Science.gov

Sample records for mcmurdo ice shelf

  1. Seismic Stratigraphy Of The Ross Island Flexural Moat Under Western Mcmurdo-Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Horgan, H.; Naish, T.; Bannister, S.; Balfour, N.; Wilson, G.; Finnemore, F.

    2003-04-01

    Ross Island is a volcanic complex that began forming with the emplacement Mount Bird around 5 million years ago, though it has developed most significantly within the last 1 million years with the emplacement of the c. 4km high Mount Erebus. Throughout this time, loading of the lithosphere by this volcanic complex has warped the underlying crust into a subcircular submarine depression that has been accumulating sediment in series of flexural moat basins around the periphery of the island. Due to the depth of the floor of the depression (800-1000 m below sea level today), the sediment fill has largely escaped subsequent erosion by grounded ice of the McMurdo and Ross Ice Shelves (MRIS) and Ross Ice Sheet. Our interest is in the 1.5 km-thick sedimentary record that now lies beneath the deepest part of the depression and is covered by the MRIS. The sediments here have the potential to provide a continuous and high resolution (10^2-10^3 year) record back to 5 million years of the past behaviour of the MRIS and its influence on bottom water production in Ross Sea. The flexural moat basin-fill between the volcanic complexes of Ross and White Islands, which because of its remoteness is only now being investigated for the first time, is in a key location beneath the north western corner of the Ross Ice Shelf (RIS) where it flows into the McMurdo Ice Shelf (MIS). This site forms one of the 4 objectives of the ANDRILL Programme and is scheduled for drilling in 2005. Here we present new multi-channel seismic reflection data from over-ice shelf surveys conducted between 2001-2003, that elucidate the geometry and stratigraphy of the flexural-moat basin-fill and its relationship to the adjacent volcanics. We illustrate the proposed drill sites and make an initial prognosis of the sedimentary fill. The uppermost c. 500 m of the sedimentary succession is expected to be fine-grained muds with occasional glacigene sediment and layers of volcanic ash. Underlying strata may become

  2. Reconstructing Holocene conditions under the McMurdo Ice Shelf using Antarctic barnacle shells

    NASA Astrophysics Data System (ADS)

    Burgess, S. N.; Henderson, G. M.; Hall, B. L.

    2010-10-01

    This study evaluates the potential of barnacles for paleoceanographic reconstruction and, in particular, of the Antarctic species Bathylasma corolliforme to reconstruct past conditions under ice shelves. Like other barnacle species, this Antarctic barnacle secretes a robust low-Mg calcite shell with distinct growth increments on the external surface indicating growth over a number of years (30-50 in samples studied here). The Bathylasma samples used in this study grew in the Ross Sea and became entrained at the grounding line of a coastal ice shelf in McMurdo Sound, offering potential as an archive of changing conditions in this difficult to access environment under the McMurdo ice shelf. Nine barnacle shells were subsampled at high resolution (60 μm) for δ 18O and δ 13C analysis. These samples were dated with 14C and U-Th techniques, although the later did not yield useful age information due to open-system behaviour of barnacle calcite. Measured δ 18O values indicate that Bathylasma calcifies close to equilibrium with ambient seawater. One older sample (≈ 200 ka) has similar δ 18O and δ 13C values as the eight Holocene samples, suggesting that barnacle calcite is not prone to significant diagenesis in this setting. Apparent isotope equilibrium and lack of diagenesis make barnacles a promising archive for reconstruction of past ocean conditions. Cycles of δ 18O observed within each sample sometimes correlate with the external growth ridges, but not always, and have amplitudes of typically 0.6‰. This magnitude of variation suggests shell growth during a significant portion of the year, although it remains unclear whether growth continues throughout the year. However, the prominent growth bands suggest at least a signficant seasonal slowing in growth rate. Variations in barnacle δ 18O within each plate and between plates are too large to be caused by temperature, and instead reflect changes in δ 18O of the seawater, allowing some assessment of seawater

  3. Cenozoic basin evolution beneath the southern McMurdo Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Johnston, Lisa; Wilson, Gary S.; Gorman, Andrew R.; Henrys, Stuart A.; Horgan, Huw; Clark, Roger; Naish, Tim R.

    2008-05-01

    Fifty-two kilometres of multi-channel seismic reflection data were acquired from the southern McMurdo Ice Shelf (SMIS) during potential drill site investigations for the Antarctic Drilling (ANDRILL) program. The survey was acquired atop 110 to 220 m of floating ice and extended across ablation and accumulation zones of the ice shelf. Seismic processing was tailored to the ice shelf environment, including: datum static corrections to account for changes in the thickness and average velocity of the near-surface firn layer, and changes in the surface elevation across the survey area; residual static corrections to account for near-surface ice shelf irregularities; and two-step predictive deconvolution to suppress ice and firn layer multiples. A model for the ice shelf thickness was also incorporated in the interval velocity model during depth conversion to ensure that the ice shelf structure did not impose non-static shifts on the seismic section. The depth converted CMP stacked sections reveal several N to NE trending normal faults, that offset reflective horizons by up to 150 m within the lower part of the section and form a broad east-dipping, half-graben structure. The seafloor possesses trough and arch morphology in parallel with the half-graben structure. These features are interpreted as the southern extension of the Terror Rift. The rift succession comprises a dislocated (?)early-Miocene synrift package and a relatively undeformed (?)late-Miocene post-rift package separated by an erosional unconformity. The post-rift package infills and onlaps the rift topography, and drapes over the graben system, reaching a maximum thickness of 400 m. Throughout the post-rift phase, the basin was also influenced by Neogene volcanism, evidenced by three small volcanic features within the seismic profiles, and associated successions of inferred volcanic material. An angular unconformity within the post-rift succession is interpreted as a flexural horizon related to the load of

  4. Downhole measurements in the AND-1B borehole, ANDRILL McMurdo Ice Shelf Project, Antarctica

    USGS Publications Warehouse

    Morin, R.; Williams, T.; Henrys, S.; Crosby, T.; Hansaraj, D.

    2007-01-01

    A comprehensive set of downhole measurements was collected in the AND-1B drillhole as part of the on-ice scientific programme defined for the McMurdo Ice Shelf (MIS) Project. Geophysical logs were recorded over two operation phases and consisted of calliper, temperature, fluid conductivity, induction resistivity, magnetic susceptibility, natural gamma activity, acoustic televiewer, borehole deviation, and dipmeter. In addition, two standard vertical seismic profiles (VSP) and one walk-away VSP were obtained. Radioactive logs (porosity and density) were not run because of unstable borehole conditions. Although the total depth of the hole is 1285 metres below seafloor (mbsf), the depth range for in situ measurements was limited by the length of the wireline (1018 mbsf) and by the nullification of some geophysical logs due to the presence of steel casing. A depth correction was derived to account for systematic discrepancies in depth between downhole measurements and cores; consequently, log responses can be directly compared to core properties. The resulting data are amenable to studies of cyclicity and climate, heat flux and fluid flow, and stricture and stress. When integrated with physical properties and fractures measured on the core, this information should play a significant role in addressing many of the scientific objectives of the ANDRILL programme.

  5. Field Investigation of Surface-Lake Processes on Ice Shelves: Results of the 2015/16 Field Campaign on McMurdo Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    MacAyeal, Doug; Banwell, Alison; Willis, Ian; Macdonald, Grant

    2016-04-01

    Ice-shelf instability and breakup of the style exhibited by Larsen B Ice Shelf in 2002 remains the most difficult glaciological process of consequence to observe in detail. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain, thereby changing the surface loads the ice-shelf must adjust to. Our model suggest that these fractures resulted in a chain-reaction style drainage of >2750 surface lakes on the Larsen B in the days prior to its demise. To validate this and other models, we began a field project on the McMurdo Ice Shelf (MIS) during the 2015/16 austral summer. Advantages of the MIS study site are: there is considerable surface melting during 3-6 weeks of the summer season, the ice is sufficiently thin (< 30 m in places) to allow observable viscoelastic responses to relatively small loads, and it is close to a center of logistical support (McMurdo Station). Here we show initial results from the field campaign, including GPS and water-depth observations of a lake that has filled and drained over multiple week timescales in previous austral summers. We also report on the analysis of high-resolution WorldView satellite imagery from several summers that reveals the complexity of surface meltwater movement in channels and subsurface void spaces. Initial reconnaissance of the largest surface-lake features reveal that they have a central circular depression surrounded by an uplifted ring, which supports one of the central tenets of our ice-shelf flexure theory. A second field season is anticipated for the 2016/17 austral summer.

  6. Radar detection of the brine extent at McMurdo Ice Shelf, Antarctica, and its control by snow accumulation

    NASA Astrophysics Data System (ADS)

    Grima, Cyril; Greenbaum, Jamin S.; Lopez Garcia, Erika J.; Soderlund, Krista M.; Rosales, Arami; Blankenship, Donald D.; Young, Duncan A.

    2016-07-01

    We derive the surface density and brine infiltration depth/extent at McMurdo Ice Shelf, Antarctica, from combined analysis of radar profiles and radar statistical reconnaissance of the surface from 2011 to 2012 austral summer airborne observations. Most of the brine boundaries appear controlled, directly or indirectly, by the snow accumulation pattern. The infiltration is bounded westward by an ablation area and resides just above the pore close-off depth over most of its extent. The eastern brine limit matches a light-snow corridor, suggesting a reversed pressure gradient at depth that might sharply slow down the infiltration. Brine into ice is confirmed at the deepest locations north and east of Williams Field. The ice-ocean interface is undetected west of the infiltrated zone, except in localized patches. We hypothesize this echo-free zone to be due to high scattering below the surface, possibly from a network of accreted ice and/or ice platelets at the ice-ocean interface.

  7. Heat Flow and Hydrologic Characteristics at the AND-1B borehole, ANDRILL McMurdo Ice Shelf Project, Antarctica

    USGS Publications Warehouse

    Morin, Roger H.; Williams, Trevor; Henry, Stuart; ,; Hansaraj, Dhiresh

    2010-01-01

    The Antarctic Drilling Program (ANDRILL) successfully drilled and cored a borehole, AND-1B, beneath the McMurdo Ice Shelf and into a flexural moat basin that surrounds Ross Island. Total drilling depth reached 1285 m below seafloor (mbsf) with 98 percent core recovery for the detailed study of glacier dynamics. With the goal of obtaining complementary information regarding heat flow and permeability, which is vital to understanding the nature of marine hydrogeologic systems, a succession of three temperature logs was recorded over a five-day span to monitor the gradual thermal recovery toward equilibrium conditions. These data were extrapolated to true, undisturbed temperatures, and they define a linear geothermal gradient of 76.7 K/km from the seafloor to 647 mbsf. Bulk thermal conductivities of the sedimentary rocks were derived from empirical mixing models and density measurements performed on core, and an average value of 1.5 W/mK ± 10 percent was determined. The corresponding estimate of heat flow at this site is 115 mW/m2. This value is relatively high but is consistent with other elevated heat-flow data associated with the Erebus Volcanic Province. Information regarding the origin and frequency of pathways for subsurface fluid flow is gleaned from drillers' records, complementary geophysical logs, and core descriptions. Only two prominent permeable zones are identified and these correspond to two markedly different features within the rift basin; one is a distinct lithostratigraphic subunit consisting of a thin lava flow and the other is a heavily fractured interval within a single thick subunit.

  8. Brittle fractures in AND-1B core, McMurdo Ice Shelf, Antarctica: A record of Neogene rifting or glaciotectonic deformation?

    NASA Astrophysics Data System (ADS)

    Wilson, T.; Paulsen, T.; Millan, C.; Lauefer, A.; McKay, R.; Team, A. S.

    2008-12-01

    The ANDRILL geological drilling program retrieved a 1285-m-long core (AND1B) from beneath the McMurdo Ice Shelf, Antarctica, in 2006-07. The drillsite is inferred to lie within the Terror Rift, a regional Neogene rift basin in the western Ross Sea, hence normal faulting and related tectonic deformation is expected to be present in the core. Sequence stratigraphic analysis has identified ~60 unconformity-bounded cycles in the core, with each base interpreted to mark erosion and subglacial deposition by an advancing Ross Ice Sheet, hence glaciotectonic deformation is also expected in the core. Systematic fracture logging of the AND-1B core identified 1,475 'natural fractures', i.e. pre-existing fractures in the rock intersected by coring. The most abundant natural fractures are normal faults and calcite veins; reverse faults, brecciated zones, and sedimentary intrusions are also present. Here we compare fracture distribution, density, type and orientation (where known) to the positions of glacial erosion surfaces in the core, together with initial information on the conditions of deformation from microstructural analysis, to discriminate rift-related from glaciotectonic formation of natural fractures in AND-1B core.

  9. Antarctica - Ross Ice Shelf

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This color picture of Antarctica is one part of a mosaic of pictures covering the entire polar continent taken during the hours following Galileo's historic first encounter with its home planet. The view shows the Ross Ice Shelf to the right and its border with the sea. An occasional mountain can be seen poking through the ice near the McMurdo Station. It is late spring in Antarctica, so the sun never sets on the frigid, icy continent. This picture was taken about 6:20 p.m. PST on December 8, 1990. From top to bottom, the frame looks across about half of Antarctica.

  10. Calcareous nannofossil evidence for Marine Isotope Stage 31 (1 Ma) in Core AND-1B, ANDRILL McMurdo Ice Shelf Project (Antarctica)

    NASA Astrophysics Data System (ADS)

    Villa, Giuliana; Persico, Davide; Wise, Sherwood W.; Gadaleta, Alessia

    2012-10-01

    ANDRILL Core AND-1B, recovered in the Western Ross Sea of Antarctica, has been examined in search of calcareous nannofossils. Exhaustive and detailed analyses of the interval from 86.61 to 98.99 mbsf revealed for the first time at an extreme southern high latitude (77.88° S) the presence of lower Pleistocene calcareous nannofossils, together with Tertiary and Upper Cretaceous reworked species. Other calcareous microfossils in the assemblage include, spicules of calciosponges and small foraminifers. The short normal magnetozone between 84.97 and 91.13 mbsf is correlated with the Jaramillo Subchron (C1r.1n) (Wilson et al., 2007). The presence of nannofossils in the biogenic interglacial sediments is consistent with an episode of warm surface waters and open-marine conditions during the Jaramillo subchron, at ~ 1 Ma, which corresponds with Marine Isotope Stage (MIS)-31 (Scherer et al., 2007; Naish et al., 2007). Climate proxies such as oxygen isotope stratigraphy and calcareous nannofossils at ODP Site 1165 (Pospichal, 2003; Villa et al., 2008) and the diatom assemblage in a shelly carbonate sequence at Cape Roberts 1 (Bohaty et al., 1998) also support a warming event during this time and suggest it extended around the Antarctic Continent. This in turn implies a total or partial collapse of the McMurdo Ice Shelf and a concurrent shift or temporary dissipation of the Polar Front (Antarctic Convergence) and Antarctic Divergence that currently serve as barriers to the influx of calcareous nannofossils to the margins of Antarctica.

  11. Airborne and ground based measurements in McMurdo Sound, Antarctica, for the validation of satellite derived ice thickness

    NASA Astrophysics Data System (ADS)

    Rack, Wolfgang; Haas, Christian; Langhorne, Pat; Leonard, Greg; Price, Dan; Barnsdale, Kelvin; Soltanzadeh, Iman

    2014-05-01

    Melting and freezing processes in the ice shelf cavities of the Ross and McMurdo Ice Shelves significantly influence the sea ice formation in McMurdo Sound. Between 2009 and 2013 we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure thickness and freeboard profiles across the ice shelf and the landfast sea ice, which was accompanied by extensive field validation, and coordinated with satellite altimeter overpasses. Using freeboard and thickness, the bulk density of all ice types was calculated assuming hydrostatic equilibrium. Significant density steps were detected between first-year and multi-year sea ice, with higher values for the younger sea ice. Values are overestimated in areas with abundance of sub-ice platelets because of overestimation in both ice thickness and freeboard. On the ice shelf, bulk ice densities were sometimes higher than that of pure ice, which can be explained by both the accretion of marine ice and glacial sediments. For thin ice, the freeboard to thickness conversion critically depends on the knowledge of snow properties. Our measurements allow tuning and validation of snow cover simulations using the Weather Research Forecasting (WRF) model. The simulated snowcover is used to calculate ice thickness from satellite derived freeboard. The results of our measurements, which are supported by the New Zealand Antarctic programme, draw a picture of how oceanographic processes influence the ice shelf morphology and sea ice formation in McMurdo Sound, and how satellite derived freeboard of ICESat and CryoSat together with information on snow cover can potentially capture the signature of these processes.

  12. Ross Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    ... funded by the National Science Foundation, several penguin colonies near the Ross Ice Shelf, Antarctica have not been able to ... affected include one of Antarctica's most populous Adelie penguin colonies, as well as a small colony of Emperor penguins. These ...

  13. Larsen B Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    ... ice shelf and the rough crevasses of glaciers appear orange. In contrast to the spectral composite, which provides information on ... surfaces appear brighter on their illuminated faces, the orange color in the multi-angle composite suggests a macroscopically rough ice ...

  14. Kinematics of the Neogene Terror Rift: Constraints from calcite twinning strain in AND-1B core, McMurdo Ice Shelf

    NASA Astrophysics Data System (ADS)

    Paulsen, T.; Wilson, T. J.; Demosthenous, C.; Millan, C.; Jarrard, R. D.; Laufer, A.

    2013-12-01

    Strain analyses of mechanically twinned calcite in veins and faults hosted by Neogene (13.6 Ma to 4.3 Ma) sedimentary and volcanic rocks recovered within the ANDRILL AND-1B drill core from the Terror Rift in the southern Ross Sea, Antarctica, yield prolate and oblate ellipsoids with principal shortening and extension strains ranging from 0.1% to 8.5%. The majority of samples show homogeneous coaxial strain predominantly characterized by subvertical shortening, which we attribute to lithostatic loading in an Andersonian normal faulting stress regime during sedimentary and ice sheet burial of the stratigraphic sequence. The overall paucity of a non-coaxial layer-parallel shortening signal in the AND-1B twin populations suggests that horizontal compressive stresses predicted by Neogene transtensional kinematic models for the rift system have been absent or of insufficient magnitude to cause a widespread noncoaxial strain overprint. Limited numbers of oriented samples yield a possible average ESE extension direction for the rift that is subparallel to other indicators of Neogene extension. The lack of horizontal shortening in the twin data suggests the Neogene Terror Rift system either lacks a strong longitudinal strike-slip component, or that spatial partitioning of strain controls the maximum shortening axes seen in rocks of this age.

  15. Amery Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    ... seaward edge of the ice shelf. Between them, a transverse fracture extends eastward from the base of the western rift. This rift system ... approximately 1.6 - 1.7 kilometers, and the transverse fracture and a three-way fissure at the juncture of the rifts have widened. ...

  16. Ross ice shelf vibrations

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Diez, A.; Gerstoft, P.; Stephen, R. A.; Bolmer, T.; Wiens, D. A.; Aster, R. C.; Nyblade, A.

    2015-09-01

    Broadband seismic stations were deployed across the Ross Ice Shelf (RIS) in November 2014 to study ocean gravity wave-induced vibrations. Initial data from three stations 100 km from the RIS front and within 10 km of each other show both dispersed infragravity (IG) wave and ocean swell-generated signals resulting from waves that originate in the North Pacific. Spectral levels from 0.001 to 10 Hz have the highest accelerations in the IG band (0.0025-0.03 Hz). Polarization analyses indicate complex frequency-dependent particle motions, with energy in several frequency bands having distinctly different propagation characteristics. The dominant IG band signals exhibit predominantly horizontal propagation from the north. Particle motion analyses indicate retrograde elliptical particle motions in the IG band, consistent with these signals propagating as Rayleigh-Lamb (flexural) waves in the ice shelf/water cavity system that are excited by ocean wave interactions nearer the shelf front.

  17. Movement of fuel spills in the Ross Ice Shelf

    SciTech Connect

    Tumeo, M.A.; Larson, M.K.

    1994-12-31

    Williams Field provides logistical support to McMurdo Station in Antarctica and managers large amounts of fuel for their cargo planes. Numerous spills have occurred at this site with little recovery or remediation of the spilled fuel. From 1980 to 1989, approximately 380,000 liters (L) leaked during documented fuel spills-197,600 L of that total came from one spill alone, in October of 1989, when fuel leaked onto the ice at Williams Field. An additional 20 spills of unknown quantities have also occurred at McMurdo Station and Williams Field. Although recent improvements in equipment and procedures in Antarctica have significantly reduced the accidental release of fuel and all but eliminated the risk of a large fuel spill, the potential for small releases still exists. To track the movement of fuel spills on the ice shelf more accurately and to established the basis for remediation methods NSF funded a 3-year study. This article discusses information obtained about the movement of fuel from a small oil spill from a flexible pipeline between McMurdo Station and Williams Field on the Ross Ice Shelf. 1 fig., 1 tab.

  18. Ross Ice Shelf, Antarctic Ice and Clouds

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  19. Mezozooplankton Beneath the Summer Sea Ice in McMurdo Sound, Antarctica: Abundance, Species Composition, and DMSP content

    EPA Science Inventory

    The Ross Sea Phaeocystis antarctica bloom contributes to a summer increase in under-ice planton biomass in McMurdo Sound, Antarctica. Due to difficulties of under-ice sampling, information on the mesozooplankton in McMurdo Sound is limited. We measured the abundance of mesooopl...

  20. Earth - Ross Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This color picture of Antarctica is one part of a mosaic of pictures covering the entire Antarctic continent taken during the hours following Galileo's historic first encounter with its home planet. The view shows the Ross Ice Shelf. An occasional mountain can be seen poking through the ice. It is late spring in Antarctica, so the sun never sets on the frigid, icy continent. This picture was taken on December 8, 1990.

  1. An ice shelf breakup

    SciTech Connect

    Fahnestock, M.

    1996-02-09

    Glaciers and ice sheets are controlled by the climate and must change if the conditions that led to their current configurations are changing. These ice masses exist at the interface between the atmosphere, which provides sustaining snowfall and thermal regulation, and the land, which provides a stable base and in many cases the elevation required to reach suitably cold conditions. Ice sheets and glaciers are distributed around the globe and can serve as potential indicators of past climate variability and current climatic trends. 9 refs.

  2. Iceberg B-15, Ross Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Iceberg B-15 broke from the Ross Ice Shelf in Antarctica in late March. Among the largest ever observed, the new iceberg is approximately 170 miles long x 25 miles wide. Its 4,250 square-mile area is nearly as large as the state of Connecticut. The iceberg was formed from glacial ice moving off the Antarctic continent and calved along pre-existing cracks in the Ross Ice Shelf near Roosevelt Island. The calving of the iceberg essentially moves the northern boundary of the ice shelf about 25 miles to the south, a loss that would normally take the ice shelf as long as 50-100 years to replace. This infrared image was acquired by the DMSP (Defense Meteorological Satellite Program) F-13 satellite on April 13, 2000. For more images see Antarctic Meteorological Research Center Image courtesy of the University of Wisconsin - Madison, Space Science and Engineering Center, Antarctic Meteorological Research Center

  3. Glacier surge after ice shelf collapse.

    PubMed

    De Angelis, Hernán; Skvarca, Pedro

    2003-03-07

    The possibility that the West Antarctic Ice Sheet will collapse as a consequence of ice shelf disintegration has been debated for many years. This matter is of concern because such an event would imply a sudden increase in sea level. Evidence is presented here showing drastic dynamic perturbations on former tributary glaciers that fed sections of the Larsen Ice Shelf on the Antarctic Peninsula before its collapse in 1995. Satellite images and airborne surveys allowed unambiguous identification of active surging phases of Boydell, Sjögren, Edgeworth, Bombardier, and Drygalski glaciers. This discovery calls for a reconsideration of former hypotheses about the stabilizing role of ice shelves.

  4. Tidal Modulation of Ice-shelf Flow: a Viscous Model of the Ross Ice Shelf

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; MacAyeal, Douglas R.

    2014-01-01

    Three stations near the calving front of the Ross Ice Shelf, Antarctica, recorded GPS data through a full spring-neap tidal cycle in November 2005. The data revealed a diurnal horizontal motion that varied both along and transverse to the long-term average velocity direction, similar to tidal signals observed in other ice shelves and ice streams. Based on its periodicity, it was hypothesized that the signal represents a flow response of the Ross Ice Shelf to the diurnal tides of the Ross Sea. To assess the influence of the tide on the ice-shelf motion, two hypotheses were developed. The first addressed the direct response of the ice shelf to tidal forcing, such as forces due to sea-surface slopes or forces due to sub-ice-shelf currents. The second involved the indirect response of ice-shelf flow to the tidal signals observed in the ice streams that source the ice shelf. A finite-element model, based on viscous creep flow, was developed to test these hypotheses, but succeeded only in falsifying both hypotheses, i.e. showing that direct tidal effects produce too small a response, and indirect tidal effects produce a response that is not smooth in time. This nullification suggests that a combination of viscous and elastic deformation is required to explain the observations.

  5. Climate science: A great Arctic ice shelf

    NASA Astrophysics Data System (ADS)

    Domack, Eugene

    2016-02-01

    Newly mapped features on the floor of the Arctic Ocean suggest that the Arctic basin was once covered by a one-kilometre-thick, flowing ice shelf derived from large ice sheets in eastern Siberia, Arctic Canada and the Barents Sea.

  6. Ice-Shelf Melting Around Antarctica

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B.

    2013-07-01

    We compare the volume flux divergence of Antarctic ice shelves in 2007 and 2008 with 1979 to 2010 surface accumulation and 2003 to 2008 thinning to determine their rates of melting and mass balance. Basal melt of 1325 ± 235 gigatons per year (Gt/year) exceeds a calving flux of 1089 ± 139 Gt/year, making ice-shelf melting the largest ablation process in Antarctica. The giant cold-cavity Ross, Filchner, and Ronne ice shelves covering two-thirds of the total ice-shelf area account for only 15% of net melting. Half of the meltwater comes from 10 small, warm-cavity Southeast Pacific ice shelves occupying 8% of the area. A similar high melt/area ratio is found for six East Antarctic ice shelves, implying undocumented strong ocean thermal forcing on their deep grounding lines.

  7. Ice Shelf Microbial Ecosystems in the High Arctic and Implications for Life on Snowball Earth

    NASA Astrophysics Data System (ADS)

    Vincent, W. F.; Gibson, J. A. E.; Pienitz, R.; Villeneuve, V.; Broady, P. A.; Hamilton, P. B.; Howard-Williams, C.

    The Ward Hunt Ice Shelf (83°N, 74°W) is the largest remaining section of thick (>10m) landfast sea ice along the northern coastline of Ellesmere Island, Canada. Extensive meltwater lakes and streams occur on the surface of the ice and are colonized by photosynthetic microbial mat communities. This High Arctic cryo-ecosystem is similar in several of its physical, biological and geochemical features to the McMurdo Ice Shelf in Antarctica. The ice-mats in both polar regions are dominated by filamentous cyanobacteria but also contain diatoms, chlorophytes, flagellates, ciliates, nematodes, tardigrades and rotifers. The luxuriant Ward Hunt consortia also contain high concentrations (107-108cm-2) of viruses and heterotrophic bacteria. During periods of extensive ice cover, such as glaciations during the Proterozoic, cryotolerant mats of the type now found in these polar ice shelf ecosystems would have provided refugia for the survival, growth and evolution of a variety of organisms, including multicellular eukaryotes.

  8. Breakup of the Larsen Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Recent Moderate-resolution Imaging Spectroradiometer (MODIS) satellite imagery analyzed at the University of Colorado's National Snow and Ice Data Center revealed that the northern section of the Larsen B ice shelf, a large floating ice mass on the eastern side of the Antarctic Peninsula, has shattered and separated from the continent. This particular image was taken on March 5, 2002. The shattered ice formed a plume of thousands of icebergs adrift in the Weddell Sea. A total of about 3,250 square kilometers of shelf area disintegrated in a 35-day period beginning on January 31, 2002. Over the last five years, the shelf has lost a total of 5,700 square kilometers and is now about 40 percent the size of its previous minimum stable extent. Ice shelves are thick plates of ice, fed by glaciers, that float on the ocean around much of Antarctica. The Larsen B shelf was about 220 meters thick. Based on studies of ice flow and sediment thickness beneath the ice shelf, scientists believe that it existed for at least 400 years prior to this event and likely existed since the end of the last major glaciation 12,000 years ago. For reference, the area lost in this most recent event dwarfs Rhode Island (2,717 square kilometers) in size. In terms of volume, the amount of ice released in this short time is 720 billion tons--enough ice for about 12 trillion 10-kilogram bags. This is the largest single event in a series of retreats by ice shelves along the peninsula over the last 30 years. The retreats are attributed to a strong climate warming in the region. The rate of warming is approximately 0.5 degrees Celsius per decade, and the trend has been present since at least the late 1940s. Overall in the peninsula, the extent of seven ice shelves has declined by a total of about 13,500 square kilometers since 1974. This value excludes areas that would be expected to calve under stable conditions. Ted Scambos, a researcher with the National Snow and Ice Data Center (NSIDC) at

  9. Sub-ice shelf circulation and basal melting of the Fimbul Ice Shelf

    NASA Astrophysics Data System (ADS)

    Nost, Ole Anders

    2010-05-01

    The Fimbul Ice Shelf is the largest of the ice shelves in Dronning Maud Land. Due to a narrow and some places non-existent continental shelf, the ice shelves in Dronning Maud Land are situated close to the Warm Deep Water. The Antarctic Slope Front separates the Warm Deep Water from the ice shelves and complicated exchange processes working across this front controls the melting of the Fimbul Ice Shelf and the other ice shelves in Dronning Maud Land. Here we will present analysis of unique data from the Dronning Maud Land coastal zone, as well as preliminary results from the 2009/2010 field work on the Fimbul Ice Shelf. In 2008 eight elephant seals equipped with CTD data loggers collected hydrographic data in the Dronning Maud Land coastal zone from February through October. Analysis of these data shows that overturning of the Antarctic Slope Front is the main process exchanging heat into the ice shelf cavities. This overturning together with an onshore surface Ekman flow leads to a seasonal cycle in the salinity of the coastal water masses, while glacial melting sea ice formation has little influence. During the 2009/2010 field season on the Fimbul Ice Shelf glaciological and oceanographic data were collected. We will show preliminary results of ice flow, ice thickness and basal melting measured using stake nets and phase sensitive radar. Oceanographic data were collected through three hot water drilled access holes in the ice shelf. These data show a water column with temperatures close to the surface freezing point over most of the water column. Relatively warmer water was observed near the bottom on one of the CTD stations. Maximum observed temperature is -1.57 °C. We compare the sub iceshelf hydrography with the hydrography observed by the elephant seals near the ice front in an attempt to reveal the sub ice shelf circulation. We also compare estimated melt rates from the oceanographic data with melt rates estimated with the phase sensitive radar and stake

  10. Circulation and melting beneath the ross ice shelf.

    PubMed

    Jacobs, S S; Gordon, A L; Ardai, J L

    1979-02-02

    Thermohaline observations in the water column beneath the Ross Ice Shelf and along its terminal face show significant vertical stratification, active horizontal circulation, and net melting at the ice shelf base. Heat is supplied by seawater that moves southward beneath the ice shelf from a central warm core and from a western region of high salinity. The near-freezing Ice Shelf Water produced flows northward into the Ross Sea.

  11. Reconciling marine and terrestrial evidence for post LGM ice sheet retreat in southern McMurdo Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Anderson, Jacob T. H.; Wilson, Gary S.; Fink, David; Lilly, Kat; Levy, Richard H.; Townsend, Dougal

    2017-02-01

    Retreat of the Antarctic ice sheets since the Last Glacial Maximum (LGM) contributed to sea-level rise, but the location, amount, and timing of ice mass loss has been controversial. This paper presents new 10Be exposure ages from glacially transported erratics which record post LGM retreat of grounded ice in the western Ross Sea. Ice elevation in southern McMurdo Sound was ≥520 m above present day sea level on the eastern side of Mount Discovery during the LGM, and the onset of major deglaciation in the region was after 14 ka. The ice surface lowered from ∼520 to 234 m above present day sea level between 14.0 ka and 10.3 ka and from 234 m to ∼30 m between 10.3 ka and 7.4 ka. This late-glacial and Holocene deglaciation chronology from southern McMurdo Sound is consistent with other records on the margins of the Ross Embayment, and implies that the western margins of the Ross Sea Ice Sheet (RSIS) experienced most mass loss during the early to middle Holocene. These 10Be exposure ages coupled with sediment provenance define a two-stage ice flow scenario for McMurdo Sound subdividing differing reconstructions into an early and late phase. Prior to Termination I, an expanded Koettlitz Glacier flowed north and northeast between Brown Peninsula and Mount Discovery and coalesced with northward flowing ice fed from the Skelton and Mulock Glaciers. Thinning and retreat of the Koettlitz Glacier and perhaps other outlet glaciers flowing through the Royal Society Range allowed ice grounded in the Ross Sea to flow westward and northward, north of Brown Peninsula. Grounding-line recession in the Ross Sea during the late-glacial and Holocene was likely driven by Southern Ocean warming and sea-level rise from the retreat of the Northern Hemisphere ice sheets and the outer margins of the Antarctic ice sheets.

  12. The Tweeting Ice Shelf: geophysics and outreach

    NASA Astrophysics Data System (ADS)

    Van Liefferinge, Brice; Berger, Sophie; Drews, Reinhard; Pattyn, Frank

    2015-04-01

    Over the last decade the Antarctic and Greenland ice sheets have contributed about one third of the annual sea level rise (Hanna et al., 2013). However, it remains difficult to reconcile global mass balance estimates obtained from different satellite-based methods. A typical approach is to balance the mass input from atmospheric modelling with the outgoing mass flux at the ice-sheet boundary (Shepherd et al., 2012). The flux calculations at the boundary rely on satellite-derived surface velocities, which are currently only available as snapshots in time, and which need ground truth for validation. Here, we report on continuous, year-round measurements that aim at improving the input-output method in several aspects and carefully map the flow speed allowing for detecting seasonal variability. For this purpose, we set up in December 2014 three stand-alone single-frequency GPSes on the Roi Baudouin ice shelf (East Antarctica). The GPSes are installed across a surface depression (typical for large ice-shelf channels), where subglacial melting is expected. This setup allows us to investigate how these channels behave, i.e., if they become wider, whether or not they enhance the ice flow, and, in combination with an installed phase-sensitive radar, what amount of melting occurs below the channels in contact with the ocean. The GPS data are transmitted on a daily basis. Ice-shelf velocity is derived from the raw hourly location following the methods described in den Ouden et al. (2010), Dunse et al. (2012), and Ahlstrøm et al. (2013). However, a reference station has not been used for the correction. Basic processing involves outliers removal, smoothing, time-series analysis and comparison with tidal models. The project comes alongside an outreach event: on a weekly basis, the ice shelf 'tweets' its position, motion and relays other information with respect to the project. The GPS systems can be followed on Twitter via @TweetinIceShelf as well as the Tweeting Ice Shelf

  13. Antarctica's Larsen C Ice Shelf Crack

    Atmospheric Science Data Center

    2016-12-30

    ... predicts that the crack will continue to grow and eventually cause between nine and twelve percent of the ice shelf to collapse, resulting ... forward-pointing camera (plotted as red). This has the effect of highlighting surface roughness; smooth surfaces appear as ...

  14. A case study of a Ross Ice Shelf Airstream event using high resolution observational data captured by SNOWWEB

    NASA Astrophysics Data System (ADS)

    Jolly, Ben; McDonald, Adrian

    2015-04-01

    The Ross Ice Shelf Airstream (RAS) is the dominant weather pattern over the Ross Ice Shelf in Antarctica. Characterised by a strong southerly flow over the ice shelf, the RAS plays a significant role in the northward transport of cold air from the interior of the continent out into the Ross Sea. As it passes by Ross Island - home to McMurdo Station and Scott Base - and out over the edge of the ice shelf, the RAS also helps to create and maintain the Ross Sea Polynya, the single largest contributor to sea ice growth in the Ross Sea region. Our area of interest is the McMurdo Ice Shelf, situated directly south of Ross Island and adjoining the north-western tip of the much larger Ross Ice Shelf. The terrain of this region is complex, with large mountains, islands, and cliffs dominating local flow. Additionally, severe weather - often experienced during a RAS event - can greatly impact human activity. These two factors make this region particularly interesting to study. During the 2013/14 austral summer season we deployed 14 weather stations on the McMurdo Ice Shelf, creating a dense spatial observational network. In combination with existing automatic weather stations and high resolution model output from the Antarctic Mesoscale Prediction System (AMPS), we present a case study of a three day RAS event observed in November 2013. We find that AMPS represents the RAS well in general, however at the local scale there are some large discrepancies between observed and forecast winds. Predominantly these are a result of errors in timing, with AMPS incorrectly forecasting 'lulls' in the RAS when none were observed and vice-versa. There also appear to be some differences between AMPS and observations regarding the split of the southerly RAS flow around Ross Island. The representation within AMPS of both Hut Point Peninsula - a small yet important orographic feature running south-west from Ross Island that blocks relatively weak flows - and the Windless Bight high pressure

  15. Ice shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D. A.

    2016-05-01

    An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2 and 2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to ˜150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn-air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves give different shear wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modelling the observed Rayleigh wave dispersion curves using representative firn, ice, water and sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modelling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.

  16. Amery Ice Shelf's 'Loose Tooth' Gets Looser

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Amery Ice Shelf is an important dynamic system responsible for draining about 16% of the grounded East Antarctic ice sheet through only 2% of its coastline. Most of the mass input to the system occurs from the Lambert and several other glaciers. Mass loss from the system occurs through basal melting and iceberg calving. These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray the ice shelf front on October 6, 2001 (top) and September 29, 2002 (bottom), and illustrate changes that took place over the year elapsed between the two views.

    Two longitudinal rifts, oriented roughly parallel to the direction of ice flow and measuring about 25 and 15 kilometers in length, are apparent near the seaward edge of the ice shelf. Between them, a transverse fracture extends eastward from the base of the western rift. This rift system is colloquially named the Amery 'loose tooth.' Over the course of the one-year interval between these two MISR images, the ice front has advanced approximately 1.6 - 1.7 kilometers, and the transverse fracture and a three-way fissure at the juncture of the rifts have widened. When the transverse fracture eventually reaches the eastern rift, a large iceberg (25 kilometers x 25 kilometers) will be released.

    These false-color multi-angle composites combine red-band data from MISR's 60o forward, nadir, and 60o aftward viewing cameras, displayed as red, green and blue, respectively. Different colors represent angular reflectance variations. Since generally smooth surfaces predominantly forward-scatter sunlight, these appear in shades of blue. Rough surfaces tend to backward-scatter sunlight, and these appear in shades of red or orange. Low clouds appear bright purple, since they exhibit both forward and backward-scattering. Using this technique, textural variations among ice types are revealed, and clouds can be easily distinguished from ice. Illumination conditions on the two dates are nearly identical.

    Understanding the

  17. Calibration and Validation of Airborne LiDAR at McMurdo Station, Antarctica for Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Sonntag, J. G.

    2014-12-01

    Airborne LiDAR flight operations based at McMurdo Station, Antarctica, present unusual challenges for calibrating and validating the sensor measurements at the level of a few centimeters. NASA's Airborne Topographic Mapper (ATM) team prefers to perform regular, near-daily calibrations of range and angular biases of our sensor for the lengthy field deployments typical for Operation IceBridge (OIB). For the fall 2013 OIB deployment to McMurdo, we had to adapt our usual technique of regular overflights of an independently-surveyed airport parking ramp to deal with the fact that the McMurdo airfield was located on tidally-influenced sea ice, and that very few nearby durable surfaces were free of variable-depth snow during the OIB deployment. We detail our approach for dealing with these challenges, which included multiple GPS/vehicle surveys of the sea ice runway to quantify surface changes due to grooming operations, combined with GPS tide-gauge measurements of the runway's tidal motion. We also conducted a remote GPS/vehicle survey of a mostly snow-free road on Black Island, and included both sites during near-daily overflights with the ATM. We discuss the quantitative results of these surveys and the associated ATM overflights, and present conclusions for future deployments. Finally we discuss a related validation effort in which we compare ATM results from overflights of snow-free areas in the Dry Valleys with ATM surveys of the same area from a 2001 effort there.

  18. Victoria Land, Ross Sea, and Ross Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On December 19, 2001, MODIS acquired data that produced this image of Antarctica's Victoria Land, Ross Ice Shelf, and the Ross Sea. The coastline that runs up and down along the left side of the image denotes where Victoria Land (left) meets the Ross Ice Shelf (right). The Ross Ice Shelf is the world's largest floating body of ice, approximately the same size as France. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  19. Ice-shelf channel evolution in Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Drews, Reinhard; Berger, Sophie; Favier, Lionel; Pattyn, Frank

    2015-04-01

    Ice shelves buttress the continental ice flux and facilitate ice--ocean interactions. They are often intersected by longitudinally elongated channels in which basal melting is significantly enhanced. Recent studies highlighted that this type of channelized melting impacts the buttressing strength of ice shelves and hence imprints the mass flux from the Antarctic continent. Here, the channel evolution is investigated from a glaciological perspective, using a full Stokes model and geophysical data from three consecutive field seasons on Roi Baudouin Ice Shelf (RBIS), Antarctica. The RBIS contains numerous channels, incising the ice shelf by more than half the ice thickness. The modeling confirms (1) that basal melting as a feasible mechanism for the channel creation, albeit channels may also advect without melting for many tens of kilometers. The mere existence of channels is not a sufficient criteria to infer channelized melting at that location; (2) channels can be out of hydrostatic equilibrium depending on their width and the upstream melt history. This implies that inverting surface elevation for ice thickness in those areas is erroneous. Corresponding observational evidence for the channels at RBIS is presented by comparing the hydrostatic-ice thickness from GPS measurements with the ice thickness measured by ground-penetrating radar; (3) the simulations show that channelized melting imprints the flowfield characteristically, and can cause enhanced horizontal shearing across channels. This is exemplified for a channel at RBIS where the velocity anomaly is found in different sets of satellite-derived surface velocities, as well as in ground-based GPS measurements. This opens up the possibility to classify channelized melting from space, an important step towards incorporating these effects in ice--ocean models.

  20. Dynamics of the Ross Ice Shelf

    NASA Technical Reports Server (NTRS)

    Casassa, Gino; Turner, John

    1991-01-01

    The changing flow of the Ross Ice Shelf is described based on AVHRR data from 18 cloud-free images which evince flow stripes and form the data for a glaciological map. The discharge region of the valley glaciers in the Transantarctic Mountains is found to have curvilinear stripes, and the brightness contrast is enhanced to examine the feature. The map of the region also shows rifts, ridge crests, surface folds, and large-scale lineaments.

  1. Unique Views of a Shattered Ice Shelf

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Both single and multi-angle views of the breakup of the northern section of the Larsen B ice shelf are shown in this image pair from the Multi-angle Imaging SpectroRadiometer. The Larsen B ice shelf collapsed and broke away from the Antarctic Peninsula during February and March, 2002 -- a progression observed by Terra's Moderate-resolution Imaging SpectroRadiometer (MODIS) and analyzed at the University of Colorado's National Snow and Ice Data Center. The collapse is thought to have been accelerated by warm summer temperatures which caused meltwater to fill crevasses along the landward side of the Larsen shelf, leading to intensified pressures within the sheet structure.

    In the left-hand view, spectral variations across the scene are highlighted by using near-infrared, red and blue data from MISR's nadir (vertical-viewing) camera. Here, the ice within the disintegrating ice shelf appears vibrant blue. Water has an intrinsic blue color due to the selective absorption of longer wavelengths such as red and infrared, and the translucent properties of ice within the collapsing shelf enables this absorption to be observed. The use of the near-infrared band within this false-color composite accentuates the effect. Light brownish streaks across the splintering sheet can also be discerned, and probably indicate regions where rocks and morainal debris were exposed from the interior of the shelf.

    On the right, data from three different view angles and only one color channel were combined to create a multi-angle composite. This image displays red-band data from MISR's 46-degree forward, nadir, and 46-degree backward-viewing cameras as red, green and blue, respectively. Here, the disintegrating ice shelf and the rough crevasses of glaciers appear orange. In contrast to the spectral composite, which provides information on the chemical composition of water ice, the colors in the right-hand image represent properties related to its physical nature. Because vertical

  2. Modern shelf ice, equatorial Aeolis Quadrangle, Mars

    NASA Technical Reports Server (NTRS)

    Brakenridge, G. R.

    1993-01-01

    As part of a detailed study of the geological and geomorphological evolution of Aeolis Quadrangle, I have encountered evidence suggesting that near surface ice exists at low latitudes and was formed by partial or complete freezing of an inland sea. The area of interest is centered at approximately -2 deg, 196 deg. As seen in a suite of Viking Orbiter frames obtained at a range of approximately 600 km, the plains surface at this location is very lightly cratered or uncratered, and it is thus of late Amazonian age. Extant topographic data indicate that the Amazonian plains at this location occupy a trough whose surface lies at least 1000 m below the Mars datum. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. In either case, the thin (a few meters at most) high albedo, low thermal inertia cover of aeolian materials was instrumental in allowing ice preservation, and at least the lower portions of this dust cover may be cemented by water ice. Detailed mapping using Viking stereopairs and quantitative comparisons to terrestrial shelf ice geometries are underway.

  3. Seismicity within a propagating ice shelf rift: the relationship between icequake locations and ice shelf structure

    USGS Publications Warehouse

    Heeszel, David S.; Fricker, Helen A.; Bassis, Jeremy N.; O'Neel, Shad; Walter, Fabian

    2014-01-01

    Iceberg calving is a dominant mass loss mechanism for Antarctic ice shelves, second only to basal melting. An important known process involved in calving is the initiation and propagation of through-penetrating fractures called rifts; however, the mechanisms controlling rift propagation remain poorly understood. To investigate the mechanics of ice-shelf rifting, we analyzed seismicity associated with a propagating rift tip on the Amery Ice Shelf, using data collected during the Austral summers of 2004-2007. We investigated seismicity associated with fracture propagation using a suite of passive seismological techniques including icequake locations, back projection, and moment tensor inversion. We confirm previous results that show that seismicity is characterized by periods of relative quiescence punctuated by swarms of intense seismicity of one to three hours. However, even during periods of quiescence, we find significant seismic deformation around the rift tip. Moment tensors, calculated for a subset of the largest icequakes (MW > -2.0) located near the rift tip, show steeply dipping fault planes, horizontal or shallowly plunging stress orientations, and often have a significant volumetric component. They also reveal that much of the observed seismicity is limited to the upper 50 m of the ice shelf. This suggests a complex system of deformation that involves the propagating rift, the region behind the rift tip, and a system of rift-transverse crevasses. Small-scale variations in the mechanical structure of the ice shelf, especially rift-transverse crevasses and accreted marine ice, play an important role in modulating the rate and location of seismicity associated with propagating ice shelf rifts.

  4. Massive Ice Layer Formed by Refreezing of Ice-shelf Surface Melt Ponds: Larsen C Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Kuipers Munneke, P.; Hubbard, B. P.; Luckman, A. J.; Ashmore, D.; Bevan, S. L.; Kulessa, B.; Jansen, D.; O'Leary, M.

    2015-12-01

    Surface melt ponds now form frequently on ice shelves across the northern sector of the Antarctic Peninsula in response to regional warming and local föhn winds. Analysis of a new, 1-year set of observations from an Automatic Weather Station on Larsen C Ice Shelf, Antarctica, reveals that föhn winds are able to cause intense melt in summer, and even into the late austral autumn. A potentially important, but hitherto unknown, consequence of this intense surface melting and ponding is the formation of high-density near-surface ice from the refreezing of that water. We report the discovery of a massive subsurface ice layer located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and ground-based radar measurements with remote sensing and firn modelling to investigate the formation and spatial extent of this layer, found to be tens of kilometres across and tens of metres deep. The presence of this ice layer has the effect of raising local ice shelf density by ~190 kg m-3 and temperature by 5 - 10 °C above values found in areas unaffected by ponding and hitherto used in models of ice-shelf fracture and flow.

  5. Simulations of ice flux through Totten Glacier as ice shelf calving changes

    NASA Astrophysics Data System (ADS)

    Moore, John; Sun, Sainan; Åström, Jan

    2016-04-01

    Totten glacier is one of the most important ocean portals for the East Antarctic ice sheet. Melt rates under the ice shelf in front of the glacier are very high, and the ice shelf seems to suffer from extensive basal melt-induced calving. The ice shelf is underlain by a relatively narrow and convoluted cavity, which recent resurveying suggests maybe substantially different from Bedmap2 geometry. Here we use the BISICLES ice flow model and ice shelf buttressing derived from inverse modeling to simulate present day ice dynamics. We then use a discrete particle model so simulate ice shelf fracturing to simulate how the ice shelf geometry, calving patterns and buttressing force could evolve. The new ice shelf geometry is then used with the continuum model to asses ice flux through the region 50 years into the future. The results suggest considerable changes in glacier-ice shelf configuration, but which are sensitive to ice shelf pinning points and sub-shelf cavity geometry.

  6. Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica.

    PubMed

    Kwon, Miye; Kim, Mincheol; Takacs-Vesbach, Cristina; Lee, Jaejin; Hong, Soon Gyu; Kim, Sang Jong; Priscu, John C; Kim, Ok-Sun

    2017-03-09

    Perennially ice-covered lakes in the McMurdo Dry Valleys, Antarctica, are chemically stratified with depth and have distinct biological gradients. Despite long-term research on these unique environments, data on the structure of the microbial communities in the water columns of these lakes are scarce. Here, we examined bacterial diversity in five ice-covered Antarctic lakes by 16S rRNA gene-based pyrosequencing. Distinct communities were present in each lake, reflecting the unique biogeochemical characteristics of these environments. Further, certain bacterial lineages were confined exclusively to specific depths within each lake. For example, candidate division WM88 occurred solely at a depth of 15 m in Lake Fryxell, whereas unknown lineages of Chlorobi were found only at a depth of 18 m in Lake Miers, and two distinct classes of Firmicutes inhabited East and West Lobe Bonney at depths of 30 m. Redundancy analysis revealed that community variation of bacterioplankton could be explained by the distinct conditions of each lake and depth; in particular, assemblages from layers beneath the chemocline had biogeochemical associations that differed from those in the upper layers. These patterns of community composition may represent bacterial adaptations to the extreme and unique biogeochemical gradients of ice-covered lakes in the McMurdo Dry Valleys. This article is protected by copyright. All rights reserved.

  7. Condition of the Ross Ice Shelf derived from AVHRR imagery

    NASA Technical Reports Server (NTRS)

    Casassa, Gino

    1993-01-01

    Advanced Very High Resolution Radiometer (AVHRR) satellite imagery is combined with the Ross Ice Shelf Geophysical and Glaciological Survey (RIGGS) data to study recent changes on the Ross Ice Shelf. Flow stripes that appear on the AVHRR imagery agree with significant changes in ice flow that have occurred over the past 1,100 years on the ice shelf sector fed by East Antarctica. A large looping pattern of flow stripes that disagrees with RIGGS flow lines appears west of Crary Ice Rise, on the eastern part of the ice shelf. This looped pattern is interpreted as relict flow stripes related to past activity of a major ice stream of West Antarctica, which occurred about 800 years ago.

  8. Ice shelf studies off northern Ellesmere Island, Spring 1983

    SciTech Connect

    Jeffries, M.O.

    1985-09-01

    In spring 1983 work on the ice shelves of northern Ellesmere Island was continued. A total of 55 m of 7.6 cm diameter ice core was obtained from 10 locations. The longest core of 31.79 m is composed of iced-firn and basement ice and can be divided into three distinct strata according to ice salinity. Oscillating strains in Ward Hunt Ice Shelf were measured with a wire strainmeter. It is suggested that the periodic calving of ice from Ward Hung Ice Shelf might be related to the effects of the high frequency oscillation of 35s to 40s. Ice conditions along 150 km of coastline continue to change. Continued monitoring of the ice shelves and landfast ice is believed to be necessary in view of the offshore development in the Beaufort Sea.

  9. Geochemical and isotopic signatures of ice shelves and ice shelf circulation in marine sediments

    NASA Astrophysics Data System (ADS)

    White, Duanne; Fink, David; Simon, Krista; Post, Alix; Galton-Fenzi, Ben; Yokoyama, Yusuke

    2016-04-01

    Ice shelves are a key component of the ice sheet drainage network. Most ice lost from the present day Antarctic ice sheet occurs via ice shelves, so ice shelf processes (e.g. calving and basal melt) modulate ice sheet mass balance. Knowledge of the past distribution and geometry of ice shelves will help understand their sensitivity to climate forcing, and the response of ice sheets to changes and loss of ice shelves. However, detecting the presence or absence of past ice shelves in the sedimentary record is challenging. In this study, we compare concentrations of elemental and isotopic tracers in modern sediments in open water in Prydz Bay to those being deposited underneath the Amery Ice Shelf at ten sites across the region. Our results suggest that sub-ice shelf and open water sediments differ in their acid-extractable elemental concentrations. Also, meteoric Be-10 concentrations are on average lower in sub-ice shelf settings than they are in open water environments. However, the Be-10 concentration is modulated by sub-ice shelf ocean circulation, so that there is overlap between the sediment concentrations in these two environments. In combination, we suggest that these tracers can be used as proxies to reconstruct former ice shelf geometries and sub-shelf circulation.

  10. Mathematical Modelling of Melt Lake Formation on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Buzzard, Sammie; Feltham, Daniel; Flocco, Daniela; Sammonds, Peter

    2015-04-01

    The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. These structures have been implicated in crevasse propagation and ice shelf collapse; the Larsen B ice shelf was observed to have a large amount of melt lakes present on its surface just before its collapse in 2002. Through modelling the transport of heat through the surface of the Larsen C ice shelf, where melt lakes have also been observed, this work aims to provide new insights into the ways in which melt lakes are forming and the effect that meltwater filling crevasses on the ice shelf will have. This will enable an assessment of the role of meltwater in triggering ice shelf collapse. The Antarctic Peninsula, where Larsen C is situated, has warmed several times the global average over the last century and this ice shelf has been suggested as a candidate for becoming fully saturated with meltwater by the end of the current century. Here we present results of a 1D mathematical model of heat transfer through an idealised ice shelf. When forced with automatic weather station data from Larsen C, surface melting and the subsequent meltwater accumulation, melt lake development and refreezing are demonstrated through the modelled results. Furthermore, the effect of lateral meltwater transport upon melt lakes is examined. This will be developed through the estimations of meltwater catchment areas and the fraction of the ice shelf where melt lakes are present. Investigating the role of meltwater in ice shelf stability is key as collapse can affect ocean circulation and temperature, and cause a loss of habitat. Additionally, it can cause a loss of the buttressing effect that ice shelves can have on their tributary glaciers, thus allowing the glaciers to accelerate, contributing to sea level rise.

  11. Massive Ice Layer Formed by Refreezing of Ice-shelf Surface Melt Ponds: Larsen C Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Hubbard, Bryn; Luckman, Adrian; Ashmore, David; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Jansen, Daniela; O'Leary, Martin

    2016-04-01

    Surface melt ponds now form frequently on ice shelves across the northern sector of the Antarctic Peninsula in response to regional warming and local föhn winds. A potentially important, but hitherto unknown, consequence of this surface melting and ponding is the formation of high-density near-surface ice from the refreezing of that water. We report the discovery and physical character of a massive subsurface ice layer located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and ground-based radar measurements with remote sensing and firn modelling to investigate the formation and spatial extent of this layer, found to be tens of kilometres across and tens of metres deep. The presence of this ice layer has the effect of raising local ice shelf density by ~190 kg m^-3 and temperature by 5 - 10 degrees C above values found in areas unaffected by ponding and hitherto used in models of ice-shelf fracture and flow.

  12. Composition and origin of amber ice and its influence on the behaviour of cold glaciers in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Mager, Sarah; Fitzsimons, Sean; Frew, Russell; Samyn, Denis; Lorrain, Reginald

    This paper examines the basal ice sequence of Rhone Glacier, a cold-based glacier in the McMurdo Dry Valleys, Antarctica, using isotopic and solute chemistry data. Three different ice facies are identified: englacial, amber and stratified. The englacial facies is clean, bubbly ice of meteoric origin and is underlain by an amber facies. Amber ice is a characteristic of cold alpine glaciers in the McMurdo Dry Valleys and is distinctive for its high solute concentrations and much higher strain rates compared with the overlying englacial ice and the underlying stratified ice. Analysis of the stratified facies reveals an isotopic signature indicative of melt then refreeze processes and it is most likely associated with apron entrainment at the margin. By contrast, the amber facies has a co-isotopic slope of 8 and plots on a meteoric waterline. The inclusion of impurities in the amber ice reveals prolonged contact with the bed, and its depleted isotopic signature is consistent with ice formed during a cooler period. Comparison of the basal sequence of Rhone Glacier with other cold-based glaciers in the McMurdo Dry Valleys reveals strong similarities between valley-side glaciers (e.g. Meserve and Rhone Glaciers), whereas valley-floor glacier basal sequences (e.g. Suess Glacier) are characterized by structurally complex amalgamations of ice and debris.

  13. Ice Shelf Modeling: A Cross-Polar Bayesian Statistical Approach

    NASA Astrophysics Data System (ADS)

    Kirchner, N.; Furrer, R.; Jakobsson, M.; Zwally, H. J.

    2010-12-01

    Ice streams interlink glacial terrestrial and marine environments: embedded in a grounded inland ice such as the Antarctic Ice Sheet or the paleo ice sheets covering extensive parts of the Eurasian and Amerasian Arctic respectively, ice streams are major drainage agents facilitating the discharge of substantial portions of continental ice into the ocean. At their seaward side, ice streams can either extend onto the ocean as floating ice tongues (such as the Drygalsky Ice Tongue/East Antarctica), or feed large ice shelves (as is the case for e.g. the Siple Coast and the Ross Ice Shelf/West Antarctica). The flow behavior of ice streams has been recognized to be intimately linked with configurational changes in their attached ice shelves; in particular, ice shelf disintegration is associated with rapid ice stream retreat and increased mass discharge from the continental ice mass, contributing eventually to sea level rise. Investigations of ice stream retreat mechanism are however incomplete if based on terrestrial records only: rather, the dynamics of ice shelves (and, eventually, the impact of the ocean on the latter) must be accounted for. However, since floating ice shelves leave hardly any traces behind when melting, uncertainty regarding the spatio-temporal distribution and evolution of ice shelves in times prior to instrumented and recorded observation is high, calling thus for a statistical modeling approach. Complementing ongoing large-scale numerical modeling efforts (Pollard & DeConto, 2009), we model the configuration of ice shelves by using a Bayesian Hiearchial Modeling (BHM) approach. We adopt a cross-polar perspective accounting for the fact that currently, ice shelves exist mainly along the coastline of Antarctica (and are virtually non-existing in the Arctic), while Arctic Ocean ice shelves repeatedly impacted the Arctic ocean basin during former glacial periods. Modeled Arctic ocean ice shelf configurations are compared with geological spatial

  14. Ocean interactions with the base of Amery Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    Hellmer, Hartmut H.; Jacobs, Stanley S.

    1992-01-01

    Using a two-dimensional ocean themohaline circulation model, we varied the cavity shape beneath Amery Ice Shelf in an attempt to reproduce the 150-m-thick marine ice layer observed at the 'G1' ice core site. Most simulations caused melting rates which decrease the ice thickness by as much as 400 m between grounding line and G1, but produce only minor accumulation at the ice core site and closer to the ice front. Changes in the sea floor and ice topographies revealed a high sensitivity of the basal mass balance to water column thickness near the grounding line, to submarine sills, and to discontinuities in ice thickness. Model results showed temperature/salinity gradients similar to observations from beneath other ice shelves where ice is melting into seawater. Modeled outflow characteristics at the ice front are in general agreement with oceanographic data from Prydz Bay. We concur with Morgan's inference that the G1 core may have been taken in a basal crevasse filled with marine ice. This ice is formed from water cooled by ocean/ice shelf interactions along the interior ice shelf base.

  15. Holocene dynamics of the Arctic's largest ice shelf.

    PubMed

    Antoniades, Dermot; Francus, Pierre; Pienitz, Reinhard; St-Onge, Guillaume; Vincent, Warwick F

    2011-11-22

    Ice shelves in the Arctic lost more than 90% of their total surface area during the 20th century and are continuing to disintegrate rapidly. The significance of these changes, however, is obscured by the poorly constrained ontogeny of Arctic ice shelves. Here we use the sedimentary record behind the largest remaining ice shelf in the Arctic, the Ward Hunt Ice Shelf (Ellesmere Island, Canada), to establish a long-term context in which to evaluate recent ice-shelf deterioration. Multiproxy analysis of sediment cores revealed pronounced biological and geochemical changes in Disraeli Fiord in response to the formation of the Ward Hunt Ice Shelf and its fluctuations through time. Our results show that the ice shelf was absent during the early Holocene and formed 4,000 years ago in response to climate cooling. Paleoecological data then indicate that the Ward Hunt Ice Shelf remained stable for almost three millennia before a major fracturing event that occurred ∼1,400 years ago. After reformation ∼800 years ago, freshwater was a constant feature of Disraeli Fiord until the catastrophic drainage of its epishelf lake in the early 21st century.

  16. Teleseismic Earthquake Signals Observed on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Baker, M. G.; Aster, R. C.; Anthony, R. E.; Wiens, D.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.

    2015-12-01

    The West Antarctic Rift System (WARS) is one of Earth's largest continental extension zones. Study of the WARS is complicated by the presence of the West Antarctic Ice Sheet, the Ross Ice Shelf, and the Ross Sea. Recent deployments of broadband seismographs in the POLENET project have allowed passive seismic techniques, such as receiver function analysis and surface wave dispersion, to be widely utilized to infer crustal and mantle velocity structure across much of the WARS and West Antarctica. However, a large sector of the WARS lies beneath the Ross Ice Shelf. In late 2014, 34 broadband seismographs were deployed atop the ice shelf to jointly study deep Earth structure and the dynamics of the ice shelf. Ice shelf conditions present strong challenges to broadband teleseismic imaging: 1) The presence of complicating signals in the microseism through long-period bands due to the influence of ocean gravity waves; 2) The strong velocity contrasts at the ice-water and water-sediment interfaces on either side of the water layer give rise to large amplitude reverberations; 3) The water layer screens S-waves or P-to-S phases originating from below the water layer. We present an initial analysis of the first teleseismic earthquake arrivals collected on the ice shelf at the end of the 2014 field season from a limited subset of these stations.

  17. Holocene dynamics of the Arctic's largest ice shelf

    PubMed Central

    Antoniades, Dermot; Francus, Pierre; Pienitz, Reinhard; St-Onge, Guillaume; Vincent, Warwick F.

    2011-01-01

    Ice shelves in the Arctic lost more than 90% of their total surface area during the 20th century and are continuing to disintegrate rapidly. The significance of these changes, however, is obscured by the poorly constrained ontogeny of Arctic ice shelves. Here we use the sedimentary record behind the largest remaining ice shelf in the Arctic, the Ward Hunt Ice Shelf (Ellesmere Island, Canada), to establish a long-term context in which to evaluate recent ice-shelf deterioration. Multiproxy analysis of sediment cores revealed pronounced biological and geochemical changes in Disraeli Fiord in response to the formation of the Ward Hunt Ice Shelf and its fluctuations through time. Our results show that the ice shelf was absent during the early Holocene and formed 4,000 years ago in response to climate cooling. Paleoecological data then indicate that the Ward Hunt Ice Shelf remained stable for almost three millennia before a major fracturing event that occurred ∼1,400 years ago. After reformation ∼800 years ago, freshwater was a constant feature of Disraeli Fiord until the catastrophic drainage of its epishelf lake in the early 21st century. PMID:22025693

  18. Mathematical Modelling of Melt Lake Formation on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Buzzard, S. C.; Flocco, D.; Sammonds, P. R.

    2014-12-01

    The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. These structures have been implicated in crevasse propagation and ice shelf collapse; the Larsen B ice shelf was observed to have a large amount of melt lakes present on its surface just before its collapse in 2002. Through modelling the transport of heat through the surface of the Larsen C ice shelf, where melt lakes have also been observed, this work aims to provide new insights into the ways in which melt lakes are forming and the effect that meltwater filling crevasses on the ice shelf will have. This will enable an assessment of the role of meltwater in triggering ice shelf collapse.The Antarctic Peninsula, where Larsen C is situated, has warmed several times the global average over the last century and this ice shelf has been suggested as a candidate for becoming fully saturated with meltwater by the end of the current century. Here we present preliminary results of a mathematical model of heat transfer through an idealised ice shelf. When forced with automatic weather station data from Larsen C, surface melting and the subsequent meltwater accumulation and melt lake development are demonstrated through the modelled results. Investigating the role of meltwater in ice shelf stability is key as collapse can affect ocean circulation and temperature, and cause a loss of habitat. Additionally, it can cause a loss of the buttressing effect that ice shelves can have on their tributary glaciers, thus allowing the glaciers to accelerate, contributing to sea level rise.

  19. Mathematical Modelling of Melt Lake Formation On An Ice Shelf

    NASA Astrophysics Data System (ADS)

    Buzzard, Sammie; Feltham, Daniel; Flocco, Daniela

    2016-04-01

    The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. These structures have been implicated in crevasse propagation and ice-shelf collapse; the Larsen B ice shelf was observed to have a large amount of melt lakes present on its surface just before its collapse in 2002. Through modelling the transport of heat through the surface of the Larsen C ice shelf, where melt lakes have also been observed, this work aims to provide new insights into the ways in which melt lakes are forming and the effect that meltwater filling crevasses on the ice shelf will have. This will enable an assessment of the role of meltwater in triggering ice-shelf collapse. The Antarctic Peninsula, where Larsen C is situated, has warmed several times the global average over the last century and this ice shelf has been suggested as a candidate for becoming fully saturated with meltwater by the end of the current century. Here we present results of a 1-D mathematical model of heat transfer through an idealized ice shelf. When forced with automatic weather station data from Larsen C, surface melting and the subsequent meltwater accumulation, melt lake development and refreezing are demonstrated through the modelled results. Furthermore, the effect of lateral meltwater transport upon melt lakes and the effect of the lakes upon the surface energy balance are examined. Investigating the role of meltwater in ice-shelf stability is key as collapse can affect ocean circulation and temperature, and cause a loss of habitat. Additionally, it can cause a loss of the buttressing effect that ice shelves can have on their tributary glaciers, thus allowing the glaciers to accelerate, contributing to sea-level rise.

  20. Mathematical Modelling of Melt Lake Formation On An Ice Shelf

    NASA Astrophysics Data System (ADS)

    Buzzard, S. C.; Feltham, D. L.; Flocco, D.; Sammonds, P. R.

    2015-12-01

    The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. These structures have been implicated in crevasse propagation and ice-shelf collapse; the Larsen B ice shelf was observed to have a large amount of melt lakes present on its surface just before its collapse in 2002. Through modelling the transport of heat through the surface of the Larsen C ice shelf, where melt lakes have also been observed, this work aims to provide new insights into the ways in which melt lakes are forming and the effect that meltwater filling crevasses on the ice shelf will have. This will enable an assessment of the role of meltwater in triggering ice-shelf collapse. The Antarctic Peninsula, where Larsen C is situated, has warmed several times the global average over the last century and this ice shelf has been suggested as a candidate for becoming fully saturated with meltwater by the end of the current century. Here we present results of a 1-D mathematical model of heat transfer through an idealized ice shelf. When forced with automatic weather station data from Larsen C, surface melting and the subsequent meltwater accumulation, melt lake development and refreezing are demonstrated through the modelled results. Furthermore, the effect of lateral meltwater transport upon melt lakes and the effect of the lakes upon the surface energy balance are examined. Investigating the role of meltwater in ice-shelf stability is key as collapse can affect ocean circulation and temperature, and cause a loss of habitat. Additionally, it can cause a loss of the buttressing effect that ice shelves can have on their tributary glaciers, thus allowing the glaciers to accelerate, contributing to sea-level rise.

  1. Rapid collapse of northern Larsen Ice Shelf, Antarctica

    SciTech Connect

    Rott, H.; Nagler, T.; Skvarca, P.

    1996-02-09

    In January 1995, 4200 square kilometers of the northern Larsen Ice Shelf, Antarctic Peninsula, broke away. Radar images from the ERS-1 satellite, complemented by field observations, showed that the two northernmost sections of the ice shelf fractured and disintegrated almost completely within a few days. This breakup followed a period of steady retreat that coincided with a regional trend of atmospheric warming. The observations imply that after an ice shelf retreats beyond a critical limit, it may collapse rapidly as a result of perturbated mass balance. 26 refs., 5 figs., 1 tab.

  2. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    NASA Astrophysics Data System (ADS)

    Hubbard, Bryn; Luckman, Adrian; Ashmore, David W.; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Philippe, Morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-06-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ~10 °C warmer and ~170 kg m-3 denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades.

  3. Seabed topography beneath Larsen C Ice Shelf from seismic soundings

    NASA Astrophysics Data System (ADS)

    Brisbourne, A. M.; Smith, A. M.; King, E. C.; Nicholls, K. W.; Holland, P. R.; Makinson, K.

    2014-01-01

    Seismic reflection soundings of ice thickness and seabed depth were acquired on the Larsen C Ice Shelf in order to test a sub-ice shelf bathymetry model derived from the inversion of IceBridge gravity data. A series of lines was collected, from the Churchill Peninsula in the north to the Joerg Peninsula in the south, and also towards the ice front. Sites were selected using the bathymetry model derived from the inversion of free-air gravity data to indicate key regions where sub-ice shelf oceanic circulation may be affected by ice draft and seabed depth. The seismic velocity profile in the upper 100 m of firn and ice was derived from shallow refraction surveys at a number of locations. Measured temperatures within the ice column and at the ice base were used to define the velocity profile through the remainder of the ice column. Seismic velocities in the water column were derived from previous in situ measurements. Uncertainties in ice and water cavity thickness are in general < 10 m. Compared with the seismic measurements, the root-mean-square error in the gravimetrically derived bathymetry at the seismic sites is 162 m. The seismic profiles prove the non-existence of several bathymetric features that are indicated in the gravity inversion model, significantly modifying the expected oceanic circulation beneath the ice shelf. Similar features have previously been shown to be highly significant in affecting basal melt rates predicted by ocean models. The discrepancies between the gravity inversion results and the seismic bathymetry are attributed to the assumption of uniform geology inherent in the gravity inversion process and also the sparsity of IceBridge flight lines. Results indicate that care must be taken when using bathymetry models derived by the inversion of free-air gravity anomalies. The bathymetry results presented here will be used to improve existing sub-ice shelf ocean circulation models.

  4. Ocean mixing beneath Pine Island Glacier Ice Shelf

    NASA Astrophysics Data System (ADS)

    Kimura, Satoshi; Dutrieux, Pierre; Jenkins, Adrian; Forryan, Alexander; Naveira Garabato, Alberto; Firing, Yvonne

    2016-04-01

    Ice shelves around Antarctica are vulnerable to increase in ocean-driven melting, with the melt rate depending on ocean temperature and strength of sub-ice-shelf-cavity circulations. We present repeated measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate and thermal variance dissipation rate beneath Pine Island Glacier Ice Shelf, collected by CTD, ADCP and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The turbulence quantities measured by the AUV outside the ice shelf are in good agreement with ship-based measurements. The highest rate of turbulent kinetic energy dissipation is found near the grounding line, while its temporal fluctuation over seabed ridge within the cavity corresponds to the tidal fluctuation predicted in the Pine Island Bay to the west. The highest thermal variance dissipation rate is found when the AUV was 0.5 m away from the ice, and the thermal variance dissipation generally increases with decreasing distance between the AUV and ice.

