xiaokui; Wang, Lijuan; Meng, Qiang; Liu, Zhihao; Liu, Qi; Sun, Huijun; Sun, Pengyuan; Peng, Jinyong; Liu, Kexin

    2016-01-01

    The purpose of present study was to investigate the effect of dioscin on activity of adriamycin (ADR) in ADR-sensitive (MCF-7) and ADR-resistant (MCF-7/ADR) human breast cancer cells and to clarify the molecular mechanisms involved. Antiproliferation effect of ADR was enhanced by dioscin in MCF-7 and MCF-7/ADR cells. Dioscin significantly inhibited MDR1 mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activity in MCF-7/ADR cells. Additionally, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Moreover, dioscin induced the formation of vacuoles in the cytoplasm and protein level of LC3-II in MCF-7 and MCF-7/ADR cells. Autophagy inhibitor 3-MA abolished the effect of dioscin on ADR cytotoxicity. Dioscin inhibited phosphorylation of PI3K and Akt, resulting in upregulation of LC3-II expression. In conclusion, dioscin increased ADR chemosensitivity by down-regulating MDR1 expression through NF-κB signaling inhibition in MCF-7/ADR cells. Autophagy was induced by dioscin to ameliorate the cytotoxicity of ADR via inhibition of the PI3K/AKT pathways in MCF-7 and MCF-7/ADR cells. These findings provide evidence in support of further investigation into the clinical application of dioscin as a chemotherapy adjuvant. PMID:27329817

  14. Activation of rapid signaling pathways and the subsequent transcriptional regulation for the proliferation of breast cancer MCF-7 cells by the treatment with an extract of Glycyrrhiza glabra root.

    PubMed

    Dong, Sijun; Inoue, Akio; Zhu, Yun; Tanji, Masao; Kiyama, Ryoiti

    2007-12-01

    Glycyrrhiza glabra root is one of the common traditional Chinese medicines and used as flavoring and sweetening agents for tobaccos, chewing gums, candies, toothpaste and beverages. While glycyrrhizin is one of the main components in the extract of G. glabra root and has been characterized, the other components have not been well characterized. The mechanism of growth activation of breast cancer MCF-7 cells, including the activation of Erk1/2 and Akt, and the transcriptional regulation of estrogen-responsive genes, was examined by means of sulforhodamine B, luciferase reporter gene, real-time RT-PCR and Western blotting assays after the induction of the cells with the extract of G. glabra root. The extract has similar activity to that induced by 17beta-estradiol (E(2)), although glycyrrhizin did not show such an activity. Moreover, the estrogen receptor alpha-dependent neurite outgrowth induced by the extract was similar to that by E(2), whereas glycyrrhizin had no effect. Furthermore, the expression profile examined by cDNA microarray assay using a set of 120 estrogen-responsive genes, which were related to proliferation, transcription, transport, enzymes and signaling, showed a statistically significant correlation (R=0.47, P<0.0001) between the profiles for E(2) and the extract. However, the expression profile for glycyrrhizin was different from that of the extract and E(2). The results indicate that rapid signaling pathways, including Erk1/2 and Akt, and the subsequent transcriptional regulation are involved in the proliferation of MCF-7 cells induced by the extract of G. glabra root. Furthermore, the extract had estrogenic activity and a distinguishable profile of gene expression, suggesting the presence of potentially useful components other than glycyrrhizin in G. glabra root for hormone and anti-cancer therapies.

  15. Milk fat conjugated linoleic acid (CLA) inhibits growth of human mammary MCF-7 cancer cells.

    PubMed

    O'Shea, M; Devery, R; Lawless, F; Murphy, J; Stanton, C

    The relationship between growth and the antioxidant enzyme defence system in human MCF-7 (breast) cancer cells treated with bovine milk fat enriched with conjugated linoleic acid (CLA) was studied. Milk enriched in CLA was obtained from cows on pasture supplemented with full fat rapeseeds and full fat soyabeans (1). Cell number decreased up to 90% (p < 0.05) and lipid peroxidation increased 15-fold (p < 0.05) following incubation of MCF-7 cells for 8 days with increasing levels of milk fat yielding CLA concentrations between 16.9 and 22.6 ppm. Growth suppression and prooxidant effects of milk fat CLA were independent of the variable composition of the milk fat samples, suggesting that CLA was the active ingredient in milk fat responsible for the cytotoxic effect. Mixtures containing isomers of CLA (c9, t11-, t10, c12-, c11, t13- and minor amounts of other isomers) and linoleic acid (LA) at similar concentrations to the milk fat samples were as effective at inhibiting growth and stimulating peroxidation of MCF-7 cells as the milk fatty acids. Incubation of the cells with the c9, t11 CLA isomer (20 ppm) or the mixture of CLA isomers (20 ppm) for 8 days resulted in a 60% decrease (p < 0.05) in viability compared with untreated controls and was significantly (p < 0.05) more effective than incubation with the t10, c12 CLA isomer (20 ppm), which caused only a 15% decrease in cell numbers under similar conditions. A 25% increase (p < 0.05) in cell proliferation occurred when LA (20 ppm) alone was incubated with MCF-7 cells for 8 days. 14C-CLA was preferentially incorporated into the phospholipid fraction of the MCF-7 cell lipids in a dose-dependent manner and CLA accumulated in cell membranes more efficiently when the cells were incubated in the presence of milk fat than the c9, t11 synthetic CLA isomer. Superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activities were induced in MCF-7 cells exposed to milk fat (containing 16.9-22.6 ppm CLA) over 8

  16. Nitrophenols isolated from diesel exhaust particles promote the growth of MCF-7 breast adenocarcinoma cells

    SciTech Connect

    Furuta, Chie; Suzuki, Akira K.; Watanabe, Gen; Li, ChunMei; Taneda, Shinji; Taya, Kazuyoshi

    2008-08-01

    Diesel exhaust particles (DEPs) cause many adverse health problems, and reports indicate increased risk of breast cancer in men and women through exposure to gasoline and vehicle exhaust. However, DEPs include vast numbers of compounds, and the specific compound(s) responsible for these actions are not clear. We recently isolated two nitrophenols from DEPs-3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC) and 4-nitro-3-phenylphenol (PNMPP)-and showed that they had estrogenic and anti-androgenic activities. Here, we tried to clarify the involvement of these two nitrophenols in promoting the growth of the MCF-7 breast cancer cell line. First, comet assay was used to detect the genotoxicity of PNMC and PNMPP in a CHO cell line. At all doses tested, PNMC and PNMPP showed negative genotoxicity, indicating that they had no tumor initiating activity. Next, the estrogen-responsive breast cancer cell line MCF-7 was used to assess cell proliferation. Proliferation of MCF-7 cells was stimulated by PNMC, PNMPP, and estradiol-17{beta} and the anti-estrogens 4-hydroxytamoxifen and ICI 182,780 inhibited the proliferation. To further investigate transcriptional activity through the estrogen receptor, MCF-7 cells were transfected with a receptor gene that allowed expression of luciferase enzyme under the control of the estrogen regulatory element. PNMC and PNMPP induced luciferase activity in a dose-dependent manner at submicromolar concentrations. ICI 182,780 inhibited the luciferase activity induced by PNMC and PNMPP. These results clearly indicate that PNMC and PNMPP do not show genotoxicity but act as tumor promoters in an estrogen receptor {alpha}-predominant breast cancer cell line.

  17. Meta-analysis of estrogen response in MCF-7 distinguishes early target genes involved in signaling and cell proliferation from later target genes involved in cell cycle and DNA repair

    PubMed Central

    2011-01-01

    Background Many studies have been published outlining the global effects of 17β-estradiol (E2) on gene expression in human epithelial breast cancer derived MCF-7 cells. These studies show large variation in results, reporting between ~100 and ~1500 genes regulated by E2, with poor overlap. Results We performed a meta-analysis of these expression studies, using the Rank product method to obtain a more accurate and stable list of the differentially expressed genes, and of pathways regulated by E2. We analyzed 9 time-series data sets, concentrating on response at 3-4 hrs (early) and at 24 hrs (late). We found >1000 statistically significant probe sets after correction for multiple testing at 3-4 hrs, and >2000 significant probe sets at 24 hrs. Differentially expressed genes were examined by pathway analysis. This revealed 15 early response pathways, mostly related to cell signaling and proliferation, and 20 late response pathways, mostly related to breast cancer, cell division, DNA repair and recombination. Conclusions Our results confirm that meta-analysis identified more differentially expressed genes than the individual studies, and that these genes act together in networks. These results provide new insight into E2 regulated mechanisms, especially in the context of breast cancer. PMID:21878096

  18. Leptin regulates energy metabolism in MCF-7 breast cancer cells.

    PubMed

    Blanquer-Rosselló, Maria del Mar; Oliver, Jordi; Sastre-Serra, Jorge; Valle, Adamo; Roca, Pilar

    2016-03-01

    Obesity is known to be a poorer prognosis factor for breast cancer in postmenopausal women. Among the diverse endocrine factors associated to obesity, leptin has received special attention since it promotes breast cancer cell growth and invasiveness, processes which force cells to adapt their metabolism to satisfy the increased demands of energy and biosynthetic intermediates. Taking this into account, our aim was to explore the effects of leptin in the metabolism of MCF-7 breast cancer cells. Polarographic analysis revealed that leptin increased oxygen consumption rate and cellular ATP levels were more dependent on mitochondrial oxidative metabolism in leptin-treated cells compared to the more glycolytic control cells. Experiments with selective inhibitors of glycolysis (2-DG), fatty acid oxidation (etomoxir) or aminoacid deprivation showed that ATP levels were more reliant on fatty acid oxidation. In agreement, levels of key proteins involved in lipid catabolism (FAT/CD36, CPT1, PPARα) and phosphorylation of the energy sensor AMPK were increased by leptin. Regarding glucose, cellular uptake was not affected by leptin, but lactate release was deeply repressed. Analysis of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH) and pyruvate carboxylase (PC) together with the pentose-phosphate pathway enzyme glucose-6 phosphate dehydrogenase (G6PDH) revealed that leptin favors the use of glucose for biosynthesis. These results point towards a role of leptin in metabolic reprogramming, consisting of an enhanced use of glucose for biosynthesis and lipids for energy production. This metabolic adaptations induced by leptin may provide benefits for MCF-7 growth and give support to the reverse Warburg effect described in breast cancer.

  19. Effect of vinca alkaloids on ERalpha levels and estradiol-induced responses in MCF-7 cells.

    PubMed

    Martínez-Campa, Carlos; Casado, Pedro; Rodríguez, René; Zuazua, Pedro; García-Pedrero, Juana M; Lazo, Pedro S; Ramos, Sofía

    2006-07-01

    Vinca alkaloids (VAs) such as Vincristine, Vinblastine and Vinorelbine are antineoplastic drugs that inhibit tubulin polymerisation into microtubules, induce mitotic G2/M arrest, activate c-Jun N-terminal kinase (JNK) and induce apoptosis. Although there are many studies evaluating the effect of VAs on breast cancer patients, until now little was known about how these compounds and estradiol signaling pathways might interfere. In this report, we show for the first time that VAs decreased ERalpha protein levels in the human breast cancer cell line MCF-7; VAs induced a parallel decrease in estrogen receptor mRNA. All the VAs tested inhibited estradiol (E2) mediated transactivation at ERE-driven promoters. E2 inhibited VAs-induced AP1 stimulation in MCF-7, but this inhibition was not observed when E2 is added 24 h in advance of VAs treatment. In contrast to the reported preventing effect over taxol-mediated apoptosis, E2 did not prevent VAs-induced cell death and interestingly, addition of E2 24 hours in advance of VAs treatment resulted in an increase of the number of cells undergoing apoptosis. Similar results were observed when E2 is replaced by other proliferation signals such as EGF. These results demonstrate that in the breast cancer cell-line MCF-7, E2-induced proliferation before VAs treatment enhances the apoptotical response to VAs which might have important implications in clinica.

  20. Surface enhanced Raman spectroscopy measurements of MCF7 cells adhesion in confined micro-environments

    NASA Astrophysics Data System (ADS)

    De Vitis, Stefania; Coluccio, Maria Laura; Gentile, Francesco; Malara, Natalia; Perozziello, Gerardo; Dattola, Elisabetta; Candeloro, Patrizio; Di Fabrizio, Enzo

    2016-01-01

    Undoubtedly cells can perceive the external environment, not only from a biochemical point of view with the related signalling pathways, but also from a physical and topographical perspective. In this sense controlled three dimensional micro-structures as well as patterns at the nano-scale can affect and guide the cell evolution and proliferation, due to the fact that the surrounding environment is no longer isotropic (like the flat surfaces of standard cell culturing) but possesses well defined symmetries and anisotropies. In this work regular arrays of silicon micro-pillars with hexagonal arrangement are used as culturing substrates for MCF-7 breast cancer cells. The characteristic size and spacing of the pillars are tens of microns, comparable with MCF-7 cell dimensions and then well suited to induce acceptable external stimuli. It is shown that these cells strongly modify their morphology for adapting themselves to the micro-structured landscape, by means of protrusions from the main body of the cell. Scanning electron microscopy along with both Raman micro-spectroscopy and surface enhanced Raman spectroscopy are used for topographical and biochemical studies of the new cell arrangement. We have revealed that single MCF-7 cells exploit their capability to produce invadopodia, usually generated to invade the neighboring tissue in metastatic activity, for spanning and growing across separate pillars.

  1. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells.

    PubMed

    Lempereur, Maëlle; Majewska, Claire; Brunquers, Amandine; Wongpramud, Sumalee; Valet, Bénédicte; Janssens, Philippe; Dillemans, Monique; Van Nedervelde, Laurence; Gallo, Dominique

    2016-01-01

    Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif.

  2. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells

    PubMed Central

    Lempereur, Maëlle; Majewska, Claire; Brunquers, Amandine; Wongpramud, Sumalee; Valet, Bénédicte; Janssens, Philippe; Dillemans, Monique; Van Nedervelde, Laurence; Gallo, Dominique

    2016-01-01

    Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif. PMID:27190515

  3. Salinomycin efficiency assessment in non-tumor (HB4a) and tumor (MCF-7) human breast cells.

    PubMed

    Niwa, Andressa Megumi; D Epiro, Gláucia Fernanda Rocha; Marques, Lilian Areal; Semprebon, Simone Cristine; Sartori, Daniele; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2016-06-01

    The search for anticancer drugs has led researchers to study salinomycin, an ionophore antibiotic that selectively destroys cancer stem cells. In this study, salinomycin was assessed in two human cell lines, a breast adenocarcinoma (MCF-7) and a non-tumor breast cell line (HB4a), to verify its selective action against tumor cells. Real-time assessment of cell proliferation showed that HB4a cells are more resistant to salinomycin than MCF-7 tumor cell line, and these data were confirmed in a cytotoxicity assay. The half maximal inhibitory concentration (IC50) values show the increased sensitivity of MCF-7 cells to salinomycin. In the comet assay, only MCF-7 cells showed the induction of DNA damage. Flow cytometric analysis showed that cell death by apoptosis/necrosis was only induced in the MCF-7 cells. The increased expression of GADD45A and CDKN1A genes was observed in all cell lines. Decreased expression of CCNA2 and CCNB1 genes occurred only in tumor cells, suggesting G2/M cell cycle arrest. Consequently, cell death was activated in tumor cells through strong inhibition of the antiapoptotic genes BCL-2, BCL-XL, and BIRC5 genes in MCF-7 cells. These data demonstrate the selectivity of salinomycin in killing human mammary tumor cells. The cell death observed only in MCF-7 tumor cells was confirmed by gene expression analysis, where there was downregulation of antiapoptotic genes. These data contribute to clarifying the mechanism of action of salinomycin as a promising antitumor drug and, for the first time, we observed the higher resistance of HB4a non-tumor breast cells to salinomycin.

  4. Apigenin induced MCF-7 cell apoptosis-associated reactive oxygen species.

    PubMed

    Bai, Haihua; Jin, Hua; Yang, Fen; Zhu, Haiyan; Cai, Jiye

    2014-01-01

    Apigenin is a flavonoid, which has been proved to possess effective anti-cancer bioactivities against variety of cell lines. However, little is known about its effect on the cell-surface and the interaction between cell-surface and the reacting drug. In this study, human breast cancer line (MCF-7) was selected to be as a cell model to investigate the effects of apigenin on cell growth, proliferation, apoptosis, cellular morphology, etc. MTT assay showed that the growth inhibition induced by apigenin was in a dose-dependent manner when treated with different concentrations of apigenin while had little cytotoxic effects on human normal cells (MCF-10A). Fluorescence-based flow cytometry was used to detect cellular apoptosis and ROS production. The results showed that 80 µM apigenin could effectively induce apoptosis and overproduction of ROS in MCF-7 cells. Here, atomic force microscopy (AFM) was utilized to detect the shapes and membrane structures of MCF-7 cells at cellular or subcellular level. The results showed that the control MCF-7 cells presented typical elongated-spindle shapes with abundant pseudopodia, while after treated with apigenin, the cells shrunk and became round, the pseudopodia diminished. Moreover, the images of ultrastructure indicated that the cell membrane was composed of nanoparticles of 49 nm, but with the treated concentrations of apigenin increasing, the sizes of membrane particles significantly increased to 400 nm. These results can improve our understanding of apigenin, which can be potentially developed as a new agent for treatment of cancers.

  5. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    SciTech Connect

    Tomblin, Justin K.; Salisbury, Travis B.

    2014-01-17

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR.

  6. Troglitazone enhances tamoxifen-induced growth inhibitory activity of MCF-7 cells

    SciTech Connect

    Yu, Hong-Nu; Noh, Eun-Mi; Lee, Young-Rae; Roh, Si-Gyun; Song, Eun-Kyung; Han, Myung-Kwan; Lee, Yong-Chul; Shim, In Kyong; Lee, Seung Jin; Jung, Sung Hoo; Kim, Jong-Suk Youn, Hyun Jo

    2008-12-05

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) ligands have been identified as a potential source of therapy for human cancers. However, PPAR{gamma} ligands have a limitation for breast cancer therapy, since estrogen receptor {alpha} (ER{sub {alpha}}) negatively interferes with PPAR{gamma} signaling in breast cancer cells. Here we show that ER{sub {alpha}} inhihits PPAR{gamma} transactivity and ER{sub {alpha}}-mediated inhibition of PPAR{gamma} transactivity is blocked by tamoxifen, an estrogen receptor blocker. The activation of ER{sub {alpha}} with 17-{beta}-estradiol blocked PPRE transactivity induced by troglitazone, a PPAR{gamma} ligand, indicating the resistance of ER{sub {alpha}}-positive breast cancer cells to troglitazone. Indeed, troglitazone inhibited the growth of ER{sub {alpha}}-negative MDA-MB-231 cells more than that of ER{sub {alpha}}-positive MCF-7 cells. Combination of troglitazone with tamoxifen led to a marked increase in growth inhibition of ER{sub {alpha}}-positive MCF-7 cells compared to either agent alone. Our data indicates that troglitazone enhances the growth inhibitory activity of tamoxifen in ER{sub {alpha}}-positive MCF-7 cells.

  7. Induction of apoptosis by a peptide from Porphyra yezoensis: regulation of the insulin-like growth factor I receptor signaling pathway in MCF-7 cells.

    PubMed

    Park, Su-Jin; Ryu, Jina; Kim, In-Hye; Choi, Youn-Hee; Nam, Taek-Jeong

    2014-09-01

    This study examined how PPY, a peptide from Porphyra yezoensis, regulates multiple cell growth-related signaling pathways in MCF-7 cells. This study determined that PPY induces cell cycle arrest and inhibits the IGF-IR signaling pathway. Cell proliferation studies revealed that PPY induced cell death in a dose-dependent manner. Expression levels of IGF-IR were decreased in MCF-7 cells by PPY in a dose‑dependent manner. These results indicate that inhibition of the IGF-IR pathway is also involved in PPY induced proliferation of MCF-7 cells. In addition, these data demonstrated that PPY induces cell cycle arrest and activates apoptosis.

  8. Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells.

    PubMed

    Huang, Hongzhou; Ding, Ying; Sun, Xiuzhi S; Nguyen, Thu A

    2013-01-01

    Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing.

  9. [Effects of magnetic gemcitabine stealth nano-liposomes on the characteristics of breast cancer cell line MCF-7].

    PubMed

    Tong, Qiang; Shu, Xiao-Gang; Lu, Xiao-Ming; Li, Wei-Yong; Tao, Kai-Xiong; Chen, Dao-Da; Wang, Guo-Bin

    2009-02-01

    The magnetic responsibility and antitumor effect of magnetic gemcitabine stealth nano-liposomes (MGSL) on breast cancer cell line MCF-7 in vitro and in vivo was evaluated. The magnetic response and targeting effect of MGSL in vivo were investigated. Morphological feature and ultrastructure changes of apoptosis of MCF-7 cells were observed. The effect of MGSL on proliferation inhibitory rate of MCF-7 cells was measured with MTT method. The FCM analysis was carried out to examine the cell cycle distribution and cell apoptotic rate. The antitumor effect on human breast cancer xenografts in nude mice was also studied. MGSL was able to converge at the targeting tissue under tridimensional magnetic field and the gemcitabine concentration around it increased, while the amount of gemcitabine in other organs decreased, such as in kidneys and heart. MCF-7 cell line was sensitive to MGSL and the cytotoxity was correlated with the loaded drug dose. The effect of MGSL on apoptosis of MCF-7 was obvious and the rate of apoptosis was 51.62%. The growth speed of tumor in the group of MGSL (+) significantly slowed down than that of other groups. MGSL prepared by reverse-phase evaporation method met with the demand of targeted delivery system, and it might be an effective antitumor agent.

  10. Metabolic Response to XD14 Treatment in Human Breast Cancer Cell Line MCF-7

    PubMed Central

    Pan, Daqiang; Kather, Michel; Willmann, Lucas; Schlimpert, Manuel; Bauer, Christoph; Lagies, Simon; Schmidtkunz, Karin; Eisenhardt, Steffen U.; Jung, Manfred; Günther, Stefan; Kammerer, Bernd

    2016-01-01

    XD14 is a 4-acyl pyrrole derivative, which was discovered by a high-throughput virtual screening experiment. XD14 inhibits bromodomain and extra-terminal domain (BET) proteins (BRD2, BRD3, BRD4 and BRDT) and consequently suppresses cell proliferation. In this study, metabolic profiling reveals the molecular effects in the human breast cancer cell line MCF-7 (Michigan Cancer Foundation-7) treated by XD14. A three-day time series experiment with two concentrations of XD14 was performed. Gas chromatography-mass spectrometry (GC-MS) was applied for untargeted profiling of treated and non-treated MCF-7 cells. The gained data sets were evaluated by several statistical methods: analysis of variance (ANOVA), clustering analysis, principle component analysis (PCA), and partial least squares discriminant analysis (PLS-DA). Cell proliferation was strongly inhibited by treatment with 50 µM XD14. Samples could be discriminated by time and XD14 concentration using PLS-DA. From the 117 identified metabolites, 67 were significantly altered after XD14 treatment. These metabolites include amino acids, fatty acids, Krebs cycle and glycolysis intermediates, as well as compounds of purine and pyrimidine metabolism. This massive intervention in energy metabolism and the lack of available nucleotides could explain the decreased proliferation rate of the cancer cells. PMID:27783056

  11. EXPRESSION OF INDUCIBLE HSP70 ENHANCES THE PROLIFERATION OF MCF-7 BREAST CANCER CELLS AND PROTECTS AGAINST THE CYTOTOXIC EFFECTS OF HYPERTHERMIA

    EPA Science Inventory

    Heat shock proteins (HSPs) are ubiquitous proteins that are induced following exposure to sub-lethal heat shock, are highly conserved during evolution and protect cells from damage through their function as molecular chaperones. Some cancers demonstrate elevated levels of Hsp70 ...

  12. The Hedgehog signalling pathway mediates drug response of MCF-7 mammosphere cells in breast cancer patients.

    PubMed

    He, Miao; Fu, Yingzi; Yan, Yuanyuan; Xiao, Qinghuan; Wu, Huizhe; Yao, Weifan; Zhao, Haishan; Zhao, Lin; Jiang, Qian; Yu, Zhaojin; Jin, Feng; Mi, Xiaoyi; Wang, Enhua; Cui, Zeshi; Fu, Liwu; Chen, Jianju; Wei, Minjie

    2015-11-01

    BCSCs (breast cancer stem cells) have been shown to be resistant to chemotherapy. However, the mechanisms underlying BCSC-mediated chemoresistance remain poorly understood. The Hh (Hedgehog) pathway is important in the stemness maintenance of CSCs. Nonetheless, it is unknown whether the Hh pathway is involved in BCSC-mediated chemoresistance. In the present study, we cultured breast cancer MCF-7 cells in suspension in serum-free medium to obtain BCSC-enriched MCF-7 MS (MCF-7 mammosphere) cells. We showed that MCF-7 MS cells are sensitive to salinomycin, but not paclitaxel, distinct from parent MCF-7 cells. The expression of the critical components of Hh pathway, i.e., PTCH (Patched), SMO (Smoothened), Gli1 and Gli2, was significantly up-regulated in MCF-7 MS cells; salinomycin, but not paclitaxel, treatment caused a remarkable decrease in expression of those genes in MCF-7 MS cells, but not in MCF-7 cells. Salinomycin, but not paclitaxel, increased apoptosis, decreased the migration capacity of MCF-7 MS cells, accompanied by a decreased expression of c-Myc, Bcl-2 and Snail, the target genes of the Hh pathway. The salinomycin-induced cytotoxic effect could be blocked by Shh (Sonic Hedgehog)-mediated Hh signalling activation. Inhibition of the Hh pathway by cyclopamine could sensitize MCF-7 MS cells to paclitaxel. In addition, salinomycin, but not paclitaxel, significantly reduced the tumour growth, accompanied by decreased expression of PTCH, SMO, Gli1 and Gli2 in xenograft tumours. Furthermore, the expression of SMO and Gli1 was positively correlated with the expression of CD44+ / CD24-, and the expression of SMO and Gli1 in CD44+ / CD24- tissues was associated with a significantly shorter OS (overall survival) and DFS (disease-free survival) in breast cancer patients receiving chemotherapy.

  13. RUNX3 gene promoter demethylation by 5-Aza-CdR induces apoptosis in breast cancer MCF-7 cell line.

    PubMed

    Kang, Hua-Feng; Dai, Zhi-Jun; Bai, He-Ping; Lu, Wang-Feng; Ma, Xiao-Bin; Bao, Xing; Lin, Shuai; Wang, Xi-Jing

    2013-01-01

    Runt-related transcription factor 3 (RUNX3) is a tumor suppressor gene, its inactivation due to hypermethylation related to carcinogenesis. The aim of this study was to investigate the effects of 5-aza-2'-deoxycytidine (5-Aza-CdR) on cell proliferation and apoptosis by demethylation of the promoter region and restoring the expression of RUNX3 in the breast cancer MCF-7 cell line. MCF-7 cells were cultured with different concentrations (0.4-102.4 μmol/L) of 5-Aza-CdR in vitro. MTT assay was used to determine the proliferation of MCF-7 cells. Flow cytometry and Hoechst staining were used for analyzing cell apoptosis. The methylation status and expression of RUNX3 in mRNA and protein levels were measured by methylation-specific polymerase chain reaction (PCR [MSP]), reverse transcription (RT)-PCR, and Western blot. It was shown that the RUNX3 gene downregulated and hypermethylated in MCF-7 cells. 5-Aza-CdR induced demethylation, upregulated the expression of RUNX3 on both mRNA and protein levels in cancer cells, and induced growth suppression and apoptosis in vitro in a dose- and time-dependent manner. The results demonstrate that RUNX3 downregulation in breast cancer is frequently due to hypermethylation, and that 5-Aza-CdR can inhibit cell proliferation and induce apoptosis by eliminating the methylation status of RUNX3 promoter and restoring its expression.

  14. THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN

    EPA Science Inventory

    THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN.
    Harland and Liburdy (1) reported that 1.2-uT, 60-Hz magnetic fields could significantly block the inhibitory action of pharmacological levels of tamoxifen (10-7 M) on the growth of MCF-7 human br...

  15. Effect of specific silencing of EMMPRIN on the growth and cell cycle distribution of MCF-7 breast cancer cells.

    PubMed

    Yang, X Q; Yang, J; Wang, R; Zhang, S; Tan, Q W; Lv, Q; Meng, W T; Mo, X M; Li, H J

    2015-12-02

    The extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is a member of the immunoglobulin family and shows increased expression in tumor cells. We examined the effect of RNAi-mediated EMMPRIN gene silencing induced by lentiviral on the growth and cycle distribution of MCF-7 breast cancer cells. Lentiviral expressing EMMPRIN-short hairpin RNA were packaged to infect MCF-7 cells. The inhibition efficiency of EMMPRIN was validated by real-time fluorescent quantitation polymerase chain reaction and western blotting. The effect of EMMPRIN on cell proliferation ability was detected using the MTT assay and clone formation experiments. Changes in cell cycle were detected by flow cytometry. EMMPRIN-short hairpin RNA-packaged lentiviral significantly down-regulated EMMPRIN mRNA and protein expression, significantly inhibited cell proliferation and in vitro tumorigenicity, and induced cell cycle abnormalities. Cells in the G0/G1 and G2/M phases were increased, while cells in the S phase were decreased after infection of MCF-7 cells for 3 days. The EMMPRIN gene facilitates breast cancer cell malignant proliferation by regulating cell cycle distribution and may be a molecular target for breast cancer gene therapy.

  16. Antiproliferatory Effects of Crab Shell Extract on Breast Cancer Cell Line (MCF7)

    PubMed Central

    Rezakhani, Leila; Rashidi, Zahra; Mirzapur, Pegah

    2014-01-01

    Purpose Breast cancer is the most common type of cancer in women. Despite various pharmacological developments, the identification of new therapies is still required for treating breast cancer. Crab is often recommended as a traditional medicine for cancer. This study aimed to determine the in vitro effect of a hydroalcoholic crab shell extract on a breast cancer cell line. Methods In this experimental study, MCF7 breast cancer cell line was used. Crab shell was powdered and a hydroalcoholic (70° ethanol) extract was prepared. Five concentrations (100, 200, 400, 800, and 1,000 µg/mL) were added to the cells for three periods, 24, 48, and 72 hours. The viability of the cells were evaluated using trypan blue and 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Cell apoptosis was determined using the terminal deoxynucleotidyl transferase dUTP nick end labeling method. Nitric oxide (NO) level was assessed using the Griess method. Data were analyzed using analysis of variance, and p<0.05 was considered significant. Results Cell viability decreased depending on dose and time, and was significantly different in the groups that were treated with 400, 800, and 1,000 µg/mL doses compared to that in the control group (p<0.001). Increasing the dose significantly increased apoptosis (p<0.001). NO secretion from MCF7 cells significantly decreased in response to different concentrations of the extract in a dose- and time-dependent manner (p<0.050). Conclusion The crab shell extract inhibited the proliferation of MCF7 cells by increasing apoptosis and decreasing NO production. PMID:25320619

  17. Long-Term Alteration of Reactive Oxygen Species Led to Multidrug Resistance in MCF-7 Cells

    PubMed Central

    Cen, Juan; Zhang, Li; Liu, Fangfang

    2016-01-01

    Reactive oxygen species (ROS) play an important role in multidrug resistance (MDR). This study aimed to investigate the effects of long-term ROS alteration on MDR in MCF-7 cells and to explore its underlying mechanism. Our study showed both long-term treatments of H2O2 and glutathione (GSH) led to MDR with suppressed iROS levels in MCF-7 cells. Moreover, the MDR cells induced by 0.1 μM H2O2 treatment for 20 weeks (MCF-7/ROS cells) had a higher viability and proliferative ability than the control MCF-7 cells. MCF-7/ROS cells also showed higher activity or content of intracellular antioxidants like glutathione peroxidase (GPx), GSH, superoxide dismutase (SOD), and catalase (CAT). Importantly, MCF-7/ROS cells were characterized by overexpression of MDR-related protein 1 (MRP1) and P-glycoprotein (P-gp), as well as their regulators NF-E2-related factor 2 (Nrf2), hypoxia-inducible factor 1 (HIF-1α), and the activation of PI3K/Akt pathway in upstream. Moreover, several typical MDR mediators, including glutathione S-transferase-π (GST-π) and c-Myc and Protein Kinase Cα (PKCα), were also found to be upregulated in MCF-7/ROS cells. Collectively, our results suggest that ROS may be critical in the generation of MDR, which may provide new insights into understanding of mechanisms of MDR. PMID:28058088

  18. Effects of Psoralen as an Anti-tumor Agent in Human Breast Cancer MCF-7/ADR Cells.

    PubMed

    Wang, Xiaohong; Cheng, Kai; Han, Yong; Zhang, Guoqiang; Dong, Jianli; Cui, Yuzhen; Yang, Zhenlin

    2016-05-01

    Psoralen is a major active component of Psoralea corylifolia. In the present study, we analyzed psoralen-induced changes in human breast cancer MCF-7/ADR cells and investigated the underlying mechanisms of the anticancer effect on MCF-7/ADR cells. We measured cell viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to evaluate the cytotoxicity and multidrug resistance (MDR) reversal activity of psoralen. The cell cycle distribution and apoptosis, accumulation and efflux of rhodamine123 (Rh123), and P-glycoprotein (P-gp) expression levels of MCF-7/ADR cells treated with psoralen were all detected by flow cytometry (FCM). We assessed P-gp ATPase activity by monitoring ATP consumption. We evaluated the activity of nuclear factor-kappaB (NF-κB) and the expression of E-cadherin, vimentin and α-smooth muscle actin (SMA) involved in regulating epithelial-mesenchymal transition (EMT). The results showed that psoralen inhibited the proliferation of MCF-7/ADR cells as shown by G0/G1 phase arrest rather than encouraging apoptosis. It was also observed that psoralen reversed MDR through inhibiting ATPase activity rather than reducing P-gp expression. Our results further showed that psoralen inhibited the migration abilities of MCF-7/ADR cells by repressing EMT possibly through inhibiting the activation of NF-κB. Our findings provided a systematic and detailed description of the anti-cancer effect of psoralen on MCF-7/ADR cells for the exploration of natural compounds as novel anticancer agents.

  19. Estrogenic activity of osthole and imperatorin in MCF-7 cells and their osteoblastic effects in Saos-2 cells.

    PubMed

    Jia, Min; Li, Yuan; Xin, Hai-Liang; Hou, Ting-Ting; Zhang, Nai-Dai; Xu, Hong-Tao; Zhang, Qiao-Yan; Qin, Lu-Ping

    2016-06-01

    There is an increasing interest in phytoestrogens due to their potential medical usage in hormone replacement therapy (HRT). The present study was designed to investigate the in vitro effects of estrogen-like activities of two widespread coumarins, osthole and imperatorin, using the MCF-7 cell proliferation assay and their alkaline phosphatase (ALP) activities in osteoblasts Saos-2 cells. The two compounds were found to strongly stimulate the proliferation of MCF-7 cells. The estrogen receptor-regulated ERα, progesterone receptor (PR) and PS2 mRNA levels were increased by treatment with osthole and imperatorin. All these effects were significantly inhibited by the specific estrogen receptor antagonist ICI182, 780. Cell cycle analysis revealed that their proliferation stimulatory effect was associated with a marked increase in the number of MCF-7 cells in S phase, which was similar to that observed with estradiol. It was also observed that they significantly increased ALP activity, which was reversed by ICI182,780. These results suggested that osthole and imperatorin could stimulate osteoblastic activity by displaying estrogenic properties or through the ER pathway. In conclusion, osthole and imperatorin may represent new pharmacological tools for the treatment of osteoporosis.

  20. Effect of Paullinia cupana on MCF-7 breast cancer cell response to chemotherapeutic drugs.

    PubMed

    Hertz, Everaldo; Cadoná, Francine Carla; Machado, Alencar Kolinski; Azzolin, Verônica; Holmrich, Sabrina; Assmann, Charles; Ledur, Pauline; Ribeiro, Euler Esteves; DE Souza Filho, Olmiro Cezimbra; Mânica-Cattani, Maria Fernanda; DA Cruz, Ivana Beatrice Mânica

    2015-01-01

    Previous studies suggested that certain plants, such as guarana (Paullinia cupana), exert a protective effect against cancer-related fatigue in breast cancer patients undergoing chemotherapy. However, guarana possesses bioactive molecules, such as caffeine and catechin, which may affect the pharmacological properties of antitumor drugs. Therefore, the aim of this study was to evaluate the effects of guarana on breast cancer cell response to 7 chemotherapeutic agents currently used in the treatment of breast cancer. To perform this study, MCF-7 breast cancer cells were cultured under controlled conditions and exposed to 1, 5 and 10 µg/ml guarana concentrations, with and without chemotherapeutics (gemcitabine, vinorelbine, methotrexate, 5-fluorouracil, paclitaxel, doxorubicin and cyclophosphamide). The effect of these treatments on MCF-7 cell viability and proliferation was spectrophotometrically analyzed with the MTT assay. The main results demonstrated an antiproliferative effect of guarana at concentrations of 5 and 10 µg/ml and a significant effect on chemotherapeutic drug action. In general, guarana improved the antiproliferative effect of chemotherapeutic agents, causing a decrease of >40% in cell growth after 72 h of exposure. The results suggested an interaction of guarana with the chemotherapeutic drugs, which requires confirmation by in vivo complementary studies.

  1. Effects of Environmental Pollutants on MCF-7 Cells: A Metabolic Approach.

    PubMed

    Norberto, Sónia; Calhau, Conceição; Pestana, Diogo; Faria, Ana

    2017-02-01

    Several environmental pollutants (EPs) have been associated with biological and molecular processes leading to adverse human health effects, including different types of cancer. Nevertheless, the effects exerted on tumor glucose metabolism are unclear. To evaluate the effects on cellular and molecular mechanisms, namely glucose metabolism, MCF-7 cells were exposed to EPs during short- and long-term exposures. The effect of both, organochlorine pesticides and plasticizing agents, on glucose uptake by MCF-7 cells was not dose-dependent and was affected by time of exposure. The ΣHCH and BPA increased glucose uptake after 20 min. Long-term exposure to 250 nM of organochlorine pesticides (p,p'-DDE and ΣHCH) and BPA increased cell proliferation. However, only the organochlorine pesticides were able to increase lactate production, without a concomitant higher glucose uptake or glycolytic enzymes transcription. Given their distinct persistent profiles, the biological significance of their exposure should be considered accordingly. J. Cell. Biochem. 118: 366-375, 2017. © 2016 Wiley Periodicals, Inc.

  2. The effect of glucose-coated gold nanoparticles on radiation bystander effect induced in MCF-7 and QUDB cell lines.

    PubMed

    Rostami, Atefeh; Toossi, Mohammad Thaghi Bahreyni; Sazgarnia, Ameneh; Soleymanifard, Shokouhozaman

    2016-11-01

    Due to biocompatibility and relative non-toxic nature, gold nanoparticles (GNPs) have been studied widely to be employed in radiotherapy as radio-sensitizer. On the other hand, they may enhance radiation-induced bystander effect (RIBE), which causes radiation adverse effects in non-irradiated normal cells. The present study was planned to investigate the possibility of augmenting the RIBE consequence of applying glucose-coated gold nanoparticles (Glu-GNPs) to target cells. Glu-GNPs were synthesized and utilized to treat MCF7 and QUDB cells. The treated cells were irradiated with 100 kVp X-rays, and their culture media were transferred to non-irradiated bystander cells. Performing MTT cellular proliferation test and colony formation assay, percentage cell viability and survival fraction of bystander cells were determined, respectively, and were compared to control bystander cells which received culture medium from irradiated cells without Glu-GNPs. Glu-GNPs decreased the cell viability and survival fraction of QUDB bystander cells by as much as 13.2 and 11.5 %, respectively (P < 0.02). However, the same end points were not changed by Glu-GNPs in MCF-7 bystander cells. Different RIBE responses were observed in QUDB and MCF7 loaded with Glu-GNPs. Glu-GNPs increased the RIBE in QUDB cells, while they had no effects on RIBE in MCF7 cells. As opposed to QUDB cells, the RIBE in MCF7 cells did not change in the dose range of 0.5-10 Gy. Therefore, it might be a constant effect and the reason of not being increased by Glu-GNPs.

  3. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    SciTech Connect

    Talhouk, Rabih S.; Fares, Mohamed-Bilal; Rahme, Gilbert J.; Hariri, Hanaa H.; Rayess, Tina; Dbouk, Hashem A.; Bazzoun, Dana; Al-Labban, Dania; El-Sabban, Marwan E.

    2013-12-10

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF

  4. PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells.

    PubMed

    Sun, C-G; Zhuang, J; Teng, W-J; Wang, Z; Du, S-S

    2015-05-29

    We explored whether p53 upregulated modulator of apoptosis (PUMA) gene transfection could enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells. The liposome-mediated recombinant eukaryotic expression vector PU-MA-pCDNA3 and empty vector plasmid were stably transfected into MCF-7 cells. Epirubicin (0.01-100 μM) was applied to MCF-7, MCF-7/PUMA, and MCF-7/pCDNA3 cells for 72 h. The MTT assay was used to calculate the cell survival rate in each group, and the 50% inhibitory concentration (IC50) was calculated. The IC50 values of epirubicin in MCF-7, MCF-7/PUMA, and MCF-7/pCDNA3 cells were 13 ± 1.4, 1.8 ± 0.2, and 10.7 ± 1.3 μM, respectively. The sensitivity of MCF-7/PUMA cells to epirubicin increased 7.2-fold. Epirubicin induced apoptosis in MCF-7 cells dose-dependently, but MCF-7/PUMA cell-induced apoptosis was more significant compared to controls. Low concentrations of epirubicin (0.1 μM) caused low levels of apoptosis of MCF-7/pCDNA3 (1.15 ± 0.26%) and MCF-7 cells (0.9 ± 0.24%), but significantly induced apoptosis of MCF-7/PUMA cells (6.44 ± 1.46%). High epirubicin concentration (1 μM) induced apoptosis in each group, but the epirubicin MCF-7/PUMA apoptosis rate (35.47 ± 9.36%) was significantly higher than that of MCF-7 (12.6 ± 3.73%) and MCF-7/ pCDNA3 (15.2 ± 5.17%) cells (P < 0 01). Flow cytometry and TUNEL assays for apoptosis detection showed similar results. PUMA protein expression in MCF-7/PUMA cells was significantly higher than that in MCF-7 and MCF-7/pCDNA3 cells by Western blot analysis. There-fore, stable transfection of PUMA can significantly enhance epirubicin-induced apoptosis sensitivity of MCF-7 breast cancer cells.

  5. A Novel Agent Enhances the Chemotherapeutic Efficacy of Doxorubicin in MCF-7 Breast Cancer Cells

    PubMed Central

    Wang, Liang; Chan, Judy Y.; Zhou, Xinhua; Cui, Guozhen; Yan, Zhixiang; Wang, Li; Yan, Ru; Di, Lijun; Wang, Yuqiang; Hoi, Maggie P.; Shan, Luchen; Lee, Simon M.

    2016-01-01

    We have previously demonstrated that DT-010, a novel conjugate of danshensu (DSS) and tetramethylpyrazine (TMP), displays anti-tumor effects in breast cancer cells both in vitro and in vivo. In the present study, we investigated whether DT-010 enhances the chemotherapeutic effect of doxorubicin (Dox) in MCF-7 breast cancer cells and exerts concurrent cardioprotective benefit at the same time. Our findings showed that DT-010 was more potent than TMP, DSS, or their combination in potentiating Dox-induced toxicity in MCF-7 cells. Co-treatment with DT-010 and Dox increased apoptosis in MCF-7 cells relative to Dox alone. Further study indicated that glycolytic capacity, glycolytic reserve and lactate level of MCF-7 cells were significantly inhibited after DT-010 treatment. DT-010 also increased the expression of the pro-survival protein GRP78, which was inhibited by co-treatment with Dox. Both endoplasmic reticulum stress inhibitor 4-PBA and knockdown of the expression of GRP78 protein potentiated DT-010-mediated apoptosis in MCF-7 cells. Moreover, DT-010 inhibited Dox-induced cardiotoxicity in H9c2 myoblasts. In conclusion, DT-010 and Dox confer synergistic anti-tumor effect in MCF-7 breast cancer cells through downregulation of the glycolytic pathway and inhibition of the expression of GRP78. Meanwhile, DT-010 also protects against Dox-induced cardiotoxicity. PMID:27559313

  6. A Novel Agent Enhances the Chemotherapeutic Efficacy of Doxorubicin in MCF-7 Breast Cancer Cells.

    PubMed

    Wang, Liang; Chan, Judy Y; Zhou, Xinhua; Cui, Guozhen; Yan, Zhixiang; Wang, Li; Yan, Ru; Di, Lijun; Wang, Yuqiang; Hoi, Maggie P; Shan, Luchen; Lee, Simon M

    2016-01-01

    We have previously demonstrated that DT-010, a novel conjugate of danshensu (DSS) and tetramethylpyrazine (TMP), displays anti-tumor effects in breast cancer cells both in vitro and in vivo. In the present study, we investigated whether DT-010 enhances the chemotherapeutic effect of doxorubicin (Dox) in MCF-7 breast cancer cells and exerts concurrent cardioprotective benefit at the same time. Our findings showed that DT-010 was more potent than TMP, DSS, or their combination in potentiating Dox-induced toxicity in MCF-7 cells. Co-treatment with DT-010 and Dox increased apoptosis in MCF-7 cells relative to Dox alone. Further study indicated that glycolytic capacity, glycolytic reserve and lactate level of MCF-7 cells were significantly inhibited after DT-010 treatment. DT-010 also increased the expression of the pro-survival protein GRP78, which was inhibited by co-treatment with Dox. Both endoplasmic reticulum stress inhibitor 4-PBA and knockdown of the expression of GRP78 protein potentiated DT-010-mediated apoptosis in MCF-7 cells. Moreover, DT-010 inhibited Dox-induced cardiotoxicity in H9c2 myoblasts. In conclusion, DT-010 and Dox confer synergistic anti-tumor effect in MCF-7 breast cancer cells through downregulation of the glycolytic pathway and inhibition of the expression of GRP78. Meanwhile, DT-010 also protects against Dox-induced cardiotoxicity.

  7. Effect of adriamycin on BRCA1 and PARP-1 expression in MCF-7 breast cancer cells.

    PubMed

    Wang, Hui; Lu, Changqing; Tan, Yan; Xie, Jun; Jiang, Jingting

    2014-01-01

    To study the effects of adriamycin on the expression of BRCA1 and PARP-1 in BRCA1 wild-type MCF-7 cells. We used Western blotting to detect BRCA1 and PARP-1 levels in MCF-7 cells treated with adriamycin, and used flow cytometry to detect apoptotic MCF-7 cells. Results showed that adriamycin can increase PARP-1 activation in a dose- and time-dependent manner. BRCA1 levels were also increased upon treatment with a high dose of adriamycin, but gradually decreased over time. Treatment of MCF-7 cells with 3-ABA inhibited PARP-1 activity, but had no effect on BRCA1 levels. Compared to adriamycin and 3-ABA treatment alone, the co-treatment can increase the apoptosis of MCF-7 cells. Compared to BRCA1-defective HCC1937 cells, adriamycin combined with 3-ABA can further induce apoptosis of MCF-7 cells (P < 0.05). All of these suggested that adriamycin can affect the PARP-1 activation and the expression of BRCA1. Combined with 3-ABA has an additive effect on the rate of apoptosis observed.

  8. p-Hydroxybenzoate esters metabolism in MCF7 breast cancer cells.

    PubMed

    Dagher, Zeina; Borgie, Mireille; Magdalou, Jacques; Chahine, Ramez; Greige-Gerges, Hélène

    2012-11-01

    Parabens are among the most frequently used preservatives to inhibit microbial growth and extend the shelf life of a range of consumer products. The objective of the present study was to gain insight into the metabolism of parabens in breast cancer cells (MCF7) since they have demonstrated estrogenic activity towards these cells and have been detected in breast cancer tissues. The toxicity of parabens to MCF7 cells was determined using MTT assays. Hydrolysis of methyl-, butyl and benzyl-paraben to p-hydroxybenzoic acid was analyzed in cultured MCF7 cells and in cellular homogenates. Glucuronidation and sulfoconjugation were studied in MCF7 homogenates, and parabens were analyzed by HPLC. Methyl-paraben was shown to be far less toxic than butyl and benzyl-paraben. Parabens were completely stable in MCF7 homogenates whereas p-nitrophenyl acetate, a substrate type, underwent hydrolysis. MCF7 cell homogenates did not express glucuronidation and sulfoconjugation activities toward parabens. The higher stability of parabens may explain their accumulation in breast cancer tissue as previously reported in the literature.

  9. Salubrinal-Mediated Upregulation of eIF2α Phosphorylation Increases Doxorubicin Sensitivity in MCF-7/ADR Cells.

    PubMed

    Jeon, Yong-Joon; Kim, Jin Hyun; Shin, Jong-Il; Jeong, Mini; Cho, Jaewook; Lee, Kyungho

    2016-02-01

    Eukaryotic translation initiation factor 2 alpha (eIF2α), which is a component of the eukaryotic translation initiation complex, functions in cell death and survival under various stress conditions. In this study, we investigated the roles of eIF2α phosphorylation in cell death using the breast cancer cell lines MCF-7 and MCF-7/ADR. MCF-7/ADR cells are MCF-7-driven cells that have acquired resistance to doxorubicin (ADR). Treatment of doxorubicin reduced the viability and induced apoptosis in both cell lines, although susceptibility to the drug was very different. Treatment with doxorubicin induced phosphorylation of eIF2α in MCF-7 cells but not in MCF-7/ADR cells. Basal expression levels of Growth Arrest and DNA Damage 34 (GADD34), a regulator of eIF2α, were higher in MCF-7/ADR cells compared to MCF-7 cells. Indeed, treatment with salubrinal, an inhibitor of GADD34, resulted in the upregulation of eIF2α phosphorylation and enhanced doxorubicin-mediated apoptosis in MCF-7/ADR cells. However, MCF-7 cells did not show such synergic effects. These results suggest that dephosphorylation of eIF2α by GADD34 plays an important role in doxorubicin resistance in MCF-7/ADR cells.

  10. 5-aminolevulinic acid-mediated photodynamic therapy on Hep-2 and MCF-7c3 cells.

    PubMed

    Alvarez, María Gabriela; Lacelli, M S; Rivarola, Viviana; Batlle, Alcira; Fukuda, Haydée

    2007-01-01

    The cytotoxic effect of 5-aminolevulinic acid (ALA) induced protoporphyrin IX (PPIX) on two human carcinoma cell lines, MCF-7c3 cells and Hep 2 cells, was studied. In both cell lines, PPIX content depends on the ALA concentration and incubation time. The maximal PPIX content was higher in the MCF-7c3 cells, reaching a value of 8 microg/10(6) cells, compared to the Hep-2 cells, which accumulated 3.2 microg/10(6) cells. Treatment of cells with the iron chelator desferrioxamine prior to ALA exposure enhances the amount of PPIX, consequently diminishing enzymatic activity of ferroquelatase. Photo sensitization of the cells was in correlation with the PPIX content; therefore, conditions leading to 80% cell death in the MCF-7c3 cells provoke a 50% cell death in the Hep 2 cells. Using fluorescence microscopy, cell morphology was analyzed after incubation with 1 mM ALA during 5 hr and irradiation with 54 Jcm(-2); 24 hr post-PDT, MCF-7c3 cells revealed the typical morphological changes of necrosis. Under the same conditions, Hep-2 cells produced chromatine fragmentation characteristic of apoptosis. PPIX accumulation was observed to occur in a perinuclear region in the MCF-7c3 cells; while in Hep-2 cells, it was localized in lysosomes. Different mechanisms of cell death were observed in both cell lines, depending on the different intracellular localization of PPIX.

  11. INHIBITORY ACTION OF CoCl2-INDUCED MCF-7 CELL HYPOXIA MODEL OF BREAST CANCER AND ITS INFLUENCE ON VASCULAR ENDOTHELIAL GROWTH FACTOR.

    PubMed

    Zhang, M; Ma, R; Li, Q

    2015-01-01

    Breast cancer, a malignant tumor frequently occurring in females, is traditionally treated with excision. In the search for a new treatment, we analyzed the influence of CoCl2 on MCF-7 cell proliferation of breast cancer and tumor angiogenesis factor and discussed the results. Having applied CoCl2 as chemical hypoxia-induced agent, in-vitro MCF-7 cell hypoxia model of breast cancer was established, after which methyl thiazolyl tetrazolium (MTT) staining was performed in detecting inhibitory action of CoCl2 to proliferation of MCF-7 cells cultured in-vitro, and inverted phase contrast microscope was adopted to observe morphological changes of MCF-7 cell in hypoxia model. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) was made to determine how CoCl2 influences mRNA expression changes of hypoxia inducible factor-1α (HIF-1α), chemokine receptor-4 (CXCR4) and vascular endothelial growth factor (VEGF) in MCF-7 cells. Western blot was designed to study and record data on the influence of CoCl2 on protein expression changes of HIF-1α, CXCR4 and VEGF. As a result, CoCl2 was proved to control MCF-7 cell proliferation and increase expression of HIF-1α, CXCR4 and VEGF.

  12. Regulation of gap junctional intercellular communication by TCDD in HMEC and MCF-7 breast cancer cells

    SciTech Connect

    Gakhar, Gunjan Schrempp, Diane Nguyen, Thu Annelise

    2009-03-01

    Previous studies suggest that many neoplastic tissues exhibit a decrease in gap junctional intercellular communication (GJIC). Many hydrocarbons and organochlorine compounds are environmental pollutants known to be carcinogenic. The effect of an organochlorine compound, TCDD, on GJIC in human breast cell lines has not been established. In the present study, we showed that TCDD causes an inhibition in the gap junctional activity in MCF-7 (breast cancer cells). In MCF-7 cells, an increase in the phosphorylated form of gap junctional protein, connexin 43 (Cx43), and PKC {alpha} was seen in the presence of TCDD. Gap junctional plaque formation was significantly decreased in MCF-7 cells in the presence of TCDD. Immunoprecipitation studies of PKC {alpha} showed that TCDD caused a significant 40% increase in the phosphorylated Cx43 in MCF-7 cells. TCDD also modulated the translocation of PKC {alpha} from the cytosol to the membrane and caused a 2-fold increase in the PKC {alpha} activity at 50 nM TCDD in MCF-7 cells. Calphostin C, an inhibitor of PKC {alpha}, showed a significant inhibition of PKC {alpha} activity in the presence of TCDD. Furthermore, TCDD also caused a decrease in the gap junctional activity and Cx43 protein in human mammary epithelial cells (HMEC). However, we observed a shift in the Cx43 plaques towards the perinuclear membrane in the presence of TCDD by confocal microscopy and Western blot. Overall, these results conclude that TCDD decreases GJIC by phosphorylating Cx43 via PKC {alpha} signaling pathway in MCF-7 cells; however, TCDD decreases the GJIC by affecting the localization of Cx43 in HMEC. These new findings elucidate the differential mode of effect of TCDD in the downregulation of GJIC in HMEC and MCF-7 cells.

  13. Effects of low dose treatment of tributyltin on the regulation of estrogen receptor functions in MCF-7 cells

    SciTech Connect

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha

    2013-06-01

    Endocrine disrupting chemicals are the natural/synthetic compounds which mimic or inhibit the actions of endogenous hormones. Organotin compounds, such as tributyltin (TBT) are typical environmental contaminants and suspected endocrine-disrupting chemical. The present study evaluates the estrogenic potential of this compound in vitro in ER (+) breast adenocarcinoma, MCF-7 cell line. Our data showed that tributyltin chloride (TBTCl) had agonistic activities for estrogen receptor-α (ER-α). Its estrogenic potential was checked using cell proliferation assay, aromatase assay, transactivation assay, and protein expression analysis. Low dose treatment of TBTCl had a proliferative effect on MCF-7 cells and resulted in up-regulation of aromatase enzyme activity and enhanced estradiol production in MCF-7 cells. Immunofluorescence staining showed translocation of ER-α from cytoplasm to nucleus and increased expression of ER-α, 3β-HSD and aromatase on treatment with increasing doses of TBTCl. Further, to decipher the probable signaling pathways involved in its action, the MCF-7 cells were transfected with different pathway dependent luciferase reporter plasmids (CRE, SRE, NF-κB and AP1). A significant increase in CRE and SRE and decrease in NF-κB regulated pathway were observed (p < 0.05). Our results thus showed that the activation of SRE by TBTCl may be due to ligand dependent ER-α activation of the MAPK pathway and increased phosphorylation of ERK. In summary, the present data suggests that low dose of tributyltin genomically and non-genomically augmented estrogen dependent signaling by targeting various pathways. - Highlights: • Tributyltin chloride is agonistic to ER-α in MCF-7 cell line at low doses. • Tributyltin chloride up regulated aromatase activity and estradiol production. • Tributyltin chloride also activates MAPK pathway inducing ERK activation.

  14. Salinomycin exerts anticancer effects on human breast carcinoma MCF-7 cancer stem cells via modulation of Hedgehog signaling.

    PubMed

    Lu, Ying; Ma, Wei; Mao, Jun; Yu, Xiaotang; Hou, Zhenhuan; Fan, Shujun; Song, Bo; Wang, Huan; Li, Jiazhi; Kang, Le; Liu, Pixu; Liu, Quentin; Li, Lianhong

    2015-02-25

    Breast cancer tissue contains a small population of cells that have the ability to self-renew, these cells are known as breast cancer stem cells (BCSCs). The Hedgehog signal transduction pathway plays a central role in stem cell development, its aberrant activation has been shown to contribute to the development of breast cancer, making this pathway an attractive therapeutic target. Salinomycin (Sal) is a novel identified cancer stem cells (CSCs) killer, however, the molecular basis for its anticancer effects is not yet clear. In the current study, Sal's ability to modulate the activity of key elements in the Hedgehog pathway was examined in the human breast cancer cell line MCF-7, as well as in a subpopulation of cancer stem cells identified within this cancer cell line. We show here that Sal inhibits proliferation, invasion, and migration while also inducing apoptosis in MCF-7 cells. Interestingly, in a subpopulation of MCF-7 cells with the CD44(+)/CD24(-) markers and high ALDH1 levels indicative of BCSCs, modulators of Hedgehog signaling Smo and Gli1 were significantly down-regulated upon treatment with Sal. These results demonstrate that Sal also inhibits proliferation and induces apoptosis of BCSCs, further establishing it as therapeutically relevant in the context of breast cancers and also indicating that modulation of Hedgehog signaling is one potential mechanism by which it exerts these anticancer effects.

  15. 17β-estradiol up-regulates miR-155 expression and reduces TP53INP1 expression in MCF-7 breast cancer cells.

    PubMed

    Zhang, Chunmei; Zhao, Jing; Deng, Huayu

    2013-07-01

    In estrogen responsive breast cancer cells, estradiol (E2) is a key regulator of cell proliferation and survival. MiR-155 has emerged as an "oncomiR", which is the most significantly up-regulated miRNA in breast cancer. Moreover, miR-155 is higher in ERα (+) breast tumors than ERα (-), but no one has examined whether E2 regulates miR-155 expression in MCF-7 cells. In this study, the aim was to explore whether miR-155 involved in E2 regulated expression of estrogen responsive genes. We evaluated miR-155 expression in human breast cancer cells by real-time PCR, finding out miR-155 was overexpressed in MCF-7 cells compared with MDA-MB-231 cells. Treatment with E2 in MCF-7 cells increased miR-155 expression, promoting proliferation and decreasing apoptosis, similarly, transfection of miR-155m to MCF-7 cells gave the similar results. In contrast, inhibited miR-155 expression by transfection with miR-155 inhibitors reduced proliferation and promoted apoptosis of MCF-7 cells. Moreover, TP53INP1 is one of the targets of miR-155. E2 negatively regulated TP53INP1 mRNA expression and the protein expression of TP53INP1, cleaved-caspase-3, -8, -9, and p21, whereas transfection with miR-155 inhibitors increased TP53INP1, cleaved-caspase-3, -8, -9, and p21 protein level. These results demonstrated that E2 promoted breast cancer development and progression possibly through increasing the expression of miR-155, which was overexpressed in MCF-7 cells, contributes to proliferation of MCF-7 cells possibly through down-regulating TP53INP1.

  16. Effect of sesamin on apoptosis and cell cycle arrest in human breast cancer mcf-7 cells.

    PubMed

    Siao, An-Ci; Hou, Chien-Wei; Kao, Yung-Hsi; Jeng, Kee-Ching

    2015-01-01

    Dietary prevention has been known to reduce breast cancer risk. Sesamin is one of the major components in sesame seeds and has been widely studied and proven to have anti-proliferation and anti-angiogenic effects on cancer cells. In this study, the influence of sesamin was tested in the human breast cancer MCF-7 cell line for cell viability (MTT assay) and cell cycling (flow cytometry). Results showed that sesamin dose-dependently (1, 10 and 50 μM) reduced the cell viability and increased LDH release and apoptosis (TUNEL assay). In addition, there was a significant increase of sub-G1 phase arrest in the cell cycle after sesamin treatment. Furthermore, sesamin increased the expression of apoptotic markers of Bax, caspase-3, and cell cycle control proteins, p53 and checkpoint kinase 2. Taken together, these results suggested that sesamin might be used as a dietary supplement for prevention of breast cancer by modulating apoptotic signal pathways and inhibiting tumor cell growth.

  17. Breast cancer cell line MCF7 escapes from G1/S arrest induced by proteasome inhibition through a GSK-3β dependent mechanism

    PubMed Central

    Gavilán, Elena; Giráldez, Servando; Sánchez-Aguayo, Inmaculada; Romero, Francisco; Ruano, Diego; Daza, Paula

    2015-01-01

    Targeting the ubiquitin proteasome pathway has emerged as a rational approach in the treatment of human cancers. Autophagy has been described as a cytoprotective mechanism to increase tumor cell survival under stress conditions. Here, we have focused on the role of proteasome inhibition in cell cycle progression and the role of autophagy in the proliferation recovery. The study was performed in the breast cancer cell line MCF7 compared to the normal mammary cell line MCF10A. We found that the proteasome inhibitor MG132 induced G1/S arrest in MCF10A, but G2/M arrest in MCF7 cells. The effect of MG132 on MCF7 was reproduced on MCF10A cells in the presence of the glycogen synthase kinase 3β (GSK-3β) inhibitor VII. Similarly, MCF7 cells overexpressing constitutively active GSK-3β behaved like MCF10A cells. On the other hand, MCF10A cells remained arrested after MG132 removal while MCF7 recovered the proliferative capacity. Importantly, this recovery was abolished in the presence of the autophagy inhibitor 3-methyladenine (3-MA). Thus, our results support the relevance of GSK-3β and autophagy as two targets for controlling cell cycle progression and proliferative capacity in MCF7, highlighting the co-treatment of breast cancer cells with 3-MA to synergize the effect of the proteasome inhibition. PMID:25941117

  18. Breast cancer cell line MCF7 escapes from G1/S arrest induced by proteasome inhibition through a GSK-3β dependent mechanism.

    PubMed

    Gavilán, Elena; Giráldez, Servando; Sánchez-Aguayo, Inmaculada; Romero, Francisco; Ruano, Diego; Daza, Paula

    2015-05-05

    Targeting the ubiquitin proteasome pathway has emerged as a rational approach in the treatment of human cancers. Autophagy has been described as a cytoprotective mechanism to increase tumor cell survival under stress conditions. Here, we have focused on the role of proteasome inhibition in cell cycle progression and the role of autophagy in the proliferation recovery. The study was performed in the breast cancer cell line MCF7 compared to the normal mammary cell line MCF10A. We found that the proteasome inhibitor MG132 induced G1/S arrest in MCF10A, but G2/M arrest in MCF7 cells. The effect of MG132 on MCF7 was reproduced on MCF10A cells in the presence of the glycogen synthase kinase 3β (GSK-3β) inhibitor VII. Similarly, MCF7 cells overexpressing constitutively active GSK-3β behaved like MCF10A cells. On the other hand, MCF10A cells remained arrested after MG132 removal while MCF7 recovered the proliferative capacity. Importantly, this recovery was abolished in the presence of the autophagy inhibitor 3-methyladenine (3-MA). Thus, our results support the relevance of GSK-3β and autophagy as two targets for controlling cell cycle progression and proliferative capacity in MCF7, highlighting the co-treatment of breast cancer cells with 3-MA to synergize the effect of the proteasome inhibition.

