Effects of the ninein-like protein centrosomal protein on breast cancer cell invasion and migration
LIU, QI; WANG, XINZHAO; LV, MINLIN; MU, DIANBIN; WANG, LEILEI; ZUO, WENSU; YU, ZHIYONG
2015-01-01
To investigate the effects of the centrosomal protein, ninein-like protein (Nlp), on the proliferation, invasion and metastasis of MCF-7 breast cancer cells, the present study established green fluorescent protein (GFP)-containing MCF7 plasmids with steady and overexpression of Nlp (MCG7-GFP-N1p) and blank plasmids (MCF7-GFP) using lentiviral transfection technology in MCF7 the breast cancer cell line. The expression of Nlp was determined by reverse transcription-quantitative polymerase chain reaction and western blott analysis. Differences in levels of proliferation, invasion and metastasis between the MCF7-GFP-Nlp group and MCF-GFP group were compared using MTT, plate colony formation and Transwell migration assays. The cell growth was more rapid and the colony forming rate was markedly increased in the MCF7-GFP-Nlp group (P<0.05) compared with the MCF7-GFP group. The number of cells in the MCF-GFP-Nlp and MCF7-GFP groups transferred across membranes were 878±18.22 and 398±8.02, respectively, in the migration assay. The invasive capacity was significantly increased in the MCF7-GFP-Nlp group (P<0.05) compared with the MCF7-GFP group. The western blotting results demonstrated high expression levels of C-X-C chemokine receptor type 4 in the MCF7-GFP-Nlp group. The increased expression of Nlp was associated with an increase in MCF7 cell proliferation, invasion and metastasis, which indicated that Nlp promoted breast tumorigenesis and may be used as a potent biological index to predict breast cancer metastasis and develop therapeutic regimes. PMID:25901761
Jahanafrooz, Zohreh; Motameh, Nasrin; Bakhshandeh, Behnaz
2016-01-01
Silibinin is a natural polyphenol with high antioxidant and anticancer properties. In this study, its influence on two of the most commonly employed human breast cancer cell lines, MCF-7 and T47D, and one non-malignant MCF-10A cell line, were investigated and compared. Cell viability, the cell cycle distribution and apoptosis induction were analyzed by MTT and flow cytometry, respectively. The effect of silibinin on PTEN, Bcl-2, P21, and P27 mRNAs expression was also investigated by real-time RT-PCR. It was found that silibinin caused G1 cell cycle arrest in MCF-7 and MCF-10A cells but had no effect on the T47D cell cycle. Silibinin induced cytotoxic and apoptotic effects in T47D cells more than the MCF-7 cells and had no cytotoxic effect in MCF-10A cells under the same conditions. Silibinin upregulated PTEN in MCF-7 and caused slightly increased P21 mRNA expression in T47D cells and slightly increased PTEN and P21 expression in MCF-10A cells. Bcl-2 expression decreased in all of the examined cells under silibinin treatment. P27 mRNA expression upregulated in T47D and MCF-10A cells under silibinin treatment. PTEN mRNA in T47D and P21 and P27 mRNAsin MCF-7 were not affected by silibinin. These results suggest that silibinin has mostly different inhibitory effects in breast cancer cells and might be an effective anticancer agent for some cells linked to influence on cell cycle progression.
The lipid content of cisplatin- and doxorubicin-resistant MCF-7 human breast cancer cells.
Todor, I N; Lukyanova, N Yu; Chekhun, V F
2012-07-01
To perform the comparative study both of qualitative and quantitative content of lipids in parental and drug resistant breast cancer cells. Parental (MCF-7/S) and resistant to cisplatin (MCF-7/CP) and doxorubicin (MCF-7/Dox) human breast cancer cells were used in the study. Cholesterol, total lipids and phospholipids content were determined by means of thin-layer chromatography. It was found that cholesterol as well as cholesterol ethers content are significantly higher but diacylglycerols, triacyl-glycerols content are significantly lower in resistant cell strains than in parental (sensitive) cells. Moreover the analysis of individual phospholipids showed the increase of sphingomyelin, phosphatidylserine, cardiolipin, phosphatidic acid and the decrease of phosphatidy-lethanolamine, phosphatidylcholine in MCF-7/CP and MCF-7/Dox cells. Obtained results allow to suggest that the lipid profile changes can mediate the modulation of membrane fluidity in drug resistant MCF-7 breast cancer cells.
Dynamic characterization of human breast cancer cells using a piezoresistive microcantilever.
Shim, Sangjo; Kim, Man Geun; Jo, Kyoungwoo; Kang, Yong Seok; Lee, Boreum; Yang, Sung; Shin, Sang-Mo; Lee, Jong-Hyun
2010-10-01
In this paper, frequency response (dynamic compression and recovery) is suggested as a new physical marker to differentiate between breast cancer cells (MCF7) and normal cells (MCF10A). A single cell is placed on the laminated piezoelectric actuator and a piezoresistive microcantilever is placed on the upper surface of the cell at a specified preload displacement (or an equivalent force). The piezoelectric actuator excites the single cell in a sinusoidal fashion and its dynamic deformation is then evaluated from the displacement converted by measuring the voltage output through a piezoresistor in the microcantilever. The microcantilever has a flat contact surface with no sharp tip, making it possible to measure the overall properties of the cell rather than the local properties. These results indicate that the MCF7 cells are more deformable in quasi-static conditions compared with MCF10A cells, consistent with known characteristics. Under conditions of high frequency of over 50 Hz at a 1 μm preload displacement, 1 Hz at a 2 μm preload displacement, and all frequency ranges tested at a 3 μm preload displacement, MCF7 cells showed smaller deformation than MCF10A cells. MCF7 cells have higher absorption than MCF10A cells such that MCF7 cells appear to have higher deformability according to increasing frequency. Moreover, larger preload and higher frequencies are shown to enhance the differences in cell deformability between the MCF7 cells and MCF10A cells, which can be used as a physical marker for differentiating between MCF10A cells and MCF7 cells, even for high-speed screening devices.
Miyakoshi, Takashi; Miyajima, Katsuhiro; Takekoshi, Susumu; Osamura, Robert Yoshiyuki
2009-01-01
Bisphenol A (BPA) is a monomer use in manufacturing a wide range of chemical products which include epoxy resins and polycarbonate. It has been reported that BPA increases the cell proliferation activity of human breast cancer MCF-7 cells as well as 17-β estradiol (E2) and diethylstilbestrol (DES). However, BPA induces target genes through ER-dependent and ER-independent manners which are different from the actions induced by E2. Therefore, BPA may be unique in estrogen-dependent cell proliferation compared to other endocrine disrupting chemicals (EDCs). In the present study, to test whether ERα is essential to the BPA-induced proliferation on MCF-7 cells, we suppressed the ERα expression of MCF-7 cells by RNA interference (RNAi). Proliferation effects in the presence of E2, DES and BPA were not observed in ERα-knockdown MCF-7 cells in comparison with control MCF-7. In addition, a marker of proliferative potential, MIB-1 labeling index (LI), showed no change in BPA-treated groups compared with vehicle-treated groups on ERα-knockdown MCF-7 cells. In conclusion, we demonstrated that ERα has a role in BPA-induced cell proliferation as well as E2 and DES. Moreover, this study indicated that the direct knockdown of ERα using RNAi serves as an additional tool to evaluate, in parallel with MCF-7 cell proliferation assay, for potential EDCs. PMID:19492024
Dharmu, Indra; Ramamurty, N; Kannan, Ramalingam; Babu, Mary
2007-01-01
The hemolymph-derived achatinin(H) (lectin) from Achatina fulica showed a marked cytotoxic effect on MCF7, a human mammary carcinoma cell line. IC(50) values as measured by the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay for achatinin(H) ranged from 6 to 10 microg/ml in the MCF7 cells. MCF7 cells showed significant morphological changes leading to cell death. The above cell death was observed after 48 h of treatment with 8 microg/ml when compared to untreated cells. Alterations in the tumor marker enzymes, as well as in antioxidant enzymes, were observed after achatinin(H) treatment. The specificity and purity of the achatinin(H) was confirmed by the Western blot assay. Achatinin(H) binding to MCF7 cells was detected by anti-achatinin(H), and visualization of the achatinin(H) binding sites on confluent MCF7 cells was confirmed by flourescein isothiocyanate conjugated secondary antibody. MCF7-treated cells fluoresced, indicating the presence of achatinin(H) binding sites. Fluorescence-activated cell sorting analysis of the cell cycle showed a significant increase in S-phase in MCF7 cells after 48 h of achatinin(H) treatment. The cells were arrested in G(2)/M phase of the cell cycle after 48 h with significant changes in cell viability. Cellular damage was confirmed by agarose gel electrophoresis with the characteristic appearance of a DNA streak in treated MCF7 cells indicating the ongoing apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jing; Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu; Zhang, Jun-ying
Highlights: • Overexpression of HAP1 gene promotes apoptosis in MCF-7 cells after irradiation. • HAP1 reduces tumor volume in nude mice xenograft models after irradiation. • HAP1 increases radiosensitivity of breast cancer cells in vitro and vivo. - Abstract: Objectives: The purpose of this study was to investigate the relationship between huntingtin-associated protein1 (HAP1) gene and radiation therapy of breast cancer cells. Methods: HAP1 gene was transfected into breast cancer MCF-7 cells, which was confirmed by quantitative reverse transcription-polymerase chain reaction analysis (qRT-PCR) and Western blot in vitro. The changes of cell radiosensitivity were assessed by colony formation assay. Apoptosismore » were examined by flow cytometry. The expressions of two radiation-induced genes were evaluated by Western blot. Tumor growth was investigated in nude mice xenograft models in vivo. Results: Our data showed that HAP1 gene expression was significantly increased in HAP1-transfected MCF-7 cells in comparison with the parental cells or negative control cells. The survival rate in MCF-7/HAP1 cells was significantly decreased after irradiation (0, 2, 4, 6, 8 Gy), compared to cells in MCF-7 and MCF-7/Pb groups in vitro. HAP1 gene increased apoptosis in MCF-7 cells after irradiation. Additionally, the tumor volume and weight in MCF-7/HAP1 + RT group were observably lower than in MCF-7/HAP1 group and MCF-7/Pb + RT group. Conclusion: The present study indicated that HAP1 gene expression was related to the radiosensitivity of breast cancer cells and may play an important role in the regulation of cellular radiosensitivity.« less
Kong, Lingxin; Guo, Sufen; Liu, Chunfeng; Zhao, Yiling; Feng, Chong; Liu, Yunshuang; Wang, Tao; Li, Caijuan
2016-03-01
The formation of EMT and EMT-induced CSC-like phenotype is crucial for the metastasis of tumor cells. The stromal cell-derived factor-1 (SDF-1) is upregulated in various human carcinomas, which is closely associated with proliferation, migration, invasion and prognosis of malignancies. However, limited attention has been directed towards the effect of SDF-1 on epithelial to mesenchymal transition (EMT) or cancer stem cell (CSC)-like phenotype formation in breast cancer cells and the related mechanism. In the present study, we screened MCF-7 cells with low SDF-1 expression level for the purpose of evaluating whether SDF-1 is involved in EMT and CSC-like phenotype formation in MCF-7 cells. The pEGFP-N1-SDF-1 plasmid was transfected into MCF-7 cells, and the stably overexpressed SDF-1 in MCF-7 cells was confirmed by real-time PCR and western blot analysis. Colony formation assay, MTT, wound healing assay and Transwell invasion assay demonstrated that overexpression of SDF-1 significantly boosted the proliferation, migration and invasion of MCF-7 cells compared with parental (P<0.05). Flow cytometry analysis revealed a notable increase of CD44+/CD24- subpopulation in SDF-1 overexpressing MCF-7 cells (P<0.001), accompanied by the apparently elevated ALDH activity and the upregulation of the stem cell markers OCT-4, Nanog, and SOX2 compared with parental (P<0.01). Besides, western blot analysis and immunofluorescence assay observed the significant decreased expression of E-cadherin and enhanced expression of slug, fibronectin and vimentin in SDF-1 overexpressed MCF-7 cells in comparison with parental (P<0.01). Further study found that overexpression of SDF-1 induced the activation of NF-κB pathway in MCF-7 cells. Conversely, suppressing or silencing p65 expression by antagonist or RNA interference could remarkably increase the expression of E-cadherin in SDF-1 overexpressed MCF-7 cells (P<0.001). Overall, the above results indicated that overexpression of SDF-1 enhanced EMT by activating the NF-κB pathway of MCF-7 cells and further induced the formation of CSC-like phenotypes, ultimately promoting the proliferation and metastasis of MCF-7 cells. Therefore, SDF-1 may further be assessed as a potential target for gene therapy of breast cancer.
Proline oxidase silencing induces proline-dependent pro-survival pathways in MCF-7 cells
Zareba, Ilona; Celinska-Janowicz, Katarzyna; Surazynski, Arkadiusz; Miltyk, Wojciech; Palka, Jerzy
2018-01-01
Proline degradation by proline dehydrogenase/proline oxidase (PRODH/POX) contributes to apoptosis or autophagy. The identification of specific pathway of apoptosis/survival regulation is the aim of this study. We generated knocked-down PRODH/POX MCF-7 breast cancer cells (MCF-7shPRODH/POX). PRODH/POX silencing did not affect cell viability. However, it contributed to decrease in DNA and collagen biosynthesis, increase in prolidase activity and intracellular proline concentration as well as increase in the expression of iNOS, NF-κB, mTOR, HIF-1α, COX-2, AMPK, Atg7 and Beclin-1 in MCF-7shPRODH/POX cells. In these cells, glycyl-proline (GlyPro, substrate for prolidase) further inhibited DNA and collagen biosynthesis, maintained high prolidase activity, intracellular concentration of proline and up-regulated HIF-1α, AMPK, Atg7 and Beclin-1, compared to GlyPro-treated MCF-7 cells. In MCF-7 cells, GlyPro increased collagen biosynthesis, concentration of proline and expression of caspase-3, cleaved caspases -3 and -9, iNOS, NF-κB, COX-2 and AMPKβ. PRODH/POX knock-down contributed to pro-survival autophagy pathways in MCF-7 cells and GlyPro-derived proline augmented this process. However, GlyPro induced apoptosis in PRODH/POX-expressing MCF-7 cells as detected by up-regulation of active caspases -3 and -9. The data suggest that PRODH/POX silencing induces autophagy in MCF-7 cells and GlyPro-derived proline supports this process. PMID:29568391
Hu, Hui-yong; Zhou, Jun; Wan, Fang; Dong, Li-feng; Zhang, Feng; Wang, Yi-ke; Chen, Fang-fang; Chen, Yi-ding
2012-09-01
To investigate the effect of Evn-50 extracted from Vitex negundo on human breast cancer cell line MCF-7 and MCF-7/TAM-R cells in vitro. MCF-7 and tamoxifen-resistant MCF-7/TAM-R cells were treated with Evn-50,tamoxifen or combination of Evn-50 and tamoxifen. Cell proliferation inhibition rates were determined by MTT assay. The apoptosis rate and the change of cell cycle were detected by PI staining flow cytometry. Protein expression of phospho-MAPK 44/42 (Thr202/Tyr204),MAPK P44/42, phospho-AKT (Ser473) and AKT were detected with Western blotting. The viability of MCF-7 cells was decreased in combination group [(28.65 ±11.43)%] and Evn-50 group [(53.02 ±15.14)%] compared with TAM group (P<0.01). The cell viability of MCF-7/TAM-R in combination group [(42.11 ±14.30)%] was significantly lower than that in TAM group [(92.18 ±13.16)%] (P<0.01). The cell apoptosis rate was dependent on the time of treatment in all groups,the effects on apoptosis and G2/M phase cells were most prominent at 72 h (P<0.01). Western blotting revealed that protein levels of phosphorylated AKT and p-MAPK44/42 decreased,while the expression of total AKT and MAPK44/42 was stable. In MCF-7/TAM-R cells,the expression of phosphorylation of AKT and MAPK44/42 protein was not changed in Evn-50 or TAM alone group,but significantly inhibited in the combination group at 72 h. Evn-50 can inhibit cell growth and induce apoptosis in MCF-7 and MCF-7/TAM-R cells,it can reverse tamoxifen-resistance of MCF-7/TAM-R cells.The mechanisms may be related to the down-regulation of phosphorylated ERK1/2 in MAPK signal pathway and phosphorylated AKT in AKT signal pathway.
Johnson, Rachelle W.; Sun, Yao; Ho, Patricia W. M.; Chan, Audrey S. M.; Johnson, Jasmine A.; Pavlos, Nathan J.; Sims, Natalie A.; Martin, T. John
2018-01-01
Parathyroid hormone-related protein (PTHrP) expression in breast cancer is enriched in bone metastases compared to primary tumors. Human MCF7 breast cancer cells “home” to the bones of immune deficient mice following intracardiac inoculation, but do not grow well and stain negatively for Ki67, thus serving as a model of breast cancer dormancy in vivo. We have previously shown that PTHrP overexpression in MCF7 cells overcomes this dormant phenotype, causing them to grow as osteolytic deposits, and that PTHrP-overexpressing MCF7 cells showed significantly lower expression of genes associated with dormancy compared to vector controls. Since early work showed a lack of cyclic AMP (cAMP) response to parathyroid hormone (PTH) in MCF7 cells, and cAMP is activated by PTH/PTHrP receptor (PTHR1) signaling, we hypothesized that the effects of PTHrP on dormancy in MCF7 cells occur through non-canonical (i.e., PTHR1/cAMP-independent) signaling. The data presented here demonstrate the lack of cAMP response in MCF7 cells to full length PTHrP(1–141) and PTH(1–34) in a wide range of doses, while maintaining a response to three known activators of adenylyl cyclase: calcitonin, prostaglandin E2 (PGE2), and forskolin. PTHR1 mRNA was detectable in MCF7 cells and was found in eight other human breast and murine mammary carcinoma cell lines. Although PTHrP overexpression in MCF7 cells changed expression levels of many genes, RNAseq analysis revealed that PTHR1 was unaltered, and only 2/32 previous PTHR1/cAMP responsive genes were significantly upregulated. Instead, PTHrP overexpression in MCF7 cells resulted in significant enrichment of the calcium signaling pathway. We conclude that PTHR1 in MCF7 breast cancer cells is not functionally linked to activation of the cAMP pathway. Gene expression responses to PTHrP overexpression must, therefore, result from autocrine or intracrine actions of PTHrP independent of PTHR1, through signals emanating from other domains within the PTHrP molecule. PMID:29867773
Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Chang Seon; Kwak, Hui Chan; Lee, Kye Sook
2011-08-15
Although methionine dependency is a phenotypic characteristic of tumor cells, it remains to be determined whether changes in sulfur amino acid metabolism occur in cancer cells resistant to chemotherapeutic medications. We compared expression/activity of sulfur amino acid metabolizing enzymes and cellular levels of sulfur amino acids and their metabolites between normal MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Adr) cells. The S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in MCF-7/Adr cells decreased to {approx} 10% relative to that in MCF-7 cells, which may have resulted from down-regulation of S-adenosylhomocysteine hydrolase. Expression of homocysteine-clearing enzymes, such as cystathionine beta-synthase, methionine synthase/methylene tetrahydrofolate reductase,more » and betaine homocysteine methyltransferase, was up-regulated in MCF-7/Adr cells, suggesting that acquiring doxorubicin resistance attenuated methionine-dependence and activated transsulfuration from methionine to cysteine. Homocysteine was similar, which is associated with a balance between the increased expressions of homocysteine-clearing enzymes and decreased extracellular homocysteine. Despite an elevation in cysteine, cellular GSH decreased in MCF-7/Adr cells, which was attributed to over-efflux of GSH into the medium and down-regulation of the GSH synthesis enzyme. Consequently, MCF-7/Adr cells were more sensitive to the oxidative stress induced by bleomycin and menadione than MCF-7 cells. In conclusion, our results suggest that regulating sulfur amino acid metabolism may be a possible therapeutic target for chemoresistant cancer cells. These results warrant further investigations to determine the role of sulfur amino acid metabolism in acquiring anticancer drug resistance in cancer cells using chemical and biological regulators involved in sulfur amino acid metabolism. - Research Highlights: > MCF-7/Adr cells showed decreases in cellular GSH, which were attributed to increase efflux of GSH. > MCF-7/Adr was more sensitive to oxidative stress induced by bleomycin and menadione. > Hcy-clearing enzymes involved in were up-regulated in MCF-7/Adr cells. > Doxorubicin-resistance attenuated Met-dependence and activated transsulfuration. > Regulating sulfur amino acid metabolism may be a possible therapeutic target.« less
Roy, Kislay; Patel, Yogesh S; Kanwar, Rupinder K; Rajkhowa, Rangam; Wang, Xungai; Kanwar, Jagat R
2016-01-01
This study used the Eri silk nanoparticles (NPs) for delivering apo-bovine lactoferrin (Apo-bLf) (~2% iron saturated) and Fe-bLf (100% iron saturated) in MDA-MB-231 and MCF-7 breast cancer cell lines. Apo-bLf and Fe-bLf-loaded Eri silk NPs with sizes between 200 and 300 nm (±10 nm) showed a significant internalization within 4 hours in MDA-MB-231 cells when compared to MCF-7 cells. The ex vivo loop assay with chitosan-coated Fe-bLf-loaded silk NPs was able to substantiate its future use in oral administration and showed the maximum absorption within 24 hours by ileum. Both Apo-bLf and Fe-bLf induced increase in expression of low-density lipoprotein receptor-related protein 1 and lactoferrin receptor in epidermal growth factor (EGFR)-positive MDA-MB-231 cells, while transferrin receptor (TfR) and TfR2 in MCF-7 cells facilitated the receptor-mediated endocytosis of NPs. Controlled and sustained release of both bLf from silk NPs was shown to induce more cancer-specific cytotoxicity in MDA-MB-231 and MCF-7 cells compared to normal MCF-10A cells. Due to higher degree of internalization, the extent of cytotoxicity and apoptosis was significantly higher in MDA-MB-231 (EGFR+) cells when compared to MCF-7 (EGFR−) cells. The expression of a prominent anticancer target, survivin, was found to be downregulated at both gene and protein levels. Taken together, all the observations suggest the potential use of Eri silk NPs as a delivery vehicle for an anti-cancer milk protein, and indicate bLf for the treatment of breast cancer. PMID:26730188
Li, Weiling; Li, Ye; Zhao, Yuwan; Yuan, Jieli; Mao, Weifeng
2014-01-01
To observe the inhibition effects of the Buthus matensii Karsch (BmK) scorpion venom extracts on the growth of human breast cancer MCF-7 cells, and to explore its mechanisms. Two common tumor cells (SMMC7721, MCF-7) were examined for the one which wasmore sensitivity to scorpion venom by MTT method. Cell cycle was determined by flow cytometry. Immunocytochemistry was applied to detect apoptosis-related protein Caspase-3 and Bcl-2 levels, while the expression of cell cycle-related protein Cyclin D1 was shown by Western blotting. Our data indicated that MCF-7 was the more sensitive cell line to scorpion venom. The extracts of scorpion venom could inhibit the growth and proliferation of MCF-7 cells. Furthermore, the extract of scorpion venom induced apoptosis through Caspase-3 up-regulation while Bcl-2 down-regulation in MCF-7 cells. In addition, the extracts of scorpion venom blocked the cells from G0/G1 phase to S phase and decreased cell cycle-related protein Cyclin D1 level after drug intervention compared with the negative control group. These results showed that the BmK scorpion venom extracts could inhibit the growth of MCF-7 cells by inducing apoptosis and blocking cell cycle in G0/G1 phase. The BmK scorpion venom extracts will be very valuable for the treatment of breast cancer.
Ghafari, Fereshteh; Rajabi, Mohammad Reza; Mazoochi, Tahereh; Taghizadeh, Mohsen; Nikzad, Hossein; Atlasi, Mohammad Ali; Taherian, Aliakbar
2017-01-01
Objective: Breast cancer is a heterogeneous disease and very common malignancy in women worldwide. The efficacy of chemotherapy as an important part of breast cancer treatment is limited due to its side effects. While pharmaceutical companies are looking for better chemicals, research on traditional medicines that generally have fewer side effects is quite interesting. In this study, apoptosis and necrosis effect of Arctium lappa and doxorubicin was compared in MCF7, and MDA-MB-231 cell lines. Materials and Methods: MCF7 and MDA-MB-231 cells were cultured in RPMI 1640 containing 10% FBS and 100 U/ml penicillin/streptomycin. MTT assay and an annexin V/propidium iodide (AV/PI) kit were used respectively to compare the survival rate and apoptotic effects of different concentrations of doxorubicin and Arctium lappa root extract on MDA-MB-231 and MCF7 cells. Results: Arctium lappa root extract was able to reduce cell viability of the two cell lines in a dose and time dependent manner similar to doxorubicin. Flow cytometry results showed that similar to doxorubicin, Arctium Lappa root extract had a dose and time dependent apoptosis effect on both cell lines. 10µg/mL of Arctium lappa root extract and 5 µM of doxorubicin showed the highest anti-proliferative and apoptosis effect in MCF7 and MDA231 cells. Conclusion: The MCF7 (ER/PR-) and MDA-MB-231 (ER/PR+) cell lines represent two major breast cancer subtypes. The similar anti-proliferative and apoptotic effects of Arctium lappa root extract and doxorubicin (which is a conventional chemotherapy drug) on two different breast cancer cell lines strongly suggests its anticancer effects and further studies. PMID:28441789
Ghafari, Fereshteh; Rajabi, Mohammad Reza; Mazoochi, Tahereh; Taghizadeh, Mohsen; Nikzad, Hossein; Atlasi, Mohammad Ali; Taherian, Aliakbar
2017-03-01
Objective: Breast cancer is a heterogeneous disease and very common malignancy in women worldwide. The efficacy of chemotherapy as an important part of breast cancer treatment is limited due to its side effects. While pharmaceutical companies are looking for better chemicals, research on traditional medicines that generally have fewer side effects is quite interesting. In this study, apoptosis and necrosis effect of Arctium lappa and doxorubicin was compared in MCF7, and MDA-MB-231 cell lines. Materials and Methods: MCF7 and MDA-MB-231 cells were cultured in RPMI 1640 containing 10% FBS and 100 U/ml penicillin/streptomycin. MTT assay and an annexin V/propidium iodide (AV/PI) kit were used respectively to compare the survival rate and apoptotic effects of different concentrations of doxorubicin and Arctium lappa root extract on MDA-MB-231 and MCF7 cells. Results: Arctium lappa root extract was able to reduce cell viability of the two cell lines in a dose and time dependent manner similar to doxorubicin. Flow cytometry results showed that similar to doxorubicin, Arctium Lappa root extract had a dose and time dependent apoptosis effect on both cell lines. 10μg/mL of Arctium lappa root extract and 5 μM of doxorubicin showed the highest anti-proliferative and apoptosis effect in MCF7 and MDA231 cells. Conclusion: The MCF7 (ER/PR-) and MDA-MB-231 (ER/PR+) cell lines represent two major breast cancer subtypes. The similar anti-proliferative and apoptotic effects of Arctium lappa root extract and doxorubicin (which is a conventional chemotherapy drug) on two different breast cancer cell lines strongly suggests its anticancer effects and further studies. Creative Commons Attribution License
Proline-linked nitrosoureas as prolidase-convertible prodrugs in human breast cancer cells.
Bielawski, Krzysztof; Bielawska, Anna; Słodownik, Tomasz; Bołkun-Skórnicka, Urszula; Muszyńska, Anna
2008-01-01
A number of novel proline-linked nitrosoureas (1-4) were synthesized and examined for cytotoxicity and influence on DNA and collagen biosynthesis in MDA-MB-231 and MCF-7 human breast cancer cells. Evaluation of the cytotoxicity of these compounds employing a MTT assay and inhibition of [(3)H]thymidine incorporation into DNA in both MDA-MB-231 and MCF-7 breast cancer cells demonstrated that compound 2, the most active of the series, proved to be only slightly less potent than carmustine. It has also been found that carmustine did not inhibit MCF&-7 cells prolidase activity, while compounds 1-4 significantly increased its activity, when used at 50-250 microM concentrations. Proline-linked nitrosoureas (1-4) also had lower ability to inhibit collagen biosynthesis in MCF-7 cells, compared to carmustine. The expression of beta(1)-integrin receptor and phosphorylated MAPK, ERK(1) and ERK(2) was significantly decreased in MCF-7 cells incubated for 24 h with 60 microM of compounds 2 and 4 compared to the control, untreated cells, whereas under the same conditions carmustine did not evoke any changes in expression of all these signaling proteins, as shown by Western immunoblot analysis. These results indicate the proline-linked nitrosoureas (1-4), represent multifunctional inhibitors of breast cancer cell growth and metabolism.
Chen, Si-Ying; Hu, Sa-Sa; Dong, Qian; Cai, Jiang-Xia; Zhang, Wei-Peng; Sun, Jin-Yao; Wang, Tao-Tao; Xie, Jiao; He, Hai-Rong; Xing, Jian-Feng; Lu, Jun; Dong, Ya-Lin
2013-01-01
Breast cancer is a common malignant tumor which affects health of women and multidrug resistance (MDR) is one of the main factors leading to failure of chemotherapy. This study was conducted to establish paclitaxel-resistant breast cancer cell line and nude mice models to explore underlying mechanisms of MDR. The breast cancer drug-sensitive cell line MCF-7 (MCF-7/S) was exposed in stepwise escalating paclitaxel (TAX) to induce a resistant cell line MCF-7/TAX. Cell sensitivity to drugs and growth curves were measured by MTT assay. Changes of cell morphology and ultrastructure were examined by optical and electron microscopy. The cell cycle distribution was determined by flow cytometry. Furthermore, expression of proteins related to breast cancer occurrence and MDR was tested by immunocytochemistry. In Vivo, nude mice were injected with MCF-7/S and MCF-7/TAX cells and weights and tumor sizes were observed after paclitaxel treatment. In addition, proteins involved breast cancer and MDR were detected by immunohistochemistry. Compared to MCF-7/S, MCF-7/TAX cells had a higher resistance to paclitaxel, cross-resistance and prolonged doubling time. Moreover, MCF-7/TAX showed obvious alterations of ultrastructure. Estrogen receptor (ER) expression was low in drug resistant cells and tumors while expression of human epidermal growth factor receptor 2 (HER2) and Ki-67 was up-regulated. P-glycoprotein (P-gp), lung resistance-related protein (LRP) and glutathione-S-transferase-π (GST-π) involved in the MDR phenotype of resistant cells and tumors were all overexpressed. The underlying MDR mechanism of breast cancer may involve increased expression of P-gp, LRP and GST-π.
An, Jaemin; Lee, Jangwon; Lee, Sang Ho; Park, Jungyul; Kim, Byungkyu
2009-06-01
In this paper, we successfully separated malignant human breast cancer epithelial cells (MCF 7) from healthy breast cells (MCF 10A) and analyzed the main parameters that influence the separation efficiency with an advanced dielectrophoresis (DEP)-activated cell sorter (DACS). Using the efficient DACS, the malignant cancer cells (MCF 7) were isolated successfully by noninvasive methods from normal cells with similar cell size distributions (MCF 10A), depending on differences between their material properties such as conductivity and permittivity, because our system was able to discern the subtle differences in the properties by generating continuously changed electrical field gradients. In order to evaluate the separation performance without considering size variations, the cells collected from each outlet were divided into size-dependent groups and counted statistically. Following that, the quantitative relative ratio of numbers between MCF 7 and MCF 10A cells in each size-dependent group separated by the DEP were compared according to applied frequencies in the range 48, 51, and 53 MHz with an applied amplitude of 8 V(pp). Finally, under the applied voltage of 48 MHz-8 V(pp) and a flow rate of 290 microm/s, MCF 7 and MCF 10A cells were separated with a maximum efficiency of 86.67% and 98.73% respectively. Therefore, our suggested system shows it can be used for detection and separation of cancerous epithelial cells from noncancerous cells in clinical applications.
Nguyen-Thi, Lam-Huyen; Nguyen, Sinh Truong; Tran, Thao Phuong; Phan-Lu, Chinh-Nhan; The Van, Trung; Van Pham, Phuc
2018-04-24
Cancer is one of the leading causes of death in the world. A great deal of effort has been made to discover new agents for cancer treatment. Xao tam phan (Paramignya trimera) is a traditional medicine of Vietnam used in cancer treatment for a long time, yet there is not much scientific evidence proving its anticancer potency. The study aimed to evaluate the toxicity of Paramignya trimera extract (PTE) on multicellular tumor spheres (MCTS) of MCF-7 cells using hanging drop technique. Firstly, MCF-7 cells were seeded on hanging drop plates, spheroid size was tracked, and growth curve was measured by MTT assay and AlamarBlue ® assay. The necrotic core of MCTS was evaluated by propidium iodide (PI) staining. Toxicity of doxorubicin (DOX) and tirapazamine (TPZ) was then tested on 3D model compared to 2D culture condition. The results showed that the IC50 of DOX on 3D MCF-7 cells was nearly 50 times greater than monolayer MCF-7 cells. In contrast, TPZ (an agent which is specifically toxic under hypoxic conditions) had significantly lower IC50 in 3D condition than in 2D. The toxicity tests for PTE showed that PTE strongly inhibited MCF-7 cells in both 2D and 3D conditions. Interestingly, the IC50 of PTE in 3D model was remarkably lower than in 2D (IC50 value was 168.9 ± 11.65 μg/ml compared to 260.8 ± 16.54 μg/ml, respectively). The invasion assay showed that PTE completely inhibited invasion of MCF-7 cells at 250 μg/mL concentration. Also, flow cytometry results indicated that PTE effectively induced apoptosis in MCF-7 spheroids in 3D condition at 250 μg/mL concentration. The results from this study emphasize the promise of PTE in cancer therapy.
In vitro anticancer activity of methyl caffeate isolated from Solanum torvum Swartz. fruit.
Balachandran, C; Emi, N; Arun, Y; Yamamoto, Y; Ahilan, B; Sangeetha, B; Duraipandiyan, V; Inaguma, Yoko; Okamoto, Akinao; Ignacimuthu, S; Al-Dhabi, N A; Perumal, P T
2015-12-05
The present study was undertaken to investigate the anticancer activity of methyl caffeate isolated from Solanum torvum Swartz. fruit and to explore the molecular mechanisms of action in MCF-7 cells. Cytotoxic properties of hexane, ethyl acetate and methanol extracts were carried out against MCF-7 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Ethyl acetate extract showed good cytototoxic activities compared to hexane and methanol extracts. Methyl caffeate was isolated from the ethyl acetate extract using column chromatography. Cytotoxic properties of methyl caffeate was investigated against MCF-7, A549, COLO320, HepG-2 and Vero cells. The compound showed potent cytotoxic properties against MCF-7 cells compared to A549, COLO320 and HepG-2 cells. Methyl caffeate significantly reduced cell proliferation and increased formation of fragmented DNA and apoptotic body in MCF-7 cells. Bcl-2, Bax, Bid, p53, caspase-3, PARP and cytochrome c release were detected by western blot analysis. The activities of caspases-3 and PARP gradually increased after the addition of isolated compound. Bcl-2 protein was down regulated; Bid and Bax were up regulated after the treatment with methyl caffeate. Molecular docking studies showed that the compound bound stably to the active sites of poly (ADP-ribose) polymerase-1 (PARP1), B cell CLL/lymphoma-2 (BCL-2), E3 ubiquitin-protein ligase (MDM2) and tubulin. The results strongly suggested that methyl caffeate induced apoptosis in MCF-7 cells via caspase activation through cytochrome c release from mitochondria. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
5-aminolevulinic acid-mediated photodynamic therapy on Hep-2 and MCF-7c3 cells.
Alvarez, María Gabriela; Lacelli, M S; Rivarola, Viviana; Batlle, Alcira; Fukuda, Haydée
2007-01-01
The cytotoxic effect of 5-aminolevulinic acid (ALA) induced protoporphyrin IX (PPIX) on two human carcinoma cell lines, MCF-7c3 cells and Hep 2 cells, was studied. In both cell lines, PPIX content depends on the ALA concentration and incubation time. The maximal PPIX content was higher in the MCF-7c3 cells, reaching a value of 8 microg/10(6) cells, compared to the Hep-2 cells, which accumulated 3.2 microg/10(6) cells. Treatment of cells with the iron chelator desferrioxamine prior to ALA exposure enhances the amount of PPIX, consequently diminishing enzymatic activity of ferroquelatase. Photo sensitization of the cells was in correlation with the PPIX content; therefore, conditions leading to 80% cell death in the MCF-7c3 cells provoke a 50% cell death in the Hep 2 cells. Using fluorescence microscopy, cell morphology was analyzed after incubation with 1 mM ALA during 5 hr and irradiation with 54 Jcm(-2); 24 hr post-PDT, MCF-7c3 cells revealed the typical morphological changes of necrosis. Under the same conditions, Hep-2 cells produced chromatine fragmentation characteristic of apoptosis. PPIX accumulation was observed to occur in a perinuclear region in the MCF-7c3 cells; while in Hep-2 cells, it was localized in lysosomes. Different mechanisms of cell death were observed in both cell lines, depending on the different intracellular localization of PPIX.
Wang, Tian-Xiao; Yang, Xiao-Hong
2008-05-01
This study investigated the reversal effect of isotetrandrine, an isoquinoline alkaloid extracted from Caulis mahoniae, on P-glycoprotein-mediated multidrug resistance in human breast cancer doxorubicin-resistant (MCF-7/DOX) cells. RT-PCR assay and immunity histochemistry assay were used to determine the expression level of mdrl gene and P-gp in MCF-7/DOX cells to elucidate resistant character of MCF-7/DOX cells. The activity of isotetrandine to enhance doxorubicin cytotoxicity was tested using MTT (3-(4, 5-dimethyhthiazol)-2,5 -diphenyltetrazolium bromide) assay and was evaluated by the reversal fold (RF) values. Intracellular accumulation of doxorubicin was assessed by the determination of doxorubicin-associated fluorescence intensity. Effect of isotetrandrine on the expression level of P-gp in MCF-7/DOX cells was then determined by immunity histochemistry assay. The ability of isotetrandrine to inhibit P-gp function was evaluated by detecting the accumulation and efflux of rhodamine 123 (Rh123) with flow cytometry (FCM). Verapamil was employed as a comparative agent in whole experiment. The results indicated that MCF-7/DOX cells had phenotype of MDR and that the positive expression of P-gp was their resistant character. 10 microg x mL(-1) isotetrandrine could distinctly enhance cytotoxicity of DOX in MCF-7/DOX cells and reversal fold (RF) was significantly higher than that of verapamil (P < 0.05), but it hardly affected cytotoxicity of DOX in MCF-7 cells and the expression level of P-gp in MCF-7/DOX cells. The ability of isotetrandrine to inhibit P-gp function was reversible, because incubation of MCF-7/DOX cells with isotetrandrine caused a marked increase in uptake and a notable decrease in efflux of Rh123 and a marked increase of intracellular DOX concentrations. In conclusion, isotetrandrine exhibited potent effect on the reversal of P-gp-mediated MDR in vitro, suggesting that it might become a candidate of effective MDR reversing agent in cancer chemotherapy.
Samanta, Suman K; Lee, Joomin; Hahm, Eun-Ryeong; Singh, Shivendra V
2018-07-01
We have reported previously that withaferin A (WA) prevents breast cancer development in mouse mammary tumor virus-neu (MMTV-neu) transgenic mice, but the mechanism is not fully understood. Unbiased proteomics of the mammary tumors from control- and WA-treated MMTV-neu mice revealed downregulation of peptidyl-prolyl cis/trans isomerase (Pin1) protein by WA administration. The present study extends these findings to elucidate the role of Pin1 in cancer chemopreventive mechanisms of WA. The mammary tumor level of Pin1 protein was lower by about 55% in WA-treated rats exposed to N-methyl-N-nitrosourea, compared to control. Exposure of MCF-7 and SK-BR-3 human breast cancer cells to WA resulted in downregulation of Pin1 protein. Ectopic expression of Pin1 attenuated G 2 and/or mitotic arrest resulting from WA treatment in both MCF-7 and SK-BR-3 cells. WA-induced apoptosis was increased by Pin1 overexpression in MCF-7 cells but not in the SK-BR-3 cell line. In addition, molecular docking followed by mass spectrometry indicated covalent interaction of WA with cysteine 113 of Pin1. Overexpression of Pin1 C113A mutant failed to attenuate WA-induced mitotic arrest or apoptosis in the MCF-7 cells. Furthermore, antibody array revealed upregulation of proapoptotic insulin-like growth factor binding proteins (IGFBPs), including IGFBP-3, IGFBP-4, IGFBP-5, and IGFBP-6, in Pin1 overexpressing MCF-7 cells following WA treatment when compared to empty vector transfected control cells. These data support a crucial role of the Pin1 for mitotic arrest and apoptosis signaling by WA at least in the MCF-7 cells. © 2018 Wiley Periodicals, Inc.
Yuan, Jie; Liu, Manran; Yang, Li; Tu, Gang; Zhu, Qing; Chen, Maoshan; Cheng, Hong; Luo, Haojun; Fu, Weijie; Li, Zhenhua; Yang, Guanglun
2015-05-21
Acquired tamoxifen resistance remains the major obstacle to breast cancer endocrine therapy. β1-integrin was identified as one of the target genes of G protein-coupled estrogen receptor (GPER), a novel estrogen receptor recognized as an initiator of tamoxifen resistance. Here, we investigated the role of β1-integrin in GPER-mediated tamoxifen resistance in breast cancer. The expression of β1-integrin and biomarkers of epithelial-mesenchymal transition were evaluated immunohistochemically in 53 specimens of metastases and paired primary tumors. The function of β1-integrin was investigated in tamoxifen-resistant (MCF-7R) subclones, derived from parental MCF-7 cells, and MCF-7R β1-integrin-silenced subclones in MTT and Transwell assays. Involved signaling pathways were identified using specific inhibitors and Western blotting analysis. GPER, β1-integrin and mesenchymal biomarkers (vimentin and fibronectin) expression in metastases increased compared to the corresponding primary tumors; a close expression pattern of β1-integrin and GPER were in metastases. Increased β1-integrin expression was also confirmed in MCF-7R cells compared with MCF-7 cells. This upregulation of β1-integrin was induced by agonists of GPER and blocked by both antagonist and knockdown of it in MCF-7R cells. Moreover, the epidermal growth factor receptor/extracellular regulated protein kinase (EGFR/ERK) signaling pathway was involved in this transcriptional regulation since specific inhibitors of these kinases also reduced the GPER-induced upregulation of β1-integrin. Interestingly, silencing of β1-integrin partially rescued the sensitivity of MCF-7R cells to tamoxifen and the α5β1-integrin subunit is probably responsible for this phenomenon. Importantly, the cell migration and epithelial-mesenchymal transition induced by cancer-associated fibroblasts, or the product of cancer-associated fibroblasts, fibronectin, were reduced by knockdown of β1-integrin in MCF-7R cells. In addition, the downstream kinases of β1-integrin including focal adhesion kinase, Src and AKT were activated in MCF-7R cells and may be involved in the interaction between cancer cells and cancer-associated fibroblasts. GPER/EGFR/ERK signaling upregulates β1-integrin expression and activates downstream kinases, which contributes to cancer-associated fibroblast-induced cell migration and epithelial-mesenchymal transition, in MCF-7R cells. GPER probably contributes to tamoxifen resistance via interaction with the tumor microenvironment in a β1-integrin-dependent pattern. Thus, β1-integrin may be a potential target to improve anti-hormone therapy responses in breast cancer patients.
Zhang, Jie; Liu, Dan; Zhang, Mengjun; Sun, Yuqi; Zhang, Xiaojun; Guan, Guannan; Zhao, Xiuli; Qiao, Mingxi; Chen, Dawei; Hu, Haiyang
2016-01-01
Polyamidoamine dendrimers, which can deliver drugs and genetic materials to resistant cells, are attracting increased research attention, but their transportation behavior in resistant cells remains unclear. In this paper, we performed a systematic analysis of the cellular uptake, intracellular transportation, and efflux of PAMAM-NH2 dendrimers in multidrug-resistant breast cancer cells (MCF-7/ADR cells) using sensitive breast cancer cells (MCF-7 cells) as the control. We found that the uptake rate of PAMAM-NH2 was much lower and exocytosis of PAMAM-NH2 was much greater in MCF-7/ADR cells than in MCF-7 cells due to the elimination of PAMAM-NH2 from P-glycoprotein and the multidrug resistance-associated protein in MCF-7/ADR cells. Macropinocytosis played a more important role in its uptake in MCF-7/ADR cells than in MCF-7 cells. PAMAM-NH2 aggregated and became more degraded in the lysosomal vesicles of the MCF-7/ADR cells than in those of the MCF-7 cells. The endoplasmic reticulum and Golgi complex were found to participate in the exocytosis rather than endocytosis process of PAMAM-NH2 in both types of cells. Our findings clearly showed the intracellular transportation process of PAMAM-NH2 in MCF-7/ADR cells and provided a guide of using PAMAM-NH2 as a drug and gene vector in resistant cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh Tzechen; Brander Cancer Research Institute, New York Medical College, Hawthorne, NY 10532; Wijeratne, E. Kithsiri
2005-11-11
Ponicidin and oridonin are novel diterpenoids isolated from Rabdosia rubescens. We tested their effects in MCF-7 and MDA-MB-231 cells, as representing low and high invasive breast carcinoma, with normal MCF-10A cells. Clonogenicity and proliferation in MCF-7 cells were inhibited more significantly by ponicidin than oridonin, while the reverse was observed in MCF-10A cells. Ponicidin and oridonin induced S/G{sub 2}M arrest and G{sub 1}/S block in MCF-7 cells. In MCF-10A cells treated with either diterpenoid, induction of apoptosis was observed. Moreover, oridonin almost completely blocked MCF-10A progression from S to G{sub 2}/M phase; in contrast, ponicidin-treated MCF-10A cells showed no discernablemore » changes in cell cycle phase distribution. Neither diterpenoid affected growth of MDA-MB-231 cells, at the dose range effective for MCF-7 or MCF-10A cells. Ponicidin-treated MCF-7 cells expressed reduced levels of cyclin B1, cdc2, transcription factor E2F, and Rb including phosphorylation at S780. Less pronounced effects were found in cells treated with oridonin. Neither compound altered cyclin D1 and cdk4 in MCF-7 cells. In MCF-10A cells, oridonin was more active than ponicidin in inhibiting the expression of cyclin B1, cdc2, S780-phosphorylated Rb, and E2F. To further investigate induction of apoptosis in MCF-10A cells, we measured changes in NF-{kappa}B. Decreases in p65 or p50 forms of NF-{kappa}B and its upstream regulator I-{kappa}B were found in oridonin-treated MCF-10A and not MCF-7 cells. Taken together, these results provide a mechanistic framework for the cellular effects of ponicidin and oridonin in different stage breast cancer cells.« less
Kim, Hoe Suk; Tian, Lianji; Kim, Hyeonjin; Moon, Woo Kyung
2017-01-01
Metabolites linked to changes in choline kinase-α (CK-α) expression and drug resistance, which contribute to survival and autophagy mechanisms, are attractive targets for breast cancer therapies. We previously reported that autophagy played a causative role in driving tamoxifen (TAM) resistance of breast cancer cells (BCCs) and was also promoted by CK-α knockdown, resulting in the survival of TAM-resistant BCCs. There is no comparative study yet about the metabolites resulting from BCCs with TAM-resistance and CK-α knockdown. Therefore, the aim of this study was to explore the discriminant metabolic biomarkers responsible for TAM resistance as well as CK-α expression, which might be linked with autophagy through a protective role. A total of 33 intracellular metabolites, including a range of amino acids, energy metabolism-related molecules and others from cell extracts of the parental cells (MCF-7), TAM-resistant cells (MCF-7/TAM) and CK-α knockdown cells (MCF-7/shCK-α, MCF-7/TAM/shCK-α) were analyzed by proton nuclear magnetic resonance spectroscopy (1H-NMRS). Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) revealed the existence of differences in the intracellular metabolites to separate the 4 groups: MCF-7 cells, MCF-7/TAM cells, MCF-7-shCK-α cells, and MCF-7/TAM/shCK-α cells. The metabolites with VIP>1 contributed most to the differentiation of the cell groups, and they included fumarate, UA (unknown A), lactate, myo-inositol, glycine, phosphocholine, UE (unknown E), glutamine, formate, and AXP (AMP/ADP/ATP). Our results suggest that these altered metabolites would be promising metabolic biomarkers for a targeted therapeutic strategy in BCCs that exhibit TAM-resistance and aberrant CK-α expression, which triggers a survival and drug resistance mechanism.
GHRICI, MOHAMED; EL ZOWALATY, MOHAMED; OMAR, ABDUL RAHMAN; IDERIS, AINI
2013-01-01
Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications. PMID:23807159
Ghrici, Mohamed; El Zowalaty, Mohamed; Omar, Abdul Rahman; Ideris, Aini
2013-09-01
Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications.
Samarghandian, Saeed; Hadjzadeh, Mousa-Al-Reza; Afshari, Jalil Tavakkol; Hosseini, Mohadeseh
2014-06-17
We investigated the potential of galangal rhizomes to induce cytotoxic and apoptotic effects in the cultured human breast carcinoma cell line, (MCF-7) in compare with the non-malignant (MRC-5) cells. Both cells were cultured in DMEM medium and treated with galangal rhizomes for three consecutive days. The percentage of apoptotic cells was determined by flow cytometry using Annexin-V fluorescein isothiocyanate. The results showed that the ethanolic extract of galangal rhizomes decreased cell viability in the malignant cells as a concentration- and time- dependent manner. The IC50 values against MCF-7 were determined at 400.0 ± 11.7 and 170.0 ± 5.9 μg/ml after 48 and 72 h respectively. The morphology of MCF-7 cells treated with the ethanolic extract confirmed the cell proliferation assay results. Alpinia galanga induced apoptosis in MCF-7 cells, as determined by flow cytometry. We concluded that the extract of Alpinia galanga exerts pro-apoptotic effects in a breast cancer-derived cell line and could be considered as a potential chemotherapeutic agent in breast cancer.
Kang, Han Chang; Samsonova, Olga; Bae, You Han
2010-01-01
While multidrug resistance (MDR) has been a significant issue in cancer chemotherapy, delivery resistance to various anticancer biotherapeutics, including genes, has not been widely recognized as a property of MDR. This study aims to provide a better understanding of the transfection characteristics of drug-sensitive and drug-resistant cells by tracing microenvironmental pHs of two representative polymer vectors: poly(l-lysine) and polyethyleneimine. Drug-sensitive breast MCF7 cells had four- to seven-times higher polymeric transfection efficiencies than their counterpart drug-resistant MCF7/ADR-RES cells. Polyplexes in MCF7/ADR-RES cells after endocytosis were exposed to a more acidic microenvironment than those in MCF7 cells; the MDR cells show faster acidification rates in endosomes/lysosomes than the drug-sensitive cells after endocytosis (in the case of PLL/pDNA complexes, ~ pH 5.1 for MCF7/ADR-RES cells vs. ~ pH 6.8 for MCF7 cells at 0.5 hr post-transfection). More polyplexes were identified trapped in acidic subcellular compartments of MCF7/ADR-RES cells than in MCF7 cells, suggesting that they lack endosomal escaping activity. These findings demonstrate that the design of polymer-based gene delivery therapeutics should take into account the pH of subcellular compartments. PMID:20092888
Fatty Acid Synthase Mediates the Epithelial-Mesenchymal Transition of Breast Cancer Cells
Li, Junqin; Dong, Lihua; Wei, Dapeng; Wang, Xiaodong; Zhang, Shuo; Li, Hua
2014-01-01
This study aimed to investigate the role of fatty acid synthase (FASN) in the epithelial-mesenchymal transition (EMT) of breast cancer cells. MCF-7 cells and MCF-7 cells overexpressing mitogen-activated protein kinase 5 (MCF-7-MEK5) were used in this study. MCF-7-MEK5 cells showed stable EMT characterized by increased vimentin and decreased E-cadherin expression. An In vivo animal model was established using the orthotopic injection of MCF-7 or MCF-7-MEK5 cells. Real-time quantitative PCR and western blotting were used to detect the expression levels of FASN and its downstream proteins liver fatty acid-binding protein (L-FABP) and VEGF/VEGFR-2 in both in vitro and in vivo models (nude mouse tumor tissues). In MCF-7-MEK5 cells, significantly increased expression of FASN was associated with increased levels of L-FABP and VEGF/VEGFR-2. Cerulenin inhibited MCF-7-MEK5 cell migration and EMT, and reduced FASN expression and down-stream proteins L-FABP, VEGF, and VEGFR-2. MCF-7-MEK5 cells showed higher sensitivity to Cerulenin than MCF-7 cells. Immunofluorescence revealed an increase of co-localization of FASN with VEGF on the cell membrane and with L-FABP within MCF-7-MEK5 cells. Immunohistochemistry further showed that increased percentage of FASN-positive cells in the tumor tissue was associated with increased percentages of L-FABP- and VEGF-positive cells and the Cerulenin treatment could reverse the effect. Altogether, our results suggest that FASN is essential to EMT possibly through regulating L-FABP, VEGF and VEGFR-2. This study provides a theoretical basis and potential strategy for effective suppression of malignant cells with EMT. PMID:24520215
27-hydroxycholesterol and the expression of three estrogen-sensitive proteins in MCF7 cells.
Cruz, Pamela; Epuñán, María José; Ramírez, María Eugenia; Torres, Cristian G; Valladares, Luis E; Sierralta, Walter D
2012-09-01
The principal aim of this study was to analyze in estrogen receptor-positive MCF7 cells the response of three estrogen-dependent proteins to 27-hydroxycholesterol (27OHC), a major circulating cholesterol metabolite. Immunofluorescence, immunoblotting and immunogold labelling analyses of MCF7 cells exposed for up to 72 h to 2 nM estradiol (E2) or to 2 µM 27OHC demonstrated similar responses in the expression of MnSOD and ERβ compared to the non-stimulated cells. Thus, the results confirm 27OHC's function as a novel selective estrogen receptor modulator (SERM). The epithelial to mesenchymal transition (EMT), observed in MCF7 cells stimulated for longer than 48 h with 2 µM 27OHC, was accompanied by lower immunoreactive levels of nuclear FOXM1 in comparison to E2-treated cells. The results presented in this study are discussed taking into consideration the relationship of hypercholesterolemia, 27OHC production, ROS synthesis and macrophage infiltration, potentially occurring in obese patients with ERα-positive, infiltrated mammary tumors.
HRD1 sensitizes breast cancer cells to Tamoxifen by promoting S100A8 degradation
Liang, XiuBin; Li, Min; Shi, Ming; Li, Yan; Jenkins, Gareth; Lin, XiaWen; Wei, XueFei; Jia, ZhiJun; Feng, XueFeng; Su, DongMing; Guo, WanHua
2017-01-01
Estrogen receptor alpha positive (ER+) of breast cancer could develop resistance to antiestrogens including Tamoxifen. Our previous study showed that the E3 ubiquitin ligase HRD1 played an important role in anti-breast cancer. However, its role in chemotherapy resistance hasn't been reported. In this study, we found that HRD1 expression was downregulated in Tamoxifen-resistant breast cancer cell line MCF7/Tam compared to the Tamoxifen sensitive cell line MCF7. Moreover, S100A8 is the direct target of HRD1 by proteome analysis. Our data showed that HRD1 decreased the protein level of S100A8 through ubiquitination while HRD1 was regulated by acetylation of histone. More importantly, HRD1 knockdown significantly increased the cell survival of MCF7 cells to the Tamoxifen treatment. HRD1 overexpression sensitized MCF7/Tam cells to the Tamoxifen treatment in vitro and in vivo. In conclusion, the decrease of HRD1 expression contributed to Tamoxifen resistance in breast cancer. PMID:28423597
XIONG, YAO; MA, XIU-YING; ZHANG, ZIRAN; SHAO, ZHEN-JUN; ZHANG, YUAN-YUAN; ZHOU, LI-MING
2013-01-01
β,β-dimethylacrylshikonin (DA) is a natural naphthoquinone derivative compound of Lithospermum erythrorhizon with various biological activities. The present study aimed to investigate the inhibitory effects and underlying mechanisms of DA in human breast carcinoma MCF-7 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that DA inhibited the proliferation of MCF-7 cells in a dose- and time-dependent manner. The half maximal inhibitory concentration of DA with regard to the proliferation of MCF-7 cells was 0.050±0.016 mM. The characteristics of cell apoptosis, including cell shrinkage, nuclear pyknosis and chromatin condensation, were all observed in DA-treated cells. DA decreased the expression levels of Bcl-2 and increased the expression of Bax and caspase-3 compared with those in the control. DA inhibited the activity of the nuclear factor (NF)-κB pathway, by downregulating the expression of the p65 subunit, and inhibited the Iκb phosphorylation. DA inhibits the proliferation of MCF-7 cells in vitro by inducing apoptosis through the downregulation of Bcl-2, upregulation of Bax and partial inactivation of the NF-κB pathway. PMID:24260077
2010-01-01
Background Global profiling of in vivo protein-DNA interactions using ChIP-based technologies has evolved rapidly in recent years. Although many genome-wide studies have identified thousands of ERα binding sites and have revealed the associated transcription factor (TF) partners, such as AP1, FOXA1 and CEBP, little is known about ERα associated hierarchical transcriptional regulatory networks. Results In this study, we applied computational approaches to analyze three public available ChIP-based datasets: ChIP-seq, ChIP-PET and ChIP-chip, and to investigate the hierarchical regulatory network for ERα and ERα partner TFs regulation in estrogen-dependent breast cancer MCF7 cells. 16 common TFs and two common new TF partners (RORA and PITX2) were found among ChIP-seq, ChIP-chip and ChIP-PET datasets. The regulatory networks were constructed by scanning the ChIP-peak region with TF specific position weight matrix (PWM). A permutation test was performed to test the reliability of each connection of the network. We then used DREM software to perform gene ontology function analysis on the common genes. We found that FOS, PITX2, RORA and FOXA1 were involved in the up-regulated genes. We also conducted the ERα and Pol-II ChIP-seq experiments in tamoxifen resistance MCF7 cells (denoted as MCF7-T in this study) and compared the difference between MCF7 and MCF7-T cells. The result showed very little overlap between these two cells in terms of targeted genes (21.2% of common genes) and targeted TFs (25% of common TFs). The significant dissimilarity may indicate totally different transcriptional regulatory mechanisms between these two cancer cells. Conclusions Our study uncovers new estrogen-mediated regulatory networks by mining three ChIP-based data in MCF7 cells and ChIP-seq data in MCF7-T cells. We compared the different ChIP-based technologies as well as different breast cancer cells. Our computational analytical approach may guide biologists to further study the underlying mechanisms in breast cancer cells or other human diseases. PMID:21167036
Yin, Heng; Zhu, Qing; Liu, Manran; Tu, Gang; Li, Qing; Yuan, Jie; Wen, Siyang; Yang, Guanglun
2017-10-01
Tamoxifen resistance is a major clinical challenge in breast cancer treatment. Our previous studies find that GPER and its down-stream signaling play a pivotal role in the development of tamoxifen (TAM) resistance. cDNA array analysis indicated a set of genes associated with cell apoptosis are aberrant in GPER activated and TAM-resistant MCF-7R cells compared with TAM-sensitive MCF-7 cells. Among these genes, Bim (also named BCL2-L11), a member of the BH3-only pro-apoptotic protein family is significantly decreased, and TRIM RING finger protein TRIM2 (a ubiquitin ligase) is highly expressed in MCF-7R. To understand the mechanism of TAM-resistance in GPER activated ER+ breast cancer, the function of TRIM2 and Bim inducing cell apoptosis was studied. By using immunohistochemical and western blot analysis, there is an adverse correlation between TRIM2 and Bim in TAM-resistant breast tumor tissues and MCF-7R cells. Knockdown Bim in TAM-sensitive MCF-7 cells or overexpression of Bim in TAM-resistant MCF-7 cells significantly changed its sensibility to TAM through altering the levels of cleaved PARP and caspase-3. Activation of GPER and its downstream signaling MAPK/ERK, not PI3K/AKT, led to enhanced TRIM2 protein levels and affected the binding between TRIM2 and Bim which resulted in a reduced Bim in TAM-resistant breast cancer cells. Thus, the present study provides a novel insight to TAM-resistance in ER-positive breast cancer cells.
Jaiswal, A K; Nebert, D W; Eisen, H W
1985-08-01
The human MCF-7 and the mouse Hepa-1 cell culture lines were compared for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]anthracene (BA) and TCDD- and BA-specific binding in the cytosol and nucleus. The effective concentration of BA in the growth medium required to induce either enzyme to 50% of its maximally inducible activity (EC50) was the same (5-11 microM) in both MCF-7 and Hepa-1 cells. On the other hand, the EC50 for TCDD in MCF-7 cells (5-25 nM) was more than 40-fold greater than that in Hepa-1 cells (0.4 to 0.6 nM). P1-450- and P3-450-specific mouse cDNA probes were used to quantitate mRNA induction in the Hepa-1 cell line. P1-450 mRNA was induced markedly by TCDD and benzo[a] anthracene, whereas P3-450 mRNA was induced negligibly. A P1-450-specific human cDNA probe was used to quantitate P1-450 mRNA induction in the MCF-7 cell line. Aryl hydrocarbon hydroxylase inducibility by TCDD or BA always paralleled P1-450 mRNA inducibility in either the mouse or human line. Although the cytosolic Ah receptor in Hepa-1 cells was easily detected by sucrose density gradient centrifugation, gel permeation chromatography, and anion-exchange high-performance liquid chromatography, the cytosolic receptor cannot be detected in MCF-7 cells. Following in vivo exposure of cultures to radiolabeled TCDD, the intranuclear concentration of inducer-receptor complex was at least fifty times greater in Hepa-1 than MCF-7 cultures. The complete lack of measurable cytosolic receptor and almost totally absent inducer-receptor complex in the nucleus of MCF-7 cells was, therefore, out of proportion to its capacity for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility. This MCF-7 line should provide an interesting model for a better understanding of the mechanisms of drug-metabolizing enzyme induction by polycyclic aromatic compounds, including the Ah receptor-mediated mechanism.
Ambrosio, Maria Rosaria; D'Esposito, Vittoria; Costa, Valerio; Liguoro, Domenico; Collina, Francesca; Cantile, Monica; Prevete, Nella; Passaro, Carmela; Mosca, Giusy; De Laurentiis, Michelino; Di Bonito, Maurizio; Botti, Gerardo; Franco, Renato; Beguinot, Francesco; Ciccodicola, Alfredo; Formisano, Pietro
2017-12-12
Type 2 diabetes and obesity are negative prognostic factors in patients with breast cancer (BC). We found that sensitivity to tamoxifen was reduced by 2-fold by 25 mM glucose (High Glucose; HG) compared to 5.5 mM glucose (Low Glucose; LG) in MCF7 BC cells. Shifting from HG to LG ameliorated MCF7 cell responsiveness to tamoxifen. RNA-Sequencing of MCF7 BC cells revealed that cell cycle-related genes were mainly affected by glucose. Connective Tissue Growth Factor (CTGF) was identified as a glucose-induced modulator of cell sensitivity to tamoxifen. Co-culturing MCF7 cells with human adipocytes exposed to HG, enhanced CTGF mRNA levels and reduced tamoxifen responsiveness of BC cells. Inhibition of adipocyte-released IL8 reverted these effects. Interestingly, CTGF immuno-detection in bioptic specimens from women with estrogen receptor positive (ER + ) BC correlated with hormone therapy resistance, distant metastases, reduced overall and disease-free survival. Thus, glucose affects tamoxifen responsiveness directly modulating CTGF in BC cells, and indirectly promoting IL8 release by adipocytes.
Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline.
Fan, S; Smith, M L; Rivet, D J; Duba, D; Zhan, Q; Kohn, K W; Fornace, A J; O'Connor, P M
1995-04-15
The possibility that appropriately designed chemotherapy could act selectively against p53-defective tumor cells was explored in MCF-7 human breast cancer cells. These cells were chosen because they have normal p53 function but are representative of a tumor cell type that does not readily undergo p53-dependent apoptosis. Two sublines (MCF-7/E6 and MCF-7/mu-p53) were established in which p53 function was disrupted by transfection with either the human papillomavirus type-16 E6 gene or a dominant-negative mutant p53 gene. p53 function in MCF-7/E6 and MCF-7/mu-p53 cells was defective relative to control cells in that there were no increases in p53 or p21Waf1/Cip1 protein levels and no G1 arrest following exposure to ionizing radiation. Survival assays showed that p53 disruption sensitized MCF-7 cells to cisplatin (CDDP) but not to several other DNA-damaging agents. CDDP sensitization was not limited to MCF-7 cells since p53 disruption in human colon carcinoma RKO cells also enhanced sensitivity to CDDP. Contrary to the other DNA-damaging agents tested, CDDP-induced DNA lesions are repaired extensively by nucleotide excision, and in agreement with a defect in this process, MCF-7/E6 and MCF-7/mu-p53 cells exhibited a reduced ability to repair a CDDP-damaged chloramphenicol acetyltransferase-reporter plasmid transfected into the cells. Therefore, we attributed the increased CDDP sensitivity of MCF-7 cells with disrupted p53 to defects in G1 checkpoint control, nucleotide excision repair, or both. The G2 checkpoint inhibitor pentoxifylline exhibited synergism with CDDP in killing MCF-7/E6 cells but did not affect sensitivity of the control cells. Moreover, pentoxifylline inhibited G2 checkpoint function to a greater extent in MCF-7/E6 than in the parental cells. These results suggested that, in the absence of p53 function, cancer cells are more vulnerable to G2 checkpoint abrogators. Our results show that a combination of CDDP and pentoxifylline is capable of synergistic and preferential killing of p53-defective tumor cells that do not readily undergo apoptosis.
Sadeghzadeh, Masoud; Salahinejad, Maryam; Zarezadeh, Nahid; Ghandi, Mehdi; Baghery, Maryam Keshavarz
2017-11-01
In current study, antitumor activity of two series of the newly synthesized spiropyrroloquinoline isoindolinone and spiropyrroloquinoline aza-isoindolinone scaffolds was evaluated against three human breast normal and cancer cell lines (MCF-10A, MCF-7 and SK-BR-3) and compared with cytotoxicity values of doxorubicin and colchicine as the standard drugs. It was found that several compounds were endowed with cytotoxicity in the low micromolar range. Among these two series, compounds 6i, 6j, 6k and 7l, 7m, 7n, 7o containing 3-ethyl-1H-indole moiety were found to be highly effective against both cancer cell lines ranging from [Formula: see text] to [Formula: see text] in comparison with the corresponding analogs. Compared with human cancer cells, the most potent compounds did not show high cytotoxicity against human breast normal MCF-10A cells. Generally, most of the evaluated compounds 6a-l and 7a-o series showed more antitumor activity against SK-BR-3 than MCF-7 cells. Moreover, comparative molecular field analysis (CoMFA) as a popular tools of three-dimensional quantitative structure-activity relationship (3D-QSAR) studies was carried out on 27 spiropyrroloquinolineisoindolinone and spiropyrroloquinolineaza-isoindolinone derivatives with antitumor activity against on SK-BR-3 cells. The obtained CoMFA models showed statistically excellent performance, which also possessed good predictive ability for an external test set. The results confirm the important effect of molecular steric and electrostatic interactions of these compounds on in vitro cytotoxicity against SK-BR-3.
2014-01-01
Background We investigated the potential of galangal rhizomes to induce cytotoxic and apoptotic effects in the cultured human breast carcinoma cell line, (MCF-7) in compare with the non-malignant (MRC-5) cells. Methods Both cells were cultured in DMEM medium and treated with galangal rhizomes for three consecutive days. The percentage of apoptotic cells was determined by flow cytometry using Annexin-V fluorescein isothiocyanate. Results The results showed that the ethanolic extract of galangal rhizomes decreased cell viability in the malignant cells as a concentration- and time- dependent manner. The IC50 values against MCF-7 were determined at 400.0 ± 11.7 and 170.0 ± 5.9 μg/ml after 48 and 72 h respectively. The morphology of MCF-7 cells treated with the ethanolic extract confirmed the cell proliferation assay results. Alpinia galanga induced apoptosis in MCF-7 cells, as determined by flow cytometry. Conclusions We concluded that the extract of Alpinia galanga exerts pro-apoptotic effects in a breast cancer-derived cell line and could be considered as a potential chemotherapeutic agent in breast cancer. PMID:24935101
Cytokinetic study of MCF-7 cells treated with commercial and recombinant bromelain.
Fouz, Nour; Amid, Azura; Hashim, Yumi Zuhanis Has-Yun
2014-01-01
Breast cancer is a leading cause of death in women. The available chemotherapy drugs have been associated with many side effects. Bromelain has novel medicinal qualities including anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Commercially available bromelain is obtained through tedious methods; therefore, recombinant bromelain may provide a cheaper and simpler choice with similar quality. This study aimed to assess the effects of commercial and recombinant bromelain on the cytokinetic behavior of MCF-7 breast cancer cells and their potential as therapeutic alternatives in cancer treatment. Cytotoxic activities of commercial and recombinant bromelain were determined using (sulforhodamine) SRB assay. Next, cell viability assays were conducted to determine effects of commercial and recombinant bromelain on MCF-7 cell cytokinetic behavior. Finally, the established growth kinetic data were used to modify a model that predicts the effects of commercial and recombinant bromelain on MCF-7 cells. Commercial and recombinant bromelain exerted strong effects towards decreasing the cell viability of MCF-7 cells with IC50 values of 5.13 μg/mL and 6.25 μg/mL, respectively, compared to taxol with an IC50 value of 0.063 μg/mL. The present results indicate that commercial and recombinant bromelain both have anti-proliferative activity, reduced the number of cell generations from 3.92 to 2.81 for commercial bromelain and to 2.86 for recombinant bromelain, while with taxol reduction was to 3.12. Microscopic observation of bromelain-treated MCF-7 cells demonstrated detachment. Inhibition activity was verified with growth rates decreased dynamically from 0.009 h-1 to 0.0059 h-1 for commercial bromelain and to 0.0063 h-1 for recombinant bromelain. Commercial and recombinant bromelain both affect cytokinetics of MCF-7 cells by decreasing cell viability, demonstrating similar strength to taxol.
Velaei, Kobra; Samadi, Nasser; Soltani, Sina; Barazvan, Balal; Soleimani Rad, Jafar
2017-07-01
Shedding light on chemoresistance biology of breast cancer could contribute to enhance the clinical outcome. Intrinsic or acquired resistance to chemotherapy is a major problem in breast cancer treatment. The NFκB pathway by siRNAP65 and JSH-23 as a translocational inhibitor of NFκBP65 in the doxorubicin-resistant MCF-7 (MCF-7/Dox) and MCF-7 cells was blocked. Then, the ABC transporter expression and function were assessed by real-time qRT-PCR and flow cytometry, respectively. Induction of apoptosis was evaluated after inhibition of the NFΚB pathway as well. Our study underlined the upregulation of NFκBP65 and anti-apoptotic Bcl-2 and downregulation of pro-apoptotic Bax in the MCF-7/Dox cells compared with control MCF-7 cells. Here, we showed that interplay between nuclear factor kappa B P65 (NFkBP65) as a transcriptional regulator and ABC transporters in the MCF-7/Dox cancer cells. We found that inhibition of the elevated expression of NFκBP65 in the resistant breast cancer, whether translocational inhibition or silencing by siRNA, decreased the expression and function of MDR1 and MRP1 efflux pumps. Furthermore, the blockade of NFκBP65 promoted apoptosis via modulating Bcl-2 and BAX expression. After inhibition of the NFκBP65 signaling pathway, elevated baseline expression of survival Bcl-2 gene in the resistant breast cells significantly decreased. Suppression of the NFκB pathway has a profound dual impact on promoting the intrinsic apoptotic pathway and reducing ABC transporter function and expression, which are some of the chemoresistance features. It was speculated that the NFκB pathway directly acts on doxorubicin-induced MDR1 and MRP1 expression in MCF-7/Dox cells.
Jiang, Cheng; Guo, Junming; Wang, Zhe; Xiao, Bingxiu; Lee, Hyo-Jung; Lee, Eun-Ok; Kim, Sung-Hoon; Lu, Junxuan
2007-01-01
Estrogen and estrogen receptor (ER)-mediated signaling are crucial for the etiology and progression of human breast cancer. Attenuating ER activities by natural products is a promising strategy to decrease breast cancer risk. We recently discovered that the pyranocoumarin compound decursin and its isomer decursinol angelate (DA) have potent novel antiandrogen receptor signaling activities. Because the ER and the androgen receptor belong to the steroid receptor superfamily, we examined whether these compounds affected ER expression and signaling in breast cancer cells. We treated estrogen-dependent MCF-7 and estrogen-independent MDA MB-231 human breast cancer cells with decursin and DA, and examined cell growth, apoptosis, and ERalpha and ERbeta expression in both cell lines - and, in particular, estrogen-stimulated signaling in the MCF-7 cells. We compared these compounds with decursinol to determine their structure-activity relationship. Decursin and DA exerted growth inhibitory effects on MCF-7 cells through G1 arrest and caspase-mediated apoptosis. These compounds decreased ERalpha in MCF-7 cells at both mRNA and protein levels, and suppressed estrogen-stimulated genes. Decursin and the pure antiestrogen Faslodex exerted an additive growth inhibitory effect on MCF-7 cells. In MDA MB-231 cells, these compounds induced cell-cycle arrests in the G1 and G2 phases as well as inducing apoptosis, accompanied by an increased expression of ERbeta. In contrast, decursinol, which lacks the side chain of decursin and DA, did not have these cellular and molecular activities at comparable concentrations. The side chain of decursin and DA is crucial for their anti-ER signaling and breast cancer growth inhibitory activities. These data provide mechanistic rationales for validating the chemopreventive and therapeutic efficacy of decursin and its derivatives in preclinical animal models of breast cancer.
Methylation of Notch3 modulates chemoresistance via P-glycoprotein.
Gu, Xiaoting; Lu, Yangfan; He, Dongxu; Lu, Chunxiao; Jin, Jian; Lu, Xiaojie; Ma, Xin
2016-12-05
The global gene expression and DNA methylation of genes in adriamycin-resistant human breast cancer cells (MCF-7/ADM cells) are similar to those in paclitaxel-resistant MCF-7 cells (MCF-7/PTX) and are significantly different from those in wild-type MCF-7 cells. DNA methylation is associated with chemoresistance in breast cancer and changes the characteristics of chemoresistant and chemosensitive cells. Here, we showed that the tumor-suppressor gene Notch3 was inactivated due to epigenetic silencing DNA hypermethylation in MCF-7/ADM cells. In addition, the drug efflux pump P-glycoprotein was negatively regulated by Notch3 and highly expressed in MCF-7/ADM cells. Taken together, our findings demonstrated that hypermethylation of Notch3 causes activation of P-glycoprotein in adriamycin-resistant cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Electrochemical estrogen screen method based on the electrochemical behavior of MCF-7 cells.
Li, Jinlian; Song, Jia; Bi, Sheng; Zhou, Shi; Cui, Jiwen; Liu, Jiguang; Wu, Dongmei
2016-08-05
It was an urgent task to develop quick, cheap and accurate estrogen screen method for evaluating the estrogen effect of the booming chemicals. In this study, the voltammetric behavior between the estrogen-free and normal fragmented MCF-7 cell suspensions were compared, and the electrochemical signal (about 0.68V attributed by xanthine and guanine) of the estrogen-free fragmented MCF-7 cell suspension was obviously lower than that of the normal one. The electrochemistry detection of ex-secretion purines showed that the ability of ex-secretion purines of cells sharp decreased due to the removing of endogenous estrogen. The results indicated that the electrochemical signal of MCF-7 cells was related to the level of intracellular estrogen. When the level of intracellular estrogen was down-regulated, the concentrations of the xanthine and hypoxanthine decreased, which led to the electrochemical signal of MCF-7 cells fall. Based on the electrochemical signal, the electrochemical estrogen screen method was established. The estrogen effect of estradiol, nonylphenol and bisphenol A was evaluated with the electrochemical method, and the result was accordant with that of MTT assay. The electrochemical estrogen screen method was simple, quickly, cheap, objective, and it exploits a new way for the evaluation of estrogenic effects of chemicals. Copyright © 2016. Published by Elsevier B.V.
Wu, Qiu; Kroon, Paul A; Shao, Hongjun; Needs, Paul W; Yang, Xingbin
2018-06-15
Quercetin (Que) has consistently been reported to be useful cytotoxic compound in vivo and in vitro, but little is known on its metabolites. Here we examined and compared cytotoxic effect of Que and its water-soluble metabolites, isorhamnetin (IS) and isorhamnetin-3-glucuronide (I3G) in human breast cancer MCF-7 cells, and explain their tumor-inhibitory mechanism and structure-function relationship. The results showed that Que, IS and I3G could dose-dependently inhibit the growth of MCF-7 cells, and the cytotoxic effect was ranked as Que > IS > I3G. Furthermore, Que, IS and I3G mediated the cell-cycle arrest principally in S phase, followed by the decrease in the number of G0/G1 and G2/M, and 70.8%, 68.9% and 49.8% MCF-7 tumor cells entered early phase apotosis when treated with 100 µM Que, IS and I3G for 48 h, respectively. Moreover, induction of apoptosis by Que, IS and I3G were accompanied with the marginal generation of intracellular ROS. Given these results, Que, IS and I3G possess strong cytotoxic effect through a ROS-dependent apoptosis pathway in MCF-7 cells.
Wang, Lin; Cao, Hong; Pang, Xueli; Li, Kuangfa; Dang, Weiqi; Tang, Hao; Chen, Tingmei
2013-12-01
To investigate the effect and the relevant molecular mechanisms of leptin on the migration and invasion of human breast cancer MCF-7 cells. The expression of OB-R in MCF-7 cells was measured by RT-PCR and Western blotting. The effects of leptin (100 ng/mL) on the the phosphorylation of a few key cell signaling proteins, p-ERK1/2, p-STAT3, p-AKT in MCF-7 cells were examined by Western blotting. Cell scratch assay and Transwell(TM); assay were utilized to measure the effects of leptin on the migration and invasion capability of MCF-7 cells, respectively. The effects of leptin on the mRNA and protein expression of matrix metalloproteinas 9 (MMP-9) and transforming growth factor β (TGF-β) were measured by RT-PCR and Western blotting. Both OB-Rb and OB-Rt were expressed in MCF-7 cells. This indicated that leptin may have significant activities in MCF7 cells. Indeed, leptin increased the phosphorylation of p-ERK1/2, p-STAT3, and p-AKT in MCF-7 cells (P < 0.05). Further, leptin promoted migration and invasion of MCF-7 cells, which were attenuated by the JAK/STAT inhibitor AG490 (50 μmol/L), and the PI3K/AKT inhibitor LY294002 (10 μmol/L) (P < 0.05). Similarly, leptin also increased the mRNA and protein expression of MMP-9 and TGF-β, and these effects were blocked by AG490 and LY294002 as well (P < 0.05). Leptin promoted the migration and invasion capabilities of MCF-7 cells. These activities may be achieved by the upregulation of MMP-9 and TGF-β through JAK/STAT and PI3K/AKT signaling pathways.
Chang, Fung-Wei; Fan, Hueng-Chuen; Liu, Jui-Ming; Fan, Tai-Ping; Jing, Jin; Yang, Chia-Ling; Hsu, Ren-Jun
2017-01-14
Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. In our study, ATP-binding cassette sub-family G member 2 (ABCG2), adenosine triphosphate (ATP) synthase and cytochrome c oxidase subunit VIc (COX6C) were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX). The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor α (ERα) in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. E2 induced the expression of ABCG2 through ERα and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance.
Chang, Fung-Wei; Fan, Hueng-Chuen; Liu, Jui-Ming; Fan, Tai-Ping; Jing, Jin; Yang, Chia-Ling; Hsu, Ren-Jun
2017-01-01
Background: Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. Results: In our study, ATP-binding cassette sub-family G member 2 (ABCG2), adenosine triphosphate (ATP) synthase and cytochrome c oxidase subunit VIc (COX6C) were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX). The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor α (ERα) in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. Conclusions: E2 induced the expression of ABCG2 through ERα and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance. PMID:28098816
Zareba, Ilona; Surazynski, Arkadiusz; Chrusciel, Marcin; Miltyk, Wojciech; Doroszko, Milena; Rahman, Nafis; Palka, Jerzy
2017-01-01
The effect of impaired intracellular proline availability for proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis was studied. We generated a constitutively knocked-down PRODH/POX MCF-7 breast cancer cell line (MCF-7shPRODH/POX) as a model to analyze the functional consequences of impaired intracellular proline levels. We have used inhibitor of proline utilization in collagen biosynthesis, 2-metoxyestradiol (MOE), inhibitor of prolidase that generate proline, rapamycin (Rap) and glycyl-proline (GlyPro), substrate for prolidase. Collagen and DNA biosynthesis were evaluated by radiometric assays. Cell viability was determined using Nucleo-Counter NC-3000. The activity of prolidase was determined by colorimetric assay. Expression of proteins was assessed by Western blot and immunofluorescence bioimaging. Concentration of proline was analyzed by liquid chromatography with mass spectrometry. PRODH/POX knockdown decreased DNA and collagen biosynthesis, whereas increased prolidase activity and intracellular proline level in MCF-7shPRODH/POX cells. All studied compounds decreased cell viability in MCF-7 and MCF-7shPRODH/POX cells. DNA biosynthesis was similarly inhibited by Rap and MOE in both cell lines, but GlyPro inhibited the process only in MCF-7shPRODH/POX and MOE+GlyPro only in MCF-7 cells. All the compounds inhibited collagen biosynthesis, increased prolidase activity and cytoplasmic proline level in MCF-7shPRODH/POX cells and contributed to the induction of pro-survival mode only in MCF-7shPRODH/POX cells. In contrast, all studied compounds upregulated expression of pro-apoptotic protein only in MCF-7 cells. PRODH/POX was confirmed as a driver of apoptosis and proved the eligibility of MCF-7shPRODH/POX cell line as a highly effective model to elucidate the different mechanisms underlying proline utilization or generation in PRODH/POX-dependent pro-apoptotic pathways. © 2017 The Author(s). Published by S. Karger AG, Basel.
Expression of estrogenicity genes in a lineage cell culture model of human breast cancer progression
Fu, Jiaqi; Weise, Amy M.; Falany, Josie L.; Falany, Charles N.; Thibodeau, Bryan J.; Miller, Fred R.; Kocarek, Thomas A.
2013-01-01
TaqMan Gene Expression assays were used to profile the mRNA expression of estrogen receptor (ERα and ERβ) and estrogen metabolism enzymes including cytosolic sulfotransferases (SULT1E1, SULT1A1, SULT2A1, and SULT2B1), steroid sulfatase (STS), aromatase (CYP19), 17β-hydroxysteroid dehydrogenases (17βHSD1 and 2), CYP1B1, and catechol-O-methyltransferase (COMT) in an MCF10A-derived lineage cell culture model for basal-like human breast cancer progression and in ERα-positive luminal MCF7 breast cancer cells. Low levels of ERα and ERβ mRNA were present in MCF10A-derived cell lines. SULT1E1 mRNA was more abundant in confluent relative to subconfluent MCF10A cells, a non-tumorigenic proliferative breast disease cell line. SULT1E1 was also expressed in preneoplastic MCF10AT1 and MCF10AT1K.cl2 cells, but was markedly repressed in neoplastic MCF10A-derived cell lines as well as in MCF7 cells. Steroid-metabolizing enzymes SULT1A1 and SULT2B1 were only expressed in MCF7 cells. STS and COMT were widely detected across cell lines. Pro-estrogenic 17βHSD1 mRNA was most abundant in neoplastic MCF10CA1a and MCF10DCIS.com cells, while 17βHSD2 mRNA was more prominent in parental MCF10A cells. CYP1B1 mRNA was most abundant in MCF7 cells. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) induced SULT1E1 and CYP19 mRNA but suppressed CYP1B1, STS, COMT, 17βHSD1, and 17βHSD2 mRNA in MCF10A lineage cell lines. In MCF7 cells, TSA treatment suppressed ERα, CYP1B1, STS, COMT, SULT1A1, and SULT2B1 but induced ERβ, CYP19 and SULT2A1 mRNA expression. The results indicate that relative to the MCF7 breast cancer cell line, key determinants of breast estrogen metabolism are differentially regulated in the MCF10A-derived lineage model for breast cancer progression. PMID:19308726
Tokala, Ramya; Bale, Swarna; Janrao, Ingle Pavan; Vennela, Aluri; Kumar, Niggula Praveen; Senwar, Kishna Ram; Godugu, Chandraiah; Shankaraiah, Nagula
2018-06-01
A new series of 1,2,4-triazole-linked urea and thiourea conjugates have been synthesized and evaluated for their in vitro cytotoxicity against selected human cancer cell lines namely, breast (MCF-7, MDA-MB-231), lung (A549) prostate (DU145) and one mouse melanoma (B16-F10) cell line and compared with reference drug. The compound 5t showed significant cytotoxicity on MCF-7 breast cancer cell line with a IC 50 value of 7.22 ± 0.47 µM among all the tested compounds. Notably, induction of apoptosis by compound 5t on MCF-7 cells was evaluated using different staining techniques such as acridine orange/ethidium bromide (AO/EB), annexin V-FITC/PI, and DAPI. Further, clonogenic assay indicates the inhibition of colony formation on MCF-7 cells by compound 5t. Moreover, the flow-cytometric analysis also revealed that compound 5t caused the arrest of cells at G0/G1 phase of cell cycle. In addition, the compounds when tested on normal human cells (L-132) were found to be safer with low cytotoxicity profile. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yu, Sungryul; Kim, Taemook; Yoo, Kyung Hyun; Kang, Keunsoo
2017-05-06
Cell lines are often used as in vitro tools to mimic certain types of in vivo system; several cell lines, including MCF-7 and T47D, have been widely used in breast cancer studies without investigating the cell lines' characteristics. In this study, we compared the genome-wide binding profiles of ERα, PR, and P300, and the gene expression changes between MCF-7 and T47D cell lines that represent the luminal A subtype of breast cancer. Surprisingly, several thousand genes were differentially expressed under estrogenic condition. In addition, ERα, PR, and P300 binding to regulatory elements showed distinct genomic landscapes between MCF-7 and T47D cell lines in the same hormonal states. In particular, the T47D cell line was markedly susceptible to progesterone, whereas the MCF-7 cell line did not respond to progesterone in the presence of estrogen. Consistently, changes in the expression level of the PR-target gene, STAT5A, were only observed in the T47D cell line, not the MCF-7 cell line, when treated with progesterone. Overall, the results highlight the importance of selecting appropriate cell lines for breast cancer studies and suggest that T47D cell lines can be an ideal experimental model to elucidate the progesterone-specific effects of a luminal A subtype of breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
Bullinger, Dino; Neubauer, Hans; Fehm, Tanja; Laufer, Stefan; Gleiter, Christoph H; Kammerer, Bernd
2007-11-29
Cancer, like other diseases accompanied by strong metabolic disorders, shows characteristic effects on cell turnover rate, activity of modifying enzymes and DNA/RNA modifications, resulting also in elevated amounts of excreted modified nucleosides. For a better understanding of the impaired RNA metabolism in breast cancer cells, we screened these metabolites in the cell culture supernatants of the breast cancer cell line MCF-7 and compared it to the human mammary epithelial cells MCF-10A. The nucleosides were isolated and analyzed via 2D-chromatographic techniques: In the first dimension by cis-diol specific boronate affinity extraction and subsequently by reversed phase chromatography coupled to an ion trap mass spectrometer. Besides the determination of ribonucleosides, additional compounds with cis-diol structure, deriving from cross-linked biochemical pathways, like purine-, histidine- and polyamine metabolism were detected. In total, 36 metabolites were identified by comparison of fragmentation patterns and retention time. Relation to the internal standard isoguanosine yielded normalized area ratios for each identified compound and enabled a semi-quantitative metabolic signature of both analyzed cell lines.13 of the identified 26 modified ribonucleosides were elevated in the cell culture supernatants of MCF-7 cells, with 5-methyluridine, N2,N2,7-trimethylguanosine, N6-methyl-N6-threonylcarbamoyladenosine and 3-(3-aminocarboxypropyl)-uridine showing the most significant differences. 1-ribosylimidazole-4-acetic acid, a histamine metabolite, was solely found in the supernatants of MCF-10A cells, whereas 1-ribosyl-4-carboxamido-5-aminoimidazole and S-adenosylmethionine occurred only in supernatants of MCF-7 cells. The obtained results are discussed against the background of pathological changes in cell metabolism, resulting in new perspectives for modified nucleosides and related metabolites as possible biomedical markers for breast carcinoma in vivo.
Mansara, Prakash P.; Deshpande, Rashmi A.; Vaidya, Milind M.; Kaul-Ghanekar, Ruchika
2015-01-01
Omega 3 (n3) and Omega 6 (n6) polyunsaturated fatty acids (PUFAs) have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA) FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs) in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10) FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A). Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1) decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer. PMID:26325577
Nugoli, Mélanie; Chuchana, Paul; Vendrell, Julie; Orsetti, Béatrice; Ursule, Lisa; Nguyen, Catherine; Birnbaum, Daniel; Douzery, Emmanuel JP; Cohen, Pascale; Theillet, Charles
2003-01-01
Background Both phenotypic and cytogenetic variability have been reported for clones of breast carcinoma cell lines but have not been comprehensively studied. Despite this, cell lines such as MCF-7 cells are extensively used as model systems. Methods In this work we documented, using CGH and RNA expression profiles, the genetic variability at the genomic and RNA expression levels of MCF-7 cells of different origins. Eight MCF-7 sublines collected from different sources were studied as well as 3 subclones isolated from one of the sublines by limit dilution. Results MCF-7 sublines showed important differences in copy number alteration (CNA) profiles. Overall numbers of events ranged from 28 to 41. Involved chromosomal regions varied greatly from a subline to another. A total of 62 chromosomal regions were affected by either gains or losses in the 11 sublines studied. We performed a phylogenetic analysis of CGH profiles using maximum parsimony in order to reconstruct the putative filiation of the 11 MCF-7 sublines. The phylogenetic tree obtained showed that the MCF-7 clade was characterized by a restricted set of 8 CNAs and that the most divergent subline occupied the position closest to the common ancestor. Expression profiles of 8 MCF-7 sublines were analyzed along with those of 19 unrelated breast cancer cell lines using home made cDNA arrays comprising 720 genes. Hierarchical clustering analysis of the expression data showed that 7/8 MCF-7 sublines were grouped forming a cluster while the remaining subline clustered with unrelated breast cancer cell lines. These data thus showed that MCF-7 sublines differed at both the genomic and phenotypic levels. Conclusions The analysis of CGH profiles of the parent subline and its three subclones supported the heteroclonal nature of MCF-7 cells. This strongly suggested that the genetic plasticity of MCF-7 cells was related to their intrinsic capacity to generate clonal heterogeneity. We propose that MCF-7, and possibly the breast tumor it was derived from, evolved in a node like pattern, rather than according to a linear progression model. Due to their capacity to undergo rapid genetic changes MCF-7 cells could represent an interesting model for genetic evolution of breast tumors. PMID:12713671
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Heon Woong; Lim, Eun Joung; Jang, Hwan Hee
2015-12-25
Parvin-β is an adaptor protein that binds to integrin-linked kinase (ILK) and is significantly downregulated in breast tumors and breast cancer cell lines. We treated the breast cancer cell line MCF7 with 24-methylenecycloartanyl ferulate (24-MCF), a γ-oryzanol compound. We observed upregulation of parvin-β (GenBank Accession No. (AF237769)) and peroxisome proliferator-activated receptor (PPAR)-γ2 (GenBank Accession No. (NM-015869)). Among γ-oryzanol compounds, only treatment with 24-MCF led to the formation of reverse transcription-PCR products of parvin-β (650 and 500 bp) and PPAR-γ2 (580 bp) in MCF7 cells, but not in T47D, SK-BR-3, or MDA-MB-231 cells. 24-MCF treatment increased the mRNA and protein levels of parvin-β inmore » MCF7 cells in a dose-dependent manner. We hypothesized that there is a correlation between parvin-β expression and induction of PPAR-γ2. This hypothesis was investigated by using a promoter-reporter assay, chromatin immunoprecipitation, and an electrophoretic mobility shift assay. 24-MCF treatment induced binding of PPAR-γ2 to a peroxisome proliferator response element-like cis-element (ACTAGGACAAAGGACA) in the parvin-β promoter in MCF7 cells in a dose-dependent manner. 24-MCF treatment significantly decreased anchorage-independent growth and inhibited cell movement in comparison to control treatment with dimethyl sulfoxide. 24-MCF treatment reduced the levels of GTP-bound Rac1 and Cdc42. Evaluation of Akt1 inhibition by 24-MCF revealed that the half maximal effective concentration was 33.3 μM. Docking evaluations revealed that 24-MCF binds to the ATP-binding site of Akt1(PDB ID: (3OCB)) and the compound binding energy is -8.870 kcal/mol. Taken together, our results indicate that 24-MCF treatment increases parvin-β expression, which may inhibit ILK downstream signaling. - Highlights: • Treatment with 24-MCF increases gene expression of parvin-β and PPAR-ϒ2 in MCF7 cells. • PPAR-ϒ2 interacts with the parvin-β gene via its peroxisome proliferator response element-like cis-element. • 24-MCF treatment inhibits anchorage-dependent growth of MCF7 cells. • 24-MCF treatment inhibits MCF7 cell migration and Rac1 and Cdc42 activation. • 24-MCF may be a new ATP-competitive Akt1 inhibitor that binds to the ATP-binding site of Akt1.« less
Zheng, Nan; Liu, Lu; Liu, Wei-Wei; Li, Fei; Hayashi, Toshihiko; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi
2017-02-01
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulating cell survival and death. Silibinin is a natural polyphenolic flavonoid isolated from milk thistle with anti-tumor activities, but it was found to induce cytoprotective ROS/RNS in human breast cancer MCF-7 cells. Furthermore, treatment with silibinin down-regulates ERα expression in MCF-7 cells, and inducing both autophagy and apoptosis. In this study we explored the relationship between ER-associated pathways and RNS/ROS in MCF-7 cells. We also investigated the molecular mechanisms underlying the reciprocal regulation between ROS/RNS levels and autophagy in the death signaling pathways in silibinin-treated MCF-7 cells. Silibinin (100-300 μmol/L) dose-dependently increased ROS/RNS generation in MCF-7 cells (with high expression of ERα and low expression of ERβ) and MDA-MB-231 cells (with low expression of ERα and high expression of ERβ). Scavenging ROS/RNS significantly enhanced silibinin-induced death of MCF-7 cells, but not MDA-MB231 cells. Pharmacological activation or blockade of ERα in MCF-7 cells significantly enhanced or decreased, respectively, silibinin-induced ROS/RNS generation, whereas activation or block of ERβ had no effect. In silibinin-treated MCF-7 cells, exposure to the ROS/RNS donators decreased the autophagic levels, whereas inhibition of autophagy with 3-MA significantly increased ROS/RNS levels. We further showed that increases in ROS/RNS generation, ERα activation or autophagy down-regulation had protective roles in silibinin-treated MCF-7 cells. Under a condition of ERα activation, scavenging ROS/RNS or stimulating autophagy enhanced the cytotoxicity of silibinin. These results demonstrate the existence of two conflicting pathways in silibinin-induced death of MCF-7 cells: one involves the down-regulation of ERα and thereby augmenting the pro-apoptotic autophagy downstream, leading to cell death; the other involves the up-regulation of pro-survival ROS/RNS; and that the generation of ROS/RNS and autophagy form a negative feedback loop whose balance is regulated by ERα.