  5. Ice-Shelf Tidal Flexure and Subglacial Pressure Variations

    NASA Technical Reports Server (NTRS)

    Walker, Ryan T.; Parizek, Byron R.; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.; Christianson, Knut

    2013-01-01

    We develop a model of an ice shelf-ice stream system as a viscoelastic beam partially supported by an elastic foundation. When bed rock near the grounding line acts as a fulcrum, leverage from the ice shelf dropping at low tide can cause significant (approx 1 cm) uplift in the first few kilometers of grounded ice.This uplift and the corresponding depression at high tide lead to basal pressure variations of sufficient magnitude to influence subglacial hydrology.Tidal flexure may thus affect basal lubrication, sediment flow, and till strength, all of which are significant factors in ice-stream dynamics and grounding-line stability. Under certain circumstances, our results suggest the possibility of seawater being drawn into the subglacial water system. The presence of sea water beneath grounded ice would significantly change the radar reflectivity of the grounding zone and complicate the interpretation of grounded versus floating ice based on ice-penetrating radar observations.

  6. Seabed topography beneath Larsen C Ice Shelf from seismic soundings

    NASA Astrophysics Data System (ADS)

    Brisbourne, A. M.; Smith, A. M.; King, E. C.; Nicholls, K. W.; Holland, P. R.; Makinson, K.

    2013-08-01

    Seismic reflection soundings of ice thickness and seabed depth were acquired on the Larsen C Ice Shelf in order to test a sub-shelf bathymetry model derived from the inversion of IceBridge gravity data. A series of lines were collected, from the Churchill Peninsula in the north to the Joerg Peninsula in the south, and also towards the ice front. Sites were selected using the bathymetry model derived from the inversion of free-air gravity data to indicate key regions where sub-shelf oceanic circulation may be affected by ice draft and sub-shelf cavity thickness. The seismic velocity profile in the upper 100 m of firn and ice was derived from shallow refraction surveys at a number of locations. Measured temperatures within the ice column and at the ice base were used to define the velocity profile through the remainder of the ice column. Seismic velocities in the water column were derived from previous in situ measurements. Uncertainties in ice and water cavity thickness are in general <10 m. Compared with the seismic measurements, the root-mean-square error in the gravimetrically derived bathymetry at the seismic sites is 162 m. The seismic profiles prove the non-existence of several bathymetric features that are indicated in the gravity inversion model, significantly modifying the expected oceanic circulation beneath the ice shelf. Similar features have previously been shown to be highly significant in affecting basal melt rates predicted by ocean models. The discrepancies between the gravity inversion results and the seismic bathymetry are attributed to the assumption of uniform geology inherent in the gravity inversion process and also the sparsity of IceBridge flight lines. Results indicate that care must be taken when using bathymetry models derived by the inversion of free-air gravity anomalies. The bathymetry results presented here will be used to improve existing sub-shelf ocean circulation models.

  7. Impact of ice-shelf sediment content on the dynamics of plumes under melting ice shelves

    NASA Astrophysics Data System (ADS)

    Wells, A.

    2015-12-01

    When a floating ice shelf melts into an underlying warm salty ocean, the resulting fresh meltwater can rise in a buoyant Ice-Shelf-Water plume under the ice. In certain settings, ice flowing across the grounding line carries a basal layer of debris rich ice, entrained via basal freezing around till in the upstream ice sheet. Melting of this debris-laden ice from floating ice shelves provides a flux of dense sediment to the ocean, in addition to the release of fresh buoyant meltwater. This presentation considers the impact of the resulting suspended sediment on the dynamics of ice shelf water plumes, and identifies two key flow regimes depending on the sediment concentration frozen into the basal ice layer. For large sediment concentration, melting of the debris-laden ice shelf generates dense convectively unstable waters that drive convective overturning into the underlying ocean. For lower sediment concentration, the sediment initially remains suspended in a buoyant meltwater plume rising along the underside of the ice shelf, before slowly depositing into the underlying ocean. A theoretical plume model is used to evaluate the significance of the negatively buoyant sediment on circulation strength and the feedbacks on melting rate, along with the expected depositional patterns under the ice shelf.

  8. Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal sea ice: basal sea ice communities as a capacitor for iron.

    PubMed

    Noble, Abigail E; Moran, Dawn M; Allen, Andrew E; Saito, Mak A

    2013-01-01

    Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO(3-) 4 ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic

  9. Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal sea ice: basal sea ice communities as a capacitor for iron

    PubMed Central

    Noble, Abigail E.; Moran, Dawn M.; Allen, Andrew E.; Saito, Mak A.

    2013-01-01

    Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO3−4 ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic

  10. Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal sea ice: basal sea ice communities as a capacitor for iron

    NASA Astrophysics Data System (ADS)

    Noble, Abigail; Saito, Mak; Moran, Dawn; Allen, Andrew

    2013-10-01

    Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO43- ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic expeditions.

  11. Mg/Casea surface temperatures during the Marine Isotope Stage 31 collapse of the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Dunbar, G. B.

    2012-04-01

    The recovery of the AND-1b and CRP-1 drill cores from the Southwest Ross Sea highlighted the potential instability in of the Ross Ice Shelf and the West Antarctic Ice Sheet it buttresses. Both cores recovered a few individuals of the planktonic foraminifera Neogloboquadrina pachyderma from marine isotope stage (MIS) 31. This interval is significant because it marks the youngest occurrence of open ocean diatom sediment at AND-1b, which is now situated under the McMurdo Ice Shelf, indicating a substantial retreat of the Ross Ice Shelf occurred during this interglacial. However, sediment deposited after MIS 31 at both sites is represented only by glacial-dominated sediment, suggesting a critical environmental threshold had been crossed enabling the Ross Ice Shelf to form and persist. Numerical modeling by Pollard and DeConto (Nature, 2009) suggested that sub-ice oceanic melting is a critical element in the stability of ice shelves and that "WAIS will begin to collapse when nearby ocean temperatures warm by roughly 5°C." Laser ablation ICPMS measurement of the Mg/Ca content of N. pachyderma shows that although there is considerable heterogeneity in the distribution of Mg in their tests the mean Mg/Ca of a sample population appears proportional to calcification temperature. By empirically calibrating Mg/Ca in CRP-1 N. pachyderma against values measured in modern populations collected from Ross Sea and Southern Ocean sites with SSTs ranging from 1.2°C to 14°C it is concluded that SST during MIS 31 was warmer than today by 5-9°C, consistent with model projections.

  12. Ice velocity at the ice front of the Filchner-Ronne Ice Shelf, Antarctica, as observed with ERS interferometry

    NASA Technical Reports Server (NTRS)

    Rignot, Eric; MacAyeal, Douglas R.

    1997-01-01

    ERS images of the two ends of the ice front of the Filchner-Ronne ice shelf (Antarctica) were utilized interferometrically to study the deformation rate of the ice shelf in response to viscous creep. On the western bank of Berkner Island (BI), near Hemmen Ice Rise (HIR), a time series of ERS data acquired in February 1992, in both ascending and descending mode, and with a three-day time interval, were utilized to map the ice velocity in two dimensions. Finite-element ice-shelf flow simulations are compared with the ERS interferograms to interpret the ice motion in terms of the physical constraints on ice-shelf flow. The efforts to fit artificial interferograms generated with model velocity output suggest that the flow regime is strongly influenced by three processes. First, a void-creation process responsible for rifts at coastal margins tends to uncouple the ice shelf from the ice rise and neighboring coast of BI. Secondly, sea ice within the void space appears to act as a binding agent between discrete ice-shelf fragments, allowing rigid-body rotations of these fragments. Third, strain rates appear to be enhanced in a narrow zone adjacent to HIR, implying significant strain softening along the boundary. It is believed that synthetic aperture radar (SAR) interferogram/model intercomparison represents a powerful impetus towards the development of better, more physically realistic ice-shelf flow models.

  13. Changes on the ice plain of Ice Stream B and Ross Ice Shelf

    NASA Technical Reports Server (NTRS)

    Shabtaie, Sion

    1993-01-01

    During the 1970's and 1980's, nearly 200 stations from which accurate, three dimensional position fixes have been obtained from TRANSIT satellites were occupied throughout the Ross Ice Shelf. We have transformed the elevations obtained by satellite altimetry to the same geodetic datum, and then applied a second transformation to reduce the geodetic heights to elevations above mean sea level using the GEM-10C geoidal height. On the IGY Ross Ice Shelf traverse between Oct. 1957 and Feb. 1958, an accurate method of barometric altimetry was used on a loop around the ice shelf that was directly tied to the sea at both ends of the travel route, thus providing absolute elevations. Comparisons of the two sets of data at 32 station pairs on floating ice show a mean difference of 0 +/- 1 m. The elevation data were also compared with theoretical values of elevations for a hydrostatically floating ice shelf. The mean difference between theoretical and measured values of elevations is -2 +/- 1 m.

  14. Antarctic Ice-Shelf Front Dynamics from ICESat

    NASA Technical Reports Server (NTRS)

    Robbins, John W.; Zwally, H. Jay; Saba, Jack L.; Yi, Donghui

    2012-01-01

    Time variable elevation profiles from ICESat Laser Altimetry over the period 2003-2009 provide a means to quantitatively detect and track topographic features on polar ice surfaces. The results of this study provide a measure of the horizontal motion of ice-shelf fronts. We examine the time histories of elevation profiles crossing the ice fronts of the Ross, Ronne, Filchner, Riiser-Larson and Fimbul shelves. This provides a basis for estimating dynamics in two dimensions, i.e. in elevation and horizontally in the along-track direction. Ice front velocities, corrected for ground-track intersection angle, range from nearly static to 1.1 km/yr. In many examples, a decrease in elevation up to 1 m/yr near the shelf frontis also detectable. Examples of tabular calving along shelf fronts are seen in some elevation profiles and are confirmed by corresponding MODIS imagery.

  15. Ross Ice Shelf Seismic Survey and Future Drilling Recommendation

    NASA Astrophysics Data System (ADS)

    van Haastrecht, Laurine; Ohneiser, Christian; Gorman, Andrew; Hulbe, Christina

    2016-04-01

    The Ross Ice Shelf (RIS) is one of three gateways through which change in the ocean can be propagated into the interior of West Antarctica. Both the geologic record and ice sheet models indicate that it has experienced widespread retreat under past warm climates. But inland of the continental shelf, there are limited data available to validate the models. Understanding what controls the rate at which the ice shelf will respond to future climate change is central to making useful climate projections. Determining the retreat rate at the end of the last glacial maximum is one part of this challenge. In November 2015, four lines of multi-channel seismic data, totalling over 45 km, were collected on the Ross Ice Shelf, approximately 300 km south of Ross Island using a thumper seismic source and a 96 channel snow streamer. The seismic survey was undertaken under the New Zealand Antarctic Research Institute (NZARI) funded Aotearoa New Zealand Ross Ice Shelf Programme to resolve bathymetric details and to image sea floor sediments under a proposed drilling site on the ice shelf, at about 80.7 S and 174 E. The thumper, a purpose-built, trailer mounted, weight-drop seismic source was towed behind a Hägglund tracked vehicle to image the bathymetry and sediments underneath the RIS. Seismic data collection on an ice shelf has unique challenges, in particular strong attenuation of the seismic energy by snow and firn, and complex multiple ray paths. The thumper, which consists of a heavy weight (250kg) that is dropped on a large, ski mounted steel plate, produced a consistent, repeatable higher energy signal when compared to sledge hammer source and allowed for a greater geographic coverage and lower environmental impact than an explosive source survey. Our survey revealed that the seafloor is smooth and that there may be up to 100 m of layered sediments beneath the seafloor and possibly deeper, more complex structures. A multiple generated by internally reflected seismic energy

  16. DEM, tide and velocity over sulzberger ice shelf, West Antarctica

    USGS Publications Warehouse

    Baek, S.; Shum, C.K.; Lee, H.; Yi, Y.; Kwoun, Oh-Ig; Lu, Zhiming; Braun, Andreas

    2005-01-01

    Arctic and Antarctic ice sheets preserve more than 77% of the global fresh water and could raise global sea level by several meters if completely melted. Ocean tides near and under ice shelves shifts the grounding line position significantly and are one of current limitations to study glacier dynamics and mass balance. The Sulzberger ice shelf is an area of ice mass flux change in West Antarctica and has not yet been well studied. In this study, we use repeat-pass synthetic aperture radar (SAR) interferometry data from the ERS-1 and ERS-2 tandem missions for generation of a high-resolution (60-m) Digital Elevation Model (DEM) including tidal deformation detection and ice stream velocity of the Sulzberger Ice Shelf. Other satellite data such as laser altimeter measurements with fine foot-prints (70-m) from NASA's ICESat are used for validation and analyses. The resulting DEM has an accuracy of-0.57??5.88 m and is demonstrated to be useful for grounding line detection and ice mass balance studies. The deformation observed by InSAR is found to be primarily due to ocean tides and atmospheric pressure. The 2-D ice stream velocities computed agree qualitatively with previous methods on part of the Ice Shelf from passive microwave remote-sensing data (i.e., LANDSAT). ?? 2005 IEEE.

  17. Ocean mixing beneath Pine Island Glacier ice shelf, West Antarctica

    NASA Astrophysics Data System (ADS)

    Kimura, Satoshi; Jenkins, Adrian; Dutrieux, Pierre; Forryan, Alexander; Naveira Garabato, Alberto C.; Firing, Yvonne

    2016-12-01

    Ice shelves around Antarctica are vulnerable to an increase in ocean-driven melting, with the melt rate depending on ocean temperature and the strength of flow inside the ice-shelf cavities. We present measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate, and thermal variance dissipation rate beneath Pine Island Glacier ice shelf, West Antarctica. These measurements were obtained by CTD, ADCP, and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The highest turbulent kinetic energy dissipation rate is found near the grounding line. The thermal variance dissipation rate increases closer to the ice-shelf base, with a maximum value found ˜0.5 m away from the ice. The measurements of turbulent kinetic energy dissipation rate near the ice are used to estimate basal melting of the ice shelf. The dissipation-rate-based melt rate estimates is sensitive to the stability correction parameter in the linear approximation of universal function of the Monin-Obukhov similarity theory for stratified boundary layers. We argue that our estimates of basal melting from dissipation rates are within a range of previous estimates of basal melting.

  18. Seasonal circulation under the eastern Ross Ice Shelf, Antarctia

    SciTech Connect

    Hellmer, H.H.; Jacobs, S.S.

    1995-06-15

    An annual cycle of shelf water temperatures and salinities measured at depth near the eastern Ross Ice Shelf front is used to force a two-dimensional thermohaline circulation model adapted to different subice paths in the vicinity of Roosevelt Island. These paths were assumed to have constant water column thicknesses of 160, 200, and 240 m and lengths of 460-800 km. Additional simulations with the longer cavity included a 80-m thick interior water column in order to approximate conditions closer to the grounding line. Model results were compared with other long-term measurements that showed outflow from beneath the ice shelf. Shelf water flowing into the cavity west of Roosevelt Island appears to follow a cyclonic route around the island. The ice shelf base loses mass at a rate of 18-27 cm yr{sup {minus}1}, with seasonal forcing increasing the spatial and temporal variability of circulation and property distributions in the larger cavities. Shallow cavities reduce the influence of shelf water variability with increasing length. Introducing a transient shelf water temperature rise of 0.01{degrees}C yr {sup {minus}1} for 100 years increases the melt rate by 4-5 times. However, this increase is smaller if salinity also decreases over the same period of time, as might be expected from the added meltwater component. 42 refs., 9 figs.

  19. The internal structure of the Brunt Ice Shelf, Antarctica from ice-penetrating radar

    NASA Astrophysics Data System (ADS)

    King, Edward; De Rydt, Jan; Gudmundsson, Hilmar

    2016-04-01

    The Brunt Ice Shelf is a small feature on the Coats Land Coast of the Weddell Sea, Antarctica. It is unusual among Antarctic ice shelves because the ice crossing the grounding line from the ice sheet retains no structural integrity, so the ice shelf comprises icebergs of continental ice cemented together by sea ice, with the whole blanketed by in-situ snowfall. The size and distribution of the icebergs is governed by the thickness profile along the grounding line. Where bedrock troughs discharge thick ice to the ice shelf, the icebergs are large and remain close together with little intervening sea ice. Where bedrock ridges mean the ice crossing the grounding line is thin, the icebergs are small and widely-scattered with large areas of sea ice between them. To better understand the internal structure of the Brunt Ice Shelf and how this might affect the flow dynamics we conducted ice-penetrating radar surveys during December 2015 and January 2016. Three different ground-based radar systems were used, operating at centre frequencies of 400, 50 and 10 MHz respectively. The 400 MHz system gave detailed firn structure and accumulation profiles as well as time-lapse profiles of the active propagation of a crevasse. The 50 MHz system provided intermediate-level detail of iceberg distribution and thickness as well as information on the degree of salt water infiltration into the accumulating snow pack. The 10 MHz system used a high-power transmitter in an attempt to measure ice thickness beneath salt-impregnated ice. In this poster we will present example data from each of the three radar systems which will demonstrate the variability of the internal structure of the ice shelf. We will also present preliminary correlations between the internal structure and the surface topography from satellite data.

  20. Evidence for a former large ice sheet in the Orville Coast- Ronne Ice Shelf area, Antarctica.

    USGS Publications Warehouse

    Carrara, P.

    1981-01-01

    The Orville Coast area of the Antarctic Peninsula was extensively glacierized in the past. Striations, polished rock surfaces, and erratics on nunatak summits indicate that this area was covered by a broad regional ice sheet whose grounded ice margin was on the continental shelf, in the present-day Ronne Ice Shelf area. If the glacial history of Antarctica has been controlled by eustatic sea-level changes, the destruction of this ice sheet would have been contemporaneous with that of the Ross Sea ice sheet due to the world-wide rise of eustatic sea-level at the end of the Wisconsin glaciation. -Author

  1. Evolving Toward the Next Antarctic Ice Shelf Disintegration: Recent Ice Velocity, Climate, and Ocean Observations of the Larsen B Ice Shelf Remnants

    NASA Astrophysics Data System (ADS)

    Scambos, T. A.; Shuman, C. A.; Truffer, M.; Pettit, E. C.; Huber, B. A.; Haran, T. M.; Ross, R.; Domack, E. W.

    2013-12-01

    Ice shelf / ice tongue disintegrations and break-ups have a major effect on glacier mass balance, and nowhere has this been more evident than in the northern sections of the Larsen Ice Shelf in the Antarctic Peninsula. Ice flux in this region surged 2- to 6-fold after the 1995 and 2002 ice shelf disintegration events, driven by a group of processes based on the presence of extensive surface melt lakes. However, precursor changes in the ice shelves beginning more than a decade before the events have been identified. A new assessment of these provides insight on the earliest causes of ice shelf change. Among the precursor changes are an increase in meltwater lake extent, structural changes in the ice shelf shear margins, grounding line changes, and pre-breakup acceleration of the ice shelves and feeder glaciers. In the aftermath of the 2002 disintegration of the Larsen B, the two large remnant ice shelves at Seal Nunataks (~400 km2) and Scar Inlet (~2400 km2) have also evolved in these ways. These changes have been measured by a combination of in situ automated observation systems (AMIGOS: see Scambos et al., 2013, J. Glaciol.) and remote sensing as part of the Larsen Ice Shelf System, Antarctica (LARISSA) NSF project and NASA Cryosphere Program funding. Ice flow speed on the central Scar Inlet ice shelf has increased 60% between 2002 and 2012 (425 to 675 m/yr), and by 20% (540 to 660 m/yr) just above the grounding line of Flask Glacier, a tributary. Elevation change data from ICESat altimetry and ASTER stereo images show evidence of grounding line movement for Flask between 2003 and 2008, and for Crane Glacier prior to the 2002 break-up. In late 2002, and again in late 2012, major new rifts have formed on the southern portion of the Scar Inlet shelf, and the northwestern shear zone has rapidly evolved. The ice speed increase and the new rifts are inferred to be due to significant structural changes in the ice shelf shear margin on its northern side (concentration of

  2. Mass balance for a meteoric ice layer of the Amery Ice Shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Cheng, X.; Hui, F.

    2011-12-01

    Snow accumulation on the upper surface and melting from the lower surface are important to the mass balance of an ice shelf. However the ice shelf surface accumulation measurements are only available from stakes, firn-core records and automatic weather station (AWS) measurements. The total mass balance can be obtained from the continuity equation by employing the steady-state assumption. But it is hardly used to calculate the mass balance, due to the lack of spatially continuous data, the uncertainty of ice flow properties, and other limitations. With the recently structural glaciological description and more updated datasets, a modified mass-balance model for a meteoric ice layer was developed and applied to a longitudinal flowband of the Amery ice shelf, East Antarctica. The datasets of ice velocity and meteoric ice thickness are employed. Here, the changes in ice flow velocity, meteoric ice thickness on the centre flowline, as well as flowband width with the distance along the flowband was modeled by piecewise cubic polynomial fitting. The original model overestimates the mass balance. We introduce a ratio to modify it model with only one observation. The model was then used to simulate the mass balance of a meteoric ice layer along a longitudinal flowband that extends some 300 km all way to the calving front. Sensitivity tests showed that the modeled mass balance is nearly equally sensitive to changes in ice flow velocity, ice thickness, and flow width. But there is more uncertainty with changes in flow width because the flowband boundary is delineated manually. The results were compared to observations and previous studies, which showed that the model ignoring the changes in flow width has better simulation result. The calculated specific mass balance of the meteoric ice layer is from 0.6812 m/a near the ice shelf front to -0.2645 m/a 300 km far away from the ice shelf front.

  3. High Resolution Ice Surface of the Ross Ice Shelf: Accuracy and Links to Basal Processes

    NASA Astrophysics Data System (ADS)

    Starke, S. E.

    2015-12-01

    We use airborne laser altimetry data from IcePod and IceBridge to map the surface across the Ross Ice Shelf in Antarctica. Laser altimetry and radar data is analyzed from the IcePod 2014 and 2015 field campaigns as well as IceBridge 2013. Icepod is a multi sensor suite that includes ice penetrating radars, a swath scanning laser, visible and IR cameras as well as GPS mounted on a LC-130. Using shallow ice radar data from both IcePod and IceBridge we identify the base of the ice shelf. Across the shelf we observe distinct areas of high reflectivity in the radar data suggesting basal crevassing. In some regions, the basal reflector is not well defined. Laser altimetry profiles correlate surface morphology with features at the base including basal crevasses and marine ice formed by freezing on to the base of the ice shelf. Building Digital Elevation Models (DEMs) from the laser altimetry data, we investigate the relationship between the surface expressions of these ice shelf dynamics including thickness changes, potential sites of marine ice at the base and basal morphology in regions where a well defined basal reflector does not exist in the radar profiles. We present accuracy of the IcePod laser altimetry dataset using ground control points and GPS grids from Greenland and Antarctica as well as Photogrammetric DEMs. Our laser altimetry analysis resolves sub-meter surface features which, combined with coincident radar, provides a link between basal processes and their surface expressions.

  4. Ocean and Atmosphere Forcing of Larsen Ice Shelf Thinning

    NASA Astrophysics Data System (ADS)

    Holland, P.; Brisbourne, A.; Corr, H. F. J.; McGrath, D.; Purdon, K.; Paden, J. D.; Fricker, H. A.; Padman, L.; Paolo, F. S.; Fleming, A. H.

    2014-12-01

    The ice shelves of the Antarctic Peninsula (AP) have shown a progressive decline over the last five decades, including the spectacular collapses of Larsen A Ice Shelf in 1995 and Larsen B in 2002. These collapses have accelerated the flow of ice inland, contributing significantly to sea-level rise, and have also freshened the Antarctic Bottom Water formed nearby. Larsen C Ice Shelf (LCIS), the largest on the peninsula, has progressively lowered since 1992, but the origin of this lowering remains controversial; it has been attributed to ocean melting, but most evidence has favoured enhanced firn (snowpack) compaction. By applying a novel method to the data from eight separate radar surveys of LCIS spanning a 15-year period, we show that the lowering is caused by both ice loss and firn air loss. The ice loss may be caused by unbalanced ocean melting, so oceanic changes have contributed to the wastage of LCIS in addition to the well-documented atmospheric warming in the region. If naively extrapolated in space and time, the air loss rate would deplete LCIS firn within 2-3 centuries, while the ice loss could cause LCIS to unground from Bawden Ice Rise within 2-4 centuries. Until we better understand the atmosphere and ocean forcing of the AP Ice Sheet, it will not be possible to project its future stability or determine the anthropogenic contribution to its decline.

  5. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation.

    PubMed

    Jakobsson, Martin; Nilsson, Johan; Anderson, Leif; Backman, Jan; Björk, Göran; Cronin, Thomas M; Kirchner, Nina; Koshurnikov, Andrey; Mayer, Larry; Noormets, Riko; O'Regan, Matthew; Stranne, Christian; Ananiev, Roman; Barrientos Macho, Natalia; Cherniykh, Denis; Coxall, Helen; Eriksson, Björn; Flodén, Tom; Gemery, Laura; Gustafsson, Örjan; Jerram, Kevin; Johansson, Carina; Khortov, Alexey; Mohammad, Rezwan; Semiletov, Igor

    2016-01-18

    The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (∼ 140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening.

  6. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation

    USGS Publications Warehouse

    Jakobsson, Martin; Nilsson, Johan; Anderson, Leif G.; Backman, Jan; Bjork, Goran; Cronin, Thomas M.; Kirchner, Nina; Koshurnikov, Andrey; Mayer, Larry; Noormets, Riko; O'Regan, Matthew; Stranne, Christian; Ananiev, Roman; Macho, Natalia Barrientos; Cherniykh, Dennis; Coxall, Helen; Eriksson, Bjorn; Floden, Tom; Gemery, Laura; Gustafsson, Orjan; Jerram, Kevin; Johansson, Carina; Khortov, Alexey; Mohammad, Rezwan; Semiletov, Igor

    2016-01-01

    The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (~140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening.

  7. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation

    PubMed Central

    Jakobsson, Martin; Nilsson, Johan; Anderson, Leif; Backman, Jan; Björk, Göran; Cronin, Thomas M.; Kirchner, Nina; Koshurnikov, Andrey; Mayer, Larry; Noormets, Riko; O'Regan, Matthew; Stranne, Christian; Ananiev, Roman; Barrientos Macho, Natalia; Cherniykh, Denis; Coxall, Helen; Eriksson, Björn; Flodén, Tom; Gemery, Laura; Gustafsson, Örjan; Jerram, Kevin; Johansson, Carina; Khortov, Alexey; Mohammad, Rezwan; Semiletov, Igor

    2016-01-01

    The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (∼140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening. PMID:26778247

  8. CLIVAR Exchanges No. 62: Sea Level Rise, Ocean/Ice Shelf Interactions and Ice Sheets

    SciTech Connect

    Pirani, Anna; Danabasoglu, Gokhan; Griffies, Stephen; Marsland, Simon

    2013-08-01

    This special issue of CLIVAR Exchanges is devoted to presenting a selection of the science contributed by both speakers and poster presenters at the CLIVAR Workshop on Sea Level Rise, Ocean/Ice Shelf Interactions and Ice Sheets at CSIRO Marine and Atmospheric Research in Hobart, Australia, on 18-20 February 2013. The workshop brought together leading international scientists and early-career researchers from the ocean, ice-sheet, ice-shelf, and sea-level rise modelling and observational communities to explore the state-of-science and emerging pathways for development of the next generation of coupled climate models.

  9. Mertz Ice Shelf Dynamics in the Last Twenty Years

    NASA Astrophysics Data System (ADS)

    Wang, X.; Cheng, X.; Shum, C.

    2013-12-01

    In February 2010, the Mertz Ice Tongue collapsed and generated a giant iceberg. However, parameters about this iceberg have not been calculated and published in detail. In this study, the freeboard map of this iceberg was generated for the first time using a time-series ICESat/GLAS data. Methods for producing the freeboard map of this iceberg are suggested. Field data for ice velocity were used to relocate the footprints collected by different campaigns. Cross-validation was conducted with freeboards extracted from crossovers observed within 30 days of each other. The precision of the freeboard extraction is approximately 0.50 m, when taking one standard deviation as the precision. The freeboard varied from 23 m to 59 m with an averaged 41 m. The histogram of crevasse depth on Mertz Ice Shelf from 2003 to 2009 showed nearly the same annual distribution, indicating the almost stable situation. The crevasse depth ranged from 2m to 10m takes more than 70% every year, with remaining 30% greater than 10m and smaller than 56m. The area of large rift in the right side along ice shelf advancing showed an increasing trend (4.05 square km to 19.4 square km) from 1989 to 2003 and a decreasing trend (19.05 square km to 17.6 square km) from 2003 to 2009. However, large rift in the left side along ice shelf advancing occurred at about 2002 and the area increased to 11.38 square km at the end of 2009. Deep crevasse on surface and expansion of central large rift made Mertz Ice Shelf fragile and disintegrated after collision by an iceberg. With the assumption of hydrostatic equilibrium (assuming a snow layer depth of 1m, a snow density of 360 kg/m^3, an ice density of 915 kg/m^3 and a sea water density of 1024 kg/m^3), the minimum, maximum and average ice thickness for the disintegrated ice tongue were calculated as 210 m, 550 m and 383 m respectively. The total ice loss is approximately 896 G ton over an area, 34 km in width and 75 km in length, or approximately 2560×5 km^2

  10. Atmospheric and oceanic forcing of Larsen C Ice Shelf thinning

    NASA Astrophysics Data System (ADS)

    Holland, P. R.; Brisbourne, A.; Corr, H. F. J.; McGrath, D.; Purdon, K.; Paden, J.; Fricker, H. A.; Paolo, F. S.; Fleming, A. H.

    2015-01-01

    The catastrophic collapses of Larsen A and B ice shelves on the eastern Antarctic Peninsula have caused their tributary glaciers to accelerate, contributing to sea-level rise and freshening the Antarctic Bottom Water formed nearby. The surface of Larsen C Ice Shelf (LCIS), the largest ice shelf on the peninsula, is lowering. This could be caused by unbalanced ocean melting (ice loss) or enhanced firn melting and compaction (englacial air loss). Using a novel method to analyse eight radar surveys, this study derives separate estimates of ice and air thickness changes during a 15 year period. The uncertainties are considerable, but the primary estimate is that the surveyed lowering (0.066 ± 0.017 m yr-1) is caused by both ice loss (0.28 ± 0.18 m yr-1) and firn air loss (0.037 ± 0.026 m yr-1). Though the ice loss is much larger, ice and air loss contribute approximately equally to the lowering. The ice loss could be explained by high basal melting and/or ice divergence, and the air loss by low surface accumulation or high surface melting and/or compaction. The primary estimate therefore requires that at least two forcings caused the surveyed lowering. Mechanisms are discussed by which LCIS stability could be compromised in future, suggesting destabilisation timescales of a few centuries. The most rapid pathways to collapse are offered by a flow perturbation arising from the ungrounding of LCIS from Bawden Ice Rise, or ice-front retreat past a "compressive arch" in strain rates.

  11. Ross Ice Shelf airstream driven by polar vortex cyclone

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-07-01

    The powerful air and ocean currents that flow in and above the Southern Ocean, circling in the Southern Hemisphere's high latitudes, form a barrier to mixing between Antarctica and the rest of the planet. Particularly during the austral winter, strong westerly winds isolate the Antarctic continent from heat, energy, and mass exchange, bolstering the scale of the annual polar ozone depletion and driving the continent's record-breaking low temperatures. Pushing through this wall of high winds, the Ross Ice Shelf airstream (RAS) is responsible for a sizable amount of mass and energy exchange from the Antarctic inland areas to lower latitudes. Sitting due south of New Zealand, the roughly 470,000-square-kilometer Ross Ice Shelf is the continent's largest ice shelf and a hub of activity for Antarctic research. A highly variable lower atmospheric air current, RAS draws air from the inland Antarctic Plateau over the Ross Ice Shelf and past the Ross Sea. Drawing on modeled wind patterns for 2001-2005, Seefeldt and Cassano identify the primary drivers of RAS.

  12. Ross Ice Shelf and the Queen Maude Mounains, Antarctica

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Part of the Ross Ice Shelf and the Queen Maude Mounains of Antarctica (55.5N, 178.0W) are in the background of this scene, oriented toward the south. Low stratocumulus clouds are predominant throughout most of the scene.

  13. Massive subsurface ice formed by refreezing of ice-shelf melt ponds.

    PubMed

    Hubbard, Bryn; Luckman, Adrian; Ashmore, David W; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Philippe, Morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-06-10

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ∼10 °C warmer and ∼170 kg m(-3) denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades.

  14. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    PubMed Central

    Hubbard, Bryn; Luckman, Adrian; Ashmore, David W.; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Philippe, Morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-01-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ∼10 °C warmer and ∼170 kg m−3 denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades. PMID:27283778

  15. Large flux of iron from the Amery Ice Shelf marine ice to Prydz Bay, East Antarctica

    NASA Astrophysics Data System (ADS)

    Herraiz-Borreguero, L.; Lannuzel, D.; van der Merwe, P.; Treverrow, A.; Pedro, J. B.

    2016-08-01

    The Antarctic continental shelf supports a high level of marine primary productivity and is a globally important carbon dioxide (CO2) sink through the photosynthetic fixation of CO2 via the biological pump. Sustaining such high productivity requires a large supply of the essential micronutrient iron (Fe); however, the pathways for Fe delivery to these zones vary spatially and temporally. Our study is the first to report a previously unquantified source of concentrated bioavailable Fe to Antarctic surface waters. We hypothesize that Fe derived from subglacial processes is delivered to euphotic waters through the accretion (Fe storage) and subsequent melting (Fe release) of a marine-accreted layer of ice at the base of the Amery Ice Shelf (AIS). Using satellite-derived Chlorophyll-a data, we show that the soluble Fe supplied by the melting of the marine ice layer is an order of magnitude larger than the required Fe necessary to sustain the large annual phytoplankton bloom in Prydz Bay. Our finding of high concentrations of Fe in AIS marine ice and recent data on increasing rates of ice shelf basal melt in many of Antarctica's ice shelves should encourage further research into glacial and marine sediment transport beneath ice shelves and their sensitivity to current changes in basal melt. Currently, the distribution, volume, and Fe concentration of Antarctic marine ice is poorly constrained. This uncertainty, combined with variable forecasts of increased rates of ice shelf basal melt, limits our ability to predict future Fe supply to Antarctic coastal waters.

  16. Analysis of Ice Plains of Filchner/Ronne Ice Shelf Using ICESat Data

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Fricker, Helen A.; Padman, Laurie

    2010-01-01

    We use repeat-track laser altimeter data from the Ice, Cloud, and land Elevation Satellite (ICESat) to map the grounding zone of Filchner/Ronne Ice Shelf (FRIS), Antarctica. Repeated passes of ICESat reveal ice flexure in the grounding zone occurs as the ice shelf responds to ocean height changes due primarily to tides. In the course of our mapping, we have confirmed or identified three major "ice plains", regions of low surface slope near the GZ where the ice is close to hydrostatic equilibrium: one on Institute Ice Stream, another to its east, and another west of Foundation Ice Stream. The vertical information from repeated ICESat tracks enables us to study the topography and flexure characteristics across these three ice plains, and we use this to develop a classification scheme for ice plains based on their surface topography and their state of flotation. We show that one of these ice plains indicates changes in lateral extent on short time-scales, depending on the state of the ocean tide. Understanding the location and nature of ice plains is important for ice sheet modeling, since they add uncertainty to the absolute boundary between floating and grounded ice.

  17. Does Arctic sea ice reduction foster shelf-basin exchange?

    PubMed

    Ivanov, Vladimir; Watanabe, Eiji

    2013-12-01

    The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter sea ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic sea ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic seas. We have used a simplified model for estimating how increased ice production influences shelf-basin exchange associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical sea ice divergence associated with lateral advection accounts for a significant part of the interannual variations in sea ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of

  18. Basal crevasses and suture zones in the Larsen C Ice Shelf, Antarctica: Implications for ice shelf stability in a warming climate

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel J.

    Understanding ice shelf structure and processes is paramount to future predictions of sea level rise, as nearly 75% of the ice flux from the Antarctic Ice Sheet (AIS) passes through these gates. The breakup of an ice shelf removes the longitudinal back stress acting on the grounded inland ice and leads to flow acceleration, dynamic thinning and frontal retreat, processes that can be sustained for more than a decade. Increased ice discharge to the ocean contributes to global sea level rise. This dissertation investigates basal crevasses and suture zones, two key structural components of ice shelves, in order to understand how the structure of an ice shelf influences its stability in a warming climate. Ground penetrating radar, high-resolution satellite imagery and a variety of modeling approaches are utilized to assess these features on the Larsen C Ice Shelf but in a manner that considers their influence on ice shelf stability around the AIS. Basal crevasses are large-scale (~66% of ice thickness and ten's of kms in length) and abundant features that are significant structural weaknesses. The viscoplastic deformation of the ice shelf in response to the perturbed hydrostatic balance leads to the formation of both surface depressions and crevasses, hence weakening the ice shelf further. Basal crevasses increase the local ice-ocean interface by ~30%, thereby increasing basal roughness and altering ice-ocean interactions. Ice-shelf fractures frequently terminate where they encounter suture zones, regions of material heterogeneity that form at the lateral bounds of meteoric inflows to ice shelves. The termination of a 25 km-long rift in the Churchill Peninsula suture zone is investigated and found to contain ~60 m of accreted marine ice. Steady-state basal melting/freezing rates are determined for the ice shelf and applied to a flowline model to examine the along-flow evolution of ice shelf structure. The thickening surface wedge of locally accumulated meteoric ice

  19. Ice-shelf tidal deflections modelled with a full 3D elastic model

    NASA Astrophysics Data System (ADS)

    Konovalov, Yuri

    2014-05-01

    Ice-shelf flexure modelling was performed using a full 3D finite-difference elastic model, which takes into account sub-ice-shelf seawater flow. The numerical experiments were carried out for the thin plate of ice with changing ice thickness (with trapezoidal profile along the center line). The sub-ice seawater flow was described by the wave channel equation (Holdsworth and Glynn, 1978). In the model ice shelf flexures result from variations in the incoming (outgoing) sea water flux, which flows into (out of) the sub-ice-shelf channel. The numerical experiments were carried out for harmonic incoming seawater fluxes and the ice-shelf flexures were obtained for tidal ocean impacts and for different ice-shelf spatial extents. References Bassis J.N., Fricker H.A., Coleman R., Minster J.-B.: An investigation into the forces that drive ice-shelf rift propagation on the Amery Ice Shelf, East Antarcyica. J. of Glaciol. 54 (184): 17-27, 2008. Holdsworth G and Glynn J.: Iceberg calving from floating glaciers by a vibrating mechanism. Nature. 274, 464-466, 1978. Konovalov Y. V.: Ice-shelf resonance deflections modelled with a 2D elastic centre-line model. Physical Review & Research International, 4(1), 9-29, 2014. Vaughan D.G.: Tidal flexure at ice shelf margins. J. Geophys. Res. 100(B4), 6213-6224, 2002.

  20. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    NASA Technical Reports Server (NTRS)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  1. Bathymetric and oceanic controls on Abbot Ice Shelf thickness and stability

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Jacobs, S. S.; Tinto, K. J.; Bell, R. E.

    2014-05-01

    Ice shelves play key roles in stabilizing Antarctica's ice sheets, maintaining its high albedo and returning freshwater to the Southern Ocean. Improved data sets of ice shelf draft and underlying bathymetry are important for assessing ocean-ice interactions and modeling ice response to climate change. The long, narrow Abbot Ice Shelf south of Thurston Island produces a large volume of meltwater, but is close to being in overall mass balance. Here we invert NASA Operation IceBridge (OIB) airborne gravity data over the Abbot region to obtain sub-ice bathymetry, and combine OIB elevation and ice thickness measurements to estimate ice draft. A series of asymmetric fault-bounded basins formed during rifting of Zealandia from Antarctica underlie the Abbot Ice Shelf west of 94° W and the Cosgrove Ice Shelf to the south. Sub-ice water column depths along OIB flight lines are sufficiently deep to allow warm deep and thermocline waters observed near the western Abbot ice front to circulate through much of the ice shelf cavity. An average ice shelf draft of ~200 m, 15% less than the Bedmap2 compilation, coincides with the summer transition between the ocean surface mixed layer and upper thermocline. Thick ice streams feeding the Abbot cross relatively stable grounding lines and are rapidly thinned by the warmest inflow. While the ice shelf is presently in equilibrium, the overall correspondence between draft distribution and thermocline depth indicates sensitivity to changes in characteristics of the ocean surface and deep waters.

  2. Ambient noise correlation on the Amery Ice Shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    Zhan, Zhongwen; Tsai, Victor C.; Jackson, Jennifer M.; Helmberger, Don

    2014-03-01

    The structure of ice shelves is important for modelling the dynamics of ice flux from the continents to the oceans. While other, more traditional techniques provide many constraints, passive imaging with seismic noise is a complementary tool for studying and monitoring ice shelves. As a proof of concept, here we study noise cross-correlations and autocorrelations on the Amery Ice Shelf, East Antarctica. We find that the noise field on the ice shelf is dominated by energy trapped in a low-velocity waveguide caused by the water layer below the ice. Within this interpretation, we explain spectral ratios of the noise cross-correlations as P-wave resonances in the water layer, and obtain an independent estimate of the water-column thickness, consistent with other measurements. For stations with noise dominated by elastic waves, noise autocorrelations also provide similar results. High-frequency noise correlations also require a 50-m firn layer near the surface with P-wave velocity as low as 1 km s-1. Our study may also provide insight for future planetary missions that involve seismic exploration of icy satellites such as Titan and Europa.

  3. Ambient Noise Correlation on the Amery Ice Shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    Tsai, V. C.; Zhan, Z.; Jackson, J. M.; Helmberger, D. V.

    2013-12-01

    The structure of ice shelves is important for modeling the dynamics of ice flux from the continents to the oceans. While other, more traditional techniques provide important constraints, passive imaging with seismic noise is a complimentary tool for studying and monitoring ice shelves. As a proof of concept, here we study noise cross-correlations and auto-correlations on the Amery Ice Shelf, East Antarctica. We find that the noise field on the ice shelf is dominated by energy trapped in a low-velocity waveguide caused by the water layer below the ice. Within this interpretation, we explain spectral ratios of the noise cross-correlations as P-wave resonances in the water layer, and obtain an independent estimate of the water-column thickness, consistent with other measurements. For stations with low levels of incoherent noise, noise auto-correlations also provide similar results. High-frequency noise correlations also require a 50-m firn layer near the surface with P-wave velocities as low as 1 km/s. Our results also have implications for the experimental designs of future seismological missions to icy satellites such as Titan and Europa.

  4. Western Ross Sea and McMurdo Sound Ice Forecasting Guide.

    DTIC Science & Technology

    1975-06-01

    km (41.6 nmi) long (north-south) between Cape Bird and Cape Armitage (fig 15). The island is dominated by Mount Erebus (3,795 m, 12,450 ft) fron...which a ridge extends eastward to Mount Terra Nova (1,829 m, 6,000 ft) and Mount Terror (3,094 m, 10,150 ft) and northward to Mount Bird (1,719 m, 5,640...south of Erebus Ice Tongue. The average extent of fast ice was almost always greater than median values owing to more years with an unusually large

  5. Ocean variability contributing to basal melt rate near the ice front of Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Arzeno, Isabella B.; Beardsley, Robert C.; Limeburner, Richard; Owens, Breck; Padman, Laurie; Springer, Scott R.; Stewart, Craig L.; Williams, Michael J. M.

    2014-07-01

    Basal melting of ice shelves is an important, but poorly understood, cause of Antarctic ice sheet mass loss and freshwater production. We use data from two moorings deployed through Ross Ice Shelf, ˜6 and ˜16 km south of the ice front east of Ross Island, and numerical models to show how the basal melting rate near the ice front depends on sub-ice-shelf ocean variability. The moorings measured water velocity, conductivity, and temperature for ˜2 months starting in late November 2010. About half of the current velocity variance was due to tides, predominantly diurnal components, with the remainder due to subtidal oscillations with periods of a few days. Subtidal variability was dominated by barotropic currents that were large until mid-December and significantly reduced afterward. Subtidal currents were correlated between moorings but uncorrelated with local winds, suggesting the presence of waves or eddies that may be associated with the abrupt change in water column thickness and strong hydrographic gradients at the ice front. Estimated melt rate was ˜1.2 ± 0.5 m a-1 at each site during the deployment period, consistent with measured trends in ice surface elevation from GPS time series. The models predicted similar annual-averaged melt rates with a strong annual cycle related to seasonal provision of warm water to the ice base. These results show that accurately modeling the high spatial and temporal ocean variability close to the ice-shelf front is critical to predicting time-dependent and mean values of meltwater production and ice-shelf thinning.

  6. Ground surface temperature and humidity, ground temperature cycles and the ice table depths in University Valley, McMurdo Dry Valleys of Antarctica

    NASA Astrophysics Data System (ADS)

    Fisher, David A.; Lacelle, Denis; Pollard, Wayne; Davila, Alfonso; McKay, Christopher P.

    2016-11-01

    In the upper McMurdo Dry Valleys, 90% of the measured ice table depths range from 0 to 80 cm; however, numerical models predict that the ice table is not in equilibrium with current climate conditions and should be deeper than measured. This study explored the effects of boundary conditions (air versus ground surface temperature and humidity), ground temperature cycles, and their diminishing amplitude with depth and advective flows (Darcy flow and wind pumping) on water vapor fluxes in soils and ice table depths using the REGO vapor diffusion model. We conducted a series of numerical experiments that illustrated different hypothetical scenarios and estimated the water vapor flux and ice table depth using the conditions in University Valley, a small high elevation valley. In situ measurements showed that while the mean annual ground surface temperature approximates that in the air, the mean annual ground surface relative humidity (>85%ice) was significantly higher than in the atmosphere ( 50%ice). When ground surface temperature and humidity were used as boundary conditions, along with damping diurnal and annual temperature cycles within the sandy soil, REGO predicted that measured ice table depths in the valley were in equilibrium with contemporary conditions. Based on model results, a dry soil column can become saturated with ice within centuries. Overall, the results from the new soil data and modeling have implications regarding the factors and boundary conditions that affect the stability of ground ice in cold and hyperarid regions where liquid water is rare.

  7. Sea-ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F.; Sharma, G. D.; Burns, J. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Over 1500 water samples from surface and from standard hydrographic depths were collected during June and July 1973 from Bering Sea and Gulf of Alaska. The measurement of temperature, salinity, and productivity indicated that various distinct water masses cover the Bering Sea Shelf. The suspended load in surface waters will be correlated with the ERTS-1 imagery as it becomes available to delineate the surface water circulation. The movement of ice floes in the Bering Strait and Bering Sea indicated that movement of ice varies considerably and may depend on wind stress as well as ocean currents.

  8. Recent changes in the flow of the Ross Ice Shelf, West Antarctica

    NASA Astrophysics Data System (ADS)

    Hulbe, Christina L.; Scambos, Ted A.; Lee, Choon-Ki; Bohlander, Jennifer; Haran, Terry

    2013-08-01

    Comparison of surface velocities measured during the Ross Ice Shelf Geophysical and Glaciological Survey (RIGGS, 1973 to 1978) and velocities measured via feature tracking between two Moderate-resolution Imaging Spectroradiometer (MODIS) mosaics (compiled from 2003/4 and 2008/9 images) reveals widespread slowing and minor areas of acceleration in the Ross Ice Shelf (RIS) over the approximately 30 year interval. The largest changes (-13 ma) occur near the Whillans and Mercer Ice Streams grounding line in the southernmost part of the ice shelf. Speed has increased over the interval (up to 5 ma) between the MacAyeal Ice Stream grounding line and the shelf front, and along the eastern shelf front. Changes in ice thickness computed using ICESat laser altimetry are used together with a well-tested model of the ice shelf to investigate underlying causes of change in the flow of the ice shelf over time. The observed transients represent a combination of recent forcings and ongoing response to ice stream discharge variations over the past millennium. While evidence of older events may be present, the modern signal is dominated by shorter time scale events, including the stagnation of Kamb Ice Stream about 160 years ago, recent changes in basal drag on the Whillans Ice Stream ice plain and, perhaps, iceberg calving. Details in embayment geometry, for example the shallow sea floor below Crary Ice Rise, modulate the spatial pattern of ice shelf response to boundary condition perturbations.

  9. Dissolved gases in perennially ice-covered lakes of the McMurdo Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    Andersen, D. T.; McKay, C. P.; Wharton, R. A. Jr; Wharton RA, J. r. (Principal Investigator)

    1998-01-01

    Measurements of dissolved N2, O2, Ar, CO2, and CH4 were made in perennially ice-covered Lake Hoare. Results confirm previous reports that O2 concentrations in the upper water column exceed atmospheric equilibrium and that N2 and Ar are supersaturated throughout the water column. The mean supersaturation of N2 was found to be 2.0 (+/- 0.37) and Ar was 3.8 (+/- 1.1). The ratios of N2/Ar (20.3 +/- 13.8), and O2/Ar (22.5 +/- 4.0) at the ice-water interface are consistent with those previously measured, suggesting that bubble formation is the main process for removing gas from the lake. However, the saturations of N2 and Ar greatly exceed those previously predicted for degassing by bubble formation only at the ice-water interface. The data support the hypothesis that removal of gas by bubbles occurs in the water column to a depth of 11 m in Lake Hoare. CO2 concentration increases from near zero at the ice-water interface to 80-100 times saturation at and below the chemocline at c. 28 m. There is considerable variability in the gas concentrations throughout the water column; samples separated in depth by one metre may vary by more than 50% in gas content. It is likely that this phenomenon results from the lack of turbulent mixing in the water column. Methane (c. 2 micrograms l-1) was detected below the chemocline and immediately above the sediment/water interface at a depth of 30 m. Samples from lakes Vanda, Joyce, and Miers, also show supersaturations of O2, N2, and Ar at levels similar to levels found in Lake Hoare.

  10. Life Detection and Characterization of Subsurface Ice and Brine in the McMurdo Dry Valleys Using an Ultrasonic Gopher: A NASA ASTEP Project

    NASA Technical Reports Server (NTRS)

    Doran, P. T.; Bar-Cohen, Y.; Fritsen, C.; Kenig, F.; McKay, C. P.; Murray, A.; Sherrit, S.

    2003-01-01

    Evidence for the presence of ice and fluids near the surface of Mars in both the distant and recent past is growing with each new mission to the Planet. One explanation for fluids forming springlike features on Mars is the discharge of subsurface brines. Brines offer potential refugia for extant Martian life, and near surface ice could preserve a record of past life on the planet. Proven techniques to get underground to sample these environments, and get below the disruptive influence of the surface oxidant and radiation regime, will be critical for future astrobiology missions to Mars. Our Astrobiology for Science and Technology for Exploring Planets (ASTEP) project has the goal to develop and test a novel ultrasonic corer in a Mars analog environment, the McMurdo Dry valleys, Antarctica, and to detect and describe life in a previously unstudied extreme ecosystem; Lake Vida (Fig. 1), an ice-sealed lake.

  11. Glider observations of the Dotson Ice Shelf outflow

    NASA Astrophysics Data System (ADS)

    Miles, Travis; Lee, Sang Hoon; Wåhlin, Anna; Ha, Ho Kyung; Kim, Tae Wan; Assmann, Karen M.; Schofield, Oscar

    2016-01-01

    The Amundsen Sea is one of the most productive polynyas in the Antarctic per unit area and is undergoing rapid changes including a reduction in sea ice duration, thinning ice sheets, retreat of glaciers and the potential collapse of the Thwaites Glacier in Pine Island Bay. A growing body of research has indicated that these changes are altering the water mass properties and associated biogeochemistry within the polynya. Unfortunately difficulties in accessing the remote location have greatly limited the amount of in situ data that has been collected. In this study data from a Teledyne-Webb Slocum glider was used to supplement ship-based sampling along the Dotson Ice Shelf (DIS). This autonomous underwater vehicle revealed a detailed view of a meltwater laden outflow from below the western flank of the DIS. Circumpolar Deep Water intruding onto the shelf drives glacial melt and the supply of macronutrients that, along with ample light, supports the large phytoplankton blooms in the Amundsen Sea Polynya. Less well understood is the source of micronutrients, such as iron, necessary to support this bloom to the central polynya where chlorophyll concentrations are highest. This outflow region showed decreasing optical backscatter with proximity to the bed indicating that particulate matter was sourced from the overlying glacier rather than resuspended sediment. This result suggests that particulate iron, and potentially phytoplankton primary productivity, is intrinsically linked to the magnitude and duration of sub-glacial melt from Circumpolar Deep Water intrusions onto the shelf.

  12. A Smoothed Particle Hydrodynamics Model for Ice Sheet and Ice Shelf Dynamics

    SciTech Connect

    Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.

    2012-02-08

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) model for coupled ice sheet and ice shelf dynamics. SPH is a fully Lagrangian particle method. It is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper SPH is used to study ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from the SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is further verified by simulating the plane shear flow of two immiscible fluids and the propagation of a highly viscous blob of fluid along a horizontal surface. In the experiment, the ice was represented with a viscous newtonian fluid. For consistency, in the described SPH model the ice is also modeled as a viscous newtonian fluid. Typically, ice sheets are modeled as a non-Newtonian fluid, accounting for the changes in the mechanical properties of ice. Implementation of a non-Newtonian rheology in the SPH model is the subject of our ongoing research.

  13. Smoothed particle hydrodynamics non-Newtonian model for ice-sheet and ice-shelf dynamics

    SciTech Connect

    Pan, W.; Tartakovsky, A. M.; Monaghan, J. J.

    2013-06-01

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) non-Newtonian model for coupled ice sheet and ice shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper, SPH is used to study 3D ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios, similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is verif;ed by simulating Poiseuille flow, plane shear flow with free surface and the propagation of a blob of ice along a horizontal surface. In the laboratory experiment, the ice was represented with a viscous Newtonian fluid. In the present work, however, the ice is modeled as both viscous Newtonian fluid and non-Newtonian fluid, such that the effect of non-Newtonian rheology on the dynamics of grounding line was examined. The non-Newtonian constitutive relation is prescribed to be Glen’s law for the creep of polycrystalline ice. A V-shaped bedrock ramp is further introduced to model the real geometry of bedrock slope.

  14. Ice flow velocities and elevation change at Fleming Glacier, Wordie Ice Shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Wendt, A.; Wendt, J.; Bown, F.; Rivera, A.; Zamora, R.; Bravo, C.; Casassa, G.

    2009-04-01

    Glaciers in the Antarctic Peninsula have been responding to the pronounced atmospheric warming in the region (Vaughan et al. 2003) with frontal retreat (Cook et al. 2005), ice shelf collapse (Rott et al. 1996) and ice flow acceleration and thinning (Rignot et al. 2004; Shepherd et al. 2003; Pritchard & Vaughan 2007). These trends have progressively migrated southwards along the Antarctic Peninsula causing, for instance, a substantial retreat of Wilkins Ice Shelf (70.2˚ S) in 2008. At 69.3˚ S, but 300 km to the east, Wordie Ice Shelf experienced a major reduction in size in the 1980s (Doake & Vaughan 1991). Available information about this ice shelf and its feeding glaciers dates back to the 1970s when ice thickness and velocity measurements were carried out on Fleming Glacier (Doake 1975). Although initially it was thought that the post-collapse conditions of the feeding glaciers remained unchanged (Vaughan 1993), more recent evidence shows that glaciers accelerated after the ice shelf collapse and substantial glacier thinning has occurred (Rignot et al. 2005). We present data acquired during two field expeditions to Fleming Glacier. During the first season in November 2007, we installed an Automatic Weather Station (AWS) and a permanent GPS site. Additional data including a local GPS network, ground penetrating radar measurements and snow densities were collected. In December 2008, during the second field campaign, surface elevation data were acquired using an airborne laser scanner along a trajectory between Gibbs Glacier and Airy Glacier, along the ice divide between both sides of the Peninsula and on Fleming Glacier. The AWS was found protruding only 20 cm above the snow surface, demonstrating the high snow accumulation in the area, which was sufficient to cover the 4 m high tower installed in 2007 and that annual variability in the mass accumulation is significant. The station collected data for 250 days. The permanent GPS stopped collecting data after

  15. Susceptibility of the Antarctic Ice Sheet to Changes in Ice Shelf Buttressing

    NASA Astrophysics Data System (ADS)

    Fürst, J. J.; Durand, G.; Gillet-chaulet, F.; Tavard, L.; Gagliardini, O.

    2014-12-01

    Higher surface air temperatures over the Antarctic Peninsula are hypothesised to have caused melt-pond formation, destabilisation and sudden disintegration of the Larsen B ice shelf in 2002. The almost total removal of the shelf resulted in an acceleration of the extant glacier fronts, upstream thinning and unabated ice loss up to this day. Similar thinning is observed for Thwaites and Pine Island Glaciers in the Amundsen Sea sector, but here, ocean warming is suspected for enhancing the shelf melting. In both cases, shelf geometries were altered in a way that upstream buttressing was reduced, an explanation for the observed accelerations. Since more than half of all Antarctic glaciers extend into floating shelves and since most of them showed no significant accelerations in the recent past, it remains unclear how susceptible the upstream ice sheet is to geometric changes of the corresponding shelves under further warming in the future. In this context, we aim at quantifying the dynamic susceptibility using ice geometry and surface velocities inferred from observations. To obtain the stress distribution near the grounding line, the shelf viscosity field is determined using a variational inverse method that optimises the mismatch between observed and modelled surface velocities. This allows us to compute a buttressing factor along the grounding line. Using this factor as one criterion, we succeed to a priori discern the segments of the grounding line in the Amundsen Sea sector that, in fact, retreated by now. An abrupt drop-off in buttressing across the main trunk of Thwaites Glacier can explain its asymmetric retreat pattern. Moreover, other regions in this sector are recognised as susceptible to further loss of shelf buttressing, where, for now, perturbations remain too weak for a distinct migration of the grounding line. With the chosen criteria, we are able to localise the regions that are prone to changes in the downstream shelves. This identification enables

  16. Susceptibility of the Antarctic ice sheet to changes in ice shelf buttressing

    NASA Astrophysics Data System (ADS)

    Fürst, Johannes J.; Durand, Gaël; Gillet-Chaulet, Fabien; Tavard, Laure; Gagliardini, Olivier

    2015-04-01

    Higher surface air temperatures over the Antarctic Peninsula are hypothesised to have caused melt-pond formation, destabilisation and sudden disintegration of the Larsen B ice shelf in 2002. The almost total removal of the shelf resulted in an acceleration of the extant glacier fronts, upstream thinning and unabated ice loss up to this day. Similar thinning is observed for Thwaites and Pine Island Glaciers in the Amundsen Sea sector, but here, ocean warming is suspected for enhancing the shelf melting. In both cases, shelf geometries were altered in a way that upstream buttressing was reduced, an explanation for the observed accelerations. Since more than half of all Antarctic glaciers extend into floating shelves and since most of them showed no significant accelerations in the recent past, it remains unclear how susceptible the upstream ice sheet is to geometric changes of the corresponding shelves under further warming in the future. In this context, we aim at quantifying the dynamic susceptibility using ice geometry and surface velocities inferred from observations. To obtain the stress distribution near the grounding line, the shelf viscosity field is determined using a variational inverse method that optimises the mismatch between observed and modelled surface velocities. This allows us to compute a buttressing factor along the grounding line. Using this factor as one criterion, we succeed to a priori discern the segments of the grounding line in the Amundsen Sea sector that, in fact, retreated by now. An abrupt drop-off in buttressing across the main trunk of Thwaites Glacier can explain its asymmetric retreat pattern. Moreover, other regions in this sector are recognised as susceptible to further loss of shelf buttressing, where, for now, perturbations remain too weak for a distinct migration of the grounding line. With the chosen criteria, we are able to localise the regions that are prone to changes in the downstream shelves. This identification enables

  17. Perchlorate and chlorate biogeochemistry in ice-covered lakes of the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Jackson, W. Andrew; Davila, Alfonso F.; Estrada, Nubia; Berry Lyons, W.; Coates, John D.; Priscu, John C.

    2012-12-01

    We measured chlorate (ClO3-) and perchlorate (ClO4-) concentrations in ice covered lakes of the McMurdo Dry Valleys (MDVs) of Antarctica, to evaluate their role in the ecology and geochemical evolution of the lakes. ClO3- and ClO4- are present throughout the MDV Lakes, streams, and other surface water bodies. ClO3- and ClO4- originate in the atmosphere and are transported to the lakes by surface inflow of glacier melt that has been differentially impacted by interaction with soils and aeolian matter. Concentrations of ClO3- and ClO4- in the lakes and between lakes vary based on both total evaporative concentration, as well as biological activity within each lake. All of the lakes except the East lobe of Lake Bonney support biological reduction of ClO3- and ClO4- either in the anoxic bottom waters or sediment. The younger less saline lakes (Miers and Hoare), have surface ClO3- and ClO4- concentrations, and ratios of ClO3-/Cl- and ClO4-/Cl-, similar to source streams, while Lake Fryxell has concentrations similar to input streams but much lower ClO3-/Cl- and ClO4-/Cl- ratios, reflecting the influence of a large Cl- source in bottom sediments. ClO3- and ClO4- in Lake Bonney are the highest of all the lakes reflecting the lake's greater age and higher concentration of Cl-. ClO4- appears to be stable in the East Lobe and its concentration is highly correlated with Cl- concentration suggesting that some ClO4- at depth is a remnant of the initial seawater that formed Lake Bonney. ClO3- and ClO4- concentrations provide a simple and sensitive means to evaluate microbial activity in these lakes due to their relatively low concentrations and lack of biological sources, unlike NO3-, NO2-, and SO4-2.

  18. Draft genome sequence of Paenisporosarcina sp. strain TG-14, a psychrophilic bacterium isolated from sediment-laden stratified basal ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica.

    PubMed

    Koh, Hye Yeon; Lee, Sung Gu; Lee, Jun Hyuck; Doyle, Shawn; Christner, Brent C; Kim, Hak Jun

    2012-12-01

    The psychrophilic bacterium Paenisporosarcina sp. TG-14 was isolated from sediment-laden stratified basal ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica. Here we report the draft genome sequence of this strain, which may provide useful information on the cold adaptation mechanism in extremely variable environments.

  19. Draft Genome Sequence of Paenisporosarcina sp. Strain TG-14, a Psychrophilic Bacterium Isolated from Sediment-Laden Stratified Basal Ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica

    PubMed Central

    Koh, Hye Yeon; Lee, Sung Gu; Lee, Jun Hyuck; Doyle, Shawn; Christner, Brent C.

    2012-01-01

    The psychrophilic bacterium Paenisporosarcina sp. TG-14 was isolated from sediment-laden stratified basal ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica. Here we report the draft genome sequence of this strain, which may provide useful information on the cold adaptation mechanism in extremely variable environments. PMID:23144403

  20. Change Detection of the Amery Ice Shelf Front (2004-2012) Using ENVISAT ASAR Data

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Cheng, X.; Liu, Y.

    2012-12-01

    Antarctic ice shelves are prominent constituent parts of ice sheets due to their ice-ocean-atmosphere interface and their vulnerability to regional and global changes in atmospheric and oceanic temperatures. The majority of mass loss from the Antarctic ice sheet occurs at the ice shelves via either iceberg calving or basal melting. To fully understand the complex process of ice shelf mass balance, it is necessary to monitor the ice shelf changes over an extended period of time. The Amery Ice Shelf is the largest ice shelf in East Antarctica. Understanding the changes of the Amery Ice Shelf front are crucial for making accurate predictions about the response of ice sheets to global climate change. Here we use the time series of ENVISAT images from 2004 to 2012 and the ice flow lines in Antarctic to monitor the changes of 11 test areas in the Amery Ice Shelf front (Fig. 1). Each image was linearly stretched to enhance the edges and then filtered according to an efficient image denoising scheme. We then extracted the coastlines semi-automatically by combining an artificial drawing method with an improved watershed algorithm. The 11 test areas are chosen according to the ice flow lines of the Antarctic. The results show that the Amery Ice Shelf has been expanding obviously. The rate in the middle of the Amery Ice Shelf front is higher than that on both sides of the front. The highest average propagation rate is 3.36 m/day and the lowest rate is 1.65 m/day in the past 9 years. The rates of 11 test areas during 2009 and 2010 are generally lower than those in other periods. It indicates that the propagation rate would be influenced by the climate environment. Additionally, the short-term environmental forces, such as calving events, tidal bending, ocean swell and so on would influence the ice shelf propagation. In conclusion, the rapid propagation of the Amery Ice Shelf has confirmed the fact that the East Antarctic has been expanding. Once some large iceberg calving

  1. Feedbacks between ice and ocean dynamics at the West Antarctic Filchner-Ronne Ice Shelf in future global warming scenarios

    NASA Astrophysics Data System (ADS)

    Goeller, Sebastian; Timmermann, Ralph

    2016-04-01

    The ice flow at the margins of the West Antarctic Ice Sheet is moderated by large ice shelves. Their buttressing effect substantially controls the mass balance of the WAIS and thus its contribution to sea level rise. The stability of these ice shelves results from the balance of mass gain by accumulation and ice flow from the adjacent ice sheet and mass loss by calving and basal melting due to the ocean heat flux. Recent results of ocean circulation models indicate that warm circumpolar water of the Southern Ocean may override the submarine slope front of the Antarctic Continent and boost basal ice shelf melting. In particular, ocean simulations for several of the IPCC's future climate scenarios demonstrate the redirection of a warm coastal current into the Filchner Trough and underneath the Filchner-Ronne Ice Shelf within the next decades. In this study, we couple the finite elements ocean circulation model FESOM and the three-dimensional thermomechanical ice flow model RIMBAY to investigate the complex interactions between ocean and ice dynamics at the Filchner-Ronne Ice Shelf. We focus on the impact of a changing ice shelf cavity on ocean dynamics as well as the feedback of the resulting sub-shelf melting rates on the ice shelf geometry and implications for the dynamics of the adjacent marine-based Westantarctic Ice Sheet. Our simulations reveal the high sensitivity of grounding line migration to ice-ocean interactions within the Filchner-Ronne Ice Shelf and emphasize the importance of coupled model studies for realistic assessments of the Antarctic mass balance in future global warming scenarios.

  2. Benthic microbial communities of coastal terrestrial and ice shelf Antarctic meltwater ponds

    PubMed Central

    Archer, Stephen D. J.; McDonald, Ian R.; Herbold, Craig W.; Lee, Charles K.; Cary, Craig S.

    2015-01-01

    The numerous perennial meltwater ponds distributed throughout Antarctica represent diverse and productive ecosystems central to the ecological functioning of the surrounding ultra oligotrophic environment. The dominant taxa in the pond benthic communities have been well described however, little is known regarding their regional dispersal and local drivers to community structure. The benthic microbial communities of 12 meltwater ponds in the McMurdo Sound of Antarctica were investigated to examine variation between pond microbial communities and their biogeography. Geochemically comparable but geomorphologically distinct ponds were selected from Bratina Island (ice shelf) and Miers Valley (terrestrial) (<40 km between study sites), and community structure within ponds was compared using DNA fingerprinting and pyrosequencing of 16S rRNA gene amplicons. More than 85% of total sequence reads were shared between pooled benthic communities at different locations (OTU0.05), which in combination with favorable prevailing winds suggests aeolian regional distribution. Consistent with previous findings Proteobacteria and Bacteroidetes were the dominant phyla representing over 50% of total sequences; however, a large number of other phyla (21) were also detected in this ecosystem. Although dominant Bacteria were ubiquitous between ponds, site and local selection resulted in heterogeneous community structures and with more than 45% of diversity being pond specific. Potassium was identified as the most significant contributing factor to the cosmopolitan community structure and aluminum to the location unique community based on a BEST analysis (Spearman's correlation coefficient of 0.632 and 0.806, respectively). These results indicate that the microbial communities in meltwater ponds are easily dispersed regionally and that the local geochemical environment drives the ponds community structure. PMID:26074890

  3. SAR observations of the Nansen Ice Shelf fracture

    NASA Astrophysics Data System (ADS)

    Moctezuma-Flores, M.; Parmiggiani, F.

    2016-11-01

    This paper presents a study, by means of of Synthetic Aperture Radar (SAR) images, of the fracture of the Nansen Ice Shelf, from its first appearance in SAR images to the final collapse on 7 April 2016. Both Sentinel-1 and Cosmo-SkyMed images have been used. First, the images were remapped onto an equidistant cylindrical projection; from these a subset, or imagette, only covering the fracture was extracted. A segmentation scheme was then applied to the sequence of imagettes in order to produce a sequence of binary imagettes with only the fracture area enhanced; from these, the computation of fracture area became a trivial task.

  4. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch.

    PubMed

    Domack, Eugene; Duran, Diana; Leventer, Amy; Ishman, Scott; Doane, Sarah; McCallum, Scott; Amblas, David; Ring, Jim; Gilbert, Robert; Prentice, Michael

    2005-08-04

    The stability of the Antarctic ice shelves in a warming climate has long been discussed, and the recent collapse of a significant part, over 12,500 km2 in area, of the Larsen ice shelf off the Antarctic Peninsula has led to a refocus toward the implications of ice shelf decay for the stability of Antarctica's grounded ice. Some smaller Antarctic ice shelves have undergone periodic growth and decay over the past 11,000 yr (refs 7-11), but these ice shelves are at the climatic limit of ice shelf viability and are therefore expected to respond rapidly to natural climate variability at century to millennial scales. Here we use records of diatoms, detrital material and geochemical parameters from six marine sediment cores in the vicinity of the Larsen ice shelf to demonstrate that the recent collapse of the Larsen B ice shelf is unprecedented during the Holocene. We infer from our oxygen isotope measurements in planktonic foraminifera that the Larsen B ice shelf has been thinning throughout the Holocene, and we suggest that the recent prolonged period of warming in the Antarctic Peninsula region, in combination with the long-term thinning, has led to collapse of the ice shelf.