  19. Synthesis, Characterization, and Anticancer Activity of New Quinazoline Derivatives against MCF-7 Cells

    PubMed Central

    Faraj, Fadhil Lafta; Zahedifard, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Abdul Majid, Nazia; Ali, Hapipah Mohd; Ahmad, Noraini; Gwaram, Nura Suleiman; Abdulla, Mahmood Ameen

    2014-01-01

    Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246 × 10−6 mol/L and 5.910 × 10−6 mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies. PMID:25548779

  20. Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells.

    PubMed

    Pi, Jiang; Jin, Hua; Liu, Ruiying; Song, Bing; Wu, Qing; Liu, Li; Jiang, Jinhuan; Yang, Fen; Cai, Huaihong; Cai, Jiye

    2013-02-01

    Selenium nanoparticles (Se NPs) have been recognized as promising materials for biomedical applications. To prepare Se NPs which contained cancer targeting methods and to clarify the cellular localization and cytotoxicity mechanisms of these Se NPs against cancer cells, folic acid protected/modified selenium nanoparticles (FA-Se NPs) were first prepared by a one-step method. Some morphologic and spectroscopic methods were obtained to prove the successfully formation of FA-Se NPs while free folate competitive inhibition assay, microscope, and several biological methods were used to determine the in vitro uptake, subcellular localization, and cytotoxicity mechanism of FA-Se NPs in MCF-7 cells. The results indicated that the 70-nm FA-Se NPs were internalized by MCF-7 cells through folate receptor-mediated endocytosis and targeted to mitochondria located regions through endocytic vesicles transporting. Then, the FA-Se NPs entered into mitochondria; triggered the mitochondria-dependent apoptosis of MCF-7 cells which involved oxidative stress, Ca(2)+ stress changes, and mitochondrial dysfunction; and finally caused the damage of mitochondria. FA-Se NPs released from broken mitochondria were transported into nucleus and further into nucleolus which then induced MCF-7 cell cycle arrest. In addition, FA-Se NPs could induce cytoskeleton disorganization and induce MCF-7 cell membrane morphology alterations. These results collectively suggested that FA-Se NPs could be served as potential therapeutic agents and organelle-targeted drug carriers in cancer therapy.

  1. Down-regulation of CXCR4 expression by tamoxifen is associated with DNA methyltransferase 3B up-regulation in MCF-7 breast cancer cells.

    PubMed

    Kubarek, Ł; Kozłowska, A; Przybylski, M; Lianeri, M; Jagodzinski, P P

    2009-09-01

    The CXCR4 chemokine receptor is a seven transmembrane G protein-coupled receptor present on the surface of various cells including cancer cells. The CXCR4 receptor contributes to the induction of several intracellular signalling pathways that enhance survival, proliferation, and migration of malignant cells. We observed that tamoxifen (Tam) reduced the CXCR4 transcript and protein levels in MCF-7 breast cancer cells. However, we did not see a Tam effect on CXCR4 transcript and protein levels in MCF-7(LVMT3B) cells with RNA interference-mediated knockdown of DNMT3B. We also observed that Tam significantly increased, for several hours, the expression of enzymatically active DNMT3B splice variants in MCF-7 cells. However, there was no Tam effect on these DNMT3B splice variants' expression in MCF-7(LVMT3B) cells. Bisulfite sequencing suggests that Tam may reduce CXCR4 expression via increased methylation of cytosine in the cytosine-guanosine (CpG) dinucleotide island of the CXCR4 promoter of MCF-7 breast cancer cells. Our findings suggest that Tam induces an increase in DNMT3B expression that is associated with the increase of CpG dinucleotide methylation in the CXCR4 promoter and significant reduction of CXCR4 gene expression in MCF-7 cells.

  2. Construction of single-chain variable fragment antibodies against MCF-7 breast cancer cells.

    PubMed

    Zuhaida, A A; Ali, A M; Tamilselvan, S; Alitheen, N B; Hamid, M; Noor, A M; Yeap, S K

    2013-11-18

    A phage display library of single chain variable fragment (scFv) against MCF-7 breast cancer cells was constructed from C3A8 hybridoma cells. RNA from the C3A8 was isolated, cDNA was constructed, and variable heavy and light immunoglobulin chain gene region were amplified using PCR. The variable heavy and light chain gene regions were combined with flexible linker, linked to a pCANTAB 5E phagemid vector and electrophoresed into supE strain of Escherichia coli TG1 cells. Forty-eight clones demonstrated positive binding activity to MCF-7 breast cancer cell membrane fragments and the strongest of 48 clones was selected for analysis. The anti-MCF-7 library evaluated by SfiI and NotI digests demonstrated that anti-MCF-7 scFv antibodies possess individual patterns that should be able to recognize distinct human breast cancer cells. The C3A8 scFv, with an apparent molecular weight of 32 kDa, showed high homology (99%) with single chain antibody against rice stripe virus protein P20. In summary, the anti MCF-7 scFv antibody can be used for pretargeting breast cancer for clinical diagnosis of patients; it also has potential for therapeutic applications.

  3. Evaluation of cell cycle arrest in estrogen responsive MCF-7 breast cancer cells: pitfalls of the MTS assay.

    PubMed

    McGowan, Eileen M; Alling, Nikki; Jackson, Elise A; Yagoub, Daniel; Haass, Nikolas K; Allen, John D; Martinello-Wilks, Rosetta

    2011-01-01

    Endocrine resistance is a major problem with anti-estrogen treatments and how to overcome resistance is a major concern in the clinic. Reliable measurement of cell viability, proliferation, growth inhibition and death is important in screening for drug treatment efficacy in vitro. This report describes and compares commonly used proliferation assays for induced estrogen-responsive MCF-7 breast cancer cell cycle arrest including: determination of cell number by direct counting of viable cells; or fluorescence SYBR®Green (SYBR) DNA labeling; determination of mitochondrial metabolic activity by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay; assessment of newly synthesized DNA using 5-ethynyl-2'-deoxyuridine (EdU) nucleoside analog binding and Alexa Fluor® azide visualization by fluorescence microscopy; cell-cycle phase measurement by flow cytometry. Treatment of MCF-7 cells with ICI 182780 (Faslodex), FTY720, serum deprivation or induction of the tumor suppressor p14ARF showed inhibition of cell proliferation determined by the Trypan Blue exclusion assay and SYBR DNA labeling assay. In contrast, the effects of treatment with ICI 182780 or p14ARF-induction were not confirmed using the MTS assay. Cell cycle inhibition by ICI 182780 and p14ARF-induction was further confirmed by flow cytometric analysis and EdU-DNA incorporation. To explore this discrepancy further, we showed that ICI 182780 and p14ARF-induction increased MCF-7 cell mitochondrial activity by MTS assay in individual cells compared to control cells thereby providing a misleading proliferation readout. Interrogation of p14ARF-induction on MCF-7 metabolic activity using TMRE assays and high content image analysis showed that increased mitochondrial activity was concomitant with increased mitochondrial biomass with no loss of mitochondrial membrane potential, or cell death. We conclude that, whilst p14ARF and ICI 182780 stop cell cycle progression, the

  4. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    SciTech Connect

    Putnik, Milica; Zhao, Chunyan; Gustafsson, Jan-Ake; Dahlman-Wright, Karin

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Estrogen signaling and demethylation can both control gene expression in breast cancers. Black-Right-Pointing-Pointer Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. Black-Right-Pointing-Pointer 137 genes are influenced by both 17{beta}-estradiol and demethylating agent 5-aza-2 Prime -deoxycytidine. Black-Right-Pointing-Pointer A set of genes is identified as targets of both estrogen signaling and demethylation. Black-Right-Pointing-Pointer There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17{beta}-estradiol (E2) and a demethylating agent 5-aza-2 Prime -deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of

  5. Cell-in-Cell Death Is Not Restricted by Caspase-3 Deficiency in MCF-7 Cells

    PubMed Central

    Wang, Shan; He, Meifang; Li, Linmei; Liang, Zhihua; Zou, Zehong

    2016-01-01

    Purpose Cell-in-cell structures are created by one living cell entering another homotypic or heterotypic living cell, which usually leads to the death of the internalized cell, specifically through caspase-dependent cell death (emperitosis) or lysosome-dependent cell death (entosis). Although entosis has attracted great attention, its occurrence is controversial, because one cell line used in its study (MCF-7) is deficient in caspase-3. Methods We investigated this issue using MCF-7 and A431 cell lines, which often display cell-in-cell invasion, and have different levels of caspase-3 expression. Cell-in-cell death morphology, microstructures, and signaling pathways were compared in the two cell lines. Results Our results confirmed that MCF-7 cells are caspase-3 deficient with a partial deletion in the CASP-3 gene. These cells underwent cell death that lacked typical apoptotic properties after staurosporine treatment, whereas caspase-3-sufficient A431 cells displayed typical apoptosis. The presence of caspase-3 was related neither to the lysosome-dependent nor to the caspase-dependent cell-in-cell death pathway. However, the existence of caspase-3 was associated with a switch from lysosome-dependent cell-in-cell death to the apoptotic cell-in-cell death pathway during entosis. Moreover, cellular hypoxia, mitochondrial swelling, release of cytochrome C, and autophagy were observed in internalized cells during entosis. Conclusion The occurrence of caspase-independent entosis is not a cell-specific process. In addition, entosis actually represents a cellular self-repair system, functioning through autophagy, to degrade damaged mitochondria resulting from cellular hypoxia in cell-in-cell structures. However, sustained autophagy-associated signal activation, without reduction in cellular hypoxia, eventually leads to lysosome-dependent intracellular cell death. PMID:27721872

  6. Antiproliferative effect of extracts from Aristolochia baetica and Origanum compactum on human breast cancer cell line MCF-7.

    PubMed

    Chaouki, Wahid; Leger, David Y; Eljastimi, Jamila; Beneytout, Jean-Louis; Hmamouchi, Mohamed

    2010-03-01

    Aristolochia baetica L. (Aristolochiaceae) and Origanum compactum Benth. (Lamiaceae) are native plants of Morocco used in traditional medicine. In order to systematically evaluate their potential activity on human breast cancer, four different polarity extracts from each plant were assessed in vitro for their antiproliferative effect on MCF-7 cells. As a result, several extracts of those plants showed potent cell proliferation inhibition on MCF-7 cells. Chloroform extract of A. baetica (IC50: 216.06 +/- 15 microg/mL) and ethyl acetate of O. compactum (IC50: 279.51 +/- 16 microg/mL) were the most active. Thin layer chromatography examination of the bioactive extracts of A. baetica and O. compactum showed the presence of aristolochic acid and betulinic acid, respectively. These results call for further studies of these extracts.

  7. MCF-7 Human Breast Cancer Cells Form Differentiated Microtissues in Scaffold-Free Hydrogels

    PubMed Central

    Vantangoli, Marguerite M.; Madnick, Samantha J.; Huse, Susan M.; Weston, Paula; Boekelheide, Kim

    2015-01-01

    Three-dimensional (3D) cultures are increasing in use because of their ability to represent in vivo human physiology when compared to monolayer two-dimensional (2D) cultures. When grown in 3D using scaffold-free agarose hydrogels, MCF-7 human breast cancer cells self-organize to form directionally-oriented microtissues that contain a luminal space, reminiscent of the in vivo structure of the mammary gland. When compared to MCF-7 cells cultured in 2D monolayer culture, MCF-7 microtissues exhibit increased mRNA expression of luminal epithelial markers keratin 8 and keratin 19 and decreased expression of basal marker keratin 14 and the mesenchymal marker vimentin. These 3D MCF-7 microtissues remain responsive to estrogens, as demonstrated by induction of known estrogen target mRNAs following exposure to 17β-estradiol. Culture of MCF-7 cells in scaffold-free conditions allows for the formation of more differentiated, estrogen-responsive structures that are a more relevant system for evaluation of estrogenic compounds than traditional 2D models. PMID:26267486

  8. Mitogenic Effects of Phosphatidylcholine Nanoparticles on MCF-7 Breast Cancer Cells

    PubMed Central

    Gándola, Yamila B.; Pérez, Sebastián E.; Irene, Pablo E.; Sotelo, Ana I.; Miquet, Johanna G.; Corradi, Gerardo R.; Carlucci, Adriana M.; Gonzalez, Lorena

    2014-01-01

    Lecithins, mainly composed of the phospholipids phosphatidylcholines (PC), have many different uses in the pharmaceutical and clinical field. PC are involved in structural and biological functions as membrane trafficking processes and cellular signaling. Considering the increasing applications of lecithin-based nanosystems for the delivery of therapeutic agents, the aim of the present work was to determine the effects of phosphatidylcholine nanoparticles over breast cancer cellular proliferation and signaling. PC dispersions at 0.01 and 0.1% (w/v) prepared in buffer pH 7.0 and 5.0 were studied in the MCF-7 breast cancer cell line. Neutral 0.1% PC-derived nanoparticles induced the activation of the MEK-ERK1/2 pathway, increased cell viability and induced a 1.2 fold raise in proliferation. These biological effects correlated with the increase of epidermal growth factor receptor (EGFR) content and its altered cellular localization. Results suggest that nanoparticles derived from PC dispersion prepared in buffer pH 7.0 may induce physicochemical changes in the plasma membrane of cancer cells which may affect EGFR cellular localization and/or activity, increasing activation of the MEK-ERK1/2 pathway and inducing proliferation. Results from the present study suggest that possible biological effects of delivery systems based on lecithin nanoparticles should be taken into account in pharmaceutical formulation design. PMID:24772432

  9. The Effect of Melatonin Adsorbed to Polyethylene Glycol Microspheres on the Survival of MCF-7 Cells.

    PubMed

    França, Eduardo Luzía; Honorio-França, Adenilda Cristina; Fernandes, Rubian Trindade da Silva; Marins, Camila Moreira Ferreira; Pereira, Claudia Cristina de Souza; Varotti, Fernando de Pilla

    2016-01-01

    Although melatonin exhibits oncostatic properties such as antiproliferative effects, the oral bioavailability of this hormone is less than 20%. Modified drug release systems have been used to improve the pharmacological efficiency of drugs. These systems can change the pharmacokinetics and biodistribution of the associated drugs. Thus, this study investigated the effect of melatonin adsorbed to polyethylene glycol (PEG) microspheres on MCF-7 human breast cancer cells. The MCF-7 cells were obtained from the American Type Culture Collection. MCF-7 cells were preincubated for 24 h with or without melatonin (100 ng/ml), PEG microspheres or melatonin adsorbed to PEG microspheres (100 ng/ml). Viability, intracellular calcium release and apoptosis in MCF-7 cells were determined by flow cytometry. MCF-7 cells incubated with melatonin adsorbed to PEG microspheres showed a lower viability rate (40.0 ± 8.3 with melatonin adsorbed to PEG microspheres compared to 54.1 ± 7.3 with melatonin; 81.8 ± 12.5 with PEG microsphere and 92.7 ± 4.1 with medium), increased spontaneous intracellular Ca2+ release (27.0 ± 8.6 with melatonin adsorbed to PEG microspheres compared to 21.5 ± 13.4 with melatonin; 10.1 ± 5.4 with PEG microsphere and 9.1 ± 5.6 with medium) and increased apoptosis index (51.2 ± 2.7 with melatonin adsorbed to PEG microspheres compared to 36.0 ± 2.1 with melatonin; 4.9 ± 0.5 with PEG microsphere and 3.1 ± 0.6 with medium). The results indicate that melatonin adsorbed to PEG microspheres exerts antitumor effects on human MCF-7 breast cancer cells. However, clinical tests must be performed to confirm the use of melatonin adsorbed to PEG microspheres as an alternative therapy against cancer.

  10. Ferulago angulata activates intrinsic pathway of apoptosis in MCF-7 cells associated with G1 cell cycle arrest via involvement of p21/p27.

    PubMed

    Karimian, Hamed; Moghadamtousi, Soheil Zorofchian; Fadaeinasab, Mehran; Golbabapour, Shahram; Razavi, Mahboubeh; Hajrezaie, Maryam; Arya, Aditya; Abdulla, Mahmood Ameen; Mohan, Syam; Ali, Hapipah Mohd; Noordin, Mohamad Ibrahim

    2014-01-01

    Ferulago angulata is a medicinal plant that is traditionally known for its anti-inflammatory and antiulcer properties. The present study was aimed to evaluate its anticancer activity and the possible mechanism of action using MCF-7 as an in vitro model. F. angulata leaf extracts were prepared using solvents in the order of increasing polarity. As determined by MTT assay, F. angulata leaves hexane extract (FALHE) revealed the strongest cytotoxicity against MCF-7 cells with the half maximal inhibitory concentration (IC50) value of 5.3 ± 0.82 μg/mL. The acute toxicity study of FALHE provided evidence of the safety of the plant extract. Microscopic and flow cytometric analysis using annexin-V probe showed an induction of apoptosis in MCF-7 by FALHE. Treatment of MCF-7 cells with FALHE encouraged the intrinsic pathway of apoptosis, with cell death transducing signals that reduced the mitochondrial membrane potential with cytochrome c release from mitochondria to cytosol. The released cytochrome c triggered the activation of caspase-9. Meanwhile, the overexpression of caspase-8 suggested the involvement of an extrinsic pathway in the induced apoptosis at the late stage of treatment. Moreover, flow cytometric analysis showed that FALHE treatment significantly arrested MCF-7 cells in the G1 phase, which was associated with upregulation of p21 and p27 assessed by quantitative polymerase chain reaction. Immunofluorescence and the quantitative polymerase chain reaction analysis of MCF-7 cells after treatment with FALHE revealed an upregulation of Bax and a downregulation of Bcl-2 proteins. These findings proposed that FALHE suppressed the proliferation of MCF-7 cells via cell cycle arrest and the induction of apoptosis through intrinsic pathway.

  11. Isoflavone content and estrogenic activity of different batches of red clover (Trifolium pratense L.) extracts: an in vitro study in MCF-7 cells.

    PubMed

    Spagnuolo, Paola; Rasini, Emanuela; Luini, Alessandra; Legnaro, Massimiliano; Luzzani, Marcello; Casareto, Enrico; Carreri, Massimiliano; Paracchini, Silvano; Marino, Franca; Cosentino, Marco

    2014-04-01

    The estrogenicity of different batches of red clover (Trifolium pratense L., Fabaceae; RCL) extracts and its relationship with the isoflavone content were assessed by measuring MCF-7 cell proliferation by flow cytometry and propidium iodide staining. RCL extracts were compared to estradiol (E2) and to the main RCL isoflavones biochanin A, daidzein, genistein and formononetin. Isoflavone content in the extracts was assayed by HPLC. E2 and isoflavones increased MCF-7 proliferation in a concentration-dependent fashion, with the following potency order: E2>genistein>biochanin A=daidzein>formononetin. Extracts increased MCF-7 proliferation with different potencies, which in four out of five extracts correlated with the ratios 5,7-dihydroxyisoflavones/7-hydroxyisoflavones. The efficacy of all extracts increased with decreasing genistein contents. A solution containing the main isoflavones at the average concentration of RCL extracts increased MCF-7 proliferation with higher potency and steeper concentration-response curve. The effects of E2, of RCL extracts and of the isoflavone solution were inhibited by the estrogen receptor antagonist 4-hydroxytamoxifen. Flow cytometric analysis of MCF-7 proliferation is a suitable bioassay for the estrogenicity of RCL extracts, thus expanding the characterization of individual batches beyond assessment of chemical composition and contributing to improved standardization of quality and activity.

  12. Salvianolic acid A shows selective cytotoxicity against multidrug-resistant MCF-7 breast cancer cells.

    PubMed

    Wang, Xin; Wang, Chunyan; Zhang, Longjiang; Li, Yanjun; Wang, Shouju; Wang, Jiandong; Yuan, Caiyun; Niu, Jia; Wang, Chengsheng; Lu, Guangming

    2015-02-01

    Multidrug resistance (MDR) is a major cause for incurable breast cancer. Salvianolic acid A (SAA), the hydrophilic polyphenolic derivative of Salvia miltiorrhiza Bunge (Danshen/Red Sage), was examined for cytotoxicities to MDR MCF-7 human breast cancer cells and their parental counterparts. We have shown that SAA inhibited proliferation, caused cell cycle arrest at the S phase, and induced apoptosis dose dependently to the two kinds of cancer cells. However, the resistant cells were significantly susceptible to the inhibition of SAA compared with the parental cells. SAA increased the level of reactive oxygen species (ROS) by 6.2-fold in the resistant cells, whereas the level of SAA-induced ROS changed only by 1.6-fold in their parental counterparts. Thus, the data showed that the selective cytotoxicity resulted from the hypersensitivity of the resistant cells to the strongly elevated ROS by SAA. In addition, SAA-triggered apoptosis was associated with increased caspase-3 activity, disrupted mitochondrial membrane potential, downregulated Bcl-2 expression, and upregulated Bax expression in the resistant cells. Moreover, SAA downregulated the level of P-glycoprotein, which was overexpressed in the resistant cells. This indicated that SAA modulated MDR. Furthermore, SAA showed higher antitumor activity than did doxorubicin in xenografts established from the resistant cells. The present work raised a possibility that SAA might be considered a potential choice to overcome MDR for the selective susceptibility of the resistant breast cancer cells to SAA treatment.

  13. In vitro evaluation of antitumor activity of doxorubicin-loaded nanoemulsion in MCF-7 human breast cancer cells

    NASA Astrophysics Data System (ADS)

    Alkhatib, Mayson H.; AlBishi, Hayat M.

    2013-03-01

    Doxorubicin (DOX) is an anticancer drug used to treat several cancer diseases. However, it has several dose limitation aspects because of its poor bioavailability, hydrophobicity, and cytotoxicity. In this study, five nanoemulsion (NE) formulations, containing soya phosphatidylcholine/polyoxyethylenglycerol trihydroxy-stearate 40 (EU)/sodium oleate as surfactant, cholesterol (CHO) as oil phase, and Tris-HCl buffer (pH 7.22), were produced. The NE droplets morphologies of the entire blank and DOX-loaded formulations, revealed by the transmission electron microscope, were spherical. The droplet sizes of blank NEs, obtained between 2.9 and 6.4 nm, decreased significantly with the increase in the ratio of surfactant-to-oil, whereas the droplets sizes of DOX-loaded NE formulations were significantly higher and found in the range of 7.7-15.9 nm. The evaluation for both blank and DOX-loaded NE formulations proved that the NE carrier had improved the DOX efficacy and reduced its cytotoxicity. It showed that the cell growth inhibition of the breast cancer cells (MCF-7) have exceeded the commercial DOX by a factor of 1.7 with increased apoptosis activity and minimal cytotoxicity against the normal human foreskin cells (HFS). In contrast, commercial DOX was found to exhibit a significant non-selective toxicity against both MCF-7 and HFS cells. In conclusion, we have developed DOX-loaded NE formulations which selectively and significantly inhibited cell proliferation of MCF-7 cells and increased apoptosis.

  14. Different chemo- and endocrino-sensitivity of MCF-7 cells with or without estradiol supplement in vitro.

    PubMed

    Tanino, H; Kubota, T; Saikawa, Y; Kuo, T H; Takeuchi, T; Kase, S; Furukawa, T; Kitajima, M; Sakurai, T; Naito, Y

    1993-01-01

    The sensitivity of MCF-7 cells to tamoxifen (TAM) and mitomycin C (MMC) was assessed in rapidly and slowly growing cells with or without estradiol supplementation, respectively. The growth of MCF-7 was inhibited by MMC in a concentration-dependent manner with or without estradiol (E2) supplementation. Preincubation with MMC suppressed subsequent E2 stimulated growth of MCF-7. TAM inhibited the growth of MCF-7 supplemented with E2 and preincubation with TAM prevented subsequent E2 stimulated growth of MCF-7. However, TAM did not inhibit the growth of MCF-7 cells in E2 free medium. These results suggested that MMC may be more effective than TAM on breast cancer cells in the dormant or slow-growth phase.

  15. A smart tumor targeting peptide-drug conjugate, pHLIP-SS-DOX: synthesis and cellular uptake on MCF-7 and MCF-7/Adr cells.

    PubMed

    Song, Qin; Chuan, Xingxing; Chen, Binlong; He, Bing; Zhang, Hua; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang

    2016-06-01

    Doxorubicin (DOX) is a potent anticancer drug for the treatment of tumors, but the poor specificity and multi-drug resistance (MDR) on tumor cells have restricted its application. Here, a pH and reduction-responsive peptide-drug conjugate (PDC), pHLIP-SS-DOX, was synthesized to overcome these drawbacks. pH low insertion peptide (pHLIP) is a cell penetrating peptide (CPP) with pH-dependent transmembrane ability. And because of the unique cell membrane insertion pattern, it might reverse the MDR. The cellular uptake study showed that on both drug-sensitive MCF-7 and drug-resistant MCF-7/Adr cells, pHLIP-SS-DOX obviously facilitated the uptake of DOX at pH 6.0 and the uptake level on MCF-7/Adr cells was similar with that on MCF-7 cells, indicating that pHLIP-SS-DOX had the ability to target acidic tumor cells and reverse MDR. In vitro cytotoxicity study mediated by GSH-OEt demonstrated that the cytotoxic effect of pHLIP-SS-DOX was reduction responsive, with obvious cytotoxicity at pH 6.0; while it had poor cytotoxicity at pH 7.4, no matter with or without GSH-OEt pretreatment. This illustrated that pHLIP could deliver DOX into tumor cells with acidic microenvironment specifically and could not deliver drugs into normal cells with neutral microenvironment. In summary, pHLIP-SS-DOX is a promising strategy to target drugs to tumors and provides a possibility to overcome MDR.

  16. Synthesis, structural characterization, and anticancer activity of a monobenzyltin compound against MCF-7 breast cancer cells.

    PubMed

    Fani, Somayeh; Kamalidehghan, Behnam; Lo, Kong Mun; Hashim, Najihah Mohd; Chow, Kit May; Ahmadipour, Fatemeh

    2015-01-01

    A new monoorganotin Schiff base compound, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, (compound C1), was synthesized, and its structural features were investigated by spectroscopic techniques and single-crystal X-ray diffractometry. Compound C1 was exposed to several human cancer cell lines, including breast adenocarcinoma cell lines MCF-7 and MDA-MB-231, ovarian adenocarcinoma cell lines Skov3 and Caov3, and prostate cancer cell line PC3, in order to examine its cytotoxic effect for different forms of cancer. Human hepatic cell line WRL-68 was used as a normal cell line. We concentrated on the MCF-7 cell line to detect possible underlying mechanism involvement of compound C1. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed the strongest cytotoxicity of compound C1 against MCF-7 cells, with a half maximal inhibitory concentration (IC50) value of 2.5±0.50 μg/mL after 48 hours treatment. The IC50 value was >30 μg/mL in WRL-68 cells. Induced antiproliferative activity of compound C1 for MCF-7 cells was further confirmed by lactate dehydrogenase, reactive oxygen species, acridine orange/propidium iodide staining, and DNA fragmentation assays. A significant increase of lactate dehydrogenase release in treated cells was observed via fluorescence analysis. Luminescent analysis showed significant growth in intracellular reactive oxygen species production after treatment. Morphological changes of necrosis and early and late apoptosis stages were observed in treated cells after staining with acridine orange/propidium iodide. DNA fragmentation was observed as a characteristic of apoptosis in treated cells. Results of the present study obviously reveal potential cytotoxic effects of compound C1 against human breast cancer MCF-7 cells.

  17. Synthesis, structural characterization, and anticancer activity of a monobenzyltin compound against MCF-7 breast cancer cells

    PubMed Central

    Fani, Somayeh; Kamalidehghan, Behnam; Lo, Kong Mun; Hashim, Najihah Mohd; Chow, Kit May; Ahmadipour, Fatemeh

    2015-01-01

    A new monoorganotin Schiff base compound, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, (compound C1), was synthesized, and its structural features were investigated by spectroscopic techniques and single-crystal X-ray diffractometry. Compound C1 was exposed to several human cancer cell lines, including breast adenocarcinoma cell lines MCF-7 and MDA-MB-231, ovarian adenocarcinoma cell lines Skov3 and Caov3, and prostate cancer cell line PC3, in order to examine its cytotoxic effect for different forms of cancer. Human hepatic cell line WRL-68 was used as a normal cell line. We concentrated on the MCF-7 cell line to detect possible underlying mechanism involvement of compound C1. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed the strongest cytotoxicity of compound C1 against MCF-7 cells, with a half maximal inhibitory concentration (IC50) value of 2.5±0.50 μg/mL after 48 hours treatment. The IC50 value was >30 μg/mL in WRL-68 cells. Induced antiproliferative activity of compound C1 for MCF-7 cells was further confirmed by lactate dehydrogenase, reactive oxygen species, acridine orange/propidium iodide staining, and DNA fragmentation assays. A significant increase of lactate dehydrogenase release in treated cells was observed via fluorescence analysis. Luminescent analysis showed significant growth in intracellular reactive oxygen species production after treatment. Morphological changes of necrosis and early and late apoptosis stages were observed in treated cells after staining with acridine orange/propidium iodide. DNA fragmentation was observed as a characteristic of apoptosis in treated cells. Results of the present study obviously reveal potential cytotoxic effects of compound C1 against human breast cancer MCF-7 cells. PMID:26648695

  18. Inhibition of Nicotinamide Phosphoribosyltransferase Induces Apoptosis in Estrogen Receptor-Positive MCF-7 Breast Cancer Cells

    PubMed Central

    Alaee, Mohammad; Khaghani, Shahnaz; Behroozfar, Kiarash; Hesari, Zahra; Ghorbanhosseini, Seyedeh Sara

    2017-01-01

    Purpose Tumor cells have increased turnover of nicotinamide adenine dinucleotide (NAD+), the main coenzyme in processes including adenosine diphosphate-ribosylation, deacetylation, and calcium mobilization. NAD+ is predominantly synthesized in human cells via the salvage pathway, with the first component being nicotinamide. Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme in this pathway, and its chemical inhibition by FK866 has elicited antitumor effects in several preclinical models of solid and hematologic cancers. However, its efficacy in estrogen receptor (ER)-positive and human epidermal growth factor receptor 2-positive breast cancer cells has not been previously investigated. In this study, we aimed to deplete the NAD+ content of MCF-7 cells, a model cell line for ER-positive breast cancer, by inhibiting NAMPT in order to evaluate downstream effects on p53 and its acetylation, p21 and Bcl-2-associated X protein (BAX) expression, and finally, apoptosis in MCF-7 breast cancer cells. Methods MCF-7 cells were cultured and treated with FK866. NAD+ levels in cells were determined colorimetrically. Levels of p53 and its acetylated form were determined by Western blotting. Expression of p21 and BAX was determined by real-time polymerase chain reaction. Finally, levels of apoptosis were assessed by flow cytometry using markers for annexin V and propidium iodide. Results FK866 treatment was able to increase p53 levels and acetylation, upregulate BAX and p21 expression, and induce apoptosis in MCF-7 cells. Addition of exogenous NAD+ to cells reversed these effects, suggesting that FK866 exerted its effects by depleting NAD+ levels. Conclusion Results showed that FK866 could effectively inhibit NAD+ biosynthesis and induce programmed cell death in MCF-7 cells, suggesting that NAMPT inhibitors may be useful for the treatment of ER-positive breast cancers. PMID:28382091

  19. Anticancer activity of Petroselinum sativum seed extracts on MCF-7 human breast cancer cells.

    PubMed

    Farshori, Nida Nayyar; Al-Sheddi, Ebtesam Saad; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2013-01-01

    Pharmacological and preventive properties of Petroselinum sativum seed extracts are well known, but the anticancer activity of alcoholic extracts and oil of Petroselinum sativum seeds on human breast cancer cells have not been explored so far. Therefore, the present study was designed to investigate the cytotoxic activities of these extracts against MCF-7 cells. Cells were exposed to 10 to 1000 μg/ml of alcoholic seed extract (PSA) and seed oil (PSO) of Petroselinum sativum for 24 h. Post-treatment, percent cell viability was studied by 3-(4, 5-dimethylthiazol-2yl)-2, 5-biphenyl tetrazolium bromide (MTT) and neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed that PSA and PSO significantly reduced cell viability, and altered the cellular morphology of MCF-7 cells in a concentration dependent manner. Concentrations of 50 μg/ml and above of PSA and 100 μg/ml and above of PSO were found to be cytotoxic in MCF-7 cells. Cell viability at 50, 100, 250, 500 and 1000 μg/ml of PSA was recorded as 81%, 57%, 33%, 8% and 5%, respectively, whereas at 100, 250, 500, and 1000 μg/ml of PSO values were 90%, 78%, 62%, and 8%, respectively by MTT assay. MCF-7 cells exposed to 250, 500 and 1000 μg/ml of PSA and PSO lost their typical morphology and appeared smaller in size. The data revealed that the treatment with PSA and PSO of Petroselinum sativum induced cell death in MCF-7 cells.

  20. Effects of low dose treatment of tributyltin on the regulation of estrogen receptor functions in MCF-7 cells.

    PubMed

    Sharan, Shruti; Nikhil, Kumar; Roy, Partha

    2013-06-01

    Endocrine disrupting chemicals are the natural/synthetic compounds which mimic or inhibit the actions of endogenous hormones. Organotin compounds, such as tributyltin (TBT) are typical environmental contaminants and suspected endocrine-disrupting chemical. The present study evaluates the estrogenic potential of this compound in vitro in ER (+) breast adenocarcinoma, MCF-7 cell line. Our data showed that tributyltin chloride (TBTCl) had agonistic activities for estrogen receptor-α (ER-α). Its estrogenic potential was checked using cell proliferation assay, aromatase assay, transactivation assay, and protein expression analysis. Low dose treatment of TBTCl had a proliferative effect on MCF-7 cells and resulted in up-regulation of aromatase enzyme activity and enhanced estradiol production in MCF-7 cells. Immunofluorescence staining showed translocation of ER-α from cytoplasm to nucleus and increased expression of ER-α, 3β-HSD and aromatase on treatment with increasing doses of TBTCl. Further, to decipher the probable signaling pathways involved in its action, the MCF-7 cells were transfected with different pathway dependent luciferase reporter plasmids (CRE, SRE, NF-κB and AP1). A significant increase in CRE and SRE and decrease in NF-κB regulated pathway were observed (p<0.05). Our results thus showed that the activation of SRE by TBTCl may be due to ligand dependent ER-α activation of the MAPK pathway and increased phosphorylation of ERK. In summary, the present data suggests that low dose of tributyltin genomically and non-genomically augmented estrogen dependent signaling by targeting various pathways.

  1. Inhibitory effects and molecular mechanisms of tetrahydrocurcumin against human breast cancer MCF-7 cells

    PubMed Central

    Han, Xiao; Deng, Shan; Wang, Ning; Liu, Yafei; Yang, Xingbin

    2016-01-01

    Background Tetrahydrocurcumin (THC), an active metabolite of curcumin, has been reported to have similar biological effects to curcumin, but the mechanism of the antitumor activity of THC is still unclear. Methods The present study was to investigate the antitumor effects and mechanism of THC in human breast cancer MCF-7 cells using the methods of MTT assay, LDH assay, flow cytometry analysis, and western blot assay. Results THC was found to have markedly cytotoxic effect and antiproliferative activity against MCF-7 cells in a dose-dependent manner with the IC50 for 24 h of 107.8 μM. Flow cytometry analysis revealed that THC mediated the cell-cycle arrest at G0/G1 phase, and 32.8% of MCF-7 cells entered the early phase of apoptosis at 100 μM for 24 h. THC also dose-dependently led to apoptosis in MCF-7 cells via the mitochondrial pathway, as evidenced by the activation of caspase-3 and caspase-9, the elevation of intracellular ROS, a decrease in Bcl-2 and PARP expression, and an increase in Bax expression. Meanwhile, cytochrome C was released to cytosol and the loss of mitochondria membrane potential (Δψm) was observed after THC treatment. Conclusion THC is an excellent source of chemopreventive agents in the treatment of breast cancer and has excellent potential to be explored as antitumor precursor compound. PMID:26899573

  2. Electrochemical estrogen screen method based on the electrochemical behavior of MCF-7 cells.

    PubMed

    Li, Jinlian; Song, Jia; Bi, Sheng; Zhou, Shi; Cui, Jiwen; Liu, Jiguang; Wu, Dongmei

    2016-08-05

    It was an urgent task to develop quick, cheap and accurate estrogen screen method for evaluating the estrogen effect of the booming chemicals. In this study, the voltammetric behavior between the estrogen-free and normal fragmented MCF-7 cell suspensions were compared, and the electrochemical signal (about 0.68V attributed by xanthine and guanine) of the estrogen-free fragmented MCF-7 cell suspension was obviously lower than that of the normal one. The electrochemistry detection of ex-secretion purines showed that the ability of ex-secretion purines of cells sharp decreased due to the removing of endogenous estrogen. The results indicated that the electrochemical signal of MCF-7 cells was related to the level of intracellular estrogen. When the level of intracellular estrogen was down-regulated, the concentrations of the xanthine and hypoxanthine decreased, which led to the electrochemical signal of MCF-7 cells fall. Based on the electrochemical signal, the electrochemical estrogen screen method was established. The estrogen effect of estradiol, nonylphenol and bisphenol A was evaluated with the electrochemical method, and the result was accordant with that of MTT assay. The electrochemical estrogen screen method was simple, quickly, cheap, objective, and it exploits a new way for the evaluation of estrogenic effects of chemicals.

  3. Involvement of multiple cellular pathways in regulating resistance to tamoxifen in BIK-suppressed MCF-7 cells.

    PubMed

    Viedma-Rodríguez, Rubí; Ruiz Esparza-Garrido, Ruth; Baiza-Gutman, Luis Arturo; Velázquez-Flores, Miguel Ángel; García-Carrancá, Alejandro; Salamanca-Gómez, Fabio; Arenas-Aranda, Diego

    2015-09-01

    Majority of women with estrogen receptor (ER)-positive breast cancers initially respond to hormone therapies such as tamoxifen (TAM; antagonist of estrogen). However, many tumors eventually become resistant to TAM. Therefore, understanding the various cellular components involved in causing resistance to TAM is of paramount importance in designing novel entities for efficacious hormone therapy. Previously, we found that suppression of BIK gene expression induced TAM resistance in MCF-7 breast cancer cells. In order to understand the response of these cells to TAM and its association with resistance, a microarray analysis of gene expression was performed in the BIK-suppressed MCF-7 cells and compared it to the TAM-only-treated cells (controls). Several genes participating in various cellular pathways were identified. Molecules identified in the drug resistance pathway were 14-3-3z or YWHAZ, WEE1, PRKACA, NADK, and HSP90AA 1. Further, genes involved in cell cycle control, apoptosis, and cell proliferation were also found differentially expressed in these cells. Transcriptional and translational analysis of key molecules such as STAT2, AKT 3, and 14-3-3z revealed similar changes at the messenger RNA (mRNA) as well as at the protein level. Importantly, there was no cytotoxic effect of TAM on BIK-suppressed MCF-7 cells. Further, these cells were not arrested at the G0-G1 phase of the cell cycle although 30 % of BIK-suppressed cells were arrested at the G2 phase of the cycle on TAM treatment. Furthermore, we found a relevant interaction between 14-3-3z and WEE1, suggesting that the cytotoxic effect of TAM was prevented in BIK-suppressed cells because this interaction leads to transitory arrest in the G2 phase leading to the repair of damaged DNA and allowing the cells to proliferate.

  4. Ajwa Date (Phoenix dactylifera L.) Extract Inhibits Human Breast Adenocarcinoma (MCF7) Cells In Vitro by Inducing Apoptosis and Cell Cycle Arrest

    PubMed Central

    Khan, Fazal; Ahmed, Farid; Pushparaj, Peter Natesan; Abuzenadah, Adel; Kumosani, Taha; Barbour, Elie; AlQahtani, Mohammed; Gauthaman, Kalamegam

    2016-01-01

    Introduction Phoenix dactylifera L (Date palm) is a native plant of the Kingdom of Saudi Arabia (KSA) and other Middle Eastern countries. Ajwa date has been described in the traditional and alternative medicine to provide several health benefits including anticholesteremic, antioxidant, hepatoprotective and anticancer effects, but most remains to be scientifically validated. Herein, we evaluated the anticancer effects of the Methanolic Extract of Ajwa Date (MEAD) on human breast adenocarcinoma (MCF7) cells in vitro. Methods MCF7 cells were treated with various concentrations (5, 10, 15, 20 and 25 mg/ml) of MEAD for 24, 48 and 72 h and changes in cell morphology, cell cycle, apoptosis related protein and gene expression were studied. Results Phase contrast microscopy showed various morphological changes such as cell shrinkage, vacuolation, blebbing and fragmentation. MTT (2-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay demonstrated statistically significant dose-dependent inhibitions of MCF7 cell proliferation from 35% to 95%. Annexin V-FITC and TUNEL assays showed positive staining for apoptosis of MCF7 cells treated with MEAD (15 mg and 25 mg for 48 h). Flow cytometric analyses of MCF7 cells with MEAD (15 mg/ml and 20 mg/ml) for 24 h demonstrated cell cycle arrest at 'S' phase; increased p53, Bax protein expression; caspase 3activation and decreased the mitochondrial membrane potential (MMP). Quantitative real time PCR (qRT-PCR) analysis showed up-regulation of p53, Bax, Fas, and FasL and down-regulation of Bcl-2. Conclusions MEAD inhibited MCF7 cells in vitro by the inducing cell cycle arrest and apoptosis. Our results indicate the anticancer effects of Ajwa dates, which therefore may be used as an adjunct therapy with conventional chemotherapeutics to achieve a synergistic effect against breast cancer. PMID:27441372

  5. Mitogen-activated protein kinase phosphatase 1 is involved in tamoxifen resistance in MCF7 cells.

    PubMed

    Ma, Gang; Pan, Yixia; Zhou, Can; Sun, Ruifang; Bai, Jingjing; Liu, Peijun; Ren, Yu; He, Jianjun

    2015-11-01

    Tamoxifen resistance is a major clinical problem for ER-positive breast cancer, but the underlying mechanism is not completely elucidated. In the present study, we reported that mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1), a member of the family of MKPs, is involved in tamoxifen resistance. We found that MKP1 expression increased in tamoxifen resistant MCF7 cells. To explore the possible role of MKP1 in tamoxifen resistance, siRNA targeting MKP1 was transfected into tamoxifen resistant MCF7 cells. To our surprise, knockdown of MKP-1 promoted cell death induced by tamoxifen. On the other hand, the MKP1 overexpressed MCF7 cell clone was established and MKP1 overexpression effectively attenuated MCF7 cell death induced by tamoxifen. In addition, we revealed that MKP1 inhibited tamoxifen‑mediated JNK activation in tamoxifen resistant MCF7 and MCF7 cells, and by this mechanism MKP1 was able to inhibit tamoxifen-induced cell death. We also showed that combined appliaction of MKP1 inhibitor triptolide and tamoxifen can effectively increase tamoxifen sensitivity in tamoxifen resistant MCF7 cells. Collectively, our results indicated that MKP-1 can attenuate tamoxifen-induced cell death through inhibiting the JNK signal pathway, which represents a novel mechanism of tamoxifen resistance in MCF7 cells.

  6. Growth inhibition and apoptotic effects of total flavonoids from Trollius chinensis on human breast cancer MCF-7 cells

    PubMed Central

    Wang, Shuhua; Tian, Qingqing; An, Fang

    2016-01-01

    Dried flowers of Trollius chinensis have long been used as an important traditional Chinese medicine. Previous studies have demonstrated the ability of T. chinensis flavonoids to reduce the proliferation of human breast cancer MCF-7 cells. The present study further investigated the influence of T. chinensis flavonoids on the growth and proliferation of MCF-7 cells and observed clear inhibitory effects within the concentration range of 0.0991–1.5856 mg/ml. Apoptosis was triggered by T. chinensis flavonoids treatment that was evaluated by differential interference contrast software, the Hoechst 33258 method, scanning electron microscopy, hematoxylin/eosin staining and laser confocal light microscopy. Cells treated with T. chinensis flavonoids selectively reduced bcl-2 and NF-κB expression and increased the expression of caspase-9 and caspase-3 indicating that the inhibition of cellular proliferation occurred through activation of a mitochondrial pathway. Taken together, the results confirmed the ability of T. chinensis flavonoids to inhibit cell proliferation. PMID:27602105

  7. Betanin-Enriched Red Beetroot (Beta vulgaris L.) Extract Induces Apoptosis and Autophagic Cell Death in MCF-7 Cells.

    PubMed

    Nowacki, Laëtitia; Vigneron, Pascale; Rotellini, Laura; Cazzola, Hélène; Merlier, Franck; Prost, Elise; Ralanairina, Robert; Gadonna, Jean-Pierre; Rossi, Claire; Vayssade, Muriel

    2015-12-01

    Recent studies have pointed out the preventive role of beetroot extracts against cancers and their cytotoxic activity on cancer cells. Among many different natural compounds, these extracts contained betanin and its stereoisomer isobetanin, which belongs to the betalain group of highly bioavailable antioxidants. However, a precise identification of the molecules responsible for this tumor-inhibitory effect was still required. We isolated a betanin/isobetanin concentrate from fresh beetroots, corresponding to the highest purified betanin extract used for studying anticancer activities of these molecules. The cytotoxicity of this betanin-enriched extract was then characterized on cancer and normal cells and we highlighted the death signalling pathways involved. Betanin/isobetanin concentrate significantly decreased cancer cell proliferation and viability. Particularly in MCF-7-treated cells, the expressions of apoptosis-related proteins (Bad, TRAILR4, FAS, p53) were strongly increased and the mitochondrial membrane potential was altered, demonstrating the involvement of both intrinsic and extrinsic apoptotic pathways. Autophagosome vesicles in MCF-7-treated cells were observed, also suggesting autophagic cell death upon betanin/isobetanin treatment. Importantly, the betanin-enriched extract had no obvious effect towards normal cell lines. Our data bring new insight to consider the betanin/isobetanin mix as therapeutic anticancer compound, alone or in combination with classical chemotherapeutic drugs, especially in functional p53 tumors.

  8. Differential effect of over-expressing UGT1A1 and CYP1A1 on xenobiotic assault in MCF-7 cells.

    PubMed

    Leung, Hau Y; Wang, Yun; Leung, Lai K

    2007-12-05

    Gene mutation has been considered as a major step of carcinogenesis. Some defective genes may induce spontaneous tumorigenesis, while others are required to interact with the environment to induce cancer. CYP1A1 and UGT1A1 are encoded for the respective phase I and II drug-metabolizing enzymes. Their expressions have been associated with breast cancer incidence in women, and some xenobiotics are substrates of these two enzymes. In the current study, cytochrome P450 (CYP) 1A1 and UDP-glucuronosyltransferase (UGT) 1A1 were over-expressed in the breast cancer MCF-7 cells, and potential interactions between these enzymes and estrogen or polycyclic aromatic hydrocarbon were evaluated. Compared with control cells (MCF-7(VEC)), reduced cell proliferation was seen in cells expressing UGT1A1 (MCF-7(UGT1A1)) under estradiol treatment. 7,12-Dimethylbenz[a]anthracene (DMBA) is an established breast cancer initiator in animal model. Over-expressing UGT1A1 reduced the binding of DMBA to DNA, and increased MCF-7(UGT1A1) intact cells under DMBA treatment was verified by comet assay. On the other hand, intensified DMBA binding and damages were observed in MCF-7(CYP1A1) cells. This study supported that UGT1A1 but not CYP1A1 expression could protect against xenobiotic assault.

  9. Inhibitory effect of substituted dextrans on MCF7 human breast cancer cell growth in vitro.

    PubMed

    Morere, J F; Letourneur, D; Planchon, P; Avramoglou, T; Jozefonvicz, J; Israel, L; Crepin, M

    1992-12-01

    Substituted dextrans can reproduce some of the properties of heparin and can thus be used to alter cellular growth. We studied the effect of heparin (H108), dextran (D), carboxymethylbenzylamide dextran (CMDB) and carboxymethylbenzylamide sulfonate dextran (CMDBS) on the growth of human mammary cells of the MCF7 tumor line. The cells were cultured in minimum Eagle's medium containing 2% fetal calf serum without biopolymer, or with increasing concentrations of H108, D, CMDB or CMDBS. Growth curves were accurately based on cell counting using a Coulter counter. Cell distribution in the various phases of the cycle was analyzed by flow cytometry. Dose-dependent growth inhibitory effects (400-4000 micrograms/ml) were observed. The effect on MCF7 tumor cells was most apparent with CMDBS. The percentage of cells in the S phase decreased with preferential blocking in the G0/G1 phase. Pre-clinical studies can be anticipated as there is an absence of in vivo toxicity.

  10. Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells

    SciTech Connect

    Dieudonne, Marie-Noelle; Bussiere, Marianne; Dos Santos, Esther; Leneveu, Marie-Christine; Giudicelli, Yves . E-mail: biochip@wanadoo.fr; Pecquery, Rene

    2006-06-23

    It is well established that obesity is a risk factor for breast cancer and that blood levels of adiponectin, a hormone mainly secreted by white adipocytes, are inversely correlated with the body fat mass. As adiponectin elicits anti-proliferative effects in some cell types, we tested the hypothesis that adiponectin could influence human breast cancer MCF-7 cell growth. Here we show that MCF-7 cells express adiponectin receptors and respond to human recombinant adiponectin by reducing their growth, AMPkinase activation, and p42/p44 MAPkinase inactivation. Further, we demonstrate that the anti-proliferative effect of adiponectin involves activation of cell apoptosis and inhibition of cell cycle. These findings suggest that adiponectin could act in vivo as a paracrine/endocrine growth inhibitor towards mammary epithelial cells. Moreover, adipose adiponectin production being strongly reduced in obesity, this study may help to explain why obesity is a risk factor of developing breast cancers.

  11. Effect of selected phytochemicals and apple extracts on NF-kappaB activation in human breast cancer MCF-7 cells.

    PubMed

    Yoon, Hyungeun; Liu, Rui Hai

    2007-04-18

    Nuclear factor kappaB (NF-kappaB) is a transcription factor, which plays an important role in inflammation, cell proliferation, apoptosis, and immunity in eukaryotes. In cancer cells, NF-kappaB induces resistance to anticancer chemotherapeutic agents by increasing cell proliferation and inhibiting apoptosis. Therefore, inhibition of NF-kappaB activation in cancer cells is advantageous in cancer therapy by lowing the resistance to chemotherapy. Several phytochemicals from fruits and vegetables have been reported to inhibit NF-kappaB activation, but the mechanisms of how the phytochemicals work have not been fully understood. The present study examines the effects of selected phytochemicals and apple extracts on TNF-alpha-induced NF-kappaB activation in human breast cancer MCF-7 cells. Apple extracts significantly inhibited the TNF-alpha-induced NF-kappaB activation at a dose of 5 mg/mL (p < 0.05). Curcumin also significantly blocked the TNF-alpha-induced NF-kappaB activation at doses of 10 and 20 microM (p < 0.05). Neither apple extracts nor curcumin affected phosphorylation of inhibitor of NF-kappaB-alpha (IkappaB-alpha); both significantly inhibited proteasomal activity of MCF-7 cells at doses of 2.5 and 5 mg/mL of apple extracts and 20 microM of curcumin (p < 0.05). These results suggest that apple extracts and curcumin have the capabilities of inhibiting TNF-alpha-induced NF-kappaB activation of MCF-7 cells by inhibiting the proteasomal activities instead of IkappaB kinase (IKK) activation.

  12. Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells

    PubMed Central

    Chen, Daozhen; Tang, Qiusha; Li, Xiangdong; Zhou, Xiaojin; Zang, Jia; Xue, Wen-qun; Xiang, Jing-ying; Guo, Cai-qin

    2012-01-01

    Background The objective of this study was to evaluate the synthesis and biocompatibility of Fe3O4 nanoparticles and investigate their therapeutic effects when combined with magnetic fluid hyperthermia on cultured MCF-7 cancer cells. Methods Magnetic Fe3O4 nanoparticles were prepared using a coprecipitation method. The appearance, structure, phase composition, functional groups, surface charge, magnetic susceptibility, and release in vitro were characterized by transmission electron microscopy, x-ray diffraction, scanning electron microscopy-energy dispersive x-ray spectroscopy, and a vibrating sample magnetometer. Blood toxicity, in vitro toxicity, and genotoxicity were investigated. Therapeutic effects were evaluated by MTT [3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide] and flow cytometry assays. Results Transmission electron microscopy revealed that the shapes of the Fe3O4 nanoparticles were approximately spherical, with diameters of about 26.1 ± 5.2 nm. Only the spinel phase was indicated in a comparison of the x-ray diffraction data with Joint Corporation of Powder Diffraction Standards (JCPDS) X-ray powder diffraction files. The O-to-Fe ratio of the Fe3O4 was determined by scanning electron microscopy-energy dispersive x-ray spectroscopy elemental analysis, and approximated pure Fe3O4. The vibrating sample magnetometer hysteresis loop suggested that the Fe3O4 nanoparticles were superparamagnetic at room temperature. MTT experiments showed that the toxicity of the material in mouse fibroblast (L-929) cell lines was between Grade 0 to Grade 1, and that the material lacked hemolysis activity. The acute toxicity (LD50) was 8.39 g/kg. Micronucleus testing showed no genotoxic effects. Pathomorphology and blood biochemistry testing demonstrated that the Fe3O4 nanoparticles had no effect on the main organs and blood biochemistry in a rabbit model. MTT and flow cytometry assays revealed that Fe3O4 nano magnetofluid thermotherapy inhibited MCF-7

  13. Apoptotic mechanism of MCF-7 breast cells in vivo and in vitro induced by photodynamic therapy with C-phycocyanin.

    PubMed

    Li, Bing; Chu, Xianming; Gao, Meihua; Li, Wuxiu

    2010-01-01

    The aim of this study was to investigate the pro-apoptotic mechanism of C-phycocyanin (C-PC)-mediated photodynamic therapy (PDT) in a murine tumor model and cultured MCF-7 cells. The mice were divided into four groups: control, He-Ne laser radiation, C-PC treatment, and C-PC treatment + He-Ne laser radiation. The effects of C-PC and/or laser on immune organs, immunocyte proliferation, tumor genesis, and apoptosis-related proteins expressions were investigated by immunohistochemistry, in situ hybridization, MTT, electron microscope, western blot, and immunofluorescence assay. The results showed that He-Ne laser treatment alone showed marginal effects. In C-PC-treated mice, the weight of immune organs, proliferation of immunocytes, and expression of pro-apoptotic Fas protein were increased, whereas the tumor weight and the expressions of anti-apoptotic proteins (NF-kappaB and P53) and CD44 mRNA were comparatively decreased. In vitro, C-PC was able to inhibit MCF-7 cell proliferation and cause ultrastructural changes including microvilli loss, formation of membrane blebs, and chromatin condensation. Moreover, C-PC treatment could activate caspase-9 expression, induce cytochrome c release, and downregulate Bcl-2 expression. When combined with He-Ne laser irradiation, the effects of C-PC treatment were further enhanced. Facilitating the apoptosis signals transduction and finally leading to the apoptosis of MCF-7 cells may be the mechanism of the anti-tumor activities of C-PC-mediated PDT.

  14. Dichloromethane and Methanol Extracts of Scrophularia oxysepala Induces Apoptosis in MCF-7 Human Breast Cancer Cells

    PubMed Central

    Valiyari, Samira; baradaran, behzad; Delazar, Abbas; Pasdaran, Ardalan; Zare, Fateme

    2012-01-01

    Purpose: Breast cancer is the most common cause of cancer-related death in women worldwide. Therefore, there is an urgent need to identify and develop therapeutic strategies against this deadly disease. This study is the first to investigate the cytotoxic effects and the mechanism of cell death of Scrophularia oxysepala extracts in MCF-7 human breast cancer cells. Methods: Three extracts of Scrophularia oxysepala including the n-hexane, dichloromethane and methanol extracts were examined. MTT (3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and Trypan-blue assays were performed in MCF-7 cells as well as Human umbilical vein endothelial cells (HUVEC) to analyze the cytotoxic activity of the extracts of Scrophularia oxysepala. Further, the apoptosis inducing action of the extracts was determined by TUNEL (terminal deoxy transferase (TdT)-mediated dUTP nick- end labeling) test and cell death assay. Results: The results showed that the n-hexane extract had no cytotoxic effects but dichloromethane and methanol extracts significantly inhibited cell growth and viability in a dose and time dependent manner without inducing damage to non-cancerous cell line HUVEC. In addition, Cell death assay and DNA fragmentation analysis using TUNEL indicated induction of apoptosis by dichloromethane and methanol extracts of Scrophularia oxysepala in MCF-7 cells. Conclusion: Our studies suggest that this plant may contain potential bioactive compound(s) for the treatment of breast cancer. PMID:24312797

  15. Pseudolaric acid B activates autophagy in MCF-7 human breast cancer cells to prevent cell death

    PubMed Central

    YU, JINGHUA; CHEN, CHUNHAI; XU, TIANYANG; YAN, MINGHUI; XUE, BIANBIAN; WANG, YING; LIU, CHUNYU; ZHONG, TING; WANG, ZENGYAN; MENG, XIANYING; HU, DONGHUA; YU, XIAOFANG

    2016-01-01

    Pseudolaric acid B (PAB) has been demonstrated to exert antitumor effects in MCF-7 human breast cancer cells. The present study aimed to investigate the mechanism of resistance to PAB-induced cell death. Following incubation with 4 µM of PAB for 3 days, the majority of MCF-7 cells became senescent, while some retained the same morphology as control cells, as assessed using a senescence detection kit. Additionally, 36 h of treatment with 4 µM of PAB increased the positive staining of autophagy markers, as shown by monodansylcadaverine and acridine orange staining. Western blot analysis indicated that this treatment also increased expression of the autophagy-related proteins Beclin-1 and microtubule-associated protein 1 light chain 3. Furthermore, treatment with PAB and the autophagy inhibitor 3-methyl adenine significantly decreased the ratio of autophagy, as assessed by flow cytometric analysis of monodansylcadaverine staining density (P<0.001), and increased the ratio of cell death, as assessed by MTT analysis (P<0.001). This indicated that autophagy promotes cell survival as a resistance mechanism to PAB treatment. Additionally, the present study demonstrated that PAB treatment did not affect the mitochondrial membrane potential, which may be related to autophagy. Increased Bcl-2 expression may explain why PAB did not affect the mitochondrial membrane potential. A Bcl-2 binding test demonstrated that PAB treatment inhibits the binding of Bcl-2 and Beclin-1, which may free Beclin-1 to participate in autophagy. Therefore, the present study demonstrated that autophagy may be activated by PAB treatment in human breast cancer MCF-7 cells, contributing to resistance to cell death. PMID:26998069

  16. Pseudolaric acid B activates autophagy in MCF-7 human breast cancer cells to prevent cell death.

    PubMed

    Yu, Jinghua; Chen, Chunhai; Xu, Tianyang; Yan, Minghui; Xue, Bianbian; Wang, Ying; Liu, Chunyu; Zhong, Ting; Wang, Zengyan; Meng, Xianying; Hu, Donghua; Yu, Xiaofang

    2016-03-01

    Pseudolaric acid B (PAB) has been demonstrated to exert antitumor effects in MCF-7 human breast cancer cells. The present study aimed to investigate the mechanism of resistance to PAB-induced cell death. Following incubation with 4 µM of PAB for 3 days, the majority of MCF-7 cells became senescent, while some retained the same morphology as control cells, as assessed using a senescence detection kit. Additionally, 36 h of treatment with 4 µM of PAB increased the positive staining of autophagy markers, as shown by monodansylcadaverine and acridine orange staining. Western blot analysis indicated that this treatment also increased expression of the autophagy-related proteins Beclin-1 and microtubule-associated protein 1 light chain 3. Furthermore, treatment with PAB and the autophagy inhibitor 3-methyl adenine significantly decreased the ratio of autophagy, as assessed by flow cytometric analysis of monodansylcadaverine staining density (P<0.001), and increased the ratio of cell death, as assessed by MTT analysis (P<0.001). This indicated that autophagy promotes cell survival as a resistance mechanism to PAB treatment. Additionally, the present study demonstrated that PAB treatment did not affect the mitochondrial membrane potential, which may be related to autophagy. Increased Bcl-2 expression may explain why PAB did not affect the mitochondrial membrane potential. A Bcl-2 binding test demonstrated that PAB treatment inhibits the binding of Bcl-2 and Beclin-1, which may free Beclin-1 to participate in autophagy. Therefore, the present study demonstrated that autophagy may be activated by PAB treatment in human breast cancer MCF-7 cells, contributing to resistance to cell death.

  17. (Anti)estrogenic effects of phytochemicals on human primary mammary fibroblasts, MCF-7 cells and their co-culture.

    PubMed

    van Meeuwen, J A; Korthagen, N; de Jong, P C; Piersma, A H; van den Berg, M

    2007-06-15

    In the public opinion, phytochemicals (PCs) present in the human diet are often considered beneficial (e.g. by preventing breast cancer). Two possible mechanisms that could modulate tumor growth are via interaction with the estrogen receptor (ER) and inhibition of aromatase (CYP19). Multiple in vitro studies confirmed that these compounds act estrogenic, thus potentially induce tumor growth, as well as aromatase inhibitory, thus potentially reduce tumor growth. It is thought that in the in vivo situation breast epithelial (tumor) cells communicate with surrounding connective tissue by means of cytokines, prostaglandins and estradiol forming a complex feedback mechanism. Recently our laboratory developed an in vitro co-culture model of healthy mammary fibroblasts and MCF-7 cells that (at least partly) simulated this feedback mechanism (M. Heneweer et al., TAAP vol. 202(1): 50-58, 2005). In the present study biochanin A, chrysin, naringenin, apigenin, genistein and quercetin were studied for their estrogenic properties (cell proliferation, pS2 mRNA) and aromatase inhibition in MCF-7 breast tumor cells, healthy mammary fibroblasts and their co-culture. The proliferative potency of these compounds in the MCF-7 cells derived from their EC(50)s decreased in the following order: estadiol (4*10(-3) nM)>biochanin A (9 nM)>genistein (32 nM)>testosterone (46 nM)>naringenin (287 nM)>apigenin (440 nM)>chrysin (4 microM). The potency to inhibit aromatase derived from their IC(50)s decreased in the following order: chrysin (1.5 microM)>naringenin (2.2 microM)>genistein (3.6 microM)>apigenin (4.1 microM)>biochanin A (25 microM)>quercetin (30 microM). The results of these studies show that these PCs can induce cell proliferation or inhibit aromatase in the same concentration range (1-10 microM). Results from co-cultures did not elucidate the dominant effect of these compounds. MCF-7 cell proliferation occurs at concentrations that are not uncommon in blood of individuals using food

  18. (Anti)estrogenic effects of phytochemicals on human primary mammary fibroblasts, MCF-7 cells and their co-culture

    SciTech Connect

    Meeuwen, J.A. van . E-mail: J.A.vanMeeuwen@iras.uu.nl; Korthagen, N.; Jong, P.C. de; Piersma, A.H.; Berg, M. van den

    2007-06-15

    In the public opinion, phytochemicals (PCs) present in the human diet are often considered beneficial (e.g. by preventing breast cancer). Two possible mechanisms that could modulate tumor growth are via interaction with the estrogen receptor (ER) and inhibition of aromatase (CYP19). Multiple in vitro studies confirmed that these compounds act estrogenic, thus potentially induce tumor growth, as well as aromatase inhibitory, thus potentially reduce tumor growth. It is thought that in the in vivo situation breast epithelial (tumor) cells communicate with surrounding connective tissue by means of cytokines, prostaglandins and estradiol forming a complex feedback mechanism. Recently our laboratory developed an in vitro co-culture model of healthy mammary fibroblasts and MCF-7 cells that (at least partly) simulated this feedback mechanism (M. Heneweer et al., TAAP vol. 202(1): 50-58, 2005). In the present study biochanin A, chrysin, naringenin, apigenin, genistein and quercetin were studied for their estrogenic properties (cell proliferation, pS2 mRNA) and aromatase inhibition in MCF-7 breast tumor cells, healthy mammary fibroblasts and their co-culture. The proliferative potency of these compounds in the MCF-7 cells derived from their EC{sub 50}s decreased in the following order: estadiol (4*10{sup -3} nM) > biochanin A (9 nM) > genistein (32 nM) > testosterone (46 nM) > naringenin (287 nM) > apigenin (440 nM) > chrysin (4 {mu}M). The potency to inhibit aromatase derived from their IC{sub 50}s decreased in the following order: chrysin (1.5 {mu}M) > naringenin (2.2 {mu}M) > genistein (3.6 {mu}M) > apigenin (4.1 {mu}M) > biochanin A (25 {mu}M) > quercetin (30 {mu}M). The results of these studies show that these PCs can induce cell proliferation or inhibit aromatase in the same concentration range (1-10 {mu}M). Results from co-cultures did not elucidate the dominant effect of these compounds. MCF-7 cell proliferation occurs at concentrations that are not uncommon in blood

  19. Monobenzyltin Complex C1 Induces Apoptosis in MCF-7 Breast Cancer Cells through the Intrinsic Signaling Pathway and through the Targeting of MCF-7-Derived Breast Cancer Stem Cells via the Wnt/β-Catenin Signaling Pathway.