Zheng, Nan; Liu, Lu; Liu, Wei-wei; Li, Fei; Hayashi, Toshihiko; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi
2017-01-01
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulating cell survival and death. Silibinin is a natural polyphenolic flavonoid isolated from milk thistle with anti-tumor activities, but it was found to induce cytoprotective ROS/RNS in human breast cancer MCF-7 cells. Furthermore, treatment with silibinin down-regulates ERα expression in MCF-7 cells, and inducing both autophagy and apoptosis. In this study we explored the relationship between ER-associated pathways and RNS/ROS in MCF-7 cells. We also investigated the molecular mechanisms underlying the reciprocal regulation between ROS/RNS levels and autophagy in the death signaling pathways in silibinin-treated MCF-7 cells. Silibinin (100–300 μmol/L) dose-dependently increased ROS/RNS generation in MCF-7 cells (with high expression of ERα and low expression of ERβ) and MDA-MB-231 cells (with low expression of ERα and high expression of ERβ). Scavenging ROS/RNS significantly enhanced silibinin-induced death of MCF-7 cells, but not MDA-MB231 cells. Pharmacological activation or blockade of ERα in MCF-7 cells significantly enhanced or decreased, respectively, silibinin-induced ROS/RNS generation, whereas activation or block of ERβ had no effect. In silibinin-treated MCF-7 cells, exposure to the ROS/RNS donators decreased the autophagic levels, whereas inhibition of autophagy with 3-MA significantly increased ROS/RNS levels. We further showed that increases in ROS/RNS generation, ERα activation or autophagy down-regulation had protective roles in silibinin-treated MCF-7 cells. Under a condition of ERα activation, scavenging ROS/RNS or stimulating autophagy enhanced the cytotoxicity of silibinin. These results demonstrate the existence of two conflicting pathways in silibinin-induced death of MCF-7 cells: one involves the down-regulation of ERα and thereby augmenting the pro-apoptotic autophagy downstream, leading to cell death; the other involves the up-regulation of pro-survival ROS/RNS; and that the generation of ROS/RNS and autophagy form a negative feedback loop whose balance is regulated by ERα. PMID:27867187
Nested Nanotherapeutics for Drug Synergy Enhancement in Breast Cancer Therapy
2014-09-01
completion of the proposed aims has resulted in the development of a truly innovative nanoparticle platform for synergistic enhancement in breast cancer ...of nested nanoparticles and intracellular release in MCF-7 breast cancer cells. a. Confocal microscopy of MCF-7 breast cancer cells at... nanoparticle accumulation over time in MCF-7 breast cancer cells. d. Mean fluorescence intensity over time in MCF-7 breast cancer cells as determined by
Theriau, Christopher F; Sauvé, O'Llenecia S; Beaudoin, Marie-Soleil; Wright, David C; Connor, Michael K
2017-01-01
Obesity is clearly associated with an increased risk of breast cancer in postmenopausal women. The purpose was to determine if obesity alters the adipocyte adipokine secretion profile, thereby altering the adipose-dependent paracrine/endocrine growth microenvironment surrounding breast cancer cells (MCF7). Additionally, we determined whether resveratrol (RSV) supplementation can counteract any obesity-dependent effects on breast cancer tumor growth microenvironment. Obese ZDF rats received standard chow diet or diet supplemented with 200 mg/kg body weight RSV. Chow-fed Zucker rats served as lean controls. After 6 weeks, conditioned media (CM) prepared from inguinal subcutaneous adipose tissue (scAT) was added to MCF7 cells for 24 hrs. Experiments were also conducted using purified isolated adipocytes to determine whether any endocrine effects could be attributed specifically to the adipocyte component of adipose tissue. scAT from ZDF rats promoted cell cycle entry in MCF7 cells which was counteracted by RSV supplementation. RSV-CM had a higher ratio of ADIPO:LEP compared to ZDF-CM. This altered composition of the CM led to increased levels of pAMPKT172, p27, p27T198 and AdipoR1 while decreasing pAktT308 in MCF7 cells grown in RSV-CM compared to ZDF-CM. RSV-CM increased number of cells in G0/G1 and decreased cells in S-phase compared to ZDF-CM. Co-culture experiments revealed that these obesity-dependent effects were driven by the adipocyte component of the adipose tissue. Obesity decreased the ratio of adiponectin:leptin secreted by adipocytes, altering the adipose-dependent growth microenvironment resulting in increased breast cancer cell proliferation. Supplementation with RSV reversed these adipose-dependent effects suggesting a potential for RSV as a nutritional supplementation to improve breast cancer treatment in obese patients.
Hua, Xin; Zhou, Zhenxian; Yuan, Liang; Liu, Songqin
2013-07-25
A novel strategy for selective collection and detection of breast cancer cells (MCF-7) based on aptamer-cell interaction was developed. Mucin 1 protein (MUC1) aptamer (Apt1) was covalently conjugated to magnetic beads to capture MCF-7 cell through affinity interaction between Apt1 and MUC1 protein that overexpressed on the surface of MCF-7 cells. Meanwhile, a nano-bio-probe was constructed by coupling of nucleolin aptamer AS1411 (Apt2) to CdTe quantum dots (QDs) which were homogeneously coated on the surfaces of monodispersed silica nanoparticles (SiO2 NPs). The nano-bio-probe displayed similar optical and electrochemical performances to free CdTe QDs, and remained high affinity to nucleolin overexpressed cells through the interaction between AS1411 and nucleolin protein. Photoluminescence (PL) and square-wave voltammetric (SWV) assays were used to quantitatively detect MCF-7 cells. Improved selectivity was obtained by using these two aptamers together as recognition elements simultaneously, compared to using any single aptamer. Based on the signal amplification of QDs coated silica nanoparticles (QDs/SiO2), the detection sensitivity was enhanced and a detection limit of 201 and 85 cells mL(-1) by PL and SWV method were achieved, respectively. The proposed strategy could be extended to detect other cells, and showed potential applications in cell imaging and drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.
Androutsopoulos, Vasilis P; Spandidos, Demetrios A
2017-12-01
Inhibition of histone deacetylase enzymes (HDACs) has been well documented as an attractive target for the development of chemotherapeutic drugs. The present study investigated the effects of two prototype hydroxamic acid HDAC inhibitors, namely Trichostatin A (TSA) and Belinostat (PXD‑101) and the benzamide Entinostat (MS‑275) in A2780 ovarian carcinoma and MCF7 breast adenocarcinoma cells. The three HDACi inhibited the proliferation of A2780 and MCF7 cells at comparable levels, below the µM range. Enzyme inhibition assays in a cell‑free system showed that TSA was the most potent inhibitor of total HDAC enzyme activity followed by PXD‑101 and MS‑275. Incubation of A2780 and MCF7 cells with the hydroxamates TSA and PXD‑101 for 24 h resulted in a dramatic increase of acetylated tubulin induction (up to 30‑fold for TSA). In contrast to acetylated tubulin, western blot analysis and flow cytometry indicated that the induction of acetylated histone H4 was considerably smaller. The benzamide MS‑275 exhibited nearly a 2‑fold induction of acetylated histone H4 and an even smaller induction of acetylated tubulin in A2780 and MCF7 cells. Taken together, these data suggest that although the three HDACi were equipotent in inhibiting proliferation of MCF7 and A2780 cells, only the benzamide MS‑275 did not induce acetylated tubulin expression, a marker of class IIb HDACs.
Quercetin exerts synergetic anti-cancer activity with 10-hydroxy camptothecin.
Tang, Qin; Ji, Fangling; Wang, Jingyun; Guo, Lianying; Li, Yachen; Bao, Yongming
2017-11-15
Quercetin (Qu) is known as a dietary antioxidant with numerous bioactivities, but its function in anti-cancer has not been fully investigated. Here, we show that Qu at low doses (≤10μM) significantly enhances the inhibition of 10-hydroxy camptothecin (HCPT) on the proliferation of MCF7, BGC823 and HepG2 cells. A plasmid DNA relaxation assay indicates that the inhibition of HCPT on the catalytic activity of topoisomerase I (Topo I) is increased by Qu at 10μM. Compared to the treatment by Qu or HCPT alone, phosphorylation at Ser 139 of γH2A.X in MCF7 cells starts to increase significantly (P<0.05) at 6h when treated by the combination of 10μM Qu and 0.62μM HCPT. Moreover, the combinational group successively arrests MCF7 cells at G1, S and G2/M phases from 12h to 48h via up-regulation of p21 and induces apoptosis at 24h by triggering intrinsic cell death pathways. In addition, the inhibition effects of the combinational group on the proliferation of MCF7 cells are eliminated by pretreatment with 100μM Z-VAD-FMK (a caspase inhibitor). Finally, by using nude mice xenografting assay of MCF7 cells, we demonstrate that tumor inhibition rates of combinational group are significantly higher than single-drug group. In summary, the synergic anti-cancer mechanism of Qu and HCPT in MCF7 cells is through the combined inhibitory effects of Qu and HCPT on Topo I, which synergistically induce cell cycle arrest and apoptosis by triggering DNA damage. Copyright © 2017. Published by Elsevier B.V.
Chen, Sha; Sun, Xiongshan; Guan, Xiao; Yang, Yao; Peng, Bingjie; Pan, Xiaodong; Li, Jinfang; Yi, Weijing; Li, Peng; Zhang, Hongwei; Feng, Dongfang; Chen, An; Li, Xiaohui; Yin, Zuoming
2018-01-01
Resistance to 5-fluorouracil (5-FU) and its induced immune suppression have prevented its extensive application in the clinical treatment of breast cancer. In this study, the combined effect of 50 Hz-EMFs and 5-FU in the treatment of breast cancer was explored. MCF-7 and MCF10A cells were pre-exposed to 50 Hz-EMFs for 0, 2, 4, 8 and 12 h and then treated with different concentrations of 5-FU for 24 h; cell viability was analyzed by MTT assay and flow cytometry. After pre-exposure to 50 Hz-EMFs for 12 h, apoptosis and cell cycle distribution in MCF-7 and MCF10A cells were detected via flow cytometry and DNA synthesis was measured by EdU incorporation assay. Apoptosis-related and cell cycle-related gene and protein expression levels were monitored by qPCR and western blotting. Pre-exposure to 50 Hz-EMFs for 12 h enhanced the antiproliferative effect of 5-FU in breast cancer cell line MCF-7 in a dose-dependent manner but not in normal human breast epithelial cell line MCF10A. Exposure to 50 Hz-EMFs had no effect on apoptosis and P53 expression of MCF-7 and MCF10A cells, whereas it promoted DNA synthesis, induced entry of MCF-7 cells into the S phase of cell cycle, and upregulated the expression levels of cell cycle-related proteins Cyclin D1 and Cyclin E. Considering the pharmacological mechanisms of 5-FU in specifically disrupting DNA synthesis, this enhanced inhibitory effect might have resulted from the specific sensitivity of MCF7 cells in active S phase to 5-FU. Our findings demonstrate the enhanced cytotoxic activity of 5-FU on MCF7 cells through promoting entry into the S phase of the cell cycle via exposure to 50 Hz-EMFs, which provides a novel method of cancer treatment based on the combinatorial use of 50 Hz-EMFs and chemotherapy. PMID:29617363
Zhang, Jie; Zhang, Yu; Liu, Junxi; Li, Guozhong; Wen, Zhaohui; Zhao, Yue; Zhang, Xiangyu; Liu, Fenghua
2017-10-01
The application of ultrasound contrast agents not only is confined to the enhancement of ultrasound imaging but also has started to be used as a drug system for diagnosis and treatment. In this paper, Span60 and PEG1500 were used as membrane materials, and a new targeting and drug-loading multifunctional ultrasound contrast agent microbubble enveloping the FA-CNTs-PTX complex was successfully prepared by acoustic cavitation. With the breast cancer cell line MCF7 as the research target, the effects of the microbubble with FA-CNTs-PTX on the proliferation and toxicity of MCF7 cells were studied using a CCK-8 and AO/EB double-staining method. The influences of the microbubbles with FA-CNTs-PTX on the cellular morphology and apoptosis period of the MCF7 cells were detected using an inverted fluorescence microscope. The apoptosis of MCF7 cells induced by the microbubbles with FA-CNTs-PTX was investigated with flow cytometry and an annexin and PI double staining fluorescence quantitative analysis. The results indicated that the ultrasound contrast agent microbubble with FA-CNTs-PTX remarkably inhibited the proliferation of MCF7 cells, which was mainly controlled by the drug loading rate and the nanometer size of the microbubbles. Moreover, the proliferative inhibition rate of the microbubbles with FA-CNTs-PTX was related to the cell apoptosis period of MCF7 cells. Its inhibition degree on the proliferation of MCF7 cells was higher than that of the hepatoma HepG2 cells. The apoptosis rate of MCF7 cells induced by the microbubbles with FA-CNTs-PTX was higher than that of normal human umbilical vein endothelial cells (HUVECs), and the microbubbles with FA-CNTs-PTX could target the MCF7 cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Ge, Zhicheng; Sanders, Andrew J; Ye, Lin; Wang, Yu; Jiang, Wen G
2011-01-01
Death Decoy Receptor-3 (DcR3), otherwise known as tumour necrosis factor receptor superfamily member 6b, is suggested to be involved in the progression and immune evasion of malignant tumours. Its ligands include FASL and LIGHT (Tumour necrosis factor ligand superfamily member 14). DcR3 has been found to be amplified in certain solid tumours. However, its role in breast tumours remains unclear. In the present study, we examined the role played by DcR3 in MCF7 and MDA-MB-231 cell lines. The expression of DcR3 was examined in MCF7 and MDA-MB-231 cell lines using immunocytochemical staining and RT-PCR. Anti-DcR3 hammerhead ribozyme transgenes were constructed and transfected into cells to create DcR3 knock-down cell sublines. The biological impact of modifying DcR3 expression in breast cancer cells was evaluated using a variety of in vitro assays, including growth, adhesion, migration and invasion models. MCF7 and MDA-MB-231 cells, usually expressing DcR3, were transfected with the anti-DcR3 ribozyme transgene. Stable transfectants containing the DcR3 ribozyme transgene (MCF7DcR3KO, MDA-MB-231DcR3KO) displayed a reduction of DcR3 expression at mRNA and protein levels. DcR3 knockdown in MCF7 cells was found to significantly reduce invasive capacity compared to pEF6 control cell lines (30.78 +/- 6.40 vs.151.67 +/- 17.67 P < 0.001). The rate of migration in MCF7DcR3KO was significantly lower than MCF7pEF6 (P < 0.001). In contrast, no such significant differences was seen between MDA-MB-231DcR3KO and MDA-MB-231pEF6. Suppressing DcR3 expression was found to have an inhibitory effect on cellular invasion and migration in MCF7 breast cancer cells. This suggests that the invasion and migration capacity of this breast cancer cell line may, at least partly, depend on DcR3. DcR3 may be regarded as a negative regulator for aggressiveness during the development and progression of certain types of breast cancer.
Arthur, Christopher R.; Gupton, John T.; Kellogg, Glen E.; Yeudall, W. Andrew; Cabot, Myles C.; Newsham, Irene; Gewirtz, David A.
2007-01-01
JG-03-14, a substituted pyrrole that inhibits microtubule polymerization, was screened against MCF-7 (p53 wild type), MDA-MB 231 (p53 mutant), MCF-7/caspase 3 and MCF-7/ADR (multidrug resistant) breast tumor cell lines. Cell viability and growth inhibition were assessed by the crystal violet dye assay. Apoptosis was evaluated by the TUNEL assay, cell cycle distribution by flow cytometry, autophagy by acridine orange staining of vesicle formation, and senescence based on β-galactosidase staining and cell morphology. Our studies indicate that exposure to JG-03-14, at a concentration of 500 nM, induces time dependent cell death in the MCF-7 and MDA-MB 231 cell lines. In MCF-7 cells, a residual surviving cell population was found to be senescent; in contrast, there was no surviving senescent population in treated MDA-MB 231 cells. No proliferative recovery was detected over a period of 15 days post-treatment in either cell line. Both the TUNEL assay and FLOW cytometry indicated a relatively limited degree of apoptosis (< 10%) in response to drug treatment in MCF-7 cells with more extensive apoptosis (but < 20%) in MDA-MB231 cells; acidic vacuole formation indicative of autophagic cell death was relatively extensive in both MCF-7 and MDA-MB231 cells. In addition, JG-03-14 induced the formation of a large hyperdiploid cell population in MDA-MB231 cells. JG-03-14 also demonstrated pronounced anti-proliferative activity in MCF-7/caspase 3 cells and in the MCF-7/ADR cell line. The observation that JG-03-14 promotes autophagic cell death and also retains activity in tumor cells expressing the multidrug resistance pump indicates that novel microtubule poisons of the substituted pyrroles class may hold promise in the treatment of breast cancer. PMID:17692290
Ablett, Matthew P; O'Brien, Ciara S; Sims, Andrew H; Farnie, Gillian; Clarke, Robert B
2014-02-15
C-X-C chemokine receptor type 4 (CXCR4) is known to regulate lung, pancreatic and prostate cancer stem cells. In breast cancer, CXCR4 signalling has been reported to be a mediator of metastasis, and is linked to poor prognosis. However its role in normal and malignant breast stem cell function has not been investigated. Anoikis resistant (AR) cells were collected from immortalised (MCF10A, 226L) and malignant (MCF7, T47D, SKBR3) breast cell lines and assessed for stem cell enrichment versus unsorted cells. AR cells had significantly higher mammosphere forming efficiency (MFE) than unsorted cells. The AR normal cells demonstrated increased formation of 3D structures in Matrigel compared to unsorted cells. In vivo, SKBR3 and T47D AR cells had 7- and 130-fold enrichments for tumour formationrespectively, compared with unsorted cells. AR cells contained significantly elevated CXCR4 transcript and protein levels compared to unsorted cells. Importantly, CXCR4 mRNA was higher in stem cell-enriched CD44+/CD24- patient-derived breast cancer cells compared to non-enriched cells. CXCR4 stimulation by its ligand SDF-1 reduced MFE of the normal breast cells lines but increased the MFE in T47D and patient-derived breast cancer cells. CXCR4 inhibition by AMD3100 increased stem cell activity but reduced the self-renewal capacity of the malignant breast cell line T47D. CXCR4+ FACS sorted MCF7 cells demonstrated a significantly increased MFE compared with CXCR4- cells. This significant increase in MFE was further demonstrated in CXCR4 over-expressing MCF7 cells which also had an increase in self-renewal compared to parental cells. A greater reduction in self-renewal following CXCR4 inhibition in the CXCR4 over-expressing cells compared with parental cells was also observed. Our data establish for the first time that CXCR4 signalling has contrasting effects on normal and malignant breast stem cell activity. Here, we demonstrate that CXCR4 signalling specifically regulates breast cancer stem cell activities and may therefore be important in tumour formation at the sites of metastases.
PNIPAAm-MAA nanoparticles as delivery vehicles for curcumin against MCF-7 breast cancer cells.
Zeighamian, Vahideh; Darabi, Masoud; Akbarzadeh, Abolfazl; Rahmati-Yamchi, Mohammad; Zarghami, Nosratollah; Badrzadeh, Fariba; Salehi, Roya; Mirakabad, Fatemeh Sadat Tabatabaei; Taheri-Anganeh, Mortaza
2016-01-01
Breast cancer is the most frequently occurring cancer among women throughout the world. Natural compounds such as curcumin hold promise to treat a variety of cancers including breast cancer. However, curcumin's therapeutic application is limited, due to its rapid degradation and poor aqueous solubility. On the other hand, previous studies have stated that drug delivery using nanoparticles might improve the therapeutic response to anticancer drugs. Poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAAm-MAA) is one of the hydrogel copolymers utilized in the drug delivery system for cancer therapy. The aim of this study was to examine the cytotoxic potential of curcumin encapsulated within the NIPAAm-MAA nanoparticle, on the MCF-7 breast cancer cell line. In this work, polymeric nanoparticles were synthesized through the free radical mechanism, and curcumin was encapsulated into NIPAAm-MAA nanoparticles. Then, the cytotoxic effect of curcumin-loaded NIPAAm-MAA on the MCF-7 breast cancer cell line was measured by MTT assays. The evaluation of the results showed that curcumin-loaded NIPAAm-MAA has more cytotoxic effect on the MCF-7 cell line and efficiently inhibited the growth of the breast cancer cell population, compared with free curcumin. In conclusion, this study indicates that curcumin-loaded NIPAAm-MAA suppresses the growth of the MCF-7 cell line. Overall, it is concluded that encapsulating curcumin into the NIPAAm-MAA copolymer could open up new avenues for breast cancer treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foroni, Laura; Vasuri, Francesco, E-mail: vasurifrancesco@libero.it; Chair of Vascular Surgery, Department of Specialistic Surgery and Anaesthesiological Sciences, S. Orsola-Malpighi Hospital, Bologna University
2013-06-10
We present a multi-technique study on in vitro epithelial–mesenchymal transition (EMT) in human MCF-7 cells cultured on electrospun scaffolds of poly(L-lactic acid) (PLA), with random and aligned fiber orientations. Our aim is to investigate the morphological and genetic characteristics induced by extracellular matrix in tumor cells cultured in different 3D environments, and at different time points. Cell vitality was assessed with AlamarBlue at days 1, 3, 5 and 7. Scanning electron microscopy was performed at culture days 3 and 7. Immunohistochemistry (for E-cadherin, β-catenin, cytokeratins, nucleophosmin, tubulin, Ki-67 and vimentin), immunofluorescence (for F-actin) western blot (for E-cadherin, β-catenin and vimentin)more » and transmission electron microscopy were carried out at day 7. An EMT gene array followed by PCR analysis confirmed the regulation of selected genes. At day 7, scanning electron microscopy on aligned-PLA revealed spindle-shaped cells gathered in buds and ribbon-like structures, with a higher nucleolar/nuclear ratio and a loss in E-cadherin and β-catenin at immunohistochemistry and western blot. An up-regulation of SMAD2, TGF-β2, TFPI2 and SOX10 was found in aligned-PLA compared to random-PLA cultured cells. The topography of the extracellular matrix has a role in tumor EMT, and a more aggressive phenotype characterizes MCF-7 cells cultured on aligned-PLA scaffold. -- Highlights: • After 7 culture days an aligned-PLA scaffold induces a spindle shape to MCF-7 cells. • Despite these changes, the aligned MCF-7 cells keep an epithelial phenotype. • The extracellular environment alone influences the E-cadherin/β-catenin axis. • The extracellular environment can promote the epithelial–mesenchymal transition.« less
Meadows, Adam L; Kong, Becky; Berdichevsky, Marina; Roy, Siddhartha; Rosiva, Rosiva; Blanch, Harvey W; Clark, Douglas S
2008-01-01
The metabolic and morphological characteristics of two human epithelial breast cell populations--MCF7 cells, a cancerous cell line, and 48R human mammary epithelial cells (48R HMECs), a noncancerous, finite lifespan cell strain--were compared at identical growth rates. Both cell types were induced to grow rapidly in nutrient-rich media containing 13C-labeled glucose, and the isotopic enrichment of cellular metabolites was quantified to calculate metabolic fluxes in key pathways. Despite their similar growth rates, the cells exhibited distinctly different metabolic and morphological profiles. MCF7 cells have an 80% smaller exposed surface area and contain 26% less protein per cell than the 48R cells. Surprisingly, rapidly proliferating 48R cells exhibited a 225% higher per-cell glucose consumption rate, a 250% higher per-cell lactate production rate, and a nearly identical per-cell glutamine consumption rate relative to the cancer cell line. However, when fluxes were considered on the basis of exposed area, the cancer cells were observed to have higher glucose, lactate, and glutamine fluxes, demonstrating superior transport capabilities per unit area of cell membrane. MCF7 cells also consumed amino acids at rates much higher than are generally required for protein synthesis, whereas 48R cells generally did not. Pentose phosphate pathway activity was higher in MCF7 cells, and the flux of glutamine to glutamate was less reversible. Energy efficiency was significantly higher in MCF7 cells, as a result of a combination of their smaller size and greater reliance on the TCA cycle than the 48R cells. These observations support evolutionary models of cancer cell metabolism and suggest targets for metabolic drugs in metastatic breast cancers.
Schierbaum, Nicolas; Rheinlaender, Johannes; Schäffer, Tilman E
2017-06-01
Malignant transformation drastically alters the mechanical properties of the cell and its response to the surrounding cellular environment. We studied the influence of the physical contact between adjacent cells in an epithelial monolayer on the viscoelastic behavior of normal MCF10A, non-invasive cancerous MCF7, and invasive cancerous MDA-MB-231 human breast cells. Using an atomic force microscopy (AFM) imaging technique termed force clamp force mapping (FCFM) to record images of the viscoelastic material properties, we found that normal MCF10A cells are stiffer and have a lower fluidity at confluent than at sparse density. Contrarily, cancerous MCF7 and MDA-MB-231 cells do not stiffen and do not decrease their fluidity when progressing from sparse to confluent density. The behavior of normal MCF10A cells appears to be governed by the formation of stable cell-cell contacts, because their disruption with a calcium-chelator (EGTA) causes the stiffness and fluidity values to return to those at sparse density. In contrast, EGTA-treatment of MCF7 and MDA-MB-231 cells does not change their viscoelastic properties. Confocal fluorescence microscopy showed that the change of the viscoelastic behavior in MCF10A cells when going from sparse to confluent density is accompanied by a remodeling of the actin cytoskeleton into thick stress fiber bundles, while in MCF7 and MDA-MB-231 cells the actin cytoskeleton is only composed of thin and short fibers, regardless of cell density. While the observed behavior of normal MCF10A cells might be crucial for providing mechanical stability and thus in turn integrity of the epithelial monolayer, the dysregulation of this behavior in cancerous MCF7 and MDA-MB-231 cells is possibly a central aspect of cancer progression in the epithelium. We measured the viscoelastic properties of normal and cancerous human breast epithelial cells in different states of confluency using atomic force microscopy. We found that confluent normal cells are stiffer and have lower fluidity than sparse normal cells, which appears to be governed by the formation of cell-cell contacts. Contrarily, confluent cancer cells do not stiffen and not have a decreased fluidity compared to sparse cancer cells and their viscoelastic properties are independent of cell-cell contact formation. While the observed behavior of normal cells appears to be crucial for providing the mechanical stability and therefore the integrity of the epithelial monolayer, the dysregulation of this behavior in cancer cells might be a central aspect of early stage cancer progression and metastasis in the epithelium. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Yu, Dan-Dan; Wu, Ying; Zhang, Xiao-Hui; Lv, Meng-Meng; Chen, Wei-Xian; Chen, Xiu; Yang, Su-Jin; Shen, Hongyu; Zhong, Shan-Liang; Tang, Jin-Hai; Zhao, Jian-Hua
2016-03-01
Breast cancer (BCa) is one of the major deadly cancers in women. However, treatment of BCa is still hindered by the acquired-drug resistance. It is increasingly reported that exosomes take part in the development, metastasis, and drug resistance of BCa. However, the specific role of exosomes in drug resistance of BCa is poorly understood. In this study, we investigate whether exosomes transmit drug resistance through delivering miR-222. We established an adriamycin-resistant variant of Michigan Cancer Foundation-7 (MCF-7) breast cancer cell line (MCF-7/Adr) from a drug-sensitive variant (MCF-7/S). Exosomes were isolated from cell supernatant by ultracentrifugation. Cell viability was assessed by MTT assay and apoptosis assay. Individual miR-222 molecules in BCa cells were detected by fluorescence in situ hybridization (FISH). Then, FISH was combined with locked nucleic acid probes and enzyme-labeled fluorescence (LNA-ELF-FISH). Individual miR-222 could be detected as bright photostable fluorescent spots and then the quantity of miR-222 per cell could be counted. Stained exosomes were taken in by the receipt cells. MCF-7/S acquired drug resistance after co-culture with exosomes from MCF-7/Adr (A/exo) but did not after co-culture with exosomes from MCF-7/S (S/exo). The quantity of miR-222 in A/exo-treated MCF-7/S was significantly greater than in S/exo-treated MCF-7/S. MCF-7/S transfected with miR-222 mimics acquired adriamycin resistance while MCF-7/S transfected with miR-222 inhibitors lost resistance. In conclusion, exosomes are effective in transmitting drug resistance and the delivery of miR-222 via exosomes may be a mechanism.
NASA Astrophysics Data System (ADS)
Hsieh, Hui-Chen; Chen, Chung-Ming; Hsieh, Wen-Yuan; Chen, Ching-Yun; Liu, Chia-Ching; Lin, Feng-Huei
2015-02-01
Superparamagnetic nanoparticles (Fe3O4, SPIO) have been used as magnetic resonance imaging enhancers for years. However, bio-safety issues concerning nanoparticles remain largely unexplored. Of particular concern is the possible cellular impact of nanoparticles during SPIO uptake and subsequent oxidative stress. SPIO causes cell death by apoptosis via a little understood mitochondrial pathway. To more closely examine this process, three kinds of cells—3T3, RAW264.7, and MCF7—were treated with SPIO coated with polyethylene glycol (SPIO-PEG) and monitored by transmission electron microscopy (TEM), using cytotoxicity evaluation, mitochondrial activity, reactive oxygen species (ROS) generation, and Annexin V assay. TEM revealed that SPIO-PEG nanoparticles surrounded the cellular endosome membrane, creating a bulge in the endosome. Compared to 3T3 cells, greater numbers of SPIO-PEG nanoparticles infiltrated the mitochondria of RAW264.7 and MCF7 cells. SPIO-PEG residency is associated with boosted ROS, with elevated levels of mitochondrial activity, and advancement of cell apoptosis. Furthermore, correlation analysis showed that a polynomial model demonstrates a better fit than a linear model in MCF7, implying that cytotoxicity may have alternative impacts on cell death at different concentrations. Thus, we believe that MCF7 cell death results from the apoptosis pathway triggered by mitochondria, and we find lower cytotoxicity in 3T3. We propose that optimal levels of SPIO-PEG nanoparticles lead to increased levels of ROS and a resulting oxidative stress environment which will kill only cancer cells while sparing normal cells. This finding has great potential for use in cancer therapies in the future.
Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radde, Brandie N.; Ivanova, Margarita M.; Mai, Huy Xuan
Acquired tamoxifen (TAM) resistance is a significant clinical problem in treating patients with estrogen receptor α (ERα)+ breast cancer. We reported that ERα increases nuclear respiratory factor-1 (NRF-1), which regulates nuclear-encoded mitochondrial gene transcription, in MCF-7 breast cancer cells and NRF-1 knockdown stimulates apoptosis. Whether NRF-1 and target gene expression is altered in endocrine resistant breast cancer cells is unknown. We measured NRF-1and metabolic features in a cell model of progressive TAM-resistance. NRF-1 and its target mitochondrial transcription factor A (TFAM) were higher in TAM-resistant LCC2 and LCC9 cells than TAM-sensitive MCF-7 cells. Using extracellular flux assays we observed thatmore » LCC1, LCC2, and LCC9 cells showed similar oxygen consumption rate (OCR), but lower mitochondrial reserve capacity which was correlated with lower Succinate Dehydrogenase Complex, Subunit B in LCC1 and LCC2 cells. Complex III activity was lower in LCC9 than MCF-7 cells. LCC1, LCC2, and LCC9 cells had higher basal extracellular acidification (ECAR), indicating higher aerobic glycolysis, relative to MCF-7 cells. Mitochondrial bioenergetic responses to estradiol and 4-hydroxytamoxifen were reduced in the endocrine-resistant cells compared to MCF-7 cells. These results suggest the acquisition of altered metabolic phenotypes in response to long term antiestrogen treatment may increase vulnerability to metabolic stress. - Highlights: • NRF-1 and TFAM expression are higher in endocrine-resistant breast cancer cells. • Oxygen consumption rate is similar in endocrine-sensitive and resistant cells. • Mitochondrial reserve capacity is lower in endocrine-resistant cells. • Endocrine-resistant breast cancer cells have increased glycolysis. • Bioenergetic responses to E2 and tamoxifen are lower in endocrine-resistant cells.« less
Pistone Creydt, Virginia; Fletcher, Sabrina Johanna; Giudice, Jimena; Bruzzone, Ariana; Chasseing, Norma Alejandra; Gonzalez, Eduardo Gustavo; Sacca, Paula Alejandra; Calvo, Juan Carlos
2013-02-01
Stromal-epithelial interactions mediate both breast development and breast cancer progression. In the present work, we evaluated the effects of conditioned media (CMs) of human adipose tissue explants from normal (hATN) and tumor (hATT) breast on proliferation, adhesion, migration and metalloproteases activity on tumor (MCF-7 and IBH-7) and non-tumor (MCF-10A) human breast epithelial cell lines. Human adipose tissues were obtained from patients and the conditioned medium from hATN and hATT collected after 24 h of incubation. MCF-10A, MCF-7 and IBH-7 cells were grown and incubated with CMs and proliferation and adhesion, as well as migration ability and metalloprotease activity, of epithelial cells after exposing cell cultures to hATN- or hATT-CMs were quantified. The statistical significance between different experimental conditions was evaluated by one-way ANOVA. Tukey's post hoc tests were performed. Tumor and non-tumor breast epithelial cells significantly increased their proliferation activity after 24 h of treatment with hATT-CMs compared to control-CMs. Furthermore, cellular adhesion of these two tumor cell lines was significantly lower with hATT-CMs than with hATN-CMs. Therefore, hATT-CMs seem to induce significantly lower expression or less activity of the components involved in cellular adhesion than hATN-CMs. In addition, hATT-CMs induced pro-MMP-9 and MMP-9 activity and increased the migration of MCF-7 and IBH-7 cells compared to hATN-CMs. We conclude that the microenvironment of the tumor interacts in a dynamic way with the mutated epithelium. This evidence leads to the possibility to modify the tumor behavior/phenotype through the regulation or modification of its microenvironment. We developed a model in which we obtained CMs from adipose tissue explants completely, either from normal or tumor breast. In this way, we studied the contribution of soluble factors independently of the possible effects of direct cell contact.
NASA Astrophysics Data System (ADS)
Hashizume, Hiroshi; Tanaka, Hiromasa; Nakamura, Kae; Kano, Hiroyuki; Ishikawa, Kenji; Kikkawa, Fumitaka; Mizuno, Masaaki; Hori, Masaru
2015-09-01
The applications of plasma in medicine have much attention. We previously showed that plasma-activated medium (PAM) induced glioblastoma cells to apoptosis. However, it has not been elucidated the selectivity of PAM in detail. In this study, we investigated the selective effect of PAM on the death of human breast normal and cancer cells, MCF10A and MCF7, respectively, and observed the selective death with fluorescent microscopy. For the investigation of cell viability with PAM treatment, we prepared various PAMs according to the strengths, and treated each of cells with PAMs. Week PAM treatment only decreased the viability of MCF7 cells, while strong PAM treatment significantly affected both viabilities of MCF7 and MCF10A cells. For the fluorescent observation, we prepared the mixture of MCF7 and fluorescent-probed MCF10A cells, and seeded them. After the treatment of PAMs, the images showed that only MCF7 cells damaged in the mixture with week PAM treatment. These results suggested that a specific range existed with the selective effect in the strength of PAM. This work was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' Grant No. 24108002 and 24108008 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Jiang, Cheng; Guo, Junming; Wang, Zhe; Xiao, Bingxiu; Lee, Hyo-Jung; Lee, Eun-Ok; Kim, Sung-Hoon; Lu, Junxuan
2007-01-01
Introduction Estrogen and estrogen receptor (ER)-mediated signaling are crucial for the etiology and progression of human breast cancer. Attenuating ER activities by natural products is a promising strategy to decrease breast cancer risk. We recently discovered that the pyranocoumarin compound decursin and its isomer decursinol angelate (DA) have potent novel antiandrogen receptor signaling activities. Because the ER and the androgen receptor belong to the steroid receptor superfamily, we examined whether these compounds affected ER expression and signaling in breast cancer cells. Methods We treated estrogen-dependent MCF-7 and estrogen-independent MDA MB-231 human breast cancer cells with decursin and DA, and examined cell growth, apoptosis, and ERα and ERβ expression in both cell lines – and, in particular, estrogen-stimulated signaling in the MCF-7 cells. We compared these compounds with decursinol to determine their structure-activity relationship. Results Decursin and DA exerted growth inhibitory effects on MCF-7 cells through G1 arrest and caspase-mediated apoptosis. These compounds decreased ERα in MCF-7 cells at both mRNA and protein levels, and suppressed estrogen-stimulated genes. Decursin and the pure antiestrogen Faslodex™ exerted an additive growth inhibitory effect on MCF-7 cells. In MDA MB-231 cells, these compounds induced cell-cycle arrests in the G1 and G2 phases as well as inducing apoptosis, accompanied by an increased expression of ERβ. In contrast, decursinol, which lacks the side chain of decursin and DA, did not have these cellular and molecular activities at comparable concentrations. Conclusion The side chain of decursin and DA is crucial for their anti-ER signaling and breast cancer growth inhibitory activities. These data provide mechanistic rationales for validating the chemopreventive and therapeutic efficacy of decursin and its derivatives in preclinical animal models of breast cancer. PMID:17986353
Ko, Ying-Hui; Lin, Zhao; Flomenberg, Neal; Pestell, Richard G; Howell, Anthony; Sotgia, Federica
2011-01-01
Glutamine metabolism is crucial for cancer cell growth via the generation of intermediate molecules in the tricarboxylic acid (TCA) cycle, antioxidants and ammonia. The goal of the current study was to evaluate the effects of glutamine on metabolism in the breast cancer tumor microenvironment, with a focus on autophagy and cell death in both epithelial and stromal compartments. For this purpose, MCF7 breast cancer cells were cultured alone or co-cultured with nontransformed fibroblasts in media containing high glutamine and low glucose (glutamine +) or under control conditions, with no glutamine and high glucose (glutamine −). Here, we show that MCF7 cells maintained in co-culture with glutamine display increased mitochondrial mass, as compared with control conditions. Importantly, treatment with the autophagy inhibitor chloroquine abolishes the glutamine-induced augmentation of mitochondrial mass. It is known that loss of caveolin-1 (Cav-1) expression in fibroblasts is associated with increased autophagy and an aggressive tumor microenvironment. Here, we show that Cav-1 downregulation which occurs in fibroblasts maintained in co-culture specifically requires glutamine. Interestingly, glutamine increases the expression of autophagy markers in fibroblasts, but decreases expression of autophagy markers in MCF7 cells, indicating that glutamine regulates the autophagy program in a compartment-specific manner. Functionally, glutamine protects MCF7 cells against apoptosis, via the upregulation of the anti-apoptotic and anti-autophagic protein TIGAR. Also, we show that glutamine cooperates with stromal fibroblasts to confer tamoxifen-resistance in MCF7 cancer cells. Finally, we provide evidence that co-culture with fibroblasts (1) promotes glutamine catabolism, and (2) decreases glutamine synthesis in MCF7 cancer cells. Taken together, our findings suggest that autophagic fibroblasts may serve as a key source of energy-rich glutamine to fuel cancer cell mitochondrial activity, driving a vicious cycle of catabolism in the tumor stroma and anabolic tumor cell expansion. PMID:22236876
Novel anticancer alkene lactone from Persea americana.
Falodun, Abiodun; Engel, Nadja; Kragl, Udo; Nebe, Barbara; Langer, Peter
2013-06-01
Persea americana Mill (Lauraceae) root bark is used in ethnomedicine for a variety of diseases including cancer. To isolate and characterize the chemical constituent in P. americana, and also to determine the anticancer property of a new alkene lactone from the root bark of P. americana. The MCF-7 cells were treated with different concentrations of the pure compound for 48 h. The percentage of cells in the various phases, online monitoring of metabolic changes and integrin receptor expression determined by flow cytometry. One novel alkene lactone (4-hydroxy-5-methylene-3-undecyclidenedihydrofuran-2 (3H)-one) (1) was isolated and characterized using 1D-NMR, 2D-NMR, infrared, UV and MS. At a concentration of 10 µg/mL, significant reduction of proliferation of MCF-7 was induced while MCF-12 A cell was significantly stimulated by 10 µg/mL. The IC50 value for MCF-7 cells is 20.48 µg/mL. Lower concentration of 1 harbor no significant effect on either MCF-7 or MCF-12A. The apoptotic rates of MCF-7 cells were increased significantly. At the final concentration 10 µg/mL, up to 80% of all breast cancer cells were dead. On the non-tumorigenic cell line MCF-12A, the same concentrations (1 and 10 µg/mL) of compound 1 caused significant enhanced apoptotic rates. A total of 1 µg/mL of 1 caused a decrease of α4-, α6-, β1- and β3-integrin expression. The compound caused a stimulatory effect on non-tumorigenic MCF-12A cells with respect to cell adhesion while tumorigenic MCF-7 cells detached continuously. This is the first report on the anticancer effects of this class of compound.
Xu, Hui-Yu; Chen, Zhi-Wei; Hou, Jin-Cai; Du, Feng-Xia; Liu, Ji-Cheng
2013-01-01
The aim of this study was to explore the molecular mechanisms of jolkinolide B (JB), which is extracted from the root of Euphorbia fischeriana Steud. In this study, we found that JB, a diterpenoid from the traditional Chinese medicinal herb, strongly inhibited the PI3K/Akt/mTOR signaling pathway. Furthermore, we evaluated the effects of JB on the proliferation and apoptosis of MCF-7 human breast cancer cells. Our results showed significant induction of apoptosis in MCF-7 cells incubated with JB. The viability of the MCF-7 cells was assessed by MTT assay. Flow cytometry was used to detect apoptosis and cell cycle analysis. Transmission electron microscopy (TEM) analysis was used to observe cell morphology. MCF-7 cells were subcutaneously inoculated into nude mice to study the in vivo antitumor effects of JB. The growth of MCF-7 cells was inhibited and arrested in the S phase by JB. The data showed significantly decreased tumor volume and weight in nude mice inoculated with MCF-7 cells. In addition, treatment with JB was able to induce downregulation of cyclinD1, cyclinE, mTOR, p-PI3K and p-Akt, and upregulation of PTEN and p-eIF4E. Collectively, JB-induced apoptosis of MCF-7 cells occurs through the PI3K/Akt/mTOR signaling pathway. Furthermore, the PI3K/Akt signaling cascade plays a role in the induction of apoptosis in JB-treated cells. These observations suggest that JB may have therapeutic applications in the treatment of cancer.
Zirconium Phosphate Nanoplatelet Potential for Anticancer Drug Delivery Applications.
González, Millie L; Ortiz, Mayra; Hernández, Carmen; Cabán, Jennifer; Rodríguez, Axel; Colón, Jorge L; Báez, Adriana
2016-01-01
Zirconium phosphate (ZrP) nanoplatelets can intercalate anticancer agents via an ion exchange reaction creating an inorganic delivery system with potential for cancer treatment. ZrP delivery of anticancer agents inside tumor cells was explored in vitro. Internalization and cytotoxicity of ZrP nanoplatelets were studied in MCF-7 and MCF-10A cells. DOX-loaded ZrP nanoplatelets (DOX@ZrP) uptake was assessed by confocal (CLSM) and transmission electron microscopy (TEM). Cytotoxicity to MCF-7 and MCF-10A cells was determined by the MTT assay. Reactive Oxy- gen Species (ROS) production was analyzed by fluorometric assay, and cell cycle alterations and induction of apoptosis were analyzed by flow cytometry. ZrP nanoplatelets were localized in the endosomes of MCF-7 cells. DOX and ZrP nanoplatelets were co-internalized into MCF-7 cells as detected by CLSM. While ZrP showed limited toxicity to MCF-7 cells, DOX@ZrP was cytotoxic at an IC₅₀ similar to that of free DOX. Meanwhile, DOX lC₅₀ was significantly lower than the equivalent concentration of DOX@ZrP in MCF-10A cells. ZrP did not induce apoptosis in both cell lines. DOX and DOX@ZrP induced significant oxidative stress in both cell models. Results suggest that ZrP nanoplatelets are promising as carriers of anticancer agents into cancer cells.
Ai, Midan; Liang, Ke; Lu, Yang; Qiu, Songbo; Fan, Zhen
2013-01-01
Breast tumor kinase (Brk)/protein tyrosine kinase-6 (PTK-6) is a nonreceptor PTK commonly expressed at high levels in breast cancer. Brk interacts closely with members of the human epidermal growth factor receptor (HER) family in breast cancer but the functional role of this interaction remains to be determined. Here, we provide novel mechanistic insights into the role of Brk in regulating cell survival and epithelial-to-mesenchymal transition (EMT) in the context of HER2-positive breast cancer cells. Overexpression of HER2 in MCF7 breast cancer cells (MCF7HER2) led to a higher level of Brk protein and concomitantly reduced Src Y416-phosphorylation, and the cells became mesenchymal in morphology. An in vivo selection of MCF7HER2 cells in nude mice resulted in a subline, termed EMT1, that exhibited not only mesenchymal morphology but also enhanced migration potential. Compared with MCF7HER2 cells, EMT1 cells maintained a similar level of HER2 protein but had much higher level of activated HER2, and the increase in Brk protein and the decrease in Src Y416-phosphorylation were less in EMT1 cells. EMT1 cells exhibited increased sensitivity to both pharmacological inhibition of HER2 and knockdown of Brk than did MCF7HER2 cells. Knockdown of Brk induced apoptosis and partially reversed the EMT phenotype in EMT1 cells. Overexpression of a constitutively active STAT3, a known substrate of Brk, overcame Brk knockdown-induced effects in EMT1 cells. Together, our findings support a new paradigm wherein Brk plays both a complementary and a counterbalancing role in cooperating with HER2 and Src to regulate breast cancer cell survival and EMT. PMID:23291984
Ait-Mohamed, Ouardia; Battisti, Valentine; Joliot, Véronique; Fritsch, Lauriane; Pontis, Julien; Medjkane, Souhila; Redeuilh, Catherine; Lamouri, Aazdine; Fahy, Christine; Rholam, Mohamed; Atmani, Djebbar; Ait-Si-Ali, Slimane
2011-01-01
Plants are an invaluable source of potential new anti-cancer drugs. Here, we investigated the cytotoxic activity of the acetonic extract of Buxus sempervirens on five breast cancer cell lines, MCF7, MCF10CA1a and T47D, three aggressive triple positive breast cancer cell lines, and BT-20 and MDA-MB-435, which are triple negative breast cancer cell lines. As a control, MCF10A, a spontaneously immortalized but non-tumoral cell line has been used. The acetonic extract of Buxus sempervirens showed cytotoxic activity towards all the five studied breast cancer cell lines with an IC50 ranging from 7.74 µg/ml to 12.5 µg/ml. Most importantly, the plant extract was less toxic towards MCF10A with an IC50 of 19.24 µg/ml. Fluorescence-activated cell sorting (FACS) analysis showed that the plant extract induced cell death and cell cycle arrest in G0/G1 phase in MCF7, T47D, MCF10CA1a and BT-20 cell lines, concomitant to cyclin D1 downregulation. Application of MCF7 and MCF10CA1a respective IC50 did not show such effects on the control cell line MCF10A. Propidium iodide/Annexin V double staining revealed a pre-apoptotic cell population with extract-treated MCF10CA1a, T47D and BT-20 cells. Transmission electron microscopy analyses indicated the occurrence of autophagy in MCF7 and MCF10CA1a cell lines. Immunofluorescence and Western blot assays confirmed the processing of microtubule-associated protein LC3 in the treated cancer cells. Moreover, we have demonstrated the upregulation of Beclin-1 in these cell lines and downregulation of Survivin and p21. Also, Caspase-3 detection in treated BT-20 and T47D confirmed the occurrence of apoptosis in these cells. Our findings indicate that Buxus sempervirens extract exhibit promising anti-cancer activity by triggering both autophagic cell death and apoptosis, suggesting that this plant may contain potential anti-cancer agents for single or combinatory cancer therapy against breast cancer. PMID:21935420
2005-06-01
Qimaging, Burnaby, BC , Canada). Statistical analysis Assessment of apoptosis in MCF-7/dox cells One-way analysis of variance followed by Tukey’s...labelling of P-gp by azidopine. Wood etal classes of drug. we observed that our MCF-7/dox cells (1996) proposed that the drug resistance modification by...adMRi in -7du cedells.ted expressin (1994) Mobile ionophores are a novel class of P-glycoprotein ofdMDR l and MRPI in MCF-7idox cellso inhibitors. The
Shi, Dongdong; Kuang, Yuanyuan; Wang, Guiming; Peng, Zhangxiao; Wang, Yan; Yan, Chao
2014-03-01
The objective of this research is to investigate the suppressive effects of lupeol on MCF-7 breast cancer cells, and explore its mechanism on inhibiting the proliferation of MCF-7 cells based on cell metabonomics and cell cycle. Gas chromatography-mass spectrometry (GC-MS) was used in the cell metabonomics assay to identify metabolites of MCF-7 cells and MCF-7 cells treated with lupeol. Then, orthogonal partial least squares discriminant analysis (OPLS-DA) was used to process the metabolic data and model parameters of OPLS-DA were as follows: R2Ycum = 0.988, Q2Ycum = 0.964, which indicated that these two groups could be distinguished clearly. The metabolites (VIP (variable importance in the projection) > 1) were analyzed by t-test, and finally, metabolites (t < 0.05) were identified to be biomarkers. Eleven metabolites such as butanedioic acid, phosphoric acid, L-leucine and isoleucine which had a significant contribution to classification were selected and preliminarily identified due to the accurate mass. Cell cycle assay was analyzed by FACSCalibur. Since the cells in the phase of G1 were increased significantly after the treatment of lupeol, we speculated that lupeol has a blocking effect on the generation of succinyl-CoA and the reaction of substrate phosphorylation of tricarboxylic acid cycle of MCF-7 cells. This study provided a novel approach to the mechanism research on the lupeol treatment on MCF-7 breast cancer cells based on cell metabonomics.
Hakimuddin, Fatima; Paliyath, Gopinadhan; Meckling, Kelly
2006-10-04
Food components influence the physiology by modulating gene expression and biochemical pathways within the human body. The disease-preventive roles of several fruit and vegetable components have been related to such properties. Polyphenolic components such as flavonoids are strong antioxidants and induce the expression of several xenobiotic-detoxifying enzymes. The mechanism of selective cytotoxicity induced by red grape wine polyphenols against MCF-7 breast cancer cells was investigated in relation to their interference with calcium homeostasis. MCF-7 cells showed an increase in cytosolic calcium levels within 10 min of treatment with the polyphenols. Immunohistochemical localization of calmodulin with secondary gold-labeled antibodies showed similar levels of gold labeling in both MCF-7 cells and the spontaneously immortalized, normal MCF-10A cell line. MCF-7 cells treated with the red wine polyphenol fraction (RWPF) showed swelling of endoplasmic reticulum, dissolution of the nucleus, and loss of plasma membrane integrity as well as reduced mitochondrial membrane potential. These cells were arrested at the G2/M interphase. By contrast, MCF-10A cells did not show such changes after RWPF treatment. The results suggest that polyphenol-induced calcium release may disrupt mitochondrial function and cause membrane damage, resulting in selective cytotoxicity toward MCF-7 cells. This property could further be developed toward breast cancer prevention strategies either independently or in conjunction with conventional prevention therapies where a positive drug-nutrient interaction can be demonstrated.
Losa, G A; Graber, R; Baumann, G; Nonnenmacher, T F
1999-10-01
To evaluate the effect of steroid hormones on the ultrastructure of nuclear heterochromatin and perinuclear membranes in human MCF-7 breast cancer cells. MCF-7 cells were cultured briefly (five minutes) in the presence of 10(-9) M estrogen 17 beta-estradiol, a stimulator of cell proliferation and/or 10(-9) M glucocorticoid dexamethasone. Changes in the morphologic complexity of nuclear membrane-bound heterochromatin (NMBHC) and nuclear membranes (ENM) were assessed by means of the fractal capacity dimension, D, a noneuclidean geometric descriptor of complex, irregular bodies. 17 beta-estradiol (10(-9) M) enhanced the ultrastructural irregularity of NMBHC, as documented by the increased value of D, whereas dexamethasone (10(-9) M) reduced it when compared to NMBHC from untreated MCF-7 control cells. In contrast, neither steroid modified ENM ultrastructure. Changes in the nuclear heterochromatin complexity induced by estrogen 17 beta-estradiol occurred concomitantly with functional changes at the cell periphery, such as activation of the phospholipase C, a cell membrane-associated enzyme involved in signal transduction. Dexamethasone reduced the ultrastructural complexity of NMBHC without affecting functional processes. Fractal morphometry proved its usefulness in quantifying early ultrastructural changes in nuclear components induced in MCF-7 cells by steroid hormones, 17 beta-estradiol and dexamethasone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talhouk, Rabih S., E-mail: rtalhouk@aub.edu.lb; Fares, Mohamed-Bilal; Rahme, Gilbert J.
Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressingmore » Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced. • Cx43-mediated gap junction complex assembly correlated with observed changes. • We propose that membranous Cx43 sequesters β-catenin away from the nucleus.« less
NASA Astrophysics Data System (ADS)
Akal, Z. Ü.; Alpsoy, L.; Baykal, A.
2016-08-01
In this study, carboxylated quercetin (CQ) was conjugated to superparamagnetic iron oxide nanoparticles (SPIONs) which were modified by (3-aminopropyl) triethoxysilane (APTES), Folic acid (FA) and carboxylated Polyethylene glycol (PEG); (SPION@APTES@FA-PEG@CQ), nanodrug has been synthesized via polyol and accompanying by various chemical synthesis routes. The characterization of the final product was done via X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermal gravimetric analysis (TGA), Transmission electron spectroscopy (TEM) and Vibrating sample magnetometer (VSM). Its cytotoxic and apoptotic activities on over expressed folic acid receptor (FR +) (MCF-7, HeLa) and none expressed folic acid receptor (FR-) (A549) cancer cell lines were determined by using MTT assay, Real-Time Cell Analysis, TUNEL assay, Annexin assay and RT-PCR analysis for Caspase3/7 respectively. SPION@APTES@FA-PEG@CQ nanodrug showed higher cytotoxicity against HeLa and MCF-7 cell lines as compared with A549 cell line. Moreover, SPION@APTES@FA-PEG@CQ nanodrug also caused higher apoptotic and necrotic effects in 100 μg/mL HeLa and MCF-7 cells than A549 cells. The findings showed that SPION@APTES@FA-PEG@CQ nanodrug has cytotoxic, apoptotic and necrotic effects on HeLa and MCF-7 which are FR over expressed cell lines and can be potentially used for the delivery of quercetin to cervical and breast cancer cells.
Pereira, Melanie C; Mohammed, Raushaan; VAN Otterlo, Willem A L; DE Koning, Charles B; Davids, Hajierah
2017-12-01
Combination therapies are often explored to treat cancer. The use of curcumin as an adjuvant to current chemotherapies has been reported, whilst aminonaphthoquinones have shown potential as anticancer agents in various tumour cell lines. This study aimed at screening synthetic aminonathoquinone derivatives (Rau 008, Rau 010, Rau 015 and Rau 018) alone and in combination with curcumin for anti-breast cancer activity. Combination effects were determined in MCF-7 breast cancer cells using combination index analyses. Synergistic anti-proliferative effects were further investigated in breast (MCF-7, MDA-MB-231), osteosarcoma (MG-63) and endometrial (HEC-1A) cancer-derived cells. Rau 015 (15 μM) and curcumin (112.5 μM) significantly reduced MCF-7, MDA-MB-231 and MG-63 cell proliferation compared to individual treatment, indicating synergistic anti-proliferative effects. Rau 018 (30 μM) and curcumin (100 μM) displayed similar effects in MCF-7 and MG-63 cells. We report on the potential of Rau 015 or Rau 018 as anti-breast cancer agents when combined with curcumin. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Du, Jia; Sun, Yang; Lu, Yi-Yu; Lau, Eric; Zhao, Ming; Zhou, Qian-Mei; Su, Shi-Bing
2017-11-01
The synergistic combinations of natural products have long been the basis of Traditional Chinese herbal Medicine formulas. In this study, we investigated the synergistic effects of a combination of berberine and evodiamine against human breast cancer MCF-7 cells in vitro and in vivo, and explored its mechanism. Cell survival was measured using the MTT assay. Apoptosis-related proteins were observed using western blot analysis. Apoptosis was detected with flow cytometric analysis and by Hoechst 33258 staining. Tumor xenografts were used in vivo. Compared to berberine or evodiamine treatments alone, the combination treatment of berberine (25 μM) and evodiamine (15 μM) synergistically inhibited the proliferation of MCF-7 cells in a time-dependent manner and resulted in the G 0 /G 1 phase accumulation of cells that exhibited increased expression levels of the CDK inhibitors p21 and p27 with a concomitant reduction in the expression levels of cell-cycle checkpoint proteins cyclin D1, cyclin E, CDK4, and CDK6. Furthermore, the combination treatment induced apoptosis that was accompanied by increased expression levels of p53 and Bax, reduced expression levels of Bcl-2, activation of caspase-7, and caspase-9, and the cleavage of PARP. The combination of berberine and evodiamine synergistically inhibited tumor growth in vivo in MCF-7 human breast cancer xenografts. Combination of berberine and evodiamine acts synergistically to suppress the proliferation of MCF-7 cells by inducing cell cycle arrest and apoptosis, illustrating the potential synergistic and combinatorial application of bioactive natural products. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
A three dimensional micropatterned tumor model for breast cancer cell migration studies.
Peela, Nitish; Sam, Feba S; Christenson, Wayne; Truong, Danh; Watson, Adam W; Mouneimne, Ghassan; Ros, Robert; Nikkhah, Mehdi
2016-03-01
Breast cancer cell invasion is a highly orchestrated process driven by a myriad of complex microenvironmental stimuli, making it difficult to isolate and assess the effects of biochemical or biophysical cues (i.e. tumor architecture, matrix stiffness) on disease progression. In this regard, physiologically relevant tumor models are becoming instrumental to perform studies of cancer cell invasion within well-controlled conditions. Herein, we explored the use of photocrosslinkable hydrogels and a novel, two-step photolithography technique to microengineer a 3D breast tumor model. The microfabrication process enabled precise localization of cell-encapsulated circular constructs adjacent to a low stiffness matrix. To validate the model, breast cancer cell lines (MDA-MB-231, MCF7) and non-tumorigenic mammary epithelial cells (MCF10A) were embedded separately within the tumor model, all of which maintained high viability throughout the experiments. MDA-MB-231 cells exhibited extensive migratory behavior and invaded the surrounding matrix, whereas MCF7 or MCF10A cells formed clusters that stayed confined within the circular tumor regions. Additionally, real-time cell tracking indicated that the speed and persistence of MDA-MB-231 cells were substantially higher within the surrounding matrix compared to the circular constructs. Z-stack imaging of F-actin/α-tubulin cytoskeletal organization revealed unique 3D protrusions in MDA-MB-231 cells and an abundance of 3D clusters formed by MCF7 and MCF10A cells. Our results indicate that gelatin methacrylate (GelMA) hydrogel, integrated with the two-step photolithography technique, has great promise in the development of 3D tumor models with well-defined architecture and tunable stiffness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Berrak, Özge; Akkoç, Yunus; Arısan, Elif Damla; Çoker-Gürkan, Ajda; Obakan-Yerlikaya, Pınar; Palavan-Ünsal, Narçin
2016-02-01
Bcl-2 protein has been contributed with number of genes which are involved in oncogenesis. Among the many targets of Bcl-2, NFκB have potential role in induction of cell cycle arrest. Curcumin has potential therapeutic effects against breast cancer through multiple signaling pathways. In this study, we investigated the role of curcumin in induction of cell cycle arrest via regulating of NFκB and polyamine biosynthesis in wt and Bcl-2+ MCF-7 cells. To examine the effect of curcumin on cell cycle regulatory proteins, PI3K/Akt, NFκB pathways and polyamine catabolism, we performed immunoblotting assay. In addition, cell cycle analysis was performed by flow cytometry. The results indicated that curcumin induced cell cycle arrest at G2/M phase by downregulation of cyclin B1 and Cdc2 and inhibited colony formation in MCF-7wt cells. However, Bcl-2 overexpression prevented the inhibition of cell cycle associated proteins after curcumin treatment. The combination of LY294002, PI3K inhibitor, and curcumin induced cell cycle arrest by decreasing CDK4, CDK2 and cyclin E2 in Bcl-2+ MCF-7 cells. Moreover, LY294002 further inhibited the phosphorylation of Akt in Bcl-2+ MCF-7 cells. Curcumin could suppress the nuclear transport of NFκB through decreasing the interaction of P-IκB-NFκB. The combination of wedelolactone, NFκB inhibitor, and curcumin acted different on SSAT expression in wt MCF-7 and Bcl-2+ MCF-7 cells. NFκB inhibition increased the SSAT after curcumin treatment in Bcl-2 overexpressed MCF-7 cells. Inhibition of NFκB activity as well as suppression of ROS generation with NAC resulted in the partial relief of cells from G2/M checkpoint after curcumin treatment in wt MCF-7 cells. In conclusion, the potential role of curcumin in induction of cell cycle arrest is related with NFκB-regulated polyamine biosynthesis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Ueda, Yukiko; Neel, Nicole F.; Schutyser, Evemie; Raman, Dayanidhi; Richmond, Ann
2009-01-01
The CXC chemokine receptor 4 (CXCR4) contributes to the metastasis of human breast cancer cells. The CXCR4 COOH-terminal domain (CTD) seems to play a major role in regulating receptor desensitization and down-regulation. We expressed either wild-type CXCR4 (CXCR4-WT) or CTD-truncated CXCR4 (CXCR4-ΔCTD) in MCF-7 human mammary carcinoma cells to determine whether the CTD is involved in CXCR4-modulated proliferation of mammary carcinoma cells. CXCR4-WT-transduced MCF-7 cells (MCF-7/CXCR4-WT cells) do not differ from vector-transduced MCF-7 control cells in morphology or growth rate. However, CXCR4-ΔCTD-transduced MCF-7 cells (MCF-7/CXCR4-ΔCTD cells) exhibit a higher growth rate and altered morphology, potentially indicating an epithelial-to-mesenchymal transition. Furthermore, extracellular signal-regulated kinase (ERK) activation and cell motility are increased in these cells. Ligand induces receptor association with β-arrestin for both CXCR4-WT and CXCR4-ΔCTD in these MCF-7 cells. Overexpressed CXCR4-WT localizes predominantly to the cell surface in unstimulated cells, whereas a significant portion of overexpressed CXCR4-ΔCTD resides intracellularly in recycling endosomes. Analysis with human oligomicroarray, Western blot, and immunohistochemistry showed that E-cadherin and Zonula occludens are down-regulated in MCF-7/CXCR4-ΔCTD cells. The array analysis also indicates that mesenchymal marker proteins and certain growth factor receptors are up-regulated in MCF-7/CXCR4-ΔCTD cells. These observations suggest that (a) the overexpression of CXCR4-ΔCTD leads to a gain-of-function of CXCR4-mediated signaling and (b) the CTD of CXCR4-WT may perform a feedback repressor function in this signaling pathway. These data will contribute to our understanding of how CXCR4-ΔCTD may promote progression of breast tumors to metastatic lesions. PMID:16740704
Antitumor effects of concanavalin A and Sophora flavescens lectin in vitro and in vivo.
Shi, Zheng; Chen, Jie; Li, Chun-yang; An, Na; Wang, Zi-jie; Yang, Shu-lin; Huang, Kai-feng; Bao, Jin-ku
2014-02-01
Proteins with legume lectin domains are known to possess a wide range of biological functions. Here, the antitumor effects of two representative legume lectins, concanavalin A (ConA) and Sophora flavescens lectin (SFL), on human breast carcinoma cells were investigated in vitro and in vivo. Human breast carcinoma MCF-7 cells and human normal mammary epithelial MCF-10A cells were examined. Cell viability was detected using WST-1 and CCK-8 assays. Cell apoptosis was analyzed with Hoechst 33258 staining. Cell cycle was investigated using flow cytometry. The expression of relevant proteins was measured using Western blotting. Breast carcinoma MCF-7 bearing nude mice were used to study the antitumor effects in vivo. The mice were injected with ConA (40 mg/kg, ip) and SFL (55 mg/kg, ip) daily for 14 d. ConA and SFL inhibited the growth of MCF-7 cells in dose- and time-dependent manners (IC50 values were 15 and 20 μg/mL, respectively). Both ConA and SFL induced apoptotic morphology in MCF-7 cells without affecting MCF-10A cells. ConA and SFL dose-dependently increased the sub-G1 proportion in MCF-7 cells, while SFL also triggered the G2/M phase cell cycle arrest. Both ConA and SFL dose-dependently increased the activities of caspase-3 and caspase-9 and release of cytochrome C from mitochondria into cytoplasm, up-regulated Bax and Bid, and down-regulated Bcl-2 and Bcl-XL in MCF-7 cells. ConA reduced NF-κB, ERK, and JNK levels, and increased p53 and p21 levels, while SFL caused similar changes in NF-κB, ERK, p53, and p21 levels, but did not affect JNK expression. Administration of ConA and SFL significantly decreased the subcutaneous tumor mass volume and weight in MCF-7 bearing nude mice. ConA and SFL exert anti-tumor actions against human breast carcinoma MCF-7 cells both in vitro and in vivo.
Antitumor effects of concanavalin A and Sophora flavescens lectin in vitro and in vivo
Shi, Zheng; Chen, Jie; Li, Chun-yang; An, Na; Wang, Zi-jie; Yang, Shu-lin; Huang, Kai-feng; Bao, Jin-ku
2014-01-01
Aim: Proteins with legume lectin domains are known to possess a wide range of biological functions. Here, the antitumor effects of two representative legume lectins, concanavalin A (ConA) and Sophora flavescens lectin (SFL), on human breast carcinoma cells were investigated in vitro and in vivo. Methods: Human breast carcinoma MCF-7 cells and human normal mammary epithelial MCF-10A cells were examined. Cell viability was detected using WST-1 and CCK-8 assays. Cell apoptosis was analyzed with Hoechst 33258 staining. Cell cycle was investigated using flow cytometry. The expression of relevant proteins was measured using Western blotting. Breast carcinoma MCF-7 bearing nude mice were used to study the antitumor effects in vivo. The mice were injected with ConA (40 mg/kg, ip) and SFL (55 mg/kg, ip) daily for 14 d. Results: ConA and SFL inhibited the growth of MCF-7 cells in dose- and time-dependent manners (IC50 values were 15 and 20 μg/mL, respectively). Both ConA and SFL induced apoptotic morphology in MCF-7 cells without affecting MCF-10A cells. ConA and SFL dose-dependently increased the sub-G1 proportion in MCF-7 cells, while SFL also triggered the G2/M phase cell cycle arrest. Both ConA and SFL dose-dependently increased the activities of caspase-3 and caspase-9 and release of cytochrome C from mitochondria into cytoplasm, up-regulated Bax and Bid, and down-regulated Bcl-2 and Bcl-XL in MCF-7 cells. ConA reduced NF-κB, ERK, and JNK levels, and increased p53 and p21 levels, while SFL caused similar changes in NF-κB, ERK, p53, and p21 levels, but did not affect JNK expression. Administration of ConA and SFL significantly decreased the subcutaneous tumor mass volume and weight in MCF-7 bearing nude mice. Conclusion: ConA and SFL exert anti-tumor actions against human breast carcinoma MCF-7 cells both in vitro and in vivo. PMID:24362332
In vitro effects and mechanisms of lycopene in MCF-7 human breast cancer cells.
Peng, S J; Li, J; Zhou, Y; Tuo, M; Qin, X X; Yu, Q; Cheng, H; Li, Y M
2017-04-13
Breast cancer adversely affects the health status of women; therefore, the prevention and treatment of breast cancer is of critical importance. Lycopene is known to possess several biological effects such as removal of free radicals, alleviation of biological oxidative injury, and inhibition of tumor growth. In this study, we aimed to illustrate the effect of lycopene on tumor cell proliferation and modulation of cancer progression as well as its possible underlying mechanisms in human breast carcinoma cell line MCF-7 in vitro. MCF-7 cells were treated with different lycopene concentrations for 24, 48, and 72 h. Light field microscopy was used to observe cell morphology. MTT assay was used to determine the effect of lycopene on MCF-7 proliferation. Flow cytometry was employed to evaluate cell apoptosis. Real-time quantitative polymerase chain reaction was performed to detect the expression of p53 and Bax. Under microscopic examination, the untreated MCF-7 cells appeared to have a diamond or polygonal shape. Lycopene treatment resulted in cell shrinkage and breakage, whose severity increased in a dose and duration dependent manner. In addition, reduced cell proliferation and increased apoptosis (P < 0.05) were observed using MTT assay and flow cytometry, respectively. Moreover, lycopene could also upregulate the expression of p53 and Bax mRNAs in MCF-7 cells. In conclusion, lycopene inhibits proliferation and facilitates apoptosis of MCF-7 cells in vitro, possibly by regulating the expression of p53 and Bax.
Garvin, Stina; Oda, Husam; Arnesson, Lars-Gunnar; Lindström, Annelie; Shabo, Ivan
2018-07-01
Cancer cell fusion with macrophages results in highly tumorigenic hybrids that acquire genetic and phenotypic characteristics from both maternal cells. Macrophage traits, exemplified by CD163 expression, in tumor cells are associated with advanced stages and poor prognosis in breast cancer (BC). In vitro data suggest that cancer cells expressing CD163 acquire radioresistance. Tissue microarray was constructed from primary BC obtained from 83 patients treated with breast-conserving surgery, 50% having received postoperative radiotherapy (RT) and none of the patients had lymph node or distant metastasis. Immunostaining of CD163 in cancer cells and macrophage infiltration (MI) in tumor stroma were evaluated. Macrophage:MCF-7 hybrids were generated by spontaneous in vitro cell fusion. After irradiation (0, 2.5 and 5 Gy γ-radiation), both hybrids and their maternal MCF-7 cells were examined by clonogenic survival. CD163-expression by cancer cells was significantly associated with MI and clinicopathological data. Patients with CD163-positive tumors had significantly shorter disease-free survival (DFS) after RT. In vitro generated macrophage:MCF-7 hybrids developed radioresistance and exhibited better survival and colony forming ability after radiation compared to maternal MCF-7 cancer cells. Our results suggest that macrophage phenotype in tumor cells results in radioresistance in breast cancer and shorter DFS after radiotherapy.
Transdifferentiation between Luminal- and Basal-Type Cancer Cells
2013-12-01
aggressiveness of MCF7/shPKD1 cells. More importantly, the MCF7/shPKD1 cells show reduced expression of estrogen receptor (ERα/ ESR1 , Fig 3B-D). Clinically, the...express Her2, the lack of expression of ESR1 and PgR (Fig 3D and Table 1) literally make the MCF7/shPKD1 cell a triple-negative cancer cell. Fig 3
Matsui, Chihiro; Takatani-Nakase, Tomoka; Maeda, Sachie; Nakase, Ikuhiko; Takahashi, Koichi
2017-12-01
Recent reports have indicated that hyperglycaemia is associated with breast cancer progression. High glucose conditions corresponding to hyperglycaemia significantly promote migration of MCF-7 human breast cancer cells, however, little is known about the mechanisms of glucose sensing for the acquisition of migratory properties by MCF-7 cells. This study investigated glucose sensing and mediation, which are responsible for the high motility of MCF-7 cells. We evaluated the migration of MCF-7 cells cultured in high glucose-containing medium and essential regulatory factors from the perspective of the glucose transport system. We demonstrated that glucose transporter 12 (GLUT12) protein level increased in MCF-7 cells and co-localized with actin organization under high glucose conditions. Moreover, GLUT12-knockdown completely abrogated high glucose-induced migration, indicating that GLUT12 functionally participates in sensing high glucose concentrations. GLUT12 plays a critical role in the model of breast cancer progression through high glucose concentrations. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Quercetin Suppresses Twist to Induce Apoptosis in MCF-7 Breast Cancer Cells
Ranganathan, Santhalakshmi; Halagowder, Devaraj; Sivasithambaram, Niranjali Devaraj
2015-01-01
Quercetin is a dietary flavonoid which exerts anti-oxidant, anti-inflammatory and anti-cancer properties. In this study, we investigated the anti-proliferative effect of quercetin in two breast cancer cell lines (MCF-7 and MDA-MB-231), which differed in hormone receptor. IC50 value (37μM) of quercetin showed significant cytotoxicity in MCF-7 cells, which was not observed in MDA-MB-231 cells even at 100μM of quercetin treatment. To study the response of cancer cells to quercetin, with respect to different hormone receptors, both the cell lines were treated with a fixed concentration (40μM) of quercetin. MCF-7 cells on quercetin treatment showed more apoptotic cells with G1 phase arrest. In addition, quercetin effectively suppressed the expression of CyclinD1, p21, Twist and phospho p38MAPK, which was not observed in MDA-MB-231 cells. To analyse the molecular mechanism of quercetin in exerting an apoptotic effect in MCF-7 cells, Twist was over-expressed and the molecular changes were observed after quercetin administration. Quercetin effectively regulated the expression of Twist, in turn p16 and p21 which induced apoptosis in MCF-7 cells. In conclusion, quercetin induces apoptosis in breast cancer cells through suppression of Twist via p38MAPK pathway. PMID:26491966
Li, Xiaoting; Chen, Beibei; He, Man; Wang, Han; Xiao, Guangyang; Yang, Bin; Hu, Bin
2017-04-15
In this work, we demonstrate a novel method based on inductively coupled plasma mass spectrometry (ICP-MS) detection with gold nanoparticles (Au NPs) and quantum dots (QDs) labeling for the simultaneous counting of two circulating tumor cell lines (MCF-7 and HepG2 cells) in human blood. MCF-7 and HepG2 cells were captured by magnetic beads coupled with anti-EpCAM and then specifically labeled by CdSe QDs-anti-ASGPR and Au NPs-anti-MUC1, respectively, which were used as signal probes for ICP-MS measurement. Under the optimal experimental conditions, the limits of detection of 50 MCF-7, 89 HepG2 cells and the linear ranges of 200-40000 MCF-7, 300-30000 HepG2 cells were obtained, and the relative standard deviations for seven replicate detections of 800 MCF-7 and HepG2 cells were 4.6% and 5.7%, respectively. This method has the advantages of high sensitivity, low sample consumption, wide linear range and can be extended to the simultaneous detection of multiple CTC lines in human peripheral blood. Copyright © 2016 Elsevier B.V. All rights reserved.
Thill, Marc; Fischer, Dorothea; Becker, Steffi; Cordes, Tim; Dittmer, Christine; Diedrich, Klaus; Salehin, Darius; Friedrich, Michael
2009-09-01
The antiproliferative effects of calcitriol (1,25(OH)2D3) mediated via the vitamin D receptor (VDR), render the biologically active form of vitamin D a promising target in breast cancer therapy. Furthermore, breast cancer is associated with inflammatory processes based on an up-regulation of cyclooxygenase-2 (COX-2) expression, the prostaglandin E2 (PGE2) synthesizing enzyme. The PGE2 metabolizing enzyme, 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is described as a tumor suppressor in cancer. First references suggest a correlation between vitamin D and prostaglandin metabolism through the impact of 1,25(OH)2D3 on the expression of COX-2 and 15-PGDH. The expression of VDR, COX-2 and 15-PGDH in benign MCF-10F and malignant MCF-7 breast cells was determined by real-time PCR (RT-PCR) and Western blot analysis. Although the RT-PCR data were divergent from those obtained from the Western blot analysis, the COX-2 protein expression was MCF-7 2-fold higher in the MCF-7 compared to the MCF-10F cells. Moreover, a correlation of 15-PGDH to VDR by RT-PCR was found in both cell lines. The VDR protein levels were inversely correlated to the 15-PGDH protein levels and revealed that the MCF-10F cells had the highest VDR expression. A possible link between VDR-associated target genes and prostaglandin metabolism is suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta
2014-01-15
Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC{sub 50}=25±0.38) when compared to reference compound PTER (IC{sub 50}=65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flowmore » cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene.« less
Chiotaki, Rena; Polioudaki, Hara; Theodoropoulos, Panayiotis A
2014-08-01
Cancer cells often exhibit characteristic aberrations in their nuclear architecture, which are indicative of their malignant potential. In this study, we have examined the nuclear and cytoskeletal composition, attachment configuration dynamics, and osmotic or drug treatment response of invasive (Hs578T and MDA-MB-231) and non-invasive (MCF-10A and MCF-7) breast cancer cell lines. Unlike MCF-10A and MCF-7, Hs578T and MDA-MB-231 cells showed extensive nuclear elasticity and deformability and displayed distinct kinetic profiles during substrate attachment. The nuclear shape of MCF-10A and MCF-7 cells remained almost unaffected upon detachment, hyperosmotic shock, or cytoskeleton depolymerization, while Hs578T and MDA-MB-231 revealed dramatic nuclear contour malformations following actin reorganization.
Kim, Gyeong-Ji; Jo, Hyeon-Ju; Lee, Kwon-Jai; Choi, Jeong Woo; An, Jeung Hee
2018-05-29
We evaluated oleanolic acid (OA)-induced anti-cancer activity, apoptotic mechanism, cell cycle status, and MAPK kinase signaling in DU145 (prostate cancer), MCF-7 (breast cancer), U87 (human glioblastoma), normal murine liver cell (BNL CL.2) and human foreskin fibroblast cell lines (Hs 68). The IC50 values for OA-induced cytotoxicity were 112.57 in DU145, 132.29 in MCF-7, and 163.60 in U87 cells, respectively. OA did not exhibit toxicity in BNL CL. 2 and Hs 68 cell lines in our experiments. OA, at 100 µg/mL, increased the number of apoptotic cells to 27.0% in DU145, 27.0% in MCF-7, and 15.7% in U87, when compared to control cells. This enhanced apoptosis was due to increases in p53, cytochrome c, Bax, PARP-1 and caspase-3 expression in DU145, MCF-7 and U87 cell lines. OA-treated DU145 cells were arrested in G2 because of the activation of p-AKT, p-JNK, p21 and p27, and the decrease in p-ERK, cyclin B1 and CDK2 expression; OA-treated MCF-7 cells were arrested in G1 owing to the activation of p-JNK, p-ERK, p21, and p27, and the decrease in p-AKT, cyclin D1, CDK4, cyclin E, and CDK2; and OA-treated U87 cells also exhibited G1 phase arrest caused by the increase in p-ERK, p-JNK, p-AKT, p21, and p27, and the decrease in cyclin D1, CDK4, cyclin E and CDK2. Thus, OA arrested the cell cycle at different phases and induced apoptosis in cancer cells. These results suggested that OA possibly altered the expression of the cell cycle regulatory proteins differently in varying types of cancer.
Evaluating the potential bioactivity of a novel compound ER1626.
Wang, Lijun; Zeng, Yanyan; Wang, Tianling; Liu, Hongyi; Xiao, Hong; Xiang, Hua
2014-01-01
ER1626, a novel compound, is a derivate of indeno-isoquinoline ketone. This study was designed to evaluate the biological activity and potential anti-tumor mechanism of ER1626. MTT assay, scratch assay and flow cytometry were used to determine cell proliferation, cell migration and cell cycle distribution as well as cell apoptosis on human breast cancer MCF-7 cells and endometrial cancer Ishikawa cells. We also explored the antiangiogenic effect of ER1626 on HUVEC cells and chicken embryos. The expression of estrogen receptor protein was investigated with western-blot analysis. ER1626 down-regulated the expression of estrogen receptor α protein and up-regulated β protein in MCF-7 and Ishikawa cells. The value of IC50 of ER1626 on MCF-7 and Ishikawa cells were respectively 8.52 and 3.08 µmol/L. Meanwhile, ER1626 decreased VEGF secretion of MCF-7 and Ishikawa cells, disturbed the formation of VEGF-stimulated tubular structure in HUVEC cells, and inhibited the angiogenesis on the chicken chorioallantoic membrane. Scratch assay revealed that ER1626 suppressed the migration of MCF-7, Ishikawa and HUVEC cells. In addition to induction tumor cell apoptosis, ER1626 arrested cell cycle in G1/G0 phase in MCF-7 cells and G2/M phase in Ishikawa cells. In conclusion, our results demonstrated that ER1626 has favorable bioactivities to be a potential candidate against breast cancer and angiogenesis.
AL Shabanah, Othman A; Alotaibi, Moureq rashed; Al Rejaie, Salim S; Alhoshani, Ali R; Almutairi, Mashal M; Alshammari, Musaad A; Hafez, Mohamed M
2016-11-01
Objective: Breast cancer is global female health problem worldwide. Most of the currently used agents for breast cancer treatment have toxic side-effects. Ginseng root, an oriental medicine, has many health benefits and may exhibit direct anti-cancer properties. This study was performed to assess the effects of ginseng on breast cancer cell lines. Materials and Methods: Cytotoxicity of ginseng extract was measured by MTT assay after exposure of MDA-MB-231, MCF-10A and MCF-7 breast cancer cells to concentrations of 0.25, 0.5, 1, 1.5, 2 and 2.5 mg/well. Expression levels of p21WAF, p16INK4A, Bcl-2, Bax and P53 genes were analyzed by quantitative real time PCR. Results: The treatment resulted in inhibition of cell proliferation in a dose-and time-dependent manner. p53, p21WAF1and p16INK4A expression levels were up-regulated in ginseng treated MDA-MB-231 and MCF-7 cancer cells compared to untreated controls and in MCF-10A cells. The expression levels of Bcl2 in the MDA-MB-231 and MCF-7 cells were down-regulated. In contrast, that of Bax was significantly up-regulated. Conclusion: The results of this study revealed that ginseng may inhibit breast cancer cell growth by activation of the apoptotic pathway. Creative Commons Attribution License
Faraj, Fadhil Lafta; Zahedifard, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Abdul Majid, Nazia; Ali, Hapipah Mohd; Ahmad, Noraini; Gwaram, Nura Suleiman; Abdulla, Mahmood Ameen
2014-01-01
Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246×10(-6) mol/L and 5.910×10(-6) mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies.
Faraj, Fadhil Lafta; Zahedifard, Maryam; Paydar, Mohammadjavad; Looi, Chung Yeng; Abdul Majid, Nazia; Ali, Hapipah Mohd; Ahmad, Noraini; Gwaram, Nura Suleiman; Abdulla, Mahmood Ameen
2014-01-01
Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246 × 10−6 mol/L and 5.910 × 10−6 mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies. PMID:25548779
Anti-miR-203 suppresses ER-positive breast cancer growth and stemness by targeting SOCS3.
Muhammad, Naoshad; Bhattacharya, Sourav; Steele, Robert; Ray, Ratna B
2016-09-06
Breast cancer is a major public health problem worldwide in women and existing treatments are not adequately effective for this deadly disease. microRNAs (miRNAs) regulate the expression of many target genes and play pivotal roles in the development, as well as in the suppression of many cancers including breast cancer. We previously observed that miR-203 was highly upregulated in breast cancer tissues and in ER-positive breast cancer cell lines. In our present study, we observed that anti-miR-203 suppresses breast cancer cell proliferation in vitro. Orthotopic implantation of miR-203 depleted MCF-7 cells into nude mice displays smaller tumor growth as compared to control MCF-7 cells. Furthermore, miR-203 expression is significantly higher in ER-positive breast cancer patients as compared to ER-negative patients. We identified suppressor of cytokine signaling 3 (SOCS3) as a direct target of miR-203. Here we observed that miR-203 expression is inversely correlated with SOCS3 expression in ER-positive breast cancer samples. Additionally, we found that anti-miR-203 suppressed the expression of pStat3, pERK and c-Myc in MCF-7 and ZR-75-1 cells. We also demonstrated that anti-miR-203 decreased mammospheres formation and expression of stem cell markers in MCF-7 and ZR-75-1 cells. Taken together, our data suggest that anti-miR-203 has potential as a novel therapeutic strategy in ER-positive breast cancer treatment.
Subash-Babu, Pandurangan; Li, David K; Alshatwi, Ali A
2017-10-02
We aimed to explore the cytotoxic and apoptotic effect of friedelin on breast cancer MCF-7 cells. Cytotoxic effect of friedelin on MCF-7 cells was analyzed using MTT, cell and nuclear morphology. The apoptosis mechanism of friedelin on MCF-7 cells was analyzed using real-time PCR. Friedelin potentially inhibit 78% of MCF-7 cell's growth, the IC 50 value was 1.8μM in 24h and 1.2μM in 48h. Friedelin increased ROS significantly and DNA damage was confirmed by tunel assay. We found characteristically 52% apoptotic cells and 6% necrotic cells in PI, AO/ErBr staining after 48h treatment with 1.2μM of friedelin. Apoptosis was confirmed by significantly (p≤0.001) increased tumor suppressor gene Cdkn1a, pRb2, p53, Nrf2, caspase-3 and decreased Bcl-2, mdm2 & PCNA expression after 48h. In conclusion, friedelin effectively inhibit breast cancer MCF-7 cell growth, it was associated with early expression of Cdkn1a, pRb2 and activation of p53 and caspases. Copyright © 2017. Published by Elsevier GmbH.
Al-Oqail, Mai M; Al-Sheddi, Ebtesam S; Siddiqui, Maqsood A; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Farshori, Nida N
2015-10-01
Cancer is one of the major causes of death worldwide. The plant-derived natural products have received considerable attention in recent years due to their diverse pharmacological properties including anticancer effects. Nepeta deflersiana (ND) is used in the folk medicine as antiseptic, carminative, antimicrobial, antioxidant, and for treating rheumatic disorders. However, the anticancer activity of ND chloroform extract has not been explored so far. The present study was aimed to investigate the anticancer activities of chloroform Nepeta deflersiana extract and various sub-fractions (ND-1-ND-15) of ND against human breast cancer cells (MCF-7) and human lung cancer cells (A-549). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and neutral red uptake assays, and cellular morphological alterations using phase contrast light microscope were studied. Cells were exposed with 10-1000 μg/ml of sub-fractions of ND for 24 h. Results showed that selected sub-fractions of the chloroform extract significantly reduced the cell viability of MCF-7 and A-549 cells, and altered the cellular morphology in a concentration-dependent manner. Among the sub-fractions, ND-10 fraction showed relatively higher cytotoxicity compared to other fractions whereas, ND-1 did not cause any cytotoxicity even at higher concentrations. The A-549 cells were found to be more sensitive to growth inhibition by all the extracts as compared to the MCF-7 cells. The present study provides preliminary screening of anticancer activities of chloroform extract and sub-fractions of ND, which can be further used for the development of a potential therapeutic anticancer agent. Nepeta deflersiana extract exhibit cytotoxicity and altered the cellular morphology. Sub-fractions of the chloroform extract of Nepeta deflersiana reduced the cell viability of MCF-7 and A-549 cells. Among the sub-fractions, ND-10 fraction showed relatively higher cytotoxicity. The A-549 cells were found to be more sensitive as compared to the MCF-7 cells. Abbreviations used: MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; NRU: Neutral red uptake; DMEM: Dulbecco's modified eagle medium; FBS: Fetal bovine serum; PBS: Phosphate buffer saline; DMSO: Dimethyl sulfoxide.
Lee, Joomin; Hahm, Eun-Ryeong; Marcus, Adam I; Singh, Shivendra V
2015-06-01
We have shown previously that withaferin A (WA), a bioactive component of the medicinal plant Withania somnifera, inhibits growth of cultured and xenografted human breast cancer cells and prevents breast cancer development and pulmonary metastasis incidence in a transgenic mouse model. The present study was undertaken to determine if the anticancer effect of WA involved inhibition of epithelial-mesenchymal transition (EMT). Experimental EMT induced by exposure of MCF-10A cells to tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β) was partially reversed by treatment with WA but not by its structural analogs withanone or withanolide A. Combined TNF-α and TGF-β treatments conferred partial protection against MCF-10A cell migration inhibition by WA. Inhibition of TNF-α and TGF-β-induced MCF-10A cell migration by WA exposure was modestly attenuated by knockdown of E-cadherin protein. MCF-7 and MDA-MB-231 cells exposed to WA exhibited sustained (MCF-7) or transient (MDA-MB-231) induction of E-cadherin protein. On the other hand, the level of vimentin protein was increased markedly after 24 h treatment of MDA-MB-231 cells with WA. WA-induced apoptosis was not affected by vimentin protein knockdown in MDA-MB-231 cells. Protein level of vimentin was significantly lower in the MDA-MB-231 xenografts as well as in MMTV-neu tumors from WA-treated mice compared with controls. The major conclusions of the present study are that (a) WA treatment inhibits experimental EMT in MCF-10A cells, and (b) mammary cancer growth inhibition by WA administration is associated with suppression of vimentin protein expression in vivo. © 2013 Wiley Periodicals, Inc.
Role of PP2Cα in cell growth, in radio- and chemosensitivity, and in tumorigenicity
Lammers, Twan; Peschke, Peter; Ehemann, Volker; Debus, Jürgen; Slobodin, Boris; Lavi, Sara; Huber, Peter
2007-01-01
Background PP2Cα is the representative member of the type 2C family of protein phosphatases, and it has recently been implicated in the regulation of p53-, TGFβ-, cyclin-dependent kinase- and apoptosis-signaling. To investigate the role of PP2Cα in cell growth and in radio- and chemosensitivity, wild type and PP2Cα siRNA-expressing MCF7 cells were subjected to several different viability and cell cycle analyses, both under basal conditions and upon treatment with radio- and chemotherapy. By comparing the growth of tumors established from both types of cells, we also evaluated the involvement of PP2Cα in tumorigenesis. Results It was found that knockdown of PP2Cα did not affect the proliferation, the clonogenic survival and the membrane integrity of MCF7 cells. In addition, it did not alter their radio- and chemosensitivity. For PP2Cα siRNA-expressing MCF7 cells, the number of cells in the G0/G1 phase of the cell cycle was reduced, the induction of the G1 block was attenuated, the number of cells in G2/M was increased, and the induction of the G2 block was enhanced. The tumorigenic potential of PP2Cα siRNA-expressing MCF7 cells was found to be higher than that of wild type MCF7 cells, and the in vivo proliferation of these cells was found to be increased. Conclusion Based on these findings, we conclude that PP2Cα is not involved in controlling cell growth and radio- and chemosensitivity in vitro. It does, however, play a role in the regulation of the cell cycle, in the induction of cell cycle checkpoints and in tumorigenesis. The latter notion implies that PP2Cα may possess tumor-suppressing properties, and it thereby sets the stage for more elaborate analyses on its involvement in the development and progression of cancer. PMID:17941990
Kang, Tae-Wook; Kim, Hyung-Sik; Lee, Byung-Chul; Shin, Tae-Hoon; Choi, Soon Won; Kim, Yoon-Jin; Lee, Hwa-Yong; Jung, Yeon-Kwon; Seo, Kwang-Won; Kang, Kyung-Sun
2015-12-03
Mica, an aluminosilicate mineral, has been proven to possess anti-tumor and immunostimulatory effects. However, its efficacy and mechanisms in treating various types of tumor are less verified and the mechanistic link between anti-tumor and immunostimulatory effects has not been elucidated. We sought to investigate the therapeutic effect of STB-HO (mica nanoparticles) against one of the most prevalent cancers, the breast cancer. STB-HO was orally administered into MCF-7 xenograft model or directly added to culture media and tumor growth was monitored. STB-HO administration exhibited significant suppressive effects on the growth of MCF-7 cells in vivo, whereas STB-HO did not affect the proliferation and apoptosis of MCF-7 cells in vitro. To address this discrepancy between in vivo and in vitro results, we investigated the effects of STB-HO treatment on the interaction of MCF-7 cells with macrophages, dendritic cells (DCs) and natural killer (NK) cells, which constitute the cellular composition of tumor microenvironment. Importantly, STB-HO not only increased the susceptibility of MCF-7 cells to immune cells, but also stimulated the immunocytes to eliminate cancer cells. In conclusion, our study highlights the possible role of STB-HO in the suppression of MCF-7 cell growth via the regulation of interactions between tumor cells and anti-tumor immune cells.
Kang, Tae-Wook; Kim, Hyung-Sik; Lee, Byung-Chul; Shin, Tae-Hoon; Choi, Soon Won; Kim, Yoon-Jin; Lee, Hwa-Yong; Jung, Yeon-Kwon; Seo, Kwang-Won; Kang, Kyung-Sun
2015-01-01
Mica, an aluminosilicate mineral, has been proven to possess anti-tumor and immunostimulatory effects. However, its efficacy and mechanisms in treating various types of tumor are less verified and the mechanistic link between anti-tumor and immunostimulatory effects has not been elucidated. We sought to investigate the therapeutic effect of STB-HO (mica nanoparticles) against one of the most prevalent cancers, the breast cancer. STB-HO was orally administered into MCF-7 xenograft model or directly added to culture media and tumor growth was monitored. STB-HO administration exhibited significant suppressive effects on the growth of MCF-7 cells in vivo, whereas STB-HO did not affect the proliferation and apoptosis of MCF-7 cells in vitro. To address this discrepancy between in vivo and in vitro results, we investigated the effects of STB-HO treatment on the interaction of MCF-7 cells with macrophages, dendritic cells (DCs) and natural killer (NK) cells, which constitute the cellular composition of tumor microenvironment. Importantly, STB-HO not only increased the susceptibility of MCF-7 cells to immune cells, but also stimulated the immunocytes to eliminate cancer cells. In conclusion, our study highlights the possible role of STB-HO in the suppression of MCF-7 cell growth via the regulation of interactions between tumor cells and anti-tumor immune cells. PMID:26631982
Ersoz, M; Coskun, Z M; Acikgoz, B; Karalti, I; Cobanoglu, G; Cesal, C
2017-08-15
The aim of this study was to investigate the anti-proliferative, apoptotic, cytotoxic, and anti-oxidant effects of extracts from the lichen Cladonia pocillumon human breast cancer cells (MCF-7), and to characterize the anti-microbial features. MCF-7 cells were treated with methanolic C. pocillum extract for 24h. The cytotoxicity of the extract was tested with MTT. Moreover, its anti-proliferative effects were examined with immunocytochemical method. Apoptosis and biochemical parameters were detected in MCF-7. The methanol and chloroform extracts of the lichen were tested for anti-microbial activity against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans using the disc diffusion method and calculation of minimal inhibitory concentrations. Although BrdU incorporation was not observed in MCF-7 cells treated with methanol extract at a concentration above 0.2 mg/mL, a significant decrease was observed int he percentage of PCNA immunoreactive cells in groups treated with 0.2, 0.4, 06, and 0.8 mg/mL methanol extracts of C.pocillum (49±6.3, 44±5.2, 23±2.5, 0, respectively) compared to that of control (85±4.5). The percentage of apoptotic cells significantly increased in groups treated with 0.2, 0.4, 0.6, and 0.8 mg/mL extracts of the C.pocillum (54±3.5, 76±2.6, 77±1.8, 82±4.2, respectively) compared with that of control group (3.9±1.5).The half-maximal inhibitory concentration of the methanol extract against MCF-7 cells was 0.802 mg/mL .Although the chloroform extract showed more effective anti-microbial activity overall, the methanol extract showed higher anti-fungal activity. Collectively, the results of our study indicate that C.pocillum extracts have strong anti-microbial and apoptotic effects. This lichen therefore shows potential for development as a natural anti-microbial, anti-oxidant, and apoptotic agent.
NASA Astrophysics Data System (ADS)
Hou, Lin; Feng, Qianhua; Wang, Yating; Yang, Xiaomin; Ren, Junxiao; Shi, Yuyang; Shan, Xiaoning; Yuan, Yujie; Wang, Yongchao; Zhang, Zhenzhong
2016-01-01
Multifunctional nanosheets (HA-GO/Pluronic) with targeted chemo-photothermal properties were successfully developed for controlled delivery of mitoxantrone (MIT) to overcome multidrug resistance (MDR). In vitro release profiles displayed that both an acidic environment and a NIR laser could trigger and accelerate the release of a drug, which ensured nanosheets were stable in blood circulation and released MIT within tumor cells under laser irradiation. HA-GO/Pluronic nanosheets were taken up into MCF-7/ADR cells via receptor-mediated endocytosis, which further facilitated escapement of P-gp efflux. Compared with MIT solution, MIT/HA-GO/Pluronic showed greater cytotoxicity and increase in cellular MIT accumulation in MCF-7/ADR cells. Cell apoptosis and cell cycle arrest studies also revealed that MIT/HA-GO/Pluronic was more potent than MIT/GO/Pluronic and MIT solution. The anticancer efficacy in vivo was evaluated in MCF-7 and MCF-7/ADR-bearing mice, and inhibition of tumors by MIT/HA-GO/Pluronic with NIR laser irradiation was the most effective among all MIT formulations. In summary, the MIT/HA-GO/Pluronic system had striking functions such as P-gp reversible inhibitor and anticancer efficacy, and could present a promising platform for drug-resistant cancer treatment.