  5. Widespread collapse of the Ross Ice Shelf during the late Holocene

    PubMed Central

    Yokoyama, Yusuke; Anderson, John B.; Yamane, Masako; Simkins, Lauren M.; Miyairi, Yosuke; Yamazaki, Takahiro; Koizumi, Mamito; Suga, Hisami; Kusahara, Kazuya; Prothro, Lindsay; Hasumi, Hiroyasu; Southon, John R.; Ohkouchi, Naohiko

    2016-01-01

    The stability of modern ice shelves is threatened by atmospheric and oceanic warming. The geologic record of formerly glaciated continental shelves provides a window into the past of how ice shelves responded to a warming climate. Fields of deep (−560 m), linear iceberg furrows on the outer, western Ross Sea continental shelf record an early post-Last Glacial Maximum episode of ice-shelf collapse that was followed by continuous retreat of the grounding line for ∼200 km. Runaway grounding line conditions culminated once the ice became pinned on shallow banks in the western Ross Sea. This early episode of ice-shelf collapse is not observed in the eastern Ross Sea, where more episodic grounding line retreat took place. More widespread (∼280,000 km2) retreat of the ancestral Ross Ice Shelf occurred during the late Holocene. This event is recorded in sediment cores by a shift from terrigenous glacimarine mud to diatomaceous open-marine sediment as well as an increase in radiogenic beryllium (10Be) concentrations. The timing of ice-shelf breakup is constrained by compound specific radiocarbon ages, the first application of this technique systematically applied to Antarctic marine sediments. Breakup initiated around 5 ka, with the ice shelf reaching its current configuration ∼1.5 ka. In the eastern Ross Sea, the ice shelf retreated up to 100 km in about a thousand years. Three-dimensional thermodynamic ice-shelf/ocean modeling results and comparison with ice-core records indicate that ice-shelf breakup resulted from combined atmospheric warming and warm ocean currents impinging onto the continental shelf. PMID:26884201

  6. Widespread collapse of the Ross Ice Shelf during the late Holocene.

    PubMed

    Yokoyama, Yusuke; Anderson, John B; Yamane, Masako; Simkins, Lauren M; Miyairi, Yosuke; Yamazaki, Takahiro; Koizumi, Mamito; Suga, Hisami; Kusahara, Kazuya; Prothro, Lindsay; Hasumi, Hiroyasu; Southon, John R; Ohkouchi, Naohiko

    2016-03-01

    The stability of modern ice shelves is threatened by atmospheric and oceanic warming. The geologic record of formerly glaciated continental shelves provides a window into the past of how ice shelves responded to a warming climate. Fields of deep (-560 m), linear iceberg furrows on the outer, western Ross Sea continental shelf record an early post-Last Glacial Maximum episode of ice-shelf collapse that was followed by continuous retreat of the grounding line for ∼200 km. Runaway grounding line conditions culminated once the ice became pinned on shallow banks in the western Ross Sea. This early episode of ice-shelf collapse is not observed in the eastern Ross Sea, where more episodic grounding line retreat took place. More widespread (∼280,000 km(2)) retreat of the ancestral Ross Ice Shelf occurred during the late Holocene. This event is recorded in sediment cores by a shift from terrigenous glacimarine mud to diatomaceous open-marine sediment as well as an increase in radiogenic beryllium ((10)Be) concentrations. The timing of ice-shelf breakup is constrained by compound specific radiocarbon ages, the first application of this technique systematically applied to Antarctic marine sediments. Breakup initiated around 5 ka, with the ice shelf reaching its current configuration ∼1.5 ka. In the eastern Ross Sea, the ice shelf retreated up to 100 km in about a thousand years. Three-dimensional thermodynamic ice-shelf/ocean modeling results and comparison with ice-core records indicate that ice-shelf breakup resulted from combined atmospheric warming and warm ocean currents impinging onto the continental shelf.

  7. Boundary condition of grounding lines prior to collapse, Larsen-B Ice Shelf, Antarctica.

    PubMed

    Rebesco, M; Domack, E; Zgur, F; Lavoie, C; Leventer, A; Brachfeld, S; Willmott, V; Halverson, G; Truffer, M; Scambos, T; Smith, J; Pettit, E

    2014-09-12

    Grounding zones, where ice sheets transition between resting on bedrock to full floatation, help regulate ice flow. Exposure of the sea floor by the 2002 Larsen-B Ice Shelf collapse allowed detailed morphologic mapping and sampling of the embayment sea floor. Marine geophysical data collected in 2006 reveal a large, arcuate, complex grounding zone sediment system at the front of Crane Fjord. Radiocarbon-constrained chronologies from marine sediment cores indicate loss of ice contact with the bed at this site about 12,000 years ago. Previous studies and morphologic mapping of the fjord suggest that the Crane Glacier grounding zone was well within the fjord before 2002 and did not retreat further until after the ice shelf collapse. This implies that the 2002 Larsen-B Ice Shelf collapse likely was a response to surface warming rather than to grounding zone instability, strengthening the idea that surface processes controlled the disintegration of the Larsen Ice Shelf.

  8. Chemotrophic Ecosystem Beneath the Larsen Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Leventer, A.; Domack, E.; Ishman, S.; Sylva, S.; Willmott, V.; Huber, B.; Padman, L.

    2005-12-01

    The first living chemotrophic ecosystem in the Southern Ocean was discovered in a region of the seafloor previously occupied by the Larsen-B Ice Shelf. A towed video survey documents an ecosystem characterized by a bottom-draping white mat that appears similar to mats of Begiattoa, hydrogen sulfide oxidizing bacteria, and bivalves, 20-30 cm large, similar to vesicomyid clams commonly found at cold seeps. The carbon source is unknown; three potential sources are hypothesized. First, thermogenically-produced methane may occur as the marine shales of this region are similar to hydrocarbon-bearing rocks to the north in Patagonia. The site occurs in an 850 m deep glacially eroded trough located along the contact between Mesozoic-Tertiary crystalline basement and Cretaceous-Tertiary marine rocks; decreased overburden could have induced upward fluid flow. Also possible is the dissociation of methane hydrates, a process that might have occurred as a result of warming oceanic bottom waters. This possibility will be discussed in light of the distribution of early diagenetic ikaite in the region. Third, the possibility of a biogenic methane source will be discussed. A microstratigraphic model for the features observed at the vent sites will be presented; the system is comprised of mud mounds with central vents and surrounding mud flow channels. A series of still image mosaics record the dynamic behavior of the system, which appears to demonstrate episodic venting. These images show the spatial relationship between more and less active sites, as reflected in the superposition of several episodes of mud flow activity and the formation of mud channels. In addition, detailed microscale features of the bathymetry of the site will be presented, placing the community within the context of glacial geomorphologic features. The Larsen-B Ice Shelf persisted through the entire Holocene, limiting carbon influx from a photosynthetic source. Tidal modeling of both pre and post breakup

  9. Nitrate analysis of snow and ice core samples collected in the vicinity of a waste detonation event, McMurdo Station, Antarctica

    SciTech Connect

    White, G.J.; Lugar, R.M.; Crockett, A.B.

    1994-07-01

    On December 30, 1991, a small quantity of hazardous materials was detonated at a site near McMurdo Station, Antarctica. The materials involved in the detonation represented highly reactive or explosive wastes that could not be transported safely for disposal in the United States. Detonation was therefore considered the safest and most effective means for disposing these hazardous materials. One concern regarding the detonation of these substances was that the process could generate or distribute measurable quantities of contaminants to the area surrounding the detonation site. Nitrate was selected as a tracer to document the distribution of contaminants from the detonation. Snow and ice cores were collected about 4 months after the event. These cores were analyzed for nitrate concentrations in May 1993, and a map was generated to show the extent of nitrate contamination. This report describes the collection of these samples and summarizes the analytical results.

  10. The relevance of buttressing for Filchner-Ronne and Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Reese, Ronja; Gudmundsson, Hilmar; Levermann, Anders; Winkelmann, Ricarda

    2016-04-01

    Sub-shelf melting is an important component of Antarctica's mass budget. Although thinning of ice shelves does not directly contribute to sea-level rise, it may have a significant indirect impact through the potential of ice shelves to buttress their adjacent ice sheet. This is clearly seen in recent observations, e.g. in the Amundsen region (Pritchard et al., 2012) or at the Southern Antarctic Peninsula (Wouters et al, 2015) where increased ice loss of the adjacent upstream drainage basins is attributed to enhanced sub-shelf melting. In the extreme case, the complete disintegration of an ice shelf, e.g. during the calving events of Larsen A and B in 1995 and 2002, respectively, the adjacent ice streams subsequently accelerated significantly (Scambos et al., 2014). Here, we investigate the importance of buttressing using the finite-element, shallow-stream approximation numerical model Úa. We derive transfer functions for an idealized setup (Gudmundsson et al. 2012) and the Filchner-Ronne and Ross Ice Shelf. They allow for the computation of instantaneous changes in velocities to thickness perturbation patterns. Based on the transfer functions, we calculate the sensitivity of flux across the grounding line to regional varying melting patterns for the idealized setup and for Filchner-Ronne and Ross Ice Shelf. We find that the immediate response of velocities in the ice shelf-ice sheet system to changes in sub-shelf melting can be understood as the interaction of two effects: On the one hand, the spreading rate is a function of local ice thickness, indicating that a thinning of the ice shelf reduces velocities. On the other hand, ice shelf thinning weakens its ability to buttress, and thus enhances velocities. These two processes compete, leading to a complex pattern of velocity changes within the ice shelf. We find - both in the idealized setup and for Ross and Filchner-Ronne Ice Shelves - that the reduction in buttressing is dominating the velocity changes in the

  11. Sea ice and oceanic processes on the Ross Sea continental shelf

    NASA Technical Reports Server (NTRS)

    Jacobs, S. S.; Comiso, J. C.

    1989-01-01

    The spatial and temporal variability of Antarctic sea ice concentrations on the Ross Sea continental shelf have been investigated in relation to oceanic and atmospheric forcing. Sea ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86 percent during winter with little month-to-month of interannual variability. The large spring Ross Sea polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn.

  12. A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B Ice Shelf

    NASA Astrophysics Data System (ADS)

    Borstad, Chris; Khazendar, Ala; Scheuchl, Bernd; Morlighem, Mathieu; Larour, Eric; Rignot, Eric

    2016-03-01

    The increasing contribution of the Antarctic Ice Sheet to sea level rise is linked to reductions in ice shelf buttressing, driven in large part by basal melting of ice shelves. These ocean-driven buttressing losses are being compounded as ice shelves weaken and fracture. To date, model projections of ice sheet evolution have not accounted for weakening ice shelves. Here we present the first constitutive framework for ice deformation that explicitly includes mechanical weakening, based on observations of the progressive degradation of the remnant Larsen B Ice Shelf from 2000 to 2015. We implement this framework in an ice sheet model and are able to reproduce most of the observed weakening of the ice shelf. In addition to predicting ice shelf weakening and reduced buttressing, this new framework opens the door for improved understanding and predictions of iceberg calving, meltwater routing and hydrofracture, and ice shelf collapse.

  13. Accelerated ice shelf rifting and retreat at Pine Island Glacier, West Antarctica

    NASA Astrophysics Data System (ADS)

    Jeong, Seongsu; Howat, Ian M.; Bassis, Jeremy N.

    2016-11-01

    Pine Island Glacier has undergone several major iceberg calving events over the past decades. These typically occurred when a rift at the heavily fractured shear margin propagated across the width of the ice shelf. This type of calving is common on polar ice shelves, with no clear connection to ocean-ice dynamic forcing. In contrast, we report on the recent development of multiple rifts initiating from basal crevasses in the center of the ice shelf, resulted in calving further upglacier than previously observed. Coincident with rift formation was the sudden disintegration of the ice mélange that filled the northern shear margin, resulting in ice sheet detachment from this margin. Examination of ice velocity suggests that this internal rifting resulted from the combination of a change in ice shelf stress regime caused by disintegration of the mélange and intensified melting within basal crevasses, both of which may be linked to ocean forcing.

  14. Firn structure of Larsen C Ice Shelf, Antarctic Peninsula, from in-situ geophysical surveys

    NASA Astrophysics Data System (ADS)

    Kulessa, B.; Brisbourne, A.; Kuipers Munneke, P.; Bevan, S. L.; Luckman, A. J.; Hubbard, B. P.; Ashmore, D.; Holland, P.; Jansen, D.; King, E. C.; O'Leary, M.; McGrath, D.

    2015-12-01

    Rising surface temperatures have been causing firn layers on Antarctic Peninsula ice shelves to compact, a process that is strongly implicated in ice shelf disintegration. Firn compaction is expected to warm the ice column and given sufficiently wet and compacted firn layers, to allow meltwater to penetrate into surface crevasses and thus enhance the potential for hydrofracture. On Larsen C Ice Shelf a compacting firn layer has previously been inferred from airborne radar and satellite data, with strongly reduced air contents in Larsen C's north and north-west. The hydrological processes governing firn compaction, and the detailed firn structures they produce, have so far remained uncertain however. Using integrated seismic refraction, MASW (Multi-Channel Analysis of Surface Waves), seismoelectric and ground-penetrating radar (GPR) data, we reveal vertical and horizontal changes in firn structure across Larsen C Ice Shelf. Particular attention is paid to the spatial prevalence of refrozen meltwaters within firn, such as the massive subsurface ice layer discovered recently by the NERC-funded MIDAS project in Cabinet Inlet in Larsen C's extreme northwest. Such ice layers or lenses are particularly dramatic manifestations of increased ice shelf densities and temperatures, and contrast sharply with the relatively uncompacted firn layers present in the ice shelf's southeast. We consider our observations in the context of a one-dimensional firn model for Larsen C Ice Shelf that includes melt percolation and refreezing, and discuss temporal changes in firn layer structures due to surface melt and ponding.

  15. Observed rift propagation in the Larsen C Ice Shelf from Sentinel 1-A radar data

    NASA Astrophysics Data System (ADS)

    Jansen, Daniela; Helm, Veit; Neckel, Niklas; Luckman, Adrian; Bevan, Suzanne

    2016-04-01

    The Larsen C Ice Shelf is the most northerly of the remaining major Antarctic Peninsula ice shelves and is vulnerable to changes in both to ocean and atmospheric forcing. It is the largest ice shelf in the region and its loss would lead to a significant drawdown of ice from the Antarctic Peninsula Ice Sheet. There have been observations of widespread thinning, melt ponding in the northern inlets, and, in the northern part, a speed-up in ice flow, all processes which have been linked to former ice shelf collapses. Previous studies have also highlighted the vulnerability of Larsen C Ice Shelf to specific potential changes in its geometry including a retreat from the Bawden and Gipps Ice Rise. In a change from the usual pattern, a northwards-propagating rift from Gipps Ice Rise has recently advanced towards the center of the ice shelf. It is now more than halfway towards calving a large section of the ice shelf and continues to widen. We followed the rift propagation on MODIS and Landsat imagery and, during the austral winter 2015, on Sentinel-1A radar data. Due to the very cloudy weather conditions during the austral Summer 2015 / 2016 the Sentinel data became an essential part of the monitoring. By calculating differential interferograms it was possible to clearly identify the active tip of the rift, which was not always obvious on the Landsat images. Further, surface velocities were derived from recent Sentinel-1A acquisitions by means of offset intensity tracking. In order to investigate a possible speed-up of the ice shelf we extended the study area to the north including Bawden ice rise.

  16. Numerical and theoretical treatment of grounding line movement and ice shelf buttressing in marine ice sheets

    NASA Astrophysics Data System (ADS)

    Goldberg, Daniel N.

    Understanding the dynamics of marine ice sheets is integral to studying the evolution of the Antarctic Ice Sheet in both the short and long terms. An important component of the dynamics, grounding line migration, has proved difficult to represent in numerical models, with undesirable behavior such as sensitivity to grid resolution having been observed. Most successful attempts at representing grounding line migration have made use of techniques that are only readily applicable to flowline models, such as Arbitrary Lagrangian-Eulerian schemes. It remains unclear whether a purely Eulerian flowline model can reproduce the actual solution of the governing differential equations, as well as what the theoretical properties of that solution are. In addition, in order to capture the stress transmission involved in another important dynamic component, the buttressing of a marine ice sheet by its ice shelf, the transverse flow direction must also be resolved. Here a numerical model is developed that solves the time-dependent Shelfy-Stream equations [MacAyeal, 1989] and makes use of mesh adaption techniques to overcome the difficulties typically associated with the numerics of grounding line migration. In the special case of a flowline model, it is shown that the Shelfy-Stream equations have a unique solution provided constraints on the initial condition and the forcing are satisfied, and the convergence properties of the model are examined. Model output is also compared with a recent benchmark for flowline models. It is shown that our model yields an accurate solution while using far less resources than would be required without mesh adaption. It is also shown that the mesh adapting techniques extend to two horizontal dimensions. Experiments are carried out to determine how both ice shelf buttressing and ice rises affect the marine instability predicted for an ice sheet on a foredeepened bed. It is found that buttressing is not always sufficient to stabilize such a sheet but

  17. An East Siberian ice shelf during the Late Pleistocene glaciations: Numerical reconstructions

    NASA Astrophysics Data System (ADS)

    Colleoni, Florence; Kirchner, Nina; Niessen, Frank; Quiquet, Aurélien; Liakka, Johan

    2016-09-01

    A recent data campaign in the East Siberian Sea has revealed evidence of grounded and floating ice dynamics in regions of up to 1000 m water depth, and which are attributed to glaciations older than the Last Glacial Maximum (21 kyrs BP). The main hypothesis based on this evidence is that a small ice cap developed over Beringia and expanded over the East Siberian continental margin during some of the Late Pleistocene glaciations. Other similar evidence of ice dynamics that have been previously collected on the shallow continental shelves of the Arctic Ocean have been attributed to the penultimate glaciation, i.e. Marine Isotopes Stage 6 (≈140 kyrs BP). We use an ice sheet model, forced by two previously simulated MIS 6 glacial maximum climates, to carry out a series of sensitivity experiments testing the impact of dynamics and mass-balance related parameters on the geometry of the East Siberian ice cap and ice shelf. Results show that the ice cap developing over Beringia connects to the Eurasian ice sheet in all simulations and that its volume ranges between 6 and 14 m SLE, depending on the climate forcing. This ice cap generates an ice shelf of dimensions comparable with or larger than the present-day Ross ice shelf in West Antarctica. Although the ice shelf extent strongly depends on the ice flux through the grounding line, it is particularly sensitive to the choice of the calving and basal melting parameters. Finally, inhibiting a merging of the Beringia ice cap with the Eurasian ice sheet affects the expansion of the ice shelf only in the simulations where the ice cap fluxes are not large enough to compensate for the fluxes coming from the Eurasian ice sheet.

  18. Impacts of warm water on Antarctic ice shelf stability through basal channel formation

    NASA Astrophysics Data System (ADS)

    Alley, Karen E.; Scambos, Ted A.; Siegfried, Matthew R.; Fricker, Helen Amanda

    2016-04-01

    Antarctica's ice shelves provide resistance to the flow of grounded ice towards the ocean. If this resistance is decreased as a result of ice shelf thinning or disintegration, acceleration of grounded ice can occur, increasing rates of sea-level rise. Loss of ice shelf mass is accelerating, especially in West Antarctica, where warm seawater is reaching ocean cavities beneath ice shelves. Here we use satellite imagery, airborne ice-penetrating radar and satellite laser altimetry spanning the period from 2002 to 2014 to map extensive basal channels in the ice shelves surrounding Antarctica. The highest density of basal channels is found in West Antarctic ice shelves. Within the channels, warm water flows northwards, eroding the ice shelf base and driving channel evolution on annual to decadal timescales. Our observations show that basal channels are associated with the development of new zones of crevassing, suggesting that these channels may cause ice fracture. We conclude that basal channels can form and grow quickly as a result of warm ocean water intrusion, and that they can structurally weaken ice shelves, potentially leading to rapid ice shelf loss in some areas.

  19. Variability of Basal Melt Beneath the Pine Island Glacier Ice Shelf, West Antarctica

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert; Vaughan, David G.; Vornberger, Patricia

    2011-01-01

    Observations from satellite and airborne platforms are combined with model calculations to infer the nature and efficiency of basal melting of the Pine Island Glacier ice shelf, West Antarctica, by ocean waters. Satellite imagery shows surface features that suggest ice-shelf-wide changes to the ocean s influence on the ice shelf as the grounding line retreated. Longitudinal profiles of ice surface and bottom elevations are analyzed to reveal a spatially dependent pattern of basal melt with an annual melt flux of 40.5 Gt/a. One profile captures a persistent set of surface waves that correlates with quasi-annual variations of atmospheric forcing of Amundsen Sea circulation patterns, establishing a direct connection between atmospheric variability and sub-ice-shelf melting. Ice surface troughs are hydrostatically compensated by ice-bottom voids up to 150m deep. Voids form dynamically at the grounding line, triggered by enhanced melting when warmer-than-average water arrives. Subsequent enlargement of the voids is thermally inefficient (4% or less) compared with an overall melting efficiency beneath the ice shelf of 22%. Residual warm water is believed to cause three persistent polynyas at the ice-shelf front seen in Landsat imagery. Landsat thermal imagery confirms the occurrence of warm water at the same locations.

  20. Mass budget of the grounded ice in the Lambert Glacier-Amery Ice Shelf system

    NASA Astrophysics Data System (ADS)

    Jiahong, Wen; Yafeng, Wang; Jiying, Liu; Jezek, Kenneth C.; Huybrechts, Philippe; Csathó, Beata M.; Farness, Katy L.; Bo, Sun

    We used remote-sensing and in situ measurements of surface accumulation rate, ice surface velocity, thickness and elevation to evaluate the mass budgets of grounded ice-flow regimes that form the Lambert Glacier-Amery Ice Shelf system. Three distinct drainage regimes are considered: the western and eastern margins of the ice shelf, and the southern grounding line at the major outlet glacier confluence, which can be identified with drainage zones 9, 11 and 10 respectively of Giovinetto and Zwally (2000). Our findings show the entire grounded portion of the basin is approximately in balance, with a mass budget of -4.2±9.8 Gta-1. Drainages 9, 10 and 11 are within balance to the level of our measurement uncertainty, with mass budgets of -2.5±2.8 Gta-1, -2.6±7.8 Gta-1 and 0.9±2.3 Gta-1, respectively. The region upstream of the Australian Lambert Glacier basin (LGB) traverse has a net mass budget of 4.4±6.3 Gta-1, while the downstream region has -8.9±9.9 Gta-1. These results indicate that glacier drainages 9, 10 and 11, upstream and downstream of the Australian LGB traverse, are in balance to within our measurement error.

  1. High basal melting forming a channel at the grounding line of Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Marsh, Oliver J.; Fricker, Helen A.; Siegfried, Matthew R.; Christianson, Knut; Nicholls, Keith W.; Corr, Hugh F. J.; Catania, Ginny

    2016-01-01

    Antarctica's ice shelves are thinning at an increasing rate, affecting their buttressing ability. Channels in the ice shelf base unevenly distribute melting, and their evolution provides insight into changing subglacial and oceanic conditions. Here we used phase-sensitive radar measurements to estimate basal melt rates in a channel beneath the currently stable Ross Ice Shelf. Melt rates of 22.2 ± 0.2 m a-1 (>2500% the overall background rate) were observed 1.7 km seaward of Mercer/Whillans Ice Stream grounding line, close to where subglacial water discharge is expected. Laser altimetry shows a corresponding, steadily deepening surface channel. Two relict channels to the north suggest recent subglacial drainage reorganization beneath Whillans Ice Stream approximately coincident with the shutdown of Kamb Ice Stream. This rapid channel formation implies that shifts in subglacial hydrology may impact ice shelf stability.

  2. Coulman High Project Site Survey Interdisciplinary Outcomes: What Lies Beneath The Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Rack, F. R.; Zook, R.; Mahacek, P.; Carroll, D.; Levy, R. H.; Limeburner, R.; Williams, M.; Stewart, C.; C/O Andrill Smo, A.

    2011-12-01

    The ANDRILL Coulman High (CH) Project Site Surveys were an international effort conducted from November 2010 through January 2011. These surveys achieved all their primary and secondary objectives and resulted in an unexpected biological discovery at the lower boundary of the Ross Ice Shelf (RIS), which demonstrates the role of serendipity in scientific research. The surveys followed a safe traverse route to CH across the RIS using a ground-penetrating radar system supplemented by previously collected airborne radar. Four GPS stations and a weather station were established to monitor lateral and vertical ice motions and environmental conditions. A series of combined US-NZ field camps on the RIS were occupied and the ANDRILL hot water drill (HWD) system was used to melt numerous holes through 250-275 meters of ice shelf. Oceanographic moorings comprised of inductive sensors were deployed through the RIS at two sites and were recovered to the ice surface after two months. The NZ mooring was redeployed to conduct long-term observations through the water column at CH. Video camera observations of the interior and basal surface of the ice shelf and benthic observations of the seafloor were integrated with conductivity-temperature-depth (CTD) measurements at each site. The Submersible Capable of under-Ice Navigation and Imaging (SCINI) underwater remotely operated vehicle (ROV) was deployed at two sites through 260 meters of ice to explore the underside of the ice shelf while conducting operational testing. This was the first time that SCINI was deployed through an ice shelf. SCINI discovered an unusual biological community living in the ice at the lower surface of the ice shelf and recovered biological samples using an improvised suction pump sampler. These samples and extensive imagery are being further investigated to determine the nature of this newly discovered ecosystem. The biological discovery at the base of the RIS highlights the importance of continued

  3. The Recent Nansen's Ice-Shelf Calving Event : Comparison with Meteo-Climatic and Marine Conditions.

    NASA Astrophysics Data System (ADS)

    Fusco, G.; Cannito, A. C. C.; Marinangeli, L.; Cardinale, M.; Pompilio, L.

    2015-12-01

    Ice shelves are important elements of the Cryosphere representing the interface between ice, atmosphere and ocean. They are also the mean to discharge ice from the interior ice sheets contributing to the continental ice mass balance. A sudden change in volume and extension of both ice shelves and floating glacier tongues can rapidly increase the ice streams speed and the ice sheets flow variability.The Nansen ice shelf represent a particular sensible interface between the floating ice and the Terra Nova Bay polynya, a sea area that remains ice-free for almost all the winter time , thus being one of the major responsible of the production of the Antarctic bottom water. Remote sensing technologies gave us the opportunity to observe and investigate on the formation and evolution of an incipient crevasse on the Nansen Ice Shelf, starting from 1999. The crack showed a steady and slow increase in length and rotation up to 2011 and then underwent an abrupt evolution. During the 2014 winter season, the crack reached its maximum elongation and the detachment of large tabular bergs seems to be very close. This should be the first observation of a detachment of large tabular bergs from the Nansen Ice Shelf since the beginning of satellite observations and is an opportunity to investigate complex processes. We analyzed the last ten years record of climate data over the Southern ocean to evaluate the relationships between the intense cyclonic activity, synoptic and mesoscale systems, ocean swells and calving events. We used ECMWF ERA-interim global atmospheric reanalysis model, Landsat images and in situ weather observations from AWS of the Italian Antarctic Program deployed over the Terra Nova Bay cost. Our preliminary results show a strong correlation between the occurrence of some anomalous meteorological configurations over the Southern Ocean and the sudden grow of the monitored crack in the ice shelf. If confirmed, together with this new arrangement of the cryosphere, some

  4. The structure and effect of suture zones in the Larsen C Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel; Steffen, Konrad; Holland, Paul R.; Scambos, Ted; Rajaram, Harihar; Abdalati, Waleed; Rignot, Eric

    2014-03-01

    Ice shelf fractures frequently terminate where they encounter suture zones, regions of material heterogeneity that form between meteoric inflows in ice shelves. This heterogeneity can consist of marine ice, meteoric ice with modified rheological properties, or the presence of fractures. Here, we use radar observations on the Larsen C Ice Shelf, Antarctica, to investigate (i) the termination of a 25 km long rift in the Churchill Peninsula suture zone, which was found to contain ~60 m of accreted marine ice, and (ii) the along-flow evolution of a suture zone originating at Cole Peninsula. We determine a steady state field of basal melting/freezing rates and apply it to a flowline model to delineate the along-flow evolution of layers within the ice shelf. The thickening surface wedge of locally accumulated meteoric ice, which likely has limited lateral variation in its mechanical properties, accounts for ~60% of the total ice thickness near the calving front. Thus, we infer that the lower ~40% of the ice column and the material heterogeneities present there are responsible for resisting fracture propagation and thereby delaying tabular calving events, as demonstrated in the >40 year time series leading up to the 2004/2005 calving event for Larsen C. This likely represents a highly sensitive aspect of ice shelf stability, as changes in the oceanic forcing may lead to the loss of this heterogeneity.

  5. Insights into ice shelf buttressing and ice rheology on Rutford Ice Stream, West Antarctica, from synoptic-scale observations of tidally driven ice flow variations

    NASA Astrophysics Data System (ADS)

    Minchew, Brent; Simons, Mark; Riel, Bryan; Millio, Pietro

    2016-04-01

    Synoptic-scale observations of the response of ice streams to well-constrained forcing functions provide unique insights into ice stream dynamics and the underlying mechanics of glacier flow. Rutford Ice Stream, West Antarctica, is one of the few recognized ice streams with strong, observed, periodic ice-flow variability (e.g., Gudmundsson, 2006; Murray et al., 2007); numerous in situ observations of the subglacial environment (e.g., Smith et al., 2015); and extensive modeling efforts focused on understanding the mechanisms that drive the observed variations in glacier flow (e.g. Thompson et al., 2014; Rosier et al., 2014; 2015). Despite these efforts, the processes underlying the ~20% modulation in horizontal ice flow at Msf (14.77-day) periods - which corresponds to the beat frequency of the lunar and solar semi-diurnal ocean tides - remain a mystery. To help resolve the salient processes, we contribute a first-of-its-kind observational dataset that provides ice-stream-scale measurements of 3D secular and time-varying ice flow on Rutford with ~40-m spatial resolution. These data were inferred from 9 months of continuous synthetic aperture radar observations collected with the COSMO-SkyMed 4-satellite constellation from multiple satellite viewing geometries. The resulting velocity fields provide constraints on ice flow in all three spatial dimensions and in time, making them true 4D surface velocity fields. The time-varying velocity field components elucidate the spatial characteristics of the response of ice flow on Rutford to ocean tidal forcing and agree with collocated GPS measurements. We show that the response of horizontal ice flow to ocean tidal forcing is most pronounced over the ice shelf and subsequently propagates through the grounded ice stream at ~29 km/day, decaying quasi-linearly with distance over ~85 km upstream of the grounding zone. We observe multiple regions over the ice shelf whose motion is consistent with subglacial pinning points and that

  6. Rheology of the Ronne Ice Shelf, Antarctica, Inferred from Satellite Radar Interferometry Data using an Inverse Control Method

    NASA Technical Reports Server (NTRS)

    Larour, E.; Rignot, E.; Joughin, I.; Aubry, D.

    2005-01-01

    The Antarctic Ice Sheet is surrounded by large floating ice shelves that spread under their own weight into the ocean. Ice shelf rigidity depends on ice temperature and fabrics, and is influenced by ice flow and the delicate balance between bottom and surface accumulation. Here, we use an inverse control method to infer the rigidity of the Ronne Ice Shelf that best matches observations of ice velocity from satellite radar interferometry. Ice rigidity, or flow law parameter B, is shown to vary between 300 and 900 kPa a(sup 1/3). Ice is softer along the side margins due to frictional heating, and harder along the outflow of large glaciers, which advect cold continental ice. Melting at the bottom surface of the ice shelf increases its rigidity, while freezing decreases it. Accurate numerical modelling of ice shelf flow must account for this spatial variability in mechanical characteristics.

  7. Modelling Tidally Induced Vertical Mixing Beneath Filchner-ronne Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Makinson, K.

    One of the warmest water masses beneath Filchner-Ronne Ice Shelf is dense, High Salinity Shelf Water which flows into the sub-ice shelf cavity from the ice front and occupies the lower portion of the water column. A one-dimensional turbulence clo- sure ocean model has been applied to this sub-ice shelf environment to demonstrate that tidal currents with a range of ellipse polarizations, mix High Salinity Shelf Water vertically through the water column and cause melting at the ice shelf base. Signifi- cantly the ice shelf lies near the critical latitude for the semi-diurnal tide, where the Coriolis frequency equals the tidal frequency, resulting in a strongly depth depen- dent tidal current and thick boundary layers. The model shows that vertical mixing and basal melting are sensitive to tidal ellipse polarization with anticlockwise rotating tidal currents (positive polarizations) maintaining the highest melt rates. This sensi- tivity is due, in large part, to the proximity of the critical latitude. For many areas beneath Filchner-Ronne Ice Shelf the polarization ranges from -0.3 to +0.3; here the modelled pycnocline development is sensitive to polarization, though the effect on the time-averaged melt rate is subdued for positive polarizations. However, in key areas where the polarization exceeds +/-0.3 and the ellipses are more open and circular, and the effects of polarization are significant. Levels of tidal mixing and associated melt- ing vary by more than an order of magnitude over the whole tidal ellipse polarization range, showing that very different mixing and melting regimes are present beneath Filchner-Ronne Ice Shelf.

  8. Ocean circulation and basal melting below the Fimbul Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Hattermann, T.; Nøst, O. A.; Smedsrud, L. H.; Lilly, J. M.

    2012-04-01

    The mechanisms by which oceanic heat is delivered to Antarctic ice shelves are a major source of uncertainty when assessing the response of the Antarctic ice sheet to climate change. Here, we combine observations below the Fimbul Ice Shelf with high resolution ocean modeling to study the heat exchange of the ice shelf cavity with the open ocean and quantify ice shelf basal melting. Situated at the prime meridian, the Fimbul Ice Shelf is the sixth largest ice shelf in Antarctica, being fed by Jutulstraumen, the largest ice stream in western Dronning Maud Land. Its oceanographic configuration is typical for the ice shelves along the coast of the Eastern Weddell Sea, where only a narrow continental shelf protects the glaciated coast from intrusions of Warm Deep Water and estimates of melting has varied widely over a number of studies. Our results reveal an unexpected level of complexity to supply of oceanic heat for basal melting. Two different water masses reach the ice base at different times of the year: (i) bursts of Modified Warm Deep Water access the cavity at depth in late winter and, (ii) fresher surface water flushes large parts of the ice base with temperatures above freezing during late summer. This suggests a "bi-modal" cavity circulation, rather than a steady ice-pump mechanism, where the strength of basal melting is controlled by both solar heating at the surface as well as by the eddy-driven on-shore transport of warm water at depth. Hence, we find that that successful modeling of basal melt rates in this sector of Antarctica crucially depends achieving a more realistic representation of the coastal processes and water masses involved.

  9. Larsen C Ice Shelf rheology inferred by combining InSAR observations and numerical modeling

    NASA Astrophysics Data System (ADS)

    Khazendar, A.; Rignot, E. J.; Larour, E. Y.

    2009-12-01

    Larsen C Ice Shelf presents a valuable setting for investigating the many connected processes involved in the evolution of ice shelves in a warming climate. The stability of this ice shelf has become a topic of keen interest, especially following the disintegration of Larsen B and other Peninsular ice shelves, and the consequent increase in continental ice flow to the ocean. We are addressing this complex question in a multi-disciplinary manner by combining remote sensing and numerical modeling. Thus, we analyzed satellite InSAR observations of Larsen C obtained in the years 2000 and 2007 which revealed that ice shelf flow velocity in some areas have had some changes. We then applied inverse modeling, combining the observed velocity field with numerical flow models, to infer a spatial distribution of the flow parameter for the ice shelf, which is indispensable for accurately modeling ice shelf flow and evolution. The inferred rheology field allowed us to detect zones of weakness, including a large area in the middle of the ice shelf, many of which are associated with fracture features. Our similar previous analysis of Larsen B at the eve of its disintegration in 2002 emphasizes the significant interaction and interdependence among frontal calving, flow acceleration, variable rheology including fracture zones, and the ultimate destabilization of the ice shelf. Therefore, this work, by measuring any recent acceleration in the flow of Larsen C and inferring its rheology provides essential tools to evaluate its stability and long-term prospects. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, Cryospheric Sciences Program.

  10. Arctic continental shelf morphology related to sea-ice zonation, Beaufort Sea, Alaska

    USGS Publications Warehouse

    Reimnitz, E.; Toimil, L.; Barnes, P.

    1978-01-01

    Landsat-1 and NOAA satellite imagery for the winter 1972-1973, and a variety of ice and sea-floor data were used to study sea-ice zonation and dynamics and their relation to bottom morphology and geology on the Beaufort Sea continental shelf of arctic Alaska. In early winter the location of the boundary between undeformed fast ice and westward-drifting pack ice of the Pacific Gyre is controlled by major coastal promontories. Pronounced linear pressure- and shear-ridges, as well as hummock fields, form along this boundary and are stabilized by grounding, generally between the 10- and 20-m isobaths. Slippage along this boundary occurs intermittently at or seaward of the grounded ridges, forming new grounded ridges in a widening zone, the stamukhi zone, which by late winter extends out to the 40-m isobath. Between intermittent events along the stamukhi zone, pack-ice drift and slippage is continuous along the shelf edge, at average rates of 3-10 km/day. Whether slippage occurs along the stamukhi zone or along the shelf edge, it is restricted to a zone several hundred meters wide, and ice seaward of the slip face moves at uniform rates without discernible drag effects. A causal relationship is seen between the spatial distribution of major ice-ridge systems and offshore shoals downdrift of major coastal promontories. The shoals appear to have migrated shoreward under the influence of ice up to 400 m in the last 25 years. The sea floor seaward of these shoals within the stamukhi zone shows high ice-gouge density, large incision depths, and a high degree of disruption of internal sedimentary structures. The concentration of large ice ridges and our sea floor data in the stamukhi zone indicate that much of the available marine energy is expended here, while the inner shelf and coast, where the relatively undeformed fast ice grows, are sheltered. There is evidence that anomalies in the overall arctic shelf profile are related to sea-ice zonation, ice dynamics, and bottom

  11. Crevasse Extent and Lateral Shearing of the McMurdo Shear Zone, Antarctica, Using GPR and GPS Observations, and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Kaluzienski, L. M.; Hamilton, G. S.; Koons, P. O.; Arcone, S. A.; Ray, L.; Lever, J.; Fastook, J.; Walker, B.

    2015-12-01

    Sub-ice-shelf circulation plays a fundamental role in ice shelf mass budget. The shape of the underside of an ice shelf is important, such that the presence of basal crevasses can significantly modulate the transfer of heat at the ice-ocean interface. In situ observations of basal crevasses are challenging to obtain, but surface-based ground penetrating radar (GPR) surveys can be used to determine crevasse location and orientation. Here, we use GPR methods to map the internal structures in the McMurdo Shear Zone (SZ) which marks the boundary between the Ross Ice Shelf and the slower-moving McMurdo Ice Shelf. Radar surveys with 200 MHz and 400 MHz antennas reveal the presence of crevasses both in the upper firn and within a zone of accreted marine ice at a depth of approximately 170 meters. A spatial correspondence between near-surface and basal crevasses suggests that both are formed locally by lateral shearing. A combination of three dimensional higher order and Shallow Shelf Approximation ice flow equations within the Ice Sheet System Model (ISSM) are used to test this hypothesis. This model estimates the detailed velocity field of the SZ and is constrained by GPS-derived observations of surface motion. The distribution and orientations of surface crevasses is consistent with the gradients in velocity field predicted by the model. Though a wider range of orientation angles exists for crevasses within the basal regime, the average strike angle is consistent with firn crevassing and we conclude that the marine ice coevally fractured with the firn layer.

  12. Coastal-change and glaciological map of the Amery Ice Shelf area, Antarctica: 1961–2004

    USGS Publications Warehouse

    Foley, Kevin M.; Ferrigno, Jane G.; Swithinbank, Charles; Williams, Richard S.; Orndorff, Audrey L.

    2013-01-01

    Reduction in the area and volume of Earth’s two polar ice sheets is intricately linked to changes in global climate and to the resulting rise in sea level. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council. On the basis of these recommendations, the U.S. Geological Survey used its archive of satellite images to document changes in the cryospheric coastline of Antarctica and analyze the glaciological features of the coastal regions. Amery Ice Shelf, lying between 67.5° and 75° East longitude and 68.5° and 73.2° South latitude, is the largest ice shelf in East Antarctica. The latest measurements of the area of the ice shelf range between 62,620 and 71,260 square kilometers. The ice shelf is fed primarily by Lambert, Mellor, and Fisher Glaciers; its thickness ranges from 3,000 meters in the center of the grounding line to less than 300 meters at the ice front. Lambert Glacier is considered to be the largest glacier in the world, and its drainage basin is more than 1 million square kilometers in area. It is possible to see some coastal change on the outlet glaciers along the coast, but most of the noticeable change occurs on the Amery Ice Shelf front.

  13. Evidence against a late Wisconsinan ice shelf in the Gulf of Maine

    USGS Publications Warehouse

    Oldale, R.N.; Williams, R.S.; Colman, Steven M.

    1990-01-01

    Proposals for the formation of a late Wisconsinan ice shelf in the Gulf of Maine during the retreat of the Laurentide Ice Sheet are considered to be inappropriate. An Antarctic-type ice shelf does not fit the field data that indicate temperate glacial, terrestrial, and marine climates for the region between 18 ka and 12 ka. A temperate ice shelf has no modern analogues and may be physically impossible. The preponderance of stratified drift in the Gulf of Maine region supports temperate climates during late Wisconsinan time. It also indicates that glacial meltwater, rather than ice in either an ice sheet or ice shelf, was the primary transport mechanism of glacial sediment and the source for the glaciomarine mud. For these reasons we have proposed glacial analogues for the deglaciation of the Gulf of Maine that consist of temperate or subpolar marine-based glaciers, characterized by depositional environments dominated by meltwater discharge directly to the sea or the sea by way of subaerial meltwater streams. These analogues include Alaskan fjord glaciers, glaciers on the Alaskan continental shelf that discharged meltwater directly into the sea in the not too distant past, and Austfonna (Nordaustandet, Svalbard, Norway) that is presently discharging meltwater in the sea along a grounded ice wall. This last example is the best modern-day analogue for the depositional environment for most of the glaciomarine mud in the Gulf of Maine and deglaciation of the Gulf. ?? 1990.

  14. Analogue modelling of the influence of ice shelf collapse on the flow of ice sheets grounded below sea-level

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Zeoli, Antonio

    2016-04-01

    The sudden breakup of ice shelves is expected to result in significant acceleration of inland glaciers, a process related to the removal of the buttressing effect exerted by the ice shelf on the tributary glaciers. This effect has been tested in previous analogue models, which however applied to ice sheets grounded above sea level (e.g., East Antarctic Ice Sheet; Antarctic Peninsula and the Larsen Ice Shelf). In this work we expand these previous results by performing small-scale laboratory models that analyse the influence of ice shelf collapse on the flow of ice streams draining an ice sheet grounded below sea level (e.g., the West Antarctic Ice Sheet). The analogue models, with dimensions (width, length, thickness) of 120x70x1.5cm were performed at the Tectonic Modelling Laboratory of CNR-IGG of Florence, Italy, by using Polydimethilsyloxane (PDMS) as analogue for the flowing ice. This transparent, Newtonian silicone has been shown to well approximate the rheology of natural ice. The silicone was allowed to flow into a water reservoir simulating natural conditions in which ice streams flow into the sea, terminating in extensive ice shelves which act as a buttress for their glaciers and slow their flow. The geometric scaling ratio was 10(-5), such that 1cm in the models simulated 1km in nature; velocity of PDMS (a few mm per hour) simulated natural velocities of 100-1000 m/year. Instability of glacier flow was induced by manually removing a basal silicone platform (floating on water) exerting backstresses to the flowing analogue glacier: the simple set-up adopted in the experiments isolates the effect of the removal of the buttressing effect that the floating platform exerts on the flowing glaciers, thus offering insights into the influence of this parameter on the flow perturbations resulting from a collapse event. The experimental results showed a significant increase in glacier velocity close to its outlet following ice shelf breakup, a process similar to what

  15. Sensitivity of the Weddell Sea sector ice streams to sub-shelf melting and surface accumulation

    NASA Astrophysics Data System (ADS)

    Wright, A. P.; Le Brocq, A. M.; Cornford, S. L.; Bingham, R. G.; Corr, H. F. J.; Ferraccioli, F.; Jordan, T. A.; Payne, A. J.; Rippin, D. M.; Ross, N.; Siegert, M. J.

    2014-11-01

    A recent ocean modelling study indicates that possible changes in circulation may bring warm deep-ocean water into direct contact with the grounding lines of the Filchner-Ronne ice streams, suggesting the potential for future ice losses from this sector equivalent to ~0.3 m of sea-level rise. Significant advancements have been made in our knowledge of both the basal topography and ice velocity in the Weddell Sea sector, and the ability to accurately model marine ice sheet dynamics, thus enabling an assessment to be made of the relative sensitivities of the diverse collection of ice streams feeding the Filchner-Ronne Ice Shelf. Here we use the BISICLES ice sheet model, which employs adaptive-mesh refinement to resolve grounding line dynamics, to carry out such an assessment. The impact of realistic perturbations to the surface and sub-shelf mass balance forcing fields from our 2000-year "reference" model run indicate that both the Institute and Möller ice streams are highly sensitive to changes in basal melting either near to their respective grounding lines, or in the region of the ice rises within the Filchner-Ronne Ice Shelf. These same perturbations have little impact, however, on the Rutford, Carlson or Foundation ice streams, while the Evans Ice Stream is found to enter a phase of unstable retreat only after melt at its grounding line has increased by 50% of likely present-day values.

  16. RTopo-2: A global high-resolution dataset of ice sheet topography, ice shelf cavity geometry and ocean bathymetry

    NASA Astrophysics Data System (ADS)

    Timmermann, Ralph; Schaffer, Janin

    2016-04-01

    The RTopo-1 data set of Antarctic ice sheet/shelf geometry and global ocean bathymetry has proven useful not only for modelling studies of ice-ocean interaction in the southern hemisphere. Following the spirit of this data set, we introduce a new product (RTopo-2) that contains consistent maps of global ocean bathymetry, upper and lower ice surface topographies for Greenland and Antarctica, and global surface height on a spherical grid with now 30 arc seconds resolution. We used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. To achieve a good representation of the fjord and shelf bathymetry around the Greenland continent, we corrected data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ and Helheim Glacier assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79°N, we incorporated a high-resolution digital bathymetry model including all available multibeam survey data for the region. Radar data for ice surface and ice base topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centers of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF) and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot and Fimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from the PANGAEA database.

  17. Insights into supraglacial lake evolution on the Larsen-B ice shelf

    NASA Astrophysics Data System (ADS)

    Leeson, A.; Shepherd, A.; Gilbert, L.; Ligtenberg, S.; van den Broeke, M.

    2015-12-01

    The Larsen-B ice shelf was the second largest component of the Larsen ice shelf system in the Antarctic Peninsula. It collapsed in 2002, losing an area more than double the size of London (~3200 km2) to the sea. The collapse of Larsen-B has been attributed to a range of factors, although the dominant control over the fidelity of the ice shelf is thought to be climatological (melting on the ice shelf was three times higher in 2002 than the 1998-2001 average). Supraglacial lakes in particular have been implicated in the collapse; by repeatedly filling and draining, they likely weaken an ice shelf and precondition it for disintegration. However, abundant supraglacial lake coverage has been observed on Larsen-B for many years prior to its break-up and, in fact, surface conditions have been conducive to lake formation for several decades. Here, we use satellite observations and a hydrological model forced with estimates of melting and runoff from a regional climate model in order to investigate the response of supraglacial lakes to extreme melting in 2002 specifically, in contrast with typical supraglacial lake evolution in previous years. We also use state-of-the-art observations of ice shelf topography acquired by CryoSat-2 to examine the potential role of supraglacial lakes on the fate of the Larsen remnant, currently thought to be at risk of collapse by 2020.

  18. Strong sensitivity of Pine Island ice-shelf melting to climatic variability.

    PubMed

    Dutrieux, Pierre; De Rydt, Jan; Jenkins, Adrian; Holland, Paul R; Ha, Ho Kyung; Lee, Sang Hoon; Steig, Eric J; Ding, Qinghua; Abrahamsen, E Povl; Schröder, Michael

    2014-01-10

    Pine Island Glacier has thinned and accelerated over recent decades, significantly contributing to global sea-level rise. Increased oceanic melting of its ice shelf is thought to have triggered those changes. Observations and numerical modeling reveal large fluctuations in the ocean heat available in the adjacent bay and enhanced sensitivity of ice-shelf melting to water temperatures at intermediate depth, as a seabed ridge blocks the deepest and warmest waters from reaching the thickest ice. Oceanic melting decreased by 50% between January 2010 and 2012, with ocean conditions in 2012 partly attributable to atmospheric forcing associated with a strong La Niña event. Both atmospheric variability and local ice shelf and seabed geometry play fundamental roles in determining the response of the Antarctic Ice Sheet to climate.

  19. Sea ice and the ocean mixed layer over the Antarctic shelf seas

    NASA Astrophysics Data System (ADS)

    Petty, A.; Holland, P.; Feltham, D. L.

    2013-12-01

    An ocean mixed layer model has been incorporated into the Los Alamos sea ice model CICE, to investigate regional variations in the surface-driven formation of Antarctic shelf sea waters. The model captures well the expected sea ice thickness distribution and produces deep (>500 m) mixed layers in the Weddell and Ross shelf seas each winter. By deconstructing the surface power input to the mixed layer, we have shown that the salt/fresh water flux from sea ice growth/melt dominates the evolution of the mixed layer in all shelf sea regions, with a smaller contribution from the mixed layer-surface heat flux. The Weddell and Ross shelf seas have the highest annual ice growth, with a large fraction exported northwards each year, whereas the Bellingshausen shelf sea experiences the highest annual ice melt, driven by the advection of ice from the northeast. Forcing the model with ERA-Interim (1980-2011) and hadGEM2-ES (1980-2099) atmospheric data allows us to look at the impact of atmospheric trends on the sea ice and ocean mixed layer. Both simulations show a shallowing of the wintertime mixed layer in the Amundsen & Bellingshausen seas, potentially increasing the access of warm CDW to ice shelves in both regions. The ERA-I hindcast simulation shows a significant freshening in the Ross and salinification in the Weddell due to surface driven trends (primarily through changes in the sea ice). The Ross freshening is smaller than observed however, highlighting the important role of ice shelf melt in the Amundsen Sea.

  20. A diverse benthic assemblage 100 km from open water under the Amery Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Riddle, M. J.; Craven, M.; Goldsworthy, P. M.; Carsey, F.

    2007-03-01

    A hot water drill was used to penetrate 480 m of ice to reveal a diverse benthic assemblage, dominated by suspension-feeding invertebrates, under the Amery Ice Shelf (East Antarctica) at a location 100 km from open water and at a depth of 775 m below sea level (840 m below the ice shelf surface). This is the first record of a benthic assemblage of this type found at this distance under an ice shelf. The few previous reports of life under ice shelves describe assemblages with very different trophic strategies (e.g., sparse assemblages of mobile scavengers or chemotrophs) or are in circumstances in which in situ photosynthesis at tide cracks or through the ice cannot be ruled out as a potential source of primary production. The physical characteristics of the Amery Ice Shelf and the feeding strategies represented together indicate that the only likely source of primary production to sustain the benthic assemblage is material advected from open water. This suggestion is supported by observed current speeds in the vicinity and reported rates of particle settling. The observation under an ice shelf of a benthic assemblage that is very similar to those found elsewhere in Antarctica, in locations dominated by annual sea ice or at depths below the photic zone, has implications for the interpretation of sediment paleorecords to represent the history of ice shelf advance and retreat. Without observations of this living assemblage in situ, the remnants of its component species in the sediment record, such as sponge spicules, echinoderm ossicles, and bryozoan fragments, could be interpreted reasonably, but erroneously, to represent open water conditions.

  1. Interannual Variability in Amundsen Sea Ice-Shelf Height Change Linked to ENSO

    NASA Astrophysics Data System (ADS)

    Paolo, F. S.; Fricker, H. A.; Padman, L.

    2015-12-01

    Atmospheric and sea-ice conditions around Antarctica, particularly in the Amundsen and Bellingshausen seas, respond to climate dynamics in the tropical Pacific Ocean on interannual time scales including the El Nino-Southern Oscillation (ENSO). It has been hypothesized that the mass balance of the Antarctic Ice Sheet, including its floating ice shelves, also responds to this climate signal; however, this has not yet been unambiguously demonstrated. We apply multivariate singular spectrum analysis (MSSA) to our 18-year (1994-2012) time series of ice-shelf height in the Amundsen Sea (AS) region. This advanced spectral method distinguishes between regular deterministic behavior ("cycles") at sub-decadal time scale and irregular behavior ("noise") at shorter time scales. Although the long-term trends of AS ice-shelf height changes are much larger than the range of interannual variability, the short-term rate of change dh/dt can vary about the trend by more than 50%. The mode of interannual variability in the AS ice-shelf height is strongly correlated with the low-frequency mode of ENSO (periodicity of ~4.5 years) as represented by the Southern Oscillation Index. The ice-shelf height in the AS is expected to respond to changes in precipitation and inflows of warm subsurface Circumpolar Deep Water (CDW) into the ocean cavities under the ice shelves, altering basal melt rates. Since both of these processes affecting ice-shelf mass balance respond to changes in wind fields for different ENSO states, we expect some correlation between them. We will describe the spatial structure of AS ice-shelf height response to ENSO, and attempt to distinguish the precipitation signal from basal mass balance due to changing CDW inflows.

  2. Multi-temporal satellite analysis of Wilkins Ice Shelf, Antarctic Peninsula, and consequences for its stability

    NASA Astrophysics Data System (ADS)

    Rankl, Melanie; Fürst, Johannes; Helm, Veit; Humbert, Angelika; Braun, Matthias

    2016-04-01

    Antarctic Peninsula (AP) ice shelves have been affected by ice front retreat and surface lowering over the past decades. 12 major ice shelves have disintegrated or significantly retreated and have been affected by volume loss. Longterm ice shelf thinning is twice as high at western AP ice shelves than at eastern AP ice shelves. Wilkins Ice Shelf (WIS), located at the western AP, has undergone considerable ice front retreat since the 1990s. It lost ~ 5000 km² of its size since then. Surface lowering at WIS was found to be the largest at AP ice shelves between 1978 and 2008. Here, we analyze time-series of satellite data in order to assess dynamic changes of WIS following the ice front retreat between 1994 and 2010. We present multi-temporal changes in surface velocities and deduced products, such as strain rate and stress regimes. Surface flow was derived from SAR intensity offset tracking applied to ALOS PALSAR image pairs. In addition, we show variations in ice thickness between 2003 and 2012 derived from TanDEM-X satellite acquisitions and altimetry datasets (CryoSAT-2, ICESat). The bistatic TanDEM-X acquisitions are very suitable for interferometric processing due to highly coherent image pairs. The results showed surface velocity speed up during break-up of an ice bridge between two confining islands in 2006-2008, when an area of ~ 1800 km² broke off. A sharp transition between compressive and extensive in-flow strain rates evolved at the narrowest part of the ice bridge, which contributed to the formation of a crack and hence, failure of the ice bridge in April 2009. First principal stresses were estimated to amount to ~ 250 kPa in the vicinity of the crack formation. The imaging TanDEM-X radar geometry allowed for a comprehensive ice thickness mapping of the ice shelf in 2012 and resolved many details due to the high spatial resolution. The ice thickness at WIS was found to be very heterogeneous. Thickness changes between 2003 and 2012 revealed increased

  3. A Halophilic Bacterium Inhabiting the Warm, CaCl2-Rich Brine of the Perennially Ice-Covered Lake Vanda, McMurdo Dry Valleys, Antarctica

    PubMed Central

    Tregoning, George S.; Kempher, Megan L.; Jung, Deborah O.; Samarkin, Vladimir A.; Joye, Samantha B.

    2015-01-01

    Lake Vanda is a perennially ice-covered and stratified lake in the McMurdo Dry Valleys, Antarctica. The lake develops a distinct chemocline at about a 50-m depth, where the waters transition from cool, oxic, and fresh to warm, sulfidic, and hypersaline. The bottom water brine is unique, as the highly chaotropic salts CaCl2 and MgCl2 predominate, and CaCl2 levels are the highest of those in any known microbial habitat. Enrichment techniques were used to isolate 15 strains of heterotrophic bacteria from the Lake Vanda brine. Despite direct supplementation of the brine samples with different organic substrates in primary enrichments, the same organism, a relative of the halophilic bacterium Halomonas (Gammaproteobacteria), was isolated from all depths sampled. The Lake Vanda (VAN) strains were obligate aerobes and showed broad pH, salinity, and temperature ranges for growth, consistent with the physicochemical properties of the brine. VAN strains were halophilic and quite CaCl2 tolerant but did not require CaCl2 for growth. The fact that only VAN strain-like organisms appeared in our enrichments hints that the highly chaotropic nature of the Lake Vanda brine may place unusual physiological constraints on the bacterial community that inhabits it. PMID:25576606

  4. The response of the West Antarctic Ice Sheet to ocean warming beneath the Filchner Ronne Ice Shelf

    NASA Astrophysics Data System (ADS)

    Goeller, Sebastian; Timmermann, Ralph; Thoma, Malte

    2015-04-01

    The ice flow at the margins of the West Antarctic Ice Sheet (WAIS) is moderated by large ice shelves. Their buttressing effect substantially controls the mass balance of the WAIS and thus its contribution to sea level rise. The stability of these ice shelves results from the balance of mass gain by accumulation and ice flow from the adjacent ice sheet and mass loss by calving and basal melting due to the ocean heat flux. Recent results of ocean circulation models indicate that warm circumpolar water of the Southern Ocean may override the submarine slope front of the Antarctic Continent and boost basal ice shelf melting. In particular, ocean simulations for several of the IPCC's future climate scenarios demonstrate the redirection of a warm coastal current into the Filchner Trough and underneath the Filchner-Ronne Ice Shelf (FRIS) within the next decades. In this study, we couple the finite elements ocean circulation model FESOM and the three-dimensional thermomechanical ice flow model RIMBAY to investigate the sensitivity of the ice dynamics within the entire FRIS catchment to simulated future basal shelf melt rates. Our simulations indicate a high sensitivity of the ice dynamics for the Möller and the Institute Ice Stream but only very little response of other ice streams like Rutford, Foundation and Recovery Ice Stream to enhanced basal shelf melting. The grounding line between the Möller and Institute Ice Streams is located on a submarine ridge in front of a deep trough further inland. In this area, basal shelf melting causes a local thinning of the FRIS. The consequent initial retreat of the grounding line continues once it reaches the adjacent reverse-sloped bedrock. We state, that a possible 'point of no return' for a vast grounding line retreat along this steep reverse bedrock slope might have been crossed already even for simulated present-day melt rates, indicating that the WAIS is currently not in equlibrium. Furthermore, our simulations show an

  5. Measuring Changes in the Vicinity of the Seal Nunataks Ice Shelf Remnant from Imagery and Altimetry

    NASA Astrophysics Data System (ADS)

    Shuman, C. A.; Berthier, E.; Scambos, T.

    2015-12-01

    Analysis of repeated imagery and ICESat laser altimetry has enabled the ongoing losses from the northern Larsen ice shelf remnant to be assessed in detail. The remnant, the Seal Nunataks ice shelf (SNIS), has four ICESat tracks that cross it as well as adjacent tracks that cross Robertson Island (RI) and its remaining tributary, Rogosh Glacier (RG), on the Antarctic Peninsula. The altimetry data from ICESat (2003-2009) shows that elevation losses increase from west to east across the SNIS. Ice elevation differences suggest mean ice shelf thinning rates of up to 1.6 m a-1 and reveal processes impacting the remaining shelf ice as well. Limited altimetry data across RG suggests elevation losses of almost 1 m a-1 inland from the grounding zone with smaller losses further up the evolving tributary. Farther east, asymmetric elevation changes across RI suggest the magnitude of regional climate impacts vary distinctly depending on slope aspect. Imagery analysis using Landsat 7 and ASTER images from 2001-2013 shows that ice area losses continued on the shelf remnant following the Larsen A break up in 1995 as well as after the Larsen B break up in 2002. The largest losses (~350 km2) occurred on the north side of the remnant in late 2004 into 2005 with smaller losses along the remaining margins. Despite a slight regional cooling recently and more persistent sea ice since early 2008 as seen in MODIS imagery, the SNIS is still losing ice along its margins and appears to be retreating past its pinning nunataks. In contrast to SNIS, RI has experienced minor ice area losses that suggest most of its ice is grounded and thus less directly impacted by ocean interactions. Combining these remote sensing data sets provides additional insights about ongoing ice loss processes in this part of the Antarctic Peninsula.

  6. The effect of basal friction on melting and freezing in ice shelf-ocean models

    NASA Astrophysics Data System (ADS)

    Gwyther, David E.; Galton-Fenzi, Benjamin K.; Dinniman, Michael S.; Roberts, Jason L.; Hunter, John R.

    2015-11-01

    The ocean is an important control on the mass budget of the Antarctic ice sheet, through basal melting and refreezing underneath the floating extensions of the ice sheet known as ice shelves. The effect of the ice surface roughness (basal roughness) on melting and refreezing is investigated with idealised ice shelf-ocean numerical simulations. Both "hot" ocean forcing (e.g. Pine Island Glacier; high basal melting) and "cold" ocean forcing (e.g. Amery Ice Shelf; low basal melting, stronger refreezing) environments are investigated. The interaction between the ocean and ice shelf is further explored by examining the contributions to melt from heat exchange across the ice-ocean interface and across the boundary layer-ocean interior, with a varying drag coefficient. Simulations show increasing drag strengthens melting. Refreezing increases with drag in the cold cavity environment, while in the hot cavity environment, refreezing is small in areal extent and decreases with drag. Furthermore, melting will likely be focussed where there are strong boundary layer currents, rather than at the deep grounding line. The magnitude of the thermal driving of the basal melt decreases with increasing drag, except for in cold cavity refreeze zones where it increases. The friction velocity, a function of the upper layer ocean velocity and the drag coefficient, monotonically increases with drag. We find friction-driven mixing into the boundary layer is important for representing the magnitude and distribution of refreezing and without this effect, refreezing is underestimated. Including a spatially- and temporally-varying basal roughness (that includes a more realistic, rougher refreezing drag coefficient) alters circulation patterns and heat and salt transport. This leads to increased refreezing, altered melt magnitude and distribution, and a pattern of altered vertical flow across the entire ice shelf. These results represent a summary of melting and freezing beneath ice shelves and

  7. Two years of oceanic observations below the Fimbul Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Hattermann, Tore; Nøst, Ole Anders; Lilly, Jonathan M.; Smedsrud, Lars H.

    2012-06-01

    The mechanisms by which heat is delivered to Antarctic ice shelves are a major source of uncertainty when assessing the response of the Antarctic ice sheet to climate change. Direct observations of the ice shelf-ocean interaction are extremely scarce and in many regions melt rates from ice shelf-ocean models are not constrained by measurements. Our two years of data (2010 and 2011) from three oceanic moorings below the Fimbul Ice Shelf in the Eastern Weddell Sea show cold cavity waters, with average temperatures of less than 0.1°C above the surface freezing point. This suggests low basal melt rates, consistent with remote sensing-based, steady-state mass balance estimates for this sector of the Antarctic coast. Oceanic heat for basal melting is found to be supplied by two sources of warm water entering below the ice: (i) eddy-like bursts of Modified Warm Deep Water that access the cavity at depth for eight months of the record; and (ii) fresh surface water that flushes parts of the ice base with temperatures above freezing during late summer and fall. This interplay of processes implies that basal melting at the Fimbul Ice Shelf cannot simply be parameterized by coastal deep ocean temperatures, but instead appears directly linked to both solar forcing at the surface as well as to the dynamics of the coastal current system.

  8. Late holocene fluctuations in the front of the Muller Ice Shelf, Antarctic Peninsula

    SciTech Connect

    Domack, E.W. ); Stein, A.B. )

    1993-01-01

    Ice shelves are important environmental indicators along the antarctic Peninsula. This study investigates the fluctuation of the Muller Ice Shelf by collecting and analysing surface sediment samples, piston cores, and kasten cores close to the present calving line. 3 refs., 3 figs.

  9. Ice shelf basal melt rates around Antarctica from simulations and observations

    NASA Astrophysics Data System (ADS)

    Schodlok, M. P.; Menemenlis, D.; Rignot, E. J.

    2016-02-01

    We introduce an explicit representation of Antarctic ice shelf cavities in the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) ocean retrospective analysis; and compare resulting basal melt rates and patterns to independent estimates from satellite observations. Two simulations are carried out: the first is based on the original ECCO2 vertical discretization; the second has higher vertical resolution particularly at the depth range of ice shelf cavities. The original ECCO2 vertical discretization produces higher than observed melt rates and leads to a misrepresentation of Southern Ocean water mass properties and transports. In general, thicker levels at the base of the ice shelves lead to increased melting because of their larger heat capacity. This strengthens horizontal gradients and circulation within and outside the cavities and, in turn, warm water transports from the shelf break to the ice shelves. The simulation with more vertical levels produces basal melt rates (1735 ± 164 Gt/a) and patterns that are in better agreement with observations. Thinner levels in the sub-ice-shelf cavities improve the representation of a fresh/cold layer at the ice shelf base and of warm/salty water near the bottom, leading to a sharper pycnocline and reduced vertical mixing underneath the ice shelf. Improved water column properties lead to more accurate melt rates and patterns, especially for melt/freeze patterns under large cold-water ice shelves. At the 18 km grid spacing of the ECCO2 model configuration, the smaller, warm-water ice shelves cannot be properly represented, with higher than observed melt rates in both simulations.

  10. Integration of airborne altimetry and in situ radar measurements to estimate marine ice thickness beneath the Larsen C ice shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Steffen, K.; Rodriguez Lagos, J.

    2010-12-01

    Observed atmospheric and oceanic warming is driving significant retreat and / or collapse of ice shelves along the Antarctic Peninsula totaling over 25,000 km2 in the past five decades. Basal melting of meteoric ice can occur near the grounding line of deep glacier inflows if the ocean water is above the pressure melting point. Buoyant meltwater will develop thermohaline circulation, rising beneath the ice shelf, where it may become supercooled and subsequently refreeze in ice draft minima. Marine ice, due to its warm and thus relatively viscous nature, is hypothesized to suture parallel flow bands, increasing ice shelf stability by arresting fracture propagation and controlling iceberg calving dimensions. Thus efforts to model ice shelf stability require accurate estimates of marine ice location and thickness. Ice thickness of a floating ice shelf can be determined in two manners: (1) from measurements of ice elevation above sea level and the calculation of ice thickness from assumptions of hydrostatic equilibrium, and (2) from radar echo measurements of the ice-water interface. Marine ice can confound the latter because its high dielectric constant and strong absorptive properties attenuate the radar energy, often preventing a return signal from the bottom of the ice shelf. These two methods are complementary for determining the marine ice component though because positive anomalies in (1) relative to (2) suggest regions of marine ice accretion. Nearly 350 km of ice penetrating radar (25 MHz) surveys were collected on the Larsen C ice shelf, in conjunction with kinematic GPS measurements and collocated with surface elevation data from the NASA Airborne Topographic Mapper (ATM) as part of the ICE Bridge mission in 2009. Basal ice topography and total ice thickness is accurately mapped along the survey lines and compared with calculated ice thickness from both the kinematic GPS and ATM elevation data. Positive anomalies are discussed in light of visible imagery and

  11. Soil temperatures and stability of ice-cemented ground in the McMurdo Dry Valleys, Antarctica.

    PubMed

    McKay, C; Mellon, M T; Friedmann, E I

    1998-03-01

    Year-round temperature measurements at 1600 m elevation during 1994 in the Asgard Range Antarctica, indicate that the mean annual frost point of the ice-cemented ground, 25 cm below the surface, is -21.7 +/- 0.2 degrees C and the mean annual frost point of the atmosphere is -27.5 +/- 1.0 degrees C. The corresponding mean annual temperatures are -24.9 degrees C and -23.3 degrees C. These results imply that there is a net flux of water vapour from the ice to the atmosphere resulting in a recession of the ice-cemented ground by about 0.4-0.6 mm yr-1. The level of the ice-cemented permafrost is about 12 cm below the level of dry permafrost. The summer air temperatures would have to increase about 7 degrees C for thawing temperatures to just reach the top of the subsurface ice. Either subsurface ice at this location is evaporating over time or there are sporadic processes that recharge the ice and maintain equilibrium over long timescales.

  12. Soil temperatures and stability of ice-cemented ground in the McMurdo Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    McKay, C.; Mellon, M. T.; Friedmann, E. I.

    1998-01-01

    Year-round temperature measurements at 1600 m elevation during 1994 in the Asgard Range Antarctica, indicate that the mean annual frost point of the ice-cemented ground, 25 cm below the surface, is -21.7 +/- 0.2 degrees C and the mean annual frost point of the atmosphere is -27.5 +/- 1.0 degrees C. The corresponding mean annual temperatures are -24.9 degrees C and -23.3 degrees C. These results imply that there is a net flux of water vapour from the ice to the atmosphere resulting in a recession of the ice-cemented ground by about 0.4-0.6 mm yr-1. The level of the ice-cemented permafrost is about 12 cm below the level of dry permafrost. The summer air temperatures would have to increase about 7 degrees C for thawing temperatures to just reach the top of the subsurface ice. Either subsurface ice at this location is evaporating over time or there are sporadic processes that recharge the ice and maintain equilibrium over long timescales.

  13. The surface climatology of the Ross Ice Shelf Antarctica

    PubMed Central

    Lazzara, Matthew A.; Keller, Linda M.; Cassano, John J.

    2016-01-01

    ABSTRACT The University of Wisconsin‐Madison Antarctic Automatic Weather Station (AWS) project has been making meteorological surface observations on the Ross Ice Shelf (RIS) for approximately 30 years. This network offers the most continuous set of routine measurements of surface meteorological variables in this region. The Ross Island area is excluded from this study. The surface climate of the RIS is described using the AWS measurements. Temperature, pressure, and wind data are analysed on daily, monthly, seasonal, and annual time periods for 13 AWS across the RIS. The AWS are separated into three representative regions – central, coastal, and the area along the Transantarctic Mountains – in order to describe specific characteristics of sections of the RIS. The climatology describes general characteristics of the region and significant changes over time. The central AWS experiences the coldest mean temperature, and the lowest resultant wind speed. These AWSs also experience the coldest potential temperatures with a minimum of 209.3 K at Gill AWS. The AWS along the Transantarctic Mountains experiences the warmest mean temperature, the highest mean sea‐level pressure, and the highest mean resultant wind speed. Finally, the coastal AWS experiences the lowest mean pressure. Climate indices (MEI, SAM, and SAO) are compared to temperature and pressure data of four of the AWS with the longest observation periods, and significant correlation is found for most AWS in sea‐level pressure and temperature. This climatology study highlights characteristics that influence the climate of the RIS, and the challenges of maintaining a long‐term Antarctic AWS network. Results from this effort are essential for the broader Antarctic meteorology community for future research. PMID:28008213

  14. Icepod Plus Potential Field: An Integrated Approach For Understanding Ice Shelf Processes

    NASA Astrophysics Data System (ADS)

    Frearson, N.

    2015-12-01

    Warm water flowing beneath the large floating ice shelves in Antarctica will play an important role in how fast sea level rises. The lack of detailed bathymetry beneath the large ice shelves and lack of understanding of their internal structure inherently limits our knowledge of how ice shelves will thin and collapse. Understanding the bathymetry beneath the remaining ice shelves is critical to understanding how ice shelves will thin in the future and how that will impact the flux of ice into the global ocean. The Ross Ice Shelf, the largest ice shelf remaining on our planet, buttresses the West Antarctic Ice Sheet. The bathymetry beneath the Ross Ice Shelf is the least explored piece of ocean floor on our planet. The IcePod is a compact integrated ice imaging system developed for use on any C-130 aircraft developed with NSF support. The initial development program was targeted towards investigating glacial and ice-sheet processes. In this program, deep and shallow ice radars were developed. Optical instruments, including a scanning laser, Infra-red camera and visible wave camera were integrated into the pod. We have expanded the IcePod instrument suite to include the potential field measurements of magnetic and gravity anomalies with support from the Moore Foundation. During the development, a total field cesium sensor magnetometer and 3-axis fluxgate from previously funded work were also incorporated into the pod. Their behavioral response to being located close to high-frequency electronics, power supplies and metallic objects were studied. We describe in part some of that development process and the positive findings that resulted. The Icepod group is also actively pursuing the development, modification and incorporation of a new gravimeter into the suite of instruments available to the program and is investigating reduction in size of this that may eventually lead to incorporating the gravimeter into the pod itself. As part of this program we are also

  15. Dilution-to-extinction culturing of psychrotolerant planktonic bacteria from permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica.