    PubMed

    Fani, Somayeh; Dehghan, Firouzeh; Karimian, Hamed; Mun Lo, Kong; Ebrahimi Nigjeh, Siyamak; Swee Keong, Yeap; Soori, Rahman; May Chow, Kit; Kamalidehghan, Behnam; Mohd Ali, Hapipah; Mohd Hashim, Najihah

    2016-01-01

    Monobenzyltin Schiff base complex, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, C1, is an organotin non-platinum metal-based agent. The present study was conducted to investigate its effects on MCF-7 cells with respect to the induction of apoptosis and its inhibitory effect against MCF-7 breast cancer stem cells. As determined in a previous study, compound C1 revealed strong antiproliferative activity on MCF-7 cells with an IC50 value of 2.5 μg/mL. Annexin V/propidium iodide staining coupled with flow cytometry indicated the induction of apoptosis in treated cells. Compound C1 induced apoptosis in MCF-7 cells and was mediated through the intrinsic pathway with a reduction in mitochondrial membrane potential and mitochondrial cytochrome c release to cytosol. Complex C1 activated caspase 9 as a result of cytochrome c release. Subsequently, western blot and real time PCR revealed a significant increase in Bax and Bad expression and a significant decrease in the expression levels of Bcl2 and HSP70. Furthermore, a flow cytometric analysis showed that treatment with compound C1 caused a significant arrest of MCF-7 cells in G0/G1 phase. The inhibitory analysis of compound C1 against derived MCF-7 stem cells showed a significant reduction in the aldehyde dehydrogenase-positive cell population and a significant reduction in the population of MCF-7 cancer stem cells in primary, secondary, and tertiary mammospheres. Moreover, treatment with C1 down-regulated the Wnt/β-catenin self-renewal pathway. These findings indicate that complex C1 is a suppressive agent of MCF-7 cells that functions through the induction of apoptosis, cell cycle arrest, and the targeting of MCF-7-derived cancer stem cells. This work may lead to a better treatment strategy for the reduction of breast cancer recurrence.

  20. Monobenzyltin Complex C1 Induces Apoptosis in MCF-7 Breast Cancer Cells through the Intrinsic Signaling Pathway and through the Targeting of MCF-7-Derived Breast Cancer Stem Cells via the Wnt/β-Catenin Signaling Pathway

    PubMed Central

    Fani, Somayeh; Dehghan, Firouzeh; Karimian, Hamed; Mun Lo, Kong; Ebrahimi Nigjeh, Siyamak; Swee Keong, Yeap; Soori, Rahman; May Chow, Kit; Kamalidehghan, Behnam; Mohd Ali, Hapipah; Mohd Hashim, Najihah

    2016-01-01

    Monobenzyltin Schiff base complex, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, C1, is an organotin non-platinum metal-based agent. The present study was conducted to investigate its effects on MCF-7 cells with respect to the induction of apoptosis and its inhibitory effect against MCF-7 breast cancer stem cells. As determined in a previous study, compound C1 revealed strong antiproliferative activity on MCF-7 cells with an IC50 value of 2.5 μg/mL. Annexin V/propidium iodide staining coupled with flow cytometry indicated the induction of apoptosis in treated cells. Compound C1 induced apoptosis in MCF-7 cells and was mediated through the intrinsic pathway with a reduction in mitochondrial membrane potential and mitochondrial cytochrome c release to cytosol. Complex C1 activated caspase 9 as a result of cytochrome c release. Subsequently, western blot and real time PCR revealed a significant increase in Bax and Bad expression and a significant decrease in the expression levels of Bcl2 and HSP70. Furthermore, a flow cytometric analysis showed that treatment with compound C1 caused a significant arrest of MCF-7 cells in G0/G1 phase. The inhibitory analysis of compound C1 against derived MCF-7 stem cells showed a significant reduction in the aldehyde dehydrogenase-positive cell population and a significant reduction in the population of MCF-7 cancer stem cells in primary, secondary, and tertiary mammospheres. Moreover, treatment with C1 down-regulated the Wnt/β-catenin self-renewal pathway. These findings indicate that complex C1 is a suppressive agent of MCF-7 cells that functions through the induction of apoptosis, cell cycle arrest, and the targeting of MCF-7-derived cancer stem cells. This work may lead to a better treatment strategy for the reduction of breast cancer recurrence. PMID:27529753

  1. Differential response to α-oxoaldehydes in tamoxifen resistant MCF-7 breast cancer cells.

    PubMed

    Nass, Norbert; Brömme, Hans-Jürgen; Hartig, Roland; Korkmaz, Sevil; Sel, Saadettin; Hirche, Frank; Ward, Aoife; Simm, Andreas; Wiemann, Stefan; Lykkesfeldt, Anne E; Roessner, Albert; Kalinski, Thomas

    2014-01-01

    Tamoxifen is the standard adjuvant endocrine therapy for estrogen-receptor positive premenopausal breast cancer patients. However, tamoxifen resistance is frequently observed under therapy. A tamoxifen resistant cell line has been generated from the estrogen receptor positive mamma carcinoma cell line MCF-7 and was analyzed for putative differences in the aldehyde defence system and accumulation of advanced glycation end products (AGE). In comparison to wt MCF-7 cells, these tamoxifen resistant cells were more sensitive to the dicarbonyl compounds glyoxal and methylglyoxal and displayed increased caspase activity, p38-MAPK- and IκBα-phosphorylation. However, mRNA accumulation of the aldehyde- and AGE-defence enzymes glyoxalase-1 and -2 (GLO1, GLO2) as well as fructosamine-3-kinase (FN3K) was not significantly altered. Tamoxifen resistant cells contained less free sulfhydryl-groups (glutathione) suggesting that the increased sensitivity towards the dicarbonyls was due to a higher sensitivity towards reactive oxygen species which are associated with dicarbonyl stress. To further analyse, if these data are of more general importance, key experiments were replicated with tamoxifen resistant MCF-7 cell lines from two independent sources. These cell lines were also more sensitive to aldehydes, especially glyoxal, but were different in their cellular signalling responses to the aldehydes. In conclusion, glyoxalases and other aldehyde defence enzymes might represent a promising target for the therapy of tamoxifen resistant breast cancers.

  2. Cytotoxic and antiproliferative effect of tepary bean lectins on C33-A, MCF-7, SKNSH, and SW480 cell lines.

    PubMed

    Valadez-Vega, Carmen; Morales-González, José A; Sumaya-Martínez, María Teresa; Delgado-Olivares, Luis; Cruz-Castañeda, Areli; Bautista, Mirandeli; Sánchez-Gutiérrez, Manuel; Zuñiga-Pérez, Clara

    2014-07-07

    For many years, several studies have been employing lectin from vegetables in order to prove its toxic effect on various cell lines. In this work, we analyzed the cytotoxic, antiproliferative, and post-incubatory effect of pure tepary bean lectins on four lines of malignant cells: C33-A; MCF-7; SKNSH, and SW480. The tests were carried out employing MTT and 3[H]-thymidine assays. The results showed that after 24 h of lectin exposure, the cells lines showed a dose-dependent cytotoxic effect, the effect being higher on MCF-7, while C33-A showed the highest resistance. Cell proliferation studies showed that the toxic effect induced by lectins is higher even when lectins are removed, and in fact, the inhibition of proliferation continues after 48 h. Due to the use of two techniques to analyze the cytotoxic and antiproliferative effect, differences were observed in the results, which can be explained by the fact that one technique is based on metabolic reactions, while the other is based on the 3[H]-thymidine incorporated in DNA by cells under division. These results allow concluding that lectins exert a cytotoxic effect after 24 h of exposure, exhibiting a dose-dependent effect. In some cases, the cytotoxic effect is higher even when the lectins are eliminated, however, in other cases, the cells showed a proliferative effect.

  3. Cytotoxicity of methanol extracts of Elaeis guineensis on MCF-7 and Vero cell lines

    PubMed Central

    Vijayarathna, Soundararajan; Sasidharan, Sreenivasan

    2012-01-01

    Objective To investigate the cytotoxic effect of Elaeis guineensis methanol extract on MCF-7 and Vero cell. Methods In vitro cytotoxicity was evaluated in by MTT assay. Cell morphological changes were observed by using light microscope. Results The MTT assay indicated that methanol extract of the plant exhibited significant cytotoxic effects on MCF-7. Morphological alteration of the cell lines after exposure with Elaeis guineensis extract were observed under phase contrast microscope in the dose dependent manner. Conclusions The results suggest the probable use of the Elaeis guineensis methanol extract in preparing recipes for cancer-related ailments. Further studies on isolation of metabolites and their in vivo cytotoxicity are under investigation. PMID:23569855

  4. miR-29a suppresses MCF-7 cell growth by downregulating tumor necrosis factor receptor 1.

    PubMed

    Zhao, Yiling; Yang, Fenghua; Li, Wenyuan; Xu, Chunyan; Li, Li; Chen, Lifei; Liu, Yancui; Sun, Ping

    2017-02-01

    Tumor necrosis factor receptor 1 is the main receptor mediating many tumor necrosis factor-alpha-induced cellular events. Some studies have shown that tumor necrosis factor receptor 1 promotes tumorigenesis by activating nuclear factor-kappa B signaling pathway, while other studies have confirmed that tumor necrosis factor receptor 1 plays an inhibitory role in tumors growth by inducing apoptosis in breast cancer. Therefore, the function of tumor necrosis factor receptor 1 in breast cancer requires clarification. In this study, we first found that tumor necrosis factor receptor 1 was significantly increased in human breast cancer tissues and cell lines, and knockdown of tumor necrosis factor receptor 1 by small interfering RNA inhibited cell proliferation by arresting the cell cycle and inducing apoptosis. In addition, miR-29a was predicted as a regulator of tumor necrosis factor receptor 1 by TargetScan and was shown to be inversely correlated with tumor necrosis factor receptor 1 expression in human breast cancer tissues and cell lines. Luciferase reporter assay further confirmed that miR-29a negatively regulated tumor necrosis factor receptor 1 expression by binding to the 3' untranslated region. In our functional study, miR-29a overexpression remarkably suppressed cell proliferation and colony formation, arrested the cell cycle, and induced apoptosis in MCF-7 cell. Furthermore, in combination with tumor necrosis factor receptor 1 transfection, miR-29a significantly reversed the oncogenic role caused by tumor necrosis factor receptor 1 in MCF-7 cell. In addition, we demonstrated that miR-29a suppressed MCF-7 cell growth by inactivating the nuclear factor-kappa B signaling pathway and by decreasing cyclinD1 and Bcl-2/Bax protein levels. Taken together, our results suggest that miR-29a is an important regulator of tumor necrosis factor receptor 1 expression in breast cancer and functions as a tumor suppressor by targeting tumor necrosis factor receptor 1 to

  5. Inhibition of SGK1 enhances mAR-induced apoptosis in MCF-7 breast cancer cells.

    PubMed

    Liu, Guilai; Honisch, Sabina; Liu, Guoxing; Schmidt, Sebastian; Pantelakos, Stavros; Alkahtani, Saad; Toulany, Mahmoud; Lang, Florian; Stournaras, Christos

    2015-01-01

    Functional membrane androgen receptors (mAR) have previously been described in MCF-7 breast cancer cells. Their stimulation by specific testosterone albumin conjugates (TAC) activate rapidly non-genomic FAK/PI3K/Rac1/Cdc42 signaling, trigger actin reorganization and inhibit cell motility. PI3K stimulates serum and glucocorticoid inducible kinase SGK1, which in turn regulates the function of mAR. In the present study we addressed the role of SGK1 in mAR-induced apoptosis. TAC-stimulated mAR activation elicited apoptosis of MCF-7 cells, an effect significantly potentiated by concomitant incubation of the cells with TAC and the specific SGK1 inhibitors EMD638683 and GSK650394. In line with this, TAC and EMD638683 activated caspase-3. These effects were insensitive to the classical androgen receptor (iAR) antagonist flutamide, pointing to iAR-independent, mAR-induced responses. mAR activation and SGK1 inhibition further considerably augmented the radiation-induced apoptosis of MCF-7 cells. Moreover, TAC- and EMD638683 triggered early actin polymerization in MCF-7 cells. Blocking actin restructuring with cytochalasin B abrogated the TAC- and EMD638683-induced pro-apoptotic responses. Further analysis of the molecular signaling revealed late de-phosphorylation of FAK and Akt. Our results demonstrate that mAR activation triggers pro-apoptotic responses in breast tumor cells, an effect significantly enhanced by SGK1 inhibition, involving actin reorganization and paralleled by down-regulation of FAK/Akt signaling.

  6. A novel protoapigenone analog RY10-4 induces breast cancer MCF-7 cell death through autophagy via the Akt/mTOR pathway

    SciTech Connect

    Zhang, Xuenong; Wei, Han; Liu, Ziwei; Yuan, Qianying; Wei, Anhua; Shi, Du; Yang, Xian; Ruan, Jinlan

    2013-07-15

    Protoapigenone is a unique flavonoid and enriched in many ferns, showing potent antitumor activity against a broad spectrum of human cancer cell lines. RY10-4, a modified version of protoapigenone, manifested better anti-proliferation activity in human breast cancer cell line MCF-7. The cytotoxicity of RY10-4 against MCF-7 cells is exhibited in both time- and concentration-dependent manners. Here we investigated a novel effect of RY10-4 mediated autophagy in autophagy defect MCF-7 cells. Employing immunofluorescence assay for microtubule-associated protein light-chain 3 (LC3), monodansylcadaverine staining, Western blotting analyses for LC3 and p62 as well as ultrastructural analysis by transmission electron microscopy, we showed that RY10-4 induced autophagy in MCF-7 cells but protoapigenone did not. Meanwhile, inhibition of autophagy by pharmacological and genetic approaches significantly increased the viability of RY10-4 treated cells, suggesting that the autophagy induced by RY10-4 played as a promotion mechanism for cell death. Further studies revealed that RY10-4 suppressed the activation of mTOR and p70S6K via the Akt/mTOR pathway. Our results provided new insights for the mechanism of RY10-4 induced cell death and the cause of RY10-4 showing better antitumor activity than protoapigenone, and supported further evidences for RY10-4 as a lead to design a promising antitumor agent. - Highlights: • We showed that RY10-4 induced autophagy in MCF-7 cells but protoapigenone did not. • Autophagy induced by RY10-4 played as a promotion mechanism for cell death. • RY10-4 induced autophagy in MCF-7 cell through the Akt/mTOR pathway. • We provided new insights for the mechanism of RY10-4 induced cell death.

  7. Acute and chronic cadmium exposure promotes E-cadherin degradation in MCF7 breast cancer cells.

    PubMed

    Ponce, Esmeralda; Louie, Maggie C; Sevigny, Mary B

    2015-10-01

    Cadmium is an environmental carcinogen that usually enters the body at minute concentrations through diet or cigarette smoke and bioaccumulates in soft tissues. In past studies, cadmium has been shown to contribute to the development of more aggressive cancer phenotypes including increased cell migration and invasion. This study aims to determine if cadmium exposure-both acute and chronic-contributes to breast cancer progression by interfering with the normal functional relationship between E-cadherin and β-catenin. An MCF7 breast cancer cell line (MCF7-Cd) chronically exposed to 10(-7)  M CdCl2 was previously developed and used as a model system to study chronic exposures, whereas parental MCF7 cells exposed to 10(-6)  M CdCl2 for short periods of time were used to study acute exposures. Cadmium exposure of MCF7 cells led to the degradation of the E-cadherin protein via the ubiquitination pathway. This resulted in fewer E-cadherin/β-catenin complexes and the relocation of active β-catenin to the nucleus, where it interacted with transcription factor TCF-4 to modulate gene expression. Interestingly, only cells chronically exposed to cadmium showed a significant decrease in the localization of β-catenin to the plasma membrane and an increased distance between cells. Our data suggest that cadmium exposure promotes breast cancer progression by (1) down-regulating E-cadherin, thus decreasing the number of E-cadherin/β-catenin adhesion complexes, and (2) enhancing the nuclear translocation of β-catenin to increase expression of cancer-promoting proteins (i.e., c-Jun and cyclin D1).

  8. Proliferative effect of whey from cows' milk obtained at two different stages of pregnancy measured in MCF-7 cells.

    PubMed

    Nielsen, Tina S; Andersen, Charlotte; Sejrsen, Kris; Purup, Stig

    2012-02-01

    Dietary estrogens may play a role in the etiology of hormone-dependent cancers like breast cancer. Cow's milk contains various endogenous estrogens and feed derived phytoestrogens that potentially contribute to an estrogenic effect of milk in consumers, and therefore we evaluated the effect of milk (whey) in a proliferation assay with estrogen-sensitive MCF-7 human breast cancer cells. Milk samples were obtained from 22 cows representing different stages of pregnancy (first and second half) and whey was produced from the milk. 0·1, 0·25 or 0·5% whey was included in the cell culture medium and after 6 days of treatment cell proliferation was assessed by a colorimetric method with a fluorometer. Whey induced significant (P<0·05) proliferative effects compared with control cells with no added whey at all concentrations tested. There was no difference in the proliferative effect of whey depending on the stage of pregnancy from which the milk was obtained. We did not observe anti-proliferative effects when whey was tested in the presence of 10 pm estradiol in the medium. In conclusion, these results indicate that whey, irrespective of the pregnancy stage from which the milk was obtained induced a significant proliferative response in MCF-7 cells and no anti-proliferative effect, which may be caused, at least in part, by estrogens present in milk. The implications of our findings in relation to for example breast cancer will have to be studied further in other model systems preferentially in vivo.

  9. Piezo1 forms mechanosensitive ion channels in the human MCF-7 breast cancer cell line.

    PubMed

    Li, Chouyang; Rezania, Simin; Kammerer, Sarah; Sokolowski, Armin; Devaney, Trevor; Gorischek, Astrid; Jahn, Stephan; Hackl, Hubert; Groschner, Klaus; Windpassinger, Christian; Malle, Ernst; Bauernhofer, Thomas; Schreibmayer, Wolfgang

    2015-02-10

    Mechanical interaction between cells - specifically distortion of tensional homeostasis-emerged as an important aspect of breast cancer genesis and progression. We investigated the biophysical characteristics of mechanosensitive ion channels (MSCs) in the malignant MCF-7 breast cancer cell line. MSCs turned out to be the most abundant ion channel species and could be activated by negative pressure at the outer side of the cell membrane in a saturable manner. Assessing single channel conductance (GΛ) for different monovalent cations revealed an increase in the succession: Li(+) < Na(+) < K(+) ≈Rb(+) ≈ Cs(+). Divalent cations permeated also with the order: Ca(2+) < Ba(2+). Comparison of biophysical properties enabled us to identify MSCs in MCF-7 as ion channels formed by the Piezo1 protein. Using patch clamp technique no functional MSCs were observed in the benign MCF-10A mammary epithelial cell line. Blocking of MSCs by GsMTx-4 resulted in decreased motility of MCF-7, but not of MCF-10A cells, underscoring a possible role of Piezo1 in invasion and metastatic propagation. The role of Piezo1 in biology and progression of breast cancer is further substantiated by markedly reduced overall survival in patients with increased Piezo1 mRNA levels in the primary tumor.

  10. Piezo1 forms mechanosensitive ion channels in the human MCF-7 breast cancer cell line

    NASA Astrophysics Data System (ADS)

    Li, Chouyang; Rezania, Simin; Kammerer, Sarah; Sokolowski, Armin; Devaney, Trevor; Gorischek, Astrid; Jahn, Stephan; Hackl, Hubert; Groschner, Klaus; Windpassinger, Christian; Malle, Ernst; Bauernhofer, Thomas; Schreibmayer, Wolfgang

    2015-02-01

    Mechanical interaction between cells - specifically distortion of tensional homeostasis-emerged as an important aspect of breast cancer genesis and progression. We investigated the biophysical characteristics of mechanosensitive ion channels (MSCs) in the malignant MCF-7 breast cancer cell line. MSCs turned out to be the most abundant ion channel species and could be activated by negative pressure at the outer side of the cell membrane in a saturable manner. Assessing single channel conductance (GΛ) for different monovalent cations revealed an increase in the succession: Li+ < Na+ < K+ ~Rb+ ~ Cs+. Divalent cations permeated also with the order: Ca2+ < Ba2+. Comparison of biophysical properties enabled us to identify MSCs in MCF-7 as ion channels formed by the Piezo1 protein. Using patch clamp technique no functional MSCs were observed in the benign MCF-10A mammary epithelial cell line. Blocking of MSCs by GsMTx-4 resulted in decreased motility of MCF-7, but not of MCF-10A cells, underscoring a possible role of Piezo1 in invasion and metastatic propagation. The role of Piezo1 in biology and progression of breast cancer is further substantiated by markedly reduced overall survival in patients with increased Piezo1 mRNA levels in the primary tumor.

  11. p53-dependent expression of CXCR5 chemokine receptor in MCF-7 breast cancer cells.

    PubMed

    Mitkin, Nikita A; Hook, Christina D; Schwartz, Anton M; Biswas, Subir; Kochetkov, Dmitry V; Muratova, Alisa M; Afanasyeva, Marina A; Kravchenko, Julia E; Bhattacharyya, Arindam; Kuprash, Dmitry V

    2015-03-19

    Elevated expression of chemokine receptors in tumors has been reported in many instances and is related to a number of survival advantages for tumor cells including abnormal activation of prosurvival intracellular pathways. In this work we demonstrated an inverse correlation between expression levels of p53 tumor suppressor and CXCR5 chemokine receptor in MCF-7 human breast cancer cell line. Lentiviral transduction of MCF-7 cells with p53 shRNA led to elevated CXCR5 at both mRNA and protein levels. Functional activity of CXCR5 in p53-knockdown MCF-7 cells was also increased as shown by activation of target gene expression and chemotaxis in response to B-lymphocyte chemoattractant CXCL13. Using deletion analysis and site-directed mutagenesis of the cxcr5 gene promoter and enhancer elements, we demonstrated that p53 appears to act upon cxcr5 promoter indirectly, by repressing the activity of NFκB transcription factors. Using chromatin immunoprecipitation and reporter gene analysis, we further demonstrated that p65/RelA was able to bind the cxcr5 promoter in p53-dependent manner and to directly transactivate it when overexpressed. Through the described mechanism, elevated CXCR5 expression may contribute to abnormal cell survival and migration in breast tumors that lack functional p53.

  12. Homopterocarpanes as bridged triarylethylene analogues: synthesis and antagonistic effects in human MCF-7 breast cancer cells.

    PubMed

    Rampa, Angela; Bisi, Alessandra; Belluti, Federica; Gobbi, Silvia; Piazzi, Lorna; Valenti, Piero; Zampiron, Antonella; Caputo, Anna; Varani, Katia; Borea, Pier Andrea; Carrara, Maria

    2005-02-01

    A series of new compounds structurally derived from 6a,12a-dihydro-6H,7H-[1]-benzopyran-[4,3-b]-benzopyran (homopterocarpane) was efficiently synthesized by reduction of the corresponding pyrilium salts obtained by treatment of selected flavanones and aldehydes with anhydrous HClO4. Cytotoxic effects on the human breast cancer cell line MCF-7 and antiestrogenic activity (only for compounds which resulted more active than tamoxifen (TAM)) on MCF-7 cells stimulated by 17beta-estradiol were evaluated. In vivo antiestrogenic activity and the relative binding affinity were also assessed. Some of the new compounds (4c, 4h, 4i and 4l) showed a biological activity in the micromolar range, and were more potent than TAM taken as the reference.

  13. Effect of 17β-estradiol on the elasticity of MCF-7 cells by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Yuhua; Jiang, Ningcheng; Zheng, Liqin; Yang, Hongqin; Xie, Shusen

    2016-10-01

    Estrogen plays an important role in the development and progression of breast cancer, and it promotes proliferation, invasion and metastasis of breast cancer cells. In this paper, we investigated the effect of estrogen on the elasticity of breast cancer cells. 17β-estradiol, one of the most active estrogens in the human body was applied to MCF-7 living cells and the elasticity of breast cancer cells was measured by atomic force microscopy. The force spectroscopy was performed on the center of the cell and the Hertz model was used to calculate the elasticity modulus. Furthermore, the confocal fluorescence imaging was taken to observe the effect of 17β-estradiol on the actin distribution in the cells. The results show that the elasticity of the cells decreases rapidly after the addition of 17β-estradiol, which indicates that the cells appear softer for 17β-estradiol's treatment. From the confocal imaging, it can be observed that the actin filament rearranged for 17β-estradiol's treatment, which may lead to the alteration of the cell elasticity. Our findings may deepen our understanding on the rapid effect of 17β-estradiol to MCF-7 cells.

  14. Growth inhibition of MCF-7 tumor cell line by phenylacetate linked to functionalized dextran.

    PubMed

    Frank, L; Avramoglou, T; Sainte-Catherine, O; Jozefonvicz, J; Kraemer, M

    2004-01-01

    We investigated the antiproliferative effect of phenylacetate covalently linked to dextran derivatives (DMCBPA conjugates) on human breast cancer MCF-7 cells. We show that free sodium phenylacetate (NaPA) inhibits the cell growth (IC50 = 14 mM), while an important inhibitory effect is observed for DMCBPA conjugates. The IC50 dose of these conjugates is as low as 1.0 mg/ml, corresponding to 1.3 mM of phenylacetate. The precursors, dextran substituted with methylcarboxylate and benzylamide groups, did not affect the growth of MCF-7 tumor cells. We have observed that MCF-7 cell growth inhibition depends on amount of phenylacetate linked to the conjugate. The data indicated that an optimum antiproliferative effect is more significant when the amount of phenylacetate groups present on the dextran backbone is high. Analysis of doubling time by growth kinetics study shows that conjugates have more time-sustained effect than free NaPA. It is noteworthy that the inhibitory effect is observed at non-toxic concentration. Theses conjugates could be considered as acceptable derivatives to prevent tumor progression.

  15. Ribosylation of bovine serum albumin induces ROS accumulation and cell death in cancer line (MCF-7).

    PubMed

    Khan, Mohd Shahnawaz; Dwivedi, Sourabh; Priyadarshini, Medha; Tabrez, Shams; Siddiqui, Maqsood Ahmed; Jagirdar, Haseeb; Al-Senaidy, Abdulrahman M; Al-Khedhairy, Abdulaziz A; Musarrat, Javed

    2013-12-01

    Formation of advanced glycation end products (AGE) is crucially involved in the several pathophysiologies associated with ageing and diabetes, for example arthritis, atherosclerosis, chronic renal insufficiency, Alzheimer's disease, nephropathy, neuropathy, and cataracts. Because of devastating effects of AGE and the significance of bovine serum albumin (BSA) as a transport protein, this study was designed to investigate glycation-induced structural modifications in BSA and their functional consequences in breast cancer cell line (MCF-7). We incubated D-ribose with BSA and monitored formation of D-ribose-glycated BSA by observing changes in the intensity of fluorescence at 410 nm. NBT (nitro blue tetrazolium) assay was performed to confirm formation of keto-amine during glycation. Absorbance at 540 nm (fructosamine) increased markedly with time. Furthermore, intrinsic protein and 8-anilino-1-naphthalenesulfonate (ANS) fluorescence revealed marked conformational changes in BSA upon ribosylation. In addition, a fluorescence assay with thioflavin T (ThT) revealed a remarkable increase in fluorescence at 485 nm in the presence of glycated BSA. This suggests that glycation with D-ribose induced aggregation of BSA into amyloid-like deposits. Circular dichroism (CD) study of native and ribosylated BSA revealed molten globule formation in the glycation pathway of BSA. Functional consequences of ribosylated BSA on cancer cell line, MCF-7 was studied by MTT assay and ROS estimation. The results revealed cytotoxicity of ribosylated BSA on MCF-7 cells.

  16. Cytotoxicity and genotoxicity assessment of Euphorbia hirta in MCF-7 cell line model using comet assay

    PubMed Central

    Ping, Kwan Yuet; Darah, Ibrahim; Chen, Yeng; Sasidharan, Sreenivasan

    2013-01-01

    Objective To evaluate the cytotoxicity and genotoxicity activity of Euphorbia hirta (E. hirta) in MCF-7 cell line model using comet assay. Methods The cytotoxicity of E. hirta extract was investigated by employing brine shrimp lethality assay and the genotoxicity of E. hirta was assessed by using Comet assay. Results Both toxicity tests exhibited significant toxicity result. In the comet assay, the E. hirta extract exhibited genotoxicity effects against MCF-7 DNA in a time-dependent manner by increasing mean percentage of DNA damage. The extract of E. hirta showed significant toxicity against brine shrimp with an LC50 value of 620.382 µg/mL (24 h). Comparison with positive control potassium dichromate signifies that cytotoxicity exhibited by the methanol extract might have moderate activity. Conclusion The present work confirmed the cytotoxicity and genotoxicity of E. hirta. However, the observed toxicity of E. hirta extracts needs to be confirmed in additional studies. PMID:23998008

  17. SB-T-121205, a next-generation taxane, enhances apoptosis and inhibits migration/invasion in MCF-7/PTX cells.

    PubMed

    Zheng, Xiaowei; Wang, Changwei; Xing, Yuanming; Chen, Siying; Meng, Ti; You, Haisheng; Ojima, Iwao; Dong, Yalin

    2017-03-01

    Breast cancer is the leading cause of cancer death among women. Paclitaxel, a mitotic inhibitor, is highly effective in the treatment of breast cancer. However, development of resistance to paclitaxel limits its clinical use. Identifying new compounds and new strategies that are effective against breast cancer, in particular drug-resistant cancer, is of great importance. the aim of the present study was to explore the potential of a next-generation taxoid, SB-T-121205, in modulating the proliferation, migration and invasion of paclitaxel-resistant human breast cancer cells (MCF-7/PTX) and further evaluate the underlying molecular mechanisms. The results of MTT assay showed that SB-T-121205 has much higher potency to human breast cancer cells (MCF-7/S, MCF-7/PTX and MDA-MB-453 cells) than paclitaxel, while that the non-tumorigenic human bronchial epithelial cells (BEAS-2B) were slightly less sensitive to SB-T-121205 than paclitaxel. Flow cytometry and western blot methods revealed that SB-T-121205 induced cell cycle arrest at the G2/M phase and apoptosis in MCF-7/PTX cells through accelerating mitochondrial apoptotic pathway, resulting in reduction of Bcl-2/Bax ratio, as well as elevation of caspase-3, caspase-9, and poly(ADP-ribose) polymerase (PARP) levels. Moreover, SB-T-121205 changed epithelial-mesenchymal transition (EMT) property, and suppressed migration and invasion abilities of MCF-7/PTX cells. Additionally, SB-T-121205 exerted antitumor activity by inhibiting the transgelin 2 and PI3K/Akt pathway. These findings indicate that SB-T-121205 is a potent antitumor agent that promotes apoptosis and also recedes migration/invasion abilities of MCF-7/PTX cells by restraining the activity of transgelin 2 and PI3K/Akt, as well as mitochondrial apoptotic pathway. Such results suggest a potential clinical value of SB-T-121205 in breast cancer treatment.

  18. SB-T-121205, a next-generation taxane, enhances apoptosis and inhibits migration/invasion in MCF-7/PTX cells

    PubMed Central

    Zheng, Xiaowei; Wang, Changwei; Xing, Yuanming; Chen, Siying; Meng, Ti; You, Haisheng; Ojima, Iwao; Dong, Yalin

    2017-01-01

    Breast cancer is the leading cause of cancer death among women. Paclitaxel, a mitotic inhibitor, is highly effective in the treatment of breast cancer. However, development of resistance to paclitaxel limits its clinical use. Identifying new compounds and new strategies that are effective against breast cancer, in particular drug-resistant cancer, is of great importance. The aim of the present study was to explore the potential of a next-generation taxoid, SB-T-121205, in modulating the proliferation, migration and invasion of paclitaxel-resistant human breast cancer cells (MCF-7/PTX) and further evaluate the underlying molecular mechanisms. The results of MTT assay showed that SB-T-121205 has much higher potency to human breast cancer cells (MCF-7/S, MCF-7/PTX and MDA-MB-453 cells) than paclitaxel, while that the non-tumorigenic human bronchial epithelial cells (BEAS-2B) were slightly less sensitive to SB-T-121205 than paclitaxel. Flow cytometry and western blot methods revealed that SB-T-121205 induced cell cycle arrest at the G2/M phase and apoptosis in MCF-7/PTX cells through accelerating mitochondrial apoptotic pathway, resulting in reduction of Bcl-2/Bax ratio, as well as elevation of caspase-3, caspase-9, and poly(ADP-ribose) polymerase (PARP) levels. Moreover, SB-T-121205 changed epithelial-mesenchymal transition (EMT) property, and suppressed migration and invasion abilities of MCF-7/PTX cells. Additionally, SB-T-121205 exerted antitumor activity by inhibiting the transgelin 2 and PI3K/Akt pathway. These findings indicate that SB-T-121205 is a potent antitumor agent that promotes apoptosis and also recedes migration/invasion abilities of MCF-7/PTX cells by restraining the activity of transgelin 2 and PI3K/Akt, as well as mitochondrial apoptotic pathway. Such results suggest a potential clinical value of SB-T-121205 in breast cancer treatment. PMID:28197640

  19. Benzophenone-1 and nonylphenol stimulated MCF-7 breast cancer growth by regulating cell cycle and metastasis-related genes via an estrogen receptor α-dependent pathway.

    PubMed

    In, Sol-Ji; Kim, Seung-Hee; Go, Ryeo-Eun; Hwang, Kyung-A; Choi, Kyung-Chul

    2015-01-01

    Endocrine-disrupting chemicals (EDC) are defined as environmental compounds that produce adverse health manifestations in mammals by disrupting the endocrine system. Benzophenone-1 (2,4-dihydroxybenzophenone, BP1) and nonylphenol (NP), which are discharged from numerous industrial products, are known EDC. The aim of this study was to examine the effects of BP1 and NP on proliferation and metastasis of MCF-7 human breast cancer cells expressing estrogen receptors (ER). Treatment with BP1 (10⁻⁵-10⁻⁷ M) and NP (10⁻⁶-10⁻⁷ M) promoted proliferation of MCF-7 cells similar to the positive control 17 -beta-estradiol (E2). When ICI 182,780, an ER antagonist, was co-incubated with E2, BP1, or NP, proliferation of MCF-7 cells returned to the level of a control. Addition of BP1 or NP markedly induced migration of MCF-7 cells similar to E2. To elucidate the underlying molecular mechanisms produced by these EDC, alterations in transcriptional and translational levels of proliferation and metastasis-related markers, including cyclin D1, p21, and cathepsin D, were determined. Data showed increase in expression of cyclin D1 and cathepsin D and decrease in p21 at both transcriptional and translational levels. However, BP1- or NP-induced alterations of these genes were blocked by ICI 182,780, suggesting that changes in expression of these genes may be regulated by an ERα-dependent pathway. In conclusion, BP1 and NP may accelerate growth of MCF-7 breast cancer cells by regulating cell cycle-related genes and promote cancer metastasis through amplification of cathepsin D.

  20. Cytotoxicity and Genotoxicity Assessment of Sandalwood Essential Oil in Human Breast Cell Lines MCF-7 and MCF-10A

    PubMed Central

    Ortiz, Carmen; Morales, Luisa; Sastre, Miguel; Haskins, William E.; Matta, Jaime

    2016-01-01

    Sandalwood essential oil (SEO) is extracted from Santalum trees. Although α-santalol, a main constituent of SEO, has been studied as a chemopreventive agent, the genotoxic activity of the whole oil in human breast cell lines is still unknown. The main objective of this study was to assess the cytotoxic and genotoxic effects of SEO in breast adenocarcinoma (MCF-7) and nontumorigenic breast epithelial (MCF-10A) cells. Proteins associated with SEO genotoxicity were identified using a proteomics approach. Commercially available, high-purity, GC/MS characterized SEO was used to perform the experiments. The main constituents reported in the oil were (Z)-α-santalol (25.34%), (Z)-nuciferol (18.34%), (E)-β-santalol (10.97%), and (E)-nuciferol (10.46%). Upon exposure to SEO (2–8 μg/mL) for 24 hours, cell proliferation was determined by the MTT assay. Alkaline and neutral comet assays were used to assess genotoxicity. SEO exposure induced single- and double-strand breaks selectively in the DNA of MCF-7 cells. Quantitative LC/MS-based proteomics allowed identification of candidate proteins involved in this response: Ku70 (p = 1.37E − 2), Ku80 (p = 5.8E − 3), EPHX1 (p = 3.3E − 3), and 14-3-3ζ (p = 4.0E − 4). These results provide the first evidence that SEO is genotoxic and capable of inducing DNA single- and double-strand breaks in MCF-7 cells. PMID:27293457

  1. DNA damage and inhibition of akt pathway in mcf-7 cells and ehrlich tumor in mice treated with 1,4-naphthoquinones in combination with ascorbate.

    PubMed

    Ourique, Fabiana; Kviecinski, Maicon R; Felipe, Karina B; Correia, João Francisco Gomes; Farias, Mirelle S; Castro, Luiza S E P W; Grinevicius, Valdelúcia M A S; Valderrama, Jaime; Rios, David; Benites, Julio; Calderon, Pedro Buc; Pedrosa, Rozangela Curi

    2015-01-01

    The aim of this study was to enhance the understanding of the antitumor mechanism of 1,4-naphthoquinones and ascorbate. Juglone, phenylaminonaphthoquinone-7, and 9 (Q7/Q9) were evaluated for effects on CT-DNA and DNA of cancer cells. Evaluations in MCF-7 cells are DNA damage, ROS levels, viability, and proliferation. Proteins from MCF-7 lysates were immunoblotted for verifying PARP integrity, γH2AX, and pAkt. Antitumor activity was measured in Ehrlich ascites carcinoma-bearing mice. The same markers of molecular toxicity were assessed in vivo. The naphthoquinones intercalate into CT-DNA and caused oxidative cleavage, which is increased in the presence of ascorbate. Treatments caused DNA damage and reduced viability and proliferation of MCF-7 cells. Effects were potentiated by ascorbate. No PARP cleavage was observed. Naphthoquinones, combined with ascorbate, caused phosphorylation of H2AX and inhibited pAkt. ROS were enhanced in MCF-7 cells, particularly by the juglone and Q7 plus ascorbate. Ehrlich carcinoma was inhibited by juglone, Q7, or Q9, but the potentiating effect of ascorbate was reproduced in vivo only in the cases of juglone and Q7, which caused up to 60% inhibition of tumor and the largest extension of survival. Juglone and Q7 plus ascorbate caused enhanced ROS and DNA damage and inhibited pAkt also in Ehrlich carcinoma cells.

  2. Anti-proliferative effect of an extract of the root of Polygonum multiflorum Thunb. on MCF-7 human breast cancer cells and the possible mechanisms.

    PubMed

    Chen, Hong-Sheng; Liu, Yan; Lin, Luo-Qiang; Zhao, Jin-Lu; Zhang, Chun-Peng; Jin, Jun-Chao; Wang, Lei; Bai, Ming-Han; Wang, Yi-Chong; Liu, Ming; Shen, Bao-Zhong

    2011-01-01

    The root of Polygonum multiflorum Thunb. (PM) is utilized to treat many diseases associated with aging. Research also indicates that PM inhibits the proliferation of certain types of cancer cells. The aim of the present study was to evaluate the inhibitory effect of PM extract (PME) on the proliferation of MCF-7 cells and to investigate the underlying mechanisms. Inhibition of the proliferation of MCF-7 cells was determined by the MTT assay. Cell cycle distribution and apoptotic rates were evaluated by flow cytometry, and cell cycle and apoptosis-related protein expression was assessed by Western blotting. Apoptotic characteristics of MCF-7 cells were detected by transmission electron microscopy. The present study showed that PME at doses of 100, 150, 200 and 250 µg/ml significantly inhibited proliferation of MCF-7 cells in a time- and dose-dependent manner. Flow cytometry showed that the cell apoptotic rates were 9.1 ± 1.67 and 17.7 ± 2.93% after treatment with 100 and 200 µg/ml PME for 48 h, respectively. The proportions of cells in the G2/M phase were 37.9 ± 1.47 and 42.0 ± 1.71% after treatment with 100 and 200 µg/ml PME for 24 h, respectively. Western blot analysis showed that PME down-regulated the protein expression of Cdc25B and Cdc25C phosphatases accompanied by an increase in phospho-Cdk1, and PME promoted cytochrome c release from mitochondria into the cytosol to activate caspase-9. The present study demonstrated that PME inhibited MCF-7 cell proliferation by inducing cell cycle arrest in the G2/M phase and promoting cell apoptosis. The effects of PME on MCF-7 cells were associated with the modulation of the expression levels of proteins involved in the cell cycle and apoptosis. These data suggest that PME has promise as a treatment against breast cancer by inhibiting the proliferation of cancer cells.

  3. Fulvestrant-induced cell death and proteasomal degradation of estrogen receptor α protein in MCF-7 cells require the CSK c-Src tyrosine kinase.

    PubMed

    Yeh, Wei-Lan; Shioda, Keiko; Coser, Kathryn R; Rivizzigno, Danielle; McSweeney, Kristen R; Shioda, Toshi

    2013-01-01

    Fulvestrant is a representative pure antiestrogen and a Selective Estrogen Receptor Down-regulator (SERD). In contrast to the Selective Estrogen Receptor Modulators (SERMs) such as 4-hydroxytamoxifen that bind to estrogen receptor α (ERα) as antagonists or partial agonists, fulvestrant causes proteasomal degradation of ERα protein, shutting down the estrogen signaling to induce proliferation arrest and apoptosis of estrogen-dependent breast cancer cells. We performed genome-wide RNAi knockdown screenings for protein kinases required for fulvestrant-induced apoptosis of the MCF-7 estrogen-dependent human breast caner cells and identified the c-Src tyrosine kinase (CSK), a negative regulator of the oncoprotein c-Src and related protein tyrosine kinases, as one of the necessary molecules. Whereas RNAi knockdown of CSK in MCF-7 cells by shRNA-expressing lentiviruses strongly suppressed fulvestrant-induced cell death, CSK knockdown did not affect cytocidal actions of 4-hydroxytamoxifen or paclitaxel, a chemotherapeutic agent. In the absence of CSK, fulvestrant-induced proteasomal degradation of ERα protein was suppressed in both MCF-7 and T47D estrogen-dependent breast cancer cells whereas the TP53-mutated T47D cells were resistant to the cytocidal action of fulvestrant in the presence or absence of CSK. MCF-7 cell sensitivities to fulvestrant-induced cell death or ERα protein degradation was not affected by small-molecular-weight inhibitors of the tyrosine kinase activity of c-Src, suggesting possible involvement of other signaling molecules in CSK-dependent MCF-7 cell death induced by fulvestrant. Our observations suggest the importance of CSK in the determination of cellular sensitivity to the cytocidal action of fulvestrant.

  4. Drug Efflux Transporters Are Overexpressed in Short-Term Tamoxifen-Induced MCF7 Breast Cancer Cells

    PubMed Central

    Krisnamurti, Desak Gede Budi; Louisa, Melva; Anggraeni, Erlia; Wanandi, Septelia Inawati

    2016-01-01

    Tamoxifen is the first line drug used in the treatment of estrogen receptor-positive (ER+) breast cancer. The development of multidrug resistance (MDR) to tamoxifen remains a major challenge in the treatment of cancer. One of the mechanisms related to MDR is decrease of drug influx via overexpression of drug efflux transporters such as P-glycoprotein (P-gp/MDR1), multidrug resistance associated protein (MRP), or BCRP (breast cancer resistance protein). We aimed to investigate whether the sensitivity of tamoxifen to the cells is maintained through the short period and whether the expressions of several drug efflux transporters have been upregulated. We exposed MCF7 breast cancer cells with tamoxifen 1 μM for 10 passages (MCF7 (T)). The result showed that MCF7 began to lose their sensitivity to tamoxifen from the second passage. MCF7 (T) also showed a significant increase in all transporters examined compared with MCF7 parent cells. The result also showed a significant increase of CC50 in MCF7 (T) compared to that in MCF7 (97.54 μM and 3.04 μM, resp.). In conclusion, we suggest that the expression of several drug efflux transporters such as P-glycoprotein, MRP2, and BCRP might be used and further studied as a marker in the development of tamoxifen resistance. PMID:26981116

  5. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    SciTech Connect

    Jeong, Kwang Won

    2014-04-04

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators.

  6. Palytoxin induces cell lysis by priming a two-step process in mcf-7 cells.

    PubMed

    Prandi, Simone; Sala, Gian Luca; Bellocci, Mirella; Alessandrini, Andrea; Facci, Paolo; Bigiani, Albertino; Rossini, Gian Paolo

    2011-08-15

    The cytolytic action of palytoxin (PlTX) was recognized long ago, but its features have remained largely undetermined. We used biochemical, morphological, physiological, and physical tools, to study the cytolytic response in MCF-7 cells, as our model system. Cytolysis represented a stereotyped response induced by the addition of isotonic phosphate buffer (PBS) to cells that had been exposed to PlTX, after toxin removal and under optimal and suboptimal experimental conditions. Cytolysis was sensitive to osmolytes present during cell exposure to PlTX but not in the course of the lytic phase. Fluorescence microscopy showed that PlTX caused cell rounding and rearrangement of the actin cytoskeleton. Atomic force microscopy (AFM) was used to monitor PlTX effects in real time, and we found that morphological and mechanical properties of MCF-7 cells did not change during toxin exposure, but increased cell height and decreased stiffness at its surface were observed when PBS was added to PlTX-treated cells. The presence of an osmolyte during PlTX treatment prevented the detection of changes in morphological and mechanical properties caused by PBS addition to toxin-treated cells, as detected by AFM. By patch-clamp technique, we confirmed that PlTX action involved the transformation of the Na(+),K(+)-ATPase into a channel and found that cell membrane capacitance was not changed by PlTX, indicating that the membrane surface area was not greatly affected in our model system. Overall, our findings show that the cytolytic response triggered by PlTX in MCF-7 cells includes a first phase, which is toxin-dependent and osmolyte-sensitive, priming cells to lytic events taking place in a separate phase, which does not require the presence of the toxin and is osmolyte-insensitive but is accompanied by marked reorganization of actin-based cytoskeleton and altered mechanical properties at the cell's surface. A model of the two-step process of PlTX-induced cytolysis is presented.

  7. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    SciTech Connect

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas; Hago, Abdulkader; Patel, Mahendra; Galadari, Sehamuddin

    2010-04-09

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3{beta} (GSK3{beta}), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3{beta}. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  8. A sequential treatment regimen with melatonin and all-trans retinoic acid induces apoptosis in MCF-7 tumour cells.

    PubMed Central

    Eck, K. M.; Yuan, L.; Duffy, L.; Ram, P. T.; Ayettey, S.; Chen, I.; Cohn, C. S.; Reed, J. C.; Hill, S. M.

    1998-01-01

    Neoplastic events are marked by uncontrolled cell proliferation. One major focus of cancer research has been to identify treatments that reduce or inhibit cell growth. Over the years, various compounds, both naturally occurring and chemically synthesized, have been used to inhibit neoplastic cell proliferation. Two such oncostatic agents, melatonin and retinoic acid, have been shown to suppress the growth of hormone-responsive breast cancer. Currently, separate clinical protocols exist for the administration of retinoids and melatonin as adjuvant therapies for cancer. Using the oestrogen receptor (ER)-positive MCF-7 human breast tumour cell line, our laboratory has studied the effects of a sequential treatment regimen of melatonin followed by all-trans retinoic acid (atRA) on breast tumour cell proliferation in vitro. Incubation of hormonally responsive MCF-7 and T47D cells with melatonin (10(-9) M) followed 24 h later by atRA (10(-9) M) resulted in the complete cessation of cell growth as well as a reduction in the number of cells to below the initial plating density. This cytocidal effect is in contrast to the growth-suppressive effects seen with either hormone alone. This regimen of melatonin followed by atRA induced cytocidal effects on MCF-7 cells by activating pathways leading to apoptosis (programmed cell death) as evidenced by decreased ER and Bcl-2 and increased Bax and transforming growth factor beta 1 (TGF-beta1) expression. Apoptosis was reflected morphologically by an increase in the number of lysosomal bodies and perinuclear chromatin condensation, cytoplasmic blebbing and the presence of apoptotic bodies. The apoptotic effect of this sequential treatment with melatonin and atRA appears to be both cell and regimen specific as (a) ER-negative MDA-MB-231 and BT-20 breast tumour cells were unaffected, and (b) the simultaneous administration of melatonin and atRA was not associated with apoptosis in any of the breast cancer cell lines studied. Taken

  9. Inhibition of UBE2D3 Expression Attenuates Radiosensitivity of MCF-7 Human Breast Cancer Cells by Increasing hTERT Expression and Activity

    PubMed Central

    Hu, Liu; Li, Fen; Ren, Li; Yu, Haijun; Liu, Yu; Xia, Ling; Lei, Han; Liao, Zhengkai; Zhou, Fuxiang; Xie, Conghua; Zhou, Yunfeng

    2013-01-01

    The known functions of telomerase in tumor cells include replenishing telomeric DNA and maintaining cell immortality. We have previously shown the existence of a negative correlation between human telomerase reverse transcriptase (hTERT) and radiosensitivity in tumor cells. Here we set out to elucidate the molecular mechanisms underlying regulation by telomerase of radiosensitivity in MCF-7 cells. Toward this aim, yeast two-hybrid (Y2H) screening of a human laryngeal squamous cell carcinoma radioresistant (Hep2R) cDNA library was first performed to search for potential hTERT interacting proteins. We identified ubiquitin-conjugating enzyme E2D3 (UBE2D3) as a principle hTERT-interacting protein and validated this association biochemically. ShRNA-mediated inhibition of UBE2D3 expression attenuated MCF-7 radiosensitivity, and induced the accumulation of hTERT and cyclin D1 in these cells. Moreover, down-regulation of UBE2D3 increased hTERT activity and cell proliferation, accelerating G1 to S phase transition in MCF-7 cells. Collectively these findings suggest that UBE2D3 participates in the process of hTERT-mediated radiosensitivity in human breast cancer MCF-7 cells by regulating hTERT and cyclin D1. PMID:23741361

  10. Rational design of multifunctional micelles against doxorubicin-sensitive and doxorubicin-resistant MCF-7 human breast cancer cells

    PubMed Central

    Hong, Wei; Shi, Hong; Qiao, Mingxi; Gao, Xiang; Yang, Jie; Tian, Chunlian; Zhang, Dexian; Niu, Shengli; Liu, Mingchun

    2017-01-01

    Even though a tremendous number of multifunctional nanocarriers have been developed to tackle heterogeneous cancer cells, little attention has been paid to elucidate how to rationally design a multifunctional nanocarrier. In this study, three individual functions (active targeting, stimuli-triggered release and endo-lysosomal escape) were evaluated in doxorubicin (DOX)-sensitive MCF-7 cells and DOX-resistant MCF-7/ADR cells by constructing four kinds of micelles with active-targeting (AT-M), passive targeting, pH-triggered release (pHT-M) and endo-lysosomal escape (endoE-M) function, respectively. AT-M demonstrated the strongest cytotoxicity against MCF-7 cells and the highest cellular uptake of DOX due to the folate-mediated endocytosis. However, AT-M failed to exhibit the best efficacy against MCF-7/ADR cells, while endoE-M exhibited the strongest cytotoxicity against MCF-7/ADR cells and the highest cellular uptake of DOX due to the lowest elimination of DOX from the cells. This was attributed to the carrier-facilitated endo-lysosomal escape of DOX, which avoided exocytosis by lysosome secretion, resulting in an effective accumulation of DOX in the cytoplasm. The enhanced elimination of DOX from the MCF-7/ADR cells also accounted for the remarkable decrease in cytotoxicity against the cells of AT-M. Three micelles were further evaluated with MCF-7 cells and MCF-7/ADR-resistant cells xenografted mice model. In accordance with the in vitro results, AT-M and endoE-M demonstrated the strongest inhibition on the MCF-7 and MCF-7/ADR xenografted tumor, respectively. Active targeting and active targeting in combination with endo-lysosomal escape have been demonstrated to be the primary function for a nanocarrier against doxorubicin-sensitive and doxorubicin-resistant MCF-7 cells, respectively. These results indicate that the rational design of multifunctional nanocarriers for cancer therapy needs to consider the heterogeneous cancer cells and the primary function needs

  11. Copper ferrite nanoparticle-induced cytotoxicity and oxidative stress in human breast cancer MCF-7 cells.

    PubMed

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-06-01

    Copper ferrite (CuFe2O4) nanoparticles (NPs) are important magnetic materials currently under research due to their applicability in nanomedicine. However, information concerning the biological interaction of copper ferrite NPs is largely lacking. In this study, we investigated the cellular response of copper ferrite NPs in human breast cancer (MCF-7) cells. Copper ferrite NPs were prepared by co-precipitation technique with the thermal effect. Prepared NPs were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM) and dynamic light scattering (DLS). Characterization data showed that copper ferrite NPs were crystalline, spherical with smooth surfaces and average diameter of 15nm. Biochemical studies showed that copper ferrite NPs induce cell viability reduction and membrane damage in MCF-7 cells and degree of induction was dose- and time-dependent. High SubG1 cell population during cell cycle progression and MMP loss with a concomitant up-regulation of caspase-3 and caspase-9 genes suggested that copper ferrite NP-induced cell death through mitochondrial pathway. Copper ferrite NP was also found to induce oxidative stress in MCF-7 cells as indicated by reactive oxygen species (ROS) generation and glutathione depletion. Cytotoxicity due to copper ferrite NPs exposure was effectively abrogated by N-acetyl-cysteine (ROS scavenger) suggesting that oxidative stress could be the plausible mechanism of copper ferrite NPs toxicity. Further studies are underway to explore the toxicity mechanisms of copper ferrite NPs in different types of human cells. This study warrants further generation of extensive biointeraction data before their application in nanomedicine.

  12. Berberine suppresses migration of MCF-7 breast cancer cells through down-regulation of chemokine receptors

    PubMed Central

    Ahmadiankia, Naghmeh; Moghaddam, Hamid Kalalian; Mishan, Mohammad Amir; Bahrami, Ahmad Reza; Naderi-Meshkin, Hojjat; Bidkhori, Hamid Reza; Moghaddam, Maryam; Mirfeyzi, Seyed Jamal Aldin

    2016-01-01

    Objective(s): Berberine is one of the main alkaloids and it has been proven to have different pharmacological effects including inhibition of cell cycle and progression of apoptosis in various cancerous cells; however, its effects on cancer metastasis are not well known. Cancer cells obtain the ability to change their chemokine system and convert into metastatic cells. In this study, we examined the effect of berberine on breast cancer cell migration and its probable interaction with the chemokine system in cancer cells. Materials and Methods: The MCF-7 breast cancer cell line was cultured, and then, treated with berberine (10, 20, 40 and 80 μg/ml) for 24 hr. MTT assay was used in order to determine the cytotoxic effect of berberine on MCF-7 breast cancer cells. Wound healing assay was applied to determine the inhibitory effect of berberine on cell migration. Moreover, real-time quantitative PCR analysis of selected chemokine receptors was performed to determine the probable molecular mechanism underlying the effect of berberine on breast cancer cell migration. Results: The results of wound healing assay revealed that berberine decreases cell migration. Moreover, we found that the mRNA levels of some chemokine receptors were reduced after berberine treatment, and this may be the underlying mechanism for decreased cell migration. Conclusion: Our results indicate that berberine might be a potential preventive biofactor for human breast cancer metastasis by targeting chemokine receptor genes. PMID:27081456

  13. Effects of 7-O Substitutions on Estrogenic and Antiestrogenic Activities of Daidzein Analogues in MCF-7 Breast Cancer Cells

    PubMed Central

    Jiang, Quan; Payton-Stewart, Florastina; Elliott, Steven; Driver, Jennifer; Rhodes, Lyndsay V.; Zhang, Qiang; Zheng, Shilong; Bhatnagar, Deepak; Boue, Stephen M.; Collins-Burow, Bridgette M.; Sridhar, Jayalakshmi; Stevens, Cheryl; McLachlan, John A.; Wiese, Thomas E.; Burow, Matthew E.; Wang, Guangdi

    2010-01-01

    Daidzein (1) is a natural estrogenic isoflavone. We report here that 1 can be transformed into antiestrogenic ligands by simple alkyl substitutions of the 7-hydroxyl hydrogen. To test the effect of such structural modifications on the hormonal activities of the resulting compounds, a series of daidzein analogues have been designed and synthesized. When MCF-7 cells were treated with the analogues, those resulting from hydrogen substitution by isopropyl (3d), isobutyl (3f), cyclopentyl (3g), and pyrano- (2), inhibited cell proliferation, estrogen-induced transcriptional activity, and estrogen receptor (ER) regulated progesterone receptor (PgR) gene expression. However, methyl (3a) and ethyl (3b) substitutions of the hydroxyl proton only led to moderate reduction of the estrogenic activities. These results demonstrated the structural requirements for the transformation of daidzein from an ER agonist to an antagonist. The most effective analogue, 2 was found to reduce in vivo estrogen stimulated MCF-7 cell tumorigenesis using a xenograft mouse model. PMID:20669983

  14. Screening to Identify Commonly Used Chinese Herbs That Affect ERBB2 and ESR1 Gene Expression Using the Human Breast Cancer MCF-7 Cell Line

    PubMed Central

    Chang, Chun-Ju; Wu, Jing-Chong; Wen, Che-Sheng; Chen, Jiun-Liang; Chen, Wei-Shone; Shyr, Yi-Ming

    2014-01-01

    Aim. Our aim the was to screen the commonly used Chinese herbs in order to detect changes in ERBB2 and ESR1 gene expression using MCF-7 cells. Methods. Using the MCF-7 human breast cancer cell line, cell cytotoxicity and proliferation were evaluated by MTT and trypan blue exclusion assays, respectively. A luciferase reporter assay was established by transient transfecting MCF-7 cells with plasmids containing either the ERBB2 or the ESR1 promoter region linked to the luciferase gene. Chinese herbal extracts were used to treat the cells at 24 h after transfection, followed by measurement of their luciferase activity. The screening results were verified by Western blotting to measure HER2 and ERα protein expression. Results. At concentrations that induced little cytotoxicity, thirteen single herbal extracts and five compound recipes were found to increase either ERBB2 or ESR1 luciferase activity. By Western blotting, Si-Wu-Tang, Kuan-Shin-Yin, and Suan-Tsao-Ren-Tang were found to increase either HER2 or ERα protein expression. In addition, Ligusticum chuanxiong was shown to have a great effect on ERBB2 gene expression and synergistically with estrogen to stimulate MCF-7 cell growth. Conclusion. Our results provide important information that should affect clinical treatment strategies among breast cancer patients who are receiving hormonal or targeted therapies. PMID:24987437

  15. F16, a fraction from Eurycoma longifolia jack extract, induces apoptosis via a caspase-9-independent manner in MCF-7 cells.

    PubMed

    Tee, Thiam Tsui; Cheah, Yew Hoong; Hawariah, Lope Pihie Azimahtol

    2007-01-01

    F16 is a plant-derived pharmacologically active fraction extracted from Eurycoma longifolia Jack. Previously, we have reported that F16 inhibited the proliferation of MCF-7 human breast cancer cells by inducing apoptotic cell death while having some degree of cytoselectivity on a normal human breast cell line, MCF-10A. In this study, we attempted to further elucidate the mode of action of F16. We found that the intrinsic apoptotic pathway was invoked, with the reduction of Bcl-2 protein. Then, executioner caspase-7 was cleaved and activated in response to F16 treatment. Furthermore, apoptosis in the MCF- 7 cells was accompanied by the specific proteolytic cleavage of poly(ADP-ribose) polymerase-1 (PARP-1). Surprisingly, caspase-9 and p53 were unchanged with F16 treatment. We believe that the F16-induced apoptosis in MCF-7 cells occurs independently of caspase-9 and p53. Taken together, these results suggest that F16 from E. longifolia exerts anti-proliferative action and growth inhibition on MCF-7 cells through apoptosis induction and that it may have anticancer properties.

  16. The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs.

    PubMed

    Chen, Lei; Xiao, Zhifeng; Meng, Yue; Zhao, Yannan; Han, Jin; Su, Guannan; Chen, Bing; Dai, Jianwu

    2012-02-01

    Three-dimensional (3D) culture could partially simulate in vivo conditions. In this work, we developed a 3D collagen scaffold to investigate cellular properties of MCF-7 cells. The porous scaffolds not only induced the diversification of cell morphologies but also extended cell proliferation. The expression of pro-angiogenic growth factors and the transcriptions of matrix metalloproteinases (MMPs) were significantly increased in cells cultured in 3D collagen scaffolds. In addition, 3D collagen scaffolds could generate a cell population with the properties of cancer stem cells (CSCs). The upregulation of EMT markers and the downregulation of the epithelial cell marker were observed in cells cultured in collagen scaffolds. The expression of stem cell markers, including OCT4A and SOX2, and breast cancer stem cell signatures, including SOX4, JAG1 and CD49F, was significantly unregulated in 3D collagen scaffolds. The proportion of cells with CSC-like CD44(+)/CD24(-/low) phenotype was notably increased. High-level expression of CSC-associated properties of MCF-7 cells cultured in 3D was further confirmed by high tumorigenicity in vivo. Moreover, xenografts with 3D cells formed larger tumors. The properties of MCF-7 cells in 3D may have partially simulated their in vivo behaviors. Thus, 3D collagen scaffolds might provide a useful platform for anti-cancer therapeutics and CSC research.

  17. Effect of prolonged hydroxytamoxifen treatment of MCF-7 cells on mitogen activated kinase cascade.

    PubMed

    Rabenoelina, Fanjaniriana; Semlali, Abdelhabib; Duchesne, Marie-Josèphe; Freiss, Gilles; Pons, Michel; Badia, Eric

    2002-04-10

    Resistance to the antiestrogen tamoxifen is the main stumbling block for the success of breast cancer therapy. We focused our study on cellular alterations induced by a prolonged treatment with the active tamoxifen metabolite hydroxytamoxifen (OHT). We show that a prolonged OHT treatment (for up to 7 days) led to a progressive increase in the level of phosphorylated p44/42 mitogen activated kinase (MAP kinase) induced by 10(-7) M TPA stimulation, without any significant change in the protein level. This effect was also observed in MCF-7 cells grown first in medium containing dextran-coated charcoal-treated FCS (DCC medium) for 20 days prior to OHT treatment, indicating a specific effect of the antiestrogen and not an effect of estrogen deprivation. It was prevented by cotreatment with estradiol and not observed in the estrogen receptor negative HeLa cell line, suggesting that it was mediated by the estrogen receptor. TPA induced phosphorylation of MEK1/2 was also raised by OHT treatment, without any change in their protein level or Raf-1 and H-Ras levels. When the MCF-7R OHT resistant cell line was grown in antiestrogen containing medium, the level of phosphorylated p44/42 MAP kinase was also high but reversed when the antiestrogen was removed. The 2 other MAP kinase, JNK and P38 pathways were not affected in the same way by OHT treatment. In conclusion, our data reveal that a prolonged OHT treatment, by increasing p44/42 MAPK activity, affects a key step in the growth control of MCF-7 cells, although not sufficiently to overcome the growth inhibitory effect of the drug.