Komeili-Movahhed, Tahereh; Fouladdel, Shamileh; Barzegar, Elmira; Atashpour, Shekoufeh; Hossein Ghahremani, Mohammad; Nasser Ostad, Seyed; Madjd, Zahra; Azizi, Ebrahim
2015-01-01
Objective(s): Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted therapy against PI3K/Akt signaling pathway using LY294002 (LY) to re-sensitize breast cancer MCF7 cell line to mitoxantrone (MTX) chemotherapy. Materials and Methods: Anticancer effects of MTX, siRNA, and LY alone and in combination were evaluated in MCF7 cells using MTT cytotoxicity assay and flow cytometry analysis of cell cycle distribution and apoptosis induction. Results: MTT and apoptosis assays showed that both MTX and LY inhibited cell proliferation and induced apoptosis in MCF7 cells. Results indicated that inhibition of BCRP by siRNA or PI3K/Akt signaling pathway by LY significantly increased sensitivity of MCF7 cells to antiproliferation and apoptosis induction of MTX. Furthermore, MTX showed G2/M arrest, whereas LY induced G0/G1 arrest in cell cycle distribution of MCF7 cells. Combination of siRNA or LY with MTX chemotherapy significantly increased accumulation of MCF7 cells in the G2/M phase of cell cycle. Conclusion: Combination of MTX chemotherapy with BCRP siRNA and PI3K/Akt inhibition can overcome MDR in breast cancer cells. This study furthermore suggests that novel therapeutic approaches are needed to enhance anticancer effects of available drugs in breast cancer. PMID:26124933
Scarlatti, F; Maffei, R; Beau, I; Codogno, P; Ghidoni, R
2008-08-01
Resveratrol, a polyphenol found in grapes and other fruit and vegetables, is a powerful chemopreventive and chemotherapeutic molecule potentially of interest for the treatment of breast cancer. The human breast cancer cell line MCF-7, which is devoid of caspase-3 activity, is refractory to apoptotic cell death after incubation with resveratrol. Here we show that resveratrol arrests cell proliferation, triggers death and decreases the number of colonies of cells that are sensitive to caspase-3-dependent apoptosis (MCF-7 casp-3) and also those that are unresponsive to it (MCF-7vc). We demonstrate that resveratrol (i) acts via multiple pathways to trigger cell death, (ii) induces caspase-dependent and caspase-independent cell death in MCF-7 casp-3 cells, (iii) induces only caspase-independent cell death in MCF-7vc cells and (iv) stimulates macroautophagy. Using BECN1 and hVPS34 (human vacuolar protein sorting 34) small interfering RNAs, we demonstrate that resveratrol activates Beclin 1-independent autophagy in both cell lines, whereas cell death via this uncommon form of autophagy occurs only in MCF-7vc cells. We also show that this variant form of autophagic cell death is blocked by the expression of caspase-3, but not by its enzymatic activity. In conclusion, this study reveals that non-canonical autophagy induced by resveratrol can act as a caspase-independent cell death mechanism in breast cancer cells.
NASA Astrophysics Data System (ADS)
Issarachot, Ousanee; Suksiriworapong, Jiraphong; Takano, Mikihisa; Yumoto, Ryoko; Junyaprasert, Varaporn Buraphacheep
2014-02-01
Functionalized nanoparticles of polymer-drug conjugates of PEGylated poly(ɛ-caprolactone) (PEGylated P(CL)) with methotrexate (MTX) and folic acid (FOL) were developed and investigated for their targeting efficiency. FOL- and MTX-conjugated PEGylated P(CL) copolymers were employed to prepare P(MTXCLCL)2-PEG NPs and FOL-P(MTXCLCL)2-PEG NPs. By varying the amount of MTX, the different characteristics of nanoparticles were obtained. The results showed that an increase in particle size and more negative surface charge of P(MTXCLCL)2-PEG NPs were related to an increased amount of MTX along the polymer backbone. After being decorated with FOL, the particle size increased by nearly twofolds while the zeta potential decreased. All nanoparticles were spherical as observed under SEM micrographs. The release profiles showed pH-dependent and sustained release over 20 days. Higher extent of MTX was released in pH 4.5 medium as compared to the drug release in pH 7.4 medium. All nanoparticles showed greater toxicity to MCF-7 cells than A549 cells. In addition, FOL-P(MTXCLCL)2-PEG NPs exhibited the highest toxicity to MCF-7 cells as compared to all P(MTXCLCL)2-PEG NPs and free MTX. Furthermore, FOL-P(MTXCLCL)2-PEG NPs were internalized into MCF-7 cells higher than P(MTXCLCL)2-PEG NPs and FOL-P(MTXCLCL)2-PEG NPs incubated with free FOL. The results indicated that FOL-P(MTXCLCL)2-PEG NPs efficiently entered into MCF-7 cells via folate receptor-mediated endocytosis together with adsorptive endocytosis.
Turino, Ludmila N; Ruggiero, Maria R; Stefanìa, Rachele; Cutrin, Juan C; Aime, Silvio; Geninatti Crich, Simonetta
2017-04-19
Polylactic and glycolic acid nanoparticles (PLGA-NPs), coated with L-ferritin, are exploited for the simultaneous delivery of paclitaxel and an amphiphilic Gd based MRI contrast agent into breast cancer cells (MCF7). L-ferritin has been covalently conjugated to the external surface of PLGA-NPs exploiting NHS activated carboxylic groups. The results confirmed that nanoparticles decorated with L-ferritin have many advantages with respect to both albumin-decorated and nondecorated particles. Ferritin moieties endow PLGA-NPs with targeting capability, exploiting SCARA5 receptors overexpressed by these tumor cells, that results in an increased paclitaxel cytotoxicity. Moreover, protein coating increased nanoparticle stability, thus reducing the fast and aspecific drug release before reaching the target. The theranostic potential of the nanoparticles has been demonstrated by evaluating the signal intensity enhancement on T 1 -weighted MRI images of labeled MCF7 cells. The results were compared with that obtained with MDA cells used as negative control due to their lower SCARA5 expression.
Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells.
Luu, Trang H; Bard, Jean-Marie; Carbonnelle, Delphine; Chaillou, Chloé; Huvelin, Jean-Michel; Bobin-Dubigeon, Christine; Nazih, Hassan
2018-02-01
It has amply been documented that mammary tumor cells may exhibit an increased lipogenesis. Biliary acids are currently recognized as signaling molecules in the intestine, in addition to their classical roles in the digestion and absorption of lipids. The aim of our study was to evaluate the impact of lithocholic acid (LCA) on the lipogenesis of breast cancer cells. The putative cytotoxic effects of LCA on these cells were also examined. The effects of LCA on breast cancer-derived MCF-7 and MDA-MB-231 cells were studied using MTT viability assays, Annexin-FITC and Akt phosphorylation assays to evaluate anti-proliferative and pro-apoptotic properties, qRT-PCR and Western blotting assays to assess the expression of the bile acid receptor TGR5 and the estrogen receptor ERα, and genes and proteins involved in apoptosis (Bax, Bcl-2, p53) and lipogenesis (SREBP-1c, FASN, ACACA). Intracellular lipid droplets were visualized using Oil Red O staining. We found that LCA induces TGR5 expression and exhibits anti-proliferative and pro-apoptotic effects in MCF-7 and MDA-MB-231 cells. Also, an increase in pro-apoptotic p53 protein expression and a decrease in anti-apoptotic Bcl-2 protein expression were observed after LCA treatment of MCF-7 cells. In addition, we found that LCA reduced Akt phosphorylation in MCF-7 cells, but not in MDA-MB-231 cells. We also noted that LCA reduced the expression of SREBP-1c, FASN and ACACA in both breast cancer-derived cell lines and that cells treated with LCA contained low numbers of lipid droplets compared to untreated control cells. Finally, a decrease in ERα expression was observed in MCF-7 cells treated with LCA. Our data suggest a potential therapeutic role of lithocholic acid in breast cancer cells through a reversion of lipid metabolism deregulation.
de Oliveira, Catiúscia P; Büttenbender, Sabrina L; Prado, Willian A; Beckenkamp, Aline; Asbahr, Ana C; Buffon, Andréia; Guterres, Silvia S; Pohlmann, Adriana R
2018-01-04
Methotrexate is a folic acid antagonist and its incorporation into nanoformulations is a promising strategy to increase the drug antiproliferative effect on human breast cancer cells by overexpressing folate receptors. To evaluate the efficiency and selectivity of nanoformulations containing methotrexate and its diethyl ester derivative, using two mechanisms of drug incorporation (encapsulation and surface functionalization) in the in vitro cellular uptake and antiproliferative activity in non-tumoral immortalized human keratinocytes (HaCaT) and in human breast carcinoma cells (MCF-7). Methotrexate and its diethyl ester derivative were incorporated into multiwall lipid-core nanocapsules with hydrodynamic diameters lower than 160 nm and higher drug incorporation efficiency. The nanoformulations were applied to semiconfluent HaCaT or MCF-7 cells. After 24 h, the nanocapsules were internalized into HaCaT and MCF-7 cells; however, no significant difference was observed between the nanoformulations in HaCaT (low expression of folate receptors), while they showed significantly higher cellular uptakes than the blank-nanoformulation in MCF-7, which was the highest uptakes observed for the drug functionalized-nanocapsules. No antiproliferative activity was observed in HaCaT culture, whereas drug-containing nanoformulations showed antiproliferative activity against MCF-7 cells. The effect was higher for drug-surface functionalized nanocapsules. In conclusion, methotrexate-functionalized-nanocapsules showed enhanced and selective antiproliferative activity to human breast cancer cells (MCF-7) being promising products for further in vivo pre-clinical evaluations.
THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN
THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN.
Harland and Liburdy (1) reported that 1.2-uT, 60-Hz magnetic fields could significantly block the inhibitory action of pharmacological levels of tamoxifen (10-7 M) on the growth of MCF-7 human br...
Wang, Yuhui; Xu, Xiaotian; Zhao, Peng; Tong, Bei; Wei, Zhifeng; Dai, Yue
2016-04-26
The saponin fraction of Aesculus chinensis Bunge fruits (SFAC) could inhibit the invasion and migration of MDA-MB-231 cells. Among which, escin Ia showed more potent inhibition of the invasion than other five main saponin constituents. It selectively reduced the expression of LOXL2 mRNA and promoted the expression of E-cadherin mRNA, and prevented the EMT process of MDA-MB-231 cells and TNF-α/TGF-β-stimulated MCF-7 cells. Moreover, it reduced the LOXL2 level in MDA-MB-231 cells but not in MCF-7 cells. When MCF-7 cells were stimulated with TNF-α/TGF-β, transfected with LOXL2 or treated with hypoxia, escin Ia down-regulated the level of LOXL2 in MCF-7 cells. Meanwhile, escin Ia suppressed the EMT process in LOXL2-transfected or hypoxia-treated MCF-7 cells. Of interest, escin Ia did not alter the level of HIF-1α in hypoxia-induced MCF-7 cells. In TNBC xenograft mice, the metastasis and EMT of MDA-MB-231 cells were suppressed by escin Ia. In conclusion, escin Ia was the main active ingredient of SFAC for the anti-TNBC metastasis activity, and its action mechanisms involved inhibition of EMT process by down-regulating LOXL2 expression.
Zhao, Peng; Tong, Bei; Wei, Zhifeng; Dai, Yue
2016-01-01
The saponin fraction of Aesculus chinensis Bunge fruits (SFAC) could inhibit the invasion and migration of MDA-MB-231 cells. Among which, escin Ia showed more potent inhibition of the invasion than other five main saponin constituents. It selectively reduced the expression of LOXL2 mRNA and promoted the expression of E-cadherin mRNA, and prevented the EMT process of MDA-MB-231 cells and TNF-α/TGF-β-stimulated MCF-7 cells. Moreover, it reduced the LOXL2 level in MDA-MB-231 cells but not in MCF-7 cells. When MCF-7 cells were stimulated with TNF-α/TGF-β, transfected with LOXL2 or treated with hypoxia, escin Ia down-regulated the level of LOXL2 in MCF-7 cells. Meanwhile, escin Ia suppressed the EMT process in LOXL2-transfected or hypoxia-treated MCF-7 cells. Of interest, escin Ia did not alter the level of HIF-1α in hypoxia-induced MCF-7 cells. In TNBC xenograft mice, the metastasis and EMT of MDA-MB-231 cells were suppressed by escin Ia. In conclusion, escin Ia was the main active ingredient of SFAC for the anti-TNBC metastasis activity, and its action mechanisms involved inhibition of EMT process by down-regulating LOXL2 expression. PMID:27008697
Seo, Hye-Sook; Ku, Jin Mo; Choi, Hyeong Sim; Woo, Jong-Kyu; Lee, Byung Hoon; Kim, Doh Sun; Song, Hyun Jong; Jang, Bo-Hyoung; Shin, Yong Cheol; Ko, Seong-Gyu
2017-01-01
Drug resistance in chemotherapy is a serious obstacle for the successful treatment of cancer. Drug resistance is caused by various factors, including the overexpression of P-glycoprotein (P-gp, MDR1). The development of new, useful compounds that overcome drug resistance is urgent. Apigenin, a dietary flavonoid, has been reported as an anticancer drug in vivo and in vitro. In the present study, we investigated whether apigenin is able to reverse drug resistance using adriamycin-resistant breast cancer cells (MCF-7/ADR). In our experiments, apigenin significantly decreased cell growth and colony formation in MCF-7/ADR cells and parental MCF-7 cells. This growth inhibition was related to the accumulation of cells in the sub-G0/G1 apoptotic population and an increase in the number of apoptotic cells. Apigenin reduced the mRNA expression of multidrug resistance 1 (MDR1) and multidrug resistance-associated proteins (MRPs) in MCF-7/ADR cells. Apigenin also downregulated the expression of P-gp. Apigenin reversed drug efflux from MCF-7/ADR cells, resulting in rhodamine 123 (Rho123) accumulation. Inhibition of drug resistance by apigenin is related to the suppression of the signal transducer and activator of transcription 3 (STAT3) signaling pathway. Apigenin decreased STAT3 activation (p-STAT3) and its nuclear translocation and inhibited the secretion of VEGF and MMP-9, which are STAT3 target genes. A STAT3 inhibitor, JAK inhibitor I and an HIF-1α inhibitor decreased cell growth in MCF-7 and MCF-7/ADR cells. Taken together, these results demonstrate that apigenin can overcome drug resistance. PMID:28656316
Silva, Mariana C C; de Paula, Cláudia A A; Ferreira, Joana G; Paredes-Gamero, Edgar J; Vaz, Angela M S F; Sampaio, Misako U; Correia, Maria Tereza S; Oliva, Maria Luiza V
2014-07-01
Plant lectins have attracted great interest in cancer studies due to their antitumor activities. These proteins or glycoproteins specifically and reversibly bind to different types of carbohydrates or glycoproteins. Breast cancer, which presents altered glycosylation of cell surface glycoproteins, is one of the most frequent malignant diseases in women. In this work, we describe the effect of the lectin Bauhinia forficata lectin (BfL), which was purified from B. forficata Link subsp. forficata seeds, on the MCF7 human breast cancer cellular line, investigating the mechanisms involved in its antiproliferative activity. MCF7 cells were treated with BfL. Viability and adhesion alterations were evaluated using flow cytometry and western blotting. BfL inhibited the viability of the MCF7 cell line but was ineffective on MDA-MB-231 and MCF 10A cells. It inhibits MCF7 adhesion on laminin, collagen I and fibronectin, decreases α1, α6 and β1 integrin subunit expression, and increases α5 subunit expression. BfL triggers necrosis and secondary necrosis, with caspase-9 inhibition. It also causes deoxyribonucleic acid (DNA) fragmentation, which leads to cell cycle arrest in the G2/M phase and a decrease in the expression of the regulatory proteins pRb and p21. BfL shows selective cytotoxic effect and adhesion inhibition on MCF7 breast cancer cells. Cell death induction and inhibition of cell adhesion may contribute to understanding the action of lectins in breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.
Mian, Shahid; Ball, Graham; Hornbuckle, Jo; Holding, Finn; Carmichael, James; Ellis, Ian; Ali, Selman; Li, Geng; McArdle, Stephanie; Creaser, Colin; Rees, Robert
2003-09-01
An ability to predict the likelihood of cellular response towards particular chemotherapeutic agents based upon protein expression patterns could facilitate the identification of biological molecules with previously undefined roles in the process of chemoresistance/chemosensitivity, and if robust enough these patterns might also be exploited towards the development of novel predictive assays. To ascertain whether proteomic based molecular profiling in conjunction with artificial neural network (ANN) algorithms could be applied towards the specific recognition of phenotypic patterns between either control or drug treated and chemosensitive or chemoresistant cellular populations, a combined approach involving MALDI-TOF matrix-assisted laser desorption/ionization-time of flight mass spectrometry, Ciphergen protein chip technology and ANN algorithms have been applied to specifically identify proteomic 'fingerprints' indicative of treatment regimen for chemosensitive (MCF-7, T47D) and chemoresistant (MCF-7/ADR) breast cancer cell lines following exposure to Doxorubicin or Paclitaxel. The results indicate that proteomic patterns can be identified by ANN algorithms to correctly assign 'class' for treatment regimen (e.g. control/drug treated or chemosensitive/chemoresistant) with a high degree of accuracy using boot-strap statistical validation techniques and that biomarker ion patterns indicative of response/non-response phenotypes are associated with MCF-7 and MCF-7/ADR cells exposed to Doxorubicin. We have also examined the predictive capability of this approach towards MCF-7 and T47D cells to ascertain whether prediction could be made based upon treatment regimen irrespective of cell lineage. Models were identified that could correctly assign class (control or Paclitaxel treatment) for 35/38 samples of an independent dataset. A similar level of predictive capability was also found (> 92%; n = 28) when proteomic patterns derived from the drug resistant cell line MCF-7/ADR were compared against those derived from MCF-7 and T47D as a model system of drug resistant and drug sensitive phenotypes. This approach might offer a potential methodology for predicting the biological behaviour of cancer cells towards particular chemotherapeutics and through protein isolation and sequence identification could result in the identification of biological molecules associated with chemosensitive/chemoresistance tumour phenotypes.
Bessette, Darrell C.; Tilch, Erik; Seidens, Tatjana; Quinn, Michael C. J.; Wiegmans, Adrian P.; Shi, Wei; Cocciardi, Sibylle; McCart-Reed, Amy; Saunus, Jodi M.; Simpson, Peter T.; Grimmond, Sean M.; Lakhani, Sunil R.; Khanna, Kum Kum; Waddell, Nic; Al-Ejeh, Fares; Chenevix-Trench, Georgia
2015-01-01
Background Basal-like and triple negative breast cancer (TNBC) share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR) occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR) have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown. Materials and Methods Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed. Results Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer. Conclusions Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for directing therapy but, as in non-small cell lung cancer, accompanying mutations in PIK3CA may confer gefitinib resistance. PMID:25969993
Wobus, Manja; List, Catrin; Dittrich, Tobias; Dhawan, Abhishek; Duryagina, Regina; Arabanian, Laleh S; Kast, Karin; Wimberger, Pauline; Stiehler, Maik; Hofbauer, Lorenz C; Jakob, Franz; Ehninger, Gerhard; Anastassiadis, Konstantinos; Bornhäuser, Martin
2015-01-01
We investigated whether breast tumor cells can modulate the function of mesenchymal stromal cells (MSCs) with a special emphasis on their chemoattractive activity towards hematopoietic stem and progenitor cells (HSPCs). Primary MSCs as well as a MSC line (SCP-1) were cocultured with primary breast cancer cells, MCF-7, MDA-MB231 breast carcinoma or MCF-10A non-malignant breast epithelial cells or their conditioned medium. In addition, the frequency of circulating clonogenic hematopoietic progenitors was determined in 78 patients with breast cancer and compared with healthy controls. Gene expression analysis of SCP-1 cells cultured with MCF-7 medium revealed CXCL12 (SDF-1) as one of the most significantly downregulated genes. Supernatant from both MCF-7 and MDA-MB231 reduced the CXCL12 promoter activity in SCP-1 cells to 77% and 47%, respectively. Moreover, the CXCL12 mRNA and protein levels were significantly reduced. As functional consequence of lower CXCL12 levels, we detected a decreased trans-well migration of HSPCs towards MSC/tumor cell cocultures or conditioned medium. The specificity of this effect was confirmed by blocking studies with the CXCR4 antagonist AMD3100. Downregulation of SP1 and increased miR-23a levels in MSCs after contact with tumor cell medium as well as enhanced TGFβ1 expression were identified as potential molecular regulators of CXCL12 activity in MSCs. Moreover, we observed a significantly higher frequency of circulating colony-forming hematopoietic progenitors in patients with breast cancer compared with healthy controls. Our in vitro results propose a potential new mechanism by which disseminated tumor cells in the bone marrow may interfere with hematopoiesis by modulating CXCL12 in protected niches. © 2014 UICC.
SU-F-T-678: Clotrimazole Sensitizes MCF-7 Breast Cancer Cell Line to Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, L; Tambasco, M
2016-06-15
Purpose: To study the effects of Clotrimazole (CLT) on radiosensitivity of MCF-7 Cells in correlation to detachment of Hexokinase II from the Voltage Dependent Anion Channel on the outer membrane of the mitochondria. Apoptotic fractions were also analyzed in relation to the detachment of Hexokinase. Methods: This study focused on the mammary adenocarcinoma cell line, MCF-7. Colony forming assays were used to analyze radiosensitization by CLT. Flow cytometry methods were used to analyze apoptotic vs necrotic fractions after treatment with CLT. Spectrophotometery was used to analyze the mitochondrial bound and soluble fraction of Hexokinase by means of relative enzymatic activity.more » Results: Our preliminary data have shown that CLT sensitizes MCF-7 cells to radiation in a dose and incubation time dependent manner up. We have also demonstrated that there are two radiosensitizing periods in MCF-7 cells with the first corresponding to the cycle arrest after 24 hours observed in other cell lines. The second radiosensitizing period occurs with incubation in CLT after irradiation which reaches maximum effect around 24 hours of incubation time. Preliminary data from our Hexokinase detachment assay show a factor of two increase in the ratio of unbound to bound Hexokinase when comparing incubation for 24 hours in media containing 0 and 20 µM CLT. Conclusion: This study and others indicate CLT as a possible radiosensitizing agent in cancer therapies. While CLT itself shows toxicity to the liver in high doses, this study further demonstrates that disruption of the Warburg Effect and unbinding of mitochondrial bound Hexokinase as a possible pathway for cancer treatment.« less
Wang, Wei; Li, Ping-ping
2003-11-01
To study the effects of lithospermum extract on MCF-7 cell and estrogen and progestogen levels in mice. Cell growth curve and Western Blotting were used to do animal experiment. Lithospermum extract could inhibit the growth of MCF-7 cell. It could also inhibit the expression of ER and increase the expression of PR with large dose. After the mice were bred with Lithospermum, their serum estrogen and progestogen levels reduced, their uterus weight index decresed and uterus ER and PR levels increased. It could also improve the hyperplasia of uterus caused by tamoxifen. Lithospermum extract can inhibit the growth of MCF-7 cell and inhibit the level of estrogen and progestogen in mice.
Homoisoflavanones with estrogenic activity from the rhizomes of Polygonatum sibiricum.
Chen, Hui; Li, Yu-Jie; Li, Xiao-Fei; Sun, Yan-Jun; Li, Hong-Wei; Su, Fang-Yi; Cao, Yan-Gang; Zhang, Yan-Li; Zheng, Xiao-Ke; Feng, Wei-Sheng
2018-01-01
A new homoisoflavanone, (3R)-5-hydroxy-7-methoxyl-3-(2'-hydroxy-4'- methoxybenzyl)-chroman-4-one (1), together with six known analogs, were isolated from the rhizomes of Polygonatum sibiricum. Their structures were elucidated on the basis of extensive spectroscopic analysis. All compounds were tested for their estrogenic activity using the MCF-7 estrogenresponsive human breast cancer cell lines. At a dose of 0.1 μmol/L, compounds 1-7 exhibited significant proliferative effects on MCF-7 cells compared with E 2 . The molecular docking study results indicated that the activity of compounds 3, 5, 6, and 7 may be the binding with ERR.
Zhang, Hui; Gong, Jian; Zhang, Huilai; Kong, Di
2015-01-01
Multidrug resistance is a phenomenon that cancer cells develop a cross-resistant phenotype against several unrelated drugs, and permeability glycoprotein derived from the overexpression of multidrug resistance gene 1 has been taken as the most significant cause of multidrug resistance. In the present study, ginsenoside Rh2 was used to reverse permeability glycoprotein-mediated multidrug resistance of MCF-7/ADM cell line. Effects of ginsenoside Rh2 on the apoptotic process and caspase-3 activity of MCF-7 and MCF-7/ADM cell lines were determined using flow cytometry and microplate reader. Methyl thiazolyl tetrazolium test was conducted to assess the IC50 values of ginsenoside Rh2 and adriamycin on MCF-7 and MCF-7/ADM cultures; Rhodamin 123 assay was used to assess the retention of permeability glycoprotein after ginsenoside Rh2 treatment; flow cytometry and real time polymerase chain reaction were used to determine the expression levels of permeability glycoprotein and multidrug resistance gene 1 in drug-resistant cells and their parental cells after exposure to ginsenoside Rh2. The results showed that ginsenoside Rh2, except for inducing apoptosis, had the ability to reverse multidrug resistance in MCF-7/ADM cell line without changing the expression levels of permeability glycoprotein and multidrug resistance gene 1. Our findings provided some valuable information for the application of ginsenoside Rh2 in cancer therapy, especially for multidrug resistance reversal in clinic.
MCF-7 cells--changing the course of breast cancer research and care for 45 years.
Lee, Adrian V; Oesterreich, Steffi; Davidson, Nancy E
2015-07-01
It is 45 years since a pleural effusion from a patient with metastatic breast cancer led to the generation of the MCF-7 breast cancer cell line. MCF-7 is the most studied human breast cancer cell line in the world, and results from this cell line have had a fundamental impact upon breast cancer research and patient outcomes. But of the authors for the nearly 25000 scientific publications that used this cell line, how many know the unique story of its isolation and development? In this commentary we will review the past, present, and future of research using MCF-7 breast cancer cells. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Selective tumor cell targeting by the disaccharide moiety of bleomycin.
Yu, Zhiqiang; Schmaltz, Ryan M; Bozeman, Trevor C; Paul, Rakesh; Rishel, Michael J; Tsosie, Krystal S; Hecht, Sidney M
2013-02-27
In a recent study, the well-documented tumor targeting properties of the antitumor agent bleomycin (BLM) were studied in cell culture using microbubbles that had been derivatized with multiple copies of BLM. It was shown that BLM selectively targeted MCF-7 human breast carcinoma cells but not the "normal" breast cell line MCF-10A. Furthermore, it was found that the BLM analogue deglycobleomycin, which lacks the disaccharide moiety of BLM, did not target either cell line, indicating that the BLM disaccharide moiety is necessary for tumor selectivity. Not resolved in the earlier study were the issues of whether the BLM disaccharide moiety alone is sufficient for tumor cell targeting and the possible cellular uptake of the disaccharide. In the present study, we conjugated BLM, deglycoBLM, and BLM disaccharide to the cyanine dye Cy5**. It was found that the BLM and BLM disaccharide conjugates, but not the deglycoBLM conjugate, bound selectively to MCF-7 cells and were internalized. The same was also true for the prostate cancer cell line DU-145 (but not for normal PZ-HPV-7 prostate cells) and for the pancreatic cancer cell line BxPC-3 (but not for normal SVR A221a pancreas cells). The targeting efficiency of the disaccharide was only slightly less than that of BLM in MCF-7 and DU-145 cells and comparable to that of BLM in BxPC-3 cells. These results establish that the BLM disaccharide is both necessary and sufficient for tumor cell targeting, a finding with obvious implications for the design of novel tumor imaging and therapeutic agents.
Kim, Heon Woong; Lim, Eun Joung; Jang, Hwan Hee; Cui, XueLei; Kang, Da Rae; Lee, Sung Hyen; Kim, Haeng Ran; Choe, Jeong Sook; Yang, Young Mok; Kim, Jung Bong; Park, Jong Hwan
2015-12-25
Parvin-β is an adaptor protein that binds to integrin-linked kinase (ILK) and is significantly downregulated in breast tumors and breast cancer cell lines. We treated the breast cancer cell line MCF7 with 24-methylenecycloartanyl ferulate (24-MCF), a γ-oryzanol compound. We observed upregulation of parvin-β (GenBank Accession No. AF237769) and peroxisome proliferator-activated receptor (PPAR)-γ2 (GenBank Accession No. NM_015869). Among γ-oryzanol compounds, only treatment with 24-MCF led to the formation of reverse transcription-PCR products of parvin-β (650 and 500 bp) and PPAR-γ2 (580 bp) in MCF7 cells, but not in T47D, SK-BR-3, or MDA-MB-231 cells. 24-MCF treatment increased the mRNA and protein levels of parvin-β in MCF7 cells in a dose-dependent manner. We hypothesized that there is a correlation between parvin-β expression and induction of PPAR-γ2. This hypothesis was investigated by using a promoter-reporter assay, chromatin immunoprecipitation, and an electrophoretic mobility shift assay. 24-MCF treatment induced binding of PPAR-γ2 to a peroxisome proliferator response element-like cis-element (ACTAGGACAAAGGACA) in the parvin-β promoter in MCF7 cells in a dose-dependent manner. 24-MCF treatment significantly decreased anchorage-independent growth and inhibited cell movement in comparison to control treatment with dimethyl sulfoxide. 24-MCF treatment reduced the levels of GTP-bound Rac1 and Cdc42. Evaluation of Akt1 inhibition by 24-MCF revealed that the half maximal effective concentration was 33.3 μM. Docking evaluations revealed that 24-MCF binds to the ATP-binding site of Akt1(PDB ID: 3OCB) and the compound binding energy is -8.870 kcal/mol. Taken together, our results indicate that 24-MCF treatment increases parvin-β expression, which may inhibit ILK downstream signaling. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Alcantara, Dominic Z; Soliman, Ian Jerry S; Pobre, Romeric F; Naguib, Raouf N G
2017-07-01
We present an analysis of the effects of pulsed electromagnetic fields (PEMF) with 3.3 MHz carrier frequency and modulated by audio resonant frequencies on the MCF-7 breast cancer cell line in vitro using absorption spectroscopy. This involves a fluorescence dye called PrestoBlue™ Cell Viability Reagent and a spectrophotometry to test the viability of MCF-7 breast cancer cells under different PEMF treatment conditions in terms of the cell absorption values. The DNA molecule of the MCF-7 breast cancer cells has an electric dipole property that renders it sensitive and reactive to applied electromagnetic fields. Resonant frequencies derived from four genes mutated in MCF-7 breast cancer cells [rapamycin-insensitive companion of mammalian target of rapamycin (RICTOR), peroxisome proliferator-activated receptor (PPARG), Nijmegen breakage syndrome 1 (NBN) and checkpoint kinase 2 (CHEK2)] were applied in generating square pulsed electromagnetic waves. Effects were monitored through measurement of absorption of the samples with PrestoBlue™, and the significance of the treatment was determined using the t-test. There was a significant effect on MCF-7 cells after treatment with PEMF at the resonant frequencies of the following genes for specific durations of exposure: RICTOR for 10 min, PPARG for 10 min, NBN for 15 min, and CHEK2 for 5 min. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreira, Liliana, E-mail: lilianam87@gmail.com; Araújo, Isabel, E-mail: isa.araujo013@gmail.com; Costa, Tito, E-mail: tito.fmup16@gmail.com
In this study we characterized {sup 3}H-2-deoxy-D-glucose ({sup 3}H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon {sup 3}H-DG uptake, glucose metabolism and cell viability and proliferation. In both MCF7 and MDA-MB-231 cells {sup 3}H-DG uptake was (a) time-dependent, (b) saturable with similar capacity (V{sub max}) and affinity (K{sub m}), (c) potently inhibited by cytochalasin B, an inhibitor of the facilitative glucose transporters (GLUT), (d) sodium-independent and (e) slightly insulin-stimulated. This suggests that {sup 3}H-DG uptake by both cellmore » types is mediated by members of the GLUT family, including the insulin-responsive GLUT4 or GLUT12, while being independent of the sodium-dependent glucose transporter (SGLT1). QUE and EGCG markedly and concentration-dependently inhibited {sup 3}H-DG uptake by MCF7 and by MDA-MB-231 cells, and both compounds blocked lactate production by MCF7 cells. Additionally, a 4 h-treatment with QUE or EGCG decreased MCF7 cell viability and proliferation, an effect that was more potent when glucose was available in the extracellular medium. Our results implicate QUE and EGCG as metabolic antagonists in breast cancer cells, independently of estrogen signalling, and suggest that these flavonoids could serve as therapeutic agents/adjuvants even for ER-negative breast tumors. -- Highlights: • Glucose uptake by MCF7 and MDA-MB-231 cells is mainly mediated by GLUT1. • QUE and EGCG inhibit cellular glucose uptake thus abolishing the Warburg effect. • This process induces cytotoxicity and proliferation arrest in MCF7 cells. • The flavonoids’ effects are independent of estrogen receptor signalling.« less
Zhang, Mengxia; Zhang, Hailiang; Tang, Fan; Wang, Yuhua; Mo, Zhongcheng; Lei, Xiaoyong
2016-01-01
Macrophage colony-stimulating factor is a vital factor in maintaining the biological function of monocyte–macrophage lineage. It is expressed in many tumor tissues and cancer cells. Recent findings indicate that macrophage colony-stimulating factor might contribute to chemoresistance, but the precise mechanisms are unclear. This study was to explore the effect of macrophage colony-stimulating factor on doxorubicin resistance in MCF-7 breast cancer cells and the possible mechanism. In the study, the human breast cancer cells, MCF-7, were transfected with macrophage colony-stimulating factor. We document that cytoplasmic macrophage colony-stimulating factor induces doxorubicin resistance and inhibits apoptosis in MCF-7 cells. Further studies demonstrated that cytoplasmic macrophage colony-stimulating factor-mediated apoptosis inhibition was dependent on the activation of PI3K/Akt/Survivin pathway. More importantly, we found that macrophage colony-stimulating factor-induced autophagic cell death in doxorubicin-treated MCF-7 cells. Taken together, we show for the first time that macrophage colony-stimulating factor-induced doxorubicin resistance is associated with the changes in cell death response with defective apoptosis and promotion of autophagic cell death. PMID:27439542
Wang, Jian-Guo; Yuan, Lei
2016-12-25
The aim of this study is to investigate the effects of hypoxia inducible factor-2α (HIF-2α) and Notch3 on CoCl 2 -induced migration and invasion of human breast cancer cell line MCF-7. MCF-7 cells were exposed to normoxia (21% O 2 ) or chemical hypoxia (21% O 2 plus CoCl 2 ). Short hairpin RNA (shRNA) was used to knock down HIF-2α and Notch3 in MCF-7 cells. The mRNA expression levels of HIF-2α, Notch3 and Hey1 were measured by RT-PCR. Western blot was performed to determine the protein expression levels of HIF-2α, Notch3, Hey1, Snail and E-cadherin. CoCl 2 treatment resulted in higher protein expression levels of HIF-2α, Notch3, Hey1, Snail (P < 0.05) and lower levels of E-cadherin (P < 0.05), and promoted migration and invasion of MCF-7 cells (P < 0.05). shRNA-HIF-2α suppressed CoCl 2 -induced mRNA expression of Notch3 and Hey1. Notch3 knockdown down-regulated Snail and up-regulated E-cadherin at protein level under simulated hypoxia (P < 0.05), and inhibited CoCl 2 -induced migration and invasion of MCF-7 cells (P < 0.05). In conclusion, our data provide evidence that HIF-2α may promote the migration and invasion of MCF-7 cells under chemical hypoxic conditions by potentiating Notch3 pathway.
DHA is a more potent inhibitor of breast cancer metastasis to bone and related osteolysis than EPA
Rahman, M.; Veigas, Maria; Williams, Paul J.; Fernandes, Gabriel
2013-01-01
Breast cancer patients often develop bone metastasis evidenced by osteolytic lesions, leading to severe pain and bone fracture. Attenuation of breast cancer metastasis to bone and associated osteolysis by fish oil (FO), rich in EPA and DHA, has been demonstrated previously. However, it was not known whether EPA and DHA differentially or similarly affect breast cancer bone metastasis and associated osteolysis. In vitro culture of parental and luciferase gene encoded MDA-MB-231 human breast cancer cell lines treated with EPA and DHA revealed that DHA inhibits proliferation and invasion of breast cancer cells more potently than EPA. Intra-cardiac injection of parental and luciferase gene encoded MDA-MB-231 cells to athymic NCr nu/nu mice demonstrated that DHA treated mice had significantly less breast cancer cell burden in bone, and also significantly less osteolytic lesions than EPA treated mice. In vivo cell migration assay as measured by luciferase intensity revealed that DHA attenuated cell migration specifically to the bone. Moreover, the DHA treated group showed reduced levels of CD44 and TRAP positive area in bone compared to EPA treated group. Breast cancer cell burden and osteolytic lesions were also examined in intra-tibially breast cancer cell injected mice and found less breast cancer cell growth and associated osteolysis in DHA treated mice as compared to EPA treated mice. Finally, doxorubicin resistant MCF-7 (MCF-7dox) human breast cancer cell line was used to examine if DHA can improve sensitization of MCF-7dox cells to doxorubicin. DHA improved the inhibitory effect of doxorubicin on proliferation and invasion of MCF-7dox cells. Interestingly, drug resistance gene P-gp was also down-regulated in DHA plus doxorubicin treated cells. In conclusion, DHA attenuates breast cancer bone metastasis and associated osteolysis more potently than EPA, possibly by inhibiting migration of breast cancer cell to the bone as well as by inhibiting osteoclastic bone resorption. PMID:24062211
Maria, Roberta M; Altei, Wanessa F; Andricopulo, Adriano D; Becceneri, Amanda B; Cominetti, Márcia R; Venâncio, Tiago; Colnago, Luiz A
2015-11-01
(1)H high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR) spectroscopy was used to analyze the metabolic profile of an intact non-tumor breast cell line (MCF-10A) and intact breast tumor cell lines (MCF-7 and MDA-MB-231). In the spectra of MCF-10A cells, six metabolites were assigned, with glucose and ethanol in higher concentrations. Fifteen metabolites were assigned in MCF-7 and MDA-MB-231 (1)H HR-MAS NMR spectra. They did not show glucose and ethanol, and the major component in both tumor cells was phosphocholine (higher in MDA-MB-231 than in MCF-7), which can be considered as a tumor biomarker of breast cancer malignant transformation. These tumor cells also show acetone signal that was higher in MDA-MB-231 cells than in MCF-7 cells. The high acetone level may be an indication of high demand for energy in MDA-MB-231 to maintain cell proliferation. The higher acetone and phosphocholine levels in MDA-MB-231 cells indicate the higher malignance of the cell line. Therefore, HR-MAS is a rapid reproducible method to study the metabolic profile of intact breast cells, with minimal sample preparation and contamination, which are critical in the analyses of slow-growth cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Bani, D.; Riva, A.; Bigazzi, M.; Bani Sacchi, T.
1994-01-01
Our previous studies showed that relaxin promotes differentiation of MCF-7 breast adenocarcinoma cells. In the current investigation, we aimed to elucidate whether the effect of the hormone is potentiated when MCF-7 cells are grown together with myoepithelial cells, thus creating a microenvironment reminiscent of the organised tissue architecture of the mammary parenchyma in vivo. The findings obtained reveal that most MCF-7 cells cultured alone have an undifferentiated, blast-like phenotype, only a minority showing a more differentiated phenotype with more organelles and rudimentary intercellular junctions. When co-cultured with myoepithelial cells more MCF-7 cells acquire ultrastructural features consistent with a more differentiated phenotype, such as a rich organellular complement, apical microvilli and intercellular junctions. When relaxin was added to the co-cultures, the ultrastructural signs of differentiation could be observed in even more MCF-7 cells and became more pronounced than in the absence of the hormone, judged by the appearance of a clear-cut polarisation of cytoplasmic organelles, an almost continuous coat of apical microvilli and numerous intracellular pseudolumina. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7947095
Wang, Hui-Min; Yang, Hsin-Ling; Thiyagarajan, Varadharajan; Huang, Tzu-Hsiang; Huang, Pei-Jane; Chen, Ssu-Ching; Liu, Jer-Yuh; Hsu, Li-Sung; Chang, Hsueh-Wei; Hseu, You-Cheng
2017-09-01
Coenzyme Q 0 (CoQ 0 ; 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a major active constituent of Antrodia camphorata, has been shown to inhibit human triple-negative breast cancer (MDA-MB-231) cells through induction of apoptosis and cell-cycle arrest. Ecological studies have suggested a possible association between ultraviolet B (UVB) radiation and reduction in the risk of breast cancer. However, the underlying mechanism of the combination of CoQ 0 and UVB in human estrogen receptor-positive breast cancer (MCF-7) remains unclear. In this study, the possible effect of CoQ 0 on inducing apoptosis in MCF-7 cells under exposure to low-dose UVB (0.05 J/cm 2 ) has been investigated. CoQ 0 treatment (0-35 µM, for 24-72 hours) inhibits moderately the growth of breast cancer MCF-7 cells, and the cell viability was significantly decreased when the cells were pretreated with UVB irradiation. It was noted that there was a remarkable accumulation of subploid cells, the so-called sub-G1 peak, in CoQ 0 -treated cells by using flow cytometric analysis, which suggests that the viability reduction observed after treatment may result from apoptosis induction in MCF-7 cells. CoQ 0 caused an elevation of reactive oxygen species, as indicated by dichlorofluorescein fluorescence, and UVB pretreatment significantly increased CoQ 0 -induced reactive oxygen species generation in MCF-7 cells. In addition, cells were exposed to CoQ 0 , and the induction of DNA damage was evaluated by single-cell gel electrophoresis (comet assay). CoQ 0 -induced DNA damage was remarkably enhanced by UVB pretreatment. Furthermore, CoQ 0 induced apoptosis in MCF-7 cells, which was associated with PARP degradation, Bcl-2/Bax dysregulation, and p53 expression as shown by western blot. Collectively, these findings suggest that CoQ 0 might be an important supplemental agent for treating patients with breast cancer.
Ju, Young H; Doerge, Daniel R; Helferich, William G
2008-01-01
Avlimil, a dietary supplement advertised to ameliorate female sexual dysfunction, is a mixture of eleven herbal components, and some herbal constituents of Avlimil (including black cohosh, licorice, red raspberry, red clover and kudzu) contain phenolic compounds, which are suggested to have estrogenic, anti-estrogenic, or androgenic potential for relieving menopausal symptoms. We hypothesize that Avlimil could modulate the growth of estrogen receptor positive human breast cancer (MCF-7) cells in vitro and in vivo. A dimethylsulfoxide (DMSO) extract of Avlimil (0.001-100 microg Avlimil powder equivalents/mL media) was tested for its estrogenic and anti-estrogenic effects on the growth of MCF-7 cells in vitro. We observed that the DMSO extract of Avlimil at low concentrations (0.1-50 microg/mL media) dose-dependently increased MCF-7 cell proliferation in vitro, and Avlimil DMSO extract at 100 microg/mL inhibited the growth of MCF-7 cells in vitro. Avlimil and some constituents (black cohosh and licorice roots) of Avlimil were fractionated by using sequential solvent extraction (hexane, ethyl acetate, and methanol) and the activities of the fractions were monitored by effects on the growth of MCF-7 cells. Depending on dosage (0.1-100 microg/mL media) both stimulatory and inhibitory effects of the extracts on the growth of MCF-7 cells were observed. The effect of dietary Avlimil at dosages approximating human intake was evaluated using ovariectomized mice implanted with MCF-7 cells. Animals were fed diets containing 500 ppm or 1000 ppm Avlimil for 16 weeks. Dietary Avlimil at 500 ppm stimulated MCF-7 tumors, but Avlimil at 1000 ppm had no apparent effect on the growth of MCF-7 tumors. The observation of stimulated tumor growth in the absence of uterine wet weight gains suggest that estrogenic/anti-estrogenic effects of Avlimil we observed may be dosage- and target tissue-specific and that Avlimil may not be safe for women with estrogen-dependent breast cancer. The different biological effects of fractionated Avlimil components and the different concentration dependencies warrant further compound identification and dose-response studies, especially at recommended intake levels that could have estrogenic effects in women.
Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells.
Pi, Jiang; Jin, Hua; Liu, Ruiying; Song, Bing; Wu, Qing; Liu, Li; Jiang, Jinhuan; Yang, Fen; Cai, Huaihong; Cai, Jiye
2013-02-01
Selenium nanoparticles (Se NPs) have been recognized as promising materials for biomedical applications. To prepare Se NPs which contained cancer targeting methods and to clarify the cellular localization and cytotoxicity mechanisms of these Se NPs against cancer cells, folic acid protected/modified selenium nanoparticles (FA-Se NPs) were first prepared by a one-step method. Some morphologic and spectroscopic methods were obtained to prove the successfully formation of FA-Se NPs while free folate competitive inhibition assay, microscope, and several biological methods were used to determine the in vitro uptake, subcellular localization, and cytotoxicity mechanism of FA-Se NPs in MCF-7 cells. The results indicated that the 70-nm FA-Se NPs were internalized by MCF-7 cells through folate receptor-mediated endocytosis and targeted to mitochondria located regions through endocytic vesicles transporting. Then, the FA-Se NPs entered into mitochondria; triggered the mitochondria-dependent apoptosis of MCF-7 cells which involved oxidative stress, Ca(2)+ stress changes, and mitochondrial dysfunction; and finally caused the damage of mitochondria. FA-Se NPs released from broken mitochondria were transported into nucleus and further into nucleolus which then induced MCF-7 cell cycle arrest. In addition, FA-Se NPs could induce cytoskeleton disorganization and induce MCF-7 cell membrane morphology alterations. These results collectively suggested that FA-Se NPs could be served as potential therapeutic agents and organelle-targeted drug carriers in cancer therapy.
Schröder, Lennard; Koch, Julian; Mahner, Sven; Kost, Bernd P; Hofmann, Simone; Jeschke, Udo; Haumann, Jens; Schmedt, Julian; Richter, Dagmar Ulrike
2017-01-01
Phytoestrogens have controversial effects on hormone-dependent tumors. Herein we investigated the effects of parsley root extract (PCE) on DNA synthesis performance, metabolic activity and cytotoxicity in malignant and benign breast cells. The PCE was prepared and analyzed by mass spectrometry. MCF7 and MCF12A cells were incubated with various concentrations of PCE and analyzed for DNA synthesis performance, metabolic activity and cytotoxicity by BrdU proliferation, MTT and LDH assays, respectively. PCE was found to contain a substantial ratio of lignans. At a concentration range of 0.01 μg/ml-100 μg/ml the LDH assay analysis showed no significant cytotoxicity of PCE in both cell lines. However, at 500 μg/ml PCE's cytotoxicity was well over 70% of total cell population in both cell lines. According to the BrdU proliferation assay analysis, PCE demonstrated significant DNA synthesis inhibition of up to 80% at concentrations of 10, 50, 100 and 500 μg/ml in both cell lines. Based on the MTT assay analysis, only at a concentration of 500 μg/ml, PCE demonstrated a statistically significant inhibition of cellular metabolic activity of 63% in MCF7 and 75% in MCF12A of their respective normal capacity. PCE showed antiproliferative effects in MCF7 and MCF12A cells. Further investigation is required to determine whether this effect can be solely attributed to its phytoestrogens. Copyright© 2017 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
The diverse roles of glutathione-associated cell resistance against hypericin photodynamic therapy.
Theodossiou, Theodossis A; Olsen, Cathrine E; Jonsson, Marte; Kubin, Andreas; Hothersall, John S; Berg, Kristian
2017-08-01
The diverse responses of different cancers to treatments such as photodynamic therapy of cancer (PDT) have fueled a growing need for reliable predictive markers for treatment outcome. In the present work we have studied the differential response of two phenotypically and genotypically different breast adenocarcinoma cell lines, MCF7 and MDA-MB-231, to hypericin PDT (HYP-PDT). MDA-MB-231 cells were 70% more sensitive to HYP PDT than MCF7 cells at LD 50 . MCF7 were found to express a substantially higher level of glutathione peroxidase (GPX4) than MDA-MB-231, while MDA-MB-231 differentially expressed glutathione-S-transferase (GSTP1), mainly used for xenobiotic detoxification. Eighty % reduction of intracellular glutathione (GSH) by buthionine sulfoximine (BSO), largely enhanced the sensitivity of the GSTP1 expressing MDA-MB-231 cells to HYP-PDT, but not in MCF7 cells. Further inhibition of the GSH reduction however by carmustine (BCNU) resulted in an enhanced sensitivity of MCF7 to HYP-PDT. HYP loading studies suggested that HYP can be a substrate of GSTP for GSH conjugation as BSO enhanced the cellular HYP accumulation by 20% in MDA-MB-231 cells, but not in MCF7 cells. Studies in solutions showed that L-cysteine can bind the GSTP substrate CDNB in the absence of GSTP. This means that the GSTP-lacking MCF7 may use L-cysteine for xenobiotic detoxification, especially during GSH synthesis inhibition, which leads to L-cysteine build-up. This was confirmed by the lowered accumulation of HYP in both cell lines in the presence of BSO and the L-cysteine source NAC. NAC reduced the sensitivity of MCF7, but not MDA-MB-231, cells to HYP PDT which is in accordance with the antioxidant effects of L-cysteine and its potential as a GSTP substrate. As a conclusion we have herein shown that the different GSH based cell defense mechanisms can be utilized as predictive markers for the outcome of PDT and as a guide for selecting optimal combination strategies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Hong, Mina; Kim, HyungRyong; Kim, Inki
2014-07-18
Although first identified for their roles in protein synthesis, certain ribosomal proteins exert pleiotropic physiological functions in the cell. Ribosomal protein L19 is overexpressed in breast cancer cells by amplification and copy number variation. In this study, we examined the novel pro-apoptotic role of ribosomal protein L19 in the breast cancer cell line MCF7. Overexpression of RPL19 sensitized MCF7 cells to endoplasmic reticulum stress-induced cell death. RPL19 overexpression itself was not cytotoxic; however, cell death induction was enhanced when RPL19 overexpressing cells were incubated with endoplasmic reticulum stress-inducing agents, and this sensitizing effect was specific to MCF7 cells. Examination of the cell signaling pathways that mediate the unfolded protein response (UPR) revealed that overexpression of RPL19 induced pre-activation of the UPR, including phosphorylation of pERK-like ER kinase (PERK), phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α), and activation of p38 MAPK-associated stress signaling. Our findings suggest that upregulation of RPL19 induces ER stress, resulting in increased sensitivity to ER stress and enhanced cell death in MCF7 breast cancer cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Antiproliferative Activity of Xanthones Isolated from Artocarpus obtusus
Hashim, Najihah Mohd; Rahmani, Mawardi; Ee, Gwendoline Cheng Lian; Sukari, Mohd Aspollah; Yahayu, Maizatulakmal; Oktima, Winda; Ali, Abd Manaf; Go, Rusea
2012-01-01
An investigation of the chemical constituents in Artocarpus obtusus species led to the isolation of three new xanthones, pyranocycloartobiloxanthone A (1), dihydroartoindonesianin C (2), and pyranocycloartobiloxanthone B (3). The compounds were subjected to antiproliferative assay against human promyelocytic leukemia (HL60), human chronic myeloid leukemia (K562), and human estrogen receptor (ER+) positive breast cancer (MCF7) cell lines. Pyranocycloartobiloxanthone A (1) consistently showed strong cytotoxic activity against the three cell lines compared to the other two with IC50 values of 0.5, 2.0 and 5.0 μg/mL, respectively. Compound (1) was also observed to exert antiproliferative activity and apoptotic promoter towards HL60 and MCF7 cell lines at respective IC50 values. The compound (1) was not toxic towards normal cell lines human nontumorigenic breast cell line (MCF10A) and human peripheral blood mononuclear cells (PBMCs) with IC50 values of more than 30 μg/mL. PMID:21960741
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chhipa, Rishi Raj; Kumari, Ratna; Upadhyay, Ankur Kumar
2007-11-15
The p53 protein has been a subject of intense research interest since its discovery as about 50% of human cancers carry p53 mutations. Mutations in the p53 gene are the most frequent genetic lesions in breast cancers suggesting a critical role of p53 in breast cancer development, growth and chemosensitivity. This report describes the derivation and characterization of MCF-7As53, an isogenic cell line derived from MCF-7 breast carcinoma cells in which p53 was abrogated by antisense p53 cDNA. Similar to MCF-7 and simultaneously selected hygromycin resistant MCF-7H cells, MCF-7As53 cells have consistent basal epithelial phenotype, morphology, and estrogen receptor expressionmore » levels at normal growth conditions. Present work documents investigation of molecular variations, growth kinetics, and cell cycle related studies in relation to absence of wild-type p53 protein and its transactivation potential as well. Even though wild-type tumor suppressor p53 is an activator of cell growth arrest and apoptosis-mediator genes such as p21, Bax, and GADD45 in MCF-7As53 cells, no alterations in expression levels of these genes were detected. The doubling time of these cells decreased due to depletion of G0/G1 cell phase because of constitutive activation of Akt and increase in cyclin D1 protein levels. This proliferative property was abrogated by wortmannin, an inhibitor of PI3-K/Akt signaling pathway. Therefore this p53 null cell line indicates that p53 is an indispensable component of cellular signaling system which is regulated by caveolin-1 expression, involving Akt activation and increase in cyclin D1, thereby promoting proliferation of breast cancer cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuenong; Wei, Han; Liu, Ziwei
Protoapigenone is a unique flavonoid and enriched in many ferns, showing potent antitumor activity against a broad spectrum of human cancer cell lines. RY10-4, a modified version of protoapigenone, manifested better anti-proliferation activity in human breast cancer cell line MCF-7. The cytotoxicity of RY10-4 against MCF-7 cells is exhibited in both time- and concentration-dependent manners. Here we investigated a novel effect of RY10-4 mediated autophagy in autophagy defect MCF-7 cells. Employing immunofluorescence assay for microtubule-associated protein light-chain 3 (LC3), monodansylcadaverine staining, Western blotting analyses for LC3 and p62 as well as ultrastructural analysis by transmission electron microscopy, we showed thatmore » RY10-4 induced autophagy in MCF-7 cells but protoapigenone did not. Meanwhile, inhibition of autophagy by pharmacological and genetic approaches significantly increased the viability of RY10-4 treated cells, suggesting that the autophagy induced by RY10-4 played as a promotion mechanism for cell death. Further studies revealed that RY10-4 suppressed the activation of mTOR and p70S6K via the Akt/mTOR pathway. Our results provided new insights for the mechanism of RY10-4 induced cell death and the cause of RY10-4 showing better antitumor activity than protoapigenone, and supported further evidences for RY10-4 as a lead to design a promising antitumor agent. - Highlights: • We showed that RY10-4 induced autophagy in MCF-7 cells but protoapigenone did not. • Autophagy induced by RY10-4 played as a promotion mechanism for cell death. • RY10-4 induced autophagy in MCF-7 cell through the Akt/mTOR pathway. • We provided new insights for the mechanism of RY10-4 induced cell death.« less
Chen, Jiun-Liang; Chang, Chun-Ju; Wang, Jir-You; Wen, Che-Sheng; Tseng, Ling-Ming; Chang, Wen-Chi; Noomhorm, Nattanant; Liu, Hui-Ju; Chen, Wei-Shone; Chiu, Jen-Hwey; Shyr, Yi-Ming
2014-05-01
There is epidemiological evidence that Jia-Wei-Xiao-Yao-San (JWXYS) is the most common Chinese medicine decoction coprescribed with tamoxifen (Tam) when breast cancer is treated by hormonal therapy. However, whether there is interaction between JWXYS and Tam remains to be clarified. The aim of this study was to investigate the in vitro and in vivo effects of JWXYS on human breast cancer MCF-7 cells treated with Tam. In vitro cultured MCF-7 cells were cotreated with JWXYS and Tam. This was followed by MTT ([4,5-cimethylthiazol-2-yl]- 2,5-diphenyl tetrazolium bromide) assays and cell cycle analysis to assess cell proliferation; Western blot analysis was used to analyze the expression of various proteins involved in growth-related signal pathways. In addition, immunohistochemistry was used to detect autophagy among the cancer cells. In vivo analysis used female athymic nude mice implanted with MCF-7 cells; these mice were randomly assigned to 6 groups. All mice were killed humanely after 21 days of treatment; body weight, tumor volume, and tumor weight were then measured. JWXYS was not cytotoxic to MCF-7 cells, based on the fact that there were no statistically significant changes between the JWXYS + Tam groups and the Tam-alone group in cell numbers, cell cycle progression, and cell proliferation signals, the latter including the expression levels of AKT, ERK, P38, p27(Kip1), and light chain (LC3)-I, II. Furthermore, using the MCF-7 xenograft mouse model, there were no significant changes between the JWXYS (1.3-3.9 gm/kg) + Tam groups and the Tam-alone group in terms of tumor weight and the protein expression levels of AKT, ERK, P38, and p27 (Kip1). However, there was a significant decrease in LC3-II protein expression with the low-dose JWXYS + Tam group but not with the middle- or high-dose JWXYS + Tam groups compared with the Tam-alone group. Based on in vitro studies and in vivo functional studies, there is no obvious interaction between JWXYS and Tam. However, the presence of interference at the molecular level in relation to LC3-II expression provides important information and may affect treatment strategies when physicians have patients with estrogen receptor-α(+) or progesterone receptor(+) breast cancers. © The Author(s) 2014.
Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system.
Dadras, Pegah; Atyabi, Fatemeh; Irani, Shiva; Ma'mani, Leila; Foroumadi, Alireza; Mirzaie, Zahra Hadavand; Ebrahimi, Marzieh; Dinarvand, R
2017-01-15
Theranostic polymeric NPs developed for both cancer diagnosis and cancer therapy. This multifunctional polymeric vehicle was prepared by a single emulsion evaporation method, using carboxyl-terminated PLGA. LHRH as a targeting moiety, was conjugated to the surface of polymeric carrier by applying polyethylene glycol. The results indicated that the diameter of NPs was ~185.4±4.6nm as defined by DLS. The entrapment efficacy of docetaxel, silibinin, and SPIONs was 84.6±4.1%, 80.6±2.7%, and 77.9±4.3%, respectively. The NPs showed a triphasic in-vitro drug release pattern. MTT assay was done on two cell lines, MCF-7 and SKOV-3. Enhanced cellular uptake ability of the targeted NPs to MCF-7 was evaluated in-vitro by confocal laser scanning microscopy. The results indicated that compared to non-targeted NPs, the LHRH targeted NPs had significant efficacy at IC50 concentration. The effect of the NPs on VEGF expression in MCF-7 and SKOV-3 cells was investigated by Real-Time PCR method. VEGF mRNA level expression in MCF-7 cell line reduced by 83% in comparison to control cell line. The designed NPs can be used as promising multifunctional platform for detection and targeted drug delivery in breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.
Anticancer activity of Petroselinum sativum seed extracts on MCF-7 human breast cancer cells.
Farshori, Nida Nayyar; Al-Sheddi, Ebtesam Saad; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed
2013-01-01
Pharmacological and preventive properties of Petroselinum sativum seed extracts are well known, but the anticancer activity of alcoholic extracts and oil of Petroselinum sativum seeds on human breast cancer cells have not been explored so far. Therefore, the present study was designed to investigate the cytotoxic activities of these extracts against MCF-7 cells. Cells were exposed to 10 to 1000 μg/ml of alcoholic seed extract (PSA) and seed oil (PSO) of Petroselinum sativum for 24 h. Post-treatment, percent cell viability was studied by 3-(4, 5-dimethylthiazol-2yl)-2, 5-biphenyl tetrazolium bromide (MTT) and neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed that PSA and PSO significantly reduced cell viability, and altered the cellular morphology of MCF-7 cells in a concentration dependent manner. Concentrations of 50 μg/ml and above of PSA and 100 μg/ml and above of PSO were found to be cytotoxic in MCF-7 cells. Cell viability at 50, 100, 250, 500 and 1000 μg/ml of PSA was recorded as 81%, 57%, 33%, 8% and 5%, respectively, whereas at 100, 250, 500, and 1000 μg/ml of PSO values were 90%, 78%, 62%, and 8%, respectively by MTT assay. MCF-7 cells exposed to 250, 500 and 1000 μg/ml of PSA and PSO lost their typical morphology and appeared smaller in size. The data revealed that the treatment with PSA and PSO of Petroselinum sativum induced cell death in MCF-7 cells.
Dual Effects of N,N-dimethylformamide on Cell Proliferation and Apoptosis in Breast Cancer
Zhang, Jihong; Zhou, Daibing; Zhang, Lingyun; Lin, Qunbo; Ren, Weimin; Zhang, Jinguo; Nadeem, Lubna; Xu, Guoxiong
2017-01-01
N,N-dimethylformamide (DMF) has been widely used as an organic solvent in industries. DMF is a potential medication. However, the antitumorigenic role of DMF in breast cancer remains unclear. Here, we examined dose-dependent effects of DMF on proliferation and apoptosis in breast cancer MCF-7 and nontumorous MCF-12A cells. We found that DMF had a growth inhibitory effect in MCF-12A cells in a dose-dependent manner. By contrast, however, DMF had dual effects on cell proliferation and apoptosis in MCF-7 cells. DMF at a high dose (100 mM) significantly inhibited MCF-7 cell growth while at a low dose (1 mM) significantly stimulated MCF-7 cell growth (both P < .05). The inhibitory effect of DMF on cell proliferation was accompanied by the decrease of cyclin D1 and cyclin E1 protein expression, leading to the cell cycle arrest at the G0/G1 phase. Furthermore, a high-dose DMF significantly increased the number of early apoptotic cells by increasing cleaved caspase-9 and proapoptotic protein Bax expression and decreased the ratio of Bcl-xL/Bax (P < .01). Thus, our data demonstrated for the first time that DMF has dual effects on breast cancer cell behaviors depending upon its dose. Caution must be warranted in determining its effective dose for targeting breast cancer. PMID:29238273
Abramczyk, Halina; Surmacki, Jakub; Kopeć, Monika; Olejnik, Alicja Klaudia; Lubecka-Pietruszewska, Katarzyna; Fabianowska-Majewska, Krystyna
2015-04-07
We have studied live non-malignant (MCF10A), mildly malignant (MCF7) and malignant (MDA-MB-231) breast cancer cells and human breast cancer tissue. We demonstrate the first application of Raman imaging and spectroscopy in diagnosing the role of lipid droplets in cell line cultures that closely mimic an in vivo environment of various stages in human breast cancer tissue. We have analyzed the composition of the lipid droplets in non-malignant and malignant human breast epithelial cell lines and discussed the potential of lipid droplets as a prognostic marker in breast cancer. To identify any difference in the lipid droplet-associated biochemistry and to correlate it with different stages of breast cancer, the PCA method was employed. The chemical composition of lipids and proteins, both in the cell line models and in human breast tissue has been analyzed. The paper shows the alterations in lipid metabolism that have been reported in cancer, at both the cellular and tissue levels, and discusses how they contribute to the different aspects of tumourigenesis.
COUP-TFII inhibits NFkappaB activation in endocrine-resistant breast cancer cells
Litchfield, Lacey M.; Appana, Savitri N.; Datta, Susmita; Klinge, Carolyn M.
2016-01-01
Reduced COUP-TFII expression contributes to endocrine resistance in breast cancer cells. Endocrine-resistant breast cancer cells have higher NFkappa B (NFκB) activity and target gene expression. The goal of this study was to determine if COUP-TFII modulates NFκB activity. Endocrine-resistant LCC9 cells with low endogenous COUP-TFII displayed ~5-fold higher basal NFκB activity than parental endocrine-sensitive MCF-7 breast cancer cells. Transient transfection of LCC9 cells with COUP-TFII inhibited NFκB activation and reduced NFκB target gene expression. COUP-TFII and NFκB were inversely correlated in breast cancer patient samples. Endogenous COUP-TFII coimmunoprecipitated with NFκB subunits RelB and NFκB1 in MCF-7 cells. COUP-TFII inhibited NFκB-DNA binding in vitro and impaired coactivator induced NFκB transactivation. LCC9 cells were growth-inhibited by an NFκB inhibitor and 4-hydroxytamoxifen compared to MCF-7 cells. Together these data indicate a novel role for COUP-TFII in suppression of NFκB activity and explain, in part, why decreased COUP-TFII expression results in an endocrine-resistant phenotype. PMID:24141032
Wang, Jinhan; Duan, Yitao; Zhi, Dexian; Li, Guangqiang; Wang, Liwen; Zhang, Hongmei; Gu, Lichao; Ruan, Haihua; Zhang, Kunsheng; Liu, Qiang; Li, Shiming; Ho, Chi-Tang; Zhao, Hui
2014-11-01
Citrus polymethoxyflavone tangeretin (5,6,7,8,4'-pentamethoxyflavone, TAN) displays multiple biological activities, but previous reports showed that TAN failed to induce MCF-7 human breast cancer cells apoptosis. Herein, we prepared 5-acetyl-6,7,8,4'-tetramethylnortangeretin (5-ATAN), and evaluated its cytotoxicity on MCF-7 cells. 5-ATAN revealed stronger cytotoxicity than that of parent TAN in the growth inhibition of MCF-7 cells. 5-ATAN induced apoptosis via both caspase-independent and -dependent pathways, in which 5-ATAN induced the translocation of apoptosis inducing factor and phosphorylation of H2AX as well as poly (ADP-ribose) polymerase cleavage, caspase-3 activation. However, 5-ATAN did not affect extrinsic markers caspase-8, BID, and FADD. Further, 5-ATAN induced the loss of mitochondrial membrane potential (Δψm) by regulating the Bax/Bcl-2 ratio. Loss of Δψm led to the mitochondrial release of cytochrome c which triggered activation of caspase-9. In conclusion, these data indicate that 5-ATAN plays pro-apoptotic cytotoxic roles in MCF-7 cells through both caspase-dependent intrinsic apoptosis and caspase-independent apoptosis pathways.
Kwiatkowska, Ewa; Wojtala, Martyna; Gajewska, Agnieszka; Soszyński, Mirosław; Bartosz, Grzegorz; Sadowska-Bartosz, Izabela
2016-02-01
Novel approaches to cancer chemotherapy employ metabolic differences between normal and tumor cells, including the high dependence of cancer cells on glycolysis ("Warburg effect"). 3-Bromopyruvate (3-BP), inhibitor of glycolysis, belongs to anticancer drugs basing on this principle. 3-BP was tested for its capacity to kill human non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. We found that 3-BP was more toxic for MDA-MB-231 cells than for MCF-7 cells. In both cell lines, a statistically significant decrease of ATP and glutathione was observed in a time- and 3-BP concentration-dependent manner. Transient increases in the level of reactive oxygen species and reactive oxygen species was observed, more pronounced in MCF-7 cells, followed by a decreasing tendency. Activities of glutathione peroxidase, glutathione reductase (GR) and glutathione S-transferase (GST) decreased in 3-BP treated MDA-MB-231 cells. For MCF-7 cells decreases of GR and GST activities were noted only at the highest concentration of 3-BP.These results point to induction of oxidative stress by 3-BP via depletion of antioxidants and inactivation of antioxidant enzymes, more pronounced in MDA-MB-231 cells, more sensitive to 3-BP.
Marrow-derived mesenchymal stem cells: role in epithelial tumor cell determination.
Fierro, Fernando A; Sierralta, Walter D; Epuñan, Maria J; Minguell, José J
2004-01-01
Marrow stroma represents an advantageous environment for development of micrometastatic cells. Within the cellular structure of marrow stroma, mesenchymal stem cells (MSC) have been postulated as an interacting target for disseminated cancer cells. The studies reported here were performed to gain more information on the interaction of the human breast cancer cell line MCF-7 with human bone marrow-derived MSC cells and to investigate whether this interaction affects tumor cell properties. The results showed that after co-culture with MSC, changes were detected in the morphology, proliferative capacity and aggregation pattern of MCF-7 cells, but these parameters were not affected after the co-culture of MSC cells with a non-tumorigenic breast epithelial cell line, MCF-10. Since the indirect culture of MCF-7 with MSC or its products also resulted in functional changes in the tumor cells, we evaluated whether these effects could be attributed to growth factors produced by MSC cells. It was found that VEGF and IL-6 mimic the effects produced by MSC or its products on the proliferation and aggregation properties of MCF-7, cells, respectively. Thus, it seems that after entry of disseminated tumor cells into the marrow space, their proliferative and morphogenetic organization patterns are modified after interaction with distinct stromal cells and/or with specific signals from the marrow microenvironment.
Wang, Xinzheng; Hang, Yakai; Liu, Jinbiao; Hou, Yongqiang; Wang, Ning; Wang, Mingjun
2017-06-01
Curcumin is a polyphenol extracted from turmeric, which that belongs to the Zingiberaceae family. Curcumin has numerous effects, including anti-inflammatory, antitumor, anti-oxidative and antimicrobial effects. However, the effects of curcumin on human breast cancer cells remain largely unknown. The aim of the present study was to investigate the anticancer effects and the mechanisms by which curcumin affects breast cancer cells. The anticancer effect of curcumin on cell viability and cytotoxicity on human breast cancer MCF-7 cells was analyzed using 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide and lactate dehydrogenase assays, respectively. Cell apoptosis of MCF-7 cells was detected using flow cytometry, 4',6-diamidino-2-phenylindolestaining assay and caspase-3/9 activity kits. Reverse transcription-quantitative polymerase chain reaction was used to analyze microRNA-21 (miR-21) expression in MCF-7 cells. The protein expression of phosphatase and tensin homolog (PTEN) and phospho-protein kinase B (pAkt) was determined by western blot analysis. miR-21 was transfected into MCF-7 cells and the anticancer effect of curcumin on cell viability and the expression of PTEN and pAkt was analyzed. The present results demonstrated that curcumin inhibited cell viability and induced cytotoxicity of MCF-7 cells in a concentration- and time-dependent manner, by inducing apoptosis and increasing caspase-3/9 activities. In addition, curcumin downregulated miR-21 expression in MCF-7 cells by upregulating the PTEN/Akt signaling pathway. The present study has for the first time, to the best of our knowledge, revealed the anticancer effect of curcumin in suppressing breast cancer cell growth, and has elucidated that the miR-21/PTEN/Akt signaling pathway is a key mechanism for the anticancer effects of curcumin.
Martin, L-A; Pancholi, S; Chan, C M W; Farmer, I; Kimberley, C; Dowsett, M; Johnston, S R D
2005-12-01
Long-term culture of MCF-7 wild-type (wt) cells in steroid-depleted medium (LTED) results in hypersensitivity to oestradiol (E2) coinciding with elevated levels of ERalpha and enhanced growth factor signalling. In this study, we aimed to compare the effects of the pure anti-oestrogen ICI 182,780 (ICI) with the competitive anti-oestrogen tamoxifen (TAM) on oestrogen and IGF signalling in these cells. Wt MCF-7 and LTED cells were treated with a log 7 concentration range of E2, TAM or ICI. Effects on cell growth, ERalpha transactivation, expression of ERalpha, ERbeta and components of the IGF pathway were measured with and without insulin. In the presence of insulin, growth of LTED cells was refractory to TAM but inhibited by ICI and E2. In the absence of insulin, LTED cells showed persistent hypersensitivity to E2, and remained inhibited by ICI but were largely unaffected by TAM. ICI but not TAM inhibited ER-mediated gene transcription and treatment with ICI resulted in a dose-dependent reduction in ERalpha levels whilst having no effect on ERbeta expression. IGF-I receptor and insulin receptor substrate 2 levels were increased in LTED versus the Wt MCF-7 cells, and ICI but not TAM reduced their expression in a dose-dependent fashion. Thus IGF signalling as well as ERalpha expression and function are enhanced during LTED. While the resultant cells are resistant to TAM, ICI down-regulates ERalpha, reducing IGF signalling and cell growth. These results support the use of ICI in women with ER-positive breast cancer who have relapsed on an aromatase inhibitor.
Ariazi, Eric A; Brailoiu, Eugen; Yerrum, Smitha; Shupp, Heather A; Slifker, Michael J; Cunliffe, Heather E; Black, Michael A; Donato, Anne L; Arterburn, Jeffrey B; Oprea, Tudor I; Prossnitz, Eric R; Dun, Nae J; Jordan, V Craig
2010-02-01
The G protein-coupled receptor GPR30 binds 17beta-estradiol (E(2)) yet differs from classic estrogen receptors (ERalpha and ERbeta). GPR30 can mediate E(2)-induced nongenomic signaling, but its role in ERalpha-positive breast cancer remains unclear. Gene expression microarray data from five cohorts comprising 1,250 breast carcinomas showed an association between increased GPR30 expression and ERalpha-positive status. We therefore examined GPR30 in estrogenic activities in ER-positive MCF-7 breast cancer cells using G-1 and diethylstilbestrol (DES), ligands that selectively activate GPR30 and ER, respectively, and small interfering RNAs. In expression studies, E(2) and DES, but not G-1, transiently downregulated both ER and GPR30, indicating that this was ER mediated. In Ca(2+) mobilization studies, GPR30, but not ERalpha, mediated E(2)-induced Ca(2+) responses because E(2), 4-hydroxytamoxifen (activates GPR30), and G-1, but not DES, elicited cytosolic Ca(2+) increases not only in MCF-7 cells but also in ER-negative SKBr3 cells. Additionally, in MCF-7 cells, GPR30 depletion blocked E(2)-induced and G-1-induced Ca(2+) mobilization, but ERalpha depletion did not. Interestingly, GPR30-coupled Ca(2+) responses were sustained and inositol triphosphate receptor mediated in ER-positive MCF-7 cells but transitory and ryanodine receptor mediated in ER-negative SKBr3 cells. Proliferation studies involving GPR30 depletion indicated that the role of GPR30 was to promote SKBr3 cell growth but reduce MCF-7 cell growth. Supporting this, G-1 profoundly inhibited MCF-7 cell growth, potentially via p53 and p21 induction. Further, flow cytometry showed that G-1 blocked MCF-7 cell cycle progression at the G(1) phase. Thus, GPR30 antagonizes growth of ERalpha-positive breast cancer and may represent a new target to combat this disease.
Shen, Hongyu; Li, Liangpeng; Yang, Sujin; Wang, Dandan; Zhong, Shanliang; Zhao, Jianhua; Tang, Jinhai
2016-11-15
Acquisition of resistance to adriamycin (ADR) during the treatment of breast cancer is still a major clinical obstacle. MicroRNAs (miRNAs) are a class of short noncoding RNAs which associate with cancer chemoresistance through regulating gene expression by targeting mRNAs. Our previous microarray found that miR-29a may strongly confer the ADR resistance of breast cancer cells. Here, we aim to explore the possible mechanism by which miR-29a affects sensitivity to ADR. ADR-resistant MCF-7 breast cancer cell subline (MCF-7/ADR) was successfully established in vitro through a stepwise increase of ADR concentrations in the culture based on parental MCF-7 cell lines (MCF-7/S). We used TargetScan (a wide use of target prediction algorithms) in conjunction with pathway enrichment analyses to predict the mRNAs that were most likely to involve in miR-29a-mediated drug resistance in cancers. We confirmed the effects of miR-29a-mediated ADR resistance through MTT and apoptosis assays, and further investigated the activities of two target genes, PTEN and GSK3β, by RT-qPCR analyses and western blot assays. The expression level of miR-29a in MCF-7/ADR cells was remarkablely higher than in MCF-7/S cells. Further MTT and apoptosis assays revealed that transfection of miR-29a inhibitors into MCF-7/ADR cells resulted in prominent reduction of the drug resistance, in contrast, transfection of miR-29a mimics into MCF-7/S cells obviously increased their drug resistance. Through pathway enrichment analyses for miR-29a, we found that PTEN/AKT/GSK3β signaling pathway may be of importance. RT-qPCR and Western blot results showed that downregulation of miR-29a expression in MCF-7/ADR cells increased PTEN expression levels, resulting in decreased phospho-Akt (p-Akt) and phospho-GSK3β (p-GSK3β) expression. Conversely, upregulation of miR-29a expression in MCF-7/S cells is associated with decreasing PTEN expression and increasing p-Akt and p-GSK3β expression. PTEN and GSK3β are targeted by miR-29a, and miR-29a may contribute to ADR resistance through inhibition of the PTEN/AKT/GSK3β pathway in breast cancer cells. Thus, miR-29a may be a potential target for the patients who acquired ADR-resistance during the treatment of breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.
Lin, Zeng-Mao; Zhao, Jian-Xin; Duan, Xue-Ning; Zhang, Lan-Bo; Ye, Jing-Ming; Xu, Ling; Liu, Yin-Hua
2014-01-01
This study aimed to explore the expression of tissue factor (TF), protease activated receptor-2 (PAR-2), and matrix metalloproteinase-9 (MMP-9) in the MCF-7 breast cancer cell line and influence on invasiveness. Stable MCF-7 cells transfected with TF cDNA and with TF ShRNA were established. TF, PAR-2, and MMP-9 protein expression was analyzed using indirect immunofluorescence and invasiveness was evaluated using a cell invasion test. Effects of an exogenous PAR-2 agonist were also examined. TF protein expression significantly differed between the TF cDNA and TF ShRNA groups. MMP-9 protein expression was significantly correlated with TF protein expression, but PAR-2 protein expression was unaffected. The PAR- 2 agonist significantly enhanced MMP-9 expression and slightly increased TF and PAR-2 expression in the TF ShRNA group, but did not significantly affect protein expression in MCF-7 cells transfected with TF cDNA. TF and MMP-9 expression was positively correlated with the invasiveness of tumor cells. TF, PAR-2, and MMP-9 affect invasiveness of MCF-7 cells. TF may increase MMP-9 expression by activating PAR-2.
Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Salgado-Garciglia, Rafael; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E
2016-08-01
Antimicrobial peptides (AMPs) are cytotoxic to cancer cells; however, mainly the effects of AMPs from animals have been evaluated. In this work, we assessed the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on the MCF-7 cancer cell line (a breast cancer cell line) and evaluated its mechanism of action. PaDef inhibited the viability of MCF-7 cells in a concentration-dependent manner, with an IC50=141.62μg/ml. The viability of normal peripheral blood mononuclear cells was unaffected by this AMP. Additionally, PaDef induced apoptosis in MCF-7 cells in a time-dependent manner, but did not affect the membrane potential or calcium flow. In addition, PaDef IC50 induced the expression of cytochrome c, Apaf-1, and the caspase 7 and 9 genes. Likewise, this defensin induced the loss of mitochondrial Δψm and increased the phosphorylation of MAPK p38, which may lead to MCF-7 apoptosis by the intrinsic pathway. This is the first report of an avocado defensin inducing intrinsic apoptosis in cancer cells, which suggests that it could be a potential therapeutic molecule in the treatment of cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Tanih, Nicoline Fri; Ndip, Roland Ndip
2013-01-01
Interesting antimicrobial data from the stem bark of Sclerocarya birrea, which support its use in traditional medicine for the treatment of many diseases, have been delineated. The current study was aimed to further study some pharmacological and toxicological properties of the plant to scientifically justify its use. Anticancer activity of water and acetone extracts of S. birrea was evaluated on three different cell lines, HT-29, HeLa, and MCF-7 using the cell titre blue viability assay in 96-well plates. Apoptosis was evaluated using the acridine orange and propidium iodide staining method, while morphological structure of treated cells was examined using SEM. The acetone extract exhibited remarkable antiproliferative activities on MCF-7 cell lines at dose- and time-dependent manners (24 h and 48 h of incubation). The extract also exerted apoptotic programmed cell death in MCF-7 cells with significant effect on the DNA. Morphological examination also displayed apoptotic characteristics in the treated cells, including clumping, condensation, and culminating to budding of the cells to produce membrane-bound fragmentation, as well as formation of apoptotic bodies. The acetone extract of S. birrea possesses antiproliferative and apoptotic potential against MCF-7-treated cells and could be further exploited as a potential lead in anticancer therapy. PMID:23576913
Rabi, Thangaiyan; Huwiler, Andrea; Zangemeister-Wittke, Uwe
2014-07-01
AMR-Me, a C-28 methylester derivative of triterpenoid compound Amooranin isolated from Amoora rohituka stem bark and the plant has been reported to possess multitude of medicinal properties. Our previous studies have shown that AMR-Me can induce apoptosis through mitochondrial apoptotic and MAPK signaling pathways by regulating the expression of apoptosis related genes in human breast cancer MCF-7 cells. However, the molecular mechanism of AMR-Me induced apoptotic cell death remains unclear. Our results showed that AMR-Me dose-dependently inhibited the proliferation of MCF-7 and MDA-MB-231 cells under serum-free conditions supplemented with 1 nM estrogen (E2) with an IC50 value of 0.15 µM, 0.45 µM, respectively. AMR-Me had minimal effects on human normal breast epithelial MCF-10A + ras and MCF-10A cells with IC50 value of 6 and 6.5 µM, respectively. AMR-Me downregulated PI3K p85, Akt1, and p-Akt in an ERα-independent manner in MCF-7 cells and no change in expression levels of PI3K p85 and Akt were observed in MDA-MB-231 cells treated under similar conditions. The PI3K inhibitor LY294002 suppressed Akt activation similar to AMR-Me and potentiated AMR-Me induced apoptosis in MCF-7 cells. EMSA revealed that AMR-Me inhibited nuclear factor-kappaB (NF-κB) DNA binding activity in MDA-MB-231 cells in a time-dependent manner and abrogated EGF induced NF-κB activation. From these studies we conclude that AMR-Me decreased ERα expression and effectively inhibited Akt phosphorylation in MCF-7 cells and inactivate constitutive nuclear NF-κB and its regulated proteins in MDA-MB-231 cells. Due to this multifactorial effect in hormone-dependent and independent breast cancer cells AMR-Me deserves attention for use in breast cancer prevention and therapy. © 2013 Wiley Periodicals, Inc.
Lamb, Rebecca; Ozsvari, Bela; Bonuccelli, Gloria; Smith, Duncan L.; Pestell, Richard G.; Martinez-Outschoorn, Ubaldo E.; Clarke, Robert B.; Sotgia, Federica; Lisanti, Michael P.
2015-01-01
Tumor cell metabolic heterogeneity is thought to contribute to tumor recurrence, distant metastasis and chemo-resistance in cancer patients, driving poor clinical outcome. To better understand tumor metabolic heterogeneity, here we used the MCF7 breast cancer line as a model system to metabolically fractionate a cancer cell population. First, MCF7 cells were stably transfected with an hTERT-promoter construct driving GFP expression, as a surrogate marker of telomerase transcriptional activity. To enrich for immortal stem-like cancer cells, MCF7 cells expressing the highest levels of GFP (top 5%) were then isolated by FACS analysis. Notably, hTERT-GFP(+) MCF7 cells were significantly more efficient at forming mammospheres (i.e., stem cell activity) and showed increased mitochondrial mass and mitochondrial functional activity, all relative to hTERT-GFP(−) cells. Unbiased proteomics analysis of hTERT-GFP(+) MCF7 cells directly demonstrated the over-expression of 33 key mitochondrial proteins, 17 glycolytic enzymes, 34 ribosome-related proteins and 17 EMT markers, consistent with an anabolic cancer stem-like phenotype. Interestingly, MT-CO2 (cytochrome c oxidase subunit 2; Complex IV) expression was increased by >20-fold. As MT-CO2 is encoded by mt-DNA, this finding is indicative of increased mitochondrial biogenesis in hTERT-GFP(+) MCF7 cells. Importantly, most of these candidate biomarkers were transcriptionally over-expressed in human breast cancer epithelial cells in vivo. Similar results were obtained using cell size (forward/side scatter) to fractionate MCF7 cells. Larger stem-like cells also showed increased hTERT-GFP levels, as well as increased mitochondrial mass and function. Thus, this simple and rapid approach for the enrichment of immortal anabolic stem-like cancer cells will allow us and others to develop new prognostic biomarkers and novel anti-cancer therapies, by specifically and selectively targeting this metabolic sub-population of aggressive cancer cells. Based on our proteomics and functional analysis, FDA-approved inhibitors of protein synthesis and/or mitochondrial biogenesis, may represent novel treatment options for targeting these anabolic stem-like cancer cells. PMID:26323205
SIP1/NHERF2 enhances estrogen receptor alpha transactivation in breast cancer cells
Meneses-Morales, Ivan; Tecalco-Cruz, Angeles C.; Barrios-García, Tonatiuh; Gómez-Romero, Vania; Trujillo-González, Isis; Reyes-Carmona, Sandra; García-Zepeda, Eduardo; Méndez-Enríquez, Erika; Cervantes-Roldán, Rafael; Pérez-Sánchez, Víctor; Recillas-Targa, Félix; Mohar-Betancourt, Alejandro; León-Del-Río, Alfonso
2014-01-01
The estrogen receptor alpha (ERα) is a ligand-activated transcription factor that possesses two activating domains designated AF-1 and AF-2 that mediate its transcriptional activity. The role of AF-2 is to recruit coregulator protein complexes capable of modifying chromatin condensation status. In contrast, the mechanism responsible for the ligand-independent AF-1 activity and for its synergistic functional interaction with AF-2 is unclear. In this study, we have identified the protein Na+/H+ Exchanger RegulatoryFactor 2 (NHERF2) as an ERα-associated coactivator that interacts predominantly with the AF-1 domain of the nuclear receptor. Overexpression of NHERF2 in breast cancer MCF7 cells produced an increase in ERα transactivation. Interestingly, the presence of SRC-1 in NHERF2 stably overexpressing MCF7 cells produced a synergistic increase in ERα activity. We show further that NHERF2 interacts with ERα and SRC-1 in the promoter region of ERα target genes. The binding of NHERF2 to ERα in MCF7 cells increased cell proliferation and the ability of MCF7 cells to form tumors in a mouse model. We analyzed the expression of NHERF2 in breast cancer tumors finding a 2- to 17-fold increase in its mRNA levels in 50% of the tumor samples compared to normal breast tissue. These results indicate that NHERF2 is a coactivator of ERα that may participate in the development of estrogen-dependent breast cancer tumors. PMID:24771346
NASA Astrophysics Data System (ADS)
Geninatti Crich, S.; Cadenazzi, M.; Lanzardo, S.; Conti, L.; Ruiu, R.; Alberti, D.; Cavallo, F.; Cutrin, J. C.; Aime, S.
2015-04-01
In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation.In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation. Electronic supplementary information (ESI) available: Competition studies with free apoferritin, Fig. S1; APO-FITC intracellular distribution by immunofluorescence, Fig. S2. See DOI: 10.1039/c5nr00352k
Wang, Lijun; Wang, Ying; Du, Huaqing; Jiang, Yao; Tang, Zhichao; Liu, Hongyi; Xiang, Hua; Xiao, Hong
2015-12-01
ER520, a derivative of indenoisoquinoline, is a patented compound. This study was designed to screen its biological properties and to evaluate its antineoplastic and antiangiogenic effect. Western blot was employed to monitor the ERα and ERβ protein expression in human breast cancer MCF-7 cells and endometrial carcinoma Ishikawa cells. MTT assay was employed to determine cell proliferation. Cell adhesion, scratch and Transwell assay were utilized to estimate the ability of cellular adhesion, migration and invasion. ELISA kit was applied to detect the VEGF products in culture medium. In addition, the inhibitory effect of ER520 on the vessel-like construction of HUVEC cells and the angiogenesis of chicken embryos was investigated. The efficiency of ER520 on tumor growth in nude mice was also assessed. ER520 inhibited the expression of ERα in MCF-7 and Ishikawa cells, while it increased ERβ protein level. ER520 also suppressed the proliferation of MCF-7 and Ishikawa cells. Due to its remarkably negative role in cell adhesion, migration and invasion, ER520 showed a potential ability of inhibiting tumor metastasis. Meanwhile, ER520 reduced the VEGF secretion of MCF-7 and Ishikawa cells, prevented the formation of VEGF-stimulated tubular structure and the cell migration of HUVEC cells, and inhibited the angiogenesis of chicken chorioallantoic membrane. Animal experiment also demonstrated that ER520 could frustrate the in vivo tumor growth and the inhibitory ratio was 48.5 % compared with control group. Our findings indicate that ER520 possesses the competence to be a candidate against breast cancer and angiogenesis.
Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells.
Huang, Hongzhou; Ding, Ying; Sun, Xiuzhi S; Nguyen, Thu A
2013-01-01
Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing.
Peptide Hydrogelation and Cell Encapsulation for 3D Culture of MCF-7 Breast Cancer Cells
Sun, Xiuzhi S.; Nguyen, Thu A.
2013-01-01
Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing. PMID:23527204
Lu, Xiao; He, Jing; Jin, Shidai
2017-01-01
Multidrug resistance (MDR) is one of the major obstacles in successful chemotherapy. The combination of chemotherapy drugs and multidrug-resistant reversing agents for treating MDR tumor is a good strategy to overcome MDR. In this work, we prepared the simple redox-responsive micelles based on mPEG-SS-C18 as a co-delivery system to load the paclitaxel (PTX) and dasatinib (DAS) for treatment of MCF-7/ADR cells. The co-loaded micelles had a good dispersity and a spherical shape with a uniform size distribution, and they could quickly disassemble and rapidly release drugs under the reduction environment. Compared with MCF-7 cells, the DAS and PTX co-loaded redox-sensitive micelle (SS-PDNPs) showed stronger cytotoxicity and a more improving intracellular drug concentration than other drug formulations in MCF-7/ADR cells. In summary, the results suggested that the simple co-delivery micelles of PTX and DAS possessed significant potential to overcome drug resistance in cancer therapy. PMID:29138561
Aghapour, Fahimeh; Moghadamnia, Ali Akbar; Nicolini, Andrea; Kani, Seydeh Narges Mousavi; Barari, Ladan; Morakabati, Payam; Rezazadeh, Leyla; Kazemi, Sohrab
2018-06-12
Quercetin is a plant polyphenol from the flavonoid group that plays a fundamental role in controlling homeostasis due to its potent antioxidant properties. However, quercetin has extremely low water solubility, which is a major challenge in drug absorption. In this study, we described a simple method for the synthesis of quercetin nanoparticles. The quercetin nanoparticles had an average diameter of 82 nm and prominent yellow emission under UV irradiation. Therefore, we used an in vitro model treated with quercetin and quercetin nanoparticles to investigate the effects of quercetin nanoparticles on MCF-7 breast cancer cell line. MCF-7 cells were cultured with different concentrations (1-100 μM) of quercetin nanoparticles at the 24th, 48th and 72 nd hours, and cell cycle and apoptosis assays were detected by flow cytometry (FCM). In this study, we found that quercetin nanoparticles (1-100 μM) could significantly reduce cell vitality, growth rate and colony formation of MCF-7 cells. Quercetin nanoparticles can inhibit cell growth by blocking the cell cycle and promoting apoptosis in MCF-7 cells more than quercetin. As a result, quercetin nanoparticles may be useful therapy or prevention on breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.
Cytotoxic effect of sanguiin H-6 on MCF-7 and MDA-MB-231 human breast carcinoma cells.
Park, Eun-Ji; Lee, Dahae; Baek, Seon-Eun; Kim, Ki Hyun; Kang, Ki Sung; Jang, Tae Su; Lee, Hye Lim; Song, Ji Hoon; Yoo, Jeong-Eun
2017-09-15
Sanguiin H-6 is a dimer of casuarictin linked by a bond between the gallic acid residue and one of the hexahydroxydiphenic acid units. It is an effective compound extracted from Rubus coreanus. It has an anticancer effect against several human cancer cells; however, its effect on breast cancer cells has not been clearly demonstrated. Thus, we aimed to investigate the anticancer effect and mechanism of action of sanguiin H-6 against two human breast carcinoma cell lines (MCF-7 and MDA-MB-231). We found that sanguiin H-6 significantly reduced cell viability in a concentration-dependent manner. It also increased the rates at which MCF-7 and MDA-MB-231 cells underwent apoptosis. Furthermore, sanguiin H-6 induced the cleavage of caspase-8, caspase-3, and poly(ADP-ribose) polymerase, which resulted in apoptosis. However, cleavage of caspase-9 was only detectable in MCF-7 cells. In addition, sanguiin H-6 increased the ratio of Bax to Bcl-2 in both MCF-7 and MDA-MB-231 cells. These findings suggest that sanguiin H-6 is a potent therapeutic agent against breast cancer cells. In addition, it exerts its anticancer effect in an estrogen-receptor-independent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shen, Jianan; He, Qianjun; Gao, Yu; Shi, Jianlin; Li, Yaping
2011-10-01
Multidrug resistance (MDR) is one of the major obstacles for successful chemotherapy in cancer. One of the effective approaches to overcome MDR is to use nanoparticle-mediated drug delivery to increase drug accumulation in drug resistant cancer cells. In this work, we first report that the performance and mechanism of an inorganic engineered delivery system based on mesoporous silica nanoparticles (MSNs) loading doxorubicin (DMNs) to overcome the MDR of MCF-7/ADR (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The experimental results showed that DMNs could enhance the cellular uptake of doxorubicin (DOX) and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells. The IC50 of DMNs against MCF-7/ADR cells was 8-fold lower than that of free DOX. However, an improved effect of DOX in DMNs against MCF-7 cells (a DOX-sensitive cancer cell line) was not found. The increased cellular uptake and nuclear accumulation of DOX delivered by DMNs in MCF-7/ADR cells was confirmed by confocal laser scanning microscopy, and could result from the down-regulation of P-gp and bypassing the efflux action by MSNs themselves. The cellular uptake mechanism of DMNs indicated that the macropinocytosis was one of the pathways for the uptake of DMNs by MCF-7/ADR cells. The in vivo biodistribution showed that DMNs induced a higher accumulation of DOX in drug resistant tumors than free DOX. These results suggested that MSNs could be an effective delivery system to overcome multidrug resistance.
Inhibition of tamoxifen's therapeutic benefit by tangeretin in mammary cancer.
Depypere, H T; Bracke, M E; Boterberg, T; Mareel, M M; Nuytinck, M; Vennekens, K; Serreyn, R
2000-09-01
Tangeretin, a molecule present in citrus fruits and in certain 'natural' menopausal medications, is an effective tumour growth and invasion inhibitor in vitro of human MCF 7/6 breast cancer cells. However, when added to the drinking water of MCF 7/6 tumour-bearing mice it neutralises the beneficial tumour-suppressing effect of tamoxifen. Tangeretin reduces the number of natural killer cells. This may explain why the beneficial suppressive effect of tangeretin on MCF 7/6 cell proliferation in vitro is completely counteracted in vivo.
Ho, Cheong-Yip; Kim, Chi-Fai; Leung, Kwok-Nam; Fung, Kwok-Pui; Tse, Tak-Fu; Chan, Helen; Lau, Clara Bik-San
2005-06-01
Coriolus versicolor (CV), also called Yunzhi, has been demonstrated to exert anti-tumor effects on various types of cancer cells, but the underlying mechanism has not been fully elucidated. The present study aimed to evaluate the in vitro anti-tumor activity of a standardized aqueous ethanol extract prepared from CV on four breast cancer cell lines using MTT assay, and test whether the mechanism involves apoptosis induction and modulation of p53 and Bcl-2 protein expressions using cell death detection ELISA, p53 and Bcl-2 ELISAs respectively. Our results demonstrated that the CV extract dose-dependently suppressed the proliferation of three breast tumor cell lines, with ascending order of IC50 values: T-47D, MCF-7, MDA-MB-231, while BT-20 cells were not significantly affected. Tumoricidal activity of the CV extract was found to be comparable to a chemotherapeutic anti-cancer drug, mitomycin C. Nucleosome productions in apoptotic MDA-MB-231, MCF-7 and T-47D cells were significantly augmented in a time-dependent manner and paralleled the anti-proliferative activity of CV extract. Expression of p53 protein was significantly upregulated only in T-47D cells treated with the CV extract in a dose- and time-dependent fashion, but not in MCF-7 (except at 400 mug/ml after 16 h) and MDA-MB-231 cells. The CV extract significantly induced a dose-dependent downregulation of Bcl-2 protein expression in MCF-7 and T-47D cells, but not in MDA-MB-231 cells. These results suggested that apoptosis induction, differentially dependent of p53 and Bcl-2 expressions, might be the possible mechanism of CV extract-mediated cytotoxicity in human breast cancer cells in vitro.
Screening circular RNA related to chemotherapeutic resistance in breast cancer.
Gao, Danfeng; Zhang, Xiufen; Liu, Beibei; Meng, Dong; Fang, Kai; Guo, Zijian; Li, Lihua
2017-09-01
We aimed to identify circular RNAs (circRNAs) associated with breast cancer chemoresistance. CircRNA microarray expression profiles were obtained from Adriamycin (ADM) resistant MCF-7 breast cancer cells (MCF-7/ADM) and parental MCF-7 cells and were validated using quantitative real-time reverse transcription PCR. The expression data were analyzed bioinformatically. We detected 3093 circRNAs and identified 18 circRNAs that are differentially expressed between MCF-7/ADM and MCF-7 cells; after validating by quantitative real-time reverse transcription PCR, we predicted the possible miRNAs and potential target genes of the seven upregulated circRNAs using TargetScan and miRanda. The bioinformatics analysis revealed several target genes related to cancer-related signaling pathways. Additionally, we discovered a regulatory role of the circ_0006528-miR-7-5p-Raf1 axis in ADM-resistant breast cancer. These results revealed that circRNAs may play a role in breast cancer chemoresistance and that hsa_circ_0006528 might be a promising candidate for further functional analysis.