    PubMed

    Stingl, U; Cho, J-C; Foo, W; Vergin, K L; Lanoil, B; Giovannoni, S J

    2008-04-01

    Lakes in the McMurdo Dry Valleys of Antarctica are characterized by a permanent ice cover and little or no anthropogenic influence. Although bacterial cultures have been obtained from these habitats, recent culture-independent studies indicate that the most abundant microbes in these systems are not yet cultivated. By using dilution-to-extinction cultivation methods with sterilized and nutrient-amended lake water as media, we isolated 148 chemotrophic psychrotolerant bacterial cultures from fresh surface water of Lake Fryxell and the east lobe of Lake Bonney and the hypersaline, suboxic bottom water from the west lobes of Lake Bonney. Screening of the 16S ribosomal ribonucleic acid (rRNA) genes of the cultures by restriction fragment length polymorphism (RFLP) yielded 57 putatively pure psychrotolerant, slow growing cultures grouped into 18 clusters. The sequencing of 16S rRNA genes of randomly selected representatives of each RFLP cluster revealed that the corresponding isolates belong to the Alphaproteobacteria (six RFLP patterns), Betaproteobacteria (six RFLP patterns), Bacteroidetes (four RFLP patterns), and Actinobacteria (two RFLP patterns). Phylogenetic analysis of the sequences showed that the vast majority of the isolates were not closely related to previously described species. Thirteen of 18 RFLP patterns shared a 16S ribosomal deoxyribonucleic acid sequence similarity of 97% or less with the closest described species, and four isolates had a sequence similarity of 93% or less with the nearest described species. Phylogenetic analysis showed that these sequences were representatives of deeply branching organisms in the respective phylum. A comparison of the isolates with 16S rRNA clone libraries prepared from the same environments showed substantial overlap, indicating that dilution-to-extinction culturing in natural lake water media can help isolate some of the most abundant organisms in these perennially ice-covered lakes.

  16. An Isotopic Map of Dust Source Areas in the McMurdo Sound Sector of Antarctica

    NASA Astrophysics Data System (ADS)

    Blakowski, M. A.; Aciego, S.; Delmonte, B.; Baroni, C.; Salvatore, M. C.

    2014-12-01

    The McMurdo Sound sector of Antarctica features a unique, polar desert ecosystem characterized by low temperatures, hyper-aridity, and high-speed winds. These climatic conditions result in limited water sources, sparse vegetation, underdeveloped soils, and abundant unconsolidated sediment easily influenced by wind-driven transport. Radiogenic isotopes (87Sr/86Sr, 143Nd/144Nd) provide constant signatures of dust from source- to sink-areas. Accordingly, aeolian dust derived from arid regions has been recognized in many studies as an important tracer of atmospheric circulation, as well as a tool for deciphering past climatic conditions in dust source regions. However, while major global dust sources (e.g. from South America, Africa, and Asia) are well studied and easily identifiable via distinct isotopic signatures when encountered in different depositional environments (e.g. Antarctic ice cores), local material from sources in and around the ice-free Dry Valleys and surrounding areas have remained in need of further documentation. We analyzed 40 samples of silt, sand, glacial drift, and weathered regolith material in both fine (<5μm) and coarse fractions collected from Victoria Land and the McMurdo Sound sector, including Cape Royds, Cape Bird, and the McMurdo Ice Shelf. Here we present an ArcGIS-generated, high-precision geochemical map of Antarctic PSAs synthesized from our data and combined with geomorphological and stratigraphic information on the studied sites. We believe that our expanded isotopic catalogue and map can be used to enhance and/or prompt regional studies in a variety of disciplines, such as by providing greater constraints on models of regional dust variability and transport pathways and of the melting history of the Antarctic ice sheet, and by determining the provenance of dust archived in ice cores, lake sediment, soil records, and impurities in Antarctic sea-ice.

  17. McMurdo Dry Valleys

    NASA Technical Reports Server (NTRS)

    2002-01-01

    One of the few areas of Antarctica not covered by thousands of meters of ice, the McMurdo Dry Valleys stand out in this satellite image. For a few weeks each summer temperatures are warm enough to melt glacial ice, creating streams that feed freshwater lakes that lie at the bottom of the valleys. Beneath a cap of ice these lakes remains unfrozen year-round, supporting colonies of bacteria and phytoplankton. Over the past 14 years, however, summers have been colder than usual, and the lakes are becoming more and more frozen. If the trend continues, the biological communities they support may go into hibernation. Most of Antarctica has cooled along with the Dry Valleys, in contrast to much of the rest of the Earth, which has warmed over the past 100 years. No one knows if the trend is related to global climate, or just a quirk in the weather. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) instrument on December 18, 1999. For more information, visit: National Public Radio's Mixed Signals from Antarctica Declassified Satellite Imagery of the McMurdo Dry Valleys Image by Robert Simmon, based on data provided by the NASA GSFC Oceans and Ice Branch and the Landsat 7 Science Team

  18. Characterizing Microbial Mat Morphology with Structure from Motion Techniques in Ice-Covered Lake Joyce, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Mackey, T. J.; Leidman, S. Z.; Allen, B.; Hawes, I.; Lawrence, J.; Jungblut, A. D.; Krusor, M.; Coleman, L.; Sumner, D. Y.

    2015-12-01

    Structure from Motion (SFM) techniques can provide quantitative morphological documentation of otherwise inaccessible benthic ecosystems such as microbial mats in Lake Joyce, a perennially ice-covered lake of the Antarctic McMurdo Dry Valleys (MDV). Microbial mats are a key ecosystem of MDV lakes, and diverse mat morphologies like pinnacles emerge from interactions among microbial behavior, mineralization, and environmental conditions. Environmental gradients can be isolated to test mat growth models, but assessment of mat morphology along these gradients is complicated by their inaccessibility: the Lake Joyce ice cover is 4-5 m thick, water depths containing diverse pinnacle morphologies are 9-14 m, and relevant mat features are cm-scale. In order to map mat pinnacle morphology in different sedimentary settings, we deployed drop cameras (SeaViewer and GoPro) through 29 GPS referenced drill holes clustered into six stations along a transect spanning 880 m. Once under the ice cover, a boom containing a second GoPro camera was unfurled and rotated to collect oblique images of the benthic mats within dm of the mat-water interface. This setup allowed imaging from all sides over a ~1.5 m diameter area of the lake bottom. Underwater lens parameters were determined for each camera in Agisoft Lens; images were reconstructed and oriented in space with the SFM software Agisoft Photoscan, using the drop camera axis of rotation as up. The reconstructions were compared to downward facing images to assess accuracy, and similar images of an object with known geometry provided a test for expected error in reconstructions. Downward facing images identify decreasing pinnacle abundance in higher sedimentation settings, and quantitative measurements of 3D reconstructions in KeckCAVES LidarViewer supplement these mat morphological facies with measurements of pinnacle height and orientation. Reconstructions also help isolate confounding variables for mat facies trends with measurements

  19. Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting

    NASA Astrophysics Data System (ADS)

    Gladstone, Rupert Michael; Warner, Roland Charles; Galton-Fenzi, Benjamin Keith; Gagliardini, Olivier; Zwinger, Thomas; Greve, Ralf

    2017-01-01

    Computer models are necessary for understanding and predicting marine ice sheet behaviour. However, there is uncertainty over implementation of physical processes at the ice base, both for grounded and floating glacial ice. Here we implement several sliding relations in a marine ice sheet flow-line model accounting for all stress components and demonstrate that model resolution requirements are strongly dependent on both the choice of basal sliding relation and the spatial distribution of ice shelf basal melting.Sliding relations that reduce the magnitude of the step change in basal drag from grounded ice to floating ice (where basal drag is set to zero) show reduced dependence on resolution compared to a commonly used relation, in which basal drag is purely a power law function of basal ice velocity. Sliding relations in which basal drag goes smoothly to zero as the grounding line is approached from inland (due to a physically motivated incorporation of effective pressure at the bed) provide further reduction in resolution dependence.A similar issue is found with the imposition of basal melt under the floating part of the ice shelf: melt parameterisations that reduce the abruptness of change in basal melting from grounded ice (where basal melt is set to zero) to floating ice provide improved convergence with resolution compared to parameterisations in which high melt occurs adjacent to the grounding line.Thus physical processes, such as sub-glacial outflow (which could cause high melt near the grounding line), impact on capability to simulate marine ice sheets. If there exists an abrupt change across the grounding line in either basal drag or basal melting, then high resolution will be required to solve the problem. However, the plausible combination of a physical dependency of basal drag on effective pressure, and the possibility of low ice shelf basal melt rates next to the grounding line, may mean that some marine ice sheet systems can be reliably simulated at

  20. Dynamics of surface melting over Amery and Ross ice shelf in Antarctic using OSCAT data

    NASA Astrophysics Data System (ADS)

    Bothale, R. V.; Rao, P. V. N.; Dutt, C. B. S.; Dadhwal, V. K.

    2014-11-01

    Antarctic sea ice sheets play an important role in modulating the climate system. The present study investigates the dynamics of melt/freeze over Amery and Ross ice shelf located in Eastern and Southern part of continent using OSCAT, the microwave scatterometer data from OCEANSAT2. The study utilizes the sensitivity of backscatter coefficient values of scatterometer data to presence of liquid water in the snow caused due to melt conditions. The analysis carried out for four austral winters from 2010-2013 and five austral summer from 2009-2014 showed spatial and temporal variations in average backscatter coefficient over Amery and Ross shelf areas. A dynamic threshold based on the austral winter mean and standard deviation of HH polarization is considered for pixel by pixel analysis for the shelf area. There is significant spatio-temporal variability in melt extent, duration and melt index as observed in the analysis. Spatially, the melt over Amery shelf moves from South to North along coast and West towards inner shelf area. Maximum mean melt occurs on 9th January with January 1-15 fortnight accounting for 80 % of the melt. Extreme low melt conditions were observed during summer 2010-11 and 2011-12 indicating cold summer. Summer 2012-13 and 2013-14 were warm summer. Year 2014 experienced melt only in the month of January with entire shelf under melt conditions. Practically no melt was observed over Ross ice shelf.

  1. Bimodal pattern of seismicity detected at the ocean margin of an Antarctic ice shelf

    NASA Astrophysics Data System (ADS)

    Lombardi, Denis; Benoit, Lionel; Camelbeeck, Thierry; Martin, Olivier; Meynard, Christophe; Thom, Christian

    2016-08-01

    In Antarctica, locally grounded ice, such as ice rises bordering floating ice shelves, plays a major role in the ice mass balance as it stabilizes the ice sheet flow from the hinterland. When in direct contact with the ocean, the ice rise buttressing effect may be altered in response of changing ocean forcing. To investigate this vulnerable zone, four sites near the boundary of an ice shelf with an ice rise promontory in Dronning Maud Land, East-Antarctica were monitored for a month in early 2014 with new instruments that include both seismic and GPS sensors. Our study indicated that this transition zone experiences periodic seismic activity resulting from surface crevassing during oceanic tide-induced flexure of the ice shelf. The most significant finding is the observation of apparent fortnightly tide-modulated low-frequency, long-duration seismic events at the seaward front of the ice rise promontory. A basal origin of these events is postulated with the ocean water surge at each new spring tide triggering basal crevassing or basal slip on a local bedrock asperity. Detection and monitoring of such seismicity may help identifying ice rise zones vulnerable to intensified ocean forcing.

  2. Sea ice and surface water circulation, Alaskan Continental Shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.; Burn, J. J.

    1973-01-01

    The author has identified the following significant results. The boundaries of land-fast ice, distribution of pack ice, and major polynya were studied in the vicinity of the Bering Strait. Movement of pack ice during 24 hours was determined by plotting the distinctly identifiable ice floes on ERTS-1 imagery obtained from two consecutive passes. Considerably large shallow area along the western Seward Peninsula just north of the Bering Strait is covered by land fast ice. This ice hinders the movement of ice formed in eastern Chukchi Sea southward through the Bering Strait. The movement of ice along the Russian coast is relatively faster. Plotting of some of the ice floes indicated movement of ice in excess of 30 km in and south of the Bering Strait between 6 and 7 March, 1973. North of the Bering Strait the movement approached 18 km. The movement of ice observed during March 6 and 7 considerably altered the distribution and extent of polynya. These features when continually plotted should be of considerable aid in navigation of ice breakers. The movement of ice will also help delineate the migration and distribution of sea mammals.

  3. Ocean heat drives rapid basal melt of the Totten Ice Shelf.

    PubMed

    Rintoul, Stephen Rich; Silvano, Alessandro; Pena-Molino, Beatriz; van Wijk, Esmee; Rosenberg, Mark; Greenbaum, Jamin Stevens; Blankenship, Donald D

    2016-12-01

    Mass loss from the West Antarctic ice shelves and glaciers has been linked to basal melt by ocean heat flux. The Totten Ice Shelf in East Antarctica, which buttresses a marine-based ice sheet with a volume equivalent to at least 3.5 m of global sea-level rise, also experiences rapid basal melt, but the role of ocean forcing was not known because of a lack of observations near the ice shelf. Observations from the Totten calving front confirm that (0.22 ± 0.07) × 10(6) m(3) s(-1) of warm water enters the cavity through a newly discovered deep channel. The ocean heat transport into the cavity is sufficient to support the large basal melt rates inferred from glaciological observations. Change in ocean heat flux is a plausible physical mechanism to explain past and projected changes in this sector of the East Antarctic Ice Sheet and its contribution to sea level.

  4. Ocean heat drives rapid basal melt of the Totten Ice Shelf

    PubMed Central

    Rintoul, Stephen Rich; Silvano, Alessandro; Pena-Molino, Beatriz; van Wijk, Esmee; Rosenberg, Mark; Greenbaum, Jamin Stevens; Blankenship, Donald D.

    2016-01-01

    Mass loss from the West Antarctic ice shelves and glaciers has been linked to basal melt by ocean heat flux. The Totten Ice Shelf in East Antarctica, which buttresses a marine-based ice sheet with a volume equivalent to at least 3.5 m of global sea-level rise, also experiences rapid basal melt, but the role of ocean forcing was not known because of a lack of observations near the ice shelf. Observations from the Totten calving front confirm that (0.22 ± 0.07) × 106 m3 s−1 of warm water enters the cavity through a newly discovered deep channel. The ocean heat transport into the cavity is sufficient to support the large basal melt rates inferred from glaciological observations. Change in ocean heat flux is a plausible physical mechanism to explain past and projected changes in this sector of the East Antarctic Ice Sheet and its contribution to sea level. PMID:28028540

  5. New evidence for ice shelf flow across the Alaska and Beaufort margins, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Engels, Jennifer L.

    The Arctic Ocean may act as a lynchpin for global climate change due to its unique physiography as a mediterranean sea located in polar latitudes. In our modern warming climate, debate over the bounds of natural versus anthropogenically-induced climate variability necessitates a comprehensive understanding of Arctic ice extent and configuration over the last interglacial cycle. Longstanding controversy exists as to the volume, timing, and flow trajectories of ice in the Arctic Ocean during glacial maxima when continental ice sheets mantled circum-arctic landmasses. As a result of the Science Ice Exercise surveys of the Arctic Ocean in 1999, new evidence for ice grounding at depths down to 980 m on the Lomonosov Ridge and 750 m on the Chukchi Borderland indicates the likelihood that large ice shelves flowed into the ocean from both the Barents/Kara Sea and the Canadian Arctic Archipelago or eastern Alaska. Sidescan imagery of ˜14100 km2 of seafloor along the Alaska and Beaufort margins in water depths from 250--2800 m maps a repetitive association of recognizable sub-glacially generated bedforms, ice carved-bathymerry, and ice-marginal turbidite gullies over a 640 km stretch of the margin between Point Barrow and the MacKenzie River delta. Glaciogenic bedforms occur across the surface of a flattened bathymetric bench or 'second shelf break' that is interpreted to have been formed by an ice shelf eroding the continental slope. The glacial geology of surrounding areas suggests that an ice shelf on the Alaska and Beaufort margins likely flowed from the mouths of overdeepened glacial troughs in the Canadian Arctic Archipelago westward and across the Chukchi Borderland due to an obstruction in the central Canadian basin. Evidence for an ice shelf along the Alaska and Beaufort margins supports an expanded interpretation of ice volume and extent during Pleistocene glacial periods. This has far-reaching implications for Arctic climate studies, ocean circulation, sediment

  6. Ice-shelf height variability in Amundsen Sea linked to ENSO

    NASA Astrophysics Data System (ADS)

    Paolo, Fernando; Fricker, Helen; Padman, Laurie

    2016-04-01

    Atmospheric and sea-ice conditions around Antarctica, particularly in the Amundsen and Bellingshausen seas, respond to climate dynamics in the tropical Pacific Ocean on interannual time scales including the El Nino-Southern Oscillation (ENSO). It has been hypothesized that the mass balance of the Antarctic Ice Sheet, including its floating ice shelves, also responds to this climate signal; however, this has not yet been unambiguously demonstrated. We apply multivariate singular spectrum analysis (MSSA) to 18-year (1994-2012) time series of ice-shelf height derived from satellite radar altimetry in the Amundsen Sea (AS) region. This advanced spectral method distinguishes between regular deterministic behavior ("cycles") at sub-decadal time scale and irregular behavior ("noise") at shorter time scales. Although the long-term trends in ice-shelf height change are much larger than the range of interannual variability in the AS region, the short-term rate of change dh/dt can vary about the trend by more than 50%. We extract the principal modes of variability (EOFs) based on common spectral properties from a set of 140 height time series. The mode of interannual variability in the AS ice-shelf height is strongly correlated with the low-frequency mode of ENSO (periodicity of ~4.5 years) as represented by the Southern Oscillation Index. This interannual mode in ice-shelf height, represented by the two leading EOFs, is responsible for about 25% of the variance in the de-trended data set. The ice-shelf height in the AS is expected to respond to changes in precipitation and inflows of warm subsurface Circumpolar Deep Water (CDW) into the ocean cavities under the ice shelves, altering basal melt rates. While we find a correlation between modeled precipitation anomalies and ice-shelf height, we are investigating (a) errors in model precipitation, (b) radar backscatter and firn-density issues, and (c) ocean contribution correlated with atmosphere through wind-stress forcing. We

  7. Mounting evidence for intense ocean interaction with the Pine Island Glacier Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bindschadler, R.; Holland, D.; Vaughan, D.; Vornberger, P.

    2008-12-01

    The spatial signature of thinning and acceleration of the Pine Island Glacier has led to the inference that these changes originate at the seaward end of the glacier, possibly within or under the ice shelf (Payne et al., 2004; Shepherd et al., 2004). We present new analyses resulting from both new and archived satellite imagery of the ice shelf that supports this inference and provides new insights into strong seasonal and intra- annual characters of ocean-ice shelf interaction. Strong longitudinal variations in both thickness and surface elevation measured by British Antarctic Survey airborne radars (Vaughan et al., 2006) have wavelengths that correspond roughly to the annual motion of the ice shelf. These could be caused by seasonal variations in flow speed, but such variations of flow speed have never been reported and are not seen in the most recent continuous GPS observations of the ice shelf. We suggest that these strong variations in ice thickness, as large as 200 meters in an average thickness of 600 meters, are caused by seasonal variations in the properties of the water circulating underneath the ice shelf. One likely explanation is that the dominant water mass reaching the deepest parts of the ice shelf alternates between cold High Salinity Shelf Water in the winter and warm Circumpolar Deep Water in the summer. Evidence for recent strengthening of the sub- shelf circulation is the sudden occurrence of three persistent polynyas immediately adjacent to the ice front. These are located in precisely the locations expected from modeled sub-shelf circulation (Payne et al., 2007). This mode was never observed in any satellite imagery prior to the 1999-2000 austral summer (data of 7 summers since 1973 were available), but has occurred in 7 of the 9 summers since and persists throughout the summer. Payne, A.J., A. Vieli, A.P. Shepherd, D.J. Wingham and E. Rignot, 2004. Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans, Geophysical

  8. The Roosevelt Island Climate Evolution (RICE) Project - Did the Ross Ice Shelf Collapse During MIS 5e?

    NASA Astrophysics Data System (ADS)

    Bertler, N. A. N.; Conway, H.; Dahl-Jensen, D.; Blunier, T.; Brook, E.; Dadic, R.; Delmonte, B.; Dongqi, Z.; Edwards, R.; Emanuelsson, D. B.; Fudge, T. J.; Golledge, N.; Hindmarsh, R. C. A.; Hawley, R. L.; Kipfstuhl, S.; Kjær, H. A.; Kurbatov, A.; Lee, J.; Mayewski, P. A.; Naish, T.; Neff, P. D.; Scherer, R. P.; Severinghaus, J. P.; Simonsen, M. F.; Steig, E. J.; Tuohy, A.; Vallelonga, P. T.; Waddington, E. D.

    2014-12-01

    Geological evidence and modelling experiments suggest that the removal of ice shelves from marine based ice sheets can lead to catastrophic collapse. Roosevelt and Ross Islands are thought to be key stabilization anchors for the Ross Ice Shelf and thus the West Antarctic Ice Sheet. As part of the Roosevelt Island Climate Evolution (RICE) project, a 763m deep ice core was recovered during 2011-2013 from Roosevelt Island, at the northern edge of the Ross Ice Shelf. The ice at Roosevelt Island is grounded 210m below sea level and accumulates in situ, with the Ross Ice Shelf flowing around the rise. High resolution radar surveys show a well developed Raymond Bump at the divide of the ice dome. With the conclusion of the RICE core processing campaign in July 2014, a preliminary age model is developed using annual layer count, volcanic ash layers; and high resolution methane data tied to the WAIS Divide ice core record, and a glacial flow model. Here we show preliminary data spanning over 100 ka including evidence of ice from the Eemian period (MIS 5e) at the base of the core. The presence of Eemian ice in the RICE record raises the question: how much of the Ross Ice Shelf and West Antarctic Ice Sheet collapsed during the last interglacial, when global sea level was 4-8m higher than today? We discuss reconstructions of sea surface and air temperature, sea ice extent, atmospheric circulation patterns, and ice shelf retreat. An ensemble of sensitivity modelling experiments is used to determine thresholds for the removal of ice on Roosevelt Island and correlated grounding line and ice volume changes of the Ross Ice Shelf and the West Antarctic Ice Sheet.

  9. Evolution of basal crevasses links ice shelf stability to ocean forcing

    NASA Astrophysics Data System (ADS)

    Bassis, J. N.; Ma, Y.

    2015-01-01

    Iceberg calving is one of the primary mechanisms responsible for transferring ice from the Antarctic ice shelves to the ocean, but remains poorly understood. Previous theories of calving have sought to explain the calving process as a brittle phenomenon that occurs rapidly when surface or basal crevasses penetrate the entire ice thickness. Here we show that the strain-rate-weakening nature of ice permits initially narrow basal crevasses to seed an instability that gives rise to locally enhanced ductile deformation and thinning over length scales that are large compared to the ice thickness. This ductile failure process, called necking, amplifies long wavelength features of bottom topography and allows basal crevasses to penetrate an increasing fraction of the ice thickness as they advect downstream. Application of the model to the four largest Antarctic ice shelves shows that necking occurs downstream of pinning points and sharp protrusions in the ice shelf embayment where stress is highly concentrated. However, model predictions are sensitive to assumptions about basal melting and refreezing within crevasses, suggesting that the combination of mechanical instability and ice-ocean interaction on the scale of an individual crevasse may play a leading role in controlling ice shelf stability.

  10. Fish, crustaceans, and the sea floor under the ross ice shelf.

    PubMed

    Bruchhausen, P M; Raymond, J A; Jacobs, S S; Devries, A L; Thorndike, E M; Dewitt, H H

    1979-02-02

    Baited traps and a camera lowered through the Ross Ice Shelf, Antarctica, at a point 475 kilometers from the open Ross Sea and to 597 meters below sea level revealed the presence of fish, many amphipods, and one isopod. Biological or current markings were not evident on a soft bottom littered with subangular lumps. A fish was caught through a crevasse 80 kilometers from the shelf edge.

  11. Future sea-level rise from tidewater and ice-shelf tributary glaciers of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Schannwell, Clemens; Barrand, Nicholas E.; Radić, Valentina

    2016-11-01

    Iceberg calving and increased ice discharge from ice-shelf tributary glaciers contribute significant amounts to global sea-level rise (SLR) from the Antarctic Peninsula (AP). Owing to ongoing ice dynamical changes (collapse of buttressing ice shelves), these contributions have accelerated in recent years. As the AP is one of the fastest warming regions on Earth, further ice dynamical adjustment (increased ice discharge) is expected over the next two centuries. In this paper, the first regional SLR projection of the AP from both iceberg calving and increased ice discharge from ice-shelf tributary glaciers in response to ice-shelf collapse is presented. An ice-sheet model forced by temperature output from 13 global climate models (GCMs), in response to the high greenhouse gas emission scenario (RCP8.5), projects AP contribution to SLR of 28 ± 16 to 32 ± 16 mm by 2300, partitioned approximately equally between contributions from tidewater glaciers and ice-shelf tributary glaciers. In the RCP4.5 scenario, sea-level rise projections to 2300 are dominated by tidewater glaciers (∼8-18 mm). In this cooler scenario, 2.4 ± 1 mm is added to global sea levels from ice-shelf tributary drainage basins as fewer ice-shelves are projected to collapse. Sea-level projections from ice-shelf tributary glaciers are dominated by drainage basins feeding George VI Ice Shelf, accounting for ∼70% of simulated SLR. Combined total ice dynamical SLR projections to 2300 from the AP vary between 11 ± 2 and 32 ± 16 mm sea-level equivalent (SLE), depending on the emission scenario used. These simulations suggest that omission of tidewater glaciers could lead to a substantial underestimation of the ice-sheet's contribution to regional SLR.

  12. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier.

    PubMed

    Smith, J A; Andersen, T J; Shortt, M; Gaffney, A M; Truffer, M; Stanton, T P; Bindschadler, R; Dutrieux, P; Jenkins, A; Hillenbrand, C-D; Ehrmann, W; Corr, H F J; Farley, N; Crowhurst, S; Vaughan, D G

    2017-01-05

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line-which marks the boundary between grounded ice and floating ice shelf-is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreat is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Thus our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.

  13. Coupled ice shelf-ocean modeling and complex grounding line retreat from a seabed ridge

    NASA Astrophysics Data System (ADS)

    De Rydt, J.; Gudmundsson, G. H.

    2016-05-01

    Recent observations and modeling work have shown a complex mechanical coupling between Antarctica's floating ice shelves and the adjacent grounded ice sheet. A prime example is Pine Island Glacier, West Antarctica, which has a strong negative mass balance caused by a recent increase in ocean-induced melting of its ice shelf. The mass loss coincides with the retreat of the grounding line from a seabed ridge, on which it was at least partly grounded until the 1970s. At present, it is unclear what has caused the onset of this retreat and how feedback mechanisms between the ocean and ice shelf geometry have influenced the ice dynamics. To address these questions, we present the first results from an offline coupling between a state-of-the-art shallow-ice flow model with grounding line resolving capabilities and a three-dimensional ocean general circulation model with a static implementation of the ice shelf. A series of idealized experiments simulate the retreat from a seabed ridge in response to changes in the ocean forcing, and we show that the retreat becomes irreversible after 20 years of warm ocean conditions. A comparison to experiments with a simple depth-dependent melt rate parameterization demonstrates that such parameterizations are unable to capture the details of the retreat process, and they overestimate mass loss by more than 40% over a 50 year timescale.

  14. Antarctic ice shelf thickness from CryoSat-2 radar altimetry

    NASA Astrophysics Data System (ADS)

    Chuter, Stephen; Bamber, Jonathan

    2016-04-01

    The Antarctic ice shelves provide buttressing to the inland grounded ice sheet, and therefore play a controlling role in regulating ice dynamics and mass imbalance. Accurate knowledge of ice shelf thickness is essential for input-output method mass balance calculations, sub-ice shelf ocean models and buttressing parameterisations in ice sheet models. Ice shelf thickness has previously been inferred from satellite altimetry elevation measurements using the assumption of hydrostatic equilibrium, as direct measurements of ice thickness do not provide the spatial coverage necessary for these applications. The sensor limitations of previous radar altimeters have led to poor data coverage and a lack of accuracy, particularly the grounding zone where a break in slope exists. We present a new ice shelf thickness dataset using four years (2011-2014) of CryoSat-2 elevation measurements, with its SARIn dual antennae mode of operation alleviating the issues affecting previous sensors. These improvements and the dense across track spacing of the satellite has resulted in ˜92% coverage of the ice shelves, with substantial improvements, for example, of over 50% across the Venable and Totten Ice Shelves in comparison to the previous dataset. Significant improvements in coverage and accuracy are also seen south of 81.5° for the Ross and Filchner-Ronne Ice Shelves. Validation of the surface elevation measurements, used to derive ice thickness, against NASA ICESat laser altimetry data shows a mean bias of less than 1 m (equivalent to less than 9 m in ice thickness) and a fourfold decrease in standard deviation in comparison to the previous continental dataset. Importantly, the most substantial improvements are found in the grounding zone. Validation of the derived thickness data has been carried out using multiple Radio Echo Sounding (RES) campaigns across the continent. Over the Amery ice shelf, where extensive RES measurements exist, the mean difference between the datasets is 3

  15. Contrasts in Arctic shelf sea-ice regimes and some implications: Beaufort Sea versus Laptev Sea

    USGS Publications Warehouse

    Reimnitz, E.; Dethleff, D.; Nurnberg, D.

    1994-01-01

    The winter ice-regime of the 500 km) from the mainland than in the Beaufort Sea. As a result, the annual freeze-up does not incorporate old, deep-draft ice, and with a lack of compression, such deep-draft ice is not generated in situ, as on the Beaufort Sea shelf. The Laptev Sea has as much as 1000 km of fetch at the end of summer, when freezing storms move in and large (6 m) waves can form. Also, for the first three winter months, the polynya lies inshore at a water depth of only 10 m. Turbulence and freezing are excellent conditions for sediment entrainment by frazil and anchor ice, when compared to conditions in the short-fetched Beaufort Sea. We expect entrainment to occur yearly. Different from the intensely ice-gouged Beaufort Sea shelf, hydraulic bedforms probably dominate in the Laptev Sea. Corresponding with the large volume of ice produced, more dense water is generated in the Laptev Sea, possibly accompanied by downslope sediment transport. Thermohaline convection at the midshelf polynya, together with the reduced rate of bottom disruption by ice keels, may enhance benthic productivity and permit establishment of open-shelf benthic communities which in the Beaufort Sea can thrive only in the protection of barrier islands. Indirect evidence for high benthic productivity is found in the presence of walrus, who also require year-round open water. By contrast, lack of a suitable environment restricts walrus from the Beaufort Sea, although over 700 km farther to the south. We could speculate on other consequences of the different ice regimes in the Beaufort and Laptev Seas, but these few examples serve to point out the dangers of exptrapolating from knowledge gained in the North American Arctic to other shallow Arctic shelf settings. ?? 1994.

  16. On the Structure of the Ice-Shelf-Ocean Boundary Layer and Current

    NASA Astrophysics Data System (ADS)

    Jenkins, A.

    2015-12-01

    Ocean-forced basal melting has been implicated in the widespread thinning of Antarctic ice shelves that has been causally linked with acceleration in the outflow of grounded ice. What determines the distribution and rates of basal melting and freezing beneath an ice shelf and how these respond to changes in the ocean temperature or circulation are therefore key questions. Recent years have seen major progress in our ability to observe basal melting and the ocean conditions that drive it, but data on the latter remain sparse, limiting our understanding of the key processes of ice-ocean heat transfer. In particular, we have no observations of current profiles through the buoyancy- and frictionally-controlled flows along the ice shelf base that drive mixing through the ice-ocean boundary layer. This presentation represents an attempt to address this gap in our knowledge through the application of a very simple model of such boundary flows that considers only the spatial dimension perpendicular to the boundary. Results indicate that for the purely buoyancy-driven flow two possible regimes exist: a weakly-stratified, geostrophic cross-slope current with an embedded Ekman layer; or a strongly-stratified upslope jet with weak cross-slope flow. The latter regime, while well-known to students of katabatic winds, has no analogue in the ocean, and is most appropriate when the ice-ocean interface is very steep. For the gentle slopes typical of ice shelves the buoyant Ekman regime provides some useful insight. When combined with a background flow a range of possible near-ice current profiles emerges as a result of arrest or enhancement of the upslope Ekman transport. Furthermore a simple expression for the upslope transport can be formed that is analogous to that for the wind-forced surface Ekman layer, with the curvature of the ice shelf base replacing the wind-stress curl in driving Ekman pumping to and from the geostrophic flow.

  17. Competing connections between the Ross Ice Shelf with the Southern Ocean.

    NASA Astrophysics Data System (ADS)

    Jendersie, Stefan

    2016-04-01

    The stability of the Ross Ice Shelf (RIS) is critical to both the East Antarctic Ice Sheet, and the West Antarctic Ice Sheet. Results from a climatological ice shelf-ocean coupled numerical model (ROMS) suggest a new circulation mechanism associated with High Salinity Water (HSSW) production in the Ross Sea Polynya (RSP) that controls oceanic heat access to the RIS cavity. Within the RSP the dense water-saturated water column contracts during winter and causes a seasonal drop in Sea Surface Height (SSH) localised to a convection chimney under the RSP. The SSH gradients of up to 1.5 mm per km are sufficient to generate a barotropic pressure gradient that can counteract the wide scale horizontal baroclinic force and reverse the geostrophic circulation. In water depths between 600 and 800 m north of the western RIS the effect causes the seasonal occurrence of a cyclonic circulation cell with transports greater than 1Sv. Appearing with the beginning of winter sea ice formation in the RSP it significantly changes the dynamics at the ice shelf front. The new mechanism is described as one element in a framework of oceanographic processes that mitigate the exchange between the deep ocean and the ocean cavity under the RIS. Our study links local circulation features that are known from observation and previous model studies, and for the first time establishes a coherent system of responsible physical forcing processes in the Ross Sea.​

  18. Efficient Flowline Simulations of Ice Shelf-Ocean Interactions: Sensitivity Studies with a Fully Coupled Model

    NASA Technical Reports Server (NTRS)

    Walker, Ryan Thomas; Holland, David; Parizek, Byron R.; Alley, Richard B.; Nowicki, Sophie M. J.; Jenkins, Adrian

    2013-01-01

    Thermodynamic flowline and plume models for the ice shelf-ocean system simplify the ice and ocean dynamics sufficiently to allow extensive exploration of parameters affecting ice-sheet stability while including key physical processes. Comparison between geophysically and laboratory-based treatments of ice-ocean interface thermodynamics shows reasonable agreement between calculated melt rates, except where steep basal slopes and relatively high ocean temperatures are present. Results are especially sensitive to the poorly known drag coefficient, highlighting the need for additional field experiments to constrain its value. These experiments also suggest that if the ice-ocean interface near the grounding line is steeper than some threshold, further steepening of the slope may drive higher entrainment that limits buoyancy, slowing the plume and reducing melting; if confirmed, this will provide a stabilizing feedback on ice sheets under some circumstances.

  19. Thermohaline circulation below the Ross Ice Shelf - A consequence of tidally induced vertical mixing and basal melting

    NASA Technical Reports Server (NTRS)

    Macayeal, D. R.

    1984-01-01

    The warmest water below parts of the Ross Ice Shelf resides in the lowest portion of the water column because of its high salinity. Vertical mixing caused by tidal stirring can thus induce ablation by lifting the warm but dense water into contact with the ice shelf. A numerical tidal simulation indicates that vertically well-mixed conditions predominate in the southeastern part of the sub-ice shelf cavity, where the water column thickness is small. Basal melting in this region is expected to be between 0.05 and 0.5 m/yr and will drive a thermohaline circulation having the following characteristics: high salinity shelf water (at - 1.8 C), formed by winter sea ice production in the open Ross Sea, flows along the seabed toward the tidal mixing fronts below the ice shelf; and meltwater (at -2.2 C), produced in the well-mixed region, flows out of the sub-ice shelf cavity along the ice shelf bottom. Sensitivity of this ablation process to climatic change is expected to be small because high salinity shelf water is constrained to have the sea surface freezing temperature.

  20. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water

    PubMed Central

    Darelius, E.; Fer, I.; Nicholls, K. W.

    2016-01-01

    The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing. PMID:27481659

  1. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water

    NASA Astrophysics Data System (ADS)

    Darelius, E.; Fer, I.; Nicholls, K. W.

    2016-08-01

    The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing.

  2. Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning

    USGS Publications Warehouse

    Holland, P. R.; Brisbourne, A.; Corr, H. F. J.; Mcgrath, Daniel; Purdon, K.; Paden, J.; Fricker, H. A.; Paolo, F. S.; Fleming, A.H.

    2015-01-01

    The catastrophic collapses of Larsen A and B ice shelves on the eastern Antarctic Peninsula have caused their tributary glaciers to accelerate, contributing to sea-level rise and freshening the Antarctic Bottom Water formed nearby. The surface of Larsen C Ice Shelf (LCIS), the largest ice shelf on the peninsula, is lowering. This could be caused by unbalanced ocean melting (ice loss) or enhanced firn melting and compaction (englacial air loss). Using a novel method to analyse eight radar surveys, this study derives separate estimates of ice and air thickness changes during a 15-year period. The uncertainties are considerable, but the primary estimate is that the surveyed lowering (0.066 ± 0.017 m yr−1) is caused by both ice loss (0.28 ± 0.18 m yr−1) and firn-air loss (0.037 ± 0.026 m yr−1). The ice loss is much larger than the air loss, but both contribute approximately equally to the lowering because the ice is floating. The ice loss could be explained by high basal melting and/or ice divergence, and the air loss by low surface accumulation or high surface melting and/or compaction. The primary estimate therefore requires that at least two forcings caused the surveyed lowering. Mechanisms are discussed by which LCIS stability could be compromised in the future. The most rapid pathways to collapse are offered by the ungrounding of LCIS from Bawden Ice Rise or ice-front retreat past a "compressive arch" in strain rates. Recent evidence suggests that either mechanism could pose an imminent risk.

  3. Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning

    NASA Astrophysics Data System (ADS)

    Holland, P. R.; Brisbourne, A.; Corr, H. F. J.; McGrath, D.; Purdon, K.; Paden, J.; Fricker, H. A.; Paolo, F. S.; Fleming, A. H.

    2015-05-01

    The catastrophic collapses of Larsen A and B ice shelves on the eastern Antarctic Peninsula have caused their tributary glaciers to accelerate, contributing to sea-level rise and freshening the Antarctic Bottom Water formed nearby. The surface of Larsen C Ice Shelf (LCIS), the largest ice shelf on the peninsula, is lowering. This could be caused by unbalanced ocean melting (ice loss) or enhanced firn melting and compaction (englacial air loss). Using a novel method to analyse eight radar surveys, this study derives separate estimates of ice and air thickness changes during a 15-year period. The uncertainties are considerable, but the primary estimate is that the surveyed lowering (0.066 ± 0.017 m yr-1) is caused by both ice loss (0.28 ± 0.18 m yr-1) and firn-air loss (0.037 ± 0.026 m yr-1). The ice loss is much larger than the air loss, but both contribute approximately equally to the lowering because the ice is floating. The ice loss could be explained by high basal melting and/or ice divergence, and the air loss by low surface accumulation or high surface melting and/or compaction. The primary estimate therefore requires that at least two forcings caused the surveyed lowering. Mechanisms are discussed by which LCIS stability could be compromised in the future. The most rapid pathways to collapse are offered by the ungrounding of LCIS from Bawden Ice Rise or ice-front retreat past a "compressive arch" in strain rates. Recent evidence suggests that either mechanism could pose an imminent risk.

  4. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Andersen, T. J.; Shortt, M.; Gaffney, A. M.; Truffer, M.; Stanton, T. P.; Bindschadler, R.; Dutrieux, P.; Jenkins, A.; Hillenbrand, C.-D.; Ehrmann, W.; Corr, H. F. J.; Farley, N.; Crowhurst, S.; Vaughan, D. G.

    2016-11-01

    The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreat is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Thus our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.

  5. RTOPO-1: A consistent dataset for Antarctic ice shelf topography and global ocean bathymetry

    NASA Astrophysics Data System (ADS)

    Timmermann, Ralph

    2010-05-01

    Sub-ice shelf circulation and freezing/melting rates depend critically on an accurate and consistent representation of cavity geometry (i.e. ice-shelf draft and ocean bathymetry). Existing global or pan-Antarctic data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile independent regional fields into a global data set. We use the S-2004 global 1-minute bathymetry as the backbone and add an improved version of the BEDMAP topography for an area that roughly coincides with the Antarctic continental shelf. Locations of the merging line have been carefully adjusted in order to get the best out of each data set. High-resolution gridded data for the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves and for Pine Island Glacier have been carefully merged into the ambient ice and ocean topographies. Multibeam ship survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI), British Antarctic Survey (BAS) and Lamont-Doherty Earth Observatory (LDEO), gridded, and again carefully merged into the existing bathymetry map. The resulting global 1-minute data set contains consistent masks for open ocean, grounded ice, floating ice, and bare land surface. The Ice Shelf Cavern Geometry Team: Anne Le Brocq, Tara Deen, Eugene Domack, Pierre Dutrieux, Ben Galton-Fenzi, Dorothea Graffe, Hartmut Hellmer, Angelika Humbert, Daniela Jansen, Adrian Jenkins, Astrid Lambrecht, Keith Makinson, Fred Niederjasper, Frank Nitsche, Ole Anders Nøst, Lars Henrik Smedsrud, and Walter Smith

  6. Validation of the Antarctic Snow Accumulation and Ice Discharge Basal Stress Boundary in the South Eastern Region of the Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Nelson, C. B.; King, K.

    2015-12-01

    The largest ice shelf in Antarctic, Ross Ice Shelf, was investigated over the years of (1970-2015). Near the basal stress boundary between the ice shelf and the West Antarctic ice sheet, ice velocity ranges from a few meters per year to several hundred meters per year in ice streams. Most of the drainage from West Antarctica into the Ross Ice Shelf flows down two major ice streams, each of which discharges more than 20 km3 of ice each year. Along with velocity changes, the warmest water below parts of the Ross Ice Shelf resides in the lowest portion of the water column because of its high salinity. Vertical mixing caused by tidal stirring can thus induce ablation by lifting the warm water into contact with the ice shelf. This process can cause melting over a period of time and eventually cause breakup of ice shelf. With changes occurring over many years a validation is needed for the Antarctic Snow Accumulation and Ice Discharge (ASAID) basal stress boundary created in 2003. After the 2002 Larsen B Ice Shelf disintegration, nearby glaciers in the Antarctic Peninsula accelerated up to eight times their original speed over the next 18 months. Similar losses of ice tongues in Greenland have caused speed-ups of two to three times the flow rates in just one year. Rapid changes occurring in regions surrounding Antarctica are causing concern in the polar science community to research changes occurring in coastal zones over time. During the research, the team completed study on the Ross Ice Shelf located on the south western coast of the Antarctic. The study included a validation of the ABSB vs. the natural basal stress boundary (NBSB) along the Ross Ice Shelf. The ASAID BSB was created in 2003 by a team of researchers headed by National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC), with an aim of studying coastal deviations as it pertains to the mass balance of the entire continent. The point data file was aimed at creating a replica of the

  7. Glacial geomorphology of the northwestern Weddell Sea, eastern Antarctic Peninsula continental shelf: Shifting ice flow patterns during deglaciation

    NASA Astrophysics Data System (ADS)

    Campo, Jennifer M.; Wellner, Julia S.; Domack, Eugene; Lavoie, Caroline; Yoo, Kyu-Cheul

    2017-03-01

    During the Last Glacial Maximum, grounded ice from the expanded Antarctic Peninsula Ice Sheet extended across the continental shelf. Grounded and flowing ice created a distinctive array of glacial geomorphic features on the sea floor, which were then exposed as the ice sheet retreated. The recent disintegration of the northern parts of the Larsen Ice Shelf (Larsen A and B) have permitted acquisition of marine geophysical data in previously inaccessible and unmapped areas. We present a reconstruction of the evolving ice-flow path and ice sheet geometry of the eastern Antarctic Peninsula, with particular focus paid to newly surveyed areas that shed light on the dynamics of a marine-terminating glacial geomorphic environment, where ice shelves play a major role in grounding line stability. Shifting flow directions were mapped in several areas, including across the Seal Nunataks, which divide Larsen A and B, and offshore of Larsen C, indicating flow reorientation that reflects the changing ice sheet geometry as retreat neared the modern coastline. The measured flow indicators in this area reveal comparatively high elongation ratios (> 20), indicating rapid ice flow. Evidence of possible previous ice-shelf collapses are noted near the shelf break, further illustrating the critical, protective effect that ice shelves impart to marine-terminating glacial environments. Modern ice retreat is governed in part by reorganization of flow patterns accompanying grounding line movement; such reorganizations happened in the past and can aid understanding of modern processes.

  8. Detailed Ar-Ar Geochronology of Volcanism at Minna Bluff, Antarctica: Two-Phased Growth and Influence on Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Ross, J. I.; McIntosh, W. C.; Wilch, T. I.

    2012-12-01

    Minna Bluff has been a significant topographic barrier to the flow of the Ross Ice Shelf since the mid-Miocene. Detailed Ar-Ar analyses of kaersutite and sanidine phenocrysts, and groundmass concentrates from volcanic units indicate an overall west to east progression of volcanic activity. Eruptions of basaltic to intermediate lavas, domes, and scoria cones started at ~12 Ma in at what is now the eastern most point of Minna Bluff, "Minna Hook." Activity was centered in this area for ~4 Ma, constructing a pre-Minna Bluff island. Multiple glacial unconformities found at Minna Hook suggest repeated interaction with large warm-based, erosive ice sheets. Activity migrated westward from Minna Bluff Island at 7-8 Ma closing the gap created by the island and the mainland. Significant edifice construction continued until 4-5 Ma with sporadic and parasitic scoria cone eruptions, possibly associated with Mt. Discovery activity, continuing until 2 Ma. The orientations of Minna Bluff's two major axes are strongly controlled by regional tectonic features. Minna Bluff's E-W axis, McIntosh Cliffs, is sub-parallel to the Radial Lineament and the N-S axis, Minna Hook, appears as extension of faulting bounding the Terror Rift. The constructional evolution of the 70km long volcanic complex has an important role in interpreting the climate signals recovered by the ANDRILL Project. Minna Bluff influenced the material delivered to the AND-1B drill site (ANDRILL MIS 2006-2007) in three critical ways: 1) Minna Bluff diverted upstream material, 2) provided a pinning and stabilizing point for the Ross Ice Shelf, possible controlling the calving line prior to the emergence of Ross Island, and 3) was a significant source of fresh volcanic material throughout much of the period recovered by ANDRILL MIS. For example, a kaersutite-bearing clast recovered from 822.78 mbsf in AND-1B yielded an age of 8.53±0.51 Ma, and was likely derived from Minna Bluff. The results from this study can be

  9. Ocean Heat Delivery Mechanisms Beneath Antarctic Ice Shelves

    NASA Astrophysics Data System (ADS)

    Stern, Alon

    Ocean currents around Antarctica are responsible for transporting heat under the Antarctic ice shelves and exporting cold melt-water out into the open ocean. These ocean currents are important for the determining the melt rates beneath the Antarctica ice shelves. This thesis explores the three modes of melting beneath Antarctic ice shelves using laboratory experiments, analysis of field observations, and both of complex and simple numerical models. In Chapter 1, we construct a laboratory experiment to simulate the density driven circulation under an idealized Antarctic ice shelf (mode 1). Results confirm that the ice front can act as a dynamic barrier that partially inhibits fluid from entering or exiting the ice shelf cavity, away from two wall-trapped boundary currents. The strength of the dynamic barrier is sensitive to changes in the ice shelf geometry and changes in the buoyancy fluxes which drive the flow. Chapter 2 explores how instabilities in topographically steered jets could be responsible for the exchange of warm Circumpolar Deep Water across the continental shelf break in West Antarctica (mode 2). Results show that the majority of mixing occurs in discrete mixing events which coincide with the shelf break jet becoming baroclinically unstable. The largest instability events display a intermittent low frequency variability with instabilities occurring up to 50 years apart. Chapter 3 uses observational data to study the summer intrusion of surface waters below McMurdo Ice Shelf (mode 3). A six month temperature record collected below the ice shelf in 2011-2012 shows the temporal and spatial structure of the summertime warm water signal that penetrates beneath the ice shelf. A Ross Sea numerical model demonstrates a seasonal warm water pathway leading from the west side of the Ross Sea Polynya (RSP) towards McMurdo Sound.

  10. In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf

    NASA Astrophysics Data System (ADS)

    Grosvenor, D. P.; Choularton, T. W.; Lachlan-Cope, T.; Gallagher, M. W.; Crosier, J.; Bower, K. N.; Ladkin, R. S.; Dorsey, J. R.

    2012-07-01

    In-situ aircraft observations of ice crystal concentrations in Antarctic clouds are presented for the first time. Orographic, layer and wave clouds around the Antarctic Peninsula and Larsen Ice shelf regions were penetrated by the British Antarctic Survey's Twin Otter Aircraft, which was equipped with modern cloud physics probes. The clouds studied were mostly in the free troposphere and hence ice crystals blown from the surface are unlikely to have been a major source for the ice phase. The temperature range covered by the experiments was 0 to -21°C. The clouds were found to contain supercooled liquid water in most regions and at heterogeneous ice formation temperatures ice crystal concentrations (60 s averages) were often less than 0.07 l-1, although values up to 0.22 l-1 were observed. Estimates of observed aerosol concentrations were used as input into the DeMott et al., 2010 ice nuclei (IN) parameterisation. The observed ice crystal number concentrations were generally in broad agreement with the IN predictions, although on the whole the predicted values were higher. Possible reasons for this are discussed and include the lack of IN observations in this region with which to characterise the parameterisation, and/or problems in relating ice concentration measurements to IN concentrations. Other IN parameterisations significantly overestimated the number of ice particles. Generally ice particle concentrations were much lower than found in clouds in middle latitudes for a given temperature. Higher ice crystal concentrations were sometimes observed at temperatures warmer than -9 °C, with values of several per litre reached. These were attributable to secondary ice particle production by the Hallett Mossop process. Even in this temperature range it was observed that there were regions with little or no ice that were dominated by supercooled liquid water. It is likely that in some cases this was due to a lack of seeding ice crystals to act as rimers to initiate

  11. In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf

    NASA Astrophysics Data System (ADS)

    Grosvenor, D. P.; Choularton, T. W.; Lachlan-Cope, T.; Gallagher, M. W.; Crosier, J.; Bower, K. N.; Ladkin, R. S.; Dorsey, J. R.

    2012-12-01

    In-situ aircraft observations of ice crystal concentrations in Antarctic clouds are presented for the first time. Orographic, layer and wave clouds around the Antarctic Peninsula and Larsen Ice shelf regions were penetrated by the British Antarctic Survey's Twin Otter aircraft, which was equipped with modern cloud physics probes. The clouds studied were mostly in the free troposphere and hence ice crystals blown from the surface are unlikely to have been a major source for the ice phase. The temperature range covered by the experiments was 0 to -21 °C. The clouds were found to contain supercooled liquid water in most regions and at heterogeneous ice formation temperatures ice crystal concentrations (60 s averages) were often less than 0.07 l-1, although values up to 0.22 l-1 were observed. Estimates of observed aerosol concentrations were used as input into the DeMott et al. (2010) ice nuclei (IN) parameterisation. The observed ice crystal number concentrations were generally in broad agreement with the IN predictions, although on the whole the predicted values were higher. Possible reasons for this are discussed and include the lack of IN observations in this region with which to characterise the parameterisation, and/or problems in relating ice concentration measurements to IN concentrations. Other IN parameterisations significantly overestimated the number of ice particles. Generally ice particle concentrations were much lower than found in clouds in middle latitudes for a given temperature. Higher ice crystal concentrations were sometimes observed at temperatures warmer than -9 °C, with values of several per litre reached. These were attributable to secondary ice particle production by the Hallett Mossop process. Even in this temperature range it was observed that there were regions with little or no ice that were dominated by supercooled liquid water. It is likely that in some cases this was due to a lack of seeding ice crystals to act as rimers to initiate

  12. Mass Balance of the Northern Antarctic Peninsula and its Ongoing Response to Ice Shelf Loss

    NASA Astrophysics Data System (ADS)

    Scambos, T. A.; Berthier, E.; Haran, T. M.; Shuman, C. A.; Cook, A. J.; Bohlander, J. A.

    2012-12-01

    An assessment of the most rapidly changing areas of the Antarctic Peninsula (north of 66°S) shows that ice mass loss for the region is dominated by areas affected by eastern-Peninsula ice shelf losses in the past 20 years. Little if any of the mass loss is compensated by increased snowfall in the northwestern or far northern areas. We combined satellite stereo-image DEM differencing and ICESat-derived along-track elevation changes to measure ice mass loss for the Antarctic Peninsula north of 66°S between 2001-2010, focusing on the ICESat-1 period of operation (2003-2009). This mapping includes all ice drainages affected by recent ice shelf loss in the northeastern Peninsula (Prince Gustav, Larsen Inlet, Larsen A, and Larsen B) as well as James Ross Island, Vega Island, Anvers Island, Brabant Island and the adjacent west-flowing glaciers. Polaris Glacier (feeding the Larsen Inlet, which collapsed in 1986) is an exception, and may have stabilized. Our method uses ASTER and SPOT-5 stereo-image DEMs to determine dh/dt for elevations below 800 m; at higher elevations ICESat along-track elevation differencing is used. To adjust along-track path offsets between its 2003-2009 campaigns, we use a recent DEM of the Peninsula to establish and correct for cross-track slope (Cook et al., 2012, doi:10.5194/essdd-5-365-2012; http://nsidc.org/data/nsidc-0516.html) . We reduce the effect of possible seasonal variations in elevation by using only integer-year repeats of the ICESat tracks for comparison. Mass losses are dominated by the major glaciers that had flowed into the Prince Gustav (Boydell, Sjorgren, Röhss), Larsen A (Edgeworth, Bombardier, Dinsmoor, Drygalski), and Larsen B (Hektoria, Jorum, and Crane) embayments. The pattern of mass loss emphasizes the significant and multi-decadal response to ice shelf loss. Areas with shelf losses occurring 30 to 100s of years ago seem to be relatively stable or losing mass only slowly (western glaciers, northernmost areas). The

  13. Ice interaction with the Arctic shelf and coast: Constraints on and implication for petroleum development

    SciTech Connect

    Barnes, P.W.; Reimnitz, E. )

    1990-05-01

    Along the Arctic coast of Alaska sea ice affects structures placed on and under the sea bed and influences the erosion and dispersal patterns of sedimentary particulates and pollutants. Most directly, ice gouges the sea floor to depths of a few meters, with return periods on the inner shelf of tens of years and, in places, annually, primarily during freezeup and breakup. These sea-floor ice-gouge patterns provide information on the motion and characteristics of the local ice canopy. The design and alignment of pipelines and coast structures should consider that ice gouging extends to the coast and onto the beaches; however, ice gouging is less apparent on beaches owing to lower gouge intensities and vigorous wave reworking. In the long term, gouging contributes to high rates of coastal and shelf erosion. Protruding ice keels extending downward from the sea-ice canopy divert and focus currents causing increased sea-floor scour to depths of a few meters below the sea floor. Sea-ice freezing during the commonly turbulent fall storms causes large volumes of sediment and pollutants to be sorted, resuspended, and, ultimately, incorporated into the ice canopy. Most entrained material is re-released to the nearshore the following open-water season however, some material may be transported offshore to become part of the Arctic pack. During freezeup and breakup (4-5 months/yr) when these processes are most active, trafficability in the Arctic nearshore is nil owing to the instability of the ice canopy, and so our comprehension of this processes is limited.

  14. Outlet glacier response to the 2012 collapse of the Matusevich Ice Shelf, Severnaya Zemlya, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Willis, Michael J.; Melkonian, Andrew K.; Pritchard, Matthew E.

    2015-10-01

    The Matusevich Ice Shelf (MIS), located within the Severnaya Zemlya Archipelago in the Russian Arctic, rapidly broke apart between 10 August and 7 September 2012. We examine the response of the outlet glaciers that fed the MIS from local ice caps to the removal of the ice shelf. We use spaceborne laser altimetry and multiple optically derived digital elevation models to track ice surface elevation change rates (dh/dt) between 1984 and 2014. Glacier speeds are measured by pixel-tracking from optical and RADAR imagery between 2010 and 2014 and interferometric synthetic aperture radar in 1995 to compare precollapse and postcollapse velocities. We find that the three main outlet glaciers that fed the MIS are thinning an order of magnitude more rapidly than most of the rest of Severnaya Zemyla, based upon ICESat data from 2003 to 2009. Recent, 2012 to 2014 thinning rates are three to four times faster than the 30 year average thinning rate, calculated between 1984 and 2014. The springtime speeds of the largest outlet glacier (Issledovateley) have increased more than 200% at the terminus between April 2010 and April 2014. To date, changes in surface elevation (dh/dt) and velocity at the outlet glaciers near MIS are smaller than glacier responses to ice shelf collapse in Antarctica. It is possible that the MIS was already very weak prior to the 2012 collapse and unable to support back stress. Further observations are required to assess whether the thinning and nonmelt season glacier speeds are continuing to accelerate.

  15. The effect of basal channels on oceanic ice-shelf melting

    NASA Astrophysics Data System (ADS)

    Millgate, Thomas; Holland, Paul R.; Jenkins, Adrian; Johnson, Helen L.

    2013-12-01

    The presence of ice-shelf basal channels has been noted in a number of Antarctic and Greenland ice shelves, but their impact on basal melting is not fully understood. Here we use the Massachusetts Institute of Technology general circulation model to investigate the effect of ice-shelf basal channels on oceanic melt rate for an idealized ice shelf resembling the floating tongue of Petermann Glacier in Greenland. The introduction of basal channels prevents the formation of a single geostrophically balanced boundary current; instead the flow is diverted up the right-hand (Coriolis-favored) side of each channel, with a return flow in the opposite direction on the left-hand side. As the prescribed number of basal channels is increased the mean basal melt rate decreases, in agreement with previous studies. For a small number of relatively wide channels the subice flow is found to be a largely geostrophic horizontal circulation. The reduction in melt rate is then caused by an increase in the relative contribution of weakly melting channel crests and keels. For a larger number of relatively narrow channels, the subice flow changes to a vertical overturning circulation. This change in circulation results in a weaker sensitivity of melt rates to channel size. The transition between the two regimes is governed by the Rossby radius of deformation. Our results explain why basal channels play an important role in regulating basal melting, increasing the stability of ice shelves.

  16. The kinematic response of Petermann Glacier, Greenland to ice shelf perturbation

    NASA Astrophysics Data System (ADS)

    Hubbard, A.; Box, J. E.; Bates, R.; Nick, F.; Luckman, A. J.; van de Wal, R.; Doyle, S. H.

    2010-12-01

    The acceleration and dynamic thinning of interior zones of the polar ice sheets due to outlet/ice shelf retreat has been identified as a factor hastening their demise and contribution to global sea-level rise. The detachment of a 275 square km area of the Petermann Glacier ice shelf in August, 2010 presents a natural experiment to investigate the timing, mechanisms and efficacy of upstream dynamic feedbacks resulting from a singular but potentially significant frontal perturbation. In 2009, a permanent geodetic/differential GPS strain network logging every 10 seconds was deployed along a 200 km longitudinal profile from the ice front across the grounding line extending into the interior of Petermann Glacier to characterize the system’s state before, during and after any such event. We present an overview of the geophysical measurements conducted and analyze the kinematics of the shelf detachment in relation to local environmental forcing. Finally, we discuss the postulated instantaneous and ongoing evolution in force-balance and concomitant dynamic response resulting from the perturbation along with its implications for Petermann's ongoing stability. Petermann Glacier GNSS base & telemetric GPS facility: community AA & rehab meet point. On ice geodetic-GPS station flat out & reading 0 Volts

  17. Surface energy budget of the Larsen C Ice Shelf, and its relation to atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Kuipers Munneke, P.; King, J. C.; Gray, T.; van den Broeke, M. R.; Reijmer, C. H.

    2012-04-01

    Ponding of melt water has played a pivotal role in the breakup of ice shelves in the past decades. In-situ observations are important to determine the relation between meltwater production and the atmospheric circulation over the ice shelves. Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), including melt energy. The two AWSs are separated by about 70 km in the north-south direction, and both the near-surface meteorology and the SEB show similarities, although small differences in all components (most notably the melt flux) can be seen. In winter, longwave cooling of the surface is entirely compensated by a downward turbulent transport of sensible heat. In summer, the positive net radiative flux is compensated by melt, and quite frequently by upward turbulent diffusion of heat and moisture, leading to sublimation and weak convection over the ice shelf. The month of November 2010 is highlighted, when strong westerly flow over the Antarctic Peninsula led to a dry and warm föhn wind over the ice shelf, resulting in warm and sunny conditions. Under these conditions the increase in shortwave and sensible heat fluxes is larger than the reduction of net longwave and latent heat fluxes, providing energy for significant melt.

  18. Trend of melt under Pine Island Glacier ice shelf modulated by high variability in ocean temperature

    NASA Astrophysics Data System (ADS)

    Dutrieux, Pierre; De Rydt, Jan; Jenkins, Adrian; Holland, Paul R.; Ha, Ho Kyung; Lee, Sang Hoon; Povl Abrahamsen, E.; Jacobs, Stanley S.

    2013-04-01

    Pine Island Glacier and neighbouring outlet glaciers of West Antarctica have thinned and accelerated over the last 2 decades, significantly contributing to global sea level rise. Increased ocean heat transport beneath Pine Island Glacier ice shelf and unpinning from a seabed ridge are thought to be the primary drivers of such changes. However, the acceleration of the glacier paused since 2009, renewing questions about the main processes presently affecting the ice/ocean system, the future behaviour of the glacier and the associated impacts. Here, we present ocean observations taken in austral Spring 2012 to show a 200 m lowering of the thermocline at the glacier calving front and a 50% decrease of meltwater production from 2009. High-resolution simulations of the ocean circulation in the cavity beneath the floating tongue of the glacier demonstrate that for the present ice geometry, the seabed ridge blocks the warmest deep waters from reaching the ice and strongly ties meltwater production to thermocline depth above the ridge, hereby making it susceptible to relatively high variability in time, from intraseasonal to interannual. These results highlight the role of climatic variability in glacial ice loss and the fundamental importance of local ice shelf and seabed geometry for determining ice-ocean dynamics.

  19. Grounding Zone and Tidal Response of the Amery Ice Shelf, East Antarctica

    NASA Technical Reports Server (NTRS)

    Fricker, Helen A.; Sandwell, David; Coleman, Richard; Minster, Bernard

    2005-01-01

    This report summarizes the main findings of the research project. Unfortunately, it turned out that there was not a great deal of SAR data over the Amery Ice Shelf that we were able to work with on the project; nevertheless, we did make considerable progress on this project, with both the existing SAR data and new field measurements that were collected under this grant. In total we had constructed two SAR interferograms (SSIs), and four SSIs. The latter were combined them to construct two differential SAR interferograms (DSIs;). DSIs are useful because the contribution to the SAR phase from horizontal ice motion is eliminated, since the time difference between the first and second pass within both image pairs used to make the DSI is the same for each pair. The SSIs and DSIs have revealed several interesting glaciological features, and have added to our knowledge of the Amery Ice Shelf (AIS).

  20. Southern ocean controls on current ice shelf evolution. Annual progress report, September 1, 1993--August 31, 1994

    SciTech Connect

    Hellmer, H.H.; Jacobs, S.S.

    1994-04-01

    A seasonal cycle of shelf water temperatures and salinities observed at the eastern Ross Ice Shelf edge was used to force a two-dimensional thermohaline circulation model adapted to two different sub-ice cavity paths around Roosevelt Island. Model results verified by current meter measurements reveal that shelf water flowing into the cavity west of Roosevelt Island might follow a sub-ice path with nearly constant water column thickness of 200 m. This would largely exclude the grounding line of the northern Siple Coast from the contact with open ocean water masses. In contrast to the forcing with time-independent summer profiles, seasonal forcing causes a higher spatial and temporal variability of the cavity`s circulation and property distribution. At the model`s open boundaries the intermitted inflow of shelf water displaces the meltwater outflow originating from the interior ice shelf base to greater depth and initiates an additional shallow meltwater plume. The average melting along the ice shelf base increases from 0.07 m/a to 0.38.m/a due to seasonality in shelf water characteristics, and to 2.3 m/a, if we introduce a 100-year temperature rise of 1{degree}C. The rate decreases, if salinity simultanously decreases; a possible scenario, if the enhanced meltwater outflow mixes with shelf water in front of the ice shelves.

  1. Anomalously-dense firn in an ice-shelf channel revealed by wide-angle radar

    NASA Astrophysics Data System (ADS)

    Drews, R.; Brown, J.; Matsuoka, K.; Witrant, E.; Philippe, M.; Hubbard, B.; Pattyn, F.

    2015-10-01

    The thickness of ice shelves, a basic parameter for mass balance estimates, is typically inferred using hydrostatic equilibrium for which knowledge of the depth-averaged density is essential. The densification from snow to ice depends on a number of local factors (e.g. temperature and surface mass balance) causing spatial and temporal variations in density-depth profiles. However, direct measurements of firn density are sparse, requiring substantial logistical effort. Here, we infer density from radio-wave propagation speed using ground-based wide-angle radar datasets (10 MHz) collected at five sites on Roi Baudouin Ice Shelf (RBIS), Dronning Maud Land, Antarctica. Using a novel algorithm including traveltime inversion and raytracing with a prescribed shape of the depth-density relationship, we show that the depth to internal reflectors, the local ice thickness and depth-averaged densities can reliably be reconstructed. For the particular case of an ice-shelf channel, where ice thickness and surface slope change substantially over a few kilometers, the radar data suggests that firn inside the channel is about 5 % denser than outside the channel. Although this density difference is at the detection limit of the radar, it is consistent with a similar density anomaly reconstructed from optical televiewing, which reveals 10 % denser firn inside compared to outside the channel. The denser firn in the ice-shelf channel should be accounted for when using the hydrostatic ice thickness for determining basal melt rates. The radar method presented here is robust and can easily be adapted to different radar frequencies and data-acquisition geometries.

  2. Sea ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.; Burns, J. J.

    1973-01-01

    The author has identified the following significant results. Sediments contributed by the Copper River in the Gulf of Alaska are carried westward along the shore as a distinct plume. Oceanic water relatively poor in suspended material appears to intrude near Montague Island, and turbid water between Middleton Island and Kayak Island is the result of Ekman between transport. An anticlockwise surface water circulation is observed in this region. Ground truth data indicate striking similarity with ERTS-1 imagery obtained on October 12, 1972. Observations of ERTS-1 imagery reveal that various characteristics and distribution of sea ice in the Arctic Ocean can be easily studied. Formation of different types of sea ice and their movement is quite discrenible. Sea ice moves parallel to the cost in near shore areas and to the northerly direction away from the coast.

  3. Modeling the tidal ice drift and ice-induced changes in tidal dynamics on the Siberian continental shelf

    NASA Astrophysics Data System (ADS)

    Kagan, B. A.; Romanenkov, D. A.; Sofina, E. V.

    2007-12-01

    The tidal ice drift is treated as an element of the three-dimensional tidal dynamics in a sea covered by ice. This dynamics is described by the QUODDY-4 finite-element model, and the tidal ice drift is described by a continuous viscous-elastic approximation. We present the results of modeling not only the tidal ice drift ( M 2 wave) (its velocity, direction, and tidal variations in the concentration and pressure of ice compression) but also ice-induced changes in tidal dynamics and the residual tidal ice drift. The modeling results indicate that the maximum velocity of tidal ice drift, which is determined by a combination of various factors responsible for ice evolution and primarily by the horizontal gradient of the level and local tidal velocity, can be higher or lower than the velocity of the surface tidal current in the ice-free sea. This depends on the sign of deviations of tidal sea level elevations in the sea covered by ice from their values in the ice-free sea. In addition, it has been found that ice cover has a stronger effect on the energetics of tides than on their dynamics: the area-mean relative deviations constitute 1.5% for the density of the total tidal energy, 61.5% for the dissipation, 0.1% for the amplitudes of tidal sea level elevations, and 0.9% for the amplitudes of maximum barotropic tidal velocity. In this sense, the conclusion that the role of sea ice is insignificant in the formation of tides can be justified only partially. The main results of this paper are as follows: (1) the development of a module for tidal ice drift, (2) the inclusion of this module into the three-dimensional finite-element hydrothermodynamic model QUODDY-4 to extend its capabilities, and (3) the reproduction (on the basis of the modified model) of qualitative features of the practically important tidal ice drift and ice-induced changes in the tidal dynamics of marginal seas on the Siberian continental shelf.

  4. Finite element analysis of surface cracks in the Wilkins Ice Shelf using fracture mechanics

    NASA Astrophysics Data System (ADS)

    Plate, Carolin; Müller, Ralf; Gross, Dietmar; Humbert, Angelika; Braun, Matthias

    2010-05-01

    Ice shelves, located between the warming atmosphere and the ocean, are sensitive elements of the climate system. The Wilkins Ice Shelf is situated in the south-western part of the Antarctic Peninsula, a well known hot spot of global warming. Recent break-up events exemplified the potential of disintegration of the ice shelf. A multi interdisciplinary project consisting of remote sensing, modeling of the ice dynamics and fracture mechanics intends to improve the understanding of the impacts of temperature increase on ice shelf stability. As a part of this project the aim of this presentation is to demonstrate the fracture mechanical approach using finite elements and configurational forces. For fracture mechanical purposes the material behavior of ice is treated as a brittle solid, and linear fracture mechanics is used. Crucial to all methods in linear fracture mechanics is the evaluation of the stress intensity factor K which is a measure for the load concentration at the crack tip and which depends on the geometry of the body and on the applied loading. The computed value of K can be compared to the critical stress intensity factor Kc, a material property obtained from experimental examinations, to judge whether a crack will propagate. One very effective procedure to obtain the stress intensity factor takes advantage of configurational forces, which can be easily obtained in the finite element analysis. An initial investigation is based on a 2-dimensional analysis of a single crack with a mode-I load type using a static plane strain model in the finite element analysis software COMSOL and additional routines to compute and evaluate the configurational forces. Analytical solutions of simple geometry and load cases are called on in comparison. The application to the Wilkins Ice Shelf follows by using material parameters, geometries and loading situations, which are obtained from literature values, remote sensing data analysis and modeling of the ice dynamics

  5. Invisible polynyas: Modulation of fast ice thickness by ocean heat flux on the Canadian polar shelf

    NASA Astrophysics Data System (ADS)

    Melling, Humfrey; Haas, Christian; Brossier, Eric

    2015-02-01

    Although the Canadian polar shelf is dominated by thick fast ice in winter, areas of young ice or open water do recur annually at locations within and adjacent to the fast ice. These polynyas are detectable by eye and sustained by wind or tide-driven ice divergence and ocean heat flux. Our ice-thickness surveys by drilling and towed electromagnetic sounder reveal that visible polynyas comprise only a subset of thin-ice coverage. Additional area in the coastal zone, in shallow channels and in fjords is covered by thin ice which is too thick to be discerned by eye. Our concurrent surveys by CTD reveal correlation between thin fast ice and above-freezing seawater beneath it. We use winter time series of air and ocean temperatures and ice and snow thicknesses to calculate the ocean-to-ice heat flux as 15 and 22 W/m2 at locations with thin ice in Penny Strait and South Cape Fjord, respectively. Near-surface seawater above freezing is not a sufficient condition for ocean heat to reach the ice; kinetic energy is needed to overcome density stratification. The ocean's isolation from wind under fast ice in winter leaves tides as the only source. Two tidal mechanisms driving ocean heat flux are discussed: diffusion via turbulence generated by shear at the under-ice and benthic boundaries, and the internal hydraulics of flow over topography. The former appears dominant in channels and the coastal zone and the latter in some silled fjords where and when the layering of seawater density permits hydraulically critical flow.