  18. Dietary genistein negates the inhibitory effect of letrozole on the growth of aromatase-expressing estrogen-dependent human breast cancer cells (MCF-7Ca) in vivo.

    PubMed

    Ju, Young H; Doerge, Daniel R; Woodling, Kellie A; Hartman, James A; Kwak, Jieun; Helferich, William G

    2008-11-01

    Genistein (GEN), a soy isoflavone, stimulates growth of estrogen-dependent human tumor cells (MCF-7) in a preclinical mouse model for postmenopausal breast cancer. Antiestrogens and aromatase inhibitors are frontline therapies for estrogen-dependent breast cancer. We have demonstrated that dietary GEN can negate the inhibitory effect of tamoxifen. In this study, we evaluated the interaction of dietary GEN (at 250-1000 p.p.m. in the American Institute of Nutrition 93 growth diet) and an aromatase inhibitor, letrozole (LET), on the growth of tumors in an aromatase-expressing breast cancer xenograft model (MCF-7Ca) in the presence and absence of the substrate androstenedione (AD). Dietary GEN (250 and 500 p.p.m.) or implanted AD stimulated MCF-7Ca tumor growth. Implanted LET inhibited AD-stimulated MCF-7Ca tumor growth. In the presence of AD and LET, dietary GEN (250, 500 and 1000 p.p.m.) reversed the inhibitory effect of LET in a dose-dependent manner. Uterine wet weight, plasma estradiol (E(2)) levels (enzyme-linked immunosorbent assay) and total plasma GEN and LET levels (liquid chromatography-electrospray/tandem mass spectrometry) were measured. Ki-67 (cellular proliferation), aromatase and pS2 protein expression in tumors were evaluated using immunohistochemical (IHC) analysis. In conclusion, dietary GEN increased the growth of MCF-7Ca tumors implanted in ovariectomized mice and could also negate the inhibitory effect of LET on MCF-7Ca tumor growth. These findings are significant because tumors, which express aromatase and synthesize estrogen, are good candidates for aromatase therapy dietary and GEN can reverse the inhibitory effect of LET on tumor growth and adversely impact breast cancer therapy. Caution is warranted for consumption of dietary GEN by postmenopausal women with estrogen-dependent breast cancer taking LET treatment.

  19. Preparation and characterization of (-)-Epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on Human breast cancer MCF-7 cells.

    PubMed

    Zeng, Liang; Yan, Jingna; Luo, Liyong; Ma, Mengjun; Zhu, Huiqun

    2017-03-28

    We were employing nanotechnology to improve the targeting ability of (-)-Epigallocatechin-3-gallate (EGCG) towards MCF-7 cells, and two kinds of EGCG nanoparticles (FA-NPS-PEG and FA-PEG-NPS) were obtained, besides, their characteristics and effects on MCF-7 cells were studied. The results indicated that (i) both FA-NPS-PEG and FA-PEG-NPS have high stabilities; (ii) their particles sizes were 185.0 ± 13.5 nm and 142.7 ± 7.2 nm, respectively; (iii) their encapsulation efficiencies of EGCG were 90.36 ± 2.20% and 39.79 ± 7.54%, respectively. (iv) there was no cytotoxicity observed in EGCG, FA-NPS-PEG and FA-PEG-NPS toward MCF-7 cells over all concentrations (0~400 μg/mL) tested; (v) EGCG, FA-NPS-PEG and FA-PEG-NPS inhibited MCF-7 cells proliferation in dose-dependent manners, with the average IC50 of 470.5 ± 33.0, 65.9 ± 0.4 and 66.6 ± 0.6 μg/mL; (vi) EGCG, FA-NPS-PEG and FA-PEG-NPS could modulated the expressions of several key regulatory proteins in PI3K-Akt pathway such as up-regulation of PTEN, p21 and Bax, and down-regulation of p-PDK1, p-AKT, CyclinD1 and Bcl-2, which gave an illustration about the mechanism by which EGCG nanoparticles inhibited MCF-7 cells proliferation. In this study, EGCG nanoparticles can significantly enhance the targeting ability and efficacy of EGCG, which is considered to an experimental foundation for further research on its activity, targeting ability and metabolism in vivo.

  20. Bcl2-low-expressing MCF7 cells undergo necrosis rather than apoptosis upon staurosporine treatment.

    PubMed Central

    Poliseno, Laura; Bianchi, Laura; Citti, Lorenzo; Liberatori, Sabrina; Mariani, Laura; Salvetti, Alessandra; Evangelista, Monica; Bini, Luca; Pallini, Vitaliano; Rainaldi, Giuseppe

    2004-01-01

    We present a ribozyme-based strategy for studying the effects of Bcl2 down-regulation. The anti-bcl2 hammerhead ribozyme Rz-bcl2 was stably transfected into MCF7 cancer cells and the cleavage of Bcl2 mRNA was demonstrated using a new assay for cleavage product detection, while Western blot analysis showed a concomitant depletion of Bcl2 protein. Rz-bcl2-expressing cells were more sensitive to staurosporine than control cells. Moreover, both molecular and cellular read-outs indicated that staurosporine-induced cell death was necrosis rather than apoptosis in these cells. The study of the effects of Bcl2 down-regulation was extended to the global MCF7 protein expression profile, exploiting a proteomic approach. Two reference electro-pherograms of Rz-bcl2-transfected cells, one with the ribozyme in a catalytically active form and the other with the ribozyme in a catalytically inactive form, were obtained. When comparing the two-dimensional maps, 53 differentially expressed spots were found, four of which were identified by MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS as calreticulin, nucleophosmin, phosphoglycerate kinase and pyruvate kinase. How the up-regulation of these proteins might help to explain the modification of Bcl2 activity is discussed. PMID:14748742

  1. Melittin inhibits the invasion of MCF-7 cells by downregulating CD147 and MMP-9 expression

    PubMed Central

    Wang, Jianjun; Li, Fengyu; Tan, Jiang; Peng, Xuewei; Sun, Lili; Wang, Ping; Jia, Shengnan; Yu, Qingmiao; Huo, Hongliang; Zhao, Hongyan

    2017-01-01

    Tumor invasion and metastasis are the critical steps in determining the aggressive phenotype of human cancers. Melittin, a major component of bee venom, has been reported to induce apoptosis in several cancer cells. However, the mechanisms of melittin involvement in cancer invasion and metastasis remain unclear. Our previous study indicated that melittin inhibits cyclophilin A (CypA), a ubiquitously distributed peptidylprolyl cis-trans isomerase, in macrophage cells. In the present study, the Transwell assay results showed that melittin may downregulate the invasion level of MCF-7 cells in a dose-dependent manner. Additionally, it was also found, using flow cytometry and reverse transcription-polymerase chain reaction, that melittin decreased the expression of cluster of differentiation (CD)147 and matrix metallopeptidase-9 (MMP-9), whereas CypA upregulated the expression of CD147 and MMP-9. Overall, the present study indicated that melittin decreased the invasion level of MCF-7 cells by downregulating CD147 and MMP-9 by inhibiting CypA expression. The results of the present study provide an evidence for melittin in anticancer therapy and mechanisms. PMID:28356935

  2. The role of milk thistle extract in breast carcinoma cell line (MCF-7) apoptosis with doxorubicin.

    PubMed

    Rastegar, Hussein; Ahmadi Ashtiani, Hamidreza; Anjarani, Soghra; Bokaee, Saeed; Khaki, Arash; Javadi, Leila

    2013-01-01

    Breast cancer is the most commonly diagnosed invasive malignancy and first leading cause of cancer-related deaths in Iranian women. Based on silymarin's unique characteristics, its application in chemotherapy combined with doxorubicin can be effective to enhance the efficacy together with a reduced toxicity on normal tissues. The present study focus on evaluate the efficacy of silymarin in combination with doxorubicin, on viability and apoptosis of estrogen-dependent breast carcinoma cell line (MCF-7). After being cultured, MCF-7 cells were divided into 8 groups and treated as follows: 1st group received 75 μg silymarin, groups 2, 3, and 4 were treated with 10, 25, and 50 nM doxorubicin, respectively, and groups 5, 6, and 7 respectively received 10, 25, and 50 nM doxorubicin as well as 75 μg silymarin. Viability percentage and apoptosis of the cells were assessed with Trypan Blue staining after 16, 24, and 48 hours. Silymarin has a synergistic effect on the therapeutic potential of doxorubicin. Use of silymarin in combination with doxorubicin can be more effective on the therapeutic potential of doxorubicin and decreases its dose-limiting side effects.

  3. Fenugreek induced apoptosis in breast cancer MCF-7 cells mediated independently by fas receptor change.

    PubMed

    Alshatwi, Ali Abdullah; Shafi, Gowhar; Hasan, Tarique Noorul; Syed, Naveed Ahmed; Khoja, Kholoud Khalid

    2013-01-01

    Trigonella foenum in graecum (Fenugreek) is a traditional herbal plant used to treat disorders like diabetes, high cholesterol, wounds, inflammation, gastrointestinal ailments, and it is believed to have anti-tumor properties, although the mechanisms for the activity remain to be elucidated. In this study, we prepared a methanol extract from Fenugreek whole plants and investigated the mechanism involved in its growth-inhibitory effect on MCF- 7 human breast cancer cells. Apoptosis of MCF-7 cells was evidenced by investigating trypan blue exclusion, TUNEL and Caspase 3, 8, 9, p53, FADD, Bax and Bak by real-time PCR assays inducing activities, in the presence of FME at 65 μg/mL for 24 and 48 hours. FME induced apoptosis was mediated by the death receptor pathway as demonstrated by the increased level of Fas receptor expression after FME treatment. However, such change was found to be absent in Caspase 3, 8, 9, p53, FADD, Bax and Bak, which was confirmed by a time-dependent and dose-dependent manner. In summary, these data demonstrate that at least 90% of FME induced apoptosis in breast cell is mediated by Fas receptor-independently of either FADD, Caspase 8 or 3, as well as p53 interdependently.

  4. Calnexin-dependent regulation of tunicamycin-induced apoptosis in breast carcinoma MCF-7 cells.

    PubMed

    Delom, F; Emadali, A; Cocolakis, E; Lebrun, J-J; Nantel, A; Chevet, E

    2007-03-01

    The endoplasmic reticulum (ER) has evolved specific mechanisms to ensure protein folding as well as the maintenance of its own homeostasis. When these functions are not achieved, specific ER stress signals are triggered to activate either adaptive or apoptotic responses. Here, we demonstrate that MCF-7 cells are resistant to tunicamycin-induced apoptosis. We show that the expression level of the ER chaperone calnexin can directly influence tunicamycin sensitivity in this cell line. Interestingly, the expression of a calnexin lacking the chaperone domain (DeltaE) partially restores their sensitivity to tunicamycin-induced apoptosis. Indeed, we show that DeltaE acts as a scaffold molecule to allow the cleavage of Bap31 and thus generate the proapoptotic p20 fragment. Utilizing the ability of MCF-7 cells to resist tunicamycin-induced apoptosis, we have characterized a molecular mechanism by which calnexin regulates ER-stress-mediated apoptosis in a manner independent of its chaperone functions but dependent of its binding to Bap31.

  5. Camel milk triggers apoptotic signaling pathways in human hepatoma HepG2 and breast cancer MCF7 cell lines through transcriptional mechanism.

    PubMed

    Korashy, Hesham M; Maayah, Zaid H; Abd-Allah, Adel R; El-Kadi, Ayman O S; Alhaider, Abdulqader A

    2012-01-01

    Few published studies have reported the use of crude camel milk in the treatment of stomach infections, tuberculosis and cancer. Yet, little research was conducted on the effect of camel milk on the apoptosis and oxidative stress associated with human cancer. The present study investigated the effect and the underlying mechanisms of camel milk on the proliferation of human cancer cells using an in vitro model of human hepatoma (HepG2) and human breast (MCF7) cancer cells. Our results showed that camel milk, but not bovine milk, significantly inhibited HepG2 and MCF7 cells proliferation through the activation of caspase-3 mRNA and activity levels, and the induction of death receptors in both cell lines. In addition, Camel milk enhanced the expression of oxidative stress markers, heme oxygenase-1 and reactive oxygen species production in both cells. Mechanistically, the increase in caspase-3 mRNA levels by camel milk was completely blocked by the transcriptional inhibitor, actinomycin D; implying that camel milk increased de novo RNA synthesis. Furthermore, Inhibition of the mitogen activated protein kinases differentially modulated the camel milk-induced caspase-3 mRNA levels. Taken together, camel milk inhibited HepG2 and MCF7 cells survival and proliferation through the activation of both the extrinsic and intrinsic apoptotic pathways.

  6. Cordyceps militaris induces tumor cell death via the caspase-dependent mitochondrial pathway in HepG2 and MCF-7 cells

    PubMed Central

    SONG, JINGJING; WANG, YINGWU; TENG, MEIYU; ZHANG, SHIQIANG; YIN, MENGYA; LU, JIAHUI; LIU, YAN; LEE, ROBERT J; WANG, DI; TENG, LESHENG

    2016-01-01

    Cordyceps militaris (CM), an entomopathogenic fungus belonging to the class ascomycetes, possesses various pharmacological activities, including cytotoxic effects, on various types of human tumor cells. The present study investigated the anti-hepatocellular carcinoma (HCC) and anti-breast cancer effects of CM in in vitro and in vivo models. CM aqueous extract reduced cell viability, suppressed cell proliferation, inhibited cell migration ability, caused the over-release of lactate dehydrogenase, induced mitochondrial dysfunction and enhanced apoptotic rates in MCF-7 and HepG2 cells. The expression levels of cleaved poly (ADP ribose) polymerase and caspase-3, biomarkers of apoptosis, were increased following treatment with CM aqueous extract for 24 h. Furthermore, in the MCF-7 and HepG2 cells, enhanced levels of B cell-associated X protein and cleaved caspase-8 were observed in the CM-treated cells. Finally, the antitumor activities of CM in HCC and breast cancer were also confirmed in MCF-7- and HepG2-xengraft nude mice models. Collectively, the data obtained in the present study suggested that the cytotoxic effects of CM aqueous extract on HCC and breast cancer are associated with the caspase-dependent mitochondrial pathway. PMID:27109250

  7. Enhancement of radiation cytotoxicity by gold nanoparticles in MCF-7 breast cancer cell lines

    SciTech Connect

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul; Shamsuddin, Shaharum

    2015-04-24

    Therapy combined with metallic nanoparticles is a new way to treat cancer, in which gold nanoparticles (AuNPs) are injected through intravenous administration and bound to tumor sites. Radiotherapy aims to deliver a high therapeutic dose of ionizing radiation to the tumor without exceeding normal tissue tolerance. The use of AuNPs which is a high-atomic-number (Z) material in radiotherapy will provide a high probability for photon interaction by photoelectric effect. These provide advantages in terms of radiation dose enhancement. The high linear energy transfer and short range of photoelectric interaction products (photoelectrons, characteristic x-rays, Auger electrons) produce localized dose enhancement of the tumor. In this work, breast cancer cell lines (MCF-7) are seeded in the 96-well plate and were treated with 13 nm AuNPs before they were irradiated with 6 MV and 10 MV photon beam from a medical linear accelerator at various radiation doses. To validate the enhanced killing effect, both with and without AuNPs MCF-7 cells is irradiated simultaneously. By comparison, the results show that AuNPs significantly enhance cancer killing.

  8. Xanthohumol, a Prenylated Chalcone from Hops, Inhibits the Viability and Stemness of Doxorubicin-Resistant MCF-7/ADR Cells.

    PubMed

    Liu, Ming; Yin, Hua; Qian, Xiaokun; Dong, Jianjun; Qian, Zhonghua; Miao, Jinlai

    2016-12-28

    Xanthohumol is a unique prenylated flavonoid in hops (Humulus lupulus L.) and beer. Xanthohumol has been shown to possess a variety of pharmacological activities. There is little research on its effect on doxorubicin-resistant breast cancer cells (MCF-7/ADR) and the cancer stem-like cells exiting in this cell line. In the present study, we investigate the effect of xanthohumol on the viability and stemness of MCF-7/ADR cells. Xanthohumol inhibits viability, induces apoptosis, and arrests the cell cycle of MCF-7/ADR cells in a dose-dependent manner; in addition, xanthohumol sensitizes the inhibition effect of doxorubicin on MCF-7/ADR cells. Interestingly, we also find that xanthohumol can reduce the stemness of MCF-7/ADR cells evidenced by the xanthohumol-induced decrease in the colony formation, the migration, the percentage of side population cells, the sphere formation, and the down-regulation of stemness-related biomarkers. These results demonstrate that xanthohumol is a promising compound targeting the doxorubicin resistant breast cancer cells and regulating their stemness, which, therefore, will be applied as a potential candidate for the development of a doxorubicin-resistant breast cancer agent and combination therapy of breast cancer.

  9. Exogenous and Endogeneous Disialosyl Ganglioside GD1b Induces Apoptosis of MCF-7 Human Breast Cancer Cells

    PubMed Central

    Ha, Sun-Hyung; Lee, Ji-Min; Kwon, Kyung-Min; Kwak, Choong-Hwan; Abekura, Fukushi; Park, Jun-Young; Cho, Seung-Hak; Lee, Kichoon; Chang, Young-Chae; Lee, Young-Choon; Choi, Hee-Jung; Chung, Tae-Wook; Ha, Ki-Tae; Chang, Hyeun-Wook; Kim, Cheorl-Ho

    2016-01-01

    Gangliosides have been known to play a role in the regulation of apoptosis in cancer cells. This study has employed disialyl-ganglioside GD1b to apoptosis in human breast cancer MCF-7 cells using exogenous treatment of the cells with GD1b and endogenous expression of GD1b in MCF-7 cells. First, apoptosis in MCF-7 cells was observed after treatment of GD1b. Treatment of MCF-7 cells with GD1b reduced cell growth rates in a dose and time dependent manner during GD1b treatment, as determined by XTT assay. Among the various gangliosides, GD1b specifically induced apoptosis of the MCF-7 cells. Flow cytometry and immunofluorescence assays showed that GD1b specifically induces apoptosis in the MCF-7 cells with Annexin V binding for apoptotic actions in early stage and propidium iodide (PI) staining the nucleus of the MCF-7 cells. Treatment of MCF-7 cells with GD1b activated apoptotic molecules such as processed forms of caspase-8, -7 and PARP (Poly(ADP-ribose) polymerase), without any change in the expression of mitochondria-mediated apoptosis molecules such as Bax and Bcl-2. Second, to investigate the effect of endogenously produced GD1b on the regulation of cell function, UDP-gal: β1,3-galactosyltransferase-2 (GD1b synthase, Gal-T2) gene has been transfected into the MCF-7 cells. Using the GD1b synthase-transfectants, apoptosis-related signal proteins linked to phenotype changes were examined. Similar to the exogenous GD1b treatment, the cell growth of the GD1b synthase gene-transfectants was significantly suppressed compared with the vector-transfectant cell lines and transfection activated the apoptotic molecules such as processed forms of caspase-8, -7 and PARP, but not the levels of expression of Bax and Bcl-2. GD1b-induced apoptosis was blocked by caspase inhibitor, Z-VAD. Therefore, taken together, it was concluded that GD1b could play an important role in the regulation of breast cancer apoptosis. PMID:27144558

  10. Transcriptomic Effects of Estrogen Starvation and Induction in the MCF7 Cells. The Meta-analysis of Microarray Results.

    PubMed

    Stanislawska-Sachadyn, Anna; Sachadyn, Pawel; Limon, Janusz

    2015-01-01

    Estrogen is one of the most important signaling molecules which targets a number of genes. Estrogen levels regulate cell proliferation and a plethora of metabolic processes, which may interfere with a range of medical conditions and drug metabolism. The MCF7 breast cancer cell line, expressing the estrogen receptor α, is a well-studied model of cellular answer to estrogen. The aim of this study was to characterize transcriptomic responses to estrogen in a broad time range. We performed a meta-analysis of microarray data on gene expression in the MCF7 cells under estrogen exposure and deprivation. As the result we distinguished three major phases of transcriptomic response to stimulation with 17β- estradiol: the early (1-2 h), with the activation of the MAPK signaling pathway; the intermediate (3-12 h), with enhanced expression of genes participating in cell surface receptor linked signal transduction and cellular homeostasis; and the late one (24-48 h), with the induction of genes involved in mitotic cell division. Two main phases under estrogen starvation were indicated as the early (1-3 days), with elevated expression of genes associated with cell projection and repression of those responsible for cell cycle regulation, and the late (15-180 days), with increased expression of genes of cell adhesion proteins. The meta-analysis displayed how different gene sets are either induced or repressed following either estrogen exposure or deprivation, and how the gene expression changes are orchestrated by estrogen in time dependent manner, indicating that proper understanding of estrogen impact on transcriptional gene activity requires an extensive time perspective.

  11. Differential effect of methyl-, butyl- and propylparaben and 17β-estradiol on selected cell cycle and apoptosis gene and protein expression in MCF-7 breast cancer cells and MCF-10A non-malignant cells.

    PubMed

    Wróbel, Anna Maria; Gregoraszczuk, Ewa Łucja

    2014-09-01

    Parabens are alkyl esters of p-hydroxybenzoic acid used widely as antimicrobial preservatives in consumer products, including pharmaceuticals, foods and cosmetics. We showed previously that methyl-, butyl- and propylparaben parabens, even at low doses, stimulate the proliferation of MCF-7 breast cancer cells and non-transformed MCF-10A breast epithelial cells. The present study was undertaken to determine whether this represents a direct effect on cell cycle and apoptotic gene expression. MCF-7 and MCF-10A cells were exposed to methyl, butyl- and propylparaben (20 nm) or 17β-estradiol (10 nm). Cell cycle and apoptotic gene expression were evaluated by real-time polymerase chain reaction and protein expression by Western blot. 17β-estradiol upregulated G1 /S phase genes and downregulated cell cycle progression inhibitors in both MCF-7 and MCF-10A. Upregulation of Bcl-xL and downregulation of caspase 9 was observed in MCF-7, while upregulation of Bcl-xL, BCL2L2 and caspase 9 was noted in MCF-10A. Cyclins in MCF-7 cells were not affected by any of the parabens. Methyl- and butylparaben had no effect on the expression of selected apoptotic genes in MCF-7. In MCF-10A, all parabens tested increased the expression of G1 /S phase genes, and downregulated cell cycle inhibitors. Methylparaben increased pro-survival gene. Butylparaben increased BCL2L1 gene, as did 17β-estradiol, while propylparaben upregulated both the extrinsic and intrinsic apoptotic pathways. There are differences in cell cycle and apoptosis gene expression between parabens and 17β-estradiol in MCF-7 cells. In MCF-10A cells, most of the genes activated by parabens were comparable to those activated by 17β-estradiol.

  12. p53 pathway determines the cellular response to alcohol-induced DNA damage in MCF-7 breast cancer cells

    PubMed Central

    Zhao, Ming; Howard, Erin W.; Guo, Zhiying; Parris, Amanda B.; Yang, Xiaohe

    2017-01-01

    Alcohol consumption is associated with increased breast cancer risk; however, the underlying mechanisms that contribute to mammary tumor initiation and progression are unclear. Alcohol is known to induce oxidative stress and DNA damage; likewise, p53 is a critical modulator of the DNA repair pathway and ensures genomic integrity. p53 mutations are frequently detected in breast and other tumors. The impact of alcohol on p53 is recognized, yet the role of p53 in alcohol-induced mammary carcinogenesis remains poorly defined. In our study, we measured alcohol-mediated oxidative DNA damage in MCF-7 cells using 8-OHdG and p-H2AX foci formation assays. p53 activity and target gene expression after alcohol exposure were determined using p53 luciferase reporter assay, qPCR, and Western blotting. A mechanistic study delineating the role of p53 in DNA damage response and cell cycle arrest was based on isogenic MCF-7 cells stably transfected with control (MCF-7/Con) or p53-targeting siRNA (MCF-7/sip53), and MCF-7 cells that were pretreated with Nutlin-3 (Mdm2 inhibitor) to stabilize p53. Alcohol treatment resulted in significant DNA damage in MCF-7 cells, as indicated by increased levels of 8-OHdG and p-H2AX foci number. A p53-dependent signaling cascade was stimulated by alcohol-induced DNA damage. Moderate to high concentrations of alcohol (0.1–0.8% v/v) induced p53 activation, as indicated by increased p53 phosphorylation, reporter gene activity, and p21/Bax gene expression, which led to G0/G1 cell cycle arrest. Importantly, compared to MCF-7/Con cells, alcohol-induced DNA damage was significantly enhanced, while alcohol-induced p21/Bax expression and cell cycle arrest were attenuated in MCF-7/sip53 cells. In contrast, inhibition of p53 degradation via Nutlin-3 reinforced G0/G1 cell cycle arrest in MCF-7 control cells. Our study suggests that functional p53 plays a critical role in cellular responses to alcohol-induced DNA damage, which protects the cells from DNA damage

  13. Differential control of growth, cell cycle progression, and expression of NF-{kappa}B in human breast cancer cells MCF-7, MCF-10A, and MDA-MB-231 by ponicidin and oridonin, diterpenoids from the chinese herb Rabdosia rubescens

    SciTech Connect

    Hsieh Tzechen; Wijeratne, E. Kithsiri; Liang Jingyu; Gunatilaka, A. Leslie; Wu, Joseph M. . E-mail: Joseph_Wu@nymc.edu

    2005-11-11

    Ponicidin and oridonin are novel diterpenoids isolated from Rabdosia rubescens. We tested their effects in MCF-7 and MDA-MB-231 cells, as representing low and high invasive breast carcinoma, with normal MCF-10A cells. Clonogenicity and proliferation in MCF-7 cells were inhibited more significantly by ponicidin than oridonin, while the reverse was observed in MCF-10A cells. Ponicidin and oridonin induced S/G{sub 2}M arrest and G{sub 1}/S block in MCF-7 cells. In MCF-10A cells treated with either diterpenoid, induction of apoptosis was observed. Moreover, oridonin almost completely blocked MCF-10A progression from S to G{sub 2}/M phase; in contrast, ponicidin-treated MCF-10A cells showed no discernable changes in cell cycle phase distribution. Neither diterpenoid affected growth of MDA-MB-231 cells, at the dose range effective for MCF-7 or MCF-10A cells. Ponicidin-treated MCF-7 cells expressed reduced levels of cyclin B1, cdc2, transcription factor E2F, and Rb including phosphorylation at S780. Less pronounced effects were found in cells treated with oridonin. Neither compound altered cyclin D1 and cdk4 in MCF-7 cells. In MCF-10A cells, oridonin was more active than ponicidin in inhibiting the expression of cyclin B1, cdc2, S780-phosphorylated Rb, and E2F. To further investigate induction of apoptosis in MCF-10A cells, we measured changes in NF-{kappa}B. Decreases in p65 or p50 forms of NF-{kappa}B and its upstream regulator I-{kappa}B were found in oridonin-treated MCF-10A and not MCF-7 cells. Taken together, these results provide a mechanistic framework for the cellular effects of ponicidin and oridonin in different stage breast cancer cells.

  14. [Reversal of adriamycin resistance by digoxin in human breast cancer cell line MCF-7/adriamycin and its mechanism].

    PubMed

    Li, Bai-He; Yuan, Lei; Shi, Ran-Ran; Wang, Jian-Guo

    2015-12-25

    The aim of this study was to investigate the effects of digoxin on the chemoresistance of human breast cancer cell line MCF-7/adriamycin (ADR) and its underlying mechanism. MCF-7 and MCF-7/ADR cells were designated as control and ADR groups, respectively. MCF-7/ADR cells in ADR + digoxin group received 48 h of digoxin (10 nmol/L) treatment; MCF-7/ADR cells transfected with pLKO.1-shHIF-1α and pLKO.1-shcontrol plasmids were named shHIF-1α and shcontrol groups, respectively. CCK-8 assay was employed to detect the cytotoxic effect of ADR on MCF-7/ADR cells, and IC50 value and resistance index were calculated according to CCK-8. RT-PCR was used to measure the mRNA levels of hypoxia inducible factor-1α (HIF-1α) and multidrug resistance-1 (MDR1). Western blot was used to analyze the protein levels of HIF-1α and MDR1. Flow cytometry was used to determine the apoptosis. The result showed that the resistance index of MCF-7/ADR cells was 115.6, and it was reduced to 47.2 under the action of digoxin (P < 0.05). In comparison with control group, ADR groups showed increased protein and mRNA levels of HIF-1α and MDR1 (P < 0.05). Digoxin reduced the protein levels of HIF-1α and MDR1, as well as the mRNA level of MDR1, but did not affect the mRNA level of HIF-1α. After HIF-1α gene was silenced, the protein levels of HIF-1α and MDR1 were down-regulated (P < 0.05), and the pro-apoptotic effect of ADR on MCF-7/ADR cells was enhanced. Although it was also observed that digoxin promoted cell apoptosis in both shcontrol and shHIF-1α groups, the difference between the two groups was not significant. In conclusion, the results suggest that digoxin may partially reverse the ADR resistance in human breast cancer cell line MCF-7/ADR by means of down-regulating the expression levels of HIF-1α and MDR1 and promoting apoptosis via HIF-1α-independent pathway.

  15. Treatment of doxorubicin-resistant MCF7/Dx cells with nitric oxide causes histone glutathionylation and reversal of drug resistance.

    PubMed

    de Luca, Anastasia; Moroni, Noemi; Serafino, Annalucia; Primavera, Alessandra; Pastore, Anna; Pedersen, Jens Z; Petruzzelli, Raffaele; Farrace, Maria Grazia; Pierimarchi, Pasquale; Moroni, Gabriella; Federici, Giorgio; Sinibaldi Vallebona, Paola; Lo Bello, Mario

    2011-12-01

    Acquired drug resistance was found to be suppressed in the doxorubicin-resistant breast cancer cell line MCF7/Dx after pre-treatment with GSNO (nitrosoglutathione). The effect was accompanied by enhanced protein glutathionylation and accumulation of doxorubicin in the nucleus. Among the glutathionylated proteins, we identified three members of the histone family; this is, to our knowledge, the first time that histone glutathionylation has been reported. Formation of the potential NO donor dinitrosyl-diglutathionyl-iron complex, bound to GSTP1-1 (glutathione transferase P1-1), was observed in both MCF7/Dx cells and drug-sensitive MCF7 cells to a similar extent. In contrast, histone glutathionylation was found to be markedly increased in the resistant MCF7/Dx cells, which also showed a 14-fold higher amount of GSTP1-1 and increased glutathione concentration compared with MCF7 cells. These results suggest that the increased cytotoxic effect of combined doxorubicin and GSNO treatment involves the glutathionylation of histones through a mechanism that requires high glutathione levels and increased expression of GSTP1-1. Owing to the critical role of histones in the regulation of gene expression, the implication of this finding may go beyond the phenomenon of doxorubicin resistance.

  16. Effect of Cytotoxic Compounds on Activity of Antioxidant Enzyme System in MCF-7 and H1299 Cells.

    PubMed

    Mumyatova, V A; Balakina, A A; Filatova, N V; Sen', V D; Korepin, A G; Terentev, A A

    2016-05-01

    We studied the function of the antioxidant system in tumor cell lines MCF-7 and H1299 that differ by the state of tumor suppressor gene p53. Exposure to different classes of cytotoxic compounds induced several types of antioxidant system responses that depend on the type of cell line. The effects of platinum(II) and platinum(IV) complexes on activity of antioxidant enzymes vary, which can be explained by differences in their accumulation and biotransformation in tumor cells. Triazole and oxazolidinone derivatives had little effect on activity of superoxide dismutase and catalase in H1299 cells, but increased superoxide dismutase activity in MCF-7 cells.

  17. Probing micro-environment of lipid droplets in a live breast cell: MCF7 and MCF10A

    NASA Astrophysics Data System (ADS)

    Ghosh, Catherine; Nandi, Somen; Bhattacharyya, Kankan

    2017-02-01

    Local environment of the lipid droplets inside the breast cancer cells, MCF7 and in non-malignant breast cells, MCF10A is monitored using time-resolved confocal microscopy. For this study, a coumarin-based dye C153 has been used. The local polarity and the solvation dynamics indicate that a cytoplasmic lipid droplet is less polar and displays slower solvation dynamics compared to the cytosol. Significant differences in terms of number of lipid droplets, polarity and solvation dynamics are observed between the cancer cell (MCF7) and its non-malignant cell (MCF10A).

  18. Gene expression analysis in MCF-7 breast cancer cells treated with recombinant bromelain.

    PubMed

    Fouz, Nour; Amid, Azura; Hashim, Yumi Zuhanis Has-Yun

    2014-08-01

    The contributing molecular pathways underlying the pathogenesis of breast cancer need to be better characterized. The principle of our study was to better understand the genetic mechanism of oncogenesis for human breast cancer and to discover new possible tumor markers for use in clinical practice. We used complimentary DNA (cDNA) microarrays to compare gene expression profiles of treated Michigan Cancer Foundation-7 (MCF-7) with recombinant bromelain and untreated MCF-7. SpringGene analysis was carried out of differential expression followed by Ingenuity Pathway Analysis (IPA), to understand the underlying consequence in developing disease and disorders. We identified 1,102 known genes differentially expressed to a significant degree (p<0.001) changed between the treatment. Within this gene set, 20 genes were significantly changed between treated cells and the control cells with cutoff fold change of more than 1.5. These genes are RNA-binding motif, single-stranded interacting protein 1 (RBMS1), ribosomal protein L29 (RPL29), glutathione S-transferase mu 2 (GSTM2), C15orf32, Akt3, B cell translocation gene 1 (BTG1), C6orf62, C7orf60, kinesin-associated protein 3 (KIFAP3), FBXO11, AT-rich interactive domain 4A (ARID4A), COPS2, TBPL1|SLC2A12, TMEM59, SNORD46, glioma tumor suppressor candidate region gene 2 (GLTSCR2), and LRRFIP. Our observation on gene expression indicated that recombinant bromelain produces a unique signature affecting different pathways, specific for each congener. The microarray results give a molecular mechanistic insight and functional effects, following recombinant bromelain treatment. The extent of changes in genes is related to and involved significantly in gap junction signaling, amyloid processing, cell cycle regulation by BTG family proteins, and breast cancer regulation by stathmin1 that play major roles.

  19. Improved photodynamic action of nanoparticles loaded with indium (III) phthalocyanine on MCF-7 breast cancer cells

    NASA Astrophysics Data System (ADS)

    Souto, Carlos Augusto Zanoni; Madeira, Klésia Pirola; Rettori, Daniel; Baratti, Mariana Ozello; Rangel, Letícia Batista Azevedo; Razzo, Daniel; da Silva, André Romero

    2013-09-01

    Indium (III) phthalocyanine (InPc) was encapsulated into nanoparticles of PEGylated poly( d, l-lactide-co-glycolide) (PLGA-PEG) to improve the photobiological activity of the photosensitizer. The efficacy of nanoparticles loaded with InPc and their cellular uptake was investigated with MCF-7 breast tumor cells, and compared with the free InPc. The influence of photosensitizer (PS) concentration (1.8-7.5 μmol/L), incubation time (1-2 h), and laser power (10-100 mW) were studied on the photodynamic effect caused by the encapsulated and the free InPc. Nanoparticles with a size distribution ranging from 61 to 243 nm and with InPc entrapment efficiency of 72 ± 6 % were used in the experiments. Only the photodynamic effect of encapsulated InPc was dependent on PS concentration and laser power. The InPc-loaded nanoparticles were more efficient in reducing MCF-7 cell viability than the free PS. For a light dose of 7.5 J/cm2 and laser power of 100 mW, the effectiveness of encapsulated InPc to reduce the viability was 34 ± 3 % while for free InPc was 60 ± 7 %. Confocal microscopy showed that InPc-loaded nanoparticles, as well as free InPc, were found throughout the cytosol. However, the nanoparticle aggregates and the aggregates of free PS were found in the cell periphery and outside of the cell. The nanoparticles aggregates were generated due to the particles concentration used in the experiment because of the small loading of the InPc while the low solubility of InPc caused the formation of aggregates of free PS in the culture medium. The participation of singlet oxygen in the photocytotoxic effect of InPc-loaded nanoparticles was corroborated by electron paramagnetic resonance experiments, and the encapsulation of photosensitizers reduced the photobleaching of InPc.

  20. CTCF and CTCFL mRNA expression in 17β-estradiol-treated MCF7 cells

    PubMed Central

    DEL CAMPO, EDUARDO PORTILLO; MÁRQUEZ, JOSÉ JORGE TALAMÁS; REYES-VARGAS, FRANCIANELLA; INTRIAGO-ORTEGA, MARÍA DEL PILAR; QUINTANAR-ESCORZA, MARTHA ANGÉLICA; BURCIAGA-NAVA, JORGE ALBERTO; SIFUENTES-ALVAREZ, ANTONIO; REYES-ROMERO, MIGUEL

    2014-01-01

    Estrogens play a key role in breast cancer, with 60–70% of the cases expressing estrogen receptors (ERs), which are encoded by the ESR1 gene. CTCFL, a paralogue of the chromatin organizer CTCF, is a potential biomarker of breast cancer, but its expression in this disease is currently controversial. A positive correlation has been reported between CTCFL and ERs in breast tumors and there also exists a coordinated interaction between CTCF and ERs in breast cancer cells. Therefore, there appears to be an association between CTCF, CTCFL and estrogens in breast cancer; however, there has been no report on the effects of estrogens on CTCF and CTCFL expression. The aim of this study was to determine the effect of 17β-estradiol (E2) on the CTCF and CTCFL mRNA expression in the MCF7 breast cancer cell line. The promoter methylation status of CTCFL and data mining for estrogen response elements in promoters of the CTCF and CTCFL genes were also determined. The transcription of CTCF and CTCFL was performed by quantitative polymerase chain reaction (qPCR) and the promoter methylation status of CTCFL was determined by methylation-specific PCR. The MCF7 cells exhibited basal transcription of CTCF, which was significantly downregulated to 0.68 by 1 μM E2; basal or E2-regulated transcription of CTCFL was not detected. Under basal conditions, the CTCFL promoter was methylated. Through data mining, an estrogen response element was identified in the CTCF promoter, but no such element was found in CTCFL. These results suggested that estrogens may modulate CTCF expression, although there was no apparent association between ERs and CTCFL. PMID:24649078

  1. High Cytotoxicity and Apoptotic Effects of Natural Bioactive Benzofuran Derivative on the MCF-7 Breast Cancer Cell Line.

    PubMed

    Soleimani, Afsane; Asadi, Jahanbakhsh; Rostami-Charati, Faramarz; Gharaei, Roghaye

    2015-01-01

    This study was focused on evaluation of the cytotoxicity and apoptotic affects of benzofuran derivative on MCF-7 breast cancer cell line. This effective compound was isolated from the root of Petasites hybridus plant. For experiments, the MCF-7 cells were treated with several concentrations (0-500μM) of 1-(6-hydroxy-2- isopropenyl-1-benzofuran-5-yl)-1-ethanone 1 at different times. In this study, test of neutral red was also employed for cytotoxicity assay and quantity of P53, P21. Bax genes expression was analyzed using Real-Time PCR and ELISA techniques. Results show that compound 1 has cytotoxicity and apoptotic effects on Human breast cancer (Michigan Cancer Foundation-7) MCF-7 cells.

  2. Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells.

    PubMed

    Herrero, Ana; Casar, Berta; Colón-Bolea, Paula; Agudo-Ibáñez, Lorena; Crespo, Piero

    2016-06-15

    Signals conveyed through the RAS-ERK pathway are essential for the determination of cell fate. It is well established that signal variability is achieved in the different microenvironments in which signals unfold. It is also known that signal duration is critical for decisions concerning cell commitment. However, it is unclear how RAS-ERK signals integrate time and space in order to elicit a given biological response. To investigate this, we used MCF-7 cells, in which EGF-induced transient ERK activation triggers proliferation, whereas sustained ERK activation in response to heregulin leads to adipocytic differentiation. We found that both proliferative and differentiating signals emanate exclusively from plasma membrane-disordered microdomains. Of interest, the EGF signal can be transformed into a differentiating stimulus by HRAS overexpression, which prolongs ERK activation, but only if HRAS localizes at disordered membrane. On the other hand, HRAS signals emanating from the Golgi complex induce apoptosis and can prevent heregulin-induced differentiation. Our results indicate that within the same cellular context, RAS can exert different, even antagonistic, effects, depending on its sublocalization. Thus cell destiny is defined by the ability of a stimulus to activate RAS at the appropriate sublocalization for an adequate period while avoiding switching on opposing RAS signals.

  3. Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells

    PubMed Central

    Herrero, Ana; Casar, Berta; Colón-Bolea, Paula; Agudo-Ibáñez, Lorena; Crespo, Piero

    2016-01-01

    Signals conveyed through the RAS-ERK pathway are essential for the determination of cell fate. It is well established that signal variability is achieved in the different microenvironments in which signals unfold. It is also known that signal duration is critical for decisions concerning cell commitment. However, it is unclear how RAS-ERK signals integrate time and space in order to elicit a given biological response. To investigate this, we used MCF-7 cells, in which EGF-induced transient ERK activation triggers proliferation, whereas sustained ERK activation in response to heregulin leads to adipocytic differentiation. We found that both proliferative and differentiating signals emanate exclusively from plasma membrane–disordered microdomains. Of interest, the EGF signal can be transformed into a differentiating stimulus by HRAS overexpression, which prolongs ERK activation, but only if HRAS localizes at disordered membrane. On the other hand, HRAS signals emanating from the Golgi complex induce apoptosis and can prevent heregulin-induced differentiation. Our results indicate that within the same cellular context, RAS can exert different, even antagonistic, effects, depending on its sublocalization. Thus cell destiny is defined by the ability of a stimulus to activate RAS at the appropriate sublocalization for an adequate period while avoiding switching on opposing RAS signals. PMID:27099370

  4. Removal of sialic acid from the surface of human MCF-7 mammary cancer cells abolishes E-cadherin-dependent cell-cell adhesion in an aggregation assay.

    PubMed

    Deman, J J; Van Larebeke, N A; Bruyneel, E A; Bracke, M E; Vermeulen, S J; Vennekens, K M; Mareel, M M

    1995-09-01

    MCF-7 human breast cancer cells express E-cadherin and show, at least in some circumstances, E-cadherin-dependent cell-cell adhesion (Bracke et al., 1993). The MCF-7/AZ variant spontaneously displays E-cadherin-dependent fast aggregation; in the MCF-7/6 variant, E-cadherin appeared not to be spontaneously functional in the conditions of the fast aggregation assay, but function could be induced by incubation of the suspended cells in the presence of insulinlike growth factor I (IGF-I) (Bracke et al., 1993). E-cadherin from MCF-7 cells was shown to contain sialic acid. Treatment with neuraminidase was shown to remove this sialic acid, as well as most of the sialic acid present at the cell surface. Applied to MCF-7/AZ, and MCF-7/6 cells, pretreatment with neuraminidase abolished spontaneous as well as IGF-I induced, E-cadherin-dependent fast cell-cell adhesion of cells in suspension, as measured in the fast aggregation assay. Treatment with neuraminidase did not, however, inhibit the possibly different, but equally E-cadherin-mediated, process of cell-cell adhesion of MCF-7 cells on a flat plastic substrate as assessed by determining the percentage of cells remaining isolated (without contact with other cells) 24 h after plating.

  5. Anticancer potential of Syzygium aromaticum L. in MCF-7 human breast cancer cell lines

    PubMed Central

    Kumar, Parvinnesh S.; Febriyanti, Raden M.; Sofyan, Ferry F.; Luftimas, Dimas E.; Abdulah, Rizky

    2014-01-01

    Background: The common treatment for cancer is unfavorable because it causes many detrimental side effects, and lately, there has been a growing resistance toward anticancer drugs, which worsens the future of cancer treatment. Therefore, the focus has now shifted toward natural products, such as spices and plants, among many others, to save the future of cancer treatment. Cloves (Syzygium aromaticum L.) are spices with the highest antioxidant content among natural products. Besides acting as an antioxidant, cloves also possess many other functions, such as anti-inflammatory, antibacterial, and antiseptic, which makes them an ideal natural source to be developed as an anticancer agent. Objective: This study aims to evaluate the cytotoxic activity of cloves toward MCF-7 human breast cancer cell lines. Materials and Methods: Different concentrations of water extract, ethanol extract, and essential oil of cloves were investigated for their anticancer potential in vitro through a brine shrimp lethality test (BSLT) and an MTT assay. Results: In both BSLT and MTT assays, the essential oil showed the highest cytotoxic effect, followed by ethanol and water extract. The LD50 concentration of essential oil in the 24 hours BSLT was 37 μg/mL. Furthermore, the IC50 values in the 24 hours and 48 hours MTT assays of the essential oil were 36.43 μg/mL and 17.6 μg/mL, respectively. Conclusion: Cloves are natural products with excellent cytotoxicity toward MCF-7 cells; thus, they are promising sources for the development of anticancer agents. PMID:25276075

  6. Differential Epigenetic Effects of Atmospheric Cold Plasma on MCF-7 and MDA-MB-231 Breast Cancer Cells

    PubMed Central

    Park, Sung-Bin; Kim, Byungtak; Bae, Hansol; Lee, Hyunkyung; Lee, Seungyeon; Choi, Eun H.; Kim, Sun Jung

    2015-01-01

    Cold atmospheric plasma (plasma) has emerged as a novel tool for a cancer treatment option, having been successfully applied to a few types of cancer cells, as well as tissues. However, to date, no studies have been performed to examine the effect of plasma on epigenetic alterations, including CpG methylation. In this study, the effects of plasma on DNA methylation changes in breast cancer cells were examined by treating cultured MCF-7 and MDA-MB-231 cells, representing estrogen-positive and estrogen-negative cancer cells, respectively, with plasma. A pyrosequencing analysis of Alu indicated that a specific CpG site was induced to be hypomethylated from 23.4 to 20.3% (p < 0.05) by plasma treatment in the estrogen-negative MDA-MB-231 cells only. A genome-wide methylation analysis identified “cellular movement, connective tissue development and function, tissue development” and “cell-to-cell signaling and interaction, cell death and survival, cellular development” as the top networks. Of the two cell types, the MDA-MB-231 cells underwent a higher rate of apoptosis and a decreased proliferation rate upon plasma treatment. Taken together, these results indicate that plasma induces epigenetic and cellular changes in a cell type-specific manner, suggesting that a careful screening of target cells and tissues is necessary for the potential application of plasma as a cancer treatment option. PMID:26042423

  7. Protein regulation and Apoptotic induction in human breast carcinoma cells (MCF-7) through lectin from G. beauts.

    PubMed

    Ponraj, Thondhi; Paulpandi, Manickam; Vivek, Raju; Vimala, Karuppaiya; Kannan, Soundarapandian

    2017-02-01

    Lectins are proteins that show a variety of biological activities. Nevertheless, information on lectin from Gluttonous beauts and their anticancer activities are very limited. In this study, we purified a lectin from hemolymph of G. beauts and identified its molecular weight to be 66kDa. The effect of lectin at different concentrations (μg/mL) on the cell growth and apoptosis were evaluated against MCF-7 and MCF-10A cells, whereas cytotoxicity to the MCF-7 cells mediated by lectin was observed and the mechanism of action of the lectin in including apoptosis in cancer cells via the intrinsic pathway was also proposed. The MCF-7 cells were employed for in vitro studies on cytotoxicity, induction of apoptosis and apoptotic DNA fragmentation. In MCF-10A cells lectin did not show any adverse effect even at higher concentration. Cell cycle analysis also showed a significant cell cycle arrest on selected cells after lectin treatment. Western blotting suggested that lectin up regulates the apoptotic protein expression in MCF-7 cells while it down regulates the level of Bcl-2 expression.

  8. Combined Treatment of MCF-7 Cells with AICAR and Methotrexate, Arrests Cell Cycle and Reverses Warburg Metabolism through AMP-Activated Protein Kinase (AMPK) and FOXO1.

    PubMed

    Fodor, Tamás; Szántó, Magdolna; Abdul-Rahman, Omar; Nagy, Lilla; Dér, Ádám; Kiss, Borbála; Bai, Peter

    2016-01-01

    Cancer cells are characterized by metabolic alterations, namely, depressed mitochondrial oxidation, enhanced glycolysis and pentose phosphate shunt flux to support rapid cell growth, which is called the Warburg effect. In our study we assessed the metabolic consequences of a joint treatment of MCF-7 breast cancer cells with AICAR, an inducer of AMP-activated kinase (AMPK) jointly with methotrexate (MTX), a folate-analog antimetabolite that blunts de novo nucleotide synthesis. MCF7 cells, a model of breast cancer cells, were resistant to the individual application of AICAR or MTX, however combined treatment of AICAR and MTX reduced cell proliferation. Prolonged joint application of AICAR and MTX induced AMPK and consequently enhanced mitochondrial oxidation and reduced the rate of glycolysis. These metabolic changes suggest an anti-Warburg rearrangement of metabolism that led to the block of the G1/S and the G2/M transition slowing down cell cycle. The slowdown of cell proliferation was abolished when mitotropic transcription factors, PGC-1α, PGC-1β or FOXO1 were silenced. In human breast cancers higher expression of AMPKα and FOXO1 extended survival. AICAR and MTX exerts similar additive antiproliferative effect on other breast cancer cell lines, such as SKBR and 4T1 cells, too. Our data not only underline the importance of Warburg metabolism in breast cancer cells but nominate the AICAR+MTX combination as a potential cytostatic regime blunting Warburg metabolism. Furthermore, we suggest the targeting of AMPK and FOXO1 to combat breast cancer.

  9. Sodium phenylacetate induces growth inhibition and Bcl-2 down-regulation and apoptosis in MCF7ras cells in vitro and in nude mice.

    PubMed

    Adam, L; Crépin, M; Savin, C; Israël, L

    1995-11-15

    Using a highly tumorigenic human breast cancer model (Ha-ras-transfected MCF7 cell line) we analyzed the efficacy of the differentiation-inducing agent sodium phenylacetate (NaPA), both in vitro and in vivo. NaPA-treated MCF7ras cells showed dose-dependent growth inhibition from 2.5 to 15 mM without apparent toxicity. Western blot analysis showed a Bcl-2 down-regulation after 48 h treatment with 5 mM NaPA, together with apparition of apoptotic nuclei by DAPI staining. Mice bearing MCF7ras xenografts (n = 40) were treated for 2 weeks through s.c.-delivering osmotic pumps, followed by 6 weeks of daily i.p. NaPA administration. After 3 weeks, the treated tumors showed growth arrest without regression for the whole observation time, e.g., 12 weeks. Immunohistochemical analysis showed Bcl-2 down-regulation and differentiation patterns: decrease of Ki-67 and increase of steroid receptors (estrogen and progesterone receptors) compared to controls. Cells cultured from treated tumors (II.b) displayed pseudotrabecular disposition as MCF7ras cells treated in vitro. They also showed a higher NaPA sensitivity, together with 70% Bcl-2 down-regulation as compared to the derived cells of untreated tumors (II.a). When reinjected into nude mice, II.b cells induced only one poorly vascularized, noninvasive tumor (8%) with lower proliferation index, 100% progesterone receptor positive cells, and 35% terminal deoxynucleotidyltransferase-mediated dUTP-X nick end labeling (+) nuclei, as compared to 100% induction of highly vascularized and invasive tumors with 3% terminal deoxynucleotidyltransferase-mediated dUTP-X nick end labeling (+) nuclei induced by II.a cells.

  10. Profiling Global Kinome Signatures of the Radioresistant MCF-7/C6 Breast Cancer Cells Using MRM-based Targeted Proteomics

    PubMed Central

    2015-01-01

    Ionizing radiation is widely used in cancer therapy; however, cancer cells often develop radioresistance, which compromises the efficacy of cancer radiation therapy. Quantitative assessment of the alteration of the entire kinome in radioresistant cancer cells relative to their radiosensitive counterparts may provide important knowledge to define the mechanism(s) underlying tumor adaptive radioresistance and uncover novel target(s) for effective prevention and treatment of tumor radioresistance. By employing a scheduled multiple-reaction monitoring analysis in conjunction with isotope-coded ATP affinity probes, we assessed the global kinome of radioresistant MCF-7/C6 cells and their parental MCF-7 human breast cancer cells. We rigorously quantified 120 kinases, of which 1/3 exhibited significant differences in expression levels or ATP binding affinities. Several kinases involved in cell cycle progression and DNA damage response were found to be overexpressed or hyperactivated, including checkpoint kinase 1 (CHK1), cyclin-dependent kinases 1 and 2 (CDK1 and CDK2), and the catalytic subunit of DNA-dependent protein kinase. The elevated expression of CHK1, CDK1, and CDK2 in MCF-7/C6 cells was further validated by Western blot analysis. Thus, the altered kinome profile of radioresistant MCF-7/C6 cells suggests the involvement of kinases on cell cycle progression and DNA repair in tumor adaptive radioresistance. The unique kinome profiling results also afforded potential effective targets for resensitizing radioresistant cancer cells and counteracting deleterious effects of ionizing radiation exposure. PMID:25341124

  11. The Acetone Extract of Sclerocarya birrea (Anacardiaceae) Possesses Antiproliferative and Apoptotic Potential against Human Breast Cancer Cell Lines (MCF-7)

    PubMed Central

    Tanih, Nicoline Fri; Ndip, Roland Ndip

    2013-01-01

    Interesting antimicrobial data from the stem bark of Sclerocarya birrea, which support its use in traditional medicine for the treatment of many diseases, have been delineated. The current study was aimed to further study some pharmacological and toxicological properties of the plant to scientifically justify its use. Anticancer activity of water and acetone extracts of S. birrea was evaluated on three different cell lines, HT-29, HeLa, and MCF-7 using the cell titre blue viability assay in 96-well plates. Apoptosis was evaluated using the acridine orange and propidium iodide staining method, while morphological structure of treated cells was examined using SEM. The acetone extract exhibited remarkable antiproliferative activities on MCF-7 cell lines at dose- and time-dependent manners (24 h and 48 h of incubation). The extract also exerted apoptotic programmed cell death in MCF-7 cells with significant effect on the DNA. Morphological examination also displayed apoptotic characteristics in the treated cells, including clumping, condensation, and culminating to budding of the cells to produce membrane-bound fragmentation, as well as formation of apoptotic bodies. The acetone extract of S. birrea possesses antiproliferative and apoptotic potential against MCF-7-treated cells and could be further exploited as a potential lead in anticancer therapy. PMID:23576913

  12. Nonlinearity in MCF7 Cell Survival Following Exposure to Modulated 6 MV Radiation Fields

    PubMed Central

    Castiella, Marion; Franceries, Xavier; Cassol, Emmanuelle; Vieillevigne, Laure; Pereda, Veronica; Bardies, Manuel; Courtade-Saïdi, Monique

    2015-01-01

    The study of cell survival following exposure to nonuniform radiation fields is taking on particular interest because of the increasing evidence of a nonlinear relationship at low doses. We conducted in vitro experiments using the MCF7 breast cancer cell line. A 2.4 × 2.4 cm2 square area of a T25 flask was irradiated by a Varian Novalis accelerator delivering 6 MV photons. Cell survival inside the irradiation field, in the dose gradient zone and in the peripheral zone, was determined using a clonogenic assay for different radiation doses at the isocenter. Increased cell survival was observed inside the irradiation area for doses of 2, 10, and 20 Gy when nonirradiated cells were present at the periphery, while the cells at the periphery showed decreased survival compared to controls. Increased survival was also observed at the edge of the dose gradient zone for cells receiving 0.02 to 0.01 Gy when compared with cells at the periphery of the same flask, whatever the isocenter dose. These data are the first to report cell survival in the dose gradient zone. Radiotherapists must be aware of this nonlinearity in dose response. PMID:26740805

  13. Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase.

    PubMed

    Ishibashi, Y; Matsui, T; Takeuchi, M; Yamagishi, S

    2013-05-01

    Metformin use has been reported to decrease breast cancer incidence and mortality in diabetic patients. We have previously shown that advanced glycation end products (AGEs) and their receptor (RAGE) interaction stimulate growth and/or migration of pancreatic cancer and melanoma cells. However, effects of metformin on AGEs-RAGE axis in breast cancers remain unknown. We examined here whether and how metformin could block the AGEs-induced growth and vascular endothelial growth factor (VEGF) expression in MCF-7 breast cancer cells. Cell proliferation was measured with an electron coupling reagent WST-1 based colorimetric assay. Gene expression level was evaluated by real-time reverse-transcription polymerase chain reactions. AGEs significantly increased cell proliferation of MCF-7 cells, which was completely prevented by the treatment with 0.01 or 0.1 mM metformin or anti-RAGE antibodies. Furthermore, metformin at 0.01 mM completely suppressed the AGEs-induced upregulation of RAGE and VEGF mRNA levels in MCF-7 cells. An inhibitor of AMP-activated protein kinase, compound C significantly blocked the growth-inhibitory and RAGE and VEGF suppressing effects of metformin in AGEs-exposed MCF-7 cells. Our present study suggests that metformin could inhibit the AGEs-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing RAGE gene expression via AMP-activated protein kinase pathway. Metformin may protect against breast cancer expansion in diabetic patients by blocking the AGEs-RAGE axis.

  14. PROFILES OF GENE EXPRESSION ASSOCIATED WITH TETRACYCLINE OVER EXPRESSION OF HSP70 IN MCF-7 BREAST CANCER CELLS

    EPA Science Inventory

    Profiles of gene expression associated with tetracycline over expression of HSP70 in MCF-7 breast cancer cells.

    Heat shock proteins (HSPs) protect cells from damage through their function as molecular chaperones. Some cancers reveal high levels of HSP70 expression in asso...

  15. Effect of aluminium on migratory and invasive properties of MCF-7 human breast cancer cells in culture.

    PubMed

    Darbre, Philippa D; Bakir, Ayse; Iskakova, Elzira

    2013-11-01

    Aluminium (Al) has been measured in human breast tissue, nipple aspirate fluid and breast cyst fluid, and recent studies have shown that at tissue concentrations, aluminium can induce DNA damage and suspension growth in human breast epithelial cells. This paper demonstrates for the first time that exposure to aluminium can also increase migratory and invasive properties of MCF-7 human breast cancer cells. Long-term (32 weeks) but not short-term (1 week) exposure of MCF-7 cells to 10(-4) M aluminium chloride or 10(-4) M aluminium chlorohydrate increased motility of the cells as measured by live cell imaging (cumulative length moved by individual cells), by a wound healing assay and by migration in real time through 8 μm pores of a membrane using xCELLigence technology. Long-term exposure (37 weeks) to 10(-4) M aluminium chloride or 10(-4) M aluminium chlorohydrate also increased the ability of MCF-7 cells to invade through a matrigel layer as measured in real time using the xCELLigence system. Although molecular mechanisms remain to be characterized, the ability of aluminium salts to increase migratory and invasive properties of MCF-7 cells suggests that the presence of aluminium in the human breast could influence metastatic processes. This is important because mortality from breast cancer arises mainly from tumour spread rather than from the presence of a primary tumour in the breast.

  16. Antiproliferative activity of goniothalamin enantiomers involves DNA damage, cell cycle arrest and apoptosis induction in MCF-7 and HB4a cells.

    PubMed

    Semprebon, Simone Cristine; Marques, Lilian Areal; D'Epiro, Gláucia Fernanda Rocha; de Camargo, Elaine Aparecida; da Silva, Glenda Nicioli; Niwa, Andressa Megumi; Macedo Junior, Fernando; Mantovani, Mário Sérgio

    2015-12-25

    (R)-goniothalamin (R-GNT) is a styryl lactone that exhibits antiproliferative property against several tumor cell lines. (S)-goniothalamin (S-GNT) is the synthetic enantiomer of R-GNT, and their biological properties are poorly understood. The aim of this study was to evaluate the antiproliferative mechanisms of (R)-goniothalamin and (S)-goniothalamin in MCF-7 breast cancer cells and HB4a epithelial mammary cells. To determine the mechanisms of cell growth inhibition, we analyzed the ability of R-GNT and S-GNT to induce DNA damage, cell cycle arrest and apoptosis. Moreover, the gene expression of cell cycle components, including cyclin, CDKs and CKIs, as well as of genes involved in apoptosis and the DNA damage response were evaluated. The natural enantiomer R-GNT proved more effective in both cell lines than did the synthetic enantiomer S-GNT, inhibiting cell proliferation via cell cycle arrest and apoptosis induction, likely in response to DNA damage. The cell cycle inhibition caused by R-GNT was mediated through the upregulation of CIP/KIP cyclin-kinase inhibitors and through the downregulation of cyclins and CDKs. S-GNT, in turn, was able to cause G0/G1 cell cycle arrest and DNA damage in MCF-7 cells and apoptosis induction only in HB4a cells. Therefore, goniothalamin presents potent antiproliferative activity to breast cancer cells MCF-7. However, exposure to goniothalamin brings some undesirable effects to non-tumor cells HB4a, including genotoxicity and apoptosis induction.

  17. Cytotoxicity and Apoptosis Induced by a Plumbagin Derivative in Estrogen Positive MCF-7 Breast Cancer Cells

    PubMed Central

    Sagar, Sunil; Esau, Luke; Moosa, Basem; Khashab, Niveen M.; Bajic, Vladimir B.; Kaur, Mandeep

    2014-01-01

    Plumbagin [5-hydroxy- 2-methyl-1, 4-naphthaquinone] is a well-known plant derived anticancer lead compound. Several efforts have been made to synthesize its analogs and derivatives in order to increase its anticancer potential. In the present study, plumbagin and its five derivatives have been evaluated for their antiproliferative potential in one normal and four human cancer cell lines. Treatment with derivatives resulted in dose- and time-dependent inhibition of growth of various cancer cell lines. Prescreening of compounds led us to focus our further investigations on acetyl plumbagin, which showed remarkably low toxicity towards normal BJ cells and HepG2 cells. The mechanisms of apoptosis induction were determined by APOPercentage staining, caspase-3/7 activation, reactive oxygen species production and cell cycle analysis. The modulation of apoptotic genes (p53, Mdm2, NF-kB, Bad, Bax, Bcl-2 and Casp-7) was also measured using real time PCR. The positive staining using APOPercentage dye, increased caspase-3/7 activity, increased ROS production and enhanced mRNA expression of proapoptotic genes suggested that acetyl plumbagin exhibits anticancer effects on MCF-7 cells through its apoptosis-inducing property. A key highlighting point of the study is low toxicity of acetyl plumbagin towards normal BJ cells and negligible hepatotoxicity (data based on HepG2 cell line). Overall results showed that acetyl plumbagin with reduced toxicity might have the potential to be a new lead molecule for testing against estrogen positive breast cancer. PMID:24164046

  18. Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells.

    PubMed

    Chen, Hong-Sheng; Bai, Ming-Han; Zhang, Tao; Li, Guo-Dong; Liu, Ming

    2015-04-01

    Breast cancer represents the second leading cause of cancer-related deaths among women worldwide and preventive therapy could reverse or delay the devastating impact of this disease. Ellagic acid (EA), a dietary flavonoid polyphenol which is present in abundance in pomegranate, muscadine grapes, walnuts and strawberries, has been shown to inhibit cancer cells proliferation and induce apoptosis. Here, we investigated the growth inhibitory effects of EA on MCF-7 breast cancer cells. In the present study, we first found that EA inhibits the proliferation of MCF-7 breast cancer cells mainly mediated by arresting cell cycle in the G0/G1 phase. Moreover, gene expression profiling of MCF-7 breast cancer cell line treated with EA for 6, 12 and 24 h was performed using cDNA microarray. A total of 4,738 genes were found with a >2.0-fold change after 24 h of EA treatment. Among these genes, 2,547 were downregulated and 2,191 were upregulated. Furthermore, the changes of 16 genes, which belong to TGF-β/Smads signaling pathway, were confirmed by real-time RT-PCR and/or western blot analysis. TGF-β/Smads signaling pathway was found as the potential molecular mechanism of EA to regulate breast cancer cell cycle arrest in vitro. Therefore, the regulation of TGF-β/Smads pathway in breast cancer cells could be a novel therapeutic approach for the treatment of patients with breast cancer. Further studies with in vitro models, as well as an analysis of additional human samples, are still needed to confirm the molecular mechanisms of EA in inhibition or prevention of breast cancer growth.