Piezo1 forms mechanosensitive ion channels in the human MCF-7 breast cancer cell line
NASA Astrophysics Data System (ADS)
Li, Chouyang; Rezania, Simin; Kammerer, Sarah; Sokolowski, Armin; Devaney, Trevor; Gorischek, Astrid; Jahn, Stephan; Hackl, Hubert; Groschner, Klaus; Windpassinger, Christian; Malle, Ernst; Bauernhofer, Thomas; Schreibmayer, Wolfgang
2015-02-01
Mechanical interaction between cells - specifically distortion of tensional homeostasis-emerged as an important aspect of breast cancer genesis and progression. We investigated the biophysical characteristics of mechanosensitive ion channels (MSCs) in the malignant MCF-7 breast cancer cell line. MSCs turned out to be the most abundant ion channel species and could be activated by negative pressure at the outer side of the cell membrane in a saturable manner. Assessing single channel conductance (GΛ) for different monovalent cations revealed an increase in the succession: Li+ < Na+ < K+ ~Rb+ ~ Cs+. Divalent cations permeated also with the order: Ca2+ < Ba2+. Comparison of biophysical properties enabled us to identify MSCs in MCF-7 as ion channels formed by the Piezo1 protein. Using patch clamp technique no functional MSCs were observed in the benign MCF-10A mammary epithelial cell line. Blocking of MSCs by GsMTx-4 resulted in decreased motility of MCF-7, but not of MCF-10A cells, underscoring a possible role of Piezo1 in invasion and metastatic propagation. The role of Piezo1 in biology and progression of breast cancer is further substantiated by markedly reduced overall survival in patients with increased Piezo1 mRNA levels in the primary tumor.
Wu, Ping; Gao, Yang; Zhang, Hui; Cai, Chenxin
2012-09-18
The aptamer (S2.2)-guided Ag-Au nanostructures (aptamer-Ag-Au) have been synthesized by photoreduction and validated by ultraviolet-visible light (UV-vis) spectra and transmission electron microscopy (TEM) images. Differential interference contrast (DIC), fluorescence, and TEM images, and surface-enhanced Raman scattering (SERS) spectra indicated that the aptamer-Ag-Au nanostructures can target the surface of human breast cancer cells (MCF-7) with high affinity and specificity. This targeting is completed via the specific interaction between S2.2 aptamer (a 25-base oligonucleotide) and MUC1 mucin (a large transmembrane glycoprotein, whose expression increased at least 10-fold at MCF-7 cells in primary and metastatic breast cancers). However, the nanostructures cannot target HepG2 (human liver cancer cells) or MCF-10A cells (human normal breast epithelial cells), because these cells are MUC1-negative expressed. Moreover, the synthesized nanostructures exhibited a high SERS activity. Based on these results, a new assay for specifically detecting MCF-7 cells has been proposed. This assay can also discriminate MCF-7 cells from MCF-10A cells and different cancer cell lines, such as HepG2 cells. In addition, the aptamer-Ag-Au nanostructures have a high capability of adsorpting near-infrared (NIR) irradiation and are able to perform photothermal therapy of MCF-7 cells at a very low irradiation power density (0.25 W/cm(2)) without destroying the healthy cells and the surrounding normal tissue. Therefore, the proposed assay is significant for the diagnosis of tumors in their nascent stage. The synthesized nanostructures could offer a protocol to specifically recognize and sensitively detect the cancer cells, and would have great potential for application in the photothermal therapy of the cancers.
NASA Astrophysics Data System (ADS)
Herlina, T.; Gaffar, S.; Widowati, W.
2018-05-01
Cancer is the uncontrolled growth of abnormal cells and continues to divide rapidly in the body. Current anticancer treatment usually causes many side effects. Natural products are then explored to be new alternatives for cancer treatment. Flavonoids have been known to possess medicinal properties, including anticancer. This study was performed to observe the cytotoxic activity of isoflavanone compound, erypogein D from Erythrina poeppigiana, toward cervical cancer (HeLa), breast cancer (MCF-7) and ovarian cancer (SKOV-3) cells. The cytotoxic activity of erypogein D was tested using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3- carboxyme-thoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. The percentage of cell mortality was calculated and the IC50 was analyzed using probit analysis. The result showed that cytotoxic activity of the erypogein D against HeLa, SKOV-3, and MCF-7 cells had an IC50 value 225, 70.74, and 30.12 μM, respectively. Based on IC50 value can be concluded that erypogein D is the most cytotoxic to breast cancer MCF-7 cell. However the cytotoxic activity of erypogein D toward MCF7 is moderate.
Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells.
Ignatov, Atanas; Ignatov, Tanja; Roessner, Albert; Costa, Serban Dan; Kalinski, Thomas
2010-08-01
Tamoxifen is the most frequently used anti-hormonal drug for treatment of women with hormone-dependent breast cancer. The aim of this study is to investigate the mechanism of tamoxifen resistance and the impact of the new estrogen G-protein coupled receptor (GPR30). MCF-7 cells were continuously exposed to tamoxifen for 6 months to induce resistance to the inhibitory effect of tamoxifen. These tamoxifen-resistant cells (TAM-R) exhibited enhanced sensitivity to 17-ss-estradiol and GPR30 agonist, G1, when compared to the parental cells. In TAM-R cells, tamoxifen was able to stimulate the cell growth and MAPK phosphorylation. These effects were abolished by EGFR inhibitor AG1478, GPR30 anti-sense oligonucleotide, and the selective c-Src inhibitor PP2. Only EGFR basal expression was slightly elevated in the TAM-R cells, whereas GPR30 expression and the basal phosphorylation of Akt and MAPK remained unchanged when compared to the parental cells. Interestingly, estrogen treatment significantly increased GPR30 translocation to the cell surface, which was stronger in TAM-R cells. Continuous treatment of MCF-7 cells with GPR30 agonist G1 mimics the long-term treatment with tamoxifen and increases drastically its agonistic activity. This data suggests the important role of GPR30/EGFR receptor signaling in the development of tamoxifen resistance. The inhibition of this pathway is a valid option to improve anti-hormone response in breast cancer.
Zheng, Xiaowei; Wang, Changwei; Xing, Yuanming; Chen, Siying; Meng, Ti; You, Haisheng; Ojima, Iwao; Dong, Yalin
2017-01-01
Breast cancer is the leading cause of cancer death among women. Paclitaxel, a mitotic inhibitor, is highly effective in the treatment of breast cancer. However, development of resistance to paclitaxel limits its clinical use. Identifying new compounds and new strategies that are effective against breast cancer, in particular drug-resistant cancer, is of great importance. The aim of the present study was to explore the potential of a next-generation taxoid, SB-T-121205, in modulating the proliferation, migration and invasion of paclitaxel-resistant human breast cancer cells (MCF-7/PTX) and further evaluate the underlying molecular mechanisms. The results of MTT assay showed that SB-T-121205 has much higher potency to human breast cancer cells (MCF-7/S, MCF-7/PTX and MDA-MB-453 cells) than paclitaxel, while that the non-tumorigenic human bronchial epithelial cells (BEAS-2B) were slightly less sensitive to SB-T-121205 than paclitaxel. Flow cytometry and western blot methods revealed that SB-T-121205 induced cell cycle arrest at the G2/M phase and apoptosis in MCF-7/PTX cells through accelerating mitochondrial apoptotic pathway, resulting in reduction of Bcl-2/Bax ratio, as well as elevation of caspase-3, caspase-9, and poly(ADP-ribose) polymerase (PARP) levels. Moreover, SB-T-121205 changed epithelial-mesenchymal transition (EMT) property, and suppressed migration and invasion abilities of MCF-7/PTX cells. Additionally, SB-T-121205 exerted antitumor activity by inhibiting the transgelin 2 and PI3K/Akt pathway. These findings indicate that SB-T-121205 is a potent antitumor agent that promotes apoptosis and also recedes migration/invasion abilities of MCF-7/PTX cells by restraining the activity of transgelin 2 and PI3K/Akt, as well as mitochondrial apoptotic pathway. Such results suggest a potential clinical value of SB-T-121205 in breast cancer treatment. PMID:28197640
Identification of targets of miRNA-221 and miRNA-222 in fulvestrant-resistant breast cancer
Liu, Pengfei; Sun, Manna; Jiang, Wenhua; Zhao, Jinkun; Liang, Chunyong; Zhang, Huilai
2016-01-01
The present study aimed to identify the differentially expressed genes (DEGs) regulated by microRNA (miRNA)-221 and miRNA-222 that are associated with the resistance of breast cancer to fulvestrant. The GSE19777 transcription profile was downloaded from the Gene Expression Omnibus database, and includes data from three samples of antisense miRNA-221-transfected fulvestrant-resistant MCF7-FR breast cancer cells, three samples of antisense miRNA-222-transfected fulvestrant-resistant MCF7-FR cells and three samples of control inhibitor (green fluorescent protein)-treated fulvestrant-resistant MCF7-FR cells. The linear models for microarray data package in R/Bioconductor was employed to screen for DEGs in the miRNA-transfected cells, and the pheatmap package in R was used to perform two-way clustering. Pathway enrichment was conducted using the Gene Set Enrichment Analysis tool. Furthermore, a miRNA-messenger (m) RNA regulatory network depicting interactions between miRNA-targeted upregulated DEGs was constructed and visualized using Cytoscape. In total, 492 and 404 DEGs were identified for the antisense miRNA-221-transfected MCF7-FR cells and the antisense miRNA-222-transfected MCF7-FR cells, respectively. Genes of the pentose phosphate pathway (PPP) were significantly enriched in the antisense miRNA-221-transfected MCF7-FR cells. In addition, components of the Wnt signaling pathway and cell adhesion molecules (CAMs) were significantly enriched in the antisense miRNA-222-transfected MCF7-FR cells. In the miRNA-mRNA regulatory network, miRNA-222 was demonstrated to target protocadherin 10 (PCDH10). The results of the present study suggested that the PPP and Wnt signaling pathways, as well as CAMs and PCDH10, may be associated with the resistance of breast cancer to fulvestrant. PMID:27895744
Studies on associations of glycolytic and glutaminolytic enzymes in MCF-7 cells: role of P36.
Mazurek, S; Hugo, F; Failing, K; Eigenbrodt, E
1996-05-01
Isoelectric focusing of MCF-7 cell extracts revealed an association of the glycolytic enzymes glyceraldehyde 3-phosphate-dehydrogenase, phosphoglycerate kinase, enolase, and pyruvate kinase. This complex between the glycolytic enzymes is sensitive to RNase. p36 could not be detected within this association of glycolytic enzymes; however an association of p36 with a specific form of malate dehydrogenase was found. In MCF-7 cells three forms of malate dehydrogenase can be detected by isoelectric focusing: the mitochondrial form with an isoelectric point between 8.9 and 9.5, the cytosolic form with pl 5.0, and a p36-associated form with pl 7.8. The mitochondrial form comprises the mature mitochondrial isoenzyme (pl 9.5) and its precursor form (pl 8.9). Refocusing of the pl 7.8 form of malate dehydrogenase also gave rise to the mitochondrial isoenzyme. Thus, the pl 7.8 form of malate dehydrogenase is actually the mitochondrial isoenzyme retained in the cytosol by the association with p36. Addition of fructose 1,6-bisphosphate to the initial focusing column induced a quantitative shift of the pl 7.8 form of malate dehydrogenase to the mitochondrial forms (pl 8.9 and 9.5). In MCF-7 cells p36 is not phosphorylated in tyrosine. Kinetic measurements revealed that the pl 7.8 form of malate dehydrogenase has the lowest affinity for NADH. Compared to both mitochondrial forms the cytosolic isoenzyme has a high capacity when measured in the NAD --> NADH direction (malate --> oxaloacetate direction). The association of p36 with the mitochondrial isoenzyme may favor the flow of hydrogen from the cytosol into the mitochondria. Inhibition of cell proliferation by AMP which leads to an inhibition of glycolysis has no effect on complex formation by glycolytic and glutaminolytic enzymes in MCF-7 cells. AMP treatment leads to an activation of malate dehydrogenase, which correlates with the increase of pyruvate and the decrease of lactate levels, but has no effect on the distribution of the various malate dehydrogenase forms.
Yang, Seoyeon; Lee, Ji-Yeon; Hur, Ho; Oh, Ji Hoon; Kim, Myoung Hee
2018-05-28
Tamoxifen (TAM) is commonly used to treat estrogen receptor (ER)-positive breast cancer. Despite the remarkable benefits, resistance to TAM presents a serious therapeutic challenge. Since several HOX transcription factors have been proposed as strong candidates in the development of resistance to TAM therapy in breast cancer, we generated an in vitro model of acquired TAM resistance using ER-positive MCF7 breast cancer cells (MCF7-TAMR), and analyzed the expression pattern and epigenetic states of HOX genes. HOXB cluster genes were uniquely up-regulated in MCF7-TAMR cells. Survival analysis of in slico data showed the correlation of high expression of HOXB genes with poor response to TAM in ER-positive breast cancer patients treated with TAM. Gain- and loss-of-function experiments showed that the overexpression of multi HOXB genes in MCF7 renders cancer cells more resistant to TAM, whereas the knockdown restores TAM sensitivity. Furthermore, activation of HOXB genes in MCF7-TAMR was associated with histone modifications, particularly the gain of H3K9ac. These findings imply that the activation of HOXB genes mediate the development of TAM resistance, and represent a target for development of new strategies to prevent or reverse TAM resistance.
Surichan, Somchaiya; Arroo, Randolph R; Tsatsakis, Aristidis M; Androutsopoulos, Vasilis P
2018-04-04
Tangeretin is a polymethoxylated flavone with multifaceted anticancer activity. In the present study, the metabolism of tangeretin was evaluated in the CYP1 expressing human breast cancer cell lines MCF7 and MDA-MB-468 and in the normal breast cell line MCF10A. Tangeretin was converted to 4' OH tangeretin by recombinant CYP1 enzymes and by CYP1 enzymes expressed in MCF7 and MDA-MB-468 cells. This metabolite was absent in MCF10A cells that did not express CYP1 enzymes. Tangeretin exhibited submicromolar IC50 (0.25 ± 0.15 μM) in MDA-MB-468 cells, whereas it was less active in MCF7 cells (39.3 ± 1.5 μM) and completely inactive in MCF10A cells (>100 μM). In MDA-MB-468 cells that were coincubated with the CYP1 inhibitor acacetin, an approximately 70-fold increase was noted in the IC50 (18 ± 1.6 μM) of tangeretin. In the presence of the CYP1 inhibitor acacetin, the conversion of tangeretin to 4' OH tangeretin was significantly reduced in MDA-MB-468 cells (2.55 ± 0.19 μM vs. 6.33 ± 0.12 μM). The mechanism of antiproliferative action involved cell cycle arrest at the G1 phase for MCF7 and MDA-MB-468 cells. Tangeretin was further shown to induce CYP1 enzyme activity and CYP1A1/CYP1B1 protein expression in MCF7 and MDA-MB-468 cells. These results suggest that tangeretin inhibits the proliferation of breast cancer cells via CYP1A1/CYP1B1-mediated metabolism to the product 4' hydroxy tangeretin. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ibáñez, Elena; Plano, Daniel; Font, María; Calvo, Alfonso; Prior, Celia; Palop, Juan Antonio; Sanmartín, Carmen
2011-01-01
The study described here concerns the synthesis of a series of thirty new symmetrically substituted imidothiocarbamate and imidoselenocarbamate derivatives and their evaluation for antitumoral activity in vitro against a panel of five human tumor cell lines: breast adenocarcinoma (MCF-7), colon carcinoma (HT-29), lymphocytic leukemia (K-562), hepatocarcinoma (Hep-G2), prostate cancer (PC-3) and one non-malignant mammary gland-derived cell line (MCF-10A). The GI(50) values for eighteen of the compounds were below 10 μM in at least one cell line. Two cancer cells (MCF-7 and HT-29) proved to be the most sensitive to five compounds (1b, 2b, 3b, 4b and 5b), with growth inhibition in the nanomolar range, and compounds 1b, 3b, 7b, 8b and 9b gave values of less than 1 μM. In addition, all of the aforementioned compounds exhibited lower GI(50) values than some of the standard chemotherapeutic drugs used as references. The results also reveal that the nature of the aliphatic chain (methyl is better than benzyl) at the selenium position and the nature of the heteroatom (Se better than S) have a marked influence on the antiproliferative activity of the compounds. These findings reinforce our earlier hypothesis concerning the determinant role of the selenomethyl group as a scaffold for the biological activity of this type of compound. Considering both the cytotoxic parameters and the selectivity index (which was compared in MCF-7 and MCF-10A cells), compounds 2b and 8b (with a selenomethyl moiety) displayed the best profiles, with GI(50) values ranging from 0.34 nM to 6.07 μM in the five cell lines tested. Therefore, compounds 2b and 8b were evaluated by flow cytometric analysis for their effects on cell cycle distribution and apoptosis in MCF-7 cells. 2b was the most active, with an apoptogenic effect similar to camptothecin, which was used as a positive control. Both of them provoked cell cycle arrest leading to the accumulation of cells in either G(2)/M and S phase. These two compounds can therefore be considered as the most promising candidates for the development of novel generations of antitumor agents. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Antitumor activity of colloidal silver on MCF-7 human breast cancer cells.
Franco-Molina, Moisés A; Mendoza-Gamboa, Edgar; Sierra-Rivera, Crystel A; Gómez-Flores, Ricardo A; Zapata-Benavides, Pablo; Castillo-Tello, Paloma; Alcocer-González, Juan Manuel; Miranda-Hernández, Diana F; Tamez-Guerra, Reyes S; Rodríguez-Padilla, Cristina
2010-11-16
Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL) for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL) and LD100 (14 ng/mL) (*P < 0.05), significantly decreased LDH (*P < 0.05) and significantly increased SOD (*P < 0.05) activities. However, the NO production, and Gpx, CAT, and Total antioxidant activities were not affected in MCF-7 breast cancer cells. PBMC were not altered by colloidal silver. The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonier, Brigitte; Arseneault, Madeleine; Institut National de la Recherche Scientifique-Institut Armand-Frappier, Montreal, Que.
2006-05-19
Serotonin (5-hydroxytryptamine, 5-HT) has been described as a mitogen in a variety of cell types and carcinomas. It exerts its mitogenic effect by interacting with a wide range of 5-HT receptor types. Certain studies suggest that some selective serotonin re-uptake inhibitors promote breast cancer in animals and humans. This study attempts to clarify the role of serotonin in promoting the growth of neoplastic mammary cells. Expression of the 5-HT{sub 2A} serotoninergic receptor subtype in MCF-7 cells was determined by RT-PCR, Western blotting, and immunofluorescence analysis. The mitogenic effect of 5-HT on MCF-7 cells was determined by means of the MTTmore » proliferation assay. We have demonstrated that the 5-HT{sub 2A} receptor subtype is fully expressed in the MCF-7 human breast cancer cell line, in terms of encoding mRNA and receptor protein. Automated sequencing has confirmed that the 5-HT{sub 2A} receptor present in this cell line is identical to the 5-HT{sub 2A} receptor found in human platelets and in human cerebral cortex. Furthermore, this receptor was found by immunofluorescence to be on the plasma membrane. MTT proliferation assays revealed that 5-HT and DOI, a selective 5-HT{sub 2A} receptor subtype agonist, stimulated MCF-7 cell. These results indicate that 5-HT plays a mitogenic role in neoplastic mammary cells. Our data also indicate that 5-HT exerts this positive growth effect on MCF-7 cells through, in part, the 5-HT{sub 2A} receptor subtype, which is fully expressed in this cell line.« less
Yang, Chuan-bin; Pei, Wei-jing; Zhao, Jia; Cheng, Yuan-yuan; Zheng, Xiao-hui; Rong, Jian-hui
2014-01-01
Aim: To investigate the effects of bornyl caffeate discovered in several species of plant on human breast cancer cells in vitro and the underlying mechanisms. Methods: Human breast cancer cell line MCF-7 and other tumor cell lines (T47D, HepG2, HeLa, and PC12) were tested. Cell viability was determined using MTT assay, and apoptosis was defined by monitoring the morphology of the nuclei and staining with Annexin V-FITC. Mitochondrial membrane potential (MMP) was measured using JC-1 under fluorescence microscopy. Intracellular reactive oxygen species (ROS) were assessed by flow cytometry. The expression of apoptosis-associated proteins was determined by Western blotting analysis. Results: Bornyl caffeate (10, 25, and 50 μmol/L) suppressed the viability of MCF-7 cells in dose- and time-dependent manners, but neither caffeic acid nor borneol showed cytotoxicity at a concentration of 50 μmol/L. Bornyl caffeate also exerted cytotoxicity to HepG2, Hela, T47D, and PC12 cells. Bornyl caffeate dose-dependently induced apoptosis of MCF-7 cells, increased the expression of Bax and decreased the expression of Bcl-xl, resulting in the disruption of MMP and subsequent activation of caspase-3. Moreover, bornyl caffeate triggered the formation of ROS and activated p38 and c-Jun JNK. In MCF-7 cells, the cytotoxicity of bornyl caffeate was significantly attenuated by SB203580 (p38 inhibitor), SP600125 (JNK inhibitor), z-VAD (pan-caspase inhibitor) or the thiol antioxidant L-NAC. Conclusion: Bornyl caffeate exerts non-selective cytotoxicity against cancer cells of different origin in vitro. The compound induces apoptosis in human breast cancer MCF-7 cells via the ROS- and JNK-mediated pathways. PMID:24335836
In Vitro and In Vivo Toxicity Profiling of Ammonium-Based Deep Eutectic Solvents
Hayyan, Maan; Looi, Chung Yeng; Hayyan, Adeeb; Wong, Won Fen; Hashim, Mohd Ali
2015-01-01
The cytotoxic potential of ammonium-based deep eutectic solvents (DESs) with four hydrogen bond donors, namely glycerine (Gl), ethylene glycol (EG), triethylene glycol (TEG) and urea (U) were investigated. The toxicity of DESs was examined using In Vitro cell lines and In Vivo animal model. IC50 and selectivity index were determined for the DESs, their individual components and their combinations as aqueous solutions for comparison purposes. The cytotoxicity effect of DESs varied depending on cell lines. The IC50 for the GlDES, EGDES, UDES and TEGDES followed the sequence of TEGDES< GlDES< EGDES< UDES for OKF6, MCF-7, A375, HT29 and H413, respectively. GlDES was selective against MCF-7 and A375, EGDES was selective against MCF-7, PC3, HepG2 and HT29, UDES was selective against MCF-7, PC3, HepG2 and HT29, and TEGDES was selective against MCF-7 and A375. However, acute toxicity studies using ICR mice showed that these DESs were relatively toxic in comparison to their individual components. DES did not cause DNA damage, but it could enhance ROS production and induce apoptosis in treated cancer cells as evidenced by marked LDH release. Furthermore, the examined DESs showed less cytotoxicity compared with ionic liquids. To the best of our knowledge, this is the first time that combined In Vitro and In Vivo toxicity profiles of DESs were being demonstrated, raising the toxicity issue of these neoteric mixtures and their potential applicability to be used for therapeutic purposes. PMID:25679975
Sharma, Chhavi; Vas, Andrea J.; Goala, Payal; Gheewala, Taher M.; Rizvi, Tahir A.
2014-01-01
The present study was designed to gain insight into the antiproliferative activity of ethanolic neem leaves extract (ENLE) alone or in combination with cisplatin by cell viability assay on human breast (MCF-7) and cervical (HeLa) cancer cells. Nuclear morphological examination and cell cycle analysis were performed to determine the mode of cell death. Further, to identify its molecular targets, the expression of genes involved in apoptosis, cell cycle progression, and drug metabolism was analyzed by RT-PCR. Treatment of MCF-7, HeLa, and normal cells with ENLE differentially suppressed the growth of cancer cells in a dose- and time-dependent manner through apoptosis. Additionally, lower dose combinations of ENLE with cisplatin resulted in synergistic growth inhibition of these cells compared to the individual drugs (combination index <1). ENLE significantly modulated the expression of bax, cyclin D1, and cytochrome P450 monooxygenases (CYP 1A1 and CYP 1A2) in a time-dependent manner in these cells. Conclusively, these results emphasize the chemopreventive ability of neem alone or in combination with chemotherapeutic treatment to reduce the cytotoxic effects on normal cells, while potentiating their efficacy at lower doses. Thus, neem may be a prospective therapeutic agent to combat gynecological cancers. PMID:24624140
Rejinold, N Sanoj; Baby, Thejus; Chennazhi, K P; Jayakumar, R
2014-02-01
5-FU/Megestrol acetate loaded fibrinogen-graft-PNIPAAm Nanogels (5-FU/Meg-fib-graft-PNIPAAm NGs) were prepared for thermo responsive drug delivery toward α5β1-integrins expressing breast cancer cells in vitro (MCF-7 cells). The 60-100 nm sized fib-graft-PNIPAAm nanogels (LCST=35 °C) were prepared by CaCl2 cross-linker. 5-FU/Meg-fib-graft-PNIPAAm NGs showed particle size of 165-195 nm size. The drug loading efficiency with 5-FU was 60% and 70% for Meg. "Drug release was greater above the lower critical solution temperature (LCST). Above LCST, drug release system triggers apopotosis and enhance toxicity to MCF-7 cells when compared to the equivalent dose of the free drug. This effect was due to the greater uptake of the drug by MCF-7 cells". 5-FU/Meg-fib-graft-PNIPAAm NGs is portrayed here as a new combinatorial thermo-responsive drug delivery agent for breast cancer therapy. Copyright © 2013 Elsevier B.V. All rights reserved.
Li, Zhen; Chen, Qixian; Qi, Yan; Liu, Zhihao; Hao, Tangna; Sun, Xiaoxin; Qiao, Mingxi; Ma, Xiaodong; Xu, Ting; Zhao, Xiuli; Yang, Chunrong; Chen, Dawei
2018-04-11
A multifunctional nanoparticulate system composed of methoxy poly(ethylene glycol)-poly(l-histidine)-d-α-vitamin E succinate (MPEG-PLH-VES) copolymers for encapsulation of doxorubicin (DOX) was elaborated with the aim of circumventing the multidrug resistance (MDR) in breast cancer treatment. The MPEG-PLH-VES nanoparticles (NPs) were subsequently functionalized with biotin motif for targeted drug delivery. The MPEG-PLH-VES copolymer exerts no obvious effect on the P-gp expression level of MCF-7/ADR but exhibited a significant influence on the loss of mitochondrial membrane potential, the reduction of intracellular ATP level, and the inhibition of P-gp ATPase activity of MCF-7/ADR cells. The constructed MPEG-PLH-VES NPs exhibited an acidic pH-induced increase on particle size in aqueous solution. The DOX-encapsulated MPEG-PLH-VES/biotin-PEG-VES (MPEG-PLH-VES/B) NPs were characterized to possess high drug encapsulation efficiency of approximate 90%, an average particle size of approximately 130 nm, and a pH-responsive drug release profile in acidic milieu. Confocal laser scanning microscopy (CLSM) investigations revealed that the DOX-loaded NPs resulted in an effective delivery of DOX into MCF-/ADR cells and a notable carrier-facilitated escape from endolysosomal entrapment. Pertaining to the in vitro cytotoxicity evaluation, the DOX-loaded MPEG-PLH-VES/B NPs resulted in more pronounced cytotoxicity to MCF-/ADR cells compared with DOX-loaded MPEG-PLH-VES NPs and free DOX solution. In vivo imaging study in MCF-7/ADR tumor-engrafted mice exhibited that the MPEG-PLH-VES/B NPs accumulated at the tumor site more effectively than MPEG-PLH-VES NPs due to the biotin-mediated active targeting effect. In accordance with the in vitro results, DOX-loaded MPEG-PLH-VES/B NPs showed the strongest inhibitory effect against the MCF-7/ADR xenografted tumors with negligible systemic toxicity, as evidenced by the histological analysis and change of body weight. The multifunctional MPEG-PLH-VES/B nanoparticulate system has been demonstrated to provide a promising strategy for efficient delivery of DOX into MCF-7/ADR cancerous cells and reversing MDR.
Kim, Jinho; Cho, Hyungseok; Han, Song-I; Han, Ki-Ho
2016-05-03
This paper introduces a single-cell isolation technology for circulating tumor cells (CTCs) using a microfluidic device (the "SIM-Chip"). The SIM-Chip comprises a lateral magnetophoretic microseparator and a microdispenser as a two-step cascade platform. First, CTCs were enriched from whole blood by the lateral magnetophoretic microseparator based on immunomagnetic nanobeads. Next, the enriched CTCs were electrically identified by single-cell impedance cytometer and isolated as single cells using the microshooter. Using 200 μL of whole blood spiked with 50 MCF7 breast cancer cells, the analysis demonstrated that the single-cell isolation efficiency of the SIM-Chip was 82.4%, and the purity of the isolated MCF7 cells with respect to WBCs was 92.45%. The data also showed that the WBC depletion rate of the SIM-Chip was 2.5 × 10(5) (5.4-log). The recovery rates were around 99.78% for spiked MCF7 cells ranging in number from 10 to 90. The isolated single MCF7 cells were intact and could be used for subsequent downstream genetic assays, such as RT-PCR. Single-cell culture evaluation of the proliferation of MCF7 cells isolated by the SIM-Chip showed that 84.1% of cells at least doubled in 5 days. Consequently, the SIM-Chip could be used for single-cell isolation of rare target cells from whole blood with high purity and recovery without cell damage.
Schröder, Lennard; Richter, Dagmar Ulrike; Piechulla, Birgit; Chrobak, Mareike; Kuhn, Christina; Schulze, Sandra; Abarzua, Sybille; Jeschke, Udo; Weissenbacher, Tobias
2016-01-01
Herein we investigated the effect of elderflower extracts (EFE) and of enterolactone/enterodiol on hormone production and proliferation of trophoblast tumor cell lines JEG-3 and BeWo, as well as MCF7 breast cancer cells. The EFE was analyzed by mass spectrometry. Cells were incubated with various concentrations of EFE. Untreated cells served as controls. Supernatants were tested for estradiol production with an ELISA method. Furthermore, the effect of the EFE on ERα/ERβ/PR expression was assessed by immunocytochemistry. EFE contains a substantial amount of lignans. Estradiol production was inhibited in all cells in a concentration-dependent manner. EFE upregulated ERα in JEG-3 cell lines. In MCF7 cells, a significant ERα downregulation and PR upregulation were observed. The control substances enterolactone and enterodiol in contrast inhibited the expression of both ER and of PR in MCF7 cells. In addition, the production of estradiol was upregulated in BeWo and MCF7 cells in a concentration dependent manner. The downregulating effect of EFE on ERα expression and the upregulation of the PR expression in MFC-7 cells are promising results. Therefore, additional unknown substances might be responsible for ERα downregulation and PR upregulation. These findings suggest potential use of EFE in breast cancer prevention and/or treatment and warrant further investigation. PMID:27740591
Wang, Hejing; Qian, Junmin; Zhang, Yaping; Xu, Weijun; Xiao, Juxiang; Suo, Aili
2017-01-01
Breast cancer negatively affects women's health worldwide. The tumour microenvironment plays a critical role in tumour initiation, proliferation, and metastasis. Cancer cells are traditionally grown in two-dimensional (2D) cultures as monolayers on a flat solid surface lacking cell-cell and cell-matrix interactions. These experimental conditions deviate from the clinical situation. Improved experimental systems that can mimic the in vivo situation are required to discover new therapies, particularly for anti-angiogenic agents that mainly target intercellular factors and play an essential role in treating some cancers. Chitosan can be modified to construct three-dimensional (3D) tumour models. Here, we report an in vitro 3D tumour model using a hydroxyethyl chitosan/glycidyl methacrylate (HECS-GMA) hydrogel produced by a series of chitosan modifications. Parameters relating to cell morphology, viability, proliferation, and migration were analysed using breast cancer MCF-7 cells. In a xenograft model, secretion of angiogenesis-related growth factors and the anti-angiogenic efficacy of Endostar and Bevacizumab in cells grown in HECS-GMA hydrogels were assessed by immunohistochemistry. Hydroxyethyl chitosan/glycidyl methacrylate hydrogels had a highly porous microstructure, mechanical properties, swelling ratio, and morphology consistent with a 3D tumour model. Compared with a 2D monolayer culture, breast cancer MCF-7 cells residing in the HECS-GMA hydrogels grew as tumour-like clusters in a 3D formation. In a xenograft model, MCF-7 cells cultured in the HECS-GMA hydrogels had increased secretion of angiogenesis-related growth factors. Recombinant human endostatin (Endostar), but not Bevacizumab (Avastin), was an effective anti-angiogenic agent in HECS-GMA hydrogels. The HECS-GMA hydrogel provided a 3D tumour model that mimicked the in vivo cancer microenvironment and supported the growth of MCF7 cells better than traditional tissue culture plates. The HECS-GMA hydrogel may offer an improved platform to minimize the gap between traditional tissue culture plates and clinical applicability. In addition, the anti-angiogenic efficacy of drugs such as Endostar and Bevacizumab can be more comprehensively studied and assessed in HECS-GMA hydrogels.
Sousa, Ana Carolina Prado; Oliveira, Carlo José Freire; Szabó, Matias Pablo Juan; Silva, Marcelo José Barbosa
2018-06-15
Cancer is one of the most troubling diseases and is becoming increasingly common. Breast cancer has a high cure rate when diagnosed early, but when diagnosed late, treatment is frequently painful, devastating and unsuccessful. The search for new treatments that are more effective and less harmful has led to several substances and biomolecules from plants and animals with potential anti-tumor activity. Within this context, ticks have emerged as an excellent source of new molecules with a wide array of therapeutic properties. Various molecules in tick saliva have immunomodulatory, anticoagulant, anti-inflammatory and anti-tumor effects across different tumor cell lines. Our study evaluates the effect of saliva from three widespread and important tick species in Brazil (Amblyomma sculptum, Amblyomma parvum and Rhipicephalus sanguineus) on MCF-7, MDA-MB-231 breast cancer cell lines and on the non-neoplastic MCF-10A cell line. We found that tick saliva from all three tick species showed cytotoxicity to tumor cells (MCF-7, MDA-MB-231) but not to the non-tumor cells (MCF-10A). Morphological changes on the surface of MCF-7 and MDA-MB-231 tumor cells did not occur on the MCF-10A cells. We also demonstrated that tumor cells die by apoptosis induced by caspase-3 and caspase 7 activity, suggesting that intrinsic pathway apoptosis may be triggered by tick saliva. These changes were not observed in MCF10A cells, which remained broadly unchanged even after exposure to diverse types of saliva. These results suggest that tick saliva from these tick species is a source of molecules, or biomolecules, useful for the potential source for the development of new breast cancer drugs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhou, Siying; Li, Jian; Xu, Hanzi; Zhang, Sijie; Chen, Xiu; Chen, Wei; Yang, Sujin; Zhong, Shanliang; Zhao, Jianhua; Tang, Jinhai
2017-07-30
Emerging evidence suggests that curcumin can overcome drug resistance to classical chemotherapies, but poor bioavailability and low absorption have limited its clinical use and the mechanisms remain unclear. Also, Adriamycin (Adr) is one of the most active cytotoxic agents in breast cancer; however, the high resistant rate of Adr leads to a poor prognosis. We utilized encapsulation in liposomes as a strategy to improve the bioavailability of curcumin and demonstrated that liposomal curcumin altered chemosensitivity of Adr-resistant MCF-7 human breast cancer (MCF-7/Adr) by MTT assay. The miRNA and mRNA expression profiles of MCF-7/S, MCF-7/Adr and curcumin-treated MCF-7/Adr cells were analyzed by microarray and further confirmed by real-time PCR. We focused on differentially expressed miR-29b-1-5p to explore the involvement of miR-29b-1-5p in the resistance of Adr. Candidate genes of dysregulated miRNAs were identified by prediction algorithms based on gene expression profiles. Networks of KEGG pathways were organized by the selected dysregulated miRNAs. Moreover, protein-protein interaction (PPI) was utilized to map protein interaction networks of curcumin regulated proteins. We first demonstrated liposomal curcumin could rescue part of Adriamycin resistance in breast cancer and further identified 67 differentially expressed microRNAs among MCF-7/S, MCF-7/Adr and curcumin-treated MCF-7/Adr. The results showed that lower expressed miR-29b-1-5p decreased the IC50 of MCF-7/Adr cells and higher expressed miR-29b-1-5p, weaken the effects of liposomal curcumin to Adr-resistance. Besides, we found that 20 target genes (mRNAs) of each dysregulated miRNA were not only predicted by prediction algorithms, but also differentially expressed in the microarray. The results showed that MAPK, mTOR, PI3K-Akt, AMPK, TNF, Ras signaling pathways and several target genes such as PPARG, RRM2, SRSF1and EPAS1, may associate with drug resistance of breast cancer cells to Adr. We determined that an altered miRNA expression pattern is involved in acquiring resistance to Adr, and that liposomal curcumin could change the resistance to Adr through miRNA signaling pathways in breast cancer MCF-7 cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Mohapatra, Purusottam; Preet, Ranjan; Das, Dipon; Satapathy, Shakti Ranjan; Siddharth, Sumit; Choudhuri, Tathagata; Wyatt, Michael D; Kundu, Chanakya Nath
2014-01-01
Cigarette smoking is a crucial factor in the development and progression of multiple cancers including breast. Here, we report that repeated exposure to a fixed, low dose of cigarette smoke condensate (CSC) prepared from Indian cigarettes is capable of transforming normal breast epithelial cells, MCF-10A, and delineate the biochemical basis for cellular transformation. CSC transformed cells (MCF-10A-Tr) were capable of anchorage-independent growth, and their anchorage dependent growth and colony forming ability were higher compared to the non-transformed MCF-10A cells. Increased expression of biomarkers representative of oncogenic transformation (NRP-1, Nectin-4), and anti-apoptotic markers (PI3K, AKT, NFκB) were also noted in the MCF-10A-Tr cells. Short tandem repeat (STR) profiling of MCF-10A and MCF-10A-Tr cells revealed that transformed cells acquired allelic variation during transformation, and had become genetically distinct. MCF-10A-Tr cells formed solid tumors when implanted into the mammary fat pads of Balb/c mice. Data revealed that CSC contained approximately 1.011μg Cd per cigarette equivalent, and Cd (0.0003μg Cd/1×10(7) cells) was also detected in the lysates from MCF-10A cells treated with 25μg/mL CSC. In similar manner to CSC, CdCl2 treatment in MCF-10A cells caused anchorage independent colony growth, higher expression of oncogenic proteins and increased PI3K-AKT-NFκB protein expression. An increase in the expression of PI3K-AKT-NFκB was also noted in the mice xenografts. Interestingly, it was noted that CSC and CdCl2 treatment in MCF-10A cells increased ROS. Collectively, results suggest that heavy metals present in cigarettes of Indian origin may substantially contribute to tumorigenesis by inducing intercellular ROS accumulation and increased expression of PI3K, AKT and NFκB proteins. © 2013.
The photodamage effect and ROS generation induced by PDT with HMME in MCF-7cells in vitro
NASA Astrophysics Data System (ADS)
Yin, Huijuan; Li, Xiaoyuan; Liu, Jianzhong; Li, Yan
2007-05-01
Hematoporphyrin monomethyl ether (HMME) is a novel and promising porphyrin-related photosensitizer for photodynamic therapy (PDT). We use the human breast cancer MCF-7 cells to investigate the photodamage effect of HMME and reactive oxygen species (ROS) generation in HMME-PDT. Methods: The growth rates of MCF-7 cells at 24h after irradiation by 532nm laser with HMME of 5~20μg/ml and light dose of 0.3~4.8J/cm2 were determined by CCK-8 assays. Hoechst33342 staining was used to investigate the morphological change of the tumor cell. Flow cytometry combined with dual Annexin V/PI staining was used to identify the death mode of the cells following PDT. The changes of ROS labeled by DCFH-DA were observed by Laser Scanning Confocal Microscopy (LSCM). Our results show that HMME-based PDT induced significant cell death, and the photocytotoxity to MCF-7 cells is dose-dependent at the range of HMME concentration 5~20μg/ml and the light dose 0.3~4.8J/cm2. The nucleolus underwent apoptosis and/or necrosis observed by LSCM with Hoechst33342 staining. The necrosis and apoptosis rate were 16.0% and 12.4% respectively by FCM, showing the number of necrosic cells was more than that of apoptosis. There was an intense increase of fluorescence intensity standing for ROS generation within 30min post-PDT, and the peak was at about 10min after PDT. Our results suggest that HMME-PDT could inhibit the proliferation of MCF-7 cells remarkably. Because the MCF-7 cells lack procaspase-3, the apoptosis rate is lower. ROS played an important role in the photodamage with HMME.
Sánchez-Hernández, Lidia; Ferro-Flores, Guillermina; Jiménez-Mancilla, Nallely P; Luna-Gutiérrez, Myrna A; Santos-Cuevas, Clara L; Ocampo-García, Blanca E; Azorín-Vega, Erika; Isaac-Olivé, Keila
2015-12-01
Gold nanoparticles conjugated to cyclo-[Arg-Gly-Asp-D-Phe-Lys(Cys)] peptides (AuNP-c[RGDfK(C)]) have been reported as systems with specific cell internalization in breast cancer cells. AuNPs have also been proposed as localized heat sources for cancer treatment using laser irradiation or radiofrequency (RF). The aim of this research was to analyze, based on the Mie theory, the AuNP-c[RGDfK(C)] absorption cross-sections (C(abs)) of low-frequency electromagnetic waves (13.56 MHz, λ = 22 m) and optical frequency waves (laser at λ = 532 nm) and to compare their effect on MCF7 cell viability as thermal conversion sources in AuNPs (20 nm) located inside cells. Cell viability was assessed in MCF7 cells treated with AuNP-c[RGDfK(C)] or water after exposure to the RF field (200 W, 100 V/cm) or laser irradiation (Irradiance 0.65 W/cm2). In both cases (RF and laser) the presence of nanoparticles in cells caused a significant increase in the temperature of the medium (RF: AT = 29.9 ± 1.7 degrees C for AuNP compared to ΔT = 13.0 ± 1.4 degrees C for water; laser: ΔT = 13.5 ± 0.7 degrees C for AuNP compared to 3.3 ± 0.5 degrees C for water). Although RF induced a higher increase in the temperature of the medium with nanoparticles, the largest effect on the cell viability was produced by laser when nanoparticles were located inside the cells (8.7?0.7% for laser compared to 19.4 ± 0.9% for RF). The differences obtained in C(abs) values (laser: 3.7 x 10- (16) m2; RF: 7.9 x 10-(23) m2) and the observed effect on MFC7 cell viability support two mechanisms previously proposed "wave energy absorption by AuNPs" when laser is used as a thermal conversion source, and "attenuation of the wave passing through the AuNP suspension" when RF is applied. The AuNP-c[RGDfK(C)] nanosystem shows suitable properties to improve hyperthermia treatments under laser irradiation due to a larger heat release inside cells.
Malik, Durr-E-Shahwar; David, Rhiannon M; Gooderham, Nigel J
2018-04-01
Consumption of cooked/processed meat and ethanol are lifestyle risk factors in the aetiology of breast cancer. Cooking meat generates heterocyclic amines such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Epidemiology, mechanistic and animal studies indicate that PhIP is a mammary carcinogen that could be causally linked to breast cancer incidence; PhIP is DNA damaging, mutagenic and oestrogenic. PhIP toxicity involves cytochrome P450 (CYP1 family)-mediated metabolic activation to DNA-damaging species, and transcriptional responses through Aryl hydrocarbon receptor (AhR) and estrogen-receptor-α (ER-α). Ethanol consumption is a modifiable lifestyle factor strongly associated with breast cancer risk. Ethanol toxicity involves alcohol dehydrogenase metabolism to reactive acetaldehyde, and is also a substrate for CYP2E1, which when uncoupled generates reactive oxygen species (ROS) and DNA damage. Here, using human mammary cells that differ in estrogen-receptor status, we explore genotoxicity of PhIP and ethanol and mechanisms behind this toxicity. Treatment with PhIP (10 -7 -10 -4 M) significantly induced genotoxicity (micronuclei formation) preferentially in ER-α positive human mammary cell lines (MCF-7, ER-α+) compared to MDA-MB-231 (ER-α-) cells. PhIP-induced CYP1A2 in both cell lines but CYP1B1 was selectively induced in ER-α(+) cells. ER-α inhibition in MCF-7 cells attenuated PhIP-mediated micronuclei formation and CYP1B1 induction. PhIP-induced CYP2E1 and ROS via ER-α-STAT-3 pathway, but only in ER-α (+) MCF-7 cells. Importantly, simultaneous treatments of physiological concentrations ethanol (10 -3 -10 -1 M) with PhIP (10 -7 -10 -4 M) increased oxidative stress and genotoxicity in MCF-7 cells, compared to the individual chemicals. Collectively, these data offer a mechanistic basis for the increased risk of breast cancer associated with dietary cooked meat and ethanol lifestyle choices.
Zahedifard, Maryam; Lafta Faraj, Fadhil; Paydar, Mohammadjavad; Yeng Looi, Chung; Hajrezaei, Maryam; Hasanpourghadi, Mohadeseh; Kamalidehghan, Behnam; Abdul Majid, Nazia; Mohd Ali, Hapipah; Ameen Abdulla, Mahmood
2015-01-01
The current study investigated the cytotoxic effect of 3-(5-chloro-2-hydroxybenzylideneamino)-2-(5-chloro-2-hydroxyphenyl)-2,3-dihydroquinazolin-41(H)-one (A) and 3-(5-nitro-2-hydroxybenzylideneamino)-2-(5-nitro-2-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (B) on MCF-7, MDA-MB-231, MCF-10A and WRL-68 cells. The mechanism involved in apoptosis was assessed to evaluate the possible pathways induced by compound A and B. MTT assay results using A and B showed significant inhibition of MCF-7 cell viability, with IC50 values of 3. 27 ± 0.171 and 4.36 ± 0.219 μg/mL, respectively, after a 72 hour treatment period. Compound A and B did not demonstrate significant cytotoxic effects towards MDA-MB-231, WRL-68 and MCF-10A cells. Acute toxicity tests also revealed an absence of toxic effects on mice. Fluorescent microscopic studies confirmed distinct morphological changes (membrane blebbing and chromosome condensation) corresponding to typical apoptotic features in treated MCF-7 cells. Using Cellomics High Content Screening (HCS), we found that compound A and B could trigger the release of cytochrome c from mitochondria to the cytosol. The release of cytochrome c activated the expression of caspases-9 and then stimulated downstream executioner caspase-3/7. In addition, caspase-8 showed remarkable activity, followed by inhibition of NF-κB activation in A-and B-treated MCF-7 cells. The results indicated that A and B could induce apoptosis via a mechanism that involves either extrinsic or intrinsic pathways. PMID:26108872
Zhou, Xu; Qin, Xianyan; Gong, Tao; Zhang, Zhi-Rong; Fu, Yao
2017-07-01
d-Fructose modified poly(ε-caprolactone)-polyethylene glycol (PCL-PEG-Fru) diblock amphiphile is synthesized via Cu(I)-catalyzed click chemistry, which self-assembles with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) into PCL-PEG-Fru/TPGS mixed micelles (PPF MM). It has been proven that glucose transporter (GLUT)5 is overexpressed in MCF-7 cells other than L929 cells. In this study, PPF MM exhibit a significantly higher uptake efficiency than fructose-free PCL-PEG-N 3 /TPGS mixed micelles in both 2D MCF-7 cells and 3D tumor spheroids. Also, the presence of free d-fructose competitively inhibits the internalization of PPF MM in MCF-7 cells other than L929 cells. PPF MM show selective tumor accumulation in MCF-7 breast tumor bearing mice xenografts. Taken together, PPF MM represent a promising nanoscale carrier system to achieve GLUT5-mediated cell specific delivery in cancer therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Sunga; Lim, Mi-Hee; Kim, Ki Mo
2011-12-15
Cordycepin (3-deoxyadenosine), found in Cordyceps spp., has been known to have many therapeutic effects including immunomodulatory, anti-inflammatory, antimicrobial, and anti-aging effects. Moreover, anti-tumor and anti-metastatic effects of cordycepin have been reported, but the mechanism causing cancer cell death is poorly characterized. The present study was designed to investigate whether the mechanisms of cordycepin-induced cell death were associated with estrogen receptor in breast cancer cells. Exposure of both MDA-MB-231 and MCF-7 human breast cancer cells to cordycepin resulted in dose-responsive inhibition of cell growth and reduction in cell viability. The cordycepin-induced cell death in MDA-MB-231 cells was associated with several specificmore » features of the mitochondria-mediated apoptotic pathway, which was confirmed by DNA fragmentation, TUNEL, and biochemical assays. Cordycepin also caused a dose-dependent increase in mitochondrial translocation of Bax, triggering cytosolic release of cytochrome c and activation of caspases-9 and -3. Interestingly, MCF-7 cells showed autophagy-associated cell death, as observed by the detection of an autophagosome-specific protein and large membranous vacuole ultrastructure morphology in the cytoplasm. Cordycepin-induced autophagic cell death has applications in treating MCF-7 cells with apoptotic defects, irrespective of the ER response. Although autophagy has a survival function in tumorigenesis of some cancer cells, autophagy may be important for cordycepin-induced MCF-7 cell death. In conclusion, the results of our study demonstrate that cordycepin effectively kills MDA-MB-231 and MCF-7 human breast cancer cell lines in culture. Hence, further studies should be conducted to determine whether cordycepin will be a clinically useful, ER-independent, chemotherapeutic agent for human breast cancer. -- Highlights: Black-Right-Pointing-Pointer We studied the mechanism which cordycepin-induced cell death association with estrogen receptor (ER) in breast cancer cells, MDA-MB-231 and MCF-7. Black-Right-Pointing-Pointer The cordycepin-induced cell death in MDA-MB-231 cells was associated with the mitochondria-mediated apoptotic pathway. Black-Right-Pointing-Pointer Cordycepin treatment also resulted in autophagy in MCF-7 cells, associated with induction of autophagosome formation. Black-Right-Pointing-Pointer The different cordycepin-mediated cell death pathways are irrespective of the ER response. Black-Right-Pointing-Pointer Cordycepin proves a clinically useful, ER-independent chemotherapeutic agent for human breast cancer cells.« less
You, B-J; Wu, Y-C; Lee, C-L; Lee, H-Z
2014-03-01
4β-Hydroxywithanolide E is a bioactive withanolide extracted from Physalis peruviana. 4β-Hydroxywithanolide E caused reactive oxygen species production and cell apoptosis in human breast cancer MCF-7 cells. We further found that 4β-hydroxywithanolide E induced DNA damage and regulated the DNA damage signaling in MCF-7 cells. The DNA damage sensors and repair proteins act promptly to remove DNA lesions by 4β-hydroxywithanolide E. The ataxia-telangiectasia mutated protein (ATM)-dependent DNA damage signaling pathway is involved in 4β-hydroxywithanolide E-induced apoptosis of MCF-7 cells. Non-homologous end joining pathway, but not homologous recombination, is the major route of protection of MCF-7 cells against 4β-hydroxywithanolide E-induced DNA damage. 4β-Hydroxywithanolide E had no significant impact on the base excision repair pathway. In this study, we examined the 4β-hydroxywithanolide E-induced DNA damage as a research tool in project investigating the DNA repair signaling in breast cancer cells. We also suggest that 4β-hydroxywithanolide E assert its anti-tumor activity in carcinogenic progression and develop into a dietary chemopreventive agent. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohapatra, Purusottam; Preet, Ranjan; Das, Dipon
Cigarette smoking is a crucial factor in the development and progression of multiple cancers including breast. Here, we report that repeated exposure to a fixed, low dose of cigarette smoke condensate (CSC) prepared from Indian cigarettes is capable of transforming normal breast epithelial cells, MCF-10A, and delineate the biochemical basis for cellular transformation. CSC transformed cells (MCF-10A-Tr) were capable of anchorage-independent growth, and their anchorage dependent growth and colony forming ability were higher compared to the non-transformed MCF-10A cells. Increased expression of biomarkers representative of oncogenic transformation (NRP-1, Nectin-4), and anti-apoptotic markers (PI3K, AKT, NFκB) were also noted in themore » MCF-10A-Tr cells. Short tandem repeat (STR) profiling of MCF-10A and MCF-10A-Tr cells revealed that transformed cells acquired allelic variation during transformation, and had become genetically distinct. MCF-10A-Tr cells formed solid tumors when implanted into the mammary fat pads of Balb/c mice. Data revealed that CSC contained approximately 1.011 μg Cd per cigarette equivalent, and Cd (0.0003 μg Cd/1 × 10{sup 7} cells) was also detected in the lysates from MCF-10A cells treated with 25 μg/mL CSC. In similar manner to CSC, CdCl{sub 2} treatment in MCF-10A cells caused anchorage independent colony growth, higher expression of oncogenic proteins and increased PI3K–AKT–NFκB protein expression. An increase in the expression of PI3K–AKT–NFκB was also noted in the mice xenografts. Interestingly, it was noted that CSC and CdCl{sub 2} treatment in MCF-10A cells increased ROS. Collectively, results suggest that heavy metals present in cigarettes of Indian origin may substantially contribute to tumorigenesis by inducing intercellular ROS accumulation and increased expression of PI3K, AKT and NFκB proteins. - Highlights: • Repeated exposure of CSC causes malignant transformation in MCF-10A. • MCF-10A-Tr cells showed a distinct STR profile and tumor inducing characteristics. • Increased expression of PI3K, AKT, and NFκB protein in MCF-10A-Tr and solid tumor. • Increased ROS and PI3K-AKT-NFκB proteins in smoke carcinogen exposed MCF-10A cells. • Cadmium may be a strong contributor to the transformation of MCF-10A cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karam, Manale; Legay, Christine; Auclair, Christian
2012-03-10
Protein kinase D1, PKD1, is a novel serine/threonine kinase whose altered expression and dysregulation in many tumors as well as its activation by several mitogens suggest that this protein could regulate proliferation and tumorigenesis. Nevertheless, the precise signaling pathways used are still unclear and the potential direct role of PKD1 in tumor development and progression has not been yet investigated. In order to clarify the role of PKD1 in cell proliferation and tumorigenesis, we studied the effects of PKD1 overexpression in a human adenocarcinoma breast cancer cell line, MCF-7 cells. We demonstrated that overexpression of PKD1 specifically promotes MCF-7 cellmore » proliferation through accelerating G0/G1 to S phase transition of the cell cycle. Moreover, inhibition of endogenous PKD1 significantly reduced cell proliferation. Taken together, these results clearly strengthen the regulatory role of PKD1 in cell growth. We also demonstrated that overexpression of PKD1 specifically diminished serum- and anchorage-dependence for proliferation and survival in vitro and allowed MCF-7 cells to form tumors in vivo. Thus, all these data highlight the central role of PKD1 in biological processes which are hallmarks of malignant transformation. Analysis of two major signaling pathways implicated in MCF-7 cell proliferation showed that PKD1 overexpression significantly increased ERK1/2 phosphorylation state without affecting Akt phosphorylation. Moreover, PKD1 overexpression-stimulated cell proliferation and anchorage-independent growth were totally impaired by inhibition of the MEK/ERK kinase cascade. However, neither of these effects was affected by blocking the PI 3-kinase/Akt signaling pathway. Thus, the MEK/ERK signaling appears to be a determining pathway mediating the biological effects of PKD1 in MCF-7 cells. Taken together, all these data demonstrate that PKD1 overexpression increases the aggressiveness of MCF-7 breast cancer cells through enhancing their oncogenic properties and would, therefore, define PKD1 as a potentially new promising anti-tumor therapeutic target.« less
Yelken, Besra Özmen; Balcı, Tuğçe; Süslüer, Sunde Yılmaz; Kayabaşı, Çağla; Avcı, Çığır Biray; Kırmızıbayrak, Petek Ballar; Gündüz, Cumhur
2017-09-05
Breast cancer is one of the most common malignancies in women and metastasis is the cause of morbidity and mortality in patients. In the development of metastasis, the matrix metalloproteinase (MMP) family has a very important role in tumor development. MMP-2 and MMP-9 work together for extracellular matrix (ECM) cleavage to increase migration. Tomatine is a secondary metabolite that has a natural defense role against plants, fungi, viruses and bacteria that are synthesized from tomato. In additıon, tomatine is also known that it breaks down the cell membrane and is a strong inhibitor in human cancer cells. In this study, it was aimed to evaluate the effect of tomatine on cytotoxicity, apoptosis and matrix metalloproteinase inhibition in MCF-7 cell lines. Human breast cancer cell line (MCF-7) was used as a cell line. In MCF-7 cells, the IC 50 dose of tomatine was determined to be 7.07μM. According to the control cells, apoptosis increased 3.4 fold in 48thh. Activation of MMP-2, MMP-9 and MMP-9\\NGAL has been shown to decrease significantly in cells treated with tomatine by gelatin zymography compared to the control. As a result, matrix metalloproteinase activity and cell proliferation were suppressed by tomatine and this may provide support in treatment methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Naik Bukke, Arunkumar; Nazneen Hadi, Fathima; Babu, K Suresh; Shankar, P Chandramati
2018-08-01
This article contains data on in vitro cytotoxicity activity of chloroform, methanolic and water extracts of leaf and heartwood of Caesalpinia sappan L. a medicinal plant against Breast cancer (MCF-7) and Lung cancer (A-549) cells. This data shows that Brazilin A, a natural bioactive compound in heartwood of Caesalpinia sappan L. induced cell death in breast cancer (MCF-7) cells. The therapeutic property was further proved by docking the Brazilin A molecule against BCL-2 protein (an apoptotic inhibitor) using auto dock tools.
Alhazmi, Mohammed I; Hasan, Tarique N; Shafi, Gowhar; Al-Assaf, Abdullah H; Alfawaz, Mohammed A; Alshatwi, Ali A
2014-01-01
Nigella Sativa (NS) is an herb from the Ranunculaceae family that exhibits numerous medicinal properties and has been used as important constituent of many complementary and alternative medicines (CAMs). The ability of NS to kill cancer cells such as PC3, HeLa and hepatoma cells is well established. However, our understanding of the mode of death caused by NS remains nebulous. The objective of this study was to gain further insight into the mode and mechanism of death caused by NS in breast cancer MCF-7 cells. Human breast cancer cells (MCF-7) were treated with a methanolic extract of NS, and a dose- and time-dependent study was performed. The IC50 was calculated using a Cell Titer Blue® viability assay assay, and evidence for DNA fragmentation was obtained by fluorescence microscopy TUNEL assay. Gene expression was also profiled for a number of apoptosis-related genes (Caspase-3, -8, -9 and p53 genes) through qPCR. The IC50 of MCF-7 cells was 62.8 μL/mL. When MCF-7 cells were exposed to 50 μL/mL and 100 μL/mL NS for 24 h, 48 h and 72 h, microscopic examination (TUNEL assay) revealed a dose- and time-dependent increase in apoptosis. Similarly, the expression of the Caspase-3, -8, -9 and p53 genes increased significantly according to the dose and time. NS induced apoptosis in MCF-7 cells through both the p53 and caspase pathways. NS could potentially represent an alternative source of medicine for breast cancer therapy.
Zeng, Liang; Yan, Jingna; Luo, Liyong; Ma, Mengjun; Zhu, Huiqun
2017-03-28
We were employing nanotechnology to improve the targeting ability of (-)-Epigallocatechin-3-gallate (EGCG) towards MCF-7 cells, and two kinds of EGCG nanoparticles (FA-NPS-PEG and FA-PEG-NPS) were obtained, besides, their characteristics and effects on MCF-7 cells were studied. The results indicated that (i) both FA-NPS-PEG and FA-PEG-NPS have high stabilities; (ii) their particles sizes were 185.0 ± 13.5 nm and 142.7 ± 7.2 nm, respectively; (iii) their encapsulation efficiencies of EGCG were 90.36 ± 2.20% and 39.79 ± 7.54%, respectively. (iv) there was no cytotoxicity observed in EGCG, FA-NPS-PEG and FA-PEG-NPS toward MCF-7 cells over all concentrations (0~400 μg/mL) tested; (v) EGCG, FA-NPS-PEG and FA-PEG-NPS inhibited MCF-7 cells proliferation in dose-dependent manners, with the average IC 50 of 470.5 ± 33.0, 65.9 ± 0.4 and 66.6 ± 0.6 μg/mL; (vi) EGCG, FA-NPS-PEG and FA-PEG-NPS could modulated the expressions of several key regulatory proteins in PI3K-Akt pathway such as up-regulation of PTEN, p21 and Bax, and down-regulation of p-PDK1, p-AKT, CyclinD1 and Bcl-2, which gave an illustration about the mechanism by which EGCG nanoparticles inhibited MCF-7 cells proliferation. In this study, EGCG nanoparticles can significantly enhance the targeting ability and efficacy of EGCG, which is considered to an experimental foundation for further research on its activity, targeting ability and metabolism in vivo.
Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies
Li, Bo; Xu, Hui; Li, Zhen; Yao, Mingfei; Xie, Meng; Shen, Haijun; Shen, Song; Wang, Xinshi; Jin, Yi
2012-01-01
Background Multidrug resistance (MDR) mediated by the overexpression of adenosine triphosphate (ATP)-binding cassette (ABC) transporters, such as P-glycoprotein (P-gp), remains one of the major obstacles to effective cancer chemotherapy. In this study, lipid/particle assemblies named LipoParticles (LNPs), consisting of a dimethyldidodecylammonium bromide (DMAB)-modified poly(lactic-co-glycolic acid) (PLGA) nanoparticle core surrounded by a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) shell, were specially designed for anticancer drugs to bypass MDR in human breast cancer cells that overexpress P-gp. Methods Doxorubicin (DOX), a chemotherapy drug that is a P-gp substrate, was conjugated to PLGA and encapsulated in the self-assembled LNP structure. Physiochemical properties of the DOX-loaded LNPs were characterized in vitro. Cellular uptake, intracellular accumulation, and cytotoxicity were compared in parental Michigan Cancer Foundation (MCF)-7 cells and P-gp-overexpressing, resistant MCF-7/adriamycin (MCF-7/ADR) cells. Results This study found that the DOX formulated in LNPs showed a significantly increased accumulation in the nuclei of drug-resistant cells relative to the free drug, indicating that LNPs could alter intracellular traffic and bypass drug efflux. The cytotoxicity of DOX loaded-LNPs had a 30-fold lower half maximal inhibitory concentration (IC50) value than free DOX in MCF-7/ADR, measured by the colorimetric cell viability (MTT) assay, correlated with the strong nuclear retention of the drug. Conclusion The results show that this core-shell lipid/particle structure could be a promising strategy to bypass MDR. PMID:22275834
Li, Jinlian; Lin, Runxian; Wang, Qian; Gao, Guanggang; Cui, Jiwen; Liu, Jiguang; Wu, Dongmei
2014-07-01
Two electrochemical signals ascribed to xanthine/guanine and hypanthine/adenine in MCF-7 cells were detected at 0.726 and 1.053 V, respectively. Based on the intensity of signals, the genistein-induced proliferation and suppression of MCF-7 cells could be evaluated. The results showed that with the increase of genistein dose at the range of 10(-9) to 10(-6)M, the two electrochemical signals of MCF-7 cell suspension increased due to the proliferation, whereas the tendency at the high dosage range of more than 10(-5)M was decreased. The proliferation and cytotoxicity obtained by the electrochemical method were in agreement with those obtained by cell counting and the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium] method. Thus, the two-signal electrochemical method is an effective way to evaluate the effect of drugs on cell activity based on purine metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.
Burra, Srinivas; Voora, Vani; Rao, Ch Prasad; Vijay Kumar, P; Kancha, Rama Krishna; David Krupadanam, G L
2017-09-15
Forskolin C 1 -isoxazole derivatives (3,5-regioisomers) (11a-e, 14, 15a-h and 15, 16a-g) were synthesized regioselectively by adopting 1,3-dipolar cycloadditions. These derivatives were tested using estrogen receptor positive breast cancer cell lines MCF-7 and BT-474. Majority of the compounds exhibited activity against the p53-positive MCF-7 breast cancer cells but not against the p53-negative BT-474 breast cancer cells. Among forskolin derivatives, compounds 11a, 11c, 14a, 14f, 14g, 14h, 15b, 16g and 17b exhibited higher anti-cancer activity against MCF-7 cell line with an IC 50 ≤1µM. The derivative 14f exhibited highest activity in both p53-positive (MCF-7) and p53-negative (BT-474) breast cancer cell lines with an IC 50 of 0.5µM. Copyright © 2017. Published by Elsevier Ltd.
Myung, Ja Hye; Launiere, Cari A; Eddington, David T; Hong, Seungpyo
2010-06-01
The selective detection of circulating tumor cells (CTCs) is of significant clinical importance for the clinical diagnosis and prognosis of cancer metastasis. However, largely because of the extremely low number of CTCs (as low as 1 in 10(9) hematologic cells) in the blood of patients, effective detection and separation of the rare cells remain a tremendous challenge. Cell rolling is known to play a key role in physiological processes such as the recruitment of leukocytes to sites of inflammation and selectin-mediated CTC metastasis. Furthermore, because CTCs typically express the epithelial-cell adhesion molecule (EpCAM) on the surface whereas normal hematologic cells do not, substrates with immobilized antibody against EpCAM may specifically interact with CTCs. In this article, we created biomimetic surfaces functionalized with P- and E-selectin and anti-EpCAM that induce different responses in HL-60 (used as a model of leukocytes in this study) and MCF-7 (a model of CTCs) cells. HL-60 and MCF-7 cells showed different degrees of interaction with P-/E-selectin and anti-EpCAM at a shear stress of 0.32 dyn/cm(2). HL-60 cells exhibited rolling on P-selectin-immobilized substrates at a velocity of 2.26 +/- 0.28 microm/s whereas MCF-7 cells had no interaction with the surface. Both cell lines, however, had interactions with E-selectin, and the rolling velocity of MCF-7 cells (4.24 +/- 0.31 microm/s) was faster than that of HL-60 cells (2.12 +/- 0.15 microm/s). However, only MCF-7 cells interacted with anti-EpCAM-coated surfaces, forming stationary binding under flow. More importantly, the combination of the rolling (E-selectin) and stationary binding (anti-EpCAM) resulted in substantially enhanced separation capacity and capture efficiency (more than 3-fold enhancement), as compared to a surface functionalized solely with anti-EpCAM that has been commonly used for CTC capture. Our results indicate that cell-specific detection and separation may be achieved through mimicking the biological processes of combined dynamic cell rolling and stationary binding, which will likely lead to a CTC detection device with significantly enhanced specificity and sensitivity without a complex fabrication process.
Manaharan, Thamilvaani; Thirugnanasampandan, Ramaraj; Jayakumar, Rajarajeswaran; Kanthimathi, M. S.; Ramya, Gunasekar; Ramnath, Madhusudhanan Gogul
2016-01-01
Background: Essential oil of Ocimum sanctum Linn. exhibited various pharmacological activities including antifungal and antimicrobial activities. In this study, we analyzed the anticancer and apoptosis mechanisms of Ocimum sanctum essential oil (OSEO). Objective: To trigger the apoptosis mechanism in human breast cancer cells using OSEO. Materials and Methods: OSEO was extracted using hydrodistillation of the leaves. Cell proliferation was determined using different concentrations of OSEO. Apoptosis studies were carried out in human breast cancer cells using propidium iodide (PI) and Hoechst staining. Results: We found that OSEO inhibited proliferation (IC50 = 170 μg/ml) of Michigan cancer foundation-7 (MCF-7) cells in a dose-dependent manner. The OSEO also induced apoptosis as evidenced by the increasing number of PI-stained apoptotic nucleic of MCF-7 cells. Flow cytometry analysis revealed that treatment with OSEO (50–500 μg/ml) increased the apoptotic cells population (16–84%) dose dependently compared to the control. OSEO has the ability to up-regulate the apoptotic genes p53 and Bid and as well as elevates the ratio of Bax/Bcl-2. Conclusion: Our findings indicate that OSEO has the ability as proapoptotic inducer and it could be developed as an anticancer agent. SUMMARY OSEO inhibited proliferation of MCF-7 cells with an IC50 of 170 μg/mLOSEO at 500 μg/mL increased the population of apoptotic cells by 84%OSEO up-regulated the expression of apoptotic genes and as well increased the Bax/Bcl2 ratio. Abbreviations used: BAX: BAX BCL2-associated X protein; BCL2: B-cell CLL/lymphoma 2; BID: BH3 Interacting domain death agonist; OSEO: Ocimum sanctum essential oil; DMSO: Dimethyl sulfoxide; DMEM: Dulbecco's modified Eagle medium; MCF-7: Michigan cancer foundation-7; RT-PCR: Real Time Polymerase Chain Reaction. PMID:27563220
Woo, Yu Mi; Shin, Yubin; Lee, Eun Ji; Lee, Sunyoung; Jeong, Seung Hun; Kong, Hyun Kyung; Park, Eun Young; Kim, Hyoung Kyu; Han, Jin; Chang, Minsun; Park, Jong-Hoon
2015-01-01
Tamoxifen resistance is often observed in the majority of estrogen receptor–positive breast cancers and it remains as a serious clinical problem in breast cancer management. Increased aerobic glycolysis has been proposed as one of the mechanisms for acquired resistance to chemotherapeutic agents in breast cancer cells such as adriamycin. Herein, we report that the glycolysis rates in LCC2 and LCC9—tamoxifen-resistant human breast cancer cell lines derived from MCF7— are higher than those in MCF7S, which is the parent MCF7 subline. Inhibition of key glycolytic enzyme such as hexokinase-2 resulted in cell growth retardation at higher degree in LCC2 and LCC9 than that in MCF7S. This implies that increased aerobic glycolysis even under O2-rich conditions, a phenomenon known as the Warburg effect, is closely associated with tamoxifen resistance. We found that HIF-1α is activated via an Akt/mTOR signaling pathway in LCC2 and LCC9 cells without hypoxic condition. Importantly, specific inhibition of hexokinase-2 suppressed the activity of Akt/mTOR/HIF-1α axis in LCC2 and LCC9 cells. In addition, the phosphorylated AMPK which is a negative regulator of mTOR was decreased in LCC2 and LCC9 cells compared to MCF7S. Interestingly, either the inhibition of mTOR activity or increase in AMPK activity induced a reduction in lactate accumulation and cell survival in the LCC2 and LCC9 cells. Taken together, our data provide evidence that development of tamoxifen resistance may be driven by HIF-1α hyperactivation via modulation of Akt/mTOR and/or AMPK signaling pathways. Therefore, we suggest that the HIF-1α hyperactivation is a critical marker of increased aerobic glycolysis in accordance with tamoxifen resistance and thus restoration of aerobic glycolysis may be novel therapeutic target for treatment of tamoxifen-resistant breast cancer. PMID:26158266
Dorosh, A; Děd, L; Elzeinová, F; Pěknicová, J
2011-01-01
Tetrabromobisphenol A (TBBPA) is the main flame retardant used in printed circuit boards and laminates. The human population is highly exposed to TBBPA as it is used in consumer electronics as well as office and communication equipment. The main use of hexabromocyclododecane (HBCD) is in insulation foam boards, which are widely used in the construction sector. Brominated flame retardants may possess endocrine disrupting activity and thus represent a threat to the environment, including humans and their reproduction. The aim of this work was to evaluate the oestrogenic effects of TBBPA and HBCD in vitro on MCF-7 cells. We used the proliferation test (E-screen assay) in MCF-7 breast cancer cells and reverse transcription quantitative polymerase chain reaction analysis of TFF1 gene expression to analyse oestrogenicity of the studied compounds. RT-qPCR has proved to be a fast and valuable molecular technique in gene expression quantification. HBCD but not TBBPA increased cell proliferation in MCF-7 cells and up-regulated TFF1 gene expression in a concentration-dependent manner. Anti-oestrogen ICI 182,780 inhibited up-regulation of TFF1 by HBCD. We have shown that HBCD displays oestrogen- like effects on MCF-7 cells. TBBPA, on the other hand, has not shown any oestrogenic effect mediated by the oestrogen receptor α.
Zheng, Nan; Zhang, Ping; Huang, Huai; Liu, Weiwei; Hayashi, Toshihiko; Zang, Linghe; Zhang, Ye; Liu, Lu; Xia, Mingyu; Tashiro, Shin-ichi; Onodera, Satoshi; Ikejima, Takashi
2015-07-01
The estrogen receptor alpha (ERα) has been proven to be one of the most important therapeutic targets in breast cancer over the last 30 years. Previous studies pointed out that a natural flavonoid, silibinin, induced apoptosis in human breast cancer MCF-7 cells. In the present study we report that exposure of MCF-7 cells to silibinin led to cell death through the down-regulation of ERα expression. Silibinin-induced apoptosis of MCF-7 cells through up-regulation of caspase 6 due to ERα signalling repression was further boosted by ERα antagonist. Moreover, up-regulation of autophagy induced by silibinin accounted for apoptotic exacerbation, being further enhanced by ERα inhibition. Upon ERα activation, series of downstream signalling pathways can be activated. We found that silibinin reduced the expressions of Akt/mTOR and extracellular-signal-related kinase (ERK), which respectively accounted for the induction of autophagy and apoptosis. These effects were further augmented by co-treatment with ERα inhibitor. We conclude that the treatment with silibinin of ERα-positive MCF-7 cells down-regulates the expression of ERα, and subsequently mTOR and ERK signaling pathways, ERα downstream, finally resulting in induction of autophagy and apoptosis. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Cytotoxicity of Sargassum angustifolium Partitions against Breast and Cervical Cancer Cell Lines
Vaseghi, Golnaz; Sharifi, Mohsen; Dana, Nasim; Ghasemi, Ahmad; Yegdaneh, Afsaneh
2018-01-01
Background: Marine organisms produce a variety of compounds with pharmacological activities including anticancer effects. This study attempt to find cytotoxicity of hexane (HEX), dichloromethane (DCM), and butanol (BUTOH) partitions of Sargassum angustifolium. Materials and Methods: S. angustifolium was collected from Bushehr, a Southwest coastline of Persian Gulf. The plant was extracted by maceration with methanol-ethyl acetate. The extract was evaporated under vacuum and partitioned by Kupchan method to yield HEX, DCM, and BUTOH partitions. The cytotoxic activity of the extract (150, 450, and 900 μg/ml) was investigated against MCF-7 (breast cancer), HeLa (cervical cancer), and human umbilical vein endothelial cells cell lines by mitochondrial tetrazolium test assay after 72 h. Results: The cell survivals of HeLa and MCF-7 cell were decreased by increasing the concentration of extracts from 150 μg/ml to 900 μg/ml. The median growth inhibitory concentration value of HEX partition was 71 and 77 μg/ml against HeLa and MCF-7, dichloromethane partition was 36 and 88 μg/ml against HeLa and MCF-7, respectively. BUTOH partition was 25 μg/ml against MCF-7. Conclusion: This study reveals that different partitions of S. angustifolium have cytotoxic activity against cancer cell lines. PMID:29657928
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, P.-L.; Cho, C.-Y.; Hsu, Y.-L.
Putranjivain A, isolated from the whole plant of Euphorbia jolkini Bioss (Euphorbiaceae), was investigated for its antiproliferative activity in human breast adenocarcinoma MCF-7 cells. The results showed that putranjivain A inhibited the proliferation of MCF-7 by blocking cell cycle progression in the G0/G1 phase and inducing apoptosis. Enzyme-linked immunosorbent assay showed that putranjivain A increased the expression of p21/WAF1 concomitantly as MCF-7 cell underwent G0/G1 arrest. An enhancement in Fas/APO-1 and its two forms of ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), might be responsible for the apoptotic effect induced by putranjivain A. Our study reports heremore » for the first time that the induction of p21/WAF1 and the activity of Fas/Fas ligand apoptotic system may participate in the antiproliferative activity of putranjivain A in MCF-7 cells.« less
Sai Saraswathi, V; Santhakumar, K
2017-04-01
Metal oxide nanoparticles are gaining interest in recent years. The present paper explains about the green synthesis of zirconium oxide nanoparticles (ZrO NPs) mediated from the leaves of Lagerstroemia speciosa. The prepared ZrO NPs were characterized by UV-vis spectroscopy, FT-IR, X-ray diffraction analysis (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX) and Thermogravimetric Analysis (TGA). The photocatalytic activity of ZrO NPs was studied for azo dye by exposing to sunlight. The azo dye was degraded up to 94.58%. Also the ZrO NPs were studied for in vitro cytotoxicity activity against breast cancer cell lines-MCF-7 and evaluated by MTT assay. The cell morphological changes were recorded by light microscope. The cells viability was seen at 500μg/mL when compared against control. Hence the research highlights, that the method was simple, eco-friendly towards environment by phytoremediation activity of the azo dye and cytotoxicity activity against MCF-7 cell lines. Hence the present paper may help to further explore the metal nanoparticle for its potential applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Antitumor activity of colloidal silver on MCF-7 human breast cancer cells
2010-01-01
Background Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. Methods MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL) for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Results Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL) and LD100 (14 ng/mL) (*P < 0.05), significantly decreased LDH (*P < 0.05) and significantly increased SOD (*P < 0.05) activities. However, the NO production, and Gpx, CAT, and Total antioxidant activities were not affected in MCF-7 breast cancer cells. PBMC were not altered by colloidal silver. Conclusions The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy. PMID:21080962
Cheng, Ran; Liu, Ya-Jing; Cui, Jun-Wei; Yang, Man; Liu, Xiao-Ling; Li, Peng; Wang, Zhan; Zhu, Li-Zhang; Lu, Si-Yi; Zou, Li; Wu, Xiao-Qin; Li, Yu-Xia; Zhou, You; Fang, Zheng-Yu; Wei, Wei
2017-05-02
Tamoxifen is still the most commonly used endocrine therapy drug for estrogen receptor (ER)-positive breast cancer patients and has an excellent outcome, but tamoxifen resistance remains a great impediment to successful treatment. Recent studies have prompted an anti-tumor effect of aspirin. Here, we demonstrated that aspirin not only inhibits the growth of ER-positive breast cancer cell line MCF-7, especially when combined with tamoxifen, but also has a potential function to overcome tamoxifen resistance in MCF-7/TAM. Aspirin combined with tamoxifen can down regulate cyclinD1 and block cell cycle in G0/G1 phase. Besides, tamoxifen alone represses c-myc, progesterone receptor (PR) and cyclinD1 in MCF-7 cell line but not in MCF-7/TAM, while aspirin combined with tamoxifen can inhibit the expression of these proteins in the resistant cell line. When knocking down c-myc in MCF-7/TAM, cells become more sensitive to tamoxifen, cell cycle is blocked as well, indicating that aspirin can regulate c-myc and cyclinD1 proteins to overcome tamoxifen resistance. Our study discovered a novel role of aspirin based on its anti-tumor effect, and put forward some kinds of possible mechanisms of tamoxifen resistance in ER-positive breast cancer cells, providing a new strategy for the treatment of ER-positive breast carcinoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debeb, Bisrat G.; Xu Wei; Mok, Henry
2010-03-01
Purpose: It has been shown that valproic acid (VA) enhances the proliferation and self-renewal of normal hematopoietic stem cells and that breast cancer stem/progenitor cells can be resistant to radiation. From these data, we hypothesized that VA would fail to radiosensitize breast cancer stem/progenitor cells grown to three-dimensional (3D) mammospheres. Methods and Materials: We used the MCF7 breast cancer cell line grown under stem cell-promoting culture conditions (3D mammosphere) and standard nonstem cell monolayer culture conditions (two-dimensional) to examine the effect of pretreatment with VA on radiation sensitivity in clonogenic survival assays and on the expression of embryonic stem cellmore » transcription factors. Results: 3D-cultured MCF-7 cells expressed higher levels of Oct4, Nanog, and Sox2. The 3D passage enriched self-renewal and increased radioresistance in the 3D mammosphere formation assays. VA radiosensitized adherent cells but radioprotected 3D cells in single-fraction clonogenic assays. Moreover, fractionated radiation sensitized VA-treated adherent MCF7 cells but did not have a significant effect on VA-treated single cells grown to mammospheres. Conclusion: We have concluded that VA might preferentially radiosensitize differentiated cells compared with those expressing stem cell surrogates and that stem cell-promoting culture is a useful tool for in vitro evaluation of novel cancer therapeutic agents and radiosensitizers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Jie-Heng; Hsu, Li-Sung; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan, ROC
The molecular basis of epithelial–mesenchymal transition (EMT) functions as a potential therapeutic target for breast cancer because EMT may endow breast tumor-initiating cells with stem-like characteristics and enable the dissemination of breast cancer cells. We have recently verified the antitumor activity of 3,5,4′-trimethoxystilbene (MR-3), a naturally methoxylated derivative of resveratrol, in colorectal cancer xenografts via an induction of apoptosis. The effect of MR-3 on EMT and the invasiveness of human MCF-7 breast adenocarcinoma cell line were also explored. We found that MR-3 significantly increased epithelial marker E-cadherin expression and triggered a cobblestone-like morphology of MCF-7 cells, while reciprocally decreasing themore » expression of mesenchymal markers, such as snail, slug, and vimentin. In parallel with EMT reversal, MR-3 downregulated the invasion and migration of MCF-7 cells. Exploring the action mechanism of MR-3 on the suppression of EMT and invasion indicates that MR-3 markedly reduced the expression and nuclear translocation of β-catenin, accompanied with the downregulation of β-catenin target genes and the increment of membrane-bound β-catenin. These results suggest the involvement of Wnt/β-catenin signaling in the MR-3-induced EMT reversion of MCF-7 cells. Notably, MR-3 restored glycogen synthase kinase-3β activity by inhibiting the phosphorylation of Akt, the event required for β-catenin destruction via a proteasome-mediated system. Overall, these findings indicate that the anti-invasive activity of MR-3 on MCF-7 cells may result from the suppression of EMT via down-regulating phosphatidylinositol 3-kinase (PI3K)/AKT signaling, and consequently, β-catenin nuclear translocation. These occurrences ultimately lead to the blockage of EMT and the invasion of breast cancer cells. - Highlights: • MR-3 blocked MCF-7 cell invasion by inducing a reversal of EMT. • Wnt/β-catenin signaling is involved in MR-3-induced EMT reversion of MCF-7 cells. • Knockdown of β-catenin was sufficient to restore epithelial marker E-cadherin levels. • MR-3 recovered the function of GSK-3β that inhibits β-catenin nuclear translocation.« less
Gao, Xiao-Ling; Yang, Jiao-Jiao; Wang, Shu-Juan; Chen, Yan; Wang, Bei; Cheng, Er-Jing; Gong, Jian-Nan; Dong, Yan-Ting; Liu, Dai; Wang, Xiang-Li; Huang, Ya-Qiong; An, Dong-Dong
2018-06-22
Breast cancer is known as the most prevalent cancer in women worldwide, and has an undeniable negative impact on public health, both physically, and mentally. This study aims to investigate the effects of toll-like receptor 4 (TLR4) gene silencing on proliferation and apoptosis of human breast cancer cells to explore for a new theoretical basis for its treatment. TLR4 small interference RNA (siRNA) fragment recombinant plasmids were constructed, including TLR4 siRNA-1, TLR4 siRNA-2, and TLR4 siRNA-3. Human breast cancer MCF-7 and MDA-MB-231 cells were assigned into blank, negative control (NC), TLR4 siRNA-1, TLR4 siRNA-2, and TLR4 siRNA-3 groups. MCF-7 and MDA-MB-231 cell growth was detected by MTT assay. Apoptosis and cell cycle were determined by flow cytometry. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were conducted to determine the expression of TLR4, CDK4, cyclin D1, Livin, Bcl-2, p53, c-FLIP, and caspase-3. In comparison with the NC and blank groups, the TLR4 siRNA-1, TLR4 siRNA-2, and TLR4 siRNA-3 groups showed decreased the expression of TLR4, inhibited proliferation of MCF-7 and MDA-MB-231 cells and promoted MCF-7 and MDA-MB-231 cell apoptosis, and the cells were blocked in G1 phase. In comparison with the NC and blank groups, in the TLR4 siRNA-1, TLR4 siRNA-2, and TLR4 siRNA-3 groups, siRNA-TLR4 significantly increased expression of p53 and caspase-3 in MCF-7 and MDA-MB-231 cells, while it decreased the expressions of CDK4, cyclinD1, Livin, Bal-2, and c-FLIP. The study demonstrates that TLR4 gene silencing inhibits proliferation and induces apoptosis of MCF-7 and MDA-MB-231 cells. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young-Rae; Noh, Eun-Mi; Oh, Hyun Ju
2011-02-25
Research highlights: {yields} MMP-9 plays a pivotal role in the invasion of MCF-7 breast cancer cells. {yields} TPA stimulates MMP-9 expression through activation of MAPK/NF-{kappa}B and MAPK/AP-1 pathways. {yields} Dihydroavenanthramide D suppresses MMP-9 expression via inhibition of TPA-induced MAPK/NF-{kappa}B and MAPK/AP-1 activations. {yields} Dihydroavenanthramide D blocks cell invasion of MCF-7 breast cancer cells. -- Abstract: Dihydroavenanthramide D (DHAvD) is a synthetic analog to naturally occurring avenanthramide, which is the active component of oat. Previous study demonstrates that DHAvD strongly inhibits activation of nuclear factor-kappa B (NF-{kappa}B), which is a major component in cancer cell invasion. The present study investigated whethermore » DHAvD can modulate MMP-9 expression and cell invasion in MCF-7 human breast cancer cells. MMP-9 expression and cell invasion in response to 12-O-tetradecanoylphorbol-13-acetate (TPA) was increased, whereas these inductions were muted by DHAvD. DHAvD also suppressed activation of mitogen-activated protein kinase (MAPK), and MAPK-mediated nuclear factor-kappa B (NF-{kappa}B) and activator protein-1 (AP-1) activations in TPA-treated MCF-7 cells. The results indicate that DHAvD-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of the MAPK/NF-{kappa}B and MAPK/AP-1 pathways in MCF-7 cells. DHAvD may have potential value in breast cancer metastasis.« less
Yang, X Q; Yang, J; Wang, R; Zhang, S; Tan, Q W; Lv, Q; Meng, W T; Mo, X M; Li, H J
2015-12-02
The extracellular matrix metalloproteinase inducer (EMMPRIN, CD147) is a member of the immunoglobulin family and shows increased expression in tumor cells. We examined the effect of RNAi-mediated EMMPRIN gene silencing induced by lentiviral on the growth and cycle distribution of MCF-7 breast cancer cells. Lentiviral expressing EMMPRIN-short hairpin RNA were packaged to infect MCF-7 cells. The inhibition efficiency of EMMPRIN was validated by real-time fluorescent quantitation polymerase chain reaction and western blotting. The effect of EMMPRIN on cell proliferation ability was detected using the MTT assay and clone formation experiments. Changes in cell cycle were detected by flow cytometry. EMMPRIN-short hairpin RNA-packaged lentiviral significantly down-regulated EMMPRIN mRNA and protein expression, significantly inhibited cell proliferation and in vitro tumorigenicity, and induced cell cycle abnormalities. Cells in the G0/G1 and G2/M phases were increased, while cells in the S phase were decreased after infection of MCF-7 cells for 3 days. The EMMPRIN gene facilitates breast cancer cell malignant proliferation by regulating cell cycle distribution and may be a molecular target for breast cancer gene therapy.
Duanmu, J; Cheng, J; Xu, J; Booth, C J; Hu, Z
2011-04-26
The purpose of this study was to test a novel, dual tumour vascular endothelial cell (VEC)- and tumour cell-targeting factor VII-targeted Sn(IV) chlorin e6 photodynamic therapy (fVII-tPDT) by targeting a receptor tissue factor (TF) as an alternative treatment for chemoresistant breast cancer using a multidrug resistant (MDR) breast cancer line MCF-7/MDR. The TF expression by the MCF-7/MDR breast cancer cells and tumour VECs in MCF-7/MDR tumours from mice was determined separately by flow cytometry and immunohistochemistry using anti-human or anti-murine TF antibodies. The efficacy of fVII-tPDT was tested in vitro and in vivo and was compared with non-targeted PDT for treatment of chemoresistant breast cancer. The in vitro efficacy was determined by a non-clonogenic assay using crystal violet staining for monolayers, and apoptosis and necrosis were assayed to elucidate the underlying mechanisms. The in vivo efficacy of fVII-tPDT was determined in a nude mouse model of subcutaneous MCF-7/MDR tumour xenograft by measuring tumour volume. To our knowledge, this is the first presentation showing that TF was expressed on tumour VECs in chemoresistant breast tumours from mice. The in vitro efficacy of fVII-tPDT was 12-fold stronger than that of ntPDT for MCF-7/MDR cancer cells, and the mechanism of action involved induction of apoptosis and necrosis. Moreover, fVII-tPDT was effective and safe for the treatment of chemoresistant breast tumours in the nude mouse model. We conclude that fVII-tPDT is effective and safe for the treatment of chemoresistant breast cancer, presumably by simultaneously targeting both the tumour neovasculature and chemoresistant cancer cells. Thus, this dual-targeting fVII-tPDT could also have therapeutic potential for the treatment of other chemoresistant cancers.
Enhanced anticancer activity of DM1-loaded star-shaped folate-core PLA-TPGS nanoparticles
NASA Astrophysics Data System (ADS)
Tang, Xiaolong; Liang, Yong; Zhu, Yongqiang; Cai, Shiyu; Sun, Leilei; Chen, Tianyi
2014-10-01
The efficient delivery of therapeutic drugs into interested cells is a critical challenge to broad application of nonviral vector systems. In this research, emtansine (DM1)-loaded star-shaped folate-core polylactide- d-α-tocopheryl polyethylene glycol 1000 succinate (FA-PLA-TPGS-DM1) copolymer which demonstrated superior anticancer activity in vitro/ vivo in comparison with linear FA-PLA-TPGS nanoparticles was applied to be a vector of DM1 for FR+ breast cancer therapy. The DM1- or coumarin 6-loaded nanoparticles were fabricated, and then characterized in terms of size, morphology, drug encapsulation efficiency, and in vitro drug release. And the viability of MCF-7/HER2 cells treated with FA-DM1-nanoparticles (NPs) was assessed. Severe combined immunodeficient mice carrying MCF-7/HER2 tumor xenografts were treated in several groups including phosphate-buffered saline control, DM1, DM1-NPs, and FA-DM1-NPs. The antitumor activity was then assessed by survival time and solid tumor volume. All the specimens were prepared for formalin-fixed and paraffin-embedded tissue sections for hematoxylin-eosin staining. The data showed that the FA-DM1-NPs could efficiently deliver DM1 into MCF-7/HER2 cells. The cytotoxicity of DM1 to MCF-7/HER2 cells was significantly increased by FA-DM1-NPs when compared with the control groups. In conclusion, the FA-DM1-NPs offered a considerable potential formulation for FR+ tumor-targeting biotherapy.
Liu, Chia-Chi; Teh, Rachel; Mozar, Christine A; Baxter, Robert C; Rasmussen, Helge H
2016-01-01
FXYD3, also known as mammary tumor protein 8, is overexpressed in several common cancers, including in many breast cancers. We examined if such overexpression might protect Na(+)/K(+)-ATPase and cancer cells against the high levels of oxidative stress characteristic of many tumors and often induced by cancer treatments. We measured FXYD3 expression, Na(+)/K(+)-ATPase activity and glutathionylation of the β1 subunit of Na(+)/K(+)-ATPase, a reversible oxidative modification that inhibits the ATPase, in MCF-7 and MDA-MB-468 cells. Expression of FXYD3 was suppressed by transfection with FXYD3 siRNA. A colorimetric end-point assay was used to estimate cell viability. Apoptosis was estimated by caspase 3/7 (DEVDase) activation using a Caspase fluorogenic substrate kit. Expression of FXYD3 in MCF-7 breast cancer cells was ~eightfold and ~twofold higher than in non-cancer MCF-10A cells and MDA-MB-468 cancer cells, respectively. A ~50 % reduction in FXYD3 expression increased glutathionylation of the β1 Na(+)/K(+)-ATPase subunit and reduced Na(+)/K(+)-ATPase activity by ~50 %, consistent with the role of FXYD3 to facilitate reversal of glutathionylation of the β1 subunit of Na(+)/K(+)-ATPase and glutathionylation-induced inhibition of Na(+)/K(+)-ATPase. Treatment of MCF-7 and MDA-MB- 468 cells with doxorubicin or γ-radiation decreased cell viability and induced apoptosis. The treatments upregulated FXYD3 expression in MCF-7 but not in MDA-MB-468 cells and suppression of FXYD3 in MCF-7 but not in MDA-MB-468 cells amplified effects of treatments on Na(+)/K(+)-ATPase activity and treatment-induced cell death and apoptosis. Overexpression of FXYD3 may be a marker of resistance to cancer treatments and a potentially important therapeutic target.
Nuclear thioredoxin-1 is required to suppress cisplatin-mediated apoptosis of MCF-7 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiao-Ping; Liu, Shou; Tang, Wen-Xin
2007-09-21
Different cell line with increased thioredoxin-1 (Trx-1) showed a decreased or increased sensitivity to cell killing by cisplatin. Recently, several studies found that the subcellular localization of Trx-1 is closely associated with its functions. In this study, we explored the association of the nuclear Trx-1 with the cisplatin-mediated apoptosis of breast cancer cells MCF-7. Firstly, we found that higher total Trx-1 accompanied by no change of nuclear Trx-1 can not influence apoptosis induced by cisplatin in MCF-7 cells transferred with Trx-1 cDNA. Secondly, higher nuclear Trx-1 accompanied by no change of total Trx-1 can protect cells from apoptosis induced bymore » cisplatin. Thirdly, high nuclear Trx-1 involves in the cisplatin-resistance in cisplatin-resistive cells. Meanwhile, we found that the mRNA level of p53 is closely correlated with the level of nuclear Trx-1. In summary, we concluded that the nuclear Trx-1 is required to resist apoptosis of MCF-7 cells induced by cisplatin, probably through up-regulating the anti-apoptotic gene, p53.« less
Guo, Lei; Xiao, Yongsheng; Fan, Ming; Li, Jian Jian; Wang, Yinsheng
2015-01-02
Ionizing radiation is widely used in cancer therapy; however, cancer cells often develop radioresistance, which compromises the efficacy of cancer radiation therapy. Quantitative assessment of the alteration of the entire kinome in radioresistant cancer cells relative to their radiosensitive counterparts may provide important knowledge to define the mechanism(s) underlying tumor adaptive radioresistance and uncover novel target(s) for effective prevention and treatment of tumor radioresistance. By employing a scheduled multiple-reaction monitoring analysis in conjunction with isotope-coded ATP affinity probes, we assessed the global kinome of radioresistant MCF-7/C6 cells and their parental MCF-7 human breast cancer cells. We rigorously quantified 120 kinases, of which (1)/3 exhibited significant differences in expression levels or ATP binding affinities. Several kinases involved in cell cycle progression and DNA damage response were found to be overexpressed or hyperactivated, including checkpoint kinase 1 (CHK1), cyclin-dependent kinases 1 and 2 (CDK1 and CDK2), and the catalytic subunit of DNA-dependent protein kinase. The elevated expression of CHK1, CDK1, and CDK2 in MCF-7/C6 cells was further validated by Western blot analysis. Thus, the altered kinome profile of radioresistant MCF-7/C6 cells suggests the involvement of kinases on cell cycle progression and DNA repair in tumor adaptive radioresistance. The unique kinome profiling results also afforded potential effective targets for resensitizing radioresistant cancer cells and counteracting deleterious effects of ionizing radiation exposure.
A photoacoustic technique to measure the properties of single cells
NASA Astrophysics Data System (ADS)
Strohm, Eric M.; Berndl, Elizabeth S. L.; Kolios, Michael C.