  6. Divergent trajectories of Antarctic ice shelf surface melt under 21st century climate scenarios

    NASA Astrophysics Data System (ADS)

    Trusel, L. D.; Frey, K. E.; Das, S. B.; Kuipers Munneke, P.; van Meijgaard, E.

    2014-12-01

    Antarctic ice shelves represent a critical interface between continental ice masses and the surrounding ocean. Breakup events of several ice shelves in recent decades have been linked to an increase in intense surface melting, and have in turn lead to cascading effects including accelerated glacier discharge into the ocean. In this study, we utilized sophisticated regional and global climate models (GCMs) to assess potential future surface melt trajectories across Antarctica under two climate scenarios (RCP4.5 and RCP8.5). RACMO2.1, a polar-adapted regional atmospheric climate model, was forced by the ERA-Interim reanalysis (1980-2010) and by two GCMs, EC-EARTH and HadGEM2-ES (2007-2100). Using RACMO2.1, we observed an exponential growth function well represents the relationship between ice shelf surface meltwater production and mean summer (DJF) 2-meter air temperature (t2m). We employed this melt-t2m relationship to project melt using t2m output from an ensemble of five CMIP5-based GCMs incorporating the NCAR Community Land Model 4 (CLM4), following spatial downscaling and bias correction using t2m from ERA-Interim-forced RACMO2.1. Our resulting GCM-derived melt projections provide an independent and methodologically unique perspective into potential future melt pathways, complementary to those derived from RACMO2.1. Most notably, both RACMO2.1 and the CMIP5 ensemble reveal divergent trajectories of meltwater production beyond 2050 under the two climate scenarios. For many ice shelves in RCP4.5, meltwater production through 2100 remains at levels comparable to present. Conversely, under RCP8.5 all methods indicate non-linear melt intensification, resulting in a four-fold increase in the Antarctic-wide meltwater volume by the end of the 21st century. For some ice shelves, including Larsen C and Wilkins (Antarctic Peninsula), and Shackleton and West (Wilkes Land), spatially averaged end-of-century meltwater production within RCP8.5 approaches or surpasses levels

  7. Mapping the grounding zone of Ross Ice Shelf using ICESat laser altimetry

    USGS Publications Warehouse

    Brunt, Kelly M.; Fricker, Helen A.; Padman, Laurie; Scambos, Ted A.; O'Neel, Shad

    2010-01-01

    We use laser altimetry from the Ice, Cloud, and land Elevation Satellite (ICESat) to map the grounding zone (GZ) of the Ross Ice Shelf, Antarctica, at 491 locations where ICESat tracks cross the grounding line (GL). Ice flexure in the GZ occurs as the ice shelf responds to short-term sea-level changes due primarily to tides. ICESat repeat-track analysis can be used to detect this region of flexure since each repeated pass is acquired at a different tidal phase; the technique provides estimates for both the landward limit of flexure and the point where the ice becomes hydrostatically balanced. We find that the ICESat-derived landward limits of tidal flexure are, in many places, offset by several km (and up to ∼60 km) from the GL mapped previously using other satellite methods. We discuss the reasons why different mapping methods lead to different GL estimates, including: instrument limitations; variability in the surface topographic structure of the GZ; and the presence of ice plains. We conclude that reliable and accurate mapping of the GL is most likely to be achieved when based on synthesis of several satellite datasets

  8. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf.

    PubMed

    Garabato, Alberto C Naveira; Forryan, Alexander; Dutrieux, Pierre; Brannigan, Liam; Biddle, Louise C; Heywood, Karen J; Jenkins, Adrian; Firing, Yvonne L; Kimura, Satoshi

    2017-02-09

    The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change. The increased freshwater output from Antarctica is important in determining sea level rise, the fate of Antarctic sea ice and its effect on the Earth's albedo, ongoing changes in global deep-ocean ventilation, and the evolution of Southern Ocean ecosystems and carbon cycling. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models.

  9. Coupled ice shelf-ocean modeling and complex grounding line retreat for Pine Island Glacier

    NASA Astrophysics Data System (ADS)

    De Rydt, Jan; Gudmundsson, Hilmar

    2016-04-01

    Recent observations and modeling work have shown a complex mechanical coupling between Antarctica's floating ice shelves and the adjacent grounded ice sheet. A prime example is Pine Island Glacier, West Antarctica, which has a strong negative mass balance caused by a recent increase in ocean-induced melting of its ice shelf. The mass loss coincides with the retreat of the grounding line from a seabed ridge, on which it was at least partly grounded until the 1970s. At present, it is unclear what has caused the onset of this retreat, and how feedback mechanisms between the ocean and iceshelf geometry have influenced the ice dynamics. To address these questions, we present results from an offline coupling between a state-of-the-art shallow-ice flow model with grounding line resolving capabilities, and a three-dimensional ocean general circulation model with a static implementation of the ice shelf. A series of idealized experiments simulate the retreat from a seabed ridge in response to changes in the ocean forcing, and we show that the retreat becomes irreversible after 20 years of warm ocean conditions. A comparison to experiments with a simple depth-dependent meltrate parameterisation demonstrates that such parameterizations are unable to capture the details of the retreat process, and they overestimate mass loss by more than 40% over a 50-year timescale.

  10. Meltwater produced by wind-albedo interaction stored in an East Antarctic ice shelf

    NASA Astrophysics Data System (ADS)

    Lenaerts, J. T. M.; Lhermitte, S.; Drews, R.; Ligtenberg, S. R. M.; Berger, S.; Helm, V.; Smeets, C. J. P. P.; Broeke, M. R. Van Den; van de Berg, W. J.; van Meijgaard, E.; Eijkelboom, M.; Eisen, O.; Pattyn, F.

    2017-01-01

    Surface melt and subsequent firn air depletion can ultimately lead to disintegration of Antarctic ice shelves causing grounded glaciers to accelerate and sea level to rise. In the Antarctic Peninsula, foehn winds enhance melting near the grounding line, which in the recent past has led to the disintegration of the most northerly ice shelves. Here, we provide observational and model evidence that this process also occurs over an East Antarctic ice shelf, where meltwater-induced firn air depletion is found in the grounding zone. Unlike the Antarctic Peninsula, where foehn events originate from episodic interaction of the circumpolar westerlies with the topography, in coastal East Antarctica high temperatures are caused by persistent katabatic winds originating from the ice sheet’s interior. Katabatic winds warm and mix the air as it flows downward and cause widespread snow erosion, explaining >3 K higher near-surface temperatures in summer and surface melt doubling in the grounding zone compared with its surroundings. Additionally, these winds expose blue ice and firn with lower surface albedo, further enhancing melt. The in situ observation of supraglacial flow and englacial storage of meltwater suggests that ice-shelf grounding zones in East Antarctica, like their Antarctic Peninsula counterparts, are vulnerable to hydrofracturing.

  11. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf

    NASA Astrophysics Data System (ADS)

    Garabato, Alberto C. Naveira; Forryan, Alexander; Dutrieux, Pierre; Brannigan, Liam; Biddle, Louise C.; Heywood, Karen J.; Jenkins, Adrian; Firing, Yvonne L.; Kimura, Satoshi

    2017-01-01

    The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change. The increased freshwater output from Antarctica is important in determining sea level rise, the fate of Antarctic sea ice and its effect on the Earth’s albedo, ongoing changes in global deep-ocean ventilation, and the evolution of Southern Ocean ecosystems and carbon cycling. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models.

  12. Ross ice shelf cavity circulation, residence time, and melting: Results from a model of oceanic chlorofluorocarbons

    NASA Astrophysics Data System (ADS)

    Reddy, Tasha E.; Holland, David M.; Arrigo, Kevin R.

    2010-04-01

    Despite their harmful effects in the upper atmosphere, anthropogenic chlorofluorocarbons dissolved in seawater are extremely useful for studying ocean circulation and ventilation, particularly in remote locations. Because they behave as a passive tracer in seawater, and their atmospheric concentrations are well-mixed, well-known, and have changed over time, they are ideal for gaining insight into the oceanographic characteristics of the isolated cavities found under Antarctic ice shelves, where direct observations are difficult to obtain. Here we present results from a modeling study of air-sea chlorofluorocarbon exchange and ocean circulation in the Ross Sea, Antarctica. We compare our model estimates of oceanic CFC-12 concentrations along an ice shelf edge transect to field data collected during three cruises spanning 16 yr. Our model produces chlorofluorocarbon concentrations that are quite similar to those measured in the field, both in magnitude and distribution, showing high values near the surface, decreasing with depth, and increasing over time. After validating modeled circulation and air-sea gas exchange through comparison of modeled temperature, salinity, and chlorofluorocarbons with field data, we estimate that the residence time of water in the Ross Ice Shelf cavity is approximately 2.2 yr and that basal melt rates for the ice shelf average 10 cm yr -1. The model predicts a seasonal signature to basal melting, with highest melt rates in the spring and also the fall.

  13. Antarctic ice shelf thickness from CryoSat-2 radar altimetry

    NASA Astrophysics Data System (ADS)

    Chuter, S. J.; Bamber, J. L.

    2015-12-01

    Ice shelf thickness for the whole of Antarctica is derived from 4 years (2011-2014) of CryoSat-2 (CS2) radar altimetry measurements using the assumption that the shelves are in hydrostatic equilibrium. The satellite orbit and novel synthetic aperture radar interferometric mode of CS2 results in 92.3% data coverage over the ice shelves, with particular improvements around the grounding zone. When compared to ICESat data, surface elevations have a mean bias of less than 1 m and a fourfold reduction in standard deviation compared with the previous data set. Over the Amery Ice Shelf there is a mean thickness difference of 3.3% between radio echo sounding measurements and the CS2-derived thicknesses, rising to 4.7% within 10 km of the grounding line. Our new data set provides key improvements in accuracy and coverage, especially in the grounding zone, allowing for reduced uncertainties in mass budget calculations, subshelf ocean and ice sheet-shelf modeling.

  14. Handbook for Sea Ice Analysis and Forecasting.

    DTIC Science & Technology

    1984-06-01

    8217O -330 -N -’ -3a -J5-V--3 ,’ t ii~~~~~~~~~~~~~~ .-00.’S(~NC ..3 .l0൩ 3 .a 3 . .~C O. ’. . Ca 3. . . .. 2 . ;cO; I:COSSQ a,:G::::C::::z W~ COCO ...8217 CHoCOLATE / ROSS ICE SHELF$ .16 is 2.w b V-w IS,~ .1d)C Figure 2. Initial ice conditions in McMurdo Sound, 28 Octob~er 1982 and lost ice extent along a

  15. Amundsen Sea sector ice shelf thickness, melt rates, and inland response from annual high-resolution DEM mosaics

    NASA Astrophysics Data System (ADS)

    Shean, D. E.; Joughin, I. R.; Smith, B. E.; Alexandrov, O.; Moratto, Z.; Porter, C. C.; Morin, P. J.

    2014-12-01

    Significant grounding line retreat, acceleration, and thinning have occurred along the Amundsen Sea sector of West Antarctica in recent decades. These changes are driven primarily by ice-ocean interaction beneath ice shelves, but existing observations of the spatial distribution, timing, and magnitude of ice shelf melt are limited. Using the NASA Ames Stereo Pipeline, we generated digital elevation models (DEMs) with ~2 m posting from all ~450 available WorldView-1/2 along-track stereopairs for the Amundsen Sea sector. A novel iterative closest point algorithm was used to coregister DEMs to filtered Operation IceBridge ATM/LVIS data and ICESat-1 GLAS data, offering optimal sub-meter horizontal/vertical accuracy. The corrected DEMs were used to produce annual mosaics for the entire ~500x700 km region with focused, sub-annual products for ice shelves and grounding zones. These mosaics provide spatially-continuous measurements of ice shelf topography with unprecedented detail. Using these data, we derive estimates of ice shelf thickness for regions in hydrostatic equilibrium and map networks of sub-shelf melt channels for the Pine Island (PIG), Thwaites, Crosson, and Dotson ice shelves. We also document the break-up of the Thwaites ice shelf and PIG rift evolution leading up to the 2013 calving event. Eulerian difference maps document 2010-2014 thinning over fast-flowing ice streams and adjacent grounded ice. These data reveal the greatest thinning rates over the Smith Glacier ice plain and slopes beyond the margins of the fast-flowing PIG trunk. Difference maps also highlight the filling of at least two subglacial lakes ~30 km upstream of the PIG grounding line in 2011. Lagrangian difference maps reveal the spatial distribution of ice shelf thinning, which can primarily be attributed to basal melt. Preliminary results show focused ice shelf thinning within troughs and large basal channels, especially along the western margin of the Dotson ice shelf. These new data

  16. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse.

    PubMed

    Fillinger, Laura; Janussen, Dorte; Lundälv, Tomas; Richter, Claudio

    2013-07-22

    Over 30% of the Antarctic continental shelf is permanently covered by floating ice shelves, providing aphotic conditions for a depauperate fauna sustained by laterally advected food. In much of the remaining Antarctic shallows (<300 m depth), seasonal sea-ice melting allows a patchy primary production supporting rich megabenthic communities dominated by glass sponges (Porifera, Hexactinellida). The catastrophic collapse of ice shelves due to rapid regional warming along the Antarctic Peninsula in recent decades has exposed over 23,000 km(2) of seafloor to local primary production. The response of the benthos to this unprecedented flux of food is, however, still unknown. In 2007, 12 years after disintegration of the Larsen A ice shelf, a first biological survey interpreted the presence of hexactinellids as remnants of a former under-ice fauna with deep-sea characteristics. Four years later, we revisited the original transect, finding 2- and 3-fold increases in glass sponge biomass and abundance, respectively, after only two favorable growth periods. Our findings, along with other long-term studies, suggest that Antarctic hexactinellids, locked in arrested growth for decades, may undergo boom-and-bust cycles, allowing them to quickly colonize new habitats. The cues triggering growth and reproduction in Antarctic glass sponges remain enigmatic.

  17. Community dynamics of nematodes after Larsen ice-shelf collapse in the eastern Antarctic Peninsula.

    PubMed

    Hauquier, Freija; Ballesteros-Redondo, Laura; Gutt, Julian; Vanreusel, Ann

    2016-01-01

    Free-living marine nematode communities of the Larsen B embayment at the eastern Antarctic Peninsula were investigated to provide insights on their response and colonization rate after large-scale ice-shelf collapse. This study compares published data on the post-collapse situation from 2007 with new material from 2011, focusing on two locations in the embayment that showed highly divergent communities in 2007 and that are characterized by a difference in timing of ice-shelf breakup. Data from 2007 exposed a more diverse community at outer station B.South, dominated by the genus Microlaimus. On the contrary, station B.West in the inner part of Larsen B was poor in both numbers of individuals and genera, with dominance of a single Halomonhystera species. Re-assessment of the situation in 2011 showed that communities at both stations diverged even more, due to a drastic increase in Halomonhystera at B.West compared to relatively little change at B.South. On a broader geographical scale, it seems that B.South gradually starts resembling other Antarctic shelf communities, although the absence of the genus Sabatieria and the high abundance of Microlaimus still set it apart nine years after the main Larsen B collapse. In contrast, thriving of Halomonhystera at B.West further separates its community from other Antarctic shelf areas.

  18. Sea, ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Sharma, G. D.; Wright, F. F.; Burns, J. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery has been extremely useful in understanding the tidal water movements in a large estuary such as Cook Inlet. As more imagery obtained during various tidal stages become available it appears that complex and fast changing micro-circulation patterns develop in various regions of Cook Inlet during each advancing and receding tide. More ERTS-1 synoptic imagery is needed to fully understand the effect of the approach of tidal front on the water movements in the various regions through the estuary. The conventional onboard ship data gathered during various cruises although revealed the overall circulation pattern in Cook Inlet but failed to show micro-subgyres which develop in various regions during each tide which are discernible on ther ERTS-1 imagery. Suspended load distribution in the Bering Sea during summer varies significantly. In areas of phytoplankton bloom and at the river mouths the suspended load is higher than the 1 mg/1 which is found over most areas. The influence of major rivers on temperature, salinity, and suspended load in surface water as well as at shallow depth is apparent. On the Bering shelf a strong pycnocline generally at depth 10-20 m is formed by surface fresh water flow which retains sediment in suspension over extended periods.

  19. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Kuipers Munneke, P.; van den Broeke, M. R.; King, J. C.; Gray, T.; Reijmer, C. H.

    2011-10-01

    Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), including melt energy. The two AWSs are separated by about 70 km in the north-south direction, and both the near-surface meteorology and the SEB show similarities, although small differences in all components (most notably the melt flux) can be seen. The impact of subsurface absorption of shortwave radiation on melt and snow temperature is significant, and discussed. In winter, longwave cooling of the surface is entirely compensated by a downward turbulent transport of sensible heat. In summer, the positive net radiative flux is compensated by melt, and quite frequently by upward turbulent diffusion of heat and moisture, leading to sublimation and weak convection over the ice shelf. The month of November 2010 is highlighted, when strong westerly flow over the Antarctic Peninsula led to a dry and warm föhn wind over the ice shelf, resulting in warm and sunny conditions. Under these conditions the increase in shortwave and sensible heat fluxes is larger than the reduction of net longwave and latent heat fluxes, providing energy for significant melt.

  20. Near-surface climate and surface energy budget of Larsen C ice shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Kuipers Munneke, P.; van den Broeke, M. R.; King, J. C.; Gray, T.; Reijmer, C. H.

    2012-03-01

    Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), which includes melt energy. The two AWSs are separated by about 70 km in the north-south direction, and both the near-surface meteorology and the SEB show similarities, although small differences in all components (most notably the melt flux) can be seen. The impact of subsurface absorption of shortwave radiation on melt and snow temperature is significant, and discussed. In winter, longwave cooling of the surface is entirely compensated by a downward turbulent transport of sensible heat. In summer, the positive net radiative flux is compensated by melt, and quite frequently by upward turbulent diffusion of heat and moisture, leading to sublimation and weak convection over the ice shelf. The month of November 2010 is highlighted, when strong westerly flow over the Antarctic Peninsula led to a dry and warm föhn wind over the ice shelf, resulting in warm and sunny conditions. Under these conditions the increase in shortwave and sensible heat fluxes is larger than the decrease of net longwave and latent heat fluxes, providing energy for significant melt.

  1. The influence of continental shelf bathymetry on Antarctic Ice Sheet response to climate forcing

    NASA Astrophysics Data System (ADS)

    Bart, Philip J.; Mullally, Dan; Golledge, Nicholas R.

    2016-07-01

    We investigated whether shelf-depth changes would have influenced Antarctic Ice Sheet (AIS) response to climate forcing using the Parallel Ice Sheet Model (PISM). The simulations confirm that this would have indeed been the case. For the last-glacial-cycle (LGC) type forcing we prescribed, a modern-like polar AIS surrounded by shallow and intermediate bathymetries experiences rapid grounding-line advance early during the transition from interglacial to glacial forcing. This is in contrast to our baseline simulation of AIS response on the currently overdeepened bathymetry, which showed the expected gradual advance of grounding lines to the same climatic forcing. In the simulation, the more-positive mass balance for the shallower bathymetry is primarily a result of significantly lower calving fluxes from smaller-area ice shelves. On the basis of these results, we suggest that shelf bathymetry is an important boundary condition that should be considered when reconstructing AIS behavior since at least the middle Miocene. We note that caution should be used when applying these concepts because the particular way in which AIS mass balance is altered by shelf depth depends on how the changes in accumulation and ablation at the marine terminations combine with accumulation and ablation on land.

  2. Bathymetry of Grounding Zones and Sub-Ice Shelf Cavities of the Amundsen Sea, from Operation IceBridge Gravity Inversions

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Cochran, J. R.; Bell, R. E.

    2012-12-01

    In order to understand the observed changes in thinning and grounding line position of outlet glaciers it is essential to have accurate maps of the bathymetry of the sea floor within and around the grounding zone. This bathymetry controls the stability of the grounding line as well as access and circulation of seawater under their stabilizing ice shelves. Since 2009 Operation IceBridge has flown gridded surveys over four of the ice shelves of the Amundsen Sea embayment. We present a 3D inversion of the gravity from the region, supplemented by 2D profile models across the ice shelves to provide a self-consistent bathymetric model of the grounding zone and sub ice cavity of Pine Island, Thwaites, Dotson and Crosson ice shelves. Much attention has been paid to the largest outlet glaciers of the Amundsen Sea, and to the bathymetry beneath the floating ice in front of their grounding zones. Considerable changes have also been observed from the smaller Amundsen ice shelves, Crosson and Dotson, which flow to the east and north respectively, between Thwaites Glacier and Getz ice shelf, but little is known about their sub-ice bathymetry. The Amundsen Sea region is vulnerable to the influence of relatively warm circumpolar deep water encroaching on to the continental shelf. The influence of these waters at the grounding zone of the glaciers in the region is dictated by the depth and orientation of bathymetric features of the sea floor. The dominant geological fabric of the region is a NE-SW trending series of ridges and troughs, formed in association with the rifting of the Amundsen Sea region. The bathymetry models from OIB gravity inversions reveal the continuation of the deep (~1500 m) trough of the Kohler Glacier under Crosson Ice Shelf. At the eastern end of the trough, at the front of Crosson ice shelf, the sea floor rises to an average of ~500 m depth over a broad, 50 km wide region. Further east from here the NE-SW fabric is continued in a previously reported ridge

  3. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history.

    PubMed

    Mulvaney, Robert; Abram, Nerilie J; Hindmarsh, Richard C A; Arrowsmith, Carol; Fleet, Louise; Triest, Jack; Sime, Louise C; Alemany, Olivier; Foord, Susan

    2012-09-06

    Rapid warming over the past 50 years on the Antarctic Peninsula is associated with the collapse of a number of ice shelves and accelerating glacier mass loss. In contrast, warming has been comparatively modest over West Antarctica and significant changes have not been observed over most of East Antarctica, suggesting that the ice-core palaeoclimate records available from these areas may not be representative of the climate history of the Antarctic Peninsula. Here we show that the Antarctic Peninsula experienced an early-Holocene warm period followed by stable temperatures, from about 9,200 to 2,500 years ago, that were similar to modern-day levels. Our temperature estimates are based on an ice-core record of deuterium variations from James Ross Island, off the northeastern tip of the Antarctic Peninsula. We find that the late-Holocene development of ice shelves near James Ross Island was coincident with pronounced cooling from 2,500 to 600 years ago. This cooling was part of a millennial-scale climate excursion with opposing anomalies on the eastern and western sides of the Antarctic Peninsula. Although warming of the northeastern Antarctic Peninsula began around 600 years ago, the high rate of warming over the past century is unusual (but not unprecedented) in the context of natural climate variability over the past two millennia. The connection shown here between past temperature and ice-shelf stability suggests that warming for several centuries rendered ice shelves on the northeastern Antarctic Peninsula vulnerable to collapse. Continued warming to temperatures that now exceed the stable conditions of most of the Holocene epoch is likely to cause ice-shelf instability to encroach farther southward along the Antarctic Peninsula.

  4. Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: Basal melting and exchange with open ocean

    NASA Astrophysics Data System (ADS)

    Hattermann, T.; Smedsrud, L. H.; Nøst, O. A.; Lilly, J. M.; Galton-Fenzi, B. K.

    2014-10-01

    Melting at the base of floating ice shelves is a dominant term in the overall Antarctic mass budget. This study applies a high-resolution regional ice shelf/ocean model, constrained by observations, to (i) quantify present basal mass loss at the Fimbul Ice Shelf (FIS); and (ii) investigate the oceanic mechanisms that govern the heat supply to ice shelves in the Eastern Weddell Sea. The simulations confirm the low melt rates suggested by observations and show that melting is primarily determined by the depth of the coastal thermocline, regulating deep ocean heat fluxes towards the ice. Furthermore, the uneven distribution of ice shelf area at different depths modulates the melting response to oceanic forcing, causing the existence of two distinct states of melting at the FIS. In the simulated present-day state, only small amounts of Modified Warm Deep Water enter the continental shelf, and ocean temperatures beneath the ice are close to the surface freezing point. The basal mass loss in this so-called state of “shallow melting” is mainly controlled by the seasonal inflow of solar-heated surface water affecting large areas of shallow ice in the upper part of the cavity. This is in contrast to a state of “deep melting”, in which the thermocline rises above the shelf break depth, establishing a continuous inflow of Warm Deep Water towards the deep ice. The transition between the two states is found to be determined by a complex response of the Antarctic Slope Front overturning circulation to varying climate forcings. A proper representation of these frontal dynamics in climate models will therefore be crucial when assessing the evolution of ice shelf basal melting along this sector of Antarctica.

  5. The death mask of the antarctic ice sheet: Comparison of glacial geomorphic features across the continental shelf

    NASA Astrophysics Data System (ADS)

    Wellner, J. S.; Heroy, D. C.; Anderson, J. B.

    2006-04-01

    Multibeam swath bathymetry data, seismic lines, and shallow cores were collected seaward of all of the major drainage outlets of the Antarctic Ice Sheet from the Pennell Coast of North Victoria Land to the northwestern Weddell Sea. The results show that during the last glacial maximum, the ice sheet extended onto the outer shelf in all areas, to the shelf break in many. Swath bathymetry and deep-tow sidescan sonar data from the continental shelf also record the geomorphology left by the retreating ice sheet. Glacial troughs occur offshore of all major glacial outlets. In each drainage area except for parts of the Ross Sea, the inner shelf is characterized by acoustic basement interpreted as crystalline substrate. The geomorphology of these inner shelf areas consists of erosional features such as grooves that show that ice flow tended to follow the structural grain of the bedrock. Outer shelf areas are floored by sedimentary substrate where the direction of ice flow was more directly offshore and depositional features characterize the seafloor. In these areas the signature of the grounded ice consists of till deposits and large-scale geomorphic features, mega-scale glacial lineations. Drumlins occur within the region of contact between crystalline and sedimentary substrates. Meltwater channels also have been imaged in both inner and outer shelf settings. While the presence of meltwater across the shelf has long been suspected, we present here the first multibeam image of a meltwater channel on the outer continental shelf of Antarctica. At the shelf break gullies are in all areas where we know ice reached the shelf break. We note the remarkable similarity in form of mega-scale glacial lineations observed on the outer shelf over sedimentary substrate across all areas surveyed, typically measuring 200-600 m crest to crest. This suggests that the shape of these landforms is governed by the same process in each drainage area and that process was occurring under a large

  6. Ice shelf-ocean interactions, mechanisms of change in the Amundsen Sea, West Antarctica

    NASA Astrophysics Data System (ADS)

    Dutrieux, P.

    2015-12-01

    Over the length of the observational record, the Antarctic Ice Sheet has been loosing ice to the ocean, significantly contributing to global sea level rise. This signal is largely due to glacial flow acceleration in West Antarctica, driven by oceanic melting at its margin and the induced thinning of the glacier buttressing ice shelves. Pine Island Glacier is one stellar example where vigorous oceanic melting fundamentally modifies the geometry of the ice-ocean interface and the associated ice dynamics. Since the early 1970's, the glacier terminating ice shelf has thinned, its grounding line has retreated, and its speed has doubled, now reaching close to 11 m/day. During that time, oceanic melting has increased, injecting fresh and nutrient-rich waters between the surface and intermediate depth in the coastal southern ocean. Using autonomous platforms, ship-borne ocean observations, ground-based and airborne radar observations, satellite observations and numerical modelling, this talk will review the mechanisms behind this trajectory of change and open perspectives on its potential impacts in the Southern Ocean.

  7. Ice streaming in western Scotland and the deglaciation of the Hebrides Shelf and Firth of Lorn

    NASA Astrophysics Data System (ADS)

    Arosio, Riccardo; Howe, John; O'Cofaigh, Colm; Crocket, Kirsty

    2014-05-01

    Previously, numerous studies have been undertaken both onshore and offshore to decipher the morphological and sedimentological record in order to better constrain the limits and duration of the British-Irish Ice Sheet (BIIS) (Ballantyne et al. 2009, Bradwell et al. 2008b, Clark et al. 2011, Dunlop et al. 2010, Howe et al. 2012, O'Cofaigh et al., 2012). Late glacial ice sheet dynamics have been revealed to be far more rapid and responsive to climatic amelioration than had previously been considered. Notable in this debate has been the evidence that has been obtained in the inshore and, to a lesser extent, offshore on the UK continental shelf. Here new geomorphological data, principally multibeam echo sounder (MBES) data has provided imagery of previously unseen features interpreted as being glacial in origin. In the wake of these new discoveries this projects aims to investigate the extent, timing, growth and final disintegration of the BIIS across Western Scotland. This area of particular interest for the development of the glaciated North Atlantic margin has been generally neglected in past studies, especially across the mid-outer shelf, which constitutes a missing part in the jigsaw of the reconstructed BIIS during the last ~20.000yrs. We aim to mainly focus on geomorphological analyses of MBES data collected in the Firth of Lorn and Sea of Hebrides; a study of features as moraines, glacial lineations and drumlins will provide important clues on the dynamics and maximum extension of the sheet. Subsequently we will examine the geometry and composition of the shelf sediment infill, aiming to constrain the influence of ice retreat on depositional environments using multi-element geochemical (Pb-isotopes ratios, 14C and OSL dating) and sedimentological techniques. Such an investigation will also give retrospective information on the sources for these sediments, hence more indications on ice configuration. Ultimately we aim to provide a model of deglaciation for the

  8. Satellite color observations of spring blooming in Bering Sea shelf waters during the ice edge retreat in 1980

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.; Clark, Dennis K.

    1987-01-01

    The temporal and spatial development of the ice-edge bloom and the spring open-water bloom on the eastern Bering Sea shelf was studied using CZCS images of the eastern Bering Sea between April 27 and July 22, 1980. Images of the Norton Sound area taken during the period of ice breakup show that the influence of ice melt on phytoplankton growth is particularly significant where the ice is actively melting. Significant levels (5-30 mg/cu m) of chlorophyll could be seen trailing the ice pack as it melted and moved northward and westward in late April and early May. In the ice-free eastern Bering Sea midsummer image, a northwesterly oriented band of high pigment concentration was seen in the area of the outer domain, suggesting periodic offshore movements of shelf waters.

  9. Mapped Submarine Landforms in Pine Island Bay, West Antarctica, Indicate Past Ice Shelf Disintegration and Grounding line Retreat

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Anderson, J. B.; Nitsche, F. O.; Dowdeswell, J. A.; Gyllencreutz, R.; Kirchner, N.; O'Regan, M. A.; Alley, R. B.; Anandakrishnan, S.; Mohammad, R.; Eriksson, B.; Fernandez-Vasquez, R. A.; Kirshner, A. E.; Minzoni, R. L.; Stolldorf, T. D.; Majewski, W.

    2010-12-01

    Swath bathymetry images from the inner part of Pine Island Bay reveal a well-organized subglacial drainage system carved into bedrock and the termination of a cross-shelf trough has been mapped on the outer shelf. The middle part of Pine Island Bay has, however, only been sparsely mapped due to persistent sea ice cover in the area. During the 2009/2010 austral summer the bay was virtually ice free, allowing detailed swath bathymetry mapping with the Swedish Icebreaker Oden covering 4,140 km2 of the middle part of the trough. When the ice sheet was grounded in Pine Island Trough (PIT), several common glacigenic landforms were produced including mega-scale glacial lineations (MSGL), indicating paleo-ice stream flow direction, and grounding line wedges marking the location where the ice stream's grounding line remained for a longer period. In addition, the multibeam data reveal two other landforms previously not described from this setting. The first of these are ridges oriented transverse the ice flow direction. They are on the order of 1-2 m from trough-to-peak and separated by about 60-200 m. They extend virtually across the entire width of PIT, but individual sets are separated by lineations that are spaced 50 to 500 m apart. The second feature comprises sediment mounds that terminate linear to curvilinear sets of ridges and furrows that are aligned parallel to the axis of the trough, similar to MSGL. These two feature sets are interpreted to indicate the disintegration of a former ice shelf in Pine Island Bay that extended from the paleo-ice stream in the PIT. The ridges mapped in PIT are referred to as “fishbone moraines” and the proposed formation model is that a former ice shelf in Pine Island Bay disintegrated, similarly as happened with Larsen A and B ice shelves, back to the grounding line where it breaks off, tilts landward and begins to drift seaward. With each tidal cycle the ice shelf remnant was lifted, moved seaward and then settling, squeezing

  10. Low melt rates with seasonal variability at the base of Fimbul Ice Shelf, East Antarctica, revealed by in situ interferometric radar measurements

    NASA Astrophysics Data System (ADS)

    Langley, Kirsty; Kohler, Jack; Sinisalo, Anna; Øyan, Mats Jørgen; Hamran, Svein Erik; Hattermann, Tore; Matsuoka, Kenichi; Nøst, Ole Anders; Isaksson, Elisabeth

    2014-11-01

    Basal melt is a major cause of ice shelf thinning affecting the stability of the ice shelf and reducing its buttressing effect on the inland ice. The Fimbul ice shelf (FIS) in Dronning Maud Land (DML), East Antarctica, is fed by the fast-flowing Jutulstraumen glacier, responsible for 10% of ice discharge from the DML sector of the ice sheet. Current estimates of the basal melt rates of the FIS come from regional ocean models, autosub measurements, and satellite observations, which vary considerably. This discrepancy hampers evaluation of the stability of the Jutulstraumen catchment. Here, we present estimates of basal melt rates of the FIS using ground-based interferometric radar. We find a low average basal melt rate on the order of 1 m/yr, with the highest rates located at the ice shelf front, which extends beyond the continental shelf break. Furthermore, our results provide evidence for a significant seasonal variability.

  11. Recent climate tendencies on an East Antarctic ice shelf inferred from a shallow firn core network

    PubMed Central

    Schlosser, E; Anschütz, H; Divine, D; Martma, T; Sinisalo, A; Altnau, S; Isaksson, E

    2014-01-01

    Nearly three decades of stable isotope ratios and surface mass balance (SMB) data from eight shallow firn cores retrieved at Fimbul Ice Shelf, East Antarctica, in the Austral summers 2009–2011 have been investigated. An additional longer core drilled in 2000/2001 extends the series back to the early eighteenth century. Isotope ratios and SMB from the stacked record of all cores were also related to instrumental temperature data from Neumayer Station on Ekström Ice Shelf. Since the second half of the twentieth century, the SMB shows a statistically significant negative trend, whereas the δ18O of the cores shows a significant positive trend. No trend is found in air temperature at the nearest suitable weather station, Neumayer (available since 1981). This does not correspond to the statistically significant positive trend in Southern Annular Mode (SAM) index, which is usually associated with a cooling of East Antarctica. SAM index and SMB are negatively correlated, which might be explained by a decrease in meridional exchange of energy and moisture leading to lower precipitation amounts. Future monitoring of climate change on the sensitive Antarctic ice shelves is necessary to assess its consequences for sea level change. Key Points Mass balance and stable oxygen isotope ratios from shallow firn cores Decreasing trend in surface mass balance, no trend in stable isotopes Negative correlation between SAM and SMB PMID:25821663

  12. Recent climate tendencies on an East Antarctic ice shelf inferred from a shallow firn core network.

    PubMed

    Schlosser, E; Anschütz, H; Divine, D; Martma, T; Sinisalo, A; Altnau, S; Isaksson, E

    2014-06-16

    Nearly three decades of stable isotope ratios and surface mass balance (SMB) data from eight shallow firn cores retrieved at Fimbul Ice Shelf, East Antarctica, in the Austral summers 2009-2011 have been investigated. An additional longer core drilled in 2000/2001 extends the series back to the early eighteenth century. Isotope ratios and SMB from the stacked record of all cores were also related to instrumental temperature data from Neumayer Station on Ekström Ice Shelf. Since the second half of the twentieth century, the SMB shows a statistically significant negative trend, whereas the δ(18)O of the cores shows a significant positive trend. No trend is found in air temperature at the nearest suitable weather station, Neumayer (available since 1981). This does not correspond to the statistically significant positive trend in Southern Annular Mode (SAM) index, which is usually associated with a cooling of East Antarctica. SAM index and SMB are negatively correlated, which might be explained by a decrease in meridional exchange of energy and moisture leading to lower precipitation amounts. Future monitoring of climate change on the sensitive Antarctic ice shelves is necessary to assess its consequences for sea level change.

  13. Variability of the oceanic environment and basal melting of the Dotson Ice Shelf, West Antarctica, 2000 to 2014

    NASA Astrophysics Data System (ADS)

    Shoosmith, Deb; Jenkins, Adrian; Dutrieux, Pierre; Jacobs, Stan; Kim, Tae Wan; Lee, Sang Hoon; Ha, Ho Kyung; Stammerjohn, Sharon

    2016-04-01

    It is well known that the ocean plays a key role in the process of mass loss from ice sheets through iceberg calving and basal melting. The Amundsen Sea, in the eastern Pacific sector of the Southern Ocean, is a region where the ice shelves are rapidly thinning. The widespread, coherent nature of the thinning suggests oceanic forcing, which has now been well documented for Pine Island Glacier. Studies using satellite data have indicated that Dotson Ice Shelf was melting at a rate of 8 m per year and thinning by about 3 m per year during the 2003 - 2008 period. This study takes a slightly longer term perspective, exploiting oceanographic observations spanning a decade and a half (2000 - 2014) that have been obtained at the Dotson Ice Front. A total of 7 hydrographic sections reveal variability in the oceanographic environment in front of the ice shelf and associated changes in meltwater production over time. We quantify the variability in circulation and net meltwater transport from beneath the ice shelf to produce estimates of the basal melt rate for this 15 year period. We find that changes in ocean heat content in front of the ice shelf drive high variability in melting on multi-annual to decadal time-scales.

  14. Foehn winds link climate-driven warming to ice shelf evolution in Antarctica

    NASA Astrophysics Data System (ADS)

    Cape, M. R.; Vernet, Maria; Skvarca, Pedro; Marinsek, Sebastián.; Scambos, Ted; Domack, Eugene

    2015-11-01

    Rapid warming of the Antarctic Peninsula over the past several decades has led to extensive surface melting on its eastern side, and the disintegration of the Prince Gustav, Larsen A, and Larsen B ice shelves. The warming trend has been attributed to strengthening of circumpolar westerlies resulting from a positive trend in the Southern Annular Mode (SAM), which is thought to promote more frequent warm, dry, downsloping foehn winds along the lee, or eastern side, of the peninsula. We examined variability in foehn frequency and its relationship to temperature and patterns of synoptic-scale circulation using a multidecadal meteorological record from the Argentine station Matienzo, located between the Larsen A and B embayments. This record was further augmented with a network of six weather stations installed under the U.S. NSF LARsen Ice Shelf System, Antarctica, project. Significant warming was observed in all seasons at Matienzo, with the largest seasonal increase occurring in austral winter (+3.71°C between 1962-1972 and 1999-2010). Frequency and duration of foehn events were found to strongly influence regional temperature variability over hourly to seasonal time scales. Surface temperature and foehn winds were also sensitive to climate variability, with both variables exhibiting strong, positive correlations with the SAM index. Concomitant positive trends in foehn frequency, temperature, and SAM are present during austral summer, with sustained foehn events consistently associated with surface melting across the ice sheet and ice shelves. These observations support the notion that increased foehn frequency played a critical role in precipitating the collapse of the Larsen B ice shelf.

  15. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current.

    PubMed

    Hellmer, Hartmut H; Kauker, Frank; Timmermann, Ralph; Determann, Jürgen; Rae, Jamie

    2012-05-09

    The Antarctic ice sheet loses mass at its fringes bordering the Southern Ocean. At this boundary, warm circumpolar water can override the continental slope front, reaching the grounding line through submarine glacial troughs and causing high rates of melting at the deep ice-shelf bases. The interplay between ocean currents and continental bathymetry is therefore likely to influence future rates of ice-mass loss. Here we show that a redirection of the coastal current into the Filchner Trough and underneath the Filchner-Ronne Ice Shelf during the second half of the twenty-first century would lead to increased movement of warm waters into the deep southern ice-shelf cavity. Water temperatures in the cavity would increase by more than 2 degrees Celsius and boost average basal melting from 0.2 metres, or 82 billion tonnes, per year to almost 4 metres, or 1,600 billion tonnes, per year. Our results, which are based on the output of a coupled ice-ocean model forced by a range of atmospheric outputs from the HadCM3 climate model, suggest that the changes would be caused primarily by an increase in ocean surface stress in the southeastern Weddell Sea due to thinning of the formerly consolidated sea-ice cover. The projected ice loss at the base of the Filchner-Ronne Ice Shelf represents 80 per cent of the present Antarctic surface mass balance. Thus, the quantification of basal mass loss under changing climate conditions is important for projections regarding the dynamics of Antarctic ice streams and ice shelves, and global sea level rise.

  16. Shear, Stability and Mixing within the Ice-Shelf-Ocean Boundary Layer

    NASA Astrophysics Data System (ADS)

    Jenkins, Adrian

    2016-04-01

    Ocean-forced basal melting has been implicated in the widespread thinning of Antarctic ice shelves that has been causally linked with acceleration in the outflow of grounded ice. What determines the distribution and rates of basal melting and freezing beneath an ice shelf and how these respond to changes in the ocean temperature or circulation are therefore key questions. Recent years have seen major progress in our ability to observe basal melting and the ocean conditions that drive it, but data on the latter remain sparse, limiting our understanding of the key processes of ice-ocean heat transfer. In particular, we have no observations of current profiles through the buoyancy- and frictionally-controlled flows along the ice shelf base that drive mixing through the ice-ocean boundary layer. This presentation represents an attempt to address this gap in our knowledge through application of a very simple model of such boundary flows that considers only the spatial dimension perpendicular to the boundary. Initial results obtained with an unrealistic assumuption of constant eddy viscosity/diffusivity are nevertheless informative. For the buoyancy-driven flow two possible regimes exist: a weakly-stratified, geostrophic cross-slope current with an embedded Ekman layer, somewhat analogous to a conventional density current on a slope; or a strongly-stratified upslope jet with weak cross-slope flow, more analogous to an inverted katabatic wind. The latter is most appropriate when the ice-ocean interface is very steep, while for the gentle slopes typical of ice shelves the buoyant Ekman regime prevails. Introduction of a variable eddy viscosity/diffusivity derived from a local turbulence closure scheme modifies the current structure and stratification. There is a sharp step in properties across the surface layer, where the viscosity/diffusivity is low, weak gradients across the outer part of the boundary layer, where shear-driven mixing is strong, and a relatively strong

  17. Evaluation of Ice sheet evolution and coastline changes from 1960s in Amery Ice Shelf using multi-source remote sensing images

    NASA Astrophysics Data System (ADS)

    Qiao, G.; Ye, W.; Scaioni, M.; Liu, S.; Feng, T.; Liu, Y.; Tong, X.; Li, R.

    2013-12-01

    Global change is one of the major challenges that all the nations are commonly facing, and the Antarctica ice sheet changes have been playing a critical role in the global change research field during the past years. Long time-series of ice sheet observations in Antarctica would contribute to the quantitative evaluation and precise prediction of the effects on global change induced by the ice sheet, of which the remote sensing technology would make critical contributions. As the biggest ice shelf and one of the dominant drainage systems in East Antarctic, the Amery Ice Shelf has been making significant contributions to the mass balance of the Antarctic. Study of Amery Ice shelf changes would advance the understanding of Antarctic ice shelf evolution as well as the overall mass balance. At the same time, as one of the important indicators of Antarctica ice sheet characteristics, coastlines that can be detected from remote sensing imagery can help reveal the nature of the changes of ice sheet evolution. Most of the scientific research on Antarctica with satellite remote sensing dated from 1970s after LANDSAT satellite was brought into operation. It was the declassification of the cold war satellite reconnaissance photographs in 1995, known as Declassified Intelligence Satellite Photograph (DISP) that provided a direct overall view of the Antarctica ice-sheet's configuration in 1960s, greatly extending the time span of Antarctica surface observations. This paper will present the evaluation of ice-sheet evolution and coastline changes in Amery Ice Shelf from 1960s, by using multi-source remote sensing images including the DISP images and the modern optical satellite images. The DISP images scanned from negatives were first interior-oriented with the associated parameters, and then bundle block adjustment technology was employed based on the tie points and control points, to derive the mosaic image of the research region. Experimental results of coastlines generated

  18. Climatological aspects of mesoscale cyclogenesis over the Ross Sea and Ross Ice shelf regions of Antarctica

    SciTech Connect

    Carrasco, J.F.; Bromwich, D.H.

    1994-11-01

    A one-year (1988) statistical study of mesoscale cyclogenesis near Terra Nova Bay and Byrd Glacier, Antarctica, was conducted using high-resolution digital satellite imagery and automatic weather station data. Results indicate that on average two (one) mesoscale cyclones form near Terra Nova Bay (Byrd Glacier) each week, confirming these two locations as mesoscale cyclogeneis areas. The maximum (minimum) weekly frequency of mesoscale cyclones occurred during the summer (winter). The satellite survey of mesoscale vortices was extended over the Ross Sea and Ross Ice Shelf. Results suggest southern Marie Byrd Land as another area of mesoscale cyclone formation. Also, frequent mesoscale cyclonic activity was noted over the Ross Sea and Ross Ice Shelf, where, on average, six and three mesoscale vortices were observed each week, respectively, with maximum (minimum) frequency during summer (winter) in both regions. The majority (70-80%) of the vortices were of comma-cloud type and were shallow. Only around 10% of the vortices near Terra Nova Bay and Byrd Glacier were classified as deep vortices, while over the Ross Sea and Ross Ice Shelf around 20% were found to be deep. The average large-scale pattern associated with cyclogenesis days near Terra Nova Bay suggests a slight decrease in the sea level pressure and 500-hPa geopotential height to the northwest of this area with respect to the annual average. This may be an indication of the average position of synoptic-scale cyclones entering the Ross Sea region. Comparison with a similar study but for 1984-85 shows that the overall mesoscale cyclogenesis activity was similar during the three years, but 1985 was found to be the year with greater occurrence of {open_quotes}significant{close_quotes} mesoscales cyclones. The large-scale pattern indicates that this greater activity is related to a deeper circumpolar trough and 500-hPa polar vortex for 1985 in comparison to 1984 and 1988. 64 refs., 13 figs., 5 tabs.

  19. An unusual early Holocene diatom event north of the Getz Ice Shelf (Amundsen Sea): Implications for West Antarctic Ice Sheet development

    NASA Astrophysics Data System (ADS)

    Esper, O.; Gersonde, R.; Hillenbrand, C.; Kuhn, G.; Smith, J.

    2011-12-01

    Modern global change affects not only the polar north but also, and to increasing extent, the southern high latitudes, especially the Antarctic regions covered by the West Antarctic Ice Sheet (WAIS). Consequently, knowledge of the mechanisms controlling past WAIS dynamics and WAIS behaviour at the last deglaciation is critical to predict its development in a future warming world. Geological and palaeobiological information from major drainage areas of the WAIS, like the Amundsen Sea Embayment, shed light on the history of the WAIS glaciers. Sediment records obtained from a deep inner shelf basin north of Getz Ice Shelf document a deglacial warming in three phases. Above a glacial diamicton and a sediment package barren of microfossils that document sediment deposition by grounded ice and below an ice shelf or perennial sea ice cover (possibly fast ice), respectively, a sediment section with diatom assemblages dominated by sea ice taxa indicates ice shelf retreat and seasonal ice-free conditions. This conclusion is supported by diatom-based summer temperature reconstructions. The early retreat was followed by a phase, when exceptional diatom ooze was deposited around 12,500 cal. years B.P. [1]. Microscopical inspection of this ooze revealed excellent preservation of diatom frustules of the species Corethron pennatum together with vegetative Chaetoceros, thus an assemblage usually not preserved in the sedimentary record. Sediments succeeding this section contain diatom assemblages indicating rather constant Holocene cold water conditions with seasonal sea ice. The deposition of the diatom ooze can be related to changes in hydrographic conditions including strong advection of nutrients. However, sediment focussing in the partly steep inner shelf basins cannot be excluded as a factor enhancing the thickness of the ooze deposits. It is not only the presence of the diatom ooze but also the exceptional preservation and the species composition of the diatom assemblage

  20. Shelf ice glaciation in the Arctic Ocean? New results from northernmost Greenland

    NASA Astrophysics Data System (ADS)

    Kjaer, K.; Moller, P.; Larsen, N. K.

    2007-12-01

    Bounding on the last remaining patch of permanent sea ice and capped by an ice sheet with meltwater sufficient to disrupt the thermohaline circulation, North Greenland is strategically located for contributing to the understanding of the climate system. The coastal plain, which faces the Arctic Ocean, more than 100 km long and 15 km wide, is covered by a continuous blanket of Quaternary sediment that spans at least the period since the last deglaciation c. 9000 years ago, and is capped by an array of glacial and marine landforms. This area therefore contains an unsurpassed source for recording marine and glacial activities along the world's northernmost coast - a source which, owing to its inaccessibility, has largely remained untapped. Preliminary results from the 'LongTerm Project', which ended this summer, show that at least two major glacial events hit the coasts by the end of the last ice age. One of them was possibly a large scale expansion of the Inland Ice resulting in formation of a 100,000 km2 ice shelf in the Arctic Ocean - a type of glaciation, which has usually been thought to be an Antarctic speciality. Even more significantly, abundant accumulations of glacio- fluvial and -lacustrine sediments show that heat transfer to these extreme latitudes by the end of the last ice age was sufficient to allow massive melting of land-based ice. Finally, among the summer's surprises was the discovery of thick piles of raised marine sediments along the coast, allowing a detailed record of sea level history and faunal change, which can be correlated with a terrestrial record from cores, obtained from two lakes on the coastal plain.

  1. A 10,000 yr B.P. extensive ice shelf over Viscount Melville Sound, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Hodgson, Douglas A.; Vincent, Jean-Serge

    1984-07-01

    Late Wisconsinan age glacial landforms and deposits indicate that an ice shelf of at least 60,000 km 2 flowed northwestward into Viscount Melville Sound, probably from the M'Clintock Dome of the Laurentide Ice Sheet. The ice shelf overlapped coastal areas and laid Winter Harbour Till up to 125 m above present sea level on the southern coast of Melville Island, to 135 m on Byam Martin Island, to possibly 90 m on the northeast tip of Banks Island, and to 150 m on the north coast of Victoria Island. The contemporary sea level was 50 to 100 m higher than present (it now rises eastward). A maximum age of 10,340 ± 150 yr B.P. for the till, and thus the ice-shelf advance, is provided by shells in marine sediments which underlie it, whereas a minimum age of 9880 ± 150 yr B.P. is provided by overlying shells that postdate the ice advance. The major advance of shelf ice into Viscount Melville Sound may be the result of the rapid disintegration of the M'Clintock Dome while the climate ameliorated in the western Arctic.

  2. Resonance vibrations of the Ross Ice Shelf and observations of persistent atmospheric waves

    NASA Astrophysics Data System (ADS)

    Godin, Oleg A.; Zabotin, Nikolay A.

    2016-10-01

    Recently reported lidar observations have revealed a persistent wave activity in the Antarctic middle and upper atmosphere that has no counterpart in observations at midlatitude and low-latitude locations. The unusual wave activity suggests a geographically specific source of atmospheric waves with periods of 3-10 h. Here we investigate theoretically the hypothesis that the unusual atmospheric wave activity in Antarctica is generated by the fundamental and low-order modes of vibrations of the Ross Ice Shelf (RIS). Simple models are developed to describe basic physical properties of resonant vibrations of large ice shelves and their coupling to the atmosphere. Dispersion relation of the long surface waves, which propagate in the floating ice sheet and are responsible for its low-order resonances, is found to be similar to the dispersion relation of infragravity waves in the ice-free ocean. The phase speed of the surface waves and the resonant frequencies determine the periods and wave vectors of atmospheric waves that are generated by the RIS resonant oscillations. The altitude-dependent vertical wavelengths and the periods of the acoustic-gravity waves in the atmosphere are shown to be sensitive to the physical parameters of the RIS, which can be difficult to measure by other means. Predicted properties of the atmospheric waves prove to be in a remarkable agreement with the key features of the observed persistent wave activity.

  3. Joint inversion of multi-component seismic and ground-penetrating radar GPR) data for ice-physical properties, and application to the Larsen C ice shelf

    NASA Astrophysics Data System (ADS)

    Kulessa, B.; King, E. C.; Barrett, B. E.; Jansen, D.; Luckman, A. J.; Sammonds, P.

    2010-12-01

    Present and next-generation ice-sheet and ice-shelf models require constraints on spatial variations in ice physical properties such as temperature, density, preferred crystal alignment or the porosity of basal marine-ice layers. In-situ or airborne geophysical measurements are a powerful means of generating multi-proxy information for modelling purposes, and new airborne and land-based geophysical acquisition platforms promise to generate vast quantities of high-quality data covering rapidly large areas of the Antarctic and Greenland ice sheets. It is therefore timely to develop new, or adapt from other areas of the geosciences, geophysical processing and joint inversion techniques that exploit these data sets to their full capacity to maximise their value to ice-sheet models. Here we report on the application of state-of-the-science geophysical joint inversion and interpretation techniques to multi-azimuth, multi-component seismic and ground-penetrating radar (GPR) data collected at two control sites on the southeastern Larsen C ice shelf. The southern site was located on an ice flow unit that derives from discharge through the Mobile Oil Inlet, and is characterised by basal melting. The northern site was located on a thin flow unit that originated downflow of the Joerg Peninsula, and is characterised by a thick (up to ~ half the total ice thickness) basal layer of marine ice. We identify the scope of joint, as compared with more conventional separate, inversion of seismic and GPR attributes for multi-proxy properties of these two contrasting sites, and discuss the implications for ice-shelf flow as well as an optimised acquisition and processing strategy.

  4. Minimum distribution of subsea ice-bearing permafrost on the US Beaufort Sea continental shelf

    USGS Publications Warehouse

    Brothers, Laura L.; Hart, Patrick E.; Ruppel, Carolyn D.

    2012-01-01

    Starting in Late Pleistocene time (~19 ka), sea level rise inundated coastal zones worldwide. On some parts of the present-day circum-Arctic continental shelf, this led to flooding and thawing of formerly subaerial permafrost and probable dissociation of associated gas hydrates. Relict permafrost has never been systematically mapped along the 700-km-long U.S. Beaufort Sea continental shelf and is often assumed to extend to ~120 m water depth, the approximate amount of sea level rise since the Late Pleistocene. Here, 5,000 km of multichannel seismic (MCS) data acquired between 1977 and 1992 were examined for high-velocity (>2.3 km s−1) refractions consistent with ice-bearing, coarse-grained sediments. Permafrost refractions were identified along <5% of the tracklines at depths of ~5 to 470 m below the seafloor. The resulting map reveals the minimum extent of subsea ice-bearing permafrost, which does not extend seaward of 30 km offshore or beyond the 20 m isobath.

  5. Marine geological and geophysical records of the last British-Irish Ice Sheet on the continental shelf west of Ireland

    NASA Astrophysics Data System (ADS)

    O'Cofaigh, Colm; Callard, S. Louise; Benetti, Sara; Chiverell, Richard C.; Saher, Margot; van Landeghem, Katrien; Livingstone, Stephen J.; Scourse, James; Clark, Chris D.

    2015-04-01

    The record of glaciation on the continental shelf west of Ireland has, until recently, been relatively poorly studied. The UK NERC funded project BRITICE-CHRONO collected marine geophysical data in the form of multibeam swath bathymetry and sub-bottom profiles supplemented by over 50 vibro- and piston cores across the continental shelf west of Ireland during cruise JC106 of the RRS James Cook in 2014. Across the western Irish shelf, offshore of counties Galway and Clare, a series of large arcuate moraines record the former presence of a grounded ice sheet on the shelf. However, geophysical data from further to the west across the Porcupine Bank show a series of ridges and wedge-shaped sedimentary features whose form is consistent with an origin as moraines and/or grounding-zone wedges. Sediment cores from several of these landforms recovered stiff, massive diamictons containing reworked shells that are interpreted as subglacial tills. Cores from the eastern Porcupine Bank recovered laminated muds with cold-water glacimarine foraminifera, in some cases overlying till. Collectively the geophysical and sedimentary data imply the presence of grounded ice across the northern Porcupine Bank and thus much further west on the Irish margin than has previously been considered. This ice underwent retreat in a glacimarine setting. The large 'Olex Moraine' on the western Irish shelf is thus interpreted as recessional feature. Work is currently underway to dates these features and to obtain a retreat chronology for this sector of the last British-Irish Ice Sheet.

  6. A flow band model of the Ross Ice Shelf, Antarctica: Response to CO sub 2 -induced climatic warming

    SciTech Connect

    Lingle, C.S.; Brown, T.J. ); Schilling, D.H. ); Fastook, J.L. ); Paterson, W.S.B. )

    1991-04-10

    A time-dependent model is applied to the Ross Ice Shelf flow band discharging ice stream B, West Antarctica. The model includes the effects of temperature, depth-dependent density, and backpressure from the coasts of the Ross embayment and Crary Ice Rise. Data from the Ross Ice Shelf Geophysical and Glaciological Survey and the Siple Coast Project are used as input data. Accuracy and stability are verified by reproducing the flow band for 10,000 model years with equilibrium distributions of accumulation, surface temperature, and basal balance. Sensitivity is tested by forcing the model with increasing accumulation rates, surface temperatures, and basal melt rates, respectively, while other factors are held constant. The response of the ice shelf to three climatic scenarios that may result from increasing carbon dioxide and trace greenhouse gases is simulated. The results range from slight thickening with moderately increased backpressure in the grounding zone to rapid thinning accompanied by rapidly decreasing backpressure during 175- to 600-year simulations, depending primarily upon whether increasing surface temperatures and accumulaton rates are accompanied by increased rates of basal melting. The central ice shelf, about 400 km upglacier from the calving front, thins by 22% in 600 years when basal melting is increased linearly to a maximum of 0.5 m/yr after 150 years, then held steady. The ice shelf thins by 40% in 175 years at the same location when basal melting is increasedlinearly to 2.0 m/yr after 150 years, then held steady. The present calculated equilibrium rate of basal melting, averaged over the bottom surface of the flow band is 0.17 m/yr.

  7. Coastal-change and glaciological map of the Ronne Ice Shelf area, Antarctica, 1974-2002

    USGS Publications Warehouse

    Ferrigno, Jane G.; Foley, K.M.; Swithinbank, C.; Williams, R.S.; Dalide, L.M.

    2005-01-01

    Changes in the area and volume of polar ice sheets are intricately linked to changes in global climate, and the resulting changes in sea level may severely impact the densely populated coastal regions on Earth. Melting of the West Antarctic part alone of the Antarctic ice sheet could cause a sea-level rise of approximately 6 meters (m). The potential sea-level rise after melting of the entire Antarctic ice sheet is estimated to be 65 m (Lythe and others, 2001) to 73 m (Williams and Hall, 1993). In spite of its importance, the mass balance (the net volumetric gain or loss) of the Antarctic ice sheet is poorly known; it is not known for certain whether the ice sheet is growing or shrinking. In a review paper, Rignot and Thomas (2002) concluded that the West Antarctic part of the Antarctic ice sheet is probably becoming thinner overall; although it is thickening in the west, it is thinning in the north. Joughin and Tulaczyk (2002), on the basis of analysis of ice-flow velocities derived from synthetic aperture radar, concluded that most of the Ross ice streams (ice streams on the east side of the Ross Ice Shelf) have a positive mass balance, whereas Rignot and others (in press) infer even larger negative mass balance for glaciers flowing northward into the Amundsen Sea, a trend suggested by Swithinbank and others (2003a,b, 2004). The mass balance of the East Antarctic part of the Antarctic ice sheet is unknown, but thought to be in near equilibrium. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council (1986), in subsequent recommendations by the Scientific Committee on Antarctic Research (SCAR) (1989, 1993), and by the National Science Foundation's (1990) Division of Polar Pro-grams. On the basis of these recommendations, the U.S. Geo-logical Survey (USGS) decided that the archive of early 1970s Landsat 1, 2, and 3 Multispectral Scanner

  8. Polygonal Ground in the McMurdo Dry Valleys of Antarctica and its Relationship to Ice-Table Depth and the Recent Antarctic Climate History

    NASA Astrophysics Data System (ADS)

    Mellon, M. T.; McKay, C. P.; Heldmann, J. L.

    2012-12-01

    The occurrence of dry permafrost overlying ice-rich permafrost is unique on Earth to the Antarctic Dry Valleys and is found also the high latitudes of Mars. Presently, the stability and age of Antarctic ice-rich permafrost and the thickness of dry permafrost over time remain controversial topics. Measured high ice-loss rates and relatively shallow ice-table depths are at odds with the measured surface age. Evidence is absent for climate change in modern times. Polygonal patterned ground, which forms by seasonal thermal-contraction cracking in permanently ice-cemented ground, is also nearly ubiquitous in these regions. In this work we show that ground-ice stability and polygonal ground are integrally linked. Specifically, we examined the size and morphological characteristics of polygonal ground in Beacon Valley and Beacon Heights regions of the Antarctic Dry Valleys, and find that polygon diameter is well correlated with ice-table depth (the boundary between dry and ice-rich permafrost). Comparison with a numerical model of seasonal stress in permafrost shows that ice-table depth is a major factor, allowing predictions of this depth to be made based on polygon diameter determined from remote sensing or field observations. The most profound implication of our results pertains to Antarctic climate history. Polygons are generally long-lived landforms. Fluctuations in ice-table depth during their development will result in distinct morphological signatures (superposition of scales, irregular patterns) which are not observed. We conclude that the Beacon Valley and Beacon Heights polygons have developed for at least 10,000 years (or longer) to achieve their present mature-stage morphology, and that the ice-table depth has been stable for a similar length of time. Testable predictions are made to further refine our results.

  9. Evidence That Early to Middle Miocene ice Streams From West Antarctica cut Into Southeastern Ross Sea Continental Shelf

    NASA Astrophysics Data System (ADS)

    Sorlien, C. C.; Luyendyk, B. P.; Wilson, D. S.; Decesari, R. C.; Bartek, L. R.; Diebold, J. B.

    2004-12-01

    The extent of the West Antarctic ice sheet during mid-Cenozoic time is controversial and important to climate models. High-resolution multichannel seismic reflection data were acquired using the RVIB Palmer along the edge of the Ross Ice Shelf across the Eastern Basin of Ross Sea, in an area where calving of the ice shelf has exposed seafloor that has not been accessible to marine geophysics in several decades. A sub-basin in the far southeast corner of Ross Sea contains a succession of sediment-filled troughs, each capped by an unconformity. These troughs range between 5 and 20 km across, and are 100 to 150 m-deep. They are cut into a sequence correlated to slightly predate ~24 Ma. The shallowest of these unconformities (named "Red" here) can be tentatively projected across the northern plunge of a basement ridge located north of Roosevelt Island (named "Roosevelt Ridge" here), and is a regional unconformity in the Eastern Basin. Reflections just below Red can be correlated to DSDP 272, where they are dated at ~14 Ma. Red is flat and level in the south, adjacent to the ice shelf edge. Older sequence boundaries beneath Red merge with it across a 70 km extent between the deep Eastern Basin and Roosevelt Ridge. Much of the late-Early Miocene and early-Middle Miocene section is missing and appears to be removed by erosion associated with the Red unconformity. There is no evidence for broad glacial troughs that predate Red west of Roosevelt Ridge. If our correlations are correct, the succession of glacial troughs must be Middle Miocene and older, and we cannot rule out the oldest being Late Oligocene without additional data. Because we do not believe that a glacier or grounded ice sheet could erode a thick interval of sedimentary rocks and still produce a smooth and level unconformity, our preferred hypothesis is that Red is a wavecut surface that has since subsided to its present 700 m depth. The fill of one 20 km-wide trough is exposed at the seafloor and accessible

  10. The impact of early Holocene Arctic Shelf flooding on climate in an atmosphere-ocean-sea-ice model

    NASA Astrophysics Data System (ADS)

    Blaschek, M.; Renssen, H.

    2013-07-01

    Glacial terminations are characterized by a strong rise in sea level related to melting ice sheets. This rise in sea level is not uniform all over the world, because regional effects (uplift and subsidence of coastal zones) are superimposed on global trends. During the early Holocene the Siberian Shelf became flooded before 7.5 ka BP and the coastline reached modern-day high stands at 5 ka BP. This area is currently known as a sea-ice production area and contributes significantly to the sea-ice exported from the Arctic through the Fram Strait. This leads to the following hypothesis: during times of rising sea levels, shelves become flooded, increasing sea-ice production on these shelves, increasing sea-ice volume and export through Fram Strait and causing the sea-ice extent to advance in the Nordic Seas, yielding cooler and fresher sea surface conditions. We have tested this hypothesis in an ocean-sea-ice-atmosphere coupled model of intermediate complexity (LOVECLIM). Our results of an early Holocene Siberian Shelf flooding show that in our model the Northern Hemisphere sea-ice production is increased (15%) and that the Northern Hemisphere sea-ice extent increases (14%) contrary to our hypothesis with lower sea-ice export through Fram Strait (-15%). The reason of this unexpected behaviour has its origin in a weakened polar vortex, induced by the land-ocean changes due to the shelf flooding, and a resulting decrease of zonality in the Nordic Seas pressure regime. Hence the winter Greenland high and the Icelandic low strengthen, yielding stronger winds on both sides of the Nordic Seas. Increased winds along the East Greenland Current support local sea-ice production and transport towards the south, resulting in a wider sea-ice cover and a southward shift of convection areas. The overall strength of the Atlantic Meridional Overturning Circulation is reduced by 4% and the heat transport in the Atlantic basin by 7%, resulting in an annual cooling pattern over the Nordic

  11. The impact of early Holocene Arctic shelf flooding on climate in an atmosphere-ocean-sea-ice model

    NASA Astrophysics Data System (ADS)

    Blaschek, M.; Renssen, H.

    2013-11-01

    Glacial terminations are characterized by a strong rise in sea level related to melting ice sheets. This rise in sea level is not uniform all over the world, because regional effects (uplift and subsidence of coastal zones) are superimposed on global trends. During the early Holocene the Siberian Shelf became flooded before 7.5 ka BP and the coastline reached modern-day high stands at 5 ka BP. This area is currently known as a sea-ice production area and contributes significantly to the sea-ice exported from the Arctic through the Fram Strait. This leads to the following hypothesis: during times of rising sea levels, shelves become flooded, increasing sea-ice production on these shelves, increasing sea-ice volume and export through the Fram Strait and causing the sea-ice extent to advance in the Nordic Seas, yielding cooler and fresher sea surface conditions. We have tested this hypothesis in an atmosphere-ocean-sea-ice coupled model of intermediate complexity (LOVECLIM). Our experiment on early Holocene Siberian Shelf flooding shows that in our model sea-ice production in the Northern Hemisphere increases (15%) and that sea-ice extent in the Northern Hemisphere increases (14%) but sea-ice export decreases (-15%) contrary to our hypothesis. The reason of this unexpected behaviour has its origin in a weakened polar vortex, induced by the land-ocean changes due to the shelf flooding, and a resulting decrease of zonality in the Nordic Seas pressure regime. Hence the winter Greenland high and the Icelandic low strengthen, yielding stronger winds on both sides of the Nordic Seas. Increased winds along the East Greenland Current support local sea-ice production and transport towards the South, resulting in a wider sea-ice cover and a southward shift of convection areas. The overall strength of the Atlantic meridional overturning circulation is reduced by 4% and the heat transport in the Atlantic basin by 7%, resulting in an annual cooling pattern over the Nordic Seas by

  12. Surface mass balance and water stable isotopes derived from firn cores on three ice rises, Fimbul Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Vega, Carmen P.; Schlosser, Elisabeth; Divine, Dmitry V.; Kohler, Jack; Martma, Tõnu; Eichler, Anja; Schwikowski, Margit; Isaksson, Elisabeth

    2016-11-01

    Three shallow firn cores were retrieved in the austral summers of 2011/12 and 2013/14 on the ice rises Kupol Ciolkovskogo (KC), Kupol Moskovskij (KM), and Blåskimen Island (BI), all part of Fimbul Ice Shelf (FIS) in western Dronning Maud Land (DML), Antarctica. The cores were dated back to 1958 (KC), 1995 (KM), and 1996 (BI) by annual layer counting using high-resolution oxygen isotope (δ18O) data, and by identifying volcanic horizons using non-sea-salt sulfate (nssSO42-) data. The water stable isotope records show that the atmospheric signature of the annual snow accumulation cycle is well preserved in the firn column, especially at KM and BI. We are able to determine the annual surface mass balance (SMB), as well as the mean SMB values between identified volcanic horizons. Average SMB at the KM and BI sites (0.68 and 0.70 mw. e. yr-1) was higher than at the KC site (0.24 mw. e. yr-1), and there was greater temporal variability as well. Trends in the SMB and δ18O records from the KC core over the period of 1958-2012 agree well with other previously investigated cores in the area, thus the KC site could be considered the most representative of the climate of the region. Cores from KM and BI appear to be more affected by local meteorological conditions and surface topography. Our results suggest that the ice rises are suitable sites for the retrieval of longer firn and ice cores, but that BI has the best preserved seasonal cycles of the three records and is thus the most optimal site for high-resolution studies of temporal variability of the climate signal. Deuterium excess data suggest a possible effect of seasonal moisture transport changes on the annual isotopic signal. In agreement with previous studies, large-scale atmospheric circulation patterns most likely provide the dominant

  13. Late Quaternary Advance and Retreat of an East Antarctic Ice Shelf System: Insights from Sedimentary Beryllium-10 Concentrations

    NASA Astrophysics Data System (ADS)

    Guitard, M. E.; Shevenell, A.; Domack, E. W.; Rosenheim, B. E.; Yokoyama, Y.

    2014-12-01

    Observed retreat of Antarctica's marine-based glaciers and the presence of warm (~2°C) modified Circumpolar Deep Water on Antarctica's continental shelves imply ocean temperatures may influence Antarctic cryosphere stability. A paucity of information regarding Late Quaternary East Antarctic cryosphere-ocean interactions makes assessing the variability, timing, and style of deglacial retreat difficult. Marine sediments from Prydz Bay, East Antarctica contain hemipelagic siliceous mud and ooze units (SMO) alternating with glacial marine sediments. The record suggests Late Quaternary variability of local outlet glacier systems, including the Lambert Glacier/Amery Ice Shelf system that drains 15% of the East Antarctic Ice Sheet. We present a refined radiocarbon chronology and beryllium-10 (10Be) record of Late Quaternary depositional history in Prydz Channel, seaward of the Amery Ice Shelf system, which provides insight into the timing and variability of this important outlet glacier system. We focus on three piston cores (NBP01-01, JPC 34, 35, 36; 750 m water depth) that contain alternating SMO and granulated units uninterrupted by glacial till; the record preserves a succession of glacial marine deposits that pre-date the Last Glacial Maximum. We utilize the ramped pyrolysis preparatory method to improve the bulk organic carbon 14C-based chronology for Prydz Channel. To determine if the SMO intervals reflect open water conditions or sub-ice shelf advection, we measured sedimentary 10Be concentrations. Because ice cover affects 10Be pathways through the water column, sedimentary concentrations should provide information on past depositional environments in Prydz Channel. In Prydz Channel sediments, 10Be concentrations are generally higher in SMO units and lower in glacial units, suggesting Late Quaternary fluctuations in the Amery Ice Shelf. Improved chronologic constraints indicate that these fluctuations occurred on millennial timescales during the Last Glacial

  14. Motion of Major Ice Shelf Fronts in Antarctica from Slant Range Analysis of Radar Altimeter Data, 1978 - 1998

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Beckley, M. A.; Brenner, A. C.; Giovinetto, M. B.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Slant range analysis of radar altimeter data from the Seasat, Geosat, ERS-1 and ERS-2 databases are used to determine barrier location at particular times, and estimate barrier motion (km/yr) for major Antarctic ice shelves. The barrier locations, which are the seaward edges or fronts of floating ice shelves, advance with time as the ice flows from the grounded ice sheets and retreat whenever icebergs calve from the fronts. The analysis covers various multiyear intervals from 1978 to 1998, supplemented by barrier location maps produced elsewhere for 1977 and 1986. Barrier motion is estimated as the ratio between mean annual ice shelf area change for a particular interval, and the length of the discharge periphery. This value is positive if the barrier location progresses seaward, or negative if the barrier location regresses (break-back). Either positive or negative values are lower limit estimates because the method does not detect relatively small area changes due to calving or surge events. The findings are discussed in the context of the three ice shelves that lie in large embayments (the Filchner-Ronne, Amery, and Ross), and marginal ice shelves characterized by relatively short distances between main segments of grounding line and barrier (those in the Queen Maud Land sector between 10.1 deg. W and 32.5 deg. E, and the West and Shackleton ice shelves). All the ice shelves included in the study account for approximately three-fourths of the total ice shelf area of Antarctica, and discharge approximately two-thirds of the total grounded ice area.