  19. PM-3, a benzo-gamma-pyran derivative isolated from propolis, inhibits growth of MCF-7 human breast cancer cells.

    PubMed

    Luo, J; Soh, J W; Xing, W Q; Mao, Y; Matsuno, T; Weinstein, I B

    2001-01-01

    Propolis has numerous biologic activities including antibiotic, antifungal, antiviral and anti-inflammatory properties. Several components isolated from propolis have been shown to have anticancer activity. This study demonstrates that the compound PM-3 (3-[2-dimethyl-8-(3-methyl-2-butenyl)benzopyran]-6-propenoic acid) isolated from Brazilian propolis markedly inhibits the growth of MCF-7 human breast cancer cells. This effect was associated with inhibition of cell cycle progression and induction of apoptosis. Treatment of MCF-7 cells with PM-3 arrested cells in the G1 phase and resulted in a decrease in the protein levels of cyclin D1 and cyclin E. PM-3 also inhibited the expression of cyclin D1 at the transcriptional level when examined in cyclin D1 promoter luciferase assays. Induction of apoptosis by PM-3 occurred within 48 hours after treatment of MCF-7 cells. The MCF-7 treated cells also displayed a decrease in the level of the estrogen receptor (ER) protein and inhibition of estrogen response element (ERE) promoter activity. Therefore, PM-3 merits further investigation with respect to breast cancer chemoprevention or therapy.

  20. A quantitative proteomics analysis of MCF7 breast cancer stem and progenitor cell populations

    PubMed Central

    Nie, Song; McDermott, Sean P.; Deol, Yadwinder; Tan, Zhijing; Wicha, Max S.; Lubman, David M.

    2015-01-01

    Accumulating evidence has demonstrated that breast cancers are initiated and develop from a small population of stem-like cells termed cancer stem cells (CSCs). These cells are hypothesized to mediate tumor metastasis and contribute to therapeutic resistance. However, the molecular regulatory networks responsible for maintaining CSCs in an undifferentiated state have yet to be elucidated. In this study, we used CSC markers to isolate pure breast CSCs fractions (ALDH+ and CD44+CD24− cell populations) and the mature luminal cells (CD49f− EpCAM+) from the MCF7 cell line. Proteomic analysis was performed on these samples and a total of 3304 proteins were identified. A label-free quantitative method was applied to analyze differentially expressed proteins. Using the criteria of greater than twofold changes and p value <0.05, 305, 322 and 98 proteins were identified as significantly different in three pairwise comparisons of ALDH+ versus CD44+CD24−, ALDH+ versus CD49f−EpCAM+ and CD44+CD24− versus CD49f−EpCAM+, respectively. Pathway analysis of differentially expressed proteins by Ingenuity Pathway Analysis (IPA) revealed potential molecular regulatory networks that may regulate CSCs. Selected differential proteins were validated by Western blot assay and immunohistochemical staining. The use of proteomics analysis may increase our understanding of the underlying molecular mechanisms of breast CSCs. This may be of importance in the future development of anti-CSC therapeutics. PMID:26332018

  1. A quantitative proteomics analysis of MCF7 breast cancer stem and progenitor cell populations.

    PubMed

    Nie, Song; McDermott, Sean P; Deol, Yadwinder; Tan, Zhijing; Wicha, Max S; Lubman, David M

    2015-11-01

    Accumulating evidence has demonstrated that breast cancers are initiated and develop from a small population of stem-like cells termed cancer stem cells (CSCs). These cells are hypothesized to mediate tumor metastasis and contribute to therapeutic resistance. However, the molecular regulatory networks responsible for maintaining CSCs in an undifferentiated state have yet to be elucidated. In this study, we used CSC markers to isolate pure breast CSCs fractions (ALDH+ and CD44+CD24- cell populations) and the mature luminal cells (CD49f-EpCAM+) from the MCF7 cell line. Proteomic analysis was performed on these samples and a total of 3304 proteins were identified. A label-free quantitative method was applied to analyze differentially expressed proteins. Using the criteria of greater than twofold changes and p value <0.05, 305, 322 and 98 proteins were identified as significantly different in three pairwise comparisons of ALDH+ versus CD44+CD24-, ALDH+ versus CD49f-EpCAM+ and CD44+CD24- versus CD49f-EpCAM+, respectively. Pathway analysis of differentially expressed proteins by Ingenuity Pathway Analysis (IPA) revealed potential molecular regulatory networks that may regulate CSCs. Selected differential proteins were validated by Western blot assay and immunohistochemical staining. The use of proteomics analysis may increase our understanding of the underlying molecular mechanisms of breast CSCs. This may be of importance in the future development of anti-CSC therapeutics.

  2. O-Alkylated derivatives of quercetin induce apoptosis of MCF-7 cells via a caspase-independent mitochondrial pathway.

    PubMed

    Liao, Han; Bao, Xinran; Zhu, Jie; Qu, Jiao; Sun, Yong; Ma, Xiaodong; Wang, Enxia; Guo, Xin; Kang, Qi; Zhen, Yuhong

    2015-12-05

    The aim of this study was to investigate the antitumor effects of two novel alkylated derivatives of quercetin, 7-O-butylquercetin (BQ) and 7-O-geranylquercetin (GQ), in MCF-7 human breast cancer cells and explore the possible cellular mechanism of the related apoptotic effects. Our data showed that BQ and GQ were more toxic to MCF-7 cells and had better accumulation ability in MCF-7 cells than quercetin. Morphological observations and DNA fragmentation pattern suggested that the derivatives could induce apoptosis in MCF-7 cells. Derivatives-induced apoptosis could not be reversed by Z-VAD-FMK and N-acetyl cysteine demonstrated that the apoptosis was independent on caspase and reactive oxygen species. Western blot assay showed that endonuclease G and apoptosis inducing factor might be relative to the apoptosis. Alkylation of quercetin at 7-O position can enhance the apoptosis inducing effect and cell accumulation ability relative to quercetin. This structural alteration brings changes on apoptosis pathway as well.

  3. EFFECT OF EXPOSURE PROTOCOL AND HEAT SHOCK PROTEIN EXPRESSION ON ARSENITE INDUCED GENOTOXICITY IN MCF-7 BREAST CANCER CELLS

    EPA Science Inventory


    Effect of exposure protocol and heat shock protein expression on arsenite induced genotoxicity in MCF-7 breast cancer cells

    The genotoxic effects of arsenic (As) are well accepted, yet its mechanism of action is not clearly defined. Heat-shock proteins (HSPs) protect...

  4. Specific subcellular localization of siRNAs delivered by lipoplex in MCF-7 breast cancer cells.

    PubMed

    Lavigne, Carole; Thierry, Alain R

    2007-10-01

    In order to better understand the mechanism of delivery of siRNAs by lipid-based vectors, we investigated the subcellular distribution of siRNAs directed against cyclin D1 delivered by the DLS system in the breast cancer cell line MCF-7. Cells were treated with cyclopentenone or 17beta-estradiol to modulate the level of expression of cyclin D1 mRNA. We qualitatively observed that siRNA localized to specific cytoplasmic compartments in the periphery of the nucleus in granular-like structures that do not correspond to early endosomal vesicles. In cells treated with either cyclopentenone or 17beta-estradiol cellular distribution of siRNAs was not affected but variations in the amount of siRNAs present in cells were found. We suggest these variations might be associated with the effects of cyclopentenone and 17beta-estradiol in cyclin D1 gene expression. Low cytotoxicity and highly cellular uptake of lipoplexes was observed in the presence of serum indicating that the DLS system could be a useful tool for siRNA vectorization in vitro and in vivo.

  5. Phorbol ester induced phosphorylation of the estrogen receptor in intact MCF-7 human breast cancer cells

    SciTech Connect

    Knabbe, C.; Lippman, M.E.; Greene, G.L.; Dickson, R.B.

    1986-05-01

    Recent studies with a variety of cellular receptors have shown that phorbol ester induced phosphorylation modulates ligand binding and function. In this study the authors present direct evidence that the estrogen receptor in MCF-7 human breast cancer cells is a phosphoprotein whose phosphorylation state can be enhanced specifically by phorbol-12-myristate-13-acetate (PMA). Cells were cultured to 6h in the presence of (/sup 32/P)-orthophosphate. Whole cell extracts were immunoprecipitated with a monoclonal antibody (D58) against the estrogen receptor and subjected to SDS-polyacrylamide electrophoresis. Autoradiography showed a specific band in the region of 60-62 kDa which was significantly increased in preparations from PMA treated cells. Phospho-amino acid analysis demonstrated specific phosphorylation of serine and threonine residues. Cholera toxin or forskolin did not change the phosphorylation state of this protein. In a parallel binding analysis PMA led to a rapid decrease of estrogen binding sites. The estrogen induction of both progesterone receptors and growth in semisolid medium was blocked by PMA, whereas the estrogen induction of the 8kDa protein corresponding to the ps2 gene product and of the 52 kDa protein was not affected. In conclusion, phorbol esters can induce phosphorylation of the estrogen receptor. This process may be associated with the inactivation of certain receptor functions.

  6. Flavokawain derivative FLS induced G2/M arrest and apoptosis on breast cancer MCF-7 cell line

    PubMed Central

    Ali, Norlaily Mohd; Akhtar, M Nadeem; Ky, Huynh; Lim, Kian Lam; Abu, Nadiah; Zareen, Seema; Ho, Wan Yong; Alan-Ong, Han Kiat; Tan, Sheau Wei; Alitheen, Noorjahan Banu; Ismail, Jamil bin; Yeap, Swee Keong; Kamarul, Tunku

    2016-01-01

    Known as naturally occurring biologically active compounds, flavokawain A and B are the leading chalcones that possess anticancer properties. Another flavokawain derivative, (E)-1-(2′-Hydroxy-4′,6′-dimethoxyphenyl)-3-(4-methylthio)phenyl)prop-2-ene-1-one (FLS) was characterized with 1H-nuclear magnetic resonance, electron-impact mas spectrometry, infrared spectroscopy, and ultraviolet (1H NMR, EI-MS, IR, and UV) spectroscopic techniques. FLS cytotoxic efficacy against human cancer cells (MCF-7, MDA-MB-231, and MCF-10A) resulted in the reduction of IC50 values in a time- and dose-dependent mode with high specificity on MCF-7 (IC50 of 36 μM at 48 hours) against normal breast cell MCF-10A (no IC50 detected up to 180 μM at 72 hours). Light, scanning electron, and fluorescent microscopic analysis of MCF-7 cells treated with 36 μM of FLS displayed cell shrinkage, apoptotic body, and DNA fragmentation. Additionally, induction of G2/M cell arrest within 24 hours and apoptosis at subsequent time points was discovered via flow cytometry analysis. The roles of PLK-1, Wee-1, and phosphorylation of CDC-2 in G2/M arrest and proapoptotic factors (Bax, caspase 9, and p53) in promotion of apoptosis of FLS against MCF-7 cells were discovered using fluorometric, quantitative real-time polymerase chain reaction, and Western blot analysis. Interestingly, the presence of SCH3 (thiomethyl group) on ring B structure contributed to the selective cytotoxicity against MCF-7 cells compared to other chalcones, flavokawain A and B. Overall, our data suggest potential therapeutic value for flavokawain derivative FLS to be further developed as a new anticancer drug. PMID:27358555

  7. Chemical modification of silicon nitride microsieves for capture of MCF-7 circulating tumor cells of breast cancer

    NASA Astrophysics Data System (ADS)

    Dien To, Thien; Thoai Le, Huyen; Thi Dinh, Mai Ngoc; Nguyen, Anh Tuan; Doan, Tin Chanh Duc; Mau Dang, Chien

    2015-01-01

    Chemical modification of silicon nitride (SiN) microsieves with glutaraldehyde and 3-glycidoxypropyldimethylethoxysilane (GOPS) for bio-coupling with an antibody to capture MCF-7 circulating tumor cells of breast cancer is reported. In this research, the antibody monoclonal anti-cytokerantin-FITC with fluorescein isothiocyanate label was used due to its good selectivity to MCF-7 circulating tumor cells of breast cancer. Modification efficiency was determined by the variation of contact angle. The increase in contact angle of the microsieves treated with glutaraldehyde and GOPS indicated that the microsieve surface changed from hydrophilic to hydrophobic. These results confirmed the successful immobilization of glutaraldehyde and GOPS onto SiN microsieves. Antibody binding effect was evaluated by fluorescence microscopy. Fluorescent images exhibited that GOPS was more effective than the glutaraldehyde treatment. The GOPS-treated microsieves were then used for capture of MCF-7 cells in phosphate buffered saline (PBS). The fluorescent images proved that the surface modification of SiN microsieves with GOPS helped to increase the efficiency of MCF-7 capture.

  8. Koenimbin, a natural dietary compound of Murraya koenigii (L) Spreng: inhibition of MCF7 breast cancer cells and targeting of derived MCF7 breast cancer stem cells (CD44+/CD24−/low): an in vitro study

    PubMed Central

    Ahmadipour, Fatemeh; Noordin, Mohamed Ibrahim; Mohan, Syam; Arya, Aditya; Paydar, Mohammadjavad; Looi, Chung Yeng; Keong, Yeap Swee; Siyamak, Ebrahimi Nigjeh; Fani, Somayeh; Firoozi, Maryam; Yong, Chung Lip; Sukari, Mohamed Aspollah; Kamalidehghan, Behnam

    2015-01-01

    Background Inhibition of breast cancer stem cells has been shown to be an effective therapeutic strategy for cancer prevention. The aims of this work were to evaluate the efficacy of koenimbin, isolated from Murraya koenigii (L) Spreng, in the inhibition of MCF7 breast cancer cells and to target MCF7 breast cancer stem cells through apoptosis in vitro. Methods Koenimbin-induced cell viability was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Nuclear condensation, cell permeability, mitochondrial membrane potential, and cytochrome c release were observed using high-content screening. Cell cycle arrest was examined using flow cytometry, while human apoptosis proteome profiler assays were used to investigate the mechanism of apoptosis. Protein expression levels of Bax, Bcl2, and heat shock protein 70 were confirmed using Western blotting. Caspase-7, caspase-8, and caspase-9 levels were measured, and nuclear factor kappa B (NF-κB) activity was assessed using a high-content screening assay. Aldefluor™ and mammosphere formation assays were used to evaluate the effect of koenimbin on MCF7 breast cancer stem cells in vitro. The Wnt/β-catenin signaling pathway was investigated using Western blotting. Results Koenimbin-induced apoptosis in MCF7 cells was mediated by cell death-transducing signals regulating the mitochondrial membrane potential by downregulating Bcl2 and upregulating Bax, due to cytochrome c release from the mitochondria to the cytosol. Koenimbin induced significant (P<0.05) sub-G0 phase arrest in breast cancer cells. Cytochrome c release triggered caspase-9 activation, which then activated caspase-7, leading to apoptotic changes. This form of apoptosis is closely associated with the intrinsic pathway and inhibition of NF-κB translocation from the cytoplasm to the nucleus. Koenimbin significantly (P<0.05) decreased the aldehyde dehydrogenase-positive cell population in MCF7 cancer stem cells and

  9. A Flavone Constituent from Myoporum bontioides Induces M-Phase Cell Cycle Arrest of MCF-7 Breast Cancer Cells.

    PubMed

    Weng, Jing-Ru; Bai, Li-Yuan; Lin, Wei-Yu; Chiu, Chang-Fang; Chen, Yu-Chang; Chao, Shi-Wei; Feng, Chia-Hsien

    2017-03-15

    Myoporum bontioides is a traditional medicinal plant in Asia with various biological activities, including anti-inflammatory and anti-bacterial characteristics. To identify the bioactive constituents from M. bontioides, a newly-identified flavone, 3,4'-dimethoxy-3',5,7-trihydroxyflavone (compound 1), along with eight known compounds, were investigated in human MCF-7 breast cancer, SCC4 oral cancer, and THP-1 monocytic leukemia cells. Among these compounds, compound 1 exhibited the strongest antiproliferative activity with half-maximal inhibitory concentration (IC50) values ranging from 3.3 μM (MCF-7) to 8.6 μM (SCC4). Flow cytometric analysis indicated that compound 1 induced G2/M cell cycle arrest in MCF-7 cells. Mechanistic evidence suggests that the G2/M arrest could be attributable to compound 1's modulatory effects on the phosphorylation and expression of numerous key signaling effectors, including cell division cycle 2 (CDC2), CDC25C, and p53. Notably, compound 1 downregulated the expression of histone deacetylase 2 (HDAC2) and HDAC4, leading to increased histone H3 acetylation and p21 upregulation. Together, these findings suggest the translational potential of compound 1 as a breast cancer treatment.

  10. Preparation and characterization of (−)-Epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on Human breast cancer MCF-7 cells

    PubMed Central

    Zeng, Liang; Yan, Jingna; Luo, Liyong; Ma, Mengjun; Zhu, Huiqun

    2017-01-01

    We were employing nanotechnology to improve the targeting ability of (−)-Epigallocatechin-3-gallate (EGCG) towards MCF-7 cells, and two kinds of EGCG nanoparticles (FA-NPS-PEG and FA-PEG-NPS) were obtained, besides, their characteristics and effects on MCF-7 cells were studied. The results indicated that (i) both FA-NPS-PEG and FA-PEG-NPS have high stabilities; (ii) their particles sizes were 185.0 ± 13.5 nm and 142.7 ± 7.2 nm, respectively; (iii) their encapsulation efficiencies of EGCG were 90.36 ± 2.20% and 39.79 ± 7.54%, respectively. (iv) there was no cytotoxicity observed in EGCG, FA-NPS-PEG and FA-PEG-NPS toward MCF-7 cells over all concentrations (0~400 μg/mL) tested; (v) EGCG, FA-NPS-PEG and FA-PEG-NPS inhibited MCF-7 cells proliferation in dose-dependent manners, with the average IC50 of 470.5 ± 33.0, 65.9 ± 0.4 and 66.6 ± 0.6 μg/mL; (vi) EGCG, FA-NPS-PEG and FA-PEG-NPS could modulated the expressions of several key regulatory proteins in PI3K-Akt pathway such as up-regulation of PTEN, p21 and Bax, and down-regulation of p-PDK1, p-AKT, CyclinD1 and Bcl-2, which gave an illustration about the mechanism by which EGCG nanoparticles inhibited MCF-7 cells proliferation. In this study, EGCG nanoparticles can significantly enhance the targeting ability and efficacy of EGCG, which is considered to an experimental foundation for further research on its activity, targeting ability and metabolism in vivo. PMID:28349962

  11. Synthesis and cytotoxic activity of certain benzothiazole derivatives against human MCF-7 cancer cell line.

    PubMed

    Mohamed, Lamia W; Taher, Azza T; Rady, Ghada S; Ali, Mamdouh M; Mahmoud, Abeer E

    2016-10-04

    A new series of benzothiazole has been synthesized as cytotoxic agents. The new derivatives were tested for their cytotoxic activity toward the human breast cancer MCF-7 cell line against cisplatin as the reference drug. Many derivatives revealed good cytotoxic effect, whereas four of them, 4, 5c, 5d, and 6b, were more potent than cisplatin, with IC50 values being 8.64, 7.39, 7.56, and 5.15 μm compared to 13.33 μm of cisplatin. The four derivatives' cytotoxic activity was accompanied by regulating free radicals production, by increasing the activity of superoxide dismutase and depletion of intracellular reduced glutathione, catalase, and glutathione peroxidase activities, accordingly, the high production of hydrogen peroxide, nitric oxide, and other free radicals causing tumor cell death as monitored by reduction in the synthesis of protein and nucleic acids. Most of the tested compounds showed potent to moderate growth inhibitory activity; in particular, compound 6b exhibited the highest activity suggesting it is a lead compound in cytotoxic activity.

  12. INOSITOL HEXAKISPHOSPHATE MEDIATES APOPTOSIS IN HUMAN BREAST ADENOCARCINOMA MCF-7 CELL LINE VIA INTRINSIC PATHWAY

    SciTech Connect

    Agarwal, Rakhee; Ali, Nawab

    2010-04-12

    Inositol polyphosphates (InsP{sub s}) are naturally occurring compounds ubiquitously present in plants and animals. Inositol hexakisphosphate (InsP{sub 6}) is the most abundant among all InsP{sub s} and constitutes the major portion of dietary fiber in most cereals, legumes and nuts. Certain derivatives of InsP{sub s} also regulate cellular signaling mechanisms. InsP{sub s} have also been shown to reduce tumor formation and induce apoptosis in cancerous cells. Therefore, in this study, the effects of InsPs on apoptosis were studied in an attempt to investigate their potential anti-cancer therapeutic application and understand their mechanism of action. Acridine orange and ethidium bromide staining suggested that InsP{sub 6} dose dependently induced apoptosis in human breast adenocarcinoma MCF-7 cells. Among InsP{sub s} tested (InsP{sub 3}, InsP{sub 4}, InsP{sub 5}, and InsP{sub 6}), InsP{sub 6} was found to be the most effective in inducing apoptosis. Furthermore, effects of InsP{sub 6} were found most potent inducing apoptosis. Etoposide, the drug known to induce apoptosis in both in vivo and in vitro, was used as a positive control. Western blotting experiments using specific antibodies against known apoptotic markers suggested that InsP{sub 6} induced apoptotic changes were mediated via an intrinsic apoptotic pathway.

  13. Inositol Hexakisphosphate Mediates Apoptosis in Human Breast Adenocarcinoma MCF-7 Cell Line via Intrinsic Pathway

    NASA Astrophysics Data System (ADS)

    Agarwal, Rakhee; Ali, Nawab

    2010-04-01

    Inositol polyphosphates (InsPs) are naturally occurring compounds ubiquitously present in plants and animals. Inositol hexakisphosphate (InsP6) is the most abundant among all InsPs and constitutes the major portion of dietary fiber in most cereals, legumes and nuts. Certain derivatives of InsPs also regulate cellular signaling mechanisms. InsPs have also been shown to reduce tumor formation and induce apoptosis in cancerous cells. Therefore, in this study, the effects of InsPs on apoptosis were studied in an attempt to investigate their potential anti-cancer therapeutic application and understand their mechanism of action. Acridine orange and ethidium bromide staining suggested that InsP6 dose dependently induced apoptosis in human breast adenocarcinoma MCF-7 cells. Among InsPs tested (InsP3, InsP4, InsP5, and InsP6), InsP6 was found to be the most effective in inducing apoptosis. Furthermore, effects of InsP6 were found most potent inducing apoptosis. Etoposide, the drug known to induce apoptosis in both in vivo and in vitro, was used as a positive control. Western blotting experiments using specific antibodies against known apoptotic markers suggested that InsP6 induced apoptotic changes were mediated via an intrinsic apoptotic pathway.

  14. All-trans retinoic acid (ATRA)-induced apoptosis is preceded by G1 arrest in human MCF-7 breast cancer cells.

    PubMed

    Mangiarotti, R; Danova, M; Alberici, R; Pellicciari, C

    1998-01-01

    In this study the effects of all-trans retinoic acid (ATRA) on cell cycle and apoptosis of MCF-7 human breast cancer cells were investigated to elucidate the mechanisms underlying the antineoplastic potential of this retinoid in breast cancer. The antiproliferative effect of ATRA was evaluated by DNA content measurements and dual-parameter flow cytometry of bromodeoxyuridine (BrdU) incorporation and of the expression of cell cycle-related proteins (Ki-67 as proliferation marker and statin as quiescence marker) vs DNA content. Apoptosis was also studied by flow cytometry of either DNA content or Annexin V labelling. After 10(-6) M ATRA treatment, the fraction of S-phase cells decreased significantly, and cells accumulated in the G0/G1 range of DNA contents. Dual-parameter flow cytograms showed a decrease in the percentage of Ki-67-labelled cells (after 10 days, only 20% of the cells were still positive for Ki-67 compared with 95% in controls), while the fraction of statin-positive cells increased slightly. From 3 days of treatment onwards, apoptosis was found to occur. These results show that ATRA-induced inhibition of MCF-7 cell growth is related to two mechanisms, i.e. the block of cell proliferation, mostly in a pre-S phase, and the induction of apoptosis. These results should be taken into account when attempting to design treatment programmes that associate ATRA with antineoplastic compounds of different cell cycle specificity.

  15. All-trans retinoic acid (ATRA)-induced apoptosis is preceded by G1 arrest in human MCF-7 breast cancer cells.

    PubMed Central

    Mangiarotti, R.; Danova, M.; Alberici, R.; Pellicciari, C.

    1998-01-01

    In this study the effects of all-trans retinoic acid (ATRA) on cell cycle and apoptosis of MCF-7 human breast cancer cells were investigated to elucidate the mechanisms underlying the antineoplastic potential of this retinoid in breast cancer. The antiproliferative effect of ATRA was evaluated by DNA content measurements and dual-parameter flow cytometry of bromodeoxyuridine (BrdU) incorporation and of the expression of cell cycle-related proteins (Ki-67 as proliferation marker and statin as quiescence marker) vs DNA content. Apoptosis was also studied by flow cytometry of either DNA content or Annexin V labelling. After 10(-6) M ATRA treatment, the fraction of S-phase cells decreased significantly, and cells accumulated in the G0/G1 range of DNA contents. Dual-parameter flow cytograms showed a decrease in the percentage of Ki-67-labelled cells (after 10 days, only 20% of the cells were still positive for Ki-67 compared with 95% in controls), while the fraction of statin-positive cells increased slightly. From 3 days of treatment onwards, apoptosis was found to occur. These results show that ATRA-induced inhibition of MCF-7 cell growth is related to two mechanisms, i.e. the block of cell proliferation, mostly in a pre-S phase, and the induction of apoptosis. These results should be taken into account when attempting to design treatment programmes that associate ATRA with antineoplastic compounds of different cell cycle specificity. PMID:9460987

  16. Characterization of Dynamic Behaviour of MCF7 and MCF10A Cells in Ultrasonic Field Using Modal and Harmonic Analyses

    PubMed Central

    Bade, Dennis; Meditz, Katharina; Witt, Reiner; Bicker, Uwe; Bludszuweit-Philipp, Catrin; Maier, Patrick

    2015-01-01

    Treatment options specifically targeting tumour cells are urgently needed in order to reduce the side effects accompanied by chemo- or radiotherapy. Differences in subcellular structure between tumour and normal cells determine their specific elasticity. These structural differences can be utilised by low-frequency ultrasound in order to specifically induce cytotoxicity of tumour cells. For further evaluation, we combined in silico FEM (finite element method) analyses and in vitro assays to bolster the significance of low-frequency ultrasound for tumour treatment. FEM simulations were able to calculate the first resonance frequency of MCF7 breast tumour cells at 21 kHz in contrast to 34 kHz for the MCF10A normal breast cells, which was due to the higher elasticity and larger size of MCF7 cells. For experimental validation of the in silico-determined resonance frequencies, equipment for ultrasonic irradiation with distinct frequencies was constructed. Differences for both cell lines in their response to low-frequent ultrasonic treatment were corroborated in 2D and in 3D cell culture assays. Treatment with ~ 24.5 kHz induced the death of MCF7 cells and MDA-MB-231 metastases cells possessing a similar elasticity; frequencies of > 29 kHz resulted in cytotoxicity of MCF10A. Fractionated treatments by ultrasonic irradiation of suspension myeloid HL60 cells resulted in a significant decrease of viable cells, mostly significant after threefold irradiation in intervals of 3 h. Most importantly in regard to a clinical application, combined ultrasonic treatment and chemotherapy with paclitaxel showed a significantly increased killing of MCF7 cells compared to both monotherapies. In summary, we were able to determine for the first time for different tumour cell lines a specific frequency of low-intensity ultrasound for induction of cell ablation. The cytotoxic effect of ultrasonic irradiation could be increased by either fractionated treatment or in combination with

  17. Identification of an RNA aptamer binding hTERT-derived peptide and inhibiting telomerase activity in MCF7 cells.

    PubMed

    Varshney, Akhil; Bala, Jyoti; Santosh, Baby; Bhaskar, Ashima; Kumar, Suresh; Yadava, Pramod K

    2017-03-01

    Human telomerase reverse transcriptase is an essential rate-limiting component of telomerase complex. hTERT protein in association with other proteins and the human telomerase RNA (hTR) shows telomerase activity, essential for maintaining genomic integrity in proliferating cells. hTERT binds hTR through a decapeptide located in the RID2 (RNA interactive domain 2) domain of N-terminal region. Since hTERT is essential for telomerase activity, inhibitors of hTERT are of great interest as potential anti-cancer agent. We have selected RNA aptamers against a synthetic peptide from the RID2 domain of hTERT by employing in vitro selection protocol (SELEX). The selected RNAs could bind the free peptide, as CD spectra suggested conformational change in aptamer upon RID2 binding. Extracts of cultured breast cancer cells (MCF7) expressing this aptamer showed lower telomerase activity as estimated by TRAP assay. hTERT-binding RNA aptamers hold promise as probable anti-cancer therapeutic agent.

  18. Study of cytotoxic effects of single-walled carbon nanotubes functionalized with different chemical groups on human MCF7 cells.

    PubMed

    Song, Maoyong; Zeng, Luzhe; Yuan, Shaopeng; Yin, Junfa; Wang, Hailin; Jiang, Guibin

    2013-07-01

    Functionalization is an important technique to increase the solubility and biocompatibility of single-wall carbon nanotubes (SWCNTs). In this study, we investigated the cytotoxicity of four types of SWCNTs functionalized with hydroxyl, amino, carboxyl and polyethyleneglycol on MCF7 cells. These functionalized SWCNTs (f-SWCNTs) have insignificant effects on mitochondrial activity and ROS production in MCF7 cells at all test concentrations. However, explicit results revealed that all the tested f-SWCNTs could cause changes of cell morphology, induce cell membrane damage, decrease cell adhesion, and increase cell apoptosis. Therefore, this study shows the potential side effects of f-SWCNTs accompanying with the increase of dispersibility and stability in environment or serum (to prevent their aggregation), and highlights the need for further research to examine the potential toxicity of f-SWCNTs before they are used in the environmental and biomedical fields.

  19. Repression of mammary adipogenesis by genistein limits mammosphere formation of human MCF-7 cells.

    PubMed

    Montales, Maria Theresa E; Rahal, Omar M; Nakatani, Hajime; Matsuda, Tsukasa; Simmen, Rosalia C M

    2013-07-01

    Mammary adipose tissue may contribute to breast cancer development and progression by altering neighboring epithelial cell behavior and phenotype through paracrine signaling. Dietary exposure to soy foods is associated with lower mammary tumor risk and reduced body weight and adiposity in humans and in rodent breast cancer models. Despite the suggested linkage between obesity and breast cancer, the local influence of bioactive dietary components on mammary adiposity for antitumor effects remains unknown. Herein, we report that post-weaning dietary exposure to soy protein isolate and its bioactive isoflavone genistein (GEN) lowered mammary adiposity and increased mammary tumor suppressor PTEN and E-cadherin expression in female mice, relative to control casein diet. To ascertain GEN's role in mammary adipose deposition that may affect underlying epithelial cell phenotype, we evaluated GEN's effects on SV40-immortalized mouse mammary stromal fibroblast-like (MSF) cells during differentiation into adipocytes. MSF cells cultured in a differentiation medium with 40 nM GEN showed reductions in mature adipocyte numbers, triglyceride accumulation, and Pparγ (Pparg) and fatty acid synthase transcript levels. GEN inhibition of adipose differentiation was accompanied by increased estrogen receptor β (Erβ (Esr2)) gene expression and was modestly recapitulated by ERβ-selective agonist 2,3-bis-(4-hydroxyphenyl)-propionitrile (DPN). Reduction of Erβ expression by siRNA targeting increased Pparγ transcript levels and stromal fibroblast differentiation into mature adipocytes; the latter was reversed by GEN but not by DPN. Conditioned medium from GEN-treated adipocytes diminished anchorage-independent mammosphere formation of human MCF-7 breast cancer cells. Our results suggest a mechanistic pathway to support direct regulation of mammary adiposity by GEN for breast cancer prevention.

  20. Comparative analysis of the cytotoxic effect of 7-prenyloxycoumarin compounds and herniarin on MCF-7 cell line

    PubMed Central

    Mousavi, Seyed Hadi; Davari, Atiyeh-Sadat; Iranshahi, Mehrdad; Sabouri-Rad, Sarvenaz; Tayarani Najaran, Zahra

    2015-01-01

    Objective: 7-prenyloxycoumarins are a group of secondary metabolites that are found mainly in plants belonging to the Rutaceae and Umbelliferae families. This study was designed to evaluate and compare the cytotoxic and apoptotic activity of 7-prenyloxycoumarin compounds and herniarin on MCF-7, a breast carcinoma cell line. Materials and Methods: Cells were cultured in RPMI medium and incubated with different concentrations of auraptene, herniarin, umbelliferone, and umbelliprenin. Cell viability was quantified by MTT assay. Apoptotic cells were determined using propidium iodide staining of DNA fragmentation by flow cytometry (sub-G1peak). Bax protein expression was detected by western blot to investigate the underlying mechanism. Results: Doses which induced 50% cell growth inhibition (IC50) against MCF-7 cells with auraptene, herniarin, umbelliferone, and umbelliprenin were calculated (59.7, 207.6, 476.3, and 73.4 µM), respectively. Auraptene induced a sub-G1 peak in the flow cytometry histogram of treated cells compared to control cells, and DNA fragmentation suggested the induction of apoptosis. Western blot analysis showed that auraptene significantly up-regulated Bax expression in MCF-7 cells compared to untreated controls. Conclusion: Auraptene exerts cytotoxic and apoptotic effects in breast carcinoma cell line and can be considered for further mechanistic evaluations in human cancer cells. These results candidate auraptene for further studies to evaluate its biosafety and anti-cancer effects. PMID:26693409

  1. Combined effect of navelbine with medroxyprogesterone acetate against human breast carcinoma MCF-7 cells in vitro.

    PubMed Central

    Sugiyama, K.; Shimizu, M.; Akiyama, T.; Ishida, H.; Okabe, M.; Tamaoki, T.; Akinaga, S.

    1998-01-01

    Navelbine (NVB, vinorelbine ditartrate, KW-2307), a new vinca alkaloid analogue, has been shown to be clinically effective against advanced breast cancer. In this report, the combined effect of NVB with medroxyprogesterone acetate (MPA), a synthetic progesterone derivative, was examined in vitro against human breast carcinoma MCF-7 cells. The combined effect was demonstrated to be synergistic using the isobologram and median-effect plot analyses. To elucidate the mechanism of action, we further examined effects of both drugs on cell cycle distribution of the cells in combination and/or alone. NVB at 2 nM induced apparent G1-phase accumulation as well as the induction of cyclin-dependent kinase (CDK) inhibitor p21(WAF1/CIP1) protein and the dephosphorylated form of retinoblastoma protein (pRb). In contrast, MPA at 0.1 microM also induced G1-phase accumulation as well as the reduced expression of cyclin D1 protein. In addition, the combination of both drugs induced augmented G1-phase accumulation, which occurred along with p21(WAF1/CIP1) protein induction, cyclin D1 protein reduction and pRb dephosphorylation. These results demonstrate that the synergistic combined effect of NVB with MPA was mediated through enhancement of G1-phase accumulation that resulted from the different action point(s) of each drug. Furthermore, the synergistic combined effect of NVB with MPA was also observed in other human breast carcinoma cell lines, such as T-47D and ZR-75-1. These results suggest that combination therapy of NVB with MPA in breast cancer might be effective in clinical studies. Images Figure 6 PMID:9667641

  2. Ctotoxic and apoptogenic effects of Perovskia abrotanoides flower extract on MCF-7 and HeLa cell lines

    PubMed Central

    Geryani, Mohamad Ali; Mahdian, Davood; Mousavi, Seyed Hadi; Hosseini, Azar

    2016-01-01

    Objective: Perovskia abrotanoides Karel, belongs to the family Lamiaceae and grows wild alongside the mountainous roads inarid and cold climate of Northern Iran. The anti-tumor activity of P. abrotanoides root extract has been shown previously. This study was designed to examine in vitro anti-proliferative and pro-apoptotic effects of flower extract of P. abrotanoides on MCF-7 and Hela cell lines. Materials and Methods: Cells were cultured in DMEM medium with 10% fetal bovine serum, 100 units/ml penicillin and 100 µg/ml streptomycin and incubated with different concentrations of plant extracts. Cell viability was quantified by MTT assay. Apoptotic cells were determined using propidium iodide (PI) staining of DNA fragmentation by flow cytometry (sub-G1 peak). Results: P. abrotanoides extract inhibited the growth of malignant cells in a time and dose-dependent manner and 1000 µg/ml of extract following 48h of incubation was the most cytotoxic dose against Hela cell in comparison with other doses; however, in MCF-7 cells,1000 and 500 µg/ml PA induced toxicity at all time points but with different features.. Analysis of flowcytometry histogram of treated cells compared with control cells indicated that the cytotoxic effect is partly due toapoptosis induction. Conclusion: Hydro-alcoholic extract of P. abrotanoides flowers inhibits the growth of MCF-7 and HeLa cell lines, partly via inducing apoptosis. Their inhibitory effect was increased in a time and dose-dependent manner, especially in MCF7 cells. However, further studies are needed to reveal the mechanisms of P. abrotanoides extract-induced cell death. PMID:27516981

  3. miR-27a-mediated antiproliferative effects of metformin on the breast cancer cell line MCF-7.

    PubMed

    Zhao, Wei; Zhang, Xiaohui; Liu, Jia; Sun, Bei; Tang, Hua; Zhang, Hong

    2016-12-01

    Metformin was demonstrated to have effects on breast cancer, and microRNA-27a (miR-27a) is a prognostic marker for breast cancer progression and patient survival. AMPKα2 was found to be a suppressor in breast cancer MCF-7 cells. Therefore, the present study aimed to explain this phenomenon in regards to the relationship between microRNAs (miRNAs) and their target genes and to predict how AMPKα2 may be a downstream target gene of miR-27a, thus exploring the new mechanism of metformin in the treatment of breast cancer regarding miRNAs. The MTT assay was used to assess whether metformin can inhibit the growth of breast cancer MCF-7 cells. The levels of miR-27a and AMPKα2 mRNA were examined using RT-PCR, and the expression levels of AMPKα2 and caspase-3 were determined by western blot analyses after MCF-7 cells were treated with metformin. The association of miR-27a and AMPKα2 was confirmed by transfecting cells with miR-27a mimics, miR-27a inhibitors and its negative control (NC), respectively. A luciferase assay was conducted to detect the miR-27a binding to the AMPKα2 3'-untranslated region (3'-UTR). The results of the MTT assay showed that metformin suppressed the growth of MCF-7 cells in a dose- and time‑dependent manner. miR-27a was downregulated, and AMPKa2 was upregulated after intervention with metformin, and caspase-3 was activated. Transfection tests showed that the expression of AMPKα2 was downregulated in the MCF-7 cells after transfection of the miR-27a mimics. The luciferase assay verified the binding of miR-27a to the AMPKα2 3'-UTR. In conclusion, metformin inhibited MCF-7 cell growth, and miR-27a plays a vital role in this process by targeting AMPKα2.

  4. Cytotoxic evaluation of different fractions of Salvia chorassanica Bunge on MCF-7 and DU 145 cell lines.

    PubMed

    Golshan, Alireza; Amini, Elaheh; Emami, Seyed Ahmad; Asili, Javad; Jalali, Zahra; Sabouri-Rad, Sarvenaz; Sanjar-Mousavi, Naghmeh; Tayarani-Najaran, Zahra

    2016-01-01

    Because of antimicrobial, antioxidant, and anticancer potential, Salvia chorassanica Bunge (Lamiaceae) has been considered as a popular herb in Iranian traditional medicine. Previous studies have shown remarkable cytotoxic properties of the methanol, n-hexane and dichloromethane extract of S. chorassanica on human cervical cancer cells. To seek the therapeutic potentials of S. chorassanica, this study was undertaken to evaluate the cytotoxic activities of various extracts of this plant on human breast MCF-7 and prostate cancer DU 145 cells. The DU 145 cells were exposed to different concentrations of plant extracts (1-200 μg/ml). Cytotoxic activities were examined using alamarBlue(®) assay and apoptosis was assessed by acridine orange/propodium iodide double staining and evaluation of DNA fragmentation by flow cytometry. Our findings indicated that n-hexane and dichloromethane extracts had more cytotoxic activities against DU 145 and MCF-7 cell lines compared with other extracts (P<0.05). The acridine orange/propodium iodide staining showed apoptogenic properties of n-hexane and dichloromethane extracts which was consequently confirmed by flow cytometric histogram that exhibited an increase in sub-G1 peak in treated cells as compared with untreated cancer cell lines. Taken together, these observations demonstrated cytotoxic effects of S. chorassanica extracts on MCF-7 and DU 145 cell lines which is most likely exerted via apoptosis cell death. Therefore, further investigations on S. chorassanica extracts as potential chemotherapeutic agents are warranted.

  5. Cytotoxic evaluation of different fractions of Salvia chorassanica Bunge on MCF-7 and DU 145 cell lines

    PubMed Central

    Golshan, Alireza; Amini, Elaheh; Emami, Seyed Ahmad; Asili, Javad; Jalali, Zahra; Sabouri-Rad, Sarvenaz; Sanjar-Mousavi, Naghmeh; Tayarani-Najaran, Zahra

    2016-01-01

    Because of antimicrobial, antioxidant, and anticancer potential, Salvia chorassanica Bunge (Lamiaceae) has been considered as a popular herb in Iranian traditional medicine. Previous studies have shown remarkable cytotoxic properties of the methanol, n-hexane and dichloromethane extract of S. chorassanica on human cervical cancer cells. To seek the therapeutic potentials of S. chorassanica, this study was undertaken to evaluate the cytotoxic activities of various extracts of this plant on human breast MCF-7 and prostate cancer DU 145 cells. The DU 145 cells were exposed to different concentrations of plant extracts (1-200 μg/ml). Cytotoxic activities were examined using alamarBlue® assay and apoptosis was assessed by acridine orange/propodium iodide double staining and evaluation of DNA fragmentation by flow cytometry. Our findings indicated that n-hexane and dichloromethane extracts had more cytotoxic activities against DU 145 and MCF-7 cell lines compared with other extracts (P<0.05). The acridine orange/propodium iodide staining showed apoptogenic properties of n-hexane and dichloromethane extracts which was consequently confirmed by flow cytometric histogram that exhibited an increase in sub-G1 peak in treated cells as compared with untreated cancer cell lines. Taken together, these observations demonstrated cytotoxic effects of S. chorassanica extracts on MCF-7 and DU 145 cell lines which is most likely exerted via apoptosis cell death. Therefore, further investigations on S. chorassanica extracts as potential chemotherapeutic agents are warranted. PMID:27051435

  6. Retinoic acid induces sodium/iodide symporter gene expression and radioiodide uptake in the MCF-7 breast cancer cell line

    PubMed Central

    Kogai, Takahiko; Schultz, James J.; Johnson, Laura S.; Huang, Min; Brent, Gregory A.

    2000-01-01

    The sodium/iodide symporter (NIS) stimulates iodide uptake in normal lactating breast, but is not known to be active in nonlactating breast or breast cancer. We studied NIS gene regulation and iodide uptake in MCF-7 cells, an estrogen receptor (ER)-positive human breast cancer cell line. All-trans retinoic acid (tRA) treatment stimulated iodide uptake in a time- and dose-dependent fashion up to ≈9.4-fold above baseline. Stimulation with selective retinoid compounds indicated that the induction of iodide uptake was mediated by retinoic acid receptor. Treatment with tRA markedly stimulated NIS mRNA and immunoreactive protein (≈68 kDa). tRA stimulated NIS gene transcription ≈4-fold, as shown by nuclear run-on assay. No induction of iodide uptake was observed with RA treatment of an ER-negative human breast cancer cell line, MDA-MB 231, or a normal human breast cell line, MCF-12A. The iodide efflux rate of tRA-treated MCF-7 cells was slow (t1/2 = 24 min), compared with that in FRTL-5 thyroid cells (t1/2 = 3.9 min), favoring iodide retention in MCF-7 cells. An in vitro clonogenic assay demonstrated selective cytotoxicity with 131I after tRA stimulation of MCF-7 cells. tRA up-regulates NIS gene expression and iodide uptake in an ER-positive breast cancer cell line. Stimulation of radioiodide uptake after systemic retinoid treatment may be useful for diagnosis and treatment of some differentiated breast cancers. PMID:10890895

  7. Cytotoxic evaluation of volatile oil from Descurainia sophia seeds on MCF-7 and HeLa cell lines

    PubMed Central

    Khodarahmi, E.; Asghari, G.H.; Hassanzadeh, F.; Mirian, M.; Khodarahmi, G.A.

    2015-01-01

    Descurainia sophia is a plant widely distributed and used as folk medicine throughout the world. Different extracts of aerial parts and seeds of this plant have been shown to inhibit the growth of different cancer cell lines in vitro. In this study, cytotoxic activity of D. sophia seed volatile oil was evaluated. D. sophia seed powder was mixed with distilled water and left at 25 °C for 17 h (E1), 23 h (E2) and 28 h (E3) to autolyse. Then, the volatile fractions of E1, E2, and E3 were collected after steam distillation for 3 h. Cytotoxic effects of the volatile oils alone or in combination with doxorubicin (mixture of E1 or E2 at 50 μg/ml or E1 at 100 μg/ml with doxorubicin at 0.1, 1, 10 μM) against MCF-7 cell line were determined using MTT assay. Cytotoxic effect of E1 volatile oil was also determined on HeLa cell line. The results indicated that 1-buten-4-isothiocyanate was the major isothiocyanate found in the volatile oils. The results of cytotoxic evaluations showed that volatile constituents were more toxic on MCF-7 cells with IC50< 100 μg/ml than HeLa cells with IC50> 100 μg/ml. No significant differences were observed between cytotoxic activities of E1, E2 and E3 on MCF-7 cell line. Concomitant use of E1 and E2 (50 μg/ml) with doxurubicin (1 μM) significantly reduced the viability of MCF-7 cells compared to the negative control, doxorubicin alone, or each volatile fraction. The same result was obtained on HeLa cells, when E1 (100 μg/ml) was concurrently used with doxorubicin (1 μM). PMID:26487894

  8. Rapid bioreduction of trivalent aurum using banana stem powder and its cytotoxicity against MCF-7 and HEK-293 cell lines

    NASA Astrophysics Data System (ADS)

    Arunkumar, Pichaimani; Vedagiri, Hemamalini; Premkumar, Kumpati

    2013-03-01

    Bioreduction of metal ions for the synthesis of nanoparticles of well-defined shape and size has been a great challenge in the field of nanotechnology. In this study, we explored the reduction potential of banana stem powder (BSP) for the synthesis of gold nanoparticles (GNP). The kinetics of GNP synthesis was monitored using UV-Vis spectroscopy. The synthesized GNP was characterized using dynamic light scattering (DLS), transmission electron microscopy, and fourier transform infrared spectroscopy. In addition, the cytotoxic potential of the synthesized GNP was investigated using human breast cancer (MCF-7) and normal human embryonic kidney (HEK-293) cell lines, as evaluated by changes in cell morphology, cell viability (MTT), and metabolic activity. BSP exhibited a strong reduction of Au(III) to Au (0) at room temperature within 5 min of reaction time. The synthesized GNP was found to be spherical with an average diameter of 30 nm by DLS analysis. The cytotoxicity analysis reveals a direct dose-response relationship, indicating that the cytotoxicity increases with increasing concentrations of the GNP. Significant cytotoxicity was observed in cancer cells (MCF-7) compared to normal cells (HEK-293). Also the cellular uptake of GNP was more pronounced in MCF-7 cells than HEK-293 cells as evidenced by zeta potential, implicating the possible reason for differential cytotoxicity. Thus the present study demonstrates the importance of these unique, less time-consuming, and stable BSP-mediated GNP as potential drug delivery vehicles in the application of anticancer therapy.

  9. Withaferin A Induces ROS-Mediated Paraptosis in Human Breast Cancer Cell-Lines MCF-7 and MDA-MB-231

    PubMed Central

    Ghosh, Kamalini; De, Soumasree; Das, Sayantani; Mukherjee, Srimoyee; Sengupta Bandyopadhyay, Sumita

    2016-01-01

    Advancement in cancer therapy requires a better understanding of the detailed mechanisms that induce death in cancer cells. Besides apoptosis, themode of other types of cell death has been increasingly recognized in response to therapy. Paraptosis is a non-apoptotic alternative form of programmed cell death, morphologically) distinct from apoptosis and autophagy. In the present study, Withaferin-A (WA) induced hyperpolarization of mitochondrial membrane potential and formation of many cytoplasmic vesicles. This was due to progressive swelling and fusion of mitochondria and dilation of endoplasmic reticulum (ER), forming large vacuolar structures that eventually filled the cytoplasm in human breast cancer cell-lines MCF-7 and MDA-MB-231. The level of indigenous paraptosis inhibitor, Alix/AIP-1 (Actin Interacting Protein-1) was down-regulated by WA treatment. Additionally, prevention of WA-induced cell death and vacuolation on co-treatment with protein-synthesis inhibitor indicated requirement of de-novo protein synthesis. Co-treatment with apoptosis inhibitor resulted in significant augmentation of WA-induced death in MCF-7 cells, while partial inhibition in MDA-MB-231 cells; implyingthat apoptosis was not solely responsible for the process.WA-mediated cytoplasmic vacuolationcould not be prevented by autophagy inhibitor wortmanninas well, claiming this process to be a non-autophagic one. Early induction of ROS (Reactive Oxygen Species)by WA in both the cell-lines was observed. ROS inhibitorabrogated the effect of WA on: cell-death, expression of proliferation-associated factor andER-stress related proteins,splicing of XBP-1 (X Box Binding Protein-1) mRNA and formation of paraptotic vacuoles.All these results conclusively indicate thatWA induces deathin bothMCF-7 and MDA-MB-231 cell lines byROS-mediated paraptosis. PMID:28033383

  10. A study on the inhibitory effect of polysaccharides from Radix ranunculus ternati on human breast cancer MCF-7 cell lines.

    PubMed

    Sun, De-Li; Xie, Han-Bing; Xia, Yun-Zhan

    2013-01-01

    The objective of this paper was to study the in vitro anti-breast cancer activity of polysaccharides from Radix ranunculus ternati. Different concentrations of polysaccharide extracts were selected, and MTT assay and flow cytometry (FCM) were used to investigate their growth-inhibitory and apoptosis-inducing effects on human breast cancer MCF-7 cell lines. Radix ranunculus ternati polysaccharides had varying degrees of effects on the growth of human breast cancer MCF-7 cell lines, and the differences were significant compared with the blank control group. FCM showed that the polysaccharides can induce apoptosis. In addition, it can also enhance NK cell activity. Radix ranunculus ternati polysaccharides have a relatively good in-vitro anti-breast cancer activity.

  11. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERα pathway

    SciTech Connect

    Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong; Choi, Jae Ho; Won, Seong Su; Kang, Wonku; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-05-15

    Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.

  12. MCF-7aro/ERE, a novel cell line for rapid screening of aromatase inhibitors, ERalpha ligands and ERRalpha ligands.

    PubMed

    Lui, Ki; Tamura, Takaya; Mori, Taisuke; Zhou, Dujin; Chen, Shiuan

    2008-07-15

    We have previously generated a breast cancer cell line, MCF-7aro, which over-expresses aromatase and is also ER positive. Recently, this MCF-7aro cell line was stably transfected with a promoter reporter plasmid, pGL3-Luc, containing three repeats of estrogen responsive element (ERE). Experiments using MCF-7aro/ERE have demonstrated that it is a novel, non-radioactive screening system for aromatase inhibitors (AIs), ERalpha ligands and ERRalpha ligands. The screening is carried out in a 96-well plate format. To evaluate this system, the cells were cultured overnight in charcoal-dextran stripped FBS medium supplemented with 0.1 nM testosterone or 17beta-estradiol, and various concentrations of antiestrogens or AIs. We found that the luciferase activity was induced when the cells were cultured either in the presence of testosterone or 17beta-estradiol. Furthermore, a 50% decrease in luciferase activity could be achieved when the cells were cultured in the presence of testosterone together with letrozole, anastrozole, tamoxifen or fulvestrant (concentrations being 75 nM, 290 nM, 100 nM, and 5 nM, respectively), compared to the testosterone-only cultured cells. Using this assay system, we confirmed that 3(2'-chlorophenyl)-7-methoxy-4-phenylcoumarin is an agonist of ER. Furthermore, genestein has been shown to be a ligand of ERRalpha because its binding could be blocked by an ERRalpha inverse agonist, XCT790. These results indicate that MCF-7aro/ERE is a novel cell line for rapid screening of AIs, ERalpha ligands and ERRalpha ligands.

  13. Effects of cholesterol on plasma membrane lipid order in MCF-7 cells by two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Zeng, Yixiu; Chen, Jianling; Yang, Hongqin; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-09-01

    Lipid rafts are cholesterol- and glycosphingolipids- enriched microdomains on plasma membrane surface of mammal cells, involved in a variety of cellular processes. Depleting cholesterol from the plasma membrane by drugs influences the trafficking of lipid raft markers. Optical imaging techniques are powerful tools to study lipid rafts in live cells due to its noninvasive feature. In this study, breast cancer cells MCF-7 were treated with different concentrations of MβCD to deplete cholesterol and an environmentally sensitive fluorescence probe, Laurdan was loaded to image lipid order by two-photon microscopy. The generalized polarization (GP) values were calculated to distinguish the lipid order and disorder phase. GP images and GP distributions of native and cholesterol-depleted MCF-7 cells were obtained. Our results suggest that even at low concentration (0.5 mM) of MβCD, the morphology of the MCF-7 cells changes. Small high GP areas (lipid order phase) decrease more rapidly than low GP areas (lipid disorder phase), indicating that lipid raft structure was altered more severely than nonraft domains. The data demonstrates that cholesterol dramatically affect raft coverage and plasma membrane fluidity in living cells.

  14. Genetic variability in a frozen batch of MCF-7 cells invisible in routine authentication affecting cell function

    PubMed Central

    Kleensang, Andre; Vantangoli, Marguerite M.; Odwin-DaCosta, Shelly; Andersen, Melvin E.; Boekelheide, Kim; Bouhifd, Mounir; Fornace, Albert J.; Li, Heng-Hong; Livi, Carolina B.; Madnick, Samantha; Maertens, Alexandra; Rosenberg, Michael; Yager, James D.; Zhaog, Liang; Hartung, Thomas

    2016-01-01

    Common recommendations for cell line authentication, annotation and quality control fall short addressing genetic heterogeneity. Within the Human Toxome Project, we demonstrate that there can be marked cellular and phenotypic heterogeneity in a single batch of the human breast adenocarcinoma cell line MCF-7 obtained directly from a cell bank that are invisible with the usual cell authentication by short tandem repeat (STR) markers. STR profiling just fulfills the purpose of authentication testing, which is to detect significant cross-contamination and cell line misidentification. Heterogeneity needs to be examined using additional methods. This heterogeneity can have serious consequences for reproducibility of experiments as shown by morphology, estrogenic growth dose-response, whole genome gene expression and untargeted mass-spectroscopy metabolomics for MCF-7 cells. Using Comparative Genomic Hybridization (CGH), differences were traced back to genetic heterogeneity already in the cells from the original frozen vials from the same ATCC lot, however, STR markers did not differ from ATCC reference for any sample. These findings underscore the need for additional quality assurance in Good Cell Culture Practice and cell characterization, especially using other methods such as CGH to reveal possible genomic heterogeneity and genetic drifts within cell lines. PMID:27456714

  15. Synthesis, characterization and apoptotic activity of quinazolinone Schiff base derivatives toward MCF-7 cells via intrinsic and extrinsic apoptosis pathways

    PubMed Central

    Zahedifard, Maryam; Lafta Faraj, Fadhil; Paydar, Mohammadjavad; Yeng Looi, Chung; Hajrezaei, Maryam; Hasanpourghadi, Mohadeseh; Kamalidehghan, Behnam; Abdul Majid, Nazia; Mohd Ali, Hapipah; Ameen Abdulla, Mahmood

    2015-01-01

    The current study investigated the cytotoxic effect of 3-(5-chloro-2-hydroxybenzylideneamino)-2-(5-chloro-2-hydroxyphenyl)-2,3-dihydroquinazolin-41(H)-one (A) and 3-(5-nitro-2-hydroxybenzylideneamino)-2-(5-nitro-2-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (B) on MCF-7, MDA-MB-231, MCF-10A and WRL-68 cells. The mechanism involved in apoptosis was assessed to evaluate the possible pathways induced by compound A and B. MTT assay results using A and B showed significant inhibition of MCF-7 cell viability, with IC50 values of 3. 27 ± 0.171 and 4.36 ± 0.219 μg/mL, respectively, after a 72 hour treatment period. Compound A and B did not demonstrate significant cytotoxic effects towards MDA-MB-231, WRL-68 and MCF-10A cells. Acute toxicity tests also revealed an absence of toxic effects on mice. Fluorescent microscopic studies confirmed distinct morphological changes (membrane blebbing and chromosome condensation) corresponding to typical apoptotic features in treated MCF-7 cells. Using Cellomics High Content Screening (HCS), we found that compound A and B could trigger the release of cytochrome c from mitochondria to the cytosol. The release of cytochrome c activated the expression of caspases-9 and then stimulated downstream executioner caspase-3/7. In addition, caspase-8 showed remarkable activity, followed by inhibition of NF-κB activation in A-and B-treated MCF-7 cells. The results indicated that A and B could induce apoptosis via a mechanism that involves either extrinsic or intrinsic pathways. PMID:26108872

  16. Cytotoxic effects of Mangifera indica L. kernel extract on human breast cancer (MCF-7 and MDA-MB-231 cell lines) and bioactive constituents in the crude extract

    PubMed Central

    2014-01-01

    Background Waterlily Mango (Mangifera indica L.) is thought to be antioxidant-rich, conferred by its functional phytochemicals. Methods The potential anticancer effects of the ethanolic kernel extract on breast cancer cells (MDA-MB-231 and MCF-7) using MTT, anti-proliferation, neutral red (NR) uptake and lactate dehydrogenase (LDH) release assays were evaluated. Cytological studies on the breast cancer cells were also conducted, and phytochemical analyses of the extract were carried out to determine the likely bioactive compounds responsible for such effects. Results Results showed the extract induced cytotoxicity in MDA-MB-231 cells and MCF-7 cells with IC50 values of 30 and 15 μg/mL, respectively. The extract showed significant toxicity towards both cell lines, with low toxicity to normal breast cells (MCF-10A). The cytotoxic effects on the cells were further confirmed by the NR uptake, antiproliferative and LDH release assays. Bioactive analyses revealed that many bioactives were present in the extract although butylated hydroxytoluene, a potent antioxidant, was the most abundant with 44.65%. Conclusions M. indica extract appears to be more cytoxic to both estrogen positive and negative breast cancer cell lines than to normal breast cells. Synergistic effects of its antioxidant bioactives could have contributed to the cytotoxic effects of the extract. The extract of M. indica, therefore, has potential anticancer activity against breast cancer cells. This potential is worth studying further, and could have implications on future studies and eventually management of human breast cancers. PMID:24962691

  17. Ambiguine I Isonitrile from Fischerella ambigua Induces Caspase-Independent Cell Death in MCF-7 Hormone Dependent Breast Cancer Cells

    PubMed Central

    Acuña, Ulyana Muñoz; Zi, Jiachen; Orjala, Jimmy; Carcache de Blanco, Esperanza J.

    2015-01-01

    Ambiguine I isonitrile (AmbI) obtained from the cultured cyanobacterium Fischerella ambigua was identified as a potent NF-κB inhibitor (IC50=30 nM). The cytotoxic effect was evaluated in both HT-29 colon cancer cell line (EC50=4.35 μM) and MCF-7 breast cancer cell line (EC50=1.7 μM) using the SRB assay. In the cells treated with AmbI, an increased population of cells was detected in sub G1-phase. The apoptotic effect was associated with block in G1-phase of the cell cycle in treated cells; however, cell death was induced independently of caspase-7. The NF-κB expression of p50 and p65 units were also examined in treated cells and compared with the positive control, rocaglamide (IC50=75 nM). Moreover, the expression of mediators of the NF-κB pathway such as kinase IKKκ was studied at increasing concentrations of AmbI. The down stream effect of NF-κB inhibition and the effect on the expression of TNF-α induced ICAM-1 was evaluated. Thus, the dose-dependent and time-dependent effect of AmbI on MCF-7 cells was examined in an attempt to investigate its potential mechanism of action on inducing apoptosis. PMID:26753095

  18. Differential effect of vinorelbine versus paclitaxel on ERK2 kinase activity during apoptosis in MCF-7 cells

    PubMed Central

    Liu, X M; Wang, L G; Kreis, W; Budman, D R; Adams, L M

    2001-01-01

    The effects of vinorelbine and paclitaxel on the activity of extracellular signal-regulated protein kinase2 (ERK2), a member of MAP kinase, and its role in the induction of bcl-2 phosphorylation and apoptosis were evaluated in MCF-7 cells. We demonstrated that ERK2 was activated rapidly by vinorelbine, and was inhibited by either paclitaxel or estramustine. A 3-fold increase of ERK2 kinase activity was observed within 30 min when MCF-7 cells were treated with 0.1 μM vinorelbine. In contrast, the same treatment with paclitaxel resulted in a significant decrease of ERK2 kinase activity. We also demonstrated that elevated bcl-2 phosphorylation induced by vinorelbine is paralleled by decrease of a complex formation between bcl-2 and bax, cleavage of poly (ADP) ribose polymerase (PARP) protein, activation of caspase-7, and apoptosis. The levels of bcl-2 phosphorylation, bax, and PARP were not significantly affected by 2′-amino-3′-methoxyflavone (PD 98059), an ERK kinase specific inhibitor. Thus, our data suggest that the apoptosis induced by vinorelbine in MCF-7 cells is mediated through the bcl-2 phosphorylation/bax/caspases pathways, and that activation of ERK2 by vinorelbine does not directly lead to the drug-mediated apoptosis. Since decrease of PARP occurred quickly following the treatment of MCF-7 cells with either 0.1 μM of vinorelbine or paclitaxel, this protein may serve as an early indicator of apoptosis induced not only by DNA damaging agents, but also by antimicrotubule drugs.   http://www.bjcancer.com © 2001 Cancer Research Campaign PMID:11720482

  19. Long-term exposure of MCF-7 breast cancer cells to ethanol stimulates oncogenic features

    PubMed Central

    Gelfand, Robert; Vernet, Dolores; Bruhn, Kevin W.; Sarkissyan, Suren; Heber, David; Vadgama, Jaydutt V.; Gonzalez-Cadavid, Nestor F.