2013-03-01
We demonstrate a new technique to non-invasively determine the diameter and sound speed of single cells using a combined ultrasonic and photoacoustic technique. Two cell lines, B16-F1 melanoma cells and MCF7 breast cancer cells were examined using this technique. Using a 200 MHz transducer, the ultrasound backscatter from a single cell in suspension was recorded. Immediately following, the cell was irradiated with a 532 nm laser and the resulting photoacoustic wave recorded by the same transducer. The melanoma cells contain optically absorbing melanin particles, which facilitated photoacoustic wave generation. MCF7 cells have negligible optical absorption at 532 nm; the cells were permeabilized and stained with trypan blue prior to measurements. The measured ultrasound and photoacoustic power spectra were compared to theoretical equations with the cell diameter and sound speed as variables (Anderson scattering model for ultrasound, and a thermoelastic expansion model for photoacoustics). The diameter and sound speed were extracted from the models where the spectral shape matched the measured signals. However the photoacoustic spectrum for the melanoma cell did not match theory, which is likely because melanin particles are located around the cytoplasm, and not within the nucleus. Therefore a photoacoustic finite element model of a cell was developed where the central region was not used to generate a photoacoustic wave. The resulting power spectrum was in better agreement with the measured signal than the thermoelastic expansion model. The MCF7 cell diameter obtained using the spectral matching method was 17.5 μm, similar to the optical measurement of 16 μm, while the melanoma cell diameter obtained was 22 μm, similar to the optical measurement of 21 μm. The sound speed measured from the MCF7 and melanoma cell was 1573 and 1560 m/s, respectively, which is within acceptable values that have been published in literature.
Bcl2-low-expressing MCF7 cells undergo necrosis rather than apoptosis upon staurosporine treatment.
Poliseno, Laura; Bianchi, Laura; Citti, Lorenzo; Liberatori, Sabrina; Mariani, Laura; Salvetti, Alessandra; Evangelista, Monica; Bini, Luca; Pallini, Vitaliano; Rainaldi, Giuseppe
2004-01-01
We present a ribozyme-based strategy for studying the effects of Bcl2 down-regulation. The anti-bcl2 hammerhead ribozyme Rz-bcl2 was stably transfected into MCF7 cancer cells and the cleavage of Bcl2 mRNA was demonstrated using a new assay for cleavage product detection, while Western blot analysis showed a concomitant depletion of Bcl2 protein. Rz-bcl2-expressing cells were more sensitive to staurosporine than control cells. Moreover, both molecular and cellular read-outs indicated that staurosporine-induced cell death was necrosis rather than apoptosis in these cells. The study of the effects of Bcl2 down-regulation was extended to the global MCF7 protein expression profile, exploiting a proteomic approach. Two reference electro-pherograms of Rz-bcl2-transfected cells, one with the ribozyme in a catalytically active form and the other with the ribozyme in a catalytically inactive form, were obtained. When comparing the two-dimensional maps, 53 differentially expressed spots were found, four of which were identified by MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS as calreticulin, nucleophosmin, phosphoglycerate kinase and pyruvate kinase. How the up-regulation of these proteins might help to explain the modification of Bcl2 activity is discussed. PMID:14748742
Zhu, Yaqin; Wang, Xiuxiu; Chen, Jing; Zhang, Jian; Meng, Fenghua; Deng, Chao; Cheng, Ru; Feijen, Jan; Zhong, Zhiyuan
2016-12-28
Nanotheranostics is a rapidly growing field combining disease diagnosis and therapy, which ultimately may add in the development of 'personalized medicine'. Here, we designed and developed bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels (HAI-NGs) for targeted X-ray computed tomography (CT) imaging and chemotherapy of MCF-7 human breast tumors. HAI-NGs were obtained with a small size of ca. 90nm, bright green fluoresence and high serum stability from hyaluronic acid-cystamine-tetrazole and reductively degradable polyiodixanol-methacrylate via nanoprecipitation and a photo-click crosslinking reaction. Notably, paclitaxel (PTX)-loaded HAI-NGs showed a fast glutathione-responsive drug release. Confocal microscopy displayed efficient uptake of HAI-NGs by CD44 overexpressing MCF-7 cells via a receptor-mediated mechanism. MTT assays revealed that HAI-NGs were nontoxic to MCF-7 cells even at a high concentration of 1mg/mL whereas PTX-loaded HAI-NGs exhibited strong inhibition of MCF-7 cells. The in vivo pharmcokinetics, near-infrared imaging and biodistribution studies revealed that HAI-NGs significantly prolonged the blood circulation time and enhanced tumor accumulation of PTX. Interestingly, significantly enhanced CT imaging was observed for MCF-7 breast tumors in nude mice via either intratumoral or intravenous injection of HAI-NGs as compared to iodixanol. HAI-NGs fluoresence was distributed thoughout the whole tumor indicating deep tumor penetration. PTX-loaded HAI-NGs showed effective suppression of tumor growth with little systemic toxicity. HAI-NGs appear as a "smart" theranostic nanoplatform for the treatment of CD44 positive tumors. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jozan, S.; Faye, J.C.; Tournier, J.F.
1985-11-27
The responsiveness of the human mammary carcinoma cell line MCF-7 to estradiol and tamoxifen treatment has been studied in different culture conditions. Cells from exponentially growing cultures were compared with cells in their initial cycles after replating from confluent cultures (''confluent-log'' cells). It has been observed that estradiol stimulation of tritiated thymidine incorporation decreases with cell density and that ''confluent-log'' cells are estrogen unresponsive for a period of four cell cycles in serum-free medium conditions. On the other hand, growth of cells replated from exponentially growing, as well as from confluent cultures, can be inhibited by tamoxifen or a combinedmore » treatment with tamoxifen and the progestin levonorgestrel. This growth inhibitory effect can be rescued by estradiol when cells are replated from exponentially growing cultures. The growth inhibitory effect cannot be rescued by estradiol alone (10(-10) to 10(-8) M) when cells are replated from confluent cultures. In this condition, the addition of steroid depleted serum is necessary to reverse the state of estradiol unresponsiveness. Serum can be replaced by high density lipoproteins but not by low density lipoproteins or lipoprotein deficient serum. The present data show that estradiol and HDL interact in the control of MCF-7 cell proliferation.« less
Jia, Tao; Zhang, Li; Duan, Yale; Zhang, Min; Wang, Gang; Zhang, Jun; Zhao, Zheng
2014-01-01
The mechanism underlying the differential cytotoxicity of curcumin in various cancer types, however, remains largely unclear. The aims of this study is to examine the concentration- and time-related effects of curcumin on two different breast cancer cells, MCF-7 and MDA-MB-231, and investigated the functional changes induced by curcumin treatment, as well as their relationship to the PI3K/Akt-SKP2-Cip/Kips pathway. First, WST-1 and clonogenic assay were performed to determine the cytotoxicity of curcumin in MCF-7 and MDA-MB-231 cells. Then, the expression of CDK interacting protein/Kinase inhibitory protein (Cip/Kips) members (p27, p21 and p57) and S-phase kinase-associated protein-2 (SKP2) was investigated by QRT PCR and Western Blotting. Curcumin's effect on PI3K (phosphatidylinositol 3-kinase) /Akt and its substrates Foxo1 and Foxo3a were then studied by Western Blotting. Small interfering RNAs (siRNAs) targeting SKP2 was used to explore the relationship between SKP2 and Cip/Kips members. Finally, WST-1 assay was tested to explore the concomitant treatment with curcumin and the inhibition of PKB or SKP2 signaling on curcumin sensitivity in MCF-7 and MDA-MB-231 cells. We demonstrated MCF-7 and MDA-MB-231 cells exhibited differential responses to curcumin by WST-1 and clonogenic assay (MDA-MB-231 cells was sensitive, and MCF-7 cells was resistant), which were found to be related to the differential curcumin-mediated regulation of SKP2-Cip/Kips (p21 and p27 but not p57) signaling. The differential cellular responses were further linked to the converse effects of curcumin on PI3K/Akt and its substrates Foxo1 and Foxo3a. Importantly, PI3K inhibitor wortmannin could counteract both curcumin-induced phosphorylation of Akt and up-regulation of SKP2 in MCF-7 cells. Subsequent WST-1 assay demonstrated concomitant treatment with curcumin and wortmannin or SKP2 siRNA not only further augmented curcumin sensitivity in MDA-MB-231 cells but also overcame curcumin resistance in MCF-7 cells. Our study established PI3K/Akt-SKP2-Cip/Kips signaling pathway is involved in the mechanism of action of curcumin and revealed that the discrepant modulation of this pathway by curcumin is responsible for the differential susceptibilities of these two cell types to curcumin.
Ghannam, Ahmed; Murad, Hossam; Jazzara, Marie; Odeh, Adnan; Allaf, Abdul Wahab
2018-03-01
Hydrocolloids from seaweeds (phycocolloids) have interesting functional properties like antiproliferative activity. Marine algae consumptions are linked to law cancer incidences in countries that traditionally consume marine products. In this study, we have investigated water-soluble sulfated polysaccharides isolated from the red seaweed Laurencia papillosa and determined their chemical characteristics and biological activities on the human breast cancer cell line MCF-7. Total polysaccharides were extracted and fractionated from L. papillosa and characterized using FTIR-ATR and NMR spectrometry. In addition, their approximate molar mass was determined by GPC method. The chemical characterization of purified polysaccharides reveals the presence of sulfated polysaccharides differentially dispersed in the algal cell wall. They are the three types of carrageenan, kappa, iota and lambda carrageenans, named LP-W1, -W2 and -W3 respectively. Biological effects and cytotoxicity of the identified of the three sulfated polysaccharide fractions were evaluated in MCF-7 cell line. Our results showed a significant inhibition of MCF-7 cell viability by dose-dependent manner for cells exposed to LP-W2 and LP-W3 polysaccharides for 24h. The mechanistic of LP fractions-mediated apoptosis in MCF-7 cells was demonstrated. The biological effects of L. papillosa SPs indicate that it may be a promising candidate for breast cancer prevention and therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patheja, Pooja, E-mail: pooja.patheja8@gmail.com; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra; Sahu, Khageswar
Infiltrating macrophages in tumor microenvironment, through their secreted cytokines and growth factors, regulate several processes of cancer progression such as cancer cell survival, proliferation, invasion, metastasis and angiogenesis. Recently, intercellular cytoplasmic bridges between cancer cells referred as tunneling nanotubes (TNTs) have been recognized as novel mode of intercellular communication between cancer cells. In this study, we investigated the effect of inflammatory mediators present in conditioned medium derived from macrophages on the formation of TNTs in breast adenocarcinoma cells MCF-7. Results show that treatment with macrophage conditioned medium (MφCM) not only enhanced TNT formation between cells but also stimulated the releasemore » of independently migrating viable cytoplasmic fragments, referred to as microplasts, from MCF-7 cells. Time lapse microscopy revealed that microplasts were released from parent cancer cells in extracellular space through formation of TNT-like structures. Mitochondria, vesicles and cytoplasm could be transferred from parent cell body to microplasts through connecting TNTs. The microplasts could also be resorbed into the parent cell body by retraction of the connecting TNTs. Microplast formation inhibited in presence cell migration inhibitor, cytochalasin-B. Notably by utilizing migratory machinery within microplasts, distantly located MCF-7 cells formed several TNT based intercellular connections, leading to formation of physically connected network of cells. Together, these results demonstrate novel role of TNTs in microplast formation, novel modes of TNT formation mediated by microplasts and stimulatory effect of MφCM on cellular network formation in MCF-7 cells mediated through enhanced TNT and microplast formation.« less
Venugopal, K; Rather, H A; Rajagopal, K; Shanthi, M P; Sheriff, K; Illiyas, M; Rather, R A; Manikandan, E; Uvarajan, S; Bhaskar, M; Maaza, M
2017-02-01
In the present report, silver nanoparticles were synthesized using Piper nigrum extract for in vitro cytotoxicity efficacy against MCF-7 and HEP-2 cells. The silver nanoparticles (AgNPs) were formed within 20min and after preliminarily confirmation by UV-Visible spectroscopy (strong peak observed at ~441nm), they were characterized by using FT-IR and HR-TEM. The TEM images show spherical shape of biosynthesized AgNPs with particle size in the range 5-40nm while as compositional analysis were observed by EDAX. MTT assays were carried out for cytotoxicity of various concentrations of biosynthesized silver nanoparticles and Piper nigrum extract ranging from 10 to 100μg. The biosynthesized silver nanoparticles showed a significant anticancer activity against both MCF-7 and Hep-2 cells compared to Piper nigrum extract which was dose dependent. Our study thus revealed an excellent application of greenly synthesized silver nanoparticles using Piper nigrum. The study further suggested the potential therapeutic use of these nanoparticles in cancer study. Copyright © 2016. Published by Elsevier B.V.
Yadav, Dharmendra Kumar; Kalani, Komal; Singh, Abhishek K; Khan, Feroz; Srivastava, Santosh K; Pant, Aditya B
2014-01-01
In the present work, QSAR model was derived by multiple linear regression method for the prediction of anticancer activity of 18β-glycyrrhetinic acid derivatives against the human breast cancer cell line MCF-7. The QSAR model for anti-proliferative activity against MCF-7 showed high correlation (r(2)=0.90 and rCV(2)=0.83) and indicated that chemical descriptors namely, dipole moment (debye), steric energy (kcal/mole), heat of formation (kcal/mole), ionization potential (eV), LogP, LUMO energy (eV) and shape index (basic kappa, order 3) correlate well with activity. The QSAR virtually predicted that active derivatives were first semi-synthesized and characterized on the basis of their (1)H and (13)C NMR spectroscopic data and then were in-vitro tested against MCF-7 cancer cell line. In particular, octylamide derivative of glycyrrhetinic acid GA-12 has marked cytotoxic activity against MCF-7 similar to that of standard anticancer drug paclitaxel. The biological assays of active derivative selected by virtual screening showed significant experimental activity.
Wang, Xin; Teng, Zhaogang; Wang, Haiyan; Wang, Chunyan; Liu, Ying; Tang, Yuxia; Wu, Jiang; Sun, Jin; Wang, Hai; Wang, Jiandong; Lu, Guangming
2014-01-01
Resistance to cytotoxic chemotherapy is the main cause of therapeutic failure and death in women with breast cancer. Overexpression of various members of the superfamily of adenosine triphosphate binding cassette (ABC)-transporters has been shown to be associated with multidrug resistance (MDR) phenotype in breast cancer cells. MDR1 protein promotes the intracellular efflux of drugs. A novel approach to address cancer drug resistance is to take advantage of the ability of nanocarriers to sidestep drug resistance mechanisms by endosomal delivery of chemotherapeutic agents. Doxorubicin (DOX) is an anthracycline antibiotic commonly used in breast cancer chemotherapy and a substrate for ABC-mediated drug efflux. In the present study, we developed breast cancer MCF-7 cells with overexpression of MDR1 and designed mesoporous silica nanoparticles (MSNs) which were used as a drug delivery system. We tested the efficacy of DOX in the breast cancer cell line MCF-7/MDR1 and in a MCF-7/MDR1 xenograft nude mouse model using the MSNs drug delivery system. Our data show that drug resistance in the human breast cancer cell line MCF-7/MDR1 can be overcome by treatment with DOX encapsulated within mesoporous silica nanoparticles.
Sun, Jie; Luo, Jun; Liu, Jun-Xia; Li, Da-Quan
2009-08-01
To investigate the expression pattern and preliminary function of OPN gene in mammary gland of dairy goat during different lactation stages, using b-actin gene as the internal control, the SYBR Green quantitative real-time PCR (QPCR) analysis was conducted to determine the mRNA expression of OPN gene in mammary gland at the 28th, 60th, 100th, 190th, 270th and 330th day after kidding. Recombinant plasmid of pcDNA3.1-OPN was constructed by inserting the fragment of OPN gene into eukaryotic expression vector pcDNA3.1 and used to transfect the MCF-7 cell line following the restrictive endonuclease cleavage and sequence identification of the target gene segment, the effect of OPN gene on MCF-7 cell proliferation was assessed by MTT analysis. The results indicated that OPN gene exhibited the higher expression level in early (28 d) and late (190 d) lactation stages and the lowest level at dry stage (330 d), which demonstrated a high-low-high-low pattern. There was a significant difference (P < 0. 05) in the proliferation between OPN gene transfected and non-transfected MCF-7 cells, which suggested that the expression of OPN gene could stimulate the proliferation of MCF-7 cells.
Darbre, Philippa D; Bakir, Ayse; Iskakova, Elzira
2013-11-01
Aluminium (Al) has been measured in human breast tissue, nipple aspirate fluid and breast cyst fluid, and recent studies have shown that at tissue concentrations, aluminium can induce DNA damage and suspension growth in human breast epithelial cells. This paper demonstrates for the first time that exposure to aluminium can also increase migratory and invasive properties of MCF-7 human breast cancer cells. Long-term (32 weeks) but not short-term (1 week) exposure of MCF-7 cells to 10(-4) M aluminium chloride or 10(-4) M aluminium chlorohydrate increased motility of the cells as measured by live cell imaging (cumulative length moved by individual cells), by a wound healing assay and by migration in real time through 8 μm pores of a membrane using xCELLigence technology. Long-term exposure (37 weeks) to 10(-4) M aluminium chloride or 10(-4) M aluminium chlorohydrate also increased the ability of MCF-7 cells to invade through a matrigel layer as measured in real time using the xCELLigence system. Although molecular mechanisms remain to be characterized, the ability of aluminium salts to increase migratory and invasive properties of MCF-7 cells suggests that the presence of aluminium in the human breast could influence metastatic processes. This is important because mortality from breast cancer arises mainly from tumour spread rather than from the presence of a primary tumour in the breast. © 2013.
ANTIPROLIFERATIVE EFFECT ON BREAST CANCER (MCF7) OF MORINGA OLEIFERA SEED EXTRACTS.
Adebayo, Ismail Abiola; Arsad, Hasni; Samian, Mohd Razip
2017-01-01
Moringa oleifera belongs to plant family, Moringaceae and popularly called "wonderful tree", for it is used traditionally to cure many diseases including cancer in Africa and Asia, however, there is limited knowledge on cytotoxic activity of Moringa oleifera seeds on MCF7 breast cancer cell. The present study evaluated antiproliferative effect on MCF7 of the seed. Seeds of Moringa oleifera were grinded to powder and its phytochemicals were extracted using water and 80% ethanol solvents, part of the ethanolic extract were sequentially partitioned to fractions with four solvents (hexane, dichloromethane, chloroform, and n-butanol). Antiproliferative effects on MCF7 of the samples were determined. Finally, potent samples that significantly inhibited MCF7 growth were tested on MCF 10A. Crude water extract, hexane and dichloromethane fractions of the seeds inhibited the proliferation of MCF7 with the following IC 50 values 280 μg/ml, 130 μg/ml and 26 μg/ml respectively, however, of the 3 samples, only hexane fraction had minimal cytotoxic effect on MCF 10A (IC 50 > 400μg/ml). Moringa oleifera seed has antiproliferative effect on MCF7.
Viedma-Rodríguez, Rubí; Ruiz Esparza-Garrido, Ruth; Baiza-Gutman, Luis Arturo; Velázquez-Flores, Miguel Ángel; García-Carrancá, Alejandro; Salamanca-Gómez, Fabio; Arenas-Aranda, Diego
2015-09-01
Majority of women with estrogen receptor (ER)-positive breast cancers initially respond to hormone therapies such as tamoxifen (TAM; antagonist of estrogen). However, many tumors eventually become resistant to TAM. Therefore, understanding the various cellular components involved in causing resistance to TAM is of paramount importance in designing novel entities for efficacious hormone therapy. Previously, we found that suppression of BIK gene expression induced TAM resistance in MCF-7 breast cancer cells. In order to understand the response of these cells to TAM and its association with resistance, a microarray analysis of gene expression was performed in the BIK-suppressed MCF-7 cells and compared it to the TAM-only-treated cells (controls). Several genes participating in various cellular pathways were identified. Molecules identified in the drug resistance pathway were 14-3-3z or YWHAZ, WEE1, PRKACA, NADK, and HSP90AA 1. Further, genes involved in cell cycle control, apoptosis, and cell proliferation were also found differentially expressed in these cells. Transcriptional and translational analysis of key molecules such as STAT2, AKT 3, and 14-3-3z revealed similar changes at the messenger RNA (mRNA) as well as at the protein level. Importantly, there was no cytotoxic effect of TAM on BIK-suppressed MCF-7 cells. Further, these cells were not arrested at the G0-G1 phase of the cell cycle although 30 % of BIK-suppressed cells were arrested at the G2 phase of the cycle on TAM treatment. Furthermore, we found a relevant interaction between 14-3-3z and WEE1, suggesting that the cytotoxic effect of TAM was prevented in BIK-suppressed cells because this interaction leads to transitory arrest in the G2 phase leading to the repair of damaged DNA and allowing the cells to proliferate.
Ligueros, M.; Jeoung, D.; Tang, B.; Hochhauser, D.; Reidenberg, M. M.; Sonenberg, M.
1997-01-01
The antiproliferative effects of gossypol on human MCF-7 mammary cancer cells and cyclin D1-transfected HT-1060 human fibrosarcoma cells were investigated by cell cycle analysis and effects on the cell cycle regulatory proteins Rb and cyclin D1. Flow cytometry of MCF-7 cells at 24 h indicated that 10 microM gossypol inhibited DNA synthesis by producing a G1/S block. Western blot analysis using anti-human Rb antibodies and anti-human cyclin D1 antibodies in MCF-7 cells and high- and low-expression cyclin D1-transfected fibrosarcoma cells indicated that, after 6 h exposure, gossypol decreased the expression levels of these proteins in a dose-dependent manner. Gossypol also decreased the ratio of phosphorylated to unphosphorylated Rb protein in human mammary cancer and fibrosarcoma cell lines. Gossypol (10 microM) treated also decreased cyclin D1-associated kinase activity on histone H1 used as a substrate in MCF-7 cells. These results suggest that gossypol might suppress growth by modulating the expression of cell cycle regulatory proteins Rb and cyclin D1 and the phosphorylation of Rb protein. Images Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:9218727
Yang, Pei-Ming; Tseng, Ho-Hsing; Peng, Chih-Wen; Chen, Wen-Shu; Chiu, Shu-Jun
2012-02-01
The outcome of producing apoptotic defects in cancer cells is the primary obstacle that limits the therapeutic efficacy of anticancer agents, and hence the development of novel agents targeting novel non-canonical cell death pathways has become an imperative mission for clinical research. Fisetin (3,3',4',7-tetrahydroxyflavone) is a naturally occurring flavonoid commonly found in fruits and vegetables. In this study, we investigated the potential anticancer effects of fisetin on breast cancer cells. The result showed fisetin induced higher cytotoxicity in human breast cancer MCF-7 than in MDA-MB-231 cells otherwise it did not exert any detectable cytotoxicity in non-tumorigenic MCF-10A cells. We found fisetin can trigger a novel form of atypical apoptosis in caspase-3-deficient MCF-7 cells, which was characterized by several apoptotic features, including plasma membrane rupture, mitochondrial depolarization, activation of caspase-7, -8 and -9, and PARP cleavage; however, neither DNA fragmentation and phosphotidylserine (PS) externalization was observed. Although p53 was also activated by fisetin, the fisetin-induced apoptosis was not rescued by the p53 inhibitor pifithrin-α. In contrast, the fisetin-induced apoptosis was abrogated by pan-caspase inhibitor z-VAD-fmk. Furthermore, inhibition of autophagy by fisetin was shown as additional route to prompt anticancer activity in MCF-7 cells. These data allow us to propose that fisetin appears as a new potential anticancer agent which can be applied to develop a clinical protocol of human breast cancers.
β-D-glucan inhibits endocrine-resistant breast cancer cell proliferation and alters gene expression
JAFAAR, ZAINAB M.T.; LITCHFIELD, LACEY M.; IVANOVA, MARGARITA M.; RADDE, BRANDIE N.; AL-RAYYAN, NUMAN; KLINGE, CAROLYN M.
2014-01-01
Endocrine therapies have been successfully used for breast cancer patients with estrogen receptor α (ERα) positive tumors, but ∼40% of patients relapse due to endocrine resistance. β-glucans are components of plant cell walls that have immunomodulatory and anticancer activity. The objective of this study was to examine the activity of β-D-glucan, purified from barley, in endocrine-sensitive MCF-7 versus endocrine-resistant LCC9 and LY2 breast cancer cells. β-D-glucan dissolved in DMSO but not water inhibited MCF-7 cell proliferation in a concentration-dependent manner as measured by BrdU incorporation with an IC50 of ∼164±12 μg/ml. β-D-glucan dissolved in DMSO inhibited tamoxifen/endocrine-resistant LCC9 and LY2 cell proliferation with IC50 values of 4.6±0.3 and 24.2±1.4 μg/ml, respectively. MCF-10A normal breast epithelial cells showed a higher IC50 ∼464 μg/ml and the proliferation of MDA-MB-231 triple negative breast cancer cells was not inhibited by β-D-glucan. Concentration-dependent increases in the BAX/BCL2 ratio and cell death with β-D-glucan were observed in MCF-7 and LCC9 cells. PCR array analysis revealed changes in gene expression in response to 24-h treatment with 10 or 50 μg/ml β-D-glucan that were different between MCF-7 and LCC9 cells as well as differences in basal gene expression between the two cell lines. Select results were confirmed by quantitative real-time PCR demonstrating that β-D-glucan increased RASSF1 expression in MCF-7 cells and IGFBP3, CTNNB1 and ERβ transcript expression in LCC9 cells. Our data indicate that β-D-glucan regulates breast cancer-relevant gene expression and may be useful for inhibiting endocrine-resistant breast cancer cell proliferation. PMID:24534923
The in vitro biological activity of Lepidium meyenii extracts.
Valentová, K; Buckiová, D; Kren, V; Peknicová, J; Ulrichová, J; Simánek, V
2006-03-01
The biological activity of methanolic and aqueous extracts from dehydrated hypocotyls of Lepidium meyenii (Brassicaceae, vernacular name "maca"), was studied on rat hepatocytes and human breast cancer MCF-7 cells. The extracts did not exhibit cytotoxicity in hepatocyte primary cultures up to 10 mg/ml as measured by the MTT viability test, and lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) leakage. Moreover, after 72 h, extracts inhibited LDH and AST leakage from the hepatocytes. When hepatocytes were intoxicated by t-butyl hydroperoxide, neither extract prevented oxidative damage. Both extracts showed weak antioxidant activity in the DPPH radical scavenging test with IC(50) values of 3.46 +/- 0.16 and 0.71 +/- 0.10 mg/ml, for aqueous and methanolic extracts, respectively. Thus, the observed effect on spontaneous enzyme leakage is probably mediated through mechanisms other than antioxidant activity. Both methanolic and aqueous extracts have shown estrogenic activity comparable with that of silymarin in MCF-7 cell line. Maca estrogenicity was exhibited in the range from 100 to 200 mug of extract per ml. The findings in the present study show that maca does not display in vitro hepatotoxicity. In contrast, a slight cytoprotective effect, probably not mediated by antioxidant capacity, was noted. Maca extracts exhibited estrogenic activity comparably to the effect of silymarin in MCF-7 cells.
Ortiz, Carmen; Morales, Luisa; Sastre, Miguel; Haskins, William E; Matta, Jaime
2016-01-01
Sandalwood essential oil (SEO) is extracted from Santalum trees. Although α-santalol, a main constituent of SEO, has been studied as a chemopreventive agent, the genotoxic activity of the whole oil in human breast cell lines is still unknown. The main objective of this study was to assess the cytotoxic and genotoxic effects of SEO in breast adenocarcinoma (MCF-7) and nontumorigenic breast epithelial (MCF-10A) cells. Proteins associated with SEO genotoxicity were identified using a proteomics approach. Commercially available, high-purity, GC/MS characterized SEO was used to perform the experiments. The main constituents reported in the oil were (Z)-α-santalol (25.34%), (Z)-nuciferol (18.34%), (E)-β-santalol (10.97%), and (E)-nuciferol (10.46%). Upon exposure to SEO (2-8 μg/mL) for 24 hours, cell proliferation was determined by the MTT assay. Alkaline and neutral comet assays were used to assess genotoxicity. SEO exposure induced single- and double-strand breaks selectively in the DNA of MCF-7 cells. Quantitative LC/MS-based proteomics allowed identification of candidate proteins involved in this response: Ku70 (p = 1.37E - 2), Ku80 (p = 5.8E - 3), EPHX1 (p = 3.3E - 3), and 14-3-3ζ (p = 4.0E - 4). These results provide the first evidence that SEO is genotoxic and capable of inducing DNA single- and double-strand breaks in MCF-7 cells.
Ortiz, Carmen; Morales, Luisa; Sastre, Miguel; Haskins, William E.; Matta, Jaime
2016-01-01
Sandalwood essential oil (SEO) is extracted from Santalum trees. Although α-santalol, a main constituent of SEO, has been studied as a chemopreventive agent, the genotoxic activity of the whole oil in human breast cell lines is still unknown. The main objective of this study was to assess the cytotoxic and genotoxic effects of SEO in breast adenocarcinoma (MCF-7) and nontumorigenic breast epithelial (MCF-10A) cells. Proteins associated with SEO genotoxicity were identified using a proteomics approach. Commercially available, high-purity, GC/MS characterized SEO was used to perform the experiments. The main constituents reported in the oil were (Z)-α-santalol (25.34%), (Z)-nuciferol (18.34%), (E)-β-santalol (10.97%), and (E)-nuciferol (10.46%). Upon exposure to SEO (2–8 μg/mL) for 24 hours, cell proliferation was determined by the MTT assay. Alkaline and neutral comet assays were used to assess genotoxicity. SEO exposure induced single- and double-strand breaks selectively in the DNA of MCF-7 cells. Quantitative LC/MS-based proteomics allowed identification of candidate proteins involved in this response: Ku70 (p = 1.37E − 2), Ku80 (p = 5.8E − 3), EPHX1 (p = 3.3E − 3), and 14-3-3ζ (p = 4.0E − 4). These results provide the first evidence that SEO is genotoxic and capable of inducing DNA single- and double-strand breaks in MCF-7 cells. PMID:27293457
Kadivar, Ali; Kamalidehghan, Behnam; Akbari Javar, Hamid; Karimi, Benyamin; Sedghi, Reihaneh; Noordin, Mohamed Ibrahim
2017-01-01
Recent cancer molecular therapies are targeting main functional molecules to control applicable process of cancer cells. Attractive targets are established by receptor tyrosine kinases, such as platelet-derived growth factor receptors (PDGFRs) and c-Kit as mostly irregular signaling, which is due to either over expression or mutation that is associated with tumorigenesis and cell proliferation. Imatinib mesylate is a selective inhibitor of receptor tyrosine kinase, including PDGFR-β and c-Kit. In this research, we studied how imatinib mesylate would exert effect on MCF7 and T-47D breast cancer and MCF 10A epithelial cell lines, the gene and protein expression of PDGFR-β, c-Kit and their relevant ligands platelet-derived growth factor (PDGF)-BB and stem cell factor (SCF). The MTS assay was conducted in therapeutic relevant concentration of 2–10 µM for 96, 120 and 144 h treatment. In addition, apoptosis induction and cytostatic activity of imatinib mesylate were investigated with the terminal deoxynucleotidyl transferase dUTP nick end labeling TUNEL and cell cycle assays, respectively, in a time-dependent manner. Comparative real-time PCR and Western blot analysis were conducted to evaluate the expression and regulation of imatinib target genes and proteins. Our finding revealed that imatinib mesylate antiproliferation effect, apoptosis induction and cytostatic activity were significantly higher in breast cancer cell lines compared to MCF 10A. This effect might be due to the expression of PDGFR-β, PDGF-BB, c-Kit and SCF, which was expressed by all examined cell lines, except the T-47D cell line which was not expressed c-Kit. However, examined gene and proteins expressed more in cancer cell lines. Therefore, imatinib mesylate was more effective on them. It is concluded that imatinib has at least two potential targets in both examined breast cancer cell lines and can be a promising drug for targeted therapy to treat breast cancer. PMID:28260860
Bharali, Dhruba J; Yalcin, Murat; Davis, Paul J; Mousa, Shaker A
2013-01-01
Aim The aim was to evaluate tetraiodothyroacetic acid (tetrac), a thyroid hormone analog of l-thyroxin, conjugated to poly(lactic-co-glycolic acid) nanoparticles (T-PLGA-NPs) both in vitro and in vivo for the treatment of drug-resistant breast cancer. Materials & methods The uptake of tetrac and T-PLGA-NPs in doxorubicin-resistant MCF7 (MCF7-Dx) cells was evaluated using confocal microscopy. Cell proliferation assays and a chick chorioallantoic membrane model of FGF2-induced angiogenesis were used to evaluate the anticancer effects of T-PLGA-NPs. In vivo efficacy was examined in a MCF7-Dx orthotopic tumor BALBc nude mouse model. Results T-PLGA-NPs were restricted from entering into the cell nucleus, and T-PLGA-NPs inhibited angiogenesis by 100% compared with 60% by free tetrac. T-PLGA-NPs enhanced inhibition of tumor-cell proliferation at a low-dose equivalent of free tetrac. In vivo treatment with either tetrac or T-PLGA-NPs resulted in a three- to five-fold inhibition of tumor weight. Conclusion T-PLGA-NPs have high potential as anticancer agents, with possible applications in the treatment of drug-resistant cancer. PMID:23448245
2011-01-01
Background Sensitivity of cancer cells to recombinant arginine deiminase (rADI) depends on expression of argininosuccinate synthetase (AS), a rate-limiting enzyme in synthesis of arginine from citrulline. To understand the efficiency of RNA interfering of AS in sensitizing the resistant cancer cells to rADI, the down regulation of AS transiently and permanently were performed in vitro, respectively. Methods We studied the use of down-regulation of this enzyme by RNA interference in three human cancer cell lines (A375, HeLa, and MCF-7) as a way to restore sensitivity to rADI in resistant cells. The expression of AS at levels of mRNA and protein was determined to understand the effect of RNA interference. Cell viability, cell cycle, and possible mechanism of the restore sensitivity of AS RNA interference in rADI treated cancer cells were evaluated. Results AS DNA was present in all cancer cell lines studied, however, the expression of this enzyme at the mRNA and protein level was different. In two rADI-resistant cell lines, one with endogenous AS expression (MCF-7 cells) and one with induced AS expression (HeLa cells), AS small interference RNA (siRNA) inhibited 37-46% of the expression of AS in MCF-7 cells. ASsiRNA did not affect cell viability in MCF-7 which may be due to the certain amount of residual AS protein. In contrast, ASsiRNA down-regulated almost all AS expression in HeLa cells and caused cell death after rADI treatment. Permanently down-regulated AS expression by short hairpin RNA (shRNA) made MCF-7 cells become sensitive to rADI via the inhibition of 4E-BP1-regulated mTOR signaling pathway. Conclusions Our results demonstrate that rADI-resistance can be altered via AS RNA interference. Although transient enzyme down-regulation (siRNA) did not affect cell viability in MCF-7 cells, permanent down-regulation (shRNA) overcame the problem of rADI-resistance due to the more efficiency in AS silencing. PMID:21453546
Lu, Peng-Wei; Li, Lin; Wang, Fang; Gu, Yuan-Ting
2018-06-01
The study intends to investigate the effects of long non-coding RNA HOST2 (lncRNA HOST2) on cell migration and invasion by regulating microRNA let-7b (let-7b) in breast cancer. Breast cancer and adjacent normal tissues were collected from 98 patients with breast cancer. Breast cancer MCF-7 cells were divided into the blank, negative control (NC), pcDNA3-Mock, siHOST2, let-7b inhibitor, pcDNA3-HOST2, let-7b mimic, pcDNA3-HOST2 + let-7b mimic, and siHOST2 + let-7b inhibitor groups. RT-qPCR was used to detect the mRNA expressions of HOST2, let-7b, and c-Myc. Western blotting was conducted to measure the c-Myc expression. Scratch test and Transwell assay were applied to detect the cell motility, migration, and invasion. Xenograft tumor in nude mice was performed to evaluate the effect of different transfection on the tumor growth. Compared with adjacent normal tissues, HOST2 expression was higher but let-7b expression lower in breast cancer tissues. HOST2 expression in breast cancer cells was remarkably increased compared with that in the normal breast epithelial MCF-10A cells. In MCF-7 cells, in comparison with the blank and NC groups, expressions of HOST2 and c-Myc were reduced, but let-7b expression was remarkably elevated in the siHOST2 and let-7b mimic groups; the let-7b inhibitor group exhibited higher expressions of HOST2 and c-Myc but lower let-7b expression. Overexpression of HOST2 could promote cell motility, migration and invasion, thus enhancing the growth of breast cancer tumor. By inhibiting HOST2, opposite trends were found. LncRNA HOST2 promotes cell migration and invasion by inhibiting let-7b in breast cancer patients. © 2017 Wiley Periodicals, Inc.
Ghorab, Mostafa M; Ragab, Fatma A; Heiba, Helmy I; Agha, Hebaallah M; Nissan, Yassin M
2012-01-01
A series of novel 4-(4-substituted-thiazol-2-ylamino)-N-(pyridin-2-yl) benzene-sulfonamides were synthesized and screened for their cytotoxic activity against human breast cancer cell line (MCF-7). Compounds 6, 7, 9, 10, 11, and 14 displayed significant activity against MCF-7 when compared to doxorubicin, which was used as a reference drug. The synergistic effect of Gamma radiation for the most active derivatives 7, 9, and 11 was also studied and their IC(50) values markedly decreased to 11.9 μM, 11.7 μM, and 11.6 μM, respectively.
Bontempo, Alexander; Ugalde-Villanueva, Brenda; Delgado-González, Evangelina; Rodríguez, Ángel Luis; Aceves, Carmen
2017-11-01
One of the most dreaded clinical events for an oncology patient is resistance to treatment. Chemoresistance is a complex phenomenon based on alterations in apoptosis, the cell cycle and drug metabolism, and it correlates with the cancer stem cell phenotype and/or epithelial-mesenchymal transition. Molecular iodine (I2) exerts an antitumor effect on different types of iodine-capturing neoplasms by its oxidant/antioxidant properties and formation of iodolipids. In the present study, wild-type breast carcinoma cells (MCF-7/W) were treated chronically with 10 nM doxorubicin (DOX) to establish a low-dose DOX-resistant mammary cancer model (MCF-7/D). MCF-7/D cells were established after 30 days of treatment when the culture showed a proliferation rate similar to that of MCF-7/W. These DOX-resistant cells also showed increases in p21, Bcl-2 and MDR-1 expression. Supplementation with 200 µM I2 exerted similar effects in both cell lines: it decreased the proliferation rate by ~40%, and I2 co-administration with DOX significantly increased the inhibitory effect (to ~60%) and also increased apoptosis (BAX/Bcl-2 index), principally by inhibiting Bcl-2 expression. The inhibition by I2 + DOX was also accompanied by impaired MDR-1 induction as well as by a significant increase in PPARγ expression. All of these changes could be attributed to enhanced DOX retention and differential down-selection of CD44+/CD24+ and E-cadherin+/vimentin+ subpopulations. I2 + DOX-selected cells showed a weak induction of xenografts in Foxn1nu/nu mice, indicating that the iodine supplements reversed the tumorogenic capacity of the MCF-7/D cells. In conclusion, I2 is able to reduce the drug resistance and invasive capacity of mammary cancer cells exposed to DOX and represents an anti-chemoresistance agent with clinical potential.
Li, Yuan; Shan, Fei; Chen, Jinglong
2017-03-21
The mechanisms of lipid raft regulation by microRNAs in breast cancer are not fully understood. This work focused on the evaluation and identification of miR-3908, which may be a potential biomarker related to the migration of breast cancer cells, and elucidates lipid-raft-regulating cell migration in breast cancer. To confirm the prediction that miR-3908 is matched with AdipoR1, we used 3'-UTR luciferase activity of AdipoR1 to assess this. Then, human breast cancer cell line MCF-7 was cultured in the absence or presence of the mimics or inhibitors of miR-3908, after which the biological functions of MCF-7 cells were analyzed. The protein expression of AdipoR1, AMPK, and SIRT-1 were examined. The interaction between AdipoR1 and Flotillin-1, or its effects on lipid rafts on regulating cell migration of MCF-7, was also investigated. AdipoR1 is a direct target of miR-3908. miR-3908 suppresses the expression of AdipoR1 and its downstream pathway genes, including AMPK, p-AMPK, and SIRT-1. miR-3908 enhances the process of breast cancer cell clonogenicity. miR-3908 exerts its effects on the proliferation and migration of MCF-7 cells, which are mediated by lipid rafts regulating AdipoR1's ability to bind Flotillin-1. miR-3908 is a crucial mediator of the migration process in breast cancer cells. Lipid rafts regulate the interactions between AdipoR1 and Flotillin-1 and then the migration process associated with miR-3908 in MCF-7 cells. Our findings suggest that targeting miR-3908 and the lipid raft, may be a promising strategy for the treatment and prevention of breast cancer.
Hassan, Zubaida; Mustafa, Shuhaimi; Rahim, Raha Abdul; Isa, Nurulfiza Mat
2016-03-01
Development of tumour that is resistant to chemotherapeutics and synthetic drugs, coupled with their life-threatening side effects and the adverse effects of surgery and hormone therapies, led to increased research on probiotics' anticancer potentials. The current study investigated the potential of live, heat-killed cells (HKC) and the cytoplasmic fractions (CF) of Enterococcus faecalis and Staphylococcus hominis as anti-breast cancer agents. MCF-7 cell line was treated with 25, 50, 100 and 200 μg/mL each of live, HKC and CF of the bacteria; and cytotoxicity was evaluated for 24, 48 and 72 h using MTT assay. The morphological features of the treated cells were examined by fluorescence microscopy. The stage of cell cycle arrest and apoptosis were quantified by flow cytometry. The bacterial effect on non-malignant breast epithelial cell line, MCF-10A, was assessed using MTT assay for 24, 48 and 72 h. All the three forms of the bacteria caused a significant decrease in MCF-7 (up to 33.29%) cell proliferation in concentration- and time-dependent manner. Morphological features of apoptosis like cell death, cell shrinkage and membrane blebbing were observed. Flow cytometry analyses suggested that about 34.60% of treated MCF-7 was undergoing apoptosis. A strong anti-proliferative activity was efficiently induced through sub-G1 accumulation (up to 83.17%) in treated MCF-7 and decreased number in the G0/G1 phase (74.39%). MCF-10A cells treated with both bacteria showed no significant difference with the untreated (>90% viability). These bacteria can be used as good alternative nutraceutical with promising therapeutic indexes for breast cancer because of their non-cytotoxic effects to normal cells.
Bai, Jie; Wang, Rui-Hui; Qiao, Yan; Wang, Aidong; Fang, Chen-Jie
2017-01-01
Multidrug resistance (MDR) is a huge obstacle in cancer chemotherapeutics. Overcoming MDR is a great challenge for anticancer drug discovery. Here, DNA binding and cytotoxicity of Schiff base L1 and L2 were explored to assess their efficiency in fighting cancer and overcoming the MDR. L1 and L2 could treat extremely chemoresistant MCF-7/ADR cell as drug-sensitive cell, with drug resistance index (DRI) <2.13, showing high potential in overcoming the MDR. The apoptotic ratio induced by L1 and L2 was low for both MCF-7 and MCF-7/ADR cells. L1 and L2 induced an impairment of cell cycle progression of MCF-7 and MCF-7/ADR cell lines and suppressed cell growth by perturbing progress through the G0/G1 phase, with L2 causing more profound effect, which might account for lower drug resistance after L2 treatment. The molecular docking revealed weak interaction between L1/L2 and P-glycoprotein (P-gp), the most important drug efflux pump and intracellular Rhodamine 123 accumulation indicated that the activity of P-gp was not inhibited by L1 and L2. Combined with the cellular uptake results, it implied that L1 and L2 could bypass P-gp efflux to exert anticancer activity.
Wang, Xiaohong; Xu, Chengfeng; Hua, Yitong; Sun, Leitao; Cheng, Kai; Jia, Zhongming; Han, Yong; Dong, Jianli; Cui, Yuzhen; Yang, Zhenlin
2016-12-01
Release of exosomes have been shown to play critical roles in drug resistance by delivering cargo. Targeting the transfer of exosomes from resistant cells to sensitive cells may be an approach to overcome some cases of drug resistance. In this study, we investigated the potential role of exosomes in the process of psoralen reverse multidrug resistance of MCF-7/ADR cells. Exosomes were isolated by differential centrifugation of culture media from MCF-7/ADR cells (ADR/exo) and MCF-7 parental cells (S/exo). Exosomes were characterized by morphology, exosomal markers and size distribution. The ability of ADR/exo to transfer multidrug resistance was assessed by MTT and real-time quantitative PCR. The different formation and secretion of exosomes were detected by immunofluorescence and transmission electron microscopy. Then we performed comparative transcriptomic analysis using RNA-Seq technology and real-time quantitative PCR to better understand the gene expression regulation in exosmes formation and release after psoralen treatment. Our data showed that exosomes derived from MCF-7/ADR cells were able to promote active sequestration of drugs and could induce a drug resistance phenotype by transferring drug-resistance-related gene MDR-1 and P-glycoprotein protein. Psoralen could reduce the formation and secretion of exosomes to overcome drug resistance. There were 21 differentially expressed genes. Gene ontology (GO) pathway analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the most significantly expressed genes were linked to PPAR and P53 signaling pathways which were related to exosomes formation, secretion and cargo sorting. Psoralen can affect the exosomes and induce the reduction of resistance transmission via exosomes might through PPAR and P53 signaling pathways, which might provide a novel strategy for breast cancer resistance to chemotherapy in the future.
Sinha, Birandra K; Kumar, Ashutosh; Mason, Ronald P
2017-07-01
Topoisomerase poisons are important drugs for the management of human malignancies. Nitric oxide ( • NO), a physiological signaling molecule, induces nitrosylation (or nitrosation) of many cellular proteins containing cysteine thiol groups, altering their cellular functions. Topoisomerases contain several thiol groups which are important for their activity and are also targets for nitrosation by nitric oxide. Here, we have evaluated the roles of • NO/ • NO-derived species in the stability and activity of topo II (α and β) both in vitro and in human MCF-7 breast tumor cells. Furthermore, we have examined the effects of • NO on the ATPase activity of topo II. Treatment of purified topo IIα and β with propylamine propylamine nonoate (PPNO), an NO donor, resulted in inhibition of the catalytic activity of topo II. Furthermore, PPNO significantly inhibited topo II-dependent ATP hydrolysis. • NO-induced inhibition of these topo II (α and β) functions resulted in a decrease in cleavable complex formation in MCF-7 cells in the presence of m-AMSA and XK469 and induced significant resistance to both drugs in MCF-7 cells. PPNO treatment resulted in the nitrosation of the topo II protein in MCF-7 cancer cells and inhibited both catalytic-, and ATPase activities of topo II. Furthermore, PPNO significantly affected the DNA damage and cytotoxicity of m-AMSA and XK469 in MCF-7 tumor cells. As tumors express nitric oxide synthase and generate • NO, inhibition of topo II functions by • NO/ • NO-derived species could render tumors resistant to certain topo II-poisons in the clinic.
Profiles of gene expression associated with tetracycline over expression of HSP70 in MCF-7 breast cancer cells.
Heat shock proteins (HSPs) protect cells from damage through their function as molecular chaperones. Some cancers reveal high levels of HSP70 expression in asso...
Fibroblasts regulate the migration of MCF7 mammary carcinoma cells in hydrated collagen gel.
Rossi, L; Reverberi, D; Capurro, C; Aiello, C; Cipolla, M; Bonanno, M; Podestà, G
1994-01-01
We have defined a tissue culture method suitable to study cell-cell interactions in an environmental set close to in vivo conditions. It consists of heterotypic cell populations mixed together inside a collagen gel in a chamber slide for a period of up to 14 days. When the three-dimensional system is saturated, cells will start to move on the plastic surface as monolayers surrounding the gel, with a characteristic speed depending on cell type. Usually fibroblasts move fast, while epithelial cells demonstrate a much lower pace of migration. At any given time gel contraction can be measured, and thus the rate of cell expansion, by knowing the distance from the edge of the gel to the leading edge of cell migration. By using this approach it was found that MCF7 mammary carcinoma cells display a great variety of morphologies following their mixture with different fibroblastic cell lines. In particular, when MCF7 cells were mixed with fibroblasts from human fetus, dog thymus and rat kidney, they migrated up to the leading edge of the fibroblastic front as isolated single cells or as cellular aggregates, many of which became necrotic in time, or took on an elongated morphology. Selective necrosis of MCF7 cells was also induced with serum concentration of 15% and 20% FCS, but only when they were mixed with fibroblasts. No necrosis was induced in MCF7 cells cultured alone. From these observations it is suggested that necrosis may sometimes favor the detachment and infiltration of resistant epithelial tumor cells by increasing their autonomous behaviour. Fibroblasts seem to be instrumental in regulating this process.
Lv, Li; Liu, Chunxia; Chen, Chuxiong; Yu, Xiaoxia; Chen, Guanghui; Shi, Yonghui; Qin, Fengchao; Ou, Jiebin; Qiu, Kaifeng; Li, Guocheng
2016-05-31
The combination of a chemotherapeutic drug with a chemosensitizer has emerged as a promising strategy for cancers showing multidrug resistance (MDR). Herein we describe the simultaneous targeted delivery of two drugs to tumor cells by using biotin-decorated poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles encapsulating the chemotherapeutic drug doxorubicin and the chemosensitizer quercetin (BNDQ). Next, the potential ability of BNDQ to reverse MDR in vitro and in vivo was investigated. Studies demonstrated that BNDQ was more effectively taken up with less efflux by doxorubicin-resistant MCF-7 breast cancer cells (MCF-7/ADR cells) than by the cells treated with the free drugs, single-drug-loaded nanoparticles, or non-biotin-decorated nanoparticles. BNDQ exhibited clear inhibition of both the activity and expression of P-glycoprotein in MCF-7/ADR cells. More importantly, it caused a significant reduction in doxorubicin resistance in MCF-7/ADR breast cancer cells both in vitro and in vivo, among all the groups. Overall, this study suggests that BNDQ has a potential role in the treatment of drug-resistant breast cancer.
Lee, Young-Rae; Noh, Eun-Mi; Han, Ji-Hey; Kim, Jeong-Mi; Hwang, Bo-Mi; Kim, Byeong-Soo; Lee, Sung-Ho; Jung, Sung Hoo; Youn, Hyun Jo; Chung, Eun Yong; Kim, Jong-Suk
2013-04-01
Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)-butane] is an isothiocyanate found in some cruciferous vegetables, especially broccoli. Sulforaphane has been shown to display anti-cancer properties against various cancer cell lines. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix (ECM), plays an important role in cancer cell invasion. In this study, we investigated the effect of sulforaphane on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion in MCF-7 cells. TPA-induced MMP-9 expression and cell invasion were decreased by sulforaphane treatment. TPA substantially increased NF-κB and AP-1 DNA binding activity. Pre-treatment with sulforaphane inhibited TPA-stimulated NF-κB binding activity, but not AP-1 binding activity. In addition, we found that sulforaphane suppressed NF-κB activation, by inhibiting phosphorylation of IκB in TPA-treated MCF-7 cells. In this study, we demonstrated that the inhibition of TPA-induced MMP-9 expression and cell invasion by sulforaphane was mediated by the suppression of the NF-κB pathway in MCF-7 cells.
Lee, Young-Rae; Noh, Eun-Mi; Han, Ji-Hey; Kim, Jeong-Mi; Hwang, Bo-Mi; Kim, Byeong-Soo; Lee, Sung-Ho; Jung, Sung Hoo; Youn, Hyun Jo; Chung, Eun Yong; Kim, Jong-Suk
2013-01-01
Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)-butane] is an isothiocyanate found in some cruciferous vegetables, especially broccoli. Sulforaphane has been shown to display anti-cancer properties against various cancer cell lines. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix (ECM), plays an important role in cancer cell invasion. In this study, we investigated the effect of sulforaphane on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion in MCF-7 cells. TPA-induced MMP-9 expression and cell invasion were decreased by sulforaphane treatment. TPA substantially increased NF-κB and AP-1 DNA binding activity. Pre-treatment with sulforaphane inhibited TPA-stimulated NF-κB binding activity, but not AP-1 binding activity. In addition, we found that sulforaphane suppressed NF-κB activation, by inhibiting phosphorylation of IκB in TPA-treated MCF-7 cells. In this study, we demonstrated that the inhibition of TPA-induced MMP-9 expression and cell invasion by sulforaphane was mediated by the suppression of the NF-κB pathway in MCF-7 cells. [BMB Reports 2013; 46(4): 201-206] PMID:23615261
Voels, Brent; Wang, Liping; Sens, Donald A; Garrett, Scott H; Zhang, Ke; Somji, Seema
2017-05-25
The 3rd isoform of the metallothionein (MT3) gene family has been shown to be overexpressed in most ductal breast cancers. A previous study has shown that the stable transfection of MCF-7 cells with the MT3 gene inhibits cell growth. The goal of the present study was to determine the role of the unique C-terminal and N-terminal sequences of MT3 on phenotypic properties and gene expression profiles of MCF-7 cells. MCF-7 cells were transfected with various metallothionein gene constructs which contain the insertion or the removal of the unique MT3 C- and N-terminal domains. Global gene expression analysis was performed on the MCF-7 cells containing the various constructs and the expression of the unique C- and N- terminal domains of MT3 was correlated to phenotypic properties of the cells. The results of the present study demonstrate that the C-terminal sequence of MT3, in the absence of the N-terminal sequence, induces dome formation in MCF-7 cells, which in cell cultures is the phenotypic manifestation of a cell's ability to perform vectorial active transport. Global gene expression analysis demonstrated that the increased expression of the GAGE gene family correlated with dome formation. Expression of the C-terminal domain induced GAGE gene expression, whereas the N-terminal domain inhibited GAGE gene expression and that the effect of the N-terminal domain inhibition was dominant over the C-terminal domain of MT3. Transfection with the metallothionein 1E gene increased the expression of GAGE genes. In addition, both the C- and the N-terminal sequences of the MT3 gene had growth inhibitory properties, which correlated to an increased expression of the interferon alpha-inducible protein 6. Our study shows that the C-terminal domain of MT3 confers dome formation in MCF-7 cells and the presence of this domain induces expression of the GAGE family of genes. The differential effects of MT3 and metallothionein 1E on the expression of GAGE genes suggests unique roles of these genes in the development and progression of breast cancer. The finding that interferon alpha-inducible protein 6 expression is associated with the ability of MT3 to inhibit growth needs further investigation.
Al-Sadoon, Mohamed K; Abdel-Maksoud, Mostafa A; Rabah, Danny M; Badr, Gamal
2012-01-01
We recently demonstrated that the snake venom extracted from Walterinnesia aegyptia (WEV) either alone or combined with silica nanoparticles (WEV+NP) enhanced the proliferation of mice immune cells and simultaneously decreased the proliferation of human breast carcinoma cell line (MDA-MB-231). However, the molecular mechanism of how this venom induced growth arrest of breast cancer cells has not been studied. In this context, we extended our study to evaluate the anti-tumor potential of WEV and WEV+NP on the human breast carcinoma cell lines MDA-MB-231 and MCF-7, as well as their effects on non-tumorigenic normal breast epithelial cells (MCF-10). The IC(50 )values of WEV alone and WEV+NP in these cell lines were determined to be 50 ng/ml and 20 ng/ml, respectively. Interestingly, at these concentrations, the venom did not affect the viability of normal MCF-10 cells and treatment of all these cell lines with NP alone did not affect their viability. Using annexin-V binding assay followed by flow cytometry analysis, we found that combination of WEV with NP strongly induced apoptosis in MDA-MB-231 and MCF-7 cancer cells without significant effect on normal MCF-10 cells. Furthermore, we found that WEV+NP decreased the expression of Bcl2 and enhanced the activation of caspase 3 in MDA-MB-231 and MCF-7 cells. Most importantly, WEV+NP-treated breast cancer cells, but not normal MCF-10 cells, exhibited a significant (P<0.05) reduction in actin polymerization and cytoskeletal rearrangement in response to CXCL12. Our data reveal biological effects of WEV or WEV+NP and the underlying mechanisms to fight breast cancer cells. Copyright © 2012 S. Karger AG, Basel.
2014-01-01
Background Saussurea lappa (SL) has been used as a traditional herbal medicine to treat abdominal pain and tenesmus, and has been suggested to possess various biological activities, including anti-tumor, anti-ulcer, anti-inflammatory, anti-viral, and cardiotonic activities. The effect of SL on breast cancer metastasis, however, is unknown. Cell migration and invasion are crucial in neoplastic metastasis. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix, is a major component in cancer cell invasion. Methods Cell viability was examined by MTT assay, whereas cell motility was measured by invasion assay. Western blot, Real-time PCR, and Zymography assays were used to investigate the inhibitory effects of ESL on matrix metalloproteinase-9 (MMP-9) expression level in MCF-7 cells. EMSA confirmed the inhibitory effects of ESL on DNA binding of NF- κB in MCF-7 cells. Results Cells threated with various concentrations of Saussurea lappa (ESL) for 24 h. Concentrations of 2 or 4 μM did not lead to a significant change in cell viability or morphology. Therefore, subsequent experiments utilized the optimal non-toxic concentration (2 or 4 μM) of ESL. In this study, we investigated the inhibitory effect of ethanol extract of ESL on MMP-9 expression and cell invasion in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MCF-7 cells. ESL inhibited the TPA-induced transcriptional activation of nuclear factor-kappa B (NF-κB). However, this result obtained that ESL did not block the TPA-induced phosphorylation of the kinases: p38, ERK, and JNK. Therefore, ELS-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of NF-kB pathway in MCF-7 cells. Conclusions These results indicate that ELS-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of NF-kB pathway in MCF-7 cells. Thus, ESL has potential for controlling breast cancer invasiveness in vitro. PMID:24885456
Zadeh, Masoud Maleki; Ranji, Najmeh; Majidi, Mohammad; Falahi, Fahimeh
2016-01-01
Purpose MicroRNAs (miRNAs) have received much attention owing to their aberrant expression in various stages of cancer. In many biological processes, miRNAs negatively regulate gene expression, and may be useful in therapeutic strategies. The present study evaluated the effects of silibinin (silybin), a natural flavonoid, on miRNA expression and attempted to elucidate therapeutic targets in MCF-7 breast cancer cells. Methods The rates of cell proliferation and apoptosis were determined in silibinin-treated and untreated MCF-7 cells. Furthermore, the expression levels of miR-21 and miR-155 were measured in MCF-7 cells after incubation with silibinin (100 µg/mL), and the putative targets of the miRNAs within the apoptotic pathways were predicted using bioinformatic approaches. The expression levels of some of these targets were evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results Silibinin induced apoptosis in MCF-7 cells in a dose- and time-dependent manner. qRT-PCR analysis revealed a decrease in miR-21 and miR-155 expression levels in silibinin-treated cells relative to the levels in the untreated cells. Potential miR-21 and miR-155 targets within the apoptotic pathways, such as CASP-9, BID, APAF-1, CASP-3, CASP-8, and PDCD4, were predicted by in silico analysis. qRT-PCR analysis showed upregulation of some of these potential targets including caspase-9 (CASP-9) and BID after silibinin treatment for 48 hours. Conclusion Our results suggest a correlation between the expression of miR-21 and miR-155, and MCF-7 cell proliferation. The antiproliferative activity of silibinin may partly be attributable to the downregulation of miR-21 and miR-155, and the upregulation of their apoptotic targets. Furthermore, the upregulation of CASP-9 and BID indicates that silibinin induces apoptosis through both the extrinsic and intrinsic pathways. PMID:27066095
Zadeh, Masoud Maleki; Motamed, Nasrin; Ranji, Najmeh; Majidi, Mohammad; Falahi, Fahimeh
2016-03-01
MicroRNAs (miRNAs) have received much attention owing to their aberrant expression in various stages of cancer. In many biological processes, miRNAs negatively regulate gene expression, and may be useful in therapeutic strategies. The present study evaluated the effects of silibinin (silybin), a natural flavonoid, on miRNA expression and attempted to elucidate therapeutic targets in MCF-7 breast cancer cells. The rates of cell proliferation and apoptosis were determined in silibinin-treated and untreated MCF-7 cells. Furthermore, the expression levels of miR-21 and miR-155 were measured in MCF-7 cells after incubation with silibinin (100 µg/mL), and the putative targets of the miRNAs within the apoptotic pathways were predicted using bioinformatic approaches. The expression levels of some of these targets were evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Silibinin induced apoptosis in MCF-7 cells in a dose- and time-dependent manner. qRT-PCR analysis revealed a decrease in miR-21 and miR-155 expression levels in silibinin-treated cells relative to the levels in the untreated cells. Potential miR-21 and miR-155 targets within the apoptotic pathways, such as CASP-9, BID, APAF-1, CASP-3, CASP-8, and PDCD4, were predicted by in silico analysis. qRT-PCR analysis showed upregulation of some of these potential targets including caspase-9 (CASP-9) and BID after silibinin treatment for 48 hours. Our results suggest a correlation between the expression of miR-21 and miR-155, and MCF-7 cell proliferation. The antiproliferative activity of silibinin may partly be attributable to the downregulation of miR-21 and miR-155, and the upregulation of their apoptotic targets. Furthermore, the upregulation of CASP-9 and BID indicates that silibinin induces apoptosis through both the extrinsic and intrinsic pathways.
Mukherjee, Ashis K; Saviola, Anthony J; Mackessy, Stephen P
2018-04-24
The present study highlights the cellular mechanism of resistance in human adenocarcinoma (Colo-205) cells against apoptosis induction by Rusvinoxidase, an L-amino acid oxidase purified from Russell's Viper venom (RVV). The significantly lower cytotoxicity as well as apoptotic activity of Rusvinoxidase towards Colo-205 cells (compared to MCF-7 breast cancer cells) is correlated with lower depletion of cellular glutathione content and increased down-regulation of catalase activity of Colo-205 cells following Rusvinoxidase treatment. Exposure to Rusvinoxidase subsequently diminished reactive oxygen species (ROS) production and failed to impair mitochondrial membrane potential, resulting in apoptosis induction resistance in Colo-205 cells. Further, higher expression levels of caspase 8, compared to caspase 9, indicate that Rusvinoxidase preferentially triggers the extrinsic pathway of apoptosis in Colo-205 cells. A time-dependent lower ratio of the relative expression of Bax and Bcl-xL (pro- and anti-apoptotic proteins) in Colo-205 cells, compared to our previous study on MCF-7 cells, unambiguously supports a higher cellular resistance mechanism in Colo-205 cells against Rusvinoxidase-induced apoptosis. Copyright © 2018. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoli; Wen, Zhifeng; Sun, Limei
2013-06-28
Highlights: •TRAF2 appears to interact with TRAF4 in breast cancer cell lines. •TRAF2 affects the localization and function of TRAF4 in breast cancer cell lines. •TRAF4 may play an important role in the activation of NF-κB via TRAF2. -- Abstract: Although numerous studies have shown that tumor necrosis factor receptor-associated factor 4 (TRAF4) plays an important role in the carcinogenesis of many tumor types, its exact molecular mechanism remains elusive. In this study, we examined the regulation function of TRAF2 to the cytoplasmic/nuclear distribution of TRAF4 in the breast cancer cell line. Using cell immunofluorescent staining, we found that TRAF2more » and TRAF4 were co-localized to the cytoplasm in MCF-7 cells. Co-immunoprecipitation showed that TRAF2 could interact with TRAF4 in MCF-10A, MCF-7 and MDA-MB-231 cell lines. Western blotting showed TRAF2 depletion by targeted siRNA in MDA-MB-231 cells led to reduced TRAF4 expression in the cytoplasm and augmented TRAF4 expression in the nucleus. Cytoplasmic expression of TRAF4 was augmented and nuclear expression was reduced when MCF-7 cells were transfected with hTRAF2pLPCX-HA-Flag/P874. MCF-7 cells expressing hTRAF2pLPCX-HA-Flag/P874 had enhanced cell proliferation rates. The nuclear expression of NF-κB significantly increased after TNF-α treatment. When hTRAF2pLPCX-HA-Flag/P874 and the siRNA-TRAF4 plasmid were cotransfected, the nuclear expression of NF-κB was significantly reduced compared with cells transfected with hTRAF2pLPCX-HA-Flag/P874 only. In conclusion, TRAF2 appears to interact with TRAF4 and affect the localization of TRAF4 in breast cancer cell lines. The overexpression of TRAF2 augmented the cytoplasmic expression of TRAF4 which promoted cell proliferation and inhibited cell apoptosis by activating NF-κB nuclear transcription. TRAF4 may play an important role in the activation of NF-κB via TRAF2.« less
Kasper, Grit; Reule, Matthias; Tschirschmann, Miriam; Dankert, Niels; Stout-Weider, Karen; Lauster, Roland; Schrock, Evelin; Mennerich, Detlev; Duda, Georg N; Lehmann, Kerstin E
2007-01-01
Background Stromelysin-3 (ST-3) is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. Methods The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. Results Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. Conclusion These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated "early stage" breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour fibroblasts leads to the stimulation of the IGF-1R pathway in carcinoma cells, thus enhancing their proliferative capacity. In addition, further different cellular processes seem to be activated by ST-3, possibly accounting for the dual role of ST-3 in tumour progression and metastasis. PMID:17233884
Altering calcium influx for selective destruction of breast tumor.
Yu, Han-Gang; McLaughlin, Sarah; Newman, Mackenzie; Brundage, Kathleen; Ammer, Amanda; Martin, Karen; Coad, James
2017-03-04
Human triple-negative breast cancer has limited therapeutic choices. Breast tumor cells have depolarized plasma membrane potential. Using this unique electrical property, we aim to develop an effective selective killing of triple-negative breast cancer. We used an engineered L-type voltage-gated calcium channel (Cec), activated by membrane depolarization without inactivation, to induce excessive calcium influx in breast tumor cells. Patch clamp and flow cytometry were used in testing the killing selectivity and efficiency of human breast tumor cells in vitro. Bioluminescence and ultrasound imaging were used in studies of human triple-negative breast cancer cell MDA-MB-231 xenograft in mice. Histological staining, immunoblotting and immunohistochemistry were used to investigate mechanism that mediates Cec-induced cell death. Activating Cec channels expressed in human breast cancer MCF7 cells produced enormous calcium influx at depolarized membrane. Activating the wild-type Cav1.2 channels expressed in MCF7 cells also produced a large calcium influx at depolarized membrane, but this calcium influx was diminished at the sustained membrane depolarization due to channel inactivation. MCF7 cells expressing Cec died when the membrane potential was held at -10 mV for 1 hr, while non-Cec-expressing MCF7 cells were alive. MCF7 cell death was 8-fold higher in Cec-expressing cells than in non-Cec-expressing cells. Direct injection of lentivirus containing Cec into MDA-MB-231 xenograft in mice inhibited tumor growth. Activated caspase-3 protein was detected only in MDA-MB-231 cells expressing Cec, along with a significantly increased expression of activated caspase-3 in xenograft tumor treated with Cec. We demonstrated a novel strategy to induce constant calcium influx that selectively kills human triple-negative breast tumor cells.
Patheja, Pooja; Sahu, Khageswar
2017-06-15
Infiltrating macrophages in tumor microenvironment, through their secreted cytokines and growth factors, regulate several processes of cancer progression such as cancer cell survival, proliferation, invasion, metastasis and angiogenesis. Recently, intercellular cytoplasmic bridges between cancer cells referred as tunneling nanotubes (TNTs) have been recognized as novel mode of intercellular communication between cancer cells. In this study, we investigated the effect of inflammatory mediators present in conditioned medium derived from macrophages on the formation of TNTs in breast adenocarcinoma cells MCF-7. Results show that treatment with macrophage conditioned medium (MɸCM) not only enhanced TNT formation between cells but also stimulated the release of independently migrating viable cytoplasmic fragments, referred to as microplasts, from MCF-7 cells. Time lapse microscopy revealed that microplasts were released from parent cancer cells in extracellular space through formation of TNT-like structures. Mitochondria, vesicles and cytoplasm could be transferred from parent cell body to microplasts through connecting TNTs. The microplasts could also be resorbed into the parent cell body by retraction of the connecting TNTs. Microplast formation inhibited in presence cell migration inhibitor, cytochalasin-B. Notably by utilizing migratory machinery within microplasts, distantly located MCF-7 cells formed several TNT based intercellular connections, leading to formation of physically connected network of cells. Together, these results demonstrate novel role of TNTs in microplast formation, novel modes of TNT formation mediated by microplasts and stimulatory effect of MɸCM on cellular network formation in MCF-7 cells mediated through enhanced TNT and microplast formation. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Yanan; Guo, Shan; Cheng, Shibo; Ji, Xinghu; He, Zhike
2017-08-15
The homeostasis of lysosomal pH is crucial in cell physiology. Developing small fluorescent nanosensors for lysosome imaging and ratiometric measurement of pH is highly demanded yet challenging. Herein, a pH-sensitive fluorescein tagged aptamer AS1411 has been utilized to covalently modify the label-free fluorescent silicon nanodots via a crosslinker for construction of a ratiometric pH biosensor. The established aptasensor exhibits the advantages of ultrasmall size, hypotoxicity, excellent pH reversibility and good photostability, which favors its application in an intracellular environment. Using human breast MCF-7 cancer cells and MCF-10A normal cells as the model, this aptasensor shows cell specificity for cancer cells and displays a wide pH response range of 4.5-8.0 in living cells. The results demonstrate that the pH of MCF-7 cells is 5.1, which is the expected value for acidic organelles. Lysosome imaging and accurate measurement of pH in MCF-7 cells have been successfully conducted based on this nanosensor via fluorescent microscopy and flow cytometry. Copyright © 2017 Elsevier B.V. All rights reserved.
Zeng, Liang; Yan, Jingna; Luo, Liyong; Ma, Mengjun; Zhu, Huiqun
2017-01-01
We were employing nanotechnology to improve the targeting ability of (−)-Epigallocatechin-3-gallate (EGCG) towards MCF-7 cells, and two kinds of EGCG nanoparticles (FA-NPS-PEG and FA-PEG-NPS) were obtained, besides, their characteristics and effects on MCF-7 cells were studied. The results indicated that (i) both FA-NPS-PEG and FA-PEG-NPS have high stabilities; (ii) their particles sizes were 185.0 ± 13.5 nm and 142.7 ± 7.2 nm, respectively; (iii) their encapsulation efficiencies of EGCG were 90.36 ± 2.20% and 39.79 ± 7.54%, respectively. (iv) there was no cytotoxicity observed in EGCG, FA-NPS-PEG and FA-PEG-NPS toward MCF-7 cells over all concentrations (0~400 μg/mL) tested; (v) EGCG, FA-NPS-PEG and FA-PEG-NPS inhibited MCF-7 cells proliferation in dose-dependent manners, with the average IC50 of 470.5 ± 33.0, 65.9 ± 0.4 and 66.6 ± 0.6 μg/mL; (vi) EGCG, FA-NPS-PEG and FA-PEG-NPS could modulated the expressions of several key regulatory proteins in PI3K-Akt pathway such as up-regulation of PTEN, p21 and Bax, and down-regulation of p-PDK1, p-AKT, CyclinD1 and Bcl-2, which gave an illustration about the mechanism by which EGCG nanoparticles inhibited MCF-7 cells proliferation. In this study, EGCG nanoparticles can significantly enhance the targeting ability and efficacy of EGCG, which is considered to an experimental foundation for further research on its activity, targeting ability and metabolism in vivo. PMID:28349962
NASA Astrophysics Data System (ADS)
Ahamed, Maqusood; Khan, M. A. Majeed; Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws
2016-07-01
We investigated the effect of Zn-doping on structural and optical properties as well as cellular response of TiO2 nanoparticles (NPs) in human breast cancer MCF-7 cells. A library of Zn-doped (1-10 at wt%) TiO2 NPs was prepared. Characterization data indicated that dopant Zn was incorporated into the lattice of host TiO2. The average particle size of TiO2 NPs was decreases (38 to 28 nm) while the band gap energy was increases (3.35 eV-3.85 eV) with increasing the amount of Zn-doping. Cellular data demonstrated that Zn-doped TiO2 NPs induced cytotoxicity (cell viability reduction, membrane damage and cell cycle arrest) and oxidative stress (reactive oxygen species generation & glutathione depletion) in MCF-7 cells and toxic intensity was increases with increasing the concentration of Zn-doping. Molecular data revealed that Zn-doped TiO2 NPs induced the down-regulation of super oxide dismutase gene while the up-regulation of heme oxygenase-1 gene in MCF-7 cells. Cytotoxicity induced by Zn-doped TiO2 NPs was efficiently prevented by N-acetyl-cysteine suggesting that oxidative stress might be the primarily cause of toxicity. In conclusion, our data indicated that Zn-doping decreases the particle size and increases the band gap energy as well the oxidative stress-mediated toxicity of TiO2 NPs in MCF-7 cells.
Chiu, Jen-Hwey; Chang, Chun-Ju; Wu, Jing-Chong; Liu, Hui-Ju; Wen, Che-Sheng; Hsu, Chung-Hua; Chen, Jiun-Liang; Tseng, Ling-Ming; Chen, Wei-Shone; Shyr, Yi-Ming
2014-01-01
Aim. Our aim the was to screen the commonly used Chinese herbs in order to detect changes in ERBB2 and ESR1 gene expression using MCF-7 cells. Methods. Using the MCF-7 human breast cancer cell line, cell cytotoxicity and proliferation were evaluated by MTT and trypan blue exclusion assays, respectively. A luciferase reporter assay was established by transient transfecting MCF-7 cells with plasmids containing either the ERBB2 or the ESR1 promoter region linked to the luciferase gene. Chinese herbal extracts were used to treat the cells at 24 h after transfection, followed by measurement of their luciferase activity. The screening results were verified by Western blotting to measure HER2 and ER α protein expression. Results. At concentrations that induced little cytotoxicity, thirteen single herbal extracts and five compound recipes were found to increase either ERBB2 or ESR1 luciferase activity. By Western blotting, Si-Wu-Tang, Kuan-Shin-Yin, and Suan-Tsao-Ren-Tang were found to increase either HER2 or ER α protein expression. In addition, Ligusticum chuanxiong was shown to have a great effect on ERBB2 gene expression and synergistically with estrogen to stimulate MCF-7 cell growth. Conclusion. Our results provide important information that should affect clinical treatment strategies among breast cancer patients who are receiving hormonal or targeted therapies.
NASA Astrophysics Data System (ADS)
Huang, Shengtang; Wan, Ying; Wang, Zheng; Wu, Jiliang
2013-12-01
Chitosan was conjugated with folic acid (FA) and the resulting chitosan derivatives with a FA-substitution degree of around 6 % was used to synthesize FA-conjugated chitosan-polylactide (FA-CH-PLA) copolymers to build a drug carrier with active targeting characteristics for the anticancer drug of paclitaxel (PTX). Selected FA-CH-PLAs with various polylactide percentages of about 40 wt% or lower were employed to fabricate nanoparticles using sodium tripolyphosphate as a crosslinker, and different types of nanoparticles were endued with similar average particle-sizes located in a range between 100 and 200 nm. Certain types of PTX-loaded FA-CH-PLA nanoparticles having encapsulation efficiency of around 90 % and initial load of about 12 % were able to release PTX in a controlled manner with significant regulation by polylactide content in FA-CH-PLAs. Targeting characteristic of achieved nanoparticles was confirmed using FA-receptor-expressed MCF-7 breast cancer cells. The uptake of PTX revealed that optimized FA-CH-PLA nanoparticles with an equivalent PTX-dose of around 1 μg/mL could have more than sixfold increasing abilities to facilitate intracellular paclitaxel accumulation in MCF-7 cells after 24 h treatment as compared to free PTX. At a relatively safe equivalent PTX-dose for normal MCF-10A mammary epithelial cells, the obtained results from Hoechst 33342 staining indicated that optimized PTX-loaded FA-CH-PLA nanoparticles had more than threefold increasing abilities to induce MCF-7 cell apoptosis in comparison to free PTX.
Seifaddinipour, Maryam; Farghadani, Reyhaneh; Namvar, Farideh; Mohamad, Jamaludin; Abdul Kadir, Habsah
2018-01-05
Pistachio ( Pistacia vera L.) hulls (PVLH) represents a significant by-product of industrial pistachio processing that contains high amounta of phenolic and flavonoid compounds known to act as antioxidants. The current study was designed to evaluate the anti-tumor and anti-angiogenic potentials of PVLH extracts. The cytotoxic effects of hexane, ethyl acetate, methanol, and water PVLH extracts toward human colon cancer (HT-29 and HCT-116), breast adenocarcinoma (MCF-7), lung adenocarcinoma (H23), liver hepatocellular carcinoma (HepG2), cervical cancer (Ca Ski), and normal fibroblast (BJ-5ta) cells were assessed using a MTT cell viability assay. Apoptosis induction was evaluated through the different nuclear staining assays and confirmed by flow cytometry analysis. Anti-angiogenic activities were also determined using chorioallantoic membrane (CAM) assay. PVLH ethyl acetate extracts (PVLH-EAE) demonstrated a suppressive effect with an IC 50 value of 21.20 ± 1.35, 23.00 ± 1.2 and 25.15 ± 1.85 µg/mL against MCF-7, HT-29 and HCT-116, respectively, after 72 h of treatment. Morphological assessment and flow cytometry analysis showed the potential of PVLH-EAE to induce apoptosis. PVLH-EAE at the highest concentration demonstrated significant inhibition of angiogenesis as comparing with control group. Also the expression of Bax increased and the expression of Bcl-2 decreased in treated MCF-7 cells. Thus, the apoptosis induction and angiogenesis potential of PVLH-EAE make it to be the most suitable for further cancer research study to deal with selective antitumor active substances to human cancers especially breast cancer.
TGF-β induces changes in breast cancer cell deformability.
Kulkarni, Ankur; Chatterjee, Aritra; Kondaiah, Paturu; Gundiah, Namrata
2018-05-10
Mechanical properties of cells regulate cell behaviors which lead to phenotypic changes that may aid in the development and progression of disease. In this study, we used atomic force microscopy (AFM) indentation with a spherical probe to characterize the elastic and viscoelastic properties of invasive (MDA-MB-231) and noninvasive (MCF-7) breast cancer cells treated with transforming growth factor-β (TGF-β). We also used confocal fluorescence imaging to investigate the sub-membrane cytoskeletal structure of the cells. Results showed significant alterations in moduli of both cell types after 24 hour TGF-β treatment which had a context dependent response; moduli for MDA-MB-231 decreased whereas MCF-7 demonstrated stiffening response. Viscoelastic characterization using stress relaxation tests showed increased fluid-like nature of MDA-MB-231 following TGF-β treatment and lower fluidity for MCF-7 cells. We also observed significant alterations in the expression and orientation of actin stress fibers with TGF-β treatment which correlated with the changes in cell mechanics. The less invasive MCF-7 cells had a delayed overall increase in cell deformability after 48 hour exposure to TGF-β; a similar trend was observed for MDA-MB cells. These changes may be important to facilitate migration, for instance, during metastasis of cancer cells through submicron sized spaces. © 2018 IOP Publishing Ltd.
Leone, Antonella; Lecci, Raffaella Marina; Durante, Miriana; Piraino, Stefano
2013-01-01
On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean “fried egg jellyfish” Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed. PMID:23697954
Leone, Antonella; Lecci, Raffaella Marina; Durante, Miriana; Piraino, Stefano
2013-05-22
On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean "fried egg jellyfish" Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7 and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed.
Sadler, Sara; Persons, Kelly S; Jones, Graham B; Ray, Rahul
2011-08-01
We hypothesized that expression of nuclear estrogen receptor (ER) in hormone-sensitive breast cancer cells could be harnessed synergistically with the tumor-accumulating effect of porphyrins to selectively deliver estrogen-porphyrin conjugates into breast tumor cells, and preferentially kill tumor cells upon exposure to visible light. In this study we synthesized a conjugate of C(17α)-alkynylestradiol and pyropheophorbide and demonstrated that this conjugate is internalized by ER-positive MCF-7 cells while pyropheophorbide did not, suggesting an ER-mediated uptake and internalization of the conjugate by incipient nuclear ER in MCF-7 cells. This study is a direct demonstration of our hypothesis about ER-mediated internalization of estrogen-porphyrin conjugates. Copyright © 2011. Published by Elsevier Ltd.
Fisher, G R; Patterson, L H; Gutierrez, P L
1993-09-01
Electron paramagnetic resonance (EPR/ESR) spin trapping studies with DMPO revealed that purified rat liver NAD(P)H (quinone-acceptor) oxidoreductase (QAO) mediated hydroxyl radical formation by a diverse range of quinone-based antitumour agents. However, when MCF-7 S9 cell fraction was the source of QAO, EPR studies distinguished four different interactions by these agents and QAO with respect to hydroxyl radical formation: (i) hydroxyl radical formation by diaziquone (AZQ), menadione, 1AQ; 1,5AQ and 1,8AQ was mediated entirely or partially by QAO in MCF-7 S9 fraction; (ii) hydroxyl radical formation by daunorubicin and Adriamycin was not mediated by QAO in MCF-7 S9 fraction; (iii) hydroxyl radical formation by mitomycin C was stimulated in MCF-7 S9 fraction when QAO was inhibited by dicumarol; (iv) no hydroxyl radical formation was detected for 1,4AQ or mitoxantrone in MCF-7 S9 fraction. This study shows that purified rat liver QAO can mediate hydroxyl radical formation by a variety of diverse quinone antitumour agents. However, QAO did not necessarily contribute to hydroxyl radical formation by these agents in MCF-7 S9 fraction and in the case of mitomycin C, QAO played a protective role against hydroxyl radical formation.
Zhaleh, M; Azadbakht, M; Bidmeshki Pour, A
2017-01-01
Staurospurine induces apoptosis in cell line. Bone Marrow Mesenchymal stem cells Soup is a promising tool for cell proliferation via a variety of secreted factors. In this study, we examined the effects of BMSCs Soup on Staurospurine induced-cell death in MCF-7 and AGS cells. There were three Groups: Group I: no incubation with BM Soup; Group II: incubated with 24 h BM Soup; Group III: incubation with 48 h BM Soup. There were two treatments in each group. The treatments were 1μM Staurospurine (Treatment 1) and 0.0 μM Staurospurine (Treatment 2). The cells were cultured in culture medium containing 0.2 % BSA. We obtained the cell viability, cell death and NO concentration. Our results showed that BM soup administration for 48 hours protectsed against 1μM staurosporine concentration induced cell death and reduced cell toxicity in MCF-7 and AGS cells. Cell viability and cell toxicity assay showed that BM soup in time dependent manner increased cell viability (p < 0.05) and cell death assay showed that cell death in time dependent manner was decreased(p < 0.05). Our data showed that BM soup with increasing NO concentration reduced staurospurine induced cell death and cell cytotoxicity (p < 0.05). It's concluded that BMSCs soup suppressed staurospurine-induced cytotoxicity activity process in MCF-7 and AGS cells (Fig. 9, Ref. 79).
ANTIPROLIFERATIVE EFFECT ON BREAST CANCER (MCF7) OF MORINGA OLEIFERA SEED EXTRACTS
Adebayo, Ismail Abiola; Arsad, Hasni; Samian, Mohd Razip
2017-01-01
Background: Moringa oleifera belongs to plant family, Moringaceae and popularly called “wonderful tree”, for it is used traditionally to cure many diseases including cancer in Africa and Asia, however, there is limited knowledge on cytotoxic activity of Moringa oleifera seeds on MCF7 breast cancer cell. The present study evaluated antiproliferative effect on MCF7 of the seed. Materials and Methods: Seeds of Moringa oleifera were grinded to powder and its phytochemicals were extracted using water and 80% ethanol solvents, part of the ethanolic extract were sequentially partitioned to fractions with four solvents (hexane, dichloromethane, chloroform, and n-butanol). Antiproliferative effects on MCF7 of the samples were determined. Finally, potent samples that significantly inhibited MCF7 growth were tested on MCF 10A. Results: Crude water extract, hexane and dichloromethane fractions of the seeds inhibited the proliferation of MCF7 with the following IC50 values 280 μg/ml, 130 μg/ml and 26 μg/ml respectively, however, of the 3 samples, only hexane fraction had minimal cytotoxic effect on MCF 10A (IC50 > 400μg/ml). Conclusion: Moringa oleifera seed has antiproliferative effect on MCF7. PMID:28573245
The apoptotic effects of silibinin on MDA-MB-231 and MCF-7 human breast carcinoma cells.
Bayram, D; Çetin, E S; Kara, M; Özgöçmen, M; Candan, I A
2017-06-01
Silibinin is a bioactive flavonolignan extracted from milk thistle, known as Silybum marianum. Silibinin exerts strong antiproliferative, proapoptotic, and anti-inflammatory effects. Many studies have shown that silibinin inhibits experimentally induced malignancies of the liver, prostate, skin, and colon as well as promotes inhibition of the proliferation of cancer cell lines in vitro. This study aimed to investigate the effects of silibinin on the human breast carcinoma cell lines MDA-MB-231 and MCF-7 in monolayer and spheroid cultures. The MDA-MB-231 and MCF-7 cell lines were cultured in both monolayer and spheroid cultures. Cells were treated with silibinin at 24, 48, and 72 h of incubation. The 5-bromo-2'-deoxyuridine labeling index was used to determine the cells of the synthesis phase. Poly-ADP-ribose-polimerase immunohistochemical staining and the terminal deoxynucleotidyl transferase dUTP nick and labeling assay were used to determine the death of cells in both the monolayer and spheroid cultures. An half maximal inhibitory concentration dose of silibinin in MDA-MB-231 and MCF-7 cells was 100 µM/mL at 24, 48, and 72 h of incubation. Terminal deoxynucleotidyl transferase dUTP nick and labeling positive cells and active poly-ADP-ribose-polimerase were detected after treatment with silibinin in both the monolayer and spheroid cultures. The dead cell count was higher in the MDA-MB-231 and MCF-7 cell lines with silibinin applied than in the controls. Our study demonstrated that silibinin applications enhanced terminal deoxynucleotidyl transferase dUTP nick and labeling positive cells and active poly-ADP-ribose-polimerase in comparison to the control in both the monolayer and spheroid cultures.
Micro-RNA-181a suppresses progestin-promoted breast cancer cell growth.
Gu, Muqing; Wang, Lijuan; Yang, Chun; Li, Xue; Jia, Chanwei; Croteau, Stephane; Ruan, Xiangyan; Hardy, Pierre
2018-08-01
Recent investigations have indicated that hormone therapy may increase the risk of breast cancer (BC), and the addition of synthetic progestins may play a critical role in this. Several studies have pointed out the important role of progesterone receptor membrane component 1 (PGRMC1) in the development of BC, especially with hormone therapy using progestins. Although the deregulation of microRNA-181a (miR-181a) is often associated with human BC, the effect of miR-181a on PGRMC1 expression during hormone therapy has not been investigated. Cell viability assay and apoptosis assay were performed to investigate the pro-BC effect of progestin (norethisterone, NET) and anti-BC effect of miR-181a on MCF-7 cells. Quantitative RT-PCR and Western blot analysis were used to evaluate gene expressions in the NET-treated MCF-7 cells. NET dose-dependently increased BC cell viability and this effect was accompanied by increased expression of PGRMC1. Overexpression of miR-181a strongly reduced the cell viability of MCF-7 cells, mainly through increased apoptosis, which was evidenced by substantially increased gene expression of pro-apoptosis factors such as BAX and CASPASE 9 in miR-181a overexpressed cells. Importantly, miR-181a abrogated NET-stimulated cell viability and PGRMC1 expression. We provide evidence that miR-181a promotes MCF-7 cell apoptosis. Moreover, miR-181a suppressed NET-provoked cell viability and PGRMC1 expression in MCF-7 cells. These data may suggest a therapeutic strategy of using miR-181a to reduce BC risk in progestin hormone replacement therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Estrogen and progesterone promote breast cancer cell proliferation by inducing cyclin G1 expression.
Tian, J-M; Ran, B; Zhang, C-L; Yan, D-M; Li, X-H
2018-01-23
Breast cancer is the most common cause of cancer among women in most countries (WHO). Ovarian hormone disorder is thought to be associated with breast tumorigenesis. The present study investigated the effects of estrogen and progesterone administration on cell proliferation and underlying mechanisms in breast cancer MCF-7 cells. It was found that a single administration of estradiol (E2) or progesterone increased MCF-7 cell viability in a dose-dependent manner and promoted cell cycle progression by increasing the percentage of cells in the G2/M phase. A combination of E2 and progesterone led to a stronger effect than single treatment. Moreover, cyclin G1 was up-regulated by E2 and/or progesterone in MCF-7 cells. After knockdown of cyclin G1 in MCF-7 cells using a specific shRNA, estradiol- and progesterone-mediated cell viability and clonogenic ability were significantly limited. Additionally, estradiol- and progesterone-promoted cell accumulation in the G2/M phase was reversed after knockdown of cyclin G1. These data indicated that estrogen and progesterone promoted breast cancer cell proliferation by inducing the expression of cyclin G1. Our data indicated that novel therapeutics against cyclin G1 are promising for the treatment of estrogen- and progesterone-mediated breast cancer progression.
Galavi, Hamid Reza; Saravani, Ramin; Shahraki, Ali; Ashtiani, Mojtaba
2016-11-01
Achillea wilhelmsii C. Koch contains a variety of components such as flavonoid. The previous studies showed that flavonoid has anti-cancer properties. The aim of the present study was to determine the anti-proliferative and apoptosis-inducing potential of hydroalcoholic Achillea wilhelmsii C. Koch extract (HAWE) on MCF-7 and MDA-Mb-468 human breast carcinoma cell lines. The anti-proliferative activity of HAWE was evaluated using MTT, flowcytometry by annexin V/PI double staining, and caspase-3 activity. The results of MTT showed that the ED50 of MCF-7 and MDA-Mb-468 was 25μg/ml of HAWE, 48h after treatment. Flowcytometry by annexin V/PI showed that HAWE induced late apoptosis in MCF-7 and early apoptosis in MDA-Mb-468. In addition, the caspase-3 colorimetric method showed that caspase-3 increased in the MDA-Mb-468 after treatment with HAWE. This study found that the hydroalcoholic extract of Achillea wilhelmsii C. Koch induced apoptosis in both the MCF-7 and MDA-Mb-468 human breast carcinoma cell lines.
Locklear, Tracie D.; Huang, Yue; Frasor, Jonna; Doyle, Brian J.; Perez, Alice; Gomez-Laurito, Jorge; Mahady, Gail. B.
2010-01-01
Objectives To investigate the biological activities of Justicia pectoralis Jacq. (Acanthaceae), an herbal medicine used in Costa Rica (CR) for the management of menopausal symptoms and dysmenorrhea. Study design The aerial parts of Justicia pectoralis were collected, dried and extracted in methanol. To establish possible mechanisms of action of JP for the treatment of menopausal symptoms, the estrogenic and progesterone agonist, and antiinflammatory activities were investigated. Main outcome measures The methanol extract (JP-M) was tested in ER and PR binding assays, a COX-2 enzyme inhibition assay, the ERβ-CALUX assay in U2-OS cells, as well as reporter and endogenous gene assays in MCF-7 K1 cells. Results The JP-M extract inhibited COX-2 catalytic activity (IC50 4.8µg/ml); bound to both ERα and ERβ (IC50 50 µg/ml and 23.1µg/ml, respectively); induced estrogen-dependent transcription in the ERβ-CALUX; and bound to the progesterone receptor (IC50 22.8 µg/ml). The extract also modulated the expression of endogenous estrogen responsive genes pS2, PR, and PTGES in MCF-7 cells at a concentration of 20 µg/ml. Activation of a 2 ERE-construct in transiently transfected MCF-7 cells by the extract was inhibited by the estrogen receptor antagonist ICI 182,780, indicating that the effects were mediated through the estrogen receptor. Finally, the extract weakly enhanced the proliferation of MCF-7 cells, however this was not statistically significant as compared with DMSO controls. Conclusions Extracts of J. pectoralis have estrogenic, progestagenic and anti-inflammatory effects, and thus have a plausible mechanism of action, explaining its traditional use for menopause and PMS. PMID:20452152
Batran, Rasha Z; Kassem, Asmaa F; Abbas, Eman M H; Elseginy, Samia A; Mounier, Marwa M
2018-07-23
A new set of 4-phenylcoumarin derivatives was designed and synthesized aiming to introduce new tubulin polymerization inhibitors as anti-breast cancer candidates. All the target compounds were evaluated for their cytotoxic effects against MCF-7 cell line, where compounds 2f, 3a, 3b, 3f, 7a and 7b, showed higher cytotoxic effect (IC 50 = 4.3-21.2 μg/mL) than the reference drug doxorubicin (IC 50 = 26.1 μg/mL), additionally, compounds 1 and 6b exhibited the same potency as doxorubicin (IC 50 = 25.2 and 28.0 μg/mL, respectively). The thiazolidinone derivatives 3a, 3b and 3f with potent and selective anticancer effects towards MCF-7 cells (IC 50 = 11.1, 16.7 and 21.2 μg/mL) were further assessed for tubulin polymerization inhibition effects which showed that the three compounds were potent tubulin polymerization suppressors with IC 50 values of 9.37, 2.89 and 6.13 μM, respectively, compared to the reference drug colchicine (IC 50 = 6.93 μM). The mechanistic effects on cell cycle progression and induction of apoptosis in MCF-7 cells were determined for compound 3a due to its potent and selective cytotoxic effects in addition to its promising tubulin polymerization inhibition potency. The results revealed that compound 3a induced cell cycle cessation at G2/M phase and accumulation of cells in pre-G1 phase and prevented its mitotic cycle, in addition to its activation of caspase-7 mediating apoptosis of MCF-7 cells. Molecular modeling studies for compounds 3a, 3b and 3f were carried out on tubulin crystallography, the results indicated that the compounds showed binding mode similar to the co-crystalized ligand; colchicine. Moreover, pharmacophore constructed models and docking studies revealed that thiazolidinone, acetamide and coumarin moieties are crucial for the activity. Molecular dynamics (MD) studies were carried out for the three compounds over 100 ps. MD results of compound 3a showed that it reached the stable state after 30 ps which was in agreement with the calculated potential and kinetic energy of compound 3a. Copyright © 2018 Elsevier Ltd. All rights reserved.
Harini, Lakshminarasimhan; Karthikeyan, Bose; Srivastava, Sweta; Suresh, Srinag Bangalore; Ross, Cecil; Gnanakumar, Georgepeter; Rajagopal, Srinivasan; Sundar, Krishnan; Kathiresan, Thandavarayan
2017-02-01
Breast cancer accounts for the first highest mortality rate in India and second in world. Though current treatment strategies are effectively killing cancer cells, they also end in causing severe side effects and drug resistance. Curcumin is a nutraceutical with multipotent activity but its insolubility in water limits its therapeutic potential as an anti-cancer drug. The hydrophilicity of curcumin could be increased by nanoformulation or changing its functional groups. In this study, curcumin is loaded on mesoporous silica nanoparticle and its anti-cancer activity is elucidated with MCF-7 cell death. Structural characteristics of Mobil Composition of Matter - 41(MCM-41) as determined by high-resolution transmission electron microscopy (HR-TEM) shows that MCM-41 size ranges from 100 to 200 nm diameters with pore size 2-10 nm for drug adsorption. The authors found 80-90% of curcumin is loaded on MCM-41 and curcumin is released efficiently at pH 3.0. The 50 µM curcumin-loaded MCM-41 induced 50% mortality of MCF-7 cells. Altogether, their results suggested that increased curcumin loading and sustained release from MCM-41 effectively decreased cell survival of MCF-7 cells in vitro.
Tan, Wen-Nee; Lim, Jia-Qin; Afiqah, Fatin; Nik Mohamed Kamal, Nik Nur Syazni; Abdul Aziz, Fatin Athirah; Tong, Woei-Yenn; Leong, Chean-Ring; Lim, Jun-Wei
2018-04-01
Garcinia atroviridis Griff. ex T. Anders. is used as a medication agent in folkloric medicine. The present study was to examine the chemical composition of the stem bark and leaf of G. atroviridis as well as their cytotoxic effects against MCF-7 cells. The constituents obtained by hydrodistillation were identified using GC-MS. The stem bark oil (EO-SB) composed mainly the palmitoleic acid (51.9%) and palmitic acid (21.9%), while the leaf oil (EO-L) was dominated by (E)-β-farnesene (58.5%) and β-caryophyllene (16.9%). Treatment of MCF-7 cells using EO-L (100 μg/mL) caused more than 50% cell death while EO-SB did not induce cytotoxic effect. EO-L has stimulated the growth of BEAS-2B normal cells, but not in MCF-7 cancerous cells. The IC 50 of EO-L in MCF-7 and BEAS-2B cells were 71 and 95 μg/mL, respectively. A combination treatment of EO-L and tamoxifen induced more cell death than the treatment with drug alone at lower doses.