  15. Processes influencing formation of low-salinity high-biomass lenses near the edge of the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Li, Yizhen; McGillicuddy, Dennis J.; Dinniman, Michael S.; Klinck, John M.

    2017-02-01

    Both remotely sensed and in situ observations in austral summer of early 2012 in the Ross Sea suggest the presence of cold, low-salinity, and high-biomass eddies along the edge of the Ross Ice Shelf (RIS). Satellite measurements include sea surface temperature and ocean color, and shipboard data sets include hydrographic profiles, towed instrumentation, and underway acoustic Doppler current profilers. Idealized model simulations are utilized to examine the processes responsible for ice shelf eddy formation. 3-D model simulations produce similar cold and fresh eddies, although the simulated vertical lenses are quantitatively thinner than observed. Model sensitivity tests show that both basal melting underneath the ice shelf and irregularity of the ice shelf edge facilitate generation of cold and fresh eddies. 2-D model simulations further suggest that both basal melting and downwelling-favorable winds play crucial roles in forming a thick layer of low-salinity water observed along the edge of the RIS. These properties may have been entrained into the observed eddies, whereas that entrainment process was not captured in the specific eddy formation events studied in our 3-D model-which may explain the discrepancy between the simulated and observed eddies, at least in part. Additional sensitivity experiments imply that uncertainties associated with background stratification and wind stress may also explain why the model underestimates the thickness of the low-salinity lens in the eddy interiors. Our study highlights the importance of incorporating accurate wind forcing, basal melting, and ice shelf irregularity for simulating eddy formation near the RIS edge. The processes responsible for generating the high phytoplankton biomass inside these eddies remain to be elucidated.

  16. Seismometers on Europa: Insights from Modeling and Antarctic Ice Shelf Analogs (Invited)

    NASA Astrophysics Data System (ADS)

    Schmerr, N. C.; Brunt, K. M.; Cammarano, F.; Hurford, T. A.; Lekic, V.; Panning, M. P.; Rhoden, A.; Sauber, J. M.

    2013-12-01

    the depth of an ocean layer. Likewise, evaluation of arrival times of reflected wave multiples observed at a single seismic station would record properties of the mantle and core of Europa. Cluster analysis of waveforms from various seismic source mechanisms could be used to classify different types of seismicity originating from the ice and rocky parts of the moon. We examine examples of single station results for analogous seismic experiments on Earth, e.g., where broadband, 3-component seismometers have been placed upon the Ross Ice Shelf of Antarctica. Ultimately this work reveals that seismometer deployments will be essential for understanding the internal dynamics, habitability, and surface evolution of Europa, and that seismic instruments need to be a key component of future missions to surface of Europa and outer satellites.

  17. Late Quaternary Sea-Ice Variability at the North Icelandic Shelf (Sub-Arctic): Reconstruction from Biomarkers

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Zhao, M.; Jiang, H.; Eiriksson, J.; Guo, Z.

    2015-12-01

    Sea ice, prevailing in the polar region and characterized by distinct seasonal and interannual variability, plays a pivotal role in Earth's climate system (Thomas and Dieckmann, 2010). In order to understand processes controlling the recent dramatic reduction in Arctic sea-ice cover, it is essential to determine temporal changes in sea-ice occurrence and its natural variability in the past. The North Icelandic shelf, bordering a marginal area of the Arctic Ocean, is located at the present-day boundary between the cold polar currents and warm Atlantic water masses, very sensitive to the changes in sea-ice cover, ice sheet and oceanic circulation patterns (Knudsen and Eiriksson, 2002). All these processes have been recorded in the marine shelf-sediment cores. We determined the concentrations of sea-ice diatom-derived biomarker "IP25" (monoene highly-branched isoprenoid with 25 carbon atom; Belt et al., 2007), phytoplankton-derived biomarkers (brassicasterol and dinosterol) and terrigenous biomarkers (campesterol and ß-sitosterol) in a sediment core from the North Icelandic shelf to reconstruct the Late Quaternary sea-ice conditions and related surface-water processes. The sea-ice cover reached its maximum during the cold period (i.e., Last Glacial Maximum and Younger dryas), while an open ocean environment existed during less severe periods (e.g. Bølling-Allerød and 8.2 ka event) in the study area. The biomarker records from this sediment core give insights into the variability in sea ice and circulation patterns as well as primary productivity in the Arctic marginal area during the Late Quaternary. References Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Org. Geochem. 38, 16-27. Knudsen, K.L. and Eiriksson, J., 2002. Application of tephrochronology to the timing and correlation of palaeoceanographic events recorded in Holocene and Late Glacial shelf sediments off North Iceland

  18. Abbot Ice Shelf, the Amundsen Sea Continental Margin and the Southern Boundary of the Bellingshausen Plate Seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Tinto, K. J.; Bell, R. E.

    2014-12-01

    The Abbot Ice Shelf extends 450 km along the coast of West Antarctica between 103°W and 89°W and straddles the boundary between the Bellingshausen Sea continental margin, which overlies a former subduction zone, and Amundsen Sea rifted continental margin. Inversion of NASA Operation IceBridge airborne gravity data for sub-ice bathymetry shows that the western part of the ice shelf, as well as Cosgrove Ice Shelf to the south, are underlain by a series of east-west trending rift basins. The eastern boundary of the rifted terrain coincides with the eastern boundary of rifting between Antarctica and Zealandia and the rifts formed during the early stages of this rifting. Extension in these rifts is minor as rifting quickly jumped north of Thurston Island. The southern boundary of the Cosgrove Rift is aligned with the southern boundary of a sedimentary basin under the Amundsen Embayment continental shelf to the west, also formed by Antarctica-Zealandia rifting. The shelf basin has an extension factor, β, of 1.5 - 1.7 with 80 -100 km of extension occurring in an area now ~250 km wide. Following this extension early in the rifting process, rifting centered to the north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf has been tectonically quiescent and has primarily been shaped though subsidence, sedimentation and the passage of the West Antarctic Ice Sheet back and forth across it. The former Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to its incorporation into the Antarctic Plate at ~62 Ma. During the latter part of its existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence between the Bellingshausen and Antarctic plates east of 102°W. Seismic reflection and gravity data show that this convergence is expressed by an area of intensely deformed sediments beneath the continental slope from 102°W to 95°W and

  19. An analysis of the Ross Ice Shelf low-level wind field using surface observations and modeling studies

    NASA Astrophysics Data System (ADS)

    Seefeldt, Mark William

    A dominant feature of the Ross Ice Shelf region wind field is the Ross Ice Shelf air stream (RAS). The RAS is a northward moving air stream in the lower atmosphere over the Ross Ice Shelf. The RAS is comprised of katabatic winds, barrier winds, and winds associated with the passage of cyclone and mesocyclones. An analysis of the surface wind field is done using automatic weather station (AWS) observations by dividing the wind field into dominant wind regimes. The dominant wind regimes are classified by identifying patterns in the wind speed and wind direction from AWS across the Ross Ice Shelf region. The results indicate that previous studies on the Ross Ice Shelf surface wind field, focusing on katabatic winds and barrier winds, represent less than half of the observed winds. An analysis of the presence and location of low-level jets (LLJs) across the Ross Ice Shelf region is presented based on the analysis of the archived real-time numerical weather prediction output. The method of self-organizing maps (SOMs) is used to objectively identify different patterns in column-averaged wind speed as an identifier to the location of LLJs. The results indicate three LLJs in the region. The largest and most dominant LLJ is along the Transantarctic Mountains by the Siple Coast and the southern end of the Ross Ice Shelf. The second LLJ extends from the base of Byrd Glacier and curves to the north passing by the eastern extremes of Ross Island. The third LLJ extends from the base of Reeves Glacier and curves to the north across the western Ross Sea. The low-level wind field is investigated to provide more insight into the RAS through the use of SOMs. Four generalized patterns are found in the low-level wind field. The patterns are associated with a weak synoptic environment, a Ross Sea cyclone, a Cape Colbeck cyclone, and an elongated cyclone near Cape Adare. A temporal sequence in the low-level wind field is presented based on an analysis of transitions in the low-level wind

  20. Surface mass balance on Fimbul ice shelf, East Antarctica: Comparison of field measurements and large-scale studies

    NASA Astrophysics Data System (ADS)

    Sinisalo, Anna; Anschütz, Helgard; Aasen, Anne Târând; Langley, Kirsty; Deschwanden, Angela; Kohler, Jack; Matsuoka, Kenichi; Hamran, Svein-Erik; Øyan, Mats-Jørgen; Schlosser, Elisabeth; Hagen, Jon Ove; Nøst, Ole Anders; Isaksson, Elisabeth

    2013-10-01

    challenges remain for estimating the Antarctic ice sheet surface mass balance (SMB), which represents a major uncertainty in predictions of future sea-level rise. Validating continental scale studies is hampered by the sparse distribution of in situ data. Here we present a 26 year mean SMB of the Fimbul ice shelf in East Antarctica between 1983-2009, and recent interannual variability since 2010. We compare these data to the results of large-scale SMB studies for similar time periods, obtained from regional atmospheric modeling and remote sensing. Our in situ data include ground penetrating radar, firn cores, and mass balance stakes and provide information on both temporal and spatial scales. The 26 year mean SMB on the Fimbul ice shelf varies between 170 and 620 kg m-2 a-1 giving a regional average value of 310 ± 70 kg m-2 a-1. Our measurements indicate higher long-term accumulation over large parts of the ice shelf compared to the large-scale studies. We also show that the variability of the mean annual SMB, which can be up to 90%, can be a dominant factor in short-term estimates. The results emphasize the importance of using a combination of ground-based validation data, regional climate models, and remote sensing over a relevant time period in order to achieve a reliable SMB for Antarctica.

  1. Subsurface ice and brine sampling using an ultrasonic/sonic gopher for life detection and characterization in the McMurdo Dry Valleys

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Sherrit, S.; Chang, Z.; Wessel, L.; Bao, X.; Doran, P. T.; Fritsen, C. H.; Kenig, F.; McKay, C. P.; Murray, A.; Peterson, T.

    2004-01-01

    There is growing evidence for ice and fluids near the surface of Mars with potential discharge of brines, which may preserve a record of past life on the planet. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for such records.

  2. Basal melt, seasonal water mass transformation, ocean current variability, and deep convection processes along the Amery Ice Shelf calving front, East Antarctica

    NASA Astrophysics Data System (ADS)

    Herraiz-Borreguero, L.; Church, J. A.; Allison, I.; Peña-Molino, B.; Coleman, R.; Tomczak, M.; Craven, M.

    2016-07-01

    Despite the Amery Ice Shelf (AIS) being the third largest ice shelf in Antarctica, the seasonal variability of the physical processes involved in the AIS-ocean interaction remains undocumented and a robust observational, oceanographic-based basal melt rate estimate has been lacking. Here we use year-long time series of water column temperature, salinity, and horizontal velocities measured along the ice shelf front from 2001 to 2002. Our results show strong zonal variations in the distribution of water masses along the ice shelf front: modified Circumpolar Deep Water (mCDW) arrives in the east, while in the west, Ice Shelf Water (ISW) and Dense Shelf Water (DSW) formed in the Mackenzie polynya dominate the water column. Baroclinic eddies, formed during winter deep convection (down to 1100 m), drive the inflow of DSW into the ice shelf cavity. Our net basal melt rate estimate is 57.4 ± 25.3 Gt yr-1 (1 ± 0.4 m yr-1), larger than previous modeling-based and glaciological-based estimates, and results from the inflow of DSW (0.52 ± 0.38 Sv; 1 Sv = 106 m3 s-1) and mCDW (0.22 ± 0.06 Sv) into the cavity. Our results highlight the role of the Mackenzie polynya in the seasonal exchange of water masses across the ice shelf front, and the role of the ISW in controlling the formation rate and thermohaline properties of DSW. These two processes directly impact on the ice shelf mass balance, and on the contribution of DSW/ISW to the formation of Antarctic Bottom Water.

  3. Unique manifestations of mixed-phase cloud microphysics over Ross Island and the Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Scott, Ryan C.; Lubin, Dan

    2016-03-01

    Spaceborne radar and lidar observations from the CloudSat and CALIPSO satellites are used to compare seasonal variations in the microphysical and radiative properties of clouds over Ross Island, Antarctica, with two contrasting Arctic atmospheric observatories located in Barrow, Alaska, and Summit, Greenland. At Ross Island, downstream from recurrent intrusions of marine air over the West Antarctic Ice Sheet and eastern Ross Ice Shelf, clouds exhibit a tendency toward the greatest geometrical thickness and coldest temperatures in summer, the largest average ice water content, IWC, at low altitude during summer and autumn, the most abundant IWC at cold mixed-phase temperatures (-40°C ice water on the surface energy budget year round, all with likely origins in orographic lifting of marine air over complex ice sheet and mountainous terrain. Clouds over Barrow form and evolve in a contrastingly warm and moist atmosphere and on average contain the largest liquid water content and ice and liquid water effective particle radii, re, year round. In contrast, clouds observed atop the central Greenland Ice Sheet are relatively tenuous, containing the smallest IWC and ice re of all sites.

  4. Firn air-content of Larsen C Ice Shelf, Antarctic Peninsula, from seismic velocities, borehole surveys and firn modelling

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Brisbourne, Alex; Booth, Adam; Kuipers Munneke, Peter; Bevan, Suzanne; Luckman, Adrian; Hubbard, Bryn; Gourmelen, Noel; Palmer, Steve; Holland, Paul; Ashmore, David; Shepherd, Andrew

    2016-04-01

    The rising surface temperature of Antarctic Peninsula ice shelves is strongly implicated in ice shelf disintegration, by exacerbating the compaction of firn layers. Firn compaction is expected to warm the ice column and, given sufficiently wet and compacted layers, to allow meltwater to penetrate into surface crevasses and thus enhance hydrofracture potential. Integrating seismic refraction surveys with borehole neutron and firn core density logging, we reveal vertical and horizontal changes in firn properties across Larsen C Ice Shelf. Patterns of firn air-content derived from seismic surveys are broadly similar to those estimated previously from airborne radar and satellite data. Specifically, these estimates show greater firn compaction in the north and landward inlets compared to the south, although spatial gradients in seismic-derived air-contents are less pronounced than those previously inferred. Firn thickness is less than 10 m in the extreme northwest of Larsen C, in Cabinet Inlet, yet exceeds 40 m in the southeast, suggesting that the inlet is a focus of firn compaction; indeed, buried layers of massive refrozen ice were observed in 200 MHz GPR data in Cabinet and Whirlwind Inlets during a field campaign in the 2014-15 austral summer. Depth profiles of firn density provide a reasonable fit with those derived from closely-located firn cores and neutron probe data. Our model of firn structure is driven by RACMO and includes a 'bucket'-type hydrological implementation, and simulates the depth-density profiles in the inlets well. Discrepancies between measured and modelled depth-density profiles become progressively greater towards the ice-shelf front. RACMO incorrectly simulates the particular leeward (sea-ice-influenced) microclimate of the shallow boundary layer, leading to excess melt and/or lack of snowfall. The spatial sampling density of our seismic observations will be augmented following a further field campaign in the 2016-17 austral summer

  5. Sinking Particle Flux in the Sea Ice Zone of the Amundsen Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, M.; Hwang, J.; Kim, H. J.; Kim, D.; Ducklow, H. W.; Lee, S. H.; Yang, E. J.; Lee, S.

    2014-12-01

    We have examined the flux, compositions of biogenic components, and isotopic values of sinking particles collected by a sediment trap deployed in the sea ice zone (SIZ) of the Amundsen Sea from January 2011 for one year. Major portion of the particle flux occurred during the austral summer in January and February when sea ice concentration was reduced to below 60 %. Biogenic components, dominated by opal, accounted for over 75 % during this high flux period. The dominant source of sinking particles shifted from diatoms to soft-tissued organisms, evidenced by high particulate organic carbon (POC) content (> 30 %) during the polar night. CaCO3 content and its contribution to total particle flux were low throughout the study period. Contribution of aged POC likely supplied from sediment resuspension was considerable only from October to December, evidenced by low radiocarbon content and relatively high (30-50 %) content of the non-biogenic component. When compared to POC flux inside the Amundsen Sea polynya obtained by the US Amundsen Sea Polynya International Research Expedition (ASPIRE), the POC flux integrated over the austral summer in the SIZ was virtually identical although maximum POC flux was about half that inside the Amundsen Sea polynya. This comparatively high POC flux in the SIZ may be caused by persistence of phytoplankton bloom for longer period and more efficient export of organic matter owing to the diatom-dominant plankton community. If this observation is a general phenomenon on the Amundsen shelf, the role of the SIZ compared to the polynyas need to be examined more carefully when trying to characterize the POC export in this region.

  6. Occurrence and metabolic activity of organisms under the ross ice shelf, antarctica, at station j9.

    PubMed

    Azam, F; Beers, J R; Campbell, L; Carlucci, A F; Holm-Hansen, O; Reid, F M; Karl, D M

    1979-02-02

    Seawater samples below the Ross Ice Shelf were collected through an access hole at J9, approximately 400 kilometers from the Ross Sea, Antarctica. The 237-meter water column had sparse populations of bacteria (8.7 x 10(6) to 1.2 x 10(7) per liter), microplankters (10(2) to 10(3) per cubic meter), and zooplankters (10 to 20 per cubic meter) at the depths studied. Microbial biomass estimates from cellular adenosine 5'-triphosphate measurements were very low (10 to 150 nanograms of carbon per liter), comparable with values for the abyssal ocean. Microbial populations assimilated tritiated D-glucose, thymidine, uridine, and adenosine triphosphate at extremely low rates, comparable with deep-sea heterotrophic populations. Sediment samples had 10(7) to 10(8) bacteria per gram (dry weight), which were metabolically active as shown by respiration of uniformly labeled D-[(14)C]glucose. From this study it cannot be determined whether these organisms in the water column and sediments constitute a functioning food web.

  7. Characteristics of the near-surface atmosphere over the Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Cassano, John J.; Nigro, Melissa A.; Lazzara, Matthew A.

    2016-04-01

    Two years of data from a 30 m instrumented tower are used to characterize the near-surface atmospheric state over the Ross Ice Shelf, Antarctica. Stable stratification dominates the surface layer at this site, occurring 83% of the time. The strongest inversions occur for wind speeds less than 4 m s-1 and the inversion strength decreases rapidly as wind speed increases above 4 m s-1. In summer unstable stratification occurs 50% of the time and unstable conditions are observed in every season. A novel aspect of this work is the use of an artificial neural network pattern identification technique, known as self-organizing maps, to objectively identify characteristic potential temperature profiles that span the range of profiles present in the 2 year study period. The self-organizing map clustering technique allows the more than 100,000 observed potential temperature profiles to be represented by just 30 patterns. The pattern-averaged winds show distinct and physically consistent relationships with the potential temperature profiles. The strongest winds occur for the nearly well mixed but slightly stable patterns and the weakest winds occur for the strongest inversion patterns. The weakest wind shear over the depth of the tower occurs for slightly unstable profiles and the largest wind shear occurs for moderately strong inversions. Pattern-averaged log wind profiles are consistent with theoretical expectations. The log wind profiles exhibit a kinked profile for the strongest inversion cases indicative of decoupling of the winds between the bottom and top of the tower.

  8. The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Price, D.; Rack, W.; Langhorne, P. J.; Haas, C.; Leonard, G.; Barnsdale, K.

    2014-06-01

    This is an investigation to quantify the influence of the sub-ice platelet layer on satellite measurements of total freeboard and their conversion to thickness of Antarctic sea ice. The sub-ice platelet layer forms as a result of the seaward advection of supercooled ice shelf water from beneath ice shelves. This ice shelf water provides an oceanic heat sink promoting the formation of platelet crystals which accumulate at the sea ice-ocean interface. The build-up of this porous layer increases sea ice freeboard, and if not accounted for, leads to overestimates of sea ice thickness from surface elevation measurements. In order to quantify this buoyant effect, the solid fraction of the sub-ice platelet layer must be estimated. An extensive in situ data set measured in 2011 in McMurdo Sound in the southwestern Ross Sea is used to achieve this. We use drill-hole measurements and the hydrostatic equilibrium assumption to estimate a mean value for the solid fraction of this sub-ice platelet layer of 0.16. This is highly dependent upon the uncertainty in sea ice density. We test this value with independent Global Navigation Satellite System (GNSS) surface elevation data to estimate sea ice thickness. We find that sea ice thickness can be overestimated by up to 19%, with a mean deviation of 12% as a result of the influence of the sub-ice platelet layer. It is concluded that within 100 km of an ice shelf this influence might need to be considered when undertaking sea ice thickness investigations using remote sensing surface elevation measurements.

  9. Variations of northern George VI Ice Shelf Front Linked to Ocean and Atmosphere Variations (2008-2011)

    NASA Astrophysics Data System (ADS)

    Staub, G.

    2012-04-01

    During the last couple of years several ice shelves have shown ongoing thinning and even disintegration has occurred. That these processes are caused in general by abnormal ocean and/or atmosphere variations is widely recognized. Nevertheless, every ice shelf interacts different with the ocean and the atmosphere, therefore they have to be studied separately. In case of George VI ice shelf mainly oceanographic parameters like upwelling deep water, ocean currents, salinity and sea surface temperature (SST) play a key role and have a huge influence on its front variations. Information about the aerosol optical thickness (AOT) over Marguerite Bay and George VI Sound is incorporated in order to correlate intensity of the solar radiance at the ground and sea surface temperature. In addition, due to the fact that the ice shelf is principally fed by glaciers from Alexander Island and Palmer Land flowing into George VI Sound, also land surface temperature (LST) data is considered. SST, AOT at 869nm and LST data from the Moderate Resolution Imaging Spectroradiometer (MODIS) in the corresponding bands and at a spatial resolution of 4km is analyzed. The ice shelf front itself is monitored using data from the ASAR (Advanced Synthetic Aperture Radar) instrument on board of the ENVISAT satellite. It is operating at C-band (5,3 GHz) and, when working in Wide Swath Mode (WSM), it permits data acquisition at medium spatial resolution (150m). During antarctic summer 2008/09 two notable horizontal rifts of about 5,96km and 16,73km length have developed. Two more rifts (length of about 8,93km and 5,6km) are identifiable in the WSM data acquired during antarctic fall 2009. Break-off along these rifts happened during summer 2009/10 and a total area of about 60sqkm was lost. In antarctic summer 2010/11 a second, but smaller break-up event started at the western part of the northern ice shelf front. Until late winter 2011, about 10,18sqkm were lost. During that time no new rifts have

  10. Seafloor glacial geomorphology in a cross shelf trough: insights into the deglaciation of the Melville Bay Ice Stream

    NASA Astrophysics Data System (ADS)

    Newton, Andrew; Huuse, Mads

    2016-04-01

    Compared to other glaciated margins such as offshore mid-Norway and Svalbard, the Greenland continental shelf has, until recently, been the subject of only a limited amount of academic and industry research. This has been mainly due to the difficulty and expense of obtaining data in such harsh and operationally complex settings. Climate amelioration and technological advance has, particularly in recent years, allowed both academics and industry to substantially increase data collection across the many glaciated continental shelves in the Northern Hemisphere. Baffin Bay has been one of the primary regions of interest for the hydrocarbon industry which has sought to operate in the frontier basins offshore Greenland. As a result of these industry operations, a large database of geophysical and geological data has been collected. Some of this data has been made available to glacial scientists and provides a unique opportunity to investigate the seafloor geomorphology for regions where the majority of previous work has been hypothetical rather than grounded in geological evidence. In the work presented here we present a landform record offshore NW Greenland in the Melville Bay cross-shelf trough. This is one of the largest troughs on the entire Greenland shelf and measures up to 140 km in width. Shallow-marine cores collected in the coastal part of the trough show bedrock of Miocene age and indicate that a significant cover has likely been removed from the shelf by ice streams operating through the Late Cenozoic. This material has then been deposited at the shelf edge as a trough mouth fan. Using multibeam and seismic reflection data a large number of glacial landforms are observed and mapped in the trough. These include mega-scale glacial lineations, grounding-zone wedges, iceberg scours, and iceberg grounding pits. These landforms are used to reconstruct the ice dynamics of the Melville Bugt Ice Stream at the last glacial maximum and during its deglaciation. The

  11. Sea Ice Formation Rate and Temporal Variation of Temperature and Salinity at the Vicinity of Wilkins Ice Shelf from Data Collected by Southern Elephant Seals in 2008

    NASA Astrophysics Data System (ADS)

    Santini, M. F.; Souza, R.; Wainer, I.; Muelbert, M.; Hindell, M.

    2013-05-01

    The use of marine mammals as autonomous platforms for collecting oceanographic data has revolutionized the understanding of physical properties of low or non-sampled regions of the polar oceans. The use of these animals became possible due to advancements in the development of electronic devices, sensors and batteries carried by them. Oceanographic data collected by two southern elephant seals (Mirounga leonina) during the Fall of 2008 were used to infer the sea-ice formation rate in the region adjacent to the Wilkins Ice Shelf, west of the Antarctic Peninsula at that period. The sea-ice formation rate was estimated from the salt balance equation for the upper (100 m) ocean at a daily frequency for the period between 13 February and 20 June 2008. The oceanographic data collected by the animals were also used to present the temporal variation of the water temperature and salinity from surface to 300 m depth in the study area. Sea ice formation rate ranged between 0,087 m/day in early April and 0,008 m/day in late June. Temperature and salinity ranged from -1.84°C to 1.60°C and 32.85 to 34.85, respectively, for the upper 300 m of the water column in the analyzed period. The sea-ice formation rate estimations do not consider water advection, only temporal changes of the vertical profile of salinity. This may cause underestimates of the real sea-ice formation rate. The intense reduction of sea ice rate formation from April to June 2008 may be related to the intrusion of the Circumpolar Depth Water (CDW) into the study region. As a consequence of that we believe that this process can be partly responsible for the disintegration of the Wilkins Ice Shelf during the winter of 2008. The data presented here are considered a new frontier in physical and biological oceanography, providing a new approach for monitoring sea ice changes and oceanographic conditions in polar oceans. This is especially valid for regions covered by sea ice where traditional instruments deployed by

  12. Ice Velocity Mapping of Ross Ice Shelf, Antarctica by Matching Surface Undulations Measured by Icesat Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Lee, Choon-Ki; Han, Shin-Chan; Yu, Jaehyung; Scambos, Ted A.; Seo, Ki-Weon

    2012-01-01

    We present a novel method for estimating the surface horizontal velocity on ice shelves using laser altimetrydata from the Ice Cloud and land Elevation Satellite (ICESat; 20032009). The method matches undulations measured at crossover points between successive campaigns.

  13. Magnetic signatures of sea ice, ice shelf, and grounding line facies in Antarctic fjords: Examples from Barilari Bay, Western Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Natter, C. J.; Brachfeld, S. A.

    2013-12-01

    A suite of Holocene marine sediment cores was recovered from inner, middle, and outer Barilari Bay, western Antarctic Peninsula (AP), during the LARsen Ice Shelf System Antarctica (LARISSA) NBP10-01 cruise. Barilari Bay is located 12 nautical miles upwind of the LARISSA ice-core site beta on the Bruce Plateau and is at the same latitude and upwind of the former Larsen B ice shelf. Correlation of the marine sediment core records and the ice core record will contribute to the AP Holocene paleoclimate history and have the potential to reflect the atmospheric and oceanographic influence of the Westerly Winds and the Antarctic Circumpolar Current. Magnetic susceptibility, thermomagnetic curves, hysteresis parameters, and Fe-oxide morphology and chemical composition were measured for select core intervals and bedrock samples to investigate variations in terrigenous sediment provenance, characterize Barilari Bay Fe-oxide input to the bay, and evaluate the magnetic signatures of glacial-marine sedimentation processes and diagenesis. Coarse sand fraction grain counts from inner bay diamict indicate that Fe-oxide poor metasedimentary and sedimentary rocks contribute the bulk of the terrigenous material to the bay's marine sediments; however, plutonic igneous rocks, likely of the Cretaceous-Tertiary Andean intrusive suite, are the major source of Fe-oxides in the inner-bay. The ice shelf facies, dated at 1300 - 1840 AD in the outer bay, is identified throughout the bay by a drop in total organic carbon and higher magnetic susceptibility. In the outer bay, this facies is also characterized by higher clay abundance and a uniform assemblage of fine pseudo-single domain magnetite and maghemite grains. In the middle bay, a grounding-line facies, composed of turbidites and fine laminations, is present from 950 AD through the ice shelf period. Magnetic mineral distributions reflect hydrodynamic sorting of ferromagnetic, paramagnetic, and diamagnetic minerals in turbidites governed

  14. Sedimentology and chronology of the advance and retreat of the last British-Irish Ice Sheet on the continental shelf west of Ireland

    NASA Astrophysics Data System (ADS)

    Peters, Jared L.; Benetti, Sara; Dunlop, Paul; Ó Cofaigh, Colm; Moreton, Steven G.; Wheeler, Andrew J.; Clark, Christopher D.

    2016-05-01

    The last British-Irish Ice Sheet (BIIS) had extensive marine-terminating margins and was drained by multiple large ice streams and is thus a useful analogue for marine-based areas of modern ice sheets. However, despite recent advances from investigating the offshore record of the BIIS, the dynamic history of its marine margins, which would have been sensitive to external forcing(s), remain inadequately understood. This study is the first reconstruction of the retreat dynamics and chronology of the western, marine-terminating, margin of the last (Late Midlandian) BIIS. Analyses of shelf geomorphology and core sedimentology and chronology enable a reconstruction of the Late Midlandian history of the BIIS west of Ireland, from initial advance to final retreat onshore. Five AMS radiocarbon dates from marine cores constrain the timing of retreat and associated readvances during deglaciation. The BIIS advanced without streaming or surging, depositing a bed of highly consolidated subglacial traction till, and reached to within ∼20 km of the shelf break by ∼24,000 Cal BP. Ice margin retreat was likely preceded by thinning, grounding zone retreat and ice shelf formation on the outer shelf by ∼22,000 Cal BP. This ice shelf persisted for ≤2500 years, while retreating at a minimum rate of ∼24 m/yr and buttressing a >150-km long, 20-km wide, bathymetrically-controlled grounding zone. A large (∼150 km long), arcuate, flat-topped grounding-zone wedge, termed here the Galway Lobe Grounding-Zone Wedge (GLGZW), was deposited below this ice shelf and records a significant stillstand in BIIS retreat. Geomorphic relationships indicate that the BIIS experienced continued thinning during its retreat across the shelf, which led to increased topographic influence on its flow dynamics following ice shelf break up and grounding zone retreat past the GLGZW. At this stage of retreat the western BIIS was comprised of several discrete, asynchronous lobes that underwent several

  15. Ocean current observations near McMurdo Station, Antarctica, 1993 to 1994: Relation to wastewater discharge dispersal

    SciTech Connect

    Barry, J.P.

    1995-09-01

    This report presents analyses of current measurements from McMurdo Sound, Antarctica during December, 1993 to November, 1994, in relation to dispersal of the McMurdo Station wastewater plume. Data collected from 1991 to 1993 are also discussed here. Six current meters were deployed near McMurdo Station, Antarctica, from December 1993 to November 1994. Five functioned properly throughout the observation period, and one failed. Analyses of 5 data series include: (1) summaries of current speed and direction, (2) directional analyses of flow, (3) time series current vectors averaged over 1, 3, 6, 12, and 24 h, (4) principal axes of flow, (5) maps of mean seasonal flow, (6) progressive vector plots, (7) spectral analyses, and (8) low-pass filtered (30h) time series of currents at McMurdo Station. Observations of flow near McMurdo Station during 1994 were generally similar to 1993. Short term variation in flow was related principally to diurnal tidal motions. Longer period oscillations in flow such as seasonal shifts, and non-periodic changes in current speed and direction were likely related to changes in ice cover and wind stress in the vicinity of McMurdo Station or over much larger scales or both. Three distinct oceanographic {open_quote}seasons{close_quote} were apparent in time series from 1992 to 1994, from stations furthest offshore, where the effects of local topography are minimal. The spring-summer (Oct.-Jan.) period of both years was dominated by regional southward flow, which generates a counter-clockwise eddy (McMurdo Gyre) adjacent to McMurdo Station. With regard to dispersal of the wastewater plume from McMurdo Station, observations of currents during 1994 generally corroborate those from 1993, and the recommendation that the outfall pipe should be repositioned offshore of the McMurdo Gyre is supported.

  16. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica

    PubMed Central

    Cochran, James R; Tinto, Kirsty J; Bell, Robin E

    2015-01-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5–1.7 with 80–100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. Key Points: Abbot Ice Shelf is underlain by E-W rift basins created at ∼90 Ma Amundsen shelf shaped by subsidence, sedimentation, and passage of the ice sheet Bellingshausen plate boundary is located near the base of continental slope and rise PMID:26709352

  17. Reconstructing the last British-Irish Ice Sheet from continental shelf records: initial results from BRITICE-CHRONO

    NASA Astrophysics Data System (ADS)

    O'Cofaigh, Colm; Benetti, Sara; Callard, S. Louise; Chiverell, Richard; Clark, Chris D.; Livingstone, Stephen; Praeg, Daniel; Saher, Margot; Scourse, James; van Landeghem, Katrien

    2015-04-01

    BRITICE-CHRONO is a large UK NERC-funded project that aims to constrain the timing and rate of retreat of the last British-Irish Ice Sheet (BIIS). Although the pattern of ice sheet retreat is reasonably well established the retreat chronology remains poorly constrained for many areas, particularly offshore. In BRITICE-CHRONO marine and terrestrial samples are being collected for dating along a series of 8 transects extending from the continental shelf edge to a few tens of kilometres onshore. The transects will yield over 800 new dates, which will be combined with existing age and landform information to undertake an ice-sheet wide empirical reconstruction of the demise of the BIIS as it underwent the transition from marine-terminating margins to being entirely land-based. This talk will present an overview of the project and highlight some of the key scientific findings from the first of two research cruises that form a central part of the project. Cruise JC106 of the RRS James Cook took place in 2014 and circumnavigated Ireland, surveying and sampling in the Celtic Sea, Irish Sea, Malin Sea, Donegal Bay and the shelf offshore of western Ireland, including the Porcupine Bank. During the 38 day cruise over 220 cores were collected as well as extensive geophysical datasets (sub-bottom profiles and swath bathymetry). Analysis of these data is now underway and is yielding important new insights into the extent, retreat style, chronology and depositional environments associated with the BIIS during and following the Last Glacial Maximum. A second cruise, planned for the summer 2015, will survey and sample the continental shelf north of Scotland and the North Sea.

  18. The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Price, D.; Rack, W.; Langhorne, P. J.; Haas, C.; Leonard, G.; Barnsdale, K.

    2014-02-01

    This is an investigation to quantify the influence of the sub-ice platelet layer on satellite measurements of total freeboard and their conversion to thickness of Antarctic sea ice. The sub-ice platelet layer forms as a result of the seaward advection of supercooled ice shelf water from beneath ice shelves. This ice shelf water provides an oceanic heat sink promoting the formation of platelet crystals which accumulate at the sea ice-ocean interface. The build-up of this porous layer increases sea ice freeboard, and if not accounted for, leads to overestimates of sea ice thickness from surface elevation measurements. In order to quantify this buoyant effect, the solid fraction of the sub-ice platelet layer must be estimated. An extensive in situ data set measured in 2011 in McMurdo Sound in the south-western Ross Sea is used to achieve this. We use drill-hole measurements and the hydrostatic equilibrium assumption to estimate a mean value for the solid fraction of this sub-ice platelet layer of 0.16. This is highly dependent upon the uncertainty in sea ice density. We test this value with independent Global Navigation Satellite System (GNSS) surface elevation data to estimate sea ice thickness. We find that sea ice thickness can be overestimated by up to 19%, with a mean deviation of 12% as a result of the influence of the sub-ice platelet layer. It is concluded that in close proximity to ice shelves this influence should be considered universally when undertaking sea ice thickness investigations using remote sensing surface elevation measurements.

  19. Seismic Stratigraphy of Ice Sheet Advance-Retreat Cycles on the Sabrina Coast Continental Shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    Frederick, B. C.; Gulick, S. P. S.; Saustrup, S.; Fernandez-Vasquez, R. A.; Domack, E. W.; Lavoie, C.; Blankenship, D. D.; Leventer, A.; Shevenell, A.

    2014-12-01

    2D multichannel seismic (MCS), multibeam and CHIRP data were collected as part of the recent R/V Nathaniel B. Palmer (NBP1402) cruise to investigate the marine record of cryosphere-ocean dynamics on the continental shelf between the Dalton Ice Tongue and Totten Glacier systems. Outlet glaciers and ice shelves along this coastline drain a catchment area extending across the Aurora Subglacial Basin (ASB) whose topography lies below sea level and contains an ice volume of approximately 6.9m of sea level rise equivalent. Analysis of over 750km of high-resolution MCS data has revealed the preservation of extensive tilted fluvial-deltaic shelf sedimentation and the first evidence of polythermal glacial advance in this region with well-preserved subglacial meltwater channels and tunnel valley systems. This expansive fluvial to glacial sedimentary section is separated by a regional unconformity from a series of irregular, localized unconformities preserved in an otherwise seismically transparent facies. We interpret these transparent facies as subglacial diamictites deposited over several glacial cycles. Detailed seismic stratigraphic analysis of the glacial sequences above the regional unconformity identified at least 4 glacial cycles illustrated by grounding zone wedge moraine deposits recorded in both MCS and multibeam bathymetric data. Distinct differences were evident in the stratigraphic architecture of polar versus polythermal glaciations including greater preservation of till deposits above the regional unconformity proximal to the exposed bedrock boundary and the present-day ice front. Sedimentary sequence preservation here appears dictated by the geometry of local ice advance and allied basement structure controls. Integration of marine geology, high resolution CHIRP and multibeam bathymetry data with MCS sequence geometry and acoustic facies mapping has led to improved constraints on rates, styles and patterns of glacial retreat. Such improvements to deformable

  20. Preliminary ice shelf-ocean simulation results from idealized standalone-ocean and coupled model intercomparison projects (MIPs)

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Martin, Daniel

    2016-04-01

    The second Ice Shelf-Ocean MIP (ISOMIP+) and the first Marine Ice Sheet-Ocean MIP (MISOMIP1) prescribe a set of idealized experiments for ocean models with ice-shelf cavities and coupled ice sheet-ocean models, respectively. ISOMIP+ and MISOMIP1 were designed together with the third Marine Ice Sheet MIP (MISMIP+) with three main goals, namely that the MIPs should provide: a controlled forum for researchers to compare their model results with those from other models during model development. a path for testing components in the process of developing coupled ice sheet-ocean models. a basic setup from which a large variety of parameter and process studies can usefully be performed. The experimental design for the three MIPs is currently under review in Geoscientific Model Development (Asay-Davis et al. 2015, doi:10.5194/gmdd-8-9859-2015). We present preliminary results from ISOMIP+ and MISOMIP1 experiments using several ocean-only and coupled ice sheet-ocean models. Among ocean models, we show that differences in model behavior are significant enough that similar results can only be achieved by tuning model parameters (e.g. boundary-layer transfer coefficients, drag coefficients, vertical mixing parameterizations) for each models. This tuning is constrained by a desired mean melt rate in quasi-steady state under specified forcing conditions, akin to how models would be tuned based on observations for non-idealized simulations. We also present a number of parameter studies based the MIP experiments. Again, using several models, we show that melt rates respond sub-linearly to both changes in the square root of the drag coefficient and the heat-transfer coefficient, and that melting is relatively insensitive to horizontal-mixing coefficients (perhaps because the resolution is sufficient to permit eddies) but more sensitive to vertical-mixing coefficients. We show that the choice of the equation of state (linear or nonlinear) does not have a significant impact as long as

  1. Long-term record of Barents Sea Ice Sheet advance to the shelf edge from a 140,000 year record

    NASA Astrophysics Data System (ADS)

    Pope, Ed L.; Talling, Peter J.; Hunt, James E.; Dowdeswell, Julian A.; Allin, Joshua R.; Cartigny, Matthieu J. B.; Long, David; Mozzato, Alessandro; Stanford, Jennifer D.; Tappin, David R.; Watts, Millie

    2016-10-01

    The full-glacial extent and deglacial behaviour of marine-based ice sheets, such as the Barents Sea Ice Sheet, is well documented since the Last Glacial Maximum about 20,000 years ago. However, reworking of older sea-floor sediments and landforms during repeated Quaternary advances across the shelf typically obscures their longer-term behaviour, which hampers our understanding. Here, we provide the first detailed long-term record of Barents Sea Ice Sheet advances, using the timing of debris-flows on the Bear Island Trough-Mouth Fan. Ice advanced to the shelf edge during four distinct periods over the last 140,000 years. By far the largest sediment volumes were delivered during the oldest advance more than 128,000 years ago. Later advances occurred from 68,000 to 60,000, 39,400 to 36,000 and 26,000 to 20,900 years before present. The debris-flows indicate that the dynamics of the Saalian and the Weichselian Barents Sea Ice Sheet were very different. The repeated ice advance and retreat cycles during the Weichselian were shorter lived than those seen in the Saalian. Sediment composition shows the configuration of the ice sheet was also different between the two glacial periods, implying that the ice feeding the Bear Island Ice stream came predominantly from Scandinavia during the Saalian, whilst it drained more ice from east of Svalbard during the Weichselian.

  2. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice.

    PubMed

    Shakhova, Natalia; Semiletov, Igor; Sergienko, Valentin; Lobkovsky, Leopold; Yusupov, Vladimir; Salyuk, Anatoly; Salomatin, Alexander; Chernykh, Denis; Kosmach, Denis; Panteleev, Gleb; Nicolsky, Dmitry; Samarkin, Vladimir; Joye, Samantha; Charkin, Alexander; Dudarev, Oleg; Meluzov, Alexander; Gustafsson, Orjan

    2015-10-13

    Sustained release of methane (CH(4)) to the atmosphere from thawing Arctic permafrost may be a positive and significant feedback to climate warming. Atmospheric venting of CH(4) from the East Siberian Arctic Shelf (ESAS) was recently reported to be on par with flux from the Arctic tundra; however, the future scale of these releases remains unclear. Here, based on results of our latest observations, we show that CH(4) emissions from this shelf are likely to be determined by the state of subsea permafrost degradation. We observed CH(4) emissions from two previously understudied areas of the ESAS: the outer shelf, where subsea permafrost is predicted to be discontinuous or mostly degraded due to long submergence by seawater, and the near shore area, where deep/open taliks presumably form due to combined heating effects of seawater, river run-off, geothermal flux and pre-existing thermokarst. CH(4) emissions from these areas emerge from largely thawed sediments via strong flare-like ebullition, producing fluxes that are orders of magnitude greater than fluxes observed in background areas underlain by largely frozen sediments. We suggest that progression of subsea permafrost thawing and decrease in ice extent could result in a significant increase in CH(4) emissions from the ESAS.

  3. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice

    PubMed Central

    Shakhova, Natalia; Semiletov, Igor; Sergienko, Valentin; Lobkovsky, Leopold; Yusupov, Vladimir; Salyuk, Anatoly; Salomatin, Alexander; Chernykh, Denis; Kosmach, Denis; Panteleev, Gleb; Nicolsky, Dmitry; Samarkin, Vladimir; Joye, Samantha; Charkin, Alexander; Dudarev, Oleg; Meluzov, Alexander; Gustafsson, Orjan

    2015-01-01

    Sustained release of methane (CH4) to the atmosphere from thawing Arctic permafrost may be a positive and significant feedback to climate warming. Atmospheric venting of CH4 from the East Siberian Arctic Shelf (ESAS) was recently reported to be on par with flux from the Arctic tundra; however, the future scale of these releases remains unclear. Here, based on results of our latest observations, we show that CH4 emissions from this shelf are likely to be determined by the state of subsea permafrost degradation. We observed CH4 emissions from two previously understudied areas of the ESAS: the outer shelf, where subsea permafrost is predicted to be discontinuous or mostly degraded due to long submergence by seawater, and the near shore area, where deep/open taliks presumably form due to combined heating effects of seawater, river run-off, geothermal flux and pre-existing thermokarst. CH4 emissions from these areas emerge from largely thawed sediments via strong flare-like ebullition, producing fluxes that are orders of magnitude greater than fluxes observed in background areas underlain by largely frozen sediments. We suggest that progression of subsea permafrost thawing and decrease in ice extent could result in a significant increase in CH4 emissions from the ESAS. PMID:26347539

  4. Totten Glacier, East Antarctica: How has ocean access to the ice shelf cavity shaped local elevation change patterns?

    NASA Astrophysics Data System (ADS)

    Greenbaum, J. S.; Young, D. A.; Roberts, J. L.; Richter, T.; Warner, R. C.; van Ommen, T. D.; Siegert, M. J.; Blankenship, D. D.

    2013-12-01

    Totten Glacier has the largest outflow of any glacier in East Antarctica and is in mass deficit despite 40 years of anomalously high snowfall. As a result, the glacier and its floating terminus have been the focus of several geophysical studies over the last decade. In particular, the international collaborative ICECAP Project has acquired over 10,000 line-kilometers of aerogeophysical data from the grounding zone over the floating terminus and onto the inner continental shelf. Several flights in 2010 and 2012 were focused on continuing the time series of surface elevation change conducted by the ICESAT mission that ended in 2009 while other flights were flown to map the subglacial context for the observed elevation change and to determine the broad scale bathymetry beneath the ice shelf and nearby sea ice using airborne gravimetry. The gravimetry experiment was expanded in 2012 with an advanced, three-axis stabilized GT-1A gravimeter which significantly improved both data coverage and quality over previous ICECAP seasons. With the new gravimeter installed, five-km spaced coast parallel survey lines were flown from the lower reaches of the cavity to about 100km seaward of the terminus to infer the presence of sills and potential warm water pathways from the continental shelf to the deep glacier cavity. Here we present updated elevation change measurements in the context of the new bathymetry information and show that ocean access to the cavity is complicated by high bedrock near the terminus of the glacier. Verification of warm water intrusion potential will require new oceanographic observations such as those planned for the collaborative US-Australian marine survey scheduled to sail on the NB Palmer in February 2014.

  5. Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift

    NASA Astrophysics Data System (ADS)

    Scambos, T.; Ross, R.; Bauer, R.; Yermolin, Y.; Skvarca, P.; Long, D.; Bohlander, J.; Haran, T.

    Using a combination of satellite sensors, field measurements and satellite-uplinked in situ observing stations, we examine the evolution of several large icebergs drifting east of the Antarctic Peninsula towards South Georgia Island. Three styles of calving are observed during drift: 'rift calvings', 'edge wasting' and 'rapid disintegration'. Rift calvings exploit large pre-existing fractures generated in the shelf environment and can occur at any stage of drift. Edge wasting is calving of the iceberg perimeter by numerous small edge-parallel, sliver-shaped icebergs, preserving the general shape of the main iceberg as it shrinks. This process is observed only in areas north of the sea-ice edge. Rapid disintegration, where numerous small calvings occur in rapid succession, is consistently associated with indications of surface melt saturation (surface lakes, firn-pit ponding). Freeboard measurements by ICESat indicate substantial increases in ice-thinning rates north of the sea-ice edge (from <10ma-1 to >30ma-1), but surface densification is shown to be an important correction (>2m freeboard loss before the firn saturates). Edge wasting of icebergs in 'warm' surface water (sea-ice-free, >-1.8 °C) implies a mechanism based on waterline erosion. Rapid disintegration ('Larsen B-style' break-up) is likely due to the effects of surface or saturated-firn water acting on pre-existing crevasses, or on wave- or tidally induced fractures. Changes in microwave backscatter of iceberg firn as icebergs drift into warmer climate and experience increased surface melt suggest a means of predicting when floating ice plates are evolving towards disintegration.

  6. The examination of a downslope warming wind event over the Larsen Ice Shelf in Antarctica through modeling and aircraft observations.

    NASA Astrophysics Data System (ADS)

    Grosvenor, Daniel; Choularton, Thomas; King, John; Lachlan-Cope, Thomas

    2010-05-01

    During the last 50-60 years temperatures over the Antarctic Peninsula region have increased more rapidly than anywhere else in the southern hemisphere, at several times the global average rate. At one station, the near-surface warming between 1951 and 2004 was 2.94 oC compared to a global average of 0.52 oC. However, the seasonal pattern of this regional warming has varied with location, with the east side having warmed more than the west in the autumn and summer seasons. This is important since the process of surface melting on the Larsen ice shelves, which are located on the east side, predominately occurs in summer. Crevasse propagation due to the weight of accumulated melt water is currently thought to have been the major factor in causing the catastrophic near-total disintegration of the Larsen B ice shelf in 2002, representing a loss of ice of area 3200 km2. The larger and more southerly Larsen C ice shelf could also suffer a similar fate if the warming continues, with consequences for the ecology and for increased glacier flow, leading to sea level rise. The difference in warming between the east and west side in these seasons is thought to have been driven by circulation changes that have led to increases in the strength of westerly winds. The high mountains of the Antarctic Peninsula provide a climatic barrier between the warmer oceanic air of the west and the cold continental air of the east. It has been suggested that increased westerlies allow warm winds to cross to the east side more frequently. The warming of westerly flow can also be enhanced by latent heat release on the upslope side and/or adiabatic descent of air from above, on the downslope side. In January 2006 the British Antarctic Survey performed an aircraft flight over the Larsen C ice shelf on the east side of the Peninsula, which sampled a strong downslope warming wind event. Surface flux measurements over the ice shelf suggest that the sensible heat provided by the warm jets would be

  7. Coastal-Change and Glaciological Map of the Northern Ross Ice Shelf Area, Antarctica: 1962-2004

    USGS Publications Warehouse

    Ferrigno, Jane G.; Foley, Kevin M.; Swithinbank, Charles; Williams, Richard S.

    2007-01-01

    Changes in the area and volume of polar ice sheets are intricately linked to changes in global climate, and the resulting changes in sea level could severely impact the densely populated coastal regions on Earth. Melting of the West Antarctic part alone of the Antarctic ice sheet would cause a sea-level rise of approximately 6 meters (m). The potential sea-level rise after melting of the entire Antarctic ice sheet is estimated to be 65 m (Lythe and others, 2001) to 73 m (Williams and Hall, 1993). The mass balance (the net volumetric gain or loss) of the Antarctic ice sheet is highly complex, responding differently to different conditions in each region (Vaughan, 2005). In a review paper, Rignot and Thomas (2002) concluded that the West Antarctic ice sheet is probably becoming thinner overall; although it is thickening in the west, it is thinning in the north. Thomas and others (2004), on the basis of aircraft and satellite laser altimetry surveys, believe the thinning may be accelerating. Joughin and Tulaczyk (2002), on the basis of analysis of ice-flow velocities derived from synthetic aperture radar, concluded that most of the Ross ice streams (ice streams on the east side of the Ross Ice Shelf) have a positive mass balance, whereas Rignot and others (2004) infer even larger negative mass balance for glaciers flowing northward into the Amundsen Sea, a trend suggested by Swithinbank and others (2003a,b; 2004). The mass balance of the East Antarctic ice sheet is thought by Davis and others (2005) to be strongly positive on the basis of the change in satellite altimetry measurements made between 1992 and 2003. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council (1986), in subsequent recommendations by the Scientific Committee on Antarctic Research (SCAR) (1989, 1993), and by the National Science Foundation?s (1990) Division of Polar

  8. Glacial landforms on German Bank, Scotian Shelf: evidence for Late Wisconsinan ice-sheet dynamics and implications for the formation of De Geer moraines

    USGS Publications Warehouse

    Todd, Brian J.; Valentine, Page C.; Longva, Oddvar; Shaw, John

    2007-01-01

    The extent and behaviour of the southeast margin of the Laurentide Ice Sheet in Atlantic Canada is of significance in the study of Late Wisconsinan ice sheet-ocean interactions. Multibeam sonar imagery of subglacial, ice-marginal and glaciomarine landforms on German Bank, Scotian Shelf, provides evidence of the pattern of glacial-dynamic events in the eastern Gulf of Maine. Northwest-southeast trending drumlins and megaflutes dominate northern German Bank. On southern German Bank, megaflutes of thin glacial deposits create a distinct northwest-southeast grain. Lobate regional moraines (>10km long) are concave to the northwest, up-ice direction and strike southwest-northeast, normal to the direction of ice flow. Ubiquitous, overlying De Geer moraines (

  9. Inland diatoms from the McMurdo Dry Valleys and James Ross Island, Antarctica

    USGS Publications Warehouse

    Esposito, R.M.M.; Spaulding, S.A.; McKnight, Diane M.; Van De Vijver, B.; Kopalova, K.; Lubinski, D.; Hall, B.; Whittaker, T.

    2008-01-01

    Diatom taxa present in the inland streams and lakes of the McMurdo Dry Valleys and James Ross Island, Antarctica, are presented in this paper. A total of nine taxa are illustrated, with descriptions of four new species (Luticola austroatlantica sp. nov., Luticola dolia sp. nov., Luticola laeta sp. nov., Muelleria supra sp. nov.). In the perennially ice-covered lakes of the McMurdo Dry Valleys, diatoms are confined to benthic mats within the photic zone. In streams, diatoms are attached to benthic surfaces and within the microbial mat matrix. One species, L. austroatlantica, is found on James Ross Island, of the southern Atlantic archipelago, and the McMurdo Dry Valleys. The McMurdo Dry Valley populations are at the lower range of the size spectrum for the species. Streams flow for 6-10 weeks during the austral summer, when temperatures and solar radiation allow glacial ice to melt. The diatom flora of the region is characterized by species assemblages favored under harsh conditions, with naviculoid taxa as the dominant group and several major diatom groups conspicuously absent. ?? 2008 NRC.

  10. Autonomous Sea-Ice Thickness Survey

    DTIC Science & Technology

    2016-06-01

    to tow an electromagnetic induction meter over sea ice in McMurdo Sound , Antarctica. This proof-of-concept survey aimed to demonstrate improved...Documentation Page ERDC/CRREL SR-16-4 iv Figures and Tables Figures 1 The runway and roads on McMurdo Sound sea ice in November 2009. (Map data...4 4 The EM31 in the sled towed by Yeti along Pegasus Cut-Off Road on McMurdo Sound sea ice. The blue box housed the battery

  11. Subglacial bathymetry and sediment distribution beneath Pine Island Glacier ice shelf modeled using aerogravity and in situ geophysical data: New results

    NASA Astrophysics Data System (ADS)

    Muto, Atsuhiro; Peters, Leo E.; Gohl, Karsten; Sasgen, Ingo; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.

    2016-01-01

    Pine Island Glacier (PIG) in the Amundsen Sea sector of the West Antarctic Ice Sheet (WAIS) is losing mass and contributing to global sea-level rise at an accelerating rate. Although recent observations and modeling have identified the incursion of relatively warm Circumpolar Deep Water (CDW) beneath the PIG ice shelf (PIGIS) as the main driver of this ice-mass loss, the lack of precise bathymetry limits furthering our understanding of the ice-ocean interactions and improving the accuracy of modeling. Here we present updated bathymetry and sediment distribution beneath the PIGIS, modeled by the inversion of aerogravity data with constraints from active-source seismic data, observations from an autonomous underwater vehicle, and the regional gravity-anomaly field derived from satellite gravity observations. Modeled bathymetry shows a submarine ridge beneath the middle of PIGIS that rises ∼350 to 400 m above the surrounding sea floor, with a minimum water-column thickness of ∼200 m above it. This submarine ridge continues across the whole width of the 45-km wide ice shelf, with no deep troughs crossing it, confirming the general features of the previously predicted sub-ice-shelf ocean circulation. However, the relatively low resolution of the aerogravity data and limitations in our inversion method leave a possibility that there is an undetected, few-kilometers-wide or narrower trough that may alter the predicted sub-ice-shelf ocean circulation. Modeled sediment distribution indicates a sedimentary basin of up to ∼800 m thick near the current grounding zone of the main PIG trunk and extending farther inland, and a region seaward of the submarine ridge where sediments are thin or absent with exposed crystalline basement that extends seaward into Pine Island Bay. Therefore, the submarine ridge marks the transition from a thick sedimentary basin providing a smooth interface over which ice could flow easily by sliding or sediment deformation, to a region with no to

  12. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, James R.; Tinto, Kirsty J.; Bell, Robin E.

    2015-05-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5-1.7 with 80-100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. The copyright line for this article was changed on 5 JUN 2015 after original online publication.

  13. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica.

    PubMed

    Cochran, James R; Tinto, Kirsty J; Bell, Robin E

    2015-05-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5-1.7 with 80-100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts.

  14. Coastal-Change and Glaciological Map of the Larsen Ice Shelf Area, Antarctica, 1940-2005

    USGS Publications Warehouse

    Ferrigno, Jane G.; Cook, Alison J.; Mathie, Amy M.; Williams, Richard S.; Swithinbank, Charles; Foley, Kevin M.; Fox, Adrian J.; Thomson, Janet W.; Sievers, Jorn

    2008-01-01

    Changes in the area and volume of polar ice sheets are intricately linked to changes in global climate, and the resulting changes in sea level could severely impact the densely populated coastal regions on Earth. Antarctica is Earth's largest reservoir of glacial ice. Melting of the West Antarctic part alone of the Antarctic ice sheet would cause a sea-level rise of approximately 6 meters (m), and the potential sea-level rise after melting of the entire Antarctic ice sheet is estimated to be 65 m (Lythe and others, 2001) to 73 m (Williams and Hall, 1993). The mass balance (the net volumetric gain or loss) of the Antarctic ice sheet is highly complex, responding differently to different climatic and other conditions in each region (Vaughan, 2005). In a review paper, Rignot and Thomas (2002) concluded that the West Antarctic ice sheet is probably becoming thinner overall; although it is known to be thickening in the west, it is thinning in the north. The mass balance of the East Antarctic ice sheet is thought by Davis and others (2005) to be positive on the basis of the change in satellite-altimetry measurements made between 1992 and 2003. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council (1986), in subsequent recommendations by the Scientific Committee on Antarctic Research (SCAR) (1989, 1993), and by the National Science Foundation's (1990) Division of Polar Programs. On the basis of these recommendations, the U.S. Geological Survey (USGS) decided that the archive of early 1970s Landsat 1, 2, and 3 Multispectral Scanner (MSS) images of Antarctica and the subsequent repeat coverage made possible with Landsat and other satellite images provided an excellent means of documenting changes in the cryospheric coastline of Antarctica (Ferrigno and Gould, 1987). The availability of this information provided the impetus for carrying out a

  15. Abundance, Distribution and Cycling of Organic Carbon and Nitrogen in University Valley (McMurdo Dry Valleys of Antarctica) Permafrost Soils with Differing Ground Thermal and Moisture Conditions: Analogue to C-N Cycle on Mars

    NASA Astrophysics Data System (ADS)

    Faucher, B. F.; Lacelle, D. L.; Davila, A. D.; Pollard, W. P.; McKay, C. P. M.

    2016-05-01

    High elevation McMurdo Dry Valleys of Antarctica are key Mars analogue sites. Our investigation focuses on the link between ground ice origin, distribution and cycling of organic carbon and nitrogen in University Valley, and its soil habitability.

  16. Iron oxide tracers of ice sheet extent and sediment provenance in the ANDRILL AND-1B drill core, Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Brachfeld, Stefanie; Pinzon, Juliana; Darley, Jason; Sagnotti, Leonardo; Kuhn, Gerhard; Florindo, Fabio; Wilson, Gary; Ohneiser, Christian; Monien, Donata; Joseph, Leah

    2013-11-01

    The AND-1B drill core recovered a 13.57 million year Miocene through Pleistocene record from beneath the McMurdo Ice Shelf in Antarctica (77.9°S, 167.1°E). Varying sedimentary facies in the 1285 m core indicate glacial-interglacial cyclicity with the proximity of ice at the site ranging from grounding of ice in 917 m of water to ice free marine conditions. Broader interpretation of climatic conditions of the wider Ross Sea Embayment is deduced from provenance studies. Here we present an analysis of the iron oxide assemblages in the AND-1B core and interpret their variability with respect to wider paleoclimatic conditions. The core is naturally divided into an upper and lower succession by an expanded 170 m thick volcanic interval between 590 and 760 m. Above 590 m the Plio-Pleistocene glacial cycles are diatom rich and below 760 m late Miocene glacial cycles are terrigenous. Electron microscopy and rock magnetic parameters confirm the subdivision with biogenic silica diluting the terrigenous input (fine pseudo-single domain and stable single domain titanomagnetite from the McMurdo Volcanic Group with a variety of textures and compositions) above 590 m. Below 760 m, the Miocene section consists of coarse-grained ilmenite and multidomain magnetite derived from Transantarctic Mountain lithologies. This may reflect ice flow patterns and the absence of McMurdo Volcanic Group volcanic centers or indicate that volcanic centers had not yet grown to a significant size. The combined rock magnetic and electron microscopy signatures of magnetic minerals serve as provenance tracers in both ice proximal and distal sedimentary units, aiding in the study of ice sheet extent and dynamics, and the identification of ice rafted debris sources and dispersal patterns in the Ross Sea sector of Antarctica.

  17. Rift in Antarctic Glacier: a Unique Chance to Study Ice Shelf Retreat

    NASA Technical Reports Server (NTRS)

    Howat, Ian M.; Jezek, Ken; Studinger, Michael; Macgregor, Joseph A.; Paden, John; Floricioiu, Dana; Russell, Rob; Linkswiler, Matt; Dominguez, Roseanne T.

    2012-01-01

    It happened again, but this time it was caught in the act. During the last week of September 2011 a large transverse rift developed across thefloating terminus of West Antarcticas PineIsland Glacier, less than 5 years after its lastlarge calving event, in 2007 (Figure 1). PineIsland Glaciers retreat has accelerated substantiallyin the past 2 decades, and it is nowlosing 50 gigatons of ice per year, or roughly 25 of Antarcticas total annual contributionto sea level rise [Rignot et al., 2008]. The glaciers recent accelerated retreat is likely triggered by ocean warming and increased submarine melting. As such, it is of significant interest to glaciologists and of heightened societal relevance.

  18. Current surges and seabed erosion near the shelf break in the Canadian Beaufort Sea: A response to wind and ice motion stress

    NASA Astrophysics Data System (ADS)

    Forest, Alexandre; Osborne, Philip D.; Curtiss, Gregory; Lowings, Malcolm G.

    2016-08-01

    Estimating the erosion potential of seabed sediments and the magnitude of the resulting suspended load in relation to current dynamics near the shelf break is a key issue for better understanding shelf-slope sediment transport. On the outer Mackenzie Shelf (Canadian Beaufort Sea, Arctic Ocean), a thin and discontinuous veneer of recent surficial clays overlie old glaciomarine sediments that further pinch out at the shelf edge. Gas and fluid venting is known to underlie part of sediment instability in the area, but recent mooring-based measurements also indicate that sediments near the shelf break are recurrently remobilized by strong subsurface currents. Here, we relate storms to the development of current surges that resulted in the abrupt resuspension of sediments at two locations along the shelf break. Near-bottom concentrations of suspended sediments were estimated using the acoustic backscatter of high-frequency acoustic Doppler current profilers deployed from September 2011 to September 2013 as part of the Beaufort Regional Environmental Assessment (BREA) program. Near-bottom currents near the shelf edge (140 to 150 m isobaths) were characterized by recurring episodes of elevated velocities (instantaneous speeds up to ~ 40-50 cm s-1) that were extensions of current surges (~ 60-80 cm s-1) occurring in the core of the shelfbreak jet located at ca. 90-120 m. Sudden peaks in suspended sediments (above 100 g m-3) corresponded closely with current surges in the near-bottom boundary layer (< 10 m) implying the local erosion of surficial sediments and the rapid advection or redeposition of the resuspended sediments. A range of apparent threshold velocities from 18 to 36 cm s-1 was calculated based on the relationship between suspended sediment concentrations and near-bottom current speeds. Two meteorological scenarios were identified to explain the current surges underlying these erosion events at the shelf edge: (1) Pacific or Arctic-born low pressure systems that

  19. Characterisation of the Nematode Community of a Low-Activity Cold Seep in the Recently Ice-Shelf Free Larsen B Area, Eastern Antarctic Peninsula

    PubMed Central

    Hauquier, Freija; Ingels, Jeroen; Gutt, Julian; Raes, Maarten; Vanreusel, Ann

    2011-01-01

    Background Recent climate-induced ice-shelf disintegration in the Larsen A (1995) and B (2002) areas along the Eastern Antarctic Peninsula formed a unique opportunity to assess sub-ice-shelf benthic community structure and led to the discovery of unexplored habitats, including a low-activity methane seep beneath the former Larsen B ice shelf. Since both limited particle sedimentation under previously permanent ice coverage and reduced cold-seep activity are likely to influence benthic meiofauna communities, we characterised the nematode assemblage of this low-activity cold seep and compared it with other, now seasonally ice-free, Larsen A and B stations and other Antarctic shelf areas (Weddell Sea and Drake Passage), as well as cold-seep ecosystems world-wide. Principal Findings The nematode community at the Larsen B seep site differed significantly from other Antarctic sites in terms of dominant genera, diversity and abundance. Densities in the seep samples were high (>2000 individuals per 10 cm2) and showed below-surface maxima at a sediment depth of 2–3 cm in three out of four replicates. All samples were dominated by one species of the family Monhysteridae, which was identified as a Halomonhystera species that comprised between 80 and 86% of the total community. The combination of high densities, deeper density maxima and dominance of one species is shared by many cold-seep ecosystems world-wide and suggested a possible dependence upon a chemosynthetic food source. Yet stable 13C isotopic signals (ranging between −21.97±0.86‰ and −24.85±1.89‰) were indicative of a phytoplankton-derived food source. Conclusion The recent ice-shelf collapse and enhanced food input from surface phytoplankton blooms were responsible for the shift from oligotrophic pre-collapse conditions to a phytodetritus-based community with high densities and low diversity. The parthenogenetic reproduction of the highly dominant Halomonhystera species is rather unusual for marine

  20. Indicators of Physical and Biological Trends around the McMurdo Station, Antarctica: A Literature Review

    DTIC Science & Technology

    2015-05-01

    In McMurdo Sound , the reconstructed temperature history, using the permafrost thermal profile from 30 m deep boreholes, suggests a slight cooling...observed changes in the Ross Sea region since 1960, such as increased air and soil temperature , decreased glacial extent, and sea level rise, are...logistics, primarily in response to the reduced sea-ice extent and higher air and soil temperatures . DISCLAIMER: The contents of this report are not to be

  1. Electric Vehicle Performance at McMurdo Station (Antarctica) and Comparison with McMurdo Station Conventional Vehicles

    SciTech Connect

    Sears, T.; Lammert, M.; Colby, K.; Walter, R.

    2014-09-01

    This report examines the performance of two electric vehicles (EVs) at McMurdo, Antarctica (McMurdo). The study examined the performance of two e-ride Industries EVs initially delivered to McMurdo on February 16, 2011, and compared their performance and fuel use with that of conventional vehicles that have a duty cycle similar to that of the EVs used at McMurdo.

  2. Reconstructing Holocene conditions under ice in the Ross Sea and in the Southern Ocean using barnacles

    NASA Astrophysics Data System (ADS)

    Burgess, S. N.; Henderson, G. M.; Hall, B. L.

    2009-12-01

    Paleoclimate archives that capture annual and subannual resolution marine conditions outside the tropics are not common but would be highly desirable. This study demonstrates the potential of barnacles for such purposes and applies them to paleoceanographic reconstruction under the McMurdo ice shelf and in the Southern Ocean. Most of the Bathylasma samples used in this study grew in the Ross Sea and range in age between modern samples (used for calibration) and Holocene samples which were collected on the surface of the McMurdo Ice Shelf, having been entrained at the grounding line and moved through the ice by surface ablation and further basal freezing. Like other barnacles, this species secretes a robust low-Mg calcite shell with distinct growth increments on the external surface indicating growth durations of several decades. Barnacle shells were subsampled at high resolution (60 μm) for δ18O and δ13C analysis and dated by 14C. Measured δ18O values indicate that Bathylasma calcifies close to equilibrium with ambient seawater and those of old (>200kyr) samples suggest little or no diagenesis. These features make barnacles a promising archive for reconstruction of past ocean conditions. Variations in barnacle δ18O within each plate and between plates reflect changes in δ18O of the seawater, and allow some assessment of the salinity under the ice shelf. Salinities are lowered by addition of meltwaters, but the barnacle data suggest this lowering does not go below 33‰. Salinity near the grounding line shows both temporal and spatial variability. These data indicate that Bathylasma can provide valuable paleoclimate information at subannual resolution for shallow/intermediate water depths and regions such as Antarctica that play an important role in the climate system. We are now exploring this potential to investigate intermediate water conditions in the South Pacific during the last glacial using samples from seamounts on the Macquarie Ridge and south of

  3. Reconstruction of sea-ice cover and primary production on the East Greenland Shelf (73°N) during the last 5200 years

    NASA Astrophysics Data System (ADS)

    Kolling, Henriette Marie; Stein, Rüdiger; Fahl, Kirsten; Perner, Kerstin; Moros, Matthias

    2016-04-01

    Over the last decades the extent and thickness of Arctic sea ice has changed dramatically and much more rapidly than predicted by climate models. Thus, high-resolution sea-ice reconstructions from pre-anthropogenic times are useful and needed in order to better understand the processes controlling the natural sea-ice variability. Here, we present the first high-resolution biomarker (IP25, sterols) approach over the last 5.2 ka from the East Greenland Shelf (for background about the biomarker approach see Belt et al., 2007; Müller et al., 2009, 2011). This area is highly sensitive to sea-ice changes, as it underlies the pathway of the East Greenland Current, the main exporter of Arctic freshwater and sea ice that affects the environmental conditions on the East Greenland Shelf and deep-water formation/ convection in the Northern North Atlantic. After rather stable sea-ice conditions in the mid-Holocene we found a strong increase in sea ice, cumulating around 1.5 ka and associated with the Neoglacial cooling. The general trend especially during the last 1ka is interrupted by several short-lived events such as the prominent Medieval Warm Period and Little Ice Age, characterized by minimum and maximum sea-ice extent, respectively. Using a spectral analysis, we could identify several cyclicites, e.g. a 45-year cyclicity for cold events. A comparison to similar records from the eastern Fram Strait revealed a slight time lag in the onset of the Neoglacial, but also suggesting the direct link of the East Greenland Shelf area to the Arctic sea-ice/freahwater outflow. A comparison of the biomarker data with a new foraminiferal record obtained from the same site (Perner et al., 2015) suggests that IP25 and foraminifera assemblages are probably controlled by rather different processes within the oceanographic systems, such as the sea-ice conditions and, for the foraminifera, water-mass changes and nutrient supply. References: Belt. S.T., Massé, G., Rowland, S.J., Poulin, M

  4. Foehn Winds in the McMurdo Dry Valleys, Antarctica: A Driver of Environmental Change?

    NASA Astrophysics Data System (ADS)

    Speirs, J. C.; McGowan, H. A.