    2017-01-01

    Alcohol consumption is a risk factor for breast cancer. Little is known regarding the mechanism, although it is assumed that acetaldehyde or estrogen mediated pathways play a role. We previously showed that long-term exposure to 2.5 mM ethanol (blood alcohol ~0.012%) of MCF-12A, a human normal epithelial breast cell line, induced epithelial mesenchymal transition (EMT) and oncogenic transformation. In this study, we investigated in the human breast cancer cell line MCF-7, whether a similar exposure to ethanol at concentrations ranging up to peak blood levels in heavy drinkers would increase malignant progression. Short-term (1-week) incubation to ethanol at as low as 1–5 mM (corresponding to blood alcohol concentration of ~0.0048–0.024%) upregulated the stem cell related proteins Oct4 and Nanog, but they were reduced after exposure at 25 mM. Long-term (4-week) exposure to 25 mM ethanol upregulated the Oct4 and Nanog proteins, as well as the malignancy marker Ceacam6. DNA microarray analysis in cells exposed for 1 week showed upregulated expression of metallothionein genes, particularly MT1X. Long-term exposure upregulated expression of some malignancy related genes (STEAP4, SERPINA3, SAMD9, GDF15, KRT15, ITGB6, TP63, and PGR, as well as the CEACAM, interferon related, and HLA gene families). Some of these findings were validated by RT-PCR. A similar treatment also modulated numerous microRNAs (miRs) including one regulator of Oct4 as well as miRs involved in oncogenesis and/or malignancy, with only a few estrogen-induced miRs. Long-term 25 mM ethanol also induced a 5.6-fold upregulation of anchorage-independent growth, an indicator of malignant-like features. Exposure to acetaldehyde resulted in little or no effect comparable to that of ethanol. The previously shown alcohol induction of oncogenic transformation of normal breast cells is now complemented by the current results suggesting alcohol's potential involvement in malignant progression of breast cancer

  20. Long-term exposure of MCF-7 breast cancer cells to ethanol stimulates oncogenic features.

    PubMed

    Gelfand, Robert; Vernet, Dolores; Bruhn, Kevin W; Sarkissyan, Suren; Heber, David; Vadgama, Jaydutt V; Gonzalez-Cadavid, Nestor F

    2017-01-01

    Alcohol consumption is a risk factor for breast cancer. Little is known regarding the mechanism, although it is assumed that acetaldehyde or estrogen mediated pathways play a role. We previously showed that long-term exposure to 2.5 mM ethanol (blood alcohol ~0.012%) of MCF-12A, a human normal epithelial breast cell line, induced epithelial mesenchymal transition (EMT) and oncogenic transformation. In this study, we investigated in the human breast cancer cell line MCF-7, whether a similar exposure to ethanol at concentrations ranging up to peak blood levels in heavy drinkers would increase malignant progression. Short-term (1-week) incubation to ethanol at as low as 1-5 mM (corresponding to blood alcohol concentration of ~0.0048-0.024%) upregulated the stem cell related proteins Oct4 and Nanog, but they were reduced after exposure at 25 mM. Long-term (4-week) exposure to 25 mM ethanol upregulated the Oct4 and Nanog proteins, as well as the malignancy marker Ceacam6. DNA microarray analysis in cells exposed for 1 week showed upregulated expression of metallothionein genes, particularly MT1X. Long-term exposure upregulated expression of some malignancy related genes (STEAP4, SERPINA3, SAMD9, GDF15, KRT15, ITGB6, TP63, and PGR, as well as the CEACAM, interferon related, and HLA gene families). Some of these findings were validated by RT-PCR. A similar treatment also modulated numerous microRNAs (miRs) including one regulator of Oct4 as well as miRs involved in oncogenesis and/or malignancy, with only a few estrogen-induced miRs. Long-term 25 mM ethanol also induced a 5.6-fold upregulation of anchorage-independent growth, an indicator of malignant-like features. Exposure to acetaldehyde resulted in little or no effect comparable to that of ethanol. The previously shown alcohol induction of oncogenic transformation of normal breast cells is now complemented by the current results suggesting alcohol's potential involvement in malignant progression of breast cancer.

  1. IN VITRO CYTOTOXICITY STUDY OF AGAVE AMERICANA, STRYCHNOS NUXVOMICA AND ARECA CATECHU EXTRACTS USING MCF-7 CELL LINE

    PubMed Central

    Anajwala, Chetan C.; Patel, Rajesh M.; Dakhara, Sanjay L.; Jariwala, Jitesh K.

    2010-01-01

    Research is focusing on the search for new types of natural chemotherapeutic agent that is plant based medicines which are proving to be excellent sources of new compounds. In present research study, an attempt was made to prove cytotoxicity activity of various parts of medicinal plants such as Agave americana, Strychnos nuxvomica and Areca catechu using MCF-7 and Vero cell line. Various parts of the medicinal plants were extracted by soxhlet apparatus using solvents likes methanol and water. By trypan blue dye exclusion method, Viability of MCF-7 and Vero cell lines were 85.50 and 81.13%, respectively. IC50 value of methanol extract of Agave americana leaves and aqueous extract of Areca catechu fruits were found to be 545.9 & 826.1 μg/ml by SRB assay and 775.1 & 1461pg/ml by MTT assay, respectively, against MCF-7 cell line. From cytotoxicity study data by SRB and MTT assay, it revealed that methanol extract of Agave americana and aqueous extract of Areca catechu are potent cytotoxic. PMID:22247852

  2. In vitro cytotoxicity study of agave americana, strychnos nuxvomica and areca catechu extracts using mcf-7 cell line.

    PubMed

    Anajwala, Chetan C; Patel, Rajesh M; Dakhara, Sanjay L; Jariwala, Jitesh K

    2010-04-01

    Research is focusing on the search for new types of natural chemotherapeutic agent that is plant based medicines which are proving to be excellent sources of new compounds. In present research study, an attempt was made to prove cytotoxicity activity of various parts of medicinal plants such as Agave americana, Strychnos nuxvomica and Areca catechu using MCF-7 and Vero cell line. Various parts of the medicinal plants were extracted by soxhlet apparatus using solvents likes methanol and water. By trypan blue dye exclusion method, Viability of MCF-7 and Vero cell lines were 85.50 and 81.13%, respectively. IC(50) value of methanol extract of Agave americana leaves and aqueous extract of Areca catechu fruits were found to be 545.9 & 826.1 μg/ml by SRB assay and 775.1 & 1461pg/ml by MTT assay, respectively, against MCF-7 cell line. From cytotoxicity study data by SRB and MTT assay, it revealed that methanol extract of Agave americana and aqueous extract of Areca catechu are potent cytotoxic.

  3. Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells

    PubMed Central

    Santos-Carballal, B.; Aaldering, L. J.; Ritzefeld, M.; Pereira, S.; Sewald, N.; Moerschbacher, B. M.; Götte, M.; Goycoolea, F. M.

    2015-01-01

    Cancer gene therapy requires the design of non-viral vectors that carry genetic material and selectively deliver it with minimal toxicity. Non-viral vectors based on cationic natural polymers can form electrostatic complexes with negatively-charged polynucleotides such as microRNAs (miRNAs). Here we investigated the physicochemical/biophysical properties of chitosan–hsa-miRNA-145 (CS–miRNA) nanocomplexes and the biological responses of MCF-7 breast cancer cells cultured in vitro. Self-assembled CS–miRNA nanocomplexes were produced with a range of (+/−) charge ratios (from 0.6 to 8) using chitosans with various degrees of acetylation and molecular weight. The Z-average particle diameter of the complexes was <200 nm. The surface charge increased with increasing amount of chitosan. We observed that chitosan induces the base-stacking of miRNA in a concentration dependent manner. Surface plasmon resonance spectroscopy shows that complexes formed by low degree of acetylation chitosans are highly stable, regardless of the molecular weight. We found no evidence that these complexes were cytotoxic towards MCF-7 cells. Furthermore, CS–miRNA nanocomplexes with degree of acetylation 12% and 29% were biologically active, showing successful downregulation of target mRNA expression in MCF-7 cells. Our data, therefore, shows that CS–miRNA complexes offer a promising non-viral platform for breast cancer gene therapy. PMID:26324407

  4. PKC{eta} confers protection against apoptosis by inhibiting the pro-apoptotic JNK activity in MCF-7 cells

    SciTech Connect

    Rotem-Dai, Noa; Oberkovitz, Galia; Abu-Ghanem, Sara; Livneh, Etta

    2009-09-10

    Apoptosis is frequently regulated by different protein kinases including protein kinase C family enzymes. Both inhibitory and stimulatory effects were demonstrated for several of the different PKC isoforms. Here we show that the novel PKC isoform, PKC{eta}, confers protection against apoptosis induced by the DNA damaging agents, UVC irradiation and the anti-cancer drug - Camptothecin, of the breast epithelial adenocarcinoma MCF-7 cells. The induced expression of PKC{eta} in MCF-7 cells, under the control of the tetracycline-responsive promoter, resulted in increased cell survival and inhibition of cleavage of the apoptotic marker PARP-1. Activation of caspase-7 and 9 and the release of cytochrome c were also inhibited by the inducible expression of PKC{eta}. Furthermore, JNK activity, required for apoptosis in MCF-7, as indicated by the inhibition of both caspase-7 cleavage and cytochrome c release from the mitochondria in the presence of the JNK inhibitor SP600125, was also suppressed by PKC{eta} expression. Hence, in contrast to most PKC isoforms enhancing JNK activation, our studies show that PKC{eta} is an anti-apoptotic protein, acting as a negative regulator of JNK activity. Thus, PKC{eta} could represent a target for intervention aimed to reduce resistance to anti-cancer treatments.

  5. Quantitative comparison of PTH1R in breast cancer MCF7 and osteosarcoma SaOS-2 cell lines.

    PubMed

    Alokail, Majed S; Peddie, Margaret J

    2008-06-01

    The aim of the present study was to compare the classical parathyroid hormone/parathyroid hormone-related peptide (PTH/PTHrP) receptors in MCF7 breast cancer cells with SaOS-2 osteosarcoma cell line. Quantitative binding showed that (125)I-PTHrP-1-34(Tyr) binds with a single binding site in both cells. However (125)I-PTHrP-1-34(Tyr) has higher affinity binding in MCF7 (K(D) = 1.88 +/- 0.08 nM) than in SaOS-2 cells (K(D) = 4.4 +/- 0.185 nM). The competitive binding using 3.3 nM (125)I-PTHrP-1-34(Tyr) with increasing amounts (0.33-33 nM) of unlabelled human PTHrP-1-34, PTHrP-7-34, PTHrP-1-86 His(5)-PTHrP-1-36, His(5)-Phe(23)-PTHrP-1-36 or PTH-1-34 revealed different displacements. In SaOS-2 the PTHrP-7-34 and PTHrP-1-86 caused similar displacement compared with 73% by PTH-1-34 and 70% by PTHrP-1-34. However, in MCF7, PTHrP-7-34, PTHrP-1-86 and PTH-1-34 displaced by 54%, 72% and 67%, respectively, compared to 87% by PTHrP-1-34. The His(5)-Phe(23)-PTHrP-1-36 caused an increase in the K(D) from 2.0 +/- 0.03 nM to 2.75 +/- 0.045 nM in MCF7 cells, but had no significant effect in SaOS-2 cells. The PTH/PTHrP receptor in both cell lines revealed a single 85 KDa band with different intensity. Our results suggest that the PTH/PTHrP receptor in MCF7 cells has higher binding affinity for PTHrP than PTH compared to the receptor in SaOS-2 cells.

  6. Synergistic effect of apple extracts and quercetin 3-beta-d-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro.

    PubMed

    Yang, Jun; Liu, Rui Hai

    2009-09-23

    Breast cancer is the most frequently diagnosed cancer in women. An alternative strategy to reduce the risk of cancer is through dietary modification. Although phytochemicals naturally occur as complex mixtures, little information is available regarding possible additive, synergistic, or antagonistic interactions among compounds. The antiproliferative activity of apple extracts and quercetin 3-beta-d-glucoside (Q3G) was assessed by measurement of the inhibition of MCF-7 human breast cancer cell proliferation. Cell cytotoxicity was determined by the methylene blue assay. The two-way combination of apple plus Q3G was conducted. In this two-way combination, the EC(50) values of apple extracts and Q3G were 2- and 4-fold lower, respectively, than those of apple extracts and Q3G alone. The combination index (CI) values at 50 and 95% inhibition rates were 0.76 +/- 0.16 and 0.42 +/- 0.10, respectively. The dose-reduction index (DRI) values of the apple extracts and Q3G to achieve a 50% inhibition effect were reduced by 2.03 +/- 0.55 and 4.28 +/- 0.39-fold, respectively. The results suggest that the apple extracts plus Q3G combination possesses a synergistic effect in MCF-7 cell proliferation.

  7. Paclitaxel resistance in MCF-7/PTX cells is reversed by paeonol through suppression of the SET/phosphatidylinositol 3-kinase/Akt pathway.

    PubMed

    Zhang, Weipeng; Cai, Jiangxia; Chen, Siying; Zheng, Xiaowei; Hu, Sasa; Dong, Weihua; Lu, Jun; Xing, Jianfeng; Dong, Yalin

    2015-07-01

    Breast cancer is one of the most prevalent types of malignant tumor. Paclitaxel is widely used in the treatment of breast cancer; however, the major problem contributing to the failure of chemotherapy in breast cancer is the development of drug resistance. Therefore, it is necessary to identify novel therapeutic targets and reversal agents for breast cancer. In the present study, the protein expression levels of SET, protein phosphatase 2A (PP2A) and phosphatidylinositol 3-kinase (PI3K)/Akt pathway were determined in MCF-7/PTX human breast carcinoma paclitaxel-resistant cells using western blot analysis. Small interference RNAs (siRNAs) were used to knock down the gene expression of SET in MCF-7/PTX cells and the cell viability was assessed following treatment with paclitaxel, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays and flow cytometry. In addition, western blot analysis was used to determined PI3K/Akt pathway activity following SET knockdown. Furthermore, the reversal effects of paeonol on paclitaxel, and its underlying mechanisms of action, were investigated using western blot analysis and reverse transcription-quantitative polymerase chain reaction. The results demonstrated that increased levels of SET and PI3K/Akt pathway proteins were present in the MCF-7/PTX cells, compared with normal MCF-7 cells. Knockdown of SET significantly sensitized MCF-7/PTX cells to paclitaxel and induced cell apoptosis. In addition, the expression levels of the adenosine triphosphate binding cassette (ABC) transporter proteins were significantly reduced in the MCF-7/PTX cells compared with the normal MCF-7 cells. SET-induced paclitaxel resistance was found to be associated with the activation of the PI3K/Akt pathway. Paeonol significantly reduced the mRNA and protein expression levels of SET in the MCF-7/PTX cells. Furthermore, paeonol significantly sensitized the MCF-7/PTX to paclitaxel via regulation of ABC transporters, B cell lymphoma-2 (Bcl-2

  8. Requirement of ERα and basal activities of EGFR and Src kinase in Cd-induced activation of MAPK/ERK pathway in human breast cancer MCF-7 cells

    SciTech Connect

    Song, Xiulong Wei, Zhengxi; Shaikh, Zahir A.

    2015-08-15

    Cadmium (Cd) is a common environmental toxicant and an established carcinogen. Epidemiological studies implicate Cd with human breast cancer. Low micromolar concentrations of Cd promote proliferation of human breast cancer cells in vitro. The growth promotion of breast cancer cells is associated with the activation of MAPK/ERK pathway. This study explores the mechanism of Cd-induced activation of MAPK/ERK pathway. Specifically, the role of cell surface receptors ERα, EGFR, and Src kinase was evaluated in human breast cancer MCF-7 cells treated with 1–3 μM Cd. The activation of ERK was studied using a serum response element (SRE) luciferase reporter assay. Receptor phosphorylation was detected by Western blot analyses. Cd treatment increased both the SRE reporter activity and ERK1/2 phosphorylation in a concentration-dependent manner. Cd treatment had no effect on reactive oxygen species (ROS) generation. Also, blocking the entry of Cd into the cells with manganese did not diminish Cd-induced activation of MAPK/ERK. These results suggest that the effect of Cd was likely not caused by intracellular ROS generation, but through interaction with the membrane receptors. While Cd did not appear to activate either EGFR or Src kinase, their inhibition completely blocked the Cd-induced activation of ERK as well as cell proliferation. Similarly, silencing ERα with siRNA or use of ERα antagonist blocked the effects of Cd. Based on these results, it is concluded that not only ERα, but also basal activities of EGFR and Src kinase are essential for Cd-induced signal transduction and activation of MAPK/ERK pathway for breast cancer cell proliferation. - Highlights: • Low micromolar concentrations of Cd rapidly activate ERK1/2 in MCF-7 cells. • Signal transduction and resulting cell proliferation require EGFR, ERα, and Src. • These findings implicate Cd in promotion of breast cancer.

  9. Identification of Critical Elements for Regulation of Inorganic Pyrophosphatase (PPA1) in MCF7 Breast Cancer Cells.

    PubMed

    Mishra, Dipti Ranjan; Chaudhary, Sanjib; Krishna, B Madhu; Mishra, Sandip K

    2015-01-01

    Cytosolic inorganic pyrophosphatase plays an important role in the cellular metabolism by hydrolyzing inorganic pyrophosphate (PPi) formed as a by-product of various metabolic reactions. Inorganic pyrophosphatases are known to be associated with important functions related to the growth and development of various organisms. In humans, the expression of inorganic pyrophosphatase (PPA1) is deregulated in different types of cancer and is involved in the migration and invasion of gastric cancer cells and proliferation of ovarian cancer cells. However, the transcriptional regulation of the gene encoding PPA1 is poorly understood. To gain insights into PPA1 gene regulation, a 1217 bp of its 5'-flanking region was cloned and analyzed. The 5'-deletion analysis of the promoter revealed a 266 bp proximal promoter region exhibit most of the transcriptional activity and upon sequence analysis, three putative Sp1 binding sites were found to be present in this region. Binding of Sp1 to the PPA1 promoter was confirmed by Electrophoretic mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay. Importance of these binding sites was verified by site-directed mutagenesis and overexpression of Sp1 transactivates PPA1 promoter activity, upregulates protein expression and increases chromatin accessibility. p300 binds to the PPA1 promoter and stimulates Sp1 induced promoter activity. Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor induces PPA1 promoter activity and protein expression and HAT activity of p300 was important in regulation of PPA1 expression. These results demonstrated that PPA1 is positively regulated by Sp1 and p300 coactivates Sp1 induced PPA1 promoter activity and histone acetylation/deacetylation may contribute to a local chromatin remodeling across the PPA1 promoter. Further, knockdown of PPA1 decreased colony formation and viability of MCF7 cells.

  10. MUC5B silencing reduces chemo-resistance of MCF-7 breast tumor cells and impairs maturation of dendritic cells.

    PubMed

    García, Enrique P; Tiscornia, Inés; Libisch, Gabriela; Trajtenberg, Felipe; Bollati-Fogolín, Mariela; Rodríguez, Ernesto; Noya, Verónica; Chiale, Carolina; Brossard, Natalie; Robello, Carlos; Santiñaque, Federico; Folle, Gustavo; Osinaga, Eduardo; Freire, Teresa

    2016-05-01

    Mucins participate in cancer progression by regulating cell growth, adhesion, signaling, apoptosis or chemo-resistance to drugs. The secreted mucin MUC5B, the major component of the respiratory tract mucus, is aberrantly expressed in breast cancer, where it could constitute a cancer biomarker. In this study we evaluated the role of MUC5B in breast cancer by gene silencing the MUC5B expression with short hairpin RNA on MCF-7 cells. We found that MUC5B-silenced MCF-7 cells have a reduced capacity to grow, adhere and form cell colonies. Interestingly, MUC5B knock-down increased the sensitivity to death induced by chemotherapeutic drugs. We also show that MUC5B silencing impaired LPS-maturation of DCs, and production of cytokines. Furthermore, MUC5B knock-down also influenced DC-differentiation and activation since it resulted in an upregulation of IL-1β, IL-6 and IL-10, cytokines that might be involved in cancer progression. Thus, MUC5B could enhance the production of LPS-induced cytokines, suggesting that the use of MUC5B-based cancer vaccines combined with DC-maturation stimuli, could favor the induction of an antitumor immune response.

  11. Hydroxytyrosol rich extract from olive leaves modulates cell cycle progression in MCF-7 human breast cancer cells.

    PubMed

    Bouallagui, Zouhaier; Han, Junkuy; Isoda, Hiroko; Sayadi, Sami

    2011-01-01

    Throughout the history, olive (Olea europea L.) leaves have been heavily exploited for the prevention or the treatment of hypertension, carcinogenesis, diabetes, atherosclerosis and so many other traditional therapeutic uses. These activities are thought to be the output of olive micronutrients especially polyphenols. Hydroxytyrosol and oleuropein are considered as major polyphenolic compounds in olive leaf. In this work, a hydroxytyrosol rich olive leaves extract was investigated for potential anti-tumoral activities. In vitro cytotoxic effects against MCF-7 breast cancer cells were examined using MTT and neutral red tests. The anti-tumor activities were further investigated by flow cytometry and western blotting. Cytotoxicity assays resulted in a dose dependent growth inhibition of MCF-7 cells. This inhibition was due to the cell cycle arrest in the G0/G1 phase. The understanding of the molecular mechanism by which olive leaves extract arrested cell growth showed a down-expression of the peptidyl-prolyl cis-trans isomerase Pin1 which in turn decreased the level of a G1 key protein; Cyclin D1. Additionally, olive leaves extract treatment up-regulated the AP1 transcription factor member, c-jun. Therefore, olive leaves extract will necessitate further deep investigation for a probable use as a cancer preventive food additive.

  12. NCOA3 is a selective co-activator of estrogen receptor α-mediated transactivation of PLAC1 in MCF-7 breast cancer cells

    PubMed Central

    2013-01-01

    Background The placenta-specific 1 (PLAC1) gene encodes a membrane-associated protein which is selectively expressed in the placental syncytiotrophoblast and in murine fetal tissues during embryonic development. In contrast to its transcriptional repression in all other adult normal tissues, PLAC1 is frequently activated and highly expressed in a variety of human cancers, in particular breast cancer, where it associates with estrogen receptor α (ERα) positivity. In a previous study, we showed that ERα-signaling in breast cancer cells transactivates PLAC1 expression in a non-classical pathway. As the members of the p160/nuclear receptor co-activator (NCOA) family, NCOA1, NCOA2 and NCOA3 are known to be overexpressed in breast cancer and essentially involved in estrogen-mediated cancer cell proliferation we asked if these proteins are involved in the ERα-mediated transactivation of PLAC1 in breast cancer cells. Methods Applying quantitative real-time RT-PCR (qRT-PCR), Western Blot analysis and chromatin immunoprecipitation, we analyzed the involvement of NCOA1, NCOA2, NCOA3 in the ERα-mediated transactivation of PLAC1 in the breast cancer cell lines MCF-7 and SK-BR-3. RNAi-mediated silencing of NCOA3, qRT-PCR, Western blot analysis and ERα activation assays were used to examine the role of NCOA3 in the ERα-mediated regulation of PLAC1 in further detail. Transcript expression of NCOA3 and PLAC1 in 48 human breast cancer samples was examined by qRT-PCR and statistical analysis was performed using Student’s t-test. Results We detected selective recruitment of NCOA3 but not NCOA1 or NCOA2 to the PLAC1 promoter only in ERα-positive MCF-7 cells but not in ERα-negative SK-BR-3 breast cancer cells. In addition, we demonstrate that silencing of NCOA3 results in a remarkable decrease of PLAC1 expression levels in MCF-7 cells which cannot be restored by treatment with estradiol (E2). Moreover, significant higher transcript levels of PLAC1 were found only in ER

  13. Estrogenicity and androgenicity screening of PCB sulfate monoesters in human breast cancer MCF-7 cells.

    PubMed

    Flor, Susanne; He, Xianran; Lehmler, Hans-Joachim; Ludewig, Gabriele

    2016-02-01

    Recent studies identified polychlorinated biphenyl (PCB) sulfate esters as a major product of PCB metabolism. Since hydroxy-PCBs (HO-PCBs), the immediate precursors of PCB sulfates and important contributors to PCB toxicity, were shown to have estrogenic activity, we investigated the estrogenicity/androgenicty of a series of PCB sulfate metabolites. We synthesized the five possible structural sulfate monoester metabolites of PCB 3, a congener shown to be biotransformed to sulfates, a sulfate ester of the paint-specific congener PCB 11, and sulfate monoesters of two HO-PCBs reported to interact with sulfotransferases (PCB 39, no ortho chlorines, and PCB 53, 3 ortho chlorines). We tested these PCB sulfates and 4'-HO-PCB 3 as positive control for estrogenic, androgenic, anti-estrogenic, and anti-androgenic activity in the E- and A-screen with human breast cancer MCF7-derived cells at 100 μM-1 pM concentrations. Only 4'-HO-PCB 3 was highly cytotoxic at 100 μM. We observed structure-activity relationships: compounds with a sulfate group in the chlorine-containing ring of PCB 3 (2PCB 3 and 3PCB 3 sulfate) showed no interaction with the estrogen (ER) and androgen (AR) receptor. The 4'-HO-PCB 3 and its sulfate ester had the highest estrogenic effect, but at 100-fold different concentrations, i.e., 1 and 100 μM, respectively. Four of the PCB sulfates were estrogenic (2'PCB 3, 4'PCB 3, 4'PCB 39, and 4'PCB 53 sulfates; at 100 μM). These sulfates and 3'PCB 3 sulfate also exhibited anti-estrogenic activity, but at nM and pM concentrations. The 4'PCB 3 sulfate (para-para' substituted) had the strongest androgenic activity, followed by 3'PCB 3, 4'PCB 53, 4PCB11, and 4PCB 39 sulfates and the 4'HO-PCB 3. In contrast, anti-androgenicity was only observed with the two compounds that have the sulfate group in ortho- or meta- position in the second ring (2'PCB 3 and 3'PCB 3 sulfate). No dose-response was observed in any screen, but, with exception of estrogenic activity (only seen

  14. Estrogenicity and androgenicity screening of PCB sulfate monoesters in human breast cancer MCF-7 cells

    PubMed Central

    Flor, Susanne; He, Xianran; Lehmler, Hans-Joachim; Ludewig, Gabriele

    2015-01-01

    Recent studies identified PCB sulfate esters as a major product of PCB metabolism. Since hydroxy-PCBs (HO-PCBs), the immediate precursors of PCB sulfates and important contributors to PCB toxicity, were shown to have estrogenic activity, we investigated the estrogenicity/androgenicty of a series of PCB sulfate metabolites. We synthesized the five possible structural sulfate monoester metabolites of PCB 3, a congener shown to be biotransformed to sulfates, a sulfate ester of the paint-specific congener PCB 11, and sulfate monoesters of two HO-PCBs reported to interact with sulfotransferases (PCB 39, no ortho chlorines, and PCB 53, 3 ortho chlorines). We tested these PCB sulfates and 4’-HO-PCB 3 as positive control for estrogenic, androgenic, anti-estrogenic and anti-androgenic activity in the E- and A-screen with human breast cancer MCF7 derived cells at 100 μM – 1 pM concentrations. Only 4’-HO-PCB 3 was highly cytotoxic at 100 μM. We observed structure-activity relationships: compounds with a sulfate group in the chlorine-containing ring of PCB 3 (2PCB 3 and 3PCB 3 sulfate) showed no interaction with the estrogen (ER) and androgen (AR) receptor. The 4’-HO-PCB 3 and its sulfate ester had the highest estrogenic effect, but at 100 fold different concentrations, i.e. 1 μM and 100 μM, respectively. Four of the PCB sulfates were estrogenic (2’PCB 3, 4’PCB 3, 4PCB 39, 4PCB 53 sulfates; at 100 μM). These sulfates and 3’PCB 3 sulfate also exhibited anti-estrogenic activity, but at nM and pM concentrations. The 4’PCB 3 sulfate (para-para’ substituted) had the strongest androgenic activity, followed by 3’PCB 3, 4PCB 53, 4PCB11, and 4PCB 39 sulfates and the 4’HO-PCB 3. In contrast, anti-androgenicity was only observed with the two compounds that have the sulfate group in ortho- or meta- position in the second ring (2’PCB 3 and 3’PCB 3 sulfate). No dose-response was observed in any screen, but, with exception of estrogenic activity (only seen at

  15. The statistical performance of an MCF-7 cell culture assay evaluated using generalized linear mixed models and a score test.

    PubMed

    Rey deCastro, B; Neuberg, Donna

    2007-05-30

    Biological assays often utilize experimental designs where observations are replicated at multiple levels, and where each level represents a separate component of the assay's overall variance. Statistical analysis of such data usually ignores these design effects, whereas more sophisticated methods would improve the statistical power of assays. This report evaluates the statistical performance of an in vitro MCF-7 cell proliferation assay (E-SCREEN) by identifying the optimal generalized linear mixed model (GLMM) that accurately represents the assay's experimental design and variance components. Our statistical assessment found that 17beta-oestradiol cell culture assay data were best modelled with a GLMM configured with a reciprocal link function, a gamma error distribution, and three sources of design variation: plate-to-plate; well-to-well, and the interaction between plate-to-plate variation and dose. The gamma-distributed random error of the assay was estimated to have a coefficient of variation (COV) = 3.2 per cent, and a variance component score test described by X. Lin found that each of the three variance components were statistically significant. The optimal GLMM also confirmed the estrogenicity of five weakly oestrogenic polychlorinated biphenyls (PCBs 17, 49, 66, 74, and 128). Based on information criteria, the optimal gamma GLMM consistently out-performed equivalent naive normal and log-normal linear models, both with and without random effects terms. Because the gamma GLMM was by far the best model on conceptual and empirical grounds, and requires only trivially more effort to use, we encourage its use and suggest that naive models be avoided when possible.

  16. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: Role of transcription factors

    SciTech Connect

    Chandrasekharan, Sabarinath; Kandasamy, Krishna Kumar; Dayalan, Pavithra; Ramamurthy, Viraragavan

    2013-08-02

    Highlights: •Estradiol (E2) at low dose induced cell proliferation in breast cancer cells. •E2 at high concentration induced cell stress in breast cancer cells. •Estrogen receptor physically interacts only with a few transcription factors. •Differential expression of genes with Oct-1 binding sites increased under stress. •Transcription factor binding sites showed distinct spatial distribution on genes. -- Abstract: Background: Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. Methodology: Meta-analysis of the expression data of MCF7 cells treated with low (1 nM) or high (100 nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25 kb upstream and downstream from the transcription start site (TSS) of these genes. Results: It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. Discussion: E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress–rescue responses were induced

  17. PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells.

    PubMed

    Fima, E; Shtutman, M; Libros, P; Missel, A; Shahaf, G; Kahana, G; Livneh, E

    2001-10-11

    Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth.

  18. Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration

    PubMed Central

    2012-01-01

    Introduction Acquired tamoxifen resistance involves complex signaling events that are not yet fully understood. Successful therapeutic intervention to delay the onset of hormone resistance depends critically on mechanistic elucidation of viable molecular targets associated with hormone resistance. This study was undertaken to investigate the global proteomic alterations in a tamoxifen resistant MCF-7 breast cancer cell line obtained by long term treatment of the wild type MCF-7 cell line with 4-hydroxytamoxifen (4-OH Tam). Methods We cultured MCF-7 cells with 4-OH Tam over a period of 12 months to obtain the resistant cell line. A gel-free, quantitative proteomic method was used to identify and quantify the proteome of the resistant cell line. Nano-flow high-performance liquid chromatography coupled to high resolution Fourier transform mass spectrometry was used to analyze fractionated peptide mixtures that were isobarically labeled from the resistant and control cell lysates. Real time quantitative PCR and Western blots were used to verify selected proteomic changes. Lentiviral vector transduction was used to generate MCF-7 cells stably expressing S100P. Online pathway analysis was performed to assess proteomic signatures in tamoxifen resistance. Survival analysis was done to evaluate clinical relevance of altered proteomic expressions. Results Quantitative proteomic analysis revealed a wide breadth of signaling events during transition to acquired tamoxifen resistance. A total of 629 proteins were found significantly changed with 364 up-regulated and 265 down-regulated. Collectively, these changes demonstrated the suppressed state of estrogen receptor (ER) and ER-regulated genes, activated survival signaling and increased migratory capacity of the resistant cell line. The protein S100P was found to play a critical role in conferring tamoxifen resistance and enhanced cell motility. Conclusions Our data demonstrate that the adaptive changes in the proteome of

  19. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells.

    PubMed Central

    Migliaccio, A; Di Domenico, M; Castoria, G; de Falco, A; Bontempo, P; Nola, E; Auricchio, F

    1996-01-01

    The mechanism by which estradiol acts on cell multiplication is still unclear. Under conditions of estradiol-dependent growth, estradiol treatment of human mammary cancer MCF-7 cells triggers rapid and transient activation of the mitogen-activated (MAP) kinases, erk-1 and erk-2, increases the active form of p21ras, tyrosine phosphorylation of Shc and p190 protein and induces association of p190 to p21ras-GAP. Both Shc and p190 are substrates of activated src and once phosphorylated, they interact with other proteins and upregulate p21ras. Estradiol activates the tyrosine kinase/p21ras/MAP-kinase pathway in MCF-7 cells with kinetics which are similar to those of peptide mitogens. It is only after introduction of the human wild-type 67 kDa estradiol receptor cDNA that Cos cells become estradiol-responsive in terms of erk-2 activity. This finding, together with the inhibition by the pure anti-estrogen ICI 182 780 of the stimulatory effect of estradiol on each step of the pathway in MCF-7 cells proves that the classic estradiol receptor is responsible for the transduction pathway activation. Transfection experiments of Cos cells with the estradiol receptor cDNA and in vitro experiments with c-src show that the estradiol receptor activates c-src and this activation requires occupancy of the receptor by hormone. Our experiments suggest that c-src is an initial and integral part of the signaling events mediated by the estradiol receptor. Images PMID:8635462

  20. Cytotoxic effects of Pinus eldarica essential oil and extracts on HeLa and MCF-7 cell lines

    PubMed Central

    Sarvmeili, Najmeh; Jafarian-Dehkordi, Abbas; Zolfaghari, Behzad

    2016-01-01

    Several attempts have so far been made in the search of new anticancer agents of plant origin. Some studies have reported that different species of Pine genus possess cytotoxic activities against various cancer cell lines. In the present study, we evaluated the cytotoxic effects of Pinus eldarica bark and leaf extracts or leaf essential oil on HeLa and MCF-7 tumor cell lines. Hydroalcoholic and phenolic extracts and the essential oil of plant were prepared. Total phenolic contents of the extracts were measured using Folin-Ciocalteu reagent. Essential oil components were determined by gas chromatography-mass spectroscopy (GC-MS). Cytotoxic activity of the extracts and essential oil against HeLa and MCF-7 tumor cell lines were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The polyphenolic content of hydroalcoholic and phenolic extracts of the bark and hydroalcoholic extract of the leaf were 48.31%, 47.2%, and 8.47%, respectively. According to the GC-MS analysis, the major components of the leaf oil of P. eldarica were: β -caryophyllene (14.8%), germacrene D (12.9%), α–terpinenyl acetate (8.15%), α –pinene (5.7%), and –α humulene (5.9%). Bark extracts and leaf essential oil of P. eldarica significantly reduced the viability of both HeLa and MCF-7 cells in a concentration dependent manner. However, leaf extract showed less inhibitory effects against both cell lines. The essential oil of P. eldarica was more cytotoxic than its hydroalcoholic and phenolic extracts. The terpenes and phenolic compounds were probably responsible for cytotoxicity of P. eldarica. Therefore, P. eldarica might have a good potential for active anticancer agents. PMID:28003841

  1. JNK-dependent Atg4 upregulation mediates asperphenamate derivative BBP-induced autophagy in MCF-7 cells

    SciTech Connect

    Li, Yanchun; Luo, Qiyu; Yuan, Lei; Miao, Caixia; Mu, Xiaoshuo; Xiao, Wei; Li, Jianchun; Sun, Tiemin; Ma, Enlong

    2012-08-15

    N-Benzoyl-O-(N′-(1-benzyloxycarbonyl-4-piperidiylcarbonyl) -D-phenylalanyl)-D-phenylalaninol (BBP), a novel synthesized asperphenamate derivative with the increased solubility, showed growth inhibitory effect on human breast carcinoma MCF-7 cells in a time- and concentration-dependent manner. The growth inhibitory effect of BBP was associated with induction of autophagy, which was demonstrated by the development of acidic vesicular organelles, cleavage of LC3 and upregulation of Atg4 in BBP-treated MCF-7 cells. Since the application of Atg4 siRNA totally blocked the cleavage of LC3, we demonstrated a central role of Atg4 in BBP-induced autophagy. The further studies showed that BBP increased the levels of reactive oxygen species (ROS), and pretreatment with NAC effectively blocked the accumulation of ROS, autophagy and growth inhibition triggered by BBP. Moreover, BBP induced the activation of JNK, and JNK inhibitor SP600125 reversed autophagy, the increase of Atg4 levels, conversion of LC3 and growth inhibition induced by BBP. Knockdown of JNK by siRNA efficiently inhibited ROS production and autophagy, but antioxidant NAC failed to block JNK activation induced by BBP, indicating that JNK activation may be a upstream signaling of ROS and should be a core component in BBP-induced autophagic signaling pathway. These results suggest that BBP produces its growth inhibitory effect through induction of the autophagic cell death in MCF-7 cells, which is modulated by a JNK-dependent Atg4 upregulation involving ROS production. -- Highlights: ► Asperphenamate derivative BBP with increased solubility was synthesized. ► BBP selectively inhibited the growth of human breast tumor cells. ► The growth inhibitory effect of BBP was associated with induction of autophagy. ► JNK-dependent Atg4 upregulation mediated BBP-induced autophagy.

  2. Cytotoxic effects of Pinus eldarica essential oil and extracts on HeLa and MCF-7 cell lines.

    PubMed

    Sarvmeili, Najmeh; Jafarian-Dehkordi, Abbas; Zolfaghari, Behzad

    2016-12-01

    Several attempts have so far been made in the search of new anticancer agents of plant origin. Some studies have reported that different species of Pine genus possess cytotoxic activities against various cancer cell lines. In the present study, we evaluated the cytotoxic effects of Pinus eldarica bark and leaf extracts or leaf essential oil on HeLa and MCF-7 tumor cell lines. Hydroalcoholic and phenolic extracts and the essential oil of plant were prepared. Total phenolic contents of the extracts were measured using Folin-Ciocalteu reagent. Essential oil components were determined by gas chromatography-mass spectroscopy (GC-MS). Cytotoxic activity of the extracts and essential oil against HeLa and MCF-7 tumor cell lines were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The polyphenolic content of hydroalcoholic and phenolic extracts of the bark and hydroalcoholic extract of the leaf were 48.31%, 47.2%, and 8.47%, respectively. According to the GC-MS analysis, the major components of the leaf oil of P. eldarica were: β -caryophyllene (14.8%), germacrene D (12.9%), α-terpinenyl acetate (8.15%), α -pinene (5.7%), and -α humulene (5.9%). Bark extracts and leaf essential oil of P. eldarica significantly reduced the viability of both HeLa and MCF-7 cells in a concentration dependent manner. However, leaf extract showed less inhibitory effects against both cell lines. The essential oil of P. eldarica was more cytotoxic than its hydroalcoholic and phenolic extracts. The terpenes and phenolic compounds were probably responsible for cytotoxicity of P. eldarica. Therefore, P. eldarica might have a good potential for active anticancer agents.

  3. In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells.

    PubMed

    Jang, Suk Ju; Yang, In Jun; Tettey, Clement O; Kim, Ki Mo; Shin, Heung Mook

    2016-11-01

    In recent years, green synthesis of metallic nanoparticles is a growing area of research because of their potential applications in nanomedicine. In the present study we synthesized silver nanoparticles (silver NPs) from AgNO3 using aqueous extract of Lonicera hypoglauca flower as reducing and capping agents. The synthesized silver NPs were characterized using UV-Vis spectroscopy, FTIR, SEM-ED, TEM and SAED. Silver NPs were found to be significantly toxic to MCF-7 cells via the induction of apoptosis whereas sparing normal immune system (RAW 264.7) cells.

  4. The antiproliferative activity of all-trans-retinoic acid catabolites and isomers is differentially modulated by liarozole-fumarate in MCF-7 human breast cancer cells.

    PubMed

    Van heusden, J; Wouters, W; Ramaekers, F C; Krekels, M D; Dillen, L; Borgers, M; Smets, G

    1998-04-01

    The clinical use of all-trans-retinoic acid (ATRA) in the treatment of cancer is significantly hampered by the prompt emergence of resistance, believed to be caused by increased ATRA catabolism. Inhibitors of ATRA catabolism may therefore prove valuable for cancer therapy. Liarozole-fumarate is an anti-tumour drug that inhibits the cytochrome P450-dependent catabolism of ATRA. ATRA, but also its naturally occurring catabolites, 4-oxo-ATRA and 5,6-epoxy-ATRA, as well as its stereoisomers, 9-cis-RA and 13-cis-RA, show significant antiproliferative activity in MCF-7 human breast cancer cells. To further elucidate its mechanism of action, we investigated whether liarozole-fumarate was able to enhance the antiproliferative activity of ATRA catabolites and isomers. Liarozole-fumarate alone up to a concentration of 10(-6) M had no effect on MCF-7 cell proliferation. However, in combination with ATRA or the ATRA catabolites, liarozole-fumarate (10(-6) M) significantly enhanced their antiproliferative activity. On the contrary, liarozole-fumarate (10(-6) M) was not able to potentiate the antiproliferative activity of the ATRA stereoisomers, most probably because of the absence of cytochrome P450-dependent catabolism. Together, these findings show that liarozole-fumarate acts as a versatile inhibitor of retinoid catabolism in that it not only blocks the breakdown of ATRA, but also inhibits the catabolic pathway of 4-oxo-ATRA and 5,6-epoxy-ATRA, thereby enhancing their antiproliferative activity.

  5. Synthesis of Hexagonal ZnO-PQ7 Nano Disks Conjugated with Folic Acid to Image MCF - 7 Cancer Cells.

    PubMed

    Sureshkumar, S; Jothimani, B; Sridhar, T M; Santhosh, Arul; Venkatachalapathy, B

    2017-01-01

    Surface modified ZnO nanomaterial is widely used in the field of bioimaging worldwide due to its optical properties, electronic characteristics and biocompatibility. Fluorescent enhanced, Polyquaternium-7(PQ7) capped, ZnO hexagonal nano disks (ZnO-PQ7) were synthesised by simple wet chemical method. The structural and optical properties of ZnO-PQ7 hexagonal nano disks were characterized using XRD, UV-Visible, Fluorescence, HRTEM, EDAX and FTIR studies. The size of synthesised ZnO-PQ7 were around 30-45 nm as confirmed by HRTEM studies. Fluorescence emission intensity increased with increase in PQ7 concentration. ZnO-PQ7 was further conjugated with folic acid (FA) to target human breast cancer cell line (MCF-7) via EDC/NHS coupling chemistry. Conjugation of folic acid with ZnO-PQ7 was confirmed by FTIR studies. The cell viability study using Methyl thiazolyltetrazolium(MTT) assay has demonstrated that the ZnO-PQ7 conjugated FA composites (ZnO-PQ7-FA) exhibit low toxicity towards MCF-7 up to a concentration of 125 μg/mL. Confocal laser scanning microscopic images confirmed the uptake of ZnO-PQ7-FA nanoparticles by MCF-7 cells. This study reveals ZnO-PQ7-FA nano disks as a potential imaging agent for detection of cancer cells. The synthesis route reported in this article is simple and easy to follow for the synthesis of ZnO-PQ7-FA in bulk quantities with high purity.

  6. Beta-carotene is accumulated, metabolized, and possibly converted to retinol in human breast carcinoma cells (MCF-7).

    PubMed

    Torres, Alexandre G; Borojevic, Radovan; Trugo, Nadia M F

    2004-05-01

    The aims of the present study were to investigate the uptake, accumulation, and metabolism of beta-carotene by the human breast carcinoma cell line MCF-7. Beta-carotene uptake was time- and dose-dependent, and independent of cell polarity. Beta-carotene accumulation in cells was linear as a function of its concentration in medium (1.3-4.1 micromol/L). It was accompanied by increasing amounts of retinol, which accumulated in cells following a sigmoid pattern, and by other four putative metabolites. Beta-apocarotenals, epoxides, endoperoxides, retinal, retinoic acid, and retinyl esters were not detected in cell extracts. Beta-carotene and its metabolites did not induce alterations in cell morphology or subcellular localization of epithelial mucins. Beta-carotene and retinol were released from cells that had previously accumulated beta-carotene, and were further incubated in beta-carotene- and retinol-free medium, but intracellular retinol content remained constant whereas beta-carotene decreased. In conclusion, beta-carotene added to culture medium in physiological concentrations (1-6 micromol/L) is taken up and metabolized in MCF-7 cells, and is possibly converted to retinol.

  7. HDAC8 Inhibition Blocks SMC3 Deacetylation and Delays Cell Cycle Progression without Affecting Cohesin-dependent Transcription in MCF7 Cancer Cells.

    PubMed

    Dasgupta, Tanushree; Antony, Jisha; Braithwaite, Antony W; Horsfield, Julia A

    2016-06-10

    Cohesin, a multi-subunit protein complex involved in chromosome organization, is frequently mutated or aberrantly expressed in cancer. Multiple functions of cohesin, including cell division and gene expression, highlight its potential as a novel therapeutic target. The SMC3 subunit of cohesin is acetylated (ac) during S phase to establish cohesion between replicated chromosomes. Following anaphase, ac-SMC3 is deacetylated by HDAC8. Reversal of SMC3 acetylation is imperative for recycling cohesin so that it can be reloaded in interphase for both non-mitotic and mitotic functions. We blocked deacetylation of ac-SMC3 using an HDAC8-specific inhibitor PCI-34051 in MCF7 breast cancer cells, and examined the effects on transcription of cohesin-dependent genes that respond to estrogen. HDAC8 inhibition led to accumulation of ac-SMC3 as expected, but surprisingly, had no influence on the transcription of estrogen-responsive genes that are altered by siRNA targeting of RAD21 or SMC3. Knockdown of RAD21 altered estrogen receptor α (ER) recruitment at SOX4 and IL20, and affected transcription of these genes, while HDAC8 inhibition did not. Rather, inhibition of HDAC8 delayed cell cycle progression, suppressed proliferation and induced apoptosis in a concentration-dependent manner. We conclude that HDAC8 inhibition does not change the estrogen-specific transcriptional role of cohesin in MCF7 cells, but instead, compromises cell cycle progression and cell survival. Our results argue that candidate inhibitors of cohesin function may differ in their effects depending on the cellular genotype and should be thoroughly tested for predicted effects on cohesin's mechanistic roles.

  8. Endoplasmic reticulum calcium release potentiates the ER stress and cell death caused by an oxidative stress in MCF-7 cells.

    PubMed

    Dejeans, Nicolas; Tajeddine, Nicolas; Beck, Raphaël; Verrax, Julien; Taper, Henryk; Gailly, Philippe; Calderon, Pedro Buc

    2010-05-01

    Increase in cytosolic calcium concentration ([Ca2+](c)), release of endoplasmic reticulum (ER) calcium ([Ca2+](er)) and ER stress have been proposed to be involved in oxidative toxicity. Nevertheless, their relative involvements in the processes leading to cell death are not well defined. In this study, we investigated whether oxidative stress generated during ascorbate-driven menadione redox cycling (Asc/Men) could trigger these three events, and, if so, whether they contributed to Asc/Men cytoxicity in MCF-7 cells. Using microspectrofluorimetry, we demonstrated that Asc/Men-generated oxidative stress was associated with a slow and moderate increase in [Ca2+](c), largely preceding permeation of propidium iodide, and thus cell death. Asc/Men treatment was shown to partially deplete ER calcium stores after 90 min (decrease by 45% compared to control). This event was associated with ER stress activation, as shown by analysis of eIF2 phosphorylation and expression of the molecular chaperone GRP94. Thapsigargin (TG) was then used to study the effect of complete [Ca2+](er) emptying during the oxidative stress generated by Asc/Men. Surprisingly, the combination of TG and Asc/Men increased ER stress to a level considerably higher than that observed for either treatment alone, suggesting that [Ca2+](er) release alone is not sufficient to explain ER stress activation during oxidative stress. Finally, TG-mediated [Ca2+](er) release largely potentiated ER stress, DNA fragmentation and cell death caused by Asc/Men, supporting a role of ER stress in the process of Asc/Men cytotoxicity. Taken together, our results highlight the involvement of ER stress and [Ca2+](er) decrease in the process of oxidative stress-induced cell death in MCF-7 cells.

  9. Cytotoxic activity of Macrosolen parasiticus (L.) Danser on the growth of breast cancer cell line (MCF-7)

    PubMed Central

    Sodde, Vijay Kumar; Lobo, Richard; Kumar, Nimmy; Maheshwari, Rajalekshmi; Shreedhara, C. S.

    2015-01-01

    Background: Macrosolen parasiticus (L.) Danser belonging to Loranthaceaea (mistletoe family) is a parasitic plant that grows on different host plants such as mango, jack fruit, peepal, neem tree, etc., This study was aimed to investigate the anti-cancer activity of methanolic and aqueous extract of stem of M. parasiticus. Objectives: To investigate the in vitro cytotoxic potential of the methanolic and aqueous extracts from stems of M. parasiticus against MCF-7 breast cancer cells by brine shrimp lethality (BSL) bioassay, MTT assay and sulforhodamine B (SRB) assay. Materials and Methods: The extracts were tested in human breast cancer cell lines in vitro for percentage cytotoxicity, apoptosis by acridine orange/ethidium bromide staining, LD50 and IC50 values after treatment with M. parasiticus extracts. Results: In BSL bioassay, aqueous extract showed more significant (P < 0.01) cytotoxicity with LD50 82.79 ± 2.67 μg/mL as compared to methanolic extract with LD50 125 ± 3.04 μg/mL. The methanolic extract of M. parasiticus showed IC50 97.33 ± 3.75 μg/mL (MTT) (P < 0.05) and 94.58 ± 3.84 μg/mL (SRB) (P < 0.01) assays against MCF-7. The aqueous extract of M. parasiticus demonstrated higher activity with IC50 59.33 ± 3.3 μg/mL (MTT) (P < 0.01) and 51.9 ± 1.87 μg/mL (SRB)(P < 0.01) assays, after 48 h of exposure and thus showed significant dose-dependent cytotoxic activity. Conclusion: The finding demonstrated that both extracts of M. parasiticus showed significant cytotoxic activity, however aqueous extract demonstrated higher activity against MCF-7 breast cancer cells. PMID:26109761

  10. Tamoxifen increases apoptosis but does not influence markers of proliferation in an MCF-7 xenograft model of breast cancer.

    PubMed

    Hawkin, R A; Arends, M J; Ritchie, A A; Langdon, S; Miller, W R

    2000-04-01

    Twenty-four nude mice bearing MCF-7 breast cancer cells grown as xenografts and treated with tamoxifen (2.5 mg slow-release pellet) were studied for up to 35 days. Tumour size was measured in 2 dimensions at regular time-intervals and tumours were harvested on each of days 2, 4, 7, 14, 28 and 35 after the start of treatment. Control animals (8) received no treatment and the tumours were harvested after 0 or 35 days. Tumour sections were assessed for prevalence of apoptosis and mitosis and examined immunocytochemically for Ki(67)(MIB-1) and bcl-2 expression. Tumours increased in size during tamoxifen-treatment, but at a significantly slower rate (max. 2.6-fold) than in the untreated control animals; thus tumours not actually regressing may, nevertheless, be responding significantly to tamoxifen. MIB-1 and bcl-2 immunostaining and mitosis failed to show any consistent change over the period of study. Apoptosis, however, increased progressively and significantly to day-28 in tamoxifen-treated tumours, reaching approximately a 5-fold increase over day-0 values, then decreasing again to nearly 3-fold by day-35 (P= 0.0002). The apoptosis: mitosis ratio in treated tumours also increased to approximately 10-fold on day-28 over day-0 values, decreasing to nearly 4-fold by day-35 (P= 0.037). Within the treated group, apoptosis was significantly inversely correlated with both mitosis (R = -0.38, P= 0.03) and expression of bcl-2 (R = -0.48, P= 0.0056) and strongly positively correlated with both time on tamoxifen (R = +0.63, P= 0.0003) and the % inhibition of growth by tamoxifen (R = +0.58,P = 0.0012) in the 28 individual, treated tumours (estimated relative to the mean growth rate in the controls). The apoptosis: mitosis ratio was also inversely correlated with bcl-2 expression (R = -0.56, P= 0.0021) and positively correlated with both time on tamoxifen (R = +0.50, P= 0.0068) and % inhibition of growth (R = +0.56, P= 0.0019). In this hormone-sensitive tumour model for breast

  11. The control of progesterone receptor expression in MCF-7 breast cancer cells: effects of estradiol and sex hormone-binding globulin (SHBG).

    PubMed

    Fazzari, A; Catalano, M G; Comba, A; Becchis, M; Raineri, M; Frairia, R; Fortunati, N

    2001-02-14

    Estradiol controls the gene transcription and expression of many proteins in breast cancer cells, like the progesterone receptor, PR, that is up-regulated by the hormone. Moreover, estradiol is one of the crucial factors inducing the proliferation of breast cancer cells. Sex Hormone-Binding Globulin (SHBG), the plasma carrier for both estradiol and androgens, inhibits the estradiol-induced growth of MCF-7 cells (estrogen-dependent breast cancer cells), through its membrane receptor (SHBG-R), cAMP and PKA. The anti-estrogenic effect of SHBG, which has been described only as far as cell proliferation is concerned, could also play a meaningful role in the estradiol control of other factors in breast cancer cells. In the present study, the effect of SHBG on the estradiol control of PR expression (both mRNA and protein) and function (receptor binding capacity) in MCF-7 cells was examined. SHBG inhibited the estradiol-induced up-regulation of PR mRNA as well as protein level and function. Moreover, the effect of SHBG on estradiol control of PR expression and function was showed to be specific and mediated by PKA. The intermediacy of PKA in the PR expression control, together with the observation that it is effective in the condition in which the SHBG receptor is activated, supports the hypothesis that the anti-estrogenic effect of SHBG could be receptor-mediated. The ability of SHBG to inhibit estradiol action in a specific way in estrogen-dependent breast cancer cells has, therefore, to be taken into account for the development of future therapeutic strategies.

  12. Crosstalk of ROS/RNS and autophagy in silibinin-induced apoptosis of MCF-7 human breast cancer cells in vitro.

    PubMed

    Zheng, Nan; Liu, Lu; Liu, Wei-Wei; Li, Fei; Hayashi, Toshihiko; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2017-02-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulating cell survival and death. Silibinin is a natural polyphenolic flavonoid isolated from milk thistle with anti-tumor activities, but it was found to induce cytoprotective ROS/RNS in human breast cancer MCF-7 cells. Furthermore, treatment with silibinin down-regulates ERα expression in MCF-7 cells, and inducing both autophagy and apoptosis. In this study we explored the relationship between ER-associated pathways and RNS/ROS in MCF-7 cells. We also investigated the molecular mechanisms underlying the reciprocal regulation between ROS/RNS levels and autophagy in the death signaling pathways in silibinin-treated MCF-7 cells. Silibinin (100-300 μmol/L) dose-dependently increased ROS/RNS generation in MCF-7 cells (with high expression of ERα and low expression of ERβ) and MDA-MB-231 cells (with low expression of ERα and high expression of ERβ). Scavenging ROS/RNS significantly enhanced silibinin-induced death of MCF-7 cells, but not MDA-MB231 cells. Pharmacological activation or blockade of ERα in MCF-7 cells significantly enhanced or decreased, respectively, silibinin-induced ROS/RNS generation, whereas activation or block of ERβ had no effect. In silibinin-treated MCF-7 cells, exposure to the ROS/RNS donators decreased the autophagic levels, whereas inhibition of autophagy with 3-MA significantly increased ROS/RNS levels. We further showed that increases in ROS/RNS generation, ERα activation or autophagy down-regulation had protective roles in silibinin-treated MCF-7 cells. Under a condition of ERα activation, scavenging ROS/RNS or stimulating autophagy enhanced the cytotoxicity of silibinin. These results demonstrate the existence of two conflicting pathways in silibinin-induced death of MCF-7 cells: one involves the down-regulation of ERα and thereby augmenting the pro-apoptotic autophagy downstream, leading to cell death; the other involves the up

  13. Crosstalk of ROS/RNS and autophagy in silibinin-induced apoptosis of MCF-7 human breast cancer cells in vitro

    PubMed Central

    Zheng, Nan; Liu, Lu; Liu, Wei-wei; Li, Fei; Hayashi, Toshihiko; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi

    2017-01-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulating cell survival and death. Silibinin is a natural polyphenolic flavonoid isolated from milk thistle with anti-tumor activities, but it was found to induce cytoprotective ROS/RNS in human breast cancer MCF-7 cells. Furthermore, treatment with silibinin down-regulates ERα expression in MCF-7 cells, and inducing both autophagy and apoptosis. In this study we explored the relationship between ER-associated pathways and RNS/ROS in MCF-7 cells. We also investigated the molecular mechanisms underlying the reciprocal regulation between ROS/RNS levels and autophagy in the death signaling pathways in silibinin-treated MCF-7 cells. Silibinin (100–300 μmol/L) dose-dependently increased ROS/RNS generation in MCF-7 cells (with high expression of ERα and low expression of ERβ) and MDA-MB-231 cells (with low expression of ERα and high expression of ERβ). Scavenging ROS/RNS significantly enhanced silibinin-induced death of MCF-7 cells, but not MDA-MB231 cells. Pharmacological activation or blockade of ERα in MCF-7 cells significantly enhanced or decreased, respectively, silibinin-induced ROS/RNS generation, whereas activation or block of ERβ had no effect. In silibinin-treated MCF-7 cells, exposure to the ROS/RNS donators decreased the autophagic levels, whereas inhibition of autophagy with 3-MA significantly increased ROS/RNS levels. We further showed that increases in ROS/RNS generation, ERα activation or autophagy down-regulation had protective roles in silibinin-treated MCF-7 cells. Under a condition of ERα activation, scavenging ROS/RNS or stimulating autophagy enhanced the cytotoxicity of silibinin. These results demonstrate the existence of two conflicting pathways in silibinin-induced death of MCF-7 cells: one involves the down-regulation of ERα and thereby augmenting the pro-apoptotic autophagy downstream, leading to cell death; the other involves the up

  14. Green tea polyphenols induce cell death in breast cancer MCF-7 cells through induction of cell cycle arrest and mitochondrial-mediated apoptosis*

    PubMed Central

    Liu, Shu-min; Ou, Shi-yi; Huang, Hui-hua

    2017-01-01

    In order to study the molecular mechanisms of green tea polyphenols (GTPs) in treatment or prevention of breast cancer, the cytotoxic effects of GTPs on five human cell lines (MCF-7, A549, Hela, PC3, and HepG2 cells) were determined and the antitumor mechanisms of GTPs in MCF-7 cells were analyzed. The results showed that GTPs exhibited a broad spectrum of inhibition against the detected cancer cell lines, particularly the MCF-7 cells. Studies on the mechanisms revealed that the main modes of cell death induced by GTPs were cell cycle arrest and mitochondrial-mediated apoptosis. Flow cytometric analysis showed that GTPs mediated cell cycle arrest at both G1/M and G2/M transitions. GTP dose dependently led to apoptosis of MCF-7 cells via the mitochondrial pathways, as evidenced by induction of chromatin condensation, reduction of mitochondrial membrane potential (ΔΨ m), improvement in the generation of reactive oxygen species (ROS), induction of DNA fragmentation, and activations of caspase-3 and caspase-9 in the present paper. PMID:28124838

  15. Farnesol induces thyroid hormone receptor (THR) {beta}1 but inhibits THR-mediated signaling in MCF-7 human breast cancer cells

    SciTech Connect

    Duncan, Robin E.; Archer, Michael C. . E-mail: m.archer@utoronto.ca

    2006-04-28

    Anti-cancer effects of farnesol are well established, although mechanisms mediating these effects are not fully understood. Since farnesol has been shown to regulate gene transcription through activation of the farnesoid X receptor and the peroxisome proliferator-activated receptors-{alpha} and -{gamma}, we hypothesized that farnesol may also mediate some of its effects through other nuclear hormone receptors. Here we showed that in MCF-7 human breast cancer cells, farnesol induced the expression of thyroid hormone receptor (THR) {beta}1 mRNA and protein at concentrations that inhibited cell growth. Changes in the expression of THR responsive genes, however, suggested that farnesol inhibits THR-mediated signaling. Protein extracts from cells treated with farnesol displayed decreased binding to oligodeoxynucleotides containing a consensus sequence for the THR response element, despite the higher THR{beta}1 content, providing a mechanism to explain the decreased transcriptional activity of cellular THRs.

  16. Sialylation of E-cadherin does not change the spontaneous or ET-18-OMe-mediated aggregation of MCF-7 human breast cancer cells.

    PubMed

    Steelant, W F; Recchi, M A; Noë, V T; Boilly-Marer, Y; Bruyneel, E A; Verbert, A; Mareel, M M; Delannoy, P

    1999-05-01

    We have investigated the role of sialylation on cell-cell adhesion mediated by E-cadherin. Two MCF-7 human breast cancer cell variants were studied: MCF-7/AZ cells showed a spontaneous cell-cell adhesion in the fast and slow aggregation assay. whereas the adhesion deficient MCF-7/6 cell variant failed to form larger aggregates, suggesting that E-cadherin was not functional under the conditions of both assays. We measured the sialyltransferase activities using Galbeta1-3GalNAcalpha-O-benzyl and Galbeta1-4GlcNAcalpha-O-benzyl as acceptor substrates as well as mRNA levels of four sialyltransferases, ST3Gal I, ST3Gal III, ST3Gal IV, ST6Gal I, using multiplex RT-PCR in MCF-7 cell variants. The alpha2-6 and alpha2-3 sialylation of E-cadherin was investigated by immuno-blot using Sambucus nigra agglutinin and Maackia amurensis agglutinin. Compared to the adhesion-proficient MCF-7/AZ cells, the adhesion-deficient MCF-7/6 cell line apparently lacks ST6Gal I mRNA, has a lower ST3Gal I mRNA, a lower ST3Gal I sialyltransferase activity, and no alpha2-3 linked sialic acid moieties on E-cadherin. The potential anti-cancer drug 1-O-octadecyl-2-O-methylglycero-3-phosphocholine (ET-18-OMe, 48 h, 25 microg/ml) belonging to the class of alkyllysophospholipids restored the E-cadherin function in the adhesion-deficient MCF-7/6 cells as evidenced by an increased aggregation. ET-18-OMe caused loss of ST6Gal I mRNA in MCF-7/AZ cells but no changes of sialyltransferase activities or sialic acid moieties on E-cadherin could be observed. We conclude that Ca2+-dependent, E-cadherin-specific homotypic adhesion of MCF-7/AZ or MCF-7/6 cells treated with ET-18-OMe was not affected by sialylation of E-cadherin.