Liang, Shih-Shin; Wang, Tsu-Nai; Tsai, Eing-Mei
2014-01-01
Phthalates are a class of plasticizers that have been characterized as endocrine disrupters, and are associated with genital diseases, cardiotoxicity, hepatotoxicity, and nephrotoxicity in the GeneOntology gene/protein database. In this study, we synthesized phthalic acid chemical probes and demonstrated differing protein–protein interactions between MCF-7 cells and MDA-MB-231 breast cancer cell lines. Phthalic acid chemical probes were synthesized using silicon dioxide particle carriers, which were modified using the silanized linker 3-aminopropyl triethoxyslane (APTES). Incubation with cell lysates from breast cancer cell lines revealed interactions between phthalic acid and cellular proteins in MCF-7 and MDA-MB-231 cells. Subsequent proteomics analyses indicated 22 phthalic acid-binding proteins in both cell types, including heat shock cognate 71-kDa protein, ATP synthase subunit beta, and heat shock protein HSP 90-beta. In addition, 21 MCF-7-specific and 32 MDA-MB-231 specific phthalic acid-binding proteins were identified, including related proteasome proteins, heat shock 70-kDa protein, and NADPH dehydrogenase and ribosomal correlated proteins, ras-related proteins, and members of the heat shock protein family, respectively. PMID:25402641
Effects of cholesterol on plasma membrane lipid order in MCF-7 cells by two-photon microscopy
NASA Astrophysics Data System (ADS)
Zeng, Yixiu; Chen, Jianling; Yang, Hongqin; Wang, Yuhua; Li, Hui; Xie, Shusen
2014-09-01
Lipid rafts are cholesterol- and glycosphingolipids- enriched microdomains on plasma membrane surface of mammal cells, involved in a variety of cellular processes. Depleting cholesterol from the plasma membrane by drugs influences the trafficking of lipid raft markers. Optical imaging techniques are powerful tools to study lipid rafts in live cells due to its noninvasive feature. In this study, breast cancer cells MCF-7 were treated with different concentrations of MβCD to deplete cholesterol and an environmentally sensitive fluorescence probe, Laurdan was loaded to image lipid order by two-photon microscopy. The generalized polarization (GP) values were calculated to distinguish the lipid order and disorder phase. GP images and GP distributions of native and cholesterol-depleted MCF-7 cells were obtained. Our results suggest that even at low concentration (0.5 mM) of MβCD, the morphology of the MCF-7 cells changes. Small high GP areas (lipid order phase) decrease more rapidly than low GP areas (lipid disorder phase), indicating that lipid raft structure was altered more severely than nonraft domains. The data demonstrates that cholesterol dramatically affect raft coverage and plasma membrane fluidity in living cells.
Bhatnagar, Priyanka; Kumari, Manisha; Pahuja, Richa; Pant, A B; Shukla, Y; Kumar, Pradeep; Gupta, K C
2018-06-01
To promote the specific targeting and elimination of CD44-positive cancer cells, berberine chloride (BRB)-encapsulated hyaluronic acid-grafted poly(lactic-co-glycolic acid) copolymer (BRB-d(HA)-g-PLGA) nanoparticles (NPs) were prepared. The targeted action of these NPs was compared to non-targeted BRB-loaded PLGA NPs and bulk BRB. The in vitro studies demonstrated faster release of BRB and increased cytotoxicity of BRB-d(HA)-g-PLGA NPs in Hela and MCF-7 cells in comparison to BRB-PLGA NPs and bulk BRB. The uptake of BRB-d(HA)-g-PLGA NPs was increased in case of MCF-7 cells as compared to HeLa cells owing to the higher expression of CD44 receptors on MCF-7 cells. The CD44 receptor-mediated uptake of these NPs was confirmed through competitive inhibition experiments. The in vitro results were further validated in vivo in Ehrlich Ascites Carcinoma (EAC)-bearing mice. EAC-bearing mice were injected intravenously with these NPs and the results obtained were compared with that of BRB-PLGA NPs and bulk BRB. BRB-d(HA)-g-PLGA NPs were found to significantly enhance apoptosis, sub-G1 content, life span, mean survival time, and ROS levels in EAC cells with subsequent decrease in mitochondrial membrane potential and tumor burden ion tumor-bearing mice. Taking into account the findings of in vitro and in vivo studies, the enhanced and targeted anti-tumor activity of HA-grafted PLGA copolymer-encapsulated NPs of BRB cannot be negated. Therefore, HA-grafted nanoparticle-based delivery of BRB may offer a promising and improved alternative for anti-tumor therapy.
Zhong, Jia-Teng; Yu, Jian; Wang, Hai-Jun; Shi, Yu; Zhao, Tie-Suo; He, Bao-Xia; Qiao, Bin; Feng, Zhi-Wei
2017-05-01
Nowadays, although chemotherapy is an established therapy for breast cancer, the molecular mechanisms of chemotherapy resistance in breast cancer remain poorly understood. This study aims to explore the effects of endoplasmic reticulum stress on autophagy, apoptosis, and chemotherapy resistance in human breast cancer cells by regulating PI3K/AKT/mTOR signaling pathway. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the cell viability of six human breast cancer cell lines (MCF-7, ZR-75-30, T47D, MDA-MB-435s, MDA-MB-453, and MDA-MB-231) treated with tunicamycin (5 µM), after which MCF-7 cells were selected for further experiment. Then, MCF-7 cells were divided into the control (without any treatment), tunicamycin (8 µ), BEZ235 (5 µ), and tunicamycin + BEZ235 groups. Cell viability of each group was testified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Western blotting was applied to determine the expressions of endoplasmic reticulum stress and PI3K/AKT/mTOR pathway-related proteins and autophagy- and apoptosis-related proteins. Monodansylcadaverine and Annexin V-fluorescein isothiocyanate/propidium iodide staining were used for determination of cell autophagy and apoptosis. Furthermore, MCF-7 cells were divided into the control (without any treatment), tunicamycin (5 µM), cisplatin (16 µM), cisplatin (16 µM) + BEZ235 (5 µM), tunicamycin (5 µM) + cisplatin (16 µM), and tunicamycin (5 µM) + cisplatin (16 µM) + BEZ235 groups. Cell viability and apoptosis were also evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Annexin V-fluorescein isothiocyanate/propidium iodide staining. In MCF-7 cells treated with tunicamycin, cell viability decreased significantly, but PEAK, eIF2, and CHOP were upregulated markedly and p-PI3K, p-AKT, and p-MTOR were downregulated in dose- and time-dependent manners. In the tunicamycin + BEZ235 group, the cell viability was lower and the apoptosis rate was higher than those of the control and monotherapy groups. Compared with the cisplatin group, the tunicamycin + cisplatin group showed a relatively higher growth inhibition rate; the growth inhibition rate substantially increased in the tunicamycin + cisplatin + BEZ235 group than the tunicamycin + cisplatin group. The apoptosis rate was highest in tunicamycin + cisplatin + BEZ235 group, followed by tunicamycin + cisplatin group and then cisplatin group. Our study provide evidence that endoplasmic reticulum stress activated by tunicamycin could promote breast cancer cell autophagy and apoptosis and enhance chemosensitivity of MCF-7 cells by inhibiting the PI3K/AKT/mTOR signaling pathway.
Geiger, Pamina; Mayer, Barbara; Wiest, Irmi; Schulze, Sandra; Jeschke, Udo; Weissenbacher, Tobias
2016-11-08
Galectin-1 (gal-1) belongs to the family of β-galactoside-binding proteins which primarily recognizes the Galβ1-4GlcNAc sequences of oligosaccharides associated with several cell surface glycoconjugates. The lectin recognizes correspondent glycoepitopes on human breast cancer cells. Galectin-1 is expressed both in normal and malignant tissues. Lymphatic organs naturally possessing high rates of apoptotic cells, express high levels of Galectin-1. Furthermore galectin-1 can initiate T cell apoptosis. Binding of galectin-1 to trophoblast tumor cells presenting the oncofetal Thomsen-Friedenreich (TF) carbohydrate antigen inhibits tumor cell proliferation. In this study we examined the impact galectin-1 has in vitro on cell proliferation, apoptotic potential and metabolic activity of MCF-7 and T-47D breast cancer cells in dependence to their expression of the Thomsen-Friedenreich (TF) tumor antigen. For proliferation and apoptosis assays cells were grown in presence of 10, 30 and 60 μg gal-1/ml medium. Cell proliferation was determined by a BrdU uptake ELISA. Detection of apoptotic cells was done by M30 cyto death staining, in situ nick translation and by a nucleosome ELISA method. Furthermore we studied the impact galectin-1 has on the metabolic activity of MCF-7 and T-47D cells in a homotypic three-dimensional spheroid cell culture model mimicking a micro tumour environment. Gal-1 inhibited proliferation of MCF-7 cells (strong expression of the TF epitope) but did not significantly change proliferation of T-47D cells (weak expression of the TF epitope). The incubation of MCF-7 cells with gal-1 raised number of apoptotic cells significantly. Treating the spheroids with 30 μg/ml galectin-1 in addition to standard chemotherapeutic regimes (FEC, TAC) resulted in further suppression of the metabolic activity in MCF-7 cells whereas T-47D cells were not affected. Our results demonstrate that galectin-1 can inhibit proliferation und metabolic cell activity and induce apoptosis in breast tumor cell lines with high expression levels of the Thomsen-Friedenreich (TF) antigen in monolayer and spheroid cell culture models.
Manna, Alak; De Sarkar, Sritama; De, Soumita; Bauri, Ajay K; Chattopadhyay, Subrata; Chatterjee, Mitali
2015-07-15
The 'two-faced' character of reactive oxygen species (ROS) plays an important role in cancer biology by acting as secondary messengers in intracellular signaling cascades, enhancing cell proliferation and survival, thereby sustaining the oncogenic phenotype. Conversely, enhanced generation of ROS can trigger an oxidative assault leading to a redox imbalance translating into an apoptotic cell death. Intrinsically, cancer cells have higher basal levels of ROS which if supplemented by additional oxidative insult by pro-oxidants can be cytotoxic, an example being Malabaricone-A (MAL-A). MAL-A is a plant derived diarylnonanoid, purified from fruit rind of the plant Myristica malabarica whose anti-cancer activity has been demonstrated in leukemic cell lines, the modality of cell death being apoptosis. This study aimed to compare the degree of effectiveness of MAL-A in leukemic vs. solid tumor cell lines. The cytotoxicity of MAL-A was evaluated by the MTS-PMS cell viability assay in leukemic cell lines (MOLT3, K562 and HL-60) and compared with solid tumor cell lines (MCF7, A549 and HepG2); further studies then proceeded with MOLT3 vs. MCF7 and A549. The contribution of redox imbalance in MAL-A induced cytotoxicity was confirmed by pre-incubating cells with an antioxidant, N-acetyl-L-cysteine (NAC) or a thiol depletor, buthionine sulfoximine (BSO). MAL-A induced redox imbalance was quantitated by flow cytometry, by measuring the generation of ROS and levels of non protein thiols using dichlorofluorescein diacetate (CM-H2DCFDA) and 5-chloromethylfluorescein diacetate (CMFDA) respectively. The activities of glutathione peroxidase (GPx), superoxide dismutase, catalase (CAT), NAD(P)H dehydrogenase (quinone 1) NQO1 and glutathione-S-transferase GST were measured spectrophotometrically. The mitochondrial involvement of MAL-A induced cell death was measured by evaluation of cardiolipin peroxidation using 10-N-nonyl acridine orange (NAO), transition pore activity with calcein-AM, while the mitochondrial transmembrane electrochemical gradient (∆ψ(m)) was measured by JC-1, fluorescence being acquired in a flow cytometer. The apoptotic mode of cell death was evaluated by double staining with annexin V-FITC and propidium iodide (PI), cell cycle analysis by flow cytometry and caspase-3 activity spectrophotometrically. The expression of Nrf2 and HO-1 was examined by western blotting. MAL-A demonstrated a higher degree of cytotoxicity in three leukemic cell lines whose IC50 ranged from 12.70 ± 0.10 to 18.10 ± 0.95 µg/ml, whereas in three solid tumor cell lines, the IC50 ranged from 28.10 ± 0.58 to 55.26 ± 5.90 µg/ml. This higher degree of cytotoxicity in MOLT3, a leukemic cell line was due to a higher induction of redox imbalance, evident by both an increased generation of ROS and concomitant depletion of thiols. This was confirmed by pre-incubation with NAC and BSO, wherein NAC decreased MAL-A induced cytotoxicity by 2.04 fold while BSO enhanced MAL-A cytotoxicity and decreased the IC50 by 5.60 fold. However, in solid tumor cell lines (MCF7 and A549), NAC minimally decreased MAL-A induced cytotoxicity, and BSO increased the IC50 by 1.96 and 2.39 fold respectively. Furthermore, the generation of ROS by MAL-A increased maximally in MOLT3 as the fluorescence increased from 44.28 ± 7.85 to 273.99 ± 32.78, and to a lesser degree in solid tumor cell lines, MCF7 (44.28 ± 14.89 to 207.97 ± 70.64) and A549 (37.87 ± 3.24 to 147.12 ± 38.53). In all three cell lines there was a concomitant depletion of thiols as in MOLT3, the GMFC decreased from 340.65 ± 60.39 to 62.67 ± 11.32, in MCF7 (277.82 ± 50.32 to 100.39 ± 31.93) and in A549 (274.05 ± 59.13 to 83.15 ± 21.43). In MOLT3 as compared to MCF7 and A549, decrease in the activities of GPx, CAT, NQO1 and GST was substantially greater. In all cell lines, the MAL-A induced redox imbalance translated into triggering of initial mitochondrial apoptotic events. Here again, MAL-A induced a higher degree of cardiolipin peroxidation in MOLT3 (67.01%) than MCF7 and A549 (29.15% and 44.30%), as also down regulated the mitochondrial transition pore activity from baseline to a higher extent, GMFC being 48.05 ± 2.37 to 10.70 ± 3.97 (MOLT3), 43.55 ± 3.36 to 15.36 ± 0.60 (MCF7) and 39.58 ± 0.4 to 12.65 ± 1.56 (A549). Perturbation of mitochondrial membrane potential evident by a decrease in the ratio of red/green (J-aggregates/monomers) was 134 fold (14.73/0.11) in MOLT3, 45 fold in MCF7 (20.72/0.46) and 34 fold in A549 (22.01/0.64). The extent of apoptosis using a similar concentration of MAL-A was maximal in MOLT3, wherein a 105 fold increase in annexin V binding was evident (0.83 ± 0.51 to 87.08 ± 9.85%) whereas it increased by 43.11 fold in MCF7 (0.69 ± 0.30 to 29.75 ± 11.79%) and 47.52 fold in A549 (0.61 ± 0.31 to 28.99 ± 17.21%). MAL-A induced apoptosis was also associated with a higher degree of caspase-3 activity in MOLT3 vs. MCF7 or A549 which translated into halting of cell cycle progression, evident by an increment in the sub-G0/G1 population [19.26 fold in MOLT3 (0.95 ± 0.45 vs. 18.30 ± 1.90%), 11.01 fold in MCF7 (0.97 ± 0.37 vs. 10.68 ± 0.69%) and 8.58 fold in A549 (1.06 ± 0.45 vs. 9.10 ± 1.05%)]. MAL-A effectively inhibited Nrf2 and HO-1, more prominently in MOLT3. Furthermore, the decreased expression of Nrf2 in MOLT3 correlated with the decreased activities of NQO1 and GST, suggesting that targeting of the Nrf2 anti-oxidant pathway could be considered. Taken together, MAL-A a pro-oxidant compound is likely to be more effective in leukemias, meriting further pharmacological consideration. Copyright © 2015. Published by Elsevier GmbH.
NASA Astrophysics Data System (ADS)
Gillies, D.; Gamal, W.; Downes, A.; Reinwald, Y.; Yang, Y.; El Haj, A.; Bagnaninchi, P. O.
2017-02-01
There is an unmet need in tissue engineering for non-invasive, label-free monitoring of cell mechanical behaviour in their physiological environment. Here, we describe a novel optical coherence phase microscopy (OCPM) set-up which can map relative cell mechanical behaviour in monolayers and 3D systems non-invasively, and in real-time. 3T3 and MCF-7 cells were investigated, with MCF-7 demonstrating an increased response to hydrostatic stimulus indicating MCF-7 being softer than 3T3. Thus, OCPM shows the ability to provide qualitative data on cell mechanical behaviour. Quantitative measurements of 6% agarose beads have been taken with commercial Cell Scale Microsquisher system demonstrating that their mechanical properties are in the same order of magnitude of cells, indicating that this is an appropriate test sample for the novel method described.
Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M.A.; Ahamed, Maqusood
2015-01-01
We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33–55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved. PMID:26347142
NASA Astrophysics Data System (ADS)
Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws; Majeed Khan, M. A.; Ahamed, Maqusood
2015-09-01
We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of AlxZn1-xO nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 & caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.
Lei, Bingli; Xu, Jie; Peng, Wei; Wen, Yu; Zeng, Xiangying; Yu, Zhiqiang; Wang, Yipei; Chen, Tian
2017-01-01
The potentially adverse health implications of bisphenol A (BPA) have led to increasing use of alternative bisphenols (BPs). However, little is known about the toxicity of alternative BPs. In this study, the cytotoxicity, genotoxicity, intracellular ROS formation, and Ca 2+ fluctuation effects of BPs on MCF-7 cells were evaluated. At the same time, the estrogenic and thyroidal hormone effect potentials of six BPs were also evaluated using two-hybrid yeast bioassay. The results showed that most BPs at 0.01-1 μM significantly increased cell viability in MCF-7 cells and at higher exposure concentrations of 25-100 μM, they caused a significant decrease of cell viability. At the same time, these BPs also at 25-100 μM significantly increased LDH release of MCF-7 cells. In addition, several BPs at 10-50 μM resulted in a significantly concentration-depended increase in DNA-damaging effect on MCF-7 cells and elevated ROS production. Most BPs at 0.0001-10 μM significantly increased intracellular Ca 2+ level. These results showed that bisphenol AF (BPAF) and thiodiphenol (TDP) exerted cell biological effect, estrogenic, and thyroidal effect potentials greater than those of BPA. The cytotoxicity and endocrine disrupting effects of other BPs are similar to or slightly lower than those of BPA. Therefore, as potential alternatives to BPA, endocrine disrupting effects and potential health harm of alternative BPs to human can also not be ignored. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 278-289, 2017. © 2016 Wiley Periodicals, Inc.
Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Majeed Khan, M A; Ahamed, Maqusood
2015-09-08
We investigated whether Aluminum (Al) doping tunes band gap energy level as well as selective cytotoxicity of ZnO nanoparticles in human breast cancer cells (MCF-7). Pure and Al-doped ZnO nanoparticles were prepared by a simple sol-gel method. Characterization study confirmed the formation of single phase of Al(x)Zn(1-x)O nanocrystals with the size range of 33-55 nm. Al-doping increased the band gap energy of ZnO nanoparticles (from 3.51 eV for pure to 3.87 eV for Al-doped ZnO). Al-doping also enhanced the cytotoxicity and oxidative stress response of ZnO nanoparticles in MCF-7 cells. The IC50 for undoped ZnO nanoparticles was 44 μg/ml while for the Al-doped ZnO counterparts was 31 μg/ml. Up-regulation of apoptotic genes (e.g. p53, bax/bcl2 ratio, caspase-3 &caspase-9) along with loss of mitochondrial membrane potential suggested that Al-doped ZnO nanoparticles induced apoptosis in MCF-7 cells through mitochondrial pathway. Importantly, Al-doping did not change the benign nature of ZnO nanoparticles towards normal cells suggesting that Al-doping improves the selective cytotoxicity of ZnO nanoparticles toward MCF-7 cells without affecting the normal cells. Our results indicated a novel approach through which the inherent selective cytotoxicity of ZnO nanoparticles against cancer cells can be further improved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chun, Sung Kook; Department of Biological Sciences, Seoul National University, Seoul, 151-747; Department of Brain & Cognitive Sciences, Seoul National University, Seoul, 151-747
Disruption of circadian rhythm is a major cause of breast cancer in humans. Cryptochrome (CRY), a circadian transcription factor, is a risk factor for initiation of breast cancer, and it is differentially expressed between normal and breast cancer tissues. Here, we evaluated the anti-proliferative and pro-apoptotic activity of KS15, a recently discovered small-molecule inhibitor of CRY, in human breast cancer cells. First, we investigated whether KS15 treatment could promote E-box-mediated transcription by inhibiting the activity of CRY in MCF-7 human breast cancer cells. Protein and mRNA levels of regulators of cell cycle and apoptosis, as well as core clock genes,more » were differentially modulated in response to KS15. Next, we investigated whether KS15 could inhibit proliferation and increase sensitivity to anti-tumor drugs in MCF-7 cells. We found that KS15 decreased the speed of cell growth and increased the chemosensitivity of MCF-7 cells to doxorubicin and tamoxifen, but had no effect on MCF-10A cells. These findings suggested that pharmacological inhibition of CRY by KS15 exerts an anti-proliferative effect and increases sensitivity to anti-tumor drugs in a specific type of breast cancer. - Highlights: • Cryptochrome inhibitor (KS15) has anti-tumor activity to human breast cancer cells. • KS15 induces differential changes in cell cycle regulators and pro-apoptotic genes. • KS15 inhibits MCF-7 cell growth and enhances susceptibility to anti-tumor drugs.« less
Kanaujiya, Jitendra Kumar; Lochab, Savita; Kapoor, Isha; Pal, Pooja; Datta, Dipak; Bhatt, Madan L B; Sanyal, Sabyasachi; Behre, Gerhard; Trivedi, Arun Kumar
2013-07-01
Nuclear receptor coregulators play an important role in the transcriptional regulation of nuclear receptors. In the present study, we aimed to identify estrogen receptor α (ERα) interacting proteins in Tamoxifen treated MCF7 cells. Using in vitro GST-pull down assay with ERα ligand-binding domain (ERα-LBD) and MS-based proteomics approach we identified Profilin1 as a novel ERα interacting protein. Profilin1 contains I/LXX/L/H/I amino acid signature motif required for corepressor interaction with ERα. We show that these two proteins physically interact with each other both in vitro as well as in vivo by GST-pull down and coimmunoprecipitation, respectively. We further show that these two proteins also colocalize together in the nucleus. Previous studies have reported reduced expression of Profilin1 in breast cancer; and here we found that Tamoxifen increases Profilin1 expression in MCF7 cells. Our data demonstrate that over expression of Profilin1 inhibits ERα-mediated transcriptional activation as well as its downstream target genes in ERα positive breast cancer cells MCF7. In addition, Profilin1 overexpression in MCF7 cells leads to inhibition of cell proliferation that apparently is due to enhanced apoptosis. In nutshell, these data indicate that MS-based proteomics approach identifies a novel ERα interacting protein Profilin1 that serves as a putative corepressor of ERα functions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
El-Ariss, Mohamad
Cancer is the leading cause of death in Canada and is responsible for about 30% of all deaths in the country.[1] It is estimated that by 2015, one in four Canadians (24% women and 29% men) will die from cancer. In the world and only for 2012, 14 million new cancer cases and 8.2 million deaths from the disease were reported.[2] The worst is yet to come because, according to World Health Organization, the number of new cases is expected to increase by about 70% over the next two decades. The high mortality associated with cancer is partly explained by the acquisition of drug resistance that make patients refractory to chemotherapy. In fact, cancer cells exposed to a cytotoxic agent during chemotherapy, may develop a resistance to this agent as well as various agents sharing structural or functional similarities. These cancer cells are known for multidrug resistance ("Multiple Drug resistant cells"). The development of resistance to chimiodrogues is a major public health problem that presents an obstacle for the development of new cancer treatments. MCF-7 MDR are established cell lines of human breast cancer that have developed resistance to chimiodrogues such as doxorubicin. MCF-7 MDR have the particularity to over-express P-gp protein that is responsible for the detoxification of cells by reflux of chimiodrogues. The purpose of this study was therefore to reduce the expression of P-gp, encoded by the MDR1 gene (also called gene ABCB1) in cancer cells MCF-7, and re-sensitize MCF-7 MDR cells to anti-cancer treatments. In order to modify MDR1 gene expression, we used small RNAi called siRNA that are specific to the MDR1 gene. In total, 4 duplexes of siRNA have been used: siRNA_1, siRNA_1M, siRNA_2 and siRNA_2M. Each of the duplexes strands is consists of 21 nucleic acids and has two protruding nucleic acids (overhangs) at the 3' end. siRNA_1 and siRNA_1M are complementary to the nucleic acid sequence (577-595 nucleic acids ) of the MDR1 gene, whereas siARN_2 and siARN_2M are complementary to a sequence shifted slightly downstream in the same gene (583-607 nucleic acids). RNA duplexes siRNA_1 and siARN_2 consist exclusively of DNA while "modifed" siRNA_1M and si RNA_2M consist of RNA overhangs. siRNA duplexes (siRNA_1 and siRNA_2) were chosen from the work published by Hao Wu et al. (2003), Stege et al. (2004) and Miletti-Gonzalez et al. (2005) which showed that these siRNA sequences are effective to silence MDR1 gene in cancer cells (breast cancer cells MCF-7 / AdrR and MCF-7 / BC-19 and stomach cancer cells: EPG85-257RDB).[3-5] Moreover, Strapps et al. (2010) showed that the use of siRNA having overhangs formed of ribonucleotides leads to a similar silencing but lasting longer in vivo and in vitro compared to the use of siRNA containing deoxyribonucleotides overhangs.[6] Thus siARN_1M and siARN_2M sequences correspond to siARN_1 and siARN_2 sequences but whose overhangs are formed of ribonucleotides. These siRNA specific to the MDR1 gene (MDR1-siRNA) were combined to chitosan to form nanoparticles capable of protecting these MDR1-siRNA and delivering it into the MCF-7 MDR cells. Chitosan used here as a delivery system, is a natural and biodegradable polysaccharide whose biological properties are defined by its average molecular weight (MW) and by its degree of deacetylation (DD). When the positively charged chitosan is added with the negatively charged siRNA, there is formation of nanoparticles by electrostatic attraction. In this project, chitosan 92-10 (DDA- MW) was used as a delivery system with a N:P (ratio chitosan amino groups: RNA phosphate) of 5. Analysis by dynamic light scattering (DLS) demonstrated that the nanoparticles have a diameter between 62.56 and 82.72 nm and a zeta potential ranging from 17.4 to 23.5 mV. Analysis by confocal microscopy showed that chitosan (92-10-5)/labeled siRNA are internalized in MCF-7 MDR cells and that siRNAs are released in the cytoplasm. MCF-7 cells resistant MDR were transfected in vitro with different chitosan nanoparticles 92-10/MDR1-siRNA. qPCR quantification showed that transfection of MCF-7 MDR cells leads to inhibition of the expression of the MDR1 gene by 71%. In addition, induced cytotoxicity tests showed that the use of nanoparticles allows resensitizing cells to doxorubicin. In fact, the mortality rate of MDR MCF-7 cells exposed to doxorubicin increased to 60% after transfecting the cells with the nanoparticles chitosane (92-10-5)/ MDR1-siRNA. In conclusion, we have developed Chitosan (92-10-5)/ MDR1-siRNA nanoparticles that reduce the expression of P-gp in cells and allow the latter to re-sensitize to Doxorubicin. This study demonstrated the potential of chitosan nanoparticles (92-10-5)/ MDR1-siRNA for the treatment of cancers resistant to chemotherapy.
Gap junctions contribute to anchorage-independent clustering of breast cancer cells.
Gava, Fabien; Rigal, Lise; Mondesert, Odile; Pesce, Elise; Ducommun, Bernard; Lobjois, Valérie
2018-02-27
Cancer cell aggregation is a key process involved in the formation of clusters of circulating tumor cells. We previously reported that cell-cell adhesion proteins, such as E-cadherin, and desmosomal proteins are involved in cell aggregation to form clusters independently of cell migration or matrix adhesion. Here, we investigated the involvement of gap junction intercellular communication (GJIC) during anchorage-independent clustering of MCF7 breast adenocarcinoma cells. We used live cell image acquisition and analysis to monitor the kinetics of MCF7 cell clustering in the presence/absence of GJIC pharmacological inhibitors and to screen a LOPAC® bioactive compound library. We also used a calcein transfer assay and flow cytometry to evaluate GJIC involvement in cancer cell clustering. We first demonstrated that functional GJIC are established in the early phase of cancer cell aggregation. We then showed that pharmacological inhibition of GJIC using tonabersat and meclofenamate delayed MCF7 cell clustering and reduced calcein transfer. We also found that brefeldin A, an inhibitor of vesicular trafficking, which we identified by screening a small compound library, and latrunculin A, an actin cytoskeleton-disrupting agent, both impaired MCF7 cell clustering and calcein transfer. Our results demonstrate that GJIC are involved from the earliest stages of anchorage-independent cancer cell aggregation. They also give insights into the regulatory mechanisms that could modulate the formation of clusters of circulating tumor cells.
Genomic pathways modulated by Twist in breast cancer.
Vesuna, Farhad; Bergman, Yehudit; Raman, Venu
2017-01-13
The basic helix-loop-helix transcription factor TWIST1 (Twist) is involved in embryonic cell lineage determination and mesodermal differentiation. There is evidence to indicate that Twist expression plays a role in breast tumor formation and metastasis, but the role of Twist in dysregulating pathways that drive the metastatic cascade is unclear. Moreover, many of the genes and pathways dysregulated by Twist in cell lines and mouse models have not been validated against data obtained from larger, independant datasets of breast cancer patients. We over-expressed the human Twist gene in non-metastatic MCF-7 breast cancer cells to generate the estrogen-independent metastatic breast cancer cell line MCF-7/Twist. These cells were inoculated in the mammary fat pad of female severe compromised immunodeficient mice, which subsequently formed xenograft tumors that metastasized to the lungs. Microarray data was collected from both in vitro (MCF-7 and MCF-7/Twist cell lines) and in vivo (primary tumors and lung metastases) models of Twist expression. Our data was compared to several gene datasets of various subtypes, classes, and grades of human breast cancers. Our data establishes a Twist over-expressing mouse model of breast cancer, which metastasizes to the lung and replicates some of the ontogeny of human breast cancer progression. Gene profiling data, following Twist expression, exhibited novel metastasis driver genes as well as cellular maintenance genes that were synonymous with the metastatic process. We demonstrated that the genes and pathways altered in the transgenic cell line and metastatic animal models parallel many of the dysregulated gene pathways observed in human breast cancers. Analogous gene expression patterns were observed in both in vitro and in vivo Twist preclinical models of breast cancer metastasis and breast cancer patient datasets supporting the functional role of Twist in promoting breast cancer metastasis. The data suggests that genetic dysregulation of Twist at the cellular level drives alterations in gene pathways in the Twist metastatic mouse model which are comparable to changes seen in human breast cancers. Lastly, we have identified novel genes and pathways that could be further investigated as targets for drugs to treat metastatic breast cancer.
Aptamer-Based Dual-Functional Probe for Rapid and Specific Counting and Imaging of MCF-7 Cells.
Yang, Bin; Chen, Beibei; He, Man; Yin, Xiao; Xu, Chi; Hu, Bin
2018-02-06
Development of multimodal detection technologies for accurate diagnosis of cancer at early stages is in great demand. In this work, we report a novel approach using an aptamer-based dual-functional probe for rapid, sensitive, and specific counting and visualization of MCF-7 cells by inductively coupled plasma-mass spectrometry (ICP-MS) and fluorescence imaging. The probe consists of a recognition unit of aptamer to catch cancer cells specifically, a fluorescent dye (FAM) moiety for fluorescence resonance energy transfer (FRET)-based "off-on" fluorescence imaging as well as gold nanoparticles (Au NPs) tag for both ICP-MS quantification and fluorescence quenching. Due to the signal amplification effect and low spectral interference of Au NPs in ICP-MS, an excellent linearity and sensitivity were achieved. Accordingly, a limit of detection of 81 MCF-7 cells and a relative standard deviation of 5.6% (800 cells, n = 7) were obtained. The dynamic linear range was 2 × 10 2 to 1.2 × 10 4 cells, and the recoveries in human whole blood were in the range of 98-110%. Overall, the established method provides quantitative and visualized information on MCF-7 cells with a simple and rapid process and paves the way for a promising strategy for biomedical research and clinical diagnostics.
Czeczuga-Semeniuk, Ewa; Anchim, Tomasz; Dziecioł, Janusz; Dabrowska, Milena; Wołczyński, Sławomir
2004-01-01
Retinoic acid and transforming growth factor-beta (TGF-beta) affect differentiation, proliferation and carcinogenesis of epithelial cells. The effect of both compounds on the proliferation of cells of the hormone sensitive human breast cancer cell line (ER+) MCF-7 was assessed in the presence of estradiol and tamoxifen. The assay was based on [3H]thymidine incorporation and the proliferative activity of PCNA- and Ki 67-positive cells. The apoptotic index and expression of the Bcl-2 and p53 antigens in MCF-7 cells were also determined. Exogenous TGF-beta1 added to the cell culture showed antiproliferative activity within the concentration range of 0.003-30 ng/ml. Irrespective of TGF-beta1 concentrations, a marked reduction in the stimulatory action of estradiol (10(-9) and 10(-8) M) was observed whereas in combination with tamoxifen (10(-7) and 10(-6) M) only 30 ng/ml TGF-beta1 caused a statistically significant reduction to approximately 30% of the proliferative cells. In further experiments we examined the effect of exposure of breast cancer cells to retinoids in combination with TGF-beta1. The incorporation of [3H]thymidine into MCF-7 cells was inhibited to 52 +/- 19% (control =100%) by 3 ng/ml TGF-beta1, and this dose was used throughout. It was found that addition of TGF-beta1 and isotretinoin to the culture did not decrease proliferation, while TGF-beta1 and tretinoin at low concentrations (3 x 10(-8) and 3 x 10(-7) M) reduced the percentage of proliferating cells by approximately 30% (67+/-8% and 67+/-5%, P<0.05 compared to values in the tretinoin group). Both retinoids also led to a statistically significant decrease in the stimulatory effect of 10(-9) M estradiol, attenuated by TGF-beta1. In addition, the retinoids in combination with TGF-beta1 and tamoxifen (10(-6) M) caused a further reduction in the percentage of proliferating cells. Immunocytochemical analysis showed that all the examined compounds gave a statistically significant reduction in the percentage of cells with a positive reaction to PCNA and Ki 67 antigen. TGF-beta1, isotretinoin and tretinoin added to the culture resulted in the lowest percentage of PCNA positive cells. However, the lowest fraction of Ki 67 positive cells was observed after addition of isotretinoin. The obtained results also confirm the fact that the well-known regulatory proteins Bcl-2 and p53 play an important role in the regulation of apoptosis in the MCF-7 cell line, with lowered Bcl-2 expression accompanying easier apoptotic induction. The majority of the examined compounds act via the p53 pathway although some bypass this important proapoptotic factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard, Cynthia L.; Farach-Carson, Mary C.; Rohe, Ben
2010-03-10
In addition to classical roles in calcium homeostasis and bone development, 1,25 dihydroxyvitamin D{sub 3} [1,25(OH){sub 2}D{sub 3}] inhibits the growth of several cancer types, including breast cancer. Although cellular effects of 1,25(OH){sub 2}D{sub 3} traditionally have been attributed to activation of a nuclear vitamin D receptor (VDR), a novel receptor for 1,25(OH){sub 2}D{sub 3} called 1,25D{sub 3}-MARRS (membrane-associated, rapid response steroid-binding) protein was identified recently. The purpose of this study was to determine if the level of 1,25D{sub 3}-MARRS expression modulates 1,25(OH){sub 2}D{sub 3} activity in breast cancer cells. Relative levels of 1,25D{sub 3}-MARRS protein in MCF-7, MDA MBmore » 231, and MCF-10A cells were estimated by real-time RT-PCR and Western blotting. To determine if 1,25D{sub 3}-MARRS receptor was involved in the growth inhibitory effects of 1,25(OH){sub 2}D{sub 3} in MCF-7 cells, a ribozyme construct designed to knock down 1,25D{sub 3}-MARRS mRNA was stably transfected into MCF-7 cells. MCF-7 clones in which 1,25D{sub 3}-MARRS receptor expression was reduced showed increased sensitivity to 1,25(OH){sub 2}D{sub 3} ( IC{sub 50} 56 {+-} 24 nM) compared to controls (319 {+-} 181 nM; P < 0.05). Reduction in 1,25D{sub 3}-MARRS receptor lengthened the doubling time in transfectants treated with 1,25(OH){sub 2}D{sub 3}. Knockdown of 1,25D{sub 3}-MARRS receptor also increased the sensitivity of MCF-7 cells to the vitamin D analogs KH1060 and MC903, but not to unrelated agents (all-trans retinoic acid, paclitaxel, serum/glucose starvation, or the isoflavone, pomiferin). These results suggest that 1,25D{sub 3}-MARRS receptor expression interferes with the growth inhibitory activity of 1,25(OH){sub 2}D{sub 3} in breast cancer cells, possibly through the nuclear VDR. Further research should examine the potential for pharmacological or natural agents that modify 1,25D{sub 3}-MARRS expression or activity as anticancer agents.« less
Xue, Rong-quan; Gu, Jun-chao; Yu, Wei; Wang, Yu; Zhang, Zhong-tao; Ma, Xue-mei
2012-02-01
It is important to identify the multiple sites of leptin activity in obese women with breast cancer. In this study, we examined the effect of exogenous human leptin on heat shock protein 70 (HSP70) expression in MCF-7 human breast cancer cells and in a breast carcinoma xenograft model of nude mice. We cultured MCF-7 human breast cancer cells and established nude mice bearing xenografts of these cells, and randomly divided them into experimental and control groups. The experimental group was treated with human leptin, while the control group was treated with the same volume of normal saline. A real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay was developed to quantify the mRNA expression of HSP70 in the MCF-7 human breast cancer cells and in tumor tissues. Western blotting analysis was applied to quantify the protein expression of HSP70 in the MCF-7 cells. Immunohistochemical staining was done to assess the positive rate of HSP70 expression in the tumor tissues. Leptin activated HSP70 in a dose-dependent manner in vitro: leptin upregulated significantly the expression of HSP70 at mRNA and protein levels in MCF-7 human breast cancer cells (P < 0.001). There was no significant difference in expression of HSP70 mRNA in the implanted tumors between the leptin-treated group and the control group (P > 0.05). Immunohistochemical staining revealed no significant difference in tumor HSP70 expression between the leptin-treated group and the control group (P > 0.05). A nude mouse xenograft model can be safely and efficiently treated with human leptin by subcutaneous injections around the tumor. HSP70 may be target of leptin in breast cancer. Leptin can significantly upregulate the expression of HSP70 in a dose-dependent manner in vitro.
Kanagasabai, Ragu; Krishnamurthy, Karthikeyan; Druhan, Lawrence J.; Ilangovan, Govindasamy
2011-01-01
Mutant p53 accumulation has been shown to induce the multidrug resistance gene (MDR1) and ATP binding cassette (ABC)-based drug efflux in human breast cancer cells. In the present work, we have found that transcriptional activation of the oxidative stress-responsive heat shock factor 1 (HSF-1) and expression of heat shock proteins, including Hsp27, which is normally known to augment proteasomal p53 degradation, are inhibited in Adriamycin (doxorubicin)-resistant MCF-7 cells (MCF-7/adr). Such an endogenous inhibition of HSF-1 and Hsp27 in turn results in p53 mutation with gain of function in its transcriptional activity and accumulation in MCF-7/adr. Also, lack of HSF-1 enhances nuclear factor κB (NF-κB) DNA binding activity together with mutant p53 and induces MDR1 gene and P-glycoprotein (P-gp, ABCB1), resulting in a multidrug-resistant phenotype. Ectopic expression of Hsp27, however, significantly depleted both mutant p53 and NF-κB (p65), reversed the drug resistance by inhibiting MDR1/P-gp expression in MCF-7/adr cells, and induced cell death by increased G2/M population and apoptosis. We conclude from these results that HSF-1 inhibition and depletion of Hsp27 is a trigger, at least in part, for the accumulation of transcriptionally active mutant p53, which can either directly or NF-κB-dependently induce an MDR1/P-gp phenotype in MCF-7 cells. Upon Hsp27 overexpression, this pathway is abrogated, and the acquired multidrug resistance is significantly abolished so that MCF-7/adr cells are sensitized to Dox. Thus, clinical alteration in Hsp27 or NF-κB level will be a potential approach to circumvent drug resistance in breast cancer. PMID:21784846
Kanagasabai, Ragu; Krishnamurthy, Karthikeyan; Druhan, Lawrence J; Ilangovan, Govindasamy
2011-09-23
Mutant p53 accumulation has been shown to induce the multidrug resistance gene (MDR1) and ATP binding cassette (ABC)-based drug efflux in human breast cancer cells. In the present work, we have found that transcriptional activation of the oxidative stress-responsive heat shock factor 1 (HSF-1) and expression of heat shock proteins, including Hsp27, which is normally known to augment proteasomal p53 degradation, are inhibited in Adriamycin (doxorubicin)-resistant MCF-7 cells (MCF-7/adr). Such an endogenous inhibition of HSF-1 and Hsp27 in turn results in p53 mutation with gain of function in its transcriptional activity and accumulation in MCF-7/adr. Also, lack of HSF-1 enhances nuclear factor κB (NF-κB) DNA binding activity together with mutant p53 and induces MDR1 gene and P-glycoprotein (P-gp, ABCB1), resulting in a multidrug-resistant phenotype. Ectopic expression of Hsp27, however, significantly depleted both mutant p53 and NF-κB (p65), reversed the drug resistance by inhibiting MDR1/P-gp expression in MCF-7/adr cells, and induced cell death by increased G(2)/M population and apoptosis. We conclude from these results that HSF-1 inhibition and depletion of Hsp27 is a trigger, at least in part, for the accumulation of transcriptionally active mutant p53, which can either directly or NF-κB-dependently induce an MDR1/P-gp phenotype in MCF-7 cells. Upon Hsp27 overexpression, this pathway is abrogated, and the acquired multidrug resistance is significantly abolished so that MCF-7/adr cells are sensitized to Dox. Thus, clinical alteration in Hsp27 or NF-κB level will be a potential approach to circumvent drug resistance in breast cancer.
Han, Na-Ra; Kim, Hee-Yun; Yang, Woong Mo; Jeong, Hyun-Ja; Kim, Hyung-Min
2015-09-01
Some amino acids are considered alternative therapies for improving menopausal symptoms. Glutamic acid (GA), which is abundant in meats, fish, and protein-rich plant foods, is known to be a neurotransmitter or precursor of γ-aminobutyric acid. Although it is unclear if GA functions in menopausal symptoms, we hypothesized that GA would attenuate estrogen deficiency-induced menopausal symptoms. The objective to test our hypothesis was to examine an estrogenic effect of GA in ovariectomized (OVX) mice, estrogen receptor (ER)-positive human osteoblast-like MG-63 cells, and ER-positive human breast cancer MCF-7 cells. The results demonstrated that administration with GA to mice suppressed body weight gain and vaginal atrophy when compared with the OVX mice. A microcomputed tomographic analysis of the trabecular bone showed increases in bone mineral density, trabecular number, and connectivity density as well as a significant decrease in total porosity of the OVX mice treated with GA. In addition, GA increased serum levels of alkaline phosphatase and estrogen compared with the OVX mice. Furthermore, GA induced proliferation and increased ER-β messenger RNA (mRNA) expression, estrogen response element (ERE) activity, extracellular signal-regulated kinase phosphorylation, and alkaline phosphatase activity in MG-63 cells. In MCF-7 cells, GA also increased proliferation, Ki-67 mRNA expression, ER-β mRNA expression, and ERE activity. Estrogen response element activity increased by GA was inhibited by an estrogen antagonist. Taken together, our data demonstrated that GA has estrogenic and osteogenic activities in OVX mice, MG-63 cells, and MCF-7 cells. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Qiu-Yue; Huang, Wei; Jiang, Xing-Lin; Kang, Yan-Jun
2018-01-01
In this work, an efficient method based on biotin-labeled aptamer and streptavidin-conjugated fluorescence-magnetic silica nanoprobes (FITC@Fe3O4@SiNPs-SA) has been established for human breast carcinoma MCF-7 cells synchronous labeling and separation. Carboxyl-modified fluorescence-magnetic silica nanoparticles (FITC@Fe3O4@SiNPs-COOH) were first synthesized using the Stöber method. Streptavidin (SA) was then conjugated to the surface of FITC@Fe3O4@SiNPs-COOH. The MCF-7 cell suspension was incubated with biotin-labeled MUC-1 aptamer. After centrifugation and washing, the cells were then treated with FITC@Fe3O4@SiNPs-SA. Afterwards, the mixtures were separated by a magnet. The cell-probe conjugates were then imaged using fluorescent microscopy. The results show that the MUC-1 aptamer could recognize and bind to the targeted cells with high affinity and specificity, indicating the prepared FITC@Fe3O4@SiNPs-SA with great photostability and superparamagnetism could be applied effectively in labeling and separation for MCF-7 cell in suspension synchronously. In addition, the feasibility of MCF-7 cells detection in peripheral blood was assessed. The results indicate that the method above is also applicable for cancer cells synchronous labeling and separation in complex biological system.
Ser, Hooi-Leng; Ab Mutalib, Nurul-Syakima; Yin, Wai-Fong; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han
2015-01-01
Streptomyces pluripotens MUSC 137 was isolated from mangrove soil obtained from Tanjung Lumpur, Pahang, Malaysia. We investigated the phylogenetic, genomic, biochemical, and phenotypic characteristics of this strain. Uniquely adapted microorganisms from mangrove habitats have previously yielded compounds of biopharmaceutical interest. In order to examine the bioactivities possessed by the strain, fermentation extract was prepared through solvent extraction method prior to bioactivities screenings. Antioxidant activity was examined via DPPH assay while the cytotoxic effect was assessed by means of examining the activity of the extract against selected human cancer cell lines, namely colon cancer cells (HCT-116, Caco-2, SW480, and HT-29), breast cancer cell (MCF-7), lung cancer cell (A549), prostate cancer cell (DU145), and cervical cancer cell (Ca Ski). The results revealed MUSC 137 possesses significant antioxidant activity and demonstrates cytotoxic effect against several cancer cell lines tested. The results indicated MCF-7 cells were most susceptible to the extract with the lowest IC50 (61.33 ± 17.10 μg/mL), followed by HCT-116 and A549. Additionally, selective index (SI) showed that MUSC 137 extract was less toxic against normal cell lines when compared to MCF-7 and HCT-116 cells. The extract was further subjected to chemical analysis using GC–MS and revealed the presence of deferoxamine and pyrrolizidines related compounds which may account for the antioxidant and cytotoxic properties observed. PMID:26733951
Fickova, Maria; Macho, Ladislav; Brtko, Julius
2015-06-01
In recent years it was disclosed, that numerous organotin(IV) derivatives have remarkable cytotoxicity against several types of cancer cells. The property to inhibit cell growth makes these compounds promising for antitumor therapy, as the clinical effectiveness of cisplatin is limited by drug resistance and significant side effects. Tributyltin and triphenyltin are known as endocrine disruptors. Moreover, the compounds exert their toxicity in mammals predominantly through nuclear receptor signaling. Here we present the effects of tributyltin chloride (TBT-Cl) and triphenyltin chloride (TPT-Cl) on cell proliferation, expression of proapoptotic p53, Bax, and antiapoptotic Bcl-2 proteins in human breast cancer MCF-7 cell line. Dose and time dependent (24, 48 and 72 h) cell expositions have demonstrated TBT-Cl as more effective in inhibiting MCF-7 cell proliferation than TPT-Cl. Short time treatment with TBT-Cl displayed marked stimulation of p53 protein expression when compared to TPT-Cl. Both organotin compounds displayed similar mild enhancement of Bax protein expression. The 24h exposition of TPT-Cl induced substantial diminution of Bcl-2 protein expression in comparison with both, untreated cells and TBT-Cl treated cells. Our observations indicate that TBT-Cl and TPT-Cl have different antiproliferative potency and distinct impact on expression of apoptosis marker proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Matthews, Quinn; Isabelle, Martin; Harder, Samantha J.; Smazynski, Julian; Beckham, Wayne; Brolo, Alexandre G.; Jirasek, Andrew; Lum, Julian J.
2015-01-01
Altered cellular metabolism is a hallmark of tumor cells and contributes to a host of properties associated with resistance to radiotherapy. Detection of radiation-induced biochemical changes can reveal unique metabolic pathways affecting radiosensitivity that may serve as attractive therapeutic targets. Using clinically relevant doses of radiation, we performed label-free single cell Raman spectroscopy on a series of human cancer cell lines and detected radiation-induced accumulation of intracellular glycogen. The increase in glycogen post-irradiation was highest in lung (H460) and breast (MCF7) tumor cells compared to prostate (LNCaP) tumor cells. In response to radiation, the appearance of this glycogen signature correlated with radiation resistance. Moreover, the buildup of glycogen was linked to the phosphorylation of GSK-3β, a canonical modulator of cell survival following radiation exposure and a key regulator of glycogen metabolism. When MCF7 cells were irradiated in the presence of the anti-diabetic drug metformin, there was a significant decrease in the amount of radiation-induced glycogen. The suppression of glycogen by metformin following radiation was associated with increased radiosensitivity. In contrast to MCF7 cells, metformin had minimal effects on both the level of glycogen in H460 cells following radiation and radiosensitivity. Our data demonstrate a novel approach of spectral monitoring by Raman spectroscopy to assess changes in the levels of intracellular glycogen as a potential marker and resistance mechanism to radiation therapy. PMID:26280348
Sun, Tao; Song, Zhi-Guo; Jiang, Da-Qing; Nie, Hong-Guang; Han, Dong-Yun
2015-04-01
Ion channel expression and activity may be affected during tumor development and cancer growth. Activation of potassium (K(+)) channels in human breast cancer cells is reported to be involved in cell cycle progression. In this study, we investigated the effects of docetaxel on the delayed rectifier potassium current (I K) and the ATP-sensitive potassium current (I KATP) in two human breast cancer cell lines, MCF-7 and MDA-MB-435S, using the whole-cell patch-clamp technique. Our results show that docetaxel inhibited the I K and I KATP in both cell lines in a dose-dependent manner. Compared with the control at a potential of +60 mV, treatment with docetaxel at doses of 0.1, 1, 5, and 10 µM significantly decreased the I K in MCF-7 cells by 16.1 ± 3.5, 30.2 ± 5.2, 42.5 ± 4.3, and 46.4 ± 9% (n = 5, P < 0.05), respectively and also decreased the I KATP at +50 mV. Similar results were observed in MDA-MB-435S cells. The G-V curves showed no significant changes after treatment of either MCF-7 or MDA-MB-435S cells with 10 μM docetaxel. The datas indicate that the possible mechanisms of I K and I KATP inhibition by docetaxel may be responsible for its effect on the proliferation of human breast cancer cells.
Ahamed, Maqusood; Khan, M. A. Majeed; Akhtar, Mohd Javed; Alhadlaq, Hisham A.; Alshamsan, Aws
2016-01-01
We investigated the effect of Zn-doping on structural and optical properties as well as cellular response of TiO2 nanoparticles (NPs) in human breast cancer MCF-7 cells. A library of Zn-doped (1–10 at wt%) TiO2 NPs was prepared. Characterization data indicated that dopant Zn was incorporated into the lattice of host TiO2. The average particle size of TiO2 NPs was decreases (38 to 28 nm) while the band gap energy was increases (3.35 eV–3.85 eV) with increasing the amount of Zn-doping. Cellular data demonstrated that Zn-doped TiO2 NPs induced cytotoxicity (cell viability reduction, membrane damage and cell cycle arrest) and oxidative stress (reactive oxygen species generation & glutathione depletion) in MCF-7 cells and toxic intensity was increases with increasing the concentration of Zn-doping. Molecular data revealed that Zn-doped TiO2 NPs induced the down-regulation of super oxide dismutase gene while the up-regulation of heme oxygenase-1 gene in MCF-7 cells. Cytotoxicity induced by Zn-doped TiO2 NPs was efficiently prevented by N-acetyl-cysteine suggesting that oxidative stress might be the primarily cause of toxicity. In conclusion, our data indicated that Zn-doping decreases the particle size and increases the band gap energy as well the oxidative stress-mediated toxicity of TiO2 NPs in MCF-7 cells. PMID:27444578
Wang, Hui-Yun; Greenawalt, Danielle; Cui, Xiangfeng; Tereshchenko, Irina V; Luo, Minjie; Yang, Qifeng; Azaro, Marco A; Hu, Guohong; Chu, Yi; Li, James Y; Shen, Li; Lin, Yong; Zhang, Lianjun
2009-01-01
Context: Cancer cell lines are used extensively in various research. Knowledge of genetic alterations in these lines is important for understanding mechanisms underlying their biology. However, since paired normal tissues are usually unavailable for comparison, precisely determining genetic alterations in cancer cell lines is difficult. To address this issue, a highly efficient and reliable method is developed. Aims: Establishing a highly efficient and reliable experimental system for genetic profiling of cell lines. Materials and Methods: A widely used breast cancer cell line, MCF-7, was genetically profiled with 4,396 single nucleotide polymorphisms (SNPs) spanning 11 whole chromosomes and two other small regions using a newly developed high-throughput multiplex genotyping approach. Results: The fractions of homozygous SNPs in MCF-7 (13.3%) were significantly lower than those in the control cell line and in 24 normal human individuals (25.1% and 27.4%, respectively). Homozygous SNPs in MCF-7 were found in clusters. The sizes of these clusters were significantly larger than the expected based on random allelic combination. Fourteen such regions were found on chromosomes 1p, 1q, 2q, 6q, 13, 15q, 16q, 17q and 18p in MCF-7 and two in the small regions. Conclusions: These results are generally concordant with those obtained using different approaches but are better in defining their chromosomal positions. The used approach provides a reliable way to detecting possible genetic alterations in cancer cell lines without paired normal tissues. PMID:19439911
Santha, Sreevidya; Bommareddy, Ajay; Rule, Brittny; Guillermo, Ruth; Kaushik, Radhey S.; Young, Alan; Dwivedi, Chandradhar
2013-01-01
Anticancer efficacy and the mechanism of action of α-santalol, a terpenoid isolated from sandalwood oil, were investigated in human breast cancer cells by using p53 wild-type MCF-7 cells as a model for estrogen receptor(ER)-positive and p53 mutated MDA-MB-231 cells as a model for ER-negative breast cancer. α-Santalol inhibited cell viability and proliferation in a concentration and time-dependent manner in both cells regardless of their ER and/or p53 status. However, α-santalol produced relatively less toxic effect on normal breast epithelial cell line, MCF-10A. It induced G2/M cell cycle arrest and apoptosis in both MCF-7 and MDA-MB-231 cells. Cell cycle arrest induced by α-santalol was associated with changes in the protein levels of BRCA1, Chk1, G2/M regulatory cyclins, Cyclin dependent kinases (CDKs), Cell division cycle 25B (Cdc25B), Cdc25C and Ser-216 phosphorylation of Cdc25C. An up-regulated expression of CDK inhibitor p21 along with suppressed expression of mutated p53 was observed in MDA-MB-231 cells treated with α-santalol. On the contrary, α-santalol did not increase the expression of wild-type p53 and p21 in MCF-7 cells. In addition, α-santalol induced extrinsic and intrinsic pathways of apoptosis in both cells with activation of caspase-8 and caspase-9. It led to the activation of the executioner caspase-6 and caspase-7 in α-santalol-treated MCF-7 cells and caspase-3 and caspase-6 in MDA-MB-231 cells along with strong cleavage of poly(ADP-ribose) polymerase (PARP) in both cells. Taken together, this study for the first time identified strong anti-neoplastic effects of α-santalol against both ER-positive and ER-negative breast cancer cells. PMID:23451128
Zhou, Wu-Xi; Cao, Jia-Qing; Wang, Xu-De; Guo, Jun-Hui; Zhao, Yu-Qing
2017-02-15
In the search for new anti-tumor agents with higher potency than our previously identified compound 1 (25-OH-PPD, 25-hydroxyprotopanaxadiol), 12 novel sulfamic and succinic acid derivatives that could improve water solubility and contribute to good drug potency and pharmacokinetic profiles were designed and synthesized. Their in vitro anti-tumor activities in MCF-7, A-549, HCT-116, and BGC-823 cell lines and one normal cell line were tested by standard MTT assay. Results showed that compared with compound 1, compounds 2, 3, and 7 exhibited higher cytotoxic activity on A-549 and BGC-823 cell lines, together with lower toxicity in the normal cell. In particular, compound 2 exhibited the best anti-tumor activity in the in vitro assays, which may provide valuable data for the research and development of new anti-tumor agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chiarenza, A; Scarselli, M; Novi, F; Lempereur, L; Bernardini, R; Corsini, G U; Maggio, R
2001-12-14
We tested the ability of dopamine, apomorphine, phenylethylamine and pergolide to inhibit the proliferation of fetal calf serum-stimulated human breast cancer (MCF)-7 cells. While the first three compounds were able to block the proliferation of MCF-7 cells, pergolide failed to do so (up to 100 microM). The inhibitory effect of dopamine, apomorphine and phenylethylamine was also evident in serum-starved insulin-stimulated MCF-7 cells. Apomorphine also inhibited the proliferation of the human oestrogen receptor-negative breast cancer (MDA-MB231) and prostate carcinoma (LNCaP) cell lines. In a second set of experiments, we measured the ability of dopamine, apomorphine, phenylethylamine and pergolide to inhibit the phosphorylation (or increase the dephosphorylation) of the insulin receptor substrate (IRS)-1, a major intracellular substrate of the insulin-like growth factor (IGF)-1 receptor. Dopamine, apomorphine and phenylethylamine all reduced to zero the level of phosphorylated IRS-1 with potencies ranging between 0.01 and 1 microM. Finally, we found that fibroblasts from IRS-1 null (-/-) mice were less sensitive to the anti-proliferative effect of apomorphine compared to fibroblasts from wild type-mice, suggesting that the inhibition of IRS-1 phosphorylation by apomorphine is an important aspect of the activity of this compound.
Tian, Jingge; Chen, Haixia; Chen, Shuhan; Xing, Lisha; Wang, Yanwei; Wang, Jia
2013-10-01
The purpose of this study was to analyze the influence of varieties on the constituents, antioxidant and anticancer activities of corn silk. The contents of total phenolic and flavonoids and individual flavonoids in six corn silk varieties (Denghai6702, Delinong988, Tunyu808, Zhongdan909, Liangyu208, Jingke968) were comparatively analyzed by colourimetric methods, high performance liquid chromatography (HPLC) methods and antioxidant activities were assessed using a panel of in vitro assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity assay, the inhibitory effects on lipid peroxidation (MDA) assay and ferric reducing/antioxidant power (FRAP) assay, and the cytotoxicity against human prostatic carcinoma cells PC3 and breast carcinoma cells MDA-MB-231 and MCF7 were also evaluated. Results showed that Zhongdan909 exhibited the highest total phenolic content while Tunyu808 had the highest flavonoid content among the six species. Zhongdan909 showed the highest DPPH radical scavenging activity, the highest inhibitory effect on lipid peroxidation and the strongest cytotoxicity against breast carcinoma cells MCF7, while Tunyu808 exhibited the highest reducing power. There were good relationships between the total phenolic and flavonoid contents and antioxidant activities (r > 0.78) and the cytotoxicity against breast carcinoma cells MCF7 (r > 0.79). This study suggested that corn silk could be potentially used as a readily accessible source of natural antioxidants and formononetin was one of the main antioxidant constituents in corn silk.
Stopping treatment can reverse acquired resistance to letrozole
Sabnis, Gauri J; Macedo, Luciana F; Goloubeva, Olga; Schayowitz, Adam; Brodie, Angela MH
2008-01-01
Using the intra tumoral aromatase xenograft model, we have observed that despite long lasting growth inhibition tumors eventually begin to grow during continued letrozole treatment. In cells isolated from these Long Term Letrozole Treated tumors (LTLT-Ca), ERα levels were decreased whereas signaling proteins in the MAPK cascade were upregulated along with Her-2. In the current study we evaluated the effect of discontinuing the letrozole treatment on the growth of letrozole resistant cells and tumors. The cells formed tumors equally well in the absence or presence of letrozole and had similar growth rates. After treatment was discontinued for six weeks, letrozole was administered again. Marked tumor regression was observed with this second course of letrozole treatment. Similarly in MCF-7Ca xenografts, a six-week break in letrozole treatment prolonged the responsiveness of the tumors to letrozole. To understand the mechanisms of this effect, LTLT-Ca cells were cultured in the absence of letrozole for 16 weeks. The resulting cell line (RLT-Ca) exhibited properties similar to MCF-7Ca cells. The cell growth was inhibited by letrozole and stimulated by estradiol. The expression of p-MAPK was reduced and ERα and aromatase increased compared to levels in LTLT-Ca cells and were similar to the levels in MCF-7Ca cells. These results indicate that discontinuing treatment can reverse letrozole resistance. This could be a beneficial strategy to prolong responsiveness to AIs for breast cancer patients. PMID:18559495
Kunwar, A; Jayakumar, S; Srivastava, A K; Priyadarsini, K I
2012-04-01
The factors responsible for the induction of cell death by dimethoxycurcumin (Dimc), a synthetic analog of curcumin, were assessed in human breast carcinoma MCF7 cells. Initial cytotoxic studies with both curcumin and Dimc using MTT assay indicated their comparable effects. Further, the mechanism of action was explored in terms of oxidative stress, mitochondrial dysfunction, and modulation in the expression of proteins involved in cell cycle regulation and apoptosis. Dimc (5-50 μM) caused generation of reactive oxygen species, reduction in glutathione level, and induction of DNA damage. The mitochondrial dysfunction induced by Dimc was evidenced by the reduction in mitochondrial membrane potential and decrease in cellular energy status (ATP/ADP) monitored by HPLC analysis. The observed decrease in ATP was also supported by the significant suppression of different (α, β, γ, and ε) subunits of ATP synthase. The cytotoxic effect of Dimc was further characterized in terms of induction of S-phase cell cycle arrest and apoptosis, and their relative contribution was found to vary with the treatment concentration of Dimc. The S-phase arrest and apoptosis could also be correlated with the changes in the expressions of cell cycle proteins like p53, p21, CDK4, and cyclin-D1 and apoptotic markers like Bax and Bcl-2. Overall, the results demonstrated that Dimc induced cell death in MCF7 cells through S-phase arrest and apoptosis.
Ghodsi, Razieh; Azizi, Ebrahim; Zarghi, Afshin
2016-01-01
A new group of 4-(Imidazolylmethyl)quinoline derivatives possessing a methylsulfonyl COX-2 pharmacophore at the para position of the C-2 phenyl ring were designed and synthesized as selective COX-2 inhibitors and in-vitroanti breast cancer agents. In-vitro COX-1 and COX-2 inhibition studies showed that all the compounds were potent and selective inhibitors of the COX-2 isozyme with IC50 values in the potent range 0.063-0.090 µM, and COX-2 selectivity indexes in the 179.9 to 547.6 range. Molecular modeling studies indicated that the methylsulfonyl substituent can be inserted into the secondary pocket of COX-2 active site for interactions with Arg513. Cytotoxicity of quinolines 9a-e against human breast cancer MCF-7 and T47D cell lines were also evaluated. All the compounds 9a-e were more cytotoxic against MCF-7 cells in comparison with those of T47D which express aromatase mRNA less than MCF-7 cells.The data showed that the increase of lipophilic properties of substituents on the C-7 and C-8 quinoline ring increased their cytotoxicity on MCF-7cells andCOX-2 inhibitory activity. Among the quinolines 9a-e, 4-((1H-Imidazol-1-yl)methyl) 7,8,9,10-tetrahydro-2-(4-methylsulfonylphenyl)-benzo[h]quinoline (9d)was identified as the most potent andselective COX-2inhibitor as well as the most cytotoxic agent against MCF-7 cells. PMID:27610157
Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo
Hashemzaei, Mahmoud; Far, Amin Delarami; Yari, Arezoo; Heravi, Reza Entezari; Tabrizian, Kaveh; Taghdisi, Seyed Mohammad; Sadegh, Sarvenaz Ekhtiari; Tsarouhas, Konstantinos; Kouretas, Dimitrios; Tzanakakis, George; Nikitovic, Dragana; Anisimov, Nikita Yurevich; Spandidos, Demetrios A.; Tsatsakis, Aristides M.; Rezaee, Ramin
2017-01-01
The present study focused on the elucidation of the putative anticancer potential of quercetin. The anticancer activity of quercetin at 10, 20, 40, 80 and 120 µM was assessed in vitro by MMT assay in 9 tumor cell lines (colon carcinoma CT-26 cells, prostate adenocarcinoma LNCaP cells, human prostate PC3 cells, pheocromocytoma PC12 cells, estrogen receptor-positive breast cancer MCF-7 cells, acute lymphoblastic leukemia MOLT-4 T-cells, human myeloma U266B1 cells, human lymphoid Raji cells and ovarian cancer CHO cells). Quercetin was found to induce the apoptosis of all the tested cancer cell lines at the utilized concentrations. Moreover, quercetin significantly induced the apoptosis of the CT-26, LNCaP, MOLT-4 and Raji cell lines, as compared to control group (P<0.001), as demonstrated by Annexin V/PI staining. In in vivo experiments, mice bearing MCF-7 and CT-26 tumors exhibited a significant reduction in tumor volume in the quercetin-treated group as compared to the control group (P<0.001). Taken together, quercetin, a naturally occurring compound, exhibits anticancer properties both in vivo and in vitro. PMID:28677813
Lei, Bingli; Sun, Su; Xu, Jie; Feng, Chenglian; Yu, Yingxin; Xu, Gang; Wu, Minghong; Peng, Wei
2018-02-01
Reactive oxygen species (ROS) induced by bisphenol A (BPA) have been implicated in cellular oxidative damage and carcinogenesis. It is not known whether the potential alternatives of BPA, bisphenol AF (BPAF), and bisphenol F (BPF) can also induce ROS involved in mediating biological responses. This study evaluated the toxicity of BPAF and BPF on cell proliferation, DNA damage, intracellular calcium homeostasis, and ROS generation in MCF-7 human breast cancer cells. The results showed that BPAF at 0.001-1 μM and BPF at 0.01-1 μM significantly increased cell viability and at 25 and 50 μM, both compounds decreased cell viability. At 0.01-10 μM, both BPAF and BPF increased DNA damage and significantly elevated ROS and intracellular Ca 2+ levels in MCF-7 cells. These biological effects were attenuated by the ROS scavenger N-acetylcysteine (NAC), indicating that ROS played a key role in the observed biological effects of BPAF and BPF on MCF-7 cells. These findings can deepen our understanding on the toxicity of BPAF and BPF, and provide basis data to further evaluate the potential health harm and establish environmental standard of BPAF and BPF.
Drozdzik, Agnieszka; Kowalczyk, Robert; Lipski, Mariusz; Łapczuk, Joanna; Urasinska, Elzbieta; Kurzawski, Mateusz
2016-01-01
Pleomorphic adenoma (benign mixed tumor) is one of the most common salivary gland tumors. However, molecular mechanisms implicated in its development are not entirely defined. Therefore, the study aimed at definition of aryl hydrocarbon receptor (AhR) involvement in pleomorphic adenoma pathology, as the AhR controlled gene system was documented to play a role in development of various human tumors. The study was carried out in pleomorphic adenoma and control parotid gland tissues where gene expression of AHR, AhR nuclear translocator (ARNT), AhR repressor (AHRR), as well as AhR controlled genes: CYP1A1 and CYP1B1, at mRNA and protein (immunohistochemistry) levels were studied. Functional evaluation of AhR system was evaluated in HSY cells (human parotid gland adenocarcinoma cells) using 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as AhR specific inducer. Pleomorphic adenoma specimens showed cytoplasmic and nuclear AhR expression in epithelial cells as well as in mesenchymal cells. In parotid gland AhR was expressed in cytoplasm of duct cells. Quantitative expression at mRNA level showed significantly higher expression of AHR, ARNT and CYP1B1, and comparable levels of CYP1A1 in pleomorphic adenoma tissue in comparison to healthy parotid gland. The HSY cell study revealed significantly higher expression level of AHRR in HSY as compared with MCF-7 cells (human breast adenocarcinoma cell line used as reference). Upon TCDD stimulation a drop in AHRR level in HSY cells and an increase in MCF-7 cells were observed. The HSY and MCF-7 cell proliferation rate (measured by WST-1 test) was not affected by TCDD. Summarizing both in vitro and in vivo observations it can be stated that AhR system may play a role in the pathology of pleomorphic adenoma. Copyright © 2015. Published by Elsevier Ltd.
Cho, Hang Joo; Kim, Sin Young; Kim, Kee Hwan; Kang, Won Kyung; Kim, Ji Il; Oh, Seong Tack; Kim, Jeong Soo; An, Chang Hyeok
2009-05-21
The overall level of chromatin compaction is an important mechanism of radiosensitivity, and modification of DNA methylation and histone deacetylation may increase radiosensitivity by altering chromatin compaction. In this study, we investigated the effect of a demethylating agent, a histone deacetylase(HDAC) inhibitor, and the two agents combined on radiosensitivity in human colon and breast cancer cell lines. In this study, we used RKO colorectal cancer cell line and MCF-7 breast cancer cell lines and normal colon cell lines. On each of the cell lines, we used three different agents: the HDAC inhibitor sodium butyrate(SB), the demethylating agent 5-Aza-2'-deoxycytidine(5-aza-DC), and radiation. We then estimated the percentage of the cell survival using the XTT method and experimented to determine if there was an augmentation in the therapeutic effect by using different combinations of the two or three of the treatment methods. After treatment of each cell lines with 5-aza-DC, SB and 6 grays of radiation, we observed that the survival fraction was lower after the treatment with 5-aza-DC or SB than with radiation alone in RKO and MCF-7 cell lines(p < 0.001). The survival fraction was lowest when the two agents, 5-aza-DC and SB were combined with radiation in both RKO and MCF-cell lines. In conclusion, 5-aza-DC and SB can enhance radiosensitivity in both MCF-7 and RKO cell lines. The combination effect of a demethylating agent and an HDAC inhibitor is more effective than that of single agent treatment in both breast and colon cancer cell lines.
Fluopsin C induces oncosis of human breast adenocarcinoma cells.
Ma, Li-sha; Jiang, Chang-you; Cui, Min; Lu, Rong; Liu, Shan-shan; Zheng, Bei-bei; Li, Lin; Li, Xia
2013-08-01
Fluopsin C, an antibiotic isolated from Pseudomonas jinanesis, has shown antitumor effects on several cancer cell lines. In the current study, the oncotic cell death induced by fluopsin C was investigated in human breast adenocarcinoma cells in vitro. Human breast adenocarcinoma cell lines MCF-7 and MD-MBA-231 were used. The cytotoxicity was evaluated using MTT assay. Time-lapse microscopy and transmission electron microscopy were used to observe the morphological changes. Cell membrane integrity was assessed with propidium iodide (PI) uptake and lactate dehydrogenase (LDH) assay. Flow cytometry was used to measure reactive oxygen species (ROS) level and mitochondrial membrane potential (Δψm). A multimode microplate reader was used to analyze the intracellular ATP level. The changes in cytoskeletal system were investigated with Western blotting and immunostaining. Fluopsin C (0.5-8 μmol/L) reduced the cell viability in dose- and time-dependent manners. Its IC50 values in MCF-7 and MD-MBA-231 cells at 24 h were 0.9 and 1.03 μmol/L, respectively. Fluopsin C (2 μmol/L) induced oncosis in both the breast adenocarcinoma cells characterized by membrane blebbing and swelling, which was blocked by pretreatment with the pan-caspase inhibitor Z-VAD-fmk. In MCF-7 cells, fluopsin C caused PI uptake into the cells, significantly increased LDH release, induced cytoskeletal system degradation and ROS accumulation, decreased the intracellular ATP level and Δψm. Noticeably, fluopsin C exerted comparable cytotoxicity against the normal human hepatocytes (HL7702) and human mammary epithelial cells with the IC50 values at 24 h of 2.7 and 2.4 μmol/L, respectively. Oncotic cell death was involved in the anticancer effects of fluopsin C on human breast adenocarcinoma cells in vitro. The hepatoxicity of fluopsin C should not be ignored.
NASA Astrophysics Data System (ADS)
Alkhatib, Mayson H.; AlBishi, Hayat M.
2013-03-01
Doxorubicin (DOX) is an anticancer drug used to treat several cancer diseases. However, it has several dose limitation aspects because of its poor bioavailability, hydrophobicity, and cytotoxicity. In this study, five nanoemulsion (NE) formulations, containing soya phosphatidylcholine/polyoxyethylenglycerol trihydroxy-stearate 40 (EU)/sodium oleate as surfactant, cholesterol (CHO) as oil phase, and Tris-HCl buffer (pH 7.22), were produced. The NE droplets morphologies of the entire blank and DOX-loaded formulations, revealed by the transmission electron microscope, were spherical. The droplet sizes of blank NEs, obtained between 2.9 and 6.4 nm, decreased significantly with the increase in the ratio of surfactant-to-oil, whereas the droplets sizes of DOX-loaded NE formulations were significantly higher and found in the range of 7.7-15.9 nm. The evaluation for both blank and DOX-loaded NE formulations proved that the NE carrier had improved the DOX efficacy and reduced its cytotoxicity. It showed that the cell growth inhibition of the breast cancer cells (MCF-7) have exceeded the commercial DOX by a factor of 1.7 with increased apoptosis activity and minimal cytotoxicity against the normal human foreskin cells (HFS). In contrast, commercial DOX was found to exhibit a significant non-selective toxicity against both MCF-7 and HFS cells. In conclusion, we have developed DOX-loaded NE formulations which selectively and significantly inhibited cell proliferation of MCF-7 cells and increased apoptosis.
Nedel, Fernanda; Begnini, Karine; Carvalho, Pedro Henrique de Azambuja; Lund, Rafael Guerra; Beira, Fátima T A; Del Pino, Francisco Augusto B
2012-11-01
This study assessed the antiproliferative effect in vitro of the flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the human breast adenocarcinoma (MCF-7), human mouth epidermal carcinoma (KB), and mouse embryonic fibroblast (NIH 3T3) cell lines, using sulforhodamine B (SRB) assay. A cell density of 2×10(4)/well was seeded in 96-well plates, and samples at different concentrations ranging from 10 to 500 mg/mL were tested. The optical density was determined in an ELISA multiplate reader (Thermo Plate TP-Reader). Results demonstrated that the hexane extract presented antiproliferative activity against both the tumor cell lines KB and MCF-7, presenting a GI(50) (MCF-7=13.09 mg/mL), TGI (KB=37.76 mg/mL), and IL(50) (KB=291.07 mg/mL). Also, the hexane extract presented antiproliferative activity toward NIH 3T3 cells GI(50) (183.65 mg/mL), TGI (280.54 mg/mL), and IL(50) (384.59 mg/mL). The results indicate that the flower hexane extract obtained from M. spicata associated with M. rotundifolia presents an antineoplastic activity against KB and MCF-7, although an antiproliferative effect at a high concentration of the extract was observed toward NIH 3T3.
Liu, Feng; Liu, Yang; Shen, Jingling; Zhang, Guoqiang; Han, Jiguang
2016-08-02
The Wnt/β-catenin signaling is crucial for the proliferation and migration of breast cancer cells. However, the expression of microRNA-224 (miR-224) in the different types of breast cancers and its role in the Wnt/β-catenin signaling and the proliferation and migration of breast cancer cells are poorly understood. In this study, the levels of miR-224 in different types of breast cancer tissues and cell lines were examined by quantitative RT-PCR and the potential targets of miR-224 in the Wnt/β-catenin signaling were investigated. The effects of altered miR-224 expression on the frequency of CD44+CD24- cancer stem-like cells (CSC), proliferation and migration of MCF-7 and MDA-MB-231 cells were examined by flow cytometry, MTT and transwell migration. We found that the levels of miR-224 expression in different types of breast cancer tissues and cell lines were associated inversely with aggressiveness of breast cancers. Enhanced miR-224 expression significantly reduced the fizzled 5-regulated luciferase activity in 293T cells, fizzled 5 expression in MCF-7 and MDA-MB-231 cells, the β-dependent luciferase activity in MCF-7 cells, and the nuclear translocation of β-catenin in MDA-MB-231 cells. miR-224 inhibition significantly increased the percentages of CSC in MCF-7 cells and enhanced proliferation and migration of MCF-7 cells. Enhanced miR-224 expression inhibited proliferation and migration of MDA-MB-231 cells, and the growth of implanted breast cancers in vivo. Induction of Frizzled 5 over-expression mitigated the miR-224-mediated inhibition of breast cancer cell proliferation. Collectively, these data indicated that miR-224 down-regulated the Wnt/β-catenin signaling possibly by binding to Frizzled 5 and inhibited proliferation and migration of breast cancer cells.
miRNA-205 affects infiltration and metastasis of breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhouquan; Department of Tumor, SenGong Hospital of Shaanxi, Xi’an 710300; Liao, Hehe
2013-11-08
Highlights: •We detected expression of miR-205 in breast cancer cell lines and tissue samples. •We suggest miR-205 is downregulated in human breast cancer tissues and MCF7 cells. •We suggest the lower expression of miR-205 play a role in breast cancer onset. •These data suggest that miR-205 directly targets HER3 in human breast cancer. -- Abstract: Background: An increasing number of studies have shown that miRNAs are commonly deregulated in human malignancies, but little is known about the function of miRNA-205 (miR-205) in human breast cancer. The present study investigated the influence of miR-205 on breast cancer malignancy. Methods: The expressionmore » level of miR-205 in the MCF7 breast cancer cell line was determined by quantitative (q)RT-PCR. We then analyzed the expression of miR-205 in breast cancer and paired non-tumor tissues. Finally, the roles of miR-205 in regulating tumor proliferation, apoptosis, migration, and target gene expression were studied by MTT assay, flow cytometry, qRT-PCR, Western blotting and luciferase assay. Results: miR-205 was downregulated in breast cancer cells or tissues compared with normal breast cell lines or non-tumor tissues. Overexpression of miR-205 reduced the growth and colony-formation capacity of MCF7 cells by inducing apoptosis. Overexpression of miR-205 inhibited MCF7 cell migration and invasiveness. By bioinformation analysis, miR-205 was predicted to bind to the 3′ untranslated regions of human epidermal growth factor receptor (HER)3 mRNA, and upregulation of miR-205 reduced HER3 protein expression. Conclusion: miR-205 is a tumor suppressor in human breast cancer by post-transcriptional inhibition of HER3 expression.« less
Rezania, S; Kammerer, S; Li, C; Steinecker-Frohnwieser, B; Gorischek, A; DeVaney, T T J; Verheyen, S; Passegger, C A; Tabrizi-Wizsy, N Ghaffari; Hackl, H; Platzer, D; Zarnani, A H; Malle, E; Jahn, S W; Bauernhofer, T; Schreibmayer, W
2016-08-12
Overexpression the KCNJ3, a gene that encodes subunit 1 of G-protein activated inwardly rectifying K(+) channel (GIRK1) in the primary tumor has been found to be associated with reduced survival times and increased lymph node metastasis in breast cancer patients. In order to survey possible tumorigenic properties of GIRK1 overexpression, a range of malignant mammary epithelial cells, based on the MCF-7 cell line that permanently overexpress different splice variants of the KCNJ3 gene (GIRK1a, GIRK1c, GIRK1d and as a control, eYFP) were produced. Subsequently, selected cardinal neoplasia associated cellular parameters were assessed and compared. Adhesion to fibronectin coated surface as well as cell proliferation remained unaffected. Other vital parameters intimately linked to malignancy, i.e. wound healing, chemoinvasion, cellular velocities / motilities and angiogenesis were massively affected by GIRK1 overexpression. Overexpression of different GIRK1 splice variants exerted differential actions. While GIRK1a and GIRK1c overexpression reinforced the affected parameters towards malignancy, overexpression of GIRK1d resulted in the opposite. Single channel recording using the patch clamp technique revealed functional GIRK channels in the plasma membrane of MCF-7 cells albeit at very low frequency. We conclude that GIRK1d acts as a dominant negative constituent of functional GIRK complexes present in the plasma membrane of MCF-7 cells, while overexpression of GIRK1a and GIRK1c augmented their activity. The core component responsible for the cancerogenic action of GIRK1 is apparently presented by a segment comprising aminoacids 235-402, that is present exclusively in GIRK1a and GIRK1c, but not GIRK1d (positions according to GIRK1a primary structure). The current study provides insight into the cellular and molecular consequences of KCNJ3 overexpression in breast cancer cells and the mechanism upon clinical outcome in patients suffering from breast cancer.
Tang, Chao-Yuan; Zhu, Li-Xin; Yu, Jian-Dong; Chen, Zhi; Gu, Man-Cang; Mu, Chao-Feng; Liu, Qi; Xiong, Yang
2018-07-30
In order to explore the mechanism of the reversing multidrug resistance (MDR) phenotypes by β-elemene (β-ELE) in doxorubicin (DOX)-resistant breast cancer cells (MCF-7/DOX), both the functionality and quantity of the ABC transporters in MCF-7/DOX were studied. Bioluminescence imaging (BLI) was used to study the efflux of d-luciferin potassium salt, the substrate of ATP-binding cassette transporters (ABC transporters), in MCF-7/DOX cells treated by β-ELE. At the same time three major ABC transport proteins and genes-related MDR, P-glycoprotein (P-gp, ABCB1) and multidrug resistance-associated protein 1 (MRP, ABCC1) as well as breast cancer resistance protein (BCRP, ABCG2) were analyzed by q-PCR and Western blot. To investigate the efflux functionality of ABC transporters, MCF-7/DOX Fluc cell line with stably-overexpressed luciferase was established. BLI was then used to real-time monitor the efflux kinetics of d-luciferin potassium salt before and after MCF-7/DOX Fluc cells being treated with β-ELE or not. The results showed that the efflux of d-luciferin potassium salt from MCF-7/DOX Fluc was lessened when pretreated with β-ELE, which means that β-ELE may dampen the functionality of ABC transporters, thus decrease the efflux of d-fluorescein potassium or other chemotherapies which also serve as the substrates of ABC transporters. As the effect of β-ELE on the expression of ABC transporters, the results of q-PCR and Western blot showed that gene and protein expression of ABC transporters such as P-gp, MRP, and BCRP were down-regulated after the treatment of β-ELE. To verify the efficacy of β-ELE on reversing MDR, MCF-7/DOX cells were treated with the combination of DOX and β-ELE. MTT assay showed that β-ELE increased the inhibitory effect of DOX on the proliferation of MCF-7/DOX, and the IC 50 of the combination group was much lower than that of the single DOX or β-ELE treatment. In all, β-ELE may reverse MDR through the substrates of ABC transporters by two ways, to lessen the ABC protein efflux by weakening their functionality, or to reduce the quantity of ABC gene and protein expression. Copyright © 2018. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furuta, Chie; Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509; Suzuki, Akira K.
2008-08-01
Diesel exhaust particles (DEPs) cause many adverse health problems, and reports indicate increased risk of breast cancer in men and women through exposure to gasoline and vehicle exhaust. However, DEPs include vast numbers of compounds, and the specific compound(s) responsible for these actions are not clear. We recently isolated two nitrophenols from DEPs-3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC) and 4-nitro-3-phenylphenol (PNMPP)-and showed that they had estrogenic and anti-androgenic activities. Here, we tried to clarify the involvement of these two nitrophenols in promoting the growth of the MCF-7 breast cancer cell line. First, comet assay was used to detect the genotoxicity of PNMC andmore » PNMPP in a CHO cell line. At all doses tested, PNMC and PNMPP showed negative genotoxicity, indicating that they had no tumor initiating activity. Next, the estrogen-responsive breast cancer cell line MCF-7 was used to assess cell proliferation. Proliferation of MCF-7 cells was stimulated by PNMC, PNMPP, and estradiol-17{beta} and the anti-estrogens 4-hydroxytamoxifen and ICI 182,780 inhibited the proliferation. To further investigate transcriptional activity through the estrogen receptor, MCF-7 cells were transfected with a receptor gene that allowed expression of luciferase enzyme under the control of the estrogen regulatory element. PNMC and PNMPP induced luciferase activity in a dose-dependent manner at submicromolar concentrations. ICI 182,780 inhibited the luciferase activity induced by PNMC and PNMPP. These results clearly indicate that PNMC and PNMPP do not show genotoxicity but act as tumor promoters in an estrogen receptor {alpha}-predominant breast cancer cell line.« less
Encapsulation of docetaxel into PEGylated gold nanoparticles for vectorization to cancer cells.
François, Alison; Laroche, Audrey; Pinaud, Noël; Salmon, Lionel; Ruiz, Jaime; Robert, Jacques; Astruc, Didier
2011-11-04
Encapsulation of docetaxel and its solubilization in water was carried out in PEGylated gold nanoparticles (AuNPs) as shown by 1H NMR (600 MHz) and UV/Vis spectroscopy and dynamic light scattering. Vectorization of PEGylated AuNP-encapsulated docetaxel was probed in vitro toward human colon carcinoma (HCT15) and human breast cancer (MCF7) cells. AuNPs alone presented no cytotoxicity toward either MCF7 or HCT15 adenocarcinoma cells. AuNP-docetaxel was found to be 2.5-fold more efficient than docetaxel alone against MCF7 cells, and the IC50 value of AuNP-docetaxel against HCT15 cells was lower than that of free docetaxel; the increased efficiency brought about by AuNP drug encapsulation was ∼1.5-fold. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jia, Min; Li, Yuan; Xin, Hai-Liang; Hou, Ting-Ting; Zhang, Nai-Dai; Xu, Hong-Tao; Zhang, Qiao-Yan; Qin, Lu-Ping
2016-06-01
There is an increasing interest in phytoestrogens due to their potential medical usage in hormone replacement therapy (HRT). The present study was designed to investigate the in vitro effects of estrogen-like activities of two widespread coumarins, osthole and imperatorin, using the MCF-7 cell proliferation assay and their alkaline phosphatase (ALP) activities in osteoblasts Saos-2 cells. The two compounds were found to strongly stimulate the proliferation of MCF-7 cells. The estrogen receptor-regulated ERα, progesterone receptor (PR) and PS2 mRNA levels were increased by treatment with osthole and imperatorin. All these effects were significantly inhibited by the specific estrogen receptor antagonist ICI182, 780. Cell cycle analysis revealed that their proliferation stimulatory effect was associated with a marked increase in the number of MCF-7 cells in S phase, which was similar to that observed with estradiol. It was also observed that they significantly increased ALP activity, which was reversed by ICI182,780. These results suggested that osthole and imperatorin could stimulate osteoblastic activity by displaying estrogenic properties or through the ER pathway. In conclusion, osthole and imperatorin may represent new pharmacological tools for the treatment of osteoporosis. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Zheng, Nan; Liu, Lu; Liu, Weiwei; Zhang, Ping; Huang, Huai; Zang, Linghe; Hayashi, Toshihiko; Tashiro, Shin-ichi; Onodera, Satoshi; Xia, Mingyu; Ikejima, Takashi
2016-02-01
We previously reported that silibinin induced a loss of cell viability in breast cancer (MCF-7) cells by ERα down-regulation. But whether this cytotoxicity depends on another estrogen receptor, ERβ, has yet to be elucidated. Therefore, we sought to explore the effects of ERβ modulation on cell viability by using an ERβ-selective agonist (Diarylprepionitrile, DPN) and an antagonist (PHTPP). Our data demonstrated that ERβ served as a growth suppressor in MCF-7 cells, and the incubation of silibinin, elevated ERβ expression, resulting in the tumor growth inhibition. The cytotoxic effect of silibinin was diminished by PHTPP and enhanced by DPN. Silencing of ERβ by siRNA confirmed these results. Apoptotic cascades, including the sequential activation of caspase-9 and -6, and finally the cleavage of caspase substrates, PARP and ICAD, caused by treatment with silibinin, were all repressed by PHTPP pre-treatment but exacerbated by DPN. Unlike ERα, ERβ did not involve autophagic process in the regulation, since neither autophagic inhibitor (3-MA) nor the inducer (rapamycin) affected the cell survival rates regardless ERβ activity. Taken together, silibinin induced apoptosis through mitochondrial pathway by up-regulating ERβ pathways in MCF-7 cells without the involvement of autophagy. Copyright © 2016. Published by Elsevier Inc.
Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells
Warleta, Fernando; Quesada, Cristina Sánchez; Campos, María; Allouche, Yosra; Beltrán, Gabriel; Gaforio, José J.
2011-01-01
Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A) or breast cancer cells (MDA-MB-231 and MCF7). We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS) level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells. PMID:22254082
Sharan, Shruti; Nikhil, Kumar; Roy, Partha
2013-06-01
Endocrine disrupting chemicals are the natural/synthetic compounds which mimic or inhibit the actions of endogenous hormones. Organotin compounds, such as tributyltin (TBT) are typical environmental contaminants and suspected endocrine-disrupting chemical. The present study evaluates the estrogenic potential of this compound in vitro in ER (+) breast adenocarcinoma, MCF-7 cell line. Our data showed that tributyltin chloride (TBTCl) had agonistic activities for estrogen receptor-α (ER-α). Its estrogenic potential was checked using cell proliferation assay, aromatase assay, transactivation assay, and protein expression analysis. Low dose treatment of TBTCl had a proliferative effect on MCF-7 cells and resulted in up-regulation of aromatase enzyme activity and enhanced estradiol production in MCF-7 cells. Immunofluorescence staining showed translocation of ER-α from cytoplasm to nucleus and increased expression of ER-α, 3β-HSD and aromatase on treatment with increasing doses of TBTCl. Further, to decipher the probable signaling pathways involved in its action, the MCF-7 cells were transfected with different pathway dependent luciferase reporter plasmids (CRE, SRE, NF-κB and AP1). A significant increase in CRE and SRE and decrease in NF-κB regulated pathway were observed (p<0.05). Our results thus showed that the activation of SRE by TBTCl may be due to ligand dependent ER-α activation of the MAPK pathway and increased phosphorylation of ERK. In summary, the present data suggests that low dose of tributyltin genomically and non-genomically augmented estrogen dependent signaling by targeting various pathways. Copyright © 2013 Elsevier Inc. All rights reserved.
Burton, Liza J.; Dougan, Jodi; Jones, Jasmine; Smith, Bethany N.; Randle, Diandra; Henderson, Veronica
2016-01-01
ABSTRACT The epithelial mesenchymal transition (EMT) promotes tumor migration and invasion by downregulating epithelial markers such as E-cadherin and upregulating mesenchymal markers such as vimentin. Cathepsin L (Cat L) is a cysteine protease that can proteolytically activate CCAAT displacement protein/cut homeobox transcription factor (CUX1). We hypothesized that nuclear Cat L may promote EMT via CUX1 and that this could be antagonized with the Cat L-specific inhibitor Z-FY-CHO. Mesenchymal prostate (ARCaP-M and ARCaP-E overexpressing Snail) and breast (MDA-MB-468, MDA-MB-231, and MCF-7 overexpressing Snail) cancer cells expressed lower E-cadherin activity, higher Snail, vimentin, and Cat L activity, and a p110/p90 active CUX1 form, compared to epithelial prostate (ARCaP-E and ARCaP-Neo) and breast (MCF-7 and MCF-7 Neo) cancer cells. There was increased binding of CUX1 to Snail and the E-cadherin promoter in mesenchymal cells compared to epithelial prostate and breast cells. Treatment of mesenchymal cells with the Cat L inhibitor Z-FY-CHO led to nuclear-to-cytoplasmic relocalization of Cat L, decreased binding of CUX1 to Snail and the E-cadherin promoter, reversed EMT, and decreased cell migration/invasion. Overall, our novel data suggest that a positive feedback loop between Snail-nuclear Cat L-CUX1 drives EMT, which can be antagonized by Z-FY-CHO. Therefore, Z-FY-CHO may be an important therapeutic tool to antagonize EMT and cancer progression. PMID:27956696
Burton, Liza J; Dougan, Jodi; Jones, Jasmine; Smith, Bethany N; Randle, Diandra; Henderson, Veronica; Odero-Marah, Valerie A
2017-03-01
The epithelial mesenchymal transition (EMT) promotes tumor migration and invasion by downregulating epithelial markers such as E-cadherin and upregulating mesenchymal markers such as vimentin. Cathepsin L (Cat L) is a cysteine protease that can proteolytically activate CCAAT displacement protein/cut homeobox transcription factor (CUX1). We hypothesized that nuclear Cat L may promote EMT via CUX1 and that this could be antagonized with the Cat L-specific inhibitor Z-FY-CHO. Mesenchymal prostate (ARCaP-M and ARCaP-E overexpressing Snail) and breast (MDA-MB-468, MDA-MB-231, and MCF-7 overexpressing Snail) cancer cells expressed lower E-cadherin activity, higher Snail, vimentin, and Cat L activity, and a p110/p90 active CUX1 form, compared to epithelial prostate (ARCaP-E and ARCaP-Neo) and breast (MCF-7 and MCF-7 Neo) cancer cells. There was increased binding of CUX1 to Snail and the E-cadherin promoter in mesenchymal cells compared to epithelial prostate and breast cells. Treatment of mesenchymal cells with the Cat L inhibitor Z-FY-CHO led to nuclear-to-cytoplasmic relocalization of Cat L, decreased binding of CUX1 to Snail and the E-cadherin promoter, reversed EMT, and decreased cell migration/invasion. Overall, our novel data suggest that a positive feedback loop between Snail-nuclear Cat L-CUX1 drives EMT, which can be antagonized by Z-FY-CHO. Therefore, Z-FY-CHO may be an important therapeutic tool to antagonize EMT and cancer progression. Copyright © 2017 American Society for Microbiology.
Neem Seed Oil Induces Apoptosis in MCF-7 and MDA MB-231 Human Breast Cancer Cells
Sharma, Ramesh; Kaushik, Shweta; Shyam, Hari; Agarwal, Satish; Balapure, Anil Kumar
2017-08-27
Background: In traditional Indian medicine, azadirachta indica (neem) is known for its wide range of medicinal properties. Various parts of neem tree including its fruit, seed, bark, leaves, and root have been shown to possess antiseptic, antiviral, antipyretic, anti-inflammatory, antiulcer, antimalarial, antifungal and anticancer activity. Materials and Methods: MCF-7 and MDA MB-231 cells were exposed to various concentrations of 2% ethanolic solution of NSO (1-30 μl/ml) and further processed for cell viability, cell cycle and apoptosis analysis. In addition, cells were analyzed for alteration in Mitochondrial Membrane Potential (MMP) and generation of Reactive Oxygen Species (ROS) using JC-1 and DCFDA staining respectively. Results: NSO give 50% inhibition at 10 μl/ml and 20 μl/ml concentration in MCF-7 and MDA MB-231 cells respectively and, arrests cells at G0/G1 phase in both the cell types. There was a significant alteration in mitochondrial membrane potential that leads to the generation of ROS and induction of apoptosis in NSO treated MCF-7 and MDA MB-231 cells. Conclusion: The results showed that NSO inhibits the growth of human breast cancer cells via induction of apoptosis and G1 phase arrest. Collectively these results suggest that NSO could potentially be used in the management of breast cancer. Creative Commons Attribution License
Neem Seed Oil Induces Apoptosis in MCF-7 and MDA MB-231 Human Breast Cancer Cells
Sharma, Ramesh; Kaushik, Shweta; Shyam, Hari; Agarwal, Satish; Balapure, Anil Kumar
2017-01-01
Background: In traditional Indian medicine, azadirachta indica (neem) is known for its wide range of medicinal properties. Various parts of neem tree including its fruit, seed, bark, leaves, and root have been shown to possess antiseptic, antiviral, antipyretic, anti-inflammatory, antiulcer, antimalarial, antifungal and anticancer activity. Materials and Methods: MCF-7 and MDA MB-231 cells were exposed to various concentrations of 2% ethanolic solution of NSO (1-30 µl/ml) and further processed for cell viability, cell cycle and apoptosis analysis. In addition, cells were analyzed for alteration in Mitochondrial Membrane Potential (MMP) and generation of Reactive Oxygen Species (ROS) using JC-1 and DCFDA staining respectively. Results: NSO give 50% inhibition at 10 µl/ml and 20 µl/ml concentration in MCF-7 and MDA MB-231 cells respectively and, arrests cells at G0/G1 phase in both the cell types. There was a significant alteration in mitochondrial membrane potential that leads to the generation of ROS and induction of apoptosis in NSO treated MCF-7 and MDA MB-231 cells. Conclusion: The results showed that NSO inhibits the growth of human breast cancer cells via induction of apoptosis and G1 phase arrest. Collectively these results suggest that NSO could potentially be used in the management of breast cancer. PMID:28843234
George, Blassan P; Abrahamse, Heidi; Hemmaragala, Nanjundaswamy M
2017-09-01
Photodynamic therapy (PDT) is a novel approach for the treatment of cancer and other related diseases. Breast cancer remains the most common cause of cancer-related death in women. This study was carried out to investigate the photosensitizing capacity of Rubus fairholmianus root acetone extract (RFRA) in vitro. RFRA was coupled with phthalocyanine photosensitizer to enhance the therapeutic properties on MCF-7 breast cancer cells. Comparatively low dose photosensitizer (PS) and Rubus extract have been used for the conjugation as it induces cell death at low doses. The diode laser of wavelength 680 nm and 5, 10 and 15 J/cm2 fluencies have been used for PDT experiments/laser irradiation. MCF-7 cells were exposed to Rubus extract and conjugated Rubus-PS for 24 h and analysed the alterations in cell morphology, proliferation, cytotoxicity and apoptosis induction. The PDT-treated cells displayed substantial features of apoptotic cell death by changes in morphology with a reduction in cell number, development of apoptotic bodies and cell detachment from culture plates. Cellular viability (51.25% for RFRA-PS at 15 J/cm2) and Adenosine 5'-triphosphate (ATP) proliferation of treated cells reduced significantly and the cytotoxicity increased in lactate dehydrogenase (LDH) assay. The Annexin V/PI double staining supports the caspase 3/7 activities by the increased apoptotic cells population and the increased levels of cytochrome c. Our results show that the phototoxic properties of RFRA and photosensitizer may be through the caspase-mediated apoptosis and it can be summarised that Rubus may be a potent anticancer plant with phototoxic effects on breast cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Mechanisms of Chemoresistance in Breast Cancer Cells
2008-02-01
which blocks ganglioside biosynthesis at the juncture of ceramide synthase, or Vibrio cholerae neuraminidase, which cleaves cell surface gangliosides...MCF-7-AdrR and MCF-7-AdrR/GCS antisense cells were rinsed, harvested in PBS, and lysed in a PBS buffer containing 10% glycerol, 1% Triton X-100, 1.0...analysis of gangliosides. Cells harvested in PBS were homogenized in 6 mL chloroform/methanol (1:1, v/v); the mixture remained overnight at room
Effect of exposure protocol and heat shock protein expression on arsenite induced genotoxicity in MCF-7 breast cancer cells
The genotoxic effects of arsenic (As) are well accepted, yet its mechanism of action is not clearly defined. Heat-shock proteins (HSPs) protect...