    2011-12-01

    Foehn winds are warm, dry and gusty winds that commonly occur in many mid-latitude mountainous regions. Detailed investigations into foehn winds in polar regions and their effects on landscape processes however, are rare. Foehn events are frequently experienced in the McMurdo Dry Valleys, Antarctica where they are caused by topographic modification of strong southwesterly airflow that is forced by synoptic-scale cyclones in the Amundsen/Ross Sea region. Recent research has shown that the intra and interannual frequency and intensity of foehn events varies in response to the position and frequency of these synoptic cyclones. The El Niño Southern Oscillation and the Southern Annular Mode are known sources of circulation anomalies in this region, and the frequency of foehn winds in the McMurdo Dry Valleys has been linked to these sources of climate variability. Despite the high frequency of foehn events in the McMurdo Dry Valleys, the influence of foehn winds on landscape processes of this polar desert is not well understood. Here we present research that integrates numerical weather model products, automatic weather station observations, stream discharge data and remote sensing techniques to quantify the influence of foehn winds on environmental processes in the McMurdo Dry Valleys. During summer, foehn winds play a critical role in raising air and soil temperatures above 0°C. Sublimation, meltwater generation and snow persistence are also shown to be significantly influenced by foehn winds and their affects on landscape processes which persist for several days after foehn wind cessation. Foehn winds play a large role in keeping the valleys snow and ice free. Any precipitation that does fall is quickly evaporated/sublimated by foehn winds. We conclude that foehn winds in the McMurdo Dry Valleys are the major cause of contemporary landscape change and aridity.

  5. Construction, Maintenance, and Operation of a Glacial Runway, McMurdo Station, Antarctica

    DTIC Science & Technology

    1998-03-01

    Station ""-"- \\ /4 Amundsen - Scott ItS~~ South Pole Station t 01, ",,0 Marble Pt. • "",McMurdo •.•o/j... Scott South Pole Station , Concepts for such runways include "blue-ice"t and Palmer Station on the Antarctic Peninsula runways on glacier ice and runways...February. Numerous LC-130 flights (on wheels) were operated in supplying South Pole station , and a C-130 was operated between Christchurch and

  6. An Investigation Into the Causes and Limiting Factors of an Active Rift on the Amery Ice Shelf: Fieldwork and Modeling Results

    NASA Astrophysics Data System (ADS)

    Bassis, J. N.; Fricker, H.; Coleman, R.; Minster, B.

    2003-12-01

    The Amery Ice Shelf rift system, colloquially known as the "Loose Tooth", consists of two longitudinal (parallel-to-flow) rifts that formed about 15 years ago, and two transverse rifts that together with the western longitudinal rift, form a triple junction. A variety of satellite imagery spanning more than one decade has shown that the transverse rifts have both been actively propagating over the past decade, and have been, on average, speeding up (Young et al, this session). This past Antarctic field season (2002-2003), we instrumented the main transverse rift with 6 GPS and 8 vertical component seismometers. Results indicate that there are several periods of high seismic activity during which the rift widens rapidly. Comparison of experimental values of the critical stress intensity factor (a measure of the strength of the ice) with the stress acting at the tip of the rift calculated for an elastic ice shelf, suggest that the rift should propagate unstably. In an attempt to resolve this paradox we consider two possible explanations. First we examine the effect of a viscoelastic rheology of ice on dissipation of the stress at the tip of the rift; the associated time scale competes with the time scales attached to the loading mechanisms which control the rate of stress accumulation. In contrast the effect of an array of longitudinal crevasses on the stress field concentrated ahead of the rift is largely geometrical. Rift propagation is hindered because the crevasses create areas that are effectively weaker than the surrounding ice. We use a boundary element model to evaluate the effect of an array of crevasses on the stress concentrated at the tip of the rift.

  7. Sedimentary record of postglacial variability in near-bottom currents, sediment supply and ice rafting on the continental shelf off SW Spitsbergen

    NASA Astrophysics Data System (ADS)

    Sternal, B.; Szczuciński, W.; Forwick, M.; ZajÄ czkowski, M.; Lorenc, S.; Vorren, T. O.

    2012-04-01

    The continental shelf off the west coast of southern Spitsbergen is influenced by the northward-flowing water masses (warmer and more saline Atlantic Water carried by the West Spitsbergen Current and colder, fresher Arctic Water carried by the East Spitsbergen Current), as well as ice rafting. The present study was conducted to identify the influence of these factors on the sedimentary environment and to decipher temporal variations in the intensity of bottom currents, ice rafting off and glacial activity on southwestern Spitsbergen during the past 14,000 years. The study is based on a multiproxy analyses of one gravity core from the outer continental shelf (148 m water depth) in decadal to centennial resolution. Age control was obtained on a basis of ten AMS 14C dates along with 210Pb and 137Cs datings. To infer the style of sedimentation and the sediment supply the core was measured for magnetic susceptibility, X-rayed, analysed for grain-size distribution of bulk sediment and for coarse sand fraction components. The assessment of ice rafting intensity was based on coarse sand fraction counting (IRD), whereas to assume the type of ice rafting, whether by icebergs or sea ice, the analysis of quartz grains roundness was performed. Moreover, relative velocity of bottom currents was estimated by grain-size analysis of sortable silt fraction. We distinguish seven intervals: c. 14,000 - 12,600 cal yr BP - Bølling/Allerød (unit 1); 12,600 - 11,500 cal yr BP - Younger Dryas (unit 2) and 11,500 cal yr BP to present - Holocene (units 3 - 7). The smallest mean sortable silt values, reflecting relatively low bottom current velocity, occurred from the Bølling/Allerød to the early Younger Dryas and after ~0.5 cal ka BP. Increased velocities were inferred for the early Holocene as well as period between 8.8 - 7.8 cal yr BP. The IRD was present throughout the entire record indicating continuous supply of a material delivered from ice rafting, with variable dominance of

  8. The McMurdo Dry Valleys: A landscape on the threshold of change

    NASA Astrophysics Data System (ADS)

    Fountain, Andrew G.; Levy, Joseph S.; Gooseff, Michael N.; Van Horn, David

    2014-11-01

    Field observations of coastal and lowland regions in the McMurdo Dry Valleys suggest they are on the threshold of rapid topographic change, in contrast to the high elevation upland landscape that represents some of the lowest rates of surface change on Earth. A number of landscapes have undergone dramatic and unprecedented landscape changes over the past decade including, the Wright Lower Glacier (Wright Valley) - ablated several tens of meters, the Garwood River (Garwood Valley) has incised > 3 m into massive ice permafrost, smaller streams in Taylor Valley (Crescent, Lawson, and Lost Seal Streams) have experienced extensive down-cutting and/or bank undercutting, and Canada Glacier (Taylor Valley) has formed sheer, > 4 meter deep canyons. The commonality between all these landscape changes appears to be sediment on ice acting as a catalyst for melting, including ice-cement permafrost thaw. We attribute these changes to increasing solar radiation over the past decade despite no significant trend in summer air temperature. To infer possible future landscape changes in the McMurdo Dry Valleys, due to anticipated climate warming, we map ‘at risk’ landscapes defined as those with buried massive ice in relative warm regions of the valleys. Results show that large regions of the valley bottoms are ‘at risk’. Changes in surface topography will trigger important responses in hydrology, geochemistry, and biological community structure and function.

  9. Potential of oregano essential oil and MAP to extend the shelf life of fresh swordfish: a comparative study with ice storage.

    PubMed

    Giatrakou, V; Kykkidou, S; Papavergou, A; Kontominas, M G; Savvaidis, I N

    2008-05-01

    The present study evaluated the effect of modified atmosphere packaging (MAP, 5% O(2)/50% CO(2)/45% N(2); treatment M), the addition of oregano oil (0.1%, v/w; treatment AO) as a natural preservative, as well as their combination (treatment MO) on the quality and shelf life extension of fresh Mediterranean swordfish fillets during a refrigerated storage (4 degrees C) period of 18 d. Simultaneously, swordfish fillets were stored under aerobic conditions (control treatment A, 4 degrees C) and on ice (usual commercial method of preservation, treatment I, 0 degrees C). Among the 5 treatments examined in the present study, the most effective one to inhibit the microbial and sensory spoilage proved to be the MO treatment, achieving a shelf life extension of 8 to 9 d. The dominant bacteria in the microflora of swordfish, irrespective of treatment, were the Pseudomonads and the H(2)S-producing bacteria, while both lactic acid bacteria (LAB) and the Enterobacteriaceae produced the lowest populations in swordfish samples kept on ice. Among the chemical indices examined, thiobarbituric acid (TBA) values showed no specific trend of lipid oxidation for swordfish, irrespective of treatment. Final trimethylamine nitrogen (TMA-N) and total volatile basic nitrogen (TVB-N) values for treatments, A, AO, M, and MO ranged between 1.33 and 14.29 mg N/100 g and 14.11 to 55.52 mg N/100 g, respectively, whereas for I samples they remained almost unchanged during storage. Sensory analysis (taste attribute) correlated well with microbiological analysis, indicating a shelf life of approximately 5 to 6 d for control, 10 to 11 d for AO, 12 d for I, 13 d for M, and 14 d for MO samples.

  10. Variability in drift ice export from the Arctic Ocean to the North Icelandic Shelf over the last 8000 years: A multi-proxy evaluation

    NASA Astrophysics Data System (ADS)

    Cabedo-Sanz, Patricia; Belt, Simon T.; Jennings, Anne E.; Andrews, John T.; Geirsdóttir, Áslaug

    2016-08-01

    North Iceland represents a climatically sensitive region, in part, due to its location at the confluence of southward flowing and drift ice-laden polar waters from the Arctic Ocean delivered by the East Greenland Current, and the relatively warm and saline Irminger Current, a northerly flowing branch of the North Atlantic Current. Despite its pivotal location, there is a paucity of high resolution and long-term sea ice records for the region, with some disparities in certain previous investigations. Here, the identification of the biomarker IP25 as a reliable proxy for drift ice for North Iceland has been confirmed by measuring its abundance in surface sediments from the region and comparison of outcomes with documentary records of sea ice and other proxy data. By analysing IP25 in a well-dated marine sediment core from the North Icelandic Shelf (NIS) (MD99-2269), we also provide a high resolution (ca. 25 yr) record of drift sea ice for the region and complement this with a lower resolution record (ca. 100 yr) obtained from a second core site, located further east (JR51-GC35). Statistical treatment of equi-spaced time series reveals strong linear correlations between IP25 and a further drift ice proxy (quartz) in each core. Thus, linear regression analysis between both proxies gave correlation coefficients (R2) of 0.74 and 0.66 for MD99-2269 (25 yr) and JR51-GC35 (100 yr), respectively. Further, the individual proxies were well correlated between the two cores, with R = 0.91 and 0.77 for IP25 and quartz, respectively. The IP25-based sea ice record for MD99-2269, combined with other new biomarker and foraminifera data, and previously published proxy data for primary productivity and sea surface temperature, suggest that the paleoceanographic evolution for the NIS over the last 8 ka can be classified into three main intervals. The early mid Holocene (ca 8-6.2 cal ka BP) was characterized by relatively low or absent drift ice, low primary productivity and relatively

  11. Ice shelf snow accumulation rates from the Amundsen-Bellingshausen Sea sector of West Antarctica derived from airborne radar

    NASA Astrophysics Data System (ADS)

    Medley, B.; Kurtz, N. T.; Brunt, K. M.

    2015-12-01

    The large ice shelves surrounding the Antarctic continent buttress inland ice, limiting the grounded ice-sheet flow. Many, but not all, of the thick ice shelves located along the Amundsen-Bellingshausen Seas are experiencing rapid thinning due to enhanced basal melting driven by the intrusion of warm circumpolar deep water. Determination of their mass balance provides an indicator as to the future of the shelves buttressing capability; however, measurements of surface accumulation are few, limiting the precision of the mass balance estimates. Here, we present new radar-derived measurements of snow accumulation primarily over the Getz and Abbott Ice Shelves, as well as the Dotson and Crosson, which have been the focus of several of NASA's Operation IceBridge airborne surveys between 2009 and 2014. Specifically, we use the Center for Remote Sensing of Ice Sheets (CReSIS) snow radar to map the near-surface (< 30 m) internal stratigraphy to measure snow accumulation. Due to the complexities of the local topography (e.g., ice rises and rumples) and their relative proximity to the ocean, the spatial pattern of accumulation can be equally varied. Therefore, atmospheric models might not be able to reproduce these small-scale features because of their limited spatial resolution. To evaluate whether this is the case over these narrow shelves, we will compare the radar-derived accumulation rates with those from atmospheric models.

  12. Deglacial-Holocene short-term variability in sea-ice distribution on the Eurasian shelf (Arctic Ocean) - An IP25 biomarker reconstruction.

    NASA Astrophysics Data System (ADS)

    Hörner, Tanja; Stein, Ruediger; Fahl, Kirsten

    2016-04-01

    Four well-dated sediment cores from the Eurasian continental shelf, i.e., the Kara Sea (Cores BP99/07 and BP00/07) and Laptev Sea (Cores PS51/154 and PS51/159), were selected for high-resolution reconstruction of past Arctic environmental conditions during the deglacial-Holocene time interval. These marginal seas are strongly affected by the post-glacial sea-level rise of about 120m. The major focus of our study was the reconstruction of the paleo-sea-ice distribution as sea-ice plays a key role within the modern and past climate system. For reconstruction of paleo-sea ice, the sea-ice proxy IP25 in combination with open-water phytoplankton biomarkers was used (for approach see Belt et al., 2007; Müller et al., 2009, 2011). In addition, specific sterols were determined to reconstruct changes in river run-off and biological production. The post-glacial sea-level rise is especially reflected in prominent decrease in terrigenous biomarkers. Deglacial variations in sea-ice cover sustained for thousand of years, mostly following climatic changes like the Bølling/Allerød (14.7-12.9 ka), Younger Dryas (12.9-11.6 ka) and Holocene warm phase (10-8 ka). Superimposed on a (Late) Holocene cooling trend, short-term fluctuations in sea-ice cover (on centennial scale) are distinctly documented in the distal/off-shore Core BP00/07 from the Kara Sea, less pronounced in the proximal/near-shore Core PS99/07 and in the Laptev Sea cores. Interestingly, this short-term variability in sea-ice cover correlates quite well to changes in Siberian river run-off (e.g., Stein et al. 2004), pointing to a direct linkage between precipitation (atmospheric circulation) and sea-ice formation. References Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Organic Geochemistry 38, 16-27. Müller, J., Masse, G., Stein, R., Belt, S.T., 2009. Variability of sea-ice conditions in the Fram Strait over the past 30,000 years

  13. Ocean Disposal of Man-Made Ice Piers

    EPA Pesticide Factsheets

    The National Science Foundation is permitted to ocean dump man-made ice piers from its base at McMurdo Sound in Antarctica under a MPRSA general permit. Information is provided about ice piers and impacts of ice pier disposal.

  14. Paleolimnology of the McMurdo Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    Doran, P. T.; Wharton, R. A. Jr; Lyons, W. B.; Wharton RA, J. r. (Principal Investigator)

    1994-01-01

    The McMurdo Dry Valleys presently contain more than 20 permanent lakes and ponds, which vary markedly in character. All, with the exception of a hypersaline pond, have a perennial ice-cover. The dry valley lakes, and lakes in other ice-free regions of continental Antarctica, are unique on this planet in that they consistently maintain a thick year-round ice cover (2.8-6.0 m) over liquid water. The persistent ice covers minimize wind-generated currents and reduce light penetration, as well as restricting sediment deposition into a lake and the exchange of atmospheric gases between the water column and the atmosphere. From a paleolimnological perspective, the dry valley lakes offer an important record of catchment and environmental changes. These lakes are also modern-day equivalents of periglacial lakes that were common during glacial periods at temperate latitudes. The present lakes are mostly remnants of larger glacial lakes that occupied the valleys in the past, perhaps up to 4.6 Ma ago. Two of the valleys contain evidence of being filled with large glacial lakes within the last 10000 years. Repeated drying and filling events since then have left a characteristic impression on the salt profiles of some lakes creating a unique paleo-indicator within the water column. These events are also marked in the sediments by the concentration and dilution of certain chemical constituents, particularly salts, and are also corroborated by carbonate speciation and oxygen isotope analysis. Stratigraphic analysis of dry valley lake sediments is made difficult by the occurrence of an 'old carbon' reservoir creating spurious radiocarbon dates, and by the high degree of spatial variability in lake sedimentation. From a biological perspective, the lakes are relatively simple, containing various taxa of planktonic and benthic microorganisms, but no higher forms of life, which is an advantage to paleolimnologists because there is no bioturbation in the sediments. Useful biological

  15. Observing Muostakh Island disappear: erosion of a ground-ice-rich coast in response to summer warming and sea ice reduction on the East Siberian shelf

    NASA Astrophysics Data System (ADS)

    Günther, F.; Overduin, P. P.; Baranskaya, A.; Opel, T.; Grigoriev, M. N.

    2013-08-01

    Observations of coastline retreat using contemporary very high resolution satellite and historical aerial imagery were compared to measurements of open water fractions and summer air temperatures. We analyzed seasonal and interannual variations of thawing-induced cliff top retreat (thermo-denudation) and marine abrasion (thermo-abrasion) on Muostakh Island in the southern central Laptev Sea. The island is composed of ground-ice-rich permafrost deposits of Ice Complex type that render it particularly susceptible to erosion along the coast, resulting in land loss. Based on topographic reference measurements during field campaigns, we generated digital elevation models using stereophotogrammetry, in order to block adjust and ortho-rectify aerial photographies from 1951 and GeoEye, QuickBird, WorldView-1, and WorldView-2 imagery from 2010 to 2012 for change detection. Coastline retreat for erosive segments ranged from -13 to -585 m and was -109 ± 81 m (-1.8 ± 1.3 m a-1) on average during the historical period. Current seasonal dynamics of cliff top retreat revealed rapid thermo-denudation rates of -10.2 ± 4.5 m a-1 in mid summer and -4.1 ± 2.0 m a-1 on average during the 2010-2012 observation period. Using sea ice concentration data from the Special Sensor Microwave Imager (SSM/I) and air temperature time series from Tiksi, we calculated seasonal duration available for thermo-abrasion, expressed as open water days, and for thermo-denudation, based on thawing degree days. Geomorphometric analysis revealed that total ground ice content on Muostakh is made up of equal amounts of intrasedimentary and macro ground ice, while its vertical hourglass distribution provides favorable local preconditions for subsidence and the acceleration of coastal thermo-erosion under intensifying environmental forcings. Our results showed a~close relationship between mean summer air temperature and coastal thermo-erosion rates, in agreement with observations made for various permafrost

  16. Transient Meltwater in Mullins Valley Glacier, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Grimm, R. E.; Stillman, D. E.; Kowalewski, D. E.

    2014-12-01

    Mullins Glacier is a cold-based debris-covered glacier feeding into Beacon Valley, at high altitude in the McMurdo Dry Valleys of Antarctica. Ice is exposed at the headwall in Mullins Valley but the majority of the glacier is buried beneath a sublimation till (lag deposit composed of englacial and supraglacial debris). This till is initially ~10 cm thick but gradually thickens to ~60 cm at the glacier terminus (~8 km distant). Mullins Glacier has been postulated to be one of the world's oldest alpine glaciers: tephrachronology places a minimum age of the overlying sublimation till near the terminus at 7.9 Ma. Our measurements of the complex resistivity (aka spectral induced polarization or dielectric spectroscopy) of massive Mullins Glacier ice reveal two distinct origins. The electrical properties of clean ice or ice with rock fragments are typical of meteoric polar ice (Stillman et al., JGR, 2013). However, "dirty" ice is electrically distinct, indicating soluble impurity content near lattice saturation. This behavior, which we also observed for Lake Vostok accretion ice, is consistent with freezing from saline, draining water. Therefore one hypothesis it that the dirty ice formed by infiltration in former clement environments. However, very efficient segregation is subsequently required, and not all dirty ice is at the top of the ice column. Dirty ice likely samples debris bands, which are more commonly observed in cores where Mullins Glacier has advanced onto the main (Beacon) valley floor and is nearly stagnant. If debris bands are correlated to lattice impurity saturation via the dirty ice, then they may have been transiently at or near melting. This may be a primary feature of the environment during debris accumulation or simply due to the high thermal inertia of debris. Alternatively, debris bands and associated salts may be carried below the annual thermal wave where they experience near-constant, supereutectic temperatures. Elevated temperatures may be

  17. Provenance signatures of the Antarctic Ice Sheets in the Ross Embayment during the Late Miocene to Early Pliocene: The ANDRILL AND-1B core record

    NASA Astrophysics Data System (ADS)

    Talarico, F. M.; Sandroni, S.

    2009-11-01

    Significant down-core modal and compositional variations are described for granule- to cobble-sized clasts in the Early Pliocene to Middle/Late Miocene sedimentary cycles of the AND-1B drill core at the NW edge of the Ross Ice Shelf (McMurdo Sound). Long-term shifts in compositional patterns outline an evolving provenance which is interpreted as reflecting the combined effects and complex interactions among variations in ice volume, ice flow patterns and paleogeographic changes linked to the local tectonic and volcanic activity. High-frequency variations and the petrological features of the basement clast fraction provide direct information about the potential source regions during both glacial maxima and minima. Provenance of the more distal material is identified in the region between Ross Island and the Skelton-Mulock glacier area (South Victoria Land) (Plio-Late Miocene section) and in the Darwin Glacier catchment (Miocene section). The provenance shifts can be discussed for their implications on ice dynamic models for the glacial evolution recorded in the western Ross Embayment. Reconstructed ice flow directions are consistent with the glaciological models for the Last Glacial Maximum, and the provenance data corroborate the contributions of both the East and West Antarctic Ice Sheets in influencing the modifications of the ice flow pattern of grounded ice in the western Ross Embayment in Miocene to Pleistocene time.

  18. Airfield Passenger Transportation System at McMurdo Station, Antarctica

    DTIC Science & Technology

    2012-09-01

    surface. Environmental Issues that affect the environment have an increased importance at McMurdo owing to Antarctic Treaty provisions. Some factors...is unlimited. Prepared for National Science Foundation ERDC/CRREL TR-12-8 ii Abstract: The United States Antarctic Program’s McMurdo... Antarctic Terminal Operations (ATO): Bill Turnbill, Kris Kornegay, and Pete Cruser. Excellent review comments were provided by Sally A. Shoop, Margaret A

  19. Pollutant Concentration in Runoff at McMurdo Station, Antarctica

    DTIC Science & Technology

    2014-08-01

    an outcrop of barren volcanic rock on the southern tip of Ross Island, Antarctica. Science support activities at the Station have created some... prevention and mitigation are crucial for reducing contamination at McMurdo Station. Human factors, such as awareness, cautiousness, improved chemical...chronic limits for aquatic water quality in saltwater, prevention and mitigation are crucial for re- ducing contamination at McMurdo Station. 15

  20. Comprehensive characterization report on Winter Quarters Bay, McMurdo Station, Antarctica

    SciTech Connect

    Crockett, A.B.; White, G.J.

    1997-01-01

    Winter Quarters Bay is a small embayment located adjacent to the United States largest base in Antarctica, McMurdo Station. McMurdo Station, which is managed by the National Science Foundation`s Office of Polar Programs, was constructed in 1955, has been in constant use since that time, and has a population of about 1,000 persons during the summer and about 250 people for the winter. The bay offers shelter for ships and an ice dock is used during January and February to off load fuel and cargo. During earlier times, trash from the McMurdo Station was piled on the steep shoreline of the bay, doused with several thousand gallons of fuel and ignited. That practice has ceased and the site has been regraded to cover the waste. The bottom of the bay is littered with drums, equipment, tanks, tires, all sorts of metal objects, cables, etc., especially the southeastern side where dumping took place. The sediments are gravel in some places yet fine and fluid at other sites with coarse particles intermixed. The original benthic community is not well recorded but significant ecological changes have occurred. Sediments are contaminated with PCBs, metals, and hydrocarbon fuels. This report summarizes available information on Winter Quarters Bay and was originally intended to be used by workshop participants to become familiar with the bay prior to becoming updated with unpublished data by various Antarctic investigators. The proposed workshop was to assist the National Science Foundation in determining whether and how the bay should be remediated and to develop an integrated research plan if additional data were needed. However, plans changed, the workshop was never conducted, but the briefing report was prepared. Most of this report reviews and summarizes other published data. The only new data are those from the Idaho National Engineering and Environmental Laboratory`s investigation into the distribution of organic contaminants in the bay and sediment toxicity testing.

  1. Quantitative mineralogy of surface sediments of the Iceland shelf, and application to down-core studies of holocene ice-rafted sediments

    USGS Publications Warehouse

    Andrews, John T.; Eberl, D.D.

    2007-01-01

    Quantitative X-ray diffraction analyses on the < 2 mm sediment fraction from the Iceland shelves are reported for subglacial diamictons, seafloor surface sediments, and the last 2000 cal yr BP from two cores. The overall goal of the paper is to characterize the spatial variability of the mineralogy of the present-day surface sediments (18 non-clay minerals and 7 clay minerals), compare that with largely in situ erosional products typified by the composition of subglacial diamictons, and finally examine the late Holocene temporal variability in mineral composition using multi-mineral compositions. The subglacial diamictons are dominated in the non-clay-mineral fraction by the plagioclase feldspars and pyroxene with 36.7 ?? 6.1 and 17.9 ?? 3.5 wt % respectively, with smectites being the dominant clay minerals. The surface seafloor sediments have similar compositions although there are substantial amounts of calcite, plus there is a distinct band of sites from NW to N-central Iceland that contain 1-6 wt% of quartz. This latter distribution mimics the modern and historic pattern of drift ice in Iceland waters. Principal component analysis of the transformed wt% (log-ratio) non-clay minerals is used to compare the subglacial, surface, and down-core mineral compositions. Fifty-eight percent of the variance is explained by the first two axes, with dolomite, microcline, and quartz being important "foreign" species. These analyses indicate that today the NW-N-central Iceland shelf is affected by the import of exotic minerals, which are transported and released from drift ice. The down-core mineralogy indicates that this is a process that has varied over the last 2000 cal yr BP. Copyright ?? 2007, SEPM (Society for Sedimentary Geology).

  2. Sediment movement and dispersal patterns on the Grand Banks continental shelf and slope were tied to the dynamics of the Laurentide ice-sheet margin

    NASA Astrophysics Data System (ADS)

    Rashid, H.; MacKillop, K.; Piper, D.; Vermooten, M.; Higgins, J.; Marche, B.; Langer, K.; Brockway, B.; Spicer, H. E.; Webb, M. D.; Fournier, E.

    2015-12-01

    The expansion and contraction of the late Pleistocene Laurentide ice-sheet (LIS) was the crucial determining factor for the geomorphic features and shelf and slope sediment mobility on the eastern Canadian continental margin, with abundant mass-transport deposits (MTDs) seaward of ice margins on the upper slope. Here, we report for the first time sediment failure and mass-transport deposits from the central Grand Banks slope in the Salar and Carson petroleum basins. High-resolution seismic profiles and multibeam bathymetry show numerous sediment failure scarps in 500-1600 m water depth. There is no evidence for an ice margin on the upper slope younger than MIS 6. Centimeter-scale X-ray fluorescence analysis (XRF), grain size, and oxygen isotope data from piston cores constrain sediment processes over the past 46 ka. Geotechnical measurements including Atterberg limit tests, vane shear measurements and triaxial and multi-stage isotropic consolidation tests allowed us to assess the instability on the continental margin. Cores with continuous undisturbed stratigraphy in contourite silty muds show normal downcore increase in bulk density and undrained peak shear strength. Heinrich (H) layers are identifiable by a marked increase in the bulk density, high Ca (ppm), increase in iceberg-rafted debris and lighter δ18O in the polar planktonic foram Neogloboquadrina pachyderma (sinistral): with a few C-14 dates they provide a robust chronology. There is no evidence for significant supply of sediment from the Grand Banks at the last-glacial maximum. Mass-transport deposits (MTD) are marked by variability in the bulk density, undrained shear strength and little variation in bulk density or Ca (ppm) values. The MTD are older than 46 ka on the central Grand Banks slope, whereas younger MTDs are present in southern Flemish Pass. Factor of safety calculations suggest the slope is statically stable up to gradients of 10°, but more intervals of silty mud may fail during earthquake

  3. Glaciers of the McMurdo dry valleys: Terrestrial analog for Martian polar sublimation

    NASA Astrophysics Data System (ADS)

    MacClune, Karen Lewis; Fountain, Andrew G.; Kargel, Jeffery S.; MacAyeal, Douglas R.

    2003-04-01

    The surfaces of the Martian north and south polar residual caps are marked by unusual ice features: Dark spiralesque troughs up to 1 km deep, 10 km wide, and 300 km long appear on both ice caps, and circular pits that make up the ``Swiss cheese'' terrain appear on the south polar cap. Both types of features are of interest to researchers as a potential means of understanding ice composition and flow rates. Some glaciers of the McMurdo dry valleys have surface features unknown elsewhere on terrestrial glaciers, including canyons over 6 km long, 100 m wide, and tens of meters deep and basins up to 100 m across. High sublimation, dust accumulation, and very little melting is key to their origin. These processes and ice landforms are suggested as terrestrial analogs for the sublimation behavior of Martian ice caps, where dust accumulation and sublimation are significant but surface melting is absent. We have developed a solar radiation model of canyon formation and have applied it to the Martian polar caps. The modeled processes do well to describe direct and reflected radiation within V grooves, a process that may be significant in the development of the spiral troughs and Swiss cheese terrain. The model fails to reproduce the low observed slopes of the Martian troughs. The grooves are too shallow, with opening angles of ~165° compared with model predictions of ~90°. The reason for the failure may be that we have not included creep closure, which should flatten their slopes.

  4. Bromoalkane production by Antarctic ice algae

    NASA Technical Reports Server (NTRS)

    Sturges, W. T.; Sullivan, C. W.; Schnell, R. C.; Heidt, L. E.; Pollock, W. H.

    1993-01-01

    Ice microalgae, collected from the underside of annual sea ice in McMurdo Sound, Antarctica, were found to contain and release to seawater a number of brominated hydrocarbons. These included bromoform, dibromomethane, mixed bromochloromethanes, and methyl bromide. Atmospheric measurements in the McMurdo Sound vicinity revealed the presence of bromoform and methyl bromide in the lower atmosphere, with lowest concentrations inland, further indicating that biogenic activity in the Sound is a source of organic bromine gases to the Antarctic atmosphere. This may have important implications for boundary layer chemistry in Antarctica. In the Arctic, the presence of bromoform has been linked to loss of surface ozone in the spring. We report here preliminary evidence for similar surface ozone loss at McMurdo Station.

  5. Is the Wilkins Ice Shelf a Firn Aquifer? Spaceborne Observation of Subsurface Winter Season Liquid Meltwater Storage on the Antarctic Peninsula using Multi-Frequency Active and Passive Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Miller, J.; Scambos, T.; Forster, R. R.; Long, D. G.; Ligtenberg, S.; van den Broeke, M.; Vaughan, D. G.

    2015-12-01

    Near-surface liquid meltwater on ice shelves has been inferred to influence ice shelf stability if it induces hydrofracture and is linked to disintegration events on the Larsen B and the Wilkins ice shelves on the Antarctic Peninsula during the summer months. While the initial Wilkins disintegration event occurred in March of 2009, two smaller disintegration events followed in May and in July of that year. It has long been assumed meltwater refreezes soon after surface melt processes cease. Given this assumption, an earlier hypothesis for the two winter season disintegration events was hydrofracture via a brine infiltration layer. Two lines of evidence supported this hypothesis 1) early airborne radar surveys did not record a reflection from the bottom of the ice shelf, and 2) a shallow core drilled in 1972 on the Wilkins encountered liquid water at a depth of ~7 m. The salinity of the water and the temperature at the base of the core, however, were not described. The recent discovery of winter season liquid meltwater storage on the Greenland ice sheet has changed perceptions on meltwater longevity at depth in firn. Evidence of Greenland's firn aquifer includes liquid meltwater encountered in shallow firn cores at 5 m depth and a lack of reflections from the base of the ice sheet in airborne surveys. Thus, previous lines of evidence suggesting brine infiltration may alternatively suggest the presence of a perennial firn aquifer. We recently demonstrated the capability for observation of Greenland's firn aquifer from space using multi-frequency active and passive microwave remote sensing. This research exploits the retrieval technique developed for Greenland to provide the first spaceborne mappings of winter season liquid meltwater storage on the Wilkins. We combine L-band brightness temperature and backscatter data from the MIRAS instrument (1.4 GHz) aboard ESA's Soil Moisture and Ocean Salinity mission and the radar (1.3 GHZ) and radiometer(1.4 GHz) aboard NASA

  6. A reinterpretation of geomorphological evidence for Glacial Lake Victoria, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish A.; Neil, David T.; Speirs, Johanna C.

    2014-03-01

    The largely snow and ice free McMurdo Dry Valleys of Antarctica are one of the coldest and driest locations on Earth. It has been proposed that during the Last Glacial Maximum (LGM) to the early Holocene large lakes up to 200 m deep and 100 km2 in area occupied these valleys. We present the first topographic survey of features reported to be shorelines from one such lake, Glacial Lake Victoria, in Victoria Valley. In combination with the analysis of laser altimetry data obtained from the NASA Airborne Topographic Mapper system and cosmogenic dating of granite boulders we show that the features previously thought to be shorelines are not horizontally or linearly continuous. Rather, we conclude that they are scars from ancient slope mass movement deposits. 10Be cosmogenic dating indicates that their formation is on timescales of at least 160 ka before present and not 20 ka as the LGM mega-lake hypothesis suggests. We conclude that the geomorphic features believed to be shorelines and which underpin the LGM mega-lake hypothesis in Victoria Valley are mass movement deposits and not lake shorelines. Our results support an emerging body of literature unable to find evidence to verify the McMurdo Dry Valleys LGM mega-lake hypothesis. Accordingly we suggest caution in invoking such significant landscape features in discussions of the environmental past of this unique region until such time as further research provides an unequivocal history of the region's geomorphic past.

  7. Constraints on the last deglaciation of the Ross Sea Sector of the West Antarctic Ice Sheet (WAIS) from 10Be dating

    NASA Astrophysics Data System (ADS)

    Bill, N. S.; Clark, P. U.; Kurz, M. D.; Marcott, S. A.; Caffee, M. W.

    2014-12-01

    We present new 10Be surface exposure ages from glacial erratic boulders from several locations in McMurdo Sound in order to constrain the deglacial history of the West Antarctic Ice Sheet. Previous model and field data indicate that the present day Ross Ice Shelf was a grounded ice sheet, with the grounding line extending to near the continental shelf edge during the Last Glacial Maximum (LGM). However, the timing and rate of the last deglaciation of the Ross Sea Sector of the West Antarctic Ice Sheet remain uncertain. We sampled granitic and basaltic erratic boulders for dating with the cosmogenic nuclides 10Be and 3He; in situ 14C dating will be used to assess complex burial histories. The 10Be ages on erratics near or at the upper limit of Ross Sea Drift that do not appear to have inheritance range from 17 to 26 ka. 10Be ages from erratics below the limit of the (LGM) Ross Sea Drift suggest final deglaciation by ~11 ka. New 10Be ages from more highly weathered glacial deposits above the Ross Sea drift near Blue Glacier suggest an age range of 141 to 171 ka.

  8. Antarctic and Arctic land-fast sea ice growth rates: an intercomparison based on stable isotope fractionation measurements

    NASA Astrophysics Data System (ADS)

    Smith, I.; Langhorne, P. J.; Gough, A. J.; Leonard, G. H.; Mahoney, A. R.; Eicken, H.; Van Hale, R.; Trodahl, H. J.; Haskell, T.

    2012-12-01

    The growth rate of sea ice (i.e., the change in sea ice thickness with time) is a critical factor affecting the thermohaline circulation because it determines the amount and timing of salt fluxes to the ocean. Studies of the colonisation of sea ice by microorganisms and the timing of ice-algal blooms, evident at depth horizons in sea ice, also require knowledge of growth rates. However, sea ice thickness and in particular growth rates of level ice are poorly known, mostly due to restrictions in remote sensing of these quantities. Direct measurements through repeated drilling, or the use of temperature probes or ultrasonic pingers (such as on ice mass balance buoys) are resource intensive, and are therefore limited to a few sites. An ideal methodology would allow retrospective reconstruction of sea ice growth rates from the analysis of ice cores taken at the end of the growth season. Previously developed methods have included salinity-based growth rate models, growth history deductions from thick section structural analysis and growth rate models based on the measurement of oxygen isotope fractionation in sea ice. In this presentation, we focus on the latter and compare measured growth rates with those derived from an existing isotope fractionation based model (Eicken, Ant. Res. Ser., 1998). In addition, comparisons are made with measured seasonal changes in δ18O values in Antarctic surface waters. The data presented have been collected for land-fast sea ice from McMurdo Sound, Antarctica and the Chukchi Sea near Barrow, Alaska. These two locations are ideally suited for this intercomparison study because both locations have a long history of sea ice and ocean observations. The Antarctic sea ice data are influenced by the appearance of waters from beneath an ice shelf. The Arctic sea ice growth rate and isotope data are from two sites, and are supported by oceanographic data, including under-ice current speeds, from a nearby mooring. Previous measurements of Arctic

  9. Glacier advance during Marine Isotope Stage 11 in the McMurdo Dry Valleys of Antarctica

    PubMed Central

    Swanger, Kate M.; Lamp, Jennifer L.; Winckler, Gisela; Schaefer, Joerg M.; Marchant, David R.

    2017-01-01

    We mapped six distinct glacial moraines alongside Stocking Glacier in the McMurdo Dry Valleys, Antarctica. Stocking Glacier is one of several alpine glaciers in the Dry Valleys fringed by multiple cold-based drop moraines. To determine the age of the outermost moraine, we collected 10 boulders of Ferrar Dolerite along the crest of the moraine and analyzed mineral separates of pyroxene for cosmogenic 3He. On the basis of these measurements, the exposure age for the outermost moraine is 391 ± 35 ka. This represents the first documented advance of alpine glacier ice in the Dry Valleys during Marine Isotope Stage (MIS) 11. At this time, Stocking Glacier was ~20–30% larger than today. The cause of ice expansion is uncertain, but most likely it is related to increased atmospheric temperature and precipitation, associated with reduced ice extent in the nearby Ross Embayment. The data suggest complex local environmental response to warm climates in Antarctica and have implications for glacial response to Holocene warming. The study also demonstrates the potential for using alpine glacier chronologies in the Transantarctic Mountains as proxies for retreat of grounded glacier ice in the Ross Embayment. PMID:28139676

  10. Glacier advance during Marine Isotope Stage 11 in the McMurdo Dry Valleys of Antarctica

    NASA Astrophysics Data System (ADS)

    Swanger, Kate M.; Lamp, Jennifer L.; Winckler, Gisela; Schaefer, Joerg M.; Marchant, David R.

    2017-01-01

    We mapped six distinct glacial moraines alongside Stocking Glacier in the McMurdo Dry Valleys, Antarctica. Stocking Glacier is one of several alpine glaciers in the Dry Valleys fringed by multiple cold-based drop moraines. To determine the age of the outermost moraine, we collected 10 boulders of Ferrar Dolerite along the crest of the moraine and analyzed mineral separates of pyroxene for cosmogenic 3He. On the basis of these measurements, the exposure age for the outermost moraine is 391 ± 35 ka. This represents the first documented advance of alpine glacier ice in the Dry Valleys during Marine Isotope Stage (MIS) 11. At this time, Stocking Glacier was ~20–30% larger than today. The cause of ice expansion is uncertain, but most likely it is related to increased atmospheric temperature and precipitation, associated with reduced ice extent in the nearby Ross Embayment. The data suggest complex local environmental response to warm climates in Antarctica and have implications for glacial response to Holocene warming. The study also demonstrates the potential for using alpine glacier chronologies in the Transantarctic Mountains as proxies for retreat of grounded glacier ice in the Ross Embayment.

  11. Glacier advance during Marine Isotope Stage 11 in the McMurdo Dry Valleys of Antarctica.

    PubMed

    Swanger, Kate M; Lamp, Jennifer L; Winckler, Gisela; Schaefer, Joerg M; Marchant, David R

    2017-01-31

    We mapped six distinct glacial moraines alongside Stocking Glacier in the McMurdo Dry Valleys, Antarctica. Stocking Glacier is one of several alpine glaciers in the Dry Valleys fringed by multiple cold-based drop moraines. To determine the age of the outermost moraine, we collected 10 boulders of Ferrar Dolerite along the crest of the moraine and analyzed mineral separates of pyroxene for cosmogenic (3)He. On the basis of these measurements, the exposure age for the outermost moraine is 391 ± 35 ka. This represents the first documented advance of alpine glacier ice in the Dry Valleys during Marine Isotope Stage (MIS) 11. At this time, Stocking Glacier was ~20-30% larger than today. The cause of ice expansion is uncertain, but most likely it is related to increased atmospheric temperature and precipitation, associated with reduced ice extent in the nearby Ross Embayment. The data suggest complex local environmental response to warm climates in Antarctica and have implications for glacial response to Holocene warming. The study also demonstrates the potential for using alpine glacier chronologies in the Transantarctic Mountains as proxies for retreat of grounded glacier ice in the Ross Embayment.

  12. FY 1993 environmental sampling and analysis report for wastewater discharge at McMurdo Station, Antarctica

    SciTech Connect

    Crockett, A.B.

    1994-04-01

    Wastewater impact assessment at McMurdo has been or is being conducted by four organizations: Antarctic Support Associates (ASA), which conducts the effluent monitoring; Moss Landing Marine Laboratories, which conducts all of the benthic monitoring and most of the biological monitoring; Montana State University, which conducted water quality and water current measurements; and EG&G Idaho, which conducted water quality and sea ice monitoring. All four programs are interrelated and were needed to determine the impact of the wastewater discharge on the marine environment. This report summarizes the relevant monitoring work being conducted by Antarctic Support Associates, Moss Landing, and Montana State personnel, and specifically documents the results of EG&G Idaho`s efforts.

  13. Evaluation of high-resolution MetUM and AMPS forecasts of near-surface meteorological variables over Larsen C ice shelf and northern Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Orr, Andrew; Kirchgaessner, Amelie; King, John; Weeks, Mark; Gadian, Alan; Kuipers Munneke, Peter; van den Broeke, Michiel; Steffen, Konrad

    2016-04-01

    High-resolution weather forecasts are an important tool for understanding the detailed patterns of surface melt on the Larsen C ice shelf (LCIS), Antarctic Peninsula. We investigate the skill of UK Met Office Unified Model (MetUM) and Antarctic Mesoscale Prediction System (AMPS) forecasts with horizontal grid spacing of 4-5 km for a 1 month period during January-February 2011 by comparing near-surface model output to automatic weather station measurements at 5 sites on the LCIS and 3 on the northern Antarctic Peninsula. Forecasts for the range 12-24 h showed a fairly homogeneous performance over the LCIS. The 2 m temperature simulated by AMPS has a correlation with observations of 0.5-0.6 and a systematic cold bias of around -1 degrees centigrade. By comparison, the MetUM had a higher correlation and was less negatively biased. The simulated surface pressure has a correlation of 0.99 and small biases in both models. AMPS yielded better results than the MetUM for 10 m wind speed, being able to capture particularly well synoptically-driven high wind speeds which the MetUM systematically underestimated. Both models struggle to simulate the 10 m wind direction when the wind conditions are highly variable. The simulation of specific humidity by both models was poor. Both models showed a general reduction in performance over the northern Antarctic Peninsula compared to the LCIS. Extending the analysis to consider the 12-36 h forecast range demonstrated a relatively weak dependence of model skill to the length of the forecast. The study focuses particularly on the representation of foehn wind events, which are an important contributor to surface melt over the LCIS, by examining additional ~1 km scale forecasts using the MetUM.

  14. Lake Vanda: A sentinel for climate change in the McMurdo Sound Region of Antarctica

    NASA Astrophysics Data System (ADS)

    Castendyk, Devin N.; Obryk, Maciej K.; Leidman, Sasha Z.; Gooseff, Michael; Hawes, Ian

    2016-09-01

    Lake Vanda is a perennially ice-covered, meromictic, endorheic lake located in the McMurdo Dry Valleys of Antarctica, and an exceptional sentinel of climate change within the region. Lake levels rose 15 m over the past 68 years in response to climate-driven variability in ice-cover sublimation, meltwater production, and annual discharge of the Onyx River, the main source of water to the lake. Evidence from a new bathymetric map and water balance model combined with annual growth laminations in benthic mats suggest that the most recent filling trend began abruptly 80 years ago, in the early 1930s. This change increased lake volume by > 50%, triggered the formation of a new, upper, thermohaline convection cell, and cooled the lower convection cell by at least 2 °C and the bottom-most waters by at > 4 °C. Additionally, the depth of the deep chlorophyll a maximum rose by > 2 m, and deep-growing benthic algal mats declined while shallow benthic mats colonized freshly inundated areas. We attribute changes in hydrology to regional variations in air flow related to the strength and position of the Amundsen Sea Low (ASL) pressure system which have increased the frequency of down-valley, föhn winds associated with surface air temperature warming in the McMurdo Dry Valleys. The ASL has also been implicated in the recent warming of the Antarctic Peninsula, and provides a common link for climate-related change on opposite sides of the continent. If this trend persists, Lake Vanda should continue to rise and cool over the next 200 years until a new equilibrium lake level is achieved. Most likely, future lake rise will lead to isothermal conditions not conducive to thermohaline convection, resulting in a drastically different physical, biogeochemical, and biological structure than observed today.

  15. Seismic stratigraphy of the Plio-Pleistocene Ross Island flexural moat-fill: a prognosis for ANDRILL Program drilling beneath McMurdo-Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Horgan, H.; Naish, T.; Bannister, S.; Balfour, N.; Wilson, G.

    2005-02-01

    Ross Island volcanic complex began forming with the emplacement of the basaltic shield volcanoes of Mt. Bird and Mt. Terror between ca. 4.6 and 1.3 Ma, though it has developed most significantly over the last 1 Ma during an eruptive phase resulting in the 3794-m-high composite vent of Mt. Erebus. Throughout this time, loading of the lithosphere at the southern end of the Terror Rift by the Ross Island volcanic pile has progressively depressed the crust, resulting in a subcircular flexural moat around the periphery of the island. Multichannel seismic reflection data collected from the McMurdo-Ross Ice Shelf (MRIS) reveal the stratigraphic architecture of the moat-fill on the southeastern side of Ross Island. The moat region has accommodated a well-stratified, regionally extensive sedimentary succession of at least 1.2 km below the seafloor in the deepest part of the depression. Three seismic stratigraphic units are identified that generally thicken and dip towards Ross Island and are bounded by angular (onlap) unconformities. We infer that the three units were deposited in accommodation space created during discrete phases of volcanic load-induced subsidence: Unit III. Moderate to low-amplitude discontinuous reflectors are dislocated and tilted by normal faulting and interpreted to represent coarse-grained glacigenic and fine-grained marine sediments with likely intercalated volcanic ash. These strata may have started to accumulate during loading of the crust by Mt. Bird between ca. 4.6 and 3.8 Ma. Unit II. Moderate to high-amplitude continuous reflectors that onlap Unit III and are interpreted to represent coarse-grained glacigenic and fine-grained marine sediments with likely intercalated volcanic ash. These strata are inferred to have accumulated in the crustal depression resulting from loading by Mt. Terror between ca. 1.8 and 1.3 Ma. Unit I. Relatively continuous low-amplitude to seismically-opaque reflectors (Unit IB), onlap Unit II and grade upwards into

  16. Basal channels on ice shelves

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.

    2013-09-01

    Recent surveys of floating ice shelves associated with Pine Island Glacier (Antarctica) and Petermann Glacier (Greenland) indicate that there are channels incised upward into their bottoms that may serve as the conduits of meltwater outflow from the sub-ice-shelf cavity. The formation of the channels, their evolution over time, and their impact on ice-shelf flow are investigated using a fully-coupled ice-shelf/sub-ice-shelf ocean model. The model simulations suggest that channels may form spontaneously in response to meltwater plume flow initiated at the grounding line if there are relatively high melt rates and if there is transverse to ice-flow variability in ice-shelf thickness. Typical channels formed in the simulations have a width of about 1-3 km and a vertical relief of about 100-200 m. Melt rates and sea-water transport in the channels are significantly higher than on the smooth flat ice bottom between the channels. The melt channels develop through melting, deformation, and advection with ice-shelf flow. Simulations suggest that both steady state and cyclic state solutions are possible depending on conditions along the lateral ice-shelf boundaries. This peculiar dynamics of the system has strong implications on the interpretation of observations. The richness of channel morphology and evolution seen in this study suggests that further observations and theoretical analysis are imperative for understanding ice-shelf behavior in warm oceanic conditions.

  17. Miocene Antarctic ice dynamics in the Ross Embayment (Western Ross Sea, Antarctica): Insights from provenance analyses of sedimentary clasts in the AND-2A drill core

    NASA Astrophysics Data System (ADS)

    Cornamusini, Gianluca; Talarico, Franco M.

    2016-11-01

    A detailed study of gravel-size sedimentary clasts in the ANDRILL-2A (AND-2A) drill core reveals distinct changes in provenance and allows reconstructions to be produced of the paleo ice flow in the McMurdo Sound region (Ross Sea) from the Early Miocene to the Holocene. The sedimentary clasts in AND-2A are divided into seven distinct petrofacies. A comparison of these with potential source rocks from the Transantarctic Mountains and the coastal Southern Victoria Land suggests that the majority of the sedimentary clasts were derived from formations within the Devonian-Triassic Beacon Supergroup. The siliciclastic-carbonate petrofacies are similar to the fossiliferous erratics found in the Quaternary Moraine in the southern McMurdo Sound and were probably sourced from Eocene strata that are currently hidden beneath the Ross Ice Shelf. Intraformational clasts were almost certainly reworked from diamictite and mudstone sequences that were originally deposited proximal to the drill site. The distribution of sedimentary gravel clasts in AND-2A suggests that sedimentary sequences in the drill core were deposited under two main glacial scenarios: 1) a highly dynamic ice sheet that did not extend beyond the coastal margin and produced abundant debris-rich icebergs from outlet glaciers in the central Transantarctic Mountains and South Victoria Land; 2) and an ice sheet that extended well beyond the coastal margin and periodically advanced across the Ross Embayment. Glacial scenario 1 dominated the early to mid-Miocene (between ca. 1000 and 225 mbsf in AND-2A) and scenario 2 the early Miocene (between ca. 1138 and 1000 mbsf) and late Neogene to Holocene (above ca. 225 mbsf). This study augments previous research on the clast provenance and highlights the added value that sedimentary clasts offer in terms of reconstructing past glacial conditions from Antarctic drill core records.

  18. Volcanology and Petrology of Clasts and Tephra in the AND-2A core, ANDRILL Southern McMurdo Sound Project, Antarctica

    NASA Astrophysics Data System (ADS)

    Del Carlo, P.; Panter, K. S.; Rocchi, S.; Bracciali, L.; Field, B.; Bassett, K.

    2008-12-01

    Volcanic material is persistent throughout the AND-2A core and include, in order of relative abundance, volcanic sediment, pyroclasts and lava. Volcanic clasts range from <1-13 cm and consist of lava, breccia, and rounded scoria and pumice granules and pebbles. Clasts of lava vary in texture from glassy to fine- grained pilotaxitic to coarsely porphyritic, and in composition from mafic (clinopyroxene (Mg-rich), olivine, plagioclase) to intermediate (plagioclase, clinopyroxene (Fe-rich), amphibole) to felsic (K-feldspar, clinopyroxene (aegirine), amphibole). The relationships between silica and alkali contents indicate an overall alkaline affinity with significant compositional differences. Volcanic clasts from the top of the core belong to a strongly alkaline lineage (basanite to phonolite) while samples deeper in the core belong to a moderately alkaline linage (alkali basalt to trachyte). The moderately alkaline lineage does not exist in the McMurdo Ice Shelf core (AND-1B), which was drilled ~50 km to the east. The distinction may signify an important spatial and temporal change in volcanism within the region. In the AND-2A core, scoria and pumice are considered to be primary or minimally reworked; windblown and/or transported atop or within ice. Several primary to gently reworked tephra layers are found within sandstone and siltstone in the early to mid-Miocene interval (1093 to 640 mbsf). A primary six cm thick layer of lapilli tuff occurs at 640 mbsf and several clast-supported accumulations of pumice, up to 3.5 cm thick, occur in ripple cross-laminated sands at 709 mbsf. Pumice consists of highly vesiculated colourless glass showing tubular vesicles with delicate bubble walls, which in most cases, are filled by authigenic minerals or completely replaced. The pumice contain rare phenocrysts of anorthoclase that are also found as separate dispersed crystals in the tephra horizons. The pumice glass is highly altered, having very low alkali, magnesium and iron

  19. Measurements of Refractory Black Carbon (rBC) Aerosols in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Khan, A. L.; McMeeking, G. R.; Lyons, W. B.; Schwarz, J. P.; Welch, K. A.; McKnight, D. M.

    2015-12-01

    Measurements of light absorbing particles in the boundary layer of the high southern latitudes are scarce. During the 2013-2014 austral summer field season refractory black carbon (rBC) aerosols were quantified by a single particle soot photometer (SP2) in the McMurdo Dry Valleys, Antarctica. The dark rBC particles absorb more radiation thereby increasing atmospheric heating, as well as reducing surface albedo and enhancing hydrologic melt when deposited on highly reflective surfaces such as snow and ice. Quantifying both local and long-range atmospheric transport of rBC to this region of a remote continent mostly covered by ice and snow would be useful in understanding meltwater generation as climate changes. Although the Dry Valleys are the largest ice-free region of Antarctica, they contain many alpine glaciers, some of which are fed from the East Antarctic Ice Sheet (EAIS). Continuous rBC measurements were collected at Lake Hoare Camp in the Taylor Valley for two months, along with shorter periods at more remote locations within the Dry Valleys. Conditions at the Lake Hoare Camp were dominated by up-valley winds from McMurdo Sound, however, winds also brought air down-valley from the EAIS polar plateau. Here we investigated periods dominated by both up and down-valley winds to explore differences in rBC concentrations, size distributions, and scattering properties. The average background rBC mass concentration was 1ng/m3, though concentrations as high as 50 ng/m3 were observed at times, likely due to local sources.

  20. Oceanology of the antarctic continental shelf: Volume 43

    SciTech Connect

    Jacobs, S.S.

    1985-01-01

    This book discusses the seas of the deep continental shelf, which play an important climatic role in sea ice production, deep ocean ventilation and wastage of the Antarctic ice sheet. This volume includes analyses of measurements taken from ships and satellites, and from sea ice and glacial ice. High resolution profiling equipment, long term bottom-moored instruments, continuous remote sensors, geochemical tracers and computer models have provided the basis for new insights into the continental shelf circulation. Color plates and an accompanying GEBCO Circum-Antarctic map effectively portray the continental shelf in relation to the glaciated continent, the sea ice and the surrounding Southern Ocean.

  1. Ice sheets. Volume loss from Antarctic ice shelves is accelerating.

    PubMed

    Paolo, Fernando S; Fricker, Helen A; Padman, Laurie

    2015-04-17

    The floating ice shelves surrounding the Antarctic Ice Sheet restrain the grounded ice-sheet flow. Thinning of an ice shelf reduces this effect, leading to an increase in ice discharge to the ocean. Using 18 years of continuous satellite radar altimeter observations, we have computed decadal-scale changes in ice-shelf thickness around the Antarctic continent. Overall, average ice-shelf volume change accelerated from negligible loss at 25 ± 64 cubic kilometers per year for 1994-2003 to rapid loss of 310 ± 74 cubic kilometers per year for 2003-2012. West Antarctic losses increased by ~70% in the past decade, and earlier volume gain by East Antarctic ice shelves ceased. In the Amundsen and Bellingshausen regions, some ice shelves have lost up to 18% of their thickness in less than two decades.

  2. Runoff Characterization and Variations at McMurdo Station, Antarctica

    DTIC Science & Technology

    2014-05-13

    provides critical information for planning, operation and maintenance, the design of preventive methods, and the application of best practices...a research facility and the logistics hub of the United States Antarctic Program, located on an outcrop of barren volcanic rock on the southern tip...transported in the runoff during the snowmelt period. The McMurdo watershed is bounded by high ridges and sloping hills of barren volcanic rock

  3. Detrital carbonate peaks on the Labrador shelf, a 13-7 ka template for freshwater forcing from the Hudson Strait outlet of the Laurentide Ice Sheet into the subpolar gyre

    NASA Astrophysics Data System (ADS)

    Jennings, Anne; Andrews, John; Pearce, Christof; Wilson, Lindsay; Ólfasdótttir, Sædís

    2015-01-01

    The Laurentide Ice Sheet (LIS) was a large, dynamic ice sheet in the early Holocene. The glacial events through Hudson Strait leading to its eventual demise are recorded in the well-dated Labrador shelf core, MD99-2236 from the Cartwright Saddle. We develop a detailed history of the timing of ice-sheet discharge events from the Hudson Strait outlet of the LIS during the Holocene using high-resolution detrital carbonate, ice rafted detritus (IRD), δ18O, and sediment color data. Eight detrital carbonate peaks (DCPs) associated with IRD peaks and light oxygen isotope events punctuate the MD99-2236 record between 11.5 and 8.0 ka. We use the stratigraphy of the DCPs developed from MD99-2236 to select the appropriate ΔR to calibrate the ages of recorded glacial events in Hudson Bay and Hudson Strait such that they match the DCPs in MD99-2236. We associate the eight DCPs with H0, Gold Cove advance, Noble Inlet advance, initial retreat of the Hudson Strait ice stream (HSIS) from Hudson Strait, opening of the Tyrrell Sea, and drainage of glacial lakes Agassiz and Ojibway. The opening of Foxe Channel and retreat of glacial ice from Foxe Basin are represented by a shoulder in the carbonate data. ΔR of 350 years applied to the radiocarbon ages constraining glacial events H0 through the opening of the Tyrell Sea provided the best match with the MD99-2236 DCPs; ΔR values and ages from the literature are used for the younger events. A very close age match was achieved between the 8.2 ka cold event in the Greenland ice cores, DCP7 (8.15 ka BP), and the drainage of glacial lakes Agassiz and Ojibway. Our stratigraphic comparison between the DCPs in MD99-2236 and the calibrated ages of Hudson Strait/Bay deglacial events shows that the retreat of the HSIS, the opening of the Tyrell Sea, and the catastrophic drainage of glacial lakes Agassiz and Ojibway at 8.2 ka are separate events that have been combined in previous estimates of the timing of the 8.2 ka event from marine records

  4. Improved High-Quality Draft Genome Sequence of the Eurypsychrophile Rhodotorula sp. JG1b, Isolated from Permafrost in the Hyperarid Upper-Elevation McMurdo Dry Valleys, Antarctica

    PubMed Central

    Goordial, Jacqueline; Raymond-Bouchard, Isabelle; Riley, Robert; Ronholm, Jennifer; Shapiro, Nicole; Woyke, Tanja; LaButti, Kurt M.; Tice, Hope; Amirebrahimi, Mojgan; Grigoriev, Igor V.; Greer, Charles; Bakermans, Corien

    2016-01-01

    Here, we report the draft genome sequence of Rhodotorula sp. strain JG1b, a yeast that was isolated from ice-cemented permafrost in the upper-elevation McMurdo Dry Valleys, Antarctica. The sequenced genome size is 19.39 Mb, consisting of 156 scaffolds and containing a total of 5,625 predicted genes. This is the first known cold-adapted Rhodotorula sp. sequenced to date. PMID:26988035

  5. Design of an Autonomous Underwater Vehicle to Calibrate the Europa Clipper Ice-Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Stone, W.; Siegel, V.; Kimball, P.; Richmond, K.; Flesher, C.; Hogan, B.; Lelievre, S.

    2013-12-01

    Jupiter's moon Europa has been prioritized as the target for the Europa Clipper flyby mission. A key science objective for the mission is to remotely characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange. This objective is a critical component of the mission's overarching goal of assessing the habitability of Europa. The instrument targeted for addressing key aspects of this goal is an ice-penetrating radar (IPR). As a primary goal of our work, we will tightly couple airborne IPR studies of the Ross Ice Shelf by the Europa Clipper radar team with ground-truth data to be obtained from sub-glacial sonar and bio-geochemical mapping of the corresponding ice-water and water-rock interfaces using an advanced autonomous underwater vehicle (AUV). The ARTEMIS vehicle - a heavily morphed long-range, low drag variant of the highly successful 4-degree-of-freedom hovering sub-ice ENDURANCE bot -- will be deployed from a sea-ice drill hole adjacent the McMurdo Ice Shelf (MIS) and will perform three classes of missions. The first includes original exploration and high definition mapping of both the ice-water interface and the benthic interface on a length scale (approximately 10 kilometers under-ice penetration radius) that will definitively tie it to the synchronous airborne IPR over-flights. These exploration and mapping missions will be conducted at up to 10 different locations along the MIS in order to capture varying ice thickness and seawater intrusion into the ice shelf. Following initial mapping characterization, the vehicle will conduct astrobiology-relevant proximity operations using bio-assay sensors (custom-designed UV fluorescence and machine-vision-processed optical imagery) followed by point-targeted studies at regions of interest. Sample returns from the ice-water interface will be triggered autonomously using real-time-processed instrument data and onboard decision-to-collect algorithms

  6. Decadal Trends in Abundance, Size and Condition of Antarctic Toothfish in McMurdo Sound, Antarctica, 1972-2010

    NASA Technical Reports Server (NTRS)

    Ainley, David G.; Nur, Nadav; Eastman, Joseph T.; Ballard. Grant; Parkinson, Claire L; Evans, Clive W.; DeVries, Arthur L.

    2012-01-01

    We report analyses of a dataset spanning 38 years of near-annual fishing for Antarctic toothfish Dissostichus mawsoni, using a vertical setline through the fast ice of McMurdo Sound, Antarctica, 1972-2010. This constitutes one of the longest biological time series in the Southern Ocean, and certainly the longest for any fish. Fish total length, condition and catch per unit effort (CPUE) were derived from the more than 5500 fish caught. Contrary to expectation, length-frequency was dominated by fish in the upper half of the industrial catch. The discrepancy may be due to biases in the sampling capabilities of vertical (this study) versus benthic (horizontal) fishing gear (industry long lines), related to the fact that only large Antarctic toothfish (more than 100 cm TL) are neutrally buoyant and occur in the water column. Fish length and condition increased from the early 1970s to the early 1990s and then decreased, related to sea ice cover, with lags of 8 months to 5 years, and may ultimately be related to the fishery (which targets large fish) and changes in the Southern Annular Mode through effects on toothfish main prey, Antarctic silverfish Pleuragramma antarcticum. CPUE was constant through 2001 and then decreased dramatically, likely related to the industrial fishery, which began in 1996 and which concentrates effort over the Ross Sea slope, where tagged McMurdo fish have been found. Due to limited prey choices and, therefore, close coupling among mesopredators of the Ross Sea, Antarctic toothfish included, the fishery may be altering the trophic structure of the Ross Sea.

  7. Dynamics of the late Plio-Pleistocene West Antarctic Ice Sheet documented in subglacial diamictites, AND-1B drill core

    NASA Astrophysics Data System (ADS)

    Cowan, Ellen A.; Christoffersen, Poul; Powell, Ross D.; Talarico, Franco M.

    2014-08-01

    Geologic studies of sediment deposited by glaciers can provide crucial insights into the subglacial environment. We studied muddy diamictites in the ANtarctic geological DRILLing (ANDRILL) AND-1B drill core, acquired from beneath the Ross Ice Shelf in McMurdo Sound, with the aim of identifying paleo-ice stream activity in the Plio-Pleistocene. Glacial advances were identified from glacial surfaces of erosion (GSEs) and subglacial diamictites within three complete sequences were investigated using lithofacies associations, micromorphology, and quartz sand grain microtextures. Whereas conditions in the Late Pliocene resemble the modern Greenland Ice Sheet where fast flowing glaciers lubricated by surface meltwater terminate directly in the sea (interval 201-212 mbsl) conditions in the Late Pleistocene are similar to modern West Antarctic Ice Sheet (WAIS) ice streams (38-49 mbsl). We identify the latter from ductile deformation and high pore-water pressure, which resulted in pervasive rotation and formation of till pellets and low relief, rounded sand grains dominated by abrasion. In the transitional period during the Mid-Pleistocene (55-68 mbsf), a slow moving inland ice sheet deposited tills with brittle deformation, producing lineations and bi-masepic and unistrial plasma fabric, along with high relief, conchoidally fractured quartz grains. Changes in the provenance of gravel to cobble-size clasts support a distant source area of Byrd Glacier for fast-flowing paleo-ice streams and a proximal area between Darwin and Skelton Glaciers for the slow-moving inland ice sheet. This difference in till provenance documents a shift in direction of glacial flow at the core site, which indirectly reflects changes in the size and thickness of the WAIS. Hence, we found that fast ice streaming motion is a consequence of a thicker WAIS pushing flow lines to the west and introducing clasts from the Byrd Glacier source area to the drill site. The detailed analysis of diamictites in

  8. McMurdo Dry Valleys, Antarctica - A Mars Phoenix Mission Analog

    NASA Technical Reports Server (NTRS)

    Tamppari, L. K.; Anderson, R. M.; Archer, D.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Ming, Douglas W.; Moore, Q.; Quinn, J. E.; Smith, P. H.; Stroble, S.; Zent, A. P.

    2010-01-01

    The Phoenix mission (PHX; May 25 - Nov. 2, 2008) studied the north polar region of Mars (68deg N) to understand the history of water and potential for habitability. Phoenix carried with it a wet chemistry lab (WCL) capable of determining the basic solution chemistry of the soil and the pH value, a thermal and evolved-gas analyzer capable of determining the mineralogy of the soil and detecting ice, microscopes capable of seeing soil particle shapes, sizes and colors at very high resolution, and a soil probe (TECP) capable of detecting unfrozen water in the soil. PHX coincided with an international effort to study the Earth s polar regions named the International Polar Year (IPY; 2007-2008). The best known Earth analog to the Martian high-northern plains, where Phoenix landed, are the McMurdo Dry Valleys (MDV), Antarctica (Fig. 1). Thus, the IPY afforded a unique opportunity to study the MDV with the same foci - history of water and habitability - as PHX. In austral summer 2007, our team took engineering models of WCL and TECP into the MDV and performed analgous measurements. We also collected sterile samples and analyzed them in our home laboratories using state-of-the-art tools. While PHX was not designed to perform biologic analyses, we were able to do so with the MDV analog samples collected.

  9. Stratosphere aerosol and cloud measurements at McMurdo Station Antarctica during the spring of 1987

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Rosen, J. M.; Harder, J. W.

    1988-01-01

    Measurements of stratospheric aerosols with balloonborne optical particle counters on 6 occasions at McMurdo Station (78 deg S) in the spring of 1986 indicated subsidence of the stratospheric sulfate layer during the time that the ozone hole was forming (Hofmann et al., 1988). Since dynamic models of ozone depletion involving upwelling in the spring polar vortex would suggest the opposite, we repeated the measurements with an increased frequency (about one sounding per week) in 1987. During 3 of the aerosol soundings in 1986, temperatures in the 15 to 20 km range were low enough (less than 80 C) for HNO3 to co-condense with water according to several theories of polar stratospheric cloud formation. However, particles were not observed with the characteristic size suggested by theory (approx. 0.5 microns). For this reason, it was proposed that polar stratospheric clouds may predominantly consist of large (approx. 5 to 50 microns) ice crystals at very low (approx. 10 sup 4- 10 sup 3 cm cubed) concentrations (Rosen et al., 1988). The particle counter employed would be relatively insensitive to these low concentrations. With the increased frequency of soundings in 1987, and adding additional size discrimination in the 1 to 2 micron region, this hypothesis could be verified if suitably low temperatures were encountered.

  10. Turbulent heat transfer as a control of platelet ice growth in supercooled under-ice ocean boundary layers

    NASA Astrophysics Data System (ADS)

    McPhee, Miles G.; Stevens, Craig L.; Smith, Inga J.; Robinson, Natalie J.

    2016-04-01

    Late winter measurements of turbulent quantities in tidally modulated flow under land-fast sea ice near the Erebus Glacier Tongue, McMurdo Sound, Antarctica, identified processes that influence growth at the interface of an ice surface in contact with supercooled seawater. The data show that turbulent heat exchange at the ocean-ice boundary is characterized by the product of friction velocity and (negative) water temperature departure from freezing, analogous to similar results for moderate melting rates in seawater above freezing. Platelet ice growth appears to increase the hydraulic roughness (drag) of fast ice compared with undeformed fast ice without platelets. Platelet growth in supercooled water under thick ice appears to be rate-limited by turbulent heat transfer and that this is a significant factor to be considered in mass transfer at the underside of ice shelves and sea ice in the vicinity of ice shelves.

  11. Rheology of glacier ice

    NASA Technical Reports Server (NTRS)

    Jezek, K. C.; Alley, R. B.; Thomas, R. H.

    1985-01-01

    A new method for calculating the stress field in bounded ice shelves is used to compare strain rate and deviatoric stress on the Ross Ice Shelf, Antarctica. The analysis shows that strain rate (per second) increases as the third power of deviatoric stress (in newtons/sq meter), with a constant of proportionality equal to 2.3 x 10 to the -25th.

  12. Glaciology: Vulnerable Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Siegert, Martin

    2017-01-01

    The decay of floating ice shelves around Antarctica speeds up ice flow from the continent and contributes to increased sea-level rise. Now, meltwater attributed to warm winds has been discovered on an East Antarctic ice shelf, suggesting greater vulnerability than previously thought.

  13. Vehicle Impact Testing of Snow Roads at McMurdo Station, Antarctica

    DTIC Science & Technology

    2014-06-01

    McMurdo Station, Antarctica Co ld R eg io ns R es ea rc h an d En gi ne er in g La bo ra to ry Sally A. Shoop, Margaret A. Knuth, Wendy L...Vehicle Impact Testing of Snow Roads at McMurdo Station, Antarctica Sally A. Shoop, Margaret A. Knuth, and Monica Preston Cold Regions Research and...kilograms ERDC/CRREL TR-14-9 xii ERDC/CRREL TR-14-9 1 1 Introduction 1.1 Issue McMurdo Station, Antarctica , has approximately 20 miles (32 km

  14. Alaska marine ice atlas

    SciTech Connect

    LaBelle, J.C.; Wise, J.L.; Voelker, R.P.; Schulze, R.H.; Wohl, G.M.

    1982-01-01

    A comprehensive Atlas of Alaska marine ice is presented. It includes information on pack and landfast sea ice and calving tidewater glacier ice. It also gives information on ice and related environmental conditions collected over several years time and indicates the normal and extreme conditions that might be expected in Alaska coastal waters. Much of the information on ice conditions in Alaska coastal waters has emanated from research activities in outer continental shelf regions under assessment for oil and gas exploration and development potential. (DMC)

  15. Strong coupling among Antarctic ice shelves, ocean circulation and sea ice in a global sea-ice - ocean circulation model

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2016-04-01

    The thermodynamic effects of Antarctic ice shelf interaction with ocean circulation are investigated using a global, high-resolution, isopycnal ocean-circulation model coupled to a sea-ice model. The model uses NASA MERRA Reanalysis from 1992 to 2011 as atmospheric forcing. The simulated long-period variability of ice-shelf melting/freezing rates differ across geographic locations. The ice shelves in Antarctic Peninsula, Amundsen and Bellingshausen sea embayments and the Amery Ice Shelf experience an increase in melting starting from 2005. This increase in melting is due to an increase in the subsurface (100-500 m) ocean heat content in the embayments of these ice shelves, which is caused by an increase in sea-ice concentration after 2005, and consequent reduction of the heat loss to the atmosphere. Our simulations provide a strong evidence for a coupling between ocean circulation, sea ice and ice shelves.