  17. Cinnamomum cassia Suppresses Caspase-9 through Stimulation of AKT1 in MCF-7 Cells but Not in MDA-MB-231 Cells

    PubMed Central

    Kianpour Rad, Sima; Kanthimathi, M. S.; Abd Malek, Sri Nurestri; Lee, Guan Serm; Looi, Chung Yeng; Wong, Won Fen

    2015-01-01

    Background Cinnamomum cassia bark is a popular culinary spice used for flavoring and in traditional medicine. C. cassia extract (CE) induces apoptosis in many cell lines. In the present study, particular differences in the mechanism of the anti-proliferative property of C. cassia on two breast cancer cell lines, MCF-7 and MDA-MB-231, were elucidated. Methodology/Principal Findings The hexane extract of C. cassia demonstrated high anti-proliferative activity against MCF-7 and MDA-MB-231 cells (IC50, 34±3.52 and 32.42 ±0.37 μg/ml, respectively). Oxidative stress due to disruption of antioxidant enzyme (SOD, GPx and CAT) activity is suggested as the probable cause for apoptosis initiation. Though the main apoptosis pathway in both cell lines was found to be through caspase-8 activation, caspase-9 was also activated in MDA-MB-231 cells but suppressed in MCF-7 cells. Gene expression studies revealed that AKT1, the caspase-9 suppressor, was up-regulated in MCF-7 cells while down-regulated in MDA-MB-231 cells. Although, AKT1 protein expression in both cell lines was down-regulated, a steady increase in MCF-7 cells was observed after a sharp decrease of suppression of AKT1. Trans-cinnamaldehyde and coumarin were isolated and identified and found to be mainly responsible for the observed anti-proliferative activity of CE (Cinnamomum cassia). Conclusion Activation of caspase-8 is reported for the first time to be involved as the main apoptosis pathway in breast cancer cell lines upon treatment with C. cassia. The double effects of C. cassia on AKT1 gene expression in MCF-7 cells is reported for the first time in this study. PMID:26700476

  18. Crosstalk between Wnt signaling and Phorbol ester-mediated PKC signaling in MCF-7 human breast cancer cells.

    PubMed

    Kim, Soyoung; Chun, So-Young; Kwon, Yun-Suk; Nam, Kyung-Soo

    2016-02-01

    Although many studies have implicated the crosstalk between the Wnt and PKC signaling pathways in tumor initiation and progression, the molecular roles of PKC isoforms in the Wnt signaling pathway remain poorly understood. In this study, we explored the contribution of PKC isoforms to canonical and noncanonical Wnt signaling pathway in mediating cell migration and an epithelial-mesenchymal transition (EMT). When MCF-7 cells were treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) for up to 3 weeks, the effect of TPA on Wnt signaling pathway was dramatically different depending on the exposure time. The short term exposure (3 days) of MCF-7 cells to TPA exhibited significant induction of Wnt5a expression, along with the enhanced expression of PKC-α, to promote cell migration, which suggested that activation of noncanonical Wnt signaling pathway is associated with PKC-α. However, the chronic exposure (3 weeks) of cells to TPA completely suppressed Wnt5a expression and the expression of PKC-η and PKC-δ, whereas the expression of Wnt3a and PKC-θ were up-regulated to activate the canonical Wnt signaling pathway. Moreover, the loss of epithelial markers, including E-cadherin and GATA-3, suggested that chronic exposure of TPA stimulates EMT. Taken together, our data suggest that PKC-θ positively regulates the canonical Wnt signaling pathway, and that PKC-η and PKC-δ negatively modulate this signaling pathway.

  19. Low-level laser therapy on MCF-7 cells: a micro-Fourier transform infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Magrini, Taciana D.; dos Santos, Nathalia Villa; Milazzotto, Marcella Pecora; Cerchiaro, Giselle; da Silva Martinho, Herculano

    2012-10-01

    Low-level laser therapy (LLLT) is an emerging therapeutic approach for several clinical conditions. The clinical effects induced by LLLT presumably scale from photobiostimulation/photobioinhibition at the cellular level to the molecular level. The detailed mechanism underlying this effect remains unknown. This study quantifies some relevant aspects of LLLT related to molecular and cellular variations. Malignant breast cells (MCF-7) were exposed to spatially filtered light from a He-Ne laser (633 nm) with fluences of 5, 28.8, and 1000 mJ/cm2. The cell viability was evaluated by optical microscopy using the Trypan Blue viability test. The micro-Fourier transform infrared technique was employed to obtain the vibrational spectra of each experimental group (control and irradiated) and identify the relevant biochemical alterations that occurred due to the process. It was observed that the red light influenced the RNA, phosphate, and serine/threonine/tyrosine bands. We found that light can influence cell metabolism depending on the laser fluence. For 5 mJ/cm2, MCF-7 cells suffer bioinhibition with decreased metabolic rates. In contrast, for the 1 J/cm2 laser fluence, cells present biostimulation accompanied by a metabolic rate elevation. Surprisingly, at the intermediate fluence, 28.8 mJ/cm2, the metabolic rate is increased despite the absence of proliferative results. The data were interpreted within the retrograde signaling pathway mechanism activated with light irradiation.

  20. Inflammatory cytokines prime adipose tissue mesenchymal stem cells to enhance malignancy of MCF-7 breast cancer cells via transforming growth factor-β1.

    PubMed

    Trivanović, Drenka; Jauković, Aleksandra; Krstić, Jelena; Nikolić, Srdjan; Okić Djordjević, Ivana; Kukolj, Tamara; Obradović, Hristina; Mojsilović, Slavko; Ilić, Vesna; Santibanez, Juan Francisco; Bugarski, Diana

    2016-03-01

    Mesenchymal stem cells from human adipose tissue (hASCs) are proposed as suitable tools for soft tissue engineering and reconstruction. Although it is known that hASCs have the ability to home to sites of inflammation and tumor niche, the role of inflammatory cytokines in the hASCs-affected tumor development is not understood. We found that interferon-γ (IFN-γ) and/or tumor necrosis factor-α (TNF-α) prime hASCs to produce soluble factors which enhance MCF-7 cell line malignancy in vitro. IFN-γ and/or TNF-α-primed hASCs produced conditioned media (CM) which induced epithelial to mesenchymal transition (EMT) of MCF-7 cells by reducing E-Cadherin and increasing Vimentin expression. Induced EMT was accompanied by increased invasion, migration, and urokinase type-plasminogen activator (uPA) expression in MCF-7 cells. These effects were mediated by increased expression of transforming growth factor-β1(TGF-β1) in cytokines-primed hASCs, since inhibition of type I TGF-β1 receptor on MCF-7 cells and neutralization of TGF-β1 disabled the CM from primed hASCs to increase EMT, cell migration, and uPA expression in MCF-7 cells. Obtained data suggested that IFN-γ and/or TNF-α primed hASCs might enhance the malignancy of MCF-7 cell line by inducing EMT, cell motility and uPA expression in these cells via TGF-β1-Smad3 signalization, with potentially important implications in breast cancer progression.

  1. Fenugreek, a naturally occurring edible spice, kills MCF-7 human breast cancer cells via an apoptotic pathway.

    PubMed

    Khoja, Kholoud K; Shaf, Gowhar; Hasan, Tarique N; Syed, Naveed Ahmed; Al-Khalifa, Abdrohman S; Al-Assaf, Abdullah H; Alshatwi, Ali A

    2011-01-01

    There is growing use of anticancer complementary and alternative medicines worldwide. Trigonella foenum graecum (Fenugreek) is traditionally applied to treat disorders such as diabetes, high cholesterol, wounds, inflammation, and gastrointestinal ailments. Fenugreek is also reported to have anticancer properties due to its active beneficial chemical constituents. The mechanism of action of several anticancer drugs is based on their ability to induce apoptosis. The objective of the study was to characterize the downstream apoptotic genes targeted by FCE in MCF-7 human immortalized breast cells. FCE effectively killed MCF-7 cells through induction of apoptosis,confirmed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and RT-PCR assays. When cells were exposed to 50 μg/mL FCE for 24 hours, 23.2% apoptotic cells resulted, while a 48-hour exposure to 50 μg/mL caused 73.8% apoptosis. This was associated with increased expression of Caspase 3, 8, 9, p53, Fas, FADD, Bax and Bak in a time-and dose-dependent manner, as determined by real- time quantitative PCR. In summary, the induction of apoptosis by FCE is effected by its ability to increase the expression of pro-apoptotic genes and the spice holds promise for consideration in complementary therapy for breast cancer patients.

  2. αIIbβ3-integrin Ligands: Abciximab and Eptifibatide as Proapoptotic Factors in MCF-7 Human Breast Cancer Cells.

    PubMed

    Kononczuk, Joanna; Surazynski, Arkadiusz; Czyzewska, Urszula; Prokop, Izabela; Tomczyk, Michal; Palka, Jerzy; Miltyk, Wojciech

    2015-01-01

    Integrin receptors are considered to be the key factors in carcinogenesis. αIIbβ3-Integrin (GP IIb/IIIa) is the main glycoprotein of the surface of platelets, its presence has also been noted on the certain cancer cell lines. The molecular mechanism of its action in cancer cells remains unknown. This study presents effects of two αIIbβ3-inhibitors: Abciximab and Eptifibatide on apoptosis, expression of proline oxidase (POX), signaling molecules ERK 1/2, transcription factor NF-κB and HIF-1α, vascular endothelial growth factor (VEGF) as well as DNA biosynthesis, collagen biosynthesis and prolidase activity in MCF-7 breast cancer cells. Both ligands induced apoptosis, however we found significant differences in molecular mechanism of action between tested αIIbβ3-inhibitors. These differences include expression of POX, HIF-1α, NF-κB,VEGF and collagen biosynthesis. Eptifibatide presented stronger proapoptotic activity in MCF-7 cells than Abciximab. Results of this study suggest that Eptifibatide may be considered as a novel candidate for development of new anticancer therapy.

  3. Biochemical effects and growth inhibition in MCF-7 cells caused by novel sulphonamido oxa-polyamine derivatives.

    PubMed

    Pavlov, V; Lin, P Kong Thoo; Rodilla, V

    2002-04-01

    The novel polyamine derivatives sulphonamido oxa-spermine (oxa-Spm) and sulphonamido oxa-spermidine (oxa-Spd) exhibited rapid cytotoxic action towards MCF-7 human breast cancer cells with IC50 values of 4.35 and 6.47 pM, respectively, after 24-h drug exposure. Neither compound is a substrate of serum amine oxidase. Both oxa-Spm and oxa-Spd caused cell shrinkage, as determined by phase-contrast microscopy. After incubation with 10 microM of either compound for 8 h, the cells underwent chromatin condensation and nuclear fragmentation. However, no clear DNA ladder was obtained by electrophoresis. The sulphonamido oxa-polyamine derivatives and especially oxa-Spd enhanced the activity of polyamine oxidase (PAO), an enzyme capable of oxidising N1-acetylated spermine and spermidine to spermidine and putrescine, respectively, generating cytotoxic H2O2 and 3-acetamidopropanal as by-products. The intracellular polyamine content was only marginally reduced in response to drug treatment. In conclusion, our data show that these novel sulphonamido oxa-polyamine derivatives possess high cytotoxic activity against MCF-7 cells and indicate that induction of PAO may mediate their cytotoxicity via apoptosis.

  4. Downregulation of the autophagy protein ATG-7 correlates with distinct sphingolipid profile in MCF-7 cells sensitized to photodamage

    NASA Astrophysics Data System (ADS)

    Separovic, Duska; Kelekar, Ameeta; Tarca, Adi L.; Bielawski, Jacek; Kessel, David

    2009-06-01

    The objective of this study was to determine the sphingolipid (SL) profile in autophagy-defective cells and overall cell death after PDT with Pc 4 (PDT). Human breast cancer MCF-7 cells with downregulated autophagy protein ATG-7 and their scrambled controls (Scr) were used. Exposure of ATG-7 knockdown cells to PDT led to defective processing of the autophagy marker LC3, and increased overall cell killing. In both cell types PDT evoked an early (2 h) increase in ceramides and dihydroceramides (DHceramides). When the two cell types were compared regarding time (2 and 24 h) and treatment conditions (with and without PDT), the levels of several ceramides and DHceramides were reduced, whereas the concentrations of C14-ceramide, C16-ceramide and C12-DHceramide were higher in ATG-7 knockdown cells. The data imply that the SL profile might be a marker of autophagy-deficiency in cells sensitized to PDT.

  5. Melatonin promotes ATO-induced apoptosis in MCF-7 cells: Proposing novel therapeutic potential for breast cancer.

    PubMed

    Nooshinfar, Elaheh; Bashash, Davood; Safaroghli-Azar, Ava; Bayati, Samaneh; Rezaei-Tavirani, Mostafa; Ghaffari, Seyed H; Akbari, Mohammad Esmaeil

    2016-10-01

    Arsenic trioxide (ATO), a traditional Chinese medicine, has long been of biomedical interest and is largely used for treatment of a broad spectrum of cancers. Melatonin, a naturally occurring indoleamine synthesized in the pineal gland, has been considered as a biomarker for endocrine-dependent tumors, particularly breast cancer. An increasing number of studies indicate that melatonin could be an attractive candidate for combined therapy due to its anti-oxidant and cytotoxic activities. The aim of this study was to investigate the potentiating effect of melatonin on ATO-induced apoptosis in estrogen receptor (ER)-positive breast cancer cell line, MCF-7. Our data highlighted for the first time that pre-treating MCF-7 cells with physiological concentration of melatonin substantially augmented the cytotoxic effects of ATO as compared with either agent alone. Real-time PCR analysis revealed that apoptosis induction by the drugs combination was associated with increased p53 transcriptional activity followed by the elevated molecular ratio of Bax/Bcl-2. Moreover, induced p21, subsequent G1 cell cycle arrest and transcriptional suppression of survivin-mediated c-Myc and hTERT expression may contribute in the enhanced growth suppressive effect of ATO-plus-melatonin. Due to the safety profile of melatonin, our study suggests that using melatonin in combination with ATO might provide insight into a novel adjuvant therapy and may confer advantages for breast cancer treatment.

  6. Cucurbitacin B induces DNA damage and autophagy mediated by reactive oxygen species (ROS) in MCF-7 breast cancer cells.

    PubMed

    Ren, Guowen; Sha, Tongye; Guo, Jiajie; Li, Wenxue; Lu, Jinjian; Chen, Xiuping

    2015-10-01

    Cucurbitacin B (Cuc B), a natural compound extracted from cucurbitaceous plants, demonstrated potent anticancer activities, while the underlying mechanisms remain unclear. We investigated the anticancer effect of Cuc B on MCF-7 breast cancer cells. Cuc B drastically decreased cell viability in a concentration-dependent manner. Cuc B treatment caused DNA damage, as shown by long tails in the comet assay and increased γH2AX protein expression. Immunofluorescence staining showed that Cuc B treatment induced nuclear γH2AX foci. Cuc B activated DNA damage pathways by phosphorylation of ATM/ATR [two large phosphatidylinositol-3-kinase-like kinase family (PIKKs) members]. Furthermore, it also induced autophagy, as evidenced by monodansylcadaverine (MDC) staining and autophagic protein expression. In addition, Cuc B treatment led to increased reactive oxygen species (ROS) formation, which was inhibited by N-acetyl-L-cysteine (NAC) pretreatment. NAC pretreatment inhibited Cuc-B-induced DNA damage and autophagy. Taken together, these results suggest that ROS-mediated Cuc-B-induced DNA damage and autophagy in MCF-7 cells, which provides new insights into the anticancer molecular mechanism of Cuc B.

  7. Effects of an Anticarcinogenic Bowman-Birk Protease Inhibitor on Purified 20S Proteasome and MCF-7 Breast Cancer Cells

    PubMed Central

    Souza, Larissa da Costa; Camargo, Ricardo; Demasi, Marilene; Santana, Jaime Martins; de Freitas, Sonia Maria

    2014-01-01

    Proteasome inhibitors have been described as an important target for cancer therapy due to their potential to regulate the ubiquitin-proteasome system in the degradation pathway of cellular proteins. Here, we reported the effects of a Bowman-Birk-type protease inhibitor, the Black-eyed pea Trypsin/Chymotrypsin Inhibitor (BTCI), on proteasome 20S in MCF-7 breast cancer cells and on catalytic activity of the purified 20S proteasome from horse erythrocytes, as well as the structural analysis of the BTCI-20S proteasome complex. In vitro experiments and confocal microscopy showed that BTCI readily crosses the membrane of the breast cancer cells and co-localizes with the proteasome in cytoplasm and mainly in nucleus. Indeed, as indicated by dynamic light scattering, BTCI and 20S proteasome form a stable complex at temperatures up to 55°C and at neutral and alkaline pHs. In complexed form, BTCI strongly inhibits the proteolytic chymotrypsin-, trypsin- and caspase-like activities of 20S proteasome, indicated by inhibition constants of 10−7 M magnitude order. Besides other mechanisms, this feature can be associated with previously reported cytostatic and cytotoxic effects of BTCI in MCF-7 breast cancer cells by means of apoptosis. PMID:24475156

  8. Regulation of calnexin sub-cellular localization modulates endoplasmic reticulum stress-induced apoptosis in MCF-7 cells.

    PubMed

    Delom, Frédéric; Fessart, Delphine; Chevet, Eric

    2007-02-01

    The endoplasmic reticulum (ER) is the cellular compartment where proteins enter the secretory pathway, undergo post-translational modifications and acquire a correct conformation. If these functions are chronically altered, specific ER stress signals are triggered to promote cell death through the intrinsic apoptotic pathway. Here, we show that tunicamycin causes significant alteration of calnexin sub-cellular distribution in MCF-7 cells. Interestingly, this correlates with the absence of both tunicamycin-induced calnexin phosphorylation as well as tunicamycin-induced cell death. Under these conditions, calnexin-associated Bap31, an ER integral membrane protein, is subjected to a caspase-8 cleavage pattern within a specific sub-compartment of the ER. These results suggest that MCF-7 resistance to ER stress-induced apoptosis is partially mediated by the expression level of calnexin which in turn controls its sub-cellular localization, and its association with Bap31. These data may delineate a resistance mechanism to the ER stress-induced intrinsic apoptotic pathway.

  9. Intracellular calcium is a target of modulation of apoptosis in MCF-7 cells in the presence of IgA adsorbed to polyethylene glycol

    PubMed Central

    Honorio-França, Adenilda Cristina; Nunes, Gabriel Triches; Fagundes, Danny Laura Gomes; de Marchi, Patrícia Gelli Feres; Fernandes, Rubian Trindade da Silva; França, Juliana Luzia; França-Botelho, Aline do Carmo; Moraes, Lucélia Campelo Albuquerque; Varotti, Fernando de Pilla; França, Eduardo Luzía

    2016-01-01

    Purpose Clinical and epidemiological studies have indicated that breastfeeding has a protective effect on breast cancer risk. Protein-based drugs, including antibodies, are being developed to attain better forms of cancer therapy. Secretory IgA (SIgA) is the antibody class in human breast milk, and its activity can be linked to the protective effect of breastfeeding. The aim of this study was to investigate the effect of polyethylene glycol (PEG) microspheres with adsorbed SIgA on MCF-7 human breast cancer cells. Methods The PEG microspheres were characterized by flow cytometry and fluorescence microscopy. The MCF-7 cells were obtained from American Type Culture Collection. MCF-7 cells were pre-incubated for 24 hours with or without SIgA (100 ng/mL), PEG microspheres or SIgA adsorbed in PEG microspheres (100 ng/mL). Viability, intracellular calcium release, and apoptosis in MCF-7 cells were determined by flow cytometry. Results Fluorescence microscopy and flow cytometry analyses revealed that SIgA was able to adsorb to the PEG microspheres. The MCF-7 cells that were incubated with PEG microspheres with adsorbed SIgA showed decreased viability. MCF-7 cells that were incubated with SIgA or PEG microspheres with adsorbed SIgA had increased intracellular Ca2+ levels. In the presence of SIgA, an increase in the percentage of apoptotic cells was observed. The highest apoptosis index was observed when the cells were treated with PEG microspheres with adsorbed SIgA. Conclusion These data suggest that colostral SIgA adsorbed to PEG microspheres has antitumor effects on human MCF-7 breast cancer cells and that the presence of large amounts of this protein in secreted breast milk may provide protection against breast tumors in women who breastfed. PMID:26893571

  10. HPLC-based metabolomics to identify cytotoxic compounds from Plectranthus amboinicus (Lour.) Spreng against human breast cancer MCF-7Cells.

    PubMed

    Yulianto, Wahid; Andarwulan, Nuri; Giriwono, Puspo Edi; Pamungkas, Joko

    2016-12-15

    The objective of this study was to identify the active compounds in Plectranthus amboinicus (Lour.) Spreng which play a role to inhibit viability of breast cancer MCF-7 cells using HPLC-based metabolomics approach. Five fractions of the plant extract were observed including ethanol, hexane, chloroform, ethyl acetate and water fraction. There were 45 HPLC chromatograms resulted from 5 fractions with 3 replications and 3 wavelengths detection. The chromatograms were compared to the data of IC50 from MTT assay of each fraction against human breast cancer MCF-7 cells using metabolomics. The OPLS analysis result promptly pointed towards a chloroform fraction at retention time of 40.16-41.28min that has the greatest contribution to the cytotoxic activity. The data of mass spectra indicated that an abietane diterpene namely 7-acetoxy-6-hydroxyroyleanone was the main compound that contributed to the cytotoxic activity. This metabolomics application method can be used as a quick preliminary guideline to uncover the most dominant compound related to the bioactivity.

  11. Characterization of solid lipid nanoparticles containing caffeic acid and determination of its effects on MCF-7 cells.

    PubMed

    Dikmen, Gokhan; Guney, Gamze; Genc, Lutfi

    2015-01-01

    Many anticancer drugs that are currently used in cancer treatment are natural products or their analogues by structural modification. Caffeic acid (3, 4-dihydroxycinnamic acid; CA) is classified as hydroxycinnamic acid and has a variety of potential pharmacological effects, including antioxidant, immunomodulatory and anti-inflammatory activities. As a drug carrier, solid lipid nanoparticles (SLNs) introduced to improve stability, provide controlled drug release, avoid organic solvents and are obtained in small sizes. In this study, we developed solid lipid nanoparticles incorporating with caffeic acid using hot homogenization method. Caffeic acid loaded solid lipid nanoparticles were characterized regarding particle size, zeta potential, drug entrapment efficiency, drug release, scanning electron microscopy (SEM) and FT-IR. The effects of caffeic acid loaded solid lipid nanoparticles on MCF-7 cells were determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-dimethyl tetrazolium bromide (MTT) test and Annexin V-PI analysis. As a result, solid lipid nanoparticles could potentially be used for the delivery of caffeic acid and solid lipid nanoparticles formulation enhanced the effects of caffeic acid on MCF-7 cells. Some relevant patents are also referred in this article.

  12. Polycyclic aromatic hydrocarbon-induced CYP1B1 activity is suppressed by perillyl alcohol in MCF-7 cells

    SciTech Connect

    Chan, Nelson L.S.; Wang Huan; Wang Yun; Leung, H.Y.; Leung, Lai K. . E-mail: laikleung@yahoo.com

    2006-06-01

    Perillyl alcohol (POH) is a dietary monoterpene with potential applications in chemoprevention and chemotherapy. Although clinical trials are under way, POH's physiological and pharmacological properties are still unclear. In the present study, the effect of POH on polycyclic aromatic hydrocarbon (PAH)-induced genotoxicity, and the related expression were examined in MCF-7 cells. Exposure to environmental toxicant increases the risk of cancer. Many of these compounds are pro-carcinogens and are biotransformed into their ultimate genotoxic structures by xenobiotic metabolizing enzymes. CYP1A1 and 1B1 are enzymes that catalyze the biotransformation of dimethylbenz[a]anthracene (DMBA). Our data revealed that 0.5 {mu}M of POH was effective in blocking DMBA-DNA binding. Ethoxyresorufin-O-deethylase (EROD) assay indicated that the administration of POH inhibited the DMBA-induced enzyme activity in MCF-7 cells. Enzyme kinetic analysis revealed that POH inhibited CYP1B1 but not CYP1A1 activity. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay also demonstrated that the monoterpene reduced CYP1B1 mRNA abundance induced by DMBA. The present study illustrated that POH might inhibit and downregulate CYP1B1, which could protect against PAH-induced carcinogenesis.

  13. Downregulation of autophagy by Bcl-2 promotes MCF7 breast cancer cell growth independent of its inhibition of apoptosis.

    PubMed

    Oh, S; Xiaofei, E; Ni, D; Pirooz, S D; Lee, J-Y; Lee, D; Zhao, Z; Lee, S; Lee, H; Ku, B; Kowalik, T; Martin, S E; Oh, B-H; Jung, J U; Liang, C

    2011-03-01

    The anti-apoptotic Bcl-2 protein, which confers oncogenic transformation and drug resistance in most human cancers, including breast cancer, has recently been shown to effectively counteract autophagy by directly targeting Beclin1, an essential autophagy mediator and tumor suppressor. However, it remains unknown whether autophagy inhibition contributes to Bcl-2-mediated oncogenesis. Here, by using a loss-of-function mutagenesis study, we show that Bcl-2-mediated antagonism of autophagy has a critical role in enhancing the tumorigenic properties of MCF7 breast cancer cells independent of its anti-apoptosis activity. A Bcl-2 mutant defective in apoptosis inhibition but competent for autophagy suppression promotes MCF7 breast cancer cell growth in vitro and in vivo as efficiently as wild-type Bcl-2. The growth-promoting activity of this Bcl-2 mutant is strongly correlated with its suppression of Beclin1-dependent autophagy, leading to sustained p62 expression and increased DNA damage in xenograft tumors, which may directly contribute to tumorigenesis. Thus, the anti-autophagic property of Bcl-2 is a key feature of Bcl-2-mediated oncogenesis and may in some contexts, serve as an attractive target for breast and other cancer therapies.

  14. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity.

    PubMed

    Wahab, Rizwan; Siddiqui, Maqsood A; Saquib, Quaiser; Dwivedi, Sourabh; Ahmad, Javed; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Shin, Hyung-Shik

    2014-05-01

    Liver and breast cancer are the most traumatic diseases because they affect the major organs of the body. Nanomedicine recently emerged as a better option for the treatment of these deadly diseases. As a result, many nanoparticles have been used to treat cancer cell lines. Of the various nanoparticles, zinc oxide exhibits biocompatibility. Therefore, the aim of the present study was to investigate the activity of zinc oxide nanoparticles (ZnO-NPs) against HepG2 and MCF-7 cells. The NPs (∼13±2 nm) were prepared via a non-protonated chemical route and were well-characterized through standard techniques. The study showed that treatment with NPs is notably effective against the proliferation of HepG2 and MCF-7 cancer cells in a dose-dependent manner. The MTT (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide, a tetrazole) assays revealed the concentration-dependent cytotoxic effects of NPs in range of 2.5-100 μg/ml. HepG2 and MCF-7 cells were exposed to ZnO-NPs and exhibited a significant reduction in their cell viability (95% and 96%; p<0.05) in response to a very low concentration (25 μg/ml) of the ZnO-NPs; this finding was confirmed with FACS (fluorescence-activated cell sorting) data. The reduction in cell viability in response to NP treatment induces cytotoxicity in the cultured cells. The quantitative RT-PCR (real-time polymerase chain reaction) results demonstrate that the exposure of HepG2 cells to ZnO-NPs results in significant upregulation of the mRNA expression level of Bax, p53, and caspase-3 and the down regulation of the anti-apoptotic gene Bcl-2. The NPs were also tested against five pathogenic bacteria through the disk diffusion method, and their antibacterial activities were compared with that of ZnO salt.

  15. Anticancer Effects of a New SIRT Inhibitor, MHY2256, against Human Breast Cancer MCF-7 Cells via Regulation of MDM2-p53 Binding.

    PubMed

    Park, Eun Young; Woo, Youngwoo; Kim, Seong Jin; Kim, Do Hyun; Lee, Eui Kyung; De, Umasankar; Kim, Kyeong Seok; Lee, Jaewon; Jung, Jee H; Ha, Ki-Tae; Choi, Wahn Soo; Kim, In Su; Lee, Byung Mu; Yoon, Sungpil; Moon, Hyung Ryong; Kim, Hyung Sik

    2016-01-01

    The sirtuins (SIRTs), a family of NAD(+)-dependent class III histone deacetylase, are involved in various biological processes including cell survival, division, senescence, and metabolism via activation of the stress-response pathway. Recently, inhibition of SIRTs has been considered a promising anticancer strategy, but their precise mechanisms of action are not well understood. In particular, the relevance of p53 to SIRT-induced effects has not been fully elucidated. We investigated the anticancer effects of a novel SIRT inhibitor, MHY2256, and its efficacy was compared to that of salermide in MCF-7 (wild-type p53) and SKOV-3 (null-type p53) cells. Cell viability, SIRT1 enzyme activity, cell cycle regulation, apoptosis, and autophagic cell death were measured. We compared sensitivity to cytotoxicity in MCF-7 and SKOV-3 cells. MHY2256 significantly decreased the viability of MCF-7 (IC50, 4.8 μM) and SKOV-3 (IC50, 5.6 μM) cells after a 48 h treatment period. MHY2256 showed potent inhibition (IC50, 0.27 mM) against SIRT1 enzyme activity compared with nicotinamide (IC50, >1 mM). Moreover, expression of SIRT (1, 2, or 3) protein levels was significantly reduced by MHY2256 treatment in both MCF-7 and SKOV-3 cells. Flow cytometry analysis revealed that MHY2256 significantly induced cell cycle arrest in the G1 phase, leading to an effective increase in apoptotic cell death in MCF-7 and SKOV-3 cells. A significant increase in acetylated p53, a target protein of SIRT, was observed in MCF-7 cells after MHY2256 treatment. MHY2256 up-regulated LC3-II and induced autophagic cell death in MCF-7 cells. Furthermore, MHY2256 markedly inhibited tumor growth in a tumor xenograft model of MCF-7 cells. These results suggest that a new SIRT inhibitor, MHY2256, has anticancer activity through p53 acetylation in MCF-7 human breast cancer cells.

  16. Anticancer Effects of a New SIRT Inhibitor, MHY2256, against Human Breast Cancer MCF-7 Cells via Regulation of MDM2-p53 Binding

    PubMed Central

    Park, Eun Young; Woo, Youngwoo; Kim, Seong Jin; Kim, Do Hyun; Lee, Eui Kyung; De, Umasankar; Kim, Kyeong Seok; Lee, Jaewon; Jung, Jee H.; Ha, Ki-Tae; Choi, Wahn Soo; Kim, In Su; Lee, Byung Mu; Yoon, Sungpil; Moon, Hyung Ryong; Kim, Hyung Sik

    2016-01-01

    The sirtuins (SIRTs), a family of NAD+-dependent class III histone deacetylase, are involved in various biological processes including cell survival, division, senescence, and metabolism via activation of the stress-response pathway. Recently, inhibition of SIRTs has been considered a promising anticancer strategy, but their precise mechanisms of action are not well understood. In particular, the relevance of p53 to SIRT-induced effects has not been fully elucidated. We investigated the anticancer effects of a novel SIRT inhibitor, MHY2256, and its efficacy was compared to that of salermide in MCF-7 (wild-type p53) and SKOV-3 (null-type p53) cells. Cell viability, SIRT1 enzyme activity, cell cycle regulation, apoptosis, and autophagic cell death were measured. We compared sensitivity to cytotoxicity in MCF-7 and SKOV-3 cells. MHY2256 significantly decreased the viability of MCF-7 (IC50, 4.8 μM) and SKOV-3 (IC50, 5.6 μM) cells after a 48 h treatment period. MHY2256 showed potent inhibition (IC50, 0.27 mM) against SIRT1 enzyme activity compared with nicotinamide (IC50, >1 mM). Moreover, expression of SIRT (1, 2, or 3) protein levels was significantly reduced by MHY2256 treatment in both MCF-7 and SKOV-3 cells. Flow cytometry analysis revealed that MHY2256 significantly induced cell cycle arrest in the G1 phase, leading to an effective increase in apoptotic cell death in MCF-7 and SKOV-3 cells. A significant increase in acetylated p53, a target protein of SIRT, was observed in MCF-7 cells after MHY2256 treatment. MHY2256 up-regulated LC3-II and induced autophagic cell death in MCF-7 cells. Furthermore, MHY2256 markedly inhibited tumor growth in a tumor xenograft model of MCF-7 cells. These results suggest that a new SIRT inhibitor, MHY2256, has anticancer activity through p53 acetylation in MCF-7 human breast cancer cells. PMID:27994519

  17. An integrative transcriptomics approach identifies miR-503 as a candidate master regulator of the estrogen response in MCF-7 breast cancer cells

    PubMed Central

    Purvis, Jeremy E.

    2016-01-01

    Estrogen receptor α (ERα) is an important biomarker of breast cancer severity and a common therapeutic target. In response to estrogen, ERα stimulates a dynamic transcriptional program including both coding and noncoding RNAs. We generate a fine-scale map of expression dynamics by performing a temporal profiling of both messenger RNAs (mRNAs) and microRNAs (miRNAs) in MCF-7 cells (an ER+ model cell line for breast cancer) in response to estrogen stimulation. We identified three primary expression trends—transient, induced, and repressed—that were each enriched for genes with distinct cellular functions. Integrative analysis of mRNA and miRNA temporal expression profiles identified miR-503 as the strongest candidate master regulator of the estrogen response, in part through suppression of ZNF217—an oncogene that is frequently amplified in cancer. We confirmed experimentally that miR-503 directly targets ZNF217 and that overexpression of miR-503 suppresses MCF-7 cell proliferation. Moreover, the levels of ZNF217 and miR-503 are associated with opposite outcomes in breast cancer patient cohorts, with high expression of ZNF217 associated with poor survival and high expression of miR-503 associated with improved survival. Overall, these data indicate that miR-503 acts as a potent estrogen-induced candidate tumor suppressor miRNA that opposes cellular proliferation and has promise as a novel therapeutic for breast cancer. More generally, our work provides a systems-level framework for identifying functional interactions that shape the temporal dynamics of gene expression. PMID:27539783

  18. Ethanolic extract of dandelion (Taraxacum mongolicum) induces estrogenic activity in MCF-7 cells and immature rats.

    PubMed

    Oh, Seung Min; Kim, Ha Ryong; Park, Yong Joo; Lee, Yong Hwa; Chung, Kyu Hyuck

    2015-11-01

    Plants of the genus Taraxacum, commonly known as dandelions, are used to treat breast cancer in traditional folk medicine. However, their use has mainly been based on empirical findings without sufficient scientific evidence. Therefore, we hypothesized that dandelions would behave as a Selective estrogen receptor modulator (SERM) and be effective as hormone replacement therapy (HRT) in the postmenopausal women. In the present study, in vitro assay systems, including cell proliferation assay, reporter gene assay, and RT-PCR to evaluate the mRNA expression of estrogen-related genes (pS2 and progesterone receptor, PR), were performed in human breast cancer cells. Dandelion ethanol extract (DEE) significantly increased cell proliferation and estrogen response element (ERE)-driven luciferase activity. DEE significantly induced the expression of estrogen related genes such as pS2 and PR, which was inhibited by tamoxifen at 1 μmol·L(-1). These results indicated that DEE could induce estrogenic activities mediated by a classical estrogen receptor pathway. In addition, immature rat uterotrophic assay was carried out to identify estrogenic activity of DEE in vivo. The lowest concentration of DEE slightly increased the uterine wet weight, but there was no significant effect with the highest concentration of DEE. The results demonstrate the potential estrogenic activities of DEE, providing scientific evidence supporting their use in traditional medicine.

  19. The vitamin D3 analog EB 1089 enhances the antiproliferative and apoptotic effects of adriamycin in MCF-7 breast tumor cells.

    PubMed

    Sundaram, S; Chaudhry, M; Reardon, D; Gupta, M; Gewirtz, D A

    2000-09-01

    Exposure of MCF-7 breast tumor cells to the vitamin D3 analog, EB 1089 enhances the response to adriamycin. Clonogenic survival studies indicate that EB 1089 shifts the dose-response curve for sensitivity to adriamycin by approximately six-fold in p53 wild-type MCF-7 cells; comparative studies in MCF-7 cells with a temperature-sensitive dominant negative p53 mutation show less than a two-fold shift in adriamycin sensitivity in the presence of EB 1089. The combination of EB 1089 with adriamycin also promotes apoptotic cell death in the p53 wild-type MCF-7 cells but not in the MCF-7 cells expressing mutant p53. EB 1089 treatment blocks the increase in p21waf1/cip1 levels induced by adriamycin and interferes with induction of MAP kinase activity by ionizing radiation, effects which could be related to the capacity of EB 1089 to promote secretion of insulin-like growth factor binding protein. Taken together with our previous findings that EB 1089 enhances breast tumor cell sensitivity to ionizing radiation, there studies further support the concept that vitamin D3 analogs could have utility in combination with conventional chemotherapy and/or radiotherapy in the treatment of breast cancer.

  20. Saikosaponin A, an active glycoside from Radix bupleuri, reverses P-glycoprotein-mediated multidrug resistance in MCF-7/ADR cells and HepG2/ADM cells.

    PubMed

    Ye, Rui-Ping; Chen, Zhen-Dong

    2017-02-01

    1. The expression and function of P-glycoprotein (P-gp) is associated with the phenotype of multidrug resistance (MDR). Saikosaponin A (SSA) is a triterpenoid saponin isolated from Radix Bupleuri. This study was mainly designed to understand effects of SSA on MDR in MCF-7/ADR and HepG2/ADM cells. 2. MDR reversal was examined as the alteration of cytotoxic drugs IC50 in resistant cells in the presence of SSA by MTT assay, and was compared with the non-resistant cells. Apoptosis and uptake of P-gp substrates in the tumor cells were detected by flow cytometry. Western blot was performed to assay the expression of P-gp. 3. Our results demonstrate SSA could increase the chemosensitivity of P-gp overexpressing HepG2/ADM and MCF-7/ADR cells to doxorubicin (DOX), vincristine (VCR) and paclitaxel. SSA promoted apoptosis of MCF-7/ADR cells in the presence of DOX. Moreover, it could also increase the retention of P-gp substrates DOX and rhodamine 123 in MCF-7/ADR cells, and decrease digoxin efflux ratio in Caco-2 cell monolayer. Finally, a mechanistic study showed that SSA reduced P-gp expression without affecting hydrolytic activity of P-gp. 4. In conclusion, our findings suggest that SSA could be further developed for sensitizing resistant cancer cells and used as an adjuvant therapy together with anticancer drugs to improve their therapeutic efficacies.

  1. The Cytotoxic Effects of Low Intensity Visible and Infrared Light on Human Breast Cancer (MCF7) cells.

    PubMed

    Peidaee, P; Almansour, N; Shukla, R; Pirogova, E

    2013-01-01

    A concept of using low intensity light therapy (LILT) as an alternative approach to cancer treatment is at early stages of development; while the therapeutic effects of LILT as a non-invasive treatment modality for localized joint and soft tissue wound healing are widely corroborated. The LEDs-based exposure system was designed and constructed to irradiate the selected cancer and normal cells and evaluate the biological effects induced by light exposures in visible and infrared light range. In this study, human breast cancer (MCF7) cells and human epidermal melanocytes (HEM) cells (control) were exposed to selected far infrared light (3400nm, 3600nm, 3800nm, 3900nm, 4100nm and 4300nm) and visible and near infrared wavelengths (466nm, 585nm, 626nm, 810nm, 850nm and 950nm). The optical intensities of LEDs used for exposures were in the range of 15µW to 30µW. Cellular morphological changes of exposed and sham-exposed cells were evaluated using light microscopy. The cytotoxic effects of these low intensity light exposures on human cancer and normal cell lines were quantitatively determined by Lactate dehydrogenase (LDH) cytotoxic activity and PrestoBlue™ cell viability assays. Findings reveal that far-infrared exposures were able to reduce cell viability of MCF7 cells as measured by increased LDH release activity and PrestoBlue™ assays. Further investigation of the effects of light irradiation on different types of cancer cells, study of possible signaling pathways affected by electromagnetic radiation (EMR) and in vivo experimentation are required in order to draw a firm conclusion about the efficacy of low intensity light as an alternative non-invasive cancer treatment.

  2. Persea declinata (Bl.) Kosterm Bark Crude Extract Induces Apoptosis in MCF-7 Cells via G0/G1 Cell Cycle Arrest, Bcl-2/Bax/Bcl-xl Signaling Pathways, and ROS Generation.

    PubMed

    Narrima, Putri; Paydar, Mohammadjavad; Looi, Chung Yeng; Wong, Yi Li; Taha, Hairin; Wong, Won Fen; Ali Mohd, Mustafa; Hadi, A Hamid A

    2014-01-01

    Persea declinata (Bl.) Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill), which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl.) Kosterm bark methanolic crude extract (PDM). PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 µg/mL after 48 h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH) release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development.

  3. Simultaneous detection of MCF-7 and HepG2 cells in blood by ICP-MS with gold nanoparticles and quantum dots as elemental tags.

    PubMed

    Li, Xiaoting; Chen, Beibei; He, Man; Wang, Han; Xiao, Guangyang; Yang, Bin; Hu, Bin

    2017-04-15

    In this work, we demonstrate a novel method based on inductively coupled plasma mass spectrometry (ICP-MS) detection with gold nanoparticles (Au NPs) and quantum dots (QDs) labeling for the simultaneous counting of two circulating tumor cell lines (MCF-7 and HepG2 cells) in human blood. MCF-7 and HepG2 cells were captured by magnetic beads coupled with anti-EpCAM and then specifically labeled by CdSe QDs-anti-ASGPR and Au NPs-anti-MUC1, respectively, which were used as signal probes for ICP-MS measurement. Under the optimal experimental conditions, the limits of detection of 50 MCF-7, 89 HepG2 cells and the linear ranges of 200-40000 MCF-7, 300-30000 HepG2 cells were obtained, and the relative standard deviations for seven replicate detections of 800 MCF-7 and HepG2 cells were 4.6% and 5.7%, respectively. This method has the advantages of high sensitivity, low sample consumption, wide linear range and can be extended to the simultaneous detection of multiple CTC lines in human peripheral blood.

  4. Evaluation of anticancer potential of Bacopa monnieri L. against MCF-7 and MDA-MB 231 cell line

    PubMed Central

    Mallick, Md. Nasar; Akhtar, Md. Salman; Najm, Mohd. Zeeshan; Tamboli, E. T.; Ahmad, Sayeed; Husain, Syed Akhtar

    2015-01-01

    Background: The ethanolic extract of Bacopa monnieri contains bacoside A and B, brahmin, cucurbitacins, and betulinic acid. Currently, cucurbitacins have also been reported for their strong anti-tumorigenic and anti-proliferative activity by inducing cell cycle arrest at the G2/M phase and formation of multiplied cells. The present study was carried out to evaluate the in vitro cytotoxic activity of ethanolic extract of dichloromethane (DCM) fraction of B. monnieri on two different cell lines. Materials and Methods: The ethanolic extract of B. monnieri was prepared using soxhlet extraction method and different fractions (hexane, DCM, methanol, acetone, and water) of ethanolic extracts were prepared. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay of ethanolic extract and of all fractions was carried out on MCF-7 and MDA-MB 231 cell lines. The presence of cucurbitacins and betulinic acid in these fractions was confirmed by high-performance thin layer chromatography. Results: The IC50 values of ethanolic extract of B. monnieri in MCF-7 and MDA-MB 231 cell lines were 72.0 μg/mL and 75.0 μg/mL, respectively. The DCM fraction of B. monnieri showed maximum cytotoxic activity among all fraction upto 72 h and was found to be 57.0 μg/mL and 42.0 μg/mL, respectively. Conclusion: The results showed good cytotoxic activity in DCM fraction in both the cell lines may be due to the presence of cucurbitacins and betulinic acid in DCM fraction. PMID:26681894

  5. Photo-oxidative action in MCF-7 cancer cells induced by hydrophobic cyanines loaded in biodegradable microemulsion-templated nanocapsules.

    PubMed

    Wilk, Kazimiera A; Zielińska, Katarzyna; Pietkiewicz, Jadwiga; Skołucka, Nina; Choromańska, Anna; Rossowska, Joanna; Garbiec, Arnold; Saczko, Jolanta

    2012-07-01

    Searching for photodynamic therapy-effective nanocarriers which enable a photosensitizer to be selectively delivered to tumor cells with enhanced bioavailability and diminished dark cytotoxicity is of current interest. We have employed a polymer-based nanoparticle approach to encapsulate the cyanine-type photosensitizer IR-780 in poly(n-butyl cyanoacrylate) (PBCA) nanocapsules. The latter were fabricated by interfacial polymerization in oil-in-water (o/w) microemulsions formed by dicephalic and gemini saccharide-derived surfactants. Nanocarriers were characterized by SEM, AFM and DLS. The efficiency of PBCA nanocapsules as a potential system of photosensitizer delivery to human breast cancer cells was established by dark and photocytotoxicity as the function of the cellular mitochondria. The photodynamic effect of cyanine IR-780 was determined by investigation of oxidative stress markers. The nanocapsules were the main focus of our studies to examine their cellular uptake and dark and photocytotoxicity as the function of the cellular mitochondria as well as oxidative stress markers (i.e., lipid peroxidation and protein damage) in MCF-7/WT cancer cells. The effects of encapsulated IR-780 were compared with those of native photosensitizer. The penetration of the nanocapsules into cancer cells was visualized by CLSM and their uptake was estimated by FACS analysis. Cyanine IR-780 delivered in PBCA nanocapsules to MCF-7/WT cells retains its sensitivity upon photoirradiation and it is regularly distributed in the cell cytoplasm. The intensity of the photosensitizer-generated oxidative stress depends on IR-780 release from the effective uptake of polymeric nanocapsules and seems to remain dependent upon the surfactant structure in o/w microemulsion-based templates applied to nanocapsule fabrication.

  6. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells.

    PubMed

    Zu, Yuangang; Yu, Huimin; Liang, Lu; Fu, Yujie; Efferth, Thomas; Liu, Xia; Wu, Nan

    2010-04-30

    Ten essential oils, namely, mint (Mentha spicata L., Lamiaceae), ginger (Zingiber officinale Rosc., Zingiberaceae), lemon (Citrus limon Burm.f., Rutaceae), grapefruit (Citrus paradisi Macf., Rutaceae), jasmine (Jasminum grandiflora L., Oleaceae), lavender (Mill., Lamiaceae), chamomile (Matricaria chamomilla L., Compositae), thyme (Thymus vulgaris L., Lamiaceae), rose (Rosa damascena Mill., Rosaceae) and cinnamon (Cinnamomum zeylanicum N. Lauraceae) were tested for their antibacterial activities towards Propionibacterium acnes and in vitro toxicology against three human cancer cell lines. Thyme, cinnamon and rose essential oils exhibited the best antibacterial activities towards P. acnes, with inhibition diameters of 40 +/- 1.2 mm, 33.5 +/- 1.5 mm and 16.5 +/- 0.7 mm, and minimal inhibitory concentrations of 0.016% (v/v), 0.016% (v/v) and 0.031% (v/v), respectively. Time-kill dynamic procedures showed that thyme, cinnamon, rose, and lavender essential oils exhibited the strongest bactericidal activities at a concentration of 0.25% (v/v), and P. acnes was completely killed after 5 min. The thyme essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC(50)) values on PC-3, A549 and MCF-7 tumor cell lines were 0.010% (v/v), 0.011% (v/v) and 0.030% (v/v), respectively. The cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3) was significantly stronger than on human lung carcinoma (A549) and human breast cancer (MCF-7) cell lines.

  7. Up-regulation of the HSP72 by Foxa1 in MCF-7 human breast cancer cell line.

    PubMed

    Song, Lan; Xu, Zhaojun; Zhang, Caiping; Qiao, Xinhui; Huang, Chunling

    2009-08-14

    Forkhead box protein A1 (Foxa1) is an evolutionarily conserved winged helix transcription factor. In this study, the effect of Foxa1 on the expression of HSP72 was examined by RT-PCR and Western blot in Foxa1 overexpression or deficient cells. The results showed overexpression of Foxa1 promoted the expression of HSP72, while Foxa1 depletion, induced by antisense oligonucleotides, decreased the expression of HSP72 in MCF-7 cells under normal and heat stress condition. Electrophoretic mobility shift assay and chromatin immunoprecipitation revealed that Foxa1 bound to HSP72 promoter, and heat stress promoted its DNA binding activity. Luciferase reporter showed that Foxa1 also increased the transcription activity of HSP72 promoter. These results indicate an important role for Foxa1 as a novel regulator of expression of HSP72.

  8. A Novel Submicron Emulsion System Loaded with Doxorubicin Overcome Multi-Drug Resistance in MCF-7/ADR Cells

    PubMed Central

    Zhou, W. P.; Hua, H. Y.; Sun, P. C.; Zhao, Y. X.

    2015-01-01

    The purpose of the present study was to develop the Solutol HS15-based doxorubicin submicron emulsion with good stability and overcoming multi-drug resistance. In this study, we prepared doxorubicin submicron emulsion, and examined the stability after autoclaving, the in vitro cytotoxic activity, the intracellular accumulation and apoptpsis of doxorubicin submicron emulsion in MCF-7/ADR cells. The physicochemical properties of doxorubicin submicron emulsion were not significantly affected after autoclaving. The doxorubicin submicron emulsion significantly increased the intracellular accumulation of doxorubicin submicron emulsion and enhanced cytotoxic activity and apoptotic effects of doxorubicin. These results may be correlated to doxorubicin submicron emulsion inhibitory effects on efflux pumps through the progressive release of intracellular free Solutol HS15 from doxorubicin submicron emulsion. Furthermore, these in vitro results suggest that the Solutol HS15-based submicron emulsion may be a potentially useful drug delivery system to circumvent multi-drug resistance of tumor cells. PMID:26664069

  9. Fully protected glycosylated zinc (II) phthalocyanine shows high uptake and photodynamic cytotoxicity in MCF-7 cancer cells.

    PubMed

    Kimani, Stanley G; Shmigol, Tatiana A; Hammond, Samantha; Phillips, James B; Bruce, James I; MacRobert, Alexander J; Malakhov, Mikhail V; Golding, Jon P

    2013-01-01

    Phthalocyanine photosensitizers are effective in anticancer photodynamic therapy (PDT) but suffer from limited solubility, limited cellular uptake and limited selectivity for cancer cells. To improve these characteristics, we synthesized isopropylidene-protected and partially deprotected tetra β-glycosylated zinc (II) phthalocyanines and compared their uptake and accumulation kinetics, subcellular localization, in vitro photocytotoxicity and reactive oxygen species generation with those of disulfonated aluminum phthalocyanine. In MCF-7 cancer cells, one of the compounds, zinc phthalocyanine {4}, demonstrated 10-fold higher uptake, 5-fold greater PDT-induced cellular reactive oxygen species concentration and 2-fold greater phototoxicity than equimolar (9 μm) disulfonated aluminum phthalocyanine. Thus, isopropylidene-protected β-glycosylation of phthalocyanines provides a simple method of improving the efficacy of PDT.

  10. Leptin upregulates telomerase activity and transcription of human telomerase reverse transcriptase in MCF-7 breast cancer cells

    SciTech Connect

    Ren, He; Zhao, Tiansuo; Wang, Xiuchao; Gao, Chuntao; Wang, Jian; Yu, Ming; Hao, Jihui

    2010-03-26

    The aim was to analyze the mechanism of leptin-induced activity of telomerase in MCF-7 breast cancer cells. We found that leptin activated telomerase in a dose-dependent manner; leptin upregulated the expression of Human Telomerase Reverse Transcriptase (hTERT) at mRNA and protein levels; blockade of signal transducer and activator of transcription 3 (STAT3) phosphorylation significantly counteracted leptin-induced hTERT transcription and protein expression; chromatin immunoprecipitation analysis showed that leptin enhanced the binding of STAT3 to the hTERT promoter. This study uncovers a new mechanism of the proliferative effect of leptin on breast cancer cells and provides a new explanation of obesity-related breast cancer.

  11. Catalase expression in MCF-7 breast cancer cells is mainly controlled by PI3K/Akt/mTor signaling pathway.

    PubMed

    Glorieux, Christophe; Auquier, Julien; Dejeans, Nicolas; Sid, Brice; Demoulin, Jean-Baptiste; Bertrand, Luc; Verrax, Julien; Calderon, Pedro Buc

    2014-05-15

    Catalase is an antioxidant enzyme that catalyzes mainly the transformation of hydrogen peroxide into water and oxygen. Although catalase is frequently down-regulated in tumors the underlying mechanism remains unclear. Few transcription factors have been reported to directly bind the human catalase promoter. Among them FoxO3a has been proposed as a positive regulator of catalase expression. Therefore, we decided to study the role of the transcription factor FoxO3a and the phosphatidylinositol-3 kinase (PI3K) signaling pathway, which regulates FoxO3a, in the expression of catalase. To this end, we developed an experimental model of mammary breast MCF-7 cancer cells that acquire resistance to oxidative stress, the so-called Resox cells, in which catalase is overexpressed as compared with MCF-7 parental cell line. In Resox cells, Akt expression is decreased but its phosphorylation is enhanced when compared with MCF-7 cells. A similar profile is observed for FoxO3a, with less total protein but more phosphorylated FoxO3a in Resox cells, correlating with its higher Akt activity. The modulation of FoxO3a expression by knockdown and overexpression strategies did not affect catalase expression, neither in MCF-7 nor in Resox cells. Inhibition of PI3K and mTOR by LY295002 and rapamycin, respectively, decreases the phosphorylation of downstream targets (i.e. GSK3β and p70S6K) and leads to an increase of catalase expression only in MCF-7 but not in Resox cells. In conclusion, FoxO3a does not appear to play a critical role in the regulation of catalase expression in both cancer cells. Only MCF-7 cells are sensitive and dependent on PI3K/Akt/mTOR signaling.

  12. Cancer cells (MCF-7, Colo-357, and LNCaP) viability on amorphous hydrogenated carbon nitride film deposited by dielectric barrier discharge plasma

    SciTech Connect

    Majumdar, Abhijit; Hippler, Rainer; Ummanni, Ramesh; Walther, Reinhard; Schroeder, Karsten

    2009-08-01

    Atmospheric pressure dielectric barrier discharge plasma in CH{sub 4}/N{sub 2} (1:1) gas mixture has been employed to deposit amorphous hydrogenated carbon nitride (aH-CN{sub x}) film. In vitro studies with three different cancer cell lines were carried out on the coated surfaces. Preliminary biocompatibility and effect of CH{sub 4}/N{sub 2} films have been investigated by measuring cell proliferation. Three different cancer cell (MCF-7, Colo-357, and LNCaP) suspensions have been exposed on the surface of aH-CN{sub x} film to investigate the effect of deposited films on viability of cells. Results from the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2- (4-sulfophenyl)-2H- tetrazolium, inner salt) proliferation assays indicated that the deposited aH-CN{sub x} film is cytotoxic to cancer cell lines. Time course cell viability assay indicated maximum cell death at 24 h after seeding the cells. This effect is dependant on physicochemical and mechanical properties of the deposited films. The deposited film has been characterized by x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The results confirm the presence of C-N, Cident toN, C-H{sub x}, C-O, N-O, overlapping NH, and OH bonds in the film.

  13. Cancer cells (MCF-7, Colo-357, and LNCaP) viability on amorphous hydrogenated carbon nitride film deposited by dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Majumdar, Abhijit; Ummanni, Ramesh; Schröder, Karsten; Walther, Reinhard; Hippler, Rainer

    2009-08-01

    Atmospheric pressure dielectric barrier discharge plasma in CH4/N2 (1:1) gas mixture has been employed to deposit amorphous hydrogenated carbon nitride (aH-CNx) film. In vitro studies with three different cancer cell lines were carried out on the coated surfaces. Preliminary biocompatibility and effect of CH4/N2 films have been investigated by measuring cell proliferation. Three different cancer cell (MCF-7, Colo-357, and LNCaP) suspensions have been exposed on the surface of aH-CNx film to investigate the effect of deposited films on viability of cells. Results from the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- tetrazolium, inner salt) proliferation assays indicated that the deposited aH-CNx film is cytotoxic to cancer cell lines. Time course cell viability assay indicated maximum cell death at 24 h after seeding the cells. This effect is dependant on physicochemical and mechanical properties of the deposited films. The deposited film has been characterized by x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The results confirm the presence of C-N, C≡N, C-Hx, C-O, N-O, overlapping NH, and OH bonds in the film.

  14. Antioxidant and apoptotic effects of an aqueous extract of Urtica dioica on the MCF-7 human breast cancer cell line.

    PubMed

    Fattahi, Sadegh; Ardekani, Ali Motevalizadeh; Zabihi, Ebrahim; Abedian, Zeinab; Mostafazadeh, Amrollah; Pourbagher, Roghayeh; Akhavan-Niaki, Haleh

    2013-01-01

    Breast cancer is the most prevalent cancer and one of the leading causes of death among women in the world. Plants and herbs may play an important role in complementary or alternative treatment. The aim of this study was to evaluate the antioxidant and anti-proliferative potential of Urtica dioica. The anti oxidant activity of an aqueous extract of Urtica dioica leaf was measured by MTT assay and the FRAP method while its anti-proliferative activity on the human breast cancer cell line (MCF-7) and fibroblasts isolated from foreskin tissue was evaluated using MTT assay. Mechanisms leading to apoptosis were also investigated at the molecular level by measuring the amount of anti and pro-apoptotic proteins and at the cellular level by studying DNA fragmentation and annexin V staining by flow cytometry. The aqueous extract of Urtica dioica showed antioxidant effects with a correlation coefficient of r(2)=0.997. Dose-dependent and anti-proliferative effects of the extract were observed only on MCF-7 cells after 72 hrs with an IC50 value of 2 mg/ml. This anti proliferative activity was associated with an increase of apoptosis as demonstrated by DNA fragmentation, the appearance of apoptotic cells in flow cytometry analysis and an increase of the amount of calpain 1, calpastatin, caspase 3, caspase 9, Bax and Bcl-2, all proteins involved in the apoptotic pathway. This is the first time such in vitro antiproliferative effect of aqueous extract of Urtica dioica leaf has been described for a breast cancer cell line. Our findings warrant further research on Urtica dioica as a potential chemotherapeutic agent for breast cancer.

  15. Characterization of the estrogen receptor and its dynamics in MCF-7 human breast cancer cells using a covalently attaching antiestrogen

    SciTech Connect

    Monsma, F.J. Jr.; Katzenellenbogen, B.S.; Miller, M.A.; Ziegler, Y.S.; Katzenellenbogen, J.A.

    1984-07-01

    The authors have used a covalently attaching antiestrogen, tamoxifen aziridine TA to analyze the structure and dynamics of the estrogen receptor in MCF-7 human breast cancer cells. The labeling of receptor with (/sup 3/H)TA is specific, being blocked only by estrogens and antiestrogens, and the labeling is very efficient in that TA labels covalently the same number of receptors that are labeled reversibly by estradiol. In cells exposed to (/sup 3/H)TA for 1 h, most of the covalently associated radioactivity is found in the 0.6 M KCl extract of the nuclear fraction; this receptor has an apparent mol wt of 63,000 +/- 2000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a pI of 5.7 by gel isoelectric focusing in the presence of 8 M urea. The mol wt and pI of cytosol receptor labeled with (/sup 3/H) TA are identical. In cells labeled with (/sup 3/H)TA (20 nM) for 1 h and then exposed to a chase of 10(-6) M estradiol, (3H)TA-labeled nuclear receptor disappears with a half-life of 4 h. Affinity labeled receptor interacts with several monoclonal antibodies to MCF-7 estrogen receptor, and it can be purified extensively by immunoadsorbent chromatography. The findings of similar mol wt and isoelectric points for soluble cytosol and nuclear extracted receptors under strongly denaturing and disaggregating conditions reveal that nuclear localization of receptor after ligand binding is not associated with major structural alterations in the receptor component labeled by TA.

  16. Comparative cytotoxicity of artemisinin and cisplatin and their interactions with chlorogenic acids in MCF7 breast cancer cells.

    PubMed

    Suberu, John O; Romero-Canelón, Isolda; Sullivan, Neil; Lapkin, Alexei A; Barker, Guy C

    2014-12-01

    In parts of Africa and Asia, self-medication with a hot water infusion of Artemisia annua (Artemisia tea) is a common practice for a number of ailments including malaria and cancer. In our earlier work, such an extract showed better potency than artemisinin alone against both chloroquine-sensitive and -resistant parasites. In this study, in vitro tests of the infusion in MCF7 cells showed high IC50 values (>200 μM). The combination of artemisinin and 3-caffeoylquinic acid (3CA), two major components in the extract, was strongly antagonistic and gave a near total loss of cytotoxicity for artemisinin. We observed that the interaction of 3CAs with another cytotoxic compound, cisplatin, showed potentiation of activity by 2.5-fold. The chelation of cellular iron by 3CA is hypothesized as a possible explanation for the loss of artemisinin activity.

  17. Short-term effects of ultrahigh concentration cationic silica nanoparticles on cell internalization, cytotoxicity, and cell integrity with human breast cancer cell line (MCF-7)

    NASA Astrophysics Data System (ADS)

    Seog, Ji Hyun; Kong, Bokyung; Kim, Dongheun; Graham, Lauren M.; Choi, Joon Sig; Lee, Sang Bok

    2015-01-01

    High concentrations of cationic colloidal silica nanoparticles (CCS-NPs) have been widely used for the enrichment of plasma membrane proteins. However, the interaction between the CCS-NPs and cells under the required concentration for the isolation of plasma membrane are rarely investigated. We evaluated the internalization and toxicity of the 15 nm CCS-NPs which were exposed at high concentrations with short time in human breast cancer cells (MCF-7) with transmission electron microscopy, energy dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, and colorimetric assays. The NPs were observed throughout the cells, particularly in the cytoplasm and the nucleus, after short incubation periods. Additionally, the NPs significantly influenced the membrane integrity of the MCF-7 cells.

  18. Effects of extremely low-frequency electromagnetic field on expression levels of some antioxidant genes in human MCF-7 cells

    PubMed Central

    Mahmoudinasab, Hamideh; Sanie-Jahromi, Fatemeh; Saadat, Mostafa

    2016-01-01

    In the past three decades, study on the biological effects of extremely low-frequency electromagnetic fields (ELF-EMFs) has been of interest to scientists. Although the exact mechanism of its effect is not fully understood, free radical processes has been proposed as a possible mechanism. This study was designed to evaluate the effect of 50-Hz EMFs on the mRNA levels of seven antioxidant genes (CAT, SOD1, SOD2, GSTO1, GSTM3, MSGT1, and MSGT3) in human MCF-7 cells. The EMF exposure patterns were: 1) 5 min field-on/5 min filed-off, 2) 15 min field-on/15 min field-off, 3) 30 min field-on continuously. In all three exposure conditions we tried to have total exposure time of 30 minutes. Control cultures were located in the exposure apparatus when the power was off. The experiments were done at two field intensities; 0.25 mT and 0.50 mT. The RNA extraction was done at two times; immediately post exposure and two hours post exposure. The mRNA levels were determined using quantitative real-time polymerase chain reaction. MTT assay for three exposure conditions in the two field intensities represented no cytotoxic effect on MCF-7 cells. Statistical comparison showed a significant difference between 0.25 mT and 0.50 mT intensities for "the 15 min field-on/15 min field-off condition" (Fisher's exact test, P=0.041), indicating that at 0.50 mT intensity field, the number of down-regulated and/or up-regulated genes increased compared with the other ones. However, there is no statistical significant difference between the field intensities for the two others EMF exposure conditions. PMID:28097161

  19. Effects of extremely low-frequency electromagnetic field on expression levels of some antioxidant genes in human MCF-7 cells.

    PubMed

    Mahmoudinasab, Hamideh; Sanie-Jahromi, Fatemeh; Saadat, Mostafa

    2016-06-01

    In the past three decades, study on the biological effects of extremely low-frequency electromagnetic fields (ELF-EMFs) has been of interest to scientists. Although the exact mechanism of its effect is not fully understood, free radical processes has been proposed as a possible mechanism. This study was designed to evaluate the effect of 50-Hz EMFs on the mRNA levels of seven antioxidant genes (CAT, SOD1, SOD2, GSTO1, GSTM3, MSGT1, and MSGT3) in human MCF-7 cells. The EMF exposure patterns were: 1) 5 min field-on/5 min filed-off, 2) 15 min field-on/15 min field-off, 3) 30 min field-on continuously. In all three exposure conditions we tried to have total exposure time of 30 minutes. Control cultures were located in the exposure apparatus when the power was off. The experiments were done at two field intensities; 0.25 mT and 0.50 mT. The RNA extraction was done at two times; immediately post exposure and two hours post exposure. The mRNA levels were determined using quantitative real-time polymerase chain reaction. MTT assay for three exposure conditions in the two field intensities represented no cytotoxic effect on MCF-7 cells. Statistical comparison showed a significant difference between 0.25 mT and 0.50 mT intensities for "the 15 min field-on/15 min field-off condition" (Fisher's exact test, P=0.041), indicating that at 0.50 mT intensity field, the number of down-regulated and/or up-regulated genes increased compared with the other ones. However, there is no statistical significant difference between the field intensities for the two others EMF exposure conditions.

  20. The antiproliferative activity of all-trans-retinoic acid catabolites and isomers is differentially modulated by liarozole-fumarate in MCF-7 human breast cancer cells.

    PubMed Central

    Van heusden, J.; Wouters, W.; Ramaekers, F. C.; Krekels, M. D.; Dillen, L.; Borgers, M.; Smets, G.