Tayarani-Najaran, Zahra; Amiri, Atefeh; Karimi, Gholamreza; Emami, Seyed Ahmad; Asili, Javad; Mousavi, Seyed Hadi
2014-01-01
Lavender (Lavandula angustifolia Mill.) is a bush-like shrub from Lamiaceae. The herb has been used in alternative medicine for several centuries. In this study, the cytotoxicity and the mechanisms of cell death induced by 3 different extracts of aerial parts and the essential oil of L. angustifolia were compared in normal and cancerous human cells. Malignant (HeLa and MCF-7 cell lines) and nonmalignant (human fibroblasts) cells were incubated with different concentrations of the plant extracts. Cell viability was quantified by MTS assay. Apoptotic cells were determined using propidium iodide staining of DNA fragmentation by flow cytometry (sub-G1 peak). The molecules as apoptotic signal translation, including Bax and cleaved PARP, were identified by Western blot. Ethanol and n-hexane extracts and essential oil exhibited significant cytotoxicity to malignant cells but marginal cytotoxicity to human fibroblasts in vitro and induced a sub-G1 peak in flow cytometry histogram of treated cells compared to the control. Western blot analysis demonstrated that EtOH and n-hexane extracts upregulated Bax expression, also it induced cleavage of PARP in HeLa cells compared to the control. In conclusion, L. angustifolia has cytotoxic and apoptotic effects in HeLa and MCF-7 cell lines, and apoptosis is proposed as the possible mechanism of action.
Kuban-Jankowska, Alicja; Sahu, Kamlesh K; Gorska-Ponikowska, Magdalena; Tuszynski, Jack A; Wozniak, Michal
2017-09-01
Rapidly-dividing cancer cells have higher requirement for iron compared to non-transformed cells, making iron chelating a potential anticancer strategy. In the present study we compared the anticancer activity of uncommon iron chelator aurintricarboxylic acid (ATA) with the known deferoxamine (DFO). We investigated the impact of ATA and DFO on the viability and proliferation of MCF-7 cancer cells. Moreover we performed enzymatic activity assays and computational analysis of the ATA and DFO effects on pro-oncogenic phosphatases PTP1B and SHP2. ATA and DFO decrease the viability and proliferation of breast cancer cells, but only ATA considerably reduces the activity of PTP1B and SHP2 phosphatases. Our studies indicated that ATA strongly inactivates and binds in the PTP1B and SHP2 active site, interacting with arginine residue essential for enzyme activity. We confirmed that iron chelating can be considered as a potential strategy for the adjunctive treatment of breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Seurin, Danielle; Lombet, Alain; Babajko, Sylvie; Godeau, François; Ricort, Jean-Marc
2013-01-01
Background Insulin-like growth factor binding proteins (IGFBPs) are six related secreted proteins that share IGF-dependent and -independent functions. If the former functions begin to be well described, the latter are somewhat more difficult to investigate and to characterize. At the cellular level, IGFBPs were shown to modulate numerous processes including cell growth, differentiation and apoptosis. However, the molecular mechanisms implicated remain largely unknown. We previously demonstrated that IGFBP-3, but not IGFBP-1 or IGFBP-5, increase intracellular calcium concentration in MCF-7 cells (Ricort J-M et al. (2002) FEBS lett 527: 293–297). Methodology/Principal Findings We perform a global analysis in which we studied, by two different approaches, the binding of each IGFBP isoform (i.e., IGFBP-1 to -6) to the surface of two different cellular models, MCF-7 breast adenocarcinoma cells and C2 myoblast proliferative cells, as well as the IGFBP-induced increase of intracellular calcium concentration. Using both confocal fluorescence microscopy and flow cytometry analysis, we showed that all IGFBPs bind to MCF-7 cell surface. By contrast, only four IGFBPs can bind to C2 cell surface since neither IGFBP-2 nor IGFBP-4 were detected. Among the six IGFBPs tested, only IGFBP-1 did not increased intracellular calcium concentration whatever the cellular model studied. By contrast, IGFBP-2, -3, -4 and -6, in MCF-7 cells, and IGFBP-3, -5 and -6, in C2 proliferative cells, induce a rapid and transient increase in intracellular free calcium concentration. Moreover, IGFBP-2 and -3 (in MCF-7 cells) and IGFBP-5 (in C2 cells) increase intracellular free calcium concentration by a pertussis toxin sensitive signaling pathway. Conclusions Our results demonstrate that IGFBPs are able to bind to cell surface and increase intracellular calcium concentration. By characterizing the IGFBPs-induced cell responses and intracellular couplings, we highlight the cellular specificity and complexity of the IGF-independent actions of these IGF binding proteins. PMID:23527161
Cytotoxic constituents of Pachyrhizus tuberosus from Peruvian amazon.
Leuner, Olga; Havlik, Jaroslav; Budesinsky, Milos; Vrkoslav, Vladimir; Chu, Jessica; Bradshaw, Tracey D; Hummelova, Jana; Miksatkova, Petra; Lapcik, Oldrich; Valterova, Irena; Kokoska, Ladislav
2013-10-01
Investigations into the chemical constituents of the seeds of the neglected tuber crop Pachyrhizus tuberosus (Leguminosae) resulted in the isolation of seven components: five rotenoids [12a-hydroxyerosone (1), 12a-hydroxydolineone (2), erosone (3), 12a-hydroxyrotenone (4) and rotenone (6)], a phenylfuranocoumarin [pachyrrhizine (5)] and an isoflavanone [neotenone (7)]. The compounds were isolated using several chromatography techniques and characterized and verified by NMR and HPLC/MS. The MTT assay was used to examine the selective cytotoxic effects of the methanolic P. tuberosus extract and isolated compounds in two human cancer cell lines [breast (MCF-7) and colorectal (HCT-116)] and in non-transformed human fibroblasts (MRC-5); IC50 values were calculated. The methanolic P. tuberosus extract displayed respectable cytotoxic effects against HCT-116 and MCF-7 cells with IC50 values of 7.3 and 6.3 microg/mL, respectively. Of the compounds, 6 exacted greatest cytotoxicity and selectivity towards the cancer cell lines tested, yielding IC50 values of 0.3 microg/mL against both MCF-7 and HCT-116 cells, and a 6-fold reduced activity against MRC-5 fibroblasts. Compound 4 also demonstrated cytotoxicity against MCF-7 and HCT-116 (1.1 and 1.8 microg/mL, respectively), and reduced cytotoxicity towards MRC-5 cells (7.5 mirog/mL). The results revealed from the in vitro cytotoxic MTT assay are worthy of further antitumor investigation.
Phosphatidylcholine catabolism in the MCF-7 cell cycle.
Lin, Weiyang; Arthur, Gilbert
2006-10-01
The catabolism of phosphatidylcholine (PtdCho) appears to play a key role in regulating the net accumulation of the lipid in the cell cycle. Current protocols for measuring the degradation of PtdCho at specific cell-cycle phases require prolonged periods of incubation with radiolabelled choline. To measure the degradation of PtdCho at the S and G2 phases in the MCF-7 cell cycle, protocols were developed with radiolabelled lysophosphatidylcholine (lysoPtdCho), which reduces the labelling period and minimizes the recycling of labelled components. Although most of the incubated lysoPtdCho was hydrolyzed to glycerophosphocholine (GroPCho) in the medium, the kinetics of the incorporation of label into PtdCho suggests that the labelled GroPCho did not contribute significantly to cellular PtdCho formation. A protocol which involved exposing the cells twice to hydroxyurea, was also developed to produce highly synchronized MCF-7 cells with a profile of G1:S:G2/M of 90:5:5. An analysis of PtdCho catabolism in the synchronized cells following labelling with lysoPtdCho revealed that there was increased degradation of PtdCho in early to mid-S phase, which was attenuated in the G2/M phase. The results suggest that the net accumulation of PtdCho in MCF-7 cells may occur in the G2 phase of the cell cycle.
Gou, Yi; Qi, Jinxu; Ajayi, Joshua-Paul; Zhang, Yao; Zhou, Zuping; Wu, Xiaoyang; Yang, Feng; Liang, Hong
2015-10-05
To synergistically enhance the selectivity and efficiency of anticancer copper drugs, we proposed and built a model to develop anticancer copper pro-drugs based on the nature of human serum albumin (HSA) IIA subdomain and cancer cells. Three copper(II) compounds of a 2-hydroxy-1-naphthaldehyde benzoyl hydrazone Schiff-base ligand in the presence pyridine, imidazole, or indazole ligands were synthesized (C1-C3). The structures of three HSA complexes revealed that the Cu compounds bind to the hydrophobic cavity in the HSA IIA subdomain. Among them, the pyridine and imidazole ligands of C1 and C2 are replaced by Lys199, and His242 directly coordinates with Cu(II). The indazole and Br ligands of C3 are replaced by Lys199 and His242, respectively. Compared with the Cu(II) compounds alone, the HSA complexes enhance cytotoxicity in MCF-7 cells approximately 3-5-fold, but do not raise cytotoxicity levels in normal cells in vitro through selectively accumulating in cancer cells to some extent. We find that the HSA complex has a stronger capacity for cell cycle arrest in the G2/M phase of MCF-7 by targeting cyclin-dependent kinase 1 (CDK1) and down-regulating the expression of CDK1 and cyclin B1. Moreover, the HSA complex promotes MCF-7 cell apoptosis possibly through the intrinsic reactive oxygen species (ROS) mediated mitochondrial pathway, accompanied by the regulation of Bcl-2 family proteins.
Wang, Xiao-Qiang; Aka, Juliette A; Li, Tang; Xu, Dan; Doillon, Charles J; Lin, Sheng-Xiang
2017-09-01
17beta-hydroxysteroid dehydrogenase type 7 (17β-HSD7) promotes breast cancer cell growth via dual-catalytic activity by modulating estradiol and DHT. Here, we clarified the expression pattern of 17β-HSD7 in postmenopausal luminal A type breast cancer with The Cancer Genome Atlas (TCGA) cohort. The impact of 17β-HSD7 inhibition on the proteome of MCF-7 cells was investigated and on cell apoptosis was revealed. MCF-7 cells were treated with an efficient inhibitor of 17β-HSD7 (INH7) or with vehicle, and a differential proteomics study was performed using two-dimensional (2D) gel electrophoresis followed by mass spectrometry and ingenuity pathway analysis (IPA). Cell apoptosis was analyzed by flow cytometry, followed by reverse transcription quantitative real-time PCR (RT-qPCR) and Western blot to investigate the expression of apoptosis-related genes. Our data showed 17β-HSD7 is amplified in primary and progressive breast cancer, inhibition of 17β-HSD7 in MCF-7 cells modulated 104 proteins primarily involved in cell death/survival, cell growth and DNA processing. The expression of 78kDa glucose-regulated protein (GRP78) and anti-apoptosis factor Bcl-2 were significantly suppressed via 17β-HSD7 inhibition with INH7, consequently induced MCF-7 cell apoptosis. However, INH7 treatment of T47D, another widely used epithelial ER+ breast cancer cell line, led to an up-regulation of GRP78 expression, resulting in a limited increase in apoptosis. These results suggest cell-specific effects of INH7 in the breast cancer, which is interesting for further study. An combinatory effect on apoptosis by INH7 and Letrozole (aromatase inhibitor) was further demonstrated in MCF-7. Down-regulation of GRP78 via 17β-HSD7 inhibition enhances cell apoptosis in response to Letrozole. This study highlights GRP78 as a key regulator related to 17β-HSD7 inhibition and effect. Taken together, results from the present study suggest a hypothesis that inhibition of 17β-HSD7 would be a complementary strategy to Letrozole by suppression of GRP78 in ER+ breast cancer. However, from a research perspective, further studies have to be carried out with more breast cancer cell lines as well as in vivo model to assess the efficacy of inhibitor combination. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Chen, Jian; Zhao, Xinge; Ye, Yu; Wang, Yong; Tian, Jing
2013-01-01
Calycosin and formononetin are two main components of isoflavones. In our previous studies, we have respectively reported their antitumor activities on breast cancer cell MCF-7. To further investigate the feasibility of isoflavones in clinically treating breast carcinoma, here we specifically focused on the comparison between calycosin and formononetin, along with the relevant mechanism. ER-positive (MCF-7, T-47D) and ER-negative breast cancer cells (MDA-231, MDA-435) were respectively treated with calycosin or formononetin. Cell proliferation and apoptosis were measured by MTT assay and flow cytometry. mRNA levels of ER beta (ERβ) and miR-375 were quantifed by real-time PCR. Expression of ERβ and insulin-like growth factor 1 receptor (IGF-1R), and activation of poly (ADP-ribose) polymerase 1 (PARP-1) were determined by Western blotting. Both calycosin and formononetin impaired proliferation and triggered apoptosis of ER-positive breast cancer cells (MCF-7, T-47D) in a time- and dose-dependent manner, especially in the treatment with calycosin. However, no such effect was observed in ER-negative breast cancer cells, indicating the correlation between isoflavones-induced inhibitory effect and ERs. Thus calycosin and most sensitive MCF-7 cells were used to study the relevant signaling pathway. After the treatment of calycosin, ERβ expression was significantly increased in MCF-7 cells, followed by decrease of IGF-1R, activation of PARP-1 cleavage and downregulation of miR-375. Calycosin has an advantage on inhibiting breast cancer growth in comparison with formononetin, which is obtained by ERβ-mediated regulation of IGF-1R signaling pathways and miR-375 expression. © 2014 S. Karger AG, Basel.
Queiroz, Eveline A. I. F.; Puukila, Stephanie; Eichler, Rosangela; Sampaio, Sandra C.; Forsyth, Heidi L.; Lees, Simon J.; Barbosa, Aneli M.; Dekker, Robert F. H.; Fortes, Zuleica B.; Khaper, Neelam
2014-01-01
Recent studies have demonstrated that the anti-diabetic drug, metformin, can exhibit direct antitumoral effects, or can indirectly decrease tumor proliferation by improving insulin sensitivity. Despite these recent advances, the underlying molecular mechanisms involved in decreasing tumor formation are not well understood. In this study, we examined the antiproliferative role and mechanism of action of metformin in MCF-7 cancer cells treated with 10 mM of metformin for 24, 48, and 72 hours. Using BrdU and the MTT assay, it was found that metformin demonstrated an antiproliferative effect in MCF-7 cells that occurred in a time- and concentration- dependent manner. Flow cytometry was used to analyze markers of cell cycle, apoptosis, necrosis and oxidative stress. Exposure to metformin induced cell cycle arrest in G0-G1 phase and increased cell apoptosis and necrosis, which were associated with increased oxidative stress. Gene and protein expression were determined in MCF-7 cells by real time RT-PCR and western blotting, respectively. In MCF-7 cells metformin decreased the activation of IRβ, Akt and ERK1/2, increased p-AMPK, FOXO3a, p27, Bax and cleaved caspase-3, and decreased phosphorylation of p70S6K and Bcl-2 protein expression. Co-treatment with metformin and H2O2 increased oxidative stress which was associated with reduced cell number. In the presence of metformin, treating with SOD and catalase improved cell viability. Treatment with metformin resulted in an increase in p-p38 MAPK, catalase, MnSOD and Cu/Zn SOD protein expression. These results show that metformin has an antiproliferative effect associated with cell cycle arrest and apoptosis, which is mediated by oxidative stress, as well as AMPK and FOXO3a activation. Our study further reinforces the potential benefit of metformin in cancer treatment and provides novel mechanistic insight into its antiproliferative role. PMID:24858012
Zuhrotun Nisa, Fatma; Astuti, Mary; Murdiati, Agnes; Mubarika Haryana, Sofia
2017-01-01
Breast cancer is the most frequently diagnosed cancer in women. Chemotherapy is the main method of breast cancer treatment but there are side effects. Carica papaya leaves is vegetable foods consumed by most people of Indonesia have potential as anticancer. The aim of this study was to investigate anti-proliferative and apoptotic induced effect of aqueous papaya leaves extracts on human breast cancer cell lines MCF-7. Inhibitory on cell proliferation was measured by MTT assay while apoptosis induction was measured using Annexin V. The results showed that papaya leaf can inhibit the proliferation of human breast cancer cells MCF-7 with IC50 in 1319.25 μg mL-1. The IC50 values of papaya leaf extract was higher than the IC50 value quercetin and doxorubicin. Papaya leaf extract can also induce apoptosis of breast cancer cells MCF-7 about 22.54% for concentration 659.63 μg mL-1 and about 20.73% for concentration 329.81 μg mL-1. The percentage of cell apoptosis of papaya leaf extract lower than doxorubicin but higher than quercetin. This study indicated that papaya leaf extract have potential as anticancer through mechanism anti-proliferation and apoptosis induction.
Li, Liya; Adams, Lynn S.; Chen, Shiuan; Killian, Caroline; Ahmed, Aftab; Seeram, Navindra P.
2009-01-01
The ripe purple berries of the native Indian plant, Eugenia jambolana Lam., known as Jamun, are popularly consumed and available in the United States in Florida and Hawaii. Despite the growing body of data on the chemopreventive potential of edible berry extracts, there is paucity of such data for Jamun fruit. Therefore our laboratory initiated the current study with the following objectives:1) to prepare a standardized Jamun fruit extract (JFE) for biological studies and, 2) to investigate the anti-proliferative and pro-apoptotic effects of JFE in estrogen dependent/aromatase positive (MCF-7aro), and estrogen independent (MDA-MB-231) breast cancer cells, and in a normal/non-tumorigenic (MCF-10A) breast cell line. JFE was standardized to anthocyanin content using the pH differential method, and individual anthocyanins were identified by high performance liquid chromatography with ultraviolet (HPLC-UV) and tandem mass spectrometry (LC-MS/MS) methods. JFE contained 3.5% anthocyanins (as cyanidin-3-glucoside equivalents) which occur as diglucosides of five anthocyanidins/aglycons: delphinidin, cyanidin, petunidin, peonidin and malvidin. In the proliferation assay, JFE was most effective against MCF-7aro (IC50=27 µg/mL), followed by MDA-MB-231 (IC50=40 µg/mL) breast cancer cells. Importantly, JFE exhibited only mild antiproliferative effects against the normal MCF-10A (IC50>100 µg/mL) breast cells. Similarly, JFE (at 200 µg/mL) exhibited pro-apoptotic effects against the MCF-7aro (p≤0.05) and the MDA-MB-231 (p≤0.01) breast cancer cells, but not towards the normal MCF-10A breast cells. These studies suggest that JFE may have potential beneficial effects against breast cancer. PMID:19166352
Hu, Xiao-juan; Liu, Yang; Zhou, Xiao-feng; Zhu, Qiao-ling; Bei, Yong-yan; You, Ben-gang; Zhang, Chun-ge; Chen, Wei-liang; Wang, Zhou-li; Zhu, Ai-jun; Zhang, Xue-nong; Fan, Yu-jiang
2013-01-01
Novel amphiphilic chitosan derivatives (N-caprinoyl-N-trimethyl chitosan [CA-TMC]) were synthesized by grafting the hydrophobic moiety caprinoyl (CA) and hydrophilic moiety trimethyl chitosan to prepare carriers with good compatibility for poorly soluble drugs. Based on self-assembly, CA-TMC can form micelles with sizes ranging from 136 nm to 212 nm. The critical aggregation concentration increased from 0.6 mg • L−1 to 88 mg • L−1 with decrease in the degree of CA substitution. Osthole (OST) could be easily encapsulated into the CA-TMC micelles. The highest entrapment efficiency and drug loading of OST-loaded CA-TMC micelles(OST/CA-TMC) were 79.1% and 19.1%, respectively. The antitumor efficacy results show that OST/CA-TMC micelles have significant antitumor activity on Hela and MCF-7 cells, with a 50% of cell growth inhibition (IC50) of 35.8 and 46.7 μg. mL−1, respectively. Cell apoptosis was the main effect on cell death of Hela and MCF-7 cells after OST administration. The blank micelles did not affect apoptosis or cell death of Hela and MCF-7 cells. The fluorescence imaging results indicated that OST/CA-TMC micelles could be easily uptaken by Hela and MCF-7 cells and could localize in the cell nuclei. These findings suggest that CA-TMC micelles are promising carriers for OST delivery in cancer therapy. PMID:24106424
Fruit peel polyphenols demonstrate substantial anti-tumour effects in the model of breast cancer.
Kubatka, Peter; Kapinová, Andrea; Kello, Martin; Kruzliak, Peter; Kajo, Karol; Výbohová, Desanka; Mahmood, Silvia; Murin, Radovan; Viera, Tischlerová; Mojžiš, Ján; Zulli, Anthony; Péč, Martin; Adamkov, Marián; Kassayová, Monika; Bojková, Bianka; Stollárová, Nadežda; Dobrota, Dušan
2016-04-01
Fruit and vegetable intake is inversely correlated with cancer; thus, it is proposed that an extract of phytochemicals as present in whole fruits, vegetables, or grains may have anti-carcinogenic properties. Thus, the anti-tumour effects of fruit peel polyphenols (Flavin7) in the chemoprevention of N-methyl-N-nitrosourea-induced mammary carcinogenesis in female rats were evaluated. Lyophilized substance of Flavin7 (F7) was administered at two concentrations of 0.3 and 3 % through diet. The experiment was terminated 14 weeks after carcinogen administration, and mammary tumours were removed and prepared for histopathological and immunohistochemical analysis. In addition, using an in vitro cytotoxicity assay, apoptosis and proliferation after F7 treatment in human breast adenocarcinoma (MCF-7) cells were performed. High-dose F7 suppressed tumour frequency by 58 % (P < 0.001), tumour incidence by 24 % (P < 0.05), and lengthened latency by 8 days (P > 0.05) in comparison with the control rats, whereas lower dose of F7 was less effective. Histopathological analysis of tumours showed significant decrease in the ratio of high-/low-grade carcinomas after high-dose F7 treatment. Immunohistochemical analysis of rat carcinoma cells in vivo found a significant increase in caspase-3 expression and significant decrease in Bcl-2, Ki67, and VEGFR-2 expression in the high-dose group. Both doses demonstrated significant positive effects on plasma lipid metabolism in rats. F7 significantly decreased survival of MCF-7 cells in vitro in MTT assay by dose- and time-dependent manner compared to control. F7 prevented cell cycle progression by significant enrichment in G1 cell populations. Incubation with F7 showed significant increase in the percentage of annexin V-/PI-positive MCF-7 cells and DNA fragmentation. Our results reveal a substantial tumour-suppressive effect of F7 in the breast cancer model. We propose that the effects of phytochemicals present in this fruit extract are responsible for observed potent anti-cancer activities.
Collins, Denis M; Gately, Kathy; Hughes, Clare; Edwards, Connla; Davies, Anthony; Madden, Stephen F; O'Byrne, Kenneth J; O'Donovan, Norma; Crown, John
2017-09-01
Trastuzumab is an anti-HER2 monoclonal antibody (mAb) therapy capable of antibody-dependent cell-mediated cytotoxicity (ADCC) and used in the treatment of HER2+ breast cancer. Through interactions with FcƴR+ immune cell subsets, trastuzumab functions as a passive immunotherapy. The EGFR/HER2-targeting tyrosine kinase inhibitor (TKI) lapatinib and the next generation TKIs afatinib and neratinib, can alter HER2 levels, potentially modulating the ADCC response to trastuzumab. Using LDH-release assays, we investigated the impact of antigen modulation, assay duration and peripheral blood mononuclear cell (PBMC) activity on trastuzumab-mediated ADCC in breast cancer models of maximal (SKBR3) and minimal (MCF-7) target antigen expression to determine if modulating the ADCC response to trastuzumab using TKIs may be a viable approach for enhancing tumor immune reactivity. HER2 levels were determined in lapatinib, afatinib and neratinib-treated SKBR3 and MCF-7 using high content analysis (HCA). Trastuzumab-mediated ADCC was assessed following treatment with TKIs utilising a colorimetric LDH release-based protocol at 4 and 12h timepoints. PBMC activity was assessed against non-MHC-restricted K562 cells. A flow cytometry-based method (CFSE/7-AAD) was also used to measure trastuzumab-mediated ADCC in medium-treated SKBR3 and MCF-7. HER2 antigen levels were significantly altered by the three TKIs in both cell line models. The TKIs significantly reduced LDH levels directly in SKBR3 cells but not MCF-7. Lapatinib and neratinib augment trastuzumab-related ADCC in SKBR3 but the effect was not consistent with antigen expression levels and was dependent on volunteer PBMC activity (vs. K562). A 12h assay timepoint produced more consistent results. Trastuzumab-mediated ADCC (PBMC:target cell ratio of 10:1) was measured at 7.6±4.7% (T12) by LDH assay and 19±3.2 % (T12) using the flow cytometry-based method in the antigen-low model MCF-7. In the presence of effector cells with high cytotoxic capacity, TKIs have the ability to augment the passive immunotherapeutic potential of trastuzumab in SKBR3, a model of HER2+ breast cancer. ADCC levels detected by LDH release assays are extremely low in MCF-7; the flow cytometry-based CFSE/7-AAD method is more sensitive and consistent for the determination of ADCC in HER2-low models. Copyright © 2017 Elsevier Inc. All rights reserved.
Augmenting Trastuzumab Therapy against Breast Cancer through Selective Activation of NK Cells
2014-12-01
purity as defined by CD3-CD56+ flow cytometry ) and activation (>50% expression of CD137). Breast cancer cell lines including MCF7 (A and E...purity as defined by CD3-CD56+ flow cytometry ) and activation (>50% expression of CD137). Chromium-labeled breast cancer cell lines including MCF7 (A...and Whiteside, T.L. 2007. A novel multiparametric flow cytometry -based cytotoxicity assay simultaneously immunophenotypes effector cells: comparisons
Li, Yuehua; Jiang, Baohong; Wu, Xiaoping; Huang, Qin; Chen, Wenqi; Zhu, Hongbo; Qu, Xiaofei; Xie, Liming; Ma, Xin; Huang, Guo
2018-05-21
Estrogen drives the development and progression of estrogen receptor (ER)-positive breast cancer. However, the detailed mechanism underlying ER-driven carcinogenesis remains unclear despite extensive studies. Previously reports indicated higher expression of long non-coding RNA (lncRNA) myocardial infarction associated transcript (MIAT) in ER-positive breast cancer tissues than in ER-negative tissues. However, the functional relevance of MIAT in ER-positive breast cancer tumorigenesis was poorly understood. Here, we investigated the role of lncRNA MIAT in ER-positive breast cancer cells. MIAT was over-expressed in ER-positive breast cancer tissues and ER-positive breast cancer cell line MCF-7. Activating estrogen signaling by diethylstilbestrol (DES) led to a dose- and time-dependent up-regulation of MIAT in MCF-7 cells that was dependent on ERα, as evidenced by ERα silencing and pharmacological inhibition using ER antagonist ICI 182780. Silencing MIAT decreased DES-induced MCF-7 cell proliferation while overexpressing MIAT increased MCF-7 cell proliferation. Further mechanistic study identified that MIAT was critical for G1 to S phase cell cycle transition. Taken together, these results suggest that lncRNA MIAT is an estrogen-inducible lncRNA and a key regulator in ER-positive breast cancer cell growth. MIAT could serve as a potential biomarker and promising therapeutic target for ER-positive breast cancer. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Lv, Yonggang; Chen, Can; Zhao, Boyuan; Zhang, Xiaomei
2017-06-01
Substrate stiffness and hypoxia are associated with tumor development and progression, respectively. However, the synergy of them on the biological behavior of human breast cancer cell is still largely unknown. This study explored how substrate stiffness regulates the cell phenotype, viability, and epithelial-mesenchymal transition (EMT) of human breast cancer cells MCF-7 under hypoxia (1% O2). TRITC-phalloidin staining showed that MCF-7 cells transformed from round to irregular polygon with stiffness increase either in normoxia or hypoxia. While being accompanied with the upward tendency from a 0.5- to a 20-kPa substrate, the percentage of cell apoptosis was significantly higher in hypoxia than that in normoxia, especially on the 20-kPa substrate. Additionally, it was hypoxia, but not normoxia, that promoted the EMT of MCF-7 by upregulating hypoxia-inducible factor-1α (HIF-1α), vimentin, Snail 1, and matrix metalloproteinase 2 (MMP 2) and 9 (MMP 9), and downregulating E-cadherin simultaneously regardless of the change of substrate stiffness. In summary, this study discovered that hypoxia and stiffer substrate (20 kPa) could synergistically induce phenotype change, apoptosis, and EMT of MCF-7 cells. Results of this study have an important significance on further exploring the synergistic effect of stiffness and hypoxia on the EMT of breast cancer cells and its molecular mechanism.
NASA Astrophysics Data System (ADS)
Dowell, Adam; Chen, Wenxue; Biswal, Nrusingh; Ayala-Orozco, Ciceron; Giuliano, Mario; Schiff, Rachel; Halas, Naomi J.; Joshi, Amit
2012-03-01
Gold nanoshells with NIR plasmon resonance can be modified to simultaneously enhance conjugated NIR fluorescence dyes and T2 contrast of embedded iron-oxide nanoparticles, and molecularly targeted to breast and other cancers. We calibrated the theranostic performance of magneto-fluorescent nanoshells, and contrasted the performance of molecularly targeted and untargeted nanoshells for breast cancer therapy, employing MCF-7L and their HER2 overexpressing derivative MCF-7/HER2-18 breast cancer cells as in vitro model systems. Silica core gold nanoshells with plasmon resonance on ~810 nm were doped with NIR dye ICG and ~10 nm iron-oxide nanoparticles in a ~20 nm epilayer of silica. A subset of nanoshells was conjugated to antibodies targeting HER2. Cell viability with varying laser power levels in presence and absence of bare and HER2-targeted nanoshells was assessed by calcein and propidium iodide staining. For MCF-7L cells, increasing power resulted in increased cell death (F=5.63, p=0.0018), and bare nanoshells caused more cell death than HER2-targeted nanoshells or laser treatment alone (F=30.13, p<0.001). For MCF-7/HER2-18 cells, death was greater with HER2-targeted nanoshells and was independent of laser power. This study demonstrates the capability of magneto-fluorescent nanocomplexes for imaging and therapy of breast cancer cells, and the advantages of targeting receptors unique to cancer cells.
Sudha, A; Srinivasan, P; Kanimozhi, V; Palanivel, K; Kadalmani, B
2018-05-08
The aim of this study was to find the efficacy of 5-hydroxy 3',4',7-trimethoxyflavone (HTMF), a flavonoid compound isolated from the medicinal plant Lippia nodiflora, in inhibiting the proliferation and inducing apoptosis in human breast cancer cell line MCF-7. The anti-proliferative effect of the compound HTMF was confirmed using MTT cytotoxicity assay. Increased apoptotic induction by HTMF was demonstrated by acridine orange/ethidium bromide (AO/EtBr) and Hoechst 33258 staining studies. The phosphatidylserine translocation, an early feature of apoptosis and DNA damage were revealed through AnnexinV-Cy3 staining and comet assay. Moreover, the significant elevation of cellular ROS was observed in the treated cells, as measured by 2,7-diacetyl dichlorofluorescein (DCFH-DA). The mRNA expression studies also supported the effectiveness of HTMF by shifting the Bax:Bcl-2 ratio. The treatment of MCF-7 cells with HTMF encouraged apoptosis through the modulation of apoptotic markers, such as p53, Bcl-2, Bax, and cleaved PARP. In silico molecular docking and dynamics studies with MDM2-p53 protein revealed that HTMF was more potent compound that could inhibit the binding of MDM2 with p53 and, therefore, could trigger apoptosis in cancer cell. Overall, this study brings up scientific evidence for the efficacy of HTMF against MCF-7 breast cancer cells.
Gach, Katarzyna; Szemraj, Janusz; Fichna, Jakub; Piestrzeniewicz, Mariola; Delbro, Dick S; Janecka, Anna
2009-10-01
Urokinase plasminogen activator plays a key role in tumor-associated processes, increasing cancer cell invasion and metastasis, and is therefore used as a marker in cancer prognosis. In this study, we have determined the effect of mu-opioid receptor agonists and antagonists on the urokinase plasminogen activator secretion in MCF-7 cell line. It was shown that mu-opioid receptor agonists, such as morphine and endomorphins, greatly stimulate urokinase plasminogen activator secretion, while naloxone and MOR-selective antagonists elicit the opposite effect. The same tendency was observed also on the urokinase plasminogen activator mRNA level. However, neither agonists nor antagonists had any effect on proliferation of MCF-7 cells. The findings reported in this study may be useful in designing further experiments aimed at elucidating the role of the opioid system in cancer cells.
Mixture cytotoxicity assessment of ionic liquids and heavy metals in MCF-7 cells using mixtox.
Zhu, Xiang-Wei; Ge, Hui-Lin; Cao, Yu-Bin
2016-11-01
Ionic liquids (ILs) are widely used as extractants for heavy metals. However, the effect of mixtures of ILs and heavy metals is rarely understood. In this study, we tested the cytotoxicity of four ILs, four heavy metals and their mixtures on human MCF-7 cells in 96-well microplates. The toxicity of single compounds in MCF-7 cells ranges from 3.07 × 10(-6) M for Cu(II) to 2.20 × 10(-3) M for 1-ethyl-3-methylimidazolium tetrafluoroborate. The toxicity of heavy metals in MCF-7 is generally higher than the toxicity of ILs. A uniform experimental design was used to simulate environmentally realistic mixtures. Two classical reference models (concentration addition and independent action) were used to predict their mixture. The experiments to evaluate the toxicity of the mixture revealed antagonism among four ILs and four heavy metals in MCF-7 cells. Pearson correlation analysis showed that Ni(II) and 1-dodecyl-3-methylimidazolium chloride are positively correlated with the extent of antagonism, while 1-hexyl-3-methylimidazolium tetrafluoroborate showed a negative correlation. Data analysis was conducted in the R package mixtox, which integrates features such as curve fitting, experimental design, and mixture toxicity prediction. The international community of toxicologists is welcome to use this package and provide feedback as suggestions and comments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hekmat, Azadeh; Saboury, Ali Akbar; Divsalar, Adeleh; Seyedarabi, Arefeh
2013-07-01
The structural changes in DNA caused by the combined effects of TiO2 nanoparticles (TiO2 NPs) and doxorubicin (DOX) were investigated along with their corresponding inhibitory roles in the growth of T47D and MCF7 cells. The UV-visible titration studies showed that DOX+ TiO2 NPs could form a novel complex with DNA. The data also reveal that the TiO2-DOX complex forms through a 1:4 stoichiometric ratio in solution. The values of binding constants reveal that DOX+TiO2 NPs interact more strongly with DNA as compared to TiO2 NPs or DOX alone. CD data show that DOX+TiO2 NPs can noticeably cause disturbance on DNA structure compared to TiO2 NPs or DOX alone, considering that DNA is relatively thermally stable in the condition used. The anticancer property of 0.3 µM DOX+ 60 µM TiO2 NPs and 0.4 µM DOX+ 670 µM TiO2 NPs by MTT assay and DAPI stain demonstrates that this combination can tremendously diminish proliferation of T47D and MCF7cells compared to DOX or TiO2 NPs alone. The UV-Vis absorption spectroscopy, flow cytometry and fluorescence microscopy experiments show much more enhancement of DOX uptake through the use of TiO2 NPs. These results reveal that DOX+TiO2 NPs could proffer a novel strategy for the development of promising and efficient chemotherapy agents.
Aoyagi, H; Iino, Y; Takeo, T; Horii, Y; Morishita, Y; Horiuchi, R
1997-01-01
OK-432 (picibanil), a streptococcal preparation, has a strong biological response modifier (BRM) function and is expected to produce clinical improvement and prolongation of survival in treated cancer patients in Japan. We were interested in whether OK-432 augments estrogen receptor (ER) levels in breast cancer. To investigate the effect of the BRMs on cellular growth and the characteristics of ER and progesterone receptors (PgR) in the human breast cancer cell line MCF-7, we used OK-432, Krestin (PSK), a protein-bound polysaccharide extracted from Coriolus versicolor, and lentinan, a fungal branched (1...3)-beta-D-glycan. OK432 and PSK dose dependently inhibited DNA synthesis of MCF-7 cells, and the 50% inhibitory concentrations of OK-432 and PSK were 1.2 KE (klinische Einheit, clinical unit)/ml and 200 micrograms/ml, respectively. Lentinan showed no direct anticancer effect in vitro. We found that OK-432 induced a 2-fold increase in ER levels in MCF-7 cells at 0.005 KE/ml, but not in PgR. Lentinan and low-dose PSK did not change ER or PgR levels, but high-dose PSK decreased ER and PgR. We also studied the combined effect of OK-432 and antiestrogens, tamoxifen (TAM) and DP-TAT-59. The combined treatment with OK-432 and TAM showed an additive inhibitory effect on MCF-7 cells. These results suggest that OK-432 may augment the therapeutic effect of TAM in breast cancer.
Fusogenic pH sensitive liposomal formulation for rapamycin: improvement of antiproliferative effect.
Ghanbarzadeh, Saeed; Khorrami, Arash; Mohamed Khosroshahi, Leila; Arami, Sanam
2014-07-01
Liposomes are increasingly employed to deliver chemotherapeutic agents, antisense oligonucleotides, and genes to various therapeutic targets. The present investigation evaluates the ability of fusogenic pH-sensitive liposomes of rapamycin in increasing its antiproliferative effect on human breast adenocarcinoma (MCF-7) cell line. Cholesterol (Chol) and dipalmitoylphosphatidylcholine (DPPC) (DPPC:Chol, 7:3) were used to prepare conventional rapamycin liposomes by a modified ethanol injection method. Dioleoylphosphatidylethanolamine (DOPE) was used to produce fusogenic and pH-sensitive properties in liposomes simultaneously (DPPC:Chol:DOPE, 7:3:4.2). The prepared liposomes were characterized by their size, zeta potential, encapsulation efficiency percent (EE%), and chemical stability during 6 months. The antiproliferative effects of both types of rapamycin liposomes (10, 25, and 50 nmol/L) with optimized formulations were assessed on MCF-7 cells, as cancerous cells, and human umbilical vein endothelial cells (HUVEC), as healthy cells, employing the diphenyltetrazolium bromide (MTT) assay for 72 h. The particle size, zeta potential, and EE% of the liposomes were 165 ± 12.3 and 178 ± 15.4 nm, -39.6 ± 1.3, and -41.2 ± 2.1 mV as well as 76.9 ± 2.6 and 76.9 ± 2.6% in conventional and fusogenic pH-sensitive liposomes, respectively. Physicochemical stability results indicated that both liposome types were relatively stable at 4 °C than 25 °C. In vitro antiproliferative evaluation showed that fusogenic pH-sensitive liposomes had better antiproliferative effects on MCF-7 cells compared to the conventional liposomes. Conversely, fusogenic pH-sensitive liposomes had less cytotoxicity on HUVEC cell line.
Alikhani, Alireza; Gharooni, Milad; Abiri, Hamed; Farokhmanesh, Fatemeh; Abdolahad, Mohammad
2018-05-30
Monitoring the pH dependent behavior of normal and cancer cells by impedimetric biosensor based on Silicon Nanowires (SiNWs) was introduced to diagnose the invasive cancer cells. Autophagy as a biologically activated process in invasive cancer cells during acidosis, protect them from apoptosis in lower pH which presented in our work. As the autophagy is the only activated pathways which can maintain cellular proliferation in acidic media, responses of SiNW-ECIS in acidified cells could be correlated to the probability of autophagy activation in normal or cancer cells. In contrast, cell survival pathway wasn't activated in low-grade cancer cells which resulted in their acidosis. The measured electrical resistance of MCF10, MCF7, and MDA-MB468 cell lines, by SiNW sensor, in normal and acidic media were matched by the biological analyses of their vital functions. Invasive cancer cells exhibited increased electrical resistance in pH 6.5 meanwhile the two other types of the breast cells exhibited sharp (MCF10) and moderate (MCF7) decrease in their resistance. This procedure would be a new trend in microenvironment based cancer investigation. Copyright © 2018 Elsevier B.V. All rights reserved.
Wong, Yi Li; Wong, Won Fen; Ali Mohd, Mustafa; Hadi, A. Hamid A.
2014-01-01
Persea declinata (Bl.) Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill), which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl.) Kosterm bark methanolic crude extract (PDM). PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 µg/mL after 48 h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH) release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development. PMID:24808916
Shahsavari, Zahra; Karami-Tehrani, Fatemeh; Salami, Siamak
2018-01-01
Recognition of a new therapeutic agent may activate an alternative programmed cell death for the treatment of breast cancer. Here, it has been tried to evaluate the effects of Shikonin, a naphthoquinone derivative of Lithospermum erythrorhizon, on the induction of necroptosis and apoptosis mediated by RIPK1-RIPK3 in the ER+ breast cancer cell line, MCF-7. In the current study, cell death modalities, cell cycle patterns, RIPK1 and RIPK3 expressions, caspase-3 and caspase-8 activities, reactive oxygen species and mitochondrial membrane potential have been evaluated in the Shikonin-treated MCF-7 cells. Necroptosis and apoptosis have been occurred by Shikonin, with a significant increase in RIPK1 and RIPK3 expressions, although necroptosis was the major rout in MCF-7 cells. Shikonin significantly increased the percentage of the cells in sub-G1 and also those in the later stages of cell cycle, which represents an increase in necroptosis and apoptosis. Under caspase inhibition by Z-VAD-FMK, Shikonin has stimulated necroptosis, which could be arrested by Nec-1. An increase in ROS levels and a decrease in the mitochondrial membrane potential have also been observed. On the basis of present findings, Shikonin has been suggested as a good candidate for the induction of cell death in ER+ breast cancer, although further investigations, experimental and clinical, are required. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Stefanie; Sommer, Anja; Distel, Luitpold V.R.
Highlights: Black-Right-Pointing-Pointer Ultrasmall citrate-coated SPIONs with {gamma}Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} structure were prepared. Black-Right-Pointing-Pointer SPIONs uptaken by MCF-7 cells increase the ROS production for about 240%. Black-Right-Pointing-Pointer The SPION induced ROS production is due to released iron ions and catalytically active surfaces. Black-Right-Pointing-Pointer Released iron ions and SPION surfaces initiate the Fenton and Haber-Weiss reaction. Black-Right-Pointing-Pointer X-ray irradiation of internalized SPIONs leads to an increase of catalytically active surfaces. -- Abstract: Internalization of citrate-coated and uncoated superparamagnetic iron oxide nanoparticles by human breast cancer (MCF-7) cells was verified by transmission electron microscopy imaging. Cytotoxicity studies employing metabolicmore » and trypan blue assays manifested their excellent biocompatibility. The production of reactive oxygen species in iron oxide nanoparticle loaded MCF-7 cells was explained to originate from both, the release of iron ions and their catalytically active surfaces. Both initiate the Fenton and Haber-Weiss reaction. Additional oxidative stress caused by X-ray irradiation of MCF-7 cells was attributed to the increase of catalytically active iron oxide nanoparticle surfaces.« less
Docosahexaenoic acid conjugated near infrared flourescence probe for in vivo early tumor diagnosis
NASA Astrophysics Data System (ADS)
Li, Siwen; Cao, Jie; Qin, Jingyi; Zhang, Xin; Achilefu, Samuel; Qian, Zhiyu; Gu, Yueqing
2013-02-01
Docosahexaenoic acid(DHA) is an omega-3 C22 natural fatty acid with six cis double bonds and as a constituent of membranes used as a precursor for metabolic and biochemical path ways. In this manuscript,we describe the synthesis of near-infrared(NIR) flourescence ICG-Der-01 labeled DHA for in vitro and vivo tumor targeting.The structure of the probe was intensively characterized by UV and MS. The in vitro and vivo tumor targeting abilities of the DHA-based NIR probes were investigeted in MCF-7 cells and MCF-7 xenograft mice model differently by confocal microscopy and CCD camera. The cell cytotoxicity were tested in tumor cells MCF-7 .The results shows that the DHA-based NIR probes have high affinity with the tumor both in vitro and vivo.In addition ,we also found that the DHA-based NIR probes have the apparent cytotoxicity on MCF-7 cells .which demonstrated that DHA was conjugated with other antitumor drug could increase the abilities of antirumor efficacy .So DHA-ICG-Der-01 is a promising optical agent for diagnosis of tumors especially in their early stage.
Du, Yan; Liu, Hua; He, Yiqing; Liu, Yiwen; Yang, Cuixia; Zhou, Muqing; Wang, Wenjuan; Cui, Lian; Hu, Jiajie; Gao, Feng
2013-01-01
Hyaluronan (HA), a simple disaccharide unit, can polymerize and is considered a primary component of the extracellular matrix, which has a wide range of biological functions. In recent years, HA was found on the surface of tumor cells. According to previous reports, differing HA content on the cell surface of tumor cells is closely related to lymph node metastases, but the mechanisms mediating this process remained unclear. This research intended to study the surface content of HA on tumor cells and analyze cell adhesive changes caused by the interaction between HA and its lymphatic endothelial receptor (LYVE-1). We screened and observed high HA content on HS-578T breast cells and low HA content on MCF-7 breast cells through particle exclusion, immunofluorescence and flow cytometry experiments. The expression of LYVE-1, the lymph-vessel specific HA receptor, was consistent with our previous report and enhanced the adhesion of HA(high)-HS-578T cells to COS-7(LYVE-1(+)) through HA in cell static adhesion and dynamic parallel plate flow chamber experiments. MCF-7 breast cells contain little HA on the surface; however, our results showed little adhesion difference between MCF-7 cells and COS-7(LYVE-1(+)) and COS-7(LYVE-1(-)) cells. Similar results were observed concerning the adhesion of HS-578T cells or MCF-7 cells to SVEC4-10 cells. Furthermore, we observed for the first time that the cell surface HA content of high transfer tumor cells was rich, and we visualized the cross-linking of HA cable structures, which may activate LYVE-1 on lymphatic endothelial cells, promoting tumor adhesion. In summary, high-low cell surface HA content of tumor cells through the interaction with LYVE-1 leads to adhesion differences.
Hooshmand, Somayeh; Ghaderi, Abbas; Yusoff, Khatijah; Thilakavathy, Karuppiah; Rosli, Rozita; Mojtahedi, Zahra
2014-01-01
The consequence of Rho GDP dissociation inhibitor alpha (RhoGDIα) activity on migration and invasion of estrogen receptor positive (ER+) and negative (ER-) breast cancer cells has not been studied using the proteomic approach. Changes in expression of RhoGDIα and other proteins interacting directly or indirectly with RhoGDIα in MCF7 and MDA-MB-231, with different metastatic potentials is of particular interest. ER+ MCF7 and ER- MDA-MB-231 cell lines were subjected to two-dimensional electrophoresis (2-DE) and spots of interest were identified by matrix-assisted laser desorption/ionization time of- flight/time- of-flight (MALDI-TOF/TOF) mass spectrometry (MS) analysis after downregulation of RhoGDIα using short interfering RNA (siRNA) and upregulated using GFP-tagged ORF clone of RhoGDIα. The results showed a total of 35 proteins that were either up- or down-regulated in these cells. Here we identifed 9 and 15 proteins differentially expressed with silencing of RhoGDIα in MCF-7 and the MDA-MB-231 cells, respectively. In addition, 10 proteins were differentially expressed in the upregulation of RhoGDIα in MCF7, while only one protein was identified in the upregulation of RhoGDIα in MDA-MB-231. Based on the biological functions of these proteins, the results revealed that proteins involved in cell migration are more strongly altered with RhoGDI-α activity. Although several of these proteins have been previously indicated in tumorigenesis and invasiveness of breast cancer cells, some ohave not been previously reported to be involved in breast cancer migration. Hence, these proteins may serve as useful candidate biomarkers for tumorigenesis and invasiveness of breast cancer cells. Future studies are needed to determine the mechanisms by which these proteins regulate cell migration. The combination of RhoGDIα with other potential biomarkers may be a more promising approach in the inhibition of breast cancer cell migration.
Jose, Correa-Basurto; Trujillo-Ferrara, Jose G; Irene, Mendoza-Lujambio; Alfonso, Duenas-Gonzalez; Alma, Chavez-Blanco; Marlet, Martinez-Archundia; Bello, M; Ruben, Garcia Sanchez Jose; Jonathan, Fragoso-Vazquez Manuel; David, Mendez-Luna; Berenice, Prestegui-Martel; Alberto, Martinez-Munoz
2018-05-10
Recent reports have demonstrated the role of the G protein-coupled estrogen receptor (GPER1) on the growth and proliferation of breast cancer cells. The coupling of GPER1 to estrogen, tamoxifen or fulvestrant triggers cellular signaling pathways (PI3K and ERK) related to cell proliferation. In an effort to develop new therapeutic strategies against breast cancer, we performed an in silico study to explore the binding pose of a set of designed G15 and G1 analogue compounds, including phenol red. First, we included a carboxyl group instead of the acetyl group from G1 to form amides with several moieties to increase the affinity for GPER1. Then, all the target compounds were submitted to an in silico ADMET study. Then, the ligands were coupled to GPER1 using ligand-based virtual screening to finally achieve molecular dynamics simulations of the best molecule on GPER1, as well as of phenol red, to explore its recognition properties. According to the in silico ADMET and docking studies, the best molecule was named G1-PABA ((3aS,4R,9bR)-4-(6-bromobenzo[d][1,3]dioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-carboxylic acid). It was synthesized and assayed in vitro in breast cancer (MCF-7 and MDA-MB-231) and normal (MCF-10A) cell lines. Experimental assays showed that the target compound was able to decrease cell proliferation, showing IC50 values of 15.93 M, 52.92 M and 32.45 M in the MCF-7, MDA-MB-231 and MCF-10A cell lines, respectively, after 72 h of treatment. Interestingly, the target compound showed better IC50 values without phenol red, suggesting that phenol red could interfere with the G1-PABA action at GPER, which is present in MCF-7 cells according to PCR studies and explains the cell proliferation effects. In conclusion, a concentration-dependent inhibition of cell proliferation occurred with G1-PABA in the assayed cell lines and could be due to its action on GPER1. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Crocetti, Sara; Beyer, Christian; Schade, Grit; Egli, Marcel; Fröhlich, Jürg; Franco-Obregón, Alfredo
2013-01-01
Introduction A common drawback of many anticancer therapies is non-specificity in action of killing. We investigated the potential of ultra-low intensity and frequency pulsed electromagnetic fields (PEMFs) to kill breast cancer cells. Our criteria to accept this technology as a potentially valid therapeutic approach were: 1) cytotoxicity to breast cancer cells and; 2) that the designed fields proved innocuous to healthy cell classes that would be exposed to the PEMFs during clinical treatment. Methods MCF7 breast cancer cells and their normal counterparts, MCF10 cells, were exposed to PEMFs and cytotoxic indices measured in order to design PEMF paradigms that best kill breast cancer cells. The PEMF parameters tested were: 1) frequencies ranging from 20 to 50 Hz; 2) intensities ranging from 2 mT to 5 mT and; 3) exposure durations ranging from 30 to 90 minutes per day for up to three days to determine the optimum parameters for selective cancer cell killing. Results We observed a discrete window of vulnerability of MCF7 cells to PEMFs of 20 Hz frequency, 3 mT magnitude and exposure duration of 60 minutes per day. The cell damage accrued in response to PEMFs increased with time and gained significance after three days of consecutive daily exposure. By contrast, the PEMFs parameters determined to be most cytotoxic to breast cancer MCF-7 cells were not damaging to normal MCF-10 cells. Conclusion Based on our data it appears that PEMF-based anticancer strategies may represent a new therapeutic approach to treat breast cancer without affecting normal tissues in a manner that is non-invasive and can be potentially combined with existing anti-cancer treatments. PMID:24039828
Bone Factors Regulating the Osteotropism of Metastatic Breast Cancer
1998-10-01
growth factors and rapid angiogenesis occurs in the immediate vicinity of an active osteoclast. 4,5 Osteoblast-derived bone sialoprotein (BSP...Cells Antigenic Marker Cells Cultured Alone Cells Co-Cultured (2d) MCF-7 MC3T3 MCF-7 MC3T3 human cytokeratin-+ -1 bone sialoprotein (BSP...proteins. Osteonectin, osteopontin and bone sialoprotein have been studied in a series of human breast cancers. 3,15-3 0 Immunohistochemical evaluation
A Metabolomics Study of BPTES Altered Metabolism in Human Breast Cancer Cell Lines.
Nagana Gowda, G A; Barding, Gregory A; Dai, Jin; Gu, Haiwei; Margineantu, Daciana H; Hockenbery, David M; Raftery, Daniel
2018-01-01
The Warburg effect is a well-known phenomenon in cancer, but the glutamine addiction in which cancer cells utilize glutamine as an alternative source of energy is less well known. Recent efforts have focused on preventing cancer cell proliferation associated with glutamine addiction by targeting glutaminase using the inhibitor BPTES (bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide). In the current study, an investigation of the BPTES induced changes in metabolism was made in two human breast cancer cell lines, MCF7 (an estrogen receptor dependent cell line) and MDA-MB231 (a triple negative cell line), relative to the non-cancerous cell line, MCF10A. NMR spectroscopy combined with a recently established smart-isotope tagging approach enabled quantitative analysis of 41 unique metabolites representing numerous metabolite classes including carbohydrates, amino acids, carboxylic acids and nucleotides. BPTES induced metabolism changes in the cancer cell lines were especially pronounced under hypoxic conditions with up to 1/3 of the metabolites altered significantly ( p < 0.05) relative to untreated cells. The BPTES induced changes were more pronounced for MCF7 cells, with 14 metabolites altered significantly ( p < 0.05) compared to seven for MDA-MB231. Analyses of the results indicate that BPTES affected numerous metabolic pathways including glycolysis, TCA cycle, nucleotide and amino acid metabolism in cancer. The distinct metabolic responses to BPTES treatment determined in the two breast cancer cell lines offer valuable metabolic information for the exploration of the therapeutic responses to breast cancer.
Targeted sonocatalytic cancer cell injury using avidin-conjugated titanium dioxide nanoparticles.
Ninomiya, Kazuaki; Fukuda, Aya; Ogino, Chiaki; Shimizu, Nobuaki
2014-09-01
In this study, we applied sonodynamic therapy to cancer cells based on the delivery of titanium dioxide (TiO2) nanoparticles (NPs) modified with avidin protein, which preferentially discriminated cancerous cells from healthy cells. Subsequently, hydroxyl radicals were generated from the TiO2 NPs after activation by external ultrasound irradiation (TiO2/US treatment). Although 30% of the normal breast cells (human mammary epithelial cells) exhibited the uptake of avidin-modified TiO2 NPs, over 80% of the breast cancer cells (MCF-7) exhibited the uptake of avidin-TiO2 NPs. Next the effect of the TiO2/US treatment on MCF-7 cell growth was examined for up to 96 h after 1-MHz ultrasound was applied (0.1 W/cm(2), 30 s) to cells that incorporated the TiO2 NPs. No apparent cell injury was observed until 24h after the treatment, but the viable cell concentration declined to 68% compared with the control at 96 h. Copyright © 2014 Elsevier B.V. All rights reserved.
Kwon, Joseph; Oh, Kyung Seo; Cho, Se-Young; Bang, Mi Ae; Kim, Hwan Seon; Vaidya, Bipin; Kim, Duwoon
2016-11-01
Hyperforin, a major active compound of St. John's wort extract, affects estrogenic activity. In this study, the compound evoked estrogen response element-dependent luciferase activity and cell proliferation in MCF-7 cells. Hyperforin-induced cell proliferation was significantly inhibited by the estrogen receptor antagonist ICI 182,780. These results suggested that hyperforin had estrogenic and cell proliferation activities, which were stimulated via the estrogen receptor. Compared to 17 β -estradiol, hyperforin showed significantly lower estrogenic activity and cell proliferation. The mechanism underlying the estrogenic activity of hyperforin was unknown, therefore, in this study, for the first time, the expression and post-translational modification of proteins were determined and compared among control, 17 β -estradiol-treated, and hyperforin-treated cells using proteomic techniques. A total of 453 proteins were identified, of which 282 proteins were significantly modulated in hyperforin-treated cells compared to 17 β -estradiol-treated cells. Ingenuity pathway analysis also demonstrated that hyperforin treatment induced less cell proliferation than 17 β -estradiol by downregulating estrogen receptor 1. Protein network analysis showed that cell proliferation was regulated mainly by cyclin D1 and extracellular signal-regulated kinases. In conclusion, although, hyperforin exhibited lower estrogenic activity than 17 β -estradiol, the compound induced lower levels of cancer cell proliferation in vitro . Georg Thieme Verlag KG Stuttgart · New York.
Korashy, Hesham M; Maayah, Zaid H; Abd-Allah, Adel R; El-Kadi, Ayman O S; Alhaider, Abdulqader A
2012-01-01
Few published studies have reported the use of crude camel milk in the treatment of stomach infections, tuberculosis and cancer. Yet, little research was conducted on the effect of camel milk on the apoptosis and oxidative stress associated with human cancer. The present study investigated the effect and the underlying mechanisms of camel milk on the proliferation of human cancer cells using an in vitro model of human hepatoma (HepG2) and human breast (MCF7) cancer cells. Our results showed that camel milk, but not bovine milk, significantly inhibited HepG2 and MCF7 cells proliferation through the activation of caspase-3 mRNA and activity levels, and the induction of death receptors in both cell lines. In addition, Camel milk enhanced the expression of oxidative stress markers, heme oxygenase-1 and reactive oxygen species production in both cells. Mechanistically, the increase in caspase-3 mRNA levels by camel milk was completely blocked by the transcriptional inhibitor, actinomycin D; implying that camel milk increased de novo RNA synthesis. Furthermore, Inhibition of the mitogen activated protein kinases differentially modulated the camel milk-induced caspase-3 mRNA levels. Taken together, camel milk inhibited HepG2 and MCF7 cells survival and proliferation through the activation of both the extrinsic and intrinsic apoptotic pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Wen; Jones, Frank E., E-mail: fjones3@tulane.edu
2014-01-10
Highlights: •HER4/4ICD is an obligate coactivator for 37% of estrogen regulated genes. •HER4/4ICD coactivated genes selectively regulate estrogen stimulated proliferation. •Estrogen stimulated tumor cell migration occurs independent of HER4/4ICD. •Disrupting HER4/4ICD and ER coactivated gene expression may suppress breast cancer. -- Abstract: The EGFR-family member HER4 undergoes regulated intramembrane proteolysis (RIP) to generate an intracellular domain (4ICD) that functions as a transcriptional coactivator. Accordingly, 4ICD coactivates the estrogen receptor (ER) and associates with ER at target gene promoters in breast tumor cells. However, the extent of 4ICD coactivation of ER and the functional significance of the 4ICD/ER transcriptional complex ismore » unclear. To identify 4ICD coactivated genes we performed a microarray gene expression analysis of β-estradiol treated cells comparing control MCF-7 breast cancer cells to MCF-7 cells where HER4 expression was stably suppressed using a shRNA. In the MCF-7 cell line, β-estradiol significantly stimulated or repressed by 2-fold or more 726 or 53 genes, respectively. Significantly, HER4/4ICD was an obligate coactivator for 277 or 38% of the β-estradiol stimulated genes. Ingenuity Pathway Analysis of β-estradiol regulated genes identified significant associations with multiple cellular functions regulating cellular growth and proliferation, cell cycle progression, cancer metastasis, decreased hypoplasia, tumor cell migration, apoptotic resistance of tumor cells, and increased transcription. Genes coactivated by 4ICD displayed functional specificity by only significantly contributing to cellular growth and proliferation, cell cycle progression, and decreased hypoplasia. In direct concordance with these in situ results we show that HER4 knockdown in MCF-7 cells results in a loss of estrogen stimulated tumor cell proliferation and cell cycle progression, whereas, estrogen stimulated tumor cell migration was unaffected by loss of HER4 expression. In summary, we demonstrate for the first time that a cell surface receptor functions as an obligate ER coactivator with functional specificity associated with breast tumor cell proliferation and cell cycle progression. Nearly 90% of ER positive tumors coexpress HER4, therefore we predict that the majority of breast cancer patients would benefit from a strategy to therapeutic disengage ER/4ICD coregulated tumor cell proliferation.« less
Development of Convergence Nanoparticles for Multi-Modal Bio-Medical Imaging
2008-09-18
Synthesized nanoparticles (1 mg /ml ( Mn +Fe)) are mixed with cancer cell (MCF7) and heat generation efficacy was measured with the cell viability under...fabrication of MnFe2O4 which has superior magnetic property compared to other types of metal ferrites . Figure 1. Magnetic nanoparticle for disease
NASA Astrophysics Data System (ADS)
Lee, Seungyeon; Lee, Hyunkyung; Bae, Hansol; Choi, Eun H.; Kim, Sun Jung
2016-07-01
Cold atmospheric plasma (CAP) has been proposed as a useful cancer treatment option after showing higher induction of cell death in cancer cells than in normal cells. Although a few studies have contributed to elucidating the molecular mechanism by which CAP differentially inhibits cancer cell proliferation, no results are yet to be reported related to microRNA (miR). In this study, miR-19a-3p (miR-19a) was identified as a mediator of the cell proliferation-inhibitory effect of CAP in the MCF-7 breast cancer cell. CAP treatment of MCF-7 induced hypermethylation at the promoter CpG sites and downregulation of miR-19a, which was known as an oncomiR. The overexpression of miR-19a in MCF-7 increased cell proliferation, and CAP deteriorated the effect. The target genes of miR-19a, such as ABCA1 and PTEN, that had been suppressed by miR recovered their expression through CAP treatment. In addition, an inhibitor of reactive oxygen species that is produced by CAP suppressed the effect of CAP on cell proliferation. Taken together, the present study, to the best of authors’ knowledge, is the first to identify the involvement of a miR, which is dysregulated by the CAP and results in the anti-proliferation effect of CAP on cancer cells.
Karki, Neha; Tiwari, Himani; Pal, Mintu; Chaurasia, Alok; Bal, Rajaram; Joshi, Penny; Sahoo, Nanda Gopal
2018-05-18
In this work, the modification of graphene oxides (GOs) have been done with hydrophilic and biodegradable polymer, polyvinylpyrrolidone (PVP) and other excipient β -cyclodextrin (β-CD) through covalent functionalization for efficient loading and compatible release of sparingly water soluble aromatic anticancer drug SN-38 (7-ethyl-10-hydroxy camptothecin). The drug was loaded onto both GO-PVP and GO-β-CD through the π-π interactions.The release of drug from both the nanocarriers were analyzed in different pH medium of pH 7 (water, neutral medium), pH 5 (acidic buffer) and pH 12 (basic buffer). The loading capacity and the cell killing activity of SN-38 loaded on functionalized GO were investigated comprehensively in human breast cancer cells MCF-7.Our findings shown that the cytotoxicity of SN-38 loaded to the polymer modified GO was comparatively higher than free SN-38. In particular, SN-38 loaded GO-PVP nanocarrier has more cytotoxic effect than GO-β-CD nanocarrier against MCF-7 cells, indicating that SN-38 loaded GO-PVP nanocarrier can be used as promising material for drug delivery and biological applications. Copyright © 2018 Elsevier B.V. All rights reserved.
[Role of let-7 in maintaining characteristics of breast cancer stem cells].
Sun, Xin; Fan, Chong; Hu, Li-juan; Du, Ning; Xu, Chong-wen; Ren, Hong
2012-08-01
To observe the expression of let-7 in breast cancer stem cells and explore the role of let-7 in maintaining the characteristics of breast cancer stem cells. We separated breast cancer stem cells (SP and NSP) from MCF-7 cell line using SP sorting, and observed the expression of let-7a/b/c on SP and NSP cells using quantitative real-time PCR and the expressions of Ras and ERK using Western blotting to study the mechanism by which let-7 maintains the characteristics of breast cancer stem cells. The SP cells accounted for 3.3% in MCF-7 cells, however, the rate dropped to 0.4% when verapamil was added into the process of seperation. The level of Let-7a/b/c in SP cells were lower than that in NSP cells, and among let-7 miRNAs, let-7b/c showed the most obvious difference. The expressions of t-Ras and t-ERK showed no difference between SP and NSP cells, nevertheless, the expressions of p-Ras, p-ERK were higher in SP cells than in NSP cells. SP sorting is an effective method to separate cancer stem cells. There do exist cancer stem cells in MCF-7 breast cancer cell line. Let-7 is down-regulated in SP cells, and the down-regulation makes let-7 lose the opportunity to restrain Ras mRNA, finally, p-Ras and p-ERK are activated. They play an important role in maintaining the characteristics of breast cancer stem cells.
Analysis of benzo[a]pyrene-induced DNA adducts in MCF-7 breast cancer cells with
different levels of HSP7O expression.
L.C. King1, L.D. Adams1, E.Winkfield1, J.A. Barnes2, S.D. Hester1 and J.W. Allen1. 1US
Environmental Protection Agency, Research Triangle Park, NC 2771...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quong, J N; Knize, M G; Kulp, K S
2003-08-19
Imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS) is used to study the localization of heterocyclic amines in MCF7 line of human breast cancer cells. The detection sensitivities of a model rodent mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) were determined. Following an established criteria for the determination of status of freeze-fracture cells, the distribution of PhIP in the MCF7 cells are reported.
Bortolot, Carolina S; da S M Forezi, Luana; Marra, Roberta K F; Reis, Marcelo I P; Sa, Barbara V F E; Filho, Ricardo Imbroisi; Ghasemishahrestani, Zeinab; Sola-Penna, Mauro; Zancan, Patricia; Ferreira, Vitor F; de C da Silva, Fernando
2018-05-23
Low molecular weight 1,2,3-triazoles and naphthoquinones are endowed with various types of biological activity, such as against cancer, HIV and bacteria. However, in some cases, the conjugation of these two nuclei considerably increases their biological activities Objective: In this work, we decided to study the synthesis and screening of bis-naphthoquinones and xanthenes tethered to 1,2,3-triazoles against cancer cell lines, specifically the human breast cancer cell line MCF-7. Starting from lawsone and aryl-1H-1,2,3-triazole-4-carbaldehydes (10a-h) several new 7-(1-aryl-1H-1,2,3-triazol-4-yl)-6H-dibenzo[b,h]xanthene-5,6,8,13(7H)-tetraones (12a-h) and 3,3'-((1-aryl-1H-1,2,3-triazol-4-yl)methylene)bis(2-hydroxynaphthalene-1,4-diones) 11a-h were synthesized and evaluated for their cytotoxic activities using the human breast cancer cell line MCF-7 and the non-tumor cell line MCF10A as control. We performed test of cell viability, cell proliferation, intracellular ATP content and cell cytometry to determine reactive oxygen species (ROS) formation. Based on these results, we found that compound 12a promote ROS production, interfering with energy metabolism, cell viability and proliferation, and thus promoting an whole cell damage. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Bortolotto, Luis Felipe Buso; Barbosa, Flávia Regina; Silva, Gabriel; Bitencourt, Tamires Aparecida; Beleboni, Rene Oliveira; Baek, Seung Joon; Marins, Mozart; Fachin, Ana Lúcia
2017-01-01
Chalcones are precursors of flavonoids that exhibit structural heterogeneity and potential antitumor activity. The objective of this study was to characterize the cytotoxicity of trans-chalcone and licochalcone A (LicoA 1 ) against a breast cancer cell line (MCF-7) and normal murine fibroblasts (3T3). Also the mechanisms of the anti-cancer activity of these two compounds were studied. The alkaline comet assay revealed dose-dependent genotoxicity, which was more responsive against the tumor cell line, compared to the 3T3 mouse fibroblast cell line. Flow cytometry showed that the two chalcones caused the cell cycle arrest in the G1 phase and induced apoptosis in MCF-7 cells. Using PCR Array, we found that trans-chalcone and LicoA trigger apoptosis mediated by the intrinsic pathway as demonstrated by the inhibition of Bcl-2 and induction of Bax. In western blot assay, the two chalcones reduced the expression of cell death-related proteins such as Bcl-2 and cyclin D1 and promoted the cleavage of PARP. However, only trans-chalcone induced the expression of the CIDEA gene and protein in these two experiments. Furthermore, transient transfections of MCF-7 using a construction of a promoter-luciferase vector showed that trans-chalcone induced the expression of the CIDEA promoter activity in 24 and 48h. In conclusion, the results showed that trans-chalcone promoted high induction of the CIDEA promoter gene and protein, which is related to DNA fragmentation during apoptosis. Copyright © 2016. Published by Elsevier Masson SAS.
Netsirisawan, Pukkavadee; Chokchaichamnankit, Daranee; Srisomsap, Chantragan; Svasti, Jisnuson; Champattanachai, Voraratt
2015-01-01
O-GlcNAcylation is a unique intracellular protein modification; however, few extracellular O-GlcNAc-modified proteins have been discovered. We have previously demonstrated that many cellular proteins were aberrant in O-GlcNAcylation in breast cancer tissues. In the present study, therefore, we investigated whether O-GlcNAc-modified proteins were abnormally secreted from breast cancer cells. Intracellular and extracellular proteins were prepared from cell lysates of breast cancer cells (MCF-7 and MDA-MB-231) and normal breast cells (HMEC) and from their serum-free media (SFM), respectively. O-GlcNAcylation level was examined by immunoblotting. O-GlcNAc-Modified proteins were identified using two-dimensional gel electrophoresis and Liquid Chromatography-tandem Mass Spectrometry. O-GlcNAcylation level was significantly increased in the extracellular compartment of both types of cancer cells compared to normal cells. Interestingly, O-GlcNAc patterns differed between intracellular and extracellular proteins. Proteomic analysis revealed that many O-GlcNAc spots in MCF-7 secretions were abnormally increased in comparison to those in HMEC secretions. Among these, transitional endoplasmic reticulum ATPase (TER ATPase) and heat-shock 70 kDa (HSP70) were confirmed to be O-GlcNAc-modified. The levels of O-GlcNAc-HSP70 and O-GlcNAc-TER ATPase were higher in SFM from MCF-7 cells than in that from HMEC. O-GlcNAcomic study of the extracellular compartments reveals aberrant O-GlcNAc-secreted proteins, which may be of interest as potential biomarkers in breast cancer. Copyright© 2015, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.
Reddy, Cheruku Apoorva; Somepalli, Venkateswarlu; Golakoti, Trimurtulu; Kanugula, Anantha KoteswaraRao; Karnewar, Santosh; Rajendiran, Karthikraj; Vasagiri, Nagarjuna; Prabhakar, Sripadi; Kuppusamy, Periannan; Kotamraju, Srigiridhar; Kutala, Vijay Kumar
2014-01-01
Although the anti-cancer effects of curcumin has been shown in various cancer cell types, in vitro, pre-clinical and clinical studies showed only a limited efficacy, even at high doses. This is presumably due to low bioavailability in both plasma and tissues, particularly due to poor intracellular accumulation. A variety of methods have been developed to achieve the selective targeting of drugs to cells and mitochondrion. We used a novel approach by conjugation of curcumin to lipophilic triphenylphosphonium (TPP) cation to facilitate delivery of curcumin to mitochondria. TPP is selectively taken up by mitochondria driven by the membrane potential by several hundred folds. In this study, three mitocurcuminoids (mitocurcuminoids-1, 2, and 3) were successfully synthesized by tagging TPP to curcumin at different positions. ESI-MS analysis showed significantly higher uptake of the mitocurcuminoids in mitochondria as compared to curcumin in MCF-7 breast cancer cells. All three mitocurcuminoids exhibited significant cytotoxicity to MCF-7, MDA-MB-231, SKNSH, DU-145, and HeLa cancer cells with minimal effect on normal mammary epithelial cells (MCF-10A). The IC50 was much lower for mitocurcuminoids when compared to curcumin. The mitocurcuminoids induced significant ROS generation, a drop in ΔØm, cell-cycle arrest and apoptosis. They inhibited Akt and STAT3 phosphorylation and increased ERK phosphorylation. Mitocurcuminoids also showed upregulation of pro-apoptotic BNIP3 expression. In conclusion, the results of this study indicated that mitocurcuminoids show substantial promise for further development as a potential agent for the treatment of various cancers.
Reddy, Cheruku Apoorva; Somepalli, Venkateswarlu; Golakoti, Trimurtulu; Kanugula, Anantha KoteswaraRao; Karnewar, Santosh; Rajendiran, Karthikraj; Vasagiri, Nagarjuna; Prabhakar, Sripadi; Kuppusamy, Periannan; Kotamraju, Srigiridhar; Kutala, Vijay Kumar
2014-01-01
Although the anti-cancer effects of curcumin has been shown in various cancer cell types, in vitro, pre-clinical and clinical studies showed only a limited efficacy, even at high doses. This is presumably due to low bioavailability in both plasma and tissues, particularly due to poor intracellular accumulation. A variety of methods have been developed to achieve the selective targeting of drugs to cells and mitochondrion. We used a novel approach by conjugation of curcumin to lipophilic triphenylphosphonium (TPP) cation to facilitate delivery of curcumin to mitochondria. TPP is selectively taken up by mitochondria driven by the membrane potential by several hundred folds. In this study, three mitocurcuminoids (mitocurcuminoids-1, 2, and 3) were successfully synthesized by tagging TPP to curcumin at different positions. ESI-MS analysis showed significantly higher uptake of the mitocurcuminoids in mitochondria as compared to curcumin in MCF-7 breast cancer cells. All three mitocurcuminoids exhibited significant cytotoxicity to MCF-7, MDA-MB-231, SKNSH, DU-145, and HeLa cancer cells with minimal effect on normal mammary epithelial cells (MCF-10A). The IC50 was much lower for mitocurcuminoids when compared to curcumin. The mitocurcuminoids induced significant ROS generation, a drop in ΔØm, cell-cycle arrest and apoptosis. They inhibited Akt and STAT3 phosphorylation and increased ERK phosphorylation. Mitocurcuminoids also showed upregulation of pro-apoptotic BNIP3 expression. In conclusion, the results of this study indicated that mitocurcuminoids show substantial promise for further development as a potential agent for the treatment of various cancers. PMID:24622734
Taghdisi, Seyed Mohammad; Danesh, Noor Mohammad; Ramezani, Mohammad; Lavaee, Parirokh; Jalalian, Seyed Hamid; Robati, Rezvan Yazdian; Abnous, Khalil
2016-05-01
Clinical use of epirubicin (Epi) in the treatment of cancer has been limited, due to its cardiotoxicity. Targeted delivery of chemotherapeutic agents could increase their efficacy and reduce their off-target effects. High drug loading and excellent stability of DNA dendrimers make these DNA nanostructures unique candidates for biological applications. In this study a modified and promoted dendrimer using three kinds of aptamers (MUC1, AS1411 and ATP aptamers) was designed for targeted delivery of Epi and its efficacy was evaluated in target cells including MCF-7 cells (breast cancer cell) and C26 cells (murine colon carcinoma cell). Aptamers (Apts)-Dendrimer-Epi complex formation was analyzed by fluorometric analysis and gel retardation assay. Release profiles of Epi from the designed complex were assessed at pHs 5.4 and 7.4. For MTT assay (cytotoxic study) MCF-7 and C26 cells (target cells) and CHO cells (Chinese hamster ovary cell, nontarget) were treated with Epi, Apts-Dendrimer-Epi complex and Apts-Dendrimer conjugate. Internalization was evaluated using flow cytometry analysis. Finally, the developed complex was used for inhibition of tumor growth in vivo. 25μM Epi was efficiently intercalated to 1μM dendrimer. Epi was released from the Apts-Dendrimer-Epi complex in a pH-sensitive manner (more release at pH 5.5). The results of flow cytometry analysis indicated that the designed complex was efficiently internalized into target cells, but not into control cells. The internalization data were confirmed by the results of MTT assay. Apts-Dendrimer-Epi complex had less cytotoxicity in CHO cells compared to Epi alone. The complex had more cytotoxicity in C26 and MCF-7 cells compared to Epi alone. Moreover, the Apts-Dendrimer-Epi complex could efficiently prohibit tumor growth in vivo. In conclusion, the designed targeted drug delivery system inherited characteristics of pH-dependent drug release, high drug loading and tumor targeting in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Crowley, Peter D; Stuttgen, Vivian; O'Carroll, Emma; Ash, Simon A; Buggy, Donal J; Gallagher, Helen C
2017-01-01
Peri-operative factors, including anaesthetic drugs and techniques, may affect cancer cell biology and clinical recurrence. In breast cancer cells, we demonstrated that sevoflurane promotes migration and angiogenesis in high fractional oxygen but not in air. Follow-up analysis of the peri-operative oxygen fraction trial found an association between high inspired oxygen during cancer surgery and reduced tumor-free survival. Here we evaluated effects of acute, high oxygen exposure on breast cancer cell viability, migration and secretion of angiogenesis factors in vitro . MDA-MB-231 and MCF-7 breast cancer cells were exposed to 21%, 30%, 60%, or 80% v/v O 2 for 3 hours. Cell viability at 24 hours was determined by MTT and migration at 24 hours with the Oris™ Cell Migration Assay. Secretion of angiogenesis factors at 24 hours was measured via membrane-based immunoarray. Exposure to 30%, 60% or 80% oxygen did not affect cell viability. Migration of MDA-MB-231 and MCF-7 cells was increased by 60% oxygen ( P = 0.012 and P = 0.007, respectively) while 30% oxygen increased migration in MCF-7 cells ( P = 0.011). These effects were reversed by dimethyloxaloylglycine. In MDA-MB-231 cells high fractional oxygen increased secretion of angiogenesis factors monocyte chemotactic protein 1, regulated on activation normal T-cell expressed and vascular endothelial growth factor. In MCF-7 cells, interleukin-8, angiogenin and vascular endothelial growth factor secretion was significantly increased by high fractional oxygen. High oxygen exposure stimulates migration and secretion of angiogenesis factors in breast cancer cells in vitro .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul
Gold nanoparticles (AuNPs) received a great deal of attention for biomedical applications, especially in diagnostic imaging and therapeutics. Even though AuNPs have potential benefits in biomedical applications, the impact of AuNPs on human and environmental health still remains unclear. The use of AuNPs which is a high-atomic-number materials, provide advantages in terms of radiation dose enhancement. However, before this can become a clinical reality, cytotoxicity of the AuNPs has to be carefully evaluated. Cytotoxicity test is a rapid, standardized test that is very sensitive to determine whether the nanoparticles produced are harmful or benign on cellular components. In this workmore » the size and concentration dependence of AuNPs cytotoxicity in breast cancer cell lines (MCF-7) are tested by using WST-1 assay. The sizes of AuNPs tested were 13 nm, 50 nm, and 70 nm. The cells were seeded in the 96-well plate and were treated with different concentrations of AuNPs by serial dilution for each size of AuNPs. The high concentration of AuNPs exhibit lower cell viability compared to low concentration of AuNPs. We quantified the toxicity of AuNPs in MCF-7 cell lines by determining the IC{sub 50} values in WST-1 assays. The IC{sub 50} values (inhibitory concentrations that effected 50% growth inhibition) of 50 nm AuNPs is lower than 13 nm and 70 nm AuNPs. Mean that, 50nm AuNPs are more toxic to the MCF-7 cells compared to smaller and larger sizes AuNPs. The presented results clearly indicate that the cytotoxicity of AuNPs depend not only on the concentration, but also the size of the nanoparticles.« less
99mTc-HYNIC-(tricine/EDDA)-FROP peptide for MCF-7 breast tumor targeting and imaging.
Ahmadpour, Sajjad; Noaparast, Zohreh; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal
2018-02-19
Breast cancer is the most common malignancy among women in the world. Development of novel tumor-specific radiopharmaceuticals for early breast tumor diagnosis is highly desirable. In this study we developed 99m Tc-HYNIC-(tricine/EDDA)-Lys-FROP peptide with the ability of specific binding to MCF-7 breast tumor. The FROP-1 peptide was conjugated with the bifunctional chelator hydrazinonicotinamide (HYNIC) and labeled with 99m Tc using tricine/EDDA co-ligand. The cellular specific binding of 99m Tc-HYNIC-FROP was evaluated on different cell lines as well as with blocking experiment on MCF-7 (human breast adenocarcinoma). The tumor targeting and imaging of this labeled peptide were performed on MCF-7 tumor bearing mice. Radiochemical purity for 99m Tc-HYNIC-(tricine/EDDA)-FROP was 99% which was determined with ITLC method. This radiolabeled peptide showed high stability in normal saline and serum about 98% which was monitored with HPLC method. In saturation binding experiments, the binding constant (K d ) to MCF-7 cells was determined to be 158 nM. Biodistribution results revealed that the 99m Tc-HYNIC-FROP was mainly exerted from urinary route. The maximum tumor uptake was found after 30 min post injection (p.i.); however maximum tumor/muscle ratio was seen at 15 min p.i. The tumor uptake of this labeled peptide was specific and blocked by co-injection of excess FROP. According to the planar gamma imaging result, tumor was clearly visible due to the tumor uptake of 99m Tc-HYNIC-(tricine/EDDA)-FROP in mouse after 15 min p.i. The 99m Tc-HYNIC-(tricine/EDDA)-FROP is considered a promising probe with high specific binding to MCF-7 breast cancer cells.
In situ electrochemical assessment of cytotoxicity of chlorophenols in MCF-7 and HeLa cells.
Qin, Hongwei; Liu, Jiguang; Zhang, Zeshi; Li, Jinlian; Gao, Guanggang; Yang, Yuxin; Yuan, Xing; Wu, Dongmei
2014-10-01
An in situ electrochemical method was used to assess the cytotoxicity of chlorophenols using human breast cancer (MCF-7) and cervical carcinoma (HeLa) cells as models. On treatment with different chlorophenols, the electrochemical responses of the selected cells, resulting from the oxidation of guanine and xanthine in the cytoplasm, indicated the cell viability. In addition, the in situ in vitro electrochemical method was further compared with the traditional MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. Although similar cytotoxicity data were obtained from both methods, the effective concentrations of chlorophenols that inhibited 50% cell growth (EC50 values) from the electrochemical method were only slightly lower than those from the MTT assay. These results indicate that the in situ in vitro electrochemical method paves a simple, rapid, strongly responsive, and label-free way to the cytotoxicity assessment of different chlorophenol pollutants. Copyright © 2014 Elsevier Inc. All rights reserved.
Chen, Yan; Zheng, Xue-Lian; Fang, Dai-Long; Yang, Yang; Zhang, Jin-Kun; Li, Hui-Li; Xu, Bei; Lei, Yi; Ren, Ke; Song, Xiang-Rong
2014-01-01
Multidrug-resistant breast cancers have limited and ineffective clinical treatment options. This study aimed to develop PLGA nanoparticles containing a synergistic combination of vincristine and verapamil to achieve less toxicity and enhanced efficacy on multidrug-resistant breast cancers. The 1:250 molar ratio of VCR/VRP showed strong synergism with the reversal index of approximately 130 in the multidrug-resistant MCF-7/ADR cells compared to drug-sensitive MCF-7 cells. The lyophilized nanoparticles could get dispersed quickly with the similar size distribution, zeta potential and encapsulation efficiency to the pre-lyophilized nanoparticles suspension, and maintain the synergistic in vitro release ratio of drugs. The co-encapsulated nanoparticle formulation had lower toxicity than free vincristine/verapamil combinations according to the acute-toxicity test. Furthermore, the most effective tumor growth inhibition in the MCF-7/ADR human breast tumor xenograft was observed in the co-delivery nanoparticle formulation group in comparison with saline control, free vincristine, free vincristine/verapamil combinations and single-drug nanoparticle combinations. All the data demonstrated that PLGANPs simultaneously loaded with chemotherapeutic drug and chemosensitizer might be one of the most potential formulations in the treatment of multidrug-resistant breast cancer in clinic. PMID:24552875
Guaita-Esteruelas, Sandra; Bosquet, Alba; Saavedra, Paula; Gumà, Josep; Girona, Josefa; Lam, Eric W-F; Amillano, Kepa; Borràs, Joan; Masana, Lluís
2017-01-01
Adipose tissue plays an important role in tumor progression, because it provides nutrients and adipokines to proliferating cells. Fatty acid binding protein 4 (FABP4) is a key adipokine for fatty acid transport. In metabolic pathologies, plasma levels of FABP4 are increased. However, the role of this circulating protein is unknown. Recent studies have demonstrated that FABP4 might have a role in tumor progression, but the molecular mechanisms involved are still unclear. In this study, we analysed the role of eFABP4 (exogenous FABP4) in breast cancer progression. MCF-7 and MDA-MB-231 breast cancer cells did not express substantial levels of FABP4 protein, but intracellular FABP4 levels increased after eFABP4 incubation. Moreover, eFABP4 enhanced the proliferation of these breast cancer cells but did not have any effect on MCF-7 and MDA-MB-231 cell migration. Additionally, eFABP4 induced the AKT and MAPK signaling cascades in breast cancer cells, and the inhibition of these pathways reduced the eFBAP4-mediated cell proliferation. Interestingly, eFABP4 treatment in MCF-7 cells increased levels of the transcription factor FoxM1 and the fatty acid transport proteins CD36 and FABP5. In summary, we showed that eFABP4 plays a key role in tumor proliferation and activates the expression of fatty acid transport proteins in MCF-7 breast cancer cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Duncan, Robin E; Lau, Dominic; El-Sohemy, Ahmed; Archer, Michael C
2004-11-01
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the formation of mevalonate, a precursor of cholesterol that is also required for cell proliferation. Mevalonate depletion results in a G1 phase cell cycle arrest that is mediated in part by impaired activity of cyclin-dependent kinase (CDK) 2, and decreased expression of positive regulators of G1 to S phase progression. Inhibition of mevalonate synthesis may, therefore, be a useful strategy to impair the growth of malignant cells. Plant isoprenoids, including beta-ionone and geraniol, have previously been shown to inhibit rodent mammary tumor development, and rodent and avian hepatic HMG-CoA reductase activity. We hypothesized that the putative anti-proliferative and cell cycle inhibitory effects of beta-ionone and geraniol on MCF-7 human breast cancer cells in culture are mediated by mevalonate depletion resulting from inhibition of HMG-CoA reductase activity. Flow cytometric analysis showed a G1 arrest in isoprenoid-treated MCF-7 cells, and also a G2/M arrest at higher concentrations of isoprenoids. These compounds minimally affected the growth of MCF-10F normal breast epithelial cells. Both beta-ionone and geraniol inhibited CDK 2 activity and dose-dependently decreased the expression of cyclins D1, E, and A, and CDK 2 and 4, without changing the expression of p21cip1 or p27kip1. Although both beta-ionone and geraniol also inhibited MCF-7 proliferation, only geraniol inhibited HMG-CoA reductase activity. While these effects were significantly correlated (r2=0.89, P <0.01), they were not causally related, since exogenous mevalonate did not restore growth in geraniol-inhibited cells. These findings indicate that mechanisms other than impaired mevalonate synthesis mediate the anti-proliferative and cell cycle regulatory effects of beta-ionone and geraniol in human breast cancer cells.
Seyhan, Mehmet Fatih; Yılmaz, Eren; Timirci-Kahraman, Özlem; Saygılı, Neslihan; Kısakesen, Halil İbrahim; Eronat, Allison Pınar; Ceviz, Ayşe Begüm; Bilgiç Gazioğlu, Sema; Yılmaz-Aydoğan, Hülya; Öztürk, Oğuz
2017-09-01
Natural products with bioactive components are widely studied on various cancer cell lines for their possible cytotoxic effects, recently. Among these products, honey stands out as a valuable bee product containing many active phenolic compounds and flavonoids. Numerous types of multifloral honey and honeydew honey are produced in Turkey owing to its abundant vegetation. Therefore, in this study, we investigated the cytotoxic effects of particular tree-originated honeys from chestnut, cedar, pine, and multifloral honey on cell lines representing different types of the most common cancer of women, breast cancer, MCF7, SKBR3, and MDAMB-231, and fibrocystic breast epithelial cell line, MCF10A as a control. All honey samples were analyzed biochemically. The dose- (1, 2.5, 5, 7.5, and 10 µg/mL) and time (24th, 48th, and 72nd hours)-dependent effects of ethanol/water solutions of the honey samples were scrutinized. Cell viability/cytotoxicity was evaluated by the water soluble tetrazolium Salt-1 (WST-1) method. Apoptotic status was detected by Annexin V-PI assay using FACSCalibur. The statistical analysis was performed using GraphPad Prism 6 and the clustering data analysis with the R programming language. The biochemical analyses of the honey samples showed that the tree-originated honey samples contained more total phenolic compounds than the multifloral honey. Phenolic content of the honey types increases in order of multifloral, pine, cedar, and chestnut, respectively, which is compatible with their cytotoxic affectivity and dark color. In addition, the antioxidant capacity of the studied honey types was observed to increase in order of multifloral < pine < cedar ≅ chestnut. According to the WST-1 data, chestnut honey induced cytotoxicity over 50% on all the cell lines, including the control MCF10A cells, even with low doses (honey concentrations starting from 1 µg/mL) (P < 0.0001). Similarly, Cedar honey was observed to be the second most effective honey in this study. Cedar honey, with the dose of 1 µg/mL, was detected statistically highly significant on MCF10A, MCF7, and SKBR3. In contrast, pine honey showed dramatically significant cytotoxicity only on the MDAMB 231 cells with a 1 µg/mL dose at the same time point (P = 0.018). While pine honey caused an anticancer effect on the MCF-7 and SKBR3 cancer cell lines with a 2.5-5 µg/mL dose (P < 0.0001), like cedar and chestnut honeys, it increased the viability of the MCF10A control cells with the doses of 2.5-5 µg/mL. It only showed cytotoxicity with higher doses (10 µg/mL) on the MCF10A cell line (P < 0.0001). Moreover, we have observed that the multifloral and artificial honey samples were mostly ineffective or increased cell viability with the doses of 1-5 µg/mL. Apoptotic effects of the other honey samples on the MCF-7 cell line were found as chestnut> pine> cedar> multifloral in the Annexin V-propidium iodide (PI) analysis. Chestnut, cedar, and pine honey displayed a remarkably cytotoxic effect on breast cancer cell lines, MCF7, SKBR3, and even on the most aggressive MDAMB 231, representing the triple negative breast cancer, which lacks of targeted anticancer therapy. The chestnut and cedar honeys stand out to be the most cytotoxic on all cell lines, while pine honey was found to be the least toxic on control cells with appropriate toxicity on the cancer cells. © 2017 IUBMB Life, 69(9):677-688, 2017. © 2017 International Union of Biochemistry and Molecular Biology.
Wu, Long; Xu, Jun; Yuan, Weiqi; Wu, Baojian; Wang, Hao; Liu, Guangquan; Wang, Xiaoxiong; Du, Jun; Cai, Shaohui
2014-01-01
P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound. The in vitro and in vivo activity was determined using the MTT assay and human breast cancer xenograft models. The gene and protein expression of P-glycoprotein were determined using real-time polymerase chain reaction and the Western blotting technique, respectively. ABCB-1 bioactivity was tested by fluorescence microscopy, multi-mode microplate reader, and flow cytometry. The intracellular levels of ATP, HK-II, and ATPase activity were based on an assay kit according to the manufacturer's instructions. 3-Bromopyruvate treatment led to marked decreases in the IC50 values of selected chemotherapeutic drugs [e.g., doxorubicin (283 folds), paclitaxel (85 folds), daunorubicin (201 folds), and epirubicin (171 folds)] in MCF-7/ADR cells. 3-Bromopyruvate was found also to potentiate significantly the antitumor activity of epirubicin against MCF-7/ADR xenografts. The intracellular level of ATP decreased 44%, 46% in the presence of 12.5.25 µM 3-Bromopyruvate, whereas the accumulation of rhodamine 123 and epirubicin (two typical P-glycoprotein substrates) in cells was significantly increased. Furthermore, we found that the mRNA and the total protein level of P-glycoprotein were slightly altered by 3-Bromopyruvate. Moreover, the ATPase activity was significantly inhibited when 3-Bromopyruvate was applied. We demonstrated that 3-Bromopyruvate can reverse P-glycoprotein-mediated efflux in MCF-7/ADR cells. Multidrug resistance reversal by 3-Bromopyruvate occurred through at least three approaches, namely, a decrease in the intracellular level of ATP and HK-II bioactivity, the inhibition of ATPase activity, and the slight decrease in P-glycoprotein expression in MCF-7/ADR cells.
Yuan, Weiqi; Wu, Baojian; Wang, Hao; Liu, Guangquan; Wang, Xiaoxiong; Du, Jun; Cai, Shaohui
2014-01-01
Purpose P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound. Methods The in vitro and in vivo activity was determined using the MTT assay and human breast cancer xenograft models. The gene and protein expression of P-glycoprotein were determined using real-time polymerase chain reaction and the Western blotting technique, respectively. ABCB-1 bioactivity was tested by fluorescence microscopy, multi-mode microplate reader, and flow cytometry. The intracellular levels of ATP, HK-II, and ATPase activity were based on an assay kit according to the manufacturer’s instructions. Results 3-Bromopyruvate treatment led to marked decreases in the IC50 values of selected chemotherapeutic drugs [e.g., doxorubicin (283 folds), paclitaxel (85 folds), daunorubicin (201 folds), and epirubicin (171 folds)] in MCF-7/ADR cells. 3-Bromopyruvate was found also to potentiate significantly the antitumor activity of epirubicin against MCF-7/ADR xenografts. The intracellular level of ATP decreased 44%, 46% in the presence of 12.5.25 µM 3-Bromopyruvate, whereas the accumulation of rhodamine 123 and epirubicin (two typical P-glycoprotein substrates) in cells was significantly increased. Furthermore, we found that the mRNA and the total protein level of P-glycoprotein were slightly altered by 3-Bromopyruvate. Moreover, the ATPase activity was significantly inhibited when 3-Bromopyruvate was applied. Conclusion We demonstrated that 3-Bromopyruvate can reverse P-glycoprotein-mediated efflux in MCF-7/ADR cells. Multidrug resistance reversal by 3-Bromopyruvate occurred through at least three approaches, namely, a decrease in the intracellular level of ATP and HK-II bioactivity, the inhibition of ATPase activity, and the slight decrease in P-glycoprotein expression in MCF-7/ADR cells. PMID:25372840
Notch3 negatively regulates chemoresistance in breast cancers.