  16. Cryosphere: Warming ocean erodes ice sheets

    NASA Astrophysics Data System (ADS)

    Kusahara, Kazuya

    2016-01-01

    Antarctic ice sheets are a key player in sea-level rise in a warming climate. Now an ice-sheet modelling study clearly demonstrates that an Antarctic ice sheet/shelf system in the Atlantic Ocean will be regulated by the warming of the surrounding Southern Ocean, not by marine-ice-sheet instability.

  17. Waste Water Handling Proof of Concepts at McMurdo Station, Antarctica

    DTIC Science & Technology

    2014-09-17

    5 2.2.3 McMurdo Waste Water Treatment Plant...Compound WWTP Waste Water Treatment Plant ERDC/CRREL TR-14-17 vii Unit Conversion Factors Multiply By To Obtain British thermal units (International...transportation of waste back to the waste water treatment plant (WWTP) at McMurdo Station via a vacuum tank. After three seasons of testing both the

  18. Uncovering the glacial history of the Irish continental shelf (Invited)

    NASA Astrophysics Data System (ADS)

    Dunlop, P.; Benetti, S.; OCofaigh, C.

    2013-12-01

    In 1999 the Irish Government initiated a €32 million survey of its territorial waters known as the Irish National Seabed Survey (INSS). The INSS is amongst the largest marine mapping programmes ever undertaken anywhere in the world and provides high-resolution multibeam, backscatter and seismic data of the seabed around Ireland. These data have been used to provide the first clear evidence for extensive glaciation of the continental shelf west and northwest of Ireland. Streamlined drumlins on the mid to outer shelf record former offshore-directed ice flow towards the shelf edge and show that the ice sheet was grounded in a zone of confluence where ice flowing onto the shelf from northwest Ireland merged with ice flowing across the Malin Shelf from southwest Scotland. The major glacial features on the shelf are well developed nested arcuate moraine systems that mark the position of the ice sheet margin and confirm that the former British Irish Ice Sheet was grounded as far as the shelf edge around 100 km offshore of west Donegal at the last glacial maximum. Distal to the moraines, on the outermost shelf, prominent zones of iceberg plough marks give way to the Barra/Donegal fan and a well developed system of gullies and canyons which incise the continental slope. Since 2008 several scientific cruises have retrieved cores from the shelf and slope to help build a more detailed understanding of glacial events in this region. This presentation will provide an overview of the glacial history of the Irish shelf and will discuss ongoing research programmes that are building on the initial research findings to produce a better understanding of the nature and timing of ice sheet events in this region.

  19. Results of SO{sub 2}, NO{sub x}, and CO monitoring at McMurdo Station, Antarctica

    SciTech Connect

    Lugar, R.M.

    1993-05-01

    This report presents the results of ambient air monitoring of carbon monoxide (CO), sulfur dioxide (SO{sub 2}), nitric oxide (NO), nitrogen dioxide (NO{sub 2}), and total oxides of nitrogen (NO{sub x}) performed during the final weeks of the 1992-1993 austral summer in the vicinity of McMurdo Station, Antarctica. Commercially available, high sensitivity ambient air gas analyzers were used to continuously measure gas concentrations at two locations over a two and a three week time period respectively. Sampling site selection, sampling procedures and quality assurance procedures used for this effort were consistent with U.S. Environmental Protection Agency guidelines for local ambient air quality networks. CO, SO{sub 2}, and NO{sub 2} concentrations measured were below the associated U.S. National Ambient Air Quality Standards. Carbon monoxide levels measured at both locations were near or below the instrument detection limit of 0.1 part per million (ppm). Hourly average SO{sub 2} concentrations ranged from below the detection limit of 1 part per billion (ppb) to a single maximum hourly average value of 60 ppb. Hourly average NO{sub 2} concentrations ranged from below the detection limit of 1 ppb to a single maximum hourly average value of 26 ppb. The impact on local air quality of ships docked at an ice pier was observed and quantified. The initial baseline effort demonstrated that site selection and sampling equipment performance were satisfactory, and provided useful data for assessing the impact of McMurdo operations on the local ambient air quality.

  20. Into the Deep Black Sea: The Icefin Modular AUV for Ice-Covered Ocean Exploration

    NASA Astrophysics Data System (ADS)

    Meister, M. R.; Schmidt, B. E.; West, M. E.; Walker, C. C.; Buffo, J.; Spears, A.

    2015-12-01

    The Icefin autonomous underwater vehicle (AUV) was designed to enable long-range oceanographic exploration of physical and biological ocean environments in ice-covered regions. The vehicle is capable of surveying under-ice geometry, ice and ice-ocean interface properties, as well as water column conditions beneath the ice interface. It was developed with both cryospheric and planetary-analog exploration in mind. The first Icefin prototype was successfully operated in Antarctica in Austral summer 2014. The vehicle was deployed through a borehole in the McMurdo Ice Shelf near Black Island and successfully collected sonar, imaging, video and water column data down to 450 m depth. Icefin was developed using a modular design. Each module is designed to perform specific tasks, dependent on the mission objective. Vehicle control and data systems can be stably developed, and power modules added or subtracted for mission flexibility. Multiple sensor bays can be developed in parallel to serve multiple science objectives. This design enables the vehicle to have greater depth capability as well as improved operational simplicity compared to larger vehicles with equivalent capabilities. As opposed to those vehicles that require greater logistics and associated costs, Icefin can be deployed through boreholes drilled in the ice. Thus, Icefin satisfies the demands of achieving sub-ice missions while maintaining a small form factor and easy deployment necessary for repeated, low-logistical impact field programs. The current Icefin prototype is 10.5 inches in diameter by 10 feet long and weighs 240 pounds. It is comprised of two thruster modules with hovering capabilities, an oceanographic sensing module, main control module and a forward-sensing module for obstacle avoidance. The oceanographic sensing module is fitted with a side scan sonar (SSS), CT sensor, altimetry profiler and Doplar Velocity Log (DVL) with current profiling. Icefin is depth-rated to 1500 m and is equipped with

  1. The safety band of Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Fürst, Johannes Jakob; Durand, Gaël; Gillet-Chaulet, Fabien; Tavard, Laure; Rankl, Melanie; Braun, Matthias; Gagliardini, Olivier

    2016-05-01

    The floating ice shelves along the seaboard of the Antarctic ice sheet restrain the outflow of upstream grounded ice. Removal of these ice shelves, as shown by past ice-shelf recession and break-up, accelerates the outflow, which adds to sea-level rise. A key question in predicting future outflow is to quantify the extent of calving that might precondition other dynamic consequences and lead to loss of ice-shelf restraint. Here we delineate frontal areas that we label as `passive shelf ice’ and that can be removed without major dynamic implications, with contrasting results across the continent. The ice shelves in the Amundsen and Bellingshausen seas have limited or almost no `passive’ portion, which implies that further retreat of current ice-shelf fronts will yield important dynamic consequences. This region is particularly vulnerable as ice shelves have been thinning at high rates for two decades and as upstream grounded ice rests on a backward sloping bed, a precondition to marine ice-sheet instability. In contrast to these ice shelves, Larsen C Ice Shelf, in the Weddell Sea, exhibits a large `passive’ frontal area, suggesting that the imminent calving of a vast tabular iceberg will be unlikely to instantly produce much dynamic change.

  2. Was the exposed continental shelf a long-distance colonization route in the ice age? The Southeast Asia origin of Hainan and Taiwan partridges.

    PubMed

    Chen, De; Chang, Jiang; Li, Shou-Hsien; Liu, Yang; Liang, Wei; Zhou, Fang; Yao, Cheng-Te; Zhang, Zhengwang

    2015-02-01

    Research on island biotas has greatly contributed to the development of modern evolutionary and biogeographic theories. Until now, most studies have suggested that continental islands received their biotas directly from the adjacent mainland. However, only a few studies have indicated that species on continental islands might originate from other distantly non-adjacent regions. Here, we used the hill partridges (genus Arborophila) that are widely distributed in the southwest and southeast China mainland, Indochina, Hainan and Taiwan islands to test whether species on continental islands might originate from distant regions rather than the adjacent mainland. Based on molecular phylogenies inferred from three mitochondrial fragments and three nuclear introns, together with ancestral area reconstruction, we found that the ancestors of the endemic Hainan and Taiwan partridges (A. ardens and A. crudigularis) likely originated from Indochina, rather than the nearby southeast China mainland. The divergence time estimates demonstrate that their ancestors likely colonized Hainan and Taiwan islands using the long exposed continental shelf between Indochina, Hainan and Taiwan islands during glacial periods, which had not been demonstrated before. Thus, integrating distribution data with phylogenetic information can shed new lights on the historical biogeography of continental islands and surrounding mainland regions.

  3. The McMurdo Dry Valleys, Antarctica: Terrestrial and aquatic ecosystems responding to climatic events that enhance hydrologic transport acress the landscape

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Lyons, W. B.; Fountain, A. G.; Gooseff, M. N.; Doran, P. T.; Wall, D. H.; Virginia, R. A.; Priscu, J. C.; Adams, B.; Vesbach-Takacs, C.; Barrett, J. E.; Howkins, A.

    2014-12-01

    The McMurdo Dry Valleys of Antarctica is comprised of alpine and terminal glaciers, large expanses of patterned ground, and permanently ice-covered lakes in the valley floors, which are linked by glacial meltwater streams that flow during the austral summer. These valleys were first explored by Robert Scott and his party in 1903. In 1968 the New Zealand Antarctic Program began a gauging network on the Onyx River, a 32 km river in Wright Valley which is the longest river in Antarctica. As part of the McMurdo Dry Valleys Long-Term Ecological research project our research group has monitored meteorological conditions, glacial mass balance, lake level and streamflow in the adjacent Taylor Valley. The extent of liquid water throughout the landscape is strongly controlled by summer climate, and the availability of liquid water in turn is a limitation to the microscopic life that is present in the diverse habitats in the valleys. We have studied the responses of soil, lake, stream and cryoconite ecosystems through a sustained cooling period that has been driven by atmospheric changes associated with the ozone hole. In the past decade, this cooling period appears to have ceased and summer conditions have become more variable. Three warm sunny summers have occurred since 2001/02. These conditions have created weeks long "flood events" in the valleys, causing wet areas to emerge in the soils, thermokarsting in some stream channels and increases in lake level. These flood events can be considered as pulse events that drive an increase in ecosystem connectivity, changing rates of biogeochemical processes and the distribution of biota. Collectively the ecosystems of the McMurdo Dry Valleys are highly responsive to dynamic climatic influences associated with the ozone hole and global warming.

  4. Channelized bottom melting and stability of floating ice shelves

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Steffen, K.

    2008-01-01

    The floating ice shelf in front of Petermann Glacier, in northwest Greenland, experiences massive bottom melting that removes 80% of its ice before calving into the Arctic Ocean. Detailed surveys of the ice shelf reveal the presence of 1-2 km wide, 200-400 m deep, sub-ice shelf channels, aligned with the flow direction and spaced by 5 km. We attribute their formation to the bottom melting of ice from warm ocean waters underneath. Drilling at the center of one of channel, only 8 m above sea level, confirms the presence of ice-shelf melt water in the channel. These deep incisions in ice-shelf thickness imply a vulnerability to mechanical break up and climate warming of ice shelves that has not been considered previously.

  5. Frequency, magnitude, and characteristics of aeolian sediment transport: McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Gillies, John A.; Nickling, William G.; Tilson, Michael

    2013-06-01

    Due, in part, to the challenging environment of Earth's high-latitude regions, available information on cold climate effects on aeolian processes in these areas remains limited. Data from these areas, however, provide insight into the physics of sediment transport by wind and the controls on erosive winds in proximity to ice caps and topographic influences. This study presents a 2 year record of meteorological, saltation activity, horizontal saltation flux, and particle size distribution data from four sites in the McMurdo Dry Valleys of Antarctica, 2008 to 2010. Saltation measurements revealed daily and seasonal patterns with spring and summer sediment transport events occurring between 09:00 and 24:00 hours due to thermally generated winds. Fall and winter events occur at any time of day with the strongest associated with foehn winds. Threshold wind speed at 4.2 m in all seasons for all locations was ≈10 m s-1. Saltation occurred in the temperature range -40°C to +5°C. Westerly winds in the fall/winter and easterly winds in spring/summer are associated with the majority of transport events. The sand in transport is mainly 250 to 500 µm in diameter and poorly sorted. The integrated saltation flux varies over three orders of magnitude among the sites, with the lowest mean flux recorded in the Taylor Valley (2.9 kg m-1 day-1) and the highest in the eastern Victoria Valley (2271 kg m-1 day-1) for 24 hours of continuous saltation. The percentage of time saltation active at these locations annually is ≈2%, ≈4%, and ≈13%, respectively, for the Victoria, Taylor, and Wright Valleys.

  6. Ice Shelves and Landfast Ice on the Antarctic Perimeter: Revised Scope of Work

    NASA Technical Reports Server (NTRS)

    Scambos, Ted

    2002-01-01

    Ice shelves respond quickly and profoundly to a warming climate. Within a decade after mean summertime temperature reaches approx. O C and persistent melt pending is observed, a rapid retreat and disintegration occurs. This link was documented for ice shelves in the Antarctic Peninsula region (the Larsen 'A', 'B' and Wilkins Ice shelves) by the results of a previous grant under ADRO-1. Modeling of ice flow and the effects of meltwater indicated that melt pending accelerates shelf breakup by increasing fracture penetration. SAR data supplemented an AVHRR- and SSM/I-based image analysis of extent and surface characteristic changes. This funded grant is a revised, scaled-down version of an earlier proposal under the ADRO-2 NRA. The overall objective remains the same: we propose to build on the previous study by examining other ice shelves of the Antarctic and incorporate an examination of the climate-related characteristics of landfast ice. The study now considers just a few shelf and fast ice areas for study, and is funded for two years. The study regions are the northeastern Ross Ice Shelf, the Larsen 'B' and 'C' shelves, fast ice and floating shelf ice in the Pine Island Glacier area, and fast ice along the Wilkes Land coast. Further, rather than investigating a host of shelf and fast ice processes, we will home in on developing a series of characteristics associated with climate change over shelf and fast ice areas. Melt pending and break-up are the end stages of a response to a warming climate that may begin with increased melt event frequency (which changes both albedo and emissivity temporarily), changing firn backscatter (due to percolation features), and possibly increased rifting of the shelf surface. Fast ice may show some of these same processes on a seasonal timescale, providing insight into shelf evolution.

  7. Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    De Carlo, Eric Heinen; Green, William J.

    2002-04-01

    We present data on the composition of water from Lake Vanda, Antarctica. Vanda and other lakes in the McMurdo Dry Valleys of Antarctica are characterized by closed basins, permanent ice covers, and deep saline waters. The meromictic lakes provide model systems for the study of trace metal cycling owing to their pristine nature and the relative simplicity of their biogeochemical systems. Lake Vanda, in the Wright Valley, is supplied by a single input, the Onyx River, and has no output. Water input to the lake is balanced by sublimation of the nearly permanent ice cap that is broken only near the shoreline during the austral summer. The water column is characterized by an inverse thermal stratification of anoxic warm hypersaline water underlying cold oxic freshwater. Water collected under trace-element clean conditions was analyzed for its dissolved and total rare earth element (REE) concentrations by inductively coupled plasma mass spectrometry. Depth profiles are characterized by low dissolved REE concentrations (La, Ce, <15 pM) in surface waters that increase slightly (La, 70 pM; Ce, 20 pM) with increasing depth to ˜55 m, the limit of the fresh oxic waters. Below this depth, a sharp increase in the concentrations of strictly trivalent REE (e.g., La, 5 nM) is observed, and a submaximum in redox sensitive Ce (2.6 nM) is found at 60- to 62-m depth. At a slightly deeper depth, a sharper Ce maximum is observed with concentrations exceeding 11 nM at a 67-m depth, immediately above the anoxic zone. The aquatic concentrations of REE reported here are ˜50-fold higher than previously reported for marine oxic/anoxic boundaries and are, to our knowledge, the highest ever observed at natural oxic/anoxic interfaces. REE maxima occur within stable and warm saline waters. All REE concentrations decrease sharply in the sulfidic bottom waters. The redox-cline in Lake Vanda is dominated by diffusional processes and vertical transport of dissolved species driven by concentration

  8. Ocean current observations near McMurdo Station, Antarctica from 1991 to 1993: Relation to wastewater discharge dispersal

    SciTech Connect

    Barry, J.P.

    1994-08-01

    Analyses of ocean currents in the vicinity of McMurdo Station, Antarctica, are relevant to the transport and dispersal of wastewater from the McMurdo Station sewage outfall pipe. Observations of ocean currents during the initial phases of this study have been presented by Howington and McFeters. These studies, using coliform bacterial counts as an indicator of dispersion of the wastewater plume and current meters to measure flow patterns, indicated that dispersal of the plume by local currents does not effectively remove the plume from the vicinity of McMurdo Sound, under the present outfall pipe location. Moreover, these studies suggest that, although the flow pattern is generally consistent with transport of the plume away from McMurdo Station, episodes of current reversal are sufficient to transport the wastewater plume along the shore toward the southeast, eventually overlapping the seawater intake area near the McMurdo jetty. Several concerns included (a) impacts of wastewater inputs to nearshore benthic and pelagic habitats adjacent to McMurdo Station, (b) effects of wastewater input to the McMurdo Station fresh water intake source, and (c) reduction in human impacts on the McMurdo Sound ecosystem. These concerns motivated studies to characterize nearshore currents more extensively in relation to dispersal of the wastewater plume. This report discusses analysis results of current observations from November 1992 to November 1993.

  9. Formation of melt channels on ice shelves

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2013-04-01

    Melt channels have been observed on ice shelves experiencing strong melting in both Greenland (Petermann Glacier) and Antarctica (Pine Island Glacier). Using a fully-couple ice-shelf/sub-ice-shelf-ocean flow model, it is demonstrated that these channels can form spontaneously in laterally confined ice shelves. These channels have transverse extent of a few kilometers and a vertical relief of about a few hundred meters. Meltrates and sea-water transport in the channels are significantly higher than in between the channels on the smooth flat ice bottom. In circumstances where an ice shelf has no-slip conditions at its lateral boundaries, the ice-shelf/sub-ice-shelf-cavity system exhibits equilibrium periodic states, where the same configurations repetitively appear with a periodicity of about 30-35 years. This peculiar dynamics of the system has strong implications on the interpretation of the remote and in-situ observations and inferences of the system parameters (e.g., melt rates) based on these observations. For instance, the persistent temporal changes in the ice-shelf thickness are caused by internal dynamics of the melt channels, and, in contrast to traditional interpretation, can be independent of the oceanic forcings.

  10. Application of ground-penetrating radar at McMurdo Station, Antarctica

    SciTech Connect

    Stefano, J.E.

    1992-01-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station.

  11. Application of ground-penetrating radar at McMurdo Station, Antarctica

    SciTech Connect

    Stefano, J.E.

    1992-05-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station.

  12. A Sr-Nd-Hf isotope characterization of dust source areas in Victoria Land and the McMurdo Sound sector of Antarctica

    NASA Astrophysics Data System (ADS)

    Blakowski, Molly A.; Aciego, Sarah M.; Delmonte, Barbara; Baroni, Carlo; Salvatore, Maria Cristina; Sims, Kenneth W. W.

    2016-06-01

    Determining the geographical provenance of dust provides crucial insight into the global dust cycle. For the East Antarctic Ice Sheet (EAIS), the importance of Southern hemisphere potential dust sources has been thoroughly investigated using radiogenic isotopes, whereas proximal dust source areas located on the periphery of the ice sheet remain poorly documented from a geochemical standpoint. In this work, we expand the existing isotopic (Srsbnd Nd) catalogue of dust and sand-sized sediments from Victoria Land and the McMurdo Sound sector, and incorporate Hf isotopic data to place additional constraints on dust source identification. The isotopic field for materials considered in this study is characterized by 87Sr/86Sr ratios ranging from 0.703 to 0.783, εNd between -12.01 and 6.36, and εHf from -16.77 to 6.89. As reported in previous works, the data reveal close relationships between Antarctic sediments and distinct parent lithologies; in addition, our findings emphasize the background presence of very fine dusts originating from dominant global sources and regional volcanic activity as barriers to direct source-to-sink comparison of isotopic signatures. Thus, geochemical characterizations of dust sources to the Antarctic ice sheet involving multiple size fractions, including coarser-grained particles more susceptible to short-range transport, can help us to rule out global sources of dust when examining local sediment cores and ice cores.

  13. The "Golden Shale": An indicator of coastal stability for Marble Point, McMurdo Sound, over the last four million years

    USGS Publications Warehouse

    Claridge, G.G.C.; Campbell, I.B.

    2007-01-01

    A small sedimentary deposit near Gneiss Point on the western side of McMurdo Sound, previously identified as shale, is described. The deposit is phillipsite, a zeolite that is believed to have formed from the deposition and alteration of volcanic ash in a small ice-marginal saline lake. Other previously recorded occurrences of phillipsite in the dry valleys are believed to be several million years old. A similar age for this deposit is suggested for the Gneiss Point deposit. This is consistent with other weathering and landscape features found in the immediate area, including traces of halloysite in soils. The deposit is very close to sea level but could not have formed if the site had been below sea level, indicating that there has been very little uplift following that which caused the sea to retreat from the Wright Fiord.

  14. 'McMurdo' Panorama from Spirit's 'Winter Haven' (Stereo)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This 360-degree view, called the 'McMurdo' panorama, comes from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit. From April through October 2006, Spirit has stayed on a small hill known as 'Low Ridge.' There, the rover's solar panels are tilted toward the sun to maintain enough solar power for Spirit to keep making scientific observations throughout the winter on southern Mars. This view of the surroundings from Spirit's 'Winter Haven' is presented as a stereo anaglyph to show the scene three-dimensionally when viewed through red-blue glasses (with the red lens on the left).

    Oct. 26, 2006, marks Spirit's 1,000th sol of what was planned as a 90-sol mission. (A sol is a Martian day, which lasts 24 hours, 39 minutes, 35 seconds). The rover has lived through the most challenging part of its second Martian winter. Its solar power levels are rising again. Spring in the southern hemisphere of Mars will begin in early 2007. Before that, the rover team hopes to start driving Spirit again toward scientifically interesting places in the 'Inner Basin' and 'Columbia Hills' inside Gusev crater. The McMurdo panorama is providing team members with key pieces of scientific and topographic information for choosing where to continue Spirit's exploration adventure.

    The Pancam began shooting component images of this panorama during Spirit's sol 814 (April 18, 2006) and completed the part shown here on sol 932 (Aug. 17, 2006). The panorama was acquired using all 13 of the Pancam's color filters, using lossless compression for the red and blue stereo filters, and only modest levels of compression on the remaining filters. The overall panorama consists of 1,449 Pancam images and represents a raw data volume of nearly 500 megabytes. It is thus the largest, highest-fidelity view of Mars acquired from either rover. Additional photo coverage of the parts of the rover deck not shown here was completed on sol 980 (Oct. 5 , 2006). The team is completing the

  15. 'McMurdo' Panorama from Spirit's 'Winter Haven' (Color Stereo)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Left-eye view of a stereo pair for PIA01905

    [figure removed for brevity, see original site] Right-eye view of a stereo pair for PIA01905

    This 360-degree view, called the 'McMurdo' panorama, comes from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit. From April through October 2006, Spirit has stayed on a small hill known as 'Low Ridge.' There, the rover's solar panels are tilted toward the sun to maintain enough solar power for Spirit to keep making scientific observations throughout the winter on southern Mars. This view of the surroundings from Spirit's 'Winter Haven' is presented as a stereo anaglyph to show the scene three-dimensionally when viewed through red-blue glasses (with the red lens on the left).

    Oct. 26, 2006, marks Spirit's 1,000th sol of what was planned as a 90-sol mission. (A sol is a Martian day, which lasts 24 hours, 39 minutes, 35 seconds). The rover has lived through the most challenging part of its second Martian winter. Its solar power levels are rising again. Spring in the southern hemisphere of Mars will begin in early 2007. Before that, the rover team hopes to start driving Spirit again toward scientifically interesting places in the 'Inner Basin' and 'Columbia Hills' inside Gusev crater. The McMurdo panorama is providing team members with key pieces of scientific and topographic information for choosing where to continue Spirit's exploration adventure.

    The Pancam began shooting component images of this panorama during Spirit's sol 814 (April 18, 2006) and completed the part shown here on sol 932 (Aug. 17, 2006). The panorama was acquired using all 13 of the Pancam's color filters, using lossless compression for the red and blue stereo filters, and only modest levels of compression on the remaining filters. The overall panorama consists of 1,449 Pancam images and represents a raw data volume of nearly 500 megabytes. It is thus the largest

  16. 'McMurdo' Panorama from Spirit's 'Winter Haven' (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This 360-degree view, called the 'McMurdo' panorama, comes from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit. From April through October 2006, Spirit has stayed on a small hill known as 'Low Ridge.' There, the rover's solar panels are tilted toward the sun to maintain enough solar power for Spirit to keep making scientific observations throughout the winter on southern Mars. This view of the surroundings from Spirit's 'Winter Haven' is presented in exaggerated color to enhance color differences among rocks, soils and sand.

    Oct. 26, 2006, marks Spirit's 1,000th sol of what was planned as a 90-sol mission. (A sol is a Martian day, which lasts 24 hours, 39 minutes, 35 seconds). The rover has lived through the most challenging part of its second Martian winter. Its solar power levels are rising again. Spring in the southern hemisphere of Mars will begin in early 2007. Before that, the rover team hopes to start driving Spirit again toward scientifically interesting places in the 'Inner Basin' and 'Columbia Hills' inside Gusev crater. The McMurdo panorama is providing team members with key pieces of scientific and topographic information for choosing where to continue Spirit's exploration adventure.

    The Pancam began shooting component images of this panorama during Spirit's sol 814 (April 18, 2006) and completed the part shown here on sol 932 (Aug. 17, 2006). The panorama was acquired using all 13 of the Pancam's color filters, using lossless compression for the red and blue stereo filters, and only modest levels of compression on the remaining filters. The overall panorama consists of 1,449 Pancam images and represents a raw data volume of nearly 500 megabytes. It is thus the largest, highest-fidelity view of Mars acquired from either rover. Additional photo coverage of the parts of the rover deck not shown here was completed on sol 980 (Oct. 5 , 2006). The team is completing the processing and mosaicking of those final pieces of

  17. 'McMurdo' Panorama from Spirit's 'Winter Haven'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This 360-degree view, called the 'McMurdo' panorama, comes from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit. From April through October 2006, Spirit has stayed on a small hill known as 'Low Ridge.' There, the rover's solar panels are tilted toward the sun to maintain enough solar power for Spirit to keep making scientific observations throughout the winter on southern Mars. This view of the surroundings from Spirit's 'Winter Haven' is presented in approximately true color.

    Oct. 26, 2006, marks Spirit's 1,000th sol of what was planned as a 90-sol mission. (A sol is a Martian day, which lasts 24 hours, 39 minutes, 35 seconds). The rover has lived through the most challenging part of its second Martian winter. Its solar power levels are rising again. Spring in the southern hemisphere of Mars will begin in early 2007. Before that, the rover team hopes to start driving Spirit again toward scientifically interesting places in the 'Inner Basin' and 'Columbia Hills' inside Gusev crater. The McMurdo panorama is providing team members with key pieces of scientific and topographic information for choosing where to continue Spirit's exploration adventure.

    The Pancam began shooting component images of this panorama during Spirit's sol 814 (April 18, 2006) and completed the part shown here on sol 932 (Aug. 17, 2006). The panorama was acquired using all 13 of the Pancam's color filters, using lossless compression for the red and blue stereo filters, and only modest levels of compression on the remaining filters. The overall panorama consists of 1,449 Pancam images and represents a raw data volume of nearly 500 megabytes. It is thus the largest, highest-fidelity view of Mars acquired from either rover. Additional photo coverage of the parts of the rover deck not shown here was completed on sol 980 (Oct. 5 , 2006). The team is completing the processing and mosaicking of those final pieces of the panorama, and that image will be released on

  18. 'McMurdo' Panorama from Spirit's 'Winter Haven' (Color Stereo)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Left-eye view of a stereo pair for PIA01905

    [figure removed for brevity, see original site] Right-eye view of a stereo pair for PIA01905

    This 360-degree view, called the 'McMurdo' panorama, comes from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit. From April through October 2006, Spirit has stayed on a small hill known as 'Low Ridge.' There, the rover's solar panels are tilted toward the sun to maintain enough solar power for Spirit to keep making scientific observations throughout the winter on southern Mars. This view of the surroundings from Spirit's 'Winter Haven' is presented as a stereo anaglyph to show the scene three-dimensionally when viewed through red-blue glasses (with the red lens on the left).

    Oct. 26, 2006, marks Spirit's 1,000th sol of what was planned as a 90-sol mission. (A sol is a Martian day, which lasts 24 hours, 39 minutes, 35 seconds). The rover has lived through the most challenging part of its second Martian winter. Its solar power levels are rising again. Spring in the southern hemisphere of Mars will begin in early 2007. Before that, the rover team hopes to start driving Spirit again toward scientifically interesting places in the 'Inner Basin' and 'Columbia Hills' inside Gusev crater. The McMurdo panorama is providing team members with key pieces of scientific and topographic information for choosing where to continue Spirit's exploration adventure.

    The Pancam began shooting component images of this panorama during Spirit's sol 814 (April 18, 2006) and completed the part shown here on sol 932 (Aug. 17, 2006). The panorama was acquired using all 13 of the Pancam's color filters, using lossless compression for the red and blue stereo filters, and only modest levels of compression on the remaining filters. The overall panorama consists of 1,449 Pancam images and represents a raw data volume of nearly 500 megabytes. It is thus the largest

  19. 'McMurdo' Panorama from Spirit's 'Winter Haven' (Stereo)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This 360-degree view, called the 'McMurdo' panorama, comes from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit. From April through October 2006, Spirit has stayed on a small hill known as 'Low Ridge.' There, the rover's solar panels are tilted toward the sun to maintain enough solar power for Spirit to keep making scientific observations throughout the winter on southern Mars. This view of the surroundings from Spirit's 'Winter Haven' is presented as a stereo anaglyph to show the scene three-dimensionally when viewed through red-blue glasses (with the red lens on the left).

    Oct. 26, 2006, marks Spirit's 1,000th sol of what was planned as a 90-sol mission. (A sol is a Martian day, which lasts 24 hours, 39 minutes, 35 seconds). The rover has lived through the most challenging part of its second Martian winter. Its solar power levels are rising again. Spring in the southern hemisphere of Mars will begin in early 2007. Before that, the rover team hopes to start driving Spirit again toward scientifically interesting places in the 'Inner Basin' and 'Columbia Hills' inside Gusev crater. The McMurdo panorama is providing team members with key pieces of scientific and topographic information for choosing where to continue Spirit's exploration adventure.

    The Pancam began shooting component images of this panorama during Spirit's sol 814 (April 18, 2006) and completed the part shown here on sol 932 (Aug. 17, 2006). The panorama was acquired using all 13 of the Pancam's color filters, using lossless compression for the red and blue stereo filters, and only modest levels of compression on the remaining filters. The overall panorama consists of 1,449 Pancam images and represents a raw data volume of nearly 500 megabytes. It is thus the largest, highest-fidelity view of Mars acquired from either rover. Additional photo coverage of the parts of the rover deck not shown here was completed on sol 980 (Oct. 5 , 2006). The team is completing the

  20. 'McMurdo' Panorama from Spirit's 'Winter Haven'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This 360-degree view, called the 'McMurdo' panorama, comes from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit. From April through October 2006, Spirit has stayed on a small hill known as 'Low Ridge.' There, the rover's solar panels are tilted toward the sun to maintain enough solar power for Spirit to keep making scientific observations throughout the winter on southern Mars. This view of the surroundings from Spirit's 'Winter Haven' is presented in approximately true color.

    Oct. 26, 2006, marks Spirit's 1,000th sol of what was planned as a 90-sol mission. (A sol is a Martian day, which lasts 24 hours, 39 minutes, 35 seconds). The rover has lived through the most challenging part of its second Martian winter. Its solar power levels are rising again. Spring in the southern hemisphere of Mars will begin in early 2007. Before that, the rover team hopes to start driving Spirit again toward scientifically interesting places in the 'Inner Basin' and 'Columbia Hills' inside Gusev crater. The McMurdo panorama is providing team members with key pieces of scientific and topographic information for choosing where to continue Spirit's exploration adventure.

    The Pancam began shooting component images of this panorama during Spirit's sol 814 (April 18, 2006) and completed the part shown here on sol 932 (Aug. 17, 2006). The panorama was acquired using all 13 of the Pancam's color filters, using lossless compression for the red and blue stereo filters, and only modest levels of compression on the remaining filters. The overall panorama consists of 1,449 Pancam images and represents a raw data volume of nearly 500 megabytes. It is thus the largest, highest-fidelity view of Mars acquired from either rover. Additional photo coverage of the parts of the rover deck not shown here was completed on sol 980 (Oct. 5 , 2006). The team is completing the processing and mosaicking of those final pieces of the panorama, and that image will be released on

  1. 'McMurdo' Panorama from Spirit's 'Winter Haven' (False Color)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This 360-degree view, called the 'McMurdo' panorama, comes from the panoramic camera (Pancam) on NASA's Mars Exploration Rover Spirit. From April through October 2006, Spirit has stayed on a small hill known as 'Low Ridge.' There, the rover's solar panels are tilted toward the sun to maintain enough solar power for Spirit to keep making scientific observations throughout the winter on southern Mars. This view of the surroundings from Spirit's 'Winter Haven' is presented in exaggerated color to enhance color differences among rocks, soils and sand.

    Oct. 26, 2006, marks Spirit's 1,000th sol of what was planned as a 90-sol mission. (A sol is a Martian day, which lasts 24 hours, 39 minutes, 35 seconds). The rover has lived through the most challenging part of its second Martian winter. Its solar power levels are rising again. Spring in the southern hemisphere of Mars will begin in early 2007. Before that, the rover team hopes to start driving Spirit again toward scientifically interesting places in the 'Inner Basin' and 'Columbia Hills' inside Gusev crater. The McMurdo panorama is providing team members with key pieces of scientific and topographic information for choosing where to continue Spirit's exploration adventure.

    The Pancam began shooting component images of this panorama during Spirit's sol 814 (April 18, 2006) and completed the part shown here on sol 932 (Aug. 17, 2006). The panorama was acquired using all 13 of the Pancam's color filters, using lossless compression for the red and blue stereo filters, and only modest levels of compression on the remaining filters. The overall panorama consists of 1,449 Pancam images and represents a raw data volume of nearly 500 megabytes. It is thus the largest, highest-fidelity view of Mars acquired from either rover. Additional photo coverage of the parts of the rover deck not shown here was completed on sol 980 (Oct. 5 , 2006). The team is completing the processing and mosaicking of those final pieces of

  2. The last glaciation and deglaciation of the Northeast Greenland continental shelf revealed by hydro-acoustic data

    NASA Astrophysics Data System (ADS)

    Arndt, Jan Erik; Jokat, Wilfried; Dorschel, Boris

    2017-03-01

    About 16% of the Greenland Ice Sheet drains in the area of the Northeast Greenland shelf between 76°N and 80.5°N via marine terminating glaciers. Most of it is via the Northeast Greenland Ice Stream, the largest ice stream of Greenland. During ice ages, the ice sheet extended onto the continental shelf and modern-day cross-shelf troughs were filled by ice streams. In this study, high-resolution hydro-acoustic data acquired during three decades of research were jointly investigated to reveal the past glacial conditions. Our data shows that Westwind Trough and Norske Trough were filled by fast flowing ice streams that extended to the shelf edge during the last glacial maximum. In between the cross-shelf troughs, ice domes resided on shallow banks that may have contributed about a decimetre to global sea level. Most probably these ice domes initiated fast ice flow through sinks in the inter-trough area. In Westwind Trough, ice sheet retreat to the inner shelf after the last glacial maximum was intermittent. In contrast, in Norske Trough the ice sheet retreat appears relatively rapid with no evidences for phases of grounding line stabilization. Probably during the Younger Dryas, the ice sheet readvanced to a mid-shelf position in both troughs documented by grounding zone wedges. During this time, a thick ice shelf was present in Norske Trough releasing tabular icebergs. Ice sheet retreat from the mid-shelf to the coastline during Holocene deglaciation was rapid.

  3. JPSS CGS C3S McMurdo Multimission Communications System

    NASA Astrophysics Data System (ADS)

    Higgins, C.; Urbano, J.; Jamilkowski, M. L.

    2011-12-01

    NOAA's next-generation civilian environmental satellite system, the Joint Polar Satellite System (JPSS) developed by NASA, will supply the afternoon orbit & ground system of the restructured NPOESS program. JPSS will replace NOAA's current POES system and ground processing part of both POES & DoD's Defense Weather Satellite System (DWSS). JPSS sensors will collect meteorological, oceanographic, climatological & solar-geophysical data. The command & data distribution part of the JPSS Common Ground System (CGS) is the Command, Control & Communications Segment (C3S), developed by Raytheon Intelligence & Information Systems. C3S manages the overall JPSS & DWSS missions from control & status of the space & ground assets to ensuring timely delivery of high-quality data to the Interface Data Processing Segment (IDPS). Key to C3S' data delivery system are 15 globally-distributed ground receptors developed by Raytheon Company which will collect up to 5 times the environmental data about 4 times faster than current polar-orbiting weather satellites. Then these data will be rapidly forwarded to weather centrals via the global fiber optic network for processing/production of data records for use in environmental prediction models. McMurdo Station, Antarctica is a major receptor site due to its high latitude. With the NSF, C3S completed the upgrade & expansion of their existing off-continent satellite communications (SATCOM) link with 60 Mbps of bandwidth outbound and 20 Mbps inbound to missions using McMurdo. C3S completed the 1st big milestone in 2008 increasjng bandwidth of 3 Mbps to/from Antarctica to 10 Mbps both ways. Raytheon's C3S also upgraded network infrastructure at McMurdo Station & Belrose Earth Station, Australia SATCOM sites. This provides routing support for several missions, plus expansion capabilities to support future missions at McMurdo. The upgrade completed in Dec 2010 to prepare for use of McMurdo Station to support new downlink capabilities, called the

  4. Characterizing spatiotemporal dynamics of wetted soils across a polar desert landscape, McMurdo Dry Valleys Antarctica

    NASA Astrophysics Data System (ADS)

    Langford, Z. L.; Gooseff, M. N.; Lampkin, D. J.

    2012-12-01

    The McMurdo Dry Valleys is a landscape characterized by open expanses of bare soils, alpine and piedmont glaciers, and ice-covered lakes on the valley floors, all underlain by permafrost. There is contemporary evidence of changes to the near-surface hydrology of the Dry Valleys as extensive wet soil patches are being observed extensively throughout the valleys. The availability and movement of water across this landscape may drive important shifts in the interactions among meteorology, hydrology and biogeochemical processes. Wetted soils are generally found adjacent to streams and lakes, but have also been observed far from lake shorelines and channels. The relative contributions of water to the development of wetted zones from glaciers, ablated snow patches and melted permafrost has not been established. We evaluate the spatio-temporal variability of retrieved near surface soil moisture using high resolution optical data from Quickbird and Wordview satellites to document the occurrence, dimensions, and growth of wet spots during the 2009-10 and 2010-11 austral summers over Taylor Valley. The patterns on the distributed estimates of soil moisture are extracted from the satellite imagery based on an artificial neural network (ANN). The ANN utilizes a spectral library of representative surface types and states. The library was derived from measurements of in situ reflectance of soil moisture during the 2011 austral season, using a portable radiometer.

  5. Ciliate diversity, community structure, and novel taxa in lakes of the McMurdo Dry Valleys, Antarctica.

    PubMed

    Xu, Yuan; Vick-Majors, Trista; Morgan-Kiss, Rachael; Priscu, John C; Amaral-Zettler, Linda

    2014-10-01

    We report an in-depth survey of next-generation DNA sequencing of ciliate diversity and community structure in two permanently ice-covered McMurdo Dry Valley lakes during the austral summer and autumn (November 2007 and March 2008). We tested hypotheses on the relationship between species richness and environmental conditions including environmental extremes, nutrient status, and day length. On the basis of the unique environment that exists in these high-latitude lakes, we expected that novel taxa would be present. Alpha diversity analyses showed that extreme conditions-that is, high salinity, low oxygen, and extreme changes in day length-did not impact ciliate richness; however, ciliate richness was 30% higher in samples with higher dissolved organic matter. Beta diversity analyses revealed that ciliate communities clustered by dissolved oxygen, depth, and salinity, but not by season (i.e., day length). The permutational analysis of variance test indicated that depth, dissolved oxygen, and salinity had significant influences on the ciliate community for the abundance matrices of resampled data, while lake and season were not significant. This result suggests that the vertical trends in dissolved oxygen concentration and salinity may play a critical role in structuring ciliate communities. A PCR-based strategy capitalizing on divergent eukaryotic V9 hypervariable region ribosomal RNA gene targets unveiled two new genera in these lakes. A novel taxon belonging to an unknown class most closely related to Cryptocaryon irritans was also inferred from separate gene phylogenies.

  6. Changing structures and dynamics of western Antarctic Peninsula Ice Shelves

    NASA Astrophysics Data System (ADS)

    Glasser, N. F.; Holt, T. O.; Quincey, D. J.; Fricker, H.; Siegfried, M. R.

    2013-12-01

    Over the last three decades, Antarctic Peninsula Ice Shelves have shown a pattern of sustained retreat, often ending in catastrophic and rapid breakup. This study provides a detailed analysis of the structures and dynamics of three western Antarctic Peninsula ice shelves: Bach, Stange and George VI Ice Shelves. Spatial extent and glaciological surface features were mapped for each ice shelf from 1973 to 2010 using optical and radar satellite images to assess their structural evolution, historical dynamics and stability. InSAR and feature-tracking methods were used to assess the recent dynamic configurations of the ice shelves from 1989 to 2010. Repeat ICESat measurements were used to evaluate their vertical changes from 2003 to 2008. On Bach Ice Shelf, the formation of two large fractures near the ice front is linked to widespread thinning (~2 ma-1) and sustained retreat (~360 km2). It looks likely that iceberg calving along these fractures will alter the frontal geometry sufficiently to promote enhanced, irreversible retreat within the next decade. On George VI Ice Shelf, acceleration is observed at both ice fronts; linked to a release of back-stresses through continued ice loss (1995 km2 in total). The most significant changes are recorded at its southern ice front, with ice flow accelerating up to 360% between ca. 1989 and ca. 2010, coupled with widespread rifting and a mean thinning rate of 2.1 ma-1. On Stange Ice Shelf, shear-induced fracturing was observed between two flow units, also linked to widespread thinning (~4.2 ma-1). A semi-quantitative assessment reveals that the southern margin of George VI Ice Shelf is most susceptible to rapid retreat, whilst its northern ice front, Bach Ice Shelf and the northern front of Stange Ice Shelf are more vulnerable than those situated on the east Antarctic Peninsula.

  7. Provenance of the Gamburtsev Subglacial Mountains from U Pb and Hf analysis of detrital zircons in Cretaceous to Quaternary sediments in Prydz Bay and beneath the Amery Ice Shelf

    NASA Astrophysics Data System (ADS)

    Veevers, J. J.; Saeed, A.; O'Brien, P. E.

    2008-11-01

    In central Antarctica, drainage today and earlier back to the Paleozoic radiates from the Gamburtsev Subglacial Mountains (GSM). Proximal to the GSM past the Permian-Triassic fluvial sandstones in the Prince Charles Mountains (PCM) are Cretaceous, Eocene, and Pleistocene sediment in Prydz Bay (ODP741, 1166, and 1167) and pre-Holocene sediment in AM04 beneath the Amery Ice Shelf. We analysed detrital zircons for U-Pb ages, Hf-isotope compositions, and trace elements to determine the age, rock type, source of the host magma, and "crustal" model age ( TDMC). These samples, together with others downslope from the GSM and the Vostok Subglacial Highlands (VSH), define major clusters of detrital zircons interpreted as coming from (1) 700 to 460 Ma mafic granitoids and alkaline rock, ɛHf 9 to - 28, signifying derivation 2.5 to 1.3 Ga from fertile and recycled crust, and (2) 1200-900 Ma mafic granitoids and alkaline rock, ɛHf 11 to - 28, signifying derivation 1.8 to 1.3 Ga from fertile and recycled crust. Minor clusters extend to 3350 Ma. Similar detrital zircons in Permian-Triassic, Ordovician, Cambrian, and Neoproterozoic sandstones located along the PaleoPacific margin of East Antarctica and southeast Australia further downslope from central Antarctica reflect the upslope GSM-VSH nucleus of the central Antarctic provenance as a complex of 1200-900 Ma (Grenville) mafic granitoids and alkaline rocks and older rocks embedded in 700-460 Ma (Pan-Gondwanaland) fold belts. The wider central Antarctic provenance (CAP) is tentatively divided into a central sector with negative ɛHf in its 1200-900 Ma rocks bounded on either side by positive ɛHf. The high ground of the GSM-VSH in the Permian and later to the present day is attributed to crustal shortening by far-field stress during the 320 Ma mid-Carboniferous collision of Gondwanaland and Laurussia. Earlier uplifts in the ˜ 500 Ma Cambrian possibly followed the 700-500 Ma assembly of Gondwanaland, and in the Neoproterozoic

  8. Flow Control and Design Assessment for Drainage System at McMurdo Station, Antarctica

    DTIC Science & Technology

    2014-11-24

    evaluating existing culvert and snow dump loca- tions at McMurdo Station. Flow modeling and structural analyses were conducted to determine de- sign...44 15 Ratio of the gravel’s bearing capacity to weir weight per area for...equipment manually clears major flow arteries in tight areas in anticipa- tion of the snowmelt runoff (Figure 1). Snowmelt runoff passes through

  9. HNO3 and HCl amounts over McMurdo during the spring of 1987

    NASA Technical Reports Server (NTRS)

    Murcray, Frank J.; Goldman, Aaron; Blatherwick, Ronald; Matthews, Andrew; Jones, Nicholas

    1989-01-01

    Infrared solar spectra were obtained from the ground at McMurdo, Antarctica, during September and October 1987. Absorption features due to HNO3 and HCl have been analyzed to determine the vertical column content of these compounds for the days when observations were made. The variation of these column amounts with time is presented and discussed.

  10. Abrupt changes in ice shelves and ice streams: Model studies

    NASA Astrophysics Data System (ADS)

    Dupont, Todd K.

    Ice sheets are among the most important components of the Earth system because of their ability to force changes in climate and sea level. Ice streams are efficient pathways of mass flux from the interior of ice sheets. Thus an understanding of ice-stream dynamics is integral to an understanding of ice sheets and their interplay with sea level and climate. Here a 1-d model of the coupled mass and momentum balance of ice streams and shelves is developed. Longitudinal deviatoric stress is included in the force-balance component model. The mass-balance component model is time-dependent and thus allows simulation of the dynamic consequences of changes in boundary conditions or parameters. An improved, computationally efficient algorithm of the discretization of the mass-balance equation is outlined. All model parameters are non-dimensional. The model is applied to two problems. In the first study we address the sensitivity of ice-stream/ice-shelf systems to changes in ice-shelf buttressing. We find that for reasonable parameter values such systems are markedly sensitive to a loss of buttressing. Response includes net grounding-line retreat on the order of 10% of the length scale for the system and a roughly 30% loss in the volume of ice above flotation. In the second study we examine the conditions under which ice flowing over a sill will tend to create a reversed ice/air surface slope. Here we find that, such slope reversals occur within the range of reasonable parameter values, and thus should be expected. Hence, ice shelf grounding on a sill can trap water and drive subsequent thickening, eventually tending toward outburst flooding.

  11. SEA-ICE INFLUENCE ON ARCTIC COASTAL RETREAT.

    USGS Publications Warehouse

    Reimnitz, Erk; Barnes, P.W.

    1987-01-01

    Recent studies document the effectiveness of sea ice in reshaping the seafloor of the inner shelf into sharp-relief features, including ice gouges with jagged flanking ridges, ice-wallow relief, and 2- to 6-m-deep strudel-scour craters. These ice-related relief forms are in disequilibrium with classic open-water hydraulic processes and thus are smoothed over by waves and currents in one to two years. Such alternate reworking of the shelf by ice and currents - two diverse types of processes, which in the case of ice wallow act in unison-contributes to sediment mobility and, thus, to sediment loss from the coast and inner shelf. The bulldozing action by ice results in coast-parallel sediment displacement. Additionally, suspension of sediment by frazil and anchor ice, followed by ice rafting, can move large amounts of bottom-derived materials. Our understanding of all these processes is insufficient to model Arctic coastal processes.

  12. Boulder weathering in McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Putkonen, Jaakko; Morgan, Daniel; Balco, Greg

    2014-08-01

    Earth's dynamic surface undergoes a continuous cycle of mountain building and denudation. One of the important links in this cycle is the break-up and comminution of the rocks that allows for effective transportation of debris by surface processes. The starting and end points in this transformation are well known: bedrock and boulders on one end and silt and clay on the other. However, the existing knowledge of the rates and processes responsible of the intermediate steps is currently limited. To fill this gap in knowledge we studied boulders and their weathering products in the McMurdo Dry Valleys, Antarctica, that have been weathering for hundreds of thousands of years sub-aerially exposed at the ground surface. Our study boulders of locally distinct lithology have trails of rock fragments leading downhill revealing the rate of weathering and subsequent transport rate of the fragments. The rock fragments emanate from the source boulder and decrease in size as the distance downslope increases. We measured the fragment sizes and distances for various lithologies on varying slope angles. We found that large fragments up to 0.4 m in diameter can be transported up to 60 m downslope by unknown processes. The total length of the fragment trail increases with the slope angle. The maximum transport distances of sandstone boulders are approximately 10 times longer than other lithologies, which may be explained by the larger observed fragment sizes of the sandstones. On the other hand measurements of the smaller, generally less than 0.04 m diameter fragments that are transported by wind, revealed much shorter transport distances (< 10 m). To gain insights of the boulder and resulting fragment weathering rates we constructed a boulder weathering-fragment transport computer model. The model is based on simple rules and probabilities that describe the weathering and transportation. The model is constrained by the observed fragment size distribution, fragment distribution in

  13. Examination of upstream flow dynamics in response to the front retreat of ice shelves with different geometric configurations

    NASA Astrophysics Data System (ADS)

    Wang, S.; Liu, H.

    2015-12-01

    Ice shelves fringe ~75% of Antarctica's coastline, nourished by numerous terrestrial glacier systems. The ice-shelf disintegrations in recent decades and the observed thinning trends have revealed their susceptibility to the atmospheric and oceanic changes in the climate warming context. The buttressing effect of an ice shelf constrains the ice discharge of its upstream land ice, thus regulating the contribution to sea level of the terrestrial glaciers. The important role of ice shelves in stabilizing the upstream glacier flow dynamics is emphasized by the rapid accelerations and thinning of the tributary glaciers in response to the collapses of the northern Larsen Ice Shelf in Antarctic Peninsula. However, this buttressing effect is determined by the stress balance conditions of an ice shelf, which is further affected by the ice-shelf geometric configurations. The ice shelves confined by fjords, islands, promontories or seabed topographic highs exert greater buttressing effects than those less confined by the lateral or basal shear stresses. This research aims to assess the influences of different ice-shelf configurations on upstream flow dynamics in response to large ice-shelf retreat events. By using remotely sensed imagery acquired by multiple satellite missions, we derived the time series surface velocity records for the Larsen B glacier-ice shelf system in Antarctic Peninsula during 1995 - 2015 and for the Mertz glacier-ice shelf system in East Antarctica during 1997 - 2015, respectively. The former was well confined in the embayment, while the latter is unconfined by lateral margins. We compared the different temporal variation patterns in flow dynamics between these two sites before and after their large retreating events, i.e. the collapse event of Larsen B Ice Shelf in 2002 and the large calving event of Mertz Ice Shelf in 2010. The surface velocity profiles reveal the less sensitivity of upstream responses to the front retreat for the Mertz Ice Shelf.

  14. On the difficulty of modeling Circumpolar Deep Water intrusions onto the Amundsen Sea continental shelf

    NASA Astrophysics Data System (ADS)

    Nakayama, Y.; Timmermann, R.; Schröder, M.; Hellmer, H. H.

    2014-12-01

    In the Amundsen Sea, warm Circumpolar Deep Water (CDW) intrudes onto the continental shelf and flows into the ice shelf cavities of the West Antarctic Ice Sheet, resulting in high basal melt rates. However, none of the high resolution global models resolving all the small ice shelves around Antarctica can reproduce a realistic CDW flow onto the Amundsen Sea continental shelf, and previous studies show simulated bottom potential temperature at the Pine Island Ice Shelf front of about -1.8 °C. In this study, using the Finite-Element Sea ice-ice shelf-Ocean Model (FESOM), we reproduce warm CDW intrusions onto the Amundsen Sea continental shelf and realistic melt rates of the ice shelves in West Antarctica. To investigate the importance of horizontal resolution, forcing, horizontal diffusivity, and the effect of grounded icebergs, eight sensitivity experiments are conducted. To simulate the CDW intrusion realistically, a horizontal resolution of about 5 km or smaller is required. The choice of forcing is also important and the cold bias in the NCEP/NCAR reanalysis over the eastern Amundsen Sea prevents warm CDW from intruding onto the continental shelf. On the other hand, the CDW intrusion is not highly sensitive to the strength of horizontal diffusion. The effect of grounded icebergs located off Bear Peninsula is minor, but may act as a buffer to an anomalously cold year.

  15. Microbiota within the perennial ice cover of Lake Vida, Antarctica.

    PubMed

    Mosier, Annika C; Murray, Alison E; Fritsen, Christian H

    2007-02-01

    Lake Vida, located in the McMurdo Dry Valleys, Antarctica, is an 'ice-sealed' lake with approximately 19 m of ice covering a highly saline water column (approximately 245 ppt). The lower portions of the ice cover and the lake beneath have been isolated from the atmosphere and land for circa 2800 years. Analysis of microbial assemblages within the perennial ice cover of the lake revealed a diverse array of bacteria and eukarya. Bacterial and eukaryal denaturing gradient gel electrophoresis phylotype profile similarities were low (<59%) between all of the depths compared (five depths spanning 11 m of the ice cover), with the greatest differences occurring between surface and deep ice. The majority of bacterial 16S rRNA gene sequences in the surface ice were related to Actinobacteria (42%) while Gammaproteobacteria (52%) dominated the deep ice community. Comparisons of assemblage composition suggest differences in ice habitability and organismal origin in the upper and lower portions of ice cover. Specifically, the upper ice cover microbiota likely reflect the modern day transport and colonization of biota from the terrestrial landscape, whereas assemblages in the deeper ice are more likely to be persistent remnant biota that originated from the ancient liquid water column of the lake that froze.

  16. Investigating role of ice-ocean interaction on glacier dynamic: Results from numerical modeling applied to Petermann Glacier

    NASA Astrophysics Data System (ADS)

    Nick, F. M.; van der Veen, C. J.; Vieli, A.; Pattyn, F.; Hubbard, A.; Box, J. E.

    2010-12-01

    Calving of icebergs and bottom melting from ice shelves accounts for roughly half the ice transferred from the Greenland Ice Sheet into the surrounding ocean, and virtually all of the ice loss from the Antarctic Ice Sheet. Petermann Glacier (north Greenland) with its ~17 km wide and ~ 60 km long floating ice-shelf is experiencing high rates of bottom melting. The recent partial disintegration of its shelf (in August 2010) presents a natural experiment to investigate the dynamic response of the ice sheet to its shelf retreat. We apply a numerical ice flow model using a physically-based calving criterion based on crevasse depth to investigate the contribution of processes such as shelf disintegration, bottom melting, sea ice or sikkusak disintegration and surface run off to the mass balance of Petermann Glacier and assess its stability. Our modeling study provides insights into the role of ice-ocean interaction, and on response of Petermann Glacier to its recent massive ice loss.

  17. Engineering Manual for McMurdo Station. Revision

    DTIC Science & Technology

    1979-01-01

    prominent landmark having an eleva- a state of inactivity. Figure 1-8 presents the tion of 987 feet. The Pram Point basalt flow, cooling power of wind...entirely of volcanic rocks that are predominantly olivine basalts with smaller amounts of associated, GEOLOGY AND GLACIOLOGY less basic rocks such as...trachite, tuffaceous agglomerate, phonolite, and kenyte. The Land not covered by ice and snow basalt ranges from black, dense, micro- amounts to only

  18. Perennial Antarctic lake ice: an oasis for life in a polar desert

    NASA Technical Reports Server (NTRS)

    Priscu, J. C.; Fritsen, C. H.; Adams, E. E.; Giovannoni, S. J.; Paerl, H. W.; McKay, C. P.; Doran, P. T.; Gordon, D. A.; Lanoil, B. D.; Pinckney, J. L.

    1998-01-01

    The permanent ice covers of Antarctic lakes in the McMurdo Dry Valleys develop liquid water inclusions in response to solar heating of internal aeolian-derived sediments. The ice sediment particles serve as nutrient (inorganic and organic)-enriched microzones for the establishment of a physiologically and ecologically complex microbial consortium capable of contemporaneous photosynthesis, nitrogen fixation, and decomposition. The consortium is capable of physically and chemically establishing and modifying a relatively nutrient- and organic matter-enriched microbial "oasis" embedded in the lake ice cover.

  19. Greenland ice sheet retreat history in the northeast Baffin Bay based on high-resolution bathymetry

    NASA Astrophysics Data System (ADS)

    Slabon, Patricia; Dorschel, Boris; Jokat, Wilfried; Myklebust, Reidun; Hebbeln, Dierk; Gebhardt, Catalina

    2016-12-01

    New swath-bathymetric data acquired in 2010 and 2015 indicate a variety of glacial landforms in cross-shelf troughs of the Melville Bay (northeast Baffin Bay). These landforms reveal that, at their maximum extent, ice streams in the troughs crossed the shelf all the way to the shelf edge. Moraines, grounding-zone wedges (GZWs) and subglacial till lobes on the continental shelf define a pattern of variable ice stream retreat in the individual troughs. On the outer shelf, in the northern cross-shelf trough, ice-stream retreat was slow compared to more episodic retreat in the central (at least one stabilization on the outer shelf) and southern cross-shelf trough (re-advances at the shelf edge and fast retreat thereafter). Large GZWs on the mid-to inner shelf of the troughs indicate periods of grounding-zone stabilization. According to glacial landforms, the final retreat across the inner shelf (before 8.41 ka BP) was episodic to slow. Furthermore, evidence has been found for localized ice domes with minor ice-streams on inter-trough banks. The glacial landforms in Melville Bay, thus, indicate the varying and discontinuous ice sheet retreat history across the Northwest Greenland continental shelf.

  20. FY 1994 ambient air monitoring report for McMurdo Station, Antarctica

    SciTech Connect

    Lugar, R.M.

    1994-12-01

    This report presents the results of ambient air monitoring performed during the 1994 fiscal year (FY 1994) in the vicinity of McMurdo Station, Antarctica. Routine monitoring was performed during the 1993-1994 austral summer at three locations for airborne particulate matter less than 10 micrometers (PM-10) and at two locations for carbon monoxide (CO), sulfur dioxide (SO{sub 2}), and nitrogen oxides (NO, NO{sub 2}, and NO{sub x}). Selected PM-10 filters were analyzed for arsenic, beryllium, cadmium, chromium, lead, mercury, and nickel. Additional air samples were collected at three McMurdo area locations and at Black Island for determination of the airborne concentration of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Sampling site selection, sampling procedures, and quality assurance procedures used were consistent with US Environmental Protection Agency guidance for local ambient air quality networks.

  1. Feasibility report: Operation of light air cushion vehicle at McMurdo Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Dibbern, J. S.

    1987-02-01

    This report explores the viability of the use of an air cushion vehicle (ACV) or hovercraft to perform logistic and scientific support in the area of McMurdo Station, Antarctica. After a review of personnel assets and facilities at McMurdo Station to support the ACV plus a reconnaissance of the five major routes selected, it appears that an air cushion vehicle in the 1 to 1 1/2 ton payload class would be of significant value to support operations. It would reduce transit times for surface vehicle traverses on the routes selected and reduce requirements for expenditure of helicopter flight time in others. Of major significance is the ability to handle passenger/shuttle requirements between the Scott Base transition and Williams Field Skiway. Use of the ACV for high frequency passenger operations would help preserve the snow road for cargo operations during periods of road deterioration.

  2. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    PubMed

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.

  3. Record low ozone measured at McMurdo Station, Antarctica, during the austral spring of 1993

    SciTech Connect

    Johnson, B.J.; Deshler, T.

    1994-12-31

    The annual springtime ozone hole over Antarctica has been studied extensively since it was first reported. The University of Wyoming has participated in monitoring the development of the ozone hole over Antarctica since 1986 using balloonborne instruments to measure vertical profiles of ozone and particles at McMurdo Station, Antarctica. During austral spring 1993, record minimums in total column ozone were observed along with a record low within the main ozone layer at 12-20 kilometers (km). 6 refs., 2 figs.

  4. McMurdo Consolidated Airfields Study: Phase I, Basis of Design

    DTIC Science & Technology

    2013-01-01

    McMurdo Airfield Stake Holders Meeting .................... 90 ERDC/CRREL TR-13-5 v Appendix D: Correlation of Airfield Air Temperature Data with the...runway; the main skiway would be oriented with the prevailing wind, and the second crosswind skiway would be aligned with the storm winds, and be...duction from contaminates ( dust or soot) and snow metamorphosis under warm conditions. As noted previously, in 2009−10, the skiway was co-located

  5. Triggers for the Collapse of Ice Shelves in Antarctica: Investigating Compressive Arch Failure with Numerical Models

    NASA Astrophysics Data System (ADS)

    Huth, A.; Smith, B. E.

    2015-12-01

    Antarctic ice shelves restrain, or buttress, grounded ice from flowing freely into the ocean by redistributing the force of the ice flow to pinning points (ice rises) at the ice front and shear margins at adjacent bay walls. This buttressing process typically defines a 'compressive arch' in the strain rate-field of the ice shelf, where the smallest principal component transitions from compressive inland of the arch to extensive seaward of the arch. If the compressive arch is breached due to iceberg calving at the ice front or thinning at the shear margins, the ice shelf will retreat irreversibly to a new stable configuration or collapse entirely. This retreat can compromise ice shelf buttressing, resulting in sea-level rise and ocean freshening as grounded ice flows unrestricted into the ocean. Here, we investigate the dynamics of compressive arch failure using Larsen C ice shelf as a test case for a larger study that will include several other ice shelves and projections for sea-level rise. We use satellite observations to develop a steady state model of Larsen C in Elmer/ICE, a finite element ice sheet/ice flow software package. We run calving and thinning simulations to determine the conditions needed to trigger ice shelf retreat via compressive arch failure and discuss the likelihood of these scenarios occurring in relation to extrapolations of current melt profiles and calving trends.

  6. Controls on Last Glacial Maximum ice extent in the Weddell Sea embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    Whitehouse, Pippa L.; Bentley, Michael J.; Vieli, Andreas; Jamieson, Stewart S. R.; Hein, Andrew S.; Sugden, David E.

    2017-01-01

    The Weddell Sea sector of the Antarctic Ice Sheet is hypothesized to have made a significant contribution to sea-level rise since the Last Glacial Maximum. Using a numerical flowline model we investigate the controls on grounding line motion across the eastern Weddell Sea and compare our results with field data relating to past ice extent. Specifically, we investigate the influence of changes in ice temperature, accumulation, sea level, ice shelf basal melt, and ice shelf buttressing on the dynamics of the Foundation Ice Stream. We find that ice shelf basal melt plays an important role in controlling grounding line advance, while a reduction in ice shelf buttressing is found to be necessary for grounding line retreat. There are two stable positions for the grounding line under glacial conditions: at the northern margin of Berkner Island and at the continental shelf break. Global mean sea-level contributions associated with these two scenarios are 50 mm and 130 mm, respectively. Comparing model results with field evidence from the Pensacola Mountains and the Shackleton Range, we find it unlikely that ice was grounded at the continental shelf break for a prolonged period during the last glacial cycle. However, we cannot rule out a brief advance to this position or a scenario in which the grounding line retreated behind present during deglaciation and has since re-advanced. Better constraints on past ice sheet and ice shelf geometry, ocean temperature, and ocean circulation are needed to reconstruct more robustly past behavior of the Foundation Ice Stream.

  7. The occurrence of lysogenic bacteria and microbial aggregates in the lakes of the McMurdo Dry Valleys, Antarctica

    USGS Publications Warehouse

    Lisle, J.T.; Priscu, J.C.

    2004-01-01

    The McMurdo Dry Valleys of Antarctica form the coldest and driest ecosystem on Earth. Within this region there are a number of perennially ice-covered (3-6 m thick) lakes that support active microbial assemblages and have a paucity of metazoans. These lakes receive limited allochthonous input of carbon and nutrients, and primary productivity is limited to only 6 months per year owing to an absence of sunlight during the austral winters. In an effort to establish the role that bacteria and their associated viruses play in carbon and nutrient cycling in these lakes, indigenous bacteria, free bacteriophage, and lysogen abundances were determined. Total bacterial abundances (TDC) ranged from 3.80 ?? 104 to 2.58 ?? 107 cells mL-1 and virus-like particle (VLP) abundances ranged from 2.26 ?? 105 to 5.56 ?? 107 VLP mL-1. VLP abundances were significantly correlated (P < 0.05) with TDC, bacterial productivity (TdR), chlorophyll a (Chl a), and soluble reactive phosphorus (SRP). Lysogenic bacteria, determined by induction with mitomycin C, made up between 2.0% and 62.5% of the total population of bacteria when using significant decreases and increases in TDC and VLP abundances, respectively, and 89.5% when using increases in VLP abundances as the sole criterion for a successful induction event. The contribution of viruses released from induced lysogens contributed <0.015% to the total viral production rate. Carbohydrate and protein based organic aggregates were abundant within the water column of the lakes and were heavily colonized by bacteria and VLPs. Alkaline phosphatase activity was detected within the matrix of the aggregates, implying phosphorus deficiency and consortial nutrient exchanges among microorganisms.

  8. Distribution, properties and origin of viscous-flow features in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Bockheim, James G.

    2014-01-01

    Satellite images and high resolution air photos, coupled with field examinations, were used to examine 24 rock glaciers/debris-covered glaciers and 25 gelifluction sheets, collectively referred to as viscous-flow features, in the McMurdo Dry Valleys, Antarctica. Debris-covered glaciers are the dominant form and are longer (mean length = 2.5 km), wider (mean width = 0.8 km), and less steep (mean slope = 12°) than similar features reported in most arctic and alpine environments. The catchment areas tend to be large, averaging over 9 km2. Most of the debris-covered glaciers are tongue-shaped, and where excavation was possible, the ice core was readily observable. Gelifluction sheets primarily occur at the base of valley sidewalls below talus on slopes ranging from 5 to 30° (average = 13°) and contain a very thin active layer (normal range 20 to 40 cm). Both viscous-flow forms occur on the north- and south-facing slopes of the east-west trending valleys and are concentrated in the inland mixed zone and stable upland microclimatic zone; these lobes were not found in the coastal thaw zone. Gelifluction sheets result from the melting of snow high on the valley walls, subsurface flow of meltwater on top of the permafrost, and slow movement downslope. They are readily observable from nonsorted polygons that are stretched into rectangles that are perpendicular to the slope and contain raised polygon rims upslope. The movement of gelifluction sheets can be detected from upturned stones containing carbonate coatings. Rates of horizontal surface flow of the viscous-flow features are comparable to those reported elsewhere in Antarctica and in the alpine and arctic regions of the world. Some of the viscous-flow features appear to be inactive, possibly reflecting the recession of alpine glaciers in high elevation cirques.

  9. Antarctic benthic and sea-ice microalgal interactions: food chain processes and physiology

    SciTech Connect

    Smith, G.A.; White, D.C.; Nichols, P.D.

    1986-01-01

    Annual sea-ice in McMurdo Sound is known to provide an extensive microhabitat for microalgae containing a high biomass within the lower 5 cm at the water/ice interface, with an estimated annual production of 4.1 g of carbon/m/sup 2/. Upon senescence, this microalgal population contributes a large amount of C to the benthic biota. Total biomass as measured by membrane phospholipids of benthic microorganisms from three sites in McMurdo Sound were comparable to those of a Florida estuary and greater than those of deep-sea trenches. In addition to total biomass, changes in community structure of the sediments at the McMurdo study sites of Cape Evans, Cape Armitage, and New Harbor are detectable by detailed fatty-acid profiles of phospholipid membranes. These data are comparable to studies of the benthic macrofauna from McMurdo Sound which indicated that the east Sound sites are more productive than the west. The east Sound sediment sites were found to contain the greatest amount of the phospholipid fatty acid which is a major component of the sea-ice diatom Nitzschia cylindrus. Bacterial biomarkers indicated little difference in total biomass between the sites but did reveal community structure differences. Saturated, branched, and odd carbon fatty acids, were present in similar relative proportions. Fatty acids from triglyceride and sterols from the neutral lipid fractions of the sediments indicated a similar pattern to that of the phospholipid biomasses, with the east Sound sites containing greater amounts. Metabolic activities at the sites were measured by their incorporation of radiolabeled precursors into bacterial DNA and lipid classes. Lipid and metabolic activity monitoring has proven to be a useful technique in ice algal physiology studies.

  10. Early Miocene basement clasts in ANDRILL AND-2A core and their implications for paleoenvironmental changes in the McMurdo Sound region (western Ross Sea, Antarctica)

    NASA Astrophysics Data System (ADS)

    Talarico, Franco M.; Sandroni, Sonia

    2011-07-01

    A detailed provenance study of gravel-size clasts in the lowermost 438 m of the ANDRILL AND-2A core reveals a pattern of dynamic provenance variations which can be discussed for its implications for Early Miocene paleogeographical reconstructions and glaciological models in the McMurdo Sound region (Ross Sea). Clast distribution patterns and distribution of diagnostic basement clast assemblages indicative of three different provenance areas (Mulock-Skelton glacier, Carlyon-Darwin glacier and Koettlitz-Blue glacier regions) can be interpreted in terms of two distinctive ice dynamic scenarios: i) local fluctuations of outlet Transantarctic Mountains glaciers with dominant flows from W to E to the coast (documented in the lowermost core section, at ca. 20.2-20.1 Ma), and ii) larger volume of ice grounded at the regional scale in the Ross Embayment with flow lines running N-S close to the TAM front (in two periods, at ca. 19.7-19.7 Ma and at ca. 17.8-17.4 Ma). Moreover, in core sections including facies typical of open-marine to iceberg-influenced depositional environments, ice-rafted debris compositions reveal that during periods of glacial-minima setting sites of active calving processes dominantly occurred in areas including the present-day Blue-Koettlitz glacier coast, and subordinately in glacier tongues located further south in the Skelton-Mulock glacier area. Consistently with results of numerical modelling the reconstructed glaciological scenarios provide further constraints to paleogeographical reconstructions and glaciological models at the south-western tip of the Ross Sea during significant steps in Antarctic ice sheet evolution through the Early Miocene climatic events.

  11. Seafloor Control on Sea Ice

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.

    2011-01-01

    The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measureme