    1998-01-01

    The clinical use of all-trans-retinoic acid (ATRA) in the treatment of cancer is significantly hampered by the prompt emergence of resistance, believed to be caused by increased ATRA catabolism. Inhibitors of ATRA catabolism may therefore prove valuable for cancer therapy. Liarozole-fumarate is an anti-tumour drug that inhibits the cytochrome P450-dependent catabolism of ATRA. ATRA, but also its naturally occurring catabolites, 4-oxo-ATRA and 5,6-epoxy-ATRA, as well as its stereoisomers, 9-cis-RA and 13-cis-RA, show significant antiproliferative activity in MCF-7 human breast cancer cells. To further elucidate its mechanism of action, we investigated whether liarozole-fumarate was able to enhance the antiproliferative activity of ATRA catabolites and isomers. Liarozole-fumarate alone up to a concentration of 10(-6) M had no effect on MCF-7 cell proliferation. However, in combination with ATRA or the ATRA catabolites, liarozole-fumarate (10(-6) M) significantly enhanced their antiproliferative activity. On the contrary, liarozole-fumarate (10(-6) M) was not able to potentiate the antiproliferative activity of the ATRA stereoisomers, most probably because of the absence of cytochrome P450-dependent catabolism. Together, these findings show that liarozole-fumarate acts as a versatile inhibitor of retinoid catabolism in that it not only blocks the breakdown of ATRA, but also inhibits the catabolic pathway of 4-oxo-ATRA and 5,6-epoxy-ATRA, thereby enhancing their antiproliferative activity. PMID:9579827

  1. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells.

    PubMed

    Lee, Geum-A; Choi, Kyung-Chul; Hwang, Kyung-A

    2017-01-01

    As a phytoestrogen, kaempferol is known to play a chemopreventive role inhibiting carcinogenesis and cancer progression. In this study, the influences of triclosan, an anti-bacterial agent recently known for an endocrine disrupting chemical (EDC), and kaempferol on breast cancer progression were examined by measuring their effects on epithelial-mesenchymal transition (EMT) and metastatic-related behaviors of MCF-7 breast cancer cells. Morphological changes of MCF-7 cells were observed, and a wound-healing assay was performed after the treatment of triclosan and kaempferol. The effects of triclosan and kaempferol on protein expression of EMT-related markers such as E-cadherin, N-cadherin, Snail, and Slug and metastasis-related markers such as cathepsin B, D, MMP-2 and -9 were investigated by Western blot assay. In microscopic observations, triclosan (10(-6)M) or E2 (10(-9)M) induced transition to mesenchymal phenotype of MCF-7 cells compared with the control. Co-treatment of ICI 182,780 (10(-8)M), an ER antagonist, or kaempferol (25μM) with E2 or triclosan restored the cellular morphology to an epithelial phenotype. In a wound-healing scratch and a transwell migration assay, triclosan enhanced migration and invasion of MCF-7 cells, but co-treatment of kaempferol or ICI 182,780 reduced the migration and invasion ability of MCF-7 cells to the control level. In addition, kaempferol effectively suppressed E2 or triclosan-induced protein expressions of EMT and metastasis promoting markers. Taken together, triclosan may be a distinct xenoestrogenic EDC to promote EMT, migration, and invasion of MCF-7 breast cancer cells through ER. On the other hand, kaempferol can be an alternative chemopreventive agent to effectively suppress the metastatic behavior of breast cancer induced by an endogenous estrogen as well as exogenous xenoestrogenic compounds including triclosan.

  2. Enhanced delivery of PEAL nanoparticles with ultrasound targeted microbubble destruction mediated siRNA transfection in human MCF-7/S and MCF-7/ADR cells in vitro

    PubMed Central

    Teng, Yanwei; Bai, Min; Sun, Ying; Wang, Qi; Li, Fan; Xing, Jinfang; Du, Lianfang; Gong, Tao; Duan, Yourong

    2015-01-01

    The gene knockdown activity of small interfering RNA (siRNA) has led to their use as potential therapeutics for a variety of diseases. However, successful gene therapy requires safe and efficient delivery systems. In this study, we choose mPEG-PLGA-PLL nanoparticles (PEAL NPs) with ultrasound targeted microbubble destruction (UTMD) to efficiently deliver siRNA into cells. An emulsification-solvent evaporation method was used to prepare siRNA-loaded PEAL NPs. The NPs possessed an average size of 132.6±10.3 nm (n=5), with a uniform spherical shape, and had an encapsulation efficiency (EE) of more than 98%. As demonstrated by MTT assay, neither PEAL NPs nor siRNA-loaded PEAL NPs showed cytotoxicity even at high concentrations. The results of cellular uptake showed, with the assistance of UTMD, the siRNA-loaded PEAL NPs can be effectively internalized and can subsequently release siRNA in cells. Taken together, PEAL NPs with UTMD may be highly promising for siRNA delivery, making it possible to fully exploit the potential of siRNA-based therapeutics. PMID:26346350

  3. DHA blocks TPA-induced cell invasion by inhibiting MMP-9 expression via suppression of the PPAR-γ/NF-κB pathway in MCF-7 cells

    PubMed Central

    Hwang, Jin-Ki; Yu, Hong-Nu; Noh, Eun-Mi; Kim, Jeong-Mi; Hong, On-Yu; Youn, Hyun Jo; Jung, Sung Hoo; Kwon, Kang-Beom; Kim, Jong-Suk; Lee, Young-Rae

    2017-01-01

    Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is considered to have applications in cancer prevention and treatment. The beneficial effects of DHA against cancer metastasis are well established; however, the mechanisms underlying these effects in breast cancer are not clear. Cell invasion is critical for neoplastic metastasis, and involves the degradation of the extracellular matrix by matrix metalloproteinase (MMP)-9. The present study investigated the inhibitory effect of DHA on MMP-9 expression and cell invasion induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in the MCF-7 breast cancer cell line. DHA inhibited the TPA-induced activation of mitogen-activated protein kinase (MAPK) and the transcription of nuclear factor (NF)-κB, but did not inhibit the transcription of activator protein-1. DHA increased the activity of peroxisome proliferator-activated receptor (PPAR)-γ, an effect that was reversed by the application of the PPAR-γ antagonist GW9662. In addition, combined treatment with GW9662 and DHA increased NF-κB-related protein expression. These results indicate that DHA regulates MMP-9 expression and cell invasion via modulation of the MAPK signaling pathway and PPAR-γ/NF-κB activity. This suggests that DHA could be a potential therapeutic agent for the prevention of breast cancer metastasis. PMID:28123548

  4. Antioxidant and Cytotoxic Effect of Barringtonia racemosa and Hibiscus sabdariffa Fruit Extracts in MCF-7 Human Breast Cancer Cell Line

    PubMed Central

    Amran, Norliyana; Rani, Anis Najwa Abdul; Mahmud, Roziahanim; Yin, Khoo Boon

    2016-01-01

    Background: The fruits of Barringtonia racemosa and Hibiscus sabdariffa have been used in the treatment of abscess, ulcer, cough, asthma, and diarrhea as traditional remedy. Objective: This study aims to evaluate cytotoxic effect of B. racemosa and H. sabdariffa methanol fruit extracts toward human breast cancer cell lines (MCF-7) and its antioxidant activities. Materials and Methods: Total antioxidant activities of extracts were assayed using 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH) and β-carotene bleaching assay. Content of phytochemicals, total flavonoid content (TFC), and total phenolic content (TPC) were determined using aluminum chloride colorimetric method and Folin–Ciocalteu's reagent, respectively. Cytotoxic activity in vitro was investigated through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Results: B. racemosa extract exhibited high antioxidant activities compared to H. sabdariffa methanol fruit extracts in DPPH radical scavenging assay (inhibitory concentration [IC50] 15.26 ± 1.25 μg/mL) and ί-carotene bleaching assay (I% 98.13 ± 1.83%). B. racemosa also showed higher TPC (14.70 ± 1.05 mg gallic acid equivalents [GAE]/g) and TFC (130 ± 1.18 mg quercetin equivalents [QE]/g) compared to H. sabdariffa (3.80 ± 2.13 mg GAE/g and 40.75 ± 1.15 mg QE/g, respectively). In MTT assay, B. racemosa extract also showed a higher cytotoxic activity (IC50 57.61 ± 2.24 μg/mL) compared to H. sabdariffa. Conclusion: The present study indicated that phenolic and flavonoid compounds known for oxidizing activities indicated an important role among the contents of these plants extract. B. racemosa methanol extract have shown potent cytotoxic activity toward MCF-7. Following these promising results, further fractionation of the plant extract is underway to identify important phytochemical bioactives for the development of potential nutraceutical and pharmaceutical use. SUMMARY The phenolic and flavonoid compounds were

  5. Transcriptional effects of 50 Hz magnetic fields at 1.2 μT and 100 μT on human breast cancer MCF-7 cells

    NASA Astrophysics Data System (ADS)

    Ishido, Masami; Miyata, Hidetake; Ishizawa, Ken-ich; Murase, Masatoshi; Hondou, Tsuyoshi

    2012-03-01

    The International Agency for Research on Cancer (IARC) classified power frequency magnetic fields as a possible human carcinogen. Alteration in transcription programs is a fundamental feature of cancer. Here, using DNA array technology, we examined the transcriptional effects of 50 Hz magnetic fields on human breast cancer MCF-7 cells. It was found that expression of several oncogenes was significantly altered by magnetic-field exposure and that gene expression profilings were similar in MCF-7 cells exposed to magnetic fields at 1.2 μT and 100 μT for 1 week.

  6. The cytotoxic effect of α-tomatine in MCF-7 human adenocarcinoma breast cancer cells depends on its interaction with cholesterol in incubation media and does not involve apoptosis induction

    PubMed Central

    SUCHA, LENKA; HROCH, MILOS; REZACOVA, MARTINA; RUDOLF, EMIL; HAVELEK, RADIM; SISPERA, LUDEK; CMIELOVA, JANA; KOHLEROVA, RENATA; BEZROUK, ALES; TOMSIK, PAVEL

    2013-01-01

    In recent years, α-tomatine has been studied for its anticancer activity. In the present study, we focused on the cytotoxic effect of α-tomatine in the MCF-7 human breast adenocarcinoma cell line, its mechanism of action, biotransformation and stability in the culture medium. We observed an inhibition of cell proliferation and viability at concentrations of 6 and 9 μM but then a recovery of cells occurred. The recovery was not caused by the biotransformation of α-tomatine in MCF-7 cells, but by a substantial decrease in the concentration of α-tomatine in the culture medium due to its binding with cholesterol. Regarding the mechanism of action of α-tomatine, we observed no DNA damage, no changes in the levels of the proteins p53 and p21WAF1/Cip1, and no apoptosis (neither activated caspase-8 and -9, nor sub-G1 peak, or morphological signs). We found a loss of ATP in α-tomatine-treated cells. These results support the conclusion that α-tomatine does not induce apoptosis in the MCF-7 cell line. PMID:24100733

  7. Chemotherapy cytotoxicity of human MCF-7 and MDA-MB 231 breast cancer cells is altered by osteoblast-derived growth factors.

    PubMed Central

    Koutsilieris, M.; Reyes-Moreno, C.; Choki, I.; Sourla, A.; Doillon, C.; Pavlidis, N.

    1999-01-01

    One-third of women with breast cancer will develop bone metastases and eventually die from disease progression at these sites. Therefore, we analyzed the ability of human MG-63 osteoblast-like cells (MG-63 cells), MG-63 conditioned media (MG-63 CM), insulin-like growth factor I (IGF-I), and transforming growth factor beta 1 (TGF-beta1) to alter the effects of adriamycin on cell cycle and apoptosis of estrogen receptor negative (ER-) MDA-MB-231 and positive (ER+) MCF-7 breast cancer cells, using cell count, trypan blue exclusion, flow cytometry, detection of DNA fragmentation by simple agarose gel, and the terminal deoxynucleotidyl transferase (TdT)-mediated nick end-labeling method for apoptosis (TUNEL assay). Adriamycin arrested MCF-7 and MDA-MB-231 cells at G2/M phase in the cell cycle and inhibited cell growth. In addition, adriamycin arrested the MCF-7 cells at G1/G0 phase and induced apoptosis of MDA-MB-231 cells. Exogenous IGF-I partially neutralized the adriamycin cytotoxicity/cytostasis of cancer cells. MG-63 CM and TGF-beta1 partially neutralized the adriamycin cytotoxicity of MDA-MB-231 cells but enhanced adriamycin blockade of MCF-7 cells at G1/G0 phase. MG-63 osteoblast-like cells inhibited growth of MCF-7 cells while promoting growth and rescued MDA-MB-231 cells from adriamycin apoptosis in a collagen co-culture system. These data suggest that osteoblast-derived growth factors can alter the chemotherapy response of breast cancer cells. Conceivably, host tissue (bone)-tumor cell interactions can modify the clinical response to chemotherapy in patients with advanced breast cancer. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:10203574

  8. Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells.

    PubMed

    Kwiatkowska, Ewa; Wojtala, Martyna; Gajewska, Agnieszka; Soszyński, Mirosław; Bartosz, Grzegorz; Sadowska-Bartosz, Izabela

    2016-02-01

    Novel approaches to cancer chemotherapy employ metabolic differences between normal and tumor cells, including the high dependence of cancer cells on glycolysis ("Warburg effect"). 3-Bromopyruvate (3-BP), inhibitor of glycolysis, belongs to anticancer drugs basing on this principle. 3-BP was tested for its capacity to kill human non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. We found that 3-BP was more toxic for MDA-MB-231 cells than for MCF-7 cells. In both cell lines, a statistically significant decrease of ATP and glutathione was observed in a time- and 3-BP concentration-dependent manner. Transient increases in the level of reactive oxygen species and reactive oxygen species was observed, more pronounced in MCF-7 cells, followed by a decreasing tendency. Activities of glutathione peroxidase, glutathione reductase (GR) and glutathione S-transferase (GST) decreased in 3-BP treated MDA-MB-231 cells. For MCF-7 cells decreases of GR and GST activities were noted only at the highest concentration of 3-BP.These results point to induction of oxidative stress by 3-BP via depletion of antioxidants and inactivation of antioxidant enzymes, more pronounced in MDA-MB-231 cells, more sensitive to 3-BP.

  9. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    NASA Astrophysics Data System (ADS)

    K. S., Uma Suganya; Govindaraju, K.; Ganesh Kumar, V.; Prabhu, D.; Arulvasu, C.; Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan

    2016-05-01

    Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G0/G1 to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  10. Effect of teicoplanin on the expression of c-myc and c-fos proto-oncogenes in MCF-7 breast cancer cell line

    PubMed Central

    Ashouri, Saeideh; Khujin, Maryam Hosseindokht; Kazemi, Mohammad; Kheirollahi, Majid

    2016-01-01

    Background: Teicoplanin is a member of vancomycin-ristocetin family of glycopeptide antibiotics. It mediated wound healing by increasing neovascularization possibly through activation of MAP kinase signaling pathway. The aim of this study is an evaluation of c-myc and c-fos genes expression after treatment of cells by teicoplanin and determines whether this glycopeptide antibiotic exerts its proliferation effects by influencing the expression of these genes. Hence, this study was designed to elucidate one possible mechanism underlying teicoplanin effects on cell proliferation using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Materials and Methods: Breast cancer cell line, MCF-7, was cultured, and three different concentrations of teicoplanin were added to the plates. We measured the cell proliferation rate by MTT assay. After cell harvesting, total RNA was extracted to synthesize single-stranded cDNA. Real-time polymerase chain reaction was performed, and the data were analyzed. Results: It was observed that the level of c-fos and c-myc genes’ expressions was decreased at all three different concentrations of teicoplanin. Conclusion: it could be concluded that although teicoplanin is considered as an enhancing cell growth and proliferation, but probably its effect is not through MAP kinase signaling pathway or perhaps even has inhibitory effect on the expression of some genes such as c-myc and c-fos in this pathway. Hence, the mechanism of action of teicoplanin for increasing cell propagation, through cell signaling pathways or chromosomal abnormalities, remains unclear, and further studies should be conducted. PMID:28028512

  11. Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes.

    PubMed

    Hua, Xin; Zhou, Zhenxian; Yuan, Liang; Liu, Songqin

    2013-07-25

    A novel strategy for selective collection and detection of breast cancer cells (MCF-7) based on aptamer-cell interaction was developed. Mucin 1 protein (MUC1) aptamer (Apt1) was covalently conjugated to magnetic beads to capture MCF-7 cell through affinity interaction between Apt1 and MUC1 protein that overexpressed on the surface of MCF-7 cells. Meanwhile, a nano-bio-probe was constructed by coupling of nucleolin aptamer AS1411 (Apt2) to CdTe quantum dots (QDs) which were homogeneously coated on the surfaces of monodispersed silica nanoparticles (SiO2 NPs). The nano-bio-probe displayed similar optical and electrochemical performances to free CdTe QDs, and remained high affinity to nucleolin overexpressed cells through the interaction between AS1411 and nucleolin protein. Photoluminescence (PL) and square-wave voltammetric (SWV) assays were used to quantitatively detect MCF-7 cells. Improved selectivity was obtained by using these two aptamers together as recognition elements simultaneously, compared to using any single aptamer. Based on the signal amplification of QDs coated silica nanoparticles (QDs/SiO2), the detection sensitivity was enhanced and a detection limit of 201 and 85 cells mL(-1) by PL and SWV method were achieved, respectively. The proposed strategy could be extended to detect other cells, and showed potential applications in cell imaging and drug delivery.

  12. Zinc enhances CDKN2A, pRb1 expression and regulates functional apoptosis via upregulation of p53 and p21 expression in human breast cancer MCF-7 cell.

    PubMed

    Al-Saran, Nada; Subash-Babu, Pandurangan; Al-Nouri, Doha M; Alfawaz, Hanan A; Alshatwi, Ali A

    2016-10-01

    Zinc (Zn) is an essential trace elements, its deficiency is associated with increased incidence of human breast cancer. We aimed to study the effect of Zn on human breast cancer MCF-7 cells cultured in Zn depleted and Zn adequate medium. We found increased cancer cell growth in zinc depleted condition, further Zn supplementation inhibits the viability of breast cancer MCF-7 cell cultured in Zn deficient condition and the IC25, IC50 value for Zn is 6.2μM, 15μM, respectively after 48h. Zn markedly induced apoptosis through the characteristic apoptotic morphological changes and DNA fragmentation after 48h. In addition, Zn deficient cells significantly triggered intracellular ROS level and develop oxidative stress induced DNA damage; it was confirmed by elevated expression of CYP1A, GPX, GSK3β and TNF-α gene. Zinc depleted MCF-7 cells expressed significantly (p≤0.001) decreased levels of CDKN2A, pRb1, p53 and increased the level of mdm2 expression. Zn supplementation (IC50=15μM), increased significantly CDKN2A, pRB1 & p53 and markedly reduced mdm2 expression; also protein expression levels of CDKN2A and pRb1 was significantly increased. In addition, intrinsic apoptotic pathway related genes such as Bax, caspase-3, 8, 9 & p21 expression was enhanced and finally induced cell apoptosis. In conclusion, physiological level of zinc is important to prevent DNA damage and MCF-7 cell proliferation via regulation of tumor suppressor gene.

  13. Oxidative stress-mediated apoptosis induced by ethanolic mango seed extract in cultured estrogen receptor positive breast cancer MCF-7 cells.

    PubMed

    Abdullah, Al-Shwyeh Hussah; Mohammed, Abdulkarim Sabo; Rasedee, Abdullah; Mirghani, Mohamed Elwathig Saeed

    2015-02-05

    Breast cancer has become a global health issue requiring huge expenditures for care and treatment of patients. There is a need to discover newer cost-effective alternatives for current therapeutic regimes. Mango kernel is a waste product with potential as a source of anti-cancer phytochemicals, especially since it is non-toxic towards normal breast cell lines at concentrations for which it induces cell death in breast cancer cells. In this study, the anti-cancer effect of mango kernel extract was determined on estrogen receptor-positive human breast carcinoma (MCF-7) cells. The MCF-7 cells were cultured and treated with 5, 10 and 50 μg/mL of mango kernel extract for 12 and 24 h. In response to treatment, there were time- and dose-dependent increases in oxidative stress markers and pro-apoptotic factors; Bcl-2-like protein 4 (BAX), p53, cytochrome c and caspases (7, 8 and 9) in the MCF-7 cells treated with the extract. At the same time, there were decreases in pro-survival markers (Bcl-2 and glutathione) as the result of the treatments. The changes induced in the MCF-7 cells by mango kernel extract treatment suggest that the extract can induce cancer cell apoptosis, likely via the activation of oxidative stress. These findings need to be evaluated further to determine whether mango kernel extract can be developed as an anti-breast cancer agent.

  14. Using Expression Profiling to Understand the Effects of Chronic Cadmium Exposure on MCF-7 Breast Cancer Cells

    PubMed Central

    Lubovac-Pilav, Zelmina; Borràs, Daniel M.; Ponce, Esmeralda; Louie, Maggie C.

    2013-01-01

    Cadmium is a metalloestrogen known to activate the estrogen receptor and promote breast cancer cell growth. Previous studies have implicated cadmium in the development of more malignant tumors; however the molecular mechanisms behind this cadmium-induced malignancy remain elusive. Using clonal cell lines derived from exposing breast cancer cells to cadmium for over 6 months (MCF-7-Cd4, -Cd6, -Cd7, -Cd8 and -Cd12), this study aims to identify gene expression signatures associated with chronic cadmium exposure. Our results demonstrate that prolonged cadmium exposure does not merely result in the deregulation of genes but actually leads to a distinctive expression profile. The genes deregulated in cadmium-exposed cells are involved in multiple biological processes (i.e. cell growth, apoptosis, etc.) and molecular functions (i.e. cadmium/metal ion binding, transcription factor activity, etc.). Hierarchical clustering demonstrates that the five clonal cadmium cell lines share a common gene expression signature of breast cancer associated genes, clearly differentiating control cells from cadmium exposed cells. The results presented in this study offer insights into the cellular and molecular impacts of cadmium on breast cancer and emphasize the importance of studying chronic cadmium exposure as one possible mechanism of promoting breast cancer progression. PMID:24376830

  15. The Genotoxic and Cytotoxic Effects of Bisphenol-A (BPA) in MCF-7 Cell Line and Amniocytes.

    PubMed

    Aghajanpour-Mir, Seyed Mohsen; Zabihi, Ebrahim; Akhavan-Niaki, Haleh; Keyhani, Elahe; Bagherizadeh, Iman; Biglari, Sajjad; Behjati, Farkhondeh

    2016-01-01

    Bisphenol-A (BPA) is an industrial xenoestrogen used widely in our living environment. Recently, several studies suggested that BPA has destructive effects on DNA and chromosomes in normal body cells via estrogen receptors (ER). Therefore, BPA could be considered as an important mediator in many diseases such as cancer. However, there are still many controversial issues which need clarification. In this study, we investigated the BPA-induced chromosomal damages in MCF-7 cell line, ER-positive and negative amniocyte cells. Cytotoxicity and genotoxicity effects of BPA were also compared between these three cell groups. Expression of estrogen receptors was determined using immunocytochemistry technique. The cell cytotoxicity of BPA was measured by MTT assay. Classic cytogenetic technique was carried out for the investigation of chromosome damage. BPA, in addition to cytotoxicity, had remarkable genotoxicity at concentrations close to the traceable levels in tissues or biological fluids. Although some differences were observed in the amount of damages between ER-positive and negative fetal cells, interestingly, these differences were not significant. The present study showed that BPA could lead to chromosomal aberrations in both ER-dependent and independent pathways at some concentrations or in cell types yet not reported. Also, BPA could probably be considered as a facilitator for some predisposed cells to be cancerous by raising the chromosome instability levels. Finally, estrogen receptor seems to have a different role in cytotoxicity and genotoxicity effects.

  16. Proapoptotic and Antiproliferative Effects of Thymus caramanicus on Human Breast Cancer Cell Line (MCF-7) and Its Interaction with Anticancer Drug Vincristine.

    PubMed

    Esmaeili-Mahani, Saeed; Falahi, Farzaneh; Yaghoobi, Mohammad Mehdi

    2014-01-01

    Thymus caramanicus Jalas is one of the species of thymus that grows in the wild in different regions of Iran. Traditionally, leaves of this plant are used in the treatment of diabetes, arthritis, and cancerous situation. Therefore, the present study was designed to investigate the selective cytotoxic and antiproliferative properties of Thymus caramanicus extract (TCE). MCF-7 human breast cancer cells were used in this study. Cytotoxicity of the extract was determined using MTT and neutral red assays. Biochemical markers of apoptosis (caspase 3, Bax, and Bcl-2) and cell proliferation (cyclin D1) were evaluated by immunoblotting. Vincristine was used as anticancer control drug in extract combination therapy. The data showed that incubation of cells with TCE (200 and 250  μ g/mL) significantly increased cell damage, activated caspase 3 and Bax/Bcl2 ratio. In addition, cyclin D1 was significantly decreased in TCE-treated cells. Furthermore, concomitant treatment of cells with extract and anticancer drug produced a significant cytotoxic effect as compared to extract or drugs alone. In conclusion, thymus extract has a potential proapoptotic/antiproliferative property against human breast cancer cells and its combination with chemotherapeutic agent vincristine may induce cell death effectively and be a potent modality to treat this type of cancer.

  17. The defensin from avocado (Persea americana var. drymifolia) PaDef induces apoptosis in the human breast cancer cell line MCF-7.

    PubMed

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Salgado-Garciglia, Rafael; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2016-08-01

    Antimicrobial peptides (AMPs) are cytotoxic to cancer cells; however, mainly the effects of AMPs from animals have been evaluated. In this work, we assessed the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on the MCF-7 cancer cell line (a breast cancer cell line) and evaluated its mechanism of action. PaDef inhibited the viability of MCF-7 cells in a concentration-dependent manner, with an IC50=141.62μg/ml. The viability of normal peripheral blood mononuclear cells was unaffected by this AMP. Additionally, PaDef induced apoptosis in MCF-7 cells in a time-dependent manner, but did not affect the membrane potential or calcium flow. In addition, PaDef IC50 induced the expression of cytochrome c, Apaf-1, and the caspase 7 and 9 genes. Likewise, this defensin induced the loss of mitochondrial Δψm and increased the phosphorylation of MAPK p38, which may lead to MCF-7 apoptosis by the intrinsic pathway. This is the first report of an avocado defensin inducing intrinsic apoptosis in cancer cells, which suggests that it could be a potential therapeutic molecule in the treatment of cancer.

  18. Obacunone exhibits anti-proliferative and anti-aromatase activity in vitro by inhibiting the p38 MAPK signaling pathway in MCF-7 human breast adenocarcinoma cells.

    PubMed

    Kim, Jinhee; Jayaprakasha, G K; Patil, Bhimanagouda S

    2014-10-01

    Overexpression of the aromatase enzyme CYP19 has been implicated in the onset of estrogen-dependent breast carcinogenesis. Obacunone, a natural compound present in citrus fruits, has been demonstrated for various biological activities including anti-cancer and anti-inflammatory properties. In the present study, we have isolated obacunone and obacunone glucoside (OG) from lemon seeds, then fractionated these compounds using chromatographic techniques and characterized them by HPLC, LC-MS, and 2D NMR spectral analysis. To investigate the mechanism of anti-cancer and anti-aromatase activities of limonoids, their cytotoxic effect was tested on human breast cancer (MCF-7) and non-malignant (MCF-12F) breast cells. MTT assays confirmed that obacunone was strongly inhibited MCF-7 cell proliferation without affecting non-malignant breast cells. Treatment with obacunone increased apoptosis by up-regulating expression of the pro-apoptotic protein Bax and down-regulating the anti-apoptotic protein Bcl2, as well as inducing G1 cell cycle arrest. In addition, obacunone significantly inhibited aromatase activity in an in vitro enzyme assay. Exposure of MCF-7 breast cancer cells to obacunone down-regulated expression of inflammatory molecules including nuclear factor-kappa B (NF-κB) and cyclooxygenase-2 (COX-2). Furthermore, we found that obacunone inhibited COX-2 and NF-κB by activation of the p38 mitogen-activated protein kinase (MAPK). Finally, the uptake level of obacunone into MCF-7 cells was measured by HPLC and its structure was confirmed by LC-HR-MS. This study demonstrated that obacunone may have the potential to prevent estrogen-responsive breast cancer through inhibition of the aromatase enzyme and inflammatory pathways, as well as activation of apoptosis.

  19. The Hydroalcoholic Extract of Matricaria chamomilla Suppresses Migration and Invasion of Human Breast Cancer MDA-MB-468 and MCF-7 Cell Lines

    PubMed Central

    Nikseresht, Mohsen; Kamali, Ali Mohammad; Rahimi, Hamid Reza; Delaviz, Hamdollah; Toori, Mehdi Akbartabar; Kashani, Iraj Ragerdi; Mahmoudi, Reza

    2017-01-01

    Background: Matricaria chamomilla is an aromatic plant with antioxidant, anticancer, and anti-inflammatory properties. However, the inhibitory role of M. chamomilla on migration and invasion of human breast cancer cells remains unclear. Objective: This study investigated the methods to evaluate these anticancer mechanisms of M. chamomilla on human breast cancer MCF-7 and MDA-MB-468 cell lines. Materials and Methods: The cells were treated with hydroalcoholic extract of M. chamomilla at different concentrations (50–1300 μg/mL) for 24, 48, and 72 h in a culture medium containing 10% fetal bovine serum. This study quantified the 50% growth inhibition concentrations (IC50) by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay; apoptosis and necrosis through Hoechst 33342/propidium iodide staining; cell proliferation and clone formation by clonogenic assay as well as cellular migration, invasion, and attachment. After 24, 48, and 72 h of treatment, the IC50levels were 992 ± 2.3 μg/mL, 893 ± 5.4 μg/mL, and 785 ± 4.8 μg/mL against MDA-MB-468, respectively, and 1288 ± 5.6 μg/mL, 926 ± 2.5 μg/mL, and 921 ± 3.5 μg/mL, against MCF-7, respectively. Furthermore, increasing the extract concentrations induced cellular apoptosis and necrosis and decreased cellular invasion or migration through 8 μm pores, colonization and attachment in a dose-dependent manner. Results: It indicated time- and dose-dependent anti-invasive and antimigrative or proliferative and antitoxic effects of hydroalcoholic extract of aerial parts of chamomile on breast cancer cells. Conclusion: This study demonstrated an effective plant in preventing or treating breast cancer. SUMMARY Antioxidant compounds in Matricaria chamomilla have anticancer effects.Hydroalcoholic extract of M. chamomilla controls cellular proliferation and apoptosis induction.Hoechst 33342/propidium iodide staining suggested that the extract induces apoptosis more than necrosis.Hydroalcoholic extract of M

  20. The Impact of Soy Isoflavones on MCF-7 and MDA-MB-231 Breast Cancer Cells Using a Global Metabolomic Approach

    PubMed Central

    Uifălean, Alina; Schneider, Stefanie; Gierok, Philipp; Ionescu, Corina; Iuga, Cristina Adela; Lalk, Michael

    2016-01-01

    Despite substantial research, the understanding of the chemopreventive mechanisms of soy isoflavones remains challenging. Promising tools, such as metabolomics, can provide now a deeper insight into their biochemical mechanisms. The purpose of this study was to offer a comprehensive assessment of the metabolic alterations induced by genistein, daidzein and a soy seed extract on estrogen responsive (MCF-7) and estrogen non-responsive breast cancer cells (MDA-MB-231), using a global metabolomic approach. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that all test compounds induced a biphasic effect on MCF-7 cells and only a dose-dependent inhibitory effect on MDA-MB-231 cells. Proton nuclear magnetic resonance (1H-NMR) profiling of extracellular metabolites and gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites confirmed that all test compounds shared similar metabolic mechanisms. Exposing MCF-7 cells to stimulatory concentrations of isoflavones led to increased intracellular levels of 6-phosphogluconate and ribose 5-phosphate, suggesting a possible upregulation of the pentose phosphate pathway. After exposure to inhibitory doses of isoflavones, a significant decrease in glucose uptake was observed, especially for MCF-7 cells. In MDA-MB-231 cells, the glutamine uptake was significantly restricted, leading to alterations in protein biosynthesis. Understanding the metabolomic alterations of isoflavones represents a step forward in considering soy and soy derivates as functional foods in breast cancer chemoprevention. PMID:27589739

  1. Damnacanthal is a potent inducer of apoptosis with anticancer activity by stimulating p53 and p21 genes in MCF-7 breast cancer cells.

    PubMed

    Aziz, Muhammad Yusran Abdul; Omar, Abdul Rahman; Subramani, Tamilselvan; Yeap, Swee Keong; Ho, Wan Yong; Ismail, Nor Hadiani; Ahmad, Syahida; Alitheen, Noorjahan Banu

    2014-05-01

    Damnacanthal, an anthraquinone compound, is isolated from the roots of Morinda citrifolia L. (noni), which has been used for traditional therapy in several chronic diseases, including cancer. Although noni has long been consumed in Asian and Polynesian countries, the molecular mechanisms by which it exerts several benefits are starting to emerge. In the present study, the effect of damnacanthal on MCF-7 cell growth regulation was investigated. Treatment of MCF-7 cells with damnacanthal for 72 h indicated an antiproliferative activity. The MTT method confirmed that damnacanthal inhibited the growth of MCF-7 cells at the concentration of 8.2 μg/ml for 72 h. In addition, the drug was found to induce cell cycle arrest at the G1 checkpoint in MCF-7 cells by cell cycle analysis. Damnacanthal induced apoptosis, determined by Annexin V-fluorescein isothiocyanate/propidium iodide (PI) dual-labeling, acridine-orange/PI dyeing and caspase-7 expression. Furthermore, damnacanthal-mediated apoptosis involves the sustained activation of p21, leading to the transcription of p53 and the Bax gene. Overall, the present study provided significant evidence demonstrating that p53-mediated damnacanthal induced apoptosis through the activation of p21 and caspase-7.

  2. The Kinetic Signature of Toxicity of Four Heavy Metals and Their Mixtures on MCF7 Breast Cancer Cell Line †

    PubMed Central

    Egiebor, Egbe; Tulu, Adam; Abou-Zeid, Nadia; Aighewi, Isoken Tito; Ishaque, Ali

    2013-01-01

    This study evaluated the kinetic signature of toxicity of four heavy metals known to cause severe health and environmental issues—cadmium (Cd), mercury (Hg) lead (Pb) arsenic (As)—and the mixture of all four metals (Mix) on MCF7 cancer cells, in the presence and absence of the antioxidant glutathione (GSH). The study was carried out using real time cell electronic sensing (RT-CES). RT-CES monitors in real time the electrical impedance changes at the electrode/culture medium interface due to the number of adhered cells, which is used as an index of cell viability. Cells were seeded for 24 h before exposure to the metals and their mixtures. The results showed that in the presence and absence of cellular glutathione, arsenic was the most cytotoxic of all five treatments, inducing cell death after 5 h of exposure. Lead was the least cytotoxic in both scenarios. In the presence of cellular GSH, the cytotoxic trend was As > Cd > MIX > Hg > Pb, while in the absence of GSH, the cytotoxic trend was As > Hg > MIX > Cd > Pb. The findings from this study indicate the significance of glutathione-mediated toxicity of the metals examined—particularly for mercury—and may be clinically relevant for disorders such as autism spectrum disorder where decreased glutathione-based detoxification capacity is associated with increased mercury intoxication. PMID:24157516

  3. Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells

    SciTech Connect

    Wu, Juanjuan; Williams, Devin; Walter, Grant A.; Thompson, Winston E.; Sidell, Neil

    2014-11-01

    The actions of the transcription factor Nuclear factor erythroid 2-related factor (Nrf2) in breast cancer have been shown to include both pro-oncogenic and anti-oncogenic activities which is influenced, at least in part, by the hormonal environment. However, direct regulation of Nrf2 by steroid hormones (estrogen and progesterone) has received only scant attention. Nrf2 is known to be regulated by its cytosolic binding protein, Kelch-like ECH-associated protein 1 (Keap1), and by a Keap1-independent mechanism involving a series of phosphorylation steps mediated by phosphatidylinositol 3-kinase (PI3K) and glycogen synthase kinase 3 beta (GSK3β). Here, we report that estrogen (E2) increases Nrf2 activity in MCF7 breast cancer cells through activation of the PI3K/GSK3β pathway. Utilizing antioxidant response element (ARE)-containing luciferase reporter constructs as read-outs for Nrf2 activity, our data indicated that E2 increased ARE activity >14-fold and enhanced the action of the Nrf2 activators, tertiary butylhydroquinone (tBHQ) and sulforaphane (Sul) 4 to 9 fold compared with cells treated with tBHQ or Sul as single agents. This activity was shown to be an estrogen receptor-mediated phenomenon and was antagonized by progesterone. In addition to its action on the reporter constructs, mRNA and protein levels of heme oxygenase 1, an endogenous target gene of Nrf2, was markedly upregulated by E2 both alone and in combination with tBHQ. Importantly, E2-induced Nrf2 activation was completely suppressed by the PI3K inhibitors LY294002 and Wortmannin while the GSK3β inhibitor CT99021 upregulated Nrf2 activity. Confirmation that E2 was, at least partly, acting through the PI3K/GSK3β pathway was indicated by our finding that E2 increased the phosphorylation status of both GSK3β and Akt, a well-characterized downstream target of PI3K. Together, these results demonstrate a novel mechanism by which E2 can regulate Nrf2 activity in estrogen receptor-positive breast cancer

  4. The new truncated somatostatin receptor variant sst5TMD4 is associated to poor prognosis in breast cancer and increases malignancy in MCF-7 cells.

    PubMed

    Durán-Prado, M; Gahete, M D; Hergueta-Redondo, M; Martínez-Fuentes, A J; Córdoba-Chacón, J; Palacios, J; Gracia-Navarro, F; Moreno-Bueno, G; Malagón, M M; Luque, R M; Castaño, J P

    2012-04-19

    Somatostatin receptors (sst1-5) are present in different types of tumors, where they inhibit key cellular processes such as proliferation and invasion. Although ssts are densely expressed in breast cancer, especially sst2, their role and therapeutic potential remain uncertain. Recently, we identified a new truncated sst5 variant, sst5TMD4, which is related to the abnormal response of certain pituitary tumors to treatment with somatostatin analogs. Here, we investigated the possible role of sst5TMD4 in breast cancer. This study revealed that sst5TMD4 is absent in normal mammary gland, but is abundant in a subset of poorly differentiated human breast tumors, where its expression correlated to that of sst2. Moreover, in the MCF-7 breast cancer model cell, sst5TMD4 expression increased malignancy features such as invasion and proliferation abilities (both in cell cultures and nude mice). This was likely mediated by sst5TMD4-induced increase in phosphorylated extracellular signal-regulated kinases 1 and 2 and p-Akt levels, and cyclin D3 and Arp2/3 complex expression, which also led to mesenchymal-like phenotype. Interestingly, sst5TMD4 interacts physically with sst2 and thereby alters its signaling, enabling disruption of sst2 inhibitory feedback and providing a plausible basis for our findings. These results suggest that sst5TMD4 could be involved in the pathophysiology of certain types of breast tumors.

  5. Biodegradable Eri silk nanoparticles as a delivery vehicle for bovine lactoferrin against MDA-MB-231 and MCF-7 breast cancer cells.

    PubMed

    Roy, Kislay; Patel, Yogesh S; Kanwar, Rupinder K; Rajkhowa, Rangam; Wang, Xungai; Kanwar, Jagat R

    2016-01-01

    This study used the Eri silk nanoparticles (NPs) for delivering apo-bovine lactoferrin (Apo-bLf) (~2% iron saturated) and Fe-bLf (100% iron saturated) in MDA-MB-231 and MCF-7 breast cancer cell lines. Apo-bLf and Fe-bLf-loaded Eri silk NPs with sizes between 200 and 300 nm (±10 nm) showed a significant internalization within 4 hours in MDA-MB-231 cells when compared to MCF-7 cells. The ex vivo loop assay with chitosan-coated Fe-bLf-loaded silk NPs was able to substantiate its future use in oral administration and showed the maximum absorption within 24 hours by ileum. Both Apo-bLf and Fe-bLf induced increase in expression of low-density lipoprotein receptor-related protein 1 and lactoferrin receptor in epidermal growth factor (EGFR)-positive MDA-MB-231 cells, while transferrin receptor (TfR) and TfR2 in MCF-7 cells facilitated the receptor-mediated endocytosis of NPs. Controlled and sustained release of both bLf from silk NPs was shown to induce more cancer-specific cytotoxicity in MDA-MB-231 and MCF-7 cells compared to normal MCF-10A cells. Due to higher degree of internalization, the extent of cytotoxicity and apoptosis was significantly higher in MDA-MB-231 (EGFR+) cells when compared to MCF-7 (EGFR-) cells. The expression of a prominent anticancer target, survivin, was found to be downregulated at both gene and protein levels. Taken together, all the observations suggest the potential use of Eri silk NPs as a delivery vehicle for an anti-cancer milk protein, and indicate bLf for the treatment of breast cancer.

  6. Biodegradable Eri silk nanoparticles as a delivery vehicle for bovine lactoferrin against MDA-MB-231 and MCF-7 breast cancer cells

    PubMed Central

    Roy, Kislay; Patel, Yogesh S; Kanwar, Rupinder K; Rajkhowa, Rangam; Wang, Xungai; Kanwar, Jagat R

    2016-01-01

    This study used the Eri silk nanoparticles (NPs) for delivering apo-bovine lactoferrin (Apo-bLf) (~2% iron saturated) and Fe-bLf (100% iron saturated) in MDA-MB-231 and MCF-7 breast cancer cell lines. Apo-bLf and Fe-bLf-loaded Eri silk NPs with sizes between 200 and 300 nm (±10 nm) showed a significant internalization within 4 hours in MDA-MB-231 cells when compared to MCF-7 cells. The ex vivo loop assay with chitosan-coated Fe-bLf-loaded silk NPs was able to substantiate its future use in oral administration and showed the maximum absorption within 24 hours by ileum. Both Apo-bLf and Fe-bLf induced increase in expression of low-density lipoprotein receptor-related protein 1 and lactoferrin receptor in epidermal growth factor (EGFR)-positive MDA-MB-231 cells, while transferrin receptor (TfR) and TfR2 in MCF-7 cells facilitated the receptor-mediated endocytosis of NPs. Controlled and sustained release of both bLf from silk NPs was shown to induce more cancer-specific cytotoxicity in MDA-MB-231 and MCF-7 cells compared to normal MCF-10A cells. Due to higher degree of internalization, the extent of cytotoxicity and apoptosis was significantly higher in MDA-MB-231 (EGFR+) cells when compared to MCF-7 (EGFR−) cells. The expression of a prominent anticancer target, survivin, was found to be downregulated at both gene and protein levels. Taken together, all the observations suggest the potential use of Eri silk NPs as a delivery vehicle for an anti-cancer milk protein, and indicate bLf for the treatment of breast cancer. PMID:26730188

  7. Antiproliferative activity of flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the MCF7, KB, and NIH/3T3 cell lines.

    PubMed

    Nedel, Fernanda; Begnini, Karine; Carvalho, Pedro Henrique de Azambuja; Lund, Rafael Guerra; Beira, Fátima T A; Del Pino, Francisco Augusto B

    2012-11-01

    This study assessed the antiproliferative effect in vitro of the flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the human breast adenocarcinoma (MCF-7), human mouth epidermal carcinoma (KB), and mouse embryonic fibroblast (NIH 3T3) cell lines, using sulforhodamine B (SRB) assay. A cell density of 2×10(4)/well was seeded in 96-well plates, and samples at different concentrations ranging from 10 to 500 mg/mL were tested. The optical density was determined in an ELISA multiplate reader (Thermo Plate TP-Reader). Results demonstrated that the hexane extract presented antiproliferative activity against both the tumor cell lines KB and MCF-7, presenting a GI(50) (MCF-7=13.09 mg/mL), TGI (KB=37.76 mg/mL), and IL(50) (KB=291.07 mg/mL). Also, the hexane extract presented antiproliferative activity toward NIH 3T3 cells GI(50) (183.65 mg/mL), TGI (280.54 mg/mL), and IL(50) (384.59 mg/mL). The results indicate that the flower hexane extract obtained from M. spicata associated with M. rotundifolia presents an antineoplastic activity against KB and MCF-7, although an antiproliferative effect at a high concentration of the extract was observed toward NIH 3T3.

  8. In-vitro cytotoxicity study of methanolic fraction from Ajuga Bracteosa wall ex. benth on MCF-7 breast adenocarcinoma and hep-2 larynx carcinoma cell lines

    PubMed Central

    Pal, Akiriti; Toppo, Fedelic Aahish; Chaurasiya, Pradeep K.; Singour, Pradeep K.; Pawar, Rajesh S.

    2014-01-01

    Objective: Ajuga bracteosa Wall ex Benth (Labiatae) is popularly known in India as Neelkanthi. A decoction of the leaves, flowers, and barks is used in India for the treatment of cancer including diabetes, malaria, and inflammation etc. The main objective of this study is to investigate the cytotoxic potential of Ajuga bracteosa. Materials and Methods: Successive solvent extraction of Ajuga bracteosa in petroleum ether, methanol, and water extracts was done. These extracts were tested against human breast adenocarcinoma (MCF-7) and larynx carcinoma (Hep-2) tumor cell lines, using the thiazolyl blue test (MTT) assay. Results: The methanolic fraction of Ajuga bracteosa had shown the significant results against MCF-7 and Hep-2 tumor cell lines. The methanolic, petroleum ether and aqueous extract from Ajuga bracteosa, presented an IC50 value at 24 h of 10, 65, 70 μg/ml and 5, 30, 15 μg/ml on MCF-7 and Hep-2 cells, respectively. Steroids compounds namely β-sitosterol and unknown constituents were identified in the most active methanol extract of Ajuga bracteosa wall ex Benth. These known and unknown compounds exhibited cytotoxic potential against MCF-7 and Hep-2 cancer cells. Conclusion: Among all the tested extracts, methanolic extract can be considered as potential sources of anti-cancer compounds. Further studies are necessary for more extensive biological evaluations. PMID:24497749

  9. The role of captopril and losartan in prevention and regression of tamoxifen-induced resistance of breast cancer cell line MCF-7: an in vitro study.

    PubMed

    Namazi, Soha; Rostami-Yalmeh, Javad; Sahebi, Ebrahim; Jaberipour, Mansooreh; Razmkhah, Mahboobeh; Hosseini, Ahmad

    2014-06-01

    Innate and acquired tamoxifen (TAM) resistance in estrogen receptor positive (ER+) breast cancer is an important problem in adjuvant endocrine therapy. The underlying mechanisms of TAM resistance is yet unknown. In the present study, we evaluated the role of renin-angiotensin system (RAS) in the acquisition of TAM resistance in human breast cancer cell line MCF-7, and the potential role of captopril and captopril+losartan combination in the prevention and reversion of the TAM resistant phenotype. MCF-7 cells were continuously exposed to 1 μmol/L TAM to develop TAM resistant cells (TAM-R). MTT cell viability assay was used to determine the growth response of MCF-7 and TAM-R cells, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess angiotensin I converting enzyme (ACE), angiotensin II receptor type-1 and type-2 (AGTR1 and AGTR2) mRNA expressions. Preventive and therapeutic effects of RAS blockers - captopril and losartan - were examined on MCF-7 and TAM-R cells. Based on qRT-PCR, TAM-R cells compared to MCF-7 cells, had a mean ± SD fold increase of 319.1 ± 204.1 (P = 0.002) in production of ACE mRNA level, 2211.8 ± 777.9 (P = 0.002) in AGTR1 mRNA level, and 265.9 ± 143.9 (P = 0.037) in production of AGTR2 mRNA level. The combination of either captopril or captopril+losartan with TAM led to the prevention and even reversion of TAM resistant phenotype.

  10. Telomere-Mitochondrion Links Contribute to Induction of Senescence in MCF-7 Cells after Carbon-Ion Irradiation.

    PubMed

    Miao, Guo-Ying; Zhou, Xin; Zhang, Xin; Xie, Yi; Sun, Chao; Liu, Yang; Gan, Lu; Zhang, Hong

    2016-01-01

    The effects of carbon-ion irradiation on cancer cell telomere function have not been comprehensively studied. In our previous report cancer cells with telomere dysfunction were more sensitive to carbon-ion irradiation, but the underlying mechanisms remained unclear. Here we found that telomerase activity was suppressed by carbon-ion irradiation via hTERT down-regulation. Inhibition of telomere activity by MST-312 further increased cancer cell radiosensitivity to carbon-ion radiation. hTERT suppression caused by either carbon-ion irradiation or MST-312 impaired mitochondrial function, as indicated by decreased membrane potential, mtDNA copy number, mitochondrial mass, total ATP levels and elevated reactive oxygen species (ROS). PGC-1α expression was repressed after carbion-ion irradiation, and hTERT inhibition by MST-312 could further exacerbate this effect. Lowering the mitochondrial ROS level by MitoTEMPO could partially counteract the induction of cellular senescence induced by carbon-ion radiation and MST-312 incubation. Taken together, the current data suggest that telomere-mitochondrion links play a role in the induction of senescence in MCF-7 cells after carbon-ion irradiation.

  11. Rottlerin Inhibits ROS Formation and Prevents NFκB Activation in MCF-7 and HT-29 Cells

    PubMed Central

    Maioli, Emanuela; Greci, Lucedio; Soucek, Karel; Hyzdalova, Martina; Pecorelli, Alessandra; Fortino, Vittoria; Valacchi, Giuseppe

    2009-01-01

    Rottlerin, a polyphenol isolated from Mallotus Philippinensis, has been recently used as a selective inhibitor of PKC δ, although it can inhibit many kinases and has several biological effects. Among them, we recently found that Rottlerin inhibits the Nuclear Factor κB (NFκB), activated by either phorbol esters or H2O2. Because of the redox sensitivity of NFκB and on the basis of Rottlerin antioxidant property, we hypothesized that Rottlerin could prevent NFκB activation acting as a free radicals scavenger, as other natural polyphenols. The current study confirms the antioxidant property of Rottlerin against the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) in vitro and against oxidative stress induced by H2O2 and by menadione in culture cells. We also demonstrate that Rottlerin prevents TNFα-dependent NFκB activation in MCF-7 cells and in HT-29 cells transfected with the NFκB-driven plasmid pBIIX-LUC, suggesting that Rottlerin can inhibit NFκB via several pathways and in several cell types. PMID:20168983

  12. Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7).

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Kavithaa, Krishnamoorthy; Paulpandi, Manickam; Ponraj, Thondhi; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Subramaniam, Jayapal; Rajaganesh, Rajapandian; Wei, Hui; Kumar, Suresh; Nicoletti, Marcello; Benelli, Giovanni

    2016-03-01

    Mosquito vectors (Diptera: Culicidae) are responsible for transmission of serious diseases worldwide. Mosquito control is being enhanced in many areas, but there are significant challenges, including increasing resistance to insecticides and lack of alternative, cost-effective, and eco-friendly products. To deal with these crucial issues, recent emphasis has been placed on plant materials with mosquitocidal properties. Furthermore, cancers figure among the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer-related deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2012 to 22 million within the next two decades. Nanotechnology is a promising field of research and is expected to give major innovation impulses in a variety of industrial sectors. In this study, we synthesized titanium dioxide (TiO2) nanoparticles using the hydrothermal method. Nanoparticles were subjected to different analysis including UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), zeta potential, and energy-dispersive spectrometric (EDX). The synthesized TiO2 nanoparticles exhibited dose-dependent cytotoxicity against human breast cancer cells (MCF-7) and normal breast epithelial cells (HBL-100). After 24-h incubation, the inhibitory concentrations (IC50) were found to be 60 and 80 μg/mL on MCF-7 and normal HBL-100 cells, respectively. Induction of apoptosis was evidenced by Acridine Orange (AO)/ethidium bromide (EtBr) and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) staining. In larvicidal and pupicidal experiments conducted against the primary dengue mosquito Aedes aegypti, LC50 values of nanoparticles were 4.02 ppm (larva I), 4.962 ppm (larva II), 5.671 ppm (larva III), 6.485 ppm (larva IV), and 7.527 ppm (pupa). Overall, our results suggested that TiO2 nanoparticles may be considered as

  13. Efficiency of photodynamic therapy using indocyanine green and infrared light on MCF-7 breast cancer cells in vitro

    NASA Astrophysics Data System (ADS)

    Ruhi, Mustafa K.; Ak, Ayşe.; Gülsoy, Murat

    2016-03-01

    Cancer is one of the main reasons of death in all around the world. The main treatments of cancer include surgical intervention, radiation therapy and chemotherapy. These treatments can be applied separately or in a combined manner. Another therapeutic method that is still being researched and recently has started to be used in clinical applications is Photodynamic Therapy (PDT). Most photosensitizers currently being investigated are sensitive to red light. However, it is known that infrared light has a better penetration into the skin or tissue. Indocyanine Green (ICG), which is used in this study, is sensitive to infrared light. The aim of this in vitro study is to investigate the effect of PDT on breast cancer cells by using different doses of ICG and infrared light irradiation. 25, 50 and 100 μM ICG concentrations and 25 and 50 J/cm2 laser energy doses were applied to MCF-7 cell lines. MTT analyses were performed on 24, 48 and 72 hours following the treatments. As a result, inhibition of cell viability was observed in a time and dose dependent manner. It can be concluded that ICG-PDT application is a good alternative to conventional radiation therapy and chemotherapy for breast cancer treatment.

  14. In Silico Assay Development for Screening of Tetracyclic Triterpenoids as Anticancer Agents against Human Breast Cancer Cell Line MCF7

    PubMed Central

    Prakash, Om; Ahmad, Ateeque; Tripathi, Vinay Kumar; Tandon, Sudeep; Pant, Aditya Bhusan; Khan, Feroz

    2014-01-01

    Experimental activity of a compound on cancer cell line/target is mostly analyzed in the form of percentage inhibition at different concentration gradient and time of incubation. In this study a statistical model has been developed referred as in silico assay using support vector regression model, which can act with change in concentration gradient and time of incubation. This model is a function of concentration gradient, treatment hour and independent components; which calculate the percentage inhibition in combination of above three components. This model is designed to screen tetracyclic triterpenoids active against human breast cancer cell line MCF7. The model has been statistically validated, checked for applicability domain and predicted results were reconfirmed by MTT assay, for example Oenotheranstrol derivatives, OenA & B. Computational SAR, target and docking studies were performed to understand the cytotoxic mechanism of action of Oenotheranstrol compounds. The proposed in silico assay model will work for specific chemical family for which it will be optimized. This model can be used to analyze growth kinetics pattern on different human cancer cell lines for designed compounds. PMID:25365399

  15. Effect of xanthohumol and 8-prenylnaringenin on MCF-7 breast cancer cells oxidative stress and mitochondrial complexes expression.

    PubMed

    Blanquer-Rosselló, M Mar; Oliver, Jordi; Valle, Adamo; Roca, Pilar

    2013-12-01

    Xanthohumol (XN) and 8-prenylnaringenin (8PN) are hop (Humulus lupulus L.) polyphenols studied for their chemopreventive effects on certain cancer types. The breast cancer line MCF-7 was treated with doses ranging from 0.001 to 20 µM of XN or 8PN in order to assess the effects on cell viability and oxidative stress. Hoechst 33342 was used to measure cell viability and reactive oxygen species (ROS) production was determined by 2',7'-dichlorofluorescein diacetate. Catalase, superoxide dismutase, and glutathione reductase enzymatic activities were determined and protein expression of sirtuin1, sirtuin3, and oxidative phosphorylation system (OXPHOS) were done by Western blot. Treatments XN 0.01, 8PN 0.01, and 8PN 1 µM led to a decrease in ROS production along with an increase of OXPHOS and sirtuin expression; in contrast, XN 5 µM gave rise to an increase of ROS production accompanied by a decrease in OXPHOS and sirtuin expression. These results suggest that XN in low dose (0.01 µM) and 8PN at all assayed doses (0.001-20 µM) presumably improve mitochondrial function, whereas a high dose of XN (5 µM) worsens the functionality of this organelle.

  16. Melissa officinalis Protects against Doxorubicin-Induced Cardiotoxicity in Rats and Potentiates Its Anticancer Activity on MCF-7 Cells

    PubMed Central

    Hamza, Alaaeldin Ahmed; Ahmed, Mahguob Mohamed; Elwey, Hanan Mohamed; Amin, Amr

    2016-01-01

    Cardiotoxicity is a limiting factor of doxorubicin (DOX)-based anticancer therapy. Due to its beneficial effects, we investigated whether standardized extract of Melissa officinalis (MO) can attenuate doxorubicin-induced cardiotoxicity and can potentiate the efficacy of DOX against human breast cancer cells. MO was administered orally to male albino rats once daily for 10 consecutive days at doses of 250, 500 and 750 mg/kg b.wt. DOX (15 mg/kg b.wt. i.p.) was administered on the 8th day. MO protected against DOX-induced leakage of cardiac enzymes and histopathological changes. MO ameliorated DOX-induced oxidative stress as evidenced by decreasing lipid peroxidation, protein oxidation and total oxidant capacity depletion and by increasing antioxidant capacity. Additionally, MO pretreatment inhibited inflammatory responses to DOX by decreasing the expressions of nuclear factor kappa-B, tumor necrosis factor-alpha and cyclooxygenase-2 and the activity of myeloperoxidase. MO ameliorated DOX-induced apoptotic tissue damage in heart of rats. In vitro study showed that MO augmented the anticancer efficacy of DOX in human breast cancer cells (MCF-7) and potentiated oxidative damage and apoptosis. Thus, combination of DOX and MO may prove future cancer treatment protocols safer and more efficient. PMID:27880817

  17. Salinomycin suppresses TGF-β1-induced epithelial-to-mesenchymal transition in MCF-7 human breast cancer cells.

    PubMed

    Zhang, Chunying; Lu, Ying; Li, Qing; Mao, Jun; Hou, Zhenhuan; Yu, Xiaotang; Fan, Shujun; Li, Jiazhi; Gao, Tong; Yan, Bing; Wang, Bo; Song, Bo; Li, Lianhong

    2016-03-25

    Epithelial-to-mesenchymal transition (EMT) is the major cause of breast cancer to initiate invasion and metastasis. Salinomycin (Sal) has been found as an effective chemical compound to kill breast cancer stem cells. However, the effect of Sal on invasion and metastasis of breast cancer is unclear. In the present study, we showed that Sal reversed transforming growth factor-β1 (TGF-β1) induced invasion and metastasis accompanied with down-regulation of MMP-2 by experiments on human breast cancer cell line MCF-7. Sal was able to inhibit TGF-β1-induced EMT phenotypic transition and the activation of key signaling molecules involved in Smad (p-Smad2/3,Snail1) and non-Smad (β-catenin, p-p38 MAPK) signals which cooperatively regulate the induction of EMT. Importantly, in a series of breast cancer specimens, we found strong correlation among E-cadherin expression, β-catenin expression, and the lymph node metastatic potential of breast cancer. Our research suggests that Sal is promised to be a chemotherapeutic drug by suppressing the metastasis of breast cancer.

  18. Redox-responsive mesoporous selenium delivery of doxorubicin targets MCF-7 cells and synergistically enhances its anti- tumor activity.

    PubMed

    Zhao, Shuang; Yu, Qianqian; Pan, Jiali; Zhou, Yanhui; Cao, Chengwen; Ouyang, Jian-Ming; Liu, Jie

    2017-03-03

    To reduce the side effects and enhance the anti-tumor activities of anticancer drugs in the clinic, the use of nano mesoporous materials, with mesoporous silica (MSN) being the best-studied, has become an effective method of drug delivery. In this study, we successfully synthesized mesoporous selenium (MSe) nanoparticles and first introduced them to the field of drug delivery. Loading MSe with doxorubicin (DOX) is mainly driven by the physical adsorption mechanism of the mesopores, and our results demonstrated that MSe could synergistically enhance the antitumor activity of DOX. Coating the surface of MSe@DOX with Human serum albumin (HSA) generated a unique redox-responsive nanoparticle (HSA-MSe@DOX) that demonstrated glutathione-dependent drug release, increased tumor-targeting effects and enhanced cellular uptake throug nanoparticle interact with SPARC in MCF-7 cells. In vitro, HSA-MSe@DOX prominently induced cancer cell toxicity by synergistically enhancing the effects of MSe and DOX. Moreover, HSA-MSe@DOX possessed tumor-targeting abilities in tumor-bearing nude mice and not only decreased the side effects associated with DOX, but also enhanced its antitumor activity. Therefore, HSA-MSe@DOX is a promising new drug that warrants further evaluation in the treatments of tumors.

  19. Functional Metabolomics Uncovers Metabolic Alterations Associated to Severe Oxidative Stress in MCF7 Breast Cancer Cells Exposed to Ascididemin

    PubMed Central

    Morvan, Daniel

    2013-01-01

    Marine natural products are a source of promising agents for cancer treatment. However, there is a need to improve the evaluation of their mechanism of action in tumors. Metabolomics of the response to anti-tumor agents is a tool to reveal candidate biomarkers and metabolic targets. We used two-dimensional high-resolution magic angle spinning proton-NMR spectroscopy-based metabolomics to investigate the response of MCF7 breast cancer cells to ascididemin, a marine alkaloid and lead molecule for anti-cancer treatment. Ascididemin induced severe oxidative stress and apoptosis within 48 h of exposure. Thirty-three metabolites were quantified. Metabolic response involved downregulation of glycolysis and the tricarboxylic acid cycle, and phospholipid metabolism alterations. Candidate metabolic biomarkers of the response of breast cancer cells to ascididemin were proposed including citrate, gluconate, polyunsaturated fatty acids, glycerophospho-choline and -ethanolamine. In addition, candidate metabolic targets were identified. Overall, the response to Asc could be related to severe oxidative stress and anti-inflammatory effects. PMID:24152560

  20. Cucurbitacin D induces cell cycle arrest and apoptosis by inhibiting STAT3 and NF-κB signaling in doxorubicin-resistant human breast carcinoma (MCF7/ADR) cells.

    PubMed

    Ku, Jin Mo; Kim, Soon Re; Hong, Se Hyang; Choi, Han-Seok; Seo, Hye Sook; Shin, Yong Cheol; Ko, Seong-Gyu

    2015-11-01

    Breast cancer is the most common cancer for women and is a major cause of mortality in women. Doxorubicin is a generally used chemotherapy drug for breast cancer. However, multidrug resistance of breast cancer interferes with the chemotherapy. We examined whether cucurbitacin D affects doxorubicin resistance of MCF7/ADR breast cancer cells. Cell viability was measured by MTT assay. Levels of p-STAT3, p-NF-κB, IκB, and caspases were measured by Western blot analysis. Nuclear staining of Stat3 and NF-κB was measured by immunocytochemistry. STAT3 and NF-κB transcriptional activity was detected by STAT3 and NF-κB luciferase reporter gene assays. Analysis of cell cycle arrest was performed by flow cytometry. Induction of apoptosis by cucurbitacin D was measured by Annexin V-FITC/propidium iodide assay. More than 90% of MCF7/ADR cells lived upon treatment with doxorubicin for 24 h. However, upon treatment with cucurbitacin D, cell death was more than 60%. Co-administration of cucurbitacin D and doxorubicin induced apoptosis, and G2/M cell cycle arrest, and inhibited upregulated Stat3 by doxorubicin on MCF7/ADR cells. Additionally, cucurbitacin D led to an increase in the IκBα level in the cytosol and a decrease in the p-NF-κB level in the nucleus. Finally, cucurbitacin D inhibited translocation of Stat3 and NF-κB and decreased transcriptional activity in the nucleus. Cucurbitacin D decreases cell proliferation and induces apoptosis by inhibiting Stat3 and NF-κB signaling in doxorubicin-resistant breast cancer cells. Cucurbitacin D could be used as a useful compound to treat adriamycin-resistant patients.

  1. PKCeta associates with cyclin E/Cdk2 complex in serum-starved MCF-7 and NIH-3T3 cells.

    PubMed

    Shtutman, Marat; Hershko, Tzippi; Maissel, Adva; Fima, Eyal; Livneh, Etta

    2003-05-15

    Protein kinase C (PKC) encodes a family of enzymes implicated in cellular differentiation, growth control, and tumo