Gu, Xiaoting; Lu, Chunxiao; He, Dongxu; Lu, Yangfan; Jin, Jian; Liu, Dequan; Ma, Xin
2016-10-14
To define the role of the NOTCH signaling pathway in the development of chemoresistance and the associated epithelial-mesenchymal transition (EMT), we investigated the effect of Notch3 on adriamycin (ADM)-resistant human breast cancer cells (MCF-7/ADM cells). We found that Notch3 was downregulated and involved in the chemoresistance of MCF-7/ADM cells, while forced expression of Notch3 reversed the chemoresistance. Furthermore, fos-related antigen 1 (Fra1) was negatively regulated by Notch3 and was highly expressed in MCF-7/ADM cells. Increased Fra1 activated the EMT process. Finally, Notch3 expression was confirmed in clinically chemoresistant samples of breast cancers from patients receiving anthracycline-based chemotherapy. Low expression of Notch3 was an unfavorable predictor of distant relapse-free survival in ER positive breast cancers. Taken together, our findings demonstrate that the Notch3-Fra1 signaling pathway mediates chemoresistance via the EMT.
An amino acidic adjuvant to augment cryoinjury of MCF-7 breast cancer cells.
Wang, Chuo-Li; Teo, Ka Yaw; Han, Bumsoo
2008-08-01
One of the major challenges in cryosurgery is to minimize incomplete cryodestruction near the edge of the iceball. In the present study, the feasibility and effectiveness of an amino acidic adjuvant, glycine was investigated to enhance the cryodestruction of MCF-7 human breast cancer cell at mild freezing/thawing conditions via eutectic solidification. The effects of glycine addition on the phase change characteristics of NaCl-water binary mixture were investigated with a differential scanning calorimeter and cryo-macro/microscope. The results confirmed that a NaCl-glycine-water mixture has two distinct eutectic phase change events - binary eutectic solidification of water-glycine, and ternary eutectic solidification of NaCl-glycine-water. In addition, its effects on the cryoinjury of MCF-7 cells were investigated by assessing the post-thaw cellular viability after a single freezing/thawing cycle with various eutectic solidification conditions due to different glycine concentrations, end temperatures and hold times. The viability of MCF-7 cells in isotonic saline supplemented with 10% or 20% glycine without freezing/thawing remained higher than 90% (n=9), indicating no apparent toxicity was induced by the addition of glycine. With 10% glycine supplement, the viability of the cells frozen to -8.5 degrees C decreased from 85.9+/-1.8% to 38.5+/-1.0% on the occurrence of binary eutectic solidification of glycine-water (n=3 for each group). With 20% glycine supplement, the viability of the cells frozen to -8.5 degrees C showed similar trends to those with 10% supplement. However, as the end temperature was lowered to -15 degrees C, the viability drastically decreased from 62.5+/-2.0% to 3.6+/-0.7% (n=3 for each group). The influences of eutectic kinetics such as nucleation temperature, hold time and method were less significant. These results imply that the binary eutectic solidification of water-glycine can augment the cryoinjury of MCF-7 cells, and the extent of the eutectic solidification is significant.
Undecylprodigiosin selectively induces apoptosis in human breast carcinoma cells independent of p53
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, T.-F.; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; Department of Medical Technology, Central Taiwan University of Science and Technology, Taichung 40605, Taiwan
2007-12-15
Undecylprodigiosin (UP) is a bacterial bioactive metabolite produced by Streptomyces and Serratia. In this study, we explored the anticancer effect of UP. Human breast carcinoma cell lines BT-20, MCF-7, MDA-MB-231 and T47D and one nonmalignant human breast epithelial cell line, MCF-10A, were tested in this study. We found that UP exerted a potent cytotoxicity against all breast carcinoma cell lines in a dose- and time-dependent manner. In contrast, UP showed limited toxicity to MCF-10A cells, indicating UP's cytotoxic effect is selective for malignant cells. UP's cytotoxic effect was due to apoptosis, as confirmed by positive TUNEL signals, annexin V-binding, caspasemore » 9 activation and PARP cleavage. Notably, UP-induced apoptosis was blocked by the pan-caspase inhibitor z-VAD.fmk, further indicating the involvement of caspase activity. Moreover, UP caused a marked decrease of the levels of antiapoptotic BCL-X{sub L}, Survivin and XIAP while enhancing the levels of proapoptotic BIK, BIM, MCL-1S and NOXA, consequently favoring induction of apoptosis. Additionally, we found that cells with functional p53 (MCF-7, T47D) or mutant p53 (BT-20, MDA-MB-231) were both susceptible to UP's cytotoxicity. Importantly, UP was able to induce apoptosis in MCF-7 cells with p53 knockdown by RNA interference, confirming the dispensability of p53 in UP-induced apoptosis. Overall, our results establish that UP induces p53-independent apoptosis in breast carcinoma cells with no marked toxicity to nonmalignant cells, raising the possibility of its use as a new chemotherapeutic drug for breast cancer irrespective of p53 status.« less
Zhong, Zhang-Feng; Yu, Hai-Bing; Wang, Chun-Ming; Qiang, Wen-An; Wang, Sheng-Peng; Zhang, Jin-Ming; Yu, Hua; Cui, Liao; Wu, Tie; Li, De-Qiang; Wang, Yi-Tao
2017-01-01
Chemotherapy is used as a primary approach in cancer treatment after routine surgery. However, chemo-resistance tends to occur when chemotherapy is used clinically, resulting in poor prognosis and recurrence. Currently, Chinese medicine may provide insight into the design of new therapies to overcome chemo-resistance. Furanodiene, as a heat-sensitive sesquiterpene, is isolated from the essential oil of Rhizoma Curcumae . Even though mounting evidence claiming that furanodiene possesses anti-cancer activities in various types of cancers, the underlying mechanisms against chemo-resistant cancer are not fully clear. Our study found that furanodiene could display anti-cancer effects by inhibiting cell viability, inducing cell cytotoxicity, and suppressing cell proliferation in doxorubicin-resistant MCF-7 breast cancer cells. Furthermore, furanodiene preferentially causes apoptosis by interfering with intrinsic/extrinsic-dependent and NF-κB-independent pathways in doxorubicin-resistant MCF-7 cells. These observations also prompt that furanodiene may be developed as a promising natural product for multidrug-resistant cancer therapy in the future.
Triterpenoid Acids as Important Antiproliferative Constituents of European Elderberry Fruits.
Gleńsk, Michał; Czapińska, Elżbieta; Woźniak, Marta; Ceremuga, Ireneusz; Włodarczyk, Maciej; Terlecki, Grzegorz; Ziółkowski, Piotr; Seweryn, Ewa
2017-01-01
In Europe, both the fruits and flowers of Sambucus nigra L. have been used against cold, as well as laxative, diaphoretic, and diuretic remedies. There are also a number of commercially available food products that contain elderberry juice, puréed or dried elderberries. Recent comprehensive literature data on pharmacology and chemistry of Sambuci fructus have encouraged us to screen extracts with different polarities from this plant material against cancer cell lines. The cytotoxic activity of the ethyl acetate and aqueous acetone extracts from elderberries as well as detected triterpenoids on human colon adenocarcinoma cell line (LoVo) and human breast cancer cell line (MCF-7) was investigated by sulforhodamine B assay. Moreover, cell migration assay was conducted for triterpenoid fraction and pure compounds. Aqueous acetone extract possessed much lower IC 50 value in cancer cell lines compared to ethyl acetate extract. The latter manifested high cytotoxicity against studied cell lines, suggesting that nonpolar compounds are responsible for the cytotoxic activity. Indeed, the phytochemical analysis revealed that ursolic and oleanolic acids are the main triterpenoids in the mentioned extract of which ursolic acid showed the highest activity with IC 50 values of 10.7 µg/mL on MCF-7 and 7.7 µg/mL on LoVo cells.
Booth, Nancy L.; Overk, Cassia R.; Yao, Ping; Totura, Steve; Deng, Yunfan; Hedayat, A. S.; Bolton, Judy L.; Pauli, Guido F.; Farnsworth, Norman R.
2007-01-01
Red clover (Trifolium pratense L., Fabaceae) dietary supplements are currently used to treat menopausal symptoms because of their high content of the mildly estrogenic isoflavones daidzein, genistein, formononetin and biochanin A. These compounds are estrogenic in vitro and in vivo, but little information exists on the best time to harvest red clover fields to maximize content of the isoflavones and thus make an optimal product. Samples of cultivated red clover aboveground parts and flower heads were collected in parallel over one growing season in northeastern Illinois. Generally, autohydrolytic extracts of aboveground parts contained more isoflavones and had more estrogenic activity in Ishikawa endometrial cells, compared with extracts of flower heads. Daidzein and genistein content peaked around June to July, while formononetin and biochanin A content peaked in early September. Flower head and total aboveground parts extracts exhibited differential estrogenic activity in an Ishikawa (endometrial) cell-based alkaline phosphatase (AP) induction assay, whereas nondifferential activity was observed for most extracts tested in an MCF-7 (breast) cell proliferation assay when tested at the same final concentrations. Ishikawa assay results could be mapped onto the extracts’ content of individual isoflavones, but MCF-7 results did not show such a pattern. These results suggest that significant metabolism of isoflavones may occur in MCF-7 cells, but not in Ishikawa cells, and therefore caution is advised in the choice of bioassay used for the biological standardization of botanical dietary supplements. PMID:16478248
Genome-wide miRNA response to anacardic acid in breast cancer cells
Schultz, David J.; Muluhngwi, Penn; Alizadeh-Rad, Negin; Green, Madelyn A.; Rouchka, Eric C.; Waigel, Sabine J.
2017-01-01
MicroRNAs are biomarkers and potential therapeutic targets for breast cancer. Anacardic acid (AnAc) is a dietary phenolic lipid that inhibits both MCF-7 estrogen receptor α (ERα) positive and MDA-MB-231 triple negative breast cancer (TNBC) cell proliferation with IC50s of 13.5 and 35 μM, respectively. To identify potential mediators of AnAc action in breast cancer, we profiled the genome-wide microRNA transcriptome (microRNAome) in these two cell lines altered by the AnAc 24:1n5 congener. Whole genome expression profiling (RNA-seq) and subsequent network analysis in MetaCore Gene Ontology (GO) algorithm was used to characterize the biological pathways altered by AnAc. In MCF-7 cells, 69 AnAc-responsive miRNAs were identified, e.g., increased let-7a and reduced miR-584. Fewer, i.e., 37 AnAc-responsive miRNAs were identified in MDA-MB-231 cells, e.g., decreased miR-23b and increased miR-1257. Only two miRNAs were increased by AnAc in both cell lines: miR-612 and miR-20b; however, opposite miRNA arm preference was noted: miR-20b-3p and miR-20b-5p were upregulated in MCF-7 and MDA-MB-231, respectively. miR-20b-5p target EFNB2 transcript levels were reduced by AnAc in MDA-MB-231 cells. AnAc reduced miR-378g that targets VIM (vimentin) and VIM mRNA transcript expression was increased in AnAc-treated MCF-7 cells, suggesting a reciprocal relationship. The top three enriched GO terms for AnAc-treated MCF-7 cells were B cell receptor signaling pathway and ribosomal large subunit biogenesis and S-adenosylmethionine metabolic process for AnAc-treated MDA-MB-231 cells. The pathways modulated by these AnAc-regulated miRNAs suggest that key nodal molecules, e.g., Cyclin D1, MYC, c-FOS, PPARγ, and SIN3, are targets of AnAc activity. PMID:28886127
Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu
2015-08-28
The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observedmore » in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER{sup +} and ER{sup −} breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen.« less
Sun, Zhang-Hua; Liang, Fa-Liang; Wu, Wen; Chen, Yu-Chan; Pan, Qing-Ling; Li, Hao-Hua; Ye, Wei; Liu, Hong-Xin; Li, Sai-Ni; Tan, Guo-Hui; Zhang, Wei-Min
2015-12-21
Four new meroterpenoids, guignardones P-S (1-4), and three known analogues (5-7) were isolated from the endophytic fungal strain Guignardia mangiferae A348. Their structures were elucidated on the basis of spectroscopic analysis and single crystal X-ray diffraction. All the isolated compounds were evaluated for their inhibitory effects on SF-268, MCF-7, and NCI-H460 human cancer cell lines. Compounds 2 and 4 exhibited weak inhibitions of cell proliferation against MCF-7 cell line.
Asara, Yolande; Marchal, Juan A; Carrasco, Esther; Boulaiz, Houria; Solinas, Giuliana; Bandiera, Pasquale; Garcia, Maria A; Farace, Cristiano; Montella, Andrea; Madeddu, Roberto
2013-08-12
Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd), which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU) is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd.
Asara, Yolande; Marchal, Juan A.; Carrasco, Esther; Boulaiz, Houria; Solinas, Giuliana; Bandiera, Pasquale; Garcia, Maria A.; Farace, Cristiano; Montella, Andrea; Madeddu, Roberto
2013-01-01
Industrialisation, the proximity of factories to cities, and human work activities have led to a disproportionate use of substances containing heavy metals, such as cadmium (Cd), which may have deleterious effects on human health. Carcinogenic effects of Cd and its relationship with breast cancer, among other tumours, have been reported. 5-Fluorouracil (5-FU) is a fluoropyrimidine anticancer drug used to treat solid tumours of the colon, breast, stomach, liver, and pancreas. The purpose of this work was to study the effects of Cd on cell cycle, apoptosis, and gene and protein expression in MCF-7 breast cancer cells treated with 5-FU. Cd altered the cell cycle profile, and its effects were greater when used either alone or in combination with 5-FU compared with 5-FU alone. Cd significantly suppressed apoptosis of MCF-7 cells pre-treated with 5-FU. Regarding gene and protein expression, bcl2 expression was mainly upregulated by all treatments involving Cd. The expression of caspase 8 and caspase 9 was decreased by most of the treatments and at all times evaluated. C-myc expression was increased by all treatments involving Cd, especially 5-FU plus Cd at the half time of treatment. Cd plus 5-FU decreased cyclin D1 and increased cyclin A1 expression. In conclusion, our results indicate that exposure to Cd blocks the anticancer effects of 5-FU in MCF-7 cells. These results could have important clinical implications in patients treated with 5-FU-based therapies and who are exposed to high levels of Cd. PMID:23941782
Withaferin A Suppresses Estrogen Receptor-α Expression in Human Breast Cancer Cells
Hahm, Eun-Ryeong; Lee, Joomin; Huang, Yi; Singh, Shivendra V.
2011-01-01
We have shown previously that withaferin A (WA), a promising anticancer constituent of Ayurvedic medicine plant Withania somnifera, inhibits growth of MCF-7 and MDA-MB-231 human breast cancer cells in culture and MDA-MB-231 xenografts in vivo by causing apoptosis. However, the mechanism of WA-induced apoptosis is not fully understood. The present study was designed to systematically determine the role of tumor suppressor p53 and estrogen receptor-α (ER-α) in proapoptotic response to WA using MCF-7, T47D, and ER-α overexpressing MDA-MB-231 cells as a model. WA treatment resulted in induction as well as increased Ser15 phosphorylation of p53 in MCF-7 cells, but RNA interference of this tumor suppressor gene conferred modest protection at best against WA-induced apoptosis. WA-mediated growth inhibition and apoptosis induction in MCF-7 cells were significantly attenuated in the presence of 17β-estradiol (E2). Exposure of MCF-7 cells to WA resulted in a marked decrease in protein levels of ER-α (but not ER-β) and ER-α regulated gene product pS2, and this effect was markedly attenuated in the presence of E2. WA-mediated down-regulation of ER-α protein expression correlated with a decrease in its nuclear level, suppression of its mRNA level, and inhibition of E2-dependent activation of ERE2e1b-luciferase reporter gene. Ectopic expression of ER-α in the MDA-MB-231 cell line conferred partial but statistically significant protection against WA-mediated apoptosis, but not G2/M phase cell cycle arrest. Collectively, these results indicate that WA functions as an anti-estrogen, and the proapoptotic effect of this promising natural product is partially attenuated by p53 knockdown and E2-ER-α. PMID:21432907
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong
2014-05-15
Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1more » expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.« less
The effect of SiO2/Au core-shell nanoparticles on breast cancer cell's radiotherapy.
Darfarin, Ghazal; Salehi, Roya; Alizadeh, Effat; Nasiri Motlagh, Behnam; Akbarzadeh, Abolfazl; Farajollahi, Alireza
2018-05-09
Recently it has been shown that radiation dose enhancement could be achievable in radiotherapy using nanoparticles (NPs). In this study, evaluation was made to determine efficiency of gold-silica shell-core NP in megavoltage irradiation of MCF7 breath cancer cells. Gold-silicon oxide shell-core NPs were obtained by conjugation of gold NP with amine or thiol functionalized silica NPs (AuN@SiO 2 and AuS@SiO 2 ). Cellular uptake and cytotoxicity of NPs were examined by fluorescent microscopy and MTT assay, respectively. MCF-7 breast cancer cells were treated with both NPs and irradiation was made with X-ray energies of 6 and 18 MV to the absorbed dose of 2, 4 and 8 Gy using Simense linear accelerator. The efficiency of radiation therapy was then evaluated by MTT and Brdu assay, DAPI staining and cell cycle analysis. TEM images indicated that synthesized NPs had average diameter of 25 nm. Cellular uptake demonstrated that the internalization of AuS@SiO 2 and AuN@SiO 2 NPs amounted to 18% and 34%, 3 h post treatment, respectively. Nontoxicity of prepared NPs on MCF-7 cells was proved by MTT and Brdu assays as well as DAPI staining and cell cycle studies. The highest enhancement in radiation dose was observed in the cells that irradiated with radiation energy of 18 MV and absorbed of 8 Gy at NPs concentration of 200 ppm. The Brdu findings revealed that the cytotoxicity and apoptosis on MCF-7 cells are dose dependent with a significantly more death in AuN@SiO 2 (amine) exposed cells (p < .05). Analysis also revealed interruption in cell cycle by demonstrating lack of cells, in S phase in amine treated cells (AuN@SiO 2 ) at given dose of 8 Gy using 18 MV X-ray in comparison to thiol treated cells. Based on the results of the study it can be concluded that the gold-silicon oxide shell-core NPs could play an effective role in radiotherapy of MCF-7 breast cancer cells.
Kim, Jinhee; Soh, Soon Yil; Shin, Juha; Cho, Chi-Woung; Choi, Young Hee; Nam, Sang-Yong
2015-10-01
Bioactives extracted from cactus (Opuntia ficus-indica) stems were investigated for their chemopreventive activities using human cancer cells in vitro. The bioactives present in crude extracts were detected and quantified using high-performance liquid chromatography. Among all the extracts, such as hexane, ethyl acetate (EtOAc), acetone, methanol (MeOH), and MeOH:water (80:20), the MeOH extract had the highest amount of polyphenolic compounds and the acetone extract exhibited the most potent effect at scavenging the 2,2,-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS(•+) ) radical. In addition, most of the extracts, with the exception of hexane, exhibited significant cytotoxicity in human SW480 colon and MCF7 breast cancer cells. Overall, the SW480 cells were more sensitive than the MCF7 cells to the cytotoxic effect of the O. ficus-indica extracts (OFEs). Cell death by OFE treatment caused significant inhibition of cyclooxygenase-2 and increased the Bax/Bcl2 ratio in both SW480 and MCF7 cell lines. However, degradation of poly (ADP-ribose) polymerase was significantly increased by OFE only in the MCF7 cells, thereby inducing apoptosis. These findings demonstrate the health-benefit roles, including anti-oxidative and anti-proliferative activities as well as pro-apoptotic effects, of bioactive compounds in OFEs, suggesting a chemopreventive role in human cancer cells. © 2014 Society of Chemical Industry.
Pan, Di; Li, Wei; Miao, Hanchi; Yao, Jing; Li, Zhiyu; Wei, Libin; Zhao, Li; Guo, Qinglong
2014-02-15
In this study, the anticancer effect of LW-214, a newly synthesized flavonoid, against MCF-7 human breast cancer cells and the underlying mechanisms were investigated. LW-214 triggered the mitochondrial apoptotic pathway by increasing Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (ΔΨm) and caspase-9 activation, degradation of poly (ADP-ribose) polymerase (PARP), cytochrome c (Cyt c) release and apoptosis-inducing factor (AIF) transposition. Further research revealed that both the reactive oxygen species (ROS) generation and the apoptosis signal regulating kinase 1 (ASK1) activation by LW-214 were induced by down-regulating the thioredoxin-1 (Trx-1) expression. The ROS elevation and ASK1 activation induced a sustained phosphorylation of c-Jun N-terminal kinase (JNK), while SP600125, as known as JNK inhibitor, almost reversed LW-214-induced apoptosis in MCF-7 cells. Overexpression of Trx-1 in MCF-7 cells attenuated LW-214-mediated apoptosis as well as the JNK activation and reversed the expression of mitochondrial apoptosis-related protein. Accordingly, the in vivo study showed that LW-214 exhibited a potential antitumor effect in BALB/c species mice inoculated MCF-7 tumor with low systemic toxicity, and the mechanism was the same as in vitro study. Taken together, these findings indicated that LW-214 may down-regulated Trx-1 function, causing intracellular ROS generation and releasing the ASK1, and lead to JNK activation, which consequently induced the mitochondrial apoptosis in vitro and in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.
Bahreyni, Amirhossein; Yazdian-Robati, Rezvan; Hashemitabar, Shirin; Ramezani, Mohammad; Ramezani, Pouria; Abnous, Khalil; Taghdisi, Seyed Mohammad
2017-06-30
The common cancer treatment strategies like chemotherapy and radiotherapy are nonspecific and can trigger severe side effects by damaging normal cells. So, targeted cancer therapies, such as apoptosis induction, have attracted great attention in recent years. In this project, two nano-complexes, MUC1 aptamer-NAS-24 aptamer-Graphene oxide (GO) and MUC1 aptamer-Cytochrome C aptamer-GO, were designed to induce cell programmed death in MDA-MB-231 and MCF-7 cells (breast cancer cell lines) and to verify the level of apoptosis in both cell lines. MUC1 aptamer was a molecular recognition probe that led the internalization of two nano-complexes into MDA-MB-231 and MCF-7 cells (MUC1 positive cells) but not into HepG2 cell (liver cancer cell line, MUC1 negative cells). The apoptosis induction relied on binding of NAS-24 aptamer to its target, vimentin, in MDA-MB-231 and MCF-7 (target cells) with different levels of vimentin content. The function of first nano-complex was confirmed by binding of FAM-labeled cytochrome C aptamer to its target (cytochrome C) which was released from mitochondria, based on the function of the first nano-complex. Fluorometric analysis and gel retardation assay proved the formation of nano-complexes. The results of flow cytometry and fluorescence microscopy indicated efficient apoptosis induction just in target cells (MDA-MB-231 and MCF-7 cells) but not in non-target cells (HepG2 cell). The results of MTT assay also confirmed cell death process. Overall, our results proved excellent targeted apoptosis in breast cancer cells by designed nano-complexes which can be applied as an efficient cancer therapy method. Copyright © 2017 Elsevier B.V. All rights reserved.
Xu, Dan; Aka, Juliette A; Wang, Ruixuan; Lin, Sheng-Xiang
2017-07-01
17beta-hydroxysteroid dehydrogenase type 5 (17β-HSD5) is an important enzyme associated with sex steroid metabolism in hormone-dependent cancer. However, reports on its expression and its prognostic value in breast cancer are inconsistent. Here, we demonstrate the impact of 17β-HSD5 expression modulation on the proteome of estrogen receptor-positive (ER+) breast cancer cells. RNA interference technique (siRNA) was used to knock down 17β-HSD5 gene expression in the ER+ breast cancer cell line MCF-7 and the proteome of the 17β-HSD5-knockdown cells was compared to that of MCF-7 cells using two-dimensional (2-D) gel electrophoresis followed by mass spectrometry analysis. Ingenuity pathway analysis (IPA) was additionally used to assess functional enrichment analyses of the proteomic dataset, including protein network and canonical pathways. Our proteomic analysis revealed only four differentially expressed protein spots (fold change > 2, p<0.05) between the two cell lines. The four spots were up-regulated in 17β-HSD5-knockdown MCF-7 cells, and comprised 21 proteins involved in two networks and in functions that include apoptosis inhibition, regulation of cell growth and differentiation, signal transduction and tumor metastasis. Among the proteins are nucleoside diphosphate kinase A (NME1), 78kDa glucose-regulated protein (GRP78) and phosphoglycerate kinase 1 (PGK1). We also showed that expression of 17β-HSD5 and that of the apoptosis inhibitor GRP78 are strongly but negatively correlated. Consistent with their opposite regulation, GRP78 knockdown decreased MCF-7 cell viability whereas 17β-HSD5 knockdown or inhibition increased cell viability and proliferation. Besides, IPA analysis revealed that ubiquitination pathway is significantly affected by 17β-HSD5 knockdown. Furthermore, IPA predicted the proto-oncogene c-Myc as an upstream regulator linked to the tumor-secreted protein PGK1. The latter is over-expressed in invasive ductal breast carcinoma as compared with normal breast tissue and its expression increased following 17β-HSD5 knockdown. Our present results indicate a 17β-HSD5 role in down-regulating breast cancer development. We thus propose that 17β-HSD5 may not be a potent target for breast cancer treatment but its low expression could represent a poor prognosis factor. Copyright © 2017. Published by Elsevier Ltd.
Janji, Bassam; Vallar, Laurent; Tanoury, Ziad Al; Bernardin, François; Vetter, Guillaume; Schaffner-Reckinger, Elisabeth; Berchem, Guy; Friederich, Evelyne; Chouaib, Salem
2010-01-01
Abstract We used a tumour necrosis factor (TNF)-α resistant breast adenocarcinoma MCF-7 cell line to investigate the involvement of the actin cytoskeleton in the mechanism of cell resistance to this cytokine. We found that TNF resistance correlates with the loss of cell epithelial properties and the gain of a mesenchymal phenotype, reminiscent of an epithelial-to-mesenchymal transition (EMT). Morphological changes were associated with a profound reorganization of the actin cytoskeleton and with a change in the repertoire of expressed actin cytoskeleton genes and EMT markers, as revealed by DNA microarray-based expression profiling. L-plastin, an F-actin cross-linking and stabilizing protein, was identified as one of the most significantly up-regulated genes in TNF-resistant cells. Knockdown of L-plastin in these cells revealed its crucial role in conferring TNF resistance. Importantly, overexpression of wild-type L-plastin in TNF-sensitive MCF-7 cells was sufficient to protect them against TNF-mediated cell death. Furthermore, we found that this effect is dependent on serine-5 phosphorylation of L-plastin and that non-conventional protein kinase C isoforms and the ceramide pathway may regulate its phosphorylation state. The protective role of L-plastin was not restricted to TNF-α resistant MCF-7 cells because a correlation between the expression of L-plastin and the resistance to TNF-α was observed in other breast cancer cell lines. Together, our study discloses a novel unexpected role of the actin bundling protein L-plastin as a cell protective protein against TNF-cytotoxicity. PMID:19799649
Kim, Han-Young; Choi, Tae Won; Kim, Hyun Jung; Kim, Sung-Moo; Park, Kyung-Ran; Jang, Hyeung-Jin; Lee, Eun Ha; Kim, Chul Young; Jung, Sang Hoon; Shim, Bum Sang; Ahn, Kwang Seok
2011-05-15
The aerial parts of Saururus chinensis (SC) have been used for the treatment of edema, fever, jaundice, and inflammatory diseases in Korean folk medicine for centuries. However, the mechanism by which SC exerts these anti-tumorigenic activities in human prostate and breast cancer cells has not yet been fully understood. In this study, we report on the methylene chloride fraction from SC exerting cytotoxicity against prostate and breast cancer cells in a dose-dependent manner. Specifically, SC exerted the most potent cytotoxicity in LNCaP and MCF-7 cells. SC was shown to down-regulate various angiogenetic (VEGF), proliferative (Cyclin D₁, anti-apoptotic (Bcl-2) gene products in these cells. SC also increased the number of annexin V-positive apoptotic bodies and the sub-G1 DNA contents of the cell cycle undergoing apoptosis through caspase-3 activation in both LNCaP and MCF-7 cells. We further confirmed that caspase-3 plays an important role in SC-induced apoptosis in LNCaP and MCF-7 cells through the use of the caspase-3 inhibitor. Moreover, we observed that SC potentiated paclitaxel-induced apoptosis in MCF-7 cells and sauchinone is a major active constituent of SC, which could induce apoptosis in the cells. Taken together, our data provide the evidence that SC induces apoptosis depending on caspase-3 activation and overcomes the natural biological resistance to chemotherapy found in human prostate and breast cancer cells. Copyright © 2010 Elsevier GmbH. All rights reserved.
Abd-Rabou, Ahmed A; Shalby, Aziza B; Ahmed, Hanaa H
2018-05-11
Drug resistance is a major challenge of breast and colon cancer therapies leading to treatment failure. The main objective of the current study is to investigate whether selenium nanoparticles (nano-Se) can induce the chemo-sensitivity of 5-fluorouracil (FU)-encapsulated poly (D, L-lactide-co-glycolide) nanoparticles (nano-FU) in breast and colon cancer cell lines. Nano-Se and nano-FU were synthesized and characterized, then applied individually or in combination upon MCF7, MDA-MB-231, HCT 116, and Caco-2 cancerous cell lines. Cytotoxicity, cellular glucose uptake, and apoptosis, as well as malondialdehyde (MDA), nitric oxide (NO), and zinc (Zn) levels, were investigated upon the different treatments. We have resulted that nano-FU induced cell death in MCF7 and Caco-2 more effectively than MDA-MB-231 and HCT 116 cell lines. Moreover, nano-FU plus nano-Se potentiate MCF7 and Caco-2 chemo-sensitivity were higher than MDA-MB-231 and HCT 116 cancerous cell lines. It is relevant to note that Se and FU nano-formulations inhibited cancer cell bioenergetics via glucose uptake slight blockage. Furthermore, nano-FU increased the levels of NO and MDA in media over cancer cells, while their combinations with nano-Se rebalance the redox status with Zn increment. We noticed that MCF7 cell line is sensitive, while MDA-MB-231 cell line is resistant to Se and nano-Se. This novel approach could be of great potential to enhance the chemo-sensitivity in breast and colon cancer cells.
2012-01-01
Introduction The taxanes paclitaxel and docetaxel are widely used in the treatment of breast, ovarian, and other cancers. Although their cytotoxicity has been attributed to cell-cycle arrest through stabilization of microtubules, the mechanisms by which tumor cells die remains unclear. Paclitaxel has been shown to induce soluble tumor necrosis factor alpha (sTNF-α) production in macrophages, but the involvement of TNF production in taxane cytotoxicity or resistance in tumor cells has not been established. Our study aimed to correlate alterations in the TNF pathway with taxane cytotoxicity and the acquisition of taxane resistance. Methods MCF-7 cells or isogenic drug-resistant variants (developed by selection for surviving cells in increasing concentrations of paclitaxel or docetaxel) were assessed for sTNF-α production in the absence or presence of taxanes by enzyme-linked immunosorbent assay (ELISA) and for sensitivity to docetaxel or sTNF-α by using a clonogenic assay (in the absence or presence of TNFR1 or TNFR2 neutralizing antibodies). Nuclear factor (NF)-κB activity was also measured with ELISA, whereas gene-expression changes associated with docetaxel resistance in MCF-7 and A2780 cells were determined with microarray analysis and quantitative reverse transcription polymerase chain reaction (RTqPCR). Results MCF-7 and A2780 cells increased production of sTNF-α in the presence of taxanes, whereas docetaxel-resistant variants of MCF-7 produced high levels of sTNF-α, although only within a particular drug-concentration threshold (between 3 and 45 nM). Increased production of sTNF-α was NF-κB dependent and correlated with decreased sensitivity to sTNF-α, decreased levels of TNFR1, and increased survival through TNFR2 and NF-κB activation. The NF-κB inhibitor SN-50 reestablished sensitivity to docetaxel in docetaxel-resistant MCF-7 cells. Gene-expression analysis of wild-type and docetaxel-resistant MCF-7, MDA-MB-231, and A2780 cells identified changes in the expression of TNF-α-related genes consistent with reduced TNF-induced cytotoxicity and activation of NF-κB survival pathways. Conclusions We report for the first time that taxanes can promote dose-dependent sTNF-α production in tumor cells at clinically relevant concentrations, which can contribute to their cytotoxicity. Defects in the TNF cytotoxicity pathway or activation of TNF-dependent NF-κB survival genes may, in contrast, contribute to taxane resistance in tumor cells. These findings may be of strong clinical significance. PMID:22225778
Hahm, Eun-Ryeong; Lee, Joomin; Singh, Shivendra V
2014-11-01
Withaferin A (WA), a bioactive constituent of Ayurvedic medicine plant Withania somnifera, is a potent apoptosis inducer in cancer cells but the mechanism of cell death induction is not fully characterized. The present study was undertaken to determine the role of mitogen-activated protein kinases (MAPK), including c-jun NH2 -terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 MAPK, and anti-apoptotic protein myeloid cell leukemia-1 (Mcl-1) in regulation of WA-induced apoptosis using human breast cancer cells. Exposure of MCF-7 (estrogen responsive) and SUM159 (triple negative) human breast cancer cells to WA resulted in increased phosphorylation of ERK, JNK, and p38 MAPK, but these effects were relatively more pronounced in the former cell line than in SUM159. Overexpression of manganese-superoxide dismutase conferred partial protection against WA-mediated hyperphosphorylation of ERK, but not JNK or p38 MAPK. Cell death resulting from WA treatment in MCF-7 cells was significantly augmented by pharmacological inhibition of ERK and p38 MAPK. Interestingly, the WA-induced apoptosis in MCF-7 cells was partially but significantly blocked in the presence of a JNK-specific inhibitor. Pharmacological inhibition of ERK or JNK had no effect on WA-induced apoptosis in SUM159 cells. The WA-treated cells exhibited induction of long and short forms of Mcl-1. RNA interference of Mcl-1 alone triggered apoptosis. Furthermore, the WA-induced cell death in MCF-7 cells was modestly but significantly augmented by knockdown of the Mcl-1 protein. These observations indicate that: MAPK have cell line-specific role in cell death by WA, and Mcl-1 induction confers modest protection against WA-induced apoptosis. © 2013 Wiley Periodicals, Inc.
Chen, Tingting; Zhou, Lan; Li, Hua; Tian, Yuan; Li, Junqin; Dong, Lihua; Zhao, Yuhua; Wei, Dapeng
2017-01-01
The aim of the present study was to investigate changes in the expression of ErbBs during epithelial-mesenchymal transition (EMT) of breast cancer cells and its association with the expression of fatty acid synthase (FASN). MCF-7-MEK5 cells were used as the experimental model, while MCF-7 cells were used as a control. Tumor cells were implanted into nude mice for in vivo analysis. Cerulenin was used as a FASN inhibitor. Reverse transcription-polymerase chain reaction and western blot analysis were used to detect expression levels of FASN and ErbB1-4. Immunohistochemistry was used to detect the expression of FASN and ErbB1-4 in 58 invasive ductal carcinomas (IDC), as well as their association with clinicopathological characteristics. The expression of FASN and ErbB1-4 in MCF-7-MEK5 cells and tumor tissues increased significantly compared with controls (P<0.001). Inhibition of FASN by cerulenin resulted in a significant decrease in expression of ErbB1, 2 and 4 (P<0.001), whereas there was no evident change in ErbB3. In IDC samples, the expression of FASN and ErbB1-4 increased considerably in lymph node metastases compared with non-lymph node metastases (P<0.05). ErbB2 expression increased in advanced clinical stages (II, III and IV) of IDC and in tumors with larger diameters (P<0.05). The expression of ErbB3 increased in ER-positive tumors (P<0.05). Additionally, a positive association between the expression of FASN and ErbB1, 2 and 4 was observed (P<0.05). FASN activates ErbB1, 2 and 4, and their dimers, which are polymerized via the microstructural domain of the cell membrane. This may initiate EMT and consequentlyincrease the invasion and migration of cancer cells. However, ErbB3 may also affect tumor progression via a FASN-independent pathway. PMID:29113229
Lee, Dahae; Park, SeonJu; Choi, Sungyoul; Kim, Seung Hyun; Kang, Ki Sung
2018-05-18
We investigated the estrogenic and breast cancer inhibitory activities of chemical constituents isolated from Rhei undulati Rhizoma (roots of Rheum undulatum L.), which is used as a laxative, an anti-inflammatory, and an anti-blood stagnation agent. Estrogen-like activity was studied using the well characterized E-screen assay in estrogen receptor (ER)-positive MCF-7 cells. The mechanism underlying the breast cancer inhibitory activity of the compounds was studied using human ER-negative MDA-MB-231 and ER-positive MCF-7 cells. The activation of apoptosis pathway-related proteins was investigated by western blotting, using extracts of R. undulatum prepared in three solvent conditions (EX1, EX2, and EX3). The R. undulatum chemical constituents (compounds 1 ⁻ 3 ) showed estrogen-like activity in the concentration range of 10 to 50 μM, by increasing the proliferation of human ER-positive MCF-7 cells. These effects were attenuated by co-treatment with 100 nM fulvestrant, an ER antagonist. Compounds 1 ⁻ 3 decreased the viability of MCF-7 cells in a concentration-dependent manner. Compounds 1 (aloe emodin) and 2 (rhapontigenin) induced mitochondria-independent apoptosis by activating the caspase-8 pathway, whereas the cytotoxic effect of compound 3 (chrysophanol 1- O -β-d-glucopyranoside) was mediated through the mitochondria-dependent apoptotic pathway.
Gruhlke, Martin C. H.; Nicco, Carole; Batteux, Frederic; Slusarenko, Alan J.
2016-01-01
Garlic (Allium sativum L.) has been used as a spice and medicinal plant since ancient times. Garlic produces the thiol-reactive defence substance, allicin, upon wounding. The effects of allicin on human lung epithelium carcinoma (A549), mouse fibroblast (3T3), human umbilical vein endothelial cell (HUVEC), human colon carcinoma (HT29) and human breast cancer (MCF7) cell lines were tested. To estimate toxic effects of allicin, we used a standard MTT-test (methylthiazoltetrazolium) for cell viability and 3H-thymidine incorporation for cell proliferation. The glutathione pool was measured using monobromobimane and the formation of reactive species was identified using 2′,7′-dichlorofluoresceine-diacetate. The YO-PRO-1 iodide staining procedure was used to estimate apoptosis. Allicin reduced cell viability and cell proliferation in a concentration dependent manner. In the bimane test, it was observed that cells treated with allicin showed reduced fluorescence, suggesting glutathione oxidation. The cell lines tested differed in sensitivity to allicin in regard to viability, cell proliferation and glutathione oxidation. The 3T3 and MCF-7 cells showed a higher proportion of apoptosis compared to the other cell types. These data show that mammalian cell lines differ in their sensitivity and responses to allicin. PMID:28035949
Tomblin, Justin K; Arthur, Subha; Primerano, Donald A; Chaudhry, Ateeq R; Fan, Jun; Denvir, James; Salisbury, Travis B
2016-04-15
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is regulated by environmental toxicants that function as AHR agonists such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). L-Type Amino Acid Transporter 1 (LAT1) is a leucine transporter that is overexpressed in cancer. The regulation of LAT1 by AHR in MCF-7 and MDA-MB-231 breast cancer cells (BCCs) was investigated in this report. Ingenuity pathway analysis (IPA) revealed a significant association between TCDD-regulated genes (TRGs) and molecular transport. Overlapping the TCDD-RNA-Seq dataset obtained in this study with a published TCDD-ChIP-seq dataset identified LAT1 as a primary target of AHR-dependent TCDD induction. Short interfering RNA (siRNA)-directed knockdown of AHR confirmed that TCDD-stimulated increases in LAT1 mRNA and protein required AHR expression. TCDD-stimulated increases in LAT1 mRNA were also inhibited by the AHR antagonist CH-223191. Upregulation of LAT1 by TCDD coincided with increases in leucine uptake by MCF-7 cells in response to TCDD. Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assays revealed increases in AHR, AHR nuclear translocator (ARNT) and p300 binding and histone H3 acetylation at an AHR binding site in the LAT1 gene in response to TCDD. In MCF-7 and MDA-MB-231 cells, endogenous levels of LAT1 mRNA and protein were reduced in response to knockdown of AHR expression. Knockdown experiments demonstrated that proliferation of MCF-7 and MDA-MB-231 cells is dependent on both LAT1 and AHR. Collectively, these findings confirm the dependence of cancer cells on leucine uptake and establish a mechanism for extrinsic and intrinsic regulation of LAT1 by AHR. Copyright © 2016 Elsevier Inc. All rights reserved.
Tarhan, Leman; Nakipoğlu, Mahmure; Kavakcıoğlu, Berna; Tongul, Burcu; Nalbantsoy, Ayşe
2016-03-01
The hidromethanolic (Met/W), ethyl acetate (EA(EA/W)), and water (W(EA/W)) extracts from Teucrium sandrasicum leaves (L) and flowers (F) were investigated for antioxidant properties and antiproliferative effects on HeLa, MCF-7, and L929. The highest DPPH scavenging, metal chelating capacities, and total phenolic and flavonoid contents were observed in Met/WL. The highest hydroxyl scavenging and reducing power capacities were found in EA(EA/W)L. Met/WL, EA(EA/W)L and EA(EA/W)F inhibited cancer cell growths, while they did not show significant cytotoxicity on L929. While the reactive oxygen species (ROS) levels were generally close to controls in HeLa, they were induced in MCF-7 with the treatment of Met/WL, EA(EA/W)L, and EA(EA/W)F and acted as antioxidant for L929. The highest apoptosis inductions were observed in Met/WL-treated HeLa and EA(EA/W)L-treated MCF-7, which were supported with the changes in mitochondrial membrane potentials. The highest caspase-9 activities were found in Met/WL-treated HeLa and EA(EA/W)F-treated MCF-7. Caspase-3 activity was only induced in EA(EA/W)F-treated HeLa.
Lee, Chen-Ting; Zhou, Yingchun; Roy-Choudhury, Kingshuk; Siamakpour-Reihani, Sharareh; Young, Kenneth; Hoang, Peter; Kirkpatrick, John P; Chi, Jen-Tsan A; Dewhirst, Mark W; Horton, Janet K
2017-08-01
Breast cancer is the most common malignancy diagnosed among women and represents a heterogeneous group of subtypes. Radiation therapy is a critical component of treatment for breast cancer patients. However, little is known about radiation response among these intrinsic subtypes. In previous studies, we identified a significant induction of FAS after irradiation in biologically favorable breast cancer patients and breast cancer cell lines. Here, we expanded our study and investigated radiation response in a mouse model of breast cancer. MCF7 (luminal), HCC1954 (HER2 + ) or SUM159 (basal) cells were implanted orthotopically into the dorsal mammary fat pad of nude mice. These mice were then treated with different doses of radiation to assess tumor growth control. We further investigated the therapeutic effect of FAS modulation by silencing FAS in radiation-responsive tumors and injecting FAS agonist antibody into radiation-resistant tumors. Exposure to radiation inhibited MCF7, and to a lesser extent HCC1954 tumor growth in a dose-dependent manner. In contrast, SUM159 tumors were resistant to radiation. The estimated TCD 50 values were 19.3 Gy for MCF7 and 44.9 Gy for SUM159. Radiation induced FAS expression in MCF7 tumors, but not SUM159 tumors. We found that silencing of FAS did not negatively impact radiation response in MCF7 tumors, possibly due to compensation by other apoptotic pathways. On the other hand, FAS activating antibody in combination with radiation treatment delayed SUM159 and HCC1954 tumor growth. However, it did not reach statistical significance compared to radiation treatment alone. Our results suggest that there is intrinsic variation in radiation response among breast cancer subtypes. FAS activation concurrent with radiation slows tumor growth in the radiation-resistant subtypes, but the effect was not significant. Alternative subtype-specific modulators of radiation response are under investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Xian-Ying; Chen, Wei; Fan, Jun-Ting
2013-02-15
In the present paper, we examined the effects of a natural cyclopeptide RA-V on human breast cancer cells and the underlying mechanisms. RA-V significantly inhibited the growth of human breast cancer MCF-7, MDA-MB-231 cells and murine breast cancer 4T1 cells. In addition, RA-V triggered mitochondrial apoptotic pathway which was indicated by the loss of mitochondrial membrane potential, the release of cytochrome c, and the activation of caspase cascade. Further study showed that RA-V dramatically inhibited phosphorylation of AKT and 3-phosphoinositide dependent protein kinase 1 (PDK1) in MCF-7 cells. Moreover, RA-V disrupted the interaction between PDK1 and AKT in MCF-7 cells.more » Furthermore, RA-V-induced apoptosis could be enhanced by phosphatidylinositol 3-kinase inhibitor or attenuated by over-expression of AKT in all the three kinds of breast cancer cells. Taken together, this study shows that RA-V, which can induce mitochondria-mediated apoptosis, exerts strong anti-tumor activity against human breast cancer. The underlying anti-cancer mechanism of RA-V is related to the blockage of the interaction between PDK1 and AKT. - Highlights: ► Plant cyclopeptide RA-V kills human breast cancer cells. ► RA-V triggered mitochondrial apoptotic pathway in human breast cancer cells. ► RA-V inhibited phosphorylation of AKT and PDK1 in breast cancer MCF-7 cells. ► Its mechanism is related to the blockage of the interaction between PDK1 and AKT.« less
2012-01-01
Introduction Acquired tamoxifen resistance involves complex signaling events that are not yet fully understood. Successful therapeutic intervention to delay the onset of hormone resistance depends critically on mechanistic elucidation of viable molecular targets associated with hormone resistance. This study was undertaken to investigate the global proteomic alterations in a tamoxifen resistant MCF-7 breast cancer cell line obtained by long term treatment of the wild type MCF-7 cell line with 4-hydroxytamoxifen (4-OH Tam). Methods We cultured MCF-7 cells with 4-OH Tam over a period of 12 months to obtain the resistant cell line. A gel-free, quantitative proteomic method was used to identify and quantify the proteome of the resistant cell line. Nano-flow high-performance liquid chromatography coupled to high resolution Fourier transform mass spectrometry was used to analyze fractionated peptide mixtures that were isobarically labeled from the resistant and control cell lysates. Real time quantitative PCR and Western blots were used to verify selected proteomic changes. Lentiviral vector transduction was used to generate MCF-7 cells stably expressing S100P. Online pathway analysis was performed to assess proteomic signatures in tamoxifen resistance. Survival analysis was done to evaluate clinical relevance of altered proteomic expressions. Results Quantitative proteomic analysis revealed a wide breadth of signaling events during transition to acquired tamoxifen resistance. A total of 629 proteins were found significantly changed with 364 up-regulated and 265 down-regulated. Collectively, these changes demonstrated the suppressed state of estrogen receptor (ER) and ER-regulated genes, activated survival signaling and increased migratory capacity of the resistant cell line. The protein S100P was found to play a critical role in conferring tamoxifen resistance and enhanced cell motility. Conclusions Our data demonstrate that the adaptive changes in the proteome of tamoxifen resistant breast cancer cells are characterized by down-regulated ER signaling, activation of alternative survival pathways, and enhanced cell motility through regulation of the actin cytoskeleton dynamics. Evidence also emerged that S100P mediates acquired tamoxifen resistance and migration capacity. PMID:22417809
Wen, Chunjie; Wu, Lanxiang; Fu, Lijuan; Zhang, Xue; Zhou, Honghao
2016-09-01
Berberine, an isoquinoline alkaloid, has been previously demonstrated to possess anti‑breast cancer properties. Tamoxifen is widely used in the prevention and treatment of estrogen receptor-positive breast cancer. Thus, the aim of the present study was to assess whether berberine enhanced the anticancer effect of tamoxifen, and the underlying mechanism involved in this combined effect in tamoxifen-sensitive (MCF-7) and tamoxifen-resistant (MCF-7/TAM) cells using MTS, flow cytometry and western blot assays. The results indicated that berberine demonstrated dose‑ and time‑dependent anti‑proliferative activity in MCF‑7 and MCF‑7/TAM cells. Furthermore, the combination of berberine and tamoxifen induced cell growth inhibition more effectively than tamoxifen alone. The present study also demonstrated that combinational treatment is more effective in inducing G1 phase arrest and activating apoptosis compared tamoxifen alone, which may be due to upregulation of P21 expression and downregulation of the B‑cell CLL/lymphoma 2(Bcl‑2)/Bcl‑2 associated X protein ratio. The results of the present study suggested that berberine may potentially be useful as an adjuvant agent in cancer chemotherapy to enhance the effect of tamoxifen, which will be useful for anti‑tumor therapy and further research.
Upregulation of survivin by leptin/STAT3 signaling in MCF-7 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang Haiping; Tianjin Medical University Cancer Hospital, Tianjin; Yu Jinming
2008-03-28
Leptin and its receptors are overexpressed in breast cancer tissues and correlate with poor prognosis. Survivin, a member of the inhibitor of apoptosis protein (IAP) gene family, is generally upregulated in tumor tissues and prevents tumor cells from apoptosis. Here we showed that leptin upregulated survivin mRNA and protein expression in MCF-7 breast cancer cells. Meanwhile, leptin suppressed docetaxel-induced apoptosis by inhibiting caspase activity. Knockdown of signal transducer and activator transcription 3 (STAT3) expression by small interfering RNA (siRNA) blocked leptin-induced upregulation of survivin. TransAM ELISA showed that leptin increased nuclear translocation of active STAT3. In addition, chromatin immunoprecipitation (ChIP)more » assay detected an enhanced binding of STAT3 to survivin promoter in MCF-7 cells after treatment by leptin. Further studies showed that leptin enhanced the transcriptional activity of survivin promoter. Collectively, our findings identify leptin/STAT3 signaling as a novel pathway for survivin expression in breast cancer cells.« less
NASA Astrophysics Data System (ADS)
Hou, Jue; Wright, Heather J.; Chan, Nicole; Tran, Richard; Razorenova, Olga V.; Potma, Eric O.; Tromberg, Bruce J.
2016-06-01
Two-photon excited fluorescence (TPEF) imaging of the cellular cofactors nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide is widely used to measure cellular metabolism, both in normal and pathological cells and tissues. When dual-wavelength excitation is used, ratiometric TPEF imaging of the intrinsic cofactor fluorescence provides a metabolic index of cells-the "optical redox ratio" (ORR). With increased interest in understanding and controlling cellular metabolism in cancer, there is a need to evaluate the performance of ORR in malignant cells. We compare TPEF metabolic imaging with seahorse flux analysis of cellular oxygen consumption in two different breast cancer cell lines (MCF-7 and MDA-MB-231). We monitor metabolic index in living cells under both normal culture conditions and, for MCF-7, in response to cell respiration inhibitors and uncouplers. We observe a significant correlation between the TPEF-derived ORR and the flux analyzer measurements (R=0.7901, p<0.001). Our results confirm that the ORR is a valid dynamic index of cell metabolism under a range of oxygen consumption conditions relevant for cancer imaging.
Sharma, K; Pachauri, S D; Khandelwal, K; Ahmad, H; Arya, A; Biala, P; Agrawal, S; Pandey, R R; Srivastava, A; Srivastav, A; Saxena, J K; Dwivedi, A K
2016-03-01
Morinda citrifolia L. (NONI) fruits have been used for thousands of years for the treatment of many health problems including cancer, cold, diabetes, flu, hypertension, and pain. Plant extracts have reported several therapeutic benefits, but extraction of individual compound from the extract often exhibits limited clinical utility as the synergistic effect of various natural ingredients gets lost. They generally constitute polyphenols and flavonoids. Studies have suggested that these phytochemicals, especially polyphenols, display high antioxidant properties, which help to reduce the risk of degenerative diseases, such as cancer and cardiovascular diseases. Several in-vitro and in-vivo studies have shown that Noni fruits have antioxidant, anti-inflammatory, anti-dementia, liver-protective, anticancer, analgesic, and immunomodulatory effects. Till date about 7 in vitro cancer studies have been done, but a detailed in vitro study including cell cycle and caspase activation assay on breast cancer cell line has not been done. In the present study different Noni fruit fractions have tested on cancer cell lines MCF-7, MDA-MB-231 (breast adenocarcinoma) and one non-cancer cell line HEK-293 (Human embryonic kidney). Out of which ethylacetate extract showed a higher order of in vitro anticancer activity profile. The ethylacetate extract strongly inhibited the proliferation of MCF-7, MDA-MB-231 and HEK-293 cell lines with IC50 values of 25, 35, 60 µg/ml respectively. The extract showed increase in apoptotic cells in MCF-7 and MDA-MB-231 cells and arrested the cell cycle in the G1/S phase in MCF-7 and G0/G1 phase in MDA-MB-231 cells. Noni extract also decreases the intracellular ROS generation and mitochondrial membrane potential. © Georg Thieme Verlag KG Stuttgart · New York.
Detry, C; Lamour, V; Castronovo, V; Bellahcène, A
2008-02-01
Bone sialoprotein (BSP) expression is detected in a variety of human osteotropic cancers. High expression of BSP in breast and prostate primary carcinomas is associated with progression and bone metastases development. In this study, we examined the transcriptional regulation of BSP gene expression in MDA-MB-231 and MCF-7 human breast cancer cells compared with Saos-2 human osteoblast-like cells. BSP human promoter deletion analyses delineated a -56/-84 region, which comprises a cAMP response element (CRE) that was sufficient for maximal promoter activity in breast cancer cell lines. We found that the basic fibroblast growth factor response element (FRE) also located in the proximal promoter was a crucial regulator of human BSP promoter activity in Saos-2 but not in breast cancer cells. Promoter activity experiments in combination with DNA mobility shift assays demonstrated that BSP promoter activity is under the control of the CRE element, through CREB-1, JunD and Fra-2 binding, in MDA-MB-231, MCF-7 and in Saos-2 cells. Forskolin, a protein kinase A pathway activator, failed to enhance BSP transcriptional activity suggesting that CRE site behaves as a constitutive rather than an inducible element in these cell lines. Over-expression of JunD and Fra-2 increased BSP promoter activity and upregulated endogenous BSP protein expression in MCF-7 and Saos-2 cells while siRNA-mediated inhibition of both factors expression significantly reduced BSP protein level in MDA-MB-231. Collectively, these data provide with new transcriptional mechanisms, implicating CREB and AP-1 factors, that control BSP gene expression in breast cancer cells.
Antony, Marie L; Lee, Joomin; Hahm, Eun-Ryeong; Kim, Su-Hyeong; Marcus, Adam I; Kumari, Vandana; Ji, Xinhua; Yang, Zhen; Vowell, Courtney L; Wipf, Peter; Uechi, Guy T; Yates, Nathan A; Romero, Guillermo; Sarkar, Saumendra N; Singh, Shivendra V
2014-01-17
Withaferin A (WA), a C5,C6-epoxy steroidal lactone derived from a medicinal plant (Withania somnifera), inhibits growth of human breast cancer cells in vitro and in vivo and prevents mammary cancer development in a transgenic mouse model. However, the mechanisms underlying the anticancer effect of WA are not fully understood. Herein, we report that tubulin is a novel target of WA-mediated growth arrest in human breast cancer cells. The G2 and mitotic arrest resulting from WA exposure in MCF-7, SUM159, and SK-BR-3 cells was associated with a marked decrease in protein levels of β-tubulin. These effects were not observed with the naturally occurring C6,C7-epoxy analogs of WA (withanone and withanolide A). A non-tumorigenic normal mammary epithelial cell line (MCF-10A) was markedly more resistant to mitotic arrest by WA compared with breast cancer cells. Vehicle-treated control cells exhibited a normal bipolar spindle with chromosomes aligned along the metaphase plate. In contrast, WA treatment led to a severe disruption of normal spindle morphology. NMR analyses revealed that the A-ring enone in WA, but not in withanone or withanolide A, was highly reactive with cysteamine and rapidly succumbed to irreversible nucleophilic addition. Mass spectrometry demonstrated direct covalent binding of WA to Cys(303) of β-tubulin in MCF-7 cells. Molecular docking indicated that the WA-binding pocket is located on the surface of β-tubulin and characterized by a hydrophobic floor, a hydrophobic wall, and a charge-balanced hydrophilic entrance. These results provide novel insights into the mechanism of growth arrest by WA in breast cancer cells.
Biodegradable polymer based theranostic agents for photoacoustic imaging and cancer therapy
NASA Astrophysics Data System (ADS)
Wang, Yan J.; Strohm, Eric M.; Kolios, Michael C.
2016-03-01
In this study, multifunctional theranostic agents for photoacoustic (PA), ultrasound (US), fluorescent imaging, and for therapeutic drug delivery were developed and tested. These agents consisted of a shell made from a biodegradable Poly(lactide-co-glycolic acid) (PLGA) polymer, loaded with perfluorohexane (PFH) liquid and gold nanoparticles (GNPs) in the core, and lipophilic carbocyanines fluorescent dye DiD and therapeutic drug Paclitaxel (PAC) in the shell. Their multifunctional capacity was investigated in an in vitro study. The PLGA/PFH/DiD-GNPs particles were synthesized by a double emulsion technique. The average PLGA particle diameter was 560 nm, with 50 nm diameter silica-coated gold nano-spheres in the shell. MCF7 human breast cancer cells were incubated with PLGA/PFH/DiDGNPs for 24 hours. Fluorescent and PA images were recorded using a fluorescent/PA microscope using a 1000 MHz transducer and a 532 nm pulsed laser. For the particle vaporization and drug delivery test, MCF7 cells were incubated with the PLGA/PFH-GNPs-PAC or PLGA/PFH-GNPs particles for 6, 12 and 24 hours. The effects of particle vaporization and drug delivery inside the cells were examined by irradiating the cells with a laser fluence of 100 mJ/cm2, and cell viability quantified using the MTT assay. The PA images of MCF7 cells containing PLGA/PFH/DiD-GNPs were spatially coincident with the fluorescent images, and confirmed particle uptake. After exposure to the PLGA/PFHGNP- PAC for 6, 12 and 24 hours, the cell survival rate was 43%, 38%, and 36% respectively compared with the control group, confirming drug delivery and release inside the cells. Upon vaporization, cell viability decreased to 20%. The particles show potential as imaging agents and drug delivery vehicles.
Wang, Yuan; Liu, Junli; Jiang, Qingyuan; Deng, Jie; Xu, Fen; Chen, Xiaolei; Cheng, Fuyi; Zhang, Yujing; Yao, Yunqi; Xia, Zhemin; Xu, Xia; Su, Xiaolan; Huang, Meijuan; Dai, Lei; Yang, Yang; Zhang, Shuang; Yu, Dechao; Zhao, Robert Chunhua; Wei, Yuquan; Deng, Hongxin
2017-09-01
Autologous adipose tissue or adipose tissue with additive adipose-derived mesenchymal stem cells (ADSCs) is used in the breast reconstruction of breast cancer patients who undergo mastectomy. ADSCs play an important role in the angiogenesis and adipogenesis, which make it much better than other materials. However, ADSCs may promote residual tumor cells to proliferate or metastasize, and the mechanism is still not fully understood. In this study, we demonstrated that human ADSCs (hADSCs) could facilitate tumor cells growth after co-injection with MCF7 and ZR-75-30 breast cancer cells (BCCs) by promoting angiogenesis, but hADSCs showed limited effect on the growth of MDA-MB-231 BCCs. Intriguingly, compared with ZR-75-30 tumor cells, MCF7 tumor cells were more potentially promoted by hADSCs in the aspects of angiogenesis and proliferation. Consistent with this, cytokine and angiogenesis array analyses showed that after co-injection with hADSCs, the CXCL1 and CXCL8 concentration were significantly increased in MCF7 tumor, but only moderately increased in ZR-75-30 tumor and did not increase in MDA-MB-231 tumor. Furthermore, we found that CXCL1/8 were mainly derived from hADSCs and could increase the migration and tube formation of human umbilical vein endothelial cells (HUVECs) by signaling via their receptors CXCR1 and CXCR2. A CXCR1/2-specific antagonist (SCH527123) attenuated the angiogenesis and tumor growth in vivo. Our findings suggest that CXCL1/8 secreted by hADSCs could promote breast cancer angiogenesis and therefore provide better understanding of safety concerns regarding the clinical application of hADSCs and suggestion in further novel therapeutic options. Stem Cells 2017;35:2060-2070. © 2017 AlphaMed Press.
Chen, Jian; Zhang, Xing; Wang, Yong; Ye, Yu; Huang, Zhaoquan
2016-03-01
Formononetin is an O-methylated isoflavone that is isolated from the root of Astragalus membranaceus, and it has antitumorigenic effects. Our previous studies found that formononetin triggered growth-inhibitory and apoptotic activities in MCF-7 breast cancer cells. To further investigate the potential effect of formononetin in promoting cell proliferation in estrogen receptor (ER)-positive cells, we used in vivo and in vitro studies to elucidate the possible mechanism. ERα-positive cells (HUVEC, MCF-7) were treated with formononetin. The CCK8 assay, Hoechst 33258, and flow cytometry were used to assess cell proliferation and apoptosis. mRNA levels of ERα, Bcl-2, and miR-375 were quantified using real-time polymerase chain reaction. ERα, p-Akt, and Bcl-2 expression was determined using Western blot. Compared with the control, low formononetin concentrations (2-6 μM) stimulated ERα-positive cell proliferation (HUVEC, MCF-7). The more sensitive HUVEC cells were used to study the relevant signaling pathway. After treatment with formononetin, ERα, miR-375, p-Akt, and Bcl-2 expression was significantly upregulated. The proliferative effect of formononetin was also blocked by a miR-375 inhibitor or raloxifene pretreatment. Additionally, in the in vivo studies, uterine weight in ovariectomized mice treated with formononetin increased significantly, but the weight dramatically decreased with raloxifene or miR-375 inhibitor pretreatment before formononetin. This study demonstrated that formononetin promoted ERα-positive cell proliferation through miR-375 activation and this mechanism is possibly involving in a miR-375 and ERα feedback loop. © 2015 Wiley Periodicals, Inc.
Lin, Yu-Shih; Lin, Yin-Yin; Yang, Yao-Hsu; Lin, Chun-Liang; Kuan, Feng-Che; Lu, Cheng-Nan; Chang, Geng-He; Tsai, Ming-Shao; Hsu, Cheng-Ming; Yeh, Reming-Albert; Yang, Pei-Rung; Lee, I-Yun; Shu, Li-Hsin; Cheng, Yu-Ching; Liu, Hung-Te; Lee, Kuan-Der; Chang, De-Ching; Wu, Ching-Yuan
2018-05-09
Breast cancer is the most common cancer in women and affects 1.38 million women worldwide per year. Antiestrogens such as tamoxifen, a selective estrogen receptor (ER) modulator, are widely used in clinics to treat ER-positive breast tumors. However, remissions of breast cancer are often followed by resistance to tamoxifen and disease relapse. Despite the increasing understanding of the resistance mechanisms, effective regimens for treating tamoxifen-resistant breast cancer are limited. Antrodia cinnamomea is a traditional medicinal mushroom native only to Taiwan. In this study, we aimed to examine in vitro effect of antrodia cinnamomea in the tamoxifen-resistant cancer. Antrodia cinnamomea was studied for its biological activity against proliferation of tamoxifen-resistant breast cancer by XTT assay. Next, the underlying mechanism was studied by flow cytometry, qPCR and Western's blotting assay. Our results revealed that the ethanol extract of antrodia cinnamomea (AC) can inhibit the growth of breast cancer cells, including MCF-7 cell and tamoxifen-resistant MCF-7 cell lines. Combination treatment with AC and 10 - 6 M tamoxifen have the better inhibitory effect on the proliferation of tamoxifen-resistant MCF-7 cells than only AC did. AC can induce apoptosis in these breast cancer cells. Moreover, it can suppress the mRNA expression of skp2 (S-phase kinase-associated protein 2) by increasing the expressions of miR-21-5p, miR-26-5p, and miR-30-5p in MCF-7 and tamoxifen-resistant MCF-7 cells. These results suggest that the ethanol extract of antrodia cinnamomea could be a novel anticancer agent in the armamentarium of tamoxifen-resistant breast cancer management. Moreover, we hope to identify additional pure compounds that could serve as promising anti-breast cancer candidates for further clinical trials.
Chen, Ying-Jung; Lin, Ku-Nan; Jhang, Li-Mei; Huang, Chia-Hui; Lee, Yuan-Chin; Chang, Long-Sen
2016-05-25
Several studies have revealed that natural compounds are valuable resources to develop novel agents against dysregulation of the EGF/EGFR-mediated matrix metalloproteinase-9 (MMP-9) expression in cancer cells. In view of the findings that EGF/EGFR-mediated MMP-9 expression is closely related to invasion and metastasis of breast cancer. To determine the beneficial effects of gallic acid on the suppression of breast cancer metastasis, we explored the effect of gallic acid on MMP-9 expression in EGF-treated MCF-7 breast cancer cells. Treatment with EGF up-regulated MMP-9 mRNA and protein levels in MCF-7 cells. EGF treatment induced phosphorylation of EGFR and elicited Src activation, subsequently promoting Akt/NFκB (p65) and ERK/c-Jun phosphorylation in MCF-7 cells. Activation of Akt/p65 and ERK/c-Jun was responsible for the MMP-9 up-regulation in EGF-treated cells. Gallic acid repressed the EGF-induced activation of EGFR and Src; furthermore, inactivation of Akt/p65 and ERK/c-Jun was a result of the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. Over-expression of constitutively active Akt and MEK1 or over-expression of constitutively active Src eradicated the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. A chromosome conformation capture assay showed that EGF induced a chromosomal loop formation in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun activation. Treatment with gallic acid, EGFR inhibitor, or Src inhibitor reduced DNA looping. Taken together, our data suggest that gallic acid inhibits the activation of EGFR/Src-mediated Akt and ERK, leading to reduced levels of p65/c-Jun-mediated DNA looping and thus inhibiting MMP-9 expression in EGF-treated MCF-7 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Asati, Vivek; Bharti, Sanjay Kumar
2018-02-01
A series of novel thiazolidine-2,4-dione derivatives 4a-x have been designed, synthesized and evaluated for potential anti-cancer activity. The anti-cancer activity of synthesized compounds 4a-x were evaluated against selected human cancer cell line of breast (MCF-7) using sulforhodamine B (SRB) method. Among the synthesized compounds, 4x having 2-cyano phenyl group showed significant cytotoxic activity which is comparable to that of adriamycin as standard anti-cancer drug. The SAR study revealed that the substituted phenyl group on oxadiazole ring attached to thiazolidine-2,4-dione moiety showed significant growth inhibitory activity against MCF-7 cell line. The result of molecular modeling studies showed that compounds 4f, 4o and 4x having similar structural alignment as crystal ligand of protein.
Luo, Zhiyong; Hu, Xiaopeng; Xiong, Hua; Qiu, Hong; Yuan, Xianglin; Zhu, Feng; Wang, Yihua; Zou, Yanmei
2016-10-20
In this study, one homogeneous polysaccharide (SP1), with a molecular weight of 56kDa, was isolated from the Huaier fruiting bodies. It had a backbone consisting of 1,4-linked-β-d-Galp and 1,3,6-linked-β-d-Galp residues, which was terminated with 1-linked-α-d-Glcp and 1-linked-α-l-Araf terminal at O-3 position of 1,3,6-linked-β-d-Galp unit along the main chain in the ratio of 1.1:2.0:1.1:1.1. MTT assay showed that shMTDH or SP1 (100, 200 and 400μg/ml) was able to suppress the proliferation of MCF-7 cells, due to a significant increase in the number of apoptotic cells as determined by flow cytometric analysis. Furthermore, Western blot analysis revealed that SP1 or shMTDH treatment led to a rise of ratio between proapoptotic Bax and antiapoptotic Bcl-2 protein in MCF-7 cells. In addition, carcinogene MTDH protein expression in MCF-7 cells received SP1 (100, 200 and 400μg/mL) or shMTDH treatment was also repressed after 48h incubation. Taken together, these findings indicated that SP1 has anticancer potential in the treatment of human breast cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ali, M Ajmal; Farah, M Abul; Al-Hemaid, Fahad M; Abou-Tarboush, Faisal M; Al-Anazi, Khaled M; Wabaidur, S M; Alothman, Z A; Lee, Joongku
2016-03-01
Natural products from wild and medicinal plants, either in the form of crude extracts or pure compounds provide unlimited opportunities for new drug leads owing to the unmatched availability of chemical diversity. In the present study, the cytotoxic potential of crude ethanolic extract of Ochradenus arabicus was analyzed by MTT cell viability assay in MCF-7 adenocarcinoma breast cancer cells. We further investigated its effect against oxidative stress induced by anticancer drug doxorubicin. In addition, Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) based chromatographic profiling of crude extract of O. arabicus was performed. The MTT assay data showed that the extract is moderately toxic to the MCF-7 cells. However, its treatment alone does not induce oxidative stress while doxorubicin increases the level of oxidative stress in MCF-7 cells. Whereas, simultaneous treatment of plant extract and doxorubicin significantly (p < 0.05) decreased the level of intracellular reactive oxygen species (ROS) and lipid peroxidation while an increase in the reduced glutathione and superoxide dismutase activity was observed in time and dose dependent manner. Hence, our finding confirmed cytotoxic and antioxidant potential of crude extract of O. arabicus in MCF-7 cells. However, further investigations on O. arabicus as a potential chemotherapeutic agent are needed. The analysis of bioactive compounds present in the plant extracts involving the applications of common phytochemical screening assays such as chromatographic techniques is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Němcová-Fürstová, Vlasta, E-mail: vlasta.furstova@
Development of taxane resistance has become clinically very important issue. The molecular mechanisms underlying the resistance are still unclear. To address this issue, we established paclitaxel-resistant sublines of the SK-BR-3 and MCF-7 breast cancer cell lines that are capable of long-term proliferation in 100 nM and 300 nM paclitaxel, respectively. Application of these concentrations leads to cell death in the original counterpart cells. Both sublines are cross-resistant to doxorubicin, indicating the presence of the MDR phenotype. Interestingly, resistance in both paclitaxel-resistant sublines is circumvented by the second-generation taxane SB-T-1216. Moreover, we demonstrated that it was not possible to establish sublinesmore » of SK-BR-3 and MCF-7 cells resistant to this taxane. It means that at least the tested breast cancer cells are unable to develop resistance to some taxanes. Employing mRNA expression profiling of all known human ABC transporters and subsequent Western blot analysis of the expression of selected transporters, we demonstrated that only the ABCB1/PgP and ABCC3/MRP3 proteins were up-regulated in both paclitaxel-resistant sublines. We found up-regulation of ABCG2/BCRP and ABCC4 proteins only in paclitaxel-resistant SK-BR-3 cells. In paclitaxel-resistant MCF-7 cells, ABCB4/MDR3 and ABCC2/MRP2 proteins were up-regulated. Silencing of ABCB1 expression using specific siRNA increased significantly, but did not completely restore full sensitivity to both paclitaxel and doxorubicin. Thus we showed a key, but not exclusive, role for ABCB1 in mechanisms of paclitaxel resistance. It suggests the involvement of multiple mechanisms in paclitaxel resistance in tested breast cancer cells. - Highlights: • Expression of all ABC transporters in paclitaxel-resistant sublines of SK-BR-3 and MCF-7 cells was analyzed. • SK-BR-3 and MCF-7 cells are unable to develop resistance to some taxanes. • Some taxanes are able to overcome developed resistance to paclitaxel. • Paclitaxel resistance was associated with increased levels of ABCB1 and ABCC3 protein. • ABCB1 silencing increased significantly sensitivity to both paclitaxel and doxorubicin.« less
Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yu; Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4; Cheng, Jung-Chien
2013-11-01
Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited.more » In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.« less
JEDINAK, ANDREJ; SLIVA, DANIEL
2009-01-01
In spite of the global consumption of mushrooms, only two epidemiological studies demonstrated an inverse correlation between mushroom intake and the risk of cancer. Therefore, in the present study we evaluated whether extracts from edible mushrooms Agaricus bisporus (portabella), Flammulina velutipes (enoki), Lentinula edodes (shiitake) and Pleurotus ostreatus (oyster) affect the growth of breast and colon cancer cells. Here, we identified as the most potent, P. ostreatus (oyster mushroom) which suppressed proliferation of breast cancer (MCF-7, MDA-MB-231) and colon cancer (HT-29, HCT-116) cells, without affecting proliferation of epithelial mammary MCF-10A and normal colon FHC cells. Flow cytometry revealed that the inhibition of cell proliferation by P. ostreatus was associated with the cell cycle arrest at G0/G1 phase in MCF-7 and HT-29 cells. Moreover, P. ostreatus induced the expression of the tumor suppressor p53 and cyclin-dependent kinase inhibitor p21(CIP1/WAF1), whereas inhibited the phosphorylation of retinoblastoma Rb protein in MCF-7 cells. In addition, P. ostreatus also up-regulated expression of p21 and inhibited Rb phosphorylation in HT-29 cells, suggesting that that P. ostreatus suppresses the proliferation of breast and colon cancer cells via p53-dependent as well as p53-independent pathway. In conclusion, our results indicated that the edible oyster mushroom has potential therapeutic/preventive effects on breast and colon cancer. PMID:19020765
Hussain, Arif; Mohsin, Javeria; Prabhu, Sathyen Alwin; Begum, Salema; Nusri, Qurrat El-Ain; Harish, Geetganga; Javed, Elham; Khan, Munawwar Ali; Sharma, Chhavi
2013-01-01
Phytochemicals are among the natural chemopreventive agents with most potential for delaying, blocking or reversing the initiation and promotional events of carcinogenesis. They therefore offer cancer treatment strategies to reduce cancer related death. One such promising chemopreventive agent which has attracted considerable attention is sulforaphane (SFN), which exhibits anti-cancer, anti-diabetic, and anti-microbial properties. The present study was undertaken to assess effect of SFN alone and in combination with a chemotherapeutic agent, gemcitabine, on the proliferative potential of MCF-7 cells by cell viability assay and authenticated the results by nuclear morphological examination. Further we analyzed the modulation of expression of Bcl-2 and COX-2 on treatment of these cells with SFN by RT-PCR. SFN showed cytotoxic effects on MCF-7 cells in a dose- and time-dependent manner via an apoptotic mode of cell death. In addition, a combinational treatment of SFN and gemcitabine on MCF-7 cells resulted in growth inhibition in a synergistic manner with a combination index (CI) <1. Notably, SFN was found to significantly downregulate the expression of Bcl-2, an anti-apoptotic gene, and COX-2, a gene involved in inflammation, in a time-dependent manner. These results indicate that SFN induces apoptosis and anti-inflammatory effects on MCF-7 cells via downregulation of Bcl-2 and COX-2 respectively. The combination of SFN and gemcitabine may potentiate the efficacy of gemcitabine and minimize the toxicity to normal cells. Taken together, SFN may be a potent anti-cancer agent for breast cancer treatment.
Khoshgard, Karim; Kiani, Parvaneh; Haghparast, Abbas; Hosseinzadeh, Leila; Eivazi, Mohammad Taghi
2017-08-01
The aim of radiotherapy is to deliver lethal damage to cancerous tissue while preserving adjacent normal tissues. Radiation absorbed dose of the tumoral cells can increase when high atomic nanoparticles are present in them during irradiation. Also, the dose rate is an important aspect in radiation effects that determines the biological results of a given dose. This in vitro study investigated the dose-rate effect on the induced radiosensitivity by dextran-coated iron oxide in cancer cells. HeLa and MCF-7 cells were cultured in vitro and incubated with different concentrations of dextran-coated iron oxide nanoparticles. They were then irradiated with 6 MV photons at dose rates of 43, 185 and 370 cGy/min. The MTT test was used to obtain the cells' survival after 48 h of irradiations. Incubating the cells with the nanoparticles at concentrations of 10, 40 and 80 μg/ml showed no significant cytotoxicity effect. Dextran-coated iron oxide nanoparticles showed more radiosensitivity effect by increasing the dose rate and nanoparticles concentration. Radiosensitization enhancement factors of MCF-7 and HeLa cells at a dose-rate of 370 cGy/min and nanoparticles' concentration of 80 μg/ml were 1.21 ± 0.06 and 1.19 ± 0.04, respectively. Increasing the dose rate of 6 MV photons irradiation in MCF-7 and HeLa cells increases the radiosensitization induced by the dextran-coated iron nanoparticles in these cells.
Lipid-Polymer Nanoparticles for Folate-Receptor Targeting Delivery of Doxorubicin.
Zheng, Mingbin; Gong, Ping; Zheng, Cuifang; Zhao, Pengfei; Luo, Zhenyu; Ma, Yifan; Cai, Lintao
2015-07-01
A biocompatible PLGA-lipid hybrid nanoparticles (NPs) was developed for targeted delivery of anticancer drugs with doxorubicin (DOX). The hydrodynamic diameter and zeta potential of DOX-loaded PLGA-lipid NPs (DNPs) were affected by the mass ratio of Lipid/PLGA or DSPE-PEG-COOH/Lecithin. At the 1:20 drug/polymer mass ratio, the mean hydrodynamic diameter of DNPs was the lowest (99.2 1.83 nm) and the NPs presented the encapsulation efficiency of DOX with 42.69 1.30%. Due to the folate-receptor mediated endocytosis, the PLGA-lipid NPs with folic acid (FA) targeting ligand showed significant higher uptake by folate-receptor-positive MCF-7 cells as compared to PLGA-lipid NPs without folate. Confocal microscopic observation and flow cytometry analysis also supported the enhanced cellular uptake of the FA-targeted NPs. The results indicated that the FA-targeted DNPs exhibited higher cytotoxicity in MCF-7 cells compared with non-targeted NPs. The lipid-polymer nanoparticles provide a solution of biocompatible nanocarrier for cancer targeting therapy.
MUC-1 aptamer-conjugated dye-doped silica nanoparticles for MCF-7 cells detection.
Cai, Li; Chen, Ze-Zhong; Chen, Min-Yan; Tang, Hong-Wu; Pang, Dai-Wen
2013-01-01
In this work, we have prepared three types of aptamer-conjugated Rubpy-doped silica nanoparticles for Human breast carcinoma MCF-7 cells labeling. Probe A is prepared through covalent conjugation between amine-labeled MUC-1 aptamer and carboxyl-modified Rubpy-doped NPs (NPs-aptamer). Probe B is prepared based on the interaction between biotin-labeled MUC-1 aptamer and avidin-conjugated Rubpy-doped NPs (NPs-avidin-biotin-aptamer). For Probe C, there is a PEG with flexible long chain as the bridge between avidin and the NPs (NPs-PEG-avidin-biotin-aptamer). In addition, we further investigate the practical number of MUC-1 aptamers on an NP of each probe using hoechst33258 dye. The binding efficiency of MUC-1 aptamer on the three types of probes as follows: Probe A < Probe B < Probe C. In addition, microscopic fluorescence imaging shows that Probe C containing the PEG molecules can be effectively applied for the recognition of MUC-1 protein in human breast carcinoma MCF-7 cells thus demonstrates that the PEG with flexible long chain as the bridge between the aptamer and NP can greatly enhances the freedom of MUC-1 aptamer. Compared with common organic dyes, the dye-doped silica nanoparticles serve as a stable bioprobe because of their facile conjugation with the desirable biomolecules, and have exhibited great potential in bioanalysis. Copyright © 2012 Elsevier Ltd. All rights reserved.
Self-Assembling RADA16-I Peptide Hydrogel Scaffold Loaded with Tamoxifen for Breast Reconstruction
Wu, Huimin; Zhou, Ting; Tian, Lin; Xia, Zhengchao
2017-01-01
More and more breast cancer patients prefer autologous fat tissue transfer following lumpectomy to maintain perfect female characteristics. However, the outcome was not satisfactory due to the transplanted fat absorption. In this study, we prepared two RADA16-I peptide scaffolds with and without tamoxifen. Both scaffolds were transparent, porous, and hemisphere-shaped. The hADSCs isolated from liposuction were attached to the scaffold. The growth inhibition of the hADSCs induced by TAM in 2-demensional (2D) culture was higher than that in TAM-loaded hydrogel scaffold 3D culture (P < 0.05); however, the same outcomes were not observed in MCF-7 cells. Correspondingly, the apoptosis of the hADSCs induced by TAM was significantly increased in 2D culture compared to that in scaffold 3D culture (P < 0.05). Yet the outcomes of the aoptosis in MCF-7 were contrary. Apoptosis-related protein Bcl-2 was involved in the process. In vivo experiments showed that both scaffolds formed a round mass after subcutaneous implantation and it retained its shape after being pressed slightly. The implantation had no effect on the weight and activity of the animals. The results suggested that TAM-loaded RADA16-I hydrogel scaffolds both provide support for hADSCs cells attachment/proliferation and retain cytotoxic effect on MCF-7 cells, which might be a promising therapeutic breast tissue following lumpectomy. PMID:28691024
Shaban, N Z; Hegazy, W A; Abdel-Rahman, S M; Awed, O M; Khalil, S A
2016-08-29
Aromatase inhibitors (AIs) provide novel approaches to the adjuvant therapy for postmenopausal women with estrogen-receptor-positive (ER+) breast cancers. In this study, different plant extracts from Olea europaea leaves (OLE), Sonchus oleraceus L. (SOE) and Mangifera indica peels (MPE) were prepared to identify phytoconstituents and measure antioxidant capacities. The effects of these three extracts on aromatase activity in human placental microsomes were evaluated. Additionally, the effects of these extracts on tissue-specific promoter expression of CYP19A1 gene in cell culture model (MCF-7) were assessed using qRT-PCR. Results showed a concentration-dependent decrease in aromatase activity after treatment with OLE and MPE, whereas, SOE showed a biphasic effect. The differential effects of OLE, SOE and MPE on aromatase expression showed that OLE seems to be the most potent suppressor followed by SOE and then MPE. These findings indicate that OLE has effective inhibitory action on aromatase at both the enzymatic and expression levels, in addition to its cytotoxic effect against MCF-7 cells. Also, MPE may be has the potential to be used as a tissue-specific aromatase inhibitor (selective aromatase inhibitor) and it may be promising to develop a new therapeutic agent against ER+ breast cancer.
NASA Astrophysics Data System (ADS)
Gao, Fuping; Yan, Zixing; Zhou, Jing; Cai, Yuanyuan; Tang, Jintian
2012-10-01
There is significant interest in recent years in developing magnetic nanoparticles (MNPs) having multifunctional characteristics with complimentary roles. In this study, methotrexate (MTX) was conjugated on the iron oxide magnetic nanoparticles surface via a poly(ethyleneimine) self-assembled monolayer (MTX-MNPs). The novel platform combined cancer chemotherapy, hyperthermia and potential monitoring of the progression of disease through magnetic resonance imaging (MRI). The conjugation of MTX on the magnetite surface was confirmed by Fourier transform infrared spectroscopy and change of zeta potential. Transmission electron microscope (TEM) showed that MTX-MNPs were morphologically spherical. The average diameter of MTX-MNPs was 30.1 ± 5.2 nm determined by dynamic light scattering. Magnetic measurements revealed that the saturation magnetization of MTX-MNPs reached 68.8 emu/g and the nanoparticles were superparamagnetic. The MTX-MNPs had good heating properties in an alternating magnetic field. TEM results showed that a larger number of MTX-MNPs were internalized into the MCF-7 cellular cytoplasm compared with the MNPs. The MTX-MNPs demonstrated highly synergistic antiproliferative effects of simultaneous chemotherapy and hyperthermia in MCF-7 breast cancer cells. A significant negative contrast enhancement was observed with magnetic resonance phantom imaging for MCF-7 cells over L929cells, when both were cultured with the nanoconjugate. The MTX-MNPs with combined characteristics of thermochemotherapy and MRI could be of high clinical significance in the treatment of tumor.
Dejeans, Nicolas; Tajeddine, Nicolas; Beck, Raphaël; Verrax, Julien; Taper, Henryk; Gailly, Philippe; Calderon, Pedro Buc
2010-05-01
Increase in cytosolic calcium concentration ([Ca2+](c)), release of endoplasmic reticulum (ER) calcium ([Ca2+](er)) and ER stress have been proposed to be involved in oxidative toxicity. Nevertheless, their relative involvements in the processes leading to cell death are not well defined. In this study, we investigated whether oxidative stress generated during ascorbate-driven menadione redox cycling (Asc/Men) could trigger these three events, and, if so, whether they contributed to Asc/Men cytoxicity in MCF-7 cells. Using microspectrofluorimetry, we demonstrated that Asc/Men-generated oxidative stress was associated with a slow and moderate increase in [Ca2+](c), largely preceding permeation of propidium iodide, and thus cell death. Asc/Men treatment was shown to partially deplete ER calcium stores after 90 min (decrease by 45% compared to control). This event was associated with ER stress activation, as shown by analysis of eIF2 phosphorylation and expression of the molecular chaperone GRP94. Thapsigargin (TG) was then used to study the effect of complete [Ca2+](er) emptying during the oxidative stress generated by Asc/Men. Surprisingly, the combination of TG and Asc/Men increased ER stress to a level considerably higher than that observed for either treatment alone, suggesting that [Ca2+](er) release alone is not sufficient to explain ER stress activation during oxidative stress. Finally, TG-mediated [Ca2+](er) release largely potentiated ER stress, DNA fragmentation and cell death caused by Asc/Men, supporting a role of ER stress in the process of Asc/Men cytotoxicity. Taken together, our results highlight the involvement of ER stress and [Ca2+](er) decrease in the process of oxidative stress-induced cell death in MCF-7 cells. 2009 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoong, Sia Lee; Lau, Wei Liang; Liu, Ang Yu; Prendergast, D'arcy; Ho, Han Kiat; Yu, Victor Chun Kong; Lee, Chengkuo; Ang, Wee Han; Pastorin, Giorgia
2015-08-01
Type II hexokinase (HKII) has emerged as a viable therapeutic target due to its involvement in metabolic reprogramming and also apoptosis prevention. The peptide derived from the fifteen amino acid sequence in the HKII N-terminal region [HKII(pep)] can compete with endogenous proteins for binding on mitochondria and trigger apoptosis. However, this peptide is not cell-permeable. In this study, multi-walled carbon nanotubes (MWCNTs) were used to effectively deliver HKII(pep) across cellular barriers without compromising their bioactivity. The peptide was conjugated on either oxidized MWCNTs or 2,2'-(ethylenedioxy)bis(ethylamine)-functionalized MWCNTs, yielding MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep), respectively. Both conjugates were shown to be internalized by breast cancer MCF-7 cells using confocal microscopy. Moreover, these nanoconjugates seemed to have escaped from endosomes and be in the vicinity of mitochondria. The WST-1 cytotoxicity assay conducted on MCF-7 and colon carcinoma HCT116 cells revealed that MWCNT-peptide conjugates were significantly more effective in curbing cancer cell growth compared to a commercially available cell permeable HKII fusion peptide. In addition, both nanoconjugates displayed an enhanced ability in eliciting apoptosis and depleting the ATP level in HCT116 cells compared to the mere HKII peptide. Importantly, hexokinase II release from mitochondria was demonstrated in MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep) treated cells, highlighting that the structure and bioactivity of HKII(pep) were not compromised after covalent conjugation to MWCNTs.Type II hexokinase (HKII) has emerged as a viable therapeutic target due to its involvement in metabolic reprogramming and also apoptosis prevention. The peptide derived from the fifteen amino acid sequence in the HKII N-terminal region [HKII(pep)] can compete with endogenous proteins for binding on mitochondria and trigger apoptosis. However, this peptide is not cell-permeable. In this study, multi-walled carbon nanotubes (MWCNTs) were used to effectively deliver HKII(pep) across cellular barriers without compromising their bioactivity. The peptide was conjugated on either oxidized MWCNTs or 2,2'-(ethylenedioxy)bis(ethylamine)-functionalized MWCNTs, yielding MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep), respectively. Both conjugates were shown to be internalized by breast cancer MCF-7 cells using confocal microscopy. Moreover, these nanoconjugates seemed to have escaped from endosomes and be in the vicinity of mitochondria. The WST-1 cytotoxicity assay conducted on MCF-7 and colon carcinoma HCT116 cells revealed that MWCNT-peptide conjugates were significantly more effective in curbing cancer cell growth compared to a commercially available cell permeable HKII fusion peptide. In addition, both nanoconjugates displayed an enhanced ability in eliciting apoptosis and depleting the ATP level in HCT116 cells compared to the mere HKII peptide. Importantly, hexokinase II release from mitochondria was demonstrated in MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep) treated cells, highlighting that the structure and bioactivity of HKII(pep) were not compromised after covalent conjugation to MWCNTs. Electronic supplementary information (ESI) available: Additional TEM images, UV-Vis scanning characterisation, WST-1 assay results, and immunoblotting of HKII in the total cell lysate. See DOI: 10.1039/c5nr00980d
Chakravarti, Bandana; Maurya, Ranjani; Siddiqui, Jawed Akhtar; Bid, Hemant Kumar; Rajendran, S M; Yadav, Prem P; Konwar, Rituraj
2012-06-26
Wrightia tomentosa Roem. & Schult. (Apocynaceae) is known in the traditional medicine for anti-cancer activity along with other broad indications like snake and scorpion bites, renal complications, menstrual disorders etc. However, the anti-cancer activity of this plant or its constituents has never been studied systematically in any cancer types so far. To evaluate the anti-cancer activities of the ethanolic extract of W. tomentosa and identified constituent active molecule(s) against breast cancer. Powdered leaves of W. tomentosa were extracted with ethanol. The ethanolic extract, subsequent hexane fractions and fraction F-4 of W. tomentosa were tested for its anti-proliferative and pro-apoptotic effects in breast cancer cells MCF-7 and MDA-MB-231. The ethanolic extract, subsequent hexane fractions and fraction F-4 of W. tomentosa inhibited the proliferation of human breast cancer cell lines, MCF-7 and MDA-MB-231. The fraction F-4 obtained from hexane fraction inhibited proliferation of MCF-7 and MDA-MB-231 cells in concentration and time dependent manner with IC₅₀ of 50 μg/ml and 30 μg/ml for 24 h, 28 μg/ml and 22 μg/ml for 48 h and 25 μg/ml and 20 μg/ml for 72 h respectively. The fraction F-4 induced G1 cell cycle arrest, reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential and subsequent apoptosis. Apoptosis is indicated in terms of increased Bax/Bcl-2 ratio, enhanced Annexin-V positivity, caspase 8 activation and DNA fragmentation. The active molecule isolated from fraction F-4, oleanolic acid and urosolic acid inhibited cell proliferation of MCF-7 and MDA-MB-231 cells at IC₅₀ value of 7.5 μM and 7.0 μM respectively, whereas there is devoid of significant cell inhibiting activity in non-cancer originated cells, HEK-293. In both MCF-7 and MDA-MB-231, oleanolic acid and urosolic acid induced cell cycle arrest and apoptosis as indicated by significant increase in Annexin-V positive apoptotic cell counts. Our results suggest that W. tomentosa extracts has significant anti-cancer activity against breast cancer cells due to induction of apoptosis pathway. Olenolic and urosolic acid are important constituent molecules in the extract responsible for anti-cancer activity of W. tomentosa.
2011-01-01
Background Gonadotrophin releasing hormone (GnRH) analogs lower estrogen levels in pre-menopausal breast cancer patients. GnRH receptor (GnRH-R) activation also directly inhibits the growth of certain cells. The applicability of GnRH anti-proliferation to breast cancer was therefore analyzed. Methods GnRH-R expression in 298 primary breast cancer samples was measured by quantitative immunofluorescence. Levels of functional GnRH-R in breast-derived cell lines were assessed using 125I-ligand binding and stimulation of 3H-inositol phosphate production. Elevated levels of GnRH-R were stably expressed in cells by transfection. Effects of receptor activation on in vitro cell growth were investigated in comparison with IGF-I and EGF receptor inhibition, and correlated with intracellular signaling using western blotting. Results GnRH-R immunoscoring was highest in hormone receptor (triple) negative and grade 3 breast tumors. However prior to transfection, functional endogenous GnRH-R were undetectable in four commonly studied breast cancer cell lines (MCF-7, ZR-75-1, T47D and MDA-MB-231). After transfection with GnRH-R, high levels of cell surface GnRH-R were detected in SVCT and MDA-MB-231 clones while low-moderate levels of GnRH-R occurred in MCF-7 clones and ZR-75-1 clones. MCF-7 sub-clones with high levels of GnRH-R were isolated following hygromycin phosphotransferase transfection. High level cell surface GnRH-R enabled induction of high levels of 3H-inositol phosphate and modest growth-inhibition in SVCT cells. In contrast, growth of MCF-7, ZR-75-1 or MDA-MB-231 clones was unaffected by GnRH-R activation. Cell growth was inhibited by IGF-I or EGF receptor inhibitors. IGF-I receptor inhibitor lowered levels of p-ERK1/2 in MCF-7 clones. Washout of IGF-I receptor inhibitor resulted in transient hyper-elevation of p-ERK1/2, but co-addition of GnRH-R agonist did not alter the dynamics of ERK1/2 re-phosphorylation. Conclusions Breast cancers exhibit a range of GnRH-R immunostaining, with higher levels of expression found in triple-negative and grade 3 cancers. However, functional cell surface receptors are rare in cultured cells. Intense GnRH-R signaling in transfected breast cancer cells did not markedly inhibit growth, in contrast to transfected HEK 293 cells indicating the importance of intracellular context. GnRH-R signaling could not counteract IGF-I receptor-tyrosine kinase addiction in MCF-7 cells. These results suggest that combinatorial strategies with growth factor inhibitors will be needed to enhance GnRH anti-proliferative effects in breast cancer PMID:22051164
Price, R Jordan; Lillycrop, Karen A; Burdge, Graham C
2016-01-01
The effect of folic acid (FA) on breast cancer (BC) risk is uncertain. We hypothesised that this uncertainty may be due, in part, to differential effects of FA between BC cells with different phenotypes. To test this we investigated the effect of treatment with FA concentrations within the range of unmetabolised FA reported in humans on the expression of the transcriptome of non-transformed (MCF10A) and cancerous (MCF7 and Hs578T) BC cells. The total number of transcripts altered was: MCF10A, seventy-five (seventy up-regulated); MCF7, twenty-four (fourteen up-regulated); and Hs578T, 328 (156 up-regulated). Only the cancer-associated gene TAGLN was altered by FA in all three cell lines. In MCF10A and Hs578T cells, FA treatment decreased pathways associated with apoptosis, cell death and senescence, but increased those associated with cell proliferation. The folate transporters SLC19A1, SLC46A1 and FOLR1 were differentially expressed between cell lines tested. However, the level of expression was not altered by FA treatment. These findings suggest that physiological concentrations of FA can induce cell type-specific changes in gene regulation in a manner that is consistent with proliferative phenotype. This has implications for understanding the role of FA in BC risk. In addition, these findings support the suggestion that differences in gene expression induced by FA may involve differential activities of folate transporters. Together these findings indicate the need for further studies of the effect of FA on BC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Q; Lum, JJ; Isabelle, M
Purpose: To use label-free Raman spectroscopy (RS) for early treatment monitoring of tumour cell radioresistance. Methods: Three human tumour cell lines, two radioresistant (H460, SF{sub 2} = 0.57 and MCF7, SF{sub 2} = 0.70) and one radiosensitive (LNCaP, SF{sub 2} = 0.36), were irradiated with single fractions of 2, 4, 6, 8 or 10 Gy. In additional experiments, H460 and MCF7 cells were irradiated under co-treatment with the anti-diabetic drug metformin, a known radiosensitizing agent. Treated and control cultures were analyzed with RS daily for 3 days post-treatment. Single-cell Raman spectra were acquired from 20 live cells per sample, andmore » experiments were repeated in triplicate. The combined data sets were analyzed with principal component analysis using standard algorithms. Cells from each culture were also subjected to standard assays for viability, proliferation, cell cycle, and radiation clonogenic survival. Results: The radioresistant cells (H460, MCF7) exhibited a RS molecular radiation response signature, detectable as early as 1 day post-treatment, of which radiation-induced glycogen synthesis is a significant contributor. The radiosensitive cells (LNCaP) exhibited negligible glycogen synthesis. Co-treatment with metformin in MCF7 cells blocked glycogen synthesis, reduced viability and proliferation, and increased radiosensitivity. Conversely, metformin co-treatment in H460 cells did not produce these same effects; importantly, both radiation-induced synthesis of glycogen and radiosensitivity were unaffected. Conclusions: Label-free RS can detect early glycogen synthesis post-irradiation, a previously undocumented metabolic mechanism associated with tumour cell radioresistance that can be targeted to increase radiosensitivity. RS monitoring of intratumoral glycogen may provide new opportunities for personalized combined modality radiotherapy treatments.